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Preface

This volume contains the papers presented at WINE 2009: the 5th International
Workshop on Internet and Network Economics held December 14–18, 2009, in
Rome, at the Department of Computer and System Sciences, Sapienza University
of Rome.

Over the past decade there has been growing interaction between researchers
in theoretical computer science, networking and security, economics, mathemat-
ics, sociology, and management sciences devoted to the analysis of problems
arising in the Internet and the worldwide web. The Workshop on Internet and
Network Economics (WINE) is an interdisciplinary forum for the exchange of
ideas and results arising in these varied fields.

There were 142 submissions to the workshop including regular and short pa-
pers. All submissions were rigorously peer reviewed and evaluated on the basis of
the quality of their contribution, originality, soundness, and significance. Almost
all submissions were reviewed by at least three Program Committee members.
The committee decided to accept 34 regular papers and 29 short papers. The
Best Student Paper award sponsored by Google Inc. was given to Saeed Alaei
and Azarakhsh Malekian for the paper “An Analysis of Troubled Assets Reverse
Auction.”

The program also included three invited talks by S. Muthukrishnan (Google
Inc. and Rutgers University), H. Peyton Young (Oxford and Johns Hopkins Uni-
versity) and Eva Tardos (Cornell Unversity). Three tutorials were also offered on
the days before the workshop, from Andrei Broder (Yahoo! Research) on Com-
putational Advertising, Nikhil Devanur and Kamal Jain (Microsoft Research)
on Computational Issues in Market Equilibria, and Tim Roughgarden (Stanford
University) on Bayesian and Worst-Case Revenue Maximization.

We would like to thank Google Inc., Microsoft Research, Yahoo! Research,
Fondazione Ugo Bordoni and Sapienza University of Rome for the generous
financial support to WINE 2009. We would also like to thank the Department
of Computer and System Sciences, Sapienza University of Rome, for hosting
the event. Vincenzo Bonifaci and Piotr Sankowski offered their precious help
for the review process, the conference website and the workshop proceedings.
We also acknowldege Easychair, a fantastic, robust, easy to use, freely available
system for managing the work of the Program Committee and the production
of workshop proceedings.

October 2009 Stefano Leonardi
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Ad Exchanges: Research Issues

S. Muthukrishnan

Google Inc.

Abstract. An emerging way to sell and buy display ads on the Inter-
net is via ad exchanges. RightMedia [1], AdECN [2] and DoubleClick
Ad Exchange [3] are examples of such real-time two-sided markets. We
describe an abstraction of this market. Based on that abstraction, we
present several research directions and discuss some insights.

1 Introduction

Activities on the Internet can be abstracted as interactions due to three parties.
There are

– the users who navigate to various web pages,
– the publishers who control the web pages and generate the content in them,

and
– are advertisers who wish to get the attention of the users using the publishers

as the channel for placing ads on the pages.

Precisely what ads show when a user accesses a page is a detailed process. A
central issue is matching advertisers to publishers, where the number of adver-
tisers and publishers is very large. Direct negotiation between advertisers and
publishers might work for large companies, but currently there are intermedi-
aries such as ad agencies, ad networks and publisher networks that aggregate
several parties. An advertisers might use an ad agency to develop the marketing
campaign and use an ad network that pools many advertisers to negotiate with
a publisher network that places ads with many publishers; alternatively, for a
large advertiser, the ad agency might directly negotiate contracts with a few
large publishers. There are several intermediaries and their services overlap with
networks comprising both advertisers and publishers, or agencies that are also
ad networks, etc. Thus there are several ad paths between an advertiser and a
user; some ad paths are shown in Figure 1.

An emerging way of selling and buying ads on the Internet is via an exchange
that brings sellers (publishers) and buyers (advertisers) together to a common
marketplace. There are exchanges in the world for trading financial securities
to currency, physical goods, virtual credits, and much more. Exchanges serve
many purposes from bringing efficiency, to eliciting prices, generating capital,
aggregating information etc. Market Microstructure is the area that studies all
aspects of such exchanges [4,5]. Ad exchanges are recent. Ad exchanges offer ad
networks and publishers to transact centrally for ads. RightMedia [1], AdECN [2]
and DoubleClick [3] are examples.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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PublisherAd NetworkAd AgencyAdvertiser User

Fig. 1. Ad paths

– Publishers expect to get the best price from the exchange, better than from
any specific ad network; in addition, publishers get liquidity.

– Advertisers get access to a large inventory at the exchange, and in addition,
the ability to target more precisely across web pages.

– Finally, the exchange is a clearing house ensuring the flow of money.

In many ways, these ad exchanges are modeled after financial stock exchanges.
Since 2005 when RightMedia appeared, ad exchanges have become popular. In
Sept 2009, RightMedia averaged 9 billion transactions a day with 100’s of thou-
sands of buyers and sellers. Recently, DoubleClick announced their new ad ex-
change. It seems ad exchanges are likely to become a major platform for trading
ads.

We abstract a model for ad exchanges. Based on the model, we present re-
search problems in auction theory, optimization and game theory. The goal is to
present a blueprint for research in design, analyses and use of ad exchanges.

2 Ad Exchange

We present an abstract AdX model to describe ad exchanges. It is defined as a
sequence of events.

1. User u visits the webpage w of publisher p(w).
For now, we assume page w has a single slot for ads.

2. Publisher p(w) contacts the exchange E with (w, u, ρ) where ρ is the mini-
mum price p(w) is willing to take for the slot in w.

We assume that E knows all the contents of w as well as the various
specifics of the ad slot in it, including its dimensions and inappropriate ads
for that slot as agreed on with p(w). We also assume that the exchange
manages information about user u in a manner agreed upon with p(w). This
is reasonable because p(w) has moral and contractual relationship with its
viewers u while also having incentive to help advertisers target users suitably.
Also, E can independently crawl contents of w if needed, in many cases, we
might as well assume that in the model.

3. The exchangeE contacts ad networks a1, . . . , am with (E(w), E(u), ρ), where
E(w) is information about w provided by E, and likewise, E(u) is the infor-
mation about u provided by E.

E(u) is the information E is able to provide about u to the ad networks as
agreed upon with p(w). When p(w) entrusts E to reveal w, we assume that
ad networks know contents of w and also derived information such as topics
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of contents in w. The ad networks may have the resources to obtain this on
their own or resourceful exchanges can do it for them. This is modeled as
E(w). There are instances when p(w) does not wish ad networks to know
w, in which case, E(w) will be only derived information about w and w’s
identity will remain unknown to ai’s.

4. Each ad network ai returns (bi, di) on behalf of its customers which are the
advertisers; bi is its bid, that is, the maximum it is willing to pay for the slot
in page w and di is the ad it wishes to be shown. The ad networks may also
choose not to return a bid.

It is assumed that bi ≥ ρ, else no bid is returned. It is also assumed
that di is suitable for the ad slot. Further, it is assumed that ai targets ads
based on its contracts with its customers and negotiates prices for the service
with them. Ad di may be passed by reference as supported by common http
protocol.

5. Exchange E determines a winner i∗ for the ad slot among all (bi, di)’s and
its price ci∗ ≤ bi∗ via an auction and returns (ci∗ , di∗) to p(w).

It is assumed that the winning network i∗ becomes aware of the outcome
including the price, and in some but not necessarily all instances, the losing
networks can determine that too. E is responsible that di is suitable for
w, u according to its contract with p(w). This may be accomplished in a
variety of ways from pre-verification to outsourcing the task to the networks.
E negotiates pricing for its service with various p(w)’s and ai’s. Also, E
generates bills and reports, collects payments from ai’s, and makes payments
to p(w)’s.

6. The publisher p(w) serves webpage w with ad di∗ to user u. This is known
as an impression of ad di∗ .

The ad di∗ is rendered by user’s browser and the user interacts with the
ad in a variety of ways.

We have left out system level details in the model above. For example, internet
protocols are used for forwarding, referencing, accounting, etc. Further, for ef-
ficiency reasons, steps may be optimized out and or made offline. For example,
ads and bids may be loaded onto the Exchange a priori so networks are accessed
only infrequently. Also, due to time constraints, crawling and processing w may
be overlooked and E(w) will be minimal or there may be timeouts, etc. The flow
of the model is shown in Figure 2.

The AdX model captures the essence of ad exchanges that the instrument
traded is ad impressions. So, AdX model has real time auction for each impres-
sion and the bids are CPM (cost per mille or thousand impressions). The entire
execution above begins when a user arrives at a webpage and must be completed
before the page is rendered on their screen. This sets an upper bound for the exe-
cution in 10’s or 100’s of milliseconds.1 Thus AdX model provides a spot market
for ad impressions. The assumption is that higher order campaign goals such as
maximize number of impressions subject to budget criteria, or reach as many
target users as possible, and other goals will be executed by optimized bidding
1 AdECN claims a 12 milliseconds execution [2].



4 S. Muthukrishnan

webpage w

user u

1

Exchange

2Publisher p(w)

Ad Network 1

Ad Network i

Ad Network m

3

3

3

4

4

4

ρ

(bi, di)
5 (ci∗ , di∗)

6

Adv

Adv

Adv

Adv

Fig. 2. AdX Model

by the networks, and indeed one can design more sophisticated instruments on
top of the spot market.

AdX vs Financial Exchanges. As in financial exchanges, the buyers and sell-
ers come to AdX only when they choose. Further, individual advertisers access
AdX through intermediaries like in financial exchanges. However, a significant
difference is in the nature of what is traded. Unlike financial securities, ad im-
pressions are heterogeneous, significantly differing from one instance to another
in their value depending on their impact on the user which varies widely across
millions of users. Further, impressions are supremely perishable: if the trade
does not happen within the browser performance anticipated by the user, the
opportunity to place an ad is lost. As a result, AdX has two important tasks.
First is informational. AdX embodies the effort by various parties to help ad-
vertisers discover users to target, eg via E(w), E(u). Second is economics. With
vastly heterogeneous goods, many of the pricing methods face challenges and
AdX enables the market to discover prices by making trading automatic and via
auctions.

user u Search Engine

Adv

Adv

Adv

Fig. 3. Sponsored Search

AdX vs Sponsored Search. The AdX model is distinct from sponsored search.
In sponsored search, a user poses a query at a search engine and gets search
results together with ads arranged top to bottom. The assignment of ads to
positions is by an auction among all advertisers who placed a cost-per-click
(CPC) bid on a keyword that matches the query. If the user clicks on an ad, that
advertiser pays the search engine the auction price. The ad path is simple and
shown in Figure 3. The dynamics are simpler since there is a single publisher
and a one-sided marketplace of buyers. On the other hand, sponsored search
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aligns the incentives of advertisers and search engines with the quality of ads
for the users, and hence, the publisher faces the challenge of monitoring and
maintaining quality. The underlying auction for sponsored search is analyzed
in [8,9]. There are many outstanding research issues in sponsored search [6], but
they are not the focus here. We will henceforth focus on the AdX model.

3 Research Issues

We describe several research issues using examples. The issues when formalized
more precisely will lead to different research problems.

3.1 Basic Auction at the Exchange

A central question concerns the auction at the exchange. There is a single slot
of ad being auctioned, and the bidders know ρ and participate only if their bid
is above ρ. Further it is a sealed bid auction since each network bids directly
with the exchange. The setting appears to be a standard auction in one-sided
market. Revenue equivalence theorem [7] would then indicate that first price,
second price and several other auctions will all yield identical expected revenue
in Bayesian equilibrium under certain natural assumptions. Still, second price
or Vickrey auctions are preferable since they encourage more stable dynamics.
So, we will assume second price auction as a benchmark when needed. We now
discuss a nuance.

Example. Say network a1 has 2 advertisers a11 and a12 with bids 10 and 8
resp., while network a2 has a single advertiser a21 with bid 5. a1 forwards 10
and a2 forwards 5 to the exchange. Second price auction at the exchange will
declare a1 the winner with price 5. a11 wins the ad slot. Now a1 may charge a11
either 5 (the exchange price) or 8 (the second price in a1). Instead, if a1 revealed
both bids 10 and 8 to the exchange, second price auction at the exchange would
charge 8 to the winner a11. Thus since the exchange does not know the entire
book of the ad networks, a network has an excess to disburse and the publisher
gets less than the best price from the book.

Book value is the second largest value of all the bidders.

Problem 1. Assuming ρ is exogenous and assuming the advertisers reveal their
bids truthfully to the networks, is there a possibly truthful auction at the exchange
that will extract a large fraction of the book value?

The tricky case is when the bid that sets the price of the winner is in the winner’s
network. A straightforward approach is to generalize the protocol and ask each
network i to forward two bids (bi1, b

i
2) where bi1 is the largest of the bids in i and

bi2 the second largest. A naive strategy is to declare i∗ = argmaxib
i
1 the winner

with price max{bi∗2 ,maxj �=i∗ b
j
1}; then, ad networks have no incentive to declare

nonzero bi2. A simple allocation strategy would be to declare largest bi1 + bi2 as
the winner. This incentivizes networks to bid ((bi1 + bi2)/2, (bi1 + bi2)/2) and is not
truthful.
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3.2 Auction and Bidding by Ad Networks

Consider mechanisms for the ad networks. In general, the exchange can not as-
sume ad networks will follow any particular mechanism. Still, exchange’s choice
of auction will impact mechanisms ad networks will use, and choice of mecha-
nisms of ad networks will influence auction at the exchange.

Problem 2. Assuming ρ is exogenous, the exchange runs a second price auction
with reserve price r ≥ ρ, and advertisers are captive, that is, remain with their
choice of ad network throughout, what is a revenue optimal mechanism for an
ad network?

Seen from an ad network i’s point of view, there are several advertisers bidding
to be chosen for the impression. The questions are, which ad to choose and what
price to charge? This appears to be identical to the standard auction framework
where optimal mechanisms are known [11]. Under suitable assumptions, the so-
lution is to run a second price auction with an appropriately chosen reserve price
ri. The key difference here is that the ad network i does not have a guaranteed
good to auction, rather it has a contingent good. More formally, there is some
probability α(b) that it will win the impression if it bid b at the exchange. This
probability function α is determined by the bidding strategy of other networks
and their advertisers’ valuations.

Under standard assumptions that advertisers have values drawn from a known
distribution, one can extend the theory of optimal auctions [11] to derive an
optimal mechanism for the ad networks [12]. For example, one can show that
the revenue-optimal mechanism for a network to randomize its bids in some
range [lr, ur], dependent on r. A more detailed understanding of the equilibrium
will be of great interest. Even without the complication of what auction to run
in the network, the problem of bidding for higher campaign goals is challenging
in presence of α(). Recently, this was studied in [13].

3.3 Auctioning with Heterogenous Valuations

While the exchange auctions impressions, there are instances when an impres-
sion is valued very differently by the bidders. For example, an impression to a
particular user may be far more valuable to one bidder than others. This target-
ing is enabled by the information E(u) shared by the publisher p(w) with the
ad networks.2

Example. We have two bidders A and B, A has value vA = 100 and B has
value vB = 1 for the ad slot. In equilibrium of the first price auction, A wins
by bidding 1 + ε for some ε > 0 and exchange’s revenue is 1 + ε. This outcome
holds for second price auction as well. On the other hand, maximum value to be
extracted is max vA, vB = 100. What is the maximum revenue a mechanism can
extract in equilibrium?

2 http://www.adecn.com/faq_4.html

http://www.adecn.com/faq_4.html
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Say bidder i has value vi, bids bi, and there is a single item to be sold. Then,
the maximum revenue is R∗ = maxi vi. Classical results [11] would provide most
revenue assuming the distribution from which vi’s is drawn is known. Here,
instead, we focus on prior-free case where distributions are not known a priori,
not even the maximum of individual distributions.3 We know from [14] that no
truthful mechanism exists with (roughly) expected revenue Ω( R∗

log R∗ ); on the
other hand, they show an auction with expected revenue Ω( R∗

(log R∗)1+ε) for fixed
ε > 0. Their auction [14] is as follows. With probability 1 − δ, use the second
price auction. With probability δ, choose r according to the distribution below
and if b1 ≥ r, highest bidder wins at price r:

f(x) =
ε

x(log(x/b2) + 1)1+ε
, x ∈ [b2,∞).

Problem 3. Design a non-truthful mechanism for prior-free auction of a single
slot with near-optimal revenue, but with good equilibrium properties.

An approach is to use quasi-proportional allocation in which the good is allocated
to one bidder using a distribution where ith bidder is picked with probability

f(bi)∑
i f(bi)

, for some suitable function f . If f(x) = x, we have the well-known
proportional allocation. Revenue properties of quasi-proportional mechanisms
are not well-studied. In [17], authors show that with f(x) =

√
x, one can extract

(R∗)γ revenue for some γ > 0 under certain conditions. Further, using [18], the
equilibrium can be characterized for quasi-proportional auctions. A deeper study
of quasi-proportional auctions will be of great interest. In particular, are there
functions f for which quasi-proportional allocation generates more revenue in
its equilibrium than the lower bound in [14]?

For AdX, we need a generalization of the standard prior-free setting to ad
networks as well as the exchange (much as [12] extends [11]). For an economics
perspective on market clearing and role of intermediaries in prior-free auctions,
see [15].

Problem 4. Design (even non-truthful) mechanisms for prior-free bidding of ad
networks in AdX, with good equilibrium properties and (near-)optimal revenue.

3.4 Callout Optimization

In Step 3, E seeks bids from ad network ai’s. This may be accomplished at a
system level by (a) having ai’s preload their ad campaigns into E so suitable ad
campaigns and their bids that apply to (E(w), E(u), ρ) can be retrieved locally,
(b) hosting ai’s bidding software in E’s machines so the software can manage

3 In practice, one would argue that in repeated auctions as in the exchange, one can
learn the distributions. It is an interesting exercise what can be learned from the
data – not necessarily the entire distribution, just enough to extract revenue – and
how, as well as its impact in engineering the system, in particular, when learning is
likely to be only approximate.
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the network’s campaigns and generate suitable (bi, di), or (c) making http calls
to ai’s servers, and awaiting (bi, di) to be determined by the network. (a) and
(b) are essentially not real-time because networks cannot update bids, bidding
logic, key parameters and relevant data impression to impression. We focus on
(c) and discuss an optimization problem.

It is resource-intensive for E to call out to each network for each impression.
In practice, ad networks can describe (E(w), E(u), ρ)’s of cumulative interest to
their customers, and therefore for each impression, only a subset S(E(w),E(u),ρ)
of ad networks need to be called. Still, we may assume that it will be difficult if
not impossible for each network to take all the http calls from E. So, here is an
optimization problem E faces.

Problem 5. Each ad network i has bandwidth budget Bi. Say E has band-
width budget of B. Design an online algorithm for E that for each incoming
call (wj , uj , ρj), chooses a subset Sj ⊆ S(E(wj),E(uj),ρj) of networks to call such
that no ad network i gets more than Bi calls per second, E make fewer than B
calls per second, and optimizes the expected

– number of bids, ie, number of nonempty (bi(j), di(j))’s received at E, or
– efficiency

∑
j maxi bi(j), or

– sales revenue
∑

j maxi | bi(j) �=maxi bi(j) bi(j), or
– profit for E.

In the problem above, we need stochastics. The algorithm has to know about
likelihood of ad network i making a bid for (E(wj), E(uj), ρj). In particular,
Pr(bi(j) ≥ ρj |E(wj), E(uj)) and Exp(bi(j)|bi(j) ≥ ρj) are useful. Hence, E
needs to estimate these terms for each j. Given these parameters, initial approx-
imation results for the problem are in [19].

3.5 Publisher Optimization and Strategies

Publisher p(w) has many decisions to make when user u visits w.

Accessing AdX. p(w) has several sources for ads including contracts with ad-
vertisers signed by their own sales teams, contracts with specific ad networks
and the ability to reach AdX on any impression. Filling many impressions with
highest price ads from AdX will have long term impact on other sources, and
failure to deliver on contracts; filling contract commitments might lead to loss
of revenue from AdX spot market. The task is to design an online algorithm
to commit impressions to different ad sources in order to honor contracts as
well as maximize revenue. Some initial results are in [21] where solutions are
based on the publisher virtually bidding on behalf of ad sources. More detailed
understanding of strategies will be of great use to individual publishers.

Form of inventory. If publisher p(w) wishes, E can limit information via E(w),
not reveal identity of w or p(w), and merely provide information about the
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nature of the site eg., sports/baseball, etc. We call this undisclosed inventory.4;
in contrast, when identity of w is shared with the ad networks, we call it disclosed
inventory. Publishers may choose to keep some of their inventory undisclosed,
in order to avoid conflicts with their other sales channels. It is assumed that
undisclosed inventory fetches less than disclosed inventory. Then, p(w) has an
online optimization problem: for each impression, how to choose disclosed or
undisclosed option in E to trade off short term vs long term revenue. A suitable
model to address this problem will be of interest.

Price. Publisher p(w) has to choose ρ while accessing E: large ρmay not generate
a bid, and a small ρ may undervalue the inventory. One way to choose ρ is as
the maximum over other sales channels for an ad at the slot, but in general, one
needs an online ρ setting algorithm that endogenizes the demand and supply in
the system adaptively. Again, a clean model and implementable algorithm is of
interest.

Here is the combined problem of inventory management and accessing AdX.

Problem 6. Given models for impressions inventory (w, u), models for bids
(bi∗ , di∗) from E, models of ad sales and prices through other channels, design
an algorithm that on each impression (a) decides whether to go to AdX, (b)
chooses disclosed or undisclosed inventory at AdX, and (c) selects min price ρ,
in order to optimize the expected overall (long term) revenue.

3.6 Arbitrage Bidding and Risk Analysis

AdX model trades impressions and uses CPM prices. Ad networks can sell other
pricing methods, such as pay-per-click with cost-per-click (CPC) prices to their
advertisers. This comes with an arbitrage opportunity and associated risk as
described below.

Example. Define click-through-rate (CTR) as average fractional number of
clicks per impression. Consider an ad with CTR 0.1 and CPC of $1. Ideally,
the network should bid $100 CPM; then spend is $100 for 1000 impressions,
revenue is $100, and they are even. However, in any empirical run of auctions,
CTR estimates are not precise. (1) Say CTR was overestimated to be 0.2. Then
the network bids $200 CPM, spend is $200 for 1000 impressions, and revenue
is $100. This assumes the network will get at least 1000 impressions if they
overbid, which is reasonable given large inventory in ad slots. (2) Say CTR was
underestimated to be 0.05 and the network bids $50 CPM. Then spend is $50x
for x fraction of 1000 impressions, and revenue is $100x. The assumption is the
network will only get x fraction of 1000 impressions. To summarize, the outcome
is (200− 100) loss if network overbid vs (100 − 50)x profit if network underbid
and loss of (1− x) fraction of impressions.

4 See blind vs disclosed inventory in http://www.adecn.com/faq_5.html, or branded
vs anonymous in http://www.doubleclick.com/products/advertisingexchange/

benefits_for_sellers.aspx

http://www.adecn.com/faq_5.html
http://www.doubleclick.com/products/advertisingexchange/benefits_for_sellers.aspx
http://www.doubleclick.com/products/advertisingexchange/benefits_for_sellers.aspx
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Problem 7. Consider advertisers who contract with the network for CPC bids,
certain reach (number of distinct users reached) and frequency counts (the num-
ber of times a user sees an ad). Design an algorithm for ad networks to place
CPM bids into AdX that for a given risk level and volatility, maximizes expected
revenue and guarantees contract counts. Take into account bidding into the ex-
change for contingent good as in Section 3.2.

3.7 AdX Integrity

Exchanges in general strive for transparency. The ability of participants to un-
derstand the inventory they buy or be convinced of the integrity of underlying
process will, in general, induce more to access the exchange. In reality, systems
need a balance of overall trust and key parts with legal or technological checks
if needed. While this balance will be worked out by the marketplace, here is a
theoretical problem.

Problem 8. Design a cryptographically sound real-time auction protocol so that
any participating party in AdX can verify that (a) all communication, accounting
and computations were performed correctly, and (b) auction was closed envelope,
that is, no bidder sees others’ bids prior to the auction. This has to work for re-
peated auction of impressions in AdX where some information is revealed between
impressions.

Secure and collusion free auction design has been explored by the cryptography
community, eg using homomorphic encryption scheme [20]. However, one still
needs realtime methods for AdX application, methods which will run with one
http round trip time. Also, one needs a clear model to prove strong cryptographic
properties of the various protocols. Some progress is in [22].

3.8 Configuration Auctions

Even when there is a single slot in w, different configurations of ads — eg 1
video ad or 2 image ads or 4 text ads — might fit there. While the exchange
will return the most efficient configuration in total CPM bids, an interesting
question is how to spread the price among the ads in the winning configuration
(Problem 6 in [6]). Further, inherently, the bids from the networks are for entire
configurations which makes it more like configuration auctions and associated
externalities [23].

We go beyond to look at cases where w has multiple ad slots. How should
they be sold? One approach is to sell the slots independently. This is easy on
the system but advertisers may wish to appear in only one slot on a page which
can not be guaranteed. Another approach is to sell all the slots in one block, but
such exclusive packages may not be popular except on premium sites. A realistic
approach is to make AdX more sophisticated and consider all slots together in
some auction. In reality, advertisers’ have complex preferences. For example, an
advertiser may value a slot on the right highly if they did not win the top slot.
That is, advertisers have conditional values.
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Problem 9. Devise a suitable bidding language for advertisers and ad networks
to express (conditional) preferences for slots, and design suitable auction mecha-
nisms for the exchange as well as for ad networks to allocate substitutable winners
if any.

We propose a simple approach. Publisher p(w) presents a list of slots in w in the
order in which will be auctioned. Then ad networks can return one bid for each
slot, and specify the maximum number of impressions they wish. The auction
proceeds slot by slot; winners are removed from consideration for successive slots
if they are fulfilled. We call this linearized auction (LA). LA trades off efficiency
for expressiveness and lets bidders represent some conditional preferences but
not others. Studying suitable LA mechanisms including the impact of publisher’s
choice of the list will be of interest. Also, comparison of LA mechanisms with
richer tree bidding [24] will be of interest.

4 Concluding Remarks

This writeup provides some insight into the research issues in AdX that mod-
els exchanges like RightMedia, AdGCN and DoubleClick. These exchanges are
emerging as major new platforms to sell display ads on the Internet, but are
still nascent. Progress on research issues listed here will likely impact the design
and growth of not only these ad exchanges but also the “ecosystem” of bidders,
optimizers and quantifiers around them. We list some more issues:

1. Game theory of adverisers. Advertisers may go to multiple networks, or
choose networks strategically. What are the resulting dynamics? How does
their strategic behavior affect competition within their campaigns along mul-
tiple ad paths, across advertisers, across ad networks and ultimately, across
exchanges?

2. Ad Quality. In sponsored search, quality of an ad is correlated with click-
through, and so is the pricing and incentives of the advertiser. We need a
similar quality metric for impressions and endogenize that in the auction to
align advertiser incentives. A proposal is to generate a suitable Markov model
for users that will capture even the long term impact of ad impressions.
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A learning rule is adaptive if it is simple to compute, requires little information about 
the actions of others, and is plausible as a model of behavior [1, 2]. In this paper I 
survey a family of adaptive learning rules in which experimentation plays a key role.  
These rules have the property that, in large classes of games, agents’ individual 
behavior results in Nash equilibrium behavior by the group a high proportion of the 
time.  Agents need not know that Nash equilibrium is being played -- indeed they 
need not know anything about the structure of the game in which they are embedded.  
Instead, equilibrium evolves as an unintended consequence of individual adaptation.  
The theory is particularly relevant to modeling systems of interacting agents that are 
very large and complex, so that one cannot reasonably expect that players would try 
to optimize based on their beliefs about the state of the system. Concrete examples 
include drivers adjusting to urban traffic patterns, or people sending and receiving 
information in large networks. While such rules can be viewed as a descriptive model 
of how humans adapt in such situations, they can also be taken as design elements in 
engineered systems, such as distributed sensors or robots, where the ‘agents’ are 
programmed to behave in a way that leads to desirable system-wide outcomes.   

In its simplest form, experimentation means that an agent occasionally tries out 
new strategies (drawn according to a probability distribution over the set of feasible 
strategies), and keeps the new strategy if and only if it results in a higher payoff than 
his current strategy. It can be shown that in potential games, and more generally in 
weakly acyclic games, this leads to system-wide Nash equilibrium behavior in the 
following approximate sense: a Nash equilibrium will be played a large proportion of 
the time when the experimentation rate is sufficiently small [3].  

Note that this is weaker than saying that the system will arrive at a Nash 
equilibrium after some finite time and stay there; it is also weaker than saying that it 
is probable that the system will arrive at a Nash equilibrium and stay there. Rather, it 
says that if ( )p t  is the proportion of all time periods 't t≤  at which a Nash 

equilibrium occurs, then for some suitably small 0ε > , liminf ( ) 1t p t ε→∞ ≥ −  

almost surely.   
In more general games, the simple “hill-climbing” form of experimentation 

described above does not generally lead to Nash equilibrium.  However there is a 
natural variant, called interactive trial and error learning, that works even when there 
is no potential function [4]. In this procedure, an agent’s state at any given time t is 
described by three variables: a benchmark action ta , a benchmark utility or aspiration 

level tu , and an internal state or “mood” tm .  There are two principal moods: content 

and discontent. A content agent searches occasionally and deliberatively, adopting a 
new action only if it is strictly better than his current strategy just as in the simple 
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experimentation model described earlier. If the experiment is successful he adjusts his 
benchmark action and utility to the new values. A discontent agent flails around, 
trying out new actions at random. However, after each search there is a positive 
probability that he spontaneously stops searching and adopts the most recent action 
and payoff as his new benchmarks. We assume that the stopping probability increases 
monotonically with the current payoff, and that it is bounded away from zero and one 
in all states.  

The transition between moods is triggered by the pattern of recent payoffs. If a 
content agent experiences an increase in payoff without experimenting, he enters a 
‘hopeful’ state for one period; if his payoff continues to be higher than his current 
benchmark for another period he becomes content again with the higher payoff as his 
new benchmark. If, however, a content agent experiences a decrease in payoff 
through no fault of his own (i.e., without experimenting), he enters a transitional 
‘watchful’ state for one period; if his realized payoff continues to be lower than his 
benchmark for another period he becomes discontent, and flailing around ensues. 

Conceptually this approach is similar to adaptive procedures that have been 
proposed in other branches of the learning literature. In computer science, for 
example, the algorithm WoLF (Win or Lose Fast) has a similar flavor: stay with a 
strategy that is doing well and change quickly if it does poorly [5].  In biology the 
foraging behavior of bees has been shown to have a broadly similar character [6].   

It can be shown that the version of the rule described above leads to Nash 
equilibrium in a wide variety of games. Specifically, consider an n-person, finite, 
normal-form game G with generic payoffs and at least one pure Nash equilibrium. 
Given any small 0ε > , if all players use interactive trial and error learning with 
sufficiently small experimentation probability 'ε ε< , then almost surely a Nash 

equilibrium will be played at least 1 ε−  of the time [4].    
Since agents respond only to their own payoffs, it follows that they do not even 

need to know that they are involved in a game for Nash equilibrium to be a reasonable 
prediction of their long-run behavior.  

There remains the question of how long it takes for adaptive learning to reach 
equilibrium, or something close to it, starting from out-of-equilibrium conditions. In 
other words, can one design learning algorithms that are efficient? The answer 
depends on the structure of the game and on its ‘size’ as measured by the number of 
players and/or the number of strategies. It can be shown that some games take an 
exponentially long time to learn by any adaptive learning rule that is ‘uncoupled,’ i.e., 
the rule does not need other agents’ utility functions as inputs [7].   But there are other 
types of games – such as coordination games – that can be learned relatively quickly.  
Here I shall briefly outline one result of this nature.   

Consider a symmetric 2 x 2 coordination game G that is played on a network. The 
network has one agent located at each node and its undirected edges describe the 
pairwise interactions that occur between agents. In each period t, each agent i chooses 
one action ( )ia t  from his feasible action set.  His payoff, ( ( ), ( ))i i iu a t a t− , is the sum 

of the payoffs he gets from playing this action once against each of his neighbors 
(given their choices ( )ia t− ).   



 Adaptive Learning in Systems of Interacting Agents 15 

Fix a symmetric two-person game G such that each player has two actions, ,a b , 

coordinating on action a  has a strictly higher payoff than coordinating on b , and 
miscoordinating has zero payoff. Given a network N and a small number 0δ > , let 

,NTδ  be the maximum expected waiting time (over all initial states) such that in every 

period 
,Nt Tδ≥ , at least 1 δ−  of the agents are playing the Pareto superior action with 

probability at least 1 δ− .  For the given game G we shall say that a learning rule is 
efficient at level δ  on a family of networks N,  if ,NTδ  is bounded above for all 

networks N ∈ N.  
As a particular example, consider the following adaptive procedure known as log-

linear learning [8].  At the start of period t, each agent gets an independent update 
signal from a Poisson random variable, where the signals are i.i.d. among agents. 
When an agent i receives a signal, he chooses an action according to a logit function 
of the action’s payoff conditional on the current actions of i’s neighbors, that is,  
 
                            ( , ( )) ( , ( )) ( , ( ))( ( 1) ) e /(e e )i i i i i iu a a t u a a t u b a t

iP a t a β β β− − −+ = = + .                 (1) 

 
Here 0β >  measures the sensitivity of response: if β  is high the agent chooses a best 

response with high probability; if β  is low the response is close to being random.  

This process can be quite inefficient. Suppose, for example, that the network is 
large and complete: everyone is a neighbor of everyone else. If the process starts in 
the inferior equilibrium in which everyone plays b, the expected waiting time until the 
process comes close to the a-equilibrium is exponential in the number of agents (for a 
given choice of the response parameter β ). The reason is that the large number of 

players, combined with their high degree of interconnectedness, acts as a drag on the 
choice of each individual, hence change in the aggregate takes a very long time.   

Suppose, by contrast, that the network consists of many small disjoint groups (e.g., 
families or tribes) of size s. Assume that each member of a group interacts only with 
other members of the group and has no connections with outsiders. In any given 
group it suffices for a few people to choose action a “by mistake” for the others to 
want to choose a also.  If the response parameter β  is sufficiently large, then once a 

given group has reached the all-a equilibrium, they will be at this equilibrium with 
high probability in every subsequent period.  Since the process is operating 
independently across groups, it follows that the expected waiting time until a high 
proportion of the agents is playing a with high probability is bounded above 
irrespective of the total number of agents.   

The most interesting situation arises when agents are spatially distributed and 
interact only with their near neighbors. For example, suppose they are located at the 
vertices of a two-dimensional grid, and each agent interacts with his four neighbors. 
(Assume the grid is embedded on the torus so that it is regular of degree four.) It turns 
out that in this case too the waiting time for logit learning is bounded irrespective of 
the size of the grid.  This follows from a topological condition that ensures efficiency 
of log-linear learning on general networks. The basic idea is that every agent should 
be in some group of bounded size whose members interact mainly with each other as 
opposed to outsiders (for details see [9, 10]).  Such a family of networks is said to be 
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close-knit.  A great variety of spatial distributions have this property.  It can be shown 
that log-linear learning of 2 x 2 coordination games is efficient on any close-knit 
family of networks.  

In summary, there are simple adaptive learning rules that come close to Nash 
equilibrium behavior at the system-wide level, and that require no special 
computational powers on the part of the agents or knowledge of the game they are 
playing.  The efficiency of these processes depends importantly on both the payoff 
structure of the game and on the topology of the agents’ interactions.  While some 
games take exponentially long to learn, there are others of practical importance that 
can be learned quite quickly.  It is a challenging open problem to extend these types 
of results to other forms of learning and more general classes of games. 
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Abstract. Network games play a fundamental role in understanding behavior in 
many domains, ranging from communication networks through markets to 
social networks. In this talk we'll study the degradation of quality of solution 
caused by the selfish behavior of users in a number of different games including 
congestion games that model routing or cost-sharing, and games that model  
Ad-Auctions. In each setting our goal is to quantify the degradation of quality 
of solution caused by the selfish behavior of user. We compare the selfish 
outcome to a centrally designed optimum both in terms of the quality of Nash 
equilibria and also the quality of outcomes of learning behavior by the users. 
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Abstract. Congestion games are a fundamental and widely studied
model for selfish allocation problems like routing and load balancing. An
intrinsic property of these games is that players allocate resources simul-
taneously and instantly. This is particularly unrealistic for many network
routing scenarios, which are one of the prominent application scenarios of
congestion games. In many networks, load travels along routes over time
and allocation of edges happens sequentially. In this paper we consider
two frameworks that enhance network congestion games with a notion
of time. We propose temporal network congestion games that use coordi-
nation mechanisms — local policies that allow to sequentialize traffic on
the edges. In addition, we consider congestion games with time-dependent
costs, in which travel times are fixed but quality of service of transmission
varies with load over time. We study existence and complexity properties
of pure Nash equilibria and best-response strategies in both frameworks.
In some cases our results can be used to characterize convergence for
various distributed dynamics.

1 Introduction

As an intuitive game-theoretic model for competitive resource usage, network
congestion games have recently attracted a great deal of attention [1,2,3]. These
games are central in modeling routing and scheduling tasks with distributed
control [4]. Such games can be described by a routing network and a set of
players who each have a source and a target node in the network and choose a
path connecting these two nodes. The quality of a player’s choice is evaluated
in terms of the total delay or latency of the chosen path. For this, every edge
e has a latency function that increases with the number of players whose paths
include edge e. Ignoring the inherent delay in transmitting packets in networks
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or routing cars in road networks, this model implicitly assumes that players use
all edges on their paths instantaneously and simultaneously.

Depending on the application, it might not be reasonable to assume that
a player instantaneously allocates all edges on his chosen path. Consider for
instance a road traffic network, in which players route cars to their destinations.
Clearly, a traffic jam that delays people at rush hour might be harmless to a
long distance traveler who reaches the same street hours later. In this case, it
is more natural to assume that edges are allocated consecutively, and players
take some time to pass an edge before they reach the next edge on their path.
In particular, each edge may have a local queueing policy to schedule the players
traversing this edge.

In this paper, we study two different models that extend the standard model
of network congestion games by a temporal component. In our first model, we
incorporate the assumption that on each edge, the traffic over the edge must
be sequentialized which in turn results in a local scheduling problem with release
times on each edge, and requires a formal description of the local scheduling
or queueing policy on each edge. To model these local scheduling policies, we
use the idea of coordination mechanisms [5,6,7,8] that have been introduced in
the context of machine scheduling and selfish load balancing [9]. In selfish load
balancing, each player has a task and has to assign it to one of several machines
in order to minimize his completion time. A coordination mechanism is a set
of local scheduling policies that run locally on machines. Given an assignment
of tasks to machines, the coordination mechanism run on a machine e gets as
input the set of tasks assigned to e and their processing times on e. Based on
this information, it decides on a preemptive or non-preemptive schedule of the
tasks on e. The local scheduling policies of the coordination mechanism do not
have access to any global information, like, e.g., the set of all tasks and their
current allocation.

Applying the idea of coordination mechanisms to network congestion games
results in the definition of temporal congestion games, which are studied in Sec-
tion 3. We assume that each edge in a network congestion game is a machine
equipped with a local scheduling policy, and each player has a task and chooses
a path. Starting from their source, tasks travel along their path from one edge to
another until they reach the target. They become available on the next edge of
their path only after they have been processed completely on the previous edges.
The player incurs as latency the total travel time that his task needs to reach the
target. Each player then strives to pick a path that minimizes his travel time.

In our second model, which we term congestion games with time-dependent
costs and study in Section 4, we assume that the travel time along each edge
is a constant independent of the number of players using that edge. This model
captures the property that increased traffic yields decreased quality of service
for transmitting packets. We model this via a time-dependent cost function. We
assume time is discretized into units (e.g., seconds), and the cost of an edge
during a second depends on the number of players currently traveling on the
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edge. Each player now strives to pick a path that minimizes the total time-
dependent costs during the travel time along the edges.

Our games extend atomic congestion games, which were initially considered
by Rosenthal [3]. They are a vivid research area in (algorithmic) game theory
and have attracted much research interest, especially over the last decade. A va-
riety of issues have been addressed, most prominently complexity of computing
equilibria [1,2,3] and bounding their inefficiency [10,11,12]. For an overview and
introduction to the topic we refer to the recent expositions by Roughgarden [4]
and Vöcking [9]. Addressing the notion of time in congestion games has only been
started very recently in a number of papers [13,14,15]. Koch and Skutella [15]
present a general model for flows over time using queueing models. Similarly, An-
shelevich and Ukkusuri [13] derive a number of related results for a similar model
of flows over time. In contrast to our work both papers address non-atomic con-
gestion games, in which players are infinitesimally small flow particles. Farzad et
al. [14] consider a priority-based scheme for both, non-atomic and atomic games.
In their model players have priorities, and a resource yields different latencies
depending on the priority of players allocating it. This includes an approach
of Harks et al. [16] as a special case. While there can be different latencies for
different players, this model does not include a more realistic “dynamic” effect
that players delay other players only for a certain period of time. This is the
case in our paper, as well as in [13,15] for the non-atomic case.

1.1 Our Contribution

For temporal congestion games, we study four different (classes of) coordina-
tion mechanisms: (1) FIFO, in which tasks are processed non-preemptively in
order of arrival. (2) Non-preemptive global ranking, in which there is a global
ranking among the tasks that determines in which order tasks are processed
non-preemptively (e.g., Shortest-First or Longest-First). (3) Preemptive global
ranking, in which there is a global ranking that determines in which order tasks
are processed and higher ranked tasks can preempt lower ranked tasks. (4) Fair
Time-Sharing, in which all tasks currently located at an edge get processed si-
multaneously and each of them gets the same share of processing time.

For the FIFO policy (in unweighted symmetric games) and the Shortest-First
policy (in weighted symmetric games) we show an interesting contrast of posi-
tive and negative results: even though computing a best response is NP-hard,
there always exists an equilibrium, which can be computed in polynomial time.
Moreover, the equilibrium is not only efficiently computable, but we present
natural dynamics in which uncoordinated agents are able to find an equilibrium
quickly even without solving computationally hard problems. We then show that
Shortest-First is the only global ranking that guarantees the existence of Nash
equilibria in the non-preemptive setting. That is, for any other global ranking
(e.g., Longest-First) there exist temporal congestion games without equilibria.
In contrast to this, we show that preemptive games are potential games for ev-
ery global ranking and that uncoordinated agents reach an equilibrium quickly.
Finally, we show that even though Fair Time-Sharing sounds like an appealing
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coordination mechanism it does not guarantee the existence of equilibria, not
even for unweighted symmetric games.

For the second model, congestion games with time-dependent costs, we prove
that these games can be reduced to standard congestion games. Hence, they are
potential games, and in addition the known results on the price of anarchy carry
over. We prove that computing a best response in these games is NP-hard in
general. Even for a very restricted class of games with polynomially bounded
delays and acyclic networks computing an equilibrium is PLS-complete. Due to
space limitations, some proofs are deferred to the full version of this paper.

2 Notation

A network congestion game is described by a directed graph G = (V,E), a set
N = {1, . . . , n} of players with source nodes s1, . . . , sn ∈ V and target nodes
t1, . . . , tn ∈ V , and a non-decreasing latency function �e : [n] → R≥0 for each
edge e. We will only consider linear latency functions of the form �e(x) = aex
in this paper. For such functions, we call ae the speed of edge e. The strategy
space Σi of a player i ∈ N is the set of all simple paths in G from si to ti.
We call a network congestion game weighted if additionally every player i has
a weight wi ≥ 1, and unweighted if w1 = . . . = wn = 1. Given a state P =
(P1, . . . , Pn) ∈ Σ = Σ1 × · · · × Σn of a network congestion game, we denote
by ne(P ) =

∑
i:e∈Pi

wi the congestion of edge e ∈ E. The individual latency
that a player i incurs is �i(P ) =

∑
e∈Pi

�e(ne(P )), and every player is interested
in choosing a path of minimum individual latency. We call a congestion game
symmetric if every player has the same source node and every player has the
same target node. If not explicitly mentioned otherwise, we consider unweighted
asymmetric congestion games.

We incorporate time into the standard model in two different ways. Formally,
this alters the individual latency functions �i. The specific definitions will be
given in the sections below. For our altered games we are interested in stable
states, which are pure strategy Nash equilibria of the games. Such an equilibrium
is given by the condition that each player plays a best response and has no
unilateral incentive to deviate, i.e., P is a pure Nash equilibrium if for every
player i and every state Q that is obtained from P by replacing i’s path by
some other path, it holds �i(P ) ≤ �i(Q), where �i denotes the (altered) latency
function of player i. We will not consider mixed Nash equilibria in this paper,
and the term Nash equilibrium will refer to the pure version throughout.

3 Coordination Mechanisms

In this section we consider temporal network congestion games. These games
are described by the same parameters as standard weighted network congestion
games with linear latency functions. However, instead of assuming that a player
allocates all edges on his chosen path instantaneously, we consider a scenario in
which players consecutively allocate the edges on their paths. We assume that
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each player has a weighted task that needs to be processed by the edges on his
chosen path.

Formally, at each point in time τ ∈ R≥0, every task i is located at one edge
ei(τ) of its chosen path, and a certain fraction fi(τ) ∈ [0, 1] of it is yet unpro-
cessed on that edge. The coordination mechanism run on edge e has to decide
in each moment of time which task to process. If it decides to work on transmit-
ting task i for Δτ time units starting at time τ , then the unprocessed fraction
fi(τ +Δt) of task i at time τ +Δt is max(0, fi(t)−Δτ/(aewi)). In total, task i
needs aewi time units to finish on edge e. Once fi(τ) = 0, task i arrives at the
next edge on its path and becomes available for processing. The coordination
mechanism can base the decision on which task to process next for how long
only on local information available at the edge — such as the weights and ar-
rival times of those tasks that have already arrived at the edge. The individual
latency �i(P ) of player i in state P is the time at which task i is completely
finished on the last edge of Pi.

3.1 The FIFO Policy

One of the most natural coordination mechanisms is the FIFO policy. If several
tasks are currently located at the same edge, then the one that has arrived first
is executed non-preemptively until it finishes. In the case of ties, there may be
an arbitrary tie-breaking that is consistent among the edges.

Unweighted and Symmetric Games. In this section we treat unweighted
symmetric temporal network congestion games. For these games we obtain an
interesting contrast of positive and negative results: even though computing a
best response is NP-hard, there always exists a Nash equilibrium, which can be
computed in polynomial time. Moreover, the equilibrium is not only efficiently
computable, but uncoordinated agents are able to find it quickly even without
solving computationally hard problems.

Theorem 1. For unweighted symmetric temporal network congestion games with
the FIFO policy a Nash equilibrium always exists. Moreover, a Nash equilibrium
can be computed efficiently.

Proof. Let us assume without loss of generality that players are numbered ac-
cording to their rank in tie-breaking, i.e. 1 is the highest ranked player, and n is
the lowest ranked player. Assume that we start in an arbitrary state of the game
in which the players have chosen arbitrary paths. Below we define a subclass of
best responses, which we call greedy best responses. We claim that we obtain an
equilibrium if we let the players 1, 2, . . . , n play each one greedy best response
in this order. To prove this, assume that the players 1, . . . , i are already play-
ing greedy best responses, and now let player i+ 1 also change his strategy to a
greedy best response. We show that after this strategy change the players 1, . . . , i
are still playing greedy best responses, which proves by induction that a Nash
equilibrium is reached once every player has played a greedy best response. We



Competitive Routing over Time 23

prove the following invariant: if the players 1, . . . , i play greedy best responses,
then none of them can be delayed at any node by a lower ranked player j > i.
Furthermore, the current paths of the players 1, . . . , i are (greedy) best responses
no matter which paths the other players j > i choose. For the first player, every
best response is defined to be a greedy best response. Given this definition, we
argue that the aforementioned claim is true for i = 1: We consider the network
G = (V,E) as a weighted graph in which every edge e ∈ E has weight ae. Let P1
denote a shortest path in this weighted graph from the source s to the target t
and let a∗ denote its length. If the highest ranked player chooses path P1, then
he cannot be delayed at any node v by any other player j, as otherwise, j would
have found a shorter path from s to v, contradicting the choice of P1 as shortest
path from s to t. Hence, when player 1 chooses path P1 his total latency is a∗ no
matter which paths the other players choose. Clearly, the length a∗ is also a lower
bound on the time it takes any player to reach the target, and hence, choosing
P1 is a (greedy) best response for player 1. Moreover, any (greedy) best response
of player 1 corresponds to a shortest path P1 in the aforementioned weighted
graph. Now let us recursively define what a greedy best response is for player
i + 1 > 1. For this, assume that the players 1, . . . , i play already greedy best
responses. Based on the paths chosen by these players, we construct a distance
function d : V → R≥0 for the network G = (V,E), which eventually tells us for
every node how long it takes player i+ 1 to get there. The construction of this
distance function follows roughly Dijkstra’s algorithm: Let I ⊆ V denote the
set of nodes that have already an assigned distance. We start with I = {s} and
d(s) = 0. For extending the set I, we crucially use the fact that the players
1, . . . , i cannot be delayed by other players, which means that every edge e ∈ E
has a fixed schedule saying when it is used by the players 1, . . . , i and when it is
available for player i+1. These fixed schedules imply in particular that for every
node v ∈ V there exists a shortest path s, v1, . . . , vk = v for player i+1 from s to
v such that every subpath s, v1, . . . , vk′ is a shortest path from s to vk′ . Hence,
taking into account the fixed schedules and the possible delays that they induce
on player i+1, we can extend the set I as in Dijkstra’s algorithm, that is, we in-
sert the node v ∈ V \ I into I that minimizes minu∈I d(u)+ �(u, v), where �(u, v)
denotes the time it takes player i+ 1 to get from u to v if he arrives at node u
at time d(u). The distance d(v) assigned to node v is minu∈I d(u)+ �(u, v). This
algorithm constructs implicitly a path from s to any other node. Any path from
s to t that can be constructed by this algorithm (the degree of freedom is the
tie-breaking) is called a greedy best response of player i+ 1.

It is easy to see that any such greedy best response is really a best response
for player i + 1 if only the players 1, . . . , i + 1 are present, because there is no
quicker way to reach the target t from the source s given the current paths of
the players 1, . . . , i. To complete the proof we need to argue that player i + 1
cannot be delayed by players j > i + 1. Assume there is a node v and a player
j > i + 1 such that j arrives earlier at node v than i + 1. This contradicts the
construction of the path as it implies that there is a faster way to get from the
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source s to the node v. Again this argument crucially uses the property that the
players 1, . . . , i cannot be delayed by lower ranked players. 	


Let us remark that greedy best responses defined in the previous proof are the
discrete analogon of subpath-optimal flows introduced by Cole et al. [17]. Basi-
cally, a path s, v1, . . . , vk, t is a greedy best response for player i if any subpath
s, v1, . . . , vk′ is a shortest path from s to vk′ . Note that this is not the case in
arbitrary best responses: it could, for example, be the case that player i has to
wait at some node vk′ because he is blocked by a player with a higher rank.
Then, the subpath from s to vk′ is not necessarily the shortest possible path
in every best response. However, we believe that the restriction to greedy best
responses is a natural assumption on the players’ behavior.

The previous result shows not only that a Nash equilibrium always exists,
but it also shows that players reach it in a distributed fashion using different
forms of dynamics. Consider the following Nash dynamics among the players.
At each point in time, one player is picked and allowed to change his strategy.
We show below that in general it is NP-hard for this player to decide whether
it can decrease his latency by changing his path. In that case, the player might
stick to his current path or make an arbitrary strategy change, following some
heuristic. However, at each point in time there is one player who can easily
find a (greedy) best response, namely the highest ranked player i+ 1 that does
not play a greedy best response, but the players 1, . . . , i do. We assume that
this player changes to a greedy best response when he becomes activated. We
also assume that a player who is already playing a greedy best response does
not change his strategy when he becomes activated. A round is a sequence of
activations in which every player gets at least once the chance to change his
strategy. From the proof of Theorem 1 it follows easily that a Nash equilibrium
is reached after at most n rounds. We are interested in particular in the random
greedy best response dynamics, in which in each iteration the activated player
is picked uniformly at random, and the concurrent best response dynamics, in
which in each iteration all players are simultaneously allowed to change their
strategy, each one with some constant probability 0 < pi ≤ 1. In both these
dynamics, rounds are polynomially long with high probability. Summarizing, we
obtain the following corollary.

Corollary 2. In every unweighted symmetric temporal network congestion game
with the FIFO policy it takes at most n rounds to reach a Nash equilibrium. In
particular, the random and concurrent greedy best response dynamics reach a
Nash equilibrium in expected polynomial time.

Finally, we turn to the hardness result.

Theorem 3. Computing best responses is NP-hard in unweighted symmetric
temporal network congestion games with the FIFO policy.

Weights and Asymmetric Players. Now we show that any relaxation of the
restrictions in the previous sections leads to games without equilibria.
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Fig. 1. (a) Asymmetric temporal network congestion game without Nash equilibrium
for FIFO. Edge labels indicate the speeds ae. For all unlabeled edges e, we have ae = 1.
(b) Unweighted symmetric game without Nash equilibrium for Time-Sharing.

Theorem 4. There exist temporal congestion games with the FIFO policy that
do not possess Nash equilibria and (1) are weighted and symmetric, or (2) are
unweighted and asymmetric.

Proof. The example for the first case is simple; it consists of three edges: there
are three nodes s, v, and t and two parallel edges from s to v (if multi edges are
not allowed, they can be split up into two edges each by inserting intermediate
nodes) and one edge from v to t. All edges have speed 1. Assume that there are
two players with weights 2 and 3, and assume that the player with weight 3 has
higher priority. If both players use the same edge from s to v, then the player
with weight 2 has an incentive to switch to the free edge. If they use different
edges, the player with weight 3 has an incentive to use the same edge as the
other player.

Now let us turn to the second case. We consider the instance shown in
Figure 1 (a). In this game there are three unweighted players, and each player
i has two possible strategies: the vertical three edges (denoted by Ai) and an-
other path (denoted by Bi). The following sequence of moves constitutes a cycle
in the best response dynamics: (A1, A2, A3) → (B1, A2, A3) → (B1, B2, A3) →
(B1, B2, B3) → (A1, B2, B3) → (A1, A2, B3) → (A1, A2, A3). It is easy to ver-
ify that the remaining configurations (A1, B2, A3) and (B1, A2, B3) are no Nash
equilibria either. 	


3.2 Non-preemptive Global Ranking

Another natural approach is to assume that there is a global ranking π : [n] → [n]
on the set of tasks with π(1) being the task with the highest priority and so on.
In this case, tasks are scheduled non-preemptively according to this ranking.
When an edge e becomes available, the highest ranked task i that is currently
located at the edge is processed non-preemptively. It exclusively uses e for aewi

time units. After that, task i moves to the next edge on its path, and e selects
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the next task if possible. In this section, we consider mainly weighted games and
assume without loss of generality that w1 ≤ w2 ≤ · · · ≤ wn.

Shortest-First Policy. In this section we consider the identity ranking π(i) =
i, which corresponds to the Shortest-First policy. It is easy to see that Theorem 1
and Corollary 2 carry over to this case. The proof for FIFO was essentially based
on the observation that once all players 1, . . . , i play a (greedy) best response,
they cannot be affected by the lower ranked players. This is even more true for
the Shortest-First policy as the lower ranked players now face the additional
disadvantage of having a longer processing time.

Theorem 5. In every weighted symmetric temporal network congestion game
with the Shortest-First policy a Nash equilibrium exists. Moreover, a Nash equi-
librium can be computed efficiently, and it takes at most n rounds to reach a
Nash equilibrium. In particular, the random and concurrent greedy best response
dynamics reach a Nash equilibrium in expected polynomial time.

Also the hardness result in Theorem 3 carries over easily.

Theorem 6. In (unweighted) symmetric temporal network congestion games
with the Shortest-First policy computing a best response is NP-hard.

Although the previous arguments guarantee existence and convergence to a Nash
equilibrium for the Shortest-First policy, such games are not necessarily potential
games.

Proposition 7. There is a symmetric temporal network congestion game with
the Shortest-First policy that is no potential game.

Other Global Rankings or Asymmetric Players. Now we consider the
case of more general rankings.

Theorem 8. For any given set of player task weights w1 ≤ · · · ≤ wn and any
ranking π other than the identity, there exist a graph and latency functions such
that the resulting symmetric temporal congestion game does not possess a Nash
equilibrium.

The proof is given in the full version of the paper. It relies on the fact that for
rankings other than the identity a larger task can delay smaller tasks near the
source due to the ranking, but smaller tasks can delay larger tasks near the sink
due to faster travel time. The same result holds for asymmetric games with the
Shortest-First policy. We can simply add a separate source for each player and
connect it via a single edge to the original source. By appropriately adjusting the
delays ae on these edges, we can ensure that smaller tasks are suitably delayed
before arriving at the original source. This results in the same incentives.

Corollary 9. For any given set of task weights w1, . . . , wn and the Shortest-
First policy, there exist a graph and latency functions such that the resulting
asymmetric temporal congestion game does not have a Nash equilibrium.
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3.3 Preemptive Global Ranking

When we assume a global ranking and allow preemptive execution, it is possible
to adapt the arguments of Theorem 1 to weighted asymmetric games. Indeed, all
arguments in this section work for a very general class of preemptive games with
unrelated edges. That is, every player i has its own processing time pie for every
edge e. These processing times may even depend on the time at which player
i reaches edge e. The only assumption we need to make is that the processing
times are monotone in the sense that if task i reaches edge e at time t, then it
does not finish later than when it reaches edge e at time t′ > t.

Theorem 10. Every asymmetric temporal congestion game with preemptive pol-
icy π is a potential game. A Nash equilibrium exists and can be computed in
polynomial time. For any state and any player, a best response can be computed
in polynomial time.

Similarly we can adapt the previous observations in Corollary 2 and show that
various improvement dynamics converge in polynomial time.

Corollary 11. In every asymmetric temporal network congestion game with any
preemptive policy π, it takes at most n rounds to reach a Nash equilibrium.
The expected number of iterations to reach a Nash equilibrium for random and
concurrent best response dynamics is bounded by a polynomial.

3.4 Fair Time-Sharing

In this section we consider fair time-sharing, a natural coodination mechanism
based on the classical idea of uniform processor sharing [18]. When multiple
tasks are present at an edge e, they are all processed simultaneously, and each
one of them gets the same share of bandwidth or processing time. As in general-
ized processor sharing [19] we assume round-robin processing with infinitesimal
time slots. Even though such a fairness property is desirable, the following the-
orem shows that Nash equilibria are not even guaranteed to exist for symmetric
unweighted games.

Theorem 12. There is an unweighted symmetric temporal network congestion
game with the Time-Sharing policy that does not have a Nash equilibrium.

Proof. The instance shown in Figure 1 (b) has three players. As the three edges
leaving the source s are very slow, in any Nash equilibrium all three players will
use different edges leaving the source. We assume without loss of generality that
the first player chooses the upper edge, the second player chooses the middle
edge, and the third player chooses the lower edge. Then players 1 and 3 have
still two alternatives how to continue, whereas the path of player 2 is already
determined. The speeds of the edges are chosen such that player 1 wants to use
the edge with speed 5+ε if and only if player 3 does not use the edge with speed
4− ε. On the other hand, player 3 wants to use the edge with speed 4− ε if and
only if player 1 uses the edge with speed 5 + ε, which completes the proof. 	
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Dürr and Nguyen [20] show that Time-Sharing on parallel links always yields a
potential game, even for unrelated machines (edges). That is, for parallel links
Nash equilibria always exist. Their potential function can be rewritten as the
sum of the completion times (individual latencies) of the player. It is known [21]
that a schedule minimizing this sum can be computed in polynomial time. Such
a global minimum of the potential function must obviously be a pure Nash
equilibrium for the Time-Sharing policy, yielding the following corollary.

Corollary 13. For games on parallel links with unrelated tasks and the Time-
Sharing policy a Nash equilibrium can be computed efficiently.

4 Constant Travel Times and Quality of Service

Now let us consider network congestion games with time-dependent costs. Again,
players consecutively allocate the edges on their paths. However, the travel time
along an edge e in the network is fixed to a constant delay de. If a player chooses a
path along the edges e1, e2, . . ., then he arrives at e2 at time d1 and at e3 at time
d1 + d2, and so on. This travel time through the network is independent of how
many other players allocate any of the edges. In this section, we only consider
asymmetric games. For the strategic part we assume that each edge generates
a separate usage cost ce per time unit. This could, for instance, measure the
quality of service that is enjoyed by the players during transmission. The cost
depends on the number of players allocating the edge at a given point in time.
In particular, edge e has a cost function ce : [n] → N that describes the cost for
allocating it for one second in terms of the current number of players. If for a state
P an edge e is shared at time τ by ne(τ, P ) players, all these players get charged
cost ce(ne(τ, P )). The cost incurred by player i on a path Pi = (e1, . . . , el) is

then �i(P ) =
∑l

j=1
∑τj+dej

−1
τ=τj cej (nej (τ, P )), where τ1 = 0 and τj =

∑j−1
k=1 dej .

It turns out that this model is equivalent to a regular congestion game. For
each edge and each time unit we introduce a resource re,τ and modify the strategy
spaces as follows: For a path P = (e1, . . . , el) the new strategy includes all
resources rej ,τ for τ = τj , . . . , τj + dej − 1 and j = 1, . . . , l. This is a regular
congestion game with latencies given by the time costs. Hence, results on the
existence of Nash equilibria and the price of anarchy carry over.

Corollary 14. Network congestion games with time-dependent costs are equiv-
alent to a class of regular congestion games. In particular, there is a pure Nash
equilibrium in every game, and any better-response dynamics converges.

However, as the standard congestion game obtained by this reduction might have
a large number of resources and as it is not necessarily a network congestion
game, complexity results do not carry over.

Theorem 15. Computing a best response in network congestion games with
time-dependent costs is NP-hard. For games with polynomially bounded delays
and acyclic networks, best responses can be computed efficiently, but computing
a Nash equilibrium is PLS-complete.
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1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure
on congestion games. Journal of the ACM 55(6) (2008)

2. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equi-
libria. In: Proc. 36th Symp. Theory of Computing (STOC), pp. 604–612 (2004)

3. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory 2, 65–67 (1973)

4. Roughgarden, T.: Routing Games. In: Algorithmic Game Theory, pp. 461–486.
Cambridge University Press, Cambridge (2007)

5. Azar, Y., Jain, K., Mirrokni, V.S.: (Almost) optimal coordination mechanisms for
unrelated machine scheduling. In: Proc. 19th Symp. Discrete Algorithms (SODA),
pp. 323–332 (2008)

6. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine schedul-
ing. In: Proc. 20th Symp. Discrete Algorithms (SODA), pp. 815–824 (2009)

7. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
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Abstract. In this paper, we study randomized truthful mechanisms for
scheduling unrelated machines. We focus on the case of scheduling two
machines, which is also the focus of many previous works [12,13,6,4].
For this problem, [13] gave the current best mechanism with an ap-
proximation ratio of 1.5963 and [14] proved a lower bound of 1.5. In
this work, we introduce a natural technical assumption called scale-free,
which says that the allocation will not change if the instance is scaled by
a global factor. Under this assumption, we prove a better lower bound of
25
16

(= 1.5625). We then study a further special case, namely scheduling
two tasks on two machines. For this setting, we provide a correlation
mechanism which has an approximation ratio of 1.5089. We also prove
a lower bound of 1.506 for all the randomized scale-free truthful mecha-
nisms in this setting.

1 Introduction

Mechanism design has become an active area of research both in Computer Sci-
ence and Game Theory. In the mechanism design setting, players are selfish and
wish to maximize their own utilities. To deal with the selfishness of the play-
ers, a mechanism should both satisfy some game-theoretical requirements such
as truthfulness and some computational properties such as good approximation
ratios. The study of their algorithmic aspect was initiated by Nisan and Ro-
nen in their seminal paper “Algorithmic Mechanism Design” [15]. The focus of
this paper was on the scheduling problem on unrelated machines, for which the
standard mechanism design tools (e.t. VCG mechanisms [5,7,16]) do not suffice.
They proved that no deterministic mechanism can have an approximation ratio
better than 2 for this problem. This bound is tight for the case of two machines.
However if we allow randomized mechanisms, this bound can be beaten. In par-
ticular they gave a 1.75-approximation randomized truthful mechanism for the
case of two machines. This bound has since been improved to 1.6737 [12] and
then to 1.5963 [13] by Lu and Yu. In [14], Mu’alem and Schapira proved a lower
bound of 1.5 for this setting. The focus of this paper is to explore the exact
bound between 1.5 and 1.5963.

In [13], Lu and Yu also proved a lower bound of 11
7 (≈ 1.5714) for all the

task independent truthful mechanisms. A recent work [6] by Dobzinski and Sun-
dararajan showed that any truthful mechanism for two machines with a finite

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 30–41, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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approximation ratio is task-independent. However the definitions of these two
“task-independence” are not identical. The lower bound of [13] requires a strong
version of “task-independence” and the characterization theorem in [6] only
works for a weak version of “task-independence”. Formal definitions of these
two versions of “task independence” are given in the next section. This gives an
interesting open problem: is there any weak task-independent mechanism which
can beat all the strong task independent ones (In particular has an approxima-
tion ratio which is better than 11

7 )? We note that all the previous know mech-
anisms in this setting are strong task-independent[15,12,13]. Roughly speaking,
in a strong task-independent mechanism, the random bits used by the allocation
algorithm for different tasks are independent, while in weak task-independent
mechanisms, they may have some correlation. In section 4, we provide such a
correlation mechanism. This is the first truthful mechanism for this problem
which is not strong task-independent. This mechanism provides an approxima-
tion ratio of 1.5089 for the case of two task, which is strictly better than all the
strong task independent mechanisms in the same setting. We note that the lower
bound of 11

7 already holds even for the special case of scheduling two tasks in
two machines.

The main focus of this paper is on the lower bound side. We introduce a natu-
ral assumption called scale-free, which says that the allocation will not change if
a instance of the problem is scaled by a global factor. The property of scale-free
is very natural for an allocation algorithm since a global factor only reflects the
unit used for the running times. For example, if we change the unit from “hour”
to “min”, we will scale the instance by a factor of 60, a reasonable allocation
algorithm should be identical on these two instances (since they are in fact the
same instance). We provide a refined characterization for all the scale-free truth-
ful mechanisms with finite approximation ratio. Based on this characterization,
we prove a lower bound of 1.5625 using Yao’s min-max principle [17]. We design
a distribution of instances and argue that any scale-free deterministic truthful
mechanisms cannot get an expected approximation ratio which is better than
1.5625. In order to get a better lower bound, we use a limitation argument and
this value of 1.5625 holds when the number of tasks approaches infinity. So this
lower bound only works for instances with a sufficiently large number of tasks.
As we have a better mechanism for scheduling 2 tasks, we also study the lower
bound of this special case under the assumption of scale-free. The instances used
in the general lower bound cannot give a bound which is better than 1.5 when
each of them only contains 2 tasks. So we choose a more carefully designed in-
stances distribution to get a lower bound of 1.506. All these lower bound suggests
that the lower bound of 1.5 may not be tight. However, it remains open to prove
a better lower bound without any assumption.

A lot of technical effort in this work is given to parameter optimization both
for the mechanism design part and lower bound proof part. Such optimization
is also critical in this problem since the gap between the known upper bound
and lower bound is already quite tiny. For example, for the 2 task case, the
approximation ratio of the correlation mechanism we provided is 1.5089, while
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the lower bound is 1.5. There is only a gap of 0.0089. A very carefully designed
instance distribution gives a better lower bound of 1.506.

Despite the fact that our lower bounds rely on a technical assumption, we feel
it is interesting for several reasons. First we think the assumption of scale-free
is very natural, it is hard to imagine that some scale dependant mechanism can
beat all the scale free mechanisms. So we conjecture that these lower bounds
are also true for all the randomized truthful mechanisms. On the other hand,
if one believes that a better mechanism exists, one has to look for really new
mechanisms which are not scale-free. In both cases, we believe that our work in
this paper is an important step toward the exact bound.

1.1 Related Work

Scheduling unrelated machines is one variant of the most fundamental scheduling
Problems. For this NP-hard optimization problem, there is a polynomial-time
2-approximation algorithm, and unless P = NP , it is impossible to approximate
the optimum within a factor less than 3/2 in polynomial time[11]. However there
is no corresponding payment strategy to make the above allocation algorithm
truthful.

In the mechanism design setting, Lavi and Swarmy considered a restricted
variant, where each task j only has two values of running time (small time Lj or
big time Hj), and gave a 3-approximation randomized truthful mechanism [10].
They first use the cycle monotonicity in designing mechanisms and applied the
LP rounding idea based on [9].

For the lower bounds side, Christodoulou, Koutsoupias and Vidali improved
the lower bound from 2 to 1 +

√
2 when the number of machines is at least 3

[3], and then to 2.618 when the number of machines is sufficiently large [8]. In a
recent beautiful work by Ashlagi, Dobzinski and Lavi, an optimal lower bound
(m) was proved for all anonymous truthful mechanisms[1].

Christodoulou, Koutsoupias and Vidali gave a characterization for all truthful
mechanisms in the same setting as this paper, including those with unbounded
approximation ratio [4].

In [2], Christodoulou, Koutsoupias and Kovács considered the fractional ver-
sion of this problem, in which each task can be split among the machines. For this
version, they gave a lower bound of 2− 1/m and an upper bound of (m+ 1)/2,
where m is the number of machines. We remark that these two bounds are closed
for the case of two machines as in the integral deterministic version. So to ex-
plore the exact bound for the randomized version seems very interesting and
desirable.

2 Notations and Preliminaries

In this section we review some definitions and results on mechanism design and
the scheduling problem. In the following, for a generic matrix a = (aij), we use
ai to denote the i-th row of the matrix, and a−i to denote the matrix obtained
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from a deleting ai. We also use (v,a−i) to denote the matrix obtained from a
by replacing ai with vector v. We use R+ to denote the set of non-negative real
numbers.

In a scheduling problem, there are n tasks and m machines (in this paper,
we mainly consider the case where m = 2), where each machine i ∈ [m] needs
tij units of time to perform task j ∈ [n]. We usually use the matrix t = (tij)
to denote an instance of the scheduling problem. In this paper, we consider
that each machine is controlled by a strategic player. We assume that player i
privately knows ti, and we call the vector ti player i’s type. After each player i
declares his/her type, an allocation algorithm X will decide an allocation of all
the tasks. We assume that all the players are selfish and want to perform the
least amount of tasks as possible, so players may misreport their types. We use
bi ∈ Rn

+ to denote player i’s reported type, and call it player i’s bid. Obviously
bi may not equal to ti if that helps player i’s interest. To avoid this lying issue,
we introduce the payment algorithm P into a mechanism. Formally, a mechanism
M = (X,P ) consists of two parts:

– An allocation algorithm: the allocation algorithm X , given the input of
players bid matrix b = (b1, · · · ,bm), outputs an allocation denoted by a
matrix x = (xij). xij is 1 if task j is assigned to machine i, and 0 otherwise.
Every task must be completely assigned, hence

∑
i∈[m] xij = 1, ∀j ∈ [n].

– A payment algorithm: the payment algorithm P , given the input of play-
ers bid matrix b, outputs a vector p = (p1, · · · , pm), where pi denotes the
money that player i receives from the mechanism.

A mechanism is deterministic if both its allocation and payment algorithms are
deterministic. If at least one of the algorithms uses random bits, the mechanism
is called randomized.

Now we specify the utility of each player. We use the quasi linear utility, which
means the utility ui of player i with type ti over an allocation x and money pi

is defined as:
ui(x, pi|ti) = pi −

∑
j∈[n]

xijtij .

In deterministic mechanisms, both x and pi are functions of bid matrix b, we
can also write the utility as

ui(b|ti) = pi(b)−
∑
j∈[n]

xij(b)tij .

Recalling that we want to solve the issue of lying about types, we are interested
in truthful mechanisms. A mechanism M = (X,P ) is truthful if for each player
i, reporting his/her true type will maximize his/her own utility. Formally, for
any i, any bids b−i of all other players, we have

ui((ti,b−i)|ti) ≥ ui((bi,b−i)|ti), ∀bi ∈ Rn
+

In randomized mechanisms, both xij and pi are random variables. There are
two versions of truthfulness for randomized mechanisms. The stronger version
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is universally truthful, which requires the mechanism to be truthful when fixing
all the random bits. The weaker version is truthful in expectation, which only
requires that for each player, reporting his/her true type will maximize his/her
own expected utility. In this paper, we focus on the stronger version, universally
truthful.

For a truthful mechanismM = (X,P ), we may assume that all the players will
report their true types, hence b = t. Now, how can we evaluate the performance
of the mechanism’s allocation algorithm X? We consider the makespan, which is
the maximum load of all the machines. Given input t, the makespan of mecha-
nism M is denoted by lM (t), and lM (t) = maxi∈[m]

∑
j∈[n] xijtij . We use lopt(t)

to denote the optimum, and lopt(t) = minx maxi∈[m]
∑

j∈[n] xijtij . A mecha-
nism M is called a c-approximation mechanism if for any instance t, we have
lM (t) ≤ c·lopt(t). For randomized mechanismM , we requireE[lM (t)] ≤ c·lopt(t),
where the expectation is over the random bits used in the mechanism.

Definition 1 (Task-Independent Mechanisms). A deterministic mechanism M
is task-independent, if for any two bid matrices b, b′ such that bij = b′ij for all
i ∈ [m], the allocation of task j is identical, i.e. xij(b) = xij(b′), ∀i ∈ [m].

For randomized mechanisms, there are also two versions of task-independence.
One is a weak task-independent mechanism, which is a distribution of sev-
eral task-independent deterministic mechanisms. The other is a strong task-
independent mechanism, which satisfies that not only does the allocation of task
j not change as long as j’s column of b does not change, but also all the random
variables xij are independent between different tasks.

We quote a theorem from [6] (Theorem 4.5 in [6] ), which gives a characteri-
zation for truthful mechanisms for scheduling two machines.

Theorem 1 ([6]). Let M be a mechanism for minimizing the makespan for 2
machines that provides a finite approximation ratio. Then M is task independent.

This theorem implies that any randomized truthful mechanism with a finite
approximation ratio is weak task-independent. In [13], Lu and Yu proved a lower
bound of 11

7 (≈ 1.5714) for all the strong task-independent truthful mechanisms.
Given these two facts, we have the following interesting open question:

Question 1. Does there exist a weak task-independent randomized truthful
mechanism which provides a better approximation ratio (< 11

7 )?

Definition 2 (Scale-Free Mechanisms). We call an allocation algorithm scale-
free if for any instance b and any non-zero constant λ, the outputs of the algo-
rithm on the input b and λb are identical. A mechanism is called scale-free if its
allocation algorithm is scale-free. A randomized mechanism is called scale-free if
it is a distribution of deterministic scale-free mechanisms.

Together with the properties of scale-free and task-independent, the allocation
of a task j only depends on the ratio of the two bids b1j

b2j
for this task. Then

using the monotone theorem of truthful mechanism [15], we have the following
characterization of scale-free task-independent truthful mechanisms.
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Theorem 2. A deterministic scale-free task-independent truthful mechanism
for scheduling two unrelated machines is of the following form: there are n thresh-
olds αj (j ∈ [n]) for n tasks. For every task j ∈ [n], the mechanism allocates it
to the first machine iff b1j < αjb2j (or b1j ≤ αjb2j ).

For randomized mechanisms, these thresholds are random variables that do not
depend on player’s bid. In strong task-independent mechanisms, these random
variables are further required to be independent. While in weak task-independent
mechanisms, they may have some correlation.

Our lower bounds in this paper are proved by Yao’s min-max principle [17],
which is a typical tool used to prove lower bounds of randomized mechanisms
(algorithms, protocols, etc). Based on the characterization Theorem 1, We state
the principle in our setting as following.

Lemma 1. Given a distribution of instances, if any (scale-free) task indepen-
dent deterministic mechanism cannot have an expected approximation ratio bet-
ter than α, then α is a lower bound for all the (scale-free) universal truthful
randomized mechanisms.

3 A Lower Bound of 1.5625

In this section, we prove a lower bound of 1.5625 for all the randomized scale-free
truthful mechanisms. Let k be an integer and a > 1 be a parameter specified
later. We consider the following instances distribution. There are k+1 instances,
each containing k+1 tasks. All the instances have equal probability, i.e. a proba-
bility of 1

k+1 . The i-th (1 ≤ i ≤ k+1) instance is as following: the running times
of the i-th task are ka and ka2 for the first and second machines respectively;
and the running times of the other k tasks are 1 and a for the first and second
machines respectively.

For the i-th instance, the optimal solution is to allocate the i-th task to the first
machine and the remaining k tasks to the second machine; the optimal makespan
is ka for every instance. Now we consider the performance of a deterministic
scale-free task independent mechanism on these instances. Since in every instance
and for every task, the ratio of two running times is the same (i.e. equal to a),
every deterministic scale-free task-independent mechanism will allocate the same
task (tasks with the same number) in different instances in the same way. This
means that if the mechanism assigns task 1 to the first machine in the first
instance, then it must assigns task 1 to the first machine in all the instances.
Now we assume that the mechanism assign t tasks in the first instance to the first
machine, then the behavior of the mechanism on all these instances is completely
fixed. By the symmetry of the tasks, w.o.l.g, we can assume that the mechanism
assigns the first t tasks to the first machine. Now we can calculate the expected
approximation ratio of the mechanism on this distribution of instances.

For the first t instances, the makespan is the load of the first machine, which
is ka+(t−1)×1 = ka+ t−1. For the other k+1− t instances, the makespan is
the load of the second machine, which is ka2 + (k+ 1− t− 1)a = ka2 + (k− t)a.
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Therefore the expected approximation ratio R of the mechanism on these in-
stances is

t(ka+ t− 1)
ak(k + 1)

+
(k + 1− t)(ka2 + (k − t)a)

ak(k + 1)
=

a+ 1
ak(k + 1)

(t2−(ak+1)t+a(k2+k)).

For any fixed k and a > 1, this value R is a quadratic polynomial of t. So we
have

R ≥ a+ 1
ak(k + 1)

(a(k2 + k)− (ak + 1)2

4
).

For a sufficiently large k, the ratio in the RHS approachs the ratio of the k2

terms which is a+1− a(a+1)
4 . When a = 3

2 , this expression reaches its maximum
value 25

16 = 1.5625.
By Yao’s min-max principle, this instance’s distribution gives a lower bound

of 1.5625. We remark that this lower bound only occurs for a sufficiently large
number of tasks.

Theorem 3. Any randomized scale-free truthful mechanism for scheduling two
unrelated machines can not have an approximation ratio which is better than
1.5625.

4 Correlation Gives Better Mechanisms

In this and the next sections, we study a further restricted case, namely schedul-
ing two tasks on two unrelated machines. This seems a very special setting, but
we believe it is still very interesting for several seasons. First, we will prove that
previous lower bounds (1.5 in general and 1.57 for strong task-independent mech-
anisms) both hold even for this special case. Second, from a pure mathematical
point of view, this is the simplest non-trivial setting, however the exact bound
for this simplest case is still unclear. Third, the techniques and ideas developed
here for studying this special setting may extend to more general settings. For
example, the characterization in [4] is first proved for the 2 task case and then
extends to many tasks.

The proof for the lower bound of 1.5 in [14] requires at least 3 tasks. Here we
prove that this is also true for two tasks.

Lemma 2. Any randomized truthful mechanisms for scheduling two tasks on
two machines cannot have an approximation ratio that is better than 1.5.

Proof. We consider a distribution of the following two instances, each with prob-
ability of 1

2 .

task 1 task 2
machine 1 1 1
machine 2 1 2

,
task 1 task 2

machine 1 1 2
machine 2 1 1

.
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Any deterministic task-independent mechanism will assign task 1 in these two
instances in the same way. By symmetry, we can assume that the mechanism
assigns task 1 to machine 1. Then the makespan of the mechanism for the first
instance is at least 2 no matter how it allocates task 2. However, the optimal
makespan is 1; therefore, the expected approximation ratio of this mechanism
on these two instances is at least 2+1

2 = 1.5. By Yao’s min-max principle, 1.5 is
a lower bound for all the randomized truthful mechanisms.

The proof for a lower bound of 11
7 in [13] only uses instances with 2 tasks, so

this bound also holds for the this special setting.

Lemma 3. Any strong task-independent randomized truthful mechanism schedul-
ing two tasks on two machines cannot have an approximation ratio that is better
than 11

7 (≈ 1.5714).

Given these two lower bounds. It is interesting to see if this bound of 11
7 can be

beaten. The answer is affirmed by the following correlation mechanism, which
also partially answers Question 1.

Let f : R+ ⇀ [0, 1] be a non-decreasing monotone function, where R+ = {x ∈
R|x ≥ 0}, f(0) = 0, limx→∞ f(x) = 1 and f(x) + f(1/x) = 1. The correlation
mechanism for scheduling two tasks on two machines is described in Figure 1.

Input: The reported bid matrix b.
Output: A randomized allocation x
and a payment p = (p1, p2).
Allocation and Payment Algorithm:
x1j ← 0, x2j ← 0, j = 1, 2.
p1 ← 0; p2 ← 0.
Choose α ∈ R+ randomly according to function f .
if b11 < αb21,

x11 ← 1, p1 ← p1 + αb21;
else

x21 ← 1, p2 ← p2 + α−1b11.
if b22 < αb12,

x22 ← 1, p2 ← p2 + αb12;
else

x12 ← 1, p1 ← p1 + α−1b22.

Fig. 1. The Correlation Mechanism

It is easy to show that this mechanism is universally truthful for any function
f with the properties listed above. When the random variable α is fixed, it is
a task-independent mechanism and for each task it is simply a weighted VCG
mechanism. The main new idea in this mechanism is that there are some cor-
relation of randomness for different tasks. Here the random variable α is used
both in the mechanisms for the first task and the second task. The intuitive
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argument is like this. If α > 1, then the mechanism is biased to the first machine
for the first task and to the second machine for the second task. If α < 1, it is
the other way round. The different bias for different tasks makes the allocation
more balanced. Here the requirement of f(x)+f(1/x) = 1 makes the mechanism
symmetrical for the two machines and for the two tasks.

Now we analyze the performance formally. We consider the following generic
instance.

task 1 task 2
machine 1 b11 b12
machine 2 b21 b22

.

The expected makespan t of the correlation mechanism on this instance is

t = (b11 + b12)Pr(α >
b11
b21

, α ≤ b22
b12

) + (b21 + b22)Pr(α ≤
b11
b21

, α >
b22
b12

)

+ max(b11, b22)Pr(α >
b11
b21

, α >
b22
b12

) + max(b12, b21)Pr(α ≤
b11
b21

, α ≤ b22
b12

).

Since all the probabilities in the above expression can be expressed by function
values of f , its performance can be estimated at least numerically (and by com-
puter) when the function is given. Here we specify the following simple function
f so that the analysis can be done analytically (and by hand). It is a case-by-case
analysis and is omitted here due to space limitation.

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ≥ A,

1
2

+
x− 1

2(A− 1)
, 1 ≤ x < A,

1
2
−

1
x − 1

2(A− 1)
,

1
A
≤ x < 1,

0, 0 ≤ x <
1
A

.

(1)

Despite the complicated appearance in the above expression, this function is a
simple and natural one. A is a threshold, when input is beyond that, the function
value is always 1. f(x)+f(1/x) = 1 requires that f(1) = 1

2 . The function between
1 and A is simply the the line segment connecting these two end points (1, 1

2 )
and (A, 1). The function below 1 is determined by the function above 1 and the
requirement f(x) + f(1/x) = 1 .

Theorem 4. By using the function as (1) , where A = − 1
2 +
√

3+ 1
2

√
25− 12

√
3

(≈2.26), the approximation ratio of the Correlation Mechanism is 1
6 (
√

25−12
√

3
+7) (≈ 1.5089).

We remark that the function of (1) is only used to illustrate the idea of correlation
mechanisms. It is by no means the best choice. However its bound (1.5089) is
already very close to the lower bound (1.506) we will prove in the next section.
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5 The Ratio of 1.5 Is Not Achievable

Given the succuss of using correlation in the previous section, and also noticing
that the instances used to prove the lower bound in Section 3 cannot get any
thing beyond 1.5 for the case of two tasks, one may make a point that we
can choose some suitable function f in the correlation mechanism to achieve
an approximation ratio of exactly 1.5. In this section, we prove that this is
impossible.

Theorem 5. For any non-decreasing monotone function f : R+ ⇀ [0, 1] which
satisfies ∀x ∈ R+, f(x) + f(1/x) = 1, there exists c, d ∈ R+ such that c ≥ 1,
c ≥ d and

c+ f(c) + df(c)− cf(c)− df(d) > 1.5.

Proof. We assume for contradiction that there exists a function f such that for
all c, d ∈ R+ satisfying c ≥ 1, c ≥ d, we have

c+ f(c) + df(c)− cf(c)− df(d) ≤ 1.5. (2)

For any fixed d, let c→∞, we have c+ f(c) + df(c)− cf(c) ≥ 1 + d. So for any
x ∈ R+, we have

f(x) ≥ 1− 1
2x

.

Using this and the fact that ∀x ∈ R+, f(x) + f(1/x) = 1, we have

f(x) ≤ x

2
.

Let d = 1/c in (2), we have

c+ f(c) +
f(c)
c

− cf(c)− 1
c
(1− f(c)) ≤ 1.5.

This implies
(c− 2)(c+ 1)f(c) ≥ (c− 2)(c+ 1/2).

So for c > 2 we have f(c) ≥ 1 − 1
2(c+1) and for 1 ≤ c < 2 we have f(c) ≤

1 − 1
2(c+1) . Together with the fact that f is a non-decreasing monotone, these

two inequalities enforce that f(2) = 1− 1
2×(2+1) = 5

6 .
Now let c = 2 in (2), we have

2 +
5
6

+
5
6
d− 2× 5

6
− df(d) ≤ 1.5.

This implies that for any x ≤ c = 2, f(x) ≥ 5
6−

1
3x . But f cannot simultaneously

satisfy this and f(x) ≤ x
2 . For example choosing x = 4

5 , f(4
5 ) ≥ 5

6 −
1
3x = 5

12 ,
but on the other hand f(4

5 ) ≤ x
2 = 2

4 <
5
12 , a contradiction.

We can improve this theorem by proving that any scale-free mechanisms cannot
achieve 1.5 even for this very special cases.
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Theorem 6. Any randomized scale-free truthful mechanism for scheduling two
tasks on two unrelated machines cannot have an approximation ratio that is
better than 1.506.

Proof. We use a matrix
[
b11 b12
b21 b22

]
to denote the following instance with two

machines and two tasks
task 1 task 2

machine 1 b11 b12
machine 2 b21 b22

.

Now we consider the following distribution of 12 instances:

–
[
1 1
a 1

]
,
[
1 1
1 a

]
,
[
a 1
1 1

]
,
[
1 a
1 1

]
, each with probability p1;

–
[
1 b
1
b 1

]
,
[
1 1

b
b 1

]
,
[
b 1
1 1

b

]
,
[ 1

b 1
1 b

]
, each with probability p2;

–
[
1 b
1
a 1

]
,
[
1 1

a
b 1

]
,
[
b 1
1 1

a

]
,
[ 1

a 1
1 b

]
, each with probability p3.

a, b, p1, p2, p3 are parameters to be specified later and satisfy 1 ≤ b ≤ 2 ≤ a and
p1 + p2 + p3 = 1/4.

For these instances, the possible running-time-ratios of tasks are only 1/a,1/b,
1,a,b. For each task, the mechanism can choose a threshold (only 6 possible dif-
ferent thresholds). But by symmetry, we can always assume that the thresholds
for the first task are above 1 (so there are 3 possible different thresholds). Over-
all of there are 18 possible different mechanisms. We can choose the parameters
such that the expected approximation ratios of them are all larger than a given
value, then this is our lower bound.

By choosing a = 2.125, b = 1.88, p1 = 0.1346, p2 = 0.0796, p3 = 0.0358, we
can get a lower bound of 1.506. We can prove this formally and also argue that
these are the best parameters we can choose. The details are omitted.

6 Conclusion and Discussion

The main results of this paper are two new lower bounds and one new upper
bound. Two direct interesting open questions are to get rid of the technical
assumption for these lower bounds and to generalize the correlation mechanism
to general cases. It is quite surprising that the exact bound for this simple 2-
player mechanism has not been settled after a couple of work. We recall that
quite simple mechanisms and relatively easy lower bound proofs already match
both in the corresponding deterministic and fraction version. We believe that
our work in this paper is an important step toward the final answer.

In the general case (m machines), the gap between the best lower bounds
(constants) and the best upper bounds (Θ(m)) is huge both in deterministic and
randomized versions. Any improvement in either direction is highly desirable. We
hope that the technique and ideas we and others developed for this special case
can extend to the general case.



On 2-Player Randomized Mechanisms for Scheduling 41

Acknowledgement

I am grateful to Wei Chen, Yajun Wang, and Changyuan Yu for helpful discus-
sion on this topic.

References

1. Ashlagi, I., Dobzinski, S., Lavi, R.: An Optimal Lower Bound for Anonymous
Scheduling. In: Proceedings of EC 2009, pp. 169–176 (2009)

2. Christodoulou, G., Koutsoupias, E., Kovács, A.: Mechanism Design for Fractional
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Abstract. In a Stackelberg pricing game a leader aims to set prices on a subset
of a given collection of items, such as to maximize her revenue from a follower
purchasing a feasible subset of the items. We focus on the case of computationally
bounded followers who cannot optimize exactly over the range of all feasible
subsets, but apply some publicly known algorithm to determine the set of items
to purchase. This corresponds to general multi-dimensional pricing assuming that
consumers cannot optimize over the full domain of their valuation functions but
still aim to act rationally to the best of their ability.

We consider two versions of this novel type of Stackelberg pricing games.
Assuming that items are weighted objects and the follower seeks to purchase a
min-cost selection of objects of some minimum weight (the MIN-KNAPSACK

problem) and uses a simple greedy 2-approximate algorithm, we show how an
extension of the known single-price algorithm can be used to derive a polynomial-
time (2 + ε)-approximation algorithm for the leader’s revenue maximization
problem based on so-called near-uniform price assignments. We also prove the
problem to be strongly NP-hard.

Considering the case that items are subsets of some ground set which the
follower seeks to cover (the SET-COVER problem) via a standard primal-dual
approach, we prove that near-uniform price assignments fail to yield a good ap-
proximation guarantee. However, in the special case of elements with frequency 2
(the VERTEX-COVER problem) it turns out that exact revenue maximization can
be done in polynomial-time. This stands in sharp contrast to the fact that revenue
maximization becomes APX-hard already for elements with frequency 3.

1 Introduction

The problem of multi-dimensional pricing consists of assigning revenue maximizing
prices to a set of distinct items given information about the preferences of potential
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customers. A natural way to describe consumer preferences is via valuation functions
that map subsets of items to non-negative real numbers describing how much a set is
valued by a certain customer. Given fixed item prices a rational customer acting ac-
cording to quasi-linear utilities chooses to purchase the subset of items maximizing
her utility, i.e., the difference between her value for the set and the sum of prices of
items contained in it. It is known that general multi-dimensional pricing with unlimited
supply of each item allows polynomial-time approximation algorithms achieving ratios
that are logarithmic in the number of customers or linear in the number of distinct items
via considering only single-price solutions [4,8]. Lower bounds of the same order of
magnitude have also been proven for approximation guarantees in both parameteriza-
tions [7,14].

For the known algorithmic results it is sufficient that valuation functions can be ac-
cessed via demand oracles, i.e., consumers are treated as black boxes that can answer the
question: “Given some vector of prices, which set of items would you choose to buy?”
But how much can it help us to have more detailed information about the structure of
customer preferences? If the number of customers is large, unfortunately, the answer
is “not at all” as follows readily from the known lower bounds, which hold for special
cases of the problem in which the exact preferences can be elicited via demand queries.
However, the situation is different when the number of distinct customers is small.

In a 2-player Stackelberg Pricing Game, named after the underlying market model
due to Heinrich Freiherr von Stackelberg [27], we are given a collection of items, some
of which have fixed-costs. A so-called leader may assign prices to the remaining items.
A follower then purchases a feasible set of items of minimum cost and pays the leader
for the priceable items in the set. This problem is equivalent to multi-dimensional pric-
ing with a single follower if the follower’s feasible sets are unrestricted. However, a
standard assumption when considering Stackelberg games is that the follower has to
be able to optimize in polynomial time over her feasible sets. As an example, think of
items as edges in a graph and the follower’s feasible sets as all possible paths connect-
ing some vertices s and t. For some kinds of followers, e.g., buying a min-cost vertex
cover in a bipartite graph, it has been shown that improved approximation guarantees
are possible [8].

In this paper we initiate the study of a closely related question: What if the follower
is unable to exactly optimize over her feasible sets, because the problem is computa-
tionally hard, but is still guaranteed to act rationally to the best of her ability? More for-
mally, we will assume that when prices have been fixed the follower applies a publicly
known approximation algorithm to find a near-optimal feasible set of items to purchase.
This assumption is quite reasonable when followers are actually software agents with
known implementation details. To the best of our knowledge, this is the first analysis of
multi-dimensional pricing with follower preferences that are neither single-minded or
unit-demand, nor expressible as exact optimization over the full domain of the valua-
tion function. Before describing our results in detail, we review some important related
work and introduce the notation used throughout the paper.

Related Work. Algorithmic aspects of multi-dimensional pricing problems, which are
important in the context of pure optimization as well as the design of revenue-maximizing
auction mechanisms [3], were first studied by Aggarwal et al. [1] and Guruswami et al.
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[20]. Subsequently, quite a number of improved algorithmic results for special cases of
the problem [2,9,12,13,15,16,21] and complexity theoretic lower bounds [7,14,10] have
been derived.

Our introductory example of shortest-path Stackelberg pricing was first introduced
by Labbé et al. [23], who derived a bi-level LP formulation of the problem and proved
NP-hardness. Subsequently, Roch et al. [24] presented a first polynomial time approx-
imation algorithm with a provable (logarithmic) approximation guarantee. More re-
cently, Cardinal et al. [11] investigated the corresponding minimum spanning tree game,
proving that this version of the problem is APX-hard and that the very simple single-
price algorithm achieves a logarithmic approximation guarantee. Finally, Briest et al.
[8] extended the analysis of the single-price algorithm to Stackelberg pricing in general.
Stackelberg pricing in which the follower purchases a single-source shortest path tree
has been considered in [6].

Stackelberg pricing can also be considered with objectives other than revenue max-
imization. When prices are tolls on network arcs the problem of congestion minimiza-
tion has received considerable attention. Karakostas and Kolliopoulos [22], Fleischer,
Jain and Mahdian [17], Fleischer [18] and Swamy [25] show how tolls can be used to
enforce low-congestion Nash equilibria in selfish network routing games.

Preliminaries. In this paper we consider games falling in the following general class.
There are two players in the game, one leader and one follower. There is also a set of
items I that is partitioned into fixed-cost itemsF and priceable itemsP . Each fixed-cost
item i ∈ F has a fixed-cost c(i) ≥ 0. For each priceable item i ∈ P the leader can spec-
ify a price p(i) ≥ 0. The follower has a set S ⊂ 2I of feasible subsets and is interested
in buying some subset in S. The cost of a subset S ∈ S is given by the cost of fixed-cost
items and the price of priceable items: cost(S) =

∑
i∈S∩F c(i) +

∑
i∈S∩P p(i). The

revenue of the leader from subset S is given by the prices of the priceable items that
are included in S, that is, r(S) =

∑
i∈S∩P p(i). We let SA(p) be the feasible subset in

S chosen by the follower when she uses polynomial-time algorithm A given prices p.
Naturally, the follower would like A to return the minimum-cost subset in S, but this
could be a hard task to solve in polynomial-time. We capture this intuition by making
no assumption on optimality of the algorithm: A can return a suboptimal subset in S.
Our interest is to find the pricing function p∗ for the leader that generates maximum
revenue when the follower uses algorithm A, i.e., p∗ ∈ arg maxp r(SA(p)). We denote
this maximum revenue by r∗. To guarantee that the revenue is bounded and the opti-
mization problem is non-trivial, we assume that there is at least one feasible subset that
is composed only of fixed-cost items and that the follower algorithm outputs it under
certain circumstances. Towards this aim, we further assume that for each priceable item
there is a threshold price above which no subset including it will be output by the fol-
lower algorithm. This last assumption holds for every follower algorithm with bounded
approximation ratio.

In the above class of games, we will consider the MIN-KNAPSACK pricing prob-
lem and the SET-COVER pricing problem. In the knapsack pricing problem, the set of
items is a set of weighted objectsO. A subset of O is feasible if the total weight of the
object comprising it is at least a given boundW . We will refer to the revenue optimiza-
tion problem for the knapsack pricing problem by STACKKP. In the set cover pricing
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problem, following our terminology, given some ground set to be covered, every item
corresponds to a given subset of the ground set. A subset of items is feasible for the
follower whenever it covers all the elements of the ground set. We will refer to the rev-
enue optimization problem for the set cover pricing problem by STACKSC and denote
the special case of vertex cover pricing by STACKVC.

Contributions. The focus of this paper are followers applying approximation algo-
rithms that are (i) structurally simple and (ii) sufficiently suboptimal to ensure that
revenue maximization has to take into account the algorithm’s exact structure. We first
consider STACKKP and assume that the follower uses the well known greedy algorithm
(see Section 2) to compute a 2-approximate solution to the minimization version of the
knapsack problem she needs to solve. Even though structurally quite simple, this prob-
lem seems to capture many of the fundamental problems of Stackelberg pricing with
computationally limited followers.

We show that in this case a careful adaptation of the known single-price strategy
termed near-uniform pricing, which essentially assigns a single price to a subset of
items and removes the remaining ones from the market by assigning a sufficiently high
price (see Section 2 for a formal definition), can be used to approximate optimal revenue
in most of the solution space. Adding some fairly standard enumeration techniques we
are able to derive a polynomial-time (2 + ε)-approximation for the revenue maximiza-
tion problem. The main technical difficulty lies in the fact that our analysis needs to
argue about the exact computation done by the follower for a given price vector rather
than using some global optimality condition. We point out that our algorithm is best
possible among all algorithms based on near-uniform price assignments. Finally, we
show that the revenue maximization problem in this setting is strongly NP-hard.

We then turn our attention to STACKSC and assume that the follower is using the
primal-dual schema based approximation algorithm (see Section 3) to find a selection of
sets to purchase. We view the problem in its equivalent formulation of VERTEX-COVER

in hypergraphs and start by investigating the special case of regular VERTEX-COVER

in standard graphs. We prove that while near-uniform price assignments cannot achieve
better than logarithmic approximation guarantee in this case, exploiting the algorithm’s
structure nevertheless allows for exact revenue maximization in polynomial time. To
the best of our knowledge, this is the second example of polynomial-time revenue max-
imization being possible for a class of Stackelberg pricing games. Previously, it was
shown that games with a follower purchasing a min-cost vertex cover in a bipartite graph
in the special case that all priceable vertices are located on one side of the bipartition al-
lows for polynomial-time revenue maximization [8]. It would be very interesting to see
whether there is a deeper connection between these two problems. Turning to general
hypergraphs it turns out that revenue maximization (STACKSC) becomes hard already
with edges of cardinality 3 (or elements of frequency 3 in the SET-COVER view) and
is APX-hard in general. This is quite surprising given that the follower’s primal-dual
algorithm achieves approximation guarantee f for any frequency f , i.e., the approx-
imation complexity of the underlying problem scales quite smoothly. We also argue
that in this general case neither near-uniform price vectors nor our algorithm from the
VERTEX-COVER case can guarantee any sub-exponential approximation ratio.
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Knowing the Follower’s Algorithm. A central assumption in our analysis is that the
leader has full knowledge of the follower’s algorithm. This assumption might appear
quite strong. It turns out, however, that this non-black-box attitude on the leader’s side
is necessary to achieve any reasonable approximation guarantees. Suppose the leader
only knows the approximation guarantee of the follower’s algorithm A and is given
black-box-access to it, but no specific details are revealed. In this case it is easy to argue
that for both STACKKP and STACKVC no algorithm can achieve a finite approximation
guarantee. We omit the simple proof of the following fact due to space limitations.

Proposition 1. For any constantρ > 1, there are instances of STACKKP and STACKVC
in which no leader’s algorithm can achieve a finite approximation guarantee given only
information about ρ and black-box-access to the follower’s ρ-approximation algorithm.

Similarly, it is necessary to assume that the follower decides on the algorithm to be
used in advance. If the follower is allowed to choose the algorithm (from a known set
of alternatives) once the leader has set the prices, then an impossibility result similar to
the one above applies.

2 Knapsack Pricing

In the MIN-KNAPSACK problem we are given a set O of n objects, some of them with
fixed cost and some priceable. Each object o ∈ O has weight w(o) ∈ N and we are
given an integer weight bound W . Following the general framework given above, each
subsetX ofO has a cost which is defined as the sum of the cost of the fixed-cost objects
in X and the prices of the priceable objects in X . The follower wants to purchase a set
of objects of minimum cost whose weight is at least W . We assume that the follower
uses the standard greedy algorithm outlined below to find an approximation of such a
minimum-cost set.

The Follower’s Algorithm. An object’s cost-efficiency (below referred to as efficiency
for brevity) is defined as φ(o) = c(o)/w(o) or φ(o) = p(o)/w(o), depending on
whether it is fixed-cost or priceable. Algorithm 1 below proceeds as follows. First, order
all objects by non-decreasing efficiency (breaking ties by decreasing weight). Then add
objects to the knapsack in this order. If an object makes the weight of the solution it
completes at least W , remember this (feasible) solution and discard the object. Finally,
return the best solution found. Note that we assume that ties are broken according to de-
creasing weight, i.e., larger objects are considered first given identical efficiency. This
is a natural tie breaking rule, as it aims at minimizing the overlap of objects that exceed
the knapsack’s remaining capacity when they are considered.

Transforming the Optimal Solution. Let p∗ be the optimal price assignment and P∗

be the set of priceable objects that are selected by Algorithm 1 given these prices.
The key ingredient for our approximation algorithm for knapsack pricing is the ob-

servation that price assignments that result in a large number of priceable objects being
bought by the follower can be approximated by almost uniform price assignments at
the expense of reducing overall revenue by no more than a constant factor.
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Algorithm 1. The greedy approximation algorithm for MIN-KNAPSACK

Let o1, o2, . . . , on be the objects ordered by non-decreasing efficiency, i.e.,
φ(o1) ≤ · · · ≤ φ(on).
X ← Y ← ∅.
cY ← +∞.
for i = 1, . . . , n do

X ← X ∪ {oi}.
if w(X) ≥W then

if cost(X) < cY then
Y ← X.
cY ← cost(X).

X ← X \ {oi}.
Return Y .

Definition 1. We call a price assignment p near-uniform, if there exists a single effi-
ciency φ > 0, such that p(o) = w(o) · φ or p(o) = +∞ for every o ∈ P .

We call an object b blocking, if the weight of the current solution exceedsW when it is
added by the greedy algorithm. Let B = {b1, . . . , bl} denote the blocking objects with
φ(b1) ≤ · · · ≤ φ(bl). Since every blocking object corresponds to a unique solution
checked by the greedy algorithm, our approach to relating the algorithm’s behavior on
two different price vectors is to relate the sets of blocking objects in both cases.

Theorem 1. Let p∗ be the optimal price assignment for a given STACKKP instance
and r∗ the resulting revenue. Furthermore, assume that given prices p∗ the follower
purchases at least k ∈ N priceable objects, i.e., |P∗| ≥ k. Then there exists a near-
uniform price assignment p̃ with revenue at least r∗(k − 1)/(2k).

Proof. Define w∗ =
∑

o∈P∗ w(o), r∗ =
∑

o∈P∗ p∗(o) and let φ∗ave = r∗/w∗. Let c∗

denote the total cost of the solution bought by the follower given prices p∗. We define
a near-uniform price assignment p̃ by p̃(o) = (1/2)w(o)φ∗ave for all o ∈ P∗, and
p̃(o) = +∞ else.

There is a one-to-one correspondence between the blocking objectsB = {b1, . . . , bl}
given prices p∗ and solutions checked by the greedy algorithm. Because of the fact that
blocking objects do not influence the set of solutions checked by the greedy algorithm
(beyond the one they belong to themselves), it is w.l.o.g. to assume that there is at most
a single priceable blocking object given prices p∗, and if it exists it belongs to P∗.

Proving the claimed revenue guarantee for p̃ consists of two parts. First, we show that
with prices p̃ the blocking objects of efficiency less than φ∗ave/2 are still blocking with
with prices p̃ and their corresponding solutions have cost greater than c∗− (1/2)r∗. We
then show that among the solutions with blocking objects of efficiency greater or equal
than φ∗ave/2 there exist some with cost at most c∗ − (1/2)r∗ and the cheapest among
these contains priceable objects of value at least r∗(k − 1)/(2k).

We first deal with blocking objects with efficiency φ(bj) < φ∗ave/2 and argue that
they remain blocking. Consider bj with φ(bj) = c(bj)/w(bj) < φ∗ave/2. Since we
have at most one blocking priceable object (of efficiency at least φ∗ave), bj must be
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fixed-cost. Given prices p∗, let s<j be the remaining unfilled capacity of the knapsack
when bj is considered and let w<j and r<j denote the weight of priceable objects in
the knapsack at this point and their total price, respectively. Similarly, let w>j and r>j

denote the weight and price of priceable objects from P∗ that are considered after bj
and let φ>j = r>j/w>j be their average efficiency. Finally, define f>j to be the total
cost of fixed-cost objects in the optimal solution with higher efficiency than bj .

We are going to argue that moving all priceable objects to a position behind bj
(as happens with near-uniform pricing p̃) will not cause bj to become non-blocking.
First observe that r<j < w<jφ

∗
ave/2 ≤ w∗φ∗ave/2 = (1/2)r∗ and, thus, we have that

w>jφ>j > (1/2)r∗. By the fact that bj is not part of the cheapest solution, we know
that f>j + w>jφ>j ≤ c(bj). It follows that

w>jφ>j ≤ c(bj)− f>j ≤ c(bj)− (s<j − w>j)φ(bj), since f>j ≥ (s<j − w>j)φ(bj)
= (w(bj)− s<j + w>j)φ(bj).

Assume now that bj becomes non-blocking if we remove total weight w<j from the
knapsack, i.e., w(bj)− s<j ≤ w<j . We may then write that

φ>j ≤
(

1 +
w(bj)− s<j

w>j

)
φ(bj) ≤

(
1 +

w<j

w>j

)
φ(bj).

Using that w>jφ>j > (1/2)r∗ and φ(bj) < (1/2)φ∗ave we obtain 1
2r

∗ < w>jφ>j ≤
(w>j +w<j)φ(bj) < 1

2w
∗φ∗ave = 1

2r
∗, a contradiction. We conclude that bj remains a

blocking element.
Note, that the fact that blocking objects of efficiency at most φ∗ave/2 remain blocking

also implies that no non-blocking objects with efficiency below φ∗ave/2 can become
blocking, since under prices p̃ the knapsack contains less total weight when such an
object is considered. Also observe that given prices p̃, the fact that r<j < (1/2)r∗

implies that every solution found by the greedy algorithm with a blocking object bj of
efficiency less than φ∗ave/2 has total cost greater than c∗ − (1/2)r∗.

We continue by considering blocking objects with efficiency φ(bj) ≥ φ∗ave/2. If P∗

did not contain a blocking object given prices p∗, then changing prices to p̃ does not
change the set of blocking objects of efficiency at least φ∗ave/2. To see this, note that
with prices p̃ the knapsack’s remaining capacity is smaller than before at any point, so
no previously blocking object can become non-blocking. On the other hand, all the non-
blocking objects left enough room to pack the objects from P∗, so changing the order
in which they are considered cannot create new blocking objects either. It follows that
all solutions found by the greedy algorithm with blocking objects of efficiency at least
φ∗ave/2 contain priceable objects with a total price of r∗/2. The previously cheapest
solution is still found and has cost c∗ − (1/2)r∗.

If P∗ did contain a blocking element with prices p∗, but does not given prices p̃,
we consider two cases. If the previously optimal solution is still found by the greedy
algorithm, the same argumentation as above guarantees revenue r∗/2. If it is not, it
must be the case that some previously non-blocking element has now become blocking.
Consider the first such element bj . Since all objects in the knapsack at the time bj is
considered and bj itself were part of the cheapest solution given prices p∗, we have



On Stackelberg Pricing with Computationally Bounded Consumers 49

again found a solution of total cost at most c∗ − (1/2)r∗. Since all priceable objects
are in the knapsack at this point and remain in it, a lower bound of r∗/2 on the revenue
follows immediately.

Finally, assume that P∗ contains a blocking element with both prices p∗ and p̃. In
this case, the solution with priceable blocking object is guaranteed to have cost at most
c∗− (1/2)r∗. By the algorithm’s tie-breaking rule every solution with a blocking object
of efficiency larger than φ∗ave/2 found at a later time contains all but the smallest object
from P∗ and, by the fact that |P∗| ≥ k, contains priceable objects of total value at least
(1− 1/k)w∗(1/2)φ∗ave = r∗(k − 1)/(2k). 	


Algorithm 2. A (2 + ε)-approximation algorithm for STACKKP
Let 1 be the minimum, Φ the maximum efficiency of fixed-cost objects, W the knapsack
capacity,

√
1 + ε/2− 1 ≥ δ > 0, rmax ← 0.

Choose k ≥ (2(2 + ε))/(2 + ε− 2(1 + δ)2) and let
Λ = {φ(o) | o ∈ F} ∪ {(1 + δ)j | j = 0, . . . , 	log1+δ Φ
}.
foreach set S ⊆ P of priceable objects with |S| ≤ k − 1 do

foreach price assignment p with p(o)/w(o) ∈ Λ for all o ∈ S and p(o) = +∞ else
do

Let r be the resulting revenue.
rmax ← max{rmax, r}.

foreach 0 ≤ i ≤ 	log1+δ Φ
 do
Let φi = (1 + δ)i.
foreach 0 ≤ j ≤ 	log1+δ W 
 do

Let S be a set of at least k priceable objects with total weight between (1 + δ)j

and (1 + δ)j+1, if such set exists, else S = ∅.
Set p(o) = w(o)φi for all o ∈ S and p(o) = +∞ for all other priceable objects.
Let r be the resulting revenue.
rmax ← max{rmax, r}.

Return rmax.

Approximation Algorithm for Revenue Maximization and Hardness Result. We are
now ready to present our (2 + ε)-approximate algorithm for STACKKP. Algorithm 2
proceeds in two stages. First it checks for some given constant k ∈ N all possible price
assignments to sets of at most k − 1 priceable objects. Then for each possible weight
w, it finds a set with k or more priceable objects with total weight (roughly) w (if such
a set exists), and considers all near-uniform price assignments to that set.

Note that in both stages, checking all possible efficiencies cannot be done in polyno-
mial time. Instead we restrict our attention to the efficiencies of the fixed-cost objects
plus all powers of (1 + δ) for some δ > 0 to guarantee that we efficiently find a near-
optimal price assignment in which all objects are considered by the greedy algorithm in
the right order. Similarly, in the second stage we cannot enumerate all possible weights
for the objects in our near-uniform price assignments, but again have to settle for powers
of (1 + δ). The proof of Theorem 2 is omitted due to space limitations.

Theorem 2. Algorithm 2 computes in polynomial time a (2 + ε)-approximation for
STACKKP.
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We mention that we can provide an instance showing that the above analysis is es-
sentially tight. Finally, it turns out that revenue maximization against a follower using
Algorithm 1 is strongly NP-hard. Details are left for the full version of this paper.

Theorem 3. STACKKP is strongly NP-hard.

3 Set Cover Pricing

In this section we consider the vertex and set cover pricing problems. In the simplest
case the follower wants to purchase a minimum vertex cover of a graph G = (V,E).
Let V = P ∪ F , where as above F and P denote the set of fixed-cost and priceable
vertices respectively. More generally, for set cover we consider an equivalent formula-
tion of vertex cover in hypergraphs. Namely, given the universe and its subsets of the
set cover instance, we define an hypergraph where the vertices are the universe subsets
and hyperedges are the elements of the universe. In this case there can be hyperedges
in E connecting more than two vertices. We assume that the follower uses the standard
primal-dual algorithm to find an approximation to the minimum vertex cover.

The Follower’s Algorithm. The algorithm iteratively considers uncovered edges and
raises budgets at the incident vertices until (at least) one of the vertices becomes tight.
The algorithm is given for the case of regular vertex cover as Algorithm 3, for more
details see [26, Ch. 15].

Algorithm 3. Primal-dual algorithm of the follower
γe ← 0 for all edges e ∈ E
For all v ∈ V let c′(v)← c(v) if v ∈ F and c′(v)← p(v) otherwise
Fix an order of edges e1, . . . , em

for i = 1, . . . , m do
Let ei = (u, v) and σu ← c′(u)−∑e : e=(u,v′) γe

σv ← c′(v)−∑e : e=(u′,v) γe

γe ← min(σu, σv)
Add every vertex v with c′(v) =

∑
e : e=(u,v) γe to the cover.

Revenue Maximization for Vertex Cover. At first, let us consider the approximation
ratio of single-price and near-uniform price assignments. For the latter, as from Defini-
tion 1, we have a φ ∈ R+

0 and p(v) ∈ {φ,∞} for all v ∈ P . It turns out that for these
pricings there is a simple logarithmic lower bound (proof omitted).

Theorem 4. Single-price and near-uniform price assignments yield an approximation
factor of Ω(log n) for STACKVC, where n is the number of priceable vertices.

Instead, we present a natural greedy algorithm to compute optimal prices for the seller.
It simulates a run of the primal-dual algorithm and raises prices of the priceable vertices
in the same manner as the dual budgets γ are raised by the follower. In this way the
algorithm greedily tries to sell a vertex to the follower as soon as she is willing to pay
for it.
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Algorithm 4. Greedy pricing for STACKVC
γe ← 0 for all edges e ∈ E
for each edge e = e1, e2, . . . , em in the order of the follower do

if e = (u, v) is incident to a priceable vertex v then
γe ← c(u)−∑e′:e′=(u,v′) γe′

p(v)←∑e′:e′=(u′,v) γe′

else
σu ← c(u) −∑e′:e′=(u,v′) γe′

σv ← c(v)−∑e′:e′=(u′,v) γe′

γe ← min(σu, σv)

Theorem 5. Algorithm 4 solves STACKVC in polynomial time.

Proof. Consider an optimum pricing p∗, which yields a strictly larger revenue than the
greedy pricing pg computed with our algorithm. For such a given set of prices p∗, we
denote by γ∗e the dual contribution of edge e, which we call the budget of edge e. This
contribution is the result of applying the follower’s algorithm to the instance using p∗.
We restrict our attention to an optimal pricing p∗ for which the follower purchases all
priceable vertices. The existence of such a pricing follows from the next lemma (proof
omitted).

Lemma 1. Given any pricing p, there is a pricing pl with pl(v) ≤ p(v) for all v ∈
P , for which the leader obtains at least as much revenue as for p and the follower
purchases every vertex v ∈ P .

Now consider the smallest i′, for which edge e′ = ei′ = (u, v′) has γ∗e′ �= γe′ . It is
easy to note that this edge must be incident to a priceable vertex v′, and the difference
in budgets is a result from setting different prices. As in both p∗ and pg all vertices are
bought by the follower, it must be the case that p∗(v) < pg(v), and hence γ∗e′ < γe′ .
We now compare the revenue of pricing p∗ to a pricing p′ with p′(v) = p∗(v) for every
vertex v �= v′, and for which p′(v′) = p∗(v′) + γe′ − γ∗e′ . In p′ the budgets γ′e are
equivalent to γe (i.e., the budgets generated by the greedy pricing pg) for every edge
e1, . . . , ei′−1 and also ei′ = e′.

We call δj(v) =
∑

ei:ei=(v,u),i≤j γ
′
ei
− γ∗ei

the reservation that is created by p∗ at
vertex v at the end of processing edge ej . The budget of e′ is raised to a smaller amount
in p∗ than in p′, so after processing e′ there is positive reservation at the other endpoint
u of e′, i.e. δi′(u) = δi′(v′) at vertex u. No other vertex except u and v′ has reservation
at this point, so it holds that

∑
v �=v′ |δi′(v)| ≤ δi′ (v′). This will be our invariant, and in

the following we prove it for the remaining edges j > i′ and the remaining iterations of
the algorithm with pricing p′ (proof omitted).

Lemma 2. For any iteration j ≥ i′ we have that
∑

v �=v′ |δj(v)| ≤ δi′(v′).

The lemma above shows that the sum of absolute values of reservation at all vertices
except v′ at any point during the remaining runs of the followers algorithm is at most
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the initial reservation δi′(v′). Note that v′ is bought in both cases. In p∗ all priceable
vertices are bought by the follower, but this might not be true for p′ and vertices v �= v′.
p′ might lose revenue there. By Lemma 1, this can be fixed by reducing the price in
p′ of every priceable vertex to the sum of the budgets of incident edges. Note that in
p∗ every vertex was bought, which implies every price p∗(v) =

∑
e:e=(u,v) γ

∗
e is also

the sum of budgets of incident edges. As the total absolute reservation in the end of the
algorithm is at most δi′(v′), the total decrease in revenue that is lost on vertices v �= v′

in this step is at most δi′(v′). This is exactly the revenue surplus that p′ generates over
p∗ at vertex v′. Thus, pricing p′ yields at least as much revenue as p∗. This implies
that we can transform any pricing by iteratively adjusting the prices without decreasing
revenue, such that all budgets of the edges are equal to those generated by the greedy
pricing pg. In particular, this implies that pg is an optimal pricing. 	


The next proposition, whose proof is left for the full version of this paper, shows that
knowing the order of the edges when pricing for the primal-dual algorithm in STACKVC
is essential.

Proposition 2. For every constant ε > 0, there exists an instance of STACKVC such
that if the order of the edges in the follower’s primal-dual 2-approximation algorithm
is unknown to the leader, then every pricing p yields an approximation ratio of Ω(1/ε).

Hardness Results. The main argument in the previous section works only for the case
of regular vertex cover. Let us turn to the case of set cover with elements contained
in at least three sets, i.e. elements with frequency at least three. We understand them
as hyperedges incident to more than two vertices. In this case it might be profitable to
reduce the price for a vertex from the value in the greedy pricing. Indeed, we show that
set cover pricing problem is much harder to solve. The proof is omitted due to space
limitations.

Theorem 6. STACKSC is APX-hard even if all elements have maximum frequency 3
and all fixed-cost sets have cost 1.

Finally, we derive a devastating lower bound on greedy, single-price, and near-uniform
price assignments in set cover pricing. Once again, we leave the proof for the full ver-
sion of this paper.

Theorem 7. The greedy, single-price, and near-uniform price assignments yield an ap-
proximation factor of 2Ω(|I|) for STACKSC, where |I| is the size of the representation.
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Abstract. We investigate the speed of convergence of best response dy-
namics to approximately optimal solutions in weighted congestion games
with polynomial delay functions. In [1] it has been shown that the con-
vergence time of such dynamics to Nash equilibrium may be exponential
in the number of players n even for unweighted players and linear de-
lay functions. Nevertheless, extending the work of [11], we show that
Θ(n log log W ) (where W is the sum of all the players’ weights) best re-
sponses are necessary and sufficient to achieve states that approximate
the optimal solution by a constant factor, under the assumption that
every O(n) steps each player performs a constant (and non-null) number
of best responses.

1 Introduction

Congestion games have attracted a good deal of attention because they are a
well established approach to model scenarios in which selfish agents individually
strive to allocate shared resources as effectively as possible. In such games a set
of m resources is available to a set of n players. Each player comes along with a
set of strategies. A strategy of a player corresponds to the selection of a subset
of the resources. In the unweighted setting, the delay of a particular resource
depends on the number of players choosing that resource; in the more general
setting of weighted players, it depends on the sum of the weights of the players
choosing the considered resource. The cost of each player is the sum of the delays
associated with the selected resources. A state of the game is any combination
of strategies for the players and its social cost denotes its quality from a global
perspective, which is typically defined as the sum of the players’ costs.

On the one hand, Rosenthal [18] has shown, by a potential function argu-
ment, that for unweighted congestion games the natural decentralized mech-
anism known as Nash dynamics, in which at each step some player performs
an improvement step switching her strategy to a better alternative, is guaran-
teed to converge to a pure Nash equilibrium [17], i.e. a fixed point in which no
� This research was partially supported by the grant NRF-RF2009-08 “Algorithmic

aspects of coalitional games”.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 55–66, 2009.
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player can perform an improvement step (note that in a Nash dynamic players
play their improvement steps sequentially, and not in parallel). On the other
hand, weighted congestion games do not necessarily admit a Nash equilibrium
[15] unless specific settings are considered (linear delay functions [13], singleton
congestion games [12], matroid congestion games [2]).

Even in the unweighted setting in which Nash equilibria are guaranteed to ex-
ist, a recent result of Fabrikant et al. [10] shows that such dynamics may require
a number of steps exponential in the number of players n in order to reach such
an equilibrium. Their analysis relates congestion games to local search problems
by showing that it is PLS-complete [9] to compute a Nash equilibrium for gen-
eral unweighted congestion games. Moreover from their completeness proof and
from previous results about local search problems, it follows that there exist con-
gestion games with initial states such that any improvement sequence starting
from these states needs an exponential number of steps in order to reach a Nash
equilibrium. More recently, Ackermann et al. [1] show that the previous negative
result holds even in the restricted case of linear unweighted congestion games.
Furthermore, as already remarked, in the more general setting of weighted con-
gestion games Nash equilibria may not exist. Therefore, both for the unweighted
and the weighted setting, the natural arising question is that of determining how
many improvement step are required in order to reach a solution (not necessarily
being an equilibrium) with a social cost not far from the optimal one.

Our Contribution. In this paper we address the question of bounding the
social cost of the state reached after a sequence of best responses, i.e. the case
in which the players select the best available strategy. In particular, we extend
the results of Fanelli et al. [11] relative to linear unweighted congestion games
to the more general setting of weighted congestion games with polynomial delay
functions having maximum degree d. Note that if a player performs a best re-
sponse, she does not necessarily switch to another strategy, as the best strategy
may correspond with the one currently selected by the player. In such a case
the best response is not an improvement step. To this aim, we must consider
sequences in which each player performs at least a best response. Therefore,
we can generally assume any sequence of best responses structured in terms of
subsequences which we call covering walks, corresponding to dynamics in which
each player performs at least a best response. In order to state our results let us
define the approximation ratio of a state as the ratio between the social cost of
such state and the optimal one. Moreover, let us call a covering walk β-bounded
if β is the maximum number of best responses each player can perform during
the walk. We prove fast convergence of best response Nash dynamics to constant
factor approximate solution in weighted congestion games under the assumption
that such dynamics are structured in terms of O(1)-bounded covering walks,
thus considering a more general game evolution dynamic with respect to the
one analyzed by Fanelli et al. [11] that deals only with the more restricted case
of 1-bounded covering walks. On the one hand, we point out that the constant
value of β has an important role in the fast convergence. In fact, as proved by
Awerbuch et al. [5], if β is polynomial in n, there exists a (unweighted and with
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linear delay functions) congestion game with an initial state such that, after an
exponential number of polynomially bounded covering walks starting from such
state, it is possible to reach solutions whose social cost is very far from the op-
timal solution. On the other hand, β = O(1) is a reasonable assumption since it
ensures a sort of fairness between the players, as the ratio between the number of
best responses of any two players in a O(1)-bounded covering walk is constant.
In particular, we show that the approximation ratio achieved after a sequence of

k O(1)-bounded covering walks is O
(
W d( d

d+1)
k−1)

and Ω
(

W
d( d

d+1 )
k−1

k

)
(which

is asymptotically matching for constant values of k), where W is the sum of the
players’ weights. As a consequence, we prove that, for any given d, Θ(log logW )
O(1)-bounded covering walks are necessary and sufficient to achieve a constant
factor approximate solution.

Our results raise the important open question of the minimum degree of co-
ordination among the players, that is the exact order of β, needed in a covering
walk in order to achieve a polynomial time convergence to constant approxi-
mated solutions.

Related Works. The performances of Nash equilibria in unweighted and
weighted congestion games with polynomial delay functions have been inves-
tigated by Aland et al. [3], who have provided a tight price of anarchy both for
the unweighted case and the weighted one. In particular they have improved
the previous results due to Awerbuch et al. [4] (for the weighted case) and
Christodoulou and Koutsoupias [7] (for the unweighted case).

Convergence issues to Nash equilibria or approximately optimal solutions in
congestion games have been recently investigated in different contexts. Fabrikant
et al. [10] have studied the complexity of computing Nash equilibria in general
congestion games proving that such a problem is PLS-complete. Ackermann et al.
[1] have shown that such result still holds if we restrict to unweighted congestion
games with linear delay functions. From these results it follows that there exist
linear congestion games with initial states such that any improvement sequence
starting from these states needs an exponential number of steps to reach a Nash
equilibrium.

Chien and Sinclair [6] have introduced the notion of ε-Nash dynamics (and
the corresponding concept of ε-Nash equilibrium). In ε-Nash dynamics only ε-
improvement steps are permitted, i.e. steps that improve the cost of a player by a
multiplicative factor of more than ε. For symmetric unweighted congestion games
in which the delay functions satisfy the so-called “bounded-jump” condition, they
show that such dynamics converge to a stable configuration, i.e. an ε-Nash equi-
librium, after a number of steps that is polynomial in the number of players and
ε−1. The bounded-jump condition is a weak condition which states that when a
new player is added to a resource, the cost of all the players using that resource
cannot increase by more than a factor polynomially bounded by n. Unfortunately,
as shown by Skopalik and Vöcking [19], ε-Nash dynamics do not guarantee poly-
nomial convergence in the asymmetric unweighted setting, even if the delay func-
tions satisfy a bounded-jump condition. However, Awerbuch et al. [5] have proved
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that for asymmetric unweighted congestion games with delay functions satisfying
a bounded-jump condition, ε-Nash dynamics rapidly converge to approximately
optimal solutions.

Concerning the best response Nash dynamics, Christodoulou et al. [8] have ini-
tiated the study of the approximation ratio of the solution achieved in unweighted
congestion games with linear delay functions after a sequence of 1-bounded cov-
ering walks starting from an arbitrary state. Such a study was completed by
Fanelli et al. [11], who have shown that Θ(log log n) 1-bounded covering walks
are necessary and sufficient to achieve a constant factor approximate solution.
Finally, Goemans et al. [14] have shown that in the weighted setting with linear
delay functions, if at each step every player has the same probability to play a
best response, after a polynomial number of steps the expected approximation
ratio is constant.

The paper is organized as follows. In the next section we introduce some
definition and notation. Section 3 is devoted to the analysis of the upper bound
and lower bound to the approximation ratio achieved after a sequence of k β-
covering walks.

2 Definitions and Notation

A weighted congestion game G = (N,E, (wi)i∈N , (Σi)i∈N , (fe)e∈E , (ci)i∈N ) is
a non-cooperative strategic game characterized by the existence of a set E of
resources to be shared by the players in N = {1, . . . , n}.

Each player i has a weighted demand wi ∈ R+and we denote by W the sum of
the weights of all players, i.e. W =

∑
i∈N wi. Moreover, let us denote by wmax

the maximum weight. Σi is the strategy space of player i, and any strategy
si ∈ Σi of player i is a subset of resources, i.e. Σi ⊆ 2E . Given a strategy profile
S = (s1, . . . , sn) and a resource e, we define the congestion θe(S) on resource e
by θe(S) =

∑
i∈N |e∈si

wi. A delay function fe : R+ �→ R+ associates to resource
e a delay depending on its congestion, so that the cost of player i for the pure
strategy si is given by the weighted sum of the delays associated with resources
in si, i.e. ci(S) =

∑
e∈si

wife(θe(S)).
In this paper we will focus on congestion games with polynomial delay func-

tions with maximum degree d and non-negative coefficients, that is for every
resource e ∈ E the delay function is of the form fe(x) =

∑d
j=1 ae,jx

j with
ae,j ≥ 0 for all j = 0, . . . , d.

Given the strategy profile S = (s1, . . . , sn), the social cost C(S) of a given
state S is defined as the sum of all the players’ costs, i.e. C(S) =

∑
i∈N ci(S).

An optimal strategy profile S∗ = (s∗1, . . . , s
∗
n) is one with minimum social cost,

that we denote by Opt. We denote by E∗ ⊆ E the set of resources used at a
given optimal strategy profile S∗, i.e. E∗ =

⋃
i∈N s∗i . The approximation ratio of

state S is given by the ratio between the social cost of S and the social optimum,
i.e. C(S)

Opt
.

Each player acts selfishly and aims at choosing the strategy lowering her cost,
given the strategy choices of other players. Given a strategy profile S and a strat-
egy s′i ∈ Σi, let (S ⊕ s′i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sn), i.e. the strategy profile
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obtained from S if player i changes her strategy from si to s′i. An improvement
move of player i is a strategy s′i such that ci(S⊕s′i) < ci(S). Furthermore, a best
response of player i in S is a strategy sb

i ∈ Σi yielding the minimum possible
cost, given the strategy choices of the other players, i.e. ci(S ⊕ sb

i) ≤ ci(S ⊕ s′i)
for any other strategy s′i ∈ Σi. Notice that a best response corresponding to
the strategy currently played in S by the involved player is not an improvement
move.

The selfish behavior of players performing best responses can be modelled by
the (Best Response) Nash Dynamics Graph. Formally the Nash Dynamics Graph
associated to a congestion game G is a directed graph B = (V,A) where each
vertex in V corresponds to a strategy profile and there is an edge (S, S′) ∈ A
with label i, where S′ = S ⊕ s′i and s′i ∈ Σi, if and only if both the following
conditions are met: (i) s′i is a best response of i in S; (ii) if S �= S′, s′i is also an
improvement move of i in S. Observe that B may contain loops, corresponding to
best response in which a player maintains her current strategy. A best response
walk is a directed walk in B.

Given a best response walk in B starting from an arbitrary state, we are
interested in the social cost of its final state. We consider the following notions
of best response walks, that are a refinement of the ones introduced in [8,16]:

β-bounded covering walk: it’s a best response walk R =((
S0

R, S
1
R

)
,
(
S1

R, S
2
R

)
, . . . ,

(
Si

R, S
i+1
R

)
, . . . ,

(
S�R−1

R , S�R

R

))
in B of length �R,

where the edge (Si
R, S

i+1
R ) has label πR(i) for every 0 ≤ i ≤ �R−1, i.e. πR(i)

is the player performing the i-th best response of the walk. πR is such that
every player performs at least a best response and at most β best responses
in R. S0

R is said the initial state of R and S�R

R its final state. For simplicity

we denote R by a sequence of states, i.e. R =
(
S0

R, . . . , S
�R

R

)
. When clear

from the context, we will drop the index R from the notation, writing Si, π
and � instead of Si

R, πR and �R, respectively.
β-bounded k-covering walk: it’s a best response walk P = 〈R1, . . . , Rk〉
in B corresponding to a sequence of k β-bounded covering walks, i.e. such
that each Ri is a β-bounded covering walk in B.

Finally, we denote by Apxβ
k(G) the worst case approximation ratio of a state

obtained after a β-bounded k-covering walk.

3 Upper and Lower Bounds

In this section we first provide an upper bound to the the social cost of the state
achieved after a β-bounded k-covering walk starting from an arbitrary state,
for any k ≥ 1 and β = O(1). All the results hold for congestion games having
polynomial delay functions with non-negative coefficients and maximum degree
d, i.e. for every e ∈ E, fe(x) =

∑d
j=1 ae,jx

j with ae,j ≥ 0 for all j = 0, . . . , d.
Without loss of generality, we can assume that for every e ∈ E, fe(x) = xj

with 1 ≤ j ≤ d. In fact, given a congestion game G having polynomial delays
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with non-negative coefficients and maximum degree d, it is possible to obtain an
equivalent congestion game G′, having the same set of players and delay functions
of the form f(x) = xj with 1 ≤ j ≤ d in the following way. For each resource
e in G, we include in G′ a set Ae,j of ae,j resources for j = 1, . . . , d with delay
function fe(x) = xj and n sets B1

e , . . . , B
n
e , each containing ae,0 resources with

delay fe(x) = x; moreover, given any strategy set si ∈ Σi in G, i = 1, . . . , n, we
build a corresponding strategy set s′i ∈ Σ′

i (in G′) by including in s′i, for each
e ∈ si, all the resources in the sets Ae = ∪d

j=1Ae,j and Bi
e. If the coefficients

ae,j are not integers we can perform a similar reduction by exploiting a simple
scaling argument.

For the sake of simplicity, we will only consider latencies of the form fe(x) =
xd, but it can be verified that our proof works for the general case. All the details
will be given in the full version of the paper.

The following technical lemma will be useful in the sequel.

Lemma 1. For every pair of reals x, y ≥ 0 and every integer d ≥ 1, it holds
xd ≥ 1

2d−1 (x+ y)d − yd.

Proof. Let us prove the statement by induction on d. When d = 1 the inequality
trivially holds. Now suppose that xd ≥ 1

2d−1 (x+y)d−yd holds for every 1 ≤ d ≤ t,
it must be shown that the inequality holds even for d = t+ 1. By the induction
hypothesis we achieve that (x+y)t+1 ≤ 2t−1(x+y)(xt +yt) = 2t−1(xt+1 +xyt +
yt+1 + yxt). The claim follows by observing that xyt + yxt ≤ yt+1 + xt+1. 	


Let R =
(
S0, . . . , S�

)
be a β-bounded covering walk. Given the optimal

strategy profile S∗, since the i-th moving player π(i) before moving can al-
ways select the strategy she would use in S∗, cπ(i)(Si) (that is the player’s
cost immediately after her best response) can be suitably upper bounded by∑

e∈s∗
π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d. In order to state our results we define the
following function

Γ (R) =
1

Opt

�∑
i=1

∑
e∈s∗

π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d
,

which, by the same argument explained earlier, clearly represents an upper
bound to 1

Opt

∑�
i=1 cπ(i)(Si).

Lemmas 2 and 3 provide a lower and an upper bound to Γ (R), respectively.
From such Lemmas, we can easily derive the approximation achieved after a
β-bounded covering walk.

Lemma 2. For any β ≥ 1, given a β-bounded covering walk R ending in S�, it
holds Γ (R) ≥ 1

(d+1)
C(S�)
Opt

.

Proof. Since the players perform best responses, inequality (1) below holds. In
order to justify inequality 2, let us consider a resource e. Recall that the cost
cπ(i)(Si) incurred by a player π(i) on e is wπ(i)fe(θe(Si)); since fe is a non
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decreasing function, the sum of all the cost that players using e incur on e can
be lower bounded by considering the resource used by many players each having
infinitesimal weight; thus, the summation

∑
e∈E

∑
i∈N |e∈sπ(i)

wπ(i)θ
d
e(Si) can be

replaced by the integral
∫ θe(S�)

x=0 xddx because in R each player performs at least
a best response. Therefore, by recalling the definition of Γ (R),

Γ (R) =
1

Opt

�∑
i=1

∑
e∈s∗

π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d
≥ 1

Opt

�∑
i=1

cπ(i)(Si) (1)

≥ 1
Opt

∑
e∈E

∑
i∈N|

e∈sπ(i)

wπ(i)θ
d
e(Si)

≥ 1
Opt

∑
e∈E

∫ θe(S�)

x=0
xddx (2)

≥ 1
(d+ 1)Opt

∑
e∈E

θd+1
e (S�) =

C(S�)
(d+ 1)Opt

. �

Lemma 3. For any β ≥ 1, given a β-bounded covering walk R, it holds Γ (R) ≤
β(W + wmax)d.

Proof. By the definition of Γ (R), it holds

Γ (R) =
1

Opt

�∑
i=1

∑
e∈s∗

π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d
≤ 1

Opt

�∑
i=1

∑
e∈s∗

π(i)

wπ(i)(W + wmax)d

=
(W + wmax)d

Opt

�∑
i=1

|s∗π(i)|wπ(i)

≤ β(W + wmax)d, (3)

where 3 holds by observing that Opt ≥ 1
β

∑�
i=1 |s∗π(i)|wπ(i). 	


As an immediate consequence of Lemmas 2 and 3, Apxβ
1 (G) ≤ β(d + 1)(W +

wmax)d. Lemmas 4 and 5 will be useful to extend such result to a β-bounded
k-covering walk P = 〈R1, . . . , Rk〉 by exploiting the relationship among two
consecutive walks. To this aim we define the following function

H(S) =
∑

e∈E∗
θd

e(S)xe,

where xe =
∑

j∈Xe
wπ(j) and Xe =

{
i ∈ {1, . . . , �}|e ∈ s∗π(i)

}
.
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The following lemma (resp. Lemma 5) will provide an upper bound (resp.
a lower bound) to H(S�) (resp. H(S0)), where S� (resp. S0) is the last (resp.
initial) state of a β-bounded covering walk. Since the final state of each walk Rt

with t = 1, . . . , k−1 corresponds to the initial state of Rt+1, by combining k−1
times the results of lemmas 4 and 5, Theorem 1 finally derives an upper bound
to Apxβ

k (G).

Lemma 4. For any β ≥ 1, given a β-bounded covering walk R ending in S�, it
holds

H(S�) ≤ β ((d+ 1)Γ (R))
d

d+1 Opt.

Proof.

H(S�) ≤ β
∑

e∈E∗
θd

e(S�)θe(S∗)

≤ β

(∑
e∈E∗

(θd
e(S�))

d+1
d

) d
d+1
(∑

e∈E∗
(θd+1

e (S∗))

) 1
d+1

(4)

= β

(∑
e∈E∗

(θd+1
e (S�))

) d
d+1
(∑

e∈E∗
(θd+1

e (S∗))

) 1
d+1

= β
(
C(S�)

) d
d+1 Opt

1
d+1

≤ β ((d+ 1)Γ (R)Opt)
d

d+1 Opt

1
d+1 (5)

= β ((d+ 1)Γ (R))
d

d+1 Opt.

where (4) follows from Hölder’s inequality

q∑
j=1

ajbj ≤

⎛⎝ q∑
j=1

ar
j

⎞⎠1/r⎛⎝ q∑
j=1

bsj

⎞⎠1/s

,

by replacing r with
(

d+1
d

)
and s with (d+1), and (5) follows from Lemma 2. 	


Lemma 5. For any β ≥ 1, given a β-bounded covering walk R starting from
S0, it holds

H(S0) ≥
(

1
2d−1 −

d

α

)
Γ (R)Opt− β

(
(αβ)d + 1

)
Opt,

for any α > d 2d−1.

Proof. In order to lower bound H(S0) with respect to Γ (R), we define the fol-
lowing suitable potential function hi(R) =

∑
e∈E∗ ge(Si)x>i

e for i ∈ {0, . . . , �},
where for a generic state S, ge(S) = max{0, fe(θe(S)) − fe(αβθe(S∗))} and
x>k

e =
∑

j∈X>k
e
wπ(j) where X>k

e =
{
i ∈ {k + 1, . . . , �}|e ∈ s∗π(i)

}
. Informally
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speaking, such a potential function takes into account the delay due to the
congestion of the not yet moving players during walk R above a “virtual” con-
gestion frontier given by all the values αβne(S∗). Let Δi(R) = hi−1(R)− hi(R)
for i ∈ {1, . . . , �}. Notice that by the definition of the potential function hi(R),
since h�(R) = 0,

∑�
i=1Δi(R) = h0(R) ≤ H(S0), that is a lower bound for∑�

i=1Δi(R) is also a lower bound for H(S0); therefore, in the following we focus
on lower bounding

∑�
i=1Δi(R).

Consider a generic step i in walk R, in which player π(i) performs a best
response by selecting resources in si

π(i) and let us bound from below the value
of Δi(R) by evaluating how much player π(i) removes from hi−1(R) and how
much she adds to hi(R). Player π(i) in order to obtain hi(R) removes at
least

∑
e∈s∗

π(i)
wπ(i)ge(Si−1) from hi−1(R), due to the decrease of the coeffi-

cients x>(i−1)
e to x>i

e . Let us evaluate how much player π(i) adds to hi(R).
Player π(i) increases the value of hi(R) only by resources whose congestion
is above the virtual frontier after player π(i) plays her best response. Thus
for each resource e ∈ si

π(i) such that θe(Si) > αβθe(S∗), the increase of
hi(R) is equal to

(
ge(Si)− ge(Si−1))

)
x>i

e which, by the definition of ge, is
equal to

(
fe(θe(Si))− fe(θe(Si−1))

)
x>i

e . Since fe is convex, such quantity is
at most

(
θe(Si)− θe(Si−1)

)
f ′

e(θe(Si))x>i
e = wπ(i)f

′
e(θe(Si))x>i

e . Moreover since
x>i

e ≤ xe ≤ βθe(S∗) ≤ θe(Si)/α, we obtain that the increase for each resource
e is at most wπ(i)f

′
e(θe(Si))θe(Si)/α. Thus, considering the previous quantity

as an upper bound of the increase for all the resources in si
π(i), player π(i) in

order to obtain hi(R) adds at most 1
α

∑
e∈s∗

π(i)
wπ(i)f

′
e(θe(Si))θe(Si) to hi−1(R).

Therefore,

Δi(R) ≥
∑

e∈s∗
π(i)

wπ(i)ge(Si−1)− 1
α

∑
e∈si

π(i)∩E∗

wπ(i)f
′
e(θe(Si))θe(Si).

Finally, since ge(Si−1) ≥ fe(θe(Si−1))−fe(αβθe(S∗)) for every e ∈ E∗, it follows
that

Δi(R) ≥
∑

e∈s∗
π(i)

wπ(i)
(
fe(θe(Si−1))− fe(αβθe(S∗))

)
− 1
α

∑
e∈si

π(i)∩E∗
wπ(i)f

′
e(θe(Si))θe(Si). (6)

Since fe(x) = xd for d ≥ 1, we obtain

Δi(R) ≥
∑

e∈s∗
π(i)

wπ(i)
(
θd

e(Si−1)− (αβ)dθd
e(S∗)

)
− d

α

∑
e∈si

π(i)∩E∗
wπ(i)θ

d
e(Si)

≥
∑

e∈s∗
π(i)

wπ(i)
(
θd

e(Si−1)− (αβ)dθd
e(S∗)

)
− d

α
cπ(i)(Si). (7)
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Since cπ(i)(Si) ≤
∑

e∈s∗
π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d and wπ(i) ≤ θe(S∗) for every
e ∈ s∗π(i), by using Lemma 1, it follows that

Δi(R) ≥
∑

e∈s∗
π(i)

wπ(i)
(
θd

e(Si−1)− (αβ)dθd
e(S∗)

)
− d
α

∑
e∈s∗

π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d
≥
∑

e∈s∗
π(i)

wπ(i)

(
1

2d−1

(
θe(Si−1) + wπ(i)

)d − wd
π(i) − (αβ)dθd

e(S∗)
)

− d
α

∑
e∈s∗

π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d
≥
(

1
2d−1 −

d

α

) ∑
e∈s∗

π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d
−
(
(αβ)d + 1

) ∑
e∈s∗

π(i)

wπ(i)θ
d
e(S∗).

By summing up the values Δi(R), we obtain

�∑
i=1

Δi(R) ≥
(

1
2d−1 −

d

α

) �∑
i=1

∑
e∈s∗

π(i)

wπ(i)
(
θe(Si−1) + wπ(i)

)d
−
(
(αβ)d + 1

) �∑
i=1

∑
e∈s∗

π(i)

wπ(i)θ
d
e(S∗)

≥
(

1
2d−1 −

d

α

)
Γ (R)Opt− β

(
(αβ)d + 1

)
Opt,

and thus, since H(S0) ≥
∑�

i=1Δi(R), the claim follows. 	


Theorem 1. For any k ≥ 1 and any given d ≥ 1, in every polynomial congestion
game G with delay functions having maximum degree d, it holds ApxO(1)

k (G) =

O
(
W d( d

d+1)
k−1)

.

Proof. Let P = 〈R1, . . . , Rk〉 be a β-bounded k-covering walk, where each Rj is
a β-bounded covering walk. Let S0

j the initial state of Rj .
From Lemma 5 we obtain that for each Rj with j = 2, . . . , k it holds that for
any α > d 2d−1

H(S0
j ) ≥

(
1

2d−1 −
d

α

)
Γ (Rj)Opt− β

(
(αβ)d + 1

)
Opt. (8)
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Furthermore, since the final state of each walk Rt with t = 1, . . . , k − 1 corre-
sponds to the initial state of Rt+1, by applying Lemma 4 we obtain that for each
Rj with j = 2, . . . , k it holds

H(S0
j ) ≤ β ((d+ 1)Γ (Rj−1))

d
d+1 Opt. (9)

By combining (8) and (9) we achieve a relation between Γ (Rj) and Γ (Rj−1) for
every j = 2, . . . , k

Γ (Rj) ≤ β

(
α2d−1

α− d 2d−1

)(
((d+ 1)Γ (Rj−1))

d
d+1 +

(
(αβ)d + 1

))
(10)

for any α > d 2d−1.
From the previous inequalities (10), since β = O(1), we obtain that for constant
values of α and d it holds

Γ (Rk) = O
(
(Γ (R1))(

d
d+1 )

k−1)
. (11)

By applying Lemma 2 to Γ (Rk) and Lemma 3 to Γ (R1) in (11), since β = O(1),
by constant value of d we obtain that the cost of the final state of walk P is

O

((
(W + wmax)d

)( d
d+1 )

k−1

Opt

)
,

and thus the approximation is

ApxO(1)
k (G) = O

(
W d( d

d+1 )
k−1)

. 	


The following corollary is an immediate consequence of Theorem 1.

Corollary 1. For any polynomial congestion game G with d = O(1),
ApxO(1)

log log W (G) = O(1).

Finally, we are able to provide an almost matching lower bound to the ap-
proximation ratio achieved after a β-bounded k-covering walk. Due to space
limitations, the proof is omitted and will appear in the full version of the paper.

Theorem 2. For any d ≥ 1 there exists a congestion game G with poly-
nomial delay functions having maximum degree d such that Apx1

k(G) =

Ω

(
W

d( d
d+1 )

k−1

k

)
.

References
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Abstract. The subset sum algorithm is a natural heuristic for the clas-
sical Bin Packing problem: In each iteration, the algorithm finds among
the unpacked items, a maximum size set of items that fits into a new
bin. More than 35 years after its first mention in the literature, estab-
lishing the worst-case performance of this heuristic remains, surprisingly,
an open problem.

Due to their simplicity and intuitive appeal, greedy algorithms are the
heuristics of choice of many practitioners. Therefore, better understand-
ing simple greedy heuristics is, in general, an interesting topic in its own
right. Very recently, Epstein and Kleiman (Proc. ESA 2008, pages 368-
380) provided another incentive to study the subset sum algorithm by
showing that the Strong Price of Anarchy of the game theoretic version
of the Bin Packing problem is precisely the approximation ratio of this
heuristic.

In this paper we establish the exact approximation ratio of the subset
sum algorithm, thus settling a long standing open problem. We generalize
this result to the parametric variant of the Bin Packing problem where
item sizes lie on the interval (0, α] for some α ≤ 1, yielding tight bounds
for the Strong Price of Anarchy for all α ≤ 1. Finally, we study the pure
Price of Anarchy of the parametric Bin Packing game for which we show
nearly tight upper and lower bounds for all α ≤ 1.

1 Introduction

Motivation and framework. The emergence of the Internet and its rapidly
gained status as the predominant communication platform has brought up to the
surface new algorithmic challenges that arise from the interaction of the multiple
self-interested entities that manage and use the network. Due to the nature of
the Internet, these interactions are characterized by the (sometimes complete)
lack of coordination between those entities. Algorithm and network designers are
interested in analyzing the outcomes of these interactions. An interesting and
topical question is how much performance is lost due to the selfishness and unwill-
ingness of network participants to cooperate. A formal framework for studying
� Research supported by an Alexander von Humboldt Fellowship.
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interactions between multiple rational participants is provided by the discipline
of Game Theory. This is achieved by modeling the network problems as strategic
games, and considering the quality of the Nash equilibria of these games. In this
paper we consider pure Nash equilibria and strong equilibria. These equilibria
are the result of the pure strategies of the participants of the game, where they
choose to play an action in a deterministic, non-aleatory manner.

In this paper, we consider game theoretic variants of the well-known Bin Pack-
ing problem and its parametric version; see [5,6] for surveys on these problems.
In the classic Bin Packing problem, we are given a set of items I = {1, 2, . . . , n}.
The ith item in I has size si ∈ (0, 1]. The objective is to pack the items into unit
capacity bins so as to minimize the number of bins used. In the parametric case,
the sizes of items are bounded from above by a given value. More precisely, given
a parameter α ≤ 1 we consider inputs in which the item sizes are taken from the
interval (0, α]. Setting α to 1 gives us the standard Bin Packing problem.

As discussed in [8], Bin Packing is met in a great variety of networking prob-
lems, such as the problem of packing a given set of packets into a minimum
number of time slots for fairness provisioning and the problem of packing data
for Internet phone calls into ATM packets, filling fixed-size frames to maximize
the amount of data that they carry. This fact motivates the study of Bin Packing
from a game theoretic perspective. The Parametric Bin Packing problem also
models the problem of efficient routing in networks that consist of parallel links
of same bounded bandwidth between two terminal nodes—similar to the ones
considered in [2,8,14]. As Internet Service Providers often impose a policy which
restricts the amount of data that can be downloaded/uploaded by each user,
placing a restriction on the size of the items allowed to transfer makes the model
more realistic.

The model. In this paper we study the Parametric Bin Packing problem both in
cooperative and non-cooperative versions. In each case the problem is specified
by a given parameter α. The Parametric Bin Packing game is defined by a tuple
BP (α) = 〈N, (Bi)i∈N , (ci)i∈N 〉. Where N is the set of the items, whose size is
at most α. Each item is associated with a selfish player—we sometimes consider
the items themselves to be the players. The set of strategies Bi for each player
i ∈ N is the set of all bins. Each item can be assigned to one bin only. The
outcome of the game is a particular assignment b = (bj)j∈N ∈ ×j∈NBj of items
to bins. All the bins have unit cost. The cost function ci of player i ∈ N is defined
as follows. A player pays ∞ if it requests to be packed in an invalid way, that
is, a bin which is occupied by a total size of items which exceeds 1. Otherwise,
the set of players whose items are packed into a common bin share its unit cost
proportionally to their sizes. That is, if an item i of size si is packed into a bin
which contains the set of items B then i’s payment is ci = si/

∑
k∈B sk. Notice

that since
∑

k∈B sk ≤ 1 the cost ci is always greater or equal than si. The social
cost function that we want to minimize is the number of used bins.

Clearly, a selfish item prefers to be packed into a bin which is as full as possible.
In the non-cooperative version, an item will perform an improving step if there
is a strictly more loaded bin in which it fits. At a Nash equilibrium, no item
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can unilaterally reduce its cost by moving to a different bin. We call a packing
that admits the Nash conditions NE packing. We denote the set of the Nash
equilibria of an instance of the Parametric Bin Packing game G ∈ BP (α) by
NE(G).

In the cooperative version of the Parametric Bin Packing game, we consider
all (non-empty) subgroups of items from N . The cost functions of the players
are defined the same as in the non-cooperative case. Each group of items is in-
terested to be packed in a way so as to minimize the costs for all group members.
Thus, given a particular assignment, all members of a group will perform a joint
improving step (not necessarily into a same bin) if there is an assignment in
which, for each member, the new bin will admit a strictly greater load than the
bin of origin. The costs of the non-members may be enlarged as a result of this
improving step. At a strong Nash equilibrium, no group of items can reduce the
costs of all its members by moving to different bins. We denote the set of the
strong Nash equilibria of an instance G of the Parametric Bin Packing game by
SNE(G). As a group can contain a single item, SNE(G) ⊆ NE(G) holds.

To measure the extent of deterioration in the quality of Nash packing due
to the effect of selfish and uncoordinated behavior of the players (items) in
the worst-case we use the Price of Anarchy (PoA) and the Price of Stability
(PoS ). These are the standard measures of the quality of the equilibria reached
in uncoordinated selfish setting [14,17]. The PoA/PoS of an instance G of the
Parametric Bin Packing game are defined to be the ratio between the social
cost of the worst/best Nash equilibrium and the social optimum, respectively.
As packing problems are usually studied via asymptotic measures, we consider
asymptotic PoA and PoS of the Parametric Bin Packing game BP(α), that are
defined by taking a supremum over the PoA and PoS of all instances of the
Parametric Bin Packing game, for large sets N .

Recent research [1,9] initiated a study of measures that separate the effect of
the lack of coordination between players from the effect of their selfishness. The
measures considered are the Strong Price of Anarchy (SPoA) and the Strong
Price of Stability (SPoS ). These measures are defined similarly to the PoA and
the PoS, but only strong equilibria are considered.

These measures are well defined only when the sets NE(G) and SNE(G)
are not empty for any G ∈ BP (α). Even though pure Nash equilibria are not
guaranteed to exist for general games, they always exist for the Bin Packing
game: The existence of pure Nash equilibria was proved in [2] and the existence
of strong Nash equilibria was proved in [8].

As we study the SPoA/SPoS measures in terms of the worst-case approxima-
tion ratio of a greedy algorithm for Bin Packing, we define here the parametric
worst-case ratio R∞

A (α) of algorithm A by

R∞
A (α) = lim

k→∞
sup
I∈Vα

〈
A(I)

OPT (I)

∣∣∣∣ OPT (I) = k

〉
,

where A(I) denotes the number of bins used by algorithm A to pack the set I,
OPT (I) denotes the number of bins used in the optimal packing of I and Vα is
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the set of all list I for which the maximum size of the items is bounded from
above by α.

Related work. The first problems that were studied from a game theoretic
point of view were job scheduling [7,14,16] and routing [17,18] problems. Since
then, many other problems have been considered in this setting.

The classic Bin Packing problem was introduced in the early 70’s [13,19]. This
problem and its variants are often met in various real-life applications and it has a
special place in theoretical computer science as one of the first problems to which
approximation algorithms were suggested and analyzed with comparison to the
optimal algorithm. Bilò [2] was the first to study the Bin Packing problem from a
game theoretic perspective. He proved that the Bin Packing game admits a pure
Nash equilibrium and provided non-tight bounds on the Price of Anarchy. He
also proved that the Bin Packing game converges to a pure Nash equilibrium in a
finite sequence of selfish improving steps, starting from any initial configuration
of the items; however, the number of steps may be exponential. The quality
of pure equilibria was further investigated by Epstein and Kleiman [8]. They
proved that the Price of Stability of the Bin Packing game equals to 1, and
showed almost tight bounds for the PoA; namely, an upper bound of 1.6428 and
a lower bound of 1.6416. Interestingly, this implies that the Price of Anarchy is
not equal to the approximation ratio of any natural algorithm for Bin Packing.
Yu and Zhang [20] later designed a polynomial time algorithm to compute a
packing that is a pure Nash equilibrium. Finally, the SPoA was analyzed in [8].

A natural algorithm for the Bin Packing problem is the Subset Sum algorithm
(or SS algorithm for short). In each iteration, the algorithm finds among the
unpacked items, a maximum size set of items that fits into a new bin. The first
mention of the Subset Sum algorithm in the literature is by Graham [10] who
showed that its worst-case approximation ratio R∞

SS is at least
∑∞

i=1
1

2i−1 ≈
1.6067. He also conjectured that this was indeed the true approximation ratio of
this algorithm. The SS algorithm can be regarded as a refinement of the First-
Fit algorithm [13], whose approximation ratio is known to be 1.7. Caprara and
Pferschy [3] gave the first non-trivial bound on the worst-case performance of
the SS algorithm, by showing that R∞

SS(1) is at most 4
3 + ln 4

3 ≈ 1.6210. They
also generalized their results to the parametric case, giving lower and upper
bounds on R∞

SS(α) for α < 1. In a follow-up paper, Caprara and Pferschy [4]
considered two variants of the SS algorithm, called LSS and LRSS, that give
preference to large items. They proved a nontrivial upper bound of 13

9 < 1.6067
and gave lower bounds of 1.3643 and 1.30333 on the performances of LSS and
LRSS, respectively. (Our results actually provide an improved lower bound of
1.3766 for LSS, which behaves like SS in the parametric case α = 1/2.)

Surprisingly, the approximation ratio of the Subset Sum is deeply related to
the Strong Price of Anarchy of the Bin Packing game. Indeed, the two concepts
are equivalent [8]: Every output of the SS algorithm is a strong Nash equilibrium,
and every strong Nash equilibrium is the output of some execution of the SS
algorithm. Epstein and Kleiman [8] used this fact to show the existence of strong
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equilibria for the Bin Packing game and to characterize the SPoA/SPoS in terms
of this approximation ratio.

Our results. In this paper, we fully resolve the long standing open problem
of finding the exact approximation ratio of the Subset Sum algorithm, proving
Graham’s conjecture to be true. This in turn implies a tight bound on the Strong
Price of Anarchy of the Bin Packing game. Then we extend this result to the
parametric variant of Bin Packing where item sizes are all in an interval (0, α] for
some α < 1. Interestingly, the ratio R∞

SS(α) lies strictly between the upper and
lower bounds of Caprara and Pferschy [3] for all α ≤ 1

2 . Finally, we study the
pure Price of Anarchy for the parametric variant and show nearly tight upper
bounds and lower bounds on it for any α < 1. The tight bound of 1 on the Price
of Stability proved in [8] for the general unrestricted Bin Packing game trivially
carries over to the parametric case.

The main analytical tool we use to derive the claimed upper bounds is weight-
ing functions—a technique widely used for the analysis of algorithms for various
packing problems [13,15,19] and other greedy heuristics [11,12]. The idea of such
weights is simple. Each item receives a weight according to its size and its as-
signment in some fixed NE packing. The weights are assigned in a way that the
cost of the packing (the number of the bins used) is close to the total sum of
weights. In order to complete the analysis, it is usually necessary to bound the
total weight that can be packed into a single bin of an optimal solution.

Due to lack of space some proof are omitted1.

2 Tight Worst-Case Analysis of the Subset Sum
Algorithm

In this section we prove tight bounds for the worst-case performance ratio of the
Subset Sum (SS) algorithm for any α. It was proved in [8] that the strong equi-
libria coincide with the packings produced by the SS algorithm for Bin Packing.
The equivalence for the SPoA, SPoS and the worst-case performance ratio of
the Subset Sum algorithm which was also proved in [8] still applies for the Para-
metric Bin Packing game; indeed, it holds for all possible lists of items (players),
and in particular to lists where all items have size at most α. This allows us to
characterize the SPoA/SPoS in terms of R∞

SS(α).
First we focus on the unrestricted case, that is, α = 1. Let BI be the set of

bins used by our algorithm and OI be the optimal packing for some instance I.
We are interested in the asymptotic worst-case performance of SS; namely, we
want to identify constants ρSS and δSS such that

|BI | ≤ ρSS |OI |+ δSS . (1)

Using the weighting functions technique, we charge the “cost” of the packing
to individual items and then show for each bin in OI that the overall charge
(weight) to items in the bin is not larger than ρSS .
1 A full version of the paper is available at http://arxiv.org/abs/0907.4311

http://arxiv.org/abs/0907.4311
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Let B ⊆ I be a bin in BI . We use the following short-hand notation s(B) =∑
j∈B sj and min(B) = minj∈B sj . Let smin be the size of the smallest yet-

unpacked item just before opening B. For every i ∈ B we will charge item i a
share wi of the cost of opening the bin, where

wi =

{
si

s(B) if 1− smin ≤ s(B),

si otherwise.
(2)

These weights are very much related to the payments of selfish players (items)
in the Bin Packing game.

Let w(B) denote the total weight of items in a bin B. Note that if the size
of items packed in B is large enough (s(B) ≥ 1 − smin) then w(B) = 1 and
thus the charged amount is enough to pay for B. Otherwise the charged amount
only pays for a s(B) fraction of the cost. Let B̂1, . . . , B̂r be the bins that are
underpaid listed in the order they are opened by the algorithm and let si

min be
the smallest item available when B̂i was opened. Notice that si

min must belong to
B̂i otherwise we could safely add the item to the bin. Also note that we cannot
add si+1

min to s(B̂i), so we get

s(B̂i) + si+1
min > 1 =⇒ si+1

min > si
min.

Therefore, because of the definition of the SS heuristic, for all i < r, it must be
case that swapping si

min with si+1
min in B̂i must yield a set that cannot be packed

into a single bin, so we get

s(B̂i)− si
min + si+1

min > 1 =⇒ 1− s(B̂i) < si+1
min − si

min.

The total amount that is underpaid by all the B̂i bins can be bounded as follows
r∑

i=1

(1− s(B̂i)) ≤
r−1∑
i=1

(si+1
min − si

min) + (1− sr
min) ≤ 1.

This amount will be absorbed by the additive constant term δSS in our asymp-
totic bound (1).

Let O be a set of items that can fit in a single bin, that is s(O) ≤ 1, and denote
with s1, s2, . . . , sr the items contained in O, listed in reverse order of how our
algorithm packs them. Our goal is to show that

∑
i∈O wi is not too big. To that

end, we first establish some properties that these values must have and then set
up a mathematical program to find the sizes s1, . . . , sr obeying these properties
and maximizing w(O). Consider the point in time when our algorithm packs si.
Let B be the bin the algorithm uses to pack si and let Oi = {1, . . . , i}.

Because Oi is a candidate bin for our algorithm we get s(B) ≥ s(Oi). There-
fore, by (2), we have

wi ≤
si

s(Oi)
. (3)

Notice that if s(B) < 1−min(Oi) then i’s share is si. Therefore, we always have

wi ≤
si

1−min(Oi)
. (4)
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Our job now is to find sizes s1, . . . , sr maximizing w(O) such that the weights
obey (3) and (4). Equivalently, we are to determine the value of the following
mathematical program

maximize
r∑

i=1

si

max
{∑i

j=1 sj , 1−min1≤j≤i sj

} (MPr)

subject to
r∑

i=1

si ≤ 1

si ≥ 0 ∀ i ∈ [r]

Let λr be the value of (MPr) and let λ = supr λr. The following theorem shows
that the worst-case approximation ratio of the SS algorithm is exactly λ.

Theorem 1. For every instance I, we have |BI | ≤ λ |OI |+ 1. Furthermore, for
every δ > 0, there exists an instance I such that |BI | ≥ (λ− δ) |OI |.

The necessary tools for proving the upper bound have been laid out above, we
just need to put everything together:

|BI | ≤
∑

B∈BI

∑
i∈B

wi + 1 =
∑

O∈OI

∑
i∈O

wi + 1 ≤
∑

O∈OI

λ|O| + 1 ≤ λ |OI |+ 1.

To be able to prove the claimed lower bound, we first need to study some prop-
erties of (MPr). The following lemma fully characterizes the optimal solutions
of (MPr). The proof of this lemma is omitted.

Lemma 1. The optimal solution to (MPr) is

s∗i =

{
2−i if i < r,

2−r+1 if i = r.

It follows that the optimal value of (MPr) is λr =
∑r−1

i=1
1

2i−1 + 1
2r−1 . This

expression increases as r grows. Therefore, the value is always at most

λ =
∞∑

i=1

1
2i − 1

.

To lower bound the performance of the SS algorithm we use a construction based
on Graham’s original paper: The instance I has for each i ∈ [r − 1], N items of
size 2−i + ε, and for i = r, N items of size 2−r+1 − rε, where ε = 2−2r and N
is large enough so that N/si is integral for all i. The SS algorithm first packs
the smallest items into N/2r−1 bins, then it packs the next smallest items into
N/(2r−1 − 1) bins, the next items into N/(2r−2 − 1) bins, and so on. On the
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other hand, the optimal solution uses only N bins. If we choose r to be such
that 2r − 1 ≥ δ−1 then we get

|BI | = λr |OI | ≥
(
λ− 1

2r − 1

)
|OI | ≥ (λ− δ) |OI | .

Note that this lower bound example, for the case where there are r distinct item
sizes, gives exactly the upper bound we found for MPr.

Corollary 1. For α ∈ (1
2 , 1], the approximation ratio of the SS algorithm is

R∞
SS(α) =

∑∞
i=1

1
2i−1 ≈ 1.6067. Furthermore, the SPoA/SPoS of the BP (α)

game has the same value.

Parametric case. To get a better picture of the performance of SS, we gener-
alize Theorem 1 to instances where the size of the largest item is bounded by
a parameter α. Our goal is to establish the worst-case performance of the SS
algorithm for instances in Vα for all α < 1.

Let t be the smallest integer such that α ≤ 1
t . We proceed as we did before

but with a slightly different weighting function:

wi =

{
si

s(B) if max {1− smin,
t

t+1} ≤ s(B),

si otherwise.
(5)

As before there will be some bins that are underpaid. Let B̂1, . . . , B̂r be these
bins and let si

min be a smallest yet-unpacked item when the algorithm opened B̂i.
These bins only pay for a s(B̂i) fraction of their cost. Even though we now have
a more restrictive charging rule, the total amount underpaid is still at most 1.
For all i < r, when s(B̂i) < 1− si

min, the same argument used above yields

1− s(B̂i) < si+1
min − si

min.

Suppose that for some i we have s(B̂i) < t
t+1 but s(B̂i) > 1− si

min. Note that
this implies si

min > 1/(t+ 1). Since at this point every item has size in ( 1
t+1 ,

1
t ],

if there were at least t items left just before B̂i was opened, we could pack a
bin with total size greater than t

t+1 . Therefore, B̂i must be the last bin packed
by the algorithm. Regardless whether such a bin exists or not, we always have
1− s(B̂r) ≤ 1− sr

min. Hence, the total amount underpaid is

r∑
i=1

1− s(B̂i) ≤
r−1∑
i=1

(si+1
min − si

min) + (1 − sr
min) ≤ 1.

The new weighting function (5) leads to the following mathematical program

maximize
r∑

i=1

si

max
{∑i

j=0 sj , 1−min1≤j≤i sj , t/(t+ 1)
} (MPt

r)



Parametric Packing of Selfish Items and the Subset Sum Algorithm 75

subject to

r∑
i=0

si ≤ 1

si ≥ 0 ∀ i ∈ [r]
si ≤ 1/t ∀ i ∈ [r − 1]

Notice that sr is allowed to be greater than 1/t. This relaxation does not affect
the value of the optimal solution, but it helps to simplify our analysis. From now
on, we assume that r ≥ t; for otherwise the program becomes trivial. Define λt

r

to be the value of (MPt
r) and λt = supr λ

t
r.

Theorem 2. Let t ≥ 2 be an integer and α ∈ ( 1
t+1 ,

1
t ]. For every instance

I ∈ Vα, we have |BI | ≤ λt |OI |+ 1. Furthermore, for every δ > 0, there exist an
instance I ∈ Vα such that |BI | ≥ (λt − δ) |OI |.

The proof of the upper bound is identical to that of Theorem 1. We only
need to derive the counterpart of Lemma 1 for (MPt

r). Unlike its predecessor,
Lemma 2 does not fully characterize the structure of the optimal solution of
(MPt

r). Rather, we define an optimal solution s∗ as a function of a parameter x.
The proof this lemma is omitted.

Lemma 2. An optimal solution to (MPt
r) has the form

s∗i =

⎧⎪⎨⎪⎩
x if i < t,
1−x(t−1)
2i−t+1 if t ≤ i < r,

1−x(t−1)
2r−t if i = r,

for some x ∈ [ 1
t+1 ,

1
t ].

For any x ∈ [ 1
t+1 ,

1
t ], we can construct a solution s∗ for (MPt

r) as described in
Lemma 2. Let λt

r(x) be the value of this solution, that is,

λt
r(x) = x (t− 1)

t+ 1
t

+
r−t∑
i=1

1
2i

1−(t−1)x − 1
+

1
2r−t

1−(t−1)x

.

For any fixed x, the quantity λt
r(x) increases as r →∞. Therefore, it is enough

to look at its limit value, which we denote by λt(x):

λt(x) = lim
r→∞

λt
r(x) = x (t− 1)

t+ 1
t

+
∞∑

i=1

1
2i

1−(t−1)x − 1
.

It only remains to identify the value x ∈ [ 1
t+1 ,

1
t ] maximizing λt(x). The answer

is given by the following lemma, which we state without proof.

Lemma 3. For every t ≥ 2, the function λt(x) in the domain [ 1
t+1 ,

1
t ] attains

its maximum at x = 1
t+1 .
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It follows that λt = λt
( 1

t+1

)
, that is,

λt = 1 +
∞∑

i=1

1
(t+ 1) 2i − 1

.

Note that for a specific value of r,

λt
r

( 1
t+1

)
= 1 +

r−t−1∑
i=1

1
(t+ 1) 2i − 1

+
1

(t+ 1) 2r−t−1 .

For the lower bound on the performance of the SS algorithm, consider the in-
stance I that for each i ∈ [t] has N items of size 1

t+1 + ε, for each i ∈ (t, r),
it has N items of size 1

(t+1) 2i−t + ε, and for i = r, there are N items of size
1

(t+1) 2r−1−t − rε, where ε = 1
(t+1)2 2−2r and N is large enough so that N/si is

integral for all i. The SS algorithm first packs the smallest items into N
(t+1)2r−t−1

bins, then it packs the next smallest items into N
(t+1)2r−1−t−1 bins, and so on un-

til reaching the items of size 1
t+1 + ε which are packed into N bins. The optimal

solution uses N bins. If we choose r to be such that (t+ 1)2r−t − 1 ≥ δ−1 then

|BI | = λt
r

( 1
t+1

)
|OI | ≥

(
λt − 1

(t+1)2r−t − 1

)
|OI | ≥

(
λt − δ

)
|OI | .

Corollary 2. For each integer t ≥ 1 and α ∈ ( 1
t+1 ,

1
t ], the SS algorithm has an

approximation ratio of R∞
SS(α) = 1 +

∑∞
i=1

1
(t+1)2i−1 . Furthermore, the SPoA/

SPoS of the BP (α) game has the same value.

Table 1 compares our bound with the previously known upper bounds and lower
bounds of Caprara and Pferschy [3]. Note that the true ratio lies strictly between
previous bounds.

Table 1. Comparison of the worst-case ratio of FFD, SS, FF and PoA as a function
of α when α ≤ 1

t
, for t = 1, . . . , 10

RFFD(α) [13] CP lb [3] RSS (α) CP ub [3] PoA(α) RFF (α) [13]
t = 1 1.222222 1.606695 [10] 1.606695 1.621015 [1.641632, 1.642857] [8] 1.700000
t = 2 1.183333 1.364307 1.376643 1.398793 [1.464571, 1.466667] 1.500000
t = 3 1.166667 1.263293 1.273361 1.287682 [1.326180, 1.326530] 1.333333
t = 4 1.150000 1.206935 1.214594 1.223143 [1.247771, 1.247863] 1.250000
t = 5 1.138095 1.170745 1.176643 1.182321 [1.199102, 1.199134] 1.200000
t = 6 1.119048 1.145460 1.150106 1.154150 [1.166239, 1.166253] 1.166667
t = 7 1.109127 1.126763 1.130504 1.133531 [1.142629, 1.142635] 1.142857
t = 8 1.097222 1.112360 1.115433 1.117783 [1.124867, 1.124871] 1.125000
t = 9 1.089899 1.100918 1.103483 1.105360 [1.111029, 1.111031] 1.111111
t = 10 1.081818 1.091603 1.093776 1.095310 [1.099946, 1.099947] 1.100000
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3 Analysis of the Price of Anarchy

We now provide a lower bound for the Price of Anarchy of the parametric Bin
Packing game with bounded size items and, in addition, prove a very close upper
bound for each value of 1

t+1 < α ≤ 1
t for a positive integer t ≥ 2, that is, for all

0 < α ≤ 1
2 . The case 1

2 < α < 1 (t = 1) was extensively studied in [8]. Due to
lack of space, all proofs in this section are omitted.

A construction of lower bound on the PoA of parametric Bin Packing.
In this section we give the construction of a lower bound on PoA(α). For each
value of t ≥ 2 we present a set of items which consists of multiple item lists.
This construction is related to the one that we gave in [8] for 1

2 < α ≤ 1,
though it is not a generalization of the former, which strongly relies on the fact
that each item of size larger than 1

2 can be packed alone in a bin of the NE
solution, whereas in the parametric case there are no such items. It is based
upon techniques that are often used to design lower bounds on Bin Packing
algorithms (see for example [15]), but it differs from these constructions in the
notion of order in which packed bins are created (which does not exist here) and
the demand that each bin satisfies the Nash stability property. Our lower bound
is given by the following theorem.

Theorem 3. For each integer t ≥ 2 and α ∈ ( 1
t+1 ,

1
t ], the PoA of the BP (α)

game is at least
t2+

∞∑
j=1

(t+1)−j ·2−j(j−1)/2

t(t−1)+1 .

An upper bound on the PoA of parametric Bin Packing. We now provide
a close upper bound on PoA(α) for a positive integer t ≥ 2. The technique used
in [8] can be considered as a refinement of the one we use here. However, here
we are required to use additional combinatorial properties of the NE packing.
To bound the PoA from above, we prove the following theorem.

Theorem 4. For each integer t ≥ 2 and α ∈ ( 1
t+1 ,

1
t ], the PoA of the parametric

Bin Packing game BP (α) is at most 2t3+t2+2
(2t+1)(t2−t+1) .

4 Concluding Remarks

In order to illustrate the results in the paper, we report in Table 1 the values
for the worst-case ratio of the SS algorithm for various values of α along with
previously known upper and lower bounds of Caprara and Pferschy [3], and
the worst-case approximation ratios of FF and FFD algorithm Bin Packing. We
also include the range of possible values for the PoA for different values of α.
We conjecture that the true value of the PoA equals our lower bound from
Theorem 3.
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Abstract. We improve the best known competitive ratio (from 1/4 to
1/2), for the online multi-unit allocation problem, where the objective is
to maximize the single-price revenue. Moreover, the competitive ratio of
our algorithm tends to 1, as the bid-profile tends to “smoothen”. This
algorithm is used as a subroutine in designing truthful auctions for the
same setting: the allocation has to be done online, while the payments
can be decided at the end of the day. Earlier, a reduction from the auction
design problem to the allocation problem was known only for the unit-
demand case. We give a reduction for the general case when the bidders
have decreasing marginal utilities. The problem is inspired by sponsored
search auctions.

1 Introduction

It is fairly common that a mechanism has to work in a dynamic environment,
where there is an uncertainity in either the demand, or the supply, or both. This
has led to the study of online mechanism design [7,4,13] and has presented sig-
nificant new challenges compared to the traditional static setting. Most of the
research has focused on dynamic demand case: the uncertainty is in the number
and types of the bidders, their arrival and departure time, etc, such as airline
tickets. On the other hand, very little is known for dynamic supply case: the
uncertainty is in the number of items to be allocated, or more generally the
set of feasible allocations, such as sponsored search. Mahdian and Saberi [14]
initiated the study of the dynamic supply case by giving a constant competitive
ratio algorithm for auctioning multiple copies of a single item with unit-demand
bidders. We improve their competitive ratio by a factor of 2 by giving an alter-
nate and simple algorithm, and also extend their results to handle bidders with
multiple demand.

A bidder with unit-demand has a value ui for one copy of the item, and his
utility is ui − p if he is allocated the item at price p, and 0 otherwise.
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Definition 1 (OnlineMulti-unitAuctionProblem, unit-demand ([14])).
At the beginning of the auction, each bidder (with unit-demand) bids a value bi. At
each (discrete) time unit, a new copy arrives which must be allocated to a bidder
immediately, or else it perishes. When there are no more copies left, the auction
determines the prices charged to the winning bidders.

Note that the auction has no prior knowledge of how many copies of the item
will be produced.

Definition 2. An auction is truthful if bidding bi = ui is a dominant strategy
for each bidder.

The goal of the auction is to maximize the revenue of the auctioneer, which
is the sum of the prices charged to the winning bidders. The main motivation
behind the work of [14] was sponsored search auctions, which are a major source
of revenue for search engines like Google, Yahoo and MSN. The bidders are the
advertisers and the items correspond to search queries. The queries arrive online
and have to be allocated immediately, while the advertisers stay for the entire
duration of the auction and present their bids ahead of time. The advertisers are
only charged at the end of the day.

An alternate model is to ask that the prices are also determined online. For
the sponsored search auction setting, charging at the end is closer to reality.
Also, charging online seems to be considerably restrictive, as there are strong
lower bounds for this model1. For the sponsored search auction setting, a more
realistic model is when the bidders have multiple demand. We present an auction
for this case as well, and our results for this case are of significant interest.

The auction problem considered here is also a natural extension of the line
of work on digital goods auction: from unlimited supply ([9,10,11,12]) to limited
supply ([1,3,5]), to unknown supply ([14] and this paper).

As is standard in the literature on digital goods auction, we give a competitive
analysis of the auction, by comparing the revenue of the auction to a benchmark.
The benchmark we use is once again a standard in digital goods auction, it is
the optimal single-price revenue on hindsight: OPT := maxp p.|{i : bi ≥ p}|. The
auction itself is allowed to charge different prices to different bidders, although
our auction charges only two different prices.

Definition 3 (Competitive Ratio). An auction is said to have a competitive
ratio of α if the expected revenue of the auction is at least αOPT .

[14] gave a reduction from the auction problem to the following algorithmic
problem, with only a constant factor lost in the competitive ratio.

Definition 4 (Online Multi-unit Allocation Problem, unit-demand).
The algorithm is given the utility ui of each bidder. At each (discrete) time

1 The lower bounds [2] are for a related problem, that of maximizing social welfare.
It is an interesting open question if these lower bounds also hold for maximizing
revenue.
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unit, a new copy arrives which must be allocated to a bidder immediately, or else
it perishes. When there are no more copies left, the algorithm charges all the
winning bidders with a single price, that is smaller than their utilities.

There is no requirement of truthfulness in the allocation problem. Also, the
algorithm itself has to charge the same price to all the bidders, unlike the auction
which was allowed to charge different prices to different bidders. Also note that
the revenue-maximizing single price is determined by the allocations made by
the algorithm. It is simply the smallest winning utility. As with the auction
problem, we compare the revenue of the algorithm with the optimal single price
revenue on hindsight; the competitive ratio is defined analogously.

Theorem 1. ([14]) There is a truthful mechanism for the online multi-unit auc-
tion problem with unit-demand bidders with a competitive ratio of O(α) given an
algorithm for the allocation problem with competitive ratio α.

1.1 Main Result

It can be easily seen that the competitive ratio of any deterministic algorithm
for the allocation problem is arbitrarily small. So it is actually surprising that a
randomized algorithm can even get a constant competitive ratio. The reason for
this difficulty is that the revenue of the algorithm, as a function of the number
of copies allocated can have many “peaks” and “valleys”. For any deterministic
algorithm, an adversary can make sure that the algorithm either ends up in
a valley, or is stuck on a small peak while the optimum is at a larger peak
elsewhere. The key decision for an algorithm is when it is at a peak, it has to
decide if it has to stay at the peak, or try to get to the next one. What our
algorithm does is to simply wait at the current peak for a period of time chosen
uniformly at random between 1 and the maximum distance between peaks seen
so far. The simplicity of our algorithm is quite appealing. This improves the best
known competitive ratio (from 1/4 to 1/2), for the online multi-unit allocation
problem, which in turn gives a factor of 2 improvement for the online multi-unit
auction problem.

Theorem 2. There is an algorithm for the online multi-unit allocation problem
for unit demand, that achieves a competitive ration of 1/2.

The proof of the competitive ratio relies on case analysis since the optimal rev-
enue and the expected revenue of the algorithm vary depending on the total
number of copies seen. A good idea of how the analysis goes can be had by
considering the following instance: suppose there is one bid of 1 and many bids
of ε� 1. In this case the algorithm waits for a time chosen u.a.r between 1 and
1/ε. If the number of copies seen is m ≤ 1/ε, then the optimal revenue is 1, while
the expected revenue is 1 − x + x2

2 (where x = εm), which is at least 1/2 when
x ≤ 1. If m ≥ 1/ε then the optimal revenue is εm, while the expected revenue is
εm− 1/2 ≥ εm

2 .
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Moreover, the competitive ratio of our algorithm tends to 1, as the bid-profile
tends to “smoothen”. [14] also showed an upper bound of e/(e + 1) for the
allocation problem and closing the gap is an open problem. See Section 4 for a
more detailed discussion on this.

Mahdian and Saberi [14] showed that using an algorithm for the online multi-
unit allocation problem for unit demand with competitive ratio ρ one can
construct a truthful auction for the online multi-unit auction problem with com-
petitive ratio ρ/20. Thus,

Corollary 1. There is a truthful auction for the online multi-unit auction prob-
lem, that achieves a constant competitive ratio.

1.2 Extensions

A more realistic case in the context of sponsored search auction is when the
bidders have multiple demand: bidders have decreasing marginal utilities for
multiple copies of the item, and submit multiple bids. The optimum and the
competitive ratio are defined analogous to the unit-demand case. The allocation
problem remains the same even with multiple demands, since the problem does
not really depend on the identity of the bidders. Hence, our algorithm for the
allocation problem gives a competitive ratio of 1/2 even for this case.

However, the auction problem is harder with multiple demands, since it pro-
vides more ways for the bidders to lie and benefit. In particular, the auction
obtained by using the reduction in [14] is not truthful for multiple demands.
The reduction in [14] is based on random sampling with computing optimal
“price offers”. But when run in an online setting, the prices offered decrease
over time, due to which a bidder might regret not getting a copy earlier as the
price decreased at a later time. The reduction in [14] takes care of this situation
by a clever implementation that works only when all bidders want only one copy.
It is not truthful when the bidders can submit multiple bids. We circumvent this
difficulty by combining the random sampling technique with the VCG auction.
However, we only get an asymptotic competitive ratio, that is the ratio tends to
1/2, as a certain bidder dominance parameter tends to 0. The bidder dominance
parameter is defined to be the maximum fraction of the optimum revenue that
can be obtained from any single bidder. A small bidder dominance parameter
indicates that the revenue from any one bidder is small compared to the optimal
revenue.

Definition 5. For any price p and any bidder i we denote by n(i, p) the number
of bids of bidder i that are more than p. The bidder dominance parameter is

η :=
maxi,p n(i, p)p

OPT
.

Theorem 3. There is a truthful mechanism for the online multi-unit auction
problem with multiple-demand bidders, that with probability more than (1 − δ)
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guarantees a revenue of at least αOPT (1 − ε) on expectation, where α is the
competitive ratio of the allocation algorithm that we use as the subroutine, if

η = O
(
ε2/ log

(n
δ

))
,

where n is the number of distinct bid values.

The problem considered here is perhaps the simplest non-trivial case of the
actual problem in sponsored search auctions. There are many extensions of which
we have little understanding, for instance, one could consider multiple slots for
every query. Another interesting extension is when the bidders have constant
marginal utilities for the copies, but have daily budgets. [5,1] gave an auction
for this case with known supply (the offline problem). Extending it to the online
setting is an important open problem. The introduction of budgets also makes
the multiple items case interesting. (Otherwise, assuming additive utilities, the
auctions for different items are independent of each other.) Even the offline case
of this problem is open.

Subsequent Related Work: Subsequent to our result, Devanur and Hartline
[6] gave an alternate auction for the Online Multi-Unit Auction problem with
a competitive ratio that is better than this paper. This auction does not use
the reduction to the allocation problem. However, the auction in [6] is only for
unit-demand bidders, so our results for the multiple-demand bidders are still the
best. Also the online allocation problem, and the algorithm for it are interesting
in their own right.

Organization: We present our algorithm for the Online Multi-unit Allocation
problem in Section 2. Theorem 2. For lack of space we are unable to present the
proof of the competitive ratio of the algorithm in this extended abstract. The
auction for the multiple demands case and a sketch of the proof of Theorem 3
is given in Section 3. Section 4 contains a discussion on future work and open
problems.

2 Algorithm for the Online Multi-unit Allocation
Problem

Without loss of generality assuming that the utilities are u1 ≥ u2 ≥ · · · ≥ un,
the revenue obtained by allocating l units of the item is lul. Let 1 = a1 < b1 <
a2 < b2 < a3 < b3 < . . . be the critical points of the function lul, that is, the
function lul is non-decreasing as l increases from ai to bi and for all bi < l < ai+1
we have biubi > lul and biubi ≤ ai+1uai+1 .

The algorithm is in one of two states, ALLOCATE or WAIT. When it is
in ALLOCATE, it allocates the next copy of the item. When it is in WAIT,
it discards the next copy. The description of the algorithm is completed by
specifying when it transits from one state to the other.

The algorithm is initially in ALLOCATE. It transits from ALLOCATE to
WAIT when the number of copies allocated (X) is equal to bi for some i. It
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transits from WAIT to ALLOCATE when the number of copies discarded till
then (Y ) is equal to a random variable, T , for waiting time. T is reset every time
the algorithm transits to WAIT. T is picked so that it is distributed uniformly
between 0 and Di, where D0 = 0 and for all i ≥ 1

Di = max
j≤i

(aj+1 − bj)

(recall that X = bi). We further want to maintain the invariant that Y never
exceeds T . Equivalently, the value of T can only increase during a run of the
algorithm.

We still have to specify how T is picked. Because of the condition that T can
only increase, we cannot pick T independently every time we transit to WAIT.
If Di ≤ Di−1, then we don’t have to change T at all. If Di > Di−1, then

– w.p. Di−1
Di

don’t change T ,
– with the remaining probability pick T uniformly at random from the interval

[Di−1, Di].

It is easy to see that the resulting T is distributed uniformly in [0, Di]. Note that
in case T is not changed, then Y is already equal to T , and we transit back to
ALLOCATE immediately. Equivalently, we don’t transit to WAIT at all.

Pseudocode for the Algorithm

1. initialize STATE = ALLOCATE, i=1, X=Y=T=0;
2. when a new copy is produced
3. If (STATE = ALLOCATE)
4. Allocate the copy to the next bidder;
5. X ++;
6. If (X = bi)
7. If (Di > Di−1)
8. With prob 1− Di−1

Di

9. set T to a random number from the interval [Di−1, Di];
10. STATE = WAIT;
11. i ++;
12. If (STATE = WAIT)
13. Discard the copy;
14. Y ++;
15. If (Y = T )
16. STATE = ALLOCATE
17. GO TO line 2.

Because of shortage of space we cannot present the analysis for competitive
ratio in this extended abstract.

3 Bidders with Multiple Demand

Let B = {1, 2, . . . , n} be the set of bidders. Each bidder can make multiple bids.
We will design a truthful mechanism which has good competitive ratio. Our
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mechanism will use an online multi-unit allocation algorithm as a sub-routine.
Under a bidder-dominance assumption, the competitive ratio of our mechanism
will be (1− ε)α where α is the competitive ratio of the allocation algorithm we
use as our subroutine.

The Mechanism: We divide the set of bidders into two groups
S and T by placing each bidder randomly into either of the
groups. On each set of bidders S and T we will have fictitious
runs of the allocation algorithm. Let the fictitious run of the
allocation algorithm on the set S (respectively T ) allocates x(S, k)
(respectively x(T, k)) copies when k copies are produced.

Now when the j-th copy is produced, if j is even we compute
x(S, j/2). If at that time the number of copies allocated to bidders
in T is less than x(S, j/2)(1 − 6γ) then we allocate the j-th copy
to T otherwise discard the copy. Similarly, if j is odd we compute
x(T, (j + 1)/2) and if the number of copies allocated to bidders
in S is less than x(T, (j + 1)/2)(1− 6γ) then we allocate the j-th
copy to S otherwise discard the copy.

Finally let xfinal(S) and xfinal(T ) copies are allocated to bidders
in S and T respectively. The prices charged are the VCG payments,
that is, as if we ran a VCG auction to sell xfinal(S) copies to bidders
in S.

Note that the even indexed copies will be allocated only to bidders in T and
the odd-indexed copies will be allocated only to bidders in S. But the bids of
bidders in S decides how many (odd-indexed) copies will be allocated to bidders
in T and vice versa. This mechanism is similar to that in [11] on digital good
auction with unlimited supplies except that in [11] the bids of bidders in S
decides the cut off price for bidders in T and vice-versa.

If M is the number of copies of the item that are finally produced we denote by
OPT = OPT (B,M) the revenue obtained by the optimal single price allocation
algorithm.

Definition 6. For any price p and any bidder i we denote by n(i, p) the number
of bids of bidder i that are more than p.

We define the bidder dominance parameter η as

η =
maxi,p n(i, p)p

OPT
.

Theorem 4. The above mechanism is a truthful mechanism. If all the bids are
from a finite set of prices (say Q) and if

1
η

= Ω

(
log
(
|Q|
δ

)(
1
ε2

))
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and if we set γ = ε/8 then with probability more than (1 − δ) our mechanism
guarantees a revenue of at least αOPT (1 − ε) on expectation, where α is the
competitive ratio of the allocation algorithm that we use as the subroutine.

In the rest of this section we will give a sketch of the proof of the theorem. The
detailed proof of the theorem is in the Appendix. The proof is similar to that in
[11].

The proof that the mechanism is truthful follows from the facts that the
number of copies allocated to each half is independent of the number of the bids
of the bidders in that half and the fact that pricing is determined by the VCG
auction.

The proof of the competitive ratio has two main parts: The first thing is that
since the bidders are split randomly into two sets so with high probability the
optimal revenue we can obtain from either of the sets is nearly half of what we
can obtain from the whole set.

The second thing is that the discounting factor of (1− 6γ) ensures that with
high probability the eventual winners in S (respectively T ) are charged at least
as much as our allocation algorithm charges during its fictitious run on the set
T (respectively S).

Note that the bound on the bidder dominance gives us an upper bound on
n(i, p) that is the number of bids on any bidders that is more than p. This is
essential for our analysis.

Let a fictitious run of the optimal single price allocation algorithm on S gen-
erates a revenue of OPT (S, j) after j copies are produced. By Mcdiarmid’s In-
equality and the bound on the bidder dominance parameter, with probability at
least (1−O(δ)) we have OPT (S, �M/2�) > (1/2− γ)OPT , where M is the final
number of copies produced. Similarly we have OPT (T, �M/2�) > (1/2−γ)OPT .

For the second stage we again notice that since the set of bidders was par-
titioned randomly so with high probability the set of bids that are more than
p is also evenly divided among the two sets S and T . From the McDiarmid’s
Inequality and from the bound on the bidder dominance parameter we see that
with high probability the number of bids in S that are more than p is much
more than (1 − 6γ) times the number of bids in T that are more than p (and
vice versa).

Let ALG(S, j) and ALG(T, j) be the revenue is generated by the fictitious run
of our allocation algorithm on S and T respectively after j items are produced.
Now since the allocation algorithm is α competitive we have that on expectation
ALG(S, j) > αOPT (S, j). Thus with probability at least (1−O(δ)) the revenue
we earned on expectation is more than

ALG(S, �M/2�)(1− 6γ) +ALG(T, �M/2�)(1− 6γ) > α(1− 6γ)(1− 2γ)OPT

which is greater than α(1 − 8γ)OPT .

4 Conclusion and Open Problems

The optimal competitive ratio for the allocation problem is open. [14] showed an
upper bound of e/(e+ 1) for any randomized algorithm. The instance for which
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they show this upper bound is when there is one bid of 1 and many bids of ε.
For this particular instance, the following algorithm gets a competitive ratio of
2/3: with probability 1/3, allocate just one copy and get a revenue of 1, and
with probability 2/3, run our algorithm. We conjecture that this algorithm can
be generalized to get a 2/3 competitive ratio. Also, a better upper bound proof
will probably have to consider instances with multiple peaks, where the ratio of
the Di’s to the ai+1’s is large.

For the auction problem, the competitive ratio for the unit-demand case is
quite small, and that for the multiple demand case holds only asymptotically.
Getting it to a reasonably large constant (or proving that it is impossible) is an
important open problem.

The most common scenario in sponsored search auctions is that the bidders
have a constant utility for multiple copies of the item, but with a daily budget.
Our allocation algorithm works for this case as well, but the reduction from the
auction problem is not truthful. Borgs et al [5] give a truthful auction for the
offline case with budgets, using the standard random sampling techniques with
price offers. However, it is not clear how to extend their auction to the online
case. The difficulty is the same as that for the multiple-demand case, that the
price offers are decreasing over time. But unlike the multiple-demand case, there
is no VCG auction for the budgets case, so our reduction does not work.
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Abstract. A potential downside of prediction markets is that they may
incentivize agents to take undesirable actions in the real world. For
example, a prediction market for whether a terrorist attack will hap-
pen may incentivize terrorism, and an in-house prediction market for
whether a product will be successfully released may incentivize sabo-
tage. In this paper, we study principal-aligned prediction mechanisms–
mechanisms that do not incentivize undesirable actions. We characterize
all principal-aligned proper scoring rules, and we show an “overpayment”
result, which roughly states that with n agents, any prediction mecha-
nism that is principal-aligned will, in the worst case, require the principal
to pay Θ(n) times as much as a mechanism that is not. We extend our
model to allow uncertainties about the principal’s utility and restrictions
on agents’ actions, showing a richer characterization and a similar “over-
payment” result.

Keywords: Prediction Markets, Proper Scoring Rules, Mechanism
Design.

1 Introduction

Prediction markets reward agents for accurately assessing the probability of a fu-
ture event.1 Typically, agents buy or sell securities according to their beliefs, and
they are rewarded based on the outcome that materializes. Empirical studies sug-
gest that prediction markets make very accurate predictions, sometimes beating
the best experts and polls [1,15]. Currently, online markets such as NewsFutures
and Intrade elicit public predictions about a wide variety of topics, and many
technology companies, including HP [12], Google, Microsoft, and Yahoo!, use
in-house prediction markets to elicit employees’ predictions on future products.2

A potential downside of prediction markets is that they may incentivize agents
to take undesirable actions in the real world, if those actions affect the probability
� This work is supported by NSF IIS-0812113, the Sloan Foundation, and a Yahoo! Fac-

ulty Research Grant. We thank the anonymous reviewers for helpful comments.
1 For literature reviews on prediction markets, see [11,14,15].
2 NewsFutures and InklingMarkets both provide services to help companies run in-

house prediction markets, thus making running these markets accessible to non-
technology-based companies.
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of the event. For example, the idea of organizing markets to predict terrorist
activity, which was once seriously considered by the U.S. Department of Defense,
has been dismissed in part based on the consideration that terrorists may stand
to profit from such markets.3 As another example, consider a software company
that runs an in-house prediction market to assess whether a product will be
released on time. The company may be concerned that the market provides an
incentive to an employee to sabotage a timely release, if the employee predicts
a late release.

On the other hand, not all real-world actions are necessarily undesirable. A
terrorism prediction market may also incentivize an agent to prevent a terrorist
attack, if she is predicting that no such attack will take place. Similarly, the soft-
ware company’s in-house prediction market may incentivize an employee to work
extra hard to finish her component of the product in time, if she is predicting
that the product will be released on time.

The question that we study in this paper is the following: is it possible to de-
sign prediction mechanisms that do not incentivize undesirable actions? Here, an
action is undesirable if it reduces the expected utility of the principal (center, or-
ganizer) of the prediction mechanism (e.g., the Department of Defense or the soft-
ware company in the above examples). We call such mechanisms principal-aligned
since they, in some sense, align the agents’ incentives with those of the principal.4

The rest of this paper is organized as follows. In Section 2, we study proper
scoring rules, which incentivize a single agent to truthfully report her subjective
probabilities about an event. After reviewing proper scoring rules and a known
characterization theorem, we give a complete characterization of principal-aligned
proper scoring rules. In Section 3, we consider settings with n agents. We show a
negative “overpayment” result that indicates (roughly stated) that a principal-
aligned prediction mechanism will, in the worst case, require the principal to pay
n times as much as a mechanism that is not principal-aligned.

3 In July 2003, reports surfaced about a DARPA project to use prediction markets
to guide policy decisions, and a possible topic was terrorist attacks. This ignited
a political uproar and the proposal was quickly dropped. The arguments against
it include creating incentives for a person to perform a violent act, as well as the
distasteful thought of any person benefiting from such an attack. A survey of the
proposal, the debate, and the aftermath can be found in [9].

4 We note that it is possible for the prediction mechanisms in this paper to incentivize
desirable actions. However, in this paper we will not have an explicit model for the
agent’s costs for taking desirable actions (such as putting in extra effort so that a prod-
uct is released on time), and as a result we will not be able to solve for the agent’s
optimal action. All we can say is that the agent’s optimal action will be no less de-
sirable than it would have been without the existence of the prediction mechanism.
Moreover, whatever action the agent decides to take, she will be incentivized to report
the true distribution conditional on that action.

We also assume that the prediction itself does not have secondary effects on the
agent’s utility (an example of this would be the case where the agent’s manager ob-
serves the prediction of an early release date, and as a result will punish the agent if
the product is not released early).
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In Section 4, we extend our model to allow uncertainties about the principal’s
utility, as well as restrictions on how agents’ actions can affect the underlying
probabilities. We only want to disincentivize actions that are plausible under
these restrictions and are definitely undesirable. We show how this provides
richer structure to the class of principal-aligned proper scoring rules, and show
that given sufficient uncertainty, any proper scoring rule can be transformed into
a principal-aligned proper scoring rule by adding constant bonuses. We also show
a similar overpayment result under the extended model. All omitted proofs can
be found in the full version of this paper.5

2 Principal-Aligned Proper Scoring Rules

2.1 Review of Proper Scoring Rules

Let Ω = {1, 2, . . . ,m} be the outcome space, with m possible outcomes. Let
P = {p ∈ Rm : 0 < pi < 1,

∑m
i=1 pi = 1} be the set of probability distributions

over the outcomes.6 We define the standard basis Oi (i = 1, 2, . . . ,m) as follows:
Oi is the vector in which the i-th element equals 1 and all other elements equal
0. Note that while Oi is not in P, all vectors in P are in the span of the Oi’s.

Definition 1. A scoring rule is a function S : P × Ω → R. For each report
r ∈ P (on the underlying distribution) and each outcome i ∈ Ω, it specifies a
payment S(r, i). The expected payment S̃ under the scoring rule S depends on
both the report r and the true probability distribution p over the outcomes. S̃
can be written as S̃(r,p) =

∑m
i=1 S(r, i)pi.

Definition 2. A scoring rule S : P × Ω → R is (weakly) proper if ∀p, r ∈ P,
S̃(p,p) ≥ S̃(r,p). It is strictly proper if equality occurs if and only if r = p.

Definition 3. Given convex function G : P → R, a subgradient7 is a vector
function G∗ : P → Rm such that ∀x,y ∈ P,G(y) ≥ G(x) + G∗(x) · (y − x).
Given convex function G : P → R, a subtangent hyperplane at x ∈ P is a linear
function Hx : P → R such that Hx(x) = G(x), and ∀y ∈ P, Hx(y) ≤ G(y).

The following characterization of proper scoring rules was discovered first by
Savage [13], but the version shown here is due to Gneiting and Rafetery [5]. The
intuition behind the characterization is illustrated in Figure 1.

Theorem 1 (Gneiting & Rafetery). Given a convex function G : P → R
and a subgradient G∗, setting Hr(p) = G(r)+G∗(r) · (p− r) defines a family of

5 This is available at
http://www.cs.duke.edu/~pengshi/papers/2009-07-society-aligned.pdf

6 We assume that the probability of any outcome is positive. This assumption helps us
handle peculiar cases with discontinuities at the boundary, and makes the ensuing
math more elegant. We can handle the edge cases by taking limits.

7 G∗ always exists. If G is differentiable at x ∈ P, then the subgradient at x is the
gradient: G∗(x) = (∇G)(x). Otherwise, there may be many choices of G∗(x).

http://www.cs.duke.edu/~pengshi/papers/2009-07-society-aligned.pdf
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subtangent hyperplanes such that Hr is subtangent at r. Setting S(r, i) = Hr(Oi)
defines a proper scoring rule. i.e.,

S(r, i) = G(r)−G∗(r) · r +G∗(r) ·Oi = G(r)−G∗(r) · r +G∗
i (r)

Conversely, any proper scoring rule can be written in terms of a subgradient of some
convex function G in the above fashion. We call G the cost function for the rule.

Any proper scoring rule S corresponds to a unique convex cost function G where
G(p) = S̃(p,p) is the maximum expected payment the agent can obtain if the
true probability is p. Conversely, any convex function corresponds to some proper
scoring rule.8

Currently, the cost function G is defined only in the open set P; we define G
on the boundary of P by taking limits. Since G is already continuous in P,9 this
makes G continuous everywhere.

Fig. 1. Geometric Intuition for Theorem 1:
Every proper scoring rule corresponds to a
convex cost function G. Suppose an agent
reports r; then, the rule’s payment for each
outcome is the corresponding intercept of
the subtangent hyperplane at r. Hence, for
a given report, her possible expected pay-
ments are represented by the corresponding
subtangent hyperplane, which is always be-
low the upper envelope G. When the agent
reports the true distribution p, she attains
the upper envelope G.

Fig. 2. Intuition behind Lemma 1.
Consider the hyperplane normal to u
through x. On one side of this hyper-
plane is Px, and for any y in the region
Px , G(x) ≥ G(y). By continuity of G,
G(x) must be constant along the hy-
perplane (the boundary of Px).

2.2 Principal-Aligned Proper Scoring Rules

We now develop the concept of “principal-aligned” proper scoring rules. Sup-
pose that agents can take actions in the real world to change the underlying
distribution of the actual outcome. A principal-aligned rule disincentivizes any
action that harms the principal in expectation.
8 If G is not differentiable, then many families of subtangent hyperplanes can be

specified, each of which corresponds to a proper scoring rule.
9 A well-known fact about convex functions is that they are everywhere continuous in

the interior of their domain.
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Formally, let u ∈ Rm be a vector whose ith component is the principal’s
utility for outcome i. Note that given the true distribution p ∈ P, the principal’s
expected utility is p · u.

Definition 4. A proper scoring rule S is aligned with vector u if the cost func-
tion G satisfies: ∀p1,p2 ∈ P, if (p2 − p1) ·u > 0, then G(p2) ≥ G(p1). We call
S strictly aligned if the inequality is always strict.

Since we have S̃(p2,p2) = G(p2) and S̃(r,p1) ≤ G(p1), this definition says that
if the true probability is p2, then the agent prefers reporting p2 over changing
the true probability to p1 and reporting some r.

We call u uniform if u = α1 for some α. Note that because 1 ⊥ (p2 − p1)
∀p1,p2 ∈ P, the above definition does not say anything when u is uniform (that
is, when the principal is indifferent among all outcomes).

Definition 5. A convex function G : P → R is non-decreasing with respect to
direction u ∈ Rm if ∀x1,x2 ∈ P, (x2 − x1) · u > 0 implies G(x2) ≥ G(x1). It
is strictly increasing if the above inequality is strict.

Lemma 1. If convex function G : P → R is non-decreasing with respect to
non-uniform direction u, then G(x) = g(x · u) for some single-variable non-
decreasing convex function g. The statement remains true when non-decreasing
is replaced by strictly increasing.

Proof. For each x ∈ P, define the set Px = {y|y ∈ P, (x − y) · u > 0). Px is
non-empty because u is not uniform.10 Moreover, Px is open because it is the
intersection of open sets P and {y|(x− y) · u > 0}.

Since G is non-decreasing with respect to u, G(x) ≥ supy∈Px
G(y). But x lies

in the closure P̄x, so by continuity of G, G(x) ≤ supy∈Px
G(y). This means that

for all x ∈ P, G(x) = supy∈Px
G(y).

Note now that ∀x1,x2 ∈ P, whenever x1 · u = x2 · u, we have Px1 ≡ Px2 ,
which implies that G(x1) = G(x2). Hence, G(x) = g(x · u) for some single-
variable function g. Moreover, g must be convex because G is convex, and g
must be non-decreasing because G is non-decreasing w.r.t. u. The above proof
still holds if non-decreasing is replaced by strictly increasing. Figure 2 illustrates
the intuition behind this lemma.

Combining Definition 4 and Lemma 1, we get the following characterization of
principal-aligned proper scoring rules.

Theorem 2. Given any non-uniform principal utility vector u ∈ Rm, every
proper scoring rule S aligned with u corresponds to a cost function of the form
G(p) = g(p · u), where g is a single-variable non-decreasing convex function.
(By Theorem 1, this implies S(r, i) = G(r) −G∗(r) · r +G∗

i (r),11 where G∗ is
a subgradient of G.) Conversely, all such rules are aligned with u.
10 This is because ∃y ∈ P such that (x − y) · u �= 0, in which case either y or 2x − y

is in Px.
11 When g is differentiable, S(r, i) = g(r · u) + (ui − r · u)g′(r · u).
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The above statement remains true when aligned is replaced by strictly aligned,
and non-decreasing is replaced by strictly increasing.

Note that p ·u is the principal’s expected utility. The above theorem implies that
for a fixed report, the agent’s expected reward is a non-decreasing function of the
principal’s expected utility. Hence the interests of the agent and the principal
are aligned.

3 Principal-Aligned Prediction Mechanisms

Now, suppose that we want to elicit predictions from n agents in a principal-
aligned way. One possible method is to use a principal-aligned proper scoring
rule for each agent, and allow agents to see previous agents’ reports. However,
to incentivize agents to respond thoughtfully, each proper scoring rule requires
some subsidy to implement, and hence this method requires Θ(n) subsidy. On
the other hand, if we do not require principal-alignment, we can use a market
scoring rule and implement this with Θ(1) subsidy.12 In fact, we will show that
this Θ(n) gap always exists between the “cheapest” principal-aligned prediction
mechanism and the “cheapest” non-principal-aligned mechanism. We formalize
this in the next section.

3.1 One-Round Prediction Mechanisms

We first make a technical note: As shown in [2,4], in all current implementations
of prediction markets, agents may try to deceive others by giving false signals,
to their own later profit. This makes analyzing incentives in a prediction market
difficult without strong assumptions such as myopic agents.13 Since our aim is
to show a negative result about the minimum subsidy required in principal-
aligned mechanisms, rather than to resolve such strategic issues, we focus on a
one-round model in which agents can participate at most once, hence ruling out
such strategic play. A negative result in this restricted model will carry over to
general multi-agent prediction mechanisms.14

12 Under a market scoring rule, each agent is paid according to a proper scoring rule,
but must pay the proper-scoring rule payment of the previous agent (i.e., the ith
agent’s expected payment is S̃(ri , p)− S̃(ri−1, p)). As a result, from the perspective
of the principal, almost all the payments cancel out, and the total amount that the
principal must pay (

∑
i S̃(ri , p)− S̃(ri−1, p) = S̃(rn , p)− S̃(r0, p)) depends only on

the last prediction and not on the number of agents. See [6] for further explanations
of market scoring rules.

13 [3] studies creating prediction markets that are fully incentive-compatible, without
assuming myopic agents. However, the mechanisms proposed are quite different from
typical prediction markets and it is not yet clear that they can be made to work in
practice.

14 This is because in any general prediction mechanism the agents may choose to act
sequentially in a one-round fashion. Hence, relaxing the one-round requirement can
only increase the worst-case subsidy required. The notions of “one-round” and “sub-
sidy required” are made precise later.
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Definition 6. We define a one-round prediction mechanism as follows. There
is an event with a finite set of disjoint outcomes Ω, and n agents are asked to
give a probability for each outcome. There is some rule which decides the order
in which agents report their predictions. Define Ej as the set of agents whose
reports agent j cannot influence. When agent j reports prediction rj and event
i ∈ Ω occurs, she receives a payment of fj({rk|k ∈ Ej}, rj , i).

Definition 7. A one-round prediction mechanism is truthful if regardless of
others’ reports, an agent’s expected utility is maximized when she reports her
true subjective probability vector p. The mechanism satisfies voluntary partici-
pation if reporting the true p always yields non-negative expected payment. The
mechanism is feasible if it is truthful and satisfies voluntary participation.

Almost all current prediction mechanisms, when we add the restriction that each
agent participates at most once, fit into this framework.15

Lemma 2. A one-round prediction mechanism is feasible if and only if for each
agent j, the payment function fj, holding fixed the reports r−j = {rk|k �= j},
is a proper scoring rule S with a non-negative cost function. We call S the
corresponding proper scoring rule in this situation.

Definition 8. A one-round prediction mechanism is aligned with principal util-
ity vector u if for every agent j and every combination of other agents’ reports
(r−j = {rk|k �= j}), the corresponding proper scoring rule is aligned with u.

3.2 Minimum Subsidy for Principal-Aligned Prediction Mechanisms

We now formalize the notion that any principal-aligned prediction mechanism
requires Θ(n) subsidy to implement. Here, the subsidy is the minimum amount
the principal must have to be solvent in expectation, no matter what the true
probability and agents’ reports are.

Definition 9. A one-round prediction mechanism requires subsidy M if ∀ε > 0,
for some true probability p and some reports r = {rj}, the total expected payment∑

i,j

pifj({rk|k ∈ Ej}, rj , i) ≥M − ε

Before deriving our minimum subsidy result, we introduce a notion of minimum
incentives. In order to elicit useful predictions, we cannot simply offer the trivial
scoring rule S ≡ 0. We assume that each agent will give a thoughtful report only
if she can gain c > 0 by reporting accurately. More precisely, to be meaningful,
a prediction mechanism cannot allow agents to always obtain within c of the
optimal expected payment by giving a constant report.
15 Models that fit this framework include market scoring rules, Hanson’s Market

Maker [7,6], Pennock’s Dynamic Parimutuel Market [11,10], and the weighted-score
mechanism in [8].
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Definition 10. We say a proper scoring rule provides incentive c if the differ-
ence between the greatest attainable expected payment and the greatest expected
payment the agent can guarantee with some constant report r is at least c.16 A
one-round prediction mechanism guarantees incentive c if for each agent j and
each combination of others’ reports r−j, the corresponding proper scoring rule
provides incentive c.

Lemma 3. Given a non-uniform principal utility vector u, let Omax correspond
to an optimal outcome for the principal (i.e., it maximizes Oi · u among all i).
If a proper scoring rule aligned with u provides incentive c, and its cost function
G(p) is non-negative, then G(Omax) ≥ c.

Proof. Suppose on the contrary that G(Omax) < c. Let Omin correspond to
the principal’s worst outcome (i.e., it minimizes Oi · u among all i), and let
d = ‖Omax − Omin‖. Since u is not uniform, d > 0. For 0 < ε < d, define
r = ε

dOmax + d−ε
d Omin. Let G∗ be the subgradient of G corresponding to S (in

the sense of Theorem 1).
First note that S̃(r,Omax) ≥ 0. This is because by the definition of subgradi-

ents and by u·(Omin−r) < 0, we have G∗(r)·(Omin−r) ≤ G(Omin)−G(r) ≤
0. Using Theorem 1 and the fact that (Omin − r) is collinear with (r−Omax),
we have S̃(r, r) − S̃(r,Omax) = G∗(r) · (r − Omax) ≤ 0, which implies that
S̃(r,Omax) ≥ G(r) ≥ 0.

Because the scoring rule provides incentive c and because of convexity, either
G(Omax)− S̃(r,Omax) ≥ c or G(Omin)− S̃(r,Omin) ≥ c.

However, the first inequality cannot hold, because G(Omax) < c by assump-
tion and S̃(r,Omax) ≥ 0.

Moreover, the second inequality cannot hold for sufficiently small ε. This is
because c−0 > G(Omax)−G(r) ≥ G∗(r)·(Omax−r) = G∗(r)·(r−Omin)(d−ε

ε ).
So as ε → 0, we need G∗(r) · (r − Omin) → 0. This along with the identity
S̃(r,Omin)− S̃(r, r) = G∗(r) ·(Omin−r) implies that as ε→ 0, S̃(r,Omin) →
G(r). Because G is continuous and bounded below by 0, we have that as ε→ 0,
G(r) → G(Omin) ≥ 0, so S̃(r,Omin) → G(Omin). Hence, for sufficiently small
ε, the second inequality also fails. Contradiction.

Therefore, G(Omax) ≥ c.

Theorem 3. Let u be a non-uniform principal utility vector and let n be the
number of agents. Any feasible one-round prediction mechanism that guarantees
incentive c and is aligned with u requires subsidy cn.

Proof. For each agent j and each combination of others’ reports, the correspond-
ing proper scoring rule must have a non-negative cost function, must be aligned
with u, and must provide incentive c. By Lemma 3, G(Omax) ≥ c. Hence, if all
agents report some r that is arbitrarily close to Omax, we get, by the continuity
of convex function G, that the total expected payment can be arbitrarily close
to nG(Omax) ≥ cn.

16 In mathematical language, this states that supq S̃(q, q)− supr

(
infp S̃(r, p)

)
≥ c.
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Remark 1. Suppose we sacrifice principal-alignment; then, we can implement the
market scoring rule, based on, say, the quadratic scoring rule with cost function
G(p) = c m

m−1 (
∑

i p
2
i − 1

m ). This is a one-round prediction mechanism guarantee-
ing incentive c and requiring only subsidy c, which is the minimum possible.17

This yields the following implication of Theorem 3: Suppose we want a prediction
mechanism that guarantees incentive c; the cheapest principal-aligned mechanism
requires n times as much subsidy as the cheapest non-principal-aligned mecha-
nism in the worst case.

4 Extensions: Uncertain Utilities and Restricted Actions

In practice, there may be uncertainty about the principal’s utility vector u, and
there may be restrictions on the change in underlying probabilities that the
agents’ actions can bring about. In this section, we show that adding these fea-
tures to our model provides a richer characterization. Moreover, if the agents
can perform actions that are certainly undesirable, then principal-aligned pre-
diction mechanisms still require Θ(n) subsidy. We formalize these concepts via
the following definitions.

Definition 11. An action model is a function A : P → 2P such that ∀p ∈
P, A(p) is a convex set satisfying p ∈ A(p).18 Intuitively, if p is the initial
underlying probability vector, then for any p′ ∈ A(p), there is some action that
the agent can perform to change the probability vector to p′ (and the agent is
not able to change it to any probability vector outside of A(p)).

Definition 12. Let T be a set of possible utility vectors for the principal and
let A be an action model. A proper scoring rule is aligned with T under A if
∀p ∈ P and ∀p′ ∈ A(p) such that u · p′ < u · p ∀u ∈ T ,19 the cost function
G(p) ≥ G(p′). A one-round prediction mechanism is aligned with T under A if
the corresponding proper scoring rule is always aligned with T . In all following
references to T , we assume that T is not always uniform: T \{α1} �= ∅. (The
principal is not definitely indifferent among all outcomes.)

Definition 13. Given a set T of possible utilities for the principal and an action
model A for the agents, the corresponding bad direction function is B : P → 2R

m

,

17 By definition, guaranteeing incentive c requires subsidy c.
18 We require p ∈ A(p) because the agent can always choose to do nothing. Moreover,

A(p) is convex because if by committing action a, the agent can change the under-
lying probability to q ∈ A(p), and by committing a′, the agent can change it to q′,
then by committing a with probability λ and a′ with probability (1− λ), the agent
can change the underlying probability to λq + (1− λ)q′.

19 Here, we only guard against actions that harm the principal’s expected utility for
all possible vectors u ∈ T . Alternatively we might have guarded against actions
that are bad for any setting of u, but this case is not interesting because the proof
of Lemma 1 implies that the only proper scoring rule aligned with two linearly
independent utility vectors is the trivial rule with G ≡ 1.
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B(p) = {p′ − p|p′ ∈ A(p)} ∩
(⋂

u∈T

{x|x · u < 0}
)

We say that B is contained in a strict cone if ∃ε > 0 and ∃y such that ∀p ∈ P
and ∀x ∈ B(p), y · x ≥ ε‖x‖‖y‖.

Define the magnitude of the worst action as d = sup{‖x‖|x ∈ B(p),p ∈ P}.
Note that d = 0 implies that agents cannot perform any action that is certainly bad.

4.1 Principal-Aligned Proper Scoring Rules in the Extended Model

The following characterization follows immediately from Definition 13.

Theorem 4. Given a set T of possible utility vectors and an action model A, let
the corresponding bad direction function be B. A proper scoring rule is aligned
with T under A if and only if its cost function G satisfies ∀p ∈ P, and ∀p′ with
p′ − p ∈ B(p), G(p′) ≤ G(p).

Definition 14. A proper scoring rule is bounded if S(r, i) is bounded, that is,
∃C s.t. |S(r, i)| ≤ C ∀r ∈ P, i ∈ Ω. Equivalently (by Theorem 1), a proper
scoring rule is bounded if and only if both the cost function G(p) and the corre-
sponding subgradient G∗(p) are bounded.

The following theorem shows that under sufficient uncertainty, any proper scor-
ing rule can be modified to be principal-aligned by adding constant bonuses.

Theorem 5. Suppose that the bad direction function B is contained in a strict
cone; then, any bounded20 proper scoring rule S can be modified to be principal-
aligned by adding constants {ki} so that S′(r, i) = S(r, i)+ki. Moreover, ‖k‖ =
M
ε , where M is an upper bound21 on the norm of the subgradient ‖G∗(p)‖, and
ε is as in Definition 13.

4.2 Principal-Aligned Prediction Mechanisms in the Extended
Model

We now generalize the minimum subsidy result in Section 3.2 to the context of
uncertain utilities and restricted actions. First, we note that the overpayment
result does not hold if we allow the proper scoring rule to not be strict: as in
the example shown in Figure 3, sometimes we can treat all reports for which we
have relative preferences22 to be the same, and implement a market scoring rule
on the collapsed classes. In this case, the agents can obtain optimal payments
while ignoring the directions for which the principal has preferences.

In practice it seems desirable to always strictly incentivize the agents to report
as close to the true probability as possible. One way to formalize this is the notion
of uniform incentivization.
20 In practice, we can make any unbounded proper scoring rule bounded by restricting

reports away from the boundary.
21 M exists by the assumption that the scoring rule S is bounded. See Definition 14.
22 By “relative preference” between reports r′ and r, we mean that either r′−r ∈ B(r)

or r − r′ ∈ B(r′).
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Fig. 3. Suppose that there are 3 outcomes and no restrictions on actions. T is such
that the only bad direction is b. Consider a market scoring rule on the relative proba-
bility of outcomes 1 and 2, guaranteeing incentive c. For every probability distribution
r ∈ P we follow the contour lines in the diagram and treat this as some r′ on the seg-
ment connecting O1 and O2. This makes the cost function G (for the corresponding
proper scoring rule) in every situation constant along the contour lines. The resultant
mechanism is principal-aligned, guarantees incentive c, but requires only O(c) subsidy.

Definition 15. Suppose that f : [0,∞) → R is convex,23 with f(0) = 0, f(x) >
0 ∀x > 0. A proper scoring rule provides uniform incentives according to f if
∀r,p ∈ P, S̃(p,p) − S̃(r,p) ≥ f(‖p − r‖). A one-round prediction mechanism
guarantees uniform incentives according to f if for every agent j and every
combination of others’ reports, the corresponding proper scoring rule provides
uniform incentives according to f .

Intuitively, f can be thought of as a measure of incentivization locally at p ∈ P,
and providing uniform incentives according to f guarantees a certain level of
incentivization at all p ∈ P. For a one-round prediction mechanism, guaranteeing
uniform incentives according to some f corresponds to maintaining a minimal
standard of incentivization for all agents in all situations. Conventional scoring
rules such as the quadratic, the logarithmic, and the spherical scoring rules all
guarantee uniform incentives according to some f .

Theorem 6. Suppose that a feasible one-round prediction mechanism with n
agents is principal-aligned with set T of possible utility vectors, under action
model A (assume that the magnitude of the worst action d > 024); and guarantees
uniform incentives according to some f . Then, the mechanism requires subsidy
n · f(d

2 ) (which is Θ(n)).

In other words, even when the principal’s utilities are uncertain and when agents’
actions might be limited, suppose that some surely undesirable action exists.
Then, under the requirements of feasibility and uniform incentivization, the
cheapest principal-aligned mechanism requires Θ(n) times as much subsidy as
the cheapest non-principal-aligned mechanism.

One practical implication of our Θ(n) subsidy results is that to run a useful
prediction market without incentivizing undesirable actions, it may be imprac-
tical to let agents join freely. This is because agents may join just to get the
23 The requirement that f is convex is natural since cost function G is convex.
24 That is, it is possible for agents to perform a certainly undesirable action.
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subsidy, without providing any useful additional information. However, it may
be practical for an organization to run a principal-aligned in-house prediction
market, because in this context the number of agents is naturally limited.
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Abstract. We study the use of viral marketing strategies on social net-
works that seek to maximize revenue from the sale of a single product.
We propose a model in which the decision of a buyer to buy the product
is influenced by friends that own the product and the price at which the
product is offered. The influence model we analyze is quite general, nat-
urally extending both the Linear Threshold model and the Independent
Cascade model, while also incorporating price information. We consider
sales proceeding in a cascading manner through the network, i.e. a buyer
is offered the product via recommendations from its neighbors who own
the product. In this setting, the seller influences events by offering a cash-
back to recommenders and by setting prices (via coupons or discounts)
for each buyer in the social network. This choice of prices for the buyers
is termed as the seller’s strategy.

Finding a seller strategy which maximizes the expected revenue in this
setting turns out to be NP-hard. However, we propose a seller strategy
that generates revenue guaranteed to be within a constant factor of the
optimal strategy in a wide variety of models. The strategy is based on an
influence-and-exploit idea, and it consists of finding the right trade-off at
each time step between: generating revenue from the current user versus
offering the product for free and using the influence generated from this
sale later in the process.

1 Introduction

Social networks such as Facebook, Orkut and MySpace are free to join, and they
attract tens of millions of users. Maintaining these websites for such a large group
of users requires substantial investment from the host companies. To help recoup
these investments, these companies often turn to monetizing the information that
their users provide for free on these websites. This information includes both
detailed profiles of users and also the network of social connections between the
users. Not surprisingly, there is a widespread belief that this information could
be a gold mine for targeted advertising and other online businesses. Nonetheless,
much of this potential still remains untapped today. Facebook, for example, was
valued at $15 billion by Microsoft in 2007 [12], but its estimated revenue in 2008
was only $300 million [15]. Thus, any monetization technology that can help
bridge this gap is of paramount interest. Of particular interest are large-scale
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monetization technologies that can effectively leverage the networked nature of
the online social networks, and move away from the currently used paradigm of
contextual advertising borrowed from sponsored search.

Recently, people have begun to consider such a monetization approach that
is based on selling products through the spread of influence. Often, users can be
convinced to purchase a product if many of their friends are already using it, even
if these same users would be hard to convince through direct advertising. This
is often a result of personal recommendations – a friend’s opinion can carry far
more weight than an impersonal advertisement. In some cases, however, adoption
among friends is important for even more practical reasons. For example, instant
messenger users and cell phone users will want a product that allows them to
talk easily and cheaply with their friends. Usually, this encourages them to adopt
the same instant messenger program and the same cell phone carrier that their
friends have. We refer the reader to previous work and the references therein for
further explanations behind the motivation of the influence model [5,7].

In fact, many sellers already do try to utilize influence-and-exploit strategies
that are based on these tendencies. In the advertising world, this has recently
led to the adoption of viral marketing, where a seller attempts to artificially
create word-of-mouth advertising among potential customers [9, 10, 13]. A more
powerful but riskier technique has been in use much longer: the seller gives out
free samples or coupons to a limited set of people, hoping to convince these
people to try out the product and then recommend it to their friends. Without
any extra data, however, this forces sellers to make some very difficult decisions.
Who do they give the free samples to? How many free samples do they need
to give out? What incentives can they afford to give to recommenders without
jeopardizing the overall profit too much?

In this paper, we are interested in finding systematic answers to these ques-
tions. In general terms, we can model the spread of a product as a process on a
social network. Each node represents a single person, and each edge represents a
friendship. Initially, one or more nodes is “active”, meaning that person already
has the product. This could either be a large set of nodes representing an estab-
lished customer base, or it could be just one node – the seller – whose neighbors
consist of people who independently trust the seller, or who are otherwise likely
to be interested in early adoption.

At this point, the seller can encourage the spread of influences in two ways.
First of all, it can offer cashback rewards to individuals who recommend the
product to their friends. This is often seen in practice with “referral bonuses” –
each buyer can optionally name the person who referred them, and this person
then receives a cash reward. This gives existing buyers an incentive to recommend
the product to their friends. Secondly, a seller can offer discounts to specific
people in order to encourage them to buy the product, above and beyond any
recommendations they receive. It is important to choose a good discount from
the beginning here. If the price is not acceptable when a prospective buyer first
receives recommendations, they might not bother to reconsider even if the price
is lowered later.
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After receiving discount offers and some set of recommendations, it is up to
the prospective buyers to decide whether to actually go through with a pur-
chase. In general, they will do so with some probability that is influenced by
the discount and by the set of recommendations they have received. The form
of this probability is a parameter of the model and it is determined by external
factors, for instance, the quality of the product and various exogenous market
conditions. While it is impossible for a seller to calculate the form of these prob-
ability exactly, they can estimate it from empirical observations, and use that
estimate to inform their policies. One could interpret the probabilities according
to a number of different models that have been proposed in the literature (for
instance, the Independent Cascade and Linear Threshold models), and hence it
is desirable for the seller to be able to come up with a strategy that is applicable
to a wide variety of models.

Now let us suppose that a seller has access to data from a social network such
as Facebook, Orkut, or MySpace (thus, the seller can estimate the underlying
friendship structure). With this information in hand, a seller can model the
spread of influence quite accurately, and the formerly inscrutable problems of
who to offer discounts to, and at what price, become algorithmic questions that
one can legitimately hope to solve. For example, if a seller knows the structure
of the network, she can locate individuals that are particularly well connected
and do everything possible to ensure they adopt the product and exert their
considerable influence.

In this paper, we are interested in the algorithmic side of this question: Given
the network structure and a model of the purchase probabilities, how should the
seller decide to offer discounts and cashback rewards?

1.1 Our Contributions

We investigate seller strategies that address the above questions in the context
of expected revenue maximization. We will focus much of our attention on non-
adaptive strategies for the seller: the seller chooses and commits to a discount
coupon and cashback offer for each potential buyer before the cascade starts. If
a recommendation is given to this node at any time, the price offered will be the
one that the seller committed to initially, irrespective of the current state of the
cascade.

A wider class of strategies that one could consider are adaptive strategies,
which do not have this restriction. For example, in an adaptive strategy, the
seller could choose to observe the outcome of the (random) cascading process
up until the last minute before making very well informed pricing decisions
for each node. One might imagine that this additional flexibility could allow
for potentially large improvements over non-adaptive strategies. Unfortunately,
there is a price to be paid, in that good adaptive strategies are likely to be very
complicated, and thus difficult and expensive to implement. The ratio of the
revenue generated from the optimal adaptive strategy to the revenue generated
from the optimal non-adaptive strategy is termed the “adaptivity gap”.
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Our main theoretical contribution is a very efficient non-adaptive strategy
whose expected revenue is within a constant factor of the optimal revenue from
an adaptive strategy. This guarantee holds for a wide variety of probability func-
tions, including natural extensions of both the Linear Threshold and Independent
Cascade models1. Note that a surprising consequence of this result is that the
adaptivity gap is constant, so one can make the case that not much is lost by
restricting our attention to non-adaptive policies. We also show that the problem
of finding an optimal non-adaptive strategy is NP-hard, which means an efficient
approximation algorithm is the best theoretical result that one could hope for.

Intuitively, the seller strategy we propose is based on an influence-and-exploit
idea, and it consists of categorizing each potential buyer as either an influencer
or a revenue source. The influencers are offered the product for free and the
revenue sources are offered the product at a pre-determined price, chosen based
on the exact probability model. Briefly, the categorization is done by finding a
spanning tree of the social network with as many leaves as possible, and then
marking the leaves as revenue sources and the internal nodes as influencers. We
can find such a tree in near-linear time [8, 11]. Cashback amounts are chosen
to be a fixed fraction of the total revenue expected from this process. The full
details are presented in section 3.

In practice, we propose using this approach to find a strategy that has good
global properties, and then using local search to improve it further. This kind
of combination has been effective in the past, for example on the k-means prob-
lem [2]. Indeed, experiments show that combining local search with the above
influence-and-exploit strategy is more effective than using either approach on its
own. See the full version of the paper for details [1].

1.2 Related Work

The problem of social contagion or spread of influence was first formulated by
the sociological community, and introduced to the computer science community
by Domingos and Richardson [3]. An influential paper by Kempe, Kleinberg
and Tardos [6] solved the target set selection problem posed by [3] and sparked
interest in this area from a theoretical perspective (see [7]). This work has mostly
been limited to the influence maximization paradigm, where influence has been
taken to be a proxy for the revenue generated through a sale. Although similar
to our work in spirit, there is no notion of price in this model, and therefore, our
central problem of setting prices to encourage influence spread requires a more
complicated model.

A recent work by Hartline, Mirrokni and Sundararajan [5] is similar in flavor
to our work, and also considers extending social contagion ideas with pricing
information, but the model they examine differs from our model in a several
aspects. The main difference is that they assume that the seller is allowed to

1 More precisely, the strategy achieves a constant-factor approximation for any fixed
model, independent of the social network. If one changes the model, the approxima-
tion factor does vary, as made precise in Section 3.
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approach arbitrary nodes in the network at any time and offer their product at
a price chosen by the seller, while in our model the cascade of recommendations
determines the timing of an offer and this cannot be directly manipulated. In
essence, the model proposed in [5] is akin to advertising the product to arbi-
trary nodes, bypassing the network structure to encourage a desired set of early
adopters. Our model restricts such direct advertising as it is likely to be much less
effective than a direct recommendation from a friend, especially when the recom-
mender has an incentive to convince the potential buyer to purchase the product
(for instance, the recommender might personalize the recommendation, increas-
ing its effectiveness). Despite the different models, the algorithms proposed by
us and [5] are similar in spirit and are based on an influence-and-exploit strategy.

This work has been inspired by a direction mentioned by Kleinberg [7], and is
our interpretation of the informal problem posed there (of moving influence to
edges). Finally, we point out that the idea of cashbacks has been implemented in
practice, and new retailers are also embracing the idea [9, 10, 13]. We note that
some of the systems being implemented by retailers are quite close to the model
that we propose, and hence this problem is relevant in practice.

2 The Formal Model

Let us start by formalizing the setting stated above. We represent the social
network as an undirected graph G(V,E), and denote the initial set of adopters
by S0 ⊆ V . We also denote the active set at time t by St−1 (we call a node active
if it has purchased the product and inactive otherwise). Given this setting, the
recommendations cascade through the network as follows: at each time step
t ≥ 1, the nodes that became active at time t − 1 (i.e. S0 for t = 1, and
u ∈ St−1 \ St−2 for t ≥ 2) send recommendations to their currently inactive
friends in the network: N t−1 = {v ∈ V \ St−1|(u, v) ∈ E, u ∈ St−1 \ St−2}.
Each such node v ∈ N t−1 is also given a price cv,t ∈ R at which it can purchase
the product. This price is chosen by the seller to either be full price or some
discounted fraction thereof.

The node v must then decide whether to purchase the product or not (we
discuss this aspect in the next section). If v does accept the offer, a fixed cashback
r > 0 is given to a recommender u ∈ St−1 (note that we are fixing the cashback
to be a positive constant for all the nodes as the nodes are assumed to be
non-strategic and any positive cashback provides incentive for them to provide
recommendations). If there are multiple recommenders, the buyer must choose
only one of them to receive the cashback; this is a system that is quite standard
in practice. In this way, offers are made to all nodes v ∈ N t−1 through the
recommendations at time t and these nodes make a decision at the end of this
time period. The set of active nodes is then updated and the same process is
repeated until the process quiesces, which it must do in finite time since any step
with no purchases ends the process.

In the model described above, the only degree of freedom that the seller has
is in choosing the prices and the cashback amounts. It wants to do this in a way
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that maximizes its own expected revenue (the expectation is over randomness in
the buyer strategies). Since the seller may not have any control over the seed set,
we are looking for a strategy that can maximize the expected revenue starting
from any seed set on any graph. In most online scenarios, producing extra copies
of the product has negligible cost, so maximizing expected revenue will also
maximize expected profit.

Now we can formally state the problem of finding a revenue maximizing strat-
egy as follows:

Problem 1. Given a connected undirected graph G(V,E), a seed set S0, a fixed
cashback amount r, and a model M for determining when nodes will purchase a
product, find a strategy that maximizes the expected revenue from the cascading
process described above.

In this work, we restrict attention to policies that choose a single price for a node
(as against a price per edge) as otherwise this would lead to strategizing by the
buyers. We are particularly interested in non-adaptive policies, which correspond
to choosing a price for each node in advance, making the price independent of
both the time of the recommendation and also the state of the cascade at the
time of the offer. Our goal will be threefold: (1) to show that this problem is NP-
hard even for simple models M, (2) to construct a constant-factor approximation
algorithm for a wide variety of models, and (3) to show that restricting to non-
adaptive policies results in at most a constant factor loss of profit.

To simplify the exposition, we will assume the cashback r = 0 for now. At the
end of Section 4, we will show how the results can be generalized to work for
positive r, which should be sufficient incentive for buyers to pass on recommen-
dations.

2.1 Buyer Decisions

In this section, we discuss how to model the probability that a node will ac-
tually buy the product given a set of recommendations and a price. We use a
very general model in this work that naturally extends the most popular tradi-
tional models proposed in the influence maximization literature, including both
Independent Cascade and Linear Threshold.

Consider an abstract model M for determining the probability that a node will
buy a product given a price and what recommendations it has received. To model
the lack of information about individual node preferences, we will assume that
each node’s value for the product is drawn from a known distribution. Further,
the distribution is dependent on the neighbors of the node that already own
the product. Thus, we will assume that the value of the product for a node with
degree d, k ≥ 1 of whose neighbors already have the product, is drawn at random
from a distribution specified by the cumulative distribution function Fk,d(·), i.e.
Fk,d(t) is the probability that the node’s value is less than t. Note that such a
node will buy the product at an offer price x with probability 1 − Fk,d(x). For
technical reasons, it is convenient to work with the inverse of 1−Fk,d(x), which
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we call Ck,d(x), i.e. if a node with degree d and k active neighbors is offered the
product at price Ck,d(x), it buys with probability x.2 We allow the model M to
be fairly general, imposing only the following conditions:

1. We assume that the seller has full information about the different functions
Ck,d(·) for all k ∈ {1, 2, . . . , d} and d ∈ {1, 2, . . . , n}.3

2. The functions Ck,d(·) have bounded domain, which we assume to be [0, 1] for
all k, d w.l.o.g. This only means that a node will never pay more than full
price for the product, where the full price is assumed to be 1. Without an
assumption like this, the seller could potentially achieve unbounded revenue
on a network, which makes the problem degenerate.

3. We also assume that Ck,d(1) = 0 and Ck,d(0) = 1 for any k, d. In other
words, a node will always accept the product and recommend it to friends
if it receives a recommendation with price 0. Since nodes are given positive
cash rewards for making recommendations, this condition is true for any
rational buyer. Also, we assume that each node has non-trivial interest in
the item and hence a node’s value will never exceed the full price of the
product.

4. All the functions Ck,d(·) are assumed to be differentiable at 0 and 1.

Now, given a model M that satisfies the stated assumptions, we make the following
observations (all proofs have been moved to the full version of the paper [1] due
to lack of space):

Lemma 1. For a cascading process proceeding according to a model M that sat-
isfies the above assumptions, the following properties hold:

1. If the social network is a single line graph with S0 being the two endpoints,
the maximum expected revenue for the optimal choice of prices is at most a
constant L.

2. There exist constants f , c, q so that if more than fraction f of a given node’s
neighbors recommend the product to the node at cost c, the node will purchase
the product with probability q.

Intuitively, the first property states that each prospective buyer on a social
network should have some chance of rejecting the product (unless it’s given
to them for free), and therefore the maximum revenue on a line is bounded
by a geometric series, and is therefore constant. The second property rules out
extreme inertia, for example the case where no buyer will consider purchasing a
product unless almost all of its neighbors have already done so.

Next, we define a parameter that captures how complicated the model M is,
and our final approximation bound will be in terms of this parameter. Since
2 It is sometimes useful to consider functions p(·) that are not one-to-one. These

functions have no formal inverse, but in this case, c can still be formally defined as
C(x) = maxy |1− Fk,d(y)| ≥ x.

3 The different functions can be approximated in practice by running experiments and
observing people’s behavior. Also, this general model encompasses a wide variety of
models, many of which require estimating a much smaller number of parameters.
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the assumptions stated above are quite general, model complexity enables us
to parametrize the model in terms of the profit/long-term investment trade-off
(property 1) and “nice” myopic prices (property 2). Specific values of model
complexity for instances of well-known cascade models are also provided below.

Definition 1. The “model complexity” of a model M is defined to be L
(1−f)cq .

The following corollary is immediately obtained from the proof of lemma 1:

Corollary 1. A model M that satisfies all the above stated assumptions has con-
stant model complexity.

While it may not be obvious that all the above assumptions are met in general, we
will show that they are for both the Independent Cascade and Linear Threshold
models, and indeed, the arguments there extend naturally to many other cases
as well.

In the traditional Independent Cascade model, there is a fixed probability p
that a node will purchase a product each time it is recommended to them. These
decisions are made independently for each recommendation, but each node will
buy the product at most once. To generalize this to multiple prices, it is natural
to make p a function [0, 1] → [0, 1] where p(x) represents the probability that
a node will buy the product at price x. We can express this in terms of our
cumulative distribution function as: Fk,d(x) = 1 − (1− p(x))k. Again, we can
work with the inverse of Fk,d(x). In fact, since Fk,d(·) has a decoupled form
we find it easier to work with the inverse of p which we call C′. Our general
conditions on the model reduce to setting C′(0) = 1 and C′(1) = 0 in this case.
The last two assumptions can now be stated along with the model as follows:

Definition 2. Fix a cost function C′ : [0, 1] → [0, 1] with C′(0) = 1, C′(1) = 0
and with C′ differentiable at 0 and 1. We define the Independent Cascade Model
ICMc as follows:

Every time a node receives a recommendation at price C′(x), it buys the prod-
uct with probability x and does nothing otherwise. If a node receives multiple
recommendations, it performs this check independently for each recommenda-
tion but it never purchases the product more than once.

The following lemma follows immediately from the proof of lemma 1.

Lemma 2. Fix a cost function C′. Then:

1. ICMC has bounded (model) complexity.
2. If C′ has maximum slope m (i.e. |C′(x) − C′(y)| ≤ m|x − y| for all x, y),

then ICMC has O(m2) complexity.
3. If C′ is a step function with n regularly spaced steps (i.e. C′(x) = C′(y) if
� x

n� = � y
n�), then ICMC has O(n2) complexity.

In the traditional Linear Threshold model, there are fixed influences bv,w on
each directed edge (v, w) in the network. Each node independently chooses a
threshold θ uniformly at random from [0, 1], and then purchases the product
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if and when the total influence on it from nodes that have recommended the
product exceeds θ.

To generalize this to multiple prices, it is natural to make bv,w a function
[0, 1] → [0, 1] where bv,w(x) indicates the influence v exerts on w as a result
of recommending the product at price x. To simplify the exposition, we will
focus on the case where a node is equally influenced by all its neighbors. (This
is not strictly necessary but removing this assumptions requires rephrasing the
definition of f to be a weighted fraction of a node’s neighbors.) Finally, we assume
for all v, w that bv,w(0) = 1 to satisfy the second general condition for models.

Definition 3. Fix a max influence function B : (0, 1] → [0, 1], not uniformly 0.
We define the Linear Threshold Model LTMB as follows:
Every node independently chose a threshold θ uniformly at random from [0, 1].
A node will buy the product at price x > 0 only if B(x) ≥ θ

α where α denotes
the fraction of the node’s neighbors that have recommended the product. A node
will always accept a recommendation if the product is offered for free.

Lemma 3. Fix a max influence function B and let K = maxx x · B(x). Then
LTMB has complexity O( 1

K ).

We omit the proof since it is similar to that of Lemma 1. In fact, it is simpler
since, on a line graph, a node either gets the product for free or it has probability
at most 1

2 of buying the product and passing on a recommendation.

3 Approximating the Optimal Revenue

In this section, we present our main theoretical contribution: a non-adaptive
seller strategy that achieves expected revenue within a constant factor of the
revenue from the optimal adaptive strategy. We show the problem of finding
the exact optimal strategy is NP-hard (see the full version of the paper [1]
for a proof), so this kind of result is the best we can hope for. Note that our
approximation guarantee is against the strongest possible optimum, which is
perhaps surprising: it is unclear a priori whether such a strategy should even
exist.

The strategy we propose is based on computing a maximum-leaf spanning tree
(MAXLEAF) of the underlying social network graph, i.e., computing a spanning
tree of the graph with the maximum number of leaf nodes. The MAXLEAF prob-
lem is known to be NP-Hard, and it is in fact also MAX SNP-Complete, but
there are several constant-factor approximation algorithms known for the prob-
lem [4,8, 11, 14]. In particular, one of these is nearly linear-time [11], making it
practical to apply on large online social network graphs. The seller strategy we
attain through this is an influence-and-exploit strategy that offers the product
to all of the interior nodes of the spanning tree for free, and charges a fixed price
from the leaves. Note that this strategy works for all the buyer decision mod-
els discussed above, including multi-price generalizations of both Independent
Cascade and Linear Threshold.
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We consider the setting of Problem 1, where we are given an undirected so-
cial network graph G(V,E), a seed set S0 ⊆ V and a buyer decision model M.
Throughout this section, we will let L, f , c and q denote the quantities that
parametrize the model complexity, as described in Section 2.1. To simplify the
exposition, we will assume that the seed set is a singleton node (i.e., |S0| = 1).
If this is not the case, the seed nodes can be merged into a single node, and we
can make much the same argument in that case. We will also ignore cashbacks
for now, and return to address them at the end of the section.

The exact algorithm we will use is stated below:

– Use the MAXLEAF algorithm [11] to compute an approximate max-leaf span-
ning tree T for G that is rooted at S0.

– Offer the product to each internal node of T for free.
– For each leaf of T (excluding S0), independently flip a biased coin. With

probability 1+f
2 , offer the product to the node for free. With probability

1−f
2 , offer the product to the node at cost c.

We henceforth refer to this strategy as STRATEGYMAXLEAF. Our analysis will
revolve around what we term as “good” vertices, defined formally as follows:

Definition 4. Given a graph G(V,E), we define the good vertices to be the
vertices with degree at least 3 and their neighbors.

On the one hand, we show that if G has g good vertices, then the MAXLEAF

algorithm will find a spanning tree with Ω(g) leaves. We then show that each
leaf of this tree leads to Ω(1) revenue, implying STRATEGYMAXLEAF gives Ω(g)
revenue overall. Conversely, we can decompose G into at most g line-graphs
joining high-degree vertices, and the total revenue from these is bounded by
gL = O(g) for all policies, which gives the constant-factor approximation we
need.

We begin by bounding the number of leaves in a max-leaf spanning tree. For
dense graphs, we can rely on the following fact [8, 11]:

Fact 1. The max-leaf spanning tree of a graph with minimum degree at least 3
has at least n/4 + 2 leaves [8,11].

In general graphs, we cannot apply this result directly. However, we can make
any graph have minimum degree 3 by replacing degree-1 vertices with small,
complete graphs and by contracting along edges to remove degree-2 vertices.
We can then apply Fact 1 to analyze this auxiliary graph, which leads to the
following result (all the proofs for this section have been moved to the full version
of the paper [1] due to lack of space):

Lemma 4. Suppose a connected graph G has n3 vertices with degree at least 3.
Then G has a spanning tree with at least n3

8 + 1 leaves.

We must further extend this to be in terms of the number of good vertices g,
rather than being in terms of n3:
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Lemma 5. Given an undirected graph G with g good vertices, the MAXLEAF

algorithm [11] will construct a spanning tree with max( g
50 + 0.5, 2) leaves.

We can now use this to prove a guarantee on the performance of STRATEGY-
MAXLEAF in terms of the number of good vertices on an arbitrary graph:

Lemma 6. Given a social network G with g good vertices, STRATEGYMAXLEAF

guarantees an expected revenue of Ω((1 − f)cq · g).

Now that we have computed the expected revenue from STRATEGYMAXLEAF,
we need to characterize the optimal revenue to bound the approximation ratio.
This bound is given by the following lemma.

Lemma 7. The maximum expected revenue achievable by any strategy (adaptive
or not) on a social network G with g good vertices is O(L · g).

Now, we can combine the above lemmas to state the main theorem of the paper,
which states that STRATEGYMAXLEAF provides a constant factor approximation
guarantee for the revenue.

Theorem 1. Let K denote the complexity of our buyer decision model M. Then,
the expected revenue generated by STRATEGYMAXLEAF on an arbitrary social
network is O(K)-competitive with the expected revenue generated by the optimal
(adaptive or not) strategy.

Proof. This follows immediately from Lemmas 6 and 7, as well as the fact that
K = L

(1−f)cq .

As a corollary, we get the fact that the adaptivity gap is also constant:

Corollary 2. Let K denote the complexity of our buyer decision model M. Then
the adaptivity gap is O(K).

Now we briefly address the issue of cashbacks that were ignored in this exposition.
We set the cashback r to be a small fraction of our expected revenue from each
individual r0, i.e. r = z·r0, where z < 1. Then, our total profit will be n·r0 ·(1−z).
Adding this cashback decreases our total profit by a constant factor that depends
on z, but otherwise the argument now carries through as before, and nodes now
have a positive incentive to pass on recommendations.

In light of Corollary 2, one might ask whether the adaptivity gap is not just 1.
In other words, is there any benefit at all to be gained from using non-adaptive
strategies? In fact, there is. For example, consider a social network consisting
of 4 nodes {v1, v2, v3, v4} in a cycle, with v3 connected to two other isolated
vertices. Suppose furthermore that a node will accept a recommendation with
probability 0.5 unless the price is 0, in which case the node will accept it with
probability 1. On this network, with seed set S0 = {v1}, the optimal adaptive
strategy is to always demand full price unless exactly one of v2 and v4 purchases
the product initially, in which case v3 should be offered the product for free.
This beats the optimal non-adaptive strategy by a factor of 1.0625.
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Abstract. The goal of a trust-based recommendation system is to generate per-
sonalized recommendations from known opinions and trust relationships. Prior
work introduced the axiomatic approach to trust-based recommendation systems,
but has been extremely limited by considering binary systems, while allowing
these systems to be inconsistent. In this work we introduce an axiomatic approach
to deal with consistent continuous trust-based recommendation systems. We in-
troduce the model, discuss some basic axioms, and provide a characterization of
a class of systems satisfying a set of basic axioms. In addition, as it turns out,
relaxing some of the axioms leads to additional interesting systems, which we
examine.

1 Introduction

Many online systems offer their users access to a vast variety of products or services,
which drives the need for high quality personalized recommendations. Often, these sys-
tems utilize social network structures of their users, as well as the users’ opinions of
one another and the products, in order to improve the quality of recommendations.
Google’s page ranking system [17] uses links to represent “voting” for web pages, Ama-
zon and eBay’s reputation systems (e.g. [18]) aggregate feedbacks that users leave for
transactions , and the Epinions trust/reputation system (e.g. [16]) aggregates explicit
trust/distrust links between its users. In recent years, recommendation and reputation
systems became the focus of intensive research (e.g. [14,19,8,22,11]).

In this work we focus on the setting where there is one item of interest, and various
users have rated this item. A user wishes to “predict” her own rating of the item by
consulting her friends, who, in turn, might consult their friends and so on. There exist
many automated recommendation systems that fit this general framework; however, this
raises the question of comparing the relative merits of these systems. There exist two
main approaches to studying and comparing recommendation/reputation systems: the
experimental approach and the axiomatic approach. The experimental approach evalu-
ates the performance of a given system on a particular set of users and ratings (along
various performance metrics); the obvious advantage of this approach is that it provides
a practical estimate of the real accuracy of the system. However, the results of a partic-
ular system on different data might be different; we need a general understanding of the
properties of different systems before we decide which one we want to implement for
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a particular setting. The axiomatic approach, which has a long history in social choice
theory, aims to achieve these goals.

In [6] the authors use the axiomatic approach in the restricted case of recommen-
dation systems in which the setting is an annotated directed graph, where some of the
nodes are labeled by votes of + and −. In that model a node represents an agent, an
edge directed from a to b represents the fact that agent a trusts agent b, and a subset
of the nodes are labeled by + or −, indicating that these nodes have already formed
positive or negative opinions about the item under question. Based on this input, a rec-
ommendation system must output a recommendation for each unlabeled node. In this
paper we extend this study to the general case, where trust values and votes are con-
tinuous, allowing users to express a range of recommendations, instead of just a binary
“like/dislike”. This extension is not only a technical one, since it allows considering
consistent trust-based recommendation systems, as explained below.

One of the most desired properties of a recommendation system is that it should be
consistent with its own recommendations. Namely, if a system comes with a particular
recommendation to agent p, based on other agents’ observations and the trust network,
then if this recommendation turns out to be correct, this should not change any recom-
mendations for the other agents. It is easy to see that the simplified binary setting does
not allow for such consistency. Hence, we view the axiomatic study of consistent con-
tinuous trust-based recommendation systems as essential for the understanding/analysis
of desirable realistic systems.

1.1 Overview of Results

In section 2 we introduce our model of continuous trust-based recommendation sys-
tems, where weights are non-negative real numbers, and votes are normalized to the
interval [−1, 1], In this framework we define our model axioms, which are minimal
requirements we may wish to have, as well as more elaborated axioms dealing with
the notion of consistency; these are further extended to several monotonicity axioms.
In section 3 we introduce an axiom termed Independence of Irrelevant Stuff [IIS], and
show that this axiom simplifies matters by allowing to consider only the way votes
are locally aggregated. We show a natural recommendation system that satisfies our
axioms, the Random Walk system, which is an extension of the system studied in pre-
vious work. Much emphasis in this paper is given to transformations of recommen-
dation systems which preserve their desired properties; in particular, in section 4 we
introduce two transformations that allow to tweak an existing recommendation system
in order to give more/less weight to radical votes, and to define the meaning of dif-
ferent trust values. This brings us in section 5 to a theorem which fully characterizes
the set of recommendation systems which satisfy a set of five natural axioms; namely,
this characterization shows that all systems satisfying these axioms must be a mod-
ification of the Random Walk system under the two transformations above, and that
each such modified Random Walk system satisfies the axioms. We also show that all
five axioms are essential. By relaxing the axioms, we get some interesting new rec-
ommendation systems: systems which incorporate discount factors and systems which
incorporate the aggregated network vote. Due to the tight space constraints of the pro-
ceedings, these do not appear here, but they can be seen online in the full version
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of the paper at the authors’ web sites: http://technion.ac.il/˜olga/ or
http://ie.technion.ac.il/Home/Users/Moshet0.html

Similarly, most proofs are omitted here, but they all appear online.

1.2 Additional Related Work

There are several ways to study recommendation systems. Standard evaluation tools
include simulations and field experiments (e.g. [7,18,13]). In addition, one may also
consider computational properties of suggested systems. As far as axiomatic studies are
concerned, our work builds on previous work on axiomatizations of ranking systems.
The literature on the axiomatic approach to ranking systems deals with both global
ranking systems [1,2,21,9,22,4,5] and personalized ranking systems [7,10,3,15]. Per-
sonalized ranking systems are very close to trust-based recommendation systems. In
such systems, agents rank some of the other agents. Then an aggregated ranking of
agents, personalized to the perspective of a particular agent, is generated based on that
information. However, previous studies on the axiomatic approach have not been con-
cerned with situations where the participants share reviews or opinions on items of
interest which are external to the system. Many existing recommendation system are
based on collaborative filtering (CF), which is a completely different approach than the
trust-based systems considered in this paper. Combining trust-based and CF approaches
is a direction of recent research [20].

2 Model and Axioms

The trust-based recommendation setting can be modeled formally as follows:
A voting network is a directed annotated graph G = (N,V,E, v, w) where N is a

set of agents, V ⊆ N is a set of voters (the agents who have an informed opinion on
the item of interest), v : V → [−1, 1] gives the vote of each voter, which represents his
opinion on the item (normalized to [−1, 1]), w : E →  ≥0, where w(x, y) represents
the trust of agent x in agent y. We will denote by V the set of non-votersN \ V .

Example of a voting network appears in Fig.1.

Fig. 1. Here, voters are designated by a double circle (V = {C, D}). The votes v appear inside
the circle; the trust weights appear near the appropriate edge.

A recommendation system R takes as input a voting networkG and has as output the
recommendations r(u) ∈ [−1, 1] for every u ∈ V (R(G) : V → [−1, 1]). We denote
R(G) by RG; for notation simplicity, we extend the definition of RG to N by setting
RG(u) = v(u) for all v ∈ V (so that RG(u) now means recommendation or vote of u).

http://technion.ac.il/~olga/
http://ie.technion.ac.il/Home/Users/Moshet0.html
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This model is the natural extension of the model in [6] for continuous trust and vote
values. First, we restrict ourselves to recommendation systems that satisfy the following
basic conditions:

1. Anonymity: Isomorphic graphs correspond to isomorphic recommendations. For-
mally, for a permutation π of N such that π(G) = G′ (where π(G) stands for
applying π on v and w appropriately), it holds that R(G′) = π(RG)

2. Neutrality: The system is a priori indifferent towards positive or negative opinions
– switching the signs on votes will cause switched signs of recommendations. For-
mally,
R(−G) = −RG, where−G = (N,V,E,−v, w).

3. No-edge equals zero trust: Adding edges with weight 0 does not affect recom-
mendations.

4. No-node equals orphan non-voter: Adding non-voters with no incoming or out-
going edges does not affect any existing recommendations.

5. Continuity: The recommendation of a node v is a continuous function of the votes
and the trust in every point, except possibly for points where all v’s outgoing trust
equals 0.

We call this set of conditions Model Axioms (MA). In essence, we want these require-
ments as part of our model. Requirements 1 and 2 are natural, and appeared in the same
form in the binary model of [6] as well (here, we renamed Symmetry to Anonymity in
order to be consistent with social choice literature). In 3 we wanted to express that trust
value of 0 is equivalent to no trust at all, and in 4 we wanted to express our implicit
assumption that N represents only those agents who are in some sense informed (either
know other agents or tried the product); implicitly, there is an infinite amount of agents
in the system, but the recommendation system should only take the informed ones into
account. (An alternative way to model the requirements 3 and 4 was to fix the set of
agents to the set of natural numbers,�, and require the input trust weights to induce a
finite graph). Finally, in 5, we want the system to be “stable” in a sense: we don’t want
small changes in the input to cause big changes in the output. However, the case where
a node v is a sink is a reasonable exception to this rule, since trusting no one at all and
having trust in someone (no matter how small) are fundamentally different situations.
For example, in many natural systems it holds that, if a node trusts a single voter with
a vote of v, then its recommendation will also be v, no matter what is the weight of the
trust link. However, if a node does not trust anyone at all, its recommendation is 0. We
don’t want these cases to violate our continuity requirement.

In the following we implicitly assume MA; in particular, when we speak of paths in
a voting network G we will refer only to edges of positive weight; parents (or prede-
cessors) of a node u (Pred(u)) are nodes z for which w(z, u) > 0; similarly, children
(or successors) of a node u (Succ(u)) are nodes z for which w(u, z) > 0. However, we
admit that the requirement MA[4] is debatable; we will show some natural recommen-
dation systems that violate it.

In this work, we want to concentrate on the consistency requirement:

Node Consistency (NC): Let u be a non-voter. If we turn u into a voter with the vote
RG(u), no recommendations will change. Formally, for any voting networkG and agent
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u ∈ V , let G′ = (N,V ∪{u}, E, v∪{(u,RG(u))}, w). Then, for all z ∈ V , RG′(z) =
RG(z).

Intuitively, consistent recommendation systems rely on their own predictions – they
don’t change their prediction for an agent if their predictions for other agents turned
out to be correct. Their output is stable, in a sense: if the output is added to the input,
nothing changes.

Consistency seems a very natural requirement; however, many systems used in real
life are not consistent. Consider, for example, the Majority system: the recommendation
of a node is 1 if the majority of his neighbors cast a positive vote, -1 if the majority of
his neighbors cast a negative vote, and 0 otherwise. This system does not rely on its
own predictions, since only voter neighbors are counted (it violates node consistency).
A similar problem occurs in all binary systems – the Random Walk and Personalized
Page Rank systems, as defined in [6], are not consistent because of similar considera-
tions: intuitively, a binary system which has to commit to recommendations of 0, 1 or
-1, cannot be very sensitive to nuances in the input (in the sense that many different
inputs map to the same output), and therefore has little chances of being consistent. 1

However, this particular problem is somewhat artificial: we can redefine the systems to
fit appropriately into the continuous setting. For example, the Personalized Page Rank
system (PPR) [12] can be adapted as follows: the recommendation of a node v is the
expected vote value of a voter that can be reached from a random walk starting from
v, with a restarting probability α (in the binary setting, it was defined as the sign of
the above value). It is easy to see that even this continuous system is not consistent.
Consider the graph in Fig.2: the PPR recommendation of node B is 1; but if B becomes
a voter with a vote of 1, the PPR recommendation of A will become 0.5 instead of 0.2.

Fig. 2. Here, the votes and recommendations of PPR appear inside the circles; α = 0.5; the trust
weight is 1 for all edges

Thus far, we spoke of consistency in terms of node values (votes). However, our
system has two kinds of input: nodes and edges (votes and trust). Below is one intuitive
requirement concerning trust values:

Edge Consistency (EC): If we increase trust in an agent with a value (recommendation
or vote) equal to ours, our value will not change. Formally, for any voting network
G, agent u ∈ V , edge (u, z) ∈ E, and w′ > w(u, z) let G′ = (N,V,E, v, w \
{((u, z), w(u, z))} ∪ {((u, z), w′)}). Then, RG(u) = RG(z) ⇒ RG′(u) = RG(u).

Consistency in itself is too weak a requirement: it only tells us how the system should
behave if its output is fed back into the input, without any changes. For example, a rec-
ommendation system that always gives a recommendation of 0 to all agents is consis-
tent, as well as the AVE system that gives the recommendation of the average vote to

1 It would be interesting to translate this intuition into a formal impossibility proof.
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all agents. Now we would like to express the intuition about how the output of a recom-
mendation system should change if the input changes. The input of the system comes in
two parts: votes and trust. Therefore, as before, we formulate two requirements: what
happens when a vote changes, and what happens when trust changes.

Node Monotonicity (NM): For any voting network G and agent u ∈ N , let G′ =
(N,V ∪ {u}, E, v \ {(u,RG(u))} ∪ {(u, r′)}, w). Then:

1. If r′ = RG(u), then for every z ∈ N , RG′(z) = RG(z)
2. For every parent z of u,
sgn(RG′(z)−RG(z)) = sgn(r′ −RG(u))

Edge Monotonicity (EM): For any voting network G, agent u ∈ V , edge (u, z) ∈ E,
and w′ > w(u, z) let G′ = (N,V,E, v, w \ {((u, z), w(u, z))}∪{((u, z), w′)}). Then,
sgn(RG′(u)−RG(u)) = sgn(RG(z)−RG(u)).

Here, sgn(x) is defined for x ∈  as:

sgn(x) =
{ x

|x| x �= 0
0 otherwise

Note that NM implies NC and EM implies EC (follows from the definitions). Intu-
itively, by node monotonicity we demand the following: if we change a parent’s vote,
the child’s vote must change appropriately (this is what makes the monotonicity re-
quirement strict). The trivial system of recommending 0 to everyone satisfies NC, but
not NM. Edge monotonicity states that increasing trust in a given agent, all other things
being equal, should bring our recommendation strictly closer to the vote of that agent 2

(note that due to NC, it doesn’t matter if we restrict z to belong to V in the definition of
EM). Note also that AVE system satisfies NM and EC, but not EM (since it ignores the
trust network).

The first question of interest for us is: which recommendation systems satisfy NM
and EM? The Random Walk system (RW) is defined as follows: intuitively, to get a
recommendation for a non-voter u, we perform a random walk in G starting from u,
where in each step we move from node z to a random neighbor z′, choosing z′ with a
probability proportionate to the trust of z in z′, relatively to the overall trust of z. If the
walk reaches a voter, the value of the walk is the vote value. Otherwise, the value of the
walk is 0. The recommendation is the expected value of a walk over all random walks.
Formally, for a voting network G, let S ⊆ V be the set of non-voters that cannot reach
any voter. For each u ∈ N , create a variable ru ∈ [−1, 1]. Solve the following from ru:

ru =

⎧⎪⎨⎪⎩
0 u ∈ S
v(u) u ∈ V∑

z∈Succ(u) w(u,z)rz∑
z∈Succ(u) w(u,z) otherwise

The recommendationsRW (G) are defined as RW (G)(u) = ru.
Fig 3 shows the result of RW on the example network from Fig.1.

2 The Positive Response axiom in the binary setting of [6] can be derived from EM in our setting.
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Fig. 3. Here, the votes and the recommendations of RW appear inside the circles

This system is a direct adaptation of the Random Walk system from [6] to the con-
tinuous setting (in the binary setting, the recommendation of u was -1, 0 or 1 according
to the sign of ru, which is neither continuous nor consistent). It is easy to see that the
RW recommendation system satisfies MA, NM and EM.

3 IIS Axiom

The following axiom makes things easier, because it allows us to restrict attention to
“local” functions:

Independence of Irrelevant Stuff (IIS) encompasses the following two require-
ments:

1. Let z ∈ N be a node not reachable from node u. Then for the subgraphG′ in which
node z and all its associated edges were removed,RG′(u) = RG(u).

2. Let G = (N,V,E, v, w) and e ∈ V × N an edge leaving a voter. Then for the
subgraph G′ = (N,V,E \ {e}, v, w \ {(e, w(e))}) in which e has been removed,
RG′ = RG.

The first requirement demands that a path of trust exist between a node u and a given
voter in order for u to be influenced in any way by that voter – a condition consistent
with what we expect from trust-based recommendation systems: we want to ignore non-
trusted opinions. The second requirement captures the intuition that an agent trusts his
own opinion infinitely more than opinions of others. It is easy to see that RW satisfies
IIS; in the full version of the paper (see http://technion.ac.il/˜olga) we
show some systems that satisfy MA+NM+EM, but not IIS[1].3

Proposition 1. A recommendation system R that satisfies MA, IIS and NC can be writ-

ten as:RG(u) = F

(
v1, . . . , vn

w1, . . . , wn

)
for each non-voter u, where the vi’s are the recom-

mendations/votes of children of u, wi’s are the appropriate weights (formally: for each
zi s.t. (u, zi) ∈ E, vi = RG(zi), wi = w(u, zi)), and F is an aggregate function of
v1, . . . , vn, w1, . . . , wn (also denoted F (−→v ,−→w )) that satisfies the following:

1. F (−→v ,−→w ) ∈ [−1, 1] for all v1, . . . , vn ∈ [−1, 1] and
w1, . . . , wn ∈  ≥0.

2. F

(
v1, . . . , vn

w1, . . . , wn

)
= F

(
vπ(1), . . . , vπ(n)
wπ(1), . . . , wπ(n)

)
, where π is any permutation of

{1, . . . , n}.

3 We conjecture that IIS[2] can be derived from MA+NM+EM, but we have yet to find a proof.

http://technion.ac.il/~olga
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3. F (−→v ,−→w ) = −F (−−→v ,−→w )
4. F (−→v ,−→0 ) = 0

5. F

(
v1, v2, . . . , vn

0, w2, . . . , wn

)
= F

(
v2, . . . , vn

w2, . . . , wn

)
6. F is continuous everywhere except possibly at points where −→w = −→0

4 Scaling Votes and Trust

We have already seen one recommendation system that satisfies MA, NM, EM and
IIS; the following propositions will enable us to create many more such systems. All
of them introduce transformations on recommendation systems that preserve (some of)
their desired properties.

More formally, let T be a transformation on the space of recommendation systems.
We say that T preserves a set of properties X if, for every recommendation system R
satisfying all the properties in X , the recommendation system T (R) satisfies all these
properties as well.

The following transformation can be used to give more (or less) weight to “radical”
opinions (those closer to the ends of the [−1, 1] scale):

Proposition 2. Let f : [−1, 1] → [−1, 1] be a continuous monotone anti-symmetric
onto function. Then, the transformation Tf (R) = f−1 ◦ R ◦ f (meaning: apply f to
all the votes in G, then apply R, then apply f−1 on the resulting recommendations)
preserves {MA,NM,EM} and {MA,NM,EM, IIS}
Note that a continuous monotone function is also one-to-one. If we want to use a func-
tion f which is not onto, we need an additional assumption in order for the transfor-
mation to preserve the desired properties (without an additional assumption, f−1 might
not be well defined). We call this assumption Conservativeness:

Conservativeness: A recommendation system R is said to satisfy Conservativeness if
for every voting network G and non-voter u with a single positive weighted outgoing
edge to a voter z (w.l.o.g. v(z) ≥ 0), 0 ≤ RG(u) ≤ v(z).

Conservativeness states that a recommendation for an agent cannot be more radical
than the vote of someone he trusts – the value can only be altered in the direction of
uncertainty. We can show that conservative systems satisfy the natural betweenness
property – the recommendation of a node falls between the votes of his neighbors,
possibly skewed towards uncertainty:

Proposition 3. Let R be a recommendation system that satisfies MA, NC, EM, IIS
and Conservativeness. For a voting network G and u ∈ N , we define RSucc(u) =
{RG(z)|z ∈ Succ(u)}. Then, for every voting network G and every u ∈ V ,

min{RSucc(u) ∪ {0}} ≤ RG(u) ≤ max{RSucc(u) ∪ {0}}
Moreover, when |RSucc(u)| > 1, the inequalities are strict:

min{RSucc(u) ∪ {0}} < RG(u) < max{RSucc(u) ∪ {0}}
The RW system obviously satisfies Conservativeness. If we begin with a conservative
system, we can show a wider family of transformations that preserve our desired prop-
erties:
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Proposition 4. Let f : [−1, 1] → [−1, 1] be a continuous monotone anti-symmetric
function. Then, the transformation Tf (R) = f−1 ◦ R ◦ f preserves {MA,NM,EM,
IIS, Conservativeness}.

Proof (Sketch). From IIS and prop. 3 above, Tf (R) is well defined, even if f is not
onto; therefore, MA, NM, EM and IIS are preserved by prop. 2. Preservation of Con-
servativeness follows directly from monotonicity of f . 	


It is an interesting open question whether the Conservativeness requirement is indeed
necessary for the proof – meaning, whether there exist recommendation systems satis-
fying MA, NM, EM and IIS, but not Conservativeness.

The following transformation can be used to specify what contributes more to the
decision – many neighbors with small trust values or few neighbors with larger trust
values (given that the total trust is the same in both cases):

Proposition 5. Let g :  + →  + be a continuous monotone increasing function, with
g(0) = 0. Then, the transformation Tg(R) = R◦g (meaning: apply g to all the weights
in G, then apply R) preserves {MA,NM,EM} and {MA,NM,EM, IIS}.

Proof (Sketch). The proof follows directly from properties of R and g; the assumption
g(0) = 0 is required in order for MA[3] to hold. 	


5 Axiomatic Characterization of RW Systems

In this section we wish to characterize the family of recommendation systems that re-
sults from the closure of RW under the transformations Tf and Tg, for any f and g.
In order to do that, we need to define some additional properties of recommendation
systems. We start with some intuition:

One desirable requirement is the transitivity of trust relations (appeared originally in
[6]). Let G be a graph, v a node, and A, B two disjoint sets of nodes. We say that v
trusts A more than B if the recommendation of v in a voting network on G where all
nodes in A vote 1, all nodes in B vote -1, and no other nodes vote, is positive.

Transitivity (TR): We say that a recommendation system R is transitive if, for every
graph G, node v and disjoint sets A,B,C, if v trusts A more than B and v trusts B
more than C, then v trusts A more than C.

[6] showed, for the binary setting, that Transitivity is impossible to reconcile with
IIS and their versions of monotonicity. This still holds in the continuous case:

Proposition 6. The requirements MA[1,2,3], IIS, either one of NM or EM, and Transi-
tivity are inconsistent.

So the Transitivity requirement needs to be weakened, if we want any hope of accom-
modating it. In the binary setting, [6] had the axiom of Trust Propagation: if u trusts v
with a weight k, and v trusts (only) nodes v1, . . . , vk with a weight of 1, then the edge
(u, v) can be replaced with k edges (u, vi), with no recommendations being affected.

The direct translation of this axiom into the continuous setting would have the weight
on the edge (u, v) equal to the sum of the weights on (v, vi), but we found it to be too
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restrictive. We did not want to limit the way the trust weights are interpreted (does a trust
link of weight 2 “matter” exactly as much as two trust links of weight 1?). Therefore,
the axiom we chose retains the spirit of Trust Propagation, while avoiding to specify
the exact way of translating the trust weights:

Separability: Let ⊕ be an operator⊕ :  ≥0 × ≥0 →  ≥0 satisfying:

1. w ⊕ 0 = w
2. Associativity: (w1 ⊕ w2)⊕ w3 = w1 ⊕ (w2 ⊕ w3)
3. ⊕ is a continuous, strictly monotone increasing function in both variables

We say that a recommendation system R is separable if, for any voting network G, if
a node v trusts only nodes v1, v2 with respective trust weights of w1, w2, and a node u
trusts v with a weight of (w1 ⊕ w2), then the edge (u, v) can be replaced with edges
(u, v1),(u, v2) with weights w1, w2, and no recommendations will change (see Fig. 4).

Fig. 4. Separability axiom

The RW system obviously satisfies Separability, with ⊕ = +.
Next, we have a more strict variant of Conservativeness:

Neighborhood Consensus (NCS): A recommendation system R is said to satisfy
Neighborhood Consensus if for every voting network G and non-voter u with a sin-
gle positive weighted outgoing edge to a voter z, RG(u) = v(z).

Note that NCS+EM imply that if all neighbors of a node agree on their votes, the
recommendation for that node equals these votes (hence the name). Despite being more
strict than Conservativeness, this property is very natural and appears in many social
choice systems. The RW system also satisfies this requirement.

Now we can formulate the characterization result:

Theorem 1. A recommendation system R can be defined as the unique solution of the
system of equations:

ru =

⎧⎪⎨⎪⎩
0 no path exists from u to a voter
v(u) u ∈ V
f−1
[∑

z∈Succ(u) g(w(u,z))f(rz)∑
z∈Succ(u) g(w(u,z))

]
otherwise

where f is a continuous monotone anti-symmetric function, and g a continuous mono-
tone increasing function, with g(0) = 0, if and only if R satisfies the following condi-
tions: MA, IIS, NM, NCS and Separability.
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We note that each axiom in the above theorem is necessary for the result to hold; namely,
there exist examples of systems satisfying all but one of these axioms which could not
be written in the above form. Below we shortly discuss each example.

Relaxing MA is not interesting – in particular, it makes no sense to consider systems
which are not anonymous. Relaxing NCS is the focus of the section on discount factors
(see full paper online) – in particular, applying prop. 7 there on RW can be used to
create examples of systems satisfying MA, NM, IIS and Separability, but not NCS. It is
also possible to relax IIS (see section 7 in the full paper), resulting in systems satisfying
MA, NM, NCS and Separability, but not IIS. Relaxing the NM requirement is trivial:
a system that always gives recommendations of 0 will do. Relaxing Separability – we
apply the following transformation on the graphG: for each node v with outgoing edges
e1, . . . , ek and appropriate weights w1, . . . , wk , let tv = w1 + . . .+wk. We change the
weights of e1, . . . , ek to wtv

1 , . . . , w
tv

k , respectively (we raise all weights to the power
of tv). Let G′ be the graph resulting from the transformation. Our system returns the
result of RW on G′. It is easy to see that the system satisfies MA, NM, NCS and IIS,
but not Separability.

6 Conclusions and Further Work

This paper explored continuous trust based recommendation systems. Our main re-
quirement was consistency - we focused on recommendation systems which rely on
their own predictions. First, we showed the “basic” such system – Random Walk – and
then we introduced a few transformations that customize recommendation systems ac-
cording to specific needs: give more or less weight to radical opinions, tweak the impor-
tance of having multiple trust links of small weights vs. few trust links of large weights,
tweak the “damping factor” (discount) of trusted opinions, and consider the aggregated
opinion of the network. All along we used the axiomatic approach – we started by for-
malizing our requirements from recommendation systems, and then identified families
of recommendation systems that conform to these requirements.

All the recommendation systems in this paper were some version of Random Walk
applied to a transformed voting network. A central question is whether this focus is jus-
tified. In section 5 we showed that if we want our system to conform to some additional
requirements, then, indeed, we have no choice but to use a generalized version of Ran-
dom Walk. But what if we consider the most general possible recommendation system?
Are there any continuous consistent recommendation systems at all that are not fun-
damentally based on Random Walk? We strongly suspect that the answer is negative;
however, the concept of being “fundamentally based on Random Walk” is not easy to
formalize. Attempts of full characterization of consistent continuous recommendation
systems are in the focus of our current research.
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Abstract. The Stackelberg Minimum Spanning Tree Game is a two-
level combinatorial pricing problem introduced at WADS’07. The game
is played on a graph, whose edges are colored either red or blue, and
where the red edges have a given fixed cost. The first player chooses an
assignment of prices to the blue edges, and the second player then buys
the cheapest spanning tree, using any combination of red and blue edges.
The goal of the first player is to maximize the total price of purchased
blue edges. We study this problem in the cases of planar and bounded-
treewidth graphs. We show that the problem is NP-hard on planar graphs
but can be solved in polynomial time on graphs of bounded treewidth.

1 Introduction

A young startup company has just acquired a collection of point-to-point tubes
between various sites on the Interweb. The company’s goal is to sell the use of
these tubes to a particularly stingy client, who will buy a minimum-cost span-
ning tree of the network. Unfortunately, the company has a direct competitor:
the government sells the use of a different collection of point-to-point tubes at
publicly known prices. Our goal is to set the company’s tube prices to maxi-
mize the company’s income, given the government’s prices and the knowledge
that the client will buy a minimum spanning tree made from any combination
of company and government tubes. Naturally, if we set the prices too high, the
client will rather buy the government’s tubes, while if we set the prices too low,
we unnecessarily reduce the company’s income.

This problem is called the Stackelberg Minimum Spanning Tree Game
[CDF+07], and is an example in the growing family of algorithmic game-theoretic
problems about combinatorial optimization in graphs [BHK08,GvLSU09,LMS98,
RSM05,BGPW08]. More formally, we are given an undirected graph G (possi-
bly with parallel edges, but no loops), whose edge set E(G) is partitioned into
� Aspirant F.R.S. – FNRS.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 125–136, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. A sample instance of the StackMST problem. The goal is to assign prices to
the blue edges to maximize the total price of the blue edges purchased in a minimum
spanning tree.

a red edge set R(G) and a blue edge set B(G). We are also given a cost function
c : R(G) → R+ assigning a positive cost to each red edge. The StackMST prob-
lem is to assign a price p(e) to each blue edge e, resulting in a weighted graph
(G, c∪p), to maximize the total price of blue edges in a minimum spanning tree.
We assume that, if there is more than one minimum spanning tree, we obtain
the maximum possible income. (Otherwise, we could decrease the prices slightly
and get arbitrarily close to the same income.) Figure 1 shows an example.

This problem is thus a two-player two-level optimization problem, in which
the leader (the company) chooses a strategy (a price assignment), taking into
account the strategy of the follower (the client), which is determined by a second-
level optimization problem (the minimum spanning tree problem). Such a game
is known as a Stackelberg game in economics.

The complexity and approximability of the StackMST problem has been
studied in a previous paper [CDF+07], which shows the following results. The
problem is APX-hard, but can be approximated within a logarithmic factor.
Constant-factor approximation exist for the special cases in which the given
costs are bounded or take a bounded number of distinct values. Finally, an
integer programming formulation has an integrality gap corresponding to the
best known approximation factors.

Instead of restricting the edge weights, we can restrict the class of allowed
graphs, with the hope of obtaining better approximation algorithms. One natu-
ral class of graphs is planar graphs, on which many important problems admit
polynomial-time approximation schemes. Many of these results use Baker’s tech-
nique [Bak94] or more modern variations [Kle06, DHM07, DHK09], which ulti-
mately rely on the ability to efficiently solve the problem in graphs of bounded
treewidth in polynomial time. Such algorithms generally use dynamic program-
ming, using a textbook technique for well-behaved problems. In particular, the
problem of checking a graph-theoretic property expressible in monadic second-
order logic is fixed-parameter tractable with respect to the treewidth of the
graph; see [Cou08] for a survey. However, few if any such dynamic programs
have been developed for a two-level optimization problem such as StackMST,
and standard techniques do not seem to apply.
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In this paper, we consider the StackMST problem in these two graph
classes: planar graphs and bounded-treewidth graphs. We prove in Section 2 that
StackMST remains NP-hard when restricted to planar graphs. We develop in
Section 4 a polynomial-time dynamic programming algorithm for StackMST

in graphs of bounded treewidth. Along the way, we develop in Section 3 a dy-
namic programing algorithm for series-parallel graphs, or equivalently, bicon-
nected graphs of treewidth at most 2, which are also planar.

To our knowledge, our algorithms are the first examples of a two-level pricing
problem solved by dynamic programming on a graph decomposition tree. We
believe that this result provides insight into the structure of the problem, and
could be a stepping stone toward a polynomial-time approximation scheme for
planar graphs. More generally, we believe that our techniques may be useful
in the design of dynamic programming algorithms for other pricing problems
in graphs, including pricing problems with many followers [BHK08,GvLSU09],
and Stackelberg problems involving shortest paths [RSM05] or shortest path
trees [BGPW08].

2 Planar Graphs

We consider the StackMST problem on planar graphs. We strengthen the hard-
ness result given in [CDF+07] by showing that the problem remains NP-hard
in this special case. The reduction is from the minimum connected vertex cover
problem, which is known to be NP-hard, even in planar graphs [GJ79]. The min-
imum connected vertex cover problem involves finding a minimum-size subset C
of the vertices of a graph, such that every edge has at least one endpoint in C,
and C induces a connected graph.

Theorem 1. The StackMST problem is NP-hard, even when restricted to pla-
nar graphs.

The reduction is the following. Given a planar graph G = (V,E), with |V | = n
and |E| = m, we construct an instance of StackMST with red costs in {1, 2}.
Let G′ = (V ′, R ∪ B) be the graph for this instance, with (R,B) a bipartition
of the edge set. We first let V ′ = V ∪ E. The set of blue edges B is the set
{ve : e ∈ E, v ∈ e}. Thus the blue subgraph is the vertex-edge incidence graph
of G, which is clearly planar. Given a planar embedding of the blue subgraph, we
connect all vertices e ∈ E of G′ by a tree, all edges of which are red and have cost
1. The graph can be kept planar by letting those red edges be nonintersecting
chords of the faces of the embedding. Finally, we double all blue edges by red
edges of cost 2. The whole construction is illustrated in figure 2(a). Let t be a
positive integer. It can be shown that the revenue for an optimal price function
for G′ is at least m + 2n − t − 1 if and only if there exists a connected vertex
cover of G of size at most t. The proof can be found in the long version of the
paper1.

1 http://arxiv.org/abs/0909.3221
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Fig. 2. Illustration of the reduction in Theorem 1

3 Series-Parallel Graphs

We now describe a polynomial-time dynamic programming algorithm for solving
the StackMST problem on series-parallel graphs.

We use the following inductive definition of (connected) series-parallel graphs.
Consider a connected graph G with two distinguished vertices s and t. The graph
(G, s, t) is a series-parallel graph if either G is a single edge (s, t), or G is a series
or parallel composition of two series-parallel graphs (G1, s1, t1) and (G2, s2, t2).
The series composition of G1 and G2 is formed by setting s = s1, t = t2 and
identifying t1 = s2; the parallel composition is formed by identifying s = s1 = s2
and t = t1 = t2.

Theorem 2. The StackMST problem can be solved in O(m4) time on series-
parallel graphs.

3.1 Definitions

Let us fix an instance of StackMST, that is, a graph G with E(G) = R(G) ∪
B(G) endowed with a cost function c : R(G) → R+. Denote by c1, c2, . . . , ck the
different values taken by c, in increasing order. Let also c0 := 0.

For two distinct vertices s, t ∈ V (G) of G and a subset F ⊆ B(G) of blue
edges, define P(G,F, s, t) as the set of st-paths in the graph (V (G), R(G) ∪ F ).
Let also P̃(G,F, s, t) denote the subset of paths in P(G,F, s, t) that contain at
least one red edge. Cardinal et al. [CDF+07] proved the following.

Lemma 1 ([CDF+07]). Suppose that G contains a red spanning tree, and let
F ⊆ B(G) be an acyclic subset of blue edges. Then, the maximum revenue achiev-
able by the leader, over solutions where the set of blue edges bought by the follower
is exactly F , is obtained by setting the price of each edge st �∈ F to +∞, and the
price of each edge st ∈ F to min

{
maxe∈P∩R(G) c(e) | P ∈ P̃(G,F, s, t)

}
.

This lemma states that if we know the set of blue edges that will eventually be
bought, the price of a selected blue edge st is given by the minimum, over the
paths from s to t, of the largest red cost on this path.
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Motivated by this result, we introduce some more notations. For a subset
Z ⊆ E(G) of edges, we define mc(Z) as the maximum cost of a red edge in Z if
Z ∩R(G) �= ∅, as c0 = 0 otherwise. (The two letters mc stand for “max cost”.)
We define w(G,F, s, t) as

w(G,F, s, t) :=
{

min {mc(P ) | P ∈ P(G,F, s, t)} if P(G,F, s, t) �= ∅;
ck otherwise.

Similarly,

w̃(G,F, s, t) :=

{
min
{

mc(P ) | P ∈ P̃(G,F, s, t)
}

if P̃(G,F, s, t) �= ∅;
ck otherwise.

Thus, the price assigned to the edge st ∈ F in Lemma 1 is w̃(G,F, s, t). Also,
we will consider graphs that do not necessarily contain a red spanning tree; this
is why we need to treat the case where P(G,F, s, t) or P̃(G,F, s, t) is empty in
the above definitions.

In what follows, we let [k] := {0, 1, . . . , k}. Our algorithm for series-parallel
graphs associates a value to each pair (H, q), where q ∈ [k]2, and H is a graph
appearing in the series-parallel decomposition of G.

A subset F ⊆ B(G) of blue edges realizes q = (i, j) ∈ [k]2 in (G, s, t) if F is
acyclic and w(G,F, s, t) = ci. Although this property does not depend on j, the
formulation will appear to be convenient. Similarly, we say that q is realizable
in (G, s, t) if there exists such a subset F .

For j ∈ [k] and distinct vertices s, t ∈ V (G), let G+ denote the graph G with
an additional red edge between s and t of cost cj . We define

OPT(i,j)(G, s, t) := max

{∑
uv∈F

w̃(G+, F, u, v)

∣∣∣∣∣F realizes (i, j) in (G, s, t)

}
,

if such a subset F ⊆ B(G) exists, and set OPT(i,j)(G, s, t) := −∞ otherwise.

Intuitively, we want to keep track of optimal acyclic subsets of blue edges for
every graph G obtained during the construction of a series-parallel graph. The
problem is, that the weights of the blue edges in the optimal solution might
change as we compose graphs in the series-parallel decomposition. However, the
weights of edges depend only on the maximum red costs, or bottlenecks, of the
new st-paths that will be added to G. We can thus prepare OPT(G, s, t) for
every possible set of bottlenecks. These bottlenecks are the values j in what
precedes.

Note that by Lemma 1, if G has a red spanning tree, then the maximum
revenue achievable by the leader on instance G equals maxi∈[k] OPT(i,k)(G, s, t).
This will be the result returned by the algorithm.

3.2 Series Compositions

Let q = (i, j), q1 = (i1, j1), and q2 = (i2, j2), with q, q1, q2 ∈ [k]2. We say that
the pair (q1, q2) is series-compatible with q if



130 J. Cardinal et al.

(S1) max{i1, i2} = i;
(S2) max{j, i2} = j1, and
(S3) max{j, i1} = j2,

Our dynamic program uses the following recursion.

Lemma 2. Suppose that (G, s, t) is a series composition of (G1, s1, t1) and
(G2, s2, t2), and that q ∈ [k]2 is realizable in (G, s, t). Then

OPTq(G, s, t) = max{OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2)}
where the maximum is taken over all pairs (q1, q2) that are series-compatible
with q.

We now prove that the recursion is valid. We need the following lemmas. In what
follows, (G, s, t) is a series composition of (G1, s1, t1) and (G2, s2, t2); q, q1, q2 ∈
[k]2 with q = (i, j), q1 = (i1, j1), and q2 = (i2, j2) are such that (q1, q2) is
series-compatible with q; and F� ⊆ B(G�) realizes q� in (G�, s, t), for � = 1, 2.

We first observe that F := F1 ∪ F2 realizes q.

Lemma 3. F realizes q in (G, s, t).

Proof. Since V (G1) ∩ V (G2) = {t1} (= {s2}), the set F is clearly acyclic. It
remains to show w(G,F, s, t) = ci. Every st-path in P(G,F, s, t) is the combina-
tion of an s1t1-path of P(G1, F1, s1, t1) with an s2t2-path of P(G2, F2, s2, t2). It
follows

w(G,F, s, t) = max {w(G1, F1, s1, t1), w(G2, F2, s2, t2)} = max{ci1 , ci2} = ci,

where the last equality is from (S1). 	

The next lemma motivates the definition of series-compatibility.

Lemma 4. Let G+ be the graph G augmented with a red edge st of cost cj, and
G+

� (for � = 1, 2) the graph G� augmented with a red edge s�t� of cost cj�
. Then

for � = 1, 2 and every edge uv ∈ F�,

w̃(G+, F, u, v) = w̃(G+
� , F�, u, v).

Proof. We prove the statement for � = 1, the case � = 2 follows by symmetry.
Let uv ∈ F1, and let e = st and e1 = s1t1 be the additional red edges in G+ and
G+

1 , respectively.

Claim. w̃(G+, F, u, v) ≥ w̃(G+
1 , F1, u, v).

Proof. The claim is true if P̃(G+, F, u, v) = ∅, since then w̃(G+, F, u, v) = ck ≥
w̃(G+

1 , F1, u, v). Suppose thus P̃(G+, F, u, v) �= ∅, and let P ∈ P̃(G+, F, u, v). It
is enough to show that mc(P ) ≥ w̃(G+

1 , F1, u, v). This clearly holds if e /∈ E(P ),
as P belongs then also to P̃(G+

1 , F1, u, v) (recall that |V (G1) ∩ V (G2)| = 1).
Hence, we may assume e ∈ E(P ). It follows s1, t1 ∈ V (P ).

Let P1 denote the path of P̃(G+
1 , F1, u, v) obtained by replacing the subpath

s1Pt1 of P with the edge e1. Using (S2), we obtain

mc(s1Pt1) = max{cj,mc(t2Pt1)} ≥ max{cj, ci2} = cj1 ,

implying mc(P ) ≥ mc(P1) ≥ w̃(G+
1 , F1, u, v). 	




The Stackelberg Minimum Spanning Tree Game 131

Claim. Conversely, w̃(G+, F, u, v) ≤ w̃(G+
1 , F1, u, v).

Proof. Again, this trivially holds if P̃(G+
1 , F1, u, v) is empty. Suppose thus

P̃(G+
1 , F1, u, v) �= ∅, and let P1 ∈ P̃(G+

1 , F1, u, v). Similarly as before, it is
enough to show that w̃(G+, F, u, v) ≤ mc(P1). This is true if e1 /∈ E(P1), since
then P1 ∈ P̃(G+, F, u, v). Assume thus e1 ∈ E(P1).

If P(G2, F2, s2, t2) = ∅, then i2 = k and mc(P1) ≥ cj1 = max{cj , ci2} = ck ≥
w̃(G+, F, u, v) by (S2). We may thus assume that P(G2, F2, s2, t2) contains a
path P2; we choose P2 such that mc(P2) = ci2 .

Denote by P the path obtained from P1 by replacing the edge e1 with the
combination of edge e and path P2. Since P ∈ P̃(G+, F, u, v), (S2) yields

mc(P1) = max {cj1 ,mc(P1 − e1)} = max {cj , ci2 ,mc(P1 − e1)}
= max {cj ,mc(P2),mc(P1 − e1)} = mc(P ) ≥ w̃(G+, F, u, v). 	


The lemma follows from Claims 3.2 and 3.2. 	


We are now ready to prove the correctness of the recursion step in Lemma 2.

Proof (Lemma 2). Let q and G+ be defined as before. We first show:

Claim. There exist q1, q2 ∈ [k]2 such that (q1, q2) is series-compatible with q and
OPTq(G, s, t) ≤ OPTq1(G1, s, t) + OPTq2(G2, s, t).

Proof. Let F ⊆ B(G) be a subset of blue edges realizing q in (G, s, t) such that

OPTq(G, s, t) =
∑

uv∈F

w̃(G+, F, u, v).

For � = 1, 2, let also F� := F ∩ E(G�) and q� := (i�, j�), with i� the index such
that ci�

= w(G�, F�, s�, t�), and j� := max{j, i�+1} (indices are taken modulo 2).
F� (� = 1, 2) clearly realizes q� in (G�, s�, t�). It is also easily verified that (q1, q2)
is series-compatible with q. Hence we can apply Lemma 4:

OPTq(G, s, t) =
∑

uv∈F1

w̃(G+
1 , F1, u, v) +

∑
uv∈F2

w̃(G+
2 , F2, u, v)

≤ OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2),

as claimed. 	


Claim. OPTq(G, s, t) ≥ OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2) holds for every
q1, q2 ∈ [k]2 such that (q1, q2) is series-compatible with q.

Proof. Suppose that (q1, q2) is series-compatible with q. Let F� ⊆ B(G�) (� =
1, 2) be a subset of blue edges of G� such that

OPTq�
(G�, s�, t�) =

∑
uv∈F�

w̃(G+
� , F�, u, v).
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By Lemma 3, F := F1∪F2 realizes q in (G, s, t). Using again Lemma 4, we have:

OPTq(G, s, t) ≥
∑

uv∈F

w̃(G+, F, u, v)

=
∑

uv∈F1

w̃(G+
1 , F1, u, v) +

∑
uv∈F2

w̃(G+
2 , F2, u, v)

= OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2),

and the claim follows. 	


The lemma follows from Claims 3.2 and 3.2. 	


3.3 Parallel Compositions

The recursion step for parallel compositions follows a similar scheme. Let
q, q1, q2 ∈ [k]2 with q = (i, j), q1 = (i1, j1), and q2 = (i2, j2). We say that
the pair (q1, q2) is parallel-compatible with q if

(P1) at least one of i1, i2 is non-zero;
(P2) min{i1, i2} = i;
(P3) min{j, i2} = j1, and
(P4) min{j, i1} = j2,

The recursion step for parallel composition is as follows. The proof is omitted,
due to the space limitation. We refer the reader to the long version of the paper.

Lemma 5. Suppose that (G, s, t) is a parallel composition of (G1, s, t) and
(G2, s, t), and that q ∈ [k]2 is realizable in (G, s, t). Then

OPTq(G, s, t) = max{OPTq1(G1, s, t) + OPTq2(G2, s, t)}

where the maximum is taken over all pairs (q1, q2) that are parallel-compatible
with q.

3.4 The Algorithm

A series-parallel decomposition of a connected series-parallel graph can be com-
puted in linear time [VTL82]. Given such a decomposition, Lemmas 2 and 5
yield the following algorithm: consider each graph (H, s, t) in the decomposition
tree in a bottom-up fashion. If H is a single edge, compute OPTq(H, s, t) for
every q ∈ [k]2. If (H, s, t) is a series or parallel composition of (H1, s1, t1) and
(H2, s2, t2), compute OPTq(H, s, t) for every q ∈ [k]2 based on the previously
computed values for (H1, s1, t1) and (H2, s2, t2), relying on Lemmas 2 and 5.

For every q = (i, j) ∈ [k]2, there are O(k) possible values for either series-
compatible or parallel-compatible pairs (q1, q2). Hence every step costs O(k)
times. Since there are O(k2) possible values for q, and O(m) graphs in the
decomposition of G, the overall complexity is O(k3m) = O(m4). Furthermore,
it is not difficult to keep track of a witness at each step.
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4 Bounded-Treewidth Graphs

In the previous section, we gave a polynomial-time algorithm for solving the
StackMST problem on series-parallel graphs, which are biconnected graphs
of treewidth 2. In this section, we extend the algorithm to graphs of bounded
treewidth.

Theorem 3. The StackMST problem can be solved in mO(ω2) time on graphs
of treewidth ω.

We follow Abrahamson and Fellows [AF93] and characterize a graph of treewidth
ω as an ω-boundaried graph. An ω-boundaried graph is a graph with ω distin-
guished vertices (called boundary vertices), each uniquely labeled by a label in
{1, . . . , ω}. ω-boundaried graphs are formed recursively by the following compo-
sition operators:

1. The null operator ∅ creates a boundaried graph which has only boundary
vertices, and they are all isolated.

2. The binary operator ⊕ takes the disjoint union of two ω-boundaried graphs
by identifying the ith boundary vertex of the first graph with the ith bound-
ary vertex of the second graph. If there are only two boundary vertices s and
t then this is exactly a parallel-composition.

3. The unary operator η introduces a new isolated vertex and makes this the
new vertex with label 1 in the boundary. The previous vertex that was labeled
1 is removed from the boundary but not from the graph.

4. The unary operator ε adds an edge between the vertices labeled 1 and 2 in
the boundary.

5. Unary operators that permute the labels of the boundary vertices.

Any ω-boundaried graph (and hence any graph of treewidth ω) can be con-
structed by applying O(ωn) compositions according to the above five opera-
tors. This construction as well as the boundary vertices can be found in linear
time [Bod96].

4.1 Definitions

Given an ω-boundaried graph G = (V,E) and two distinct boundary vertices
a, b ∈ {1, 2, . . . , ω}, we call an ab-path internal if the only boundary vertices it
passes through are a and b. We slightly modify the definition of P(G,F, a, b),
P̃(G,F, a, b), w(G,F, a, b), and w̃(G,F, a, b) from the previous section to only
include internal ab-paths.

As in the series-parallel case, we want to keep track of optimal acyclic subsets
of blue edges for every graph G obtained during the construction of a bounded-
treewidth graph. Notice that the weights of edges in an optimal solution depend
only on the bottlenecks of the new internal paths that will be added to G. We
thus prepare OPT (G)s for every possible set of bottlenecks (the jabs in what
follows) between any two boundary vertices a and b.



134 J. Cardinal et al.

Let Iω×ω be a matrix of pairs where I[a, b] = I[b, a] = (iab, jab) for some
iab, jab ∈ {0, 1, . . . , k}. Let OPTI(G) be the optimal solution to StackMST

(that is, an acyclic subset of blue edges F ) on the graph G+ obtained from G
by adding a red edge connecting a and b of cost cjab

for every pair of distinct
boundary vertices a, b ∈ {1, 2, . . . , ω}, subject to the conditions that for every
distinct a, b ∈ {1, 2, . . . , ω} we have w(G,F, a, b) = ciab

.
During the construction, we store for every graph G the partial solutions

OPTI(G) for every possible I. In cases where OPTI(G) is undefined (no proper
F exists), we set OPTI(G) = −∞. Also, we abuse the notation OPTI(G) for
denoting both the acyclic subset F and its revenue.

4.2 The Algorithm

We now describe our bounded-treewidth algorithm by showing how to maintain
the OPTI information as G is constructed by the five operators. We present
the algorithm along with a proof sketch of its correction. The formal proof of
correctness follows similar lines to the series-parallel case. We use (iab, jab) to
denote I’s pairs, (i1ab, j

1
ab) for I1’s pairs, (i2ab, j

2
ab) for I2’s pairs, and (i′ab, j

′
ab) for

I ′’s pairs.
We begin with the null operator ∅ that creates a new graph G with isolated

vertices labeled 1, . . . , ω. Therefore, we set OPTI(G) = 0 (associated with F =
∅) for every I whose entries are all of the form (k, jab). The value iab is required
to be k as there are no internal paths at all; the jab can be arbitrary values in
{0, 1, . . . , k}. For all other I we set OPTI(G) = −∞.

If G = G1 ⊕G2, then OPTI(G) = max{OPTI1(G) ∪ OPTI2(G)}. This oper-
ator is a lot like a parallel-composition of series-parallel graphs. Indeed, in the
following conditions on the compatibility of I, I1, I2, the first four conditions are
exactly the same as in a parallel-composition, only they must hold for every pair
of boundary vertices (whereas in the series-parallel case there was only one pair).
The fifth condition makes sure that the blue edges that will be purchased do not
form a cycle. Therefore, if G = G1 ⊕G2, we require that

1. at least one of i1ab, i
2
ab is non-zero,

2. iab = min{i1ab, i
2
ab},

3. j1ab = min{jab, i
2
ab},

4. j2ab = min{jab, i
1
ab},

for every distinct a, b ∈ {1, . . . , ω}, and moreover that

5. the graph H is acyclic, where V (H) = {1, . . . , ω} and distinct a, b ∈ V (H)
are adjacent in H if iab = 0.

If G = η(G′), then a new isolated boundary vertex v with label 1 is created,
and the old 1-labeled vertex u is now no longer a boundary vertex. Since no
edges are modified, the optimal solutions for G′ and G are the same and we set
OPTI(G) = OPTI′(G′). Notice that an ab-path between two distinct boundary
vertices a, b �= u that go through u is not an internal path in G′, but could be in
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G (if the path does not contain any other boundary vertex). This fact is captured
by the first two of the following four conditions. If G = η(G′) we require that,
for every distinct a, b ∈ {2, . . . , ω},

1. iab = min
{
i′ab,max{i′a1, i

′
1b}
}
,

2. j′ab = min
{
jab,max{ja1, j1b}

}
,

3. ia1 = k, (there is no internal path incident to v as it is isolated)
4. j′a1 = k. (there will be no new internal paths originating from u)

If G = ε(G′), then G is obtained from G′ by adding an edge e between vertices
labeled 1 and 2. Notice that ε(G′) = G′⊕G′′ where G′′ is the boundaried graph
which has only boundary vertices, and its only edge is e. Thus, instead of dealing
with the ε operator we can introduce two new null-like operators that create a
graph G isomorphic to G′′ with the edge e being red and blue, respectively.

– If e is red with cost c(e) then we set OPTI(G) = 0 (associated with F = ∅)
for every I whose entries are all of the form (k, jab) (the jabs can be anything
in {0, 1, . . . , k}) except that i12 = c(e). For all other I we set OPTI(G) =
−∞.

– If e is blue then we set OPTI(G) = 0 (associated with F = ∅) for every
I whose entries are all of the form (k, jab) (the jabs can be anything in
{0, 1, . . . , k}).
In addition, we set OPTI(G) = p(e) for every I whose entries are all of
the form (k, jab) except that i12 = 0. This corresponds to setting F = {e}.
For such a I, the price p(e) assigned to e is determined as follows. Let
P12 be the set of all ordered sequences of the form a1-a2-. . .-at where every
ai ∈ {1, 2, . . . , ω} is a unique boundary vertex, a1 = 1, at = 2, and 2 ≤ t ≤ ω
(if t = 2 then the path is simply 1-2). Every such sequence, together with e
could close a cycle when new internal paths will be added. We therefore set

p(e) = min
a1-...-at∈P12

max
2≤i≤t

jai−1ai

For all other I we set OPTI(G) = −∞.

Unary operators that permute the labels of the boundary vertices are trivial
to handle. They merely represent a permutation of I.

Time Complexity. The composition operators require us to check every combi-
nation of at most three different I for compatibility. There are kω2

possible I,
so we need to check O(k3ω2

) combinations. Each check requires at least O(ω2)
time to read the I. The most time-consuming check is the one of the ε operator
when it adds a blue edge e. This might require figuring out p(e). Notice that
|P12| < ω!, so we can perform the check in O(ω!) time. The total complexity of
the above algorithm is therefore bounded by O(k3ω2 · ω!) = mO(ω2).

Although the problem is polynomial for every constant value of ω, it is unclear
whether there exists a fixed-parameter algorithm of complexity O(f(ω)nc) for
some function f of ω and a constant c. We conjecture that under reasonable
complexity-theoretic assumptions, such an algorithm does not exist.
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Abstract. In one dimensional facility games, public facilities are placed
based on the reported locations of the agents, where all the locations of
agents and facilities are on a real line. The cost of an agent is measured
by the distance from its location to the nearest facility.

We study the approximation ratio of social welfare for strategy-proof
mechanisms, where no agent can benefit by misreporting its location.
In this paper, we use the total cost of agents as social welfare function.
We study two extensions of the simplest version as in [9]: two facilities
and multiple locations per agent. In both cases, we analyze randomized
strategy-proof mechanisms, and give the first lower bound of 1.045 and
1.33, respectively. The latter lower bound is obtained by solving a related
linear programming problem, and we believe that this new technique of
proving lower bounds for randomized mechanisms may find applications
in other problems and is of independent interest.

We also improve several approximation bounds in [9], and confirm a
conjecture in [9].

1 Introduction

In a facility game, a planner is building public facilities while agents (players)
are submitting their locations. In this paper, we study the facility game in one
dimension, i.e., the locations of the agents and the facilities are in the real line.
Let the position reported by agent i be xi ∈ Ri ⊆ R. Assume the number of
agents is n and the number of public facilities available is k. A (deterministic)
mechanism for the k-facility game is simply a function

f : R1 ×R2 × · · · × Rn →Rk.

In this paper, we assume Ri = R for all agents. The cost of an agent is the
distance from its true location to the nearest facility. Let {l1, l2, . . . , lk} be the
set of locations of the facilities. The cost of agent i is cost({l1, . . . , lk}, xi) =
min1≤j≤k |xi − lj |. A randomized mechanism returns a distribution over Rk.
Then the cost of agent i is the expected cost over the distribution returned by
the randomized mechanism.

An agent may misreport its location if it can reduce its own cost. A usual
solution concept is strategy-proofness, which is also the focus of this paper. In

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 137–148, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a strategy-proof mechanism, no agent can unilaterally misreport its location to
reduce its own cost. For x = {x1, x2, . . . , xi, . . . , xn} ∈ Rn, we define x−i =
{x1, . . . , xi−1, xi+1, . . . , xn}. A mechanism is strategy-proof if for any xi and x′i �=
xi, cost(f(x−i, xi), xi) ≤ cost(f(x−i, x

′
i), xi). In other words, no matter what

other agents’ strategies are, one of the best strategies for agent i is reporting
its true location. Our strategy-proof randomized mechanisms are defined by the
expected costs of the agents.

The facility game problem has a rich history in social science literature. Con-
sider the case that we are building one facility in a discrete set of locations (alter-
natives). Agents are reporting its preference for the alternatives. The renowned
Gibbard-Satterthwaite theorem [6,10] showed that if the preference on the alter-
natives for each agent can be arbitrary, the only strategy-proof mechanisms are
the dictatorships when the number of alternatives are greater than two.

In the facility game, however, the preferences on the facility locations are not
arbitrary. In particular, agent i has a single preferred location xi. When two lo-
cations are on the same side of xi, agent i will always prefer the one closer to xi.
This kind of admissible individual preferences are defined as single-peaked pref-
erences, which was first discussed by Black [3]. Since the Gibbard-Satterthwaite
theorem does not hold with single-peaked preferences, the facility game admits a
much richer set of strategy-proof mechanisms. Moulin [8] characterized the class
of all strategy-proof mechanisms for one-facility game in the real line. (One un-
necessary assumption in the proof is dropped by Barberà and Jakson [2], and
Sprumont [12].) In particular, a generalized median voter scheme is sufficient to
characterize all strategy-proof mechanisms. Interested readers may refer to the
detailed survey by Barberà [1].

More recently, Procaccia and Tennenholtz [9] studied the facility game in a
different perspective. They consider the facility game as a special case of the game
theoretic optimization problems where the optimal social welfare solution is not
strategy-proof. They treat the facility game in a broader concept of the games
that payments are not allowed or infeasible. Such mechanism design problems
without payments are rarely studied by computer scientists, except some special
problems [11].

Procaccia and Tennenholtz studied strategy-proof mechanisms with prov-
able approximation ratios on social welfare, when the optimal solution is not
strategy-proof. For the simplest case of one facility, the median mechanism is
both strategy-proof and optimal for social welfare. Then Procaccia and Tennen-
holtz studied two extensions: (1) there are two facilities; (2) each agent controls
multiple locations (with one facility). In both cases, the optimal solutions are no
longer strategy-proof in general. Therefore, it is interesting to study strategy-
proof mechanisms with good approximation ratios for these extensions. This is
also the focus of this paper. A strategy-proof mechanism has an approxima-
tion ratio of α if for every input instance, the social cost for the output of the
mechanism is always at most α times the social cost for any solution.

We remark that, if payment is allowed, then the well-know Vickrey-Clarke-
Groves (VCG) mechanism [13,4,7] will give both optimal and strategy-proof
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solutions for both extensions. However, in many real world scenarios, payment
is not available as noted by Schummer and Vohra [11]. We focus on the strategy-
proof mechanisms without money in this paper.

1.1 Our Result

We study the approximation ratios of social welfare for the strategy-proof mech-
anisms in the facility game with one or more facilities. The social welfare func-
tion we use is the social cost, i.e., the total cost of all agents. We focus on the
approximation ratios for social cost of the strategy-proof mechanisms, where
we improve most results in [9]. Furthermore, we also provide several novel ap-
proximation bounds which are not previously available. Table 1 summarizes our
contribution.

Table 1. Our results are in bold. The numbers in brackets are previous results in [9]
unless stated otherwise. (N/A means no previous known bound.)

Two Facilities Multi-Location Per Agent (One Facility)

Deterministic
UB: (n− 2)
LB: 2(1.5)

UB: (3 [5])
LB: (3 [5])

Randomized
UB: n/2 (n− 2)
LB: 1.045(N/A)

UB: 3 − 2minj∈N wj∑
j∈N wj

(2 + |w1−w2|
w1+w2

for n = 2 only)

LB: 1.33 (N/A)

The organization of the paper is as follows. In Section 2, we provide improved
upper and lower bounds of both deterministic and randomized strategy-proof
mechanisms for the two-facility game. In Section 3, we study the cases when
each agent controls more than one location. We conclude our paper in Section 4
with several open problems.

2 The Two-Facility Game

In this section, we study strategy-proof mechanisms for the two-facility game.
We first provide a better randomized mechanism achieving approximation ratio
n/2 for social cost. The only previously known upper bound is n − 2, which is
from a deterministic mechanism. Then we study the lower bounds both for the
deterministic and randomized cases. For deterministic mechanisms, the lower
bound is improved to 2 from 1.5 in [9]. For randomized mechanisms, we provide
the first non-trivial approximation ratio lower bound of 1.045.

2.1 A Better Randomized Mechanism

The following mechanism is inspirited by Mechanism 2 from [9]. However, our
proof is different and much simpler.



140 P. Lu, Y. Wang, and Y. Zhou

Mechanism 1. See Figure 1 for reference. Let x = {x1, x2, . . . , xn} be the re-
ported locations of the agents. Define lt(x) = min{xi}, rt(x) = max{xi} and
mt(x) = (lt(x) + rt(x))/2. We further define the left boundary lb(x) = max{xi :
i ∈ N, xi ≤ mt(x)} and the right boundary rb(x) = min{xi : i ∈ N, xi ≥ mt(x)}.
Let dist(x) = max{rt(x)−rb(x), lb(x)−lt(x)}. We set lb(x) = lt(x)+dist(x) and
rb(x) = rt(x) − dist(x). The mechanism returns (lt(x), rt(x)) or (lb(x), rb(x)),
each with probability 1/2.

lt(x) rt(x)

mt(x)

rb(x)(rb(x))lb(x) lb(x)

dist(x)

Fig. 1. Mechanism 1 picks (lt(x), rt(x)) or (lb(x), rb(x)), each with probability 1/2

Theorem 1. Mechanism 1 is strategy-proof. The approximation ratio of Mech-
anism 1 is n/2 for social cost.

Proof. We first prove the approximation ratio assuming that all agents report
their true locations. By symmetry, we assume rt(x) − rb(x) ≥ lb(x) − lt(x) as
in Figure 1. Since we only have two facilities, either lt(x) and rb(x) or rb(x)
and rt(x) are served by a same facility. Therefore the optimal solution is least
min{|lt(x)−rb(x)|, |rb(x)−rt(x)|} = dist(x). On the other hand, for each agent,
its expected cost is exactly dist(x)/2 in this mechanism. So Mechanism 1 has an
approximation ratio of n

2 .
We then prove that Mechanism 1 is strategy-proof. We first show that any

point other than the 3 points defining lt(x), rt(x) and rb(x) cannot benefit by
misreporting its location. Let the new configuration be x′. Consider the 3 points
defining the previous lt(x), rt(x) and rb(x). No matter how the 3 points are
partitioned by the new mt(x′), dist(x′) ≥ rt(x) − rb(x), where x′ is the new
configuration. We know that the expected cost for any location in this con-
figuration is at least dist(x′)/2, which is at least as large as the honest cost
dist(x) = rt(x) − rb(x). The same argument also shows lt(x) (resp. rt(x)) does
not have incentive of reporting positions on the left (resp. right).

Consider the point rb(x). Its expected cost is rt(x)−rb(x)
2 if it reports its true

location. By lying, it cannot move the left or right boundary towards itself, and
as a result, its expected cost in any new configuration is at least min{|lt(x) −
rb(x)|, |rb(x)− rt(x)|}/2 = (rt(x)− rb(x))/2. Therefore, the point at rb(x) has
no incentive to lie.

The only possible case left to analyze is that the agent at lt(x) (resp. rt(x)) is
reporting a location to the right (resp. left). Its expected cost is (rt(x)− lb(x))/2
if it reports its true location. Reporting a location on its right can only move
lb(x′) toward right, which will hurt itself. Therefore the agent at lt(x) has no



Tighter Bounds for Facility Games 141

incentive to lie. Similar argument also holds if the agent at rt(x) reports its
location on the left of rt(x).

To sum up, no agent has incentive to lie. Therefore, Mechanism 1 is strategy-
proof.

2.2 Lower Bounds

In this section, we show the approximation ratio lower bounds both for deter-
ministic and randomized strategy-proof mechanisms. Both bounds are proved
by the following construction, which is similar to the 1.5 lower bound example
in [9].

−1 0 1 1 + α

n−2 nodesleft node right node

( )
2− 2

n−2

Fig. 2. Lower bound example for the two-facility game

Theorem 2 (Lower bound for deterministic mechanisms). In the two-
facility game, any deterministic strategy-proof mechanism f : Rn → R2 has an
approximation ratio of at least 2− 4

n−2 for social cost.

Proof. See Figure 2 for the configuration. We have n−2 nodes at the origin and
the left node at −1 and the right node at 1.

Assume to the contrary, there exists a strategy-proof mechanism with approx-
imation ratio less than 2. Then this mechanism has to place one facility in the
range (− 2

n−2 ,
2

n−2 ). Now consider the left node and the right node at −1 and
1. At least one of them is 1 − 2/(n− 2) away from its closest facility. Without
loss of generality, assume the right node at 1 is at least 1 − 2

n−2 away from the
facilities.

If there is one facility on the right of 1, it must be placed at a position right
to 2 − 2/(n − 2) by our assumption. In this case, since the optimal cost is 1,
the approximation ratio is at least 2− 4

n−2 as one facility is always close to the
origin.

Now consider the case that the closest facility to the right node at 1 is on
the left. Let I be the image set of the closest facility to the right node when
the right node moves and all other nodes remain fixed. Clearly, by strategy-
proofness, I ∩ ( 2

n−2 , 2 −
2

n−2 ) = ∅. On the other hand, I ∩ [2 − 2
n−2 ,+∞) �= ∅,

otherwise the approximation ratio is unbounded when the right node moves to
the infinity.

Take p as the left most point of I ∩ [2 − 2
n−2 ,+∞). (p always exists, as I is

a closed set.) If we place the right node at p− 1 + 2
n−2 , the closest facility to x

is at p. Therefore, the cost of the mechanism for such a configuration is at least
2− 4

n−2 , as the other facility has to be close to the origin. Because the optimal
cost is still 1, the approximation ratio is at least 2− 4

n−2 .
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If the mechanism is randomized, the output is a distribution overR2. Notice that
in a randomized mechanism, the cost of an agent is measured by the expected
distance from its true location to the closest facility. We give the first non-trivial
(greater than 1) approximation ratio lower bound of strategy-proof mechanisms
for social cost in Theorem 3.

Theorem 3 (Lower bound for randomized mechanisms). In a two-facility
game, any randomized strategy-proof mechanism has an approximation ratio of
at least 1 +

√
2−1

12−2
√

2
− 1

n−2 ≥ 1.045− 1
n−2 for the social cost for any n ≥ 5.

Proof. Again, we consider the point set as in Figure 2. Let the expected distance
from −1, 0 and 1 to the closest facility be e1, e2 and e3 respectively. Clearly,
we have e1 + e2 + e3 ≥ 1. For any randomized strategy-proof mechanism with
approximation ratio at most 2, e2 ≤ 2

n−2 . Without loss of generality, we assume
e3 ≥ 1

2 −
1

n−2 .
Now we place the right node at 1 to a new position at 1 + α for some α ∈

(0, 1/2). Let e′3 be the expected distance from 1+α to the nearest facility at the
new configuration by the same strategy-proof mechanism. Because of strategy-
proofness, e′3 ≥ 1

2 − α − 1
n−2 . (The condition n ≥ 5 guarantees e′3 ≥ 0 for the

optimal α chosen later.)
Let p(x) be the probability density function of the probability that the closest

facility to the right node at 1 + α is at x in the new configuration. When x ≤
− 1

n−2 , the closest facility is at weighted distance at least 1 to nodes at 0. When
x ≥ 1

n−2 , for any placement of the other facility, the sum of the weighted distances
to the closest facility for the nodes at−1 and 0 is at least 1. In these two cases, the

weighted distance to nodes at −1 and 0 is at least 1. Denote P =
∫ 1

n−2

− 1
n−2

p(x)dx.
Therefore, the total cost of the mechanism in the new configuration is at least:

cost ≥ (1− P ) · 1 + e′3 ≥ 1 +
1
2
− α− 1

n− 2
− P.

On the other hand, consider the distance to the node at 1+α. When the closest
facility to 1 + α is x ∈ (− 1

n−2 ,
1

n−2 ), the total weighted distance from the nodes
to the closest facilities is at least 1 + α. Therefore, we have

cost ≥ (1 − P ) · 1 + P · (1 + α) = 1 + α · P.

The optimal ratio is achieved when P = 1/2−α−1/(n−2)
1+α and the approximation

ratio is at least

1 +
1
2
− α− 1

n− 2
− 1/2− α− 1/(n− 2)

1 + α
≥ 1 +

1
2
− 1
n− 2

− α2 + 1/2
1 + α

.

Define g(α) = α2+1/2
1+α . The maximum ratio is achieved when g′(α) = 0 with

α = 2−
√

2
4 , and the approximation ratio is at least 1 +

√
2−1

12−2
√

2
− 1

n−2 .
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Both lower bounds for deterministic and randomized strategy-proof mechanisms
can be generalized to k facilities for k ≥ 3. (Consider the configuration that
two nodes on the two sides, and k − 1 group of nodes in between. Each group
of nodes (including the two singletons) are at unit distance away.) We have a
direct corollary.

Corollary 1 (Lower bound for the k-facility game). In the k-facility game
for k ≥ 2, any deterministic strategy-proof mechanism has an approximation
ratio of at least 2 − 4

m for the social cost, where m = �n−2
k−1 �. Any randomized

strategy-proof mechanism for the k-facility game has an approximation ratio of
at least 1 +

√
2−1

12−2
√

2
− 1

m ≥ 1.045− 1
m .

3 Multiple Locations Per Agent

In this section, we study the case that each agent controls multiple locations.
Assume agent i controls wi locations, i.e., xi = {xi1, xi2, . . . , xiwi}. A (determin-
istic) mechanism with one facility in the multiple locations setting is a function
f : Rw1 × · · · × Rwn → R for n agents. Then, for agent i, its cost is defined as
cost(l,xi) =

∑wi

j=1 |l−xij |, where l is the location of the facility. As before, we are
interested in minimizing the social cost of the agents, i.e.,

∑
i∈N

∑wi

j=1 |l − xij |,
where N = {1, 2, . . . , n}.

We first give a tight analysis of a randomized strategy-proof mechanism pro-
posed in [9]. This in particular confirms a conjecture of [9]. Then we prove the
first approximation ratio lower bound of 1.33 for any randomized truthful mech-
anism. This lower bound even holds for the simplest case that there are only two
player and each controls the same number of locations. As pointed out by [9],
our result here can be directly applied in the incentive compatible regression
learning setting of Dekel et al.[5].

3.1 A Tight Analysis of a Randomized Mechanism

In [9], Procaccia and Tennenholtz proposed the following randomized mechanism
in the setting of multiple locations:

Randomized Median Mechanism: Given x = {x1,x2, . . . ,xn}, return med(xi)
with probability wi/(

∑
j∈N wj).

If wi is even, med(xi) can either report the wi

2 th location or wi

2 +1-th location
of xi. In [9], Procaccia and Tennenholtz gave a tight analysis for the case of two
players(n = 2), which has an approximation ratio of 2+ |w1−w2|

w1+w2
. They proposed

as an open question for the bound in the general setting. In this section, we give
a tight analysis of this randomized mechanism in the general setting, which in
particular confirms the conjecture. Notice that 2 + |w1−w2|

w1+w2
= 3 − 2minj∈N wj∑

j∈N wj
,

when n = 2.

Theorem 4. The Randomized Median Mechanism has an approximate ratio of
3− 2minj∈N wj∑

j∈N wj
for social cost.
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Proof. If n = 1, med(x1) is the optimal solution. So the mechanism has an
approximate ratio of 3− 2w1/w1 = 1. Now we consider the case for n ≥ 2.

Without loss of generality, we can reorder the players so that med(x1) ≤
med(x2) ≤ · · · ≤ med(xn). Then it must be the case that med(x1) ≤ med(x) ≤
med(xn). The idea here is to construct a worst case instance for this mechanism
and then analyze the approximate ratio for the worst case. Let i′ be the largest
i such that med(xi) ≤ med(x).

Claim. We can assume that the worst case satisfies the following properties: (1)
wi is even for all i ∈ N ; (2) for all i ≤ i′, med(xi) returns the wi

2 -th point of xi;
(3) and for all i > i′, med(xi) returns the (wi

2 + 1)-th point of xi.

We justify the claim as follows: if some wi is odd, we can add one more point
for agent i at the global median med(x), then the original med(xi) is still one
of i-th two medians after adding the new point. We still return that value when
we need to return med(xi). After the modification, the expected cost can only
increase while the optimal cost remain the same. So we can assume all wi are
even in a worst case. The properties (2) and (3) are obvious because returning
the other point only improves the performance of the mechanism.

Now we assume that our instance satisfies all properties in Claim 1. By sym-
metry, we can further assume

∑i′

i=1 wi ≥
∑n

i=i′+1 wi. Let W =
∑

j∈N wj and
R(med(xi)) be the rank of med(xi) in the whole set x. Let X be the ordered
global set of x and Xi be the ith location in X . We perturb the points so that
Xi and R(med(xi)) are well defined. Then for all i ≤ i′, R(med(xi)) ≥

∑i
j=1

wi

2 ;
for all i > i′, R(med(xi)) ≤ W −

∑n
j=i

wi

2 . The worst case happens when the
above two sets of inequalities all reach equalities.

We further make the two sides more symmetric as follows. If w1 > wn, previ-
ously, the mechanism returns Xw1

2
with probability w1

W and returns XW+1−wn
2

with probability wn

W . We modify the mechanism by returningXwn
2

andXW+1−wn
2

both with probability wn

W and returning Xw1
2

with probability w1−wn

W . We con-
tinue this process and finally we can get the following mechanism. There are
0 = k0 < k1 < k2 < · · · < km and l ≤ m. The mechanism returns Xki and
XW+1−ki both with probability ki−ki−1

km+kl
if 1 ≤ i ≤ l; returns Xki with probabil-

ity ki−ki−1
km+kl

if l < i ≤ m. (The meaning of kjs are roughly kj =
∑j

i=1
wi

2 . However
due to the symmetrization process described above, we also have kj =

∑n−j
i=n

wi

2

for j ≤ l.) We have k1 = min{w1,wn}
2 ≥ minj∈N wj

2 and km + kl = W/2.
To simply the notation, we define ī = W +1−i and K = km +kl. The optimal

solution is OPT =
∑W/2

i=1 (Xī−Xi) ≥ s =
∑m

j=1 aj , where aj =
∑kj

i=kj−1+1(Xī−
Xi). Now we can compute the expected cost for this mechanism. For 1 ≤ i ≤ l,
we calculate the cost for Xki and Xk̄i

together. They both have probability
ki−ki−1
km+kl

.

The cost for Xki is
∑i

j=1 aj +
∑W/2

j=ki+1(|Xj − Xki | + |Xj̄ − Xki |). And we

write that the cost for Xk̄i
as
∑i

j=1 aj +
∑W/2

j=ki+1(|Xj −Xk̄i
|+ |Xj̄ −Xk̄i

|). We
combine the cost of Xki and Xk̄i

together.
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2
i∑

j=1

aj + 2
W/2∑

j=ki+1

|Xk̄i
−Xki |

= 2
i∑

j=1

aj + 2(K − ki)|Xk̄i
−Xki | ≤ 2

i∑
j=1

aj + 2
ai(K − ki)
kj − kj−1

Now consider the case for l + 1 ≤ i ≤ m. Similarly, the cost of Xki is

i∑
j=1

aj +
W/2∑

j=ki+1

(|Xj −Xki |+ |Xj̄ −Xki |) ≤
i∑

j=1

aj + 2
ai(K − ki)
kj − kj−1

Therefore the expected cost of the mechanism is no more than

l∑
j=1

kj − kj−1

K
(2

j∑
i=1

ai + 2
aj(K − kj)
kj − kj−1

) +
m∑

j=l+1

kj − kj−1

K
(

j∑
i=1

ai + 2
aj(K − kj)
kj − kj−1

)

≤ 1
K

(2kl

l∑
i=1

ai + (km − kl)
l∑

i=1

ai + km

m∑
i=l+1

ai − 2k1

m∑
j=1

aj) + 2s

=
1
K

(K
l∑

i=1

ai + km

m∑
i=l+1

ai − 2k1

m∑
j=1

aj) + 2s

≤ (3− 2k1

K
)s ≤ (3− 2 minj∈N wj∑

j∈N wj
)OPT

The following corollary confirms a conjecture of [9] regarding the case where
each agent controls the same number of locations.

Corollary 2. If all the players control the same number of locations, the ap-
proximate ratio of Randomized Median Mechanism is 3− 2

n for social cost.

3.2 Lower Bounds for Randomized Strategy-Proof Mechanisms

In this section, we consider the lower bound of the approximation ratios for ran-
domized strategy-proof mechanisms in the multiple locations setting. We first
give a 1.2 lower bound of the approximation ratio, based on a very simple in-
stance. Then we extend to a more complicated instance, which we derive a lower
bound of 1.33 by solving a linear programming instance.

Theorem 5. Any randomized strategy-proof mechanism of the one-facility game
has an approximation ratio at least 1.2 for social in the setting that each agent
controls multiple locations.

Proof. We assume to the contrary that there exists one strategy-proof mecha-
nism M which has an approximate ratio c < 1.2. Consider the following three
instances:
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Instance 1: First player has 2 points at 0 and 1 point at 1; second player has
3 points at 1.

Instance 2: First player has 3 points at 0; second player has 3 points at 1.
Instance 3: First player has 3 points at 0; second player has 1 point at 0 and

2 points at 1.

Let P1, P2 and P3 be the distribution of the facility the mechanism M gives for
these three instances respectively. For all x ∈ R and a distribution P on R, we
use cost(P, x) to denote Ey∼P |y − x|. Then we have (for all i = 1, 2, 3)

cost(Pi, 0) + cost(Pi, 1) ≥ 1.

We use p1(x), p2(x) and p3(x) to denote the probability density function of P1, P2
and P3 respectively. Let

∀i ∈ {1, 2, 3}, Li =
∫ 0

−∞
−xpi(x)dx and Ri =

∫ +∞

1
(x− 1)pi(x)dx.

Now, we computer the cost of the players in each distribution. For the first player
in Instance 1, its cost in distribution Pi is

2cost(Pi, 0) + cost(Pi, 1) = cost(Pi, 0) + (cost(Pi, 0) + cost(Pi, 1))

= cost(Pi, 0) +
∫ +∞

−∞
(|x|+ |x− 1|)pi(x)dx = cost(Pi, 0) + 2Li + 2Ri + 1

Since L1, R1 ≥ 0, It’s easy to see

cost(P1, 0) ≤ cost(P1, 0) + 2(L1 +R1) ≤ cost(P2, 0) + 2(L2 +R2), (1)

where the second inequality is because of the strategy-proofness (of the first
player in Instance 1). By symmetry, we also have

cost(P3, 1) ≤ cost(P2, 1) + 2(L2 +R2). (2)

Using similar calculation as above, we can get the expected cost of Instance 1
as follows.

2cost(P1, 0) + 4cost(P1, 1) = 2cost(P1, 1) + 2(2L1 + 1 + 2R1) ≥ 2cost(P1, 1) + 2.

Since the optimal cost is 2 and the approximate ratio is less than 1.2, we know
that cost(P1, 1) + 2 < 2 × 1.2 = 2.4. Therefore, we have cost(P1, 1) < 0.2
and hence cost(P1, 0) > 0.8. Substituting the above inequality into (1), we get
cost(P2, 0) + 2(L2 + R2) > 0.8. Again by symmetry, we also have cost(P2, 1) +
2(L2 +R2) > 0.8. Adding these two inequalities together, we have cost(P2, 0) +
cost(P2, 1) + 4(L2 + R2) > 1.6. We also have cost(P2, 0) + cost(P2, 1) = 1 +
2(L2 + R2). Substituting this, we get L2 + R2 > 0.1. On the other hand, note
the approximate ratio condition of Instance 2 requires that 1+2(L2+R2) < 1.2.
Thus we reach a contradiction.
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To prove the lower bound of 1.33, we extend the above instances as follows. We
employ 2K + 1 (K ≥ 1 is an integer) instances (for K = 1, this is exactly the
same set of instances as above):

Instance i (1 ≤ i ≤ K): First player has K+ i points at 0 and K+1− i points
at 1; second player has all 2K + 1 points at 1.

Instance K + 1: First player has all 2K + 1 points at 0; second player has all
2K + 1 points at 1.

Instance i (K + 2 ≤ i ≤ 2K + 1): First player has all 2K + 1 points at 0; sec-
ond player has i−K − 1 points at 0 and 3K + 2− i points at 1.

Again, let Pi be the distribution of output of the mechanism on Instance i.
Define the variables as Xi = cost(Pi, 0) and Yi = cost(Pi, 1). Then, the strategy-
proofness among the instances can be listed as linear constrains. Assume the
approximation ratio is α. We want to compute the minimal ratio α so that all
constrains are satisfied. It is then straightforward to formulate the following
linear programming problem.

Minimize: α

Subject to:
(K + i)Xi + (3K + 2− i)Yi ≤ (K + i)α, 1 ≤ i ≤ K + 1
(K + i)Xi + (3K + 2− i)Yi ≤ (3K + 2− i)α, K + 2 ≤ i ≤ 2K + 1
(K + i)Xi + (K + 1− i)Yi

≤ (K + i)Xi+1 + (K + 1− i)Yi+1, 1 ≤ i ≤ K

(i−K − 1)Xi + (3K + 2− i)Yi

≤ (i−K − 1)Xi−1 + (3K + 2− i)Yi−1, K + 2 ≤ i ≤ 2K + 1
Xi ≥ 0, Yi ≥ 0, Xi + Yi ≥ 1, 1 ≤ i ≤ 2K + 1

First two sets of constrains come from the approximate ratio constrain. The next
two sets of constrains are enforced by strategy-proofness. And the last two sets
of constrains are boundary conditions.

Choosing K = 500, we solve this LP problem by computer and the optimal
value is greater than 1.33. Therefore, if we set the approximation ratio to 1.33,
there is no feasible solution for the linear programming which implies no feasible
strategy-proof mechanism for the instances. So we have an approximation lower
bound of 1.33.

Theorem 6. Any randomized strategy-proof mechanism of the one-facility game
has an approximation ratio at least 1.33 in the setting that each agent controls
multiple locations.

The numerical computation suggests that the optimal value for this LP problem
is close to 4

3 when K is large. It would be interesting to give an analytical proof
for a lower bound of 4

3 . We leave it as an open question.
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4 Conclusion

In this paper, we study the strategy-proof mechanisms in facility games. We
derive approximation bounds for such mechanisms for social cost both in the
two-facility game and the multiple location setting. Our results improves several
bounds previously studied [9]. We also obtain some new approximation ratio
lower bounds.

There are still a lot of interesting open questions. For example, in the two-
facility game, the deterministic mechanism has an approximation ratio of n− 2
for social cost, while the lower bound is only 2. In randomized case, there is also
a huge gap between n/2 and 1.045.
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Degrees of Guaranteed Envy-Freeness in Finite
Bounded Cake-Cutting Protocols

Claudia Lindner and Jörg Rothe
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Abstract. Fair allocation of goods or resources among various agents is a
central task in multiagent systems and other fields. The specific setting where
just one divisible resource is to be divided fairly is commonly referred to as
cake-cutting, and agents are called players in this setting. Cake-cutting protocols
aim at dividing a cake and assigning the resulting portions to several players
in a way that each of the players, according to his or her valuation of these
portions, feels to have received a “fair” amount of the cake. An important notion
of fairness is envy-freeness: No player wishes to switch the portion of the cake
received with another player’s portion. Despite intense efforts in the past, it is
still an open question whether there is a finite bounded envy-free cake-cutting
protocol for an arbitrary number of players, and even for four players. In this
paper, we introduce the notion of degree of guaranteed envy-freeness (DGEF,
for short) as a measure of how good a cake-cutting protocol can approximate the
ideal of envy-freeness while keeping the protocol finite bounded. We propose
a new finite bounded proportional protocol for any number n ≥ 3 of players,
and show that this protocol has a DGEF of 1 + �n2/2�. This is the currently
best DGEF among known finite bounded cake-cutting protocols for an arbitrary
number of players. We will make the case that improving the DGEF even further
is a tough challenge, and determine, for comparison, the DGEF of selected
known finite bounded cake-cutting protocols, among which the Last Diminisher
protocol turned out to have the best DGEF, namely, 2 + n(n−1)/2. Thus, the Last
Diminisher protocol has �n/2�−1 fewer guaranteed envy-free-relations than our
protocol.

Keywords: Cake-cutting protocol, fair division, multiagent resource allo-
cation.

1 Introduction

Research in the area of cake-cutting started off in the 1940s with the pioneering work
of Steinhaus [18] who, to the best of our knowledge, was the first to introduce the prob-
lem of fair division. Dividing a good (or a resource) fairly among several players such
that each of them is satisfied with the portion received is of central importance in many
fields. In the last 60 years this research area has developed vividly, spreading out into
various directions and with applications in areas as diverse as economics, mathematics,
computer science, and psychology. While some lines of this research seek to find rea-
sonable interpretations of what “fairness” really stands for and how to measure it [9,7],
others study proofs of existence or impossibility theorems regarding fair division (see,

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 149–159, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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e.g., [1]), or design new cake-cutting procedures [3,21,17] and, relatedly, analyze their
complexity with respect to both upper and lower bounds [14,23,15]. As cake-cutting
procedures involve several players, they are also referred to as “protocols.”

Cake-cutting protocols aim at achieving a fair division of an infinitely divisible re-
source among n players, who each may have different valuations of different parts of
the resource. We focus on the notion of envy-freeness in finite bounded cake-cutting
protocols. Cake-cutting protocols are either finite or continuous. While a finite proto-
col always provides a solution after only a finite number of decisions, a continuous
protocol could potentially run forever. Among finite protocols, one can further distin-
guish between bounded and unbounded ones. A finite bounded cake-cutting protocol is
present if we know in advance that a certain number of steps (that may depend on the
number of players) will suffice to divide the resource fairly—independently of how the
players may value distinct parts of the resource in a particular case and independently
of the strategies chosen by the players. In contrast, in finite unbounded cake-cutting
protocols, we cannot predict an upper bound on how many steps will be required to
achieve the same goal. Aiming to apply cake-cutting procedures to real-world scenar-
ios, it is important to develop fair finite bounded cake-cutting protocols. In this context,
“fairness” is often interpreted as meaning “envy-freeness.” A division is envy-free if no
player has an incentive to switch his or her portion with the portion any other player
received.

For the division of a divisible good among n players, Steinhaus [19] proved that an
envy-free division always exists. However, the current state of the art—after six decades
of intense research—is that for arbitrary n, and even for n = 4, the development of fi-
nite bounded envy-free cake-cutting protocols still appears to be out of reach, and a big
challenge for future research. For n> 3 players, hardly any envy-free cake-cutting pro-
tocol is known, and the ones that are known are either finite unbounded or continuous
(see, e.g., [3,16,5]).

Our goal in this paper is to look for compromises that can be made with respect
to envy-freeness while keeping the protocol finite bounded: We propose an approach to
evaluate finite bounded (yet possibly non-envy-free) cake-cutting protocols with respect
to their degree of guaranteed envy-freeness (DGEF), a notion to be formally introduced
in Section 3. Informally put, this notion provides a measure of how good such a protocol
can approximate the (possibly for this particular protocol unreachable) ideal of envy-
freeness in terms of the number of envy-free-relations that exist even in the worst case.
To put the DGEF approach into practice, we present a new finite bounded proportional
cake-cutting protocol with a significantly enhanced degree of guaranteed envy-freeness
in Section 4, and discuss its significance in Section 5. A comparison to related work is
drawn in the full version of this paper [13].

2 Preliminaries and Notation

Cake-cutting is about dividing a cake into portions that are assigned to the players
such that each of them feels, according to his or her valuation of the portions, to have
received a fair amount of the cake (where “cake” is a metaphor for the resource or the
good to be divided). The cake is assumed to be infinitely divisible and can be divided
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into arbitrary pieces without losing any of its value. Given n players, cake C is to be
divided into n portions that are to be distributed among the players so as to satisfy each
of them. A portion is not necessarily a single piece of cake; it can be a collection of
disjoint, possibly noncontiguous pieces of C. The players may have different individual
valuations of the single pieces of the cake: One player may prefer the pieces with the
chocolate on top, whereas another player may prefer the pieces with the cherry topping.

More formally, cake C is represented by the unit interval [0,1] of real numbers. By
performing cuts, C is divided into m pieces ck, 1 ≤ k ≤ m, which are represented by
subintervals of [0,1]. Each player pi, 1≤ i≤ n, assigns value vi(ck) = vi(xk,yk) to piece
ck ⊆ C, where ck is represented by the subinterval [xk,yk] ⊆ [0,1] and pi’s valuation
function vi maps subintervals of [0,1] to real numbers in [0,1]. We require each function
vi to satisfy the following properties:

1. Normalization: vi(0,1) = 1.
2. Positivity:1 For all ck ⊆C with ck �= /0 we have vi(ck)> 0.
3. Additivity: For all ck,c� ⊆ C with ck ∩ c� = /0 we have vi(ck) + vi(c�) =

vi(ck ∪ c�).
4. Divisibility:2 For all ck ⊆ C and for each α , 0 ≤ α ≤ 1, there exists some

c� ⊆ ck such that vi(c�) = α · vi(ck).

For simplicity, we write vi(xk,yk) instead of vi([xk,yk]) for intervals [xk,yk]⊆ [0,1]. Due
to Footnote 2, no ambiguity can arise. For each [x,y]⊆ [0,1], define ‖[x,y]‖= y− x.

We assume C to be heterogeneous (i.e., subintervals of [0,1] having equal size can
be valued differently by the same player). Moreover, distinct players may value one and
the same piece of C differently, i.e., their individual valuation functions will in general
be distinct. Every player knows only the value of (arbitrary) pieces of C corresponding
to his or her own valuation function. Players do not have any knowledge about the
valuation functions of other players.

A division of C is an assignment of disjoint and nonempty portions Ci ⊆ C, where
C =
⋃n

i=1Ci =
⋃m

k=1 ck, to the players such that each player pi receives a portion Ci ⊆C
consisting of at least one nonempty piece ck ⊆C. The goal is to assign all portions in as
fair a way as possible. There are different interpretations, though, of what “fair” might
mean. To distinguish between different degrees of fairness, among others, the following
two notions have been introduced in the literature (see, e.g., [17]):

Definition 1. Let v1,v2, . . . ,vn be the valuation functions of the n players. A division
of cake C =

⋃n
i=1 Ci, where Ci is the ith player’s portion, is said to be: (i) simple fair

(a.k.a. proportional) if for each i, 1 ≤ i ≤ n, vi(Ci) ≥ 1/n; (ii) envy-free if for each i
and j, 1≤ i, j ≤ n, vi(Ci)≥ vi(Cj).

A cake-cutting protocol describes an interactive procedure for obtaining a division of
a given cake. A protocol is characterized by a set of rules and a set of strategies (see,
e.g., [4]), which have to be followed by all players for them to be guaranteed a fair

1 The literature is a bit ambiguous regarding this assumption. Some papers require the players’
values for nonempty pieces of cake to be nonnegative (i.e., vi(ck)≥ 0) instead of positive.

2 Divisibility implies that for each x ∈ [0,1], vi(x,x) = 0. That is, isolated points are valued 0,
and open intervals have the same value as the corresponding closed intervals.
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portion of the cake. The rules determine the course of action, such as a request to cut
the cake, whereas the strategies define how to achieve a certain degree of fairness, e.g.,
by advising the players where to cut the cake.

3 Degrees of Guaranteed Envy-Freeness

The design of envy-free cake-cutting protocols for any number n of players seems to
be quite a challenge. For n≤ 3 players, several protocols that always provide envy-free
divisions have been published, both finite (bounded and unbounded) and continuous
ones [21,4,17]. However, to the best of our knowledge, up to date no finite bounded
cake-cutting protocol for n > 3 players is known to always provide an envy-free divi-
sion. For practical purposes, it would be most desirable to have finite bounded cake-
cutting protocols that always provide divisions as fair as possible. We propose an ap-
proach that weakens the concept of envy-freeness for the purpose of keeping the proto-
cols finite bounded.

On the one hand, in this section we study known simple fair (i.e., proportional)
cake-cutting protocols that are finite bounded, and determine their “degree of guar-
anteed envy-freeness” (see Definition 3). On the other hand, in Section 4 we propose a
new finite bounded proportional cake-cutting protocol that—compared with the known
protocols—has an enhanced DGEF.

When investigating the degree of envy-freeness of a cake-cutting protocol for n play-
ers, for each player pi, 1 ≤ i≤ n, the value of his or her portion needs to be compared
to the values of the n−1 other portions (according to the measure of player pi).3 Thus,
n(n− 1) pairwise relations need to be investigated in order to determine the degree of
envy-freeness of a cake-cutting protocol for n players. A player pi envies another player
p j, 1 ≤ i, j ≤ n, i �= j, when pi prefers player p j’s portion to his or her own. If pi en-
vies p j, we call the relation between these two players an envy-relation; otherwise, we
call it an envy-free-relation.

Definition 2. Let cake C =
⋃n

i=1 Ci be divided among all players in P =
{p1, p2, . . . , pn}, where vi is pi’s valuation function and Ci is pi’s portion. Let pi, p j ∈ P
be any two distinct players. An envy-relation occurs in this division if pi envies p j (de-
noted by pi � p j), i.e., if vi(Ci) < vi(Cj); an envy-free-relation occurs if pi does not
envy p j (denoted by pi � p j), i.e., if vi(Ci)≥ vi(Cj).

We mention the following properties of envy-relations and envy-free-relations.4 No
player can envy him- or herself, i.e., envy-relations are irreflexive: The inequality

3 We will use “valuation” and “measure” interchangeably.
4 Various analogs of envy-relations and envy-free-relations have also been studied, from an eco-

nomic perspective, in the different context of multiagent allocation of indivisible resources.
Feldman and Weiman [10] consider “non-envy relations,” which are similar to our notion of
envy-free-relations, and Chauduri [6] introduces “envy-relations.” Despite some similarities,
their notions differ from ours, both in their properties and in the way properties holding for
their and our notions are proven. For example, Chauduri [6] notes that mutual envy cannot
occur in a market equilibrium, i.e., in this case his “envy-relations” are asymmetric, which is
in sharp contrast to two-way envy being allowed for our notion.
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vi(Ci)< vi(Ci) never holds. Thus, vi(Ci)≥ vi(Ci) always holds. However, when count-
ing envy-free-relations for a given division, we disregard the trivial envy-free-relations
pi � pi, 1 ≤ i ≤ n. Neither envy-relations nor envy-free-relations need to be transitive.
These observations imply that envy-relations and envy-free-relations are either one-way
or two-way, i.e., it is possible that: (a) two players envy each other (pi � p j and p j � pi),
(b) neither of two players envies the other (pi � p j and p j � pi), (c) one player envies
another player but is not envied by this other player (pi � p j and p j � pi).

Assuming all players to follow the rules and strategies, some cake-cutting protocols
always guarantee an envy-free division (i.e., they always find an envy-free division of
the cake), whereas others do not. Only protocols that guarantee an envy-free division
in every case, even in the worst case (in terms of the players’ valuation functions), are
considered to be envy-free. An envy-free division may be obtained by coincidence, just
because the players have matching valuation functions that avoid envy, and not because
envy-freeness is enforced by the rules and strategies of the cake-cutting protocol used.
In the worst case, however, when the players have totally nonconforming valuation
functions, an envy-free division would not just happen by coincidence, but needs to be
enforced by the rules and strategies of the protocol. An envy-free-relation is said to be
guaranteed if it exists even in the worst case.

Definition 3. For n ≥ 1 players, the degree of guaranteed envy-freeness (DGEF, for
short) of a given proportional5 cake-cutting protocol is defined to be the maximum num-
ber of envy-free-relations that exist in every division obtained by this protocol (provided
that all players follow the rules and strategies of the protocol), i.e., the DGEF (which is
expressed as a function of n) is the number of envy-free-relations that can be guaranteed
even in the worst case.

This definition is based on the idea of weakening the notion of fairness in terms of
envy-freeness in order to obtain cake-cutting protocols that are fair (though perhaps not
envy-free) and finite bounded, where the fairness of a protocol is given by its degree of
guaranteed envy-freeness. The higher the degree of guaranteed envy-freeness the fairer
the protocol.

Proposition 1 gives an upper and a lower bound on the degree of guaranteed envy-
freeness for proportional cake-cutting protocols. Its proof can be found in the full ver-
sion of this paper [13].

Proposition 1. Let d(n) be the degree of guaranteed envy-freeness of a proportional
cake-cutting protocol for n≥ 2 players. It holds that n≤ d(n)≤ n(n−1).

An envy-free cake-cutting protocol for n players guarantees that no player pi envies
any other player p j, i.e., the DGEF of an envy-free protocol equals n(n−1), the upper
bound in Proposition 1.

The degree of fairness of a division obtained by applying a proportional cake-cutting
protocol highly depends on the rules of this protocol. Specifying and committing to
appropriate rules often increases the degree of guaranteed envy-freeness, whereas the

5 We restrict the notion of DGEF to proportional protocols only, since otherwise the DGEF may
overstate the actual level of fairness, e.g., if all the cake is given to a single player.
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lack of such rules jeopardizes it in the sense that the number of guaranteed envy-free-
relations may be limited to the worst-case minimum of n as stated in Proposition 1.
In this context, “appropriate rules” are those that involve the players’ evaluations of
other players’ pieces and portions that still are to be assigned. Concerning a particular
piece of cake, involving the evaluation of as many players as possible in the alloca-
tion process helps to keep the number of envy-relations to be created low, since this
allows to determine early on whether a planned allocation later may turn out to be
disadvantageous—and thus allows to take adequate countermeasures. In contrast, omit-
ting mutual evaluations means to forego additional knowledge that could turn out to be
most valuable later on. For example, say player pi is going to get assigned piece c j. If
the protocol asks all other players to evaluate piece c j according to their measures, all
envy-relations to be created by the assignment of piece c j to player pi can be identified
before the actual assignment and thus countermeasures (such as trimming piece c j) can
be undertaken. However, if the protocol requires no evaluations on behalf of the other
players, such potential envy-relations cannot be identified early enough to prevent them
from happening.

Lemma 1. A proportional cake-cutting protocol with n ≥ 2 players has a DGEF of n
(i.e., each player is guaranteed only one envy-free-relation) if the rules of the protocol
require none of the players to value any of the other players’ portions.

Our next result shows the DGEF for a number of well-known finite bounded propor-
tional cake-cutting protocols. Note that these protocols have been developed with a
focus on achieving proportionality, and not on maximizing the DGEF. The proofs of
Lemma 1 and Theorem 1 can be found in the full version of this paper [13].

Theorem 1. For n≥ 3 players, the proportional protocols in Table 1 have a DGEF as
shown in the same table.

Table 1. DGEF of selected finite bounded cake-cutting protocols

Protocol DGEF

Last Diminisher [18] 2+ n(n−1)/2

Lone Chooser [11] n
Lone Divider [12] 2n−2
Cut Your Own Piece (no strategy) [20] n
Cut Your Own Piece (left-right strategy) 2n−2
Divide and Conquer [8] n · �logn�+2n−2�logn�+1

Minimal-Envy Divide and Conquer [2] n · �logn�+2n−2�logn�+1

Recursive Divide and Choose [22] n

4 A Protocol with an Enhanced DGEF

Figure 1 shows a finite bounded proportional cake-cutting protocol with an enhanced
DGEF for n players, where n ≥ 3 is arbitrary. Unless specified otherwise, ties in this
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protocol can be broken arbitrarily. Regarding the DGEF results in Table 1 the Last Di-
minisher protocol6 shows the best results for n ≥ 6, whereas the best results for n < 6
are achieved by the Last Diminisher protocol as well as both the Divide and Conquer
protocols [8,2]. The protocol in Figure 1 improves upon these degrees of guaranteed
envy-freeness for all n≥ 3 and improves upon the DGEF of the Last Diminisher proto-
col by �n/2�−1 additional guaranteed envy-free-relations.

Before presenting our protocol in detail, let us give an intuitive, high-level explana-
tion. Both the protocol in Figure 1 and the Last Diminisher protocol are, more or less,
based on the same idea of determining a piece of minimal size that is valued exactly 1/n

by one of the players (who is still in the game), which guarantees that all other players
(who are still in the game) will not envy this player for receiving this particular piece.
However, the protocol in Figure 1 works in a more parallel way, which makes its en-
hanced DGEF of

⌈
n2/2
⌉
+1 possible (see Theorem 3). To ensure that the parallelization

indeed pays off in terms of increasing the degree of guaranteed envy-freeness, the “in-
ner loop” (Steps 4.1 through 4.3) of the protocol is decisive. In addition, the protocol
in Figure 1 provides a proportional division in a finite bounded number of steps (see
Theorem 2), just as the Last Diminisher protocol.

Remark 1. Some remarks on the protocol in Figure 1 are in order:

1. From a very high-level perspective the procedure is as follows: The protocol runs
over several rounds in each of which it is to find a player p j who takes a portion
from the left side of the cake, and to find a player pk who takes a disjoint portion
from the right side of the cake, such that none of the players still in the game
envy p j or pk (at this, appropriate “inner-loop handling” might be necessary, see
Figure 1 for details). Thereafter, p j and pk are to drop out with their portions, and
a new round is started with the remaining cake (which is being renormalized, see
remarks 3 and 4 below) and the remaining players. Finally, the Selfridge–Conway
protocol is applied to the last three players in the game.7

2. The trivial cases n = 1 (where one player receives all the cake) and n = 2 (where
each proportional division is always envy-free) are ignored.

3. Regarding n≥ 5 players, if at any stage of our protocol the same player marks both
the leftmost smallest piece and the rightmost smallest piece, the cake may be split
up into two pieces and later on merged again. To simplify matters, in such a case the
interval boundaries are adapted as well, which is expressed in Step 8 of Figure 1.
Simply put, the two parts of the cake are set next to each other again to ensure a
seamless transition. This can be done without any loss in value due to additivity of
the players’ valuation functions.

4. In Steps 1 and 9.1, the value of subcake C′ ⊆C is normalized such that vi(C′) = 1
for each player pi, 1 ≤ i ≤ s, for the sake of convenience. In more detail, each
player pi values C′ at least s/n of C, i.e., vi(C′)≥ (s/n) · vi(C). Thus, by receiving a
proportional share (valued 1/s) of C′ each player pi is guaranteed at least a propor-
tional share (valued 1/n) of C.

6 This protocol has been developed by Banach and Knaster and was first presented in Stein-
haus [18].

7 This protocol is known to be a finite bounded envy-free cake-cutting protocol for n = 3 players
(see Stromquist [21]).
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Input: n players p1, p2, . . . , pn, where pi has the valuation function vi, and cake C.
Output: Mapping of portions Ci to players pi, where C =

⋃n
i=1Ci.

Initialization: Set λ := 0, ρ := 1, ρ ′ := ρ , s := n, and C′ := [0,1] = C.
While there are more than four players (i.e., s> 4), perform the outer loop (Steps 1 through 8).
Step 1. Let players pi, 1 ≤ i ≤ s, each make two marks at λi and ρi with λi,ρi ∈ C′

such that vi(λ ,λi) = 1/s and vi(ρi,ρ) = 1/s; note that vi(C′) = 1 (see Re-
mark 1.4).

Step 2. Find any player p j such that there is no player pz, 1 ≤ j,z ≤ s, j �= z, with
‖[λ ,λz]‖< ‖[λ ,λ j]‖.

Step 3. Find any player pk such that there is no player pz, 1 ≤ k,z ≤ s, k �= z, with
‖[ρz,ρ]‖ < ‖[ρk,ρ]‖. If more than one player fulfills this condition for pk,
and p j is one of them, choose pk other than p j .

If j �= k, go directly to Step 5, else repeat the inner loop (Steps 4.1 through 4.3) until p j and
pk are found with j �= k, where p j marks the leftmost smallest piece and pk the rightmost
smallest piece.
Step 4.1. Set ρ ′ := ρk.
Step 4.2. Let players pi, 1≤ i≤ s, each make a mark at ρi ∈C′ such that vi(ρi,ρ ′) = 1/s.
Step 4.3. Find player pk such that there is no player pz, 1 ≤ k,z ≤ s, k �= z, with

‖[ρz,ρ ′]‖ < ‖[ρk,ρ ′]‖. If more than one player fulfills this condition for pk,
and p j is one of them, choose pk other than p j .

Step 5. Assign portion Cj = [λ ,λ j] to player p j.
Step 6. If ρ = ρ ′, assign portion Ck = [ρk,ρ] to player pk, else assign portion Ck =

[ρk,ρ ′] to player pk.
Step 7. Let players p j and pk drop out.
Step 8. If ρ = ρ ′, set C′ := [λ j,ρk] and ρ := ρk, else set C′ := [λ j,ρk]∪ [ρ ′,ρ] and

ρ := ρ−ρ ′+ρk (see Remark 1.3). Set λ := λ j, ρ ′ := ρ , and s := s−2.
Perform Steps 9.1 through 9.4 if and only if there are four players (i.e., s = 4). If there are
three players (i.e., s = 3), go directly to Step 10.
Step 9.1. Let each pi, 1≤ i≤ s = 4, make a mark at ρi ∈C′ such that vi(ρi,ρ) = 1/s =

1/4; note that vi(C′) = 1 (see Remark 1.4).
Step 9.2. Find any player p j such that there is no player pk, 1 ≤ j,k ≤ s, j �= k with

‖[ρk,ρ]‖< ‖[ρ j,ρ]‖.
Step 9.3. Assign portion Cj = [ρ j,ρ] to player p j. Let player p j drop out.
Step 9.4. Set ρ := ρ j and C′ := [λ ,ρ]. Set s := s−1.
Step 10. Divide the remaining cake C′ among the s = 3 remaining players by the

Selfridge–Conway protocol.

Fig. 1. A proportional protocol with an enhanced DGEF of �n2/2�+1 for n≥ 3 players

Theorem 2. The protocol in Figure 1 is finite bounded and proportional.

The proofs of Theorems 2 and 3 are given in the full version of this paper [13], but we

mention that the protocol is bounded by (7 · �(n−4)/2�)+
(

3 ·∑�(n−4)/2�
i=1 (n−2i)

)
+ 4 + 9

steps, which shows that it indeed is finite bounded. The proof of proportionality follows
along the lines of the proof of Theorem 3 and in particular uses that each player is
assigned a portion valued exactly 1/s of a subcake that he or she values to be worth at
least s/n of the given cake, according to his or her measure.
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Theorem 3. For n ≥ 5 players, the cake-cutting protocol in Figure 1 has a DGEF of⌈
n2/2
⌉
+ 1.8

5 Discussion

It may be tempting to seek to decrease envy (and thus to increase the DGEF) via trad-
ing, aiming to get rid of potential circular envy-relations. Indeed, if the DGEF is lower
than n(n−1)/2, the number of guaranteed envy-free-relations can be improved to this
lower bound by resolving circular envy-relations (of which two-way envy-relations are
a special case) by means of circular trades after the execution of the protocol.9 Thus, in
this case, involving subsequent trading actions adds on the number of guaranteed envy-
free-relations. Furthermore, having n(n−1)/2 guaranteed envy-free-relations after all cir-
cular envy-relations have been resolved, three more guaranteed envy-free-relations can
be gained by applying an envy-free protocol (e.g., the Selfridge–Conway protocol) to
the three most envied players, which yields to an overall lower bound of 3 + n(n−1)/2

guaranteed envy-free-relations. Note, though, that the DGEF is defined to make a state-
ment on the performance of a particular protocol and not about all sorts of actions to be
undertaken afterwards.

However, if the DGEF of a proportional cake-cutting protocol is n(n−1)/2 or higher
(such as the DGEF of the protocol presented in Figure 1) then circular envy-relations
are not guaranteed to exist, and hence, in this case, trading has no impact on the number
of guaranteed envy-free-relations.

Although the well-known protocols listed in Table 1 have not been developed with
a focus on maximizing the DGEF,10 linking their degrees of guaranteed envy-freeness
to the lower bound provided by involving, e.g., the Selfridge–Conway protocol and
guaranteed trading opportunities indicates that the development of cake-cutting proto-
cols with a considerably higher DGEF or even with a DGEF close to the maximum
of n(n−1) poses a true challenge. That is why we feel that the enhanced DGEF of the
protocol presented in Figure 1 constitutes a significant improvement.

8 Note that the same formula holds if n = 3, but for the special case of n = 4 (see [13] for details)
even one more envy-free-relation can be guaranteed (i.e., for n = 4 players, the DGEF of the
protocol in Figure 1 is (n2/2)+2).

9 To be specific here, all occurrences of “guaranteed envy-free-relations” in this and the next
paragraph refer to those envy-free-relations that are guaranteed to exist after executing some
cake-cutting protocol and in addition, subsequently, performing trades that are guaranteed to
be feasible. This is in contrast with what we mean by this term anywhere else in the paper;
“guaranteed envy-free-relations” usually refers to those envy-free-relations that are guaranteed
to exist after executing the protocol only. As is common, we consider trading not to be part
of a cake-cutting protocol, though it might be useful in certain cases (for example, Brams and
Taylor mention that trading might be used “to obtain better allocations; however, this is not a
procedure but an informal adjustment mechanism” [4, page 44]). In particular, the notion of
DGEF refers to (proportional) cake-cutting protocols without additional trading.

10 Quite remarkably, without any trading actions and without involving, e.g., the Selfridge–
Conway protocol the Last Diminisher protocol achieves with its DGEF almost (being off only
by one) the trading- and Selfridge–Conway-related bound of 3+ n(n−1)/2 mentioned above.
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6 Conclusions

Finite bounded protocols that guarantee an envy-free division for n> 3 players are still
a mystery. However, finite bounded protocols are the ones we are looking for in terms
of practical implementations. We propose to weaken the requirement of envy-freeness,
while insisting on finite boundedness. To this end, we introduced the notion of degree
of guaranteed envy-freeness for proportional cake-cutting protocols and determined the
DGEF in existing finite bounded proportional cake-cutting protocols. We expect that
the concept of DGEF is suitable to extend the scope for the development of new fi-
nite bounded cake-cutting protocols by allowing to approximate envy-freeness step by
step. In this context, we proposed a new finite bounded proportional cake-cutting pro-
tocol, which provides a significantly enhanced DGEF compared with those in Table 1.
In particular, our protocol has �n/2�− 1 more guaranteed envy-free-relations than the
Last Diminisher protocol, which previously was the best finite bounded proportional
protocol with respect to the DGEF. To achieve this significantly enhanced DGEF, our
protocol makes use of parallelization with respect to the leftmost and the rightmost
pieces. In this regard, adjusting the values of the pieces to be marked from 1/n to 1/s

(with s players still in the game) and applying an appropriate inner-loop procedure is
crucial to make the parallelization work.
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Approximate Pure Nash Equilibria via Lovász
Local Lemma

Thành Nguyen� and Éva Tardos��
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Abstract. In many types of games, mixed Nash equilibria is not a satis-
fying solution concept, as mixed actions are hard to interpret. However,
pure Nash equilibria, which are more natural, may not exist in many
games. In this paper we explore a class of graphical games, where each
player has a set of possible decisions to make, and the decisions have
bounded interaction with one another. In our class of games, we show
that while pure Nash equilibria may not exist, there is always a pure
approximate Nash equilibrium. We also show that such an approximate
Nash equilibrium can be found in polynomial time. Our proof is based on
the Lovász local lemma and Talagrand inequality, a proof technique that
can be useful in showing similar existence results for pure (approximate)
Nash equilibria also in other classes of games.

1 Introduction

In his Nobel prize winning work, John Nash proved the existence of mixed equi-
libria, which are now called Nash equilibria. A nice property of Nash equilibria is
that they exist in (almost) any game. On the other hand, in many applications,
for example in network design problem [3] and facility locations [20], agents need
to make a decision that then will be visible to all other players, such as locating
a facility (network router, a store, a server, etc.). In such games, there is no
natural interpretation of a randomized action of the players. Before the decision
is made, it makes sense to think of two locations as equally likely for being the
selected choice. But once a decision is made, and assuming this decision is ob-
servable for all other players, these other players will react to the actual decision
made, and the fact that a priori another decision was equally likely becomes
irrelevant. This is especially true if, once the decision is made, it becomes hard
to undo, such as locating a facility that requires significant investment cost. In
such contexts pure Nash equilibria are much more natural, but unfortunately,
they may not exist.

Our interest in this paper is to explore the existence of pure Nash equilibria (or
approximate equilibria). Recent results on the hardness of computing Nash equi-
libria [8,5] inspired work on finding approximate equilibria, see for example [7]. In
this paper, we attempt to start similar investigations for approximate pure Nash
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equilibria. In a general model, we proved that there exists pure constant approxi-
mate Nash, and we can find it in polynomial time. In this paper, we also introduce
a new technique for proving the existence of approximate Nash equilibria.

Our model. The class of games we consider is a variant of graphical games, where
different players interact in limited ways. Graphical game is a general class of
games that successfully captures and exploits the locality and sparsity of direct
influences in games with large number of players. In a graphical game we are
given an undirected graph, in which players are identified with vertices, and a
player’s payoff function is entirely determined by the action of the player and
his/her neighbors. In this paper we consider a slightly different class with limited
direct interactions. We will assume that each player makes many decisions, and
assume that each decision is directly influenced by only a limited number of
other decisions (while a player can influence a large set of other players through
his many decisions).

More precisely, in the game we consider, each player i will be represented
as a set of vertices Si, one vertex for each of the decisions the player has to
make. In each vertex, the player has two options, to play 0 or 1. We can think
of the decision of playing 1 as representing the strategy to locate a service at
this location, or start a business, develop a new product, etc. In this game, each
player has a complex strategy set: the number of strategies is 2|Si| corresponding
to all possible subsets of Si. We will describe the direct interactions of these
decisions by an undirected graph G on all the vertices ∪iSi, with the set of
edges connecting a vertex of a player to another player’s vertex. We call this
graph interaction graph .

We model the utility function of a player in two steps. First, on each possible
location j (vertex in j ∈ Si) there is an outcome function, the outcome of the
decision player i made on this vertex, which is a function mapping decisions
made at all vertices connected to the vertex j to a multiple dimensional vector
in {0, 1}h. We’ll think of the outcome as the level of success of the decision made
in several criteria. For example, a product can be a success in one part of the
market but not in the other, or building a factory at a location can create profit
for the company, offer jobs for the locals but can cause environmental problems
as well. A player in this model sometimes needs to make a decision that balances
the trade-off between many factors. We model the payoff function of each player
i as a MAXSAT formula of the whole outcome vector on Si.

The proposed model of outcomes, and utility functions via a MAXSAT expres-
sion is very general, allowing us to model interests by players in many aspects.
A term in the MAXSAT formula can model the success of each of the player’s
ventures, but other terms can express combinatorial goals. For example, in the
case of companies developing products, one of the goals can be: at least one of
the given products needs to be successful in a given market. The outcome func-
tion is an arbitrary function and therefore can capture some complex situations.
For example, when developing a strategy whether to invest and build facility
in various locations or to develop some new products, a company needs to take
into account many factors: whether there will be too many competitors in the
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location nearby, or too many similar products in the market. In some cases a
product can only be successful if there are some other products available on the
market. Our model captures some of these types of problems. A more precise
description of the model is presented in Section 2.

Our result and technique. In this paper we will prove that if we assume the utility
functions satisfy a Lipschitz condition, that is Ui(Xi) − Ui(X ′

i) ≤ Δ whenever
Xi, X

′
i differ on one coordinate, then the game has a pure approximate Nash

equilibrium, at which each player i has an payoff at least

OPTi/2−O
(
Δ(
√
OPTi +Δ)

√
logn+ log d

)
,

where OPTi is the optimal payoff he can get by a deviation, d is the maximum
degree in the interaction graph G and n is the maximum size of a player’s action
set Si, that is n = maxi |Si|. Furthermore, such a configuration can be found in
polynomial time.

Note that when OPTi >> Δ, log n, log d then this is a constant approximate
Nash. Furthermore, in the case of using MAXSAT to describe user utility func-
tions, finding a better than constant approximate Nash is unlikely, as finding
a better than constant approximation for even a single player’s optimization
problem is NP hard [12].

In many cases, the assumption that OPTi is relatively larger than logn and
log d is reasonable, as the optimal solution of a MAXSAT formula is at least a
constant times the number of its clauses. In our model if the number of clauses
is much larger than logn and the outcome functions are not all “constant”, that
is, for a player by changing his decision on a vertex from 0 to 1 or from 1 to
0, the outcome of this decision also changes, then OPTi satisfies the condition
above.

At the heart of our proof is the use of Lovász local lemma and Talagrand’s
inequality. The Lipschitz condition is used extensively for a concentration bound
using Talagrand’s inequality. Lovász local lemma is used to prove the guarantee
that every player has a payoff near the optimal. These techniques are nontrivial
and general, and we hope that they will be useful in proving similar results about
approximate Nash equilibria in many other settings.

A bad example. To illustrate the difficulties and some of the ideas in our tech-
niques, let us start with the following example:

Player 1

Player 2

u1

v1

u2

v2

u3

v3

un

vn

Fig. 1. An example



Approximate Pure Nash Equilibria via Lovász Local Lemma 163

There are two players in the game. The first player plays on n vertices
u1, u2, .., un and the second one plays on v1, v2, .., vn. Let o(ui) and o(vi) ∈ {0, 1}
be the outcome on vertex ui and vi respectively. The utility function of player 1 is
a SAT formula consisting of the clauses: (o(u1)∨o(u2)), (o(u1)∨o(u3)), .., (o(u1)∨
o(un)). Similarly, the utility function of player 2 is a SAT formula consisting of
the clauses: (o(v1)∨o(v2)), (o(v1)∨o(v3)), .., (o(v1)∨o(vn)). The underlying graph
is a matching {uivi}. Now the outcome functions are defined as follows: On all
the vertices ui, vi, where i ≥ 2, the outcome function is 0 no matter what the
players’ strategies are. On v1 and u1, the outcome function is the same as the
payoff function of the “matching penny” game described by the following table:

0 1
0 (0, 1) (1, 0)
1 (1, 0) (0, 1)

It is not hard to see that it is a mixed strategy Nash if player 1 plays 0 or
1 with 1/2 probability on u1 and player 2 plays 0 or 1 with 1/2 probability on
v1 . Given any deterministic configuration of the game, there is always a player
that can improve his payoff from 0 to n − 1 by changing his strategy on his
first vertex. Thus, the game not only has no pure Nash equilibria but also has
no “reasonable” approximate pure Nash equilibria. It turns out that the main
obstacle in this example is the property that in the utility functions there is a
variable such that by changing its value the utility function changes rapidly.

Related works. The complexity of mixed Nash equilibira is studied in [8,5]. In
many applications, such as most of the network formation games, pure Nash
Equilibria are usually considered a more realistic model of rationality. See the
[2,3,20] for detail.

Potential games [17] is essentially the only class of games that is known to
have pure Nash equilibria. The complexity of finding a pure Nash in potential
games is proved to be PLS-complete [11]. Inspired by these hardness results,
many researchers have been investigating pure approximate Nash equilibria in
various games [2,18].

Graphical games were introduced in [14], and have been extensively studied.
(See the survey [15].) The complexity of finding pure Nash equilibria in graphical
games were studied in [6,9]. Most of the results concerning pure NE in graphical
games are either negative or for a small class of graphs such as trees or graphs
with bounded tree-width. Our model is a variant of graphical games. Here, in-
stead of representing each player as a vertex in the graph, we consider each
player as a set of vertices and thus, it models more complex strategy sets for
players. In this paper, we provide a positive result for the existence of a pure
approximate Nash in general graphs that can be found in polynomial time.

Lovász local lemma is proved in [10]. Lovász local lemma is a powerful tool in
probability and has a wide range of applications, see the book of [1] for details
and references. To the best of our knowledge, our paper is the first application
of the local lemma in the area of algorithmic game theory.
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Structure of the paper. In the next section, we will define our model more pre-
cisely. In Section 3 we will prove the existence of an approximate pure NE. Using
an algorithmic version of the local lemma, we also obtain an algorithm to find
such a solution.

2 The Model and Notations

Consider a game consisting N players, each player i has a set of possible vertices
Si, one vertex for each of the decisions that the player has to make. On each of
his/her vertex, player i can choose one of two strategies 0 or 1. We call it the
decision of player i on the vertex. In this game, each player i can have up to
2|Si| strategies corresponding to all possible subsets of Si.

We assume that the size of Si is at most n for every i, an all the set Si are
disjoint. The latter assumption does not affect the generality of our model, as
each player can have his/her own copy of a vertex.

Similar to graphical games [14], we model the direct interactions of the players’
decisions by an undirected graph G on the set of all the vertices ∪iSi. The edges
of G connects a vertex of a player to another player’s vertex. We call G the
interaction graph. See Figure 2 for an example. In the rest of the paper, we use
d as the maximum degree of the interaction graph.

The utility function of a player is modeled in two steps. First, at each vertex
j ∈ Si, there is an outcome function. The outcome function on a vertex j is a
function mapping the decisions of the players on j and neighbors of j to a finite
set of outcomes. In this paper, we consider the case where each outcome is a
multiple dimensional vector in O = {0, 1}h for a constant h. For a vertex j, we
denote Γ (j) as the set of j’ neighbors, and oj the outcome function on j, we
have:

oj : {0, 1}|Γ (j)∪j| → O = {0, 1}h

Player 1

Player 2

Player 3

Player 4n = 7

d = 5

Fig. 2. An example of our model

Now, given a configuration of the game, each player has an outcome on each
of his vertices. The utility of player i denoted by Ui is a function mapping the
outcome vector on Si to a non negative number.

Ui : {O}|Si| → R+
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One way to think about Ui is that it is function on mi = h · |Si| boolean variables
measuring the success of the decisions made in many aspects. In many cases,
there are trade-offs between these decisions and some of the goals of a player is a
combination of several outcomes. We model Ui as a MAXSAT function, that is
for each Ui there is a Normal Conjunctive Formula (NCF) Φ on boolean variables
x1, .., xmi such that the value of Ui(x1, .., xmi) is the number of satisfying clauses
in Φ. Note that our results can be naturally extended to a weighted version of
MAXSAT.

As we have seen in the counter example in the introduction, we will need
a Lipschitz condition for the utility functions. This condition assumes that by
changing the decision at one vertex, the player’s utility does not change very
much. More precisely, the utility function Ui, described above as a composition
of a MAXSAT and several outcome functions, can be considered as a function of
the player i’s strategy Xi ∈ {0, 1}|Si| and all other players’ X−i ∈ {0, 1}|∪j �=iSj |.
We assume that Δ is the Lipschitz constant for the class of utilities we consider.
That is, for every i, |Ui(Xi, X−i)− Ui(X ′

i, X−i)| ≤ Δ whenever Xi, X
′
i differ in

only one coordinate.
In the rest of the paper, we call the class of games defined above MAXSAT

games with the Lipschitz constant Δ.

3 Existence of Approximate Pure Nash

In this section we will prove the following result about the existence of a pure
approximate Nash equilibrium for MAXSAT games.

Theorem 1. In the MAX SAT game, there exists an approximate Nash, where
each player i obtains a payoff at least

OPTi/2−O
(
Δ(
√
OPTi +Δ)

√
logn+ log d

)
,

where OPTi is the optimum that player i can achieve assuming that other players
do not change their strategies, and Δ is the Lipschitz constant of the players’
utilities.

We now give some intuition before proving the theorem. Consider an arbitrary
configuration of the game, and a player i. If player i assumes that other players
do not change their strategies, then on a vertex j ∈ Si, the outcome function
will be a function mapping his decision on j to a vector in {0, 1}h. Let xj be the
player’s decision on vertex j. The outcome oj will be a vector whose coordinates
can be a constant (independent of xj) or xj or ¬xj . Because the player i’s
utility can be expressed as a MAXSAT function on the outcome vector, it is
also a MAXSAT function on {xj , j ∈ Si}. Therefore, if player i tries to find a
strategy to maximize his own utility, he needs to solve a MAXSAT problem. It
is, however, known that by assigning each variable to 0 and 1 with probability
1/2, we get at least a 2-approximate solution in expectation. We note that in the
worst case, this simple algorithm gives the best possible approximation on some
instances of MAXSAT, as shown by [12].
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With this intuition, let us consider a simple strategy where each player’s
decision on a location is to pick either 0 or 1 randomly with probability 1/2.
This strategy is an 2-approximate mixed strategy Nash. However, by selecting
the strategies randomly, players might end up in a situation when they can
deviate and significantly increase their payoff. Because the number of players N
can be arbitrarily large, independent of n and d, the number of such players can
also be arbitrarily large. Our idea is to bound the probability that such event
happens and then use Lovász local lemma to prove the existence of approximate
Nash equilibria. Lovász local lemma, proved in [10], can be stated as follows:

Lemma 1 (Lovász). Let A1, A2, ..., AN be a series of events such that each
event occurs with probability at most p and such that each event is independent
of all the other events except for at most D of them. If e ·p · (D+1) < 1 (where e
=2.718...), then there is a nonzero probability that none of the events occur. 	


In order to use Lovász local lemma, we will define Ai as the event that player
i can “significantly” improve his payoff by deviating. Thus, to prove that the
probability that none of Ai occur is positive, we will need to bound the proba-
bility of Ai and to show that each Ai is independent of all but few other Ajs.
We call the number of such events the dependence number of Ai. We first give a
bound on the dependence numbers.

Lemma 2. For every i, the dependence number of Ai is at most 2nd2.

A1

A2

A3

Fig. 3. A1 and A3 are independent, A1 and A2 are not independent

Proof. Ai is the event that a player i can find a “significantly” better move.
This event depends on the decision of player i on his vertices and the decision
of all other players on the neighboring vertices. Consider two events Ai and Aj .
If each path connecting two vertices of player i and player j has a distance at
least 3, then the set of neighboring vertices of player i and player j are disjoint.
Hence Ai and Aj are independent of each other. See Figure 3 for an example.
The dependence number of Ai, therefore is bounded by the number of Aj that
has a path of length at most 2 connecting from a vertex of j to a vertex of i.
Since each vertex can belong to at most one player, the number of such Aj ’s
that might not be independent of Ai is at most the number of vertices having
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a path of length 1 or 2 to any vertex of player i. Now the maximum degree of
the interaction graph is bounded by d. Thus the number of vertices within a
distance 2 from player i’s vertices is at most n.d+ n.d.d ≤ 2nd2. 	


We now give a simple way to define and prove a bound on Pr(Ai). This approach
only gives a weaker result than Theorem 1. We then use a more powerful tech-
nique to prove our main theorem. The correct definition of Ai and the formal
proof of Theorem 1 will be given at the end of this section.

For a player i, assume that other players do not change their strategies, the
utility Ui is a function on the strategy set {0, 1}|Si|. As discussed at the begin-
ning of this section, a random strategy gives at least a 2- approximate solution
in expectation. Because Ui satisfies a Lipschitz condition, one can use a concen-
tration inequality to bound the probability that the value of Ui is much smaller
than the expected value. In particular we can use the following Hoeffding-Azuma
inequality [13,4]:

Lemma 3 (Hoeffding-Azuma). Let U : {0, 1}n → R be a function such that
|U(x)−U(x′)| ≤ Δ whenever x, x′ differ in only one coordinate, then if x1, .., xn

are independent boolean variables, we have : Pr(|U(x1, .., xn)−E(U(x1, .., xn))|
≥ λΔ

√
n) ≤ 2e

−λ2
2 . 	


If we define Ai to be the event that:

Ui(x1, .., x|Si|)− E(Ui(x1, .., x|Si|)) ≥ λΔ
√
|Si|

with a λ chosen such that

(2e
−λ2

2 )e(2d2n+ 1) ≤ 1

then we can apply the local lemma to prove that there the game has a configu-
ration where each player i get at least 1

2OPTi −Δλ
√
|Si|. Now:

2e
−λ2

2 e(2d2n+ 1) ≤ 1 ⇔ 2e
λ2
2 ≥ e(2d2n+ 1)

One can choose

λ =
√

2 log(2e(2d2n+ 1)) = O(
√

logn+ log d),

and obtain the following result:

Claim. There exists a configuration such that each player obtains a payoff at
least 1

2OPTi −O(Δ
√
|Si|(log n+ log d)), where OPTi is the optimum that that

player can obtain assuming other players do not change their strategies. 	


The additive error in the result above is of order O(
√
|Si|(logn+ log d)), thus

when OPTi is relatively small compred with
√
|Si| the result is rather weak. To

prove the stronger result in Theorem 1, we will apply a stronger concentration
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technique developed by Talagrand [19]. We start by describing a class of functions
that can be used in this approach.

Definition 1. We call a non negative function f defined on a set Ω of n di-
mensional vectors a c-configuration function if it has the following property: for
each x ∈ Ω there is a non-negative unit n-dimensional vector α such that for
each y ∈ Ω we have:

f(y) > f(x)−
√
cf(x)dα(x, y),

where
dα(x, y) =

∑
i∈{1,..,n};xi �=yi

αi.

Lemma 4 (Talagrand). Let f be a c-configuration function, X be a random
variable taking each coordinate independently from any distributionand, and let
m be a median for f(X), that is, m : Pr(f(X) ≤ m) = 1

2 . Then for any t > 0

Pr(f(X) ≤ m− t) ≤ 2e−t2/4cm.

Pr(f(X) ≥ m+ t) ≤ 2e−t2/4c(m+t).

Pr(|f(X)−m| ≥ t) ≤ 2e−t2/4cm + 2e−t2/4c(m+t). 	


The Talagrand’s inequality exploits the structure of the function f . The concen-
tration error can be given as a function of the value of the median instead of
the number of the variables. Therefore, Talagrand’s inequality gives a stronger
result when the median is relatively small.

We will show later that the class of utility functions considered in this paper
are Δ2-configuration functions, where Δ is the Lipschitz constant of the utilities.
We will then apply the Talagrand’s inequality. A technical problem here is that,
the concentration is however bounded around the median of the variable. Some
technical work will be needed to express the concentration inequality around the
expected value. We will use the following result instead of Lemma 4:

Lemma 5. Let f be a c-configuration function, and let μ be the expected value
for f(X), where X is a random variable taking each coordinate independently
from any distribution, then for all λ > 10

Pr (f(X) < μ− 60λ(
√
cμ+ c)) ≤ 2e−λ2

Proof. Before proving the lemma, let us remark that all the constants are chosen
in the calculation for convenience. We did not attempt to optimize them. Now,
recall that μ and m is the expected value and median of f(X). We have:

|μ−m| = |E(f(X)−m)| ≤ E(|f(X)−m|) =
∫ ∞

0
Pr(|f(X)−m| > t)dt
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Because of the Lemma 4:∫ ∞

0
Pr(|f(X)−m| > t)dt ≤ 2

∫ ∞

0
e−t2/4cmdt+ 2

∫ ∞

0
e−t2/4c(m+t)dt

= 2
√
πcm+ 2

∫ ∞

0
e−t2/4c(m+t)dt

≤ 2
√
πcm+ 2

∫ m

0
e−t2/4c(m+m)dt+ 2

∫ ∞

m

e−t2/4c(t+t)dt

= 2
√
πcm+ 2

∫ m

0
e−t2/8cmdt+ 2

∫ ∞

m

e−t2/8ctdt

< 2
√
πcm+ 2

√
2πcm+ 16c ≤ 10

√
cm+ 16c

Thus we have
|μ−m| < 10

√
cm+ 16c (1)

From here it is not hard to see that

15(
√
μ+

√
c) ≥

√
m (2)

Now, applying the first inequality in Lemma 4 for t = 2λ
√
cm, we have:

2e−λ2 ≥ Pr(f(X) < m− 2λ
√
cm) (3)

Using the fact that m ≥ μ− |μ−m|, we have:

Pr(f(X) < m− 2λ
√
cm) ≥ Pr

(
f(X) < μ− |μ−m| − 2λ

√
cm
)

(4)

Now, due to (1) |μ−m| ≤ 10
√
cπm+ 16c, we have:

Pr
(
f(X) < μ− |μ−m| − 2λ

√
cm
)
≥Pr

(
f(X) < μ− 10

√
cm− 16c− 2λ

√
cm
)

(5)
Combining (3),(4) and (5) we obtain

2e−λ2
≥ Pr

(
f(X) < μ− 10

√
cm− 16c− 2λ

√
cm
)

⇔ 2e−λ2 ≥ Pr
(
f(X) < μ−

√
cm(10 + 2λ)− 16c

)
Using the fact from (2) that

√
m < 15(

√
μ+

√
c) we obtain:

2e−λ2 ≥ Pr
(
f(X) < μ− 15

√
c(
√
μ+

√
c)(10 + 2λ)− 16c

)
Therefore if λ big enough (> 10), we can simplify the last expression to get:

2e−λ2 ≥ Pr (f(X) < μ− 60λ(
√
cμ+ c))

This is what we need to prove. 	
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We are now ready to prove the main theorem:

Proof (Proof of Theorem 1)
Given a MAXSAT utility function U with the Lipschitz constantΔ, we first show
that U is a Δ2-configuration function. And hence we can apply Lemma 5. Given
a configuration of the game, let X be the strategy of a player, and k be the value
of his payoff. In other words, by playing X , the player can satisfy k clauses in the
corresponding Normal conjunctive formula. From each satisfying clause, pick a
variable. It is possible that we pick the same variable for different clauses, thus
the number of variables picked is k′ ≤ k. Each of these variables corresponds
to a decision made on a vertex. We can consider these decisions as a set of
“witnesses”. The reason is that if the player makes the same decisions as these
witnesses, he is guaranteed to obtain a payoff of at least k. Furthermore, because
of the Lipschitz condition, if at most l witness-decisions are made differently, then
the player obtains a pay of of at least k −Δl.

Now let α ∈ Rn be a non negative vector that takes 1√
k′ on the coordinates

of the witnesses and 0 elsewhere. Let Y be an alternative strategy such that
dα(X,Y ) = l√

k′ . This means that X and Y differs on l witness. Thus the payoff
of the player playing Y is at least k −Δl. This shows that:

U(Y ) ≥ U(X)−Δ
√
k′dα(X,Y ) ≥ U(X)−

√
Δ2U(X)dα(X,Y ).

The last inequality is from the fact that U(X) = k ≥ k′. This proves that the
utility function is a Δ2-configuration function.

Let μ = E(U(X)) and λ > 10 be a parameter, we now apply Lemma 5,

Pr
(
U(X) < μ− 60λ(Δ

√
μ+Δ2)

)
≤ 2e−λ2

We need to choose λ such that e·2e−λ2 ·(2nd2+1) < 1. Again without optimizing
the constant, let us choose λ = 2

√
logn+ log d+ 10. And we have:

Pr
(
U(X) ≤ μ− 60(2

√
logn+ log d+ 10)(Δ

√
μ+Δ2)

)
≤ 1
e(2nd2 + 1)

(6)

Note that μ is the expected value of a MAXSAT function, therefore, μ is at least
1/2 the optimal value. Therefore, we define Ai to be the event that the player i
gets a payoff less than

OPTi

2
− 60(2

√
logn+ log d+ 10)(Δ

√
OPTi

2
+Δ2)

=
OPTi

2
−O
(
Δ(
√
OPTi +Δ)

√
logn+ log d

)
where OPTi is the maximum payoff that player i can get assuming other players
do not change their strategies. Because of (6), we have

Pr(Ai) ≤
1

e(2nd2 + 1)
.

Thus, according to Lovász local lemma, there exists a configuration where none
of Ai occur. This is what we need to prove. 	
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Note: Using algorithmic versions of Lovász local lemma, for example, [16], we can
give a polynomial time algorithm for finding such an approximate equilibrium.
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10. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Hajnal, A., Rado, R., Sós, V.T. (eds.) Infinite and finite
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spaces. Publications Mathématiques de L’IHÉS 81, 73–205 (1995)

20. Vetta, A.: Nash equilibria in competitive societies with applications to facility
location, traffic routing and auctions. In: FOCS 2002 (2002)



Externalities in Keyword Auctions: An Empirical and
Theoretical Assessment�

Renato Gomes1, Nicole Immorlica2, and Evangelos Markakis3

1 Northwestern University, Department of Economics
rdbgomes@gmail.com

2 Northwestern University, Department of EECS
nicimm@gmail.com

3 Athens University of Economics and Business
Department of Informatics, Athens, Greece

markakis@gmail.com

Abstract. The value of acquiring a slot in a sponsored search list (that comes
along with the organic links in a search engine’s result page) might depend on
who else is shown in the other sponsored positions. To empirically evaluate this
claim, we develop a model of ordered search applied to keyword advertising, in
which users browse slots from the top to the bottom of the sponsored list and
make their clicking decisions slot by slot. Our contribution is twofold: first, we
use impression and click data from Microsoft Live to estimate the ordered search
model. With these estimates in hand, we are able to assess how the click-through
rate of an ad is affected by the user’s click history and by the other competing
links. Our dataset suggests that externality effects are indeed economically and
statistically significant. Second, we study Nash equilibria of the Generalized Sec-
ond Price Auction (GSP) and characterize the scoring rule that produces greatest
profits in a complete information setting1.

1 Introduction

Sponsored search advertising is a booming industry that accounts for a significant part
of the revenue made by search engines. For queries with most commercial interest,
Google, Yahoo! and MSN Live make available to advertisers up to three links above
the organic results (these are the mainline slots), up to eight links besides the organic
results (sidebar slots) and, more recently, MSN Live even sells links below the organic
results (bottom slots).

As such, an advertiser that bids for a sponsored position is seldom alone; and is
usually joined by his fiercest competitors. Indeed, it is widely believed that the value
of acquiring a sponsored slot highly depends on the identity and position of the other
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program “Beyond Search: Semantic Computing and Internet Economics”.

1 A full version of our work along with missing proofs of the theoretical results is available at
http://pages.cs.aueb.gr/˜markakis/research/pubs.html
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advertisers. Putting it differently, advertisers impose externalities on each other, which
affect their click-through rates and might have consequences on their bidding behavior.

The literature on sponsored search auctions mostly assumes click-through rates are
separable, i.e., the click through rate of a bidder is a product of two quantities, the first
expressing the quality of the bidder and the second the quality of the slot she occu-
pies. Such models cannot capture the externalities that one advertiser imposes on the
others. To capture these externality effects, we depart from the separable model and
study a model in which users perform ordered search, that is, (i) they browse the spon-
sored links from top to bottom and (ii) they take clicking decisions slot by slot. After
reading each ad, users decide whether to click on it or not and, subsequently, decide
whether to continue browsing the sponsored list or to simply skip it altogether (for a
formal definition and motivation for this model, see Section 2). With this formulation,
we are able to estimate continuation probabilities for each ad (which are simply the
probabilities of continuing searching the sponsored list after clicking or not on some
ad) and conditional click-though rates for each ad (which tell the probability of a click
conditional on the user’s previous clicking history). Continuation probabilities capture
position externalities, that is, they capture the negative impact that top links impose
on the click-through rates of bottom links (as users stop browsing either because their
search needs were already fulfilled or because they got tired of previous bad matches).
In turn, conditional click-through rates capture information externalities, as we can as-
sess how the information collected by the user by clicking on one given link impacts
the click-through rates of the other links he eventually reads.

We used three months of impression and clicking data from Microsoft Live to esti-
mate the ordered search model. We report our findings from three selected search terms:
ipod, diet pill and avg antivirus. For each of the selected keywords, we selected the logs
in which the most clicked advertisers occupied the mainline slots. Our main empirical
findings can be summarized as follows: first, our dataset suggests that both position and
information externalities are economically and statistically significant - and the returns
to keyword advertising (in terms of clicks) strongly depend on the identity of the other
advertisers. Secondly, our estimates suggest that users roughly divide in two groups: the
first group has a low clicking probability and usually drops the sponsored list without
going through all the mainline slots. In contrast, the second group of users clicks more
often and tends to read most of the sponsored links (price research behavior).

Inspired by our empirical findings, we set up an auction model in which advertisers
submit their bids taking click-through rates as implied by ordered search. As prescribed
by the rules of the Generalized Second Price auction (GSP), search engines then mul-
tiply each bid by a weight defined by a scoring rule (which solely depends on each
advertiser’s characteristics), producing a score for each advertiser. Advertisers are then
ranked by their score; slots are assigned in decreasing order of scores and each adver-
tiser pays per click the minimum bid necessary to keep his position.

In this framework, we characterize the revenue-maximizing complete information
Nash equilibrium (under any scoring rule). We then show that this equilibrium can
be implemented under any valuation profiles and advertiser’s search parameters if and
only if the search engine ranks bids using a particular weighting rule that combines
click-through rates and continuation probabilities. Interestingly, this is the same ranking
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rule derived in [10] for solving the efficient allocation problem (in a non-strategic en-
vironment). Finally we provide an impossibility theorem: there is no scoring rule that
implements an efficient equilibrium where advertisers pay their VCG payments for all
valuations and search parameters (this is by far the most analyzed equilibrium of the
separable click-through rate model). This extends an observation first made by [7], who
argue that such an equilibrium does not exist in the rank by revenue GSP.

Comparisons with Related Work. The issue of externalities in ad auctions has recently
attracted quite a bit of attention from the research community [3,1,10,7,6]. Initial studies
were largely theoretical, and involved proposing models for user-search behavior that
would explain externalities. Athey and Ellison [3] proposed one of the first such models.
In their work, they assume that users search in a top-down manner and that clicking is
costly. They then derive the resulting equilibria. Closely related are the cascade models
of Aggarwal et al [1] and Kempe and Mahdian [10]. These models associate with each
ad a click-through-rate as well as a continuation probability representing the probabil-
ity that a user continues the search after viewing the given ad. They then proceed to
solve the winner determination problem in their models. Recently Giotis and Karlin [7]
studied the equilibria of the cascade model in GSP auctions.

Our model of ordered search generalizes these previous models slightly by allowing
click-through-rates and continuation probabilities to depend on the clicking history of
the user. This enables us to model both position externalities as well as information
externalities. Our empirical work shows that both effects are significant.

This is the first paper to empirically document externalities in sponsored search.
In a subsequent work, [8] estimated a model of unordered search in which users read
all advertisements before choosing a subset of them to click on. We believe this is a
valid and worth-exploring model of users’ behavior. We nevertheless think that ordered
search is a more natural starting point. Indeed, it is hard to reconcile the assumption
that users perform unordered search with the advertisers’ competition to obtain the
top positions (why pay more to get a top slot if users read the whole list anyway?).
Moreover, unlike [8], we allow click-through rates to depend on the click history of
users (this captures users’ learning by browsing).

On the theoretical side, this work advances the equilibrium analysis of the GSP in
the presence of externalities. The previous theoretical literature to study GSP equilib-
ria [2,5,12,13,11] mostly focused on the separable click-through-rate model. The only
exceptions are Athey and Elison [3] and Giotis and Karlin [7], mentioned above.

2 The Ordered Search Model

In order to study externalities in sponsored advertising, we develop a model of users’
behavior that assumes ordered search. The main elements of this model are, first, that
users make their choices about clicking on sponsored links by analyzing one link at a
time and, secondly, that they browse sponsored results from top to bottom. Our focus
on such an ordered search model is motivated by various reasons. First, as the work of
[4] demonstrates, position bias is present in organic search. In particular [4] compares
a sequential search model with four other models (including the separable model) and
concludes that sequential search provides the best fit to the click logs they have con-
sidered. Secondly, sequential search is further substantiated as a natural way to browse
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through a list of ads by the eye-tracking experiments of Joachims et al. [9], where it
is observed that users search and click in a top down manner. Moreover, as the value
per click of each advertiser tends to be correlated with its relevance, ordered search is a
good heuristic for users (see [3]).

Users typically do not click on all the ads of the list, as it is costly both in terms
of time and cognitive effort to go through a website and assimilate its content. For
this reason, users only click on a link if it looks good enough to compensate for its
browsing cost. Moreover, users typically change their willingness to incur this browsing
cost as they collect new information through their search, and hence the decision about
whether to continue reading ads naturally depends on the click history of the user. To
formalize these ideas, we denote the click history of users as they browse through the
sponsored links by H = {j : link j received a click}.2 Here we will focus on two
types of externalities:

Information Externalities. An ad imposes information externalities on others by pro-
viding a user who has clicked on his link with information regarding the search – e.g.,
prices or product reviews. This, in turn, affects the user’s willingness to click on all links
displayed below in the sponsored search list. To make these points formally, let’s de-
note the expected quality of link j by uj . In order to save on browsing costs, a searcher
with click history H clicks on link j only if its perceived quality exceeds some optimal
threshold, which we denote by TH . We setH = {∅} if no links were previously clicked
(no extra information gathered through search),H = {j} if only link j was clicked and
H = {j, k} if links j and k were clicked in this order. We let the clicking threshold
TH on the ad’s perceived quality depend on the information gathered by the searcher
in his previous clicks, but assume that TH is not affected by the precise order of clicks.
That is, we impose T{j,k} = T{k,j}. In addition, we summarize any user specific bias
towards a link by the random term εij . Hence, a user with click history H that reaches
the slot occupied by advertiser j clicks on it if and only if

uj − εij ≥ TH .

We assume that the idiosyncratic preference parameters εij are independently and iden-
tically distributed across bidders and advertisers, with a cumulative distribution function
F . Thus, the probability that a searcher i with click history H clicks on link j is:

Fj(H) ≡ Prob {εi ≤ uj − TH} = F (uj − TH).

We call Fj(H) the conditional click-through rate of j given the click history H . By
virtue of browsing from the top, users have no previous clicks when they analyze the
first slot. Hence, if advertiser j occupies the first position, his chance of getting a click,
which we call click-through rate, is Fj ≡ Fj({∅}).

The difference between advertiser j’s click-through rate, Fj , and his conditional
click-through rate, Fj(H), H �= ∅, indicates the impact of information externalities.

Position Externalities. An ad additionally imposes externalities on other ads by virtue
of its position in the ordered search list. This can happen in one of two manners: first,

2 Note we abstract away order information; i.e., we assume a user’s behavior depends on past
clicks, but not on the order in which the clicks were made.
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the user may tire of the search if the ads he has read appear to be poorly related to the
search term; second, the user may leave the search if an ad he has read and clicked
on has satisfied his search need. We capture the first effect with a parameter, λj , that
indicates the probability a user keeps browsing the sponsored links after reading ad j
and choosing not to click on it. We capture the second effect with a parameter, γj , that
indicates the probability a user keeps browsing the sponsored links after clicking link j.
The parameters λj and γj are referred to as the continuation probabilities of ad j and
jointly capture its position externalities imposed on the ads that follow.

Note that, unlike many models in the literature, in our model the position externalities
may depend on both the advertiser and clicking behavior of the user.

We model the user behavior for a given sponsored list using the above parameters
as follows. She reads the first ad A1 in the list and clicks on it with probability FA1 .
Conditional on clicking on A1, she reads the second ad A2 with probability γA1 and
clicks on it with probability FA2({A1}). Conditional on not clicking on A1, she reads
the second ad with probability λA1 and clicks on it with probability FA2 . Thus, the
probability she clicks on ad A1 is simply FA1 while the probability she clicks on A2 is

(1 − FA1)λA1FA2 + FA1γA1FA2({A1}).

This behavior extends to multiple advertisers in the natural way.

2.1 Data Description

Our data consists of impression and clicking records associated to queries that contained
the keywords ipods, diet pills and avg antivirus in Microsoft’s Live Search. We chose
these keywords because, first, a user that searches for any of them has a well defined ob-
jective and, second, because they are highly advertised. Within each of these keywords,
we selected the three most popular advertisers (in number of clicks) and considered all
impressions in which at least two of these advertisers are displayed.3

Table 1. Keywords and Advertisers

keyword advertisers # of obs.

ipod
(A): store.apple.com
(B): cellphoneshop.net
(C): nextag.com

8,398

diet pill
(A): pricesexposed.net
(B): dietpillvalueguide.com
(C): certiphene.com

4,652

avg antivirus
(A): Avg-Hq.com
(B): avg-for-free.com
(C): free-avg-download.com

1,336

3 Regarding the impressions that contain only two of the three selected advertisers, we only kept
those logs which display our selected advertisers in the first two positions. By doing this, we
can disregard the advertisers on slot 3 and below without biasing our estimates.
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For the keyword ipod, the Apple Store (www.store.apple.com) is the most important
advertiser, followed by the online retailer Cell Phone Shop (www.cellphoneshop.net)
and by the price research website Nextag (www.nextag.com). All the 8398 ipod ob-
servations in our sample refer to impressions that happened between August 1st and
November 1st of 2007.

The most popular advertisers for diet pills are, first, the meta-search website Price
Exposed (pricesexposed.net), followed by the diet pills retailer dietpillvalueguide.com
and then by certiphene.com (which only sells the diet pill certiphene). All 4,652 im-
pressions considered happened between August 1st and October 1st of 2007.

For avg antivirus, the most popular advertiser is the official AVG website, fol-
lowed by the unofficial distributers of the AVG antivirus avg-for-free.com and free-
avg-download.com. The 1,336 observations range from September 1st to November 1st
of 2007. The sample provided by Microsoft AdWords displays impressions associated
to different keywords with varying intensities through time. This is why ranges differ
across the selected keywords; and we have no reason to expect such differences might
affect the estimates of our model.

Table 2. Distribution of Advertisers per Slot

slot ipod diet pill antivirus

first
(A): 6,460 (76.92%)
(B): 1,864 (22.20%)
(C): 74 (0.88%)

(A): 1,912 (41.10%)
(B): 908 (19.52%)
(C): 1,832 (39.38%)

(A): 1,233 (92.29%)
(B): 71 (5.31%)
(C): 32 (2.40%)

second
(A): 1,438 (17.12%)
(B): 5,826 (69.37%)
(C): 1,134 (13.50%)

(A): 1,848 (39.72%)
(B): 1,988 (42.73%)
(C): 816 (17.54%)

(A): 88 (6.59%)
(B): 674 (50.45%)
(C): 574 (42.96%)

third

(A): 26 (0.31%)
(B): 22 (0.26%)
(C): 950 (11.31%)
(other): 7,400 (88.12%)

(A): 472 (10.15%)
(B): 692 (14.88%)
(C): 668 (14.36%)
(other): 2,820 (60.62%)

(A): 9 (0.67%)
(B): 21 (1.57%)
(C): 355 (26.57%)
(other): 951 (71.18%)

All keywords possess a leading advertiser that occupies the first position in most of
the observations. For ipod, the Apple Store occupies the first slot in roughly 77% of
the cases, while the Cell Phone Shop appears in 22% of the observations. The situation
is reversed when we look at the second slot: the Cell Phone Shop is there in almost
70% of the observations, while the Apple Store and Nextag appear respectively in 17%
and 13% of the cases. As table 2 below makes clear, advertising for diet pills or avg
antivirus display a similar pattern.

For all the keywords considered, approximately one out of four impressions got at
least one click (25.26% for ipods, 24.24% for diet pills and 35.55% for avg antivirus).
As one should expect, click-through rates are decreasing for most of the queries: among
the clicks associated to diet pill, 56.73% occurred in the first slot, 34.04% in the sec-
ond and 9.21% in the third. For ipod, the concentration of clicks in the first slot is
even higher, as one can see from table 3. The keyword avg antivirus is an interesting
exception, as most of the clicks happened in the second slot (54.5%).
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Table 3. Distribution of Clicks per Slot

slot ipod diet pill antivirus
first 1,572 (74.08%) 640 (56.73%) 205 (43.15%)
second 524 (24.69%) 384 (34.04%) 259 (54.52%)
third 30 (1.41%) 104 (9.21%) 11 (2.31%)
total 2,122 (100%) 1,128 (100%) 475 (100%)

2.2 Estimation Results

At this stage, it is not possible to tell whether a high click-through rate in the first slot
is simply due to users’ behavior or is the effect of very high quality advertisers. In the
same vein, what explains the very low click-through rate in the third slot for ipod? Is
it because advertisers are bad matches for the users’ search or is it the result of search
externalities imposed by the links in the first two slots?

In order to evaluate externalities, we must estimate the parameters of our model. We
do this with the well-established maximum likelihood method, which selects values for
the parameters that maximize the probability of the sample. First we must derive an
expression, called the log-likelihood, for the (log of) probability of the sample given the
parameters of the model.4 Our log-likelihood function is:

logL =
∑

n

log
[
Prob
(
{jn, kn, ln; c1n, c

2
n, c

3
n}
)]
,

where the probability of observations {jn, kn, ln; c1n, c2n, c3n} is derived from our empir-
ical model.

Next we estimate the parameters to be those that maximize the log-likelihood. Be-
fore discussing our estimation results, we need to make one important observation. The
conditional click-through rate of some advertiser j, Fj({k}), is the probability that a
random user clicks on ad j given that this user clicked on advertiser k’s link and kept
searching until he read j’s link. Note that Fj({k}) abstracts from position externalities,
as this is the probability that a user that read the ad gives a click on it. We have three
reasons to think that conditional click-through rates should differ from baseline click-
through rates. First, link k may offer low prices for ipods, hence even if the user keeps
browsing the sponsored list after clicking on k (an event of probability γk), he will be
less likely to click on j. This is the negative externality effect, which pushes, let’s say
Fj({k}), to be less than Fj . Second, link k may increase the users’ willingness to click
on j, which may happen if, for example, link k is a meta-search website. In this case,
Fj({k}) is greater than Fj , which corresponds to a positive externality effect.

These first two reasons for Fj to depart from Fj({k}) relate to information exter-
nalities. There is a third reason, though, not related to externalities but to the structure
of our data, that may explain why Fj �= Fj({k}): the group of users that make at
least one click may be fundamentally different from the total pool of users that perform

4 It is common to use the log of the probability as opposed to the probability itself to simplify
the algebra. As log is a monotone function, maximizing the log-likelihood corresponds to
maximizing the likelihood.
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searches on Microsoft Live. As such, the conditional click-through rate Fj({k}) reflects
the probability of j getting a click among a quite selected group of users. It is natural
to think that these users click more often on sponsored links than a common user; and
this should push Fj({k}) to be higher than Fj . We call this the selection effect.

As a consequence, we can safely interpret estimates such that Fj > Fj({k}) as
evidence that advertiser k imposes a negative externality on advertiser j. Nevertheless,
if Fj < Fj({k}), as we do not observe any users’ characteristics, we cannot tell apart
positive externalities from purely selection effects. We need to keep this in mind in
order to interpret the estimation results.

One can directly test whether the selection effect is driving our estimates by looking
at the continuation probabilities λj and γj . Clearly, absent any selection effect and
granted j is not a meta-search website, λj , the probability that a user keeps browsing
after not clicking on j, is expected to be higher than γj , the probability that a user keeps
browsing after clicking on j. The reason for this is that users may only fulfil their search
needs if they do click on j, in which case they are not expected to return to the results
page. As a consequence, having λj significantly lower than γj is strong evidence in
favor of the selection effect.

We are now able to discuss our estimation results, which are displayed at Table 4.
We find that for the search terms we investigated, selection effects were ubiquitous.
Nonetheless, we observed significant negative externalities in two of them (ipod and
avg antivirus). For the third keyword (diet pills), we observed that conditional click-
through-rates were higher than the base-line click-through-rates, although it is not pos-
sible to determine whether to attribute this to the selection effect or to positive external-
ities. In the following subsections, we discuss the results for each keyword in detail.

ipod Results: For this keyword, the lead advertiser (the Apple Store) has a very high
click-through rate: 21%. Its competitors, the Cell Phone Shop and Nextag, have 8.7%
and 10.4%, respectively. These estimates can be interpreted as the probability that the
first slot gets a click when it is occupied by one of these three advertisers. The difference
between the Apple Store click-through rate and that of its competitors is significant at
the 1% level. As such, the lead advertiser (who occupies the top position in 76% of the
observations – see Table 2) is also the most effective in attracting clicks.

Our estimates detect that Apple Store imposes a negative externality on the Cell
Phone Shop (as FB = 0.08 > 0.04 = FB({A}), and the difference is significant at
5%) and on Nextag (as FC = 0.10 > 0.04 = FC({A}), and the difference is significant
at 5%). This means that the information provided by the Apple Store website reduced by
half the appeal to a random user of the links to the Cell Phone Shop or the Nextag. The
lack of observations in which users click on Nextag and then click on Apple Store or the
Cell Phone Shop prevents us from being able to estimate γC ,FA({C}), FA({B,C}),
FB({C}) and FB({A,C}).

The selection effect indeed seems to play a role in our estimates. Looking at the
results, one can see that γ’s are higher than λ’s for at least two advertisers: for the
Apple Store, γA = 0.94 > 0.76 = λA (although the difference is not significant) and
for the Cell Phone Shop, γB = 1 > 0.62 = λB (significant at 15%). This suggests that
users that click on a link are more likely to keep browsing the sponsored list. As the



180 R. Gomes, N. Immorlica, and E. Markakis

results presented above point out, though, the selection effect wasn’t strong enough to
shadow the negative externalities that the Apple Store imposes on its competitors.

diet pill Results: Alike the ipod case, the leading advertiser for diet pill is also the
most effective in terms of attracting users: the click-through rate of pricesexposed.net,
roughly 21%, is significantly (at 1% level) higher than that of its competitors (15% for
dietpillvalueguide.com and 5% for certiphene.com).

We didn’t find evidence of negative information externalities among diet pill adver-
tisers. For pricesexposed.net, the click-through rate jumps from roughly 21% to 31%
if certiphene.com was previously clicked; and the difference is significant at 10%. The
same happens with dietpillvalueguide.com: its click-through rate goes from 15% to ei-
ther 66% (in case certiphene.com got a click) or to 33% (in case certiphene.com and
pricesexposed.net had clicks); and both differences are significant at 5%.

Interestingly, the click-through rate of certiphene.com jumps from 5% to 8% (dif-
ference significant at 5%) if dietpillvalueguide.com was previously clicked by the user.
Since dietpillvalueguide.com is a website specialized in comparing diet products, one
can think that positive reviews of the Certiphene pills might explain this difference.

As discussed above, we cannot rule out that the selection effect explains this differ-
ence, though. Indeed, our estimates imply that users are more likely to keep browsing
the sponsored links if they clicked on certiphene.com: γC = 1 > 0.57 = λC (signifi-
cant at 5%).

Table 4. Estimates of the Ordered Search Model

keyword ipod diet pill avg ipod diet pill avg ipod diet pill avg

FA
0.210
(0.005)

0.210
(0.008)

0.151
(0.010)

FB
0.087
(0.006)

0.146
(0.034)

0.364
(0.050)

FC
0.104
(0.012)

0.051
(0.004)

0.215
(0.042)

FA(B)
0.250
(0.038)

0.232
(0.032)

0.00
(0.074)

FB(A)
0.030
(0.022)

0.146
(0.034)

0.364
(0.050)

FC(A)
0.040
(0.032)

0.052
(0.017)

0.242
(0.042)

FA(C) —
0.317
(0.065)

— FB(C) —
0.663
(0.080)

— FC(B)
0.095
(0.032)

0.088
(0.029)

0.121
(0.889)

FA(B, C) —
0.664
(0.075)

— FB(A,C) —
0.334
(0.083)

— FC(A,B)
0.327
(0.190)

0.664
(0.089)

0.125
(0.699)

λA
0.676
(0.056)

0.760
(0.064)

1.0
(0.217)

λB
0.627
(0.042)

0.673
(0.057)

0.183
(0.049)

λC
1.00
(0.057)

0.579
(0.037)

0.424
(0.201)

γA
1.00
( 0.777)

0.940
(0.195)

1.00
(0.231)

γB
1.00
( 0.820)

1.00
(0.743)

0.686
(0.902)

γC —
1.00
(0.892)

—

avg antivirus Results: Unlike the previous keywords, the leading advertiser for avg
antivirus is not the one with highest CTR. In fact, Avg-Hq.com has the lowest CTR
(15%), while avg-for-free.com and free-avg-download.com have a 20% and 21% CTRs,
respectively (higher than Avg-Hq.com’s CTR at a 15% confidence level).

Our estimates detect that avg-for-free.com imposes a negative externality on Avg-
Hq.com, as FA = 0.15 > 0 = FA({B}) (significant at 5%). As in the ipod case, the
lack of observations in which users click on free-avg-download.com and then click
on Avg-Hq.com or avg-for-free.com makes it impossible to estimate γC , FA({C}),
FA({B,C}), FB({C}) and FB({A,C}).
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3 Equilibrium Analysis

We’ll now analyze how advertisers bid given that users do ordered search. We return
to a model with a set of N advertisers denoted by Aj , j ∈ {1, ..., N} and K slots.
Each advertiser Aj has a value of vAj per click. Search engines use the following gen-
eralization of the second-price auction to sell sponsored links: first, each advertiser Aj

submits a bid bAj representing his willingness to pay per click. Then each advertiser’s
bid is multiplied by a weight wAj that solely depends on his characteristics, producing
a score sAj = wAj ·bAj . Next, advertisers are ranked in decreasing order of their scores
and the jth highest ranked advertiser gets the jth slot. When an advertiser receives a
click, he is charged a price equal to the smallest bid he could have submitted that would
have allowed him to maintain his position in the list. Labeling advertisers such that Ai

denotes the advertiser ranked in the i’th slot, we see that advertiserAj pays pAj where:

pAj · wAj = bAj+1 · wj+1 which gives pAj =
bAj+1 · wAj+1

wAj

.

The total payment of advertiser Aj is then pAj · qj , where qj is the total number
of clicks of slot j. To simplify the analysis, we’ll take the ordered search model of the
previous section and assume that baseline and conditional click-through rates are the
same for each advertiser, that is, FAj = FAj (H) for any history H . Although our em-
pirical exercise suggests that baseline and conditional click-through rates indeed differ,
this assumption is necessary to bring tractability to our theoretical model of bidding.
Further, our main theoretical conclusions remain valid under the more general ordered
search model of the previous section.

With this assumption in hand, the total number of clicks of the jth slot is given by:

qj = FAj ·
j−1∏
k=1

cAk
, where cAk

= FAk
γAk

+ (1− FAk
)λAk

.

Each term cAk
accounts for the fraction of users that continue browsing the sponsored

list after coming across advertiser Ak. As such, the total number of clicks of slot j is
the product of advertiser Aj’s click-through rate (FAj ) and the total number of users

that reach that position (
∏j−1

k=1 cAk
). AdvertiserAj ’s payoff is then (vAj − pAj )qj .

We are interested in analyzing the Nash equilibria and the resulting efficiency of
various scoring rules. A complete information Nash equilibrium is a vector of bids such
that no advertiser can unilaterally change his bid and improve his payoff.

3.1 Can Scoring Rules Help?

Search engines have often changed their auction rules for keyword advertising in order
to increase revenue. Yahoo! first dropped a generalized first-price auction and adopted
the rank-by-bid GSP in early 1997. Ten years later, Yahoo! opted for a less drastic
change and simply altered its scoring rule from rank-by-bid to rank-by revenue (in
which case wAj = FAj ). Microsoft’s Live Search followed the same path and also in
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2007 moved from the rank-by-bid to the rank-by-revenue GSP. Recently, Google also
changed its scoring rule, although its precise functional form was not made public.

We will focus on a very interesting, but so far neglected, equilibrium of the GSP: the
one that maximizes the search engine’s revenue among all pure strategy Nash equilibria.
The next lemma derives the bid profile that maximizes revenue for the search engine:

Lemma 1. Consider the GSP with scoring rule wAj , selling K slots to N > K adver-
tisers. Let advertisers A1, ..., AK be the efficient assignees of slots 1 to K and assume
advertisers submit bids according to:

bAj = (1− cAj )
wAj−1

wAj

vAj−1 + cAj

wAj+1

wAj

bAj+1

for j ∈ {2, ...,K}, bAK+1 =
wAK

wAK+1

vAK , bA1 > bA2 (1)

and bAj < bAK+1 for j > K + 1. (2)

If this bid profile constitutes a Nash equilibrium, than it maximizes the search engine’s
revenue among all pure strategy Nash equilibria. We call it the greedy bid profile.

As the next proposition shows, such a bid profile is an equilibrium for all {(vAj , FAj ,
γAj , λAj )}N

j=1 if and only if weights are given by:

wAj =
FAj

1− cAj

=
FAj

1− (FAjγAj + (1− FAj )λAj )
.

Although at first awkward, the scoring rule above is a quite natural one. Indeed, as first
proved by [10], advertiser j comes on top of advertiser k in the efficient allocation if
and only if vAj · wAj ≥ vk · wAk

.

Proposition 1. Consider the GSP with scoring rule wAj , selling K slots to N > K
advertisers. The greedy bid profile constitutes a complete information Nash equilib-
rium for all valuations and search parameters {(vAj , FAj , γAj , λAj )}N

j=1 if and only if

wAj =
FAj

1−cAj
(up to a multiplicative constant). In this case, the equilibrium allocation

is efficient and the search engines’s revenue is maximal.

Our next proposition brings a pessimistic message about what scoring can achieve in
the GSP. It shows that there is no scoring rule for which an efficient equilibrium where
each advertiser pays his Vickrey-Clark-Groves payments exists for all profiles of val-
uations and search parameters. This extends a result by [7], who shows that the GSP
equipped with the “rank-by-revenue” scoring function (wAK = FAK ) does not possess
an efficient equilibrium that implements VCG payments. Recall the VCG payments
charge each advertiser the welfare difference imposed on the others:

pV
Aj

= W (N − {Aj})− (W (N)− qjvAj )

where for a set S, W (S) is the optimal social welfare of the agents in S.

Proposition 2. Consider the GSP selling K slots to N > K advertisers. There is no
scoring rulewAj which depends solely on advertiserAj’s search parameters (FAj , γAj ,
λAj ) that implements an efficient equilibrium with VCG payments for all valuations and
search parameters {(vAj , FAj , γAj , λAj )}N

j=1.
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4 Conclusion

This work documents information and position externalities among sponsored search
advertisers. Our results bring suggestive evidence that part of the population of users
perform price research through the sponsored list (as a user that clicks on a link is more
likely to keep browsing the sponsored list than users that don’t make clicks at all).

Our approach relies on the assumption that users browse from the top to the bottom
of the sponsored list and take clicking decisions link by link. It would be interesting
to extend the analysis (both empirical and theoretical) to allow users to perform other
search procedures.
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Abstract. We propose approximation algorithms under game-theoretic
considerations. We indroduce and study the general covering problem
which is a natural generalization of the well-studied max-n-cover prob-
lem. In the general covering problem, we are given a universal set of
weighted elements E and n collections of subsets of the elements. The
task is to choose one subset from each collection such that the total
weight of their union is as large as possible. In our game-theoretic set-
ting, the choice in each collection is made by an independent player.
For covering an element, the players receive a payoff defined by a non-
increasing utility sharing function. This function defines the fraction that
each covering player receives from the weight of the elements.

We show how to construct a utility sharing function such that ev-
ery Nash Equilibrium approximates the optimal solution by a factor of
1− 1

e
. We also prove that any sequence of unilateral improving steps is

polynomially bounded. This gives rise to a polynomial-time local search
approximation algorithm whose approximation ratio is best possible.

1 Introduction

Motivation and Framework. Large scale distributed systems, like the Inter-
net, usually lack a centralized control authority. Instead, they are operated and
controlled in a distributed fashion by competing entities – modeled as players –
which make their decisions in order to optimize their own private utility. Such
systems are assumed to end up in a Nash equilibrium [20] – a state in which
no player wishes to unilaterally leave her own strategy in order to improve the
value of her private utility. However, Nash equilibria are often suboptimal solu-
tions with respect to the social objective function. The price of anarchy [18] is
a measure for the performance degradation. It is defined as the worst-case ratio
between the values of a social objective function in a Nash equilibrium and in
an optimum solution.

As the designer of a distributed system we are faced with the main challenge
of how to design the distributed system in order to optimize this social objec-
tive function even in the presence of myopic players. However, even if all players
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adhere to some centralized authority, finding the optimum solution with respect
to the social objective might be an NP-hard optimization problem. Approxima-
tion algorithms [23] are a powerful tool for coping with intractable optimization
problems. In general, they compute (in polynomial time) suboptimal solutions
but with a provable performance guarantee. However, approximation algorithms
usually presume a centralized authority. In this paper we propose to consider
approximation algorithms that take the selfish user behavior into account. More
precisely, we propose to design the distributed system in a way that the price
of anarchy is optimized and the system is guaranteed to converge to a Nash
equilibrium in polynomial time.

For our study of such approximation algorithms we consider a very general
covering problem. In covering problems a finite set of elements has to be covered
with subsets of the elements. Such problems arise in many contexts: Cover-
ing problems can be used to model service installation problems in distributed
systems. Moreover, many packing problems and fixed parameter optimization
problems can be modeled as a covering problem (see [13]). A well-studied rep-
resentative is the max-n-cover problem (see e.g. [9,14]): Given a finite set of
weighted elements E, choose n subsets of the elements (from a given collection
of subsets) such that the total weight of their union is as large as possible. We
consider a generalization of the max-n-cover problem that we call general cov-
ering problem. Here, we are given not 1 but n collections of subsets and we have
to choose one subset from each collection. Although this generalization seems
natural, we are not aware of any previous work on it.

We study the general covering problem as a covering game, where the choice
for the subset in each of the n collections is made by an independent player.
Covering games are a subclass of the congestion games introduced by Rosenthal
[21]. For covering an element, the players receive a payoff defined by a utility
sharing function. This function defines the fraction that each covering player
receives from the weight of the element and depends only on local parameters.
Those parameters are the number of players covering an element and the cardi-
nality of an element (i.e. the number of players that have this element in at least
one of their strategies). We only make two natural assumptions on the utility
sharing function: First, we assume that it is non-increasing in the number of
players covering the element. And second, we want that the payoff to the players
for covering an element does not exceed the weight of the element.

The focus of this paper is to design utility sharing functions, such that:
1. In any Nash equilibrium the total weight of the covered elements is as large

as possible. Or more precisely, the price of anarchy is maximized.
2. A Nash equilibrium is reached in polynomial time.

Obviously, each utility sharing function that fulfills both of this properties gives
rise to a local search approximation algorithm. In fact, we will show that this
approach yields essentially the best possible approximation ratio.

Contribution. In this paper, we introduce and study covering games. Such
games are congestion games that have the general covering problem as underlying
structure.
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In the first part of the paper, we focus on the design of utility sharing functions
that maximize the price of anarchy. In particular, we construct a utility sharing
function which achieves a price of anarchy of 1− 1

e (Theorem 4) and show that no
utility sharing function performs better (Theorem 1). To show this, we first prove
a corresponding result on the price of anarchy, that depends on the maximum
cardinality k of the elements (Theorem 3). Surprisingly, we get matching bounds
for each fixed k. All our results on the price of anarchy hold for pure and mixed
Nash equilibria.

In the second part of the paper, we show how to use our results on the price
of anarchy to construct a local search approximation algorithm for the general
covering problem (Theorem 6), which runs in polynomial time, if the weights of
the elements are polynomially bounded. Our hardness result in Theorem 7 shows
that this restriction on the weights is necessary. For the general case, we also
present a (centralized) approximation algorithm, which is based on LP-rounding
and generalizes an algorithm for MaxSat [12].

Related Work. Congestion games and variants thereof have long been used
to model non-cooperative resource sharing among selfish players. Rosenthal [21]
showed that congestion games always possess pure Nash equilibria. However,
computing such a pure Nash equilibrium is PLS-complete [8]. The price of an-
archy in congestion games has been studied extensively (see e.g. [1,6,10,22]).

The general covering problem is a natural generalization of the well-studied
max-n-cover problem. For the max-n-cover problem, the greedy approach yields
a (1 − 1

e )-approximation [14] and no polynomial time algorithm can do better,
unless NP ⊆ TIME(nO(log log n)) [9] . Applying the greedy approach to our
more general problem guarantees only a 1

2 -approximation. For an overview on
approximation algorithms for covering problems, we refer to [13, Chapter 3].

The MaxSat problem is a special case of the generalized covering problem,
where each of the n collections consists of at most 2 subsets (corresponding
to true/false). The power of local search for approximating MaxSat has been
studied in [2,17]. MaxSat has also been considered in a game-theoretic setting
as a Sat-game [4,11], which is itself a special case of our covering games. Bilò
[4] mainly focuses on the expressiveness of Sat-games. Mavronicolas et al. [19]
concentrate on structural properties and complexity questions for a generaliza-
tion of Sat-games, called weighted boolean formula games. Here, each player
controls a set of variables and aims to maximize the total weight of his satisfied
formulas. Giannakos et al. [11] study the price of anarchy (for pure Nash equi-
libria) of Sat-games under different utility sharing functions and point out the
relation to approximation algorithms. Our work generalizes their results in two
perspectives. First, we consider a far more general class of games, and second,
we allow for mixed Nash equilibria. Moreover, in Example 1 we show that their
main result [11, Thm. 5] is incorrect.

Under certain conditions on the utility sharing functions, our games fall in
the class of valid utility games [24]. For such games, Vetta [24] shows that each
Nash equilibrium is a 1

2 -approximation. Our result improves this ratio to 1− 1
e .
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Coordination mechanisms have been introduced in [7] as a notion to improve
the price of anarchy. The idea is to define local policies such that the corre-
sponding price of anarchy is as small as possible. A few other papers follow this
approach, e.g. [3,5,15]. Our task of designing utility sharing functions can be
seen as such a coordination mechanism. However, we take the idea of coordina-
tion mechanisms one step further. In the design of our utility sharing function,
the goal is not only to optimize the price of anarchy, but also to ensure that
the system converges to a Nash equilibrium in polynomial time. Azar et al. [3]
pursue a similar approach for the unrelated scheduling problem. However, the
price of anarchy of their best coordination mechanism increases significantly by
requiring a polynomial convergence.

Roadmap. The rest of the paper is organized as follows. In Section 2, we in-
troduce covering games. Section 3 comprises our results on the price of anarchy,
while Section 4 presents our approximation algorithms. We conclude in Section 5.
Due to lack of space, some proofs are omitted.

2 Model

For any two integers l ≤ m, denote [m] = {1, . . . ,m} and [l,m] = {l, . . . ,m}.
For a vector v = (v1, . . . , vn), let v−i = (v1, . . . vi−1, vi+1, . . . vn) and (v−i, v

′
i) =

(v1, . . . vi−1, v
′
i, vi+1, . . . vn).

The general covering problem. In the general covering problem we are given
a finite set of elements E and a weight function w : E �→ N that assigns a positive
integer weight we to each element e ∈ E. Moreover, we are given n collections
S1, . . . , Sn of subsets of E where for each i ∈ [n], the collection Si ⊂ 2E is a
subset of the power-set of the elements. Given such an instance our task is to
choose one subset si from each collection Si such that their union ∪i∈[n]si has
maximum total weight, i.e.

∑
e∈∪i∈[n]si

we is maximized.

Covering Games. Each covering game has a general covering problem as an
underlying structure. Here, each of the n collections of subsets is controlled
by a rational player, that is player i ∈ [n] has Si as her strategy set. Denote
S = S1 × . . . × Sn. As for the general covering problem, each element e ∈ E
has a weight we ∈ N. For any subset of the elements E′ ⊆ E denote W (E′) =∑

e∈E′ we. Let W = W (E). For each element e ∈ E denote by ke = |{i ∈ [n] :
e ∈ si for some si ∈ Si}| the cardinality of e which is the number of players that
can possibly cover e. Let k = maxe∈E ke and kmin = mine∈E ke. A covering game
is a Sat-game if |Si| ≤ 2 for all player i ∈ [n]. In this case, elements correspond
to clauses and players correspond to variables which can be set to true or false.

Strategies and Strategy Profiles. A pure strategy for player i is some specific
strategy si ∈ Si, while a mixed strategy Pi = (p(i, si))si∈Si is a a probability
distribution over Si, where p(i, si) denotes the probability that player i chooses
the pure strategy si.

A pure strategy profile is an n-tuple s = (s1, . . . , sn) whereas a mixed strategy
profile P = (P1, . . . , Pn) is represented by an n-tuple of mixed strategies. For a
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mixed strategy profile P, denote by p(s) =
∏

i∈[n] p(i, si) the probability that
the players choose the pure strategy profile s.

Utility Sharing Functions. For each element e ∈ E there is a payoff function
fe that describes how much a player receives for covering e. In this paper we
consider payoff functions that come from a common utility sharing function f .
We want this function to depend only on local parameters. We consider two
different kinds of utility sharing functions:

– A cardinality dependent utility sharing function depends on the number of
players covering an element and the cardinality of the element, i.e. f : [k]×
[k] �→ N and for all elements e ∈ E and j ∈ [k], fe(j) = f(j, ke) · we.

– A symmetric utility sharing function depends only on the number of players
covering an element, i.e. f : [k] �→ N and for all elements e ∈ E and j ∈ [k],
fe(j) = f(j) · we.

For both cases we assume that f is non-increasing in the number of players.
Moreover, we assume that f does not overpay the players, i.e. j · f(j) ≤ 1 for
all j ∈ [k] in the symmetric case (and j · f(j, l) ≤ 1 for all j ∈ [l], l ∈ [k] in the
cardinality dependent case).

Load and Player Utilities. For a pure strategy profile s, let δe(s) = |{i ∈ [n] :
e ∈ si}| denote the load on element e ∈ E, i.e. the number of players covering e.

Fix a pure strategy profile s. The utility ui(s) of player i ∈ [n] is defined by
the payoff from the elements she covers. Thus, ui(s) =

∑
e∈si

fe (δe(s)). For a
mixed strategy profile P, the utility of player i ∈ [n] is ui(P) =

∑
s∈S p(s) ·ui(s).

Social Utility. Fix a pure strategy profile s. Denote by Es the subset of elements
that are covered by at least one player in s, i.e. Es = {e ∈ E : δe(s) > 0}. The
social utility in s is the total weight W (Es) of the covered elements. We abuse
notation and denote this value also as W (s). For a mixed strategy profile P the
social utility W (P) =

∑
s∈S p(s) ·W (Es) is the expected total weight of the cov-

ered elements. Throughout denote by s∗ a pure strategy profile that maximizes
the total weight of the covered elements, thus, s∗ = arg maxs∈S W (Es).

Nash Equilibria and Potential Function. A mixed strategy profile P is a
Nash equilibrium if and only if no player can increase her utility by unilaterally
changing her strategy, that is, ui(P) ≥ ui(P−i, si) for all i ∈ [n] and si ∈ Si.
Depending on the type of strategy profile we distinguish between pure and mixed
Nash equilibria. Given a pure strategy profile s, a selfish step of player i ∈ [n] is
a deviation to a strategy profile (s−i, s

′
i) where ui(s−i, s

′
i) > ui(s), that is player

i increases her utility.
For covering games, Rosenthal’s [21] exact potential function Φ implies the

existence of a pure Nash equilibrium. For every pure strategy profile s, the po-
tential Φ(s) is defined by Φ(s) =

∑
e∈E

∑δe(s)
i=1 fe(i). If a player performs a selfish

step and increases her utility by Δ, then Φ(s) also increases by Δ.

Price of Anarchy. Let G(k) be the class of covering games where ke ≤ k for
all e ∈ E. Fix a utility sharing function f . The Price of Anarchy for f , denoted
by PoAf , is the infinium, over all instances Γ ∈ G(k) and Nash equilibria P, of
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the ratio W (P)
W (s∗) . Thus, PoAf (k) = infΓ∈G(k),P

W (P)
W (s∗) . Similarly, define PoAf by

dropping the restriction on k.

3 Price of Anarchy Results

In this section, we study the price of anarchy for different utility sharing func-
tions. We start with an upper bound that holds for all utility sharing functions.

Theorem 1. Consider the class of covering games G(k) with unweighted ele-
ments. Then, PoAf (k) ≤ 1− 1

1
(k−1)(k−1)! +

∑
j∈[0,k−1]

1
j!

.

This holds (a) for every cardinality dependent utility sharing function f , (b)
even for Sat-games, if we restrict ourselves to symmetric utility sharing func-
tions f .

For Sat-games Giannakos et al. [11, Thm. 5] claim that using the cardinality
dependent utility sharing function defined by f(1, l) = 1 and f(j, l) = 1

2(l−1) for
j ≥ 2 achieves a price of anarchy of 2

3 . The following example shows that this
does not hold:

Example 1. Given the maximum cardinality k, define a Sat-game with k players
and k+1 elements. We have we = 1 for all e ∈ [k−1] and wk = wk+1 = 2(k−1).
Each player i ∈ [k − 1] can either cover element i or element k, while player k
can choose between the elements k and k + 1.

Let s be the strategy profile where each players i ∈ [k] covers element i. It’s not
hard to see that s is a Nash equilibrium with W (Es) = 3(k − 1). On the other
hand there is a strategy profile s∗ (where only element 1 is not covered) with
W (s∗) = 5(k−1)−1. For k ≥ 4, this stands in conflict to the claim in [11, Thm.
5]; and for k→∞, we might only cover 3

5 of the optimum total weight. In fact,
we believe that our upper bound in Theorem 1 holds also for Sat-games with
cardinality dependent utility sharing functions.

We proceed by introducing a parameter χf of the utility sharing function f .
This parameter is a measure on how fast the utility sharing function decreases.
We will use χf in Theorem 2 to prove a general lower bound on the price of
anarchy that depends on χf .

Definition 1. Given a cardinality dependent utility sharing function f , define
χf as the minimum value such that for all cardinalities l ∈ [k] we have

j · f(j, l)− f(min{j + 1, l}, l) ≤ χf · f(1, l) for all j ∈ [l].

Theorem 2. Consider the class of covering games G(k). Let f be a cardinality
dependent utility sharing function, where αmin = minl∈[k] f(1, l) and αmax =
maxl∈[k] f(1, l). Then, PoAf(k) ≥ 1

χf +1 ·
αmin
αmax

.
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Proof. Let P be an arbitrary mixed Nash equilibrium and s∗ be an optimum
pure strategy profile. Since P is a Nash equilibrium, it follows that ui(P) −
ui(P−i, s

∗
i ) ≥ 0 for all player i ∈ [n]. So,

0 ≤
∑
i∈[n]

ui(P)−
∑
i∈[n]

ui(P−i, s
∗
i ) =
∑
s∈S

p(s)

⎛⎝∑
i∈[n]

ui(s)−
∑
i∈[n]

ui(s−i, s
∗
i )

⎞⎠ (1)

By definition of player utility, for any pure strategy profile s,∑
i∈[n]

ui(s) =
∑
i∈[n]

∑
e∈si

fe(δe(s)) =
∑
e∈E

δe(s) · fe(δe(s)) =
∑
j∈[k]

∑
e∈Es,

δe(s)=j

j · fe(j). (2)

Moreover,∑
i∈[n]

ui(s−i, s
∗
i ) =

∑
i∈[n]

∑
e∈s∗

i

fe(δe(s−i, s
∗
i )) ≥

∑
i∈[n]

∑
e∈s∗

i

fe(min{ke, δe(s) + 1})

≥
∑

e∈Es∗

fe(min{ke, δe(s) + 1}) =
k∑

j=0

∑
e∈Es∗ ,

δe(s)=j

fe(min{ke, j + 1}) (3)

where the first inequality follows since fe is a non-increasing function and the
second inequality follows since δe(s∗) ≥ 1 for all e ∈ Es∗ .

So, for any pure strategy profile s, (2) and (3) imply:

∑
i∈[n]

ui(s)−
∑
i∈[n]

ui(s−i, s
∗
i ) ≤

∑
j∈[k]

∑
e∈Es,

δe(s)=j

j · fe(j)−
k∑

j=0

∑
e∈Es∗ ,

δe(s)=j

fe(min{ke, j + 1})

=
∑
j∈[k]

∑
e∈Es\Es∗ ,

δe(s)=j

jfe(j) +
∑
j∈[k]

∑
e∈Es∗ ,

δe(s)=j

[jfe(j)− fe(min{ke, j + 1})]−
∑

e∈Es∗\Es

fe(1)

By Definition 1 and the fact that fe is non-increasing, we have j · fe(j) ≤
(χf + 1)fe(1) for all e ∈ E and j ∈ [ke]. Using this and Definition 1, we get:∑

i∈[n]

ui(s)−
∑
i∈[n]

ui(s−i, s
∗
i )

≤
∑
j∈[k]

∑
e∈Es\Es∗ ,

δe(s)=j

(χf + 1) · fe(1) +
∑
j∈[k]

∑
e∈Es∗ ,

δe(s)=j

χf · fe(1)−
∑

e∈Es∗\Es

fe(1)

=
∑

e∈Es\Es∗

(χf + 1) · fe(1) +
∑

e∈Es∗∩Es

χf · fe(1)−
∑

e∈Es∗\Es

fe(1)

=
∑

e∈Es\Es∗

(χf + 1) · fe(1) +
∑

e∈Es∗∩Es

(χf + 1) · fe(1)−
∑

e∈Es∗

fe(1)

≤ (χf + 1) · αmax ·W (Es)− αmin ·W (Es∗).
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With (1) we get 0 ≤
∑

s∈S p(s) ((χf + 1) · αmax ·W (Es)− αmin ·W (Es∗)) =
(χf + 1) · αmax ·

∑
s∈S p(s) ·W (Es) − αmin ·W (Es∗). Rearranging terms yields

W (P)
W (s∗) =

∑
s∈S p(s)·W (Es)

W (Es∗ ) ≥ αmin
(χf+1)·αmax

. The theorem follows since P is an arbi-
trary Nash equilibrium. 	


In the following, we construct a utility sharing function such that the correspond-
ing lower bound in Theorem 2 is maximized. Observe, that χf is independent of
the values for αmin and αmax. So, without loss of generality, we can restrict our
attention to a symmetric utility sharing function f , where αmin = αmax. Our
task is to construct a symmetric utility sharing function that solves the following
optimization problem:

minimize χ (4)
subject to j · f(j)− f(j + 1) ≤ χ · f(1) ∀j ∈ [k − 1]

(k − 1)f(k) ≤ χ · f(1)

Replacing ”≤” with ”=” yields a homogeneous system of linear equations. The
values for χ and the utility sharing function f in the following theorem corre-
spond to the solution of this system where f(1) = 1.

Theorem 3. Given k we can construct a symmetric utility sharing function f ,
such that PoAf (k) ≥ 1− 1

1
(k−1)(k−1)! +

∑k−1
i=0

1
i!

.

Proof. Given k, let f be the symmetric utility sharing function defined by

f(j) = (j − 1)!
1

(k−1)(k−1)! +
∑k−1

i=j
1
i!

1
(k−1)(k−1)! +

∑k−1
i=1

1
i!

for all j ∈ [k]. (5)

It is not hard to check that f is a valid utility sharing function, i.e. f is non-
increasing and j ·f(j) ≤ 1 for all j. Moreover, f satisfies the constraints in (4) for
χ = 1

1
(k−1)(k−1)! +

∑k−1
i=1

1
i!

. Recall that αmin = αmax for symmetric utility sharing

functions. The claim follows by applying Theorem 2. 	

In order to construct the utility sharing function f in Theorem 3 we need to
know the maximum cardinality k over all elements. However, since the value for
χ from the proof of Theorem 3 is increasing with k, we can get the same lower
bound if each element e ∈ E is only aware of her own cardinality ke. For this
case, the cardinality dependent utility sharing function is defined by replacing k
with ke in (5). This implies:

Corollary 1. There exists a cardinality dependent utility sharing function f ,
such that PoAf (k) ≥ 1− 1

1
(k−1)(k−1)! +

∑k−1
i=0

1
i!

.

Observe that the lower bounds on the price of anarchy in Theorem 3 and Corol-
lary 1 match exactly the upper bound in Theorem 1.

There might also be cases where we want to use a utility sharing function
that works for all k. For example, neither k is known a priori nor the elements
can determine their own cardinality. For such cases, we get:
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Theorem 4. There exists a symmetric utility sharing function f with PoAf (k)
≥ 1− 1

e ,which works for arbitrary k.

Proof. This follows by applying Theorem 3 for k → ∞. In this case, f reduces
to f(j) = (j−1)!

e−1

[
e−
∑j−1

i=0
1
i!

]
for all j ∈ N,and χ = 1

e−1 . 	


We close this section with an alternative lower bound on the price of anarchy that
depends on the maximum dimension dmax = maxi∈[n] |Si| over all players and the
minimum cardinality of an element kmin. For certain cases (e.g. if kmin > dmax)
this is better than the bound in Theorem 4.

Theorem 5. Consider the class of covering games G where ke ≥ kmin for all
elements e ∈ E and dmax = maxi∈[n] |Si|. Let f be a cardinality dependent utility
sharing function with f(1, l) = 1 for all cardinalities l ∈ [k]. Then, PoAf (G) ≥

kmin
dmax−1+kmin

.

4 Approximation Algorithm

In the previous section, we have shown results on the price of anarchy for covering
games. In this section, we want to use those results to construct a distributed,
local-search approximation algorithm for the covering problem.

The idea of the algorithm is simple:

– Choose an appropriate utility sharing function,
– start with an arbitrary strategy profile, and
– let the players unilaterally perform selfish steps until a pure Nash equilibrium

is reached.

The approximation ratio is the price of anarchy for the chosen utility sharing
function. Rosenthal’s potential function [21] can be used to bound the number
of selfish step until a pure Nash equilibrium is reached. Unfortunately, the utility
sharing functions in Theorem 3 and Theorem 4 do not provide a sub-exponential
bound on the number of selfish steps, since the increase in the potential due to
a single selfish step can be arbitrary small.

To overcome this, we will design a new symmetric utility sharing function f ,
where for each element e ∈ E the players receive strictly positive payoff only if
at most a constant number k′ of players cover this element, i.e. f(j) = 0 for all
j > k′.

We will show that the right choice of f yields a (1 − 1
e − ε)-approximation

algorithm, where ε = ε(k′) = o(1).

Theorem 6. For every constant ε > 0 there exists a local-search approximation
algorithm with approximation ratio (1− 1

e−ε) that uses at most O(1
ε ·log log 1

ε )·W
selfish steps.
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Proof. Let k′ ∈ N be some positive integer (to be determined later) and construct
f as a solution to the following optimization problem:

minimize χ (6)
subject to j · f(j)− f(j + 1) ≤ χ · f(1) ∀j ∈ [k′ − 1]

k′ · f(k′) ≤ χ · f(1)

For the solution of the corresponding homogeneous system of linear equations

with f(1) = 1 we get: f(j) = (j − 1)!
∑k′

i=j
1
i!∑

k′
i=1

1
i!

for all j ∈ [k′] and f(j) = 0 for

j > k′. It is not hard to check that f is a valid utility sharing function, i.e. f is
non-increasing and j · f(j) ≤ 1 for all j.

Observe, that f(1) = 1, k′ · f(k′) = 1∑k′
i=1

1
i!

and f(j + 1) = j!
∑k′

i=j
1
i!−

1
j!∑k′

i=1
1
i!

=

j ·f(j)− 1∑k′
i=1

1
i!

.Thus, f satisfies the constraints in (6) for χ = 1∑k′
i=1

1
i!

. Applying

Theorem 2 yields

PoAf ≥ 1− 1∑k′
i=0

1
i!

= 1− 1
e
− ε(k′),

where ε(k′) = 1∑k′
i=0

1
i!
− 1

e =
∑∞

i=k′+1
1
i!

e·
∑k′

i=0
1
i!

=
∑∞

i=k′+1
k′!
i!

e·
∑k′

i=0
k′!
i!

= Θ( 1
(k′+1)! ). So for every

constant ε we choose k′ = Θ
(

log( 1
ε )

log log( 1
ε )

)
. We will now bound the maximum num-

ber of selfish steps. To do so, we will first show an upper bound on Rosenthal’s
potential function Φ(s). Afterwards, we show a lower bound on the increase in
Φ due to a selfish step. For any pure strategy profile s we have

Φ(s) =
∑
e∈E

δe(s)∑
i=1

fe(i) ≤
∑
e∈E

k′∑
i=1

fe(i) ≤
∑
e∈E

k′∑
i=1

1
i
· we = H(k′) ·W,

where H(k′) is the harmonic number of order k′.
Recall, that we ∈ N for all e ∈ E. Moreover, for all j ∈ [k′], f(j) is an integer

multiple of 1∑
k′
i=1

k′!
i!

. To see this multiply the enumerator and denominator by

k′! and observe that both become integer. So if a player improves, then she
improves by at least 1∑

k′
i=1

k′!
i!

. Using the property of Rosenthal’s exact potential

function (cf. Sec. 2), it follows that each selfish step increases Φ by at least
1∑

k′
i=1

k′!
i!

= 1
�(e−1)k′ !� . So the number of selfish steps is upper bounded by �(e −

1)k′!� ·H(k′) ·W = O(k′! · log k′) ·W = O(1
ε · log log 1

ε ) ·W . 	


Theorem 6 implies a polynomial time (1 − 1
e − ε)-approximation algorithm for

the case that the total weight W is polynomially bounded. This includes the
important case of unweighted elements, where we = 1 for all e ∈ E. In the
following theorem we show that this restriction on W is necessary, since for
arbitrary weights the problem of computing a pure Nash equilibrium is PLS-
complete (see [16] for an introduction to the complexity class PLS).
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Theorem 7. Consider the class of covering games with arbitrary weights. Then,
for every symmetric utility sharing function with f(1) > f(2), it is PLS-complete
to compute a pure Nash equilibrium. This holds even for Sat-games.

For the general case, we present a (centralized) approximation algorithm, which
is based on LP-rounding and generalizes an algorithm for MaxSat [12].

Theorem 8. There exists a (centralized) polynomial-time (1− 1
e )-approximation

algorithm for the general covering problem.

5 Conclusion

In this paper we use game theoretic concepts for the design of new local search
approximation algorithms for a very general covering problem. Our approach is
to design player payoff functions that minimize the price of anarchy and guaran-
tee that any sequence of unilateral improvements by the players is of polynomial
length. For the covering problem this yields essentially the best possible approx-
imation ratio.

For future work, we propose to study how far such ideas can be utilized to get
new local search approximation algorithms also for other interesting optimiza-
tion problems. Certainly, our approach will not always yield the best possible
approximation ratio. This gives rise to the new interesting concept of selfish ap-
proximation ratio, i.e. the best possible approximation ratio that can be achieved
by selfish players.
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Abstract. In sponsored search auctions advertisers typically pay a fixed
amount per click that their advertisements receive. In particular, the
advertiser and the publisher enter into a contract (e.g., the publisher
displays the ad; the advertiser pays the publisher 10 cents per click),
and each party’s subjective value for such a contract depends on their
estimated click-through rates (CTR) for the ad. Starting from this mo-
tivating example, we define and analyze a class of contract auctions that
generalize the classical second price auction. As an application, we in-
troduce impression-plus-click pricing for sponsored search, in which ad-
vertisers pay a fixed amount per impression plus an additional amount
if their ad is clicked. Of note, when the advertiser’s estimated CTR is
higher than the publisher’s estimated CTR, both parties find negative
click payments advantageous, where the advertiser pays the publisher a
premium for the impression but the publisher then pays the advertiser
per click.

1 Introduction

In the classical sealed-bid second-price auction, bidders report their value for the
auctioned good, and the winner is the bidder with the highest reported value.
Incentive compatibility is achieved by charging the winner the least amount for
which they would have still won the auction (i.e., the winner pays the second
highest bid). In contrast, consider a typical sponsored search auction where,
for simplicity, we assume bidders compete for a single available impression: Ad-
vertisers report their value-per-click; the winner is the bidder from whom the
publisher expects to receive the most revenue; and the winning bidder pays the
least amount per click for which they would have still won the auction. While
sponsored-search auctions are conceptually similar to traditional second price
auctions, there is a key difference: Goods in traditional auctions are exchanged
for deterministic payments, and in particular, the value of these payments is
identical to the bidder and the auctioneer; in sponsored search auctions, impres-
sions are exchanged for stochastic payments, and the value of such payments
to the publisher and the advertiser depends on their respective estimated click-
through rates (CTR). For example, if the advertiser’s estimated CTR is higher
than the publisher’s, then the advertiser would expect to pay more than the
publisher would expect to receive.

Starting from this motivating example of sponsored search, we define and de-
velop a framework for contract auctions that generalize the second price auction.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 196–207, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We consider arbitrary agent valuations over a space of possible contracts; in par-
ticular, valuations may diverge for reasons other than mismatched probability
estimates. As an application, we introduce impression-plus-click (IPC) sponsored
search auctions, in which advertisers pay a fixed amount per impression and
make an additional payment per click. Interestingly, when the advertiser’s esti-
mated CTR is higher than the publisher’s estimate, both parties prefer negative
click payments—or paid per click pricing: The advertiser pays the publisher a
premium for the impression, and the publisher then pays the advertiser per click.

In the remainder of this introduction we review sponsored search auctions
and related work. General contract auctions are developed in Section 2, and
a dominant strategy incentive compatible mechanism is proposed. Impression-
plus-click sponsored search auctions are introduced in Section 3. In Section 4 we
analyze an impression-or-click auction, and consider connections to the hybrid
auction model of Goel & Munagala [4]. We conclude in Section 5 by discussing
potential offline applications of this work, including applications to insurance,
book publication and executive compensation. Due to space constraints we omit
some proofs from this version.

1.1 Background and Related Work

Sponsored search is the practice of auctioning off ad placement next to web search
results; advertisers pay the search engine when their ads are clicked. These ad
auctions are responsible for the majority of the revenue of today’s leading search
engines [10]. Edelman et al. [3] and Varian [15] provide the standard model
for sponsored search auctions and analyze its equilibrium properties (see also
Lahaie et al. [11] for a survey of the literature in this area). We do not provide a
description of this model here because our contract auction abstracts away from
its details in order to cover pricing schemes beyond per-click or per-impression.

Harrenstein et al. [7] recently and independently developed the qualitative
Vickrey auction, a mechanism similar to the general contract auction presented
here. The primary differences between their work and ours concern subtleties
in the bidding language, the tie-breaking rules, and the assumptions guaran-
teeing truthfulness. In this paper we detail our interpretation and results for
contract auctions; our main contribution, however, is applying this framework
to sponsored search, and in particular introducing impression-plus-click pricing.

Truthfulness under the standard model of sponsored search is well under-
stood [1]. In mechanism design more generally, Holmstrom [8] characterizes
truthful payment rules for type spaces that are smoothly path-connected (see
also [12, 13]). In contrast, our truthfulness result for contract auctions does not
assume any topology on the type space. Instead it is a consequence of the par-
ticular structure of the outcome space (the auctioneer may contract with only
one agent) together with a novel consistency condition between the auctioneer
and agents’ preferences.

Contract auctions generalize the single-item Vickrey auction [16], but are
conceptually distinct from the well-known Vickrey-Clark-Groves (VCG) mecha-
nism [2, 6]. An intuitive interpretation of the VCG mechanism is that it charges
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each agent the externality that the agent imposes on others; thus, the mecha-
nism only applies when utility is transferable between agents through payments.
This is not possible when, for instance, the agents and auctioneer disagree on
click-through rates, because there can be no agreement on how to quantify the
externality. There are many reasons why disagreement might arise: clicks are low
probability events whose distributions are hard to model [14], and the auctioneer
and advertisers may disagree on which clicks were valid [5, 9].

The hybrid auction of Goel and Munagala [4] is a notable departure from the
basic sponsored search model in that it attempts to reconcile differing publisher
and advertiser click-through estimates. In a hybrid auction advertisers place
per-click bids as well as per-impression bids, and the auctioneer then chooses
one of the two pricing schemes. Goel and Munagala [4] show that, besides being
truthful, their hybrid auction has many advantages over simple per-click keyword
auctions. The auction allows advertisers to take into account their attitudes
towards risk and may generate higher revenue, among other nice properties. The
consistency condition given in this work distills the reason behind truthfulness in
the hybrid auction, and our contract auction leads to variants and generalizations
of the hybrid auction to multiple pricing schemes beyond CPC and CPM (e.g.,
CPA for any kind of action).

2 Contract Auctions

We define and develop an incentive compatible mechanism for contract auctions
where agents have valuations over an arbitrary space of possible contracts. Sup-
pose there are N agents A1, . . . , AN and finite sets C1, . . . , CN that denote the
set of potential contracts each agent could enter into. Agents have valuation
functions vi : Ci �→ R for their respective contracts, and the auctioneer’s value
for each contract is given by vAi : Ci �→ R. Contracts, in this setting, are nothing
more than abstract objects for which each party has a value. The auctioneer is
to enter into a single contract, and our goal is to design a framework to facilitate
this transaction.

The valuation functions are intended to represent purely subjective utilities,
based, for example, on private beliefs or simply taste. In this sense, each agent
values contracts in their own “currency,” which cannot directly be converted
into values for other agents. We require that preferences be consistent in the
following sense: Among contracts acceptable to a given bidder (i.e., those con-
tracts for which the bidder has non-negative utility), the highest value contract
to the auctioneer is one for which the bidder has zero utility. This statement is
formalized by Definition 1.

Definition 1. In the setting above, we say agent vi and the auctioneer have
consistent valuations if for each c1 ∈ Ci with vi(c1) > 0, there exists c2 ∈ Ci

such that vi(c2) ≥ 0 and vAi (c2) > vAi (c1).

Consistency is equivalent to the following property:

max
{c:vi(c)≥0}

vAi (c) > max
{c:vi(c)>0}

vAi (c).
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We note that consistency is a weak restriction on the structure of valuations.
In particular, if contracts include a “common currency” component, for which
bidders and the auctioneer have an agreed upon value, then valuations are nec-
essarily consistent.

Under this assumption of consistency, Mechanism 1 defines a dominant strat-
egy incentive-compatible mechanism for contract auctions. First, bidders report
their valuation function to the auctioneer. In the applications we consider, this
entails reporting a small set of parameters which defines the valuation function
over the entire contract space. Next, among contracts for which agents have
non-negative utility (i.e., “acceptable” or “individually-rational” contracts), the
auctioneer identifies the contract for which it has maximum value; the winner
of the auction is the bidder who submitted this maximum value acceptable con-
tract. Finally, the auctioneer and the winner enter into the best contract from
the winner’s perspective for which it would have still won the auction.

Mechanism 1. A General Contract Auction
1: Each agent A1, . . . , AN reports a valuation function ṽi.
2: For 1 ≤ i ≤ N , let Si = {c ∈ Ci | ṽi(c) ≥ 0} be the set of contracts for which agent

Ai claims to have non-negative valuation, and define
Ri = max

Si

vA
i (c) (1)

to be the maximum value the auctioneer can achieve from each agent among these
purportedly acceptable contracts.

3: Fix h so that Rh(1) ≥ Rh(2) ≥ · · · ≥ Rh(N), and let

S =
{

c ∈ Ch(1)

∣∣∣ vA
h(1)(c) ≥ Rh(2)

}
.

With agent Ah(1), the auctioneer enters into any contract c∗ such that
c∗ ∈ arg max

S
ṽh(1)(c).

Theorem 1. In the setting above, suppose agents have consistent valuations.
Then Mechanism 1 is dominant strategy incentive compatible.

Proof. Fix an agent Ai and consider its strategy. Let R−i = maxj �=i Rj where
Rj is defined as in (1). If Ai were to win the auction, then it would necessarily
enter into a contract among those in the set Mi =

{
c ∈ Ci

∣∣ vAi (c) ≥ R−i

}
.

Suppose Ai has strictly positive valuation for some contract c1 ∈ Mi (i.e.,
maxMi vi(c) > 0). Then by the assumption of consistent valuations, there exists
a contract c2 such that vi(c2) ≥ 0 and vAi (c2) > vAi (c1) ≥ R−i.

In particular, if Ai truthfully reports its valuation function, then we would
have Ri ≥ vAi (c2) > R−i, and hence Ai would win the auction. Furthermore, in
this case the best Ai could do is to enter into a contract in the set argmaxMi

vi(c).
Again, truthful reporting ensures that this optimal outcome occurs.

Now suppose maxMi vi(c) ≤ 0. In this case Ai has no possibility of positive
gain, whether or not it wins the auction. However, by reporting truthfully, if
Ai does win the auction the final contract would be selected from the set Si =
{c ∈ Ci | vi(c) ≥ 0}. That is, truthful reporting ensures that Ai achieves (the
optimal) zero gain. �
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We next show that the consistency condition plays a crucial role in achieving
incentive compatibility by exhibiting an example with inconsistent valuations
where truth telling is not a dominant strategy. Suppose the auctioneer has one
item for sale and there are two agents Ai and Aj . Agent Ai, Irene, values the
item at $4 but only has $2 to spend. There are three contracts she can enter into,
ci1, c

i
2, c

i
3, intuitively buying the item for $1, $2, and $3, resulting in utilities of 3, 2,

and −1, the latter being negative since Irene has a limited budget of $2. Agent
Aj , Juliet, values the item at $2 and has $2 to spend. She can enter into three
similar contracts, cj1, c

j
2 and cj3, resulting in utilities of 1, 0 and −1 respectively.

From the auctioneer’s point of view, his utility is the revenue, vA(cix) = vA(cjx) =
x for any x ∈ {1, 2, 3}. If the agents report their valuations truthfully, then
Ri = Rj = 2 and the auctioneer must break the tie. Unless the tie is broken
deterministically in favor of Irene, she has an incentive to lie. Suppose she reports
her valuation for ci3 to be 1, pretending that she has enough money to afford the
item. In that case Ri = 3, and Rj = 2, so Irene wins the item; but she can select
any outcome so long as the auctioneer’s utility is at least Rj = 2. She chooses
ci2, which has a positive utility to her, but still makes $2 for the auctioneer.
Essentially, because the utilities of Irene and the auctioneer are not consistent,
Irene can bluff to win the item.

Remark 1. In the above we have assumed the contract spaces Ci are finite. This
restriction is imposed only to ensure the maximum operation is well-defined in
Mechanism 1. We implicitly relax this condition in the following discussion, as
it is clear the relevant maxima exist despite having infinite contract spaces.

Mechanism 1 generalizes the usual sealed-bid second-price auction. To see this,
take Ci = R, and let the contract p ∈ R indicate agentAi’s obligation to purchase
the auctioned good at price p. If agent Ai values the good at wi, then its value
over contracts is given by vi(p) = wi − p, and in particular, its preferences over
contracts is parametrized by wi ∈ R. The auctioneer has valuation vAi (p) = p.
Now, letting w̃i be Ai’s reported valuation, we have Ri = w̃i. Furthermore,

S =
{
c ∈ Ch(1)

∣∣∣ vA
h(1)(c) ≥ Rh(2)

}
=
[
w̃h(2),∞

)
and so arg maxS ṽh(1) = w̃h(2). That is, agent Ah(1) enters into the contract
w̃h(2), agreeing to pay the second highest bid for the good.

3 The Impression-Plus-Click Pricing Model

We now consider a specific application of contract auctions for sponsored search:
impression-plus-click pricing. For a given impression, define a contract (rs, rf ) ∈
R2 to require the advertiser pay rs if a click occurs and rf if no click occurs.
This is a complete pricing scheme if the advertiser values only impressions and
clicks. We note that so-called “brand advertisers” often have significant utility
for simply displaying their ads, regardless of whether or not their ads are clicked.
These contracts are equivalently parametrized by (rm, rc) ∈ R2, where the ad-
vertiser pays rm per impression and an additional rc per click. Using this latter,
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additive, notation, an impression-plus-click (IPC) contract is represented as a
point in the CPM-CPC price plane. A priori there are no restrictions on these
contracts (e.g., one or both coordinates could be negative).

3.1 Contract Preferences

Suppose an advertiser Ai values an impression, regardless of whether it receives
a click, at mi ≥ 0, values a click at wi ≥ 0, and estimates its CTR to be pi > 0.
Then, assuming risk neutrality, its value for the IPC contract (rm, rc) is

vi(rm, rc) = (mi + piwi)− (rm + pirc).

Observe that the contract preferences of Ai are equivalent to those of an adver-
tiser who values clicks at wi +mi/pi and has no inherent value for impressions.
Consequently, without loss of generality, we need only consider the case mi = 0.
We thus have the simplified expression: vi(rm, rc) = piwi−(rm +pirc). The level
curves of vi are linear with slope −1/pi:

{(rm, rc) : vi(rm, rc) = C} = {(rm, K − rm/pi) : rm ∈ R} (2)

where K = wi − C/pi.
We suppose the advertiser requires limited liability in the following sense. For

advertiser specific constants CPMi > 0 and CPCi > 0, we assume the advertiser
has strictly negative utility for any contract (rm, rc) with either rm > CPMi

or rc > CPCi; aside from this caveat, the advertiser is risk-neutral. In other
words, advertisers effectively have a maximum amount they are willing to spend
on clicks and impressions, but otherwise they are risk neutral.

The utility function of each advertiser Ai can be derived from four numbers:
its value-per-click wi, its estimated CTR pi, and its price caps CPMi and CPCi.
Equivalently, Ai’s utility function is determined by the two contracts

{(ri
m,CPCi), (CPMi, r

i
c)}

where ri
m = pi(wi − CPCi) and ri

c = wi − CPMi/pi. These two IPC contracts
lie on Ai’s zero-utility level line; that is,

vi(ri
m,CPCi) = 0 vi(CPMi, r

i
c) = 0.

Moreover, these contracts are the extreme points on this zero-utility line (i.e.,
they push up against the price caps). Observe that wi is the y-intercept of the
line through these two contract points, and pi =

(
CPMi − ri

m

)
/
(
CPCi − ri

c

)
is the negative reciprocal of the slope of this line. Furthermore, the space of
advertiser utility functions is parametrized by the set of contract pairs

U = {(rm,1, rc,1), (rm,2, rc,2) | rm,1 ≤ 0 < rm,2, rc,2 ≤ 0 < rc,1} . (3)

From the (risk-neutral) publisher’s perspective, the utility of a contract (rm, rc)
entered into with advertiser Ai is

vAi (rm, rc) = rm + pA
i rc

where pA
i is the publisher’s estimated CTR of the advertiser’s ad. Figure 1(a)

illustrates the contract preferences for an advertiser and a publisher.
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CPC

CPM

(a) The solid red and black lines in-
dicate the advertiser’s and publisher’s
level curves in the CPM-CPC price
plane. Here the publisher’s CTR esti-
mate is lower than the advertiser’s.

CPC

CPM

(b) The star indicates a winning pure
per-impression bid, the red line is the
publisher’s R∗ level line, and the two
dots indicate the final contracts.

Fig. 1. Publisher and advertiser contract preferences

3.2 Designing the Impression-Plus-Click Auction

Given the advertiser and publisher preferences outlined in Section 3.1, we next
apply Theorem 1 to design a dominant strategy incentive compatible IPC auction
for sponsored search. We start with two preliminary lemmas.
Lemma 1. Assume the setting and notation of Mechanism 1, and the advertiser
and publisher preferences of Section 3.1. Then the agents have consistent valua-
tions with the publisher. Furthermore, letting

{
(r̃i

m, C̃PCi), (C̃PMi, r̃
i
c)
}

denote
Ai’s reported preferences, we have

Ri =

{
C̃PMi + pA

i r̃
i
c if pA

i ≤ p̃i

r̃i
m + pA

i C̃PCi if pA
i ≥ p̃i

where p̃i =
(
C̃PMi − ri

m

)
/
(
C̃PCi − ri

c

)
is Ai’s inferred (subjective) CTR.

Proof. The level curve L0 on which the advertiser has (true) zero utility is given
by the line segment

L0 = {(rm, rc) | rm + pirc = piwi, rm ≤ CPMi, rc ≤ CPCi}
= {(rm, wi − rm/pi) | pi(wi − CPCi) ≤ rm ≤ CPMi}

and the set Si on which the advertiser has non-negative utility is given by the
points below L0:

Si = {(rm, rc) | ∃ (r∗m, r
∗
c ) ∈ L0 such that rm ≤ r∗m and rc ≤ r∗c} .

If (rm, rc) ∈ Si \ L0 (i.e., if vi(rm, rc) > 0), then there exists (r∗m, r
∗
c ) ∈ L0 such

that either r∗m > rm or r∗c > rc. In either case, vAi (r∗m, r∗c ) > vAi (rm, rc), and so
Ai and the publisher have consistent valuations.

To compute Ri, we first assume agent Ai truthfully reports its preferences.
Consistent valuations implies that the publisher achieves its maximum value,
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among contracts in Si, on the set L0 where the advertiser has zero utility. For
(rm, rc) ∈ L0,
vAi (rm, rc) = rm + pA

i rc = rm + (wi − rm/pi)pA
i = wip

A
i + rm

(
1− pA

i /pi

)
.

Now note that (3.2) is an increasing function of rm for pi < pA
i , and a decreasing

function of rm for pi > pA
i . Consequently, the maximum is achieved at the end-

points of L0. To extend to the case were Ai does not necessarily report truthfully,
we need only replace A’s actual preferences with its reported preferences. �

Lemma 2. Assume the setting and notation of Lemma 1. Fix 1 ≤ i ≤ N and
R∗ ≤ Ri. Then for S =

{
(rm, rc) ∈ Ci

∣∣ vAi (rm, rc) ≥ R∗
}

we have

argmax
S

ṽi(rm, rc) =

⎧⎪⎪⎨⎪⎪⎩
(
C̃PMi, (R∗ − C̃PMi)/pA

i

)
if pA

i < p̃i(
R∗ − pA

i C̃PCi, C̃PCi

)
if pA

i > p̃i

T if pA
i = p̃i

where

T =
{(
rm, (R∗ − rm)/pA

i

) ∣∣ R∗ − pA
i C̃PCi ≤ rm ≤ C̃PMi

}
.

Proof. First note that since R∗ ≤ Ri, maxS ṽi ≥ 0. Now, the level curve LA on
which vAi (rm, rc) = R∗ is given by

LA =
{
(rm, rc)

∣∣ rm + pA
i rc = R∗

}
=
{(
rm, (R∗ − rm)/pA

i

) ∣∣ rm ∈ R
}

.

Furthermore, vAi (rm, rc) > R∗ if and only if (rm, rc) lies above this line. That
is, vAi (rm, rc) > R∗ if and only if there exists a contract (r∗m, r

∗
c ) ∈ LA such

that either rm ≥ r∗m and rc > r∗c , or rm > r∗m and rc ≥ r∗c . In either case,
ṽi(r∗m, r

∗
c ) > ṽi(rm, rc) and so argmaxS ṽi ⊆ LA. Since maxS ṽi ≥ 0, we can

further restrict ourselves to the set

T = LA ∩ (−∞, C̃PMi]× (−∞, C̃PCi]

=
{(
rm, (R∗ − rm)/pA

i

) ∣∣ R∗ − pA
i C̃PCi ≤ rm ≤ C̃PMi

}
.

For (rm, rc) ∈ T , and w̃i indicating Ai’s inferred value per click, we have

ṽi(rm, rc) = w̃ip̃i − [rm + p̃irc] = w̃ip̃i −
[
rm + (R∗ − rm)p̃i/p

A
i

]
= w̃ip̃i −R∗p̃i/p

A
i + rm

(
p̃i/p

A
i − 1

)
. (4)

The result now follows by noting that (4) is increasing in rm for pA
i < p̃i,

decreasing for pA
i > p̃i, and constant for pA

i = p̃i. �

Together with Lemmas 1 and 2, the general contract auction of Mechanism 1
leads to the impression-plus-click auction described by Mechanism 2. First, each
advertiser submits two contracts—ostensibly specifying its entire utility function.
The publisher then computes its own utility for each of these 2N contracts, and



204 S. Goel, S. Lahaie, and S. Vassilvitskii

the winner of the auction is the agent who submitted the contract with the
highest value to the publisher. The “second-highest value” is the value of the
best contract (again from the publisher’s perspective) among those submitted
by the losing bidders. To determine the actual contract entered into, we consider
two cases. If the highest value contract has higher CPM than the winner’s other
bid, then the final contract is determined by decreasing the CPC on the highest
value contract until the publisher’s value for that contract is equal to the second
highest value. Analogously, if the highest value contract has lower CPM than
the winner’s other bid, the final contract is determined by decreasing the CPM
of the highest value contract.

Mechanism 2. An Impression-Plus-Click Auction
1: Advertisers A1, . . . , AN each report their valuation functions, encoded by the pair

of extremal contracts as described in Section 3.1:

ṽi =
{(

ri
m,1, r

i
c,1

)
,
(
ri

m,2, r
i
c,2

)}
,

where ri
m,1 ≤ 0 < ri

m,2 and ri
c,2 ≤ 0 < ri

c,1.
2: For each report ṽi define

Ri = max
(
vA

i

(
ri

m,1, r
i
c,1

)
, vA

i

(
ri

m,2, r
i
c,2

))
= max

(
ri

m,1 + ri
c,1p

A
i , ri

m,2 + ri
c,2p

A
i

)
.

3: Fix h so that Rh(1) ≥ Rh(2) ≥ · · · ≥ Rh(N). The publisher enters into a contract
with agent Ah(1). The final contract c∗ is determined as follows:

c∗ =

⎧⎪⎨⎪⎩
(
r

h(1)
m,2 ,

(
Rh(2) − r

h(1)
m,2

)/
pA

h(1)

)
if Rh(1) = vA

h(1)

(
r

h(1)
m,2 , r

h(1)
c,2

)
(
Rh(2) − pA

h(1)r
h(1)
c,1 , r

h(1)
c,1

)
otherwise

Theorem 2. Consider the setting and notation of Mechanism 2 with the adver-
tiser and publisher preferences of Section 3.1. Then

1. c∗≤
(
r

h(1)
m,1 , r

h(1)
c,1

)
or c∗≤

(
r

h(1)
m,2 , r

h(1)
c,2

)
, where the inequalities hold coordinate-

wise.
2. The mechanism is dominant strategy incentive compatible. That is, it is a

dominant strategy for each advertiser Ai to truthfully report{(
ri
m,CPCi

)
,
(
CPMi, r

i
c

)}
.

4 The Impression-or-Click Pricing Model

With impression-plus-click pricing, advertisers pay publishers for each impres-
sion, and then pay an additional amount if their ad is clicked. The hybrid spon-
sored search auction of Goel & Munagala [4] can be thought of as impression-
or-click (IOC) pricing. That is, the final selected contract is guaranteed to be
either pure per-impression or pure per-click, but it is not known which it will
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be until all bids have been submitted. The hybrid auction, as shown below, is
equivalent to a special case of the general contract auction with the contract
spaces restricted to the axes of the CPM-CPC plane:

Ci = {(rm, 0) | rm ∈ R} ∪ {(0, rc) | rc ∈ R}. (5)

Suppose both advertisers and publishers are risk neutral. As before, let pi de-
note advertiser Ai’s subjective click-through rate, let pA

i denote the publisher’s
estimated click-through rate for an impression awarded to Ai, and let wi denote
Ai’s value for a click. Then Ai has zero utility for the two contracts (piwi, 0)
and (0, wi). By the assumption of risk neutrality, these two contracts completely
determine Ai’s preferences over all contracts. Hence, Ai can communicate its
preferences by reporting the two numbers CPMi = piwi and CPCi = wi, corre-
sponding to the maximum it is willing to pay for a per-impression and a per-click
contract, respectively. The resulting IOC auction is outlined in Mechanism 3. De-
tails of its derivation are straightforward and are omitted for space constraints.

Mechanism 3. An Impression-Or-Click Auction (Goel & Munagala)
1: Advertisers A1, . . . , AN each report their valuation functions, encoded by the con-

stants C̃PM i, C̃PCi > 0.
2: For each report, define Ri = max

(
CPMi, pA

i CPCi

)
.

3: Fix h so that Rh(1) ≥ Rh(2) ≥ · · · ≥ Rh(N). Then the publisher enters into a
contract with agent Ah(1). The final contract c∗ is determined as follows:

c∗ =

{(
0, R∗/pA

i

)
if Rh(1) = pA

h(1)CPCh(1)

(R∗, 0) otherwise

Although the hybrid and general contract auctions are equivalent when ad-
vertiser preferences are restricted to the CPM-CPC axis, they may lead to dif-
ferent outcomes when preferences are defined over the entire plane. Consider
the IPC auction setting of Section 3, where we now assume that CPCi = wi

and CPMi = wipi. That is, the most advertiser Ai is willing to pay per click
or per impression is, respectively, its true per click value wi and its true per
impression value wipi. In particular, Ai will not pay more than wi per click even
if it is compensated via negative per-impression payments. In this case, the two
extremal contracts that define Ai’s utility function over the CPM-CPC plane are
(CPMi, 0) and (0,CPCi). With such a preference profile, we show that advertis-
ers prefer the IPC auction over the IOC auction, and publishers are ambivalent
between the two.

In both the IOC and IPC auctions, it is a dominant strategy to truthfully
reveal ones’ preferences: In the IOC auction advertisers report their maximum
per-impression and per-click payments CPMi and CPCi; in the IPC auction
they report their pair of extremal contracts {(CPMi, 0), (0,CPCi)}. From the
publisher’s perspective, for each agent Ai, Ri is the same in both auctions.
Consequently, the winner of the auction is the same under either mechanism, and
moreover, the expected (subjective) revenue R∗ of the publisher is also the same.
The publisher is thus ambivalent between the IOC and IPC auction designs.
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From the advertisers’ view, however, the situation is quite different. Specif-
ically, let c∗IPC and c∗IOC denote the final contract entered into by the winner
Ah(1) under each mechanism. Then

vh(1)(c∗IPC) = max
Q1

vh(1) vh(1)(c∗IOC) = max
Q2

vh(2)

where

Q1 =
{

(rm, rc) ∈ R2
∣∣ vA

h(1)(rm, rc) ≥ R∗
}

Q2 =
{

(rm, rc) ∈ R2
∣∣ vA

h(1)(rm, rc) ≥ R∗, min(rm, rc) = 0
}

That is, the IPC contract is optimized over the entire plane, whereas the IOC
contract is optimized only over the axes. In particular, vh(1)(c∗IPC) ≥ vh(1)(c∗IOC).
Since vAi (c∗IPC) = vAi (c∗IOC), the line drawn between these two contracts has slope
−1/pA

i (as shown in Section 3.1). Furthermore, since vi(c∗IPC) = vi(c∗IOC) if and
only if the line between the contracts has slope −1/pi, we have vh(1)(c∗IPC) >
vh(1)(c∗IOC) provided that pA

i �= pi. Hence, in this setting, advertisers typically
prefer the IPC over the IOC auction.

The distinction between the IPC and IOC settlement mechanisms is illus-
trated in Figure 1(b). When pA

h(1) < ph(1), the publisher prefers (under both
mechanisms) the winning advertiser’s pure per-impression bid CPMh(1) over its
pure per-click bid CPCh(1). In this case, the final IOC contract is a pure per-
impression contract, where the per-impression payment is reduced from CPMh(1)
to an amount such that the ultimate value of the contract to the publisher is R∗.
In contrast, the final IPC contract has the advertiser still paying CPMh(1) per
impression, but a “discount” is given to the advertiser via negative click pay-
ments (i.e., the publisher pays the advertiser for each click). This negative click
payment is calculated so that the final value of the contract to the publisher is
again R∗. The final contract in either auction lies on the R∗ level curve of the
publisher: In the IOC auction, the pure-impression contract CPMh(1) is moved
left along the CPM axis until hitting this level curve; in the IPC auction, the
final contract is arrived at by moving the pure-impression contract down parallel
to the CPC axis.

5 Discussion

General contract auctions facilitate transactions when parties have conflicting
information, or when they simply have different inherent value for the specific
terms of a contract. Such a situation is common in traditional business negoti-
ations, and, at least implicitly, contracts in the offline world often balance the
same tradeoffs encapsulated explicitly by impression-plus-click auctions. For ex-
ample, with book publication, authors typically receive a one-time advance plus
royalty fees (i.e., a percentage of total sales revenue). Thus, authors confident
in the future success of their book should be willing to trade a smaller advance
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for larger royalties. A similar tradeoff occurs with insurance premiums and de-
ductibles: A driver who thinks he is unlikely to get into an accident should
be willing to accept relatively high deductibles in exchange for relatively low
premiums. Corporate executives face a similar situation when deciding between
guaranteed salaries and performance-based bonuses. More generally, in instances
where parties bargain between deterministic and stochastic payments, a design
similar to the impression-plus-click auction may prove useful.
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Abstract. Display advertising has traditionally been sold via guaran-
teed contracts – a guaranteed contract is a deal between a publisher and
an advertiser to allocate a certain number of impressions over a certain
period, for a pre-specified price per impression. However, as spot mar-
kets for display ads, such as the RightMedia Exchange, have grown in
prominence, the selection of advertisements to show on a given page is
increasingly being chosen based on price, using an auction. As the num-
ber of participants in the exchange grows, the price of an impressions
becomes a signal of its value. This correlation between price and value
means that a seller implementing the contract through bidding should
offer the contract buyer a range of prices, and not just the cheapest
impressions necessary to fulfill its demand.

Implementing a contract using a range of prices, is akin to creating a
mutual fund of advertising impressions, and requires randomized bidding.
We characterize what allocations can be implemented with randomized
bidding, namely those where the desired share obtained at each price is a
non-increasing function of price. In addition, we provide a full character-
ization of when a set of campaigns are compatible and how to implement
them with randomized bidding strategies.

1 Introduction

Display advertising — showing graphical ads on regular web pages, as opposed to
textual ads on search pages — is approximately a $24 billion business. There are
two ways in which an advertiser looking to reach a specific audience (for example,
10 million males in California in July 2009) can buy such ad placements. One
is the traditional method, where the advertiser enters into an agreement, called
a guaranteed contract, directly with the publishers (owners of the webpages).
Here, the publisher guarantees to deliver a prespecified number (10 million) of
impressions matching the targeting requirements (male, from California) of the
contract in the specified time frame (July 2009). The second is to participate
in a spot market for display ads, such as the RightMedia Exchange, where ad-
vertisers can buy impressions one pageview at a time: every time a user loads a

� A full version of this paper appears in [6].
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page with a spot for advertising, an auction is held where advertisers can bid for
the opportunity to display a graphical ad to this user. Both the guaranteed and
spot markets for display advertising now thrive side-by-side. There is demand for
guaranteed contracts from advertisers who want to hedge against future uncer-
tainty of supply. For example, an advertiser who must reach a certain audience
during a critical period of time (e.g around a forthcoming product launch, such
as a movie release) may not want to risk the uncertainty of a spot market; a guar-
anteed contract insures the publisher as well against fluctuations in demand. At
the same time, a spot market allows the advertisers to bid for specific opportu-
nities, permitting very fine grained targeting based on user tracking. Currently,
RightMedia runs over nine billion auctions for display ads everyday.

How should a publisher decide which of her supply of impressions to allocate
to her guaranteed contracts, and which to sell on the spot market? One obvious
solution is to fulfill the guaranteed demand first, and then sell the remaining in-
ventory on the spot market. However, spot market prices are often quite different
for two impressions that both satisfy the targeting requirements of a guaranteed
contract, since different impressions have different value. For example, the im-
pressions from two users with identical demographics can have different value,
based on different search behavior reflecting purchase intent for one of the users,
but not the other. Since advertisers on the spot market have access to more
tracking information about each user1, the resulting bids may be quite differ-
ent for these two users. Allocating impressions to guaranteed contracts first and
selling the remainder on the spot market can therefore be highly suboptimal in
terms of revenue, since two impressions that would fetch the same revenue from
the guaranteed contract might fetch very different prices from the spot market2.

On the other hand, simply buying the cheapest impressions on the spot market
to satisfy guaranteed demand is not a good solution in terms of fairness to the
guaranteed contracts, and leads to increasing short term revenue at the cost
of long term satisfaction. As discussed above, impressions in online advertising
have a common value component because advertisers generally have different
information about a given user. This information (e.g. browsing history on an
advertiser site) is typically relevant to all of the bidders, even though only one
bidder may possess this information. In such settings, price is a signal of value—
in a model of valuations incorporating both common and private values, the price
converges to the true value of the item in the limit as the number of bidders goes
to infinity ([8, 11], see also [7] for discussion). On average, therefore, the price on
the spot market is a good indicator of the value of the impression, and delivering

1 For example, a car dealership advertiser may observe that a particular user has been
to his webpage several times in the previous week, and may be willing to bid more
to show a car advertisement to induce a purchase.

2 Consider the following toy example: suppose there are two opportunities, the first
of which would fetch 10 cents in the spot market, whereas the second would fetch
only ε; both opportunities are equally suitable for the guaranteed contract which
wants just one impression. Clearly, the first opportunity should be sold on the spot
market, and the second should be allocated to the guaranteed contract.
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cheapest impressions corresponds to delivering the lowest quality impressions to
the guaranteed contract3.

A publisher with access to both sources of demand thus faces a trade-off be-
tween revenue and fairness when deciding which impressions to allocate to the
guaranteed contract; this trade-off is further compounded by the fact that the
publisher typically does not have access to all the information that determines
the value of a particular impression. Indeed, publishers are often the least well
informed participants about the value of running an ad in front of a user. For ex-
ample, when a user visits a politics site, Amazon (as an advertiser) can see that
the user recently searched Amazon for an ipod, and Target (as an advertiser) can
see they searched target.com for coffee mugs, but the publisher only knows the
user visited the politics site. Furthermore, the exact nature of this trade-off is un-
known to the publisher in advance, since it depends on the spot market bids which
are revealed only after the advertising opportunity is placed on the spot market.

The publisher as a bidder. To address the problem of unknown spot market
demand (i.e., the publisher would like to allocate the opportunity to a bidder
on the spot market if the bid is “high enough”, else to a guaranteed contract),
the publisher acts, in effect, as a bidder on behalf on the guaranteed contracts.
That is, the publisher now plays two roles: that of a seller, by placing his oppor-
tunity on the spot market, and that of a bidding agent, bidding on behalf of his
guaranteed contracts. If the publisher’s own bid turns out to be highest among
all bids, the opportunity is won and is allocated to the guaranteed contract.
Acting as a bidder allows the publisher to probe the spot market and decide
whether it is more efficient to allocate the opportunity to an external bidder or
to a guaranteed contract.

How should a publisher model the trade-off between fairness and revenue, and
having decided on a trade-off, how should she place bids on the spot market?
An ideal solution is (a) easy to implement, (b) allows for a trade-off between
the quality of impressions delivered to the guaranteed contracts and short-term
revenues, and (c) is robust to the exact tradeoff chosen. In this work we show
precisely when such an ideal solution exists and how it can be implemented.

1.1 Our Contributions

In this paper, we provide an analytical framework to model the publisher’s prob-
lem of how to fulfill guaranteed advance contracts in a setting where there is an
alternative spot market, and advertising opportunities have a common value
component. We give a solution where the publisher bids on behalf of its guar-
anteed contracts in the spot market. The solution consists of two components:
an allocation, specifying the fraction of impressions at each price allocated to a
contract, and a bidding strategy, which specifies how to acquire this allocation
by bidding in an auction.

3 While allocating the cheapest inventory to the guaranteed contracts is indeed revenue
maximizing in the short term, in the long term the publisher runs the risk of losing
the guaranteed advertisers by serving them the least valuable impressions.
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The quality, or value, of an opportunity is measured by its price4. A perfectly
representative allocation is one which consists of the same proportion of impres-
sions at every price– i.e., a mix of high-quality and low quality impressions. The
trade-off between revenue and fairness is modeled using a budget, or average
target spend constraint, for each advertiser’s allocation: the publisher’s choice
of target spend reflects her trade-off between short-term revenue and quality of
impressions for that advertiser (this must, of course, be large enough to ensure
that the promised number of impressions satisfying the targeting constraints
can be delivered.) Given a target spend5, a maximally representative allocation
is one which minimizes the distance to the perfectly representative allocation,
subject to the budget constraint. We first show how to solve for a maximally
representative allocation, and then show how to implement such an allocation
by purchasing opportunities in an auction, using randomized bidding strategies.

Organization. We start out with the single contract case, where the publisher
has just one existing guaranteed contract, in Section 2; this case is enough to
illustrate the idea of maximally representative allocations and implementation
via randomized bidding strategies. We move on to the more realistic case of
multiple contracts in Section 3; we first prove a result about which allocations
can be implemented in an auction in a decentralized fashion, and derive the
corresponding decentralized bidding strategies, and comment on solution of the
optimal allocation. Full details, along with experimental validations of these
strategies appear in [6].

Related Work. The most relevant work is the literature on designing expressive
auctions and clearing algorithms for online advertising [9, 2, 10]. This literature
does not address our problem for the following reason. While it is true that
guaranteed contracts have coarse targeting relative to what is possible on the
spot market, most advertisers with guaranteed contracts choose not to use all
the expressiveness offered to them. Furthermore, the expressiveness offered does
not include attributes like relevant browsing history on an advertiser site, which
could increase the value of an impression to an advertiser, simply because the
publisher does not have this information about the advertising opportunity. Even
with extremely expressive auctions, one might still want to adopt a mutual fund
strategy to avoid the ‘insider trading’ problem. That is, if some bidders possess
good information about convertibility, others will still want to randomize their
bidding strategy since bidding a constant price means always losing on some
good impressions. Thus, our problem cannot be addressed by the use of more
expressive auctions as in [10] — the real problem is not lack of expressivity, but
lack of information.
4 We emphasize that the assumption being made is not about price being a signal of

value, but rather that impressions do have a common value component – given that
impressions have a common value, price reflecting value follows from the theorem of
Milgrom [8]. This assumption is commonly observed in practice.

5 We point out that we do not address the question of how to set target spends, or the
related problem of how to price guaranteed contracts to begin with. Given a target
spend, we propose a complete solution to the publisher’ s problem.
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Another area of research focuses on selecting the optimal set of guaranteed con-
tracts. In this line of work, Feige et al. [5] study the computational problem of
choosing the set of guaranteed contracts to maximize revenue. A similar problem is
studied by in [3, 1]. We do not address the problem of how to select the set of guar-
anteed contracts, but rather take them as given and address the problem of how to
fulfill these contracts in the presence of competing demand from a spot market.

2 Single Contract

We first consider the simplest case: there is a single advertiser who has a guaran-
teed contract with the publisher for delivering d impressions. There are a total of
s ≥ d advertising opportunities which satisfy the targeting requirements of the
contract. The publisher can also sell these s opportunities via auction in a spot
market to external bidders. The highest bid from the external bidders comes
from a distribution F , with density f , which we refer to as the bid landscape.
That is, for every unit of supply, the highest bid from all external bidders,which
we refer to as the price, is drawn i.i.d from the distribution6 f . We assume that
the supply s and the bid landscape f are known to the publisher7. Recall that
the publisher wants to decide how to allocate its inventory between the guar-
anteed contract and the external bidders in the spot market. Due to penalties
as well as possible long term costs associated with underdelivering on guaran-
teed contracts, we assume that the publisher wants to deliver all d impressions
promised to the guaranteed contract.

An allocation a(p) is defined as follows: a(p)/s is the proportion of opportu-
nities at price p purchased on behalf of the guaranteed contract (the price is the
highest (external) bid for an opportunity.) That is, of the sf(p)dp impressions
available at price p, an allocation a(p) buys a fraction a(p)/s of these sf(p)dp im-
pressions, i.e., a(p)f(p)dp impressions. For example, a constant bid of p∗ means
that for p ≤ p∗, a(p) = 1 with the advertiser always winning the auction, and
for p > p∗, a(p) = 0 since the advertiser would never win.

Generally, we will describe our solution in terms of the allocation a(p)/s,
which must integrate out to the total demand d: a solution where a(p)/s is
larger for higher prices corresponds to a solution where the guaranteed contract
is allocated more high-quality impressions. As another example, a(p)/s = d/s is
a perfectly representative allocation, integrating out to a total of d impressions,
and allocating the same fraction of impressions at every price point.

Not every allocation can be purchased by bidding in an auction, because of
the inherent asymmetry in bidding– a bid b allows every price below b and
rules out every price above; however, there is no way to rule out prices below a
certain value. That is, we can choose to exclude high prices, but not low prices.
Before describing our solution, we state what kinds of allocations a(p)/s can be
purchased by bidding in an auction.
6 Specifically, we do not consider adversarial bid sequences; we also do not model the

effect of the publisher’s own bids on others’ bids.
7 Publishers usually have access to data necessary to form estimates of these quantities.
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Proposition 1. A right-continuous allocation a(p)/s can be implemented (in
expectation) by bidding in an auction if and only if a(p1) ≥ a(p2) for p1 ≤ p2.

Proof. Given a right-continuous non-increasing allocation a(p)
s (that lies between

0 and 1), define H(p) := 1− a(p)
s . Let p∗ := inf {p : a(p) < s}. Then, H is mono-

tone non-decreasing and is right-continuous. Further, H(p∗) = 0 and H(∞) = 1.
Thus, H is a cumulative distribution function. We place bids drawn from H (the
probability of a strictly positive bid being a(0)/s). Then the expected number of
impressions won at price p is then exactly a(p)/s. Conversely, given that bids for
the contract are drawn at random from a distribution H , the fraction of supply
at price p that is won by the contract is simply 1 − H(p), the probability of
its bid exceeding p. Since H is non-decreasing, the allocation (as a fraction of
available supply at price p) must be non-increasing in p.

Note that the distribution H used to implement the allocation is a different
object from the bid landscape f against which the requisite allocation must be
acquired– in fact, it is completely independent of f , and is specified only by
the allocation a(p)/s. That is, given an allocation, the bidding strategy that
implements the allocation in an auction is independent of the bid landscape f
from which the competing bid is drawn.

2.1 Maximally Representative Allocations

Ideally the advertiser with the guaranteed contract would like the same propor-
tion of impressions at every price p, i.e., a(p)/s = d/s for all p. (We ignore the
possibility that the advertiser would like a higher fraction of higher-priced im-
pressions, since these cannot be implemented according to Proposition 1 above.)
However, the publisher faces a trade-off between delivering high-quality impres-
sions to the guaranteed contract and allocating them to bidders who value them
highly on the spot market. We model this by introducing an average unit target
spend t, which is the average price of impressions allocated to the contract. A
smaller (bigger) t delivers more (less) cheap impressions. As we mentioned be-
fore, t is part of the input problem, and may depend, for instance, on the price
paid by the advertiser for the contract.

Given a target spend, the maximally representative allocation is an allocation
a(p)/s that is ‘closest’ (according to some distance measure) to the ideal alloca-
tion d/s, while respecting the target spend constraint. That is, it is the solution
to the following optimization problem:

infa(·)
∫

p
u
(

a(p)
s , d

s

)
f(p)dp

s.t.
∫

p a(p)f(p)dp = d∫
p
pa(p)f(p)dp ≤ td

0 ≤ a(p)
s ≤ 1.

(1)

The objective, u, is a measure of the deviation of the proposed fraction, a(p)/s,
from the perfectly representative fraction, d/s. In what follows, we will consider
the L2 measure
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u
(
a(p)
s
,
d

s

)
=
s

2

(
a(p)
s

− d

s

)2

,

in [6] we also consider the Kullback-Leibler (KL) divergence. Why the choice
of KL and L2 for “closeness”? Only Bregman divergences lead to a selection
that is consistent, continuous, local, and transitive [4]. Further, in Rn only least
squares is scale- and translation- invariant, and for probability distributions only
KL divergence is statistical [4].

The first constraint in (1) is simply that we must meet the target demand d,
buying a(p)/s of the sf(p)dp opportunities of price p. The second constraint is
the target spend constraint: the total spend (the spend on an impression of price p
is p) must not exceed td, where t is a target spend parameter (averaged per unit).
As we will shortly see, the value of t strongly affects the form of the solution.
Finally, the last constraint simply says that the proportion of opportunities
bought at price p, a(p)/s, must never go negative or exceed 1.

Optimality conditions. Introduce Lagrange multipliers λ1 and λ2 for the first
and second constraints, and μ1(p), μ2(p) for the two inequalities in the last con-
straint. The Lagrangian is

L=
∫

u
(
a(p)
s
,
d

s

)
f(p)dp+λ1

(
d−
∫
a(p)f(p)dp

)
+λ2

(∫
pa(p)f(p)dp−td

)
+
∫
μ1(p)(−a(p))f(p)dp+

∫
μ2(p)(a(p)− s)f(p)dp.

By the Euler-Lagrange conditions for optimality, the optimal solution must satisfy

u′
(
a(p)
s
,
d

s

)
= λ1 − λ2p+ μ1(p)− μ2(p),

where the multipliers μ satisfy μ1(p), μ2(p) ≥ 0, and each of these can be non-
zero only if the corresponding constraint is tight.

These optimality conditions, together with Proposition 1, give us the following:

Proposition 2. The maximally representative allocation for a single contract
can be implemented by bidding in an auction for any convex distance measure u.

The proof follows from the fact that u′ is increasing for convex u.

L2 utility. In this subsection, we derive the optimal allocation when u, the
distance measure, is the L2 distance, and show how to implement the optimal
allocation using a randomized bidding strategy. In this case the bidding strategy
turns out to be very simple: toss a coin to decide whether or not to bid, and,
if bidding, draw the bid value from a uniform distribution. The coin tossing
probability and the endpoints of the uniform distribution depend on the demand
and target spend values.

First we give the following result about the continuity of the optimal allo-
cation; this will be useful in deriving the values that parameterize the optimal
allocation. See [6] for the proof.
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Proposition 3. The optimal allocation a(p) is continuous in p.

Note that we do not assume a priori that a(·) is continuous; the optimal alloca-
tion turns out to be continuous.

The optimality conditions, when u is the L2 distance, are:

a(p)
s

− d

s
= λ1 − λ2p+ μ1(p)− μ2(p),

where the nonnegative multipliers μ1(p), μ2(p) can be non-zero only if the cor-
responding constraints are tight.

The solution to the optimization problem (1) then takes the following form:
For 0 ≤ p ≤ pmin, a(p)/s = 1; for pmin ≤ p ≤ pmax, a(p)/s is proportional to
C − p, i.e., a(p)/s = z(C − p); and for p ≥ pmax, a(p)/s = 0.

To find the solution, we must find pmin, pmax, z, and C. Since a(p)/s is con-
tinuous at pmax, we must have C = pmax. By continuity at pmin, if pmin > 0 then
z(C − pmin) = 1, so that z = 1

pmax−pmin
. Thus, the optimal allocation a(p) is

always parametrized by two quantities, and has one of the following two forms:

1. a(p)/s = z(pmax − p) for p ≤ pmax (and 0 for p ≥ pmax).
When the solution is parametrized by z, pmax, these values must satisfy

s

∫ pmax

0
z(pmax − p)f(p)dp = d (2)

s

∫ pmax

0
zp(pmax − p)f(p)dp = td (3)

Dividing (2) by (3) eliminates z to give an equation which is monotone in
the variable pmax, which can be solved, for instance, using binary search.

2. a(p)/s = 1 for p ≤ pmin, and a(p)/s = pmax−p
pmax−pmin

for p ≤ pmax (and 0
thenceforth).

When the solution is parametrized by pmin, pmax, these values must satisfy

sF (pmin) +
∫ pmax

pmin

s
(pmax − p)
pmax − pmin

f(p)dp = d (4)∫ pmin

0
spf(p)dp+

∫ pmax

pmin

sp
(pmax − p)
pmax − pmin

f(p)dp = td. (5)

Note that the optimal allocation can be represented more compactly as

a(p)
s

= min{1, z(pmax − p)}. (6)

Effect of varying target spend. Varying the value of the target spend, t, while
keeping the demand d fixed, leads to a tradeoff between representativeness and
revenue from selling opportunities on the spot market, in the following way. The
minimum possible target spend, while meeting the target demand (in expecta-
tion) is achieved by a solution where pmin = pmax and a(p)/s = 1 for p less equal
this value, and 0 for greater. The value of pmin is chosen so that∫ pmin

0
sf(p)dp = d⇒ pmin = F−1(

d

s
).
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This solution simply bids a flat value pmin, and corresponds to giving the cheapest
possible inventory to the advertiser, subject to meeting the demand constraint.
This gives the minimum possible total spend for this value of demand, of

td =
∫ pmin

0
spf(p)dp = sF (pmin)E[p|p ≤ pmin] = dE[p|p ≤ pmin]

(Note that the maximum possible total spend that is maximally representative
while not overdelivering is R =

∫
pf(p)dp = dE[p] = dp̄.)

As the value of t increases above t, pmin decreases and pmax increases, until
we reach pmin = 0, at which point we move into the regime of the other optimal
form, with z = 1. As t is increased further, z decreases from 1, and pmax increases,
until at the other extreme when the spend constraint is essentially removed, the
solution is a(p)

s = d
s for all p; i.e., a perfectly representative allocation across

price. Thus the value of t provides a dial by which to move from the “cheapest”
allocation to the perfectly representative allocation.

2.2 Randomized Bidding Strategies

The quantity a(p)/s is an optimal allocation, i.e., a recommendation to the
publisher as to how much inventory to allocate to a guaranteed contract at
every price p. However, recall that the publisher needs to acquire this inventory
on behalf of the guaranteed contract by bidding in the spot market. The following
theorem shows how to do this when u is the L2 distance.

Theorem 1. The optimal allocation for the L2 distance measure can be imple-
mented (in expectation) in an auction by the following random strategy: toss a
coin to decide whether or not to bid, and if bidding, draw the bid from a uniform
distribution.

Proof. From (6) that the optimal allocation can be represented as

a(p)
s

= min{1, z(pmax − p)}.

By Proposition 1, an allocation a(p)
s = min{1, z(pmax− p)} can be implemented

by bidding in an auction using the following randomized bidding strategy: with
probability min{zpmax, 1}, place a bid drawn uniformly at random from the
range [max{pmax − 1

z , 0}, pmax].

3 Multiple Contracts

We now study the more realistic case where the publisher needs to fulfill multiple
guaranteed contracts with different advertisers. Specifically, suppose there are m
advertisers, with demands dj . As before, there are a total of s ≥

∑
dj advertising

opportunities available to the publisher. 8 An allocation aj(p)/s is the proportion
8 In general, not all of these opportunities might be suitable for every contract; we

do not consider this here for clarity of presentation. However the same ideas and
methods can be applied in that case and the results are qualitatively similar.
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of opportunities purchased on behalf of contract j at price p. Of course, the sum
of these allocations cannot exceed 1 for any p, which corresponds to acquiring
all the supply at that price.

As in the single contract case, we are first interested in what allocations aj(p)
are implementable by bidding in an auction. However, in addition to being imple-
mentable, we would like allocations that satisfy an additional practical require-
ment, explained below. Notice that the publisher, acting as a bidding agent, now
needs to acquire opportunities to implement the allocations for each of the guar-
anteed contracts. When an opportunity comes along, therefore, the publisher
needs to decide which of the contracts (if any) will receive that opportunity.
There are two ways to do this: the publisher submits one bid on behalf of all the
contracts; if this bid wins, the publisher then selects one amongst the contracts
to receive the opportunity. Alternatively, the publisher can submit one bid for
each contract; the winning bid then automatically decides which contract re-
ceives the opportunity. We refer to the former as a centralized strategy and
the latter as a decentralized strategy.

There are situations where the publisher will need to choose the winning ad-
vertiser prior to seeing the price, that is, the highest bid from the spot market.
For example, to reduce latency in placing an advertisement, the auction mech-
anism may require that the bids be accompanied by the advertisement (or its
unique identifier). A decentralized strategy automatically fulfills this require-
ment, since the choice of winning contract does not depend upon knowing the
price. In a centralized strategy, this requirement means that the relative fractions
won at price p, ai(p)/aj(p), are independent of the price p– when this happens,
the choice of advertiser can be made (by choosing at random with probability
proportional to aj) without knowing the price.

As before, we will be interested in implementing optimal (i.e., maximally
representative) allocations. We will, therefore, concentrate on characterizing al-
locations which can be implemented via a decentralized strategy. In the full
version of the paper [6] we show how to compute the optimal allocation in the
presence of multiple contracts.

3.1 Decentralization

In this section, we examine what allocations can be implemented via a de-
centralized strategy. Note that it is not sufficient to simply use a distribution
Hj = 1− aj(p)

aj(0)
as in Proposition 1, since these contracts compete amongst each

other as well. Specifically, using the distribution 1 − aj(p)
aj(0)

will lead to too few
opportunities being purchased for contract j, since this distribution is designed
to compete against f alone, rather than against f as well as the other contracts.
We need to show how to choose distributions in such a way that lead to a fraction
aj(p)/s of opportunities being purchased for contract j, for every j = 1, . . . ,m.

First, we argue that a decentralized strategy with given distributions Hj will
lead to allocations that are non-increasing, as in the single contract case. A
decentralized implementation uses distributions Hj to bid for impressions.Then,
contract j wins an impression at price p with probability



218 A. Ghosh et al.

aj(p) =
∫ ∞

p

⎛⎝∏
k �=j

Hk(x)

⎞⎠ hj(x)dx,

since to win, the bid for contract j must be larger than p and larger than the
bids placed by each of the remaining m− 1 contracts. Since all the quantities in
the integrand are nonnegative, aj is non-increasing in p.

Now assume that aj are differentiable a.e. and non-increasing. Let

A(p)
s

:=
∑

j

aj(p)
s

be the total fraction of opportunities at price p that the publisher needs to
acquire. Clearly, aj must satisfy A(p) ≤ s, ∀p. Let p∗ := inf{p : A(p) < s}. Let

Hj(p) :=
{
e
∫∞

p
a′

j(x)/(s−A(x))dx p > p∗

0 else
(7)

Then, Hj(p) ≥ 0 and is continuous. Since a′j(p) is non-increasing,Hj(p) is mono-
tone non-decreasing. Further, H(∞) = 1 and Hj(p∗) = 0. Thus, Hj is a distri-
bution function. We can verify that bidding according to Hj will result in the
desired allocations (see [6] for details).

Thus, we have constructed distribution functions Hj(p) which implement the
given non-increasing (and a.e. differentiable) allocations aj(p). If any aj is in-
creasing at any point, the set of campaigns cannot be decentralized. The follow-
ing theorem generalizes Proposition 1:

Theorem 2. A set of allocations aj(p) can be implemented in an auction via a
decentralized strategy iff each aj(p) is non-increasing in p, and

∑
j aj(p)/s ≤ 1.

Having determined which allocations can be implemented by bidding in an auc-
tion in a decentralized fashion, we turn to the question of finding suitable allo-
cations to implement. As in the single contract case, we would like to implement
allocations that are maximally representative, given the spend constraints.

As we show in [6], the optimal allocation is decentralizable in two cases:

1. The target spends are such that the solutions decouple. In this case the
allocation for each contract is independent of the others; we solve for the
parameters of each allocation as in Section 2.1.

2. The target spends are such that, for all j, k, aj(p)
ak(p) is independent of p. In

this case we need to solve for the common slope and pmin, and the contract
specific values pj

max, which together determine the allocation. This can be
done using, for instance, Newton’s method.

When the target spends are such that the allocation is not decentralizable, the
vector of target spends can be increased to reach a decentralizable allocation.
One way is to scale up the target spends uniformly until they are large enough
to admit a separable solution; this has the advantage of preserving the relative
ratios of target spends. The minimum multiplier which renders the allocation
decentralizable can be found numerically, using for instance binary search.
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4 Conclusion

Moving guaranteed contracts into an exchange environment presents a variety of
challenges for a publisher. Randomized bidding is a useful compromise between
minimizing the cost and maximizing the quality of guaranteed contracts. It is
akin to the mutual fund strategy common in the capital asset pricing model. We
provide a readily computable solution for synchronizing an arbitrary number of
guaranteed campaigns in an exchange environment. Moreover, the solution we
detail appears stable with real data.
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Abstract. In this paper we introduce and study a model that considers
the job market as a two-sided matching market, and accounts for the im-
portance of social contacts in finding a new job. We assume that workers
learn only about positions in firms through social contacts. Given that
information structure, we study both static properties of what we call lo-
cally stable matchings, a solution concept derived from stable matchings,
and dynamic properties through a reinterpretation of Gale-Shapley’s al-
gorithm as myopic best response dynamics.

We prove that, in general, the set of locally stable matching strictly
contains that of stable matchings and it is in fact NP-complete to de-
termine if they are identical. We also show that the lattice structure of
stable matchings is in general absent. Finally, we focus on myopic best
response dynamics inspired by the Gale-Shapley algorithm. We study
the efficiency loss due to the informational constraints, providing both
lower and upper bounds.

1 Introduction

When looking for a new job, the most often heard advice is to “ask your friends”.
While in the modern world almost all of the companies have online job appli-
cation forms, these are usually overloaded with submissions; and it is no secret
that submitting a resume through someone on the inside greatly increases the
chances of the application actually being looked at by a qualified person. This is
the underlying premise behind the professional social networking site LinkedIn,
which now boasts more than 40 million users. And, as pointed out by Jackson
[10], has given a new meaning to the word ‘networking,’ with Merriam Web-
ster’s Dictionary’s defining it as “the cultivation of productive relationships for
employment or business.”

Sociologists have long studied this phenomenon, and have time and time again
confirmed the role that social ties play in getting a new job. Granovetter’s semi-
nal work [7, 8] headlines a long history of research into the importance of social
contacts in labor markets. His results are striking, for example, 65 percent of

� A full version of this work appears in [2].
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managerial workers found their job through social contacts. Other studies (see,
e.g., [15, 13, 9]) all echo the importance of social contacts in securing a new
position.

While there are numerous reasons that social ties play such an important role,
one may think that the employers themselves would prefer to evaluate all candi-
dates for a position before making a hiring decision. This is in fact what happens
in some segments of the job market. In the United States, the National Resident
Match Program is a significant example of a centralized selection matching mech-
anism. Such centralized markets have been well studied in two-sided matching
theory. Indeed, the NRMP is one of the most important practical applications
of the celebrated stable matching problem in two-sided matching markets [16].
For an overview of two-sided matching markets, see [17].

However, the task of evaluating (and ranking) all possible candidates is of-
ten simply not feasible. Especially in today’s economy, it is not rare to hear
of hundreds of applicants for a position, obviously the vast majority cannot be
interviewed, regardless of their qualifications. The recommendation by an em-
ployee thus carries extra weight in the decision process, precisely because it
separates the specific application from the masses.

Model. In this work, we propose a new model that bridges the rigorous analysis
of the two-sided matching theory with the observations made by social network
analysis. Specifically, we develop a model of job markets where social contacts
play a pivotal role; and then proceed to analyze it through the stable matching
lens.

We integrate the usage of social contacts by allowing an applicant to apply
only to jobs in firms employing her friends. Clearly this limitation depends on the
underlying social graph. Intuitively, the equilibrium behavior in well connected
social graphs should be closer to that in classical two sided matchings than in
badly connected ones. But even in well connected social graphs this limitation
leads to behaviors not observed in the traditional model. For example, a firm may
lose all of its workers to the competition, and subsequently go out of business.

The model forces us to consider a setting where job applicants have only
partial information on job opportunities. The main question we focus on in the
paper is: how does the inclusion of such an informational constraint alter the
model and predictions of traditional stable matching theory?

Our Contributions.1 In traditional two-sided matching theory, a matching where
no worker-firm pair can find a profitable deviation is called stable. Analogously,
we call our solution concept a locally stable matching, where the locality is quali-
fied by the social network graph. We study structural properties of locally stable
matchings by showing that, in general, the set of locally stable matchings does
not form a distributive lattice, as is the case for global stable matchings. We also
show that, in general, it is NP-complete to determine whether all locally stable
matchings are also globally stable. Both of these results exploit a characteriza-

1 The proofs of all our results are available online at [2].
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tion of locally stable matchings in the special case of matching one worker per
firm, for particular rankings over workers and firms.

We then turn our attention to dynamic analysis. We consider how a particu-
lar interpretation of the classic Gale-Shapley algorithm [6] performs under such
informational constraints; we refer to our algorithm as the local Gale-Shapley
algorithm. We first prove that, unlike the standard Gale-Shapley algorithm [17],
the existence of informational constraints implies that the output of the algo-
rithm is not independent of the order of proposals. Nevertheless, under weak
stochastic conditions, we show that the local Gale-Shapley algorithm converges
almost surely, assuming the same particular rankings over workers and firms as
before.

Unlike the traditional Gale-Shapley algorithm, the algorithm in the limited
information case is highly dependent on the initial conditions. To explore this
further we define a minimal notion of efficiency, namely the number of firms still
in business in the outcome matching, and quantify the efficiency loss under vari-
ous initial conditions. Specifically, we show that if an adversary chooses an initial
matching, he can ensure that some firms lose all of their workers; conversely there
is a distribution on the preference lists used by the firms that guarantees that at
least some firms remain in business, regardless of the actions of the adversary.

Related Work
Our work touches on several threads of the literature. Most closely related is
the work by Calvó-Armengol and Jackson [3, 4]. They consider how information
dissemination through neighbors of workers on potential jobs can affect wage and
employment dynamics in the job market. There are several key differences with
our model. The most important one is that, in [3, 4], there is no competition for
job openings between workers. Unemployment is the result of a random sampling
process and not of strategic interactions between workers and firms. Also, all
workers learn directly about potential job openings with some probability, and
indirectly through their social contacts, whereas in our model a worker can only
learn about potential job openings through her social contacts.

Also related is the work by Lee and Schwarz [11]. The authors consider the
stable matching problem in the job market where a costly information acquisi-
tion step (interviewing) is necessary for both workers and firms to learn their
preferences. Once interviewing is over, the standard Gale-Shapley algorithm is
used to calculate the matching of workers to firms. Although the authors use
stable matching as their solution concept, and only partial information on jobs
and candidates is available, their assumptions imply that the information avail-
able to workers and firms is unchanged throughout the matching phase. In that
sense, their work is related to the equilibrium analysis performed in our model,
but is dramatically different when considering the evolution of the job market
during the actual matching phase.

Finally, in [1, 12], the authors consider the problem of matching applicants to
job positions. A matching is said to be popular if the number of happy applicants
is as large as possible. This notion is related to the notion of efficiency used in
our paper, namely that of maximizing the number of firms in business.
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2 Definitions and Notation

Let W be a set of workers, and G = (W,E) be an undirected graph representing
the social network among workers. Let F be the set of firms, each with k jobs,
for some k > 0. We are interested in the case where there are as many workers
as positions in all firms, i.e., |W | = n = k|F |. Following standard notation, for
a worker w ∈W , let Γ (w) be the neighborhood of w in G.

An assignment of workers to firms can be described by a function mapping
workers to jobs, or alternatively by a function mapping firms to workers. Fol-
lowing the definition from the two-sided matching literature, we define both
functions simultaneously.

We assume that some companies are better to work for than others, and thus
each worker w has a strict ranking %w over firms such that, for firms f �= f ′,
w prefers being employed in f than in f ′ if and only if f %w f ′. Note however,
that the ranking is blind to the individual positions within a firm: all of the k
slots of a given firm are equivalent from the point of view of a worker.

Similarly, each firm f has a strict ranking %f over workers. We assume that all
workers strictly prefer being employed, and that all firms strictly prefer having
all their positions filled. For any worker w, in a slight abuse of notation, we
extend her ranking over firms to account for her being unemployed by setting
f %w w for all firms f ; in a similar way we extend the rankings of firms over
workers.

Definition 1 (Matching)

1. Case 1: k = 1. The function μ : W ∪ F → W ∪ F is a matching if the
following conditions hold: (1) for all w ∈ W , μ(w) ∈ F ∪ {w}; (2) for all
f ∈ F , μ(f) ∈ W ∪ {f}; and (3) μ(w) = f if and only if μ(f) = w.

2. Case 2: k > 1. The function μ : W ∪ F → 2W ∪ F is a matching if the
following conditions hold: (1) for all w ∈ W , μ(w) ∈ F ∪ {{w}}; (2) for all
f ∈ F , μ(f) ∈ 2W ∪ {f}; (3) μ(w) = f if and only if w ∈ μ(f); and (4)
|μ(f)| ≤ k.

We say that a matching μ is complete if:⋃
f∈F

μ(f) = W.

Given a matching μ and a firm f , let min(μ(f)) be the least preferred worker
employed by firm f (w.r.t. firm f ’s ranking) if |μ(f)| = k, and min(μ(f)) = f
otherwise.

To study the notion of stable matchings, we adapt the usual concept of a
blocking pair. Given the preferences of workers and firms, a matching μ, a firm
f and a worker w, we say that (w, f) is a blocking pair if and only if f %w μ(w)
and w %f min(μ(f)). In other words, worker w prefers firm f to her currently
matched firm; and firm w prefers workerw to its least preferred current employee.

We now define a generalization of the standard notion of stable matching that
accounts for the locality of information. Recall that a (global) matching is said
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to be stable if there are no blocking pairs. However, in our paper we assume that
the workers can only discover possible firms by looking at their friends’ places
of employment. This informally captures a significant mechanism of information
transfer: although there may exist a firm f that would make (w, f) a blocking
pair, if none of w’s friends work at f , then it becomes much less likely that w
would learn of f on her own. We have the following definition.

Definition 2 (Locally Stable Matching). Let G = (W,E) be the social net-
work over the set of workers W . We say that a matching μ is a locally stable
matching with respect to G if, for all w ∈ W and f ∈ F , (w, f) is a blocking
pair if and only if Γ (w) ∩ μ(f) = ∅ (i.e., no workers in w’s social neighborhood
are employed by firm f).

Note that for a given worker w, the set of other workers she is competing against
depends on both the social network G (i.e., her neighbors), and the current
matching.

Example 1 (Indirect Competition). Assume k = 2 and G is the path over W =
{w1, w2, w3, w4}: w1 − w2 − w3 − w4. Consider worker w4. If μ(f1) = {w3, w4}
and μ(f2) = {w1, w2}, then w4 can only see positions in f1. However, since w2
is adjacent to w3, w2 can see all position in f1. Hence, if w2 %f1 w3 %f1 w4, w2
could get w4’s position in f1, leading to w4 being replaced by w2 even though
w2 /∈ Γ (w4).

In the remainder of the paper, we characterize static properties of locally stable
matchings, and then analyze dynamics similar to the Gale-Shapley algorithm.

3 Static Analysis

For k = 1, when the preferences of workers and firms are strict, it is known
that the set of global stable matchings is a distributive lattice. In general, the
distributive lattice structure of the set of global stable matchings is not present
in the set of locally stable matchings. We first recall the Lattice Theorem (by
Conway), and then show how, in general, it does not hold for locally stable
matchings. The exposition of the Lattice Theorem is that found in [17] (Theorem
2.16).

Let μ and μ′ be two matchings. Define the operation ∨W over (μ, μ′) as follows:
μ ∨W μ′ : W ∪ F → W ∪ F such that, for all w ∈ W , μ ∨W μ′(w) = μ(w) if
μ(w) %w μ′(w), and μ∨W μ′(w) = μ′(w) otherwise. For all f ∈ F , μ∨W μ′(f) =
μ′(f) if μ(f) %f μ

′(f), and μ∨W μ′(f) = μ(f) otherwise. We can similarly define
∧W by exchanging the roles of workers and firms.

Theorem 1 (Lattice Theorem (Conway)). When all preferences are strict,
if μ and μ′ are stable matchings, then the functions λ = μ∨W μ′ and ν = μ∧W μ′

are both matchings. Furthermore, they are both stable.
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In general, given strict preferences2 of workers and firms, Theorem 1 does not
hold for the set of locally stable matchings. This is the content of the following
example.

Example 2 (Absence of Distributive Lattice). In this example, we assume k = 1,
W = {w1, w2, w3} and F = {f1, f2, f3}. Further, let the preferences of all workers
be f1 % f2 % f3. Similarly, let the preferences of all firms be w1 % w2 % w3.
Finally, assume the graph G is the path with w2 and w3 at its endpoints.

Let μ(wi) = fi (and μ(fi) = wi). It is clear that μ is a 1-locally stable
matching. Consider now μ′ be such that μ′(w1) = f1, μ′(w2) = f3 and μ′(w3) =
f2 (and μ′(f1) = w1, μ′(f2) = w3 and μ′(f3) = w2). The only blocking pair
here is (w2, f2), but f2 = μ′(w3) and w3 /∈ Γ (w2). Hence μ′ is a 1-locally stable
matching.

We now construct λ = μ ∨W μ′. For all i, λ(wi) = fi. Now λ(f1) = w1 but
λ(f2) = λ(f3) = w3. Hence λ is not a matching.

Assumption. In the remainder of the paper we focus on a specific family of
preferences over workers and firms. Uniqueness of global stable matching is a
desirable property in matching markets as it allows for sharp predictions of the
outcome at equilibrium. Clark [5] studies thoroughly the question and identifies
a set of sufficient conditions on the preferences, called aligned preferences, for
the global stable matching to be unique. The study of aligned preferences have
recently received attention in the economics literature [14, 18].

In this paper we consider a subset of aligned preferences, where all workers
share the same ranking over firms, and firms share the same ranking over workers.
This assumption is made for technical reasons - we believe our results extend to
the case of general aligned preferences.

Assumption 1. There exist a labeling of the nodes in W = {w1, . . . , wn} such
that all firms rank workers as follows: wi % wj if and only if i < j. Similarly,
we assume there exists a labeling of the firms F = {f1, . . . , fnf

} such that all
workers rank the firms as follows: fi % fj if and only if i < j.

We first show that, for k = 1, the set of locally stable matchings is equivalent
to the set of topological orderings over the partial order induced by G and the
labeling of the workers.

Theorem 2 (Characterization of Locally Stable Matchings). Assume
k = 1, and let G(W,E) be the social network over the set of workers. Let
D(W,E′) be a directed graph over W such that (wi, wj) ∈ E′ if and only if
i < j and (wi, wj) ∈ E. Let μ be a complete matching of workers to firms.
Construct the following ordering φμ over W induced by μ: the ith node in the
ordering is the node w such that μ(w) = fi, i.e. φμ(w) = i.

The matching μ is a 1-locally stable matching if and only if φμ is a topological
ordering on D.
2 The absence of the distributive lattice has been previously observed when the pref-

erences are not strict, see Roth [16].
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There are several important corollaries to the characterization from Theorem 2.
First, the set complete locally stable matchings can be exponentially large. Thus,
by introducing informational constraints, the uniqueness property of global sta-
ble matchings under aligned preferences is, in general, lost under locally stable
matchings.

Corollary 3 (Number of Locally Stable Matchings). Assume k = 1 and
the social network G(W,E) is the star centered at worker w1. Then there are
(n− 1)! distinct locally stable matchings.

It is interesting to ask whether there are specific properties of the social network
G that guarantee the existence of a labeling under which there is a unique com-
plete locally stable matching. As shown in the next corollary, it is NP-complete
to answer positively such question.

Corollary 4. Let (k,G(W,E)) be given. It is NP-complete to test if there is a
labeling {w1, w2, . . . , wn} of the workers such that, if all firms rank the workers
according to that labeling, the complete locally stable matching is unique.

For general k > 1, we only have a set of sufficient conditions for complete locally
stable matchings to be unique. See [2] for more details.

4 Algorithmic Questions

We are thus interested in decentralized algorithms that can find a locally stable
matching. In this section we propose a decentralized version of Gale-Shapley’s
algorithm. Assumption 1 is again enforced in this section. We first prove that
our algorithm converges. Unlike the case without informational constraints, our
algorithm does not always select the same locally stable matching.

Recall that the Gale-Shapley algorithm is initialized by an empty match-
ing [17]. Since the empty matching is a locally stable matching, our algorithm
requires to be initialized by a non-empty matching. We thus explore our algo-
rithm’s performance under adversarial initial complete matchings. We use the
number of firms with no employees as a proxy for efficiency3. We characterize
the potential efficiency loss by providing upper and lower bounds on the number
of firms with no employees.

4.1 Local Gale-Shapley Algorithm

One can interpret the Gale-Shapley algorithm from two-sided matching theory
as a constrained version of myopic best response dynamics in the following way.

The dynamics proceed in rounds, which we index by q ∈ N. Let μ(q) be the
matching at the beginning of round q. Let w(q) ∈ W be the active worker,
where w(q) is sampled uniformly at random from W , and independently from
3 Our bounds naturally translate into unemployment rate, a common indicator of the

efficiency of the job market.
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previous rounds. We call such sampling process the activation process. Such acti-
vation process can be thought of as follows: assume all workers decide to explore
employment opportunities according to a random clock with an exponential dis-
tribution with a given mean (the same mean for all workers). When the clock of
wi “sets off”, wi becomes active and looks for a better job. It is easy to see that
the sequence of active nodes has the same distribution as taking independent
uniform samples from W .

In myopic best response dynamics, w(q) would consider its current firm
μ(q)(w(q)) and compare it to the best firm f it could be employed by given
μ(q) (i.e. the best firm where the worst employee was worse than w given the
matching μ(q)). If its current firm was better, it would pass. Else it would quit
its job and get employed by f (leading to a worker being fired, or an empty
position being filled).

Gale-Shapley’s algorithm is a constrained version of the above dynamics as it
requires the active worker to consider the best firm it has not considered before
(in other words it requires the active worker to remember what firms he has
already failed to get a position at).

We consider a local and decentralized version of the myopic best-response
dynamics proposed above. We call it “local Gale-Shapley” algorithm. Instead of
restricting the strategy space of the active worker using “memory” as in Gale-
Shapley’s algorithm, we restrict it using the graph G(W,E) in the following
way: w(q) compares its current firm in μ(q) to the best firm that employs one
of its neighbors in G it could be employed by given μ(q). An alternative way
to describe the process is that the active node w(q) applies for a job at all the
firms employing its neighbors that she strictly prefers to her current employer,
and selects the best offer she gets (that offer might eventually be to stay at her
current job).

More formally, the algorithm proceeds in rounds indexed by q ∈ N. During
round q ≥ 0:

– the active worker w(q) is sampled, independently from previous rounds, uni-
formly at random from W .

– Next, w(q) applies to all firms she strictly prefers to μ(q)(w(q)), her current
employer.

– The active worker receives some offers:
• if at least one offer is received, w(q) quits her current employer and joins

the best firm that sent an offer;
• if no offers are received, w(q) stays at her current job.

It is important to note that, unlike the Gale-Shapley algorithm, this variant of
best-response dynamics can lead to a firm loosing all its employees as demon-
strated below.

Example 3 (Firm with no Employees). Let n = 4 and k = 2. Thus there are
four workers and two firms. Assume that G = K4. Consider the following initial
matching:

μ(0)(f1) = {w3, w4} and μ(0)(f2) = {w1, w2}
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in other words, the best company has the worst workers. Then if we activate
workers w1 and w2 before activating w3 or w4, both w1 and w2 would quit
f2 and work for f1, getting both w3 and w4 fired. In that setting, f2 has no
employees, and thus the process ends.

It is also important to understand the need of the activation process. Recall that
the matching found by the Gale-Shapley algorithm is independent on the order
of activation of the workers [17]. When considering locally stable matchings, this
is no longer the case even if the underlying graph is the complete graph. Let us
reconsider Example 3.

Example 4. Now consider the resulting matching when the activation sequence
is as follows: {w1, w4, w2, w3}. First, w1 leaves f2 and gets a position at f1. This
makes w4 = min(μ(0)(f1)) unemployed. Next, since we activate w4, she gets the
free position from f2. Next w2 leaves f2 and gets a position at f1, which results
in w3 loosing her job. Finally, w3 gets the free position at f2. Thus the resulting
matching is now

μ(f1) = {w1, w2}, and μ(f2) = {w3, w4}

which is a locally stable matching different from that obtained with the activation
sequence in Example 3.

An important question is whether this local decentralized version of best response
dynamics converges as it is not immediately clear it can’t cycle. This is the
content of our first result.

Theorem 5 (Convergence of Local Gale-Shapley Algorithm). Given the
social network G(W,E). for any initial matching μ(0), the local Gale-Shapley
algorithm started at μ(0) converges almost surely to a locally stable matching.

4.2 Worst Case Efficiency

In this subsection we consider the following question. Given that firms can go out
of business when running the local Gale-Shapley algorithm, can we measure the
quality of matchings selected by the algorithm. We explore the previous question
assuming a given initial complete matching μ(0).

We consider the following setting. An adversary observes G(W,E) (but not
the ranking over workers used by firms) and produces a probability distribution
PM over initial matchings. The ranking of workers (possibly taken from a dis-
tribution) is then revealed, a sample from PM is taken to produce μ(0); and the
local Gale-Shapley algorithm run.

To compare the efficiency of different final matchings we simply look at the
total number of firms losing all of their employees and subsequently going out of
business. One can easily imagine more intricate notions of efficiency, our point
here is that even in this austere model, the power of the adversary is non-trivial.
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The power of the adversary. We first show that even without knowing the
relative rankings of the individual workers, the adversary is powerful enough to
force some firms to go out of business.

Theorem 6 (Lower Bound on Firms). Let G(W,E) be given. Let Δ be its
maximum degree, and M a maximum matching in G. Then there exist a proba-
bility distribution PM over complete assignment matchings such that

E[Nfob] ≥
⌊
|M |
k(2Δ)

⌋
1

2kk!(2Δ− 1)k

where Nfob is the number of firms going out of business; and the expectation is
taken both over the distribution PM and over the activation process.

Further, one can find PM in time polynomial in n.

An important observation is that not only does the adversary force some firms
to go out of business, but he controls the identities of these firms. Thus, if
we measure efficiency by the identity of the firms of the positions filled in a
matching, Theorem 6 provides a lower bound on the efficiency loss of the local
Gale-Shapley algorithm (under adversarial initial conditions).

The power of the social planner. Given the lower bound from Theorem 6
on the expected number of firms going out of business, we can ask the following
question: can similar guarantees be proven if a social planner had full control
over the ranking used by firms? More precisely, given G(W,E), if the ranking
over workers used by firms was a sample from a random variable, can the social
planner guarantee, in expectation, a minimal number of firms that will not go
out of business regardless of the power given to the adversary? The following
theorem answers positively that question.

Theorem 7 (Upper Bound on Firms). Let G(W,E) be given. There exist a
probability distribution over the ranking used by firms such that

E[Nfob] ≤ nf −
⌈
|I|
k

⌉
where I is a maximum independent set of G (nf is the number of firms and k
the number of positions at each firm)

Note that, just as in Theorem 6 we were able to identify the firms forced out of
business (the top firms) but not the unemployed workers, in Theorem 7 we are
able to identify the workers that are going to be employed (the top employees),
but not which firms will remain in business.

Discussion. We have now shown that neither the adversary, nor the social
planner have all the power — we can reinterpret the results above as a game
between these two players. The game proceeds as follows, the adversary picks the
initial assignment matching (possibly random), and the social planner chooses
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the ordering on the workers (possibly random). Once they both pick an action
we run the local Gale-Shapley algorithm.

Theorem 6 then states that, even if the social planner knows the probability
distribution selected by the firm adversary, there is a probability distribution over
initial assignments that the firm adversary can use such that, in expectation, at
least some number of firms go out of business.

Theorem 7 states the converse: Even if the firm adversary knows the probability
distribution selected by the social planner, there is a deterministic ordering of the
workers such that at least some number of workers will never loose their job.

We note that by looking at the number of firms going out of business, we
have used a very minimal notion of efficiency. It is not hard to imagine more
complex notions which may take into account the relative rankings of the firms
going out of business or workers remaining unemployed. We further note that
for dense graphs, where the size of the independent set, and the independent
matchings are quite small, our bounds are quite loose. Our main contribution
here is not the precise bound on Nfob, although that remains an interesting open
question, but rather the fact that the adversary has non-trivial power, and the
initial matching plays a pivotal role in determining the final outcome.

5 Conclusions

In this work we have introduced a new model for incorporating social network
ties into classical stable matching theory. Specifically, we show that restricting
the firms willing to consider a worker only to those employing his friends has a
profound impact on the system. We defined the notion of locally stable match-
ings and showed that while a simple variation of the Gale-Shapley mechanism
converges to a stable solution, this solution may be far from efficient; and, unlike
in traditional Gale-Shapley, the initial matching plays a large role in the final
outcome. In fact, if the adversary controls the initial matching, he can force some
firms to be left with no workers in the final solution.

The model we propose is ripe for extensions and further analysis. To give an
example, we have assumed that as employees leave the firm, it may find itself
with empty slots that it cannot fill (and go out of business). However, this is
precisely the time when it can start looking actively for workers, by advertising
online, recruiting through headhunters, etc. This has the effect of it becoming
visible to the unemployed workers in the system. Understanding the dynamics
and inefficiencies of final matchings under this scenario is one interesting open
question.
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Abstract. We consider a scheduling problem where each job is con-
trolled by a selfish agent, who is only interested in minimizing its own
cost, which is defined as the total load on the machine that its job is
assigned to. We consider the objective of maximizing the minimum load
(cover) over the machines. Unlike the regular makespan minimization
problem, which was extensively studied in a game theoretic context, this
problem has not been considered in this setting before.

We study the price of anarchy (poa) and the price of stability (pos).
We show that on related machines, both these values are unbounded.
We then focus on identical machines. We show that the pos is 1, and we
derive tight bounds on the poa for m ≤ 6 and nearly tight bounds for
general m. In particular, we show that the poa is at least 1.691 for larger
m and at most 1.7. Hence, surprisingly, the poa is less than the poa for
the makespan problem, which is 2. To achieve the upper bound of 1.7,
we make an unusual use of weighting functions. Finally, in contrast we
show that the mixed poa grows exponentially with m for this problem,
although it is only Θ(log m/ log log m) for the makespan.

1 Introduction

Classical optimization problems, and network optimization problems in partic-
ular, are often modeled as non-cooperative strategic games. Many solution con-
cepts are used to study the behavior of selfish agents in non-cooperative games.
Probably the best known concept is that of the Nash equilibrium. This is a state
which is stable in the sense that no agent can gain from unilaterally switch-
ing strategies. Following recent interest of computer scientists in game theory
[17,13,19], we study Nash equilibria for a scheduling problem where the goal is
maximizing the minimum load.

This goal function is motivated by issues of Quality of Service and fair resource
allocation. It is useful for describing systems where the complete system relies on
keeping all the machines productive for as long as possible, as the entire system
fails in case even one of the machines ceases to be active. From the networking
aspect, this problem has applications to basic problems in network optimization
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such as fair bandwidth allocation. Consider pairs of terminal nodes that wish to
communicate; we would like to allocate bandwidth to the connections in a way
that no link unnecessarily suffers from starvation, and all links get a fair amount
of resources. Another motivation is efficient routing of traffic. Consider parallel
links between pairs of terminal nodes. Requests for shifting flow are assigned to
the links. We are interested in having the loads of the links balanced, in the sense
that each link should be assigned a reasonable amount of flow, compared to the
other links. Yet another incentive to consider this goal function is congestion
control by fair queuing. Consider a router that can serve m shifting requests
at a time. The data pieces of various sizes, need to be shifted, are arranged in
m queues (each queue may have a different data rate), each pays a price which
equals the delay that it causes in the waiting line. Our goal function ensures
that no piece gets a "preferred treatment" and that they all get at least some
amount of delay.

The problem of maximizing the minimum load, seeing jobs as selfish agents,
can be modeled as a routing problem. In this setting, machines are associated
with parallel links between a source and a destination. The links have bounded
capacities, and a set of users request to send a certain amount of unsplitable
flow between the two nodes. Requests are to be assigned to links and consume
bandwidth which depends on their sizes. The cost charged from a user for using a
link equals to the total amount of the utilized bandwidth of that link. Thus, the
selfish users prefer to route their traffic on a link with small load. This scenario
is similar to the model proposed by Koutsoupias and Papadimitriou [13], but
our model has a different social goal function. To demonstrate the non-triviality
of the problem, see Figure 1.

The novelty of our study compared to other work in the area is that the social
goal is very different from the private goals of the players.

In our scheduling model, the coordination ratio, or price of anarchy (poa)
[18] is the worst case ratio between the social value (i.e., minimum delay of any
machine, or cover) of an optimal schedule, denoted by opt, and the value of any
Nash equilibrium. If both these values are 0 then we define the poa to be 1. The
price of stability (pos) [1] is the worst case ratio between the social value of an
optimal solution, and the value of the best Nash equilibrium. Similarly, if both
these values are 0 then we define the pos to be 1.

In addition, we study the mixed poa(mpoa), where we consider mixed Nash
equilibria that result from mixed strategies, where the player’s choices are not
deterministic and are regulated by probability distributions on a set M of pure
strategies. A mixed Nash equilibrium is characterized by the property that there
is no incentive for any job to deviate from its probability distribution (a devia-
tion is any modification of its probability vector over machines), while probability
distributions of other players remain unchanged. The existence of such an equi-
librium over mixed strategies for non-cooperative games was shown by Nash in
his famous work [16]. The values mpoa and mpos are defined similarly to the
pure ones, but mixed Nash equilibria are being considered instead of pure ones.
Clearly, any pure NE is also a mixed NE.
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Our results and related work. The non-selfish version of the problem has been
well studied (known by different names such as "machine covering" and "Santa
Claus problem") in the computer science literature (see e.g. [4,2,6]). Various
game-theoretic aspects of max-min fairness in resource allocation games were
considered before this paper (e.g. in [20]), but unlike the makespan minimization
problem poa and pos of which were extensively studied (see [13,3,15]), these
measures were not previously considered for the uncoordinated machine covering
problem in the setting of selfish jobs. A different model, where machines are
selfish rather than jobs with the same social goal was studied recently in [7,5].

For identical machines, we show that the pos is equal to 1. As our main result,
we study the pure poa and show close bounds on the overall value of the poa
(poa = supm poa(m), where poa(m) is the poa on m machines), i.e., that it is
at least 1.691 and at most 1.7. This in contrast with the makespan minimization
problem, where it is known that the poa for m identical machines is 2m

m+1 , giving
an overall bound of 2 [10,21]. This is rather unusual, as the cover maximization
problem is typically harder than the makespan minimization problem, thus it
could be expected that the poa for the covering problem would be higher.

For the analysis of our upper bound we use the weighting function technique,
which is uncommon in scheduling problems. Moreover, we use not only the weight
function but also its inverse function in our analysis. Surprisingly, these lower
and upper bounds are approximation ratios of well known algorithms for Bin-
Packing (Harmonic [14] and First-Fit [12], respectively). We furthermore prove
that the poa is monotonically non-decreasing as a function of m. For small
numbers of machines, in the full version we provide the exact values of poa: we
find poa(2) = poa(3) = 3/2 and poa(4) = 13/8 = 1.625. We show poa(m) ≥ 5

3
for m > 5. As for the mpoa, we show that its value is very large as a function
of m, and mpoa(2) = 2.

In contrast to these results, we can show that for uniformly related machines
even the pos is unbounded already for two machines with a speed ratio larger
than 2, and the poa is unbounded for a speed ratio of at least 2. The same prop-
erty holds for m machines (where the speed ratio is defined to be the maximum
speed ratio between any pair of machines). These results are very different from
the situation for the makespan minimization social goal. For that problem, the
pos is 1 for any speed combination. Chumaj and Vöcking [3] showed that the
overall poa is Θ( log m

log log m ) (see also [9]).

2 The Model

In this section, we define the more general model of scheduling on related ma-
chines, which we will consider first. A set of n jobs J = {1, 2, . . . . , n} is to be
assigned to a set of m machines M = {M1, . . . ,Mm}, where machine Mi has a
speed si. If si = 1 for i = 1, . . . ,m, the machines are called identical. This is an
important and widely studied special case of uniformly related machines. The
size of job 1 ≤ k ≤ n is denoted by pk. An assignment or schedule is a function
A : J → M . The load of machine Mi, which is also called the delay of this
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Fig. 1. An example of two packings with different social values. This example demon-
strates the non-triviality of the problem. There are three jobs of size 0.8, three jobs
of size 0.4 and two jobs of size 0.1. The three machines are identical. The assignment
on the right hand side is not a Nash equilibrium, since a job of size 0.1 would reduce
its delay from 1.4 to 1.3 by migrating to another machine. The social value of this
assignment is 1.2. The assignment on the left hand side is a Nash equilibrium, but its
social value is only 1.

machine, is Li =
∑

k:A(k)=Mi

pk

si
. The value, or the social value of a schedule is

the minimum delay of any machine, also known as the cover. We denote it by
cover(A). This problem is a dual to the makespan scheduling problem.

The non-cooperative machine covering game MC is characterized by a tuple
MC = 〈N, (Mk)k∈N , (ck)k∈N 〉, whereN is the set of atomic players. Each player
k ∈ N controls a single job of size pk > 0 and selects the machine to which it
will be assigned. We associate each player with the job it wishes to run, that is,
N = J . The set of strategiesMk for each job k ∈ N is the set M of all machines.
i.e. Mk = M . Each job must be assigned to one machine only. Preemption is not
allowed. The outcome of the game is an assignment A = (Ak)k∈N ∈ ×k∈NMk of
jobs to the machines, where Ak for each 1 ≤ k ≤ n is the index of the machine
that job k chooses to run on. Let S denote the set of all possible assignments.
The cost function of job k ∈ N is denoted by ck : S → R. The cost cik charged
from job k for running on machine Mi in a given assignment A is defined to be
the load observed by machine i in this assignment, that is ck(i,A−k) = Li(A),
when A−k ∈ S−k; here S−k = ×j∈N\{k}Sj denotes the actions of all players
except for player k.

The goal of the selfish jobs is to run on a machine with a load which is as small
as possible. At an assignment that is a (pure) Nash equilibrium or NE assignment
for short, there exists no machine Mi′ for which Li′(A) + pk

si′
< Li(A) for some

job k which is assigned to machine Mi (see Figure 1(a) for an example). For this
selfish goal of players, a pure Nash equilibrium (with deterministic agent choices)
always exists [11,8]. We can also consider mixed strategies, where players use
probability distributions. Let tik denote the probability that job k ∈ N chooses
to run on machine Mi. A strategy profile is a vector p = (tik)k∈N,i∈M that
specifies the probabilities for all jobs and all machines. Every strategy profile p
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induces a random schedule. The expected load E(Li) of machine Mi in setting of
mixed strategies is E(Li) = 1

si

∑
k∈N pkt

i
k. The expected cost of job k if assigned

on machine Mi (or its expected delay when it is allocated to machine Mi) is
E(cik) = pk

si
+
∑

j �=k pjt
i
j/si = E(Li) + (1− tik)pk

si
. The probabilities (tik)k∈N,i∈M

give rise to a (mixed) Nash equilibrium if and only if any job k will assign non-
zero probabilities only to machines Mi that minimize cik, that is, tik > 0 implies
cik ≤ cjk for any j ∈ M . The social value of a strategy profile p is the expected
minimum load over all machines, i.e. E(mini∈M Li).

We omit some of the proofs due to space constraints.

3 Related Machines

In the setting of related machines, we show that for large enough speed ratios
the poa and the pos are unbounded already for two machines.

Denote the speeds of the m machines by s1, s2, . . . , sm, where si ≤ si+1 and
let s = sm

s1
. Without loss of generality, we assume that the fastest machine has

speed s ≥ 1, and the slowest machine has speed 1.

Theorem 1. On related machines with speed ratio s, poa(s) = ∞ for s ≥ 2
and pos(s) = ∞ for s > 2.

Proof. We only consider the case s > 2 here. Consider an instance that contains
m identical sized jobs of size s. Clearly, cover(opt) = 1 for this input.

For s > 2, we show that any assignment where each job is assigned to a
different machine is not a Nash equilibrium. In fact, in such an assignment, any
job assigned to the first machine sees a load of s, while if it moves to the m-th
machine, its load becomes 2s

s = 2 < s. Thus, any NE assignment has a cost of
0 and the claim follows. 	


4 The pos for m Identical Machines

Theorem 2. On identical machines, pos = 1 for any m.

Proof. We show that for every instance of the machine covering game, among
the optimal assignments there exists an optimal assignment which is also an
NE. Our proof technique is based upon the technique which was used in [8,11]
to prove that in job scheduling games where the selfish goal of the players is run
on the least loaded machine (like in our machine covering game), any sequence
of improvement steps converges to an NE.

We first define a complete order relation on the assignments, and then show
that an optimal assignment which is the “highest” among all optimal assignments
with respect to this order is always an NE.

Definition 1. A vector (l1, l2, . . . , lm) is larger than (l′1, l
′
2, . . . , l

′
m) with respect

to the inverted lexicographic order, if for some i, li > l′i and lk = l′k for all k > i.
An assignment s is called larger than s′ according to the inverted lexicographic
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order if the vector of machine loads L(s) = (L1(s), L2(s), . . . , Lm(s)), sorted in
non-increasing order, is larger in the inverted lexicographic order than the vector
L(s′) = (L1(s′), L2(s′), . . . , Lm(s′)), sorted in non-increasing order. We denote
this relation by s %L−1 s′.

Lemma 1. For any instance of the machine covering game, a maximal optimal
packing w.r.t. the inverted lexicographic order is an NE.

Since for any set of n jobs there are finitely many possible assignments, among
the assignments that are optimal with respect to our social goal there exists at
least one which is maximal w.r.t. the total order %L−1 , and according to Lemma
1 this assignment is an NE. As no NE assignment can have a strictly greater
social value than the optimal one, we conclude that pos = 1. 	


5 The Price of Anarchy

Figure 1 clearly demonstrates that not every NE schedule is optimal. We next
measure the extent of deterioration in the quality of NE schedules due to the
effect of selfish and uncoordinated behavior of the players (jobs), in the worst
case. As mentioned before, the measure metrics we use are the poa and the pos.
In Figure 2, we give some lower bounds on the poa for small m (without proof).

Consider a pure NE assignment of jobs to machines, denoted by A, for an
instance of the machine covering game. We assume that the social value of A,
that is, the load of the least loaded machine in A, is 1. Otherwise, we can simply
scale all sizes of jobs in the instances which we consider so that cover(A) = 1.

We denote a machine which is loaded by 1 in A by P . All other machines
are called tall machines. We would like to estimate the load of P in the optimal
assignment. Let C = cover(opt). Obviously, C ≥ 1, and the total sum of jobs
sizes, denoted by W , satisfies W ≥ mC. First, we introduce some assumptions
on A. Note that the modifications needed to be applied such that this instance
will satisfy these assumptions do not increase cover(A), do not violate the
conditions for NE and do not decrease cover(opt).

1. Machine P contains only tiny jobs, that is, jobs of infinitesimal size.
Since no machine has a smaller load, replacing the jobs on this machine

by tiny jobs keeps the schedule as an NE. The value cover(opt) may only
increase.

2. For a tall machine in A which has two jobs, both jobs have a size of 1.
If one of them is larger, then the second job would want to move to P , so

this case cannot occur. If some such job is smaller, its size can be increased
up to 1 without affecting the NE.

3. This assignment is minimal with respect to the number of machines (among
assignments for which cover(opt) ≥ C). In particular, no machine in A
has a single job.

Else, if some machine has a single job, remove this machine and the job
from A, and the machine with it from the optimal assignment opt. Assign
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Fig. 2. Lower bounds for the price of anarchy for small m. Machines are on the hori-
zontal axis, jobs are on the vertical axis. The squares in the first few figures represent
jobs of size 1.

any remaining jobs that ran on this machine in opt arbitrarily among the
remaining machines. This gives a new assignment with cover(opt) ≥ C,
and less machines.

4. Given jobs of sizes p1 ≤ p2 ≤ . . . ≤ pt assigned to a machine Q in A, then
p2 + . . .+pt = 1. In fact, p2 + . . .+pt > 1 is impossible since this would mean
that the job of size p1 has an incentive to move. If the sum is less, enlarge
the size pt to 1 − pt−1 − . . . − p2. This does not affect the NE conditions,
and keeps the property cover(opt) ≥ C.

5. Consider a machine Q �= P in A which has t ≥ 3 jobs assigned to it. Let a, b
denote the sizes of the smallest and largest jobs on it, respectively. Then,
b < 2a.

Otherwise, if we have an assignment where b ≥ 2a, replace b with two
jobs of size b

2 . This modification preserves the NE, as the new jobs do not
have an incentive to move; Let T denote the total size of jobs on machine
Q. As a does not want to move to P , T ≤ 1+ a holds. As in this case a ≤ b

2 ,
we have T ≤ 1 + b

2 , whereas 1 + b
2 would have been the load of P if the job

b
2 moved there.

Lemma 2. No job has a size larger than 1.

Proof. There is no machine in A with a single job. 	


Lemma 3. There is no job of size in [23 , 1) assigned to a machine Q (Q �= P )
in A.

Proof. If there is such a job, then it has at least two jobs assigned together
with it, each of size greater than 1

3 (due to assumption 5), which contradicts
assumption 4. 	


We define a weight function w(x) on sizes of jobs.

w(x) =

⎧⎨⎩
1
2 , for x = 1

x
2−x , for x ∈ (1

2 ,
2
3 )

x
x+1 , for x ∈ (0, 1

2 ]
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The motivation for the weight function is to define the weight of a job j to be
at least the fraction of its size out of the total size of jobs assigned to the same
machine in A. In fact, for a job j of size x, the total size of jobs assigned in an
NE to the same machine as j is no larger than 1 + x. Moreover if x > 2

3 , then
by our assumptions, it is possible to prove that the total size of these jobs is at
most 2− x.

Its inverse function f(y) is

f(y) =

⎧⎨⎩
1 , for y = 1

2
2y

y+1 , for y ∈ (1
3 ,

1
2 )

y
1−y , for y ∈ (0, 1

3 ]

Note that f(y) is continuous at 1
3 but not at 1

2 . Both functions are monotonically
increasing.

We now state several lemmas, which follow from the properties of this weight
function defined above.

Lemma 4. The total weight (by w) of jobs on P in A is less than 1.

Proof. Follows from the fact that P has a load 1 and for any x, w(x) < x. 	


Lemma 5. The total weight (by w) of jobs assigned to a machine Q �= P in A
is at most 1.

Proof. By Assumption 3’, each machine Q in A has at least two jobs. The claim
clearly holds for a machine with two jobs, as by Assumption 2 both these jobs
have size 1, and by the definition of w have a total weight of 1

2 + 1
2 = 1. For a

machine which has at least three jobs assigned to it, there are two cases. If there
are no jobs with size in (1

2 ,
2
3 ) (i.e., all jobs are of size in (0, 1

2 ]), then let T be
the total size of jobs on Q. For each job of size xi, as the job does not want to
move to machine P , xi + 1 ≥ T holds. Combining this with the definition of w
for jobs of size in (0, 1

2 ], we get that w(xi) = xi

xi+1 ≤
xi

T . Summing this up over
all the jobs on Q proves the claim.

Else, for a job xi ∈ (1
2 ,

2
3 ) (there can be only one such job assigned to Q, by

Assumption 4), we have T ≤ 2− xi. Otherwise, let a be the size of the smallest
job on Q. Then, by Assumption 4, T = 1 + a. As T > 2− xi, we get xi + a > 1.
Therefore, as there is an additional job of size of at least a assigned to Q, we
get that the total size of all jobs except for the smallest job is more than 1,
contradicting Assumption 4.

Combining this with the definition of w for jobs of size in (1
2 ,

2
3 ), we get that

w(xi) = xi

2−xi
≤ xi

T for this job too. 	


Lemma 6. There is a machine in the optimal assignment with a total weight
strictly smaller than 1.

Proof. The total weight of all jobs is less than m by Lemmas 4 and 5. 	


Lemma 7. The total size of any set of jobs with total weight below 1 is at most
1.7.
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Proof (Sketch). To prove the claim, we use the property that there is at most
one item of weight 1. If it exists, then there is at most one item of weight larger
than 1

3 . If such an item of weight 1 does not exist, then the ratio between size
and weight is at most 1.5. We find the supremum possible weight in each one of
three cases.

Consider a set of jobs I of a total weight strictly below 1. Note that for any
x, w(x) ≤ 1

2 . If there is no job of weight 1
2 in I, then since 2

y+1 ≤
3
2 for y ≥ 1

3

and 1
1−y ≤

3
2 for y ≤ 1

3 , the size of any job is at most 3
2 times its weight, and

thus the total size of the jobs in I does not exceed 3
2 .

Otherwise, there is exactly one job of weight 1
2 , and its size is 1. We therefore

need to show that the total size of any set of jobs I ′ which has total weight below
1
2 is at most 0.7. There is at most one job of weight in (1

3 ,
1
2 ) in I ′. If there is

one such job we show that without loss of generality, there is at most one other
job in I ′, and its weight is in (0, 1

3 ]). Else, we show that there are at most two
jobs, and their weights are in (0, 1

3 ]).
Note that f1(y) = y

1−y is a convex function, thus, for any pair of jobs of
weights α, β ∈ (0, 1

3 ], f1(0) + f1(α+ β) ≥ f1(α) + f1(β) holds. As we can define
f1(0) = 0, it turns into f1(α + β) ≥ f1(α) + f1(β).

Thus, any two jobs of total weight of at most 1
3 can be combined into a single

job while as a result, their total size cannot decrease. This is due to the convexity
of f1 and the fact that it is monotonically increasing. The replacement may only
increase the weight, and respectively, the size. If there exists a job of weight
larger than 1

3 , then the total weight of jobs of weight at most 1
3 is at most 1

6 , so
they can all be combined into a single job. Moreover, among any three jobs of
a total weight of at most 1

2 , there exists a pair of jobs of total weight no larger
than 1

3 , which can be combined as described above, so if there is no job of weight
larger than 1

3 , still jobs can be combined until at most two jobs remain. Thus,
there are only two cases to consider.

Case 1. There is one job of weight in (0, 1
3 ] and one job of weight in (1

3 ,
1
2 ).

Since the inverse function f is monotonically increasing as a function of y and
their weight does not exceed 1

2 , we can assume that their total weight is 1
2 − γ

for a negligible value of γ > 0 (by increasing the weight the job of the smaller
weight, which may only increase the total size). Letting d < 1

6 denote the weight
of the smaller job (since if d ≥ 1

6 then 1
2 − γ − d < 1

3 ), we get a size of at most

d

1− d
+

2(1
2 − γ − d)

1
2 − γ − d+ 1

<
d

1− d
+

2− 4d
3− 2d

(by letting γ → 0). This function is increasing (as a function of d) so its greatest
value is for d → 1

6 and it is 0.7. As the inverse function f is monotonically
increasing, this case also encompass the case where there is only one job of
weight in (1

3 ,
1
2 ), and no jobs of weight in (1

3 ,
1
2 ).

Case 2. There are at most two jobs, where each job has a weight in (0, 1
3 ]. If

there is at most one job, then its size is at most 1
2 . We therefore focus on the
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case of exactly two such jobs. Recall that the total size of the two jobs is larger
than 1

3 (since they cannot be combined). The total weight of these jobs is less
than 1

2 , so we can assume that their total weight is 1/2− γ for a negligible value
of γ > 0 (increasing the respective size). Let the weight of the large of these jobs
be d > 1

6 . We get (by letting γ → 0) a total size of at most

d

1− d
+

1
2 − γ − d
1
2 + d+ γ

<
d

1− d
+

1− 2d
2d+ 1

,

where 1
6 < d ≤ 1

3 . This function is monotonically decreasing in (1
6 ,

1
4 ] and in-

creasing in (1
4 ,

1
3 ], and its values at the endpoints 1

6 and 1
3 are both 0.7. 	


Theorem 3. For covering identical machines, the poa is at most 1.7.

Proof. This follows from Lemmas 6 and 7. 	


Theorem 4. For covering identical machines, the poa is at least 1.691.

Proof. We first define a sequence ti of positive integers, which is often used in
the literature for analysis and proving of lower bounds for online bin packing
algorithms. Let t1 = 1 and ti+1 = ti(ti + 1) for i ≥ 1.

Let m = tk for an integer k. Consider the following assignment A, that has
m

ti+1 machines with ti + 1 jobs of size 1
ti

, (for 1 ≤ i < k) and one machine (i.e.,
m
tk

machines) with tk jobs of size 1
tk

. We assume that the machines are sorted
in a non-increasing order w.r.t. their load. We define the load class i, 1 ≤ i ≤ k
as the subset of m

ti+1 machines with the same load Li = ti+1
ti

= 1 + 1
ti
> 1 in

this assignment. As ti is an increasing sequence of integers, it follows that Li is
monotonically non-increasing as a function of i. Since Lk = 1, the social value
of this assignment is 1. We now verify that it is a Nash equilibrium. As Li > 1
for any 1 ≤ i < k, no job will benefit from leaving the machine of class Lk. It is
enough to show that any job assigned to a machine of a class Li (1 ≤ i < k− 1)
would not benefit from moving to the machine of class k. Since machine i has
ti + 1 jobs of size 1

ti
, the migration of such a job to the machine of load 1 would

again result in a load of 1+ 1
ti

, thus the job would not benefit from the migration.
In the socially optimal assignment, each machine has a set of jobs of distinct

sizes, 1, 1
2 , 1

6 , . . . , 1
tk−1

, 1
tk

. The social value of this assignment is
∑k

i=1
1
ti

. Thus,

the poa equals
∑k

i=1
1
ti

. For k → ∞, this value tends to h∞ =
∑∞

i=1
1
ti

=
1.69103 . . ., the well-known worst-case ratio of the Harmonic algorithm for bin
packing. As the poa is monotonically non-decreasing as a function of the number
of the machines, we conclude that this is a lower bound for any number of
machines larger than tk. In particular, the overall poa for identical machines is
at least 1.69103. 	


Conjecture 1. For covering identical machines, poa =
∑∞

i=1
1
ti

= 1.691....
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6 Mixed Equilibiria

In the setting of mixed strategies we consider the case of identical machines,
similarly to [13]. In that work, it was shown that the mixed poa for two machines
is 3

2 . In this section we prove that the mixed poa for two machines is equal to 2.
We start by showing that for m identical machines, the mixed poa can be ex-

ponentially large as a function of m, unlike the makespan minimization problem,
where the mixed poa is Θ( log m

log log m) [13,3].

Theorem 5. The mixed poa for m identical machines is at least mm

m! .

Proof. Consider the following instance G ∈MC of the Machine Covering game.
N = {1, 2, . . .} such that p1 = . . . = pn = 1, and let Mj = {M1, . . . ,Mm},
for j = 1, . . . , n. Each of the jobs pi, i = 1, . . . , n chooses each machine with
probability tji = 1/m. Each jobs sees the same expected load for each machine,
and thus has no incentive to change its probability distribution vector. We get
a schedule having a non-zero cover, where each job chooses to run on a different
machine, with a probability of m!

mm . So, for the mixed Nash equilibrium the
expected minimum load is m!

mm . But the coordinated optimal solution achieved
by deterministically allocating each job to its own machine has a social value
cover(opt(G)) = 1, and so it follows that the mixed poa(G) = mm

m! . We
conclude that the mixed poa ≥ mm

m! .

Theorem 6. The mixed poa for two identical machines is exactly 2.

7 Summary and Conclusion

In this paper we have studied a non-cooperative variant of the machine covering
problem for identical and related machines, where the selfish agents are the jobs.
We considered both pure and mixed strategies of the agents. We provided various
results for the poa and the pos that are the prevalent measures of the quality
of the equilibria reached with uncoordinated selfish agents.

For the pure poa for m identical machines, we provided nearly tight lower
and upper bounds of 1.691 and 1.7, respectively. An obvious challenge would be
bridging this gap. As stated in the paper, we believe that the actual bound is
the lower bound we gave.
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Abstract. We study the problem of allocating a single item repeatedly among
multiple competing agents, in an environment where monetary transfers are not
possible. We design (Bayes-Nash) incentive compatible mechanisms that do not
rely on payments, with the goal of maximizing expected social welfare. We first
focus on the case of two agents. We introduce an artificial payment system, which
enables us to construct repeated allocation mechanisms without payments based
on one-shot allocation mechanisms with payments. Under certain restrictions on
the discount factor, we propose several repeated allocation mechanisms based
on artificial payments. For the simple model in which the agents’ valuations are
either high or low, the mechanism we propose is 0.94-competitive against the
optimal allocation mechanism with payments. For the general case of any prior
distribution, the mechanism we propose is 0.85-competitive. We generalize the
mechanism to cases of three or more agents. For any number of agents, the mech-
anism we obtain is at least 0.75-competitive. The obtained competitive ratios im-
ply that for repeated allocation, artificial payments may be used to replace real
monetary payments, without incurring too much loss in social welfare.

1 Introduction

An important class of problems at the intersection of computer science and economics
deals with allocating resources among multiple competing agents. For example, an op-
erating system allocates CPU time slots to different applications. The resources in this
example are the CPU time slots and the agents are the applications. Another example
scenario, closer to daily life, is “who gets the TV remote control.” Here the resource is
the remote control and the agents are the members of the household. In both scenarios
the resources are allocated repeatedly among the agents, and monetary transfers are in-
feasible (or at least inconvenient). In this paper, we investigate problems like the above.
That is, we study how to allocate resources in a repeated setting, without relying on
payments. Our objective is to maximize social welfare, i.e., allocative efficiency.

The problem of allocating resources among multiple competing agents when mone-
tary transfers are possible has been studied extensively in both the one-shot mechanism
design setting [9,6,20,16,19,15] and the repeated setting [11,7,10,5]. A question that
has recently been drawing the attention of computer scientists is how to design mecha-
nisms without payments to achieve competitive performance against mechanisms with
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payments [21,13].1 This paper falls into this category. We consider mechanisms with-
out payments in repeated settings. A paper that lays out many of the foundations for
repeated games is due to Abreu et al. [2], in which the authors investigate the problem
of finding pure-strategy sequential equilibria of repeated games with imperfect moni-
toring. Their key contribution is the state-based approach for solving repeated games,
where in equilibrium, the game is always in a state which specifies the players’ long-run
utilities, and on which the current period’s payoffs are based. There are many papers
that rely on the same or a similar state-based approach [22,18,17,8].

The following papers are more related to our work: Fudenberg et al. [14] give a folk
theorem for repeated games with imperfect public information. Both [14] and our pa-
per are built on the (dynamic programming style) self-generating technique in [2] (it
is called self-decomposable in [14]). However, [14] considers self-generation based on
a certain supporting hyperplane, which is guaranteed to exist only when the discount
factor goes to 1.2 Therefore, their technique does not apply to our problem because we
are dealing with non-limit discount factors.3 Another difference between [14] and our
paper is that we are designing specific mechanisms in this paper, instead of trying to
prove the existence of a certain class of mechanisms. With non-limit discount factors, it
is generally difficult to precisely characterize the set of feasible utility vectors (optimal
frontier) for the agents. Several papers have already proposed different ways of approx-
imation (for cases of non-limit discount factors). Athey et al. [4] study approximation
by requiring that the payoffs of the agents must be symmetric. In what, from a technical
perspective, appears to be the paper closest to the work in this paper, Athey and Bag-
well [3] investigate collusion in a repeated game by approximating the optimal frontier
by a line segment (the same technique also appears in the work of Abdulkadiroğlu and
Bagwell [1]). One of their main results is that if the discount factor reaches a certain
threshold (still strictly less than 1), then the approximation comes at no cost. That is, the
optimal (first-best) performance can be obtained. However, their technique only works
for finite type spaces, as it builds on uneven tie-breaking.

The main contribution of this paper can be summarized as follows. First, we intro-
duce a new technique for approximating the optimal frontier for repeated allocation
problem. Our technique works for non-limit discount factors and is not restricted to
symmetric payoffs or finite type spaces. The technique we propose is presented in the
form of an artificial payment system, which corresponds to approximating the optimal
frontier by triangles. The artificial payment system enables us to construct repeated al-
location mechanisms without payments based on one-shot allocation mechanisms with
payments. We analytically characterize several repeated allocation mechanisms that do

1 In the previous work, as well as in this paper, the first-best result can be achieved by mecha-
nisms with payments.

2 In [14], it is shown that any feasible and individually rational equilibrium payoff vector v
can be achieved in a perfect public equilibrium (self-generated based on certain supporting
hyperplanes), as long as the discount factor reaches a threshold β. However, the threshold
β depends on v. If we consider all possible values of v, then we essentially require that the
discount factor/threshold approach 1, since any discount factor that is strictly less than 1 does
not work (for some v).

3 In this paper, we also require that the discount factor reaches a threshold, but here the threshold
is a constant that works for all possible priors.
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not rely on payments, and prove that they are competitive against the optimal mecha-
nism with payments.

This paper also contributes to the line of research on designing competitive mech-
anisms without payments. The proposed artificial payment system provides a link be-
tween mechanisms with payments and mechanisms without payments. By proposing
specific competitive mechanisms that do not rely on payments, our paper also pro-
vides an answer to the question: Are monetary payments necessary for designing good
mechanisms? Our results imply that in repeated settings, artificial payments are “good
enough” for designing allocation mechanisms with high social welfare. Conversely, it
is easy to see that for one-shot settings, artificial payments are completely useless in the
problem we study (single-item allocation).

The idea of designing mechanisms without payments to achieve competitive per-
formance against mechanisms with payments was explicitly framed by Procaccia and
Tennenholtz [21], in their paper titled Approximate Mechanism Design Without Money.
That paper carries out a case study on locating a public facility for agents with single-
peaked valuations. (The general idea of approximate mechanism design without pay-
ments dates back further, at least to work by Dekel et al. [13] in a machine learning
framework.) To our knowledge, along this line of research, we are the first to to study
allocation of private goods. Unlike the models studied in the above two papers [13,21],
where agents may have consensus agreement, when we are considering the allocation
of private goods, the agents are fundamentally in conflict. Nevertheless, it turns out
that even here, some positive results can be obtained if the allocation is carried out
repeatedly. Thus, we believe that our results provide additional insights to this line of
research.

2 Model Description

We study the problem of allocating a single item repeatedly between two (and later in
the paper, more than two) competing agents. Before each allocation period, the agents
learn their (private) valuations for having the item in that period (but not for any future
periods). These preferences are independent and identically distributed, across agents as
well as periods, according to a distribution F . We assume that these valuations are non-
negative and have finite expectations. F does not change over time. There are infinitely
many periods, and agents’ valuations are discounted according to a discount factor β.
Our objective is to design a mechanism that maximizes expected social welfare under
the following constraints (we allow randomized mechanisms):

– (Bayes-Nash) Incentive Compatibility: Truthful reporting is a Bayes-Nash equilib-
rium.

– No Payments: No monetary transfers are ever made.

In the one-shot mechanism design setting, incentive compatibility is usually achieved
through payments. This ensures that agents have no incentive to overbid, because they
may have to make large payments. In the repeated allocation setting, there are other
ways to achieve incentive compatibility: for example, if an agent strongly prefers to
obtain the item in the current period, the mechanism can ensure that she is less likely
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to obtain it in future periods. In a sense, this is an artificial form of payment. Such
payments introduce some new issues that do not always occur with monetary payments,
including that each agent effectively has a limited budget (corresponding to a limited
amount of future utility that can be given up); and if one agent makes a payment to
another agent by sacrificing some amount of future utility, the corresponding increase
in the latter agent’s utility may be different from the decrease in the former agent’s
utility.

3 State-Based Approach

Throughout the paper, we adopt the state-based approach introduced in Abreu et al. [2].
In their paper, the authors investigated the problem of finding pure-strategy sequen-
tial equilibria of repeated games with imperfect monitoring. Their problem can be
rephrased as follows: Given a game, what are the possible pure-strategy sequential
equilibria? Even though in our paper we are considering a different problem (we are
designing the game), the underlying ideas still apply. In their paper, states correspond
to possible equilibria, while in our paper, states correspond to feasible mechanisms.
In this section, we review a list of basic results and observations on the state-based
approach, specifically in the context of repeated allocation.

Let M be an incentive compatible mechanism without payments for a particular
(fixed) repeated allocation problem, defined by a particular type distribution and a dis-
count factor. If, under M , the expected long-term utilities of agents 1 and 2 (at the
beginning) are x and y respectively, then we denote mechanism M by state (x, y). All
mechanisms that can be denoted by (x, y) are considered equivalent. If we are about to
apply mechanismM , then we say the agents are in state (x, y). In the first period, based
on the agents’ reported values, the mechanism specifies both how to allocate the item
in this period, and what to do in the future periods. The rule for the future is itself a
mechanism. Hence, a mechanism specifies how to allocate the item within the first pe-
riod, as well as the state (mechanism) that the agents will be in in the second period. We
have that (x, y) = Ev1,v2 [(r1(v1, v2), r2(v1, v2)) + β(s1(v1, v2), s2(v1, v2))], where
v1, v2 are the first-period valuations, r1, r2 are the immediate rewards obtained from
the first-period allocation rule, and (s1, s2) gives the second-period state, representing
the transition rule.

State (x, y) is called a feasible state if there is a feasible mechanism (that is, an
incentive compatible mechanism without payments) corresponding to it. We denote the
set of feasible states by S∗. Let e be an agent’s expected valuation for the item in a
single period. E = e

1−β is the maximal expected long-term utility an agent can receive
(corresponding to the case where she receives the item in every period). Let O be the
set of states {(x, y)|0 ≤ x ≤ E, 0 ≤ y ≤ E}. We have that S∗ ⊆ O − {(E,E)} � O.
S∗ is convex, for the following reason. If (x1, y1) and (x2, y2) are both feasible, then

(x1+x2
2 , y1+y2

2 ) is also feasible (it corresponds to the randomized mechanism where we
flip a coin to decide which of the two mechanisms to apply). S∗ is symmetric with
respect to the diagonal y = x: if (x, y) is feasible, then so is (y, x) (by switching the
roles of the two agents).

The approximate shape of S∗ is illustrated in Figure 1. There are three noticeable ex-
treme states: (0, 0) (nobody ever gets anything), (E, 0) (agent 1 always gets the item),
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and (0, E) (agent 2 always gets the item). S∗ is confined by the x-axis (from (0, 0)
to (E, 0)), the y-axis (from (0, 0) to (0, E)), and, most importantly, the bold curve,
which corresponds to the optimal frontier. The square specified by the dotted lines
represents O.
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Fig. 1. The shape of S∗
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Fig. 2. Bow shape approximated by triangle

Our objective is to find the state (x∗, y∗) ∈ S∗ that maximizes x∗ + y∗ (expected
social welfare). By convexity and symmetry, it does not hurt to consider only cases
where x∗ = y∗.

We now define a notion of when one set of states is generated by another. Recall
that a mechanism specifies how to allocate the item within the first period, as well as
which state the agents transition to for the second period. Let S be any set of states with
S ⊂ O. Let us assume that, in the second period, exactly the states in S are feasible.
That is, we assume that, if and only if (x, y) ∈ S, starting at the second period, there
exists a feasible mechanism under which the expected utilities of agent 1 and 2 are x
and y, respectively. Based on this assumption, we can construct incentive compatible
mechanisms starting at the first period, by specifying an allocation rule for the first
period, as well as a transition rule that specifies the states in S to which the agents will
transition for the beginning of the second period. Now, we only need to make sure that
the first period is incentive compatible. That is, the allocation rule in the first period,
combined with the rule for selecting the state at the start of the second period, must
incentivize the agents to report their true valuations in the first period. We say the set of
resulting feasible states for the first period is generated by S, and is denoted byGen(S).

The following claim provides a general guideline for designing feasible mechanisms.

Claim 1. For any S ⊆ O, if S ⊆ Gen(S), then S ⊆ S∗. That is, if S is self-generating,
then all the states in S are feasible.

We now consider starting with the square O that contains S∗ and iteratively generating
sets. Let O0 = O and Oi+1 = Gen(Oi) for all i. The following claim, together with
Claim 1, provide a general approach for computing S∗.
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Claim 2. The Oi form a sequence of (weakly) decreasing sets that converges to S∗ if
it converges at all. That is, S∗ = Gen(S∗). S∗ ⊆ Oi for all i. Oi+1 ⊆ Oi for all i. If
Oi = Oi+1, then Oi = S∗.

The above guideline leads to a numerical solution technique for finite valuation spaces.
With a properly chosen numerical discretization scheme, we are able to compute an
underestimation of Oi for all i, by solving a series of linear programs. The underesti-
mations of the Oi always converge to an underestimation of S∗ (a subset of S∗). That
is, we end up with a set of feasible mechanisms. We are also able to show that as the
discretization step size goes to 0, the obtained feasible set approaches S∗. That is, the
numerical solution technique produces an optimal mechanism in the limit as the dis-
cretization becomes finer. Details of the numerical solution technique are omitted due
to space constraint.

One drawback of the numerical approach is that the obtained mechanism does not
have an elegant form. This makes it harder to analyze. From the agents’ perspective, it is
difficult to comprehend what the mechanism is trying to do, which may lead to irrational
behavior. Another drawback of the numerical approach is that it only applies to cases
of finite valuation spaces. For the rest of the paper, we take a more analytical approach.
We aim to design mechanisms that can be more simply and elegantly described, work
for any valuation space, and are (hopefully) close to optimality.

At the end of Section 4.2, we will compare the performances of the mechanisms
obtained numerically and the mechanisms obtained by the analytical approach.

4 Competitive Analytical Mechanism

In this section, we propose the idea of an artificial payment system. Based on this, we
propose several mechanisms that can be elegantly described, and we can prove that
these mechanisms are close to optimality.

4.1 Artificial Payment System

Let us recall the approximate shape of S∗ (Figure 2). The area covered by S∗ consists of
two parts. The lower left part is a triangle whose vertices are (0, 0), (E, 0), and (0, E).
These three states are always feasible, and so are their convex combinations. The upper
right part is a bow shape confined by the straight line and the bow curve from (0, E) to
(E, 0). To solve for S∗, we are essentially solving for the largest bow shape satisfying
that the union of the bow shape and the lower-left triangle is self-generating. Here, we
consider an easier problem. Instead of solving for the largest bow shape, we solve for
the largest triangle (whose vertices are (0, E),(E, 0), and (x∗, x∗)) so that the union of
the two triangles is self-generating (illustrated in Figure 2). That is, we want to find the
largest value of x∗ that satisfies that the set of convex combinations of (0, 0), (E, 0),
(0, E), and (x∗, x∗) is self-generating.

The triangle approximation corresponds to an artificial payment system. Let (x∗, x∗)
be any feasible state satisfying x∗ ≥ E

2 . Such a feasible state always exists (e.g.,
(E

2 ,
E
2 )). We can implement an artificial payment system based on (x∗, x∗), (E, 0),
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and (0, E), as follows. At the beginning of a period, the agents are told that the default
option is that they move to state (x∗, x∗) at the beginning of the next period. However,
if agent 1 wishes to pay v1 (v1 ≤ βx∗) units of artificial currency to agent 2 (and agent
2 is not paying), then the agents will move to (x∗ − v1

β , x
∗ + E−x∗

x∗
v1
β ). That is, the

future state is moved v1
β units to the left along the straight line connecting (0, E) and

(x∗, x∗). (This corresponds to going to each of these two states with a certain proba-
bility.) By paying v1 units of artificial currency, agent 1’s expected utility is decreased
by v1 (the expected utility is decreased by v1

β at the start of the next period). When

agent 1 pays v1 units of artificial currency, agent 2 receives only E−x∗
x∗ v1 (also as a

result of future utility). In effect, a fraction of the payment is lost in transmission. Sim-
ilarly, if agent 2 wishes to pay v2 (v2 ≤ βx∗) units of artificial currency to agent 1
(and agent 1 is not paying), then the agents will move to (x∗ + E−x∗

x∗
v2
β , x

∗ − v2
β ).

That is, the future state is moved v2
β units towards the bottom along the straight line

connecting (x∗, x∗) and (E, 0). If both agents wish to pay, then the agents will move
to (x∗ − v1

β + E−x∗
x∗

v2
β , x

∗ − v2
β + E−x∗

x∗
v1
β ), which is a convex combination of (0, 0),

(0, E), (E, 0), and (x∗, x∗).
Effectively, both agents have a budget of βx∗, and when an agent pays the other

agent, there is a gift tax with rate 1− E−x∗
x∗ .

Based on the above artificial payment system, our approach is to design repeated
allocation mechanisms without payments, based on one-shot allocation mechanisms
with payments. In order for this to work, the one-shot allocation mechanisms need to
take the gift tax into account, and an agent’s payment should never exceed the budget
limit.

The budget constraint is difficult from a mechanism design perspective. We circum-
vent this based on the following observation. An agent’s budget is at least β E

2 = eβ
2−2β ,

which goes to infinity as β goes to 1. As a result, for sufficiently large discount factors,
the budget constraint will not be binding. For the remainder of this paper, we ignore the
budget limit when we design the mechanisms. Then, for each obtained mechanism, we
specify how large the discount factor has to be for the mechanism to be well defined
(that is, the budget constraint is not violated). This allows us to work around the budget
constraint. The drawback is obvious: our proposed mechanisms only work for discount
factors reaching a (constant) threshold (though it is not as restrictive as studying the
limit case as β → 1).

4.2 High/Low Types

We start with the simple model in which the agents’ valuations are eitherH (high) with
probability p or L (low) with probability 1 − p. Without loss of generality, we assume
that L = 1. We will construct a repeated allocation mechanism without payments based
on the following pay-only one-shot allocation mechanism:

Allocation: If the reported types are the same, we determine the winner by flipping a
(fair) coin. If one agent’s reported value is high and the other agent’s reported value is
low, then we allocate the item to the agent reporting high.
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Payment: An agent pays 0 if its reported type is low. An agent pays 1
2 if its reported

type is high (whether she wins or not); this payment does not go to the other agent.

Claim 3. The above pay-only mechanism is (Bayes-Nash) incentive compatible.

Now we return to repeated allocation settings. Suppose (x∗, x∗) is a feasible state. That
is, we have an artificial payment system with gift tax rate 1 − E−x∗

x∗ . We apply the
above one-shot mechanism, with the modifications that when an agent pays 1

2 , it is
paying artificial currency instead of real currency, and the other agent receives 1

2
E−x∗

x∗ .
We note that the amount an agent receives is only based on the other agent’s reported
value. Therefore, the above modifications do not affect the incentives.

Under the modified mechanism, an agent’s expected utility equals T
2 −P+P E−x∗

x∗ +
βx∗. In the above expression, T = 2p(1− p)H+ p2H+(1− p)2 is the expected value
of the higher reported value. T

2 is then the ex ante expected utility received by an agent
as a result of the allocation. P = p

2 is the expected amount of artificial payment an
agent pays. P E−x∗

x∗ is the expected amount of artificial payment an agent receives. βx∗

is the expected future utility by default (if no payments are made).
If both agents report low, then, at the beginning of the next period, the agents go to

(x∗, x∗) by default. If agent 1 reports high and agent 2 reports low, then the agents go to
(x∗ − 1

2β , x
∗ + E−x∗

2βx∗ ), which is a convex combination of (x∗, x∗) and (0, E). If agent

1 reports low and agent 2 reports high, then the agents go to (x∗ + E−x∗
2βx∗ , x

∗ − 1
2β ),

which is a convex combination of (x∗, x∗) and (E, 0). If both agents report high, then
the agents go to (x∗ − 1

2β + E−x∗
2βx∗ , x

∗ − 1
2β + E−x∗

2βx∗ ), which is a convex combination
of (x∗, x∗) and (0, 0). Let S be the set of all convex combinations of (0, 0), (E, 0),
(0, E), and (x∗, x∗). The future states given by the above mechanism are always in
S. If an agent’s expected utility under this mechanism is greater than or equal to x∗,
then S is self-generating. That is, (x∗, x∗) is feasible as long as x∗ satisfies x∗ ≤
T
2 − P + P E−x∗

x∗ + βx∗.
We rewrite it as ax∗2 + bx∗ + c ≤ 0, where a = 1 − β, b = 2P − T

2 , and c =
−EP . The largest x∗ satisfying the above inequality is simply the larger solution of

ax∗2 + bx∗ + c = 0, which is
T
2 −2P+

√
(2P−T

2 )2+4(1−β)EP

2(1−β) .
This leads to a feasible mechanism M∗ (corresponding to state (x∗, x∗)). The ex-

pected social welfare under M∗ is 2x∗, where x∗ equals the above solution.
We have not considered the budget limit. For the above M∗ to be well-defined (sat-

isfying the budget constraint), we need βx∗ ≥ 1
2 . Since x∗ ≥ E

2 = e
2−2β ≥

1
2−2β , we

only need to make sure that β
2−2β ≥

1
2 . Therefore, if β ≥ 1

2 , then M∗ is well-defined.
For specific priors, M∗ could be well-defined even for smaller β.

Next, we show that (whenever M∗ is well-defined) M∗ is very close to optimality.
Consider the first-best allocation mechanism: the mechanism that always successfully
identifies the agent with the higher valuation and allocates the item to this agent (for
free). This mechanism is not incentive compatible, and hence not feasible. The expected
social welfare achieved by the first-best allocation mechanism is T

1−β , which is an upper
bound on the expected social welfare that can be achieved by any mechanism with (or
without) payments (it is a strict upper bound, as the dAGVA mechanism [12] is efficient,
incentive compatible, and budget balanced).
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Definition 1. When the agents’ valuations are either high or low, the prior distribution
over the agents’ valuations is completely characterized by the values ofH and p. LetW
be the expected social welfare under a feasible mechanismM . Let WF be the expected
social welfare under the first-best allocation mechanism. If W ≥ αWF for all H and
p, then we say M is α-competitive. We call α a competitive ratio of M .

Claim 4. Whenever M∗ is well-defined for all H and p, (e.g., β ≥ 1
2 ), M∗ is 0.94-

competitive.

As a comparison, the lottery mechanism that always chooses the winner by flipping a
fair coin has competitive ratio (exactly) 0.5 (if H is much larger than L and unlikely to
occur).

In the following table, for different values of H , p, and β, we compare M∗ to the
near-optimal feasible mechanism obtained with the numerical solution technique. The
table elements are the expected social welfare under M∗, the near-optimal feasible
mechanism, the first-best allocation mechanism, and the lottery mechanism.

M∗ Optimal First-best Lottery
H = 2, p = 0.2, β = 0.5 2.6457 2.6725 2.7200 2.4000
H = 4, p = 0.4, β = 0.5 5.5162 5.7765 5.8400 4.4000
H = 16, p = 0.8, β = 0.5 30.3421 30.8000 30.8000 26.0000
H = 2, p = 0.2, β = 0.8 6.6143 6.7966 6.8000 6.0000
H = 2, p = 0.8, β = 0.8 9.4329 9.8000 9.8000 9.0000
H = 16, p = 0.8, β = 0.8 75.8552 77.0000 77.0000 65.0000

4.3 General Valuation Space

In this section, we generalize the earlier approach to general valuation spaces. We let f
denote the probability density function of the prior distribution. (A discrete prior distri-
bution can always be smoothed to a continuous distribution that is arbitrarily close.)

We will construct a repeated allocation mechanism without payments based on the
following pay-only one-shot allocation mechanism:

Allocation: The agent with the higher reported value wins the item.

Payment: An agent pays
∫ v

0 tf(t)dt if it reports v.
This mechanism is actually a4 dAGVA mechanism [12], which is known to be

(Bayes-Nash) incentive compatible.
The process is similar to that in the previous section. Due to space constraints, we

omit the details. At the end, we obtain a feasible mechanism M∗. The expected social

welfare under M∗ is 2x∗, where x∗ equals
T
2 −2P+

√
(2P−T

2 )2+4(1−β)EP

2(1−β) . Here, T =

4 “The” dAGVA mechanism often refers to a specific mechanism in a class of Bayes-Nash in-
centive compatible mechanisms, namely one that satisfies budget balance. In this paper, we
will use “dAGVA mechanisms” to refer to the entire class, including ones that are not budget-
balanced. Specifically, we will only use dAGVA mechanisms in which payments are always
nonnegative.
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0

∫∞
0 max{t, v}f(t)f(v)dtdv is the expected value of the higher valuation. P =∫∞

0

∫ v

0 tf(t)dtf(v)dv is the expected amount an agent pays.
For the above M∗ to be well-defined, we need the budget βx∗ to be greater than

or equal to
∫∞
0 tf(t)dt = e (the largest possible amount an agent pays). Since x∗ ≥

E
2 = e

2−2β , we only need to make sure βe
2−2β ≥ e. Therefore, if β ≥ 2

3 , then M∗ is
well-defined. For specific priors, M∗ may be well-defined for smaller β.

Next, we show that (whenever M∗ is well-defined) M∗ is competitive against the
first-best allocation mechanism for all prior distribution f . Naturally, the competitive
ratio is slightly worse than the one obtained previously for high/low valuations. We first
generalize the definition of competitiveness appropriately.

Definition 2. Let W be the expected social welfare under a feasible mechanism M .
Let WF be the expected social welfare under the first-best allocation mechanism. If
W ≥ αWF for all prior distributions, then we say that M is α-competitive. We call α
a competitive ratio of M .

Claim 5. Whenever M∗ is well-defined for all prior distributions (e.g., β ≥ 2
3 ), M∗ is

0.85-competitive.

5 Three or More Agents

We have focused on allocation problems with two agents. In this section, we generalize
our analytical approach to cases of three or more agents.

Let n be the number of agents. We will continue with the state-based approach. That
is, a mechanism (state) is denoted by a vector of n nonnegative real values. For example,
if under mechanismM , agent i’s long-term expected utility equals xi, then mechanism
M is denoted by (x1, x2, . . . , xn). If we are about to apply mechanismM , then we say
the agents are in state (x1, x2, . . . , xn).

For any n, it is easy to see that the set of feasible states is convex and symmetric
with respect to permutations of the agents. A state is called fair if all its elements are
equal. For example, (1, 1, 1) is a fair state (n = 3). When there is no ambiguity about
the number of agents, the fair state (x, x, . . . , x) is denoted simply by x.

An artificial payment system can be constructed in a way that is similar to the case
of two agents. Let μn−1 be any feasible fair state for the case of n− 1 agents. Then, the
following n states are also feasible for the case of n agents:

(0, μn−1, . . . , μn−1︸ ︷︷ ︸
n−1

), (μn−1, 0, μn−1, . . . , μn−1︸ ︷︷ ︸
n−2

), . . . , (μn−1, . . . , μn−1︸ ︷︷ ︸
n−1

, 0).

We denote the above n states by si for i = 1, 2, . . . , n. Let Ŝ be the set of all feasible
states with at least one element that equals 0. Ŝ is self-generating. Suppose we have
a fair state μn for the case of n agents. Let S be the smallest convex set containing
μn and all the states in Ŝ. The si are in both Ŝ and S. An artificial payment system
can be implemented as follows (for the case of n agents): The agents will go to state μn

by default. If for all i, agent i chooses to pay vi units of artificial currency, then we move
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to a new state whose ith element equals μn − vi

β + γ
∑

j �=i
vj

β . Here γ = μn−1−μn

μn
.5

The new state M is in S. (The reason is the following. If only agent i is paying, and it is

paying nvi instead of vi, then the new state Mi is (μn + γ
nvi

β
, . . . , μn + γ

nvi

β︸ ︷︷ ︸
i−1

, μn −

nvi

β , μn + γ
nvi

β
, . . . , μn + γ

nvi

β︸ ︷︷ ︸
n−i

), which is a convex combination of μn and si. The

average of the Mi over all i is just M . Thus M is a convex combination of μn and the
si, which implies M ∈ S. 6)

With the above artificial payment system, by allocating the item to the agent with the
highest reported value and charging the agents dAGVA payments, we get an incentive
compatible mechanism. We denote agent i’s reported value by vi for all i. The dAGVA
payment for agent i equals Ev−i(I(vi ≥ max{v−i})max{v−i}), where I is the char-
acteristic function (which evaluates to 1 on true and to 0 otherwise) and v−i is the set
of reported values from agents other than i.

We still use P to denote the expected amount of payment from an agent. We use T
to denote the expected value of the highest reported value. The expected utility for an
agent is then T

n − P + (n− 1)μn−1−μn

μn
P + βμn.

To show S is self-generating, we only need to show μn is in Gen(S). That is, μn is
a feasible fair state as long as μn satisfies the following inequality: μn ≤ T

n −P +(n−
1)μn−1−μn

μn
P + βμn.

The largest solution of μn equals
T
n −nP+

√
(nP−T

n )2+4(1−β)(n−1)μn−1P

2(1−β) .

The above expression increases when the value of μn−1 increases. The highest value
for μ1 is E (when there is only one agent, we can simply give the item to the agent for
free). A natural way of solving for a good fair state μn is to start with μ1 = E, then
apply the above technique to solve for μ2, then μ3, etc.

Next, we present a claim that is similar to Claim 5.

Claim 6. Let n be the number of agents. Let M∗
n be the mechanism obtained by the

technique proposed in this section. Whenever β ≥ n2

n2+ 3
4

, M∗
n is well defined for all

priors, and is αn-competitive, where α1 = 1, and for n > 1,

αn = min
{1≤u≤ n

n−1}
n

u
n−n+nu−u+

√
(n−nu+u− u

n )2+4αn−1
n−nu+u

n

2u .

For all i, αi ≥ 3
4 holds.

As a comparison, the lottery mechanism that always chooses the winner uniformly at
random has competitive ratio (exactly) 1

n , which goes to 0 as n goes to infinity.

5 It should be noted that when one agent pays 1, then every other agent receives γ. In a sense,
γ already incorporates the fact that the payment must be divided among multiple agents.

6 The above argument assumes that the available budget is at least n times the maximum amount
an agent pays.
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Abstract. This work initiates the study of cost-sharing mechanisms that, in addi-
tion to the usual incentive compatibility conditions, make it disadvantageous for
the users to employ pseudonyms. We show that this is possible only if all serviced
users pay the same price, which implies that such mechanisms do not exist even
for certain subadditive cost functions. In practice, a user can increase her utility
by lying in one way (misreport her willingness to pay) or another (misreport her
identity). We prove also results for approximately budget-balanced mechanisms.
Finally, we consider mechanisms that rely on some kind of “reputation” associ-
ated to the pseudonyms and show that they are provably better.

1 Introduction

Incentives play a crucial role in distributed systems of almost any sort. Typically users
want to get resources (a service) without contributing or contributing very little. For
instance, file-sharing users in peer-to-peer systems are only interested in downloading
data, even though uploading is essential for the system to survive (but maybe costly
for some of the users). Some successful systems, like BitTorrent [15, 6], have already
incorporated incentive compatibility considerations in their design (users can download
data only if they upload some content to others).

One can regard such systems as cost-sharing mechanisms in which the overall cost
must be recovered from the users in a reasonable and incentive compatible manner; the
mechanism determines which users get the service and at what price. The study of these
mechanisms is a very important topic in economics and in cooperative game theory, in
which individuals (users) can coordinate their strategies (i.e., they can form coalitions
and collude). Cost-sharing mechanisms should guarantee several essential properties:
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Users recover the overall cost and are not charged more than necessary (budget-balance),
even coalitions of users cannot benefit from misreporting their willingness to pay (group-
strategyproofness), no user is excluded a priori (consumer sovereignty), no user is
charged more than her willingness to pay (voluntary participation), and no user receives
money (no positive transfer). To get a feel of the difficulties of obtaining such mecha-
nisms, consider the following:

Example 1 (identical prices). There are three players, and the overall cost depends on
how many users get the service: Servicing three users costs 2 while servicing one or two
users costs only 1. Consider a mechanism that iteratively drops all users who cannot
afford an equal fraction of the total cost (three users pay 2/3 each, two users pay 1/2
each, and one user pays 1). Unfortunately, this mechanism is not even strategyproof 1:
For valuations (0.6, 0.6, 1) the first two users are dropped, so their utility is zero (no
service and nothing to pay). If the first user misreports her valuation to 1 she gets the
service for price 0.5 (now only the second user is dropped), and her utility (valuation
minus price to pay = 0.6− 0.5 = 0.1) is strictly better than before.

As Example 1 shows, a groupstrategyproof and budget-balanced mechanism has to
charge the serviced users different prices in general. In this work, we consider a new
form of manipulation that, to the best of our knowledge, has not been considered in
the cost-sharing literature before: In most of the Internet applications a user can easily
create several virtual identities [9, 11, 32, 10, 5]. The typical scenario is that there is a
universe of possible names (e.g., all strings of up to 40 characters), and only a subset of
these correspond to actual users. Each user can replace her name with some pseudonym,
that is, another name in the universe of names which does not correspond to any other
user (e.g., an email account that has not been taken by anybody else). In this new sce-
nario, each user can manipulate the mechanism in two ways: by misreporting her name
and/or by misreporting her willingness to pay for the service. Ideally, we would like
resistance against both kinds of manipulations.

Example 2 (manipulation via pseudonyms). Consider a different mechanism for Exam-
ple 1: Order players alphabetically by their name. The first two players bidding at least
1/2 only have to pay 1/2. Otherwise, the price is always 1. This mechanism is group-
strategyproof [4]; however, it can be manipulated via pseudonyms. For instance, in the
situation

Names Alice Bob Cindy
V aluations 0.6 0.6 1
Prices 0.5 0.5 1

there is an obvious incentive for Cindy to use a pseudonym “Adam”:

Names Alice Bob Adam
V aluations 0.6 0.6 1
Prices 0.5 1 0.5

Now Bob is dropped and the remaining two users get the service for a price of 0.5 and
thus Cindy’s utility is better off.

1 A mechanism is strategyproof if no single player can benefit from miserporting her willingness
to pay (i.e., group-strategyproof for maximum coalition size 1).
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A natural idea to discourage pseudonyms is to randomize the mechanism by order-
ing the players randomly. In this way users can be motivated to use their own name,
provided they trust the fact that the mechanism picks a truly random shuffle of the (re-
ported) names and they cannot guess the randomness before they bid. Unfortunately, the
notion of group-strategyproofness is problematic for randomized mechanisms [12] (see
also the full version of this work [26]). Moreover, randomness is generally considered a
scarce resource and derandomization of mechanisms is especially difficult because we
can run the mechanism (“the auction”) only once [1].

1.1 Our Contribution and Related Work

In our model, the overall cost depends only on the number of users that get the service
and the mechanism is deterministic. Call a mechanism renameproof if, in the scenario
above, no user has an incentive to change her name (i.e., create a pseudonym and obtain
the service for a better price). We first prove that for all budget-balanced groupstrate-
gyproof mechanisms the following equivalence holds:

renameproof⇐⇒ identical prices (1)

By “identical prices” we mean that all serviced users pay the same fraction of the total
cost (identical prices imply renameproofness and our contribution is to prove that the
converse holds). In some cases, this result gives a characterization of such mechanisms,
while in other cases it implies that these mechanisms do not exist! This is because, even
in our restricted scenario, budget-balance and groupstrategyproofness can be achieved
only with mechanisms that use different prices [4].

We actually prove a more general version of Equivalence (1) which applies also to
approximately budget-balanced ones. In proving this, we exhibit an intriguing connec-
tion with a problem of hypergraph coloring, a linear algebra result by Gottlieb [13] and,
ultimately, with the Ramsey Theorem (the impossibility of coloring large hypergraphs
with a constant number of colors without creating monochromatic components).

The notion of renameproof mechanisms leads naturally to a weaker condition which
we call reputationproof because it captures the idea that names have some reputation
associated, and a user cannot create a pseudonym with a better reputation than that of
her true name [5]. In some sense, we can regard reputation as a way to “derandomize”
some of the mechanisms that are renameproof in expectation. We show that reputation
does help because there exist cost functions that admit budget-balanced, groupstrat-
egyproof, and and reputationproof mechanisms, while no budget-balanced mechanism
can be simultaneously groupstrategyproof and renameproof (all budget-balanced mech-
anisms can be manipulated in one way or another). We find it interesting that certain
new constructions of mechanisms [4], which were originally introduced to overcome
the limitations of identical prices, are reputationproof (though not renameproof).

1.2 Connections with Prior Work

The notion of renameproof mechanism is weaker than that of falsenameproof mech-
anism [32] where users can submit multiple bids to the mechanism, each one under a
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different name (pseudonym).2 In the context of combinatorial auctions, where budget-
balance is ignored, groupstrategyproofness and falsenemeproofness are independent
notions [32]; several constructions of mechanisms that are both strategyproof and false-
nameproof are known (see e.g. [32, 31]).

It is common opinion that manipulations via pseudonyms arise because a single user
can gain a large influence on the game by “voting” (bidding) many times [9, 5, 11, 10,
21, 32]. Indeed, most of the research focuses on solutions that make it impossible (or
very difficult) to vote more than once [7, 30, 25]. While this is enough in combinatorial
auctions [7], manipulations are still possible by declaring false names in cost-sharing
games where the mechanism must guarantee budget-balance.

Cost-sharing mechanisms are usually studied in more general settings where costs do
not depend only on the number of users. The main technique for obtaining groupstrate-
gyproof mechanisms is due to Moulin [23]. These mechanisms are budget-balanced for
arbitrary submodular3 costs [23]. When costs are not submodular, Moulin mechanisms
can achieve only approximate budget-balance [16,14,20]. An alternative method called
two-price mechanisms has recently been presented in [4]. The authors showed that, for
some problems where the cost depends only on the number of serviced users, group-
strategyproof mechanisms using identical prices cannot be budget-balanced, while their
two-price mechanisms are both groupstrategyproof and budget-balanced. This holds for
subadditive costs that depend only on the number of users [4]. In [18] it is shown that the
so-called sequential mechanisms are groupstrategyproof and budget-balanced for su-
permodular costs. Only partial characterizations of general budget-balanced and group-
strategyproof mechanisms are known [14, 27, 28, 17, 18]. Acyclic mechanisms [22] can
achieve budget-balance for all non-decreasing cost-functions by considering a weaker
version of groupstrategyproofness (see also [3]).

Finally, [8] studies the public excludable good problem and gives sufficient condi-
tions for which every mechanism must use identical prices. Since this problem is a
special case of those studied here, we obtain an alternative axiomatic characterization
of identical prices.

Road map. The formal model and the definition of renameproof mechanism are given in
Section 2. Equivalence (1) and its relaxation to approximately budget-balanced mech-
anisms are proved in Section 3. Reputationproof mechanisms are defined and analyzed
in Section 4. Sketched or omitted proofs are given in full detail in [26].

2 The Formal Model

We consider names as integers taken from a universe N = {1, . . . , n}. A user can
register herself under one or more names and two users cannot share the same name.
A user who first registered under name i can thus create a number of additional names
which we call her pseudonyms, while the first name she created is her true name. The

2 For instance, a falsenameproof mechanism for combinatorial auctions guarantees that a user
interested in a bundle of items cannot obtain the bundle for a lower price by submitting several
bids. Each bid is made under a different identity and for some of the objects for sale.

3 A cost function is submodular if C(A ∪ B) ≤ C(A) + C(B)−C(A ∩B).
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set of all users (the true names) is private knowledge, that is, the mechanism does not
know if a name i is a true name or a pseudonym, and it cannot distinguish if two names
have been created by the same user. We assume further that a user cannot use two names
simultaneously and thus can only make a single bid. For instance, the system may be
able to detect that two names correspond to the same IP address and thus to the same
user. Moreover, every negative result proved under the single bid assumption also holds
when users can make multiple bids.

A mechanism for a cost-sharing game is a pair (S, P ) defined as follows. The input
to the mechanism is an n-dimensional bid vector v where the ith coordinate vi is either
⊥, indicating that no user submitted her bid using the name i, or it is equal to the bid
submitted under the name i. The mechanism outputs the names of the winners and their
prices: the user who submitted her bid using a name i ∈ S(v) receives the service at the
price P (v, i); all other users do not get served and do not pay. When user i bids using
the name j and her valuation for the service is v∗i , she derives a utility equal to

S(v, j) · v∗i − P (v, j),

where S(v, j) is equal to 1 if j ∈ S(v), and 0 otherwise. We consider only mecha-
nisms (S, P ) that satisfy the following standard requirements: voluntary participation
meaning that P (v, j) = 0 if j �∈ S(v) and P (v, j) ≤ vj otherwise; no positive transfer
meaning that prices P (v, j) are always nonnegative; consumer sovereignty, meaning
that every user can get the service if bidding sufficiently high, regardless of the bids of
the other users.

There is a symmetric cost function C whose value depends only on the number of
users that get the service, that is, C(S) = C(T ) whenever S and T are two subsets of
names of the same size. Following [4], we speak of a symmetric cost-sharing game. A
mechanism (S, P ) is α-budget-balanced if for every bid vector v, it holds that

C(S(v)) ≤
∑

i∈S(v)

P (v, i) ≤ α · C(S(v))

and it is budget-balanced if this condition holds for α = 1. We sometimes write Cs in
place of C(S), where s = |S|.

We require that, in the scenario in which pseudonyms are not used, users cannot
improve their utilities by misreporting their valuations. A mechanism (S, P ) is group-
strategyproof if no group of users can raise the utility of some of its members without
lowering the utility of some other member. Mechanism (S, P ) is strategyproof if this
condition is required to hold for G of size one only.

The next desideratum is that, when a user reports truthfully her valuation, she cannot
improve her utility when bidding with a pseudonym. For any bid vector b, we let U(b)
be the set of names that have been used to submit the bids, that is, those i’s such that
bi �= ⊥. We also let bi→j be the vector obtained from b by exchanging bi with bj , where
i ∈ U(b) and j �∈ U(b).

Definition 1 (renameproof mechanism). A cost-sharing mechanism (S, P ) is
renameproof if the following holds. For any bid vector v and for any i and j such
that i ∈ U(v) and j �∈ U(v)

S(v, i) · vi − P (v, i) ≥ S(vi→j , j) · vi − P (vi→j , j).
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We think of v as the bid vector in which user i reports truthfully her valuation and her
name. Thus, the above definition says that no user can improve her utility by using a
pseudonym in place of her name, no matter if the other users report truthfully their
names and valuations. Symmetry implies that, in a renameproof mechanism, the utility
of an agent must be constant over all names. Note that this does not imply that the price
must be the same for all serviced users (see Example 4 below). We decide to present
the definition in this form since this will naturally lead to a weaker condition used by
mechanisms based on “reputation” in Section 4.

3 Renameproof Mechanisms and (Non-) Identical Prices

A general approach to design (approximately) budget-balanced mechanisms is to define
a suitable cost-sharing method for the cost function of the problem. That is, a function
ξ which (approximately) divides the overall cost among the serviced users: ξ(S, i) is
the price associated to user i when the subset S is served, and

1 ≤
∑
i∈S

ξ(S, i)/C(S) ≤ α,

forα ≥ 1 and for every subsetS of users. Such a function is anα-budget-balanced cost-
sharing method (or simply budget-balanced if α = 1). The main technique to construct
groupstrategyproof cost-sharing mechanisms is due to Moulin [23]:

Example 3 (Moulin mechanism Mξ). Initially we set S as all users in U(b). At each
round we remove all users in S whose bid is less than the price ξ(S, i) offered by the
mechanism. We iterate this step until all users in the current set S accept the offered
price, or no user is left. We service the final set S obtained in this way and charge each
user i ∈ S an amount ξ(S, i).

We first observe that renameproofness by itself is not a problem since the average-
cost mechanism [24] which charges all users the same price is budget-balanced and
renameproof. However, this mechanism is (group) strategyproof only when the average
cost does not increase with the number of users (see Example 1). Therefore, it is natural
to ask if there exist other mechanisms that are renameproof. To answer this question, we
consider a general class of mechanisms that define a unique cost-sharing method and
that are known to include all groupstrategyproof mechanisms [23]. Such mechanisms
are termed separable:

Definition 2 (separable mechanism). A cost-sharing mechanism (S, P ) is separable if
it induces a unique cost-sharing method ξ = ξ(S,P ). That is, there exists a cost-sharing
method ξ = ξ(S,P ) such that P (v, i) = ξ(S(v), i) for all bids v and for all i.

Our first observation is that, in order to be renameproof, the price assigned to a user
should be independent from her name:

Definition 3. A cost-sharing method ξ is name independent if the price associated to a
user does not depend on her name. That is, for every R ⊂ N and for any two i, j �∈ R,
it holds that ξ(R ∪ {i}, i) = ξ(R ∪ {j}, j).
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Theorem 1. Every separable renameproof mechanism induces a name independent
cost-sharing method.

Because of the previous result, we will focus on name independent cost-sharing meth-
ods. The main idea is to regard each name-independent cost-sharing method as a “frac-
tional coloring” of the complete hypergraph on n nodes.

Definition 4. An α-balanced (n, s)-coloring is a function x assigning a nonnegative
weight xR to every (s − 1)-subset 4 R ⊂ N such that, for every s-subset S ⊆ N , it
holds that

1 ≤
∑

R∈subsets(S)

xR ≤ α (2)

where subsets(S) denotes the family of all (s− 1)-subsets of S.

The connection between a name-independent ξ and (n, s)-colorings can be made ex-
plicit by considering

x
(ξ,s)
R := ξ(R ∪ {i}, i)/Cs (3)

and by observing that x(ξ,s) must be α-balanced if ξ is α-budget-balanced. With this
equivalent representation, we can argue about the existence of cost-sharing mechanisms
using non-identical prices by studying “non-uniform” (n, s)-colorings.

Example 4 (three users). When servicing three users, Definition 4 boils down to the
problem of assigning weights to the edges of the complete graph over n nodes so that
every triangle has total weight in between 1 and α. For n = 4, one possible way is as
follows:

weight = 1/2

weight = 1/4

C3/2

C3/4 C3/4

where on the right we show the corresponding prices (cost-sharing scheme). Indeed, this
example actually yields a budget-balanced renameproof groupstrategyproof mechanism
for n = 4 (see [26] for the details).

Despite the above example, our main result below says that one cannot avoid identical
prices as soon as the number of possible names is not very small:

Theorem 2. Any α-budget-balanced renameproof separable mechanism must charge
each serviced user a price which is at least Cs

s

(
2s−1 (1− α) + α

)
and at most

Cs

s

(
2s−1 (α− 1) + 1

)
, unless the number s of serviced users is more than half the

number of names (i.e, unless s > n/2). In particular, if the mechanism is budget-
balanced (i.e., α = 1) then all serviced users are charged the same price Cs/s.

4 An r-subset is a subset of cardinality r.
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Proof (Sketch). We prove bounds on α-balanced (n, s)-colorings. Let us consider the
following incidence matrix A with

(
n
s

)
rows and

(
n

s−1

)
columns (originally defined

in [13]). For any s-subset (row) S and any (s− 1)-subset (column)R, define:

AS,R =
{

1 if R ⊂ S,
0 otherwise.

(4)

By definition AS · x =
∑

R∈subsets(S) xR for any s-subset S. Thus the set of all α-
balanced (n, s)-colorings is given by the following polytope:

polytope := {x ∈ Rq| 1 ≤ A · x ≤ α}

where q =
(

n
s−1

)
and α = (α, . . . , α) for every real α. Intuitively, each xR corresponds

to the price ξ(S, i)/Cs for R = S \ {i}, which is independent of i.
It is possible to prove that, for every x in polytope and for every (s − 1)-subset

R ⊂ N , there exists x in polytope such that xR = xR and all the values xQ depend
only on the size of R∩Q. That is, xQ = xQ′ for all (s− 1)-subsetsQ andQ′ such that
|Q∩R| = |Q′ ∩R|. Therefore that the minimum/maximum value of any component of
x in polytope can be found by looking only at vectors x as above. Let pk denote the
unique value such that xQ = pk for all Q such that |R ∩Q| = k, for k = 0, . . . , s− 1.
(This is well-defined because 2s ≤ n.) Now let b := A·x, i.e., bk = k·pk−1+(s−k)·pk.
We can express ps−1 = xR = xR as a function that grows monotonically (increasing
or decreasing) in any component bk of b. Plugging in that 1 ≤ bk ≤ α for every bk,

we obtain that 2s−1(1−α)+α
s ≤ xR ≤ 2s−1(α−1)+1

s , for any x in polytope and for any
(s− 1)-subset R. Due to Theorem 1 and the relation in (3), this implies the theorem. �

Notice that every groupstrategyproof mechanism must be separable [23]. Since we
have just shown that (a) every budget-balanced renameproof separable mechanism is an
average-cost mechanism, but since we also know (recall Example 1) that (b) average-
cost mechanisms are not groupstrategyproof if costs are not submodular, we obtain the
following characterization and impossibility result:

Corollary 1. If the number of possible names is at least twice the number of users,
then the following holds. If costs are submodular, then the Moulin mechanism charging
all players equally is the only renameproof, budget-balanced and groupstrategyproof
mechanism (up to welfare-equivalence).5 When costs are not submodular, there is no
mechanism that is at the same time renameproof, groupstrategyproof and budget-balan-
ced.

We note that the bounds of Theorem 2 become rather weak as s grows (and α is fixed).
Although the corresponding bounds on α-balanced (n, s)-colorings are tight (see the
full proof in [26]), we next show a different kind of bounds that essentially rule out
constructions of mechanisms based on different prices.

Theorem 3. For any α, for any s, and for any δ, there exists N = N(α, s, δ) such that
the following holds for all n ≥ N . For every α-budget-balanced name-independent
cost-sharing method ξ there exists a subset S of s users such that their prices satisfy
|ξ(S, i)− ξ(S, i′)| ≤ δ for every i and i′ in S.

5 Two mechanisms are welfare-equivalent if they produce the same utilities.
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Proof (Sketch). Round every x
(ξ,s)
R to the closest power of δ′ := δ/Cs. This gives

an (n, s)-coloring which takes at most c = �logδ′ α� different values. The Ramsey
Theorem (see e.g. [19]) says that, for sufficiently large n, there is an s-subset S such
that any two (s−1)-subsetsR,R′ ⊂ S get the same value. In particular, forR = S\{i}
and R′ = S \ {i′} this implies that |x(ξ,s)

R − x
(ξ,s)
R′ | ≤ δ′. The theorem follows from

δ′ = δ/Cs and from (3). �

Two applications. We present two applications of our results. The first one is the public
excludable good problem, which plays a central role in the cost-sharing literature and
arises as a special case of many optimization problems [8]. It corresponds to the simple
cost function C0 = 0 and Cs = 1 for all s ≥ 1. Corollary 1 implies that the Shapley
value mechanism6 is the only deterministic one that meets budget-balance, groupstrate-
gyproofness, and renameproofness. This gives an alternative axiomatic characterization
of the Shapley value to the one in [8, Theorem 2].

The second application concerns certain bin packing or scheduling problems, in
which users (items or jobs) are homogeneous [2, 4]. For instance, costs are of the form
Cs = �s/m�, where m can be interpreted as the capacity of the bins (bins are iden-
tical and the cost is the number of bins needed) or the number of machines (the cost
is the makespan of the computing facility offering the service). For these problems,
Bleischwitz et al [4] proved that budget-balanced groupstrategyproof mechanisms must
use non-identical prices. Corollary 1 implies that deterministic budget-balanced mech-
anisms which are both groupstrategyproof and renameproof do not exist (these two
notions are mutually exclusive). Theorem 3 essentially rules out constructions with non-
identical prices, and identical prices can only achieve 2-approximate budget-balance.

4 Reputation Helps

In this section we consider the scenario in which the mechanism has some additional
information about the users. For instance, there might be time stamps for the times at
which new identities have been created associated to users. Similarly, we might employ
reputation functions that make it impossible for a user to obtain a better ranking [5]. An
abstraction of these two scenarios is to consider the case in which each user can replace
her name only with a “larger” one.

Definition 5 (reputationproof mechanism). A cost-sharing mechanism is reputation-
proof if it satisfies the condition of Definition 1 limited to j > i.

We show a sufficient condition for obtaining mechanisms that are both groupstrate-
gyproof and reputationproof. Here the cost-sharing method can be represented by an
n× n matrix ξ = {ξs

i }, where each ξs is a vector of s prices. This is an example of the
kind of the cost-sharing schemes we use here:

ξ =

⎛⎜⎜⎝
1/2 1/2 1/2 1/2
1/2 1/2 1
1/2 1/2
1

⎞⎟⎟⎠ (5)

6 The Shapley value mechanism services the largest set S such that all users in S bid at least
1/|S|.
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where the scheme is regarded as a triangular matrix in which we leave empty the (irrel-
evant) values ξs

i with i > s. Users are ranked according to their (reported) names and
the highest price is offered to the user with largest (reported) name.

Definition 6. Let ξ = {ξs
j} be a cost-sharing scheme containing only two values low

and high > low, and say that ξs offers low prices if it is equal to (low, . . . , low). Such a
cost-sharing scheme ξ is a same-two-price scheme if the following holds for every s. If
ξs does not offer low prices, then ξs−1 offers low prices and ξs = (low, . . . , low, high).

The main idea in [4] is to drop some “indifferent” users who bid the low price:

Definition 7. Let ξ be a same-two-price scheme and call indifferent those users bidding
exactly the low price. The corresponding same-two-price mechanism is as follows:

1. Drop all users who do not even bid the low price;
2. If the resulting subset has size s such that ξs offers low prices, then service this set

and charge all these users the low price;
3. Otherwise do the following:

(a) If there are indifferent users, then drop the one with the last name and charge
all others the low price;

(b) Otherwise, drop the last user if she is not willing to pay the high price and
charge all others the same price;

(c) If no user has been dropped in Steps (3a-3b) then charge the low price to all
but the last user who is charged the high price.

Theorem 4. Every same-two-price mechanism is both groupstrategyproof and reputa-
tionproof.

Proof (Sketch). The same-two-price mechanism is a special case of two-price mecha-
nisms in [4] and thus it is groupstrategyproof. We prove that it is also reputationproof as
follows. If v is such that i is offered the high price (Step 3b) then the same happens to j
for vi→j , for any j > i with j �∈ U(v). In all other cases, i obtains the highest possible
utility because she gets served if bidding strictly more than the low price (an invariant
of the mechanism is that the utility of every user bidding at most the low price is 0). �

Example 5 (two-machine scheduling). The cost of scheduling s identical jobs on two
identical machines is the makespan, that is, Cs = �s/2�. No budget-balanced mech-
anism which is groupstrategyproof can be renameproof (see Section 3). In contrast,
there exists a budget-balanced groupstrategyproof mechanism which is also reputation-
proof: The same-two-price mechanism corresponding to the cost-sharing methods of
the form (5).

Unfortunately, not all two-price mechanisms from [4] are reputationproof. The argu-
ment is similar to the discussion in [26] about Moulin mechanisms. Concerning the no-
tion of reputationproof mechanism, we note that BitThief [21] is a sophisticated client
that free rides on BitTorrent using a weakness of the protocol: newcomers are allowed
to download data “for free” because they are supposed to have nothing to upload yet.
BitTorrent resembles a mechanism that is not reputationproof because it offers a better
price to users that have “no reputation”.



266 P. Penna et al.

5 Concluding Remarks and Open Questions

Despite the fact that in symmetric cost-sharing games all users play the same role, in
most of the cases one must employ non-identical prices in order to get budget-balanced
and groupstrategyproof mechanisms [4]. In sharp contrast, we have shown that in order
to make it disadvantageous for users to use pseudonyms, one must use identical prices,
thus implying that groupstrategyproofness and renameproofness can be achieved only
separately. The results apply also to randomized mechanisms in which using the “true”
name is a dominant strategy for all coin tosses. The notion of reputationproof mecha-
nism captures in a natural way the use of “reputation” to overcome these difficulties.

It would be very interesting to characterize the class of “priority-based” mechanisms
(sequential [18], acyclic [22], two-price [4]) that are also reputationproof. Another im-
portant issue is to consider multiple bids (falsenameproofness [32, 31]) and consider
non-symmetric (“combinatorial”) cost-sharing games [16, 14, 29].

An interesting issue concerns the “social cost” of pseudonyms in cost-sharing games.
For instance, we might consider the economic efficiency loss [29] caused by the use
of pseudonyms (namely, the efficiency of arbitrary mechanisms versus those that use
identical prices) and thus quantify how much “reputation” helps.

Acknowledgements. We wish to thank Roger Wattenhofer for several useful discus-
sions, and to Carmine Ventre for comments on an earlier version of this work. We are
grateful to an anonymous referee for many insightful comments. and, in particular, for
suggesting the use of negative bids to simplify some of the proofs.
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Abstract. We study an economic setting in which a principal motivates
a team of strategic agents to exert costly effort toward the success of a
joint project. The action taken by each agent is hidden and affects the
(binary) outcome of the agent’s individual task in a stochastic manner. A
Boolean function, called technology, maps the individual tasks’ outcomes
to the outcome of the whole project. The principal induces a Nash equi-
librium on the agents’ actions through payments that are conditioned on
the project’s outcome (rather than the agents’ actual actions) and the
main challenge is that of determining the Nash equilibrium that maxi-
mizes the principal’s net utility, referred to as the optimal contract.

Babaioff, Feldman and Nisan suggest and study a basic combinato-
rial agency model for this setting, and provide a full analysis of the
AND technology. Here, we concentrate mainly on OR technologies and
on series-parallel (SP) technologies, which are constructed inductively
from their building blocks — the AND and OR technologies. We provide
a complete analysis of the computational complexity of the optimal con-
tract problem in OR technologies, which resolves an open question and
disproves a conjecture raised by Babaioff et al. In particular, we show
that while the AND case admits a polynomial time algorithm, computing
the optimal contract in an OR technology is NP-hard. On the positive
side, we devise an FPTAS for the OR case and establish a scheme that
given any SP technology, provides a (1+ ε)-approximation for all but an
ε̂-fraction of the relevant instances (for which a failure message is output)
in time polynomial in the size of the technology and in the reciprocals
of ε and ε̂.

1 Introduction

We consider the setting in which a principal motivates a team of rational agents
to exert costly effort towards the success of a joint project, where their actions
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are hidden from her. The outcome (usually, success or failure of the project)
is stochastically determined by the set of actions taken by the agents and is
visible to all. As agents’ actions are invisible, their compensation depends on
the outcome and the principal’s challenge is to design contracts (conditional
payments to the agents) as to maximize her net utility, given the payoff that she
obtains from a successful outcome.

The problem of hidden-action in production teams has been extensively stud-
ied in the economics literature [7,9,15,8,16]. More recently, the problem has been
examined from a computational perspective [5,1,2]. This line of research com-
plements the field of Algorithmic Mechanism Design (AMD) [11,10,13,4,12] that
received much attention in the last decade. While AMD studies the design of
mechanisms in scenarios characterized by private information held by the indi-
vidual agents, our focus is on the complementary problem, that of hidden-action
taken by the individual agents. In [1], the authors concentrated on the case of
homogeneous users, i.e., agents with identical capabilities and costs. The current
work extends the original work to the more complex (yet realistic) case, that of
heterogeneous agents.

For example, consider an executive board that assigns stock options to the
company’s employees in attempt to motivate them to excel so that the value of
the company increases. While the exact contribution of each individual may be
difficult to measure, the stock’s market price is visible to all, hence it serves as the
groundwork in determining future payments to the staff. Given the significance
of each employee (position, rank, etc.), what is the optimal incentive (in terms of
stock options) he should get? What is the complexity of computing the optimal
incentives in the above examples? This is the type of questions that motivate us
in this work.

The model. We use the model presented in [1] (which is an extension of the
model devised in [17]). In this model, a principal employs a set1 N of agents in
a joint project. Each agent i takes an action ai ∈ {0, 1}, which is known only to
him, and succeeds or fails in his own task probabilistically and independently.
The individual outcome of agent i is denoted by xi ∈ {0, 1}. If the agent shirks
(ai = 0), he succeeds in his individual task (xi = 1) with probability 0 < γi < 1
and incurs no cost. If, however, he decides to exert effort (ai = 1), he succeeds
with probability 0 < δi < 1, where δi > γi, but incurs some positive real cost
ci > 0.

A key component of the model is the way in which the individual outcomes
determine the outcome of the whole project. We assume a monotone Boolean
function ϕ : {0, 1}n → {0, 1} that determines whether the project succeeds
as a function of the individual outcomes of the n agents’ tasks (and is not
determined by any set of n − 1 agents). Two fundamental examples of such
Boolean functions are AND and OR. The AND function is the logical conjunction
of xi (ϕ(x1, . . . , xn) =

∧
i∈N xi), representing the case in which the project

1 Unless stated otherwise, we assume that N = [n], where [n] denotes the set
{1, . . . , n}.
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succeeds only if all agents succeed in their tasks. In this case, we say that the
agents complement each other. The OR function represents the other extreme,
in which the project succeeds if at least one of the agents succeeds in his task.
This function is the logical disjunction of xi (ϕ(x1, . . . , xn) =

∨
i∈N xi), and we

say that the agents substitute each other.
A more general class of monotone Boolean functions is that of series-

parallel (SP) functions. This class is defined inductively as follows. The uni-
argument identity function is considered SP. Consider some two SP functions
ϕl : {0, 1}nl → {0, 1} and ϕr : {0, 1}nr → {0, 1}. The Boolean functions
ϕl ∧ ϕr : {0, 1}nl+nr → {0, 1}, defined as the logical conjunction of ϕl and
ϕr, and ϕl ∨ ϕr : {0, 1}nl+nr → {0, 1}, defined as the logical disjunction of ϕl

and ϕr, are also considered SP. We refer to the former (respectively, the latter)
as a series composition (resp., a parallel composition) of ϕl and ϕr, hence the
name series-parallel. Since series and parallel compositions are associative, it
follows that the class of SP Boolean functions is indeed a generalization of both
AND and OR Boolean functions.

Given the action profile a = (a1, . . . , an) ∈ {0, 1}n and a monotone Boolean
function ϕ : {0, 1}n → {0, 1}, the effectiveness of the action profile a, denoted by
f (a), is the probability that the whole project succeeds under a and ϕ according
to the distribution specified above. That is, the effectiveness f (a) is defined as
the probability that ϕ(x1, . . . , xn) = 1, where xi ∈ {0, 1} is determined proba-
bilistically (and independently) by ai: if ai = 0, then xi = 1 with probability
γi; if ai = 1, then xi = 1 with probability δi. The monotonicity of ϕ and the
assumption that δi > γi for every i ∈ N imply the monotonicity of the effective-
ness function f , i.e., if we denote by a−i ∈ {0, 1}n−1 the vector of actions taken
by all agents excluding agent i (namely, a−i = (a1, . . . , ai−1, ai+1, . . . , an)), then
the effectiveness function must satisfy f (1, a−i) > f (0, a−i) for every i ∈ N and
a−i ∈ {0, 1}n−1. Note that it is inherent to our model (in fact, the model of [1])
that the effectiveness f (a) consists of a “probabilistic component” that deter-
mines the individual outcomes x1, . . . , xn and a “deterministic component” that
maps these individual outcomes to success or failure of the whole project.

The agents’ success probabilities, the costs of exerting effort, and the mono-
tone Boolean function that determines the final outcome define the technology,
formally defined as the five-tuple t = 〈N, {γi}n

i=1, {δi}n
i=1, {ci}n

i=1, ϕ〉, where N
is a (finite) set of agents; γi (respectively, δi) is the probability that xi = 1 when
agent i shirks (resp., when agent i exerts effort), where δi > γi; ci is the cost
incurred on agent i for exerting effort; and ϕ : {0, 1}n → {0, 1} is the monotone
Boolean function that maps the individual outcomes x1, . . . , xn to the outcome
of the whole project. We sometimes abuse notation and refer to the Boolean
function ϕ as the technology. It is important to emphasize that the technology
is assumed to be known by the principal and the agents.

Since exerting effort entails some positive cost, an agent will not exert ef-
fort unless induced to do so by appropriately designed incentives. The principal
can motivate the agents by offering them individual payments. However, due
to the non-visibility of the agents’ actions, the individual payments cannot be
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directly contingent on the actions of the agents, but rather only on the success
of the whole project. The conditional payment to agent i is thus given by a real
value pi ≥ 0 that is granted to agent i by the principal if the project succeeds
(otherwise, the agent receives 0 payment2).

The expected utility of agent i under the profile of actions a = (a1, . . . , an)
and the conditional payment pi is pi · f (a) if ai = 0; and pi · f (a)− ci if ai = 1.
Given a real payoff v > 0 that the principal obtains from a successful outcome
of the project, the principal wishes to design the payments pi as to maximize her
own expected utility defined as Ua(v) = f (a) ·

(
v −
∑

i∈N pi

)
, where the action

profile a is assumed to be at Nash-equilibrium with respect to the payments
pi (i.e., no agent can improve his utility by a unilateral deviation). As multiple
Nash equilibria may (and actually do) exist, we focus on the one that maximizes
the utility of the principal. This is as if we let the principal choose the desired
Nash equilibrium, and “suggest” it to the agents. The following observation is
established in [1].

Observation 1. The best conditional payments (from the principal’s point of
view) that induce the action profile a ∈ {0, 1}n as a Nash equilibrium are pi = 0
for agent i who shirks (ai = 0), and pi = ci

Δi(a−i)
for agent i who exerts effort

(ai = 1), where Δi(a−i) = f (1, a−i) − f (0, a−i). (Note that the monotonicity of
the effectiveness function guarantees that Δi(a−i) is always positive.)

The last observation implies that once the principal chooses the action profile
a ∈ {0, 1}n, her (maximum) expected utility is determined to be Ua(v) = f (a) ·
(v − p(a)), where p(a) is the total payment (in case of a successful outcome of
the project), given by p(a) =

∑
i|ai=1

ci

Δi(a−i)
. Therefore the principal’s goal is

merely to choose a subset S ⊆ N of agents that exert effort (the rest of the
agents shirk) so that her expected utility is maximized. The agent subset S is
referred to as a contract and we say that the principal contracts with agent i if
i ∈ S. We sometimes abuse notation and denote f (S), p(S) and US(v) instead
of f (a), p(a) and Ua(v), respectively, where ai = 1 if i ∈ S and ai = 0 if i /∈ S.
Given the principal’s payoff v > 0, a contract T ⊆ N is said to be optimal if
UT (v) ≥ US(v) for every contract S ⊆ N .

While finding the optimal set of payments that induces a particular set of
agents to exert effort is a straightforward task (and can be efficiently computed),
finding an optimal contract for a given payoff v > 0 is the main challenge ad-
dressed in this paper. Given a technology t = 〈N, {γi}n

i=1, {δi}n
i=1, {ci}n

i=1, ϕ〉,
we refer to the collection of contracts that can be obtained as an optimal con-
tract for some payoff as the orbit of t (ties between different contracts are broken
according to a lexicographic order3). Once the contract S ⊆ N is chosen, the
expected utility of the principal US(v) = f (S)(v − p(S)) becomes a linear func-
tion of the payoff v. Therefore each contract S corresponds to some line in R2.

2 We impose the limited liability constraint, implying that the principal can pay the
agents but not fine them. Thus, all payments must be non-negative.

3 This implies that there are no two contracts with the same effectiveness in the orbit.
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It follows that computing the orbit of t is equivalent to identifying the (positive)
top envelope of the line collection {US(·) | S ⊆ N} in R2.

It is easy to see that for sufficiently low payoffs, no agent will ever be con-
tracted while for sufficiently high payoffs, all agents will always be contracted.
Therefore the trivial contracts ∅ and N are always in the orbit. Let v∗ = inf{v >
0 | N is optimal for v}. Clearly, the trivial contractN is optimal for every v > v∗

and the infinite interval (v∗,∞) does not exhibit any transitions in the orbit.
We refer to the payoffs in the interval (0, v∗] as the relevant payoffs.

Our results. Multi-agent projects may exhibit delicate combinatorial structures
of dependencies between the agents’ actions, which can be represented by a
wide range of monotone Boolean functions. In the two extremes of this range
reside two simple and natural functions, namely AND and OR, which correspond
to the respective cases of pure complementarities and pure substitutabilities.
However, real-life technologies are usually composed of various components that
exhibit different combinations of complementarities and substitutabilities. The
class of SP Boolean functions represents exactly those technologies that can be
inductively constructed from AND and OR components.

SP Boolean functions are of great interest to computer science. For instance,
they play an important role in combinatorial games due to their equivalence to
game trees (and-or trees). In addition, many of the graph-theoretic problems
that are computationally hard in general have been shown to admit efficient
solutions when applied to series-parallel graphs, which are the graph theoretic
equivalent of SP functions. Perhaps the best example in our context is the net-
work reliability problem [14], which reduces to the optimal contract problem in
network technologies [1]. While the network reliability problem is �P-complete on
general networks, it admits an efficient algorithm when applied to series-parallel
networks.

Obviously, a first step in the analysis of SP technologies is the analysis of their
building blocks, namely, the AND and OR technologies. The AND case was fully
analyzed in [1]. In particular, it was (implicitly) shown that the optimal contract
of any AND technology can be computed in polynomial time. In contrast, the
OR case was left unresolved to the most part. Specifically, it was left as an open
question whether the optimal contract problem on OR technologies can be solved
in polynomial time.

We provide a complete analysis of the computational complexity of the op-
timal contract problem on OR technologies. Our first theorem addresses the
hardness of this variant.

Theorem 1. The problem of computing the optimal contract in OR technologies
is NP-hard4.

A formal proof of this theorem appears in the full version; an overview is provided
in Section 2. Note that aside from establishing the computational hardness of
4 The problem remains NP-hard even for the special case in which ci = 1 and δi = 1−γi

for every i ∈ N .



Computing Optimal Contracts in SP Heterogeneous Combinatorial Agencies 273

the problem, our analysis implies the existence of OR technologies which admit
exponential-size orbits, thus refuting a conjecture raised in [1].

On the positive side, in Section 3.1 we devise a scheme for SP technologies
which serves as the key ingredient in establishing the following approximations.
For OR technologies (a special case of SP technologies), we prove Theorem 2 in
Section 3.2.

Theorem 2. The problem of computing the optimal contract in OR technologies
admits a fully polynomial-time approximation scheme (FPTAS).

General SP technologies are considerably more involved and the approximability
of the optimal contract problem on such technologies remains an open question.
However, an interesting insight into this question is provided by a scheme that
approximates all but a small fraction of the relevant payoffs. Due to lack of space,
the proof of the following theorem is deferred to the full version.

Theorem 3. Given an SP technology t and two real parameters 0 < ε, ε̂ ≤
1, there exists a scheme that on input payoff v > 0, either returns a
(1 + ε)-approximate solution for v or outputs a failure message, in time
poly(|t|, 1/ε, 1/ε̂). Assuming that F ⊆ R>0 is the set of reals on which the scheme
outputs a failure message, it is guaranteed that

∫∞
0 1F (v)dv ≤ ε̂v∗, where 1F is

the characteristic function of F .

It may be the case that the hardness of the optimal contract problem on SP
technologies is somehow “concentrated” exactly in those payoffs which cannot
be reached by the scheme of Theorem 3. However, if an instance of the problem
is chosen uniformly at random out of the “relevant instances”, then with high
probability our scheme provides a good approximation for this instance. (Recall
that the trivial contract N is optimal for any non-relevant payoff.) In fact, the
payoffs v on which the scheme of Theorem 3 outputs a failure message belong to
a small (polynomial) number of sub-intervals of (0, v∗]; by making the parameter
ε̂ smaller, we decrease the guaranteed bound on the size of each such sub-interval.

It is interesting to contrast the aforementioned results with the observable-
action case, where the agents’ actions are not hidden and may be contracted on,
which admits a polynomial time algorithm for SP technologies [3].

Finally, we obtain a positive result regarding the general case. Consider an
arbitrary technology t and let S be a collection of contracts. Given some real
α > 1, we say that S is an α-approximation of t’s orbit if for every payoff v,
there exists a contract S ∈ S such that US(v) ≥ UT (v)

α , where T is optimal for
v. Due to lack of space, the proof of the following theorem is deferred to the full
version.

Theorem 4. For every technology t = 〈N, {γi}n
i=1, {δi}n

i=1, {ci}n
i=1, ϕ〉 and for

any ε > 0, the orbit of t admits a (1 + ε)-approximation of size poly(|t|, 1/ε).

Unfortunately, in the case of arbitrary technologies (as opposed to OR technolo-
gies) we do not know how to construct the approximating collection efficiently.
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2 NP-Hardness of OR Technologies

We present a polynomial time Turing reduction from X3SAT (Problem LO4
in [6]) to the problem of computing an optimal contract for an OR technol-
ogy. Recall that a 3-CNF formula φ is solvable under X3SAT if there exists
a truth assignment for the variables of φ that assigns true to exactly one lit-
eral in every clause. The X3SAT problem is known to be NP-hard even if the
literals in φ are all positive. Given a 3-CNF formula φ with m clauses and
n variables in which all literals are positive, we construct an OR technology
t = 〈N, {γj}n+5

j=1 , {δj}n+5
j=1 , {cj}n+5

j=1 , ϕ〉 such that (1) the agent set N contains
n + 5 agents; (2) the cost incurred on agent j for exerting effort is cj = 1 for
every j ∈ N ; and (3) γj = 1−δj for every j ∈ N . The construction is designed to
guarantee that by performing O(n) queries, each reveals the optimal contract for
some carefully chosen payoff, we can decide whether φ is solvable under X3SAT.

Let W = {0, 1, 2, 3}m+2×{0, 1}2. Each agent j ∈ N is assigned with a vector
uj = (uj

0, . . . , u
j
m+3) ∈ W . The first n agents correspond to the n variables of the

3-CNF formula φ and affect coordinates 1, . . . ,m in a manner that reflects the
appearance of their corresponding variables in the m clauses. The additional
5 agents affect coordinates 0,m + 1,m + 2,m + 3 and are provided for the
sake of analysis. We extend the assignment of vectors to sets of agents (a.k.a.
contracts) in a natural way: given a contract S ⊆ N , we define the vector
uS =

∑
j∈S uj . (Note that different contracts may be assigned with the same

vector.) The assignment of vectors to contracts guarantees that the formula φ
is solvable under X3SAT if and only if there exists a contract S with vector
uS = (1, . . . , 1).

The parameters of {γj}n+5
j=1 and {δj}n+5

j=1 are defined as follows. Consider the
vector x = (x0, . . . , xm+3) in W . Let σ(x) =

∑m+1
i=0 xi4i and fix μ = 45(m+2).

The evaluation of x is defined to be τ(x) =
(
1 + 1

μ

)σ(x)
· μ2xm+2 · μ5xm+3 . Let

ε = μ−κ, where κ is a sufficiently large constant. We would have wanted to fix
γj = 1 − δj = τ(uj) · ε for every j ∈ N . Unfortunately, the standard binary
representation of τ(uj) may be much larger than the binary representation of φ
for some j, and in particular, exponential in m. To overcome this obstacle, we
use a carefully chosen estimation of τ(uj), so that on the one hand, the desired
properties of the evaluation function are preserved, and on the other hand, the
binary representation of γj (and δj) is polynomial in m. In particular, the choice
of {γj}n+5

j=1 and {δj}n+5
j=1 guarantees that for every two contracts S, T ⊆ N ,

f (S) > f (T ) if and only if |S| > |T | or |S| = |T | and uS is lexicographically
smaller than uT .

We argue that if some contracts S with uS = (1, . . . , 1) exist, then at least
one of them is in the orbit. This is done as follows. A vector x = (x0, . . . , xm+3)
is said to be protected if xm+2 = xm+3 = 1. The key lemma of our proof asserts
that any contract assigned with a protected vector x cannot be dominated by any
two contracts assigned with different vectors. Following some standard geometric
arguments, we conclude that the contracts assigned with x cannot be dominated
by any set of (other) contracts. More formally, for every 0 ≤ k ≤ n+5, we denote
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Ψk(x) = {S ⊆ N | uS = x and |S| = k}, and show that for any protected vector
x, if Ψk(x) is not empty, then at least one contract in Ψk(x) is in the orbit. In
particular, assuming that x = (1, . . . , 1), if Ψk(x) �= ∅, then there exist a contract
S ∈ Ψk(x) and a payoff v∗k such that S is optimal for v∗k.

Computing the payoff v∗k for every 1 ≤ k ≤ n+ 5 remains our ultimate chal-
lenge. To achieve this goal, we define two additional vectors w = (2, 1, 1, . . . , 1) ∈
W and y = (0, 1, 1, . . . , 1) ∈ W . The choice of the additional vectors guaran-
tees that if Ψk(x) is not empty, then neither are Ψk(y) and Ψk(w). Suppose
that Ψk(x) �= ∅ and fix λw,x

k = max{v[S, T ] | S ∈ Ψk(w) and T ∈ Ψk(x)} and
λx,y

k = min{v[S, T ] | S ∈ Ψk(x) and T ∈ Ψk(y)}, where v[S, T ] is the intersection
payoff of S and T , i.e., US(v[S, T ]) = UT (v[S, T ]). We show that the optimal
contract for every λw,x

k < v < λx,y
k must be in Ψk(x). The analysis is completed

by identifying some payoff λw,x
k < v∗k < λx,y

k such that the binary representation
of v∗k is polynomial in m.

The decision whether the formula φ is solvable under X3SAT is now carried
out as follows. For k = 1, . . . , n+ 5, we query on the optimal contract Sk for the
payoff v∗k. If uSk is of the form (1, . . . , 1) for some k, then φ must be solvable.
Otherwise, there does not exist any such contract and φ is not solvable.

3 Approximations

3.1 A Polynomial Time Scheme for SP Technologies

Consider some technology t = 〈N, {γi}n
i=1, {δi}n

i=1, {ci}n
i=1, ϕ〉 and fix Δ =

min
{∏

i∈N γi,
∏

i∈N (1− δi)
}
. In the full version we show that f (S) ∈ [Δ, 1−Δ]

for every contract S ⊆ N .
Our scheme is executed by an algorithm, referred to as Algorithm Calibrate.

Consider an SP technology t = 〈N, {γi}n
i=1, {δi}n

i=1, {ci}n
i=1, ϕ〉 input to Algo-

rithm Calibrate and let 0 < ρ ≤ 1 be the performance parameter of the al-
gorithm. Algorithm Calibrate generates a collection C of contracts in time
O
(

n3 log2(1/Δ)
ρ2

)
. (Note that the binary representation of {γi}n

i=1 and {δi}n
i=1

requires Ω(log(1/Δ)) bits.) We will soon prove that for every contract T ⊆ N ,
there exists a contract S ∈ C such that f (S) ≥ f (T )

(1+ρ) , and p(S) ≤ (1 + ρ)p(T ).

Let η = ρ ln 2
2n−1 , and let r = max

{
k ∈ Z≥0 | Δ(1 + η)k < 1

2

}
. Since r <

log1+η

( 1
2Δ

)
= log 1

2Δ · log1+η(2), and since log1+η(2) ≤ 1
η , we conclude that

r < 1
η log 1

Δ . We partition the interval [Δ, 1 − Δ] into 2r + 3 smaller inter-
vals [Δ,Δ(1 + η)), [Δ(1 + η), Δ(1 + η)2), . . . , [Δ(1 + η)r−1, Δ(1 + η)r), [Δ(1 +
η)r, 1

2 ), [ 12 ,
1
2 ], (1

2 , 1−Δ(1 + η)r], (1−Δ(1 + η)r, 1−Δ(1 + η)r−1], . . . , (1−Δ(1 +
η)2, 1−Δ(1 + η)], (1−Δ(1 + η), 1−Δ]. The collection of these smaller intervals
is called the scale. The precision of the scale is defined as 1 + η. We say that
contract S is calibrated to interval I in the scale if f (S) ∈ I.

Observation 2. Let S, S′ ∈ N be some two contracts. The scale is designed to
ensure that if S and S′ are calibrated to the same interval, then f (S′)

1+η ≤ f (S) ≤
(1 + η)f (S′) and 1−f (S′)

1+η ≤ 1− f (S) ≤ (1 + η)(1 − f (S′)).
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Throughout the execution, Algorithm Calibrate maintains a collection C of
contracts. The algorithm guarantees that no two contracts in C are calibrated
to the same interval, thus |C| ≤ 2r + 3 at any given moment.

Every SP function ϕ is constructed inductively from two simpler SP functions
by either a series composition or by a parallel composition. Therefore the function
ϕ can be represented by a full binary tree T , referred to as the composition tree
of ϕ. The leaves of T represents the identity functions of ϕ’s arguments. An
internal node is said to be an ∧-node (respectively, an ∨-node) if it represents a
series (resp., parallel) composition of the functions represented by its children.

Consider the SP technology t = 〈N, {γi}n
i=1, {δi}n

i=1, {ci}n
i=1, ϕ〉 and let T be

the tree that represents the Boolean function ϕ. Let x be some node in T and
consider the subtree Tx of T rooted at x. The subtree Tx corresponds to some
(SP) subtechnology tx of t. Let Nx denote the set of agents in tx (corresponding
to the leaves of Tx) and let mx denote the number of nodes in Tx (as T is a full
binary tree, we have mx = 2|Nx| − 1). Given some contract S ⊆ Nx, we denote
the effectiveness and payment of S under tx by fx(S) and px(S), respectively.

Suppose that x is an internal node in T with left child l and right child r.
Let S = L ∪ R be some contract in tx, where L ⊆ Nl and R ⊆ Nr. Clearly, if
x is an ∧-node, then fx(S) = fl(L) · fr(R); and if x is an ∨-node, then fx(S) =
1 − (1 − fl(L))(1 − fr(R)). It is simple to verify that if x is an ∧-node, then
px(S) = pl(L)

fr(R) + pr(R)
fl(L) ; and if x is an ∨-node, then px(S) = pl(L)

1−fr(R) + pr(R)
1−fl(L) .

Algorithm Calibrate traverses the composition tree T in a postorder fashion.
Consider some leaf x in T that corresponds to agent i ∈ N . The algorithm
calibrates the contracts ∅ and {i} to a (fresh) scale according to their effectiveness
under the technology tx, that is, fx(∅) = γi and fx({i}) = δi. If both ∅ and {i}
are calibrated to the same interval I, then {i} is removed from the scale. The
resulting contract(s) in the scale constitutes the collection Cx.

Now, consider some internal node x in T with left child l and right child r
and suppose that the algorithm has already constructed the collections Cl and Cr

for the technologies tl and tr, respectively. The collection Cx for the technology
tx is constructed as follows. Let S = {L ∪ R | L ∈ Cl and R ∈ Cr}. (Note that
S contains |Cl| · |Cr| = O(r2) contracts of the technology tx.) The contracts in
S are calibrated to a (fresh) scale according to the effectiveness function fx(·).
Consequently, there may exist some interval in the new scale to which two (or
more) contracts are calibrated (a conflict).

Let I be an interval in the scale and suppose that S1, . . . , Sk ∈ S were all cal-
ibrated to I (k > 1), that is, fx(Si) ∈ I for every 1 ≤ i ≤ k. Assume without loss
of generality that Sk admits a minimum payment under tx, i.e., px(Sk) ≤ px(Si)
for every 1 ≤ i < k. The algorithm then resolves the conflict by removing
the contracts S1, . . . , Sk−1 from the scale so that Sk remains the only contract
calibrated to I. In that case we say that the contracts S1, . . . , Sk−1 were com-
pensated by the contract Sk. The contracts that remain in the scale constitutes
the collection Cx. Thus the new collection Cx contains at most one contract
for every interval and we may proceed with the next stage of the algorithm.
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At the end of this postorder process, when Algorithm Calibrate reaches the
root z of T , it returns the collection C = Cz.

We turn to the analysis of Algorithm Calibrate. The running time of the
algorithm is determined by the number of nodes in T (which is 2n− 1) and by
the size of the collection Cx for every node x in the tree. The latter cannot exceed
the number of intervals in the scale which is O

(
1
η log 1

Δ

)
. In order to analyze

the performance guarantee of the algorithm, we first define the following notion.
Given two contracts S, S′ ⊆ N and some real α > 1, we say that S is an α-
estimation of S′ under the technology t if the following three conditions hold:
(1) f (S′)

α ≤ f (S) ≤ αf (S′); (2) 1−f (S′)
α ≤ 1 − f (S) ≤ α(1 − f (S′)); and (3)

p(S) ≤ αp(S′). We say that a collection S of contracts is an α-estimation of
the technology t if for every contract S′ ⊆ N there exists a contract S ∈ S such
that S is an α-estimation of S′ under t. The following Lemma is established by
induction on the height of the composition tree T .

Lemma 1. The collection Cx is a (1 + η)mx -estimation of the technology tx for
every node x in the composition tree T .

Lemma 1 implies that C serves as a (1+η)2n−1-estimation of t. By the definition
of η = ρ ln 2

2n−1 , we have (1 + η)2n−1 ≤ eρ ln 2 = 2ρ ≤ 1 + ρ, which establishes the
following corollary.

Corollary 1. Given an SP technology t = 〈N, {γi}n
i=1, {δi}n

i=1, {ci}n
i=1, ϕ〉 and

a performance parameter 0 < ρ ≤ 1, it is guaranteed that Algorithm Calibrate

generates a collection C ⊆ 2N that serves as a (1 + ρ)-estimation of t in time
O
(

n3 log2(1/Δ)
ρ2

)
.

3.2 An FPTAS for OR Technologies

In this section we prove several properties of OR technologies which will be used
to present an FPTAS. We first establish the sub-modularity of OR technologies.
We say that a function h : 2N → R is strictly sub-modular if h(S) + h(T ) ≥
h(S ∪ T ) + h(S ∩ T ) for every S, T ⊆ N , where equality holds (if and) only if
S ⊆ T or T ⊆ S.

Lemma 2. The effectiveness function of every OR technology is strictly sub-
modular.

Consider an arbitrary OR technology t = 〈N, {γi}n
i=1, {δi}n

i=1, {ci}n
i=1, ϕ〉. Let

T ⊆ N be some contract, |T | ≥ 2, and consider the partition T = R1 ∪ R2,
R1 ∩R2 = ∅, such that |R1|, |R2| ≥ 1. A direct consequence of Lemma 2 is that
f (R1) + f (R2) > f (T ). Another consequence is that pj(Ri) < pj(T ) for every
i = 1, 2 and every agent j ∈ Ri, thus p(R1)+p(R2) < p(T ). These consequences
of Lemma 2 are employed to establish the following key property.

Lemma 3. Let v > 0 be some payoff and let T be an optimal contract for v
under the OR technology t. If v < (1 + σ̂)p(T ) for some positive real σ̂ ≤ 1/n,
then there exists some agent j ∈ T such that f ({j}) > (1− σ̂)f (T ).
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We are now ready to establish an FPTAS for the optimal contract problem on
OR technologies. Let ε > 0 be the performance parameter of the FPTAS. (Recall
that for every ε > 0, the FPTAS returns a solution which is at most 1 + ε times
worse than the optimal solution in time poly(|t|, 1/ε).) Subsequently, we assume
that ε ≤ 1/n at the price of incurring an extra additive poly(|t|) term on the
running time.

Fix σ = ε and σ̂ = ε
1+ε , and let C be the collection generated by Algorithm

Calibrate when invoked on t with performance parameter ρ = σσ̂
1+2σ̂ . The FP-

TAS will consider the contracts in C ∪ {{j} | j ∈ N}, namely, the contracts
in C and all the singleton contracts. Consider an arbitrary payoff v > 0 and
let T ⊆ N be an optimal contract for v. In order to establish Theorem 2, we
have to prove that there exists a contract S ∈ C ∪ {{j} | j ∈ N} such that
UT (v)/US(v) ≤ 1 + ε.

Assume first that v < (1+σ̂)p(T ). Since σ̂ < σ ≤ 1/n, we may apply Lemma 3
and conclude that there exists some agent j ∈ N such that f ({j}) > (1− σ̂)f (T ).
By Lemma 2, we have p({j}) ≤ p(T ), hence UT (v)

U{j}(v) = f (T )(v−p(T ))
f ({j})(v−p({j})) ≤

f (T )
f ({j}) <

1
1−σ̂ . The assertion follows by the choice of σ̂ = ε

1+ε .
Now, assume that v ≥ (1 + σ̂)p(T ). Let S be the contract in C that serves as

a (1+ρ)-estimation of T . Since f (S) ≥ f (T )/(1+ρ) and p(S) ≤ (1+ρ)p(T ), we
have UT (v)

US(v) = f (T )(v−p(T ))
f (S)(v−p(S)) ≤ (1 + ρ) v−p(T )

v−(1+ρ)p(T ) ≤ (1 + ρ) (1+σ̂)p(T )−p(T )
(1+σ̂)p(T )−(1+ρ)p(T ) =

(1+ρ)σ̂
σ̂−ρ . The requirement (1+ρ)σ̂

σ̂−ρ ≤ 1 + ε = 1 + σ is guaranteed by the choice

of the performance parameter ρ = σσ̂
1+2σ̂ as (1+ρ)σ̂

σ̂−ρ ≤ 1 + σ ⇐⇒ σ̂ + ρσ̂ ≤
σ̂ + σσ̂ − ρ− ρσ̂ ⇐⇒ ρ(1 + 2σ̂) ≤ σσ̂.

4 Conclusions

The hidden action problem lies at the heart of economic theory and has been
recently studied from an algorithmic perspective. In this article we continue
the study initiated by Babaioff et al [1] of the computational complexity of
optimal team incentives under hidden actions. Our contribution focuses on OR
technologies and on the more general family of series-parallel (SP) technologies.
In particular, we establish the NP-hardness of the problem of computing an
optimal contract in an OR technology (an open problem in [1]). We also show
that there exist OR technologies with exponentially large orbits (disproving a
conjecture of [1]).

On the positive side, we devise an FPTAS for OR technologies. For SP tech-
nologies, we establish a scheme that provides a (1 + ε)-approximation for all
but an ε̂-fraction of the relevant instances in time polynomial in the size of the
technology and in the reciprocals of ε and ε̂. The existence of an approxima-
tion scheme for SP technologies remains an open question. Put together, this
article makes a significant step in understanding the combinatorial agency set-
ting, which is an example for the important interaction between game theory,
economic theory and computer science.
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Abstract. In a Voronoi game, each of κ ≥ 2 players chooses a vertex in
a graph G = 〈V(G), E(G)〉. The utility of a player measures her Voronoi
cell: the set of vertices that are closest to her chosen vertex than to
that of another player. In a Nash equilibrium, unilateral deviation of a
player to another vertex is not profitable. We focus on various, symmetry-
possessing classes of transitive graphs: the vertex-transitive and gener-
ously vertex-transitive graphs, and the more restricted class of friendly
graphs we introduce; the latter encompasses as special cases the popu-
lar d-dimensional bipartite torus Td = Td(2p1, . . . , 2pd) with even sides
2p1, . . . , 2pd and dimension d ≥ 2, and a subclass of the Johnson graphs.

Would transitivity enable bypassing the explicit enumeration of Voronoi
cells? To argue in favor, we resort to a technique using automorphisms,
which suffices alone for generously vertex-transitive graphs with κ = 2.

To go beyond the case κ = 2, we show the Two-Guards Theorem
for Friendly Graphs: whenever two of the three players are located at
an antipodal pair of vertices in a friendly graph G, the third player re-

ceives a utility of |V(G)|
4 + |Ω|12 , where Ω is the intersection of the three

Voronoi cells. If the friendly graph G is bipartite and has odd diameter,

the utility of the third player is fixed to |V(G)|
4 ; this allows discarding the

third player when establishing that such a triple of locations is a Nash
equilibrium. Combined with appropriate automorphisms and without ex-
plicit enumeration, the Two-Guards Theorem implies the existence of a
Nash equilibrium for any friendly graph G with κ = 4, with colocation
of players allowed; if colocation is forbidden, existence still holds under
the additional assumption that G is bipartite and has odd diameter.

For the case κ = 3, we have been unable to bypass the explicit enumer-
ation of Voronoi cells. Combined with appropriate automorphisms and
explicit enumeration, the Two-Guards Theorem implies the existence of
a Nash equilibrium for (i) the 2-dimensional torus T2 with odd diameter∑

j∈[2] pj and κ = 3, and (ii) the hypercube Hd with odd d and κ = 3.
In conclusion, transitivity does not seem sufficient for bypassing ex-

plicit enumeration: far-reaching challenges in combinatorial enumeration
are in sight, even for values of κ as small as 3.
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1 Introduction

Recently, there has been a vast amount of research on non-cooperative games on
networks, inspired from diverse application domains from computer and commu-
nication networks, such as resource allocation, routing, scheduling and facility lo-
cation. In this work, we shall extend the study of the pure Nash equilibria [13,14]
associated with a particular game inspired from facility location and called the
Voronoi game; it was introduced in [3] and further studied in [12].

The Voronoi game [3,12] is reminiscent of the classical Hotelling games [9],
with a number of vendors in some continuous metric space— see, e.g., [10]. Each
vendor comes with goods for sale; simultaneously with others, she must choose
a location for her facility; her objective is to maximize the region of points that
are closest to her than to any other vendor, called her Voronoi cell. In a Nash
equilibrium [13,14], no vendor can increase her profit by switching to a different
point. The Voronoi game 〈G, [κ]〉 is the discrete analog where an undirected
graph G = 〈V(G),E(G)〉 is used instead of a metric space. There are κ players,
each choosing a vertex; a player’s utility measures her Voronoi cell: the set of
vertices closest to her than to another player. Closest to more than one player,
a boundary vertex contributes uniformly to the utilities of its closest players; so,
it needs to be taken into account. (The (zero-measure) boundary points in a
Hotelling game and can be discarded.)

In a Nash equilibrium [13,14], no player can unilaterally increase her utility by
switching to another vertex. So, existence of Nash equilibria is contingent upon
enumeration properties of Voronoi cells. Hence, explicit enumeration of Voronoi
cells manifests as a combinatorial bottleneck to identifying Nash equilibria, even
if the locations of the players are given. Is this bottleneck inherent?
It is NP-complete to decide the existence of a Nash equilibrium for an arbitrary
Voronoi game 〈G, [κ]〉 [3, Section 4]. (For a constant κ, the decision problem is
in P through exhaustive search.) A simple counterexample was presented of a
(not vertex-transitive) graph with no Nash equilibrium for κ = 2 [3, Section 4].
Subsequent work [12] provided combinatorial characterizations of Nash equilibria
for rings, determining the ring size allowing for a Nash equilibrium.

Zhao et al. [15] proposed recently the isolation game on an arbitrary met-
ric space as a generalization of the Voronoi game. Several results on the Nash
equilibria associated with isolation games were shown in [15], and later in [2].
Here is our motivation in two sentences: How easily would transitivity enable by-
passing the explicit enumeration of Voronoi cells? What are the broadest classes
of (transitive) graphs for which transitivity would so succeed for a given number
of players? Hereby, we embark on the broad class of vertex-transitive graphs,
which ”look” the same from each vertex. However, we shall focus on restricted
classes of vertex-transitive graphs. To start with, in a generously vertex-transitive
graph, an arbitrary pair of vertices can be swapped (cf. [5, Section 12.1] or [8, Sec-
tion 4.3]). Although there are examples of vertex-transitive graphs that are not
generously vertex-transitive (e.g., the cube-connected-cycles [11, Section 3.2.1]),
the class of generously vertex-transitive graphs includes a sufficiently rich sub-
class: a friendly graph is a generously vertex-transitive graph where, in addition,
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every vertex is on some shortest path between an antipodal pair of vertices. Our
prime example of a friendly graph is the d-dimensional, bipartite torus Td, which
encompasses the d-dimensional hypercube Hd as a special case (Lemma 1). Yet,
we identify a special subclass of the Johnson graphs [6, Section 1.6] as another
example of a friendly graph (Lemma 2).

In this endeavor, we seek to exploit the algebraic and combinatorial structure
of friendly graphs in devising techniques to compare the cardinalities of Voronoi
cells without explicitly enumerating them; such techniques will allow establishing
the existence of Nash equilibria by bypassing explicit enumeration. This idea is
naturally inspired from the technique of bijective proofs in Combinatorics (see, for
example, [4, Section 2] and references therein), which shows that two (finite) sets
have the same cardinality by providing a bijection between them. In particular,
we shall resort to automorphisms of friendly graphs.
Such resorting suffices to settle the case of generously vertex-transitive graphs
with κ = 2. Specifically, we prove that every location for the two players yields a
Nash equilibrium for a generously vertex-transitive graph (Proposition 3). Unfor-
tunately, this simple idea may not extend beyond generously vertex-transitive
graphs in a general way: we prove that some particular vertex-transitive but
not generously vertex-transitive graph, namely the cube-connected-cycles, has
no Nash equilibrium for κ = 2. This fact follows immediately from a general
necessary condition we establish for any vertex-transitive graph to admit a Nash
equilibrium: There is a pair of vertices to locate the two players so that they re-
ceive different utilities (Proposition 4). This counterexample extends the earlier
one of Dürr and Thang [3, Section 4].

We have been unable to go beyond the case κ = 2 without assuming some
additional structure on the graph G. Towards this end, we establish the (perhaps
surprising) Two-Guards Theorem for Friendly Graphs concerning the case κ = 3
(Theorem 6): If two of the players are located at an antipodal pair of vertices

in a friendly graph G, the third player receives a utility of |V(G)|
4 + |Ω|

12 , where
Ω denotes the intersection of the three Voronoi cells. For a bipartite friendly
graph with odd diameter, the Two-Guards Theorem for Friendly Graphs has an
interesting extension: independently of her location, the third player receives

a fixed utility of |V(G)|
4 (Corollary 7). So, a corresponding paradigm emerges

for establishing the existence of a Nash equilibrium: locate two of players at an
antipodal pair and prove that none of them can unilaterally improve.

Through this paradigm, we have been able to bypass explicit enumeration for
the case κ = 4. Assuming that colocation of players is allowed, we establish,
through a simple proof, the existence of a Nash equilibrium for (i) an arbitrary
friendly graph with κ = 4 (Theorem 8). However, forbidding colocation has
required (still for κ = 4) the additional assumption that (ii) the friendly graph
is bipartite and has odd diameter (Theorem 9); the proof is more challenging and
uses suitable automorphisms. The key idea for the proofs of both results has been
that when one of the four players deviates, there still remain two players located
at an antipodal pair of vertices; in turn, this allows applying the Two-Guards
Theorem for Friendly Graphs and its extension.
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For the case κ = 3, we have developed techniques for the explicit enumeration
of Voronoi cells, which make the most technically challenging part of this work.
These enumeration techniques have enabled settling the existence of a Nash
equilirium in the following special cases: (iii) The 2-dimensional torus T2 with
odd diameter

∑
j∈[2] pj (Theorem 10), and (iv) the hypercube Hd with odd

d (Theorem 17); for the proof of (iv), we have derived explicit combinatorial
formulas (as nested sums of binomial coefficients) for the utilities of three players
located arbitrarily in the hypercube Hd. Although the hypercube Hd is a special
case of the torus Td, these two existence results are incomparable: (iv) applies
to the hypercube Hd with odd d, while (iii) applies to the torus Td with d = 2.

To complement the existence results for κ = 3 in (iii) and (iv), we have carried
out an extensive set of experiments. Their results provide strong evidence that
there is no Nash equilibrium for the cases of (v) the 2-dimensional torus T2 with
even diameter

∑
j∈[2] pj , and (vi) the hypercube Hd with even d; so, they suggest

that the assumptions made for (iii) and (iv) are essential.

2 Vertex-Transitive Graphs

We shall consider a simple, connected and undirected graph G = 〈V(G),E(G)〉.
A path in G is a sequence v0, v1, . . . , v� of vertices such that for each index
i ∈ [�], {vi−1, vi} ∈ E(G); the length of the path is the number � of its edges.
A cycle is a path v0, v1, . . . , v� with v� = v0. For a pair of vertices u, v ∈ V(G),
the distance between u and v, denoted as distG(u, v) (or just dist(u, v)) is the
length of the shortest path between u and v. The diameter of G is given
by diam(G) = maxu,v∈V(G) dist(u, v). Say that the pair of vertices u, v ∈ V(G)
is antipodal if dist(u, v) = diam(G); so, u (resp., v) is an antipode to v
(resp., u). For a set of vertices V′ ⊆ V(G), denote Ω(V′) = {u ∈ V(G) |
the distance dist(u, v) is the same for all vertices v ∈ V′(G) }. Note that for a bi-
partite graph G, if the set V′ contains two vertices at odd distance from each
other, then Ω(V′) = ∅. Two graphs G = (V,E) and G′ = (V′,E′) are iso-
morphic if there is a bijection ϕ : V → V′ such that for each pair of ver-
tices u, v ∈ V, {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′; ϕ is an isomor-
phism from G to G′. An automorphism of G is an isomorphism from G to
itself. Note that for an automorphism ϕ, for each pair of vertices u, v ∈ V(G),
distG(u, v) = distG′(ϕ(u), ϕ(v)).

We continue with some notions of transitivity; for more details, we refer the
reader to [1, Chapters 15 & 16], [5, Section 12.1], [6, Chapter 3], [7, Section 6.1],
or [8, Section 4.3]. The graph G is vertex-transitive if for each pair of vertices
u, v ∈ V, there is an automorphism φ of G such that φ(u) = v; roughly speaking,
a vertex-transitive graph ”looks” the same from each vertex. The graph G is
generously vertex-transitive if for each pair of vertices u, v ∈ V, there is an
automorphism φ of G such that φ(u) = v and φ(v) = u; so, each pair of vertices
can be swapped. To the best of our knowledge, the following definition is new.
A graph G is friendly if the following two conditions hold:
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(F.1) G is generously vertex-transitive.
(F.2) For any pair of antipodal vertices α, β ∈ V(G), and for any arbitrary

vertex γ ∈ V(G), γ is on a shortest path between α and β.

So, each vertex in a friendly graph has a unique antipode. (In fact, vertex-
transitivity (rather than Condition (F.1)) and Condition (F.2) suffice for this.)
Fix an arbitrary integer d ≥ 2, called the dimension, and a sequence of in-
tegers p1, . . . , pd ≥ 1, called the sides. The d-dimensional bipartite torus
Td = Td[2p1, . . . , 2pd] is the graph Td with V(Td) = {0, 1, . . . , 2p1 − 1} × . . . ×
{0, 1, . . . , 2pd − 1} and E(Td) consists of those edges {α, β} such that α and β
differ in exactly one component j ∈ [d] and |αj−βj| ≡ 1 (mod 2pj); the dimen-
sion of the edge {α, β} ∈ E(Td) is the dimension j ∈ [d] in which α and β differ.
Note that the bipartite graph Td is the cartesian product of d even cycles, where
the cycle in dimension j ∈ [d] has length 2pj. We shall often abuse notation to
call each integer j ∈ [d] a dimension of the graph Td.

Fix a pair of vertices α, β ∈ V(Td). Then, dist(α, β) =
∑

j∈[d] distj(αj , βj),
where for each dimension j ∈ [d], distj(αj , βj) is the distance between the com-
ponents αj and βj on the cycle of length 2pj in dimension j. Note that a pair of
vertices α = 〈α1, . . . , αd〉 and α = 〈(α1 + p1) mod 2p1, . . . , (αd + pd) mod 2pd〉
is antipodal in the torus Td. Clearly, diam(Td) =

∑
j∈[d] pj . Since an even cycle

fulfils Condition (F.2) and Td is the cartesian product of even cycles, so does
Td. Induced by an arbitrary pair of vertices α, β ∈ V(Td) is the automorphism
Ψ : V(Td) → V(Td) where: for each vertex χ, Ψ(χ) = 〈ψ1(χ1), . . . , ψd(χd)〉,
where for each dimension j ∈ [d], ψj(χj) = (αj + βj − χj) mod (2pj); clearly,
Ψ(α) = β and Ψ(β) = α, and (F.1) follows. Hence, we obtain:

Lemma 1. The d-dimensional bipartite torus Td = Td[2p1, . . . , 2pd] is friendly.

Note that the non-bipartite torus is not friendly. As a special case, the d-
dimensional hypercube Hd is the d-dimensional torus Td[2, . . . , 2]; so, each
vertex is a binary vector α ∈ {0, 1}d, and the distance between two vertices is
the usual Hamming distance between the two binary vectors. So, the diameter of
Hd equals the dimension d. The d-dimensional cube-connected-cycles CCCd

is constructed from the d-dimensional hypercube Hd (cf. [11, Section 3.2.1]). Note
that CCCd fails Condition (F.2) in the definition of friendly graphs. We will later
conclude that CCCd fails also Condition (F.1). Since it is vertex-transitive, gen-
erously vertex-transitive graphs are a strict subset of vertex-transitive graphs.

Let ν, k and � be fixed positive integers with ν ≥ k ≥ �; let U be a fixed
ground set of size ν. Define the graph J(ν, k, �) as follows (cf. [6, Section 1.6]).
The vertices of J(ν, k, �) are the subsets of U with size k; two subsets are adjacent
if their intersection has size �. If ϕ is a permutation of U and S ⊆ U , then define
ϕ(S) = {ϕ(s) | s ∈ S}. Clearly, each permutation of U determines a permutation
of the subsets of U , and in particular a permutation of the subsets with size k.
If S, T ⊆ U , then |S ∩T | = |ϕ(S)∩ϕ(T )|. So, ϕ is an automorphism of J(ν, k, �).
For ν ≥ 2k, the graph J(ν, k, k − 1) is known as a Johnson graph. We prove:

Lemma 2. The graph J(ν, k, �) is generously vertex-transitive for all ν ≥ k ≥ �.
It is friendly if ν = 2k and � = k − 1.
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3 Voronoi Games

Fix any integer κ ≥ 2; denote [κ] = {1, . . . , κ}. The Voronoi game 〈G, [κ]〉 is
the strategic game 〈[κ], {Si}i∈[κ], {Ui}i∈[κ]〉, where for each player i ∈ [κ], (i)
Si = V(G) and (ii) for each profile s ∈ S1 × . . .× Sκ, the utility of player i in
the profile s is given by Ui(s) =

∑
v∈Vori(s)

1
μv(s) , where the Voronoi cell of

player i ∈ [κ] in the profile s is the set

Vori(s) = {v ∈ V(G) | dist(si, v) ≤ dist(si′ , v) for each player i′ ∈ [κ]} ,

and the multiplicity of vertex v ∈ V(G) in the profile s is the integer μv(s) =
|{i′ ∈ [κ] | v ∈ Vori′(s)}|. Clearly, the Voronoi game 〈G, [κ]〉 is constant-sum.

For a profile s and a player i ∈ [κ], s−i ⊕ v denotes the profile obtained by
replacing vertex si in s with vertex v. Say that s is a Nash equilibrium [13,14]
if for each player i ∈ [κ], for each vertex v ∈ V(G), Ui(s) ≥ Ui(s−i ⊕ v).
The support of the profile s is the set support(s) = {si | i ∈ [κ]}, the set of
vertices chosen by the players. Given a profile s, an automorphism φ of G maps
each strategy si with i ∈ [κ] to the strategy φ(si); so, φ induces an image
profile φ(s) = 〈φ(s1), . . . , φ(sκ)〉. Say that profiles s and t are equivalent if
there is an automorphism φ of G such that t = φ(s). We observe that for a pair
of equivalent profiles s and t, and for each player i ∈ [κ], Ui(s) = Ui(t).

Given a profile s, an automorphism φ of G induces an image support
φ(support(s)) = support(φ(s)). A pair of players i, i′ ∈ [κ] is symmetric for
the profile s if there is an automorphism φ of G such that (i) φ(support(s)) =
support(s), and (ii) φ(si) = si′ . Say that s is colocational if there is a pair of
distinct players i, i′ ∈ [3] such that si = si′ ; say that s is balanced if for each
pair of vertices u, v ∈ V(G), |{i ∈ [κ] | si = u}| = |{i ∈ [κ] | si = v}|. (Note
that a non-colocational profile is balanced.) We observe that for a symmetric
pair of players i, i′ ∈ [κ] for the balanced profile s, Ui(s) = Ui′(s). The profile s
is symmetric if each pair of players i, i′ ∈ [κ] is symmetric for s; then, clearly,
for any pair of players i, i′ ∈ [κ], Ui(s) = Ui′(s). The profile s is antipodal if its
support includes an antipodal pair of vertices.

4 Two Players

For the case κ = 2, we show:

Proposition 3. Assume that G is generously vertex-transitive and κ = 2, and

fix an arbitrary profile s. Then, s is a Nash equilibrium with U1(s) = U2(s) = |V|
2 .

Proof. Since G is generously vertex-transitive, it follows that s is symmetric.

Hence, U1(s) = U2(s) = |V|
2 . Fix now any player i ∈ [2] and a vertex u ∈ V .

Since G is generously vertex-transitive, it follows that s−i ⊕ u is symmetric.
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Hence, Ui(s−i ⊕ u) = U[2]\{i}(s−i ⊕ u) = |V|
2 . So, Ui(s−i ⊕ u) = U1(s). Since i

was chosen arbitrarily, it follows that s is a Nash equilibrium. �

Compare Proposition 3 to a corresponding result for Hotelling games on a (fi-
nite) line segment with two players: there is only one Nash equilibrium where
both players are located in the middle of the line segment and receive the same
utility [9]. This result confirms to the Principle of Minimum Differentiation [9]
(for Hotelling games): in a Nash equilibrium, players must be indifferent. Since
all vertices are indifferent in a vertex-transitive graph, Lemma 3 confirms to the
analog of the principle for Voronoi games. We next show:

Proposition 4. Assume that G is vertex-transitive and κ = 2. Assume that
there are vertices α and β such that U1(〈α, β〉) �= U2(〈α, β〉). Then, the Voronoi
game 〈G, [2]〉 has no Nash equiibrium.

Proof. Assume, without loss of generality, that U1(〈α, β〉) < U2(〈α, β〉). Consider
an arbitrary profile 〈γ, δ〉; we shall prove that 〈γ, δ〉 is not a Nash equilibrium.

1. Assume first that U1(〈γ, δ〉) �= U2(〈γ, δ〉). Without loss of generality, take

that U1(〈γ, δ〉) > U2(〈γ, δ〉). So, U2(〈γ, δ〉) < V(G)
2 . But, U2(〈γ, γ〉) = V(G)

2 ,
and player 2 improves by switching to γ.

2. Assume now that U1(〈γ, δ〉) = U2(〈γ, δ〉); so, U2(〈γ, δ〉) = V(G)
2 . Since G is

vertex-transitive, there is an automorphism ψ of G with ψ(α) = γ. Then,
U2(〈γ, ψ(β)〉) = U2(〈ψ(α), ψ(β)〉) = U2(〈α, β〉) > U1(〈α, β〉) =

U1(〈ψ(α), ψ(β)〉) = U1(〈γ, ψ(β)〉). So, U2(〈γ, ψ(β)〉) > V(G)
2 , and player 2

improves by switching to ψ(β).

Hence, the profile 〈γ, δ〉 is not a Nash equilibrium, as needed. �

We now use Proposition 4 to show that the Voronoi game 〈CCC3, [2]〉 has no Nash
equilibrium. By Proposition 3, the cube-connected cycles CCCd is not generously
vertex-transitive (in general). So, an impossibility result in Algebraic Graph
Theory is concluded from an impossibility result about Nash equilibria.

5 Two-Guards Theorems

For a profile 〈α, β, γ〉. For each index � ∈ {0, 1, 2}, define the sets

A�(〈α, β, γ〉) = {δ ∈ V(G) | distG(δ, γ) ∼� distG(δ, α)} ,
B�(〈α, β, γ〉) = {δ ∈ V(G) | distG(δ, γ) ∼� distG(δ, β)} ,

where ∼0 is <, ∼1 is =, and ∼2 is >. Clearly, A0, A1 and A2 (resp. B0, B1 and
B2) partition V(G). So, A0 (resp., B0) contains all vertices that are closer to γ
than to α (resp., than to β); A1 (resp., B1) contains all vertices that are equally
close to each of α and γ (resp., to each of β and γ); A2 (resp., B2) contains all
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vertices that are closer to α (resp., to β) than to γ. For each index � ∈ {0, 1, 2},
we shall use the shorter notations A� and B� for A�(〈α, β, γ〉) and B�(〈α, β, γ〉),
respectively, when the profile 〈α, β, γ〉) is clear from context. The sets A� and
B�, with � ∈ {0, 1, 2} determine the utility of player 3 in the profile 〈α, β, γ〉 as

U3(〈α, β, γ〉) = |A0 ∩ B0|+
1
2
|A0 ∩ B1|+

1
2
|A1 ∩ B0|+

1
3
|A1 ∩ B1| .

We first prove:

Lemma 5. For any antipodal pair of vertices α and β, and for any arbitrary
vertex γ in a friendly graph G, consider an automorphism Φ of G such that
Φ(β) = γ and Φ(γ) = β. Then, for each vertex χ ∈ V(G):

(C.1) For each index � ∈ {0, 1, 2}, χ ∈ A� if and only if Φ(χ) ∈ A�.
(C.2) χ ∈ B0 if and only if Φ(χ) ∈ B2 (and χ ∈ B2 if and only if Φ(χ) ∈

B0).
(C.3) χ ∈ B1 if and only if Φ(χ) ∈ B1

The fact that Φ is an automorphism suffices for Conditions (C.2) and (C.3); the
assumptions that (i) the pair α, β is antipodal, and (ii) G is friendly are only
needed for Condition (C.1). We now show:

Theorem 6. Fix an antipodal pair of vertices α and β, and an arbitrary vertex
γ in a friendly graph G. Then, U3(〈α, β, γ〉) = 1

4 |V(G)| + 1
12 |Ω({α, β, γ})|.

Proof. By Lemma 5 (Conditions (C.1) and (C.2)), it follows that for each index
� ∈ {0, 1}, for each vertex χ ∈ V(G), χ ∈ A� ∩ B0 if and only if Φ(χ) ∈ A� ∩ B2.
Since the function Φ is a bijection, the restriction Φ : A� ∩ B0 → A� ∩ B2 is a
bijection. Hence, |A� ∩ B0| = |A� ∩ B2|. It follows that for each index � ∈ {0, 1},
|A�| = |A� ∩ B0|+ |A� ∩ B1|+ |A� ∩ B2| = 2 |A� ∩ B0|+ |A� ∩ B1|. Hence,

U3(〈α, β, γ〉) =
1
2

(
|A0|+

1
2
|A1|
)

+
1
12
|A1 ∩ B1| .

Consider the Voronoi game 〈G, [2]〉, with players 1 and 3. Then, U3(〈α, γ〉) =
|A0| + 1

2 |A1|. By Lemma 3, U3(〈α, γ〉) = 1
2 |V(G)|. Hence, |A0| + 1

2 |A1| =
1
2 |V(G)|, so that U3(〈α, β, γ〉) = 1

4 |V(G)| + 1
12 |Ω({α, β, γ})|, as needed. �

An immediate implication of Theorem 6 for a bipartite friendly graph G with
odd diameter will now follow. Since distG(α, β) is odd for an arbitrary antipodal
pair α and β, Ω({α, β, γ}) = ∅ for an arbitrary vertex γ; hence, we obtain:

Corollary 7. Fix an antipodal pair of vertices α and β, and an arbitrary ver-
tex γ in a bipartite friendly graph G with odd diameter. Then, U3(〈α, β, γ〉) =
1
4 |V(G)|.
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6 Four Players

With Colocation. We show:

Theorem 8. Consider a friendly graph G. Then, the Voronoi game 〈G, [4]〉 has
a Nash equilibrium. Specifically, for any arbitrary antipodal pair α, β, the profile
s = 〈α, α, β, β〉 is a Nash equilibrium.

Proof. Consider a pair of players i ∈ {1, 2} and i′ ∈ {3, 4}; so, si = α and si′ = β.
Since G is doubly vertex-transitive, there is an automorphism φ of G such that
φ(si) = si′ and φ(si′ ) = si. Note that φ(support(s)) = support(s). Hence, the
pair of players i, i′ is symmetric for s. Since s is balanced, Ui(s) = Ui′(s). Hence,

Ui(〈α, α, β, β〉) = |V(G)|
4 for each player i ∈ [4]. We now prove that no player

i ∈ [4] improves by switching to vertex α′. Without loss of generaity, fix i = 1.
Consider the Voronoi game 〈G, [3]〉 with players 1, 2 and 3. By Theorem 7,

U1(〈α′, α, β〉) = |V(G)|
4 + |Ω({α′, α, β})|

12 . The utility of player 1 decreases from
〈α′, α, β〉 to 〈α′, α, β, β〉 at least due to the fact that the vertices in Ω({α′, α, β})
will be shared with player 4 (additionally to the players 1, 2 and 3); this partial

decrease is |Ω({α′, α, β})|
3 − |Ω({α′, α, β})|

4 = |Ω({α′, α, β})|
12 .

So, U1(〈α′, α, β, β〉) ≤ U1(〈α′, α, β〉)− |Ω({α′, α, β})|
12 = |V(G)|

4 , as needed. �

Without Colocation. We show:

Theorem 9. Consider a bipartite friendly graph G with odd diameter. Then, the
Voronoi game 〈G, [4]〉 has a Nash equilibrium without colocation. Specifically, for
any aribtrary pair of two distinct antipodal pairs α, β and γ, δ, respectively, the
profile 〈α, β, γ, δ〉 is a Nash equilibrium.

Proof. Consider first the bijection ψ : V(G) → V(G) which maps each vertex to
its unique antipode. (Since G is friendly, such a bijection exists.) So, ψ(α) = β
and ψ(γ) = δ; also, ψ2 = ι. It is simpe to verify that ψ is an automorphism of
G:

Since G is generously vertex-transitive, there is an automorphism ϕ of G such
that ϕ(α) = γ and ϕ(γ) = α. Since ϕ preserves distances, it follows that ϕ(β) =
δ and ϕ(δ) = β. Note that each pair of players is symmetric for the profile
〈α, β, γ, δ〉 due to some automorphism from ψ, ϕ, ϕψ and ψϕ; hence, the profile
is symmetric. So, it follows that for each player i ∈ [4], Ui(〈α, β, γ, δ〉) = 1

4 |V(G)|.
To prove that the symmetric profile 〈α, β, γ, δ〉 is a Nash equilibrium, we only

have to prove that one of the players cannot improve by switching. So, assume
that player 3 switches to vertex γ̂. Consider the Voronoi game 〈Td, [3]〉 with
players 1, 2 and 3. Since the pair α and β is antipodal, Corollary 7 implies that
U3(〈α, β, γ̂〉) = 1

4 |V(G)|. Clearly, U3(〈α, β, γ̂, δ〉) ≤ U3(〈α, β, γ̂〉). It follows that

U3(〈α, β, γ̂, δ〉) ≤ 1
4 |V(G)|. So, U3(〈α, β, γ̂, δ〉) ≤ U3(〈α, β, γ, δ〉), as needed. �
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7 Three Players

A profile 〈α, β, γ〉 is linear if dist(α, β)+dist(β, γ) = dist(α, γ); then, β is called
the middle vertex and player 2 is called the middle player.
Tori with Odd Diameter. We show:

Theorem 10. Consider the 2-dimensional torus T2 with odd diameter
∑

j∈[2] pj.
Then, the Voronoi game 〈T2, [3]〉 has a Nash equilibrium.

Proof. Assume, without loss of generality, that p1 > p2. Set α = 〈0, 0〉, β = 〈1, 0〉
and γ = 〈p1, p2〉. We will prove that the profile 〈α, β, γ〉 is a Nash equilibrium.
Note that α and γ are an antipodal pair of vertices. By Lemma 1 and Corollary 7,
U2(〈α, δ, γ〉) = 1

4
∏

j∈[d](2pj) for any vertex δ ∈ V(Td); thus, we only have to
prove that neither player 1 nor 3 can improve her utility by switching. We prove:

Lemma 11 (Player 3 Cannot Improve). (1) U3(〈α, β, γ〉) = 2p1p2− p2. (2)
For each vertex γ̂ ∈ V(T2), U3(〈α, β, γ̂〉) ≤ 2p1p2 − p2.

Lemma 12 (Player 1 Cannot Improve). (1) U1(〈α, β, γ〉) = p1p2 + p2. (2)
For each vertex α̂ ∈ V(T2), U1(〈α̂, β, γ〉) ≤ p1p2 + p2.

For Lemma 12, the proof of (1) uses Lemma 11; the proof of (2) uses ideas from
the proof of Theorem 6. �

Hypercubes. We finally consider the Voronoi game 〈Hd, [3]〉. Consider a profile
s = 〈α1, . . . , ακ〉 for the Voronoi game 〈Hd, [κ]〉. Say that dimension j ∈ [d] is
irrelevant for the profile s if bit j is the same in all binary words αi, with
i ∈ [κ]. Denote as irr(s) the number of irrelevant dimensions for s; clearly, 0 ≤
irr(s) ≤ d. The profile s is irreducible if it has no irrelevant dimension. Clearly,
an antipodal profile is irreducible. We continue with two observations.

Lemma 13. Consider an antipodal pair of vertices α and β for the hypercube
Hd. Then, for any vertex γ ∈ V(Hd), the profile 〈α, β, γ〉 is linear.

Lemma 14. Fix an irreducible profile 〈α, β, γ〉 for the Voronoi game 〈Hd, [3]〉.
Then, (i) dist(α, β) + dist(β, γ) + dist(α, γ) = 2d, and (ii) there is an equivalent
profile 〈0d, 1p+q0r, 1p0q1r〉, for some suitable triple of integers p, q, r ∈ N.

We first determine the utility of an arbitrary player in an irreducible profile. For
each index i ∈ {0, 1}, define the combinatorial function Mi : N× N → N with

Mi(x, t) =

⎧⎨⎩
∑ x−1

2

j= x+1
2 −t

(
x
j

)
+ i

2

(
x

x−1
2 −t

)
, if x is odd∑ x

2 −1
j= x

2 +1−t

(
x
j

)
+ 1−i

2

(
x

x
2 −t

)
+ 1

2

(
x
x
2

)
, if x is even

.

We now determine the utility of an arbitrary player in an irreducible profile.
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Theorem 15. Fix integers x, y, z ∈ N with x + y + z = d, and consider the
irreducible profile s = 〈α, β, γ〉 with α = 0d, β = 1x0y1z and γ = 1x+y0z. Then,

U2(s) =
1
4

2d +⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
∑

t∈[ z
2 ]

(
z

z
2−t

)
M0(x, t)M0(y, t) , (x or y is odd), z is even

1
12

(
x
x
2

)(
y
y
2

)(
z
z
2

)
+ 1

6

∑
t∈[ z

2 ]

(
x

x
2 −t

)(
y

y
2−t

)(
z

z
2−t

)
+2
∑

t∈[ z
2 ]

(
z

z
2−t

)
M0(x, t)M0(y, t) , x, y and z are even

2
∑ z−1

2
t=0

(
z

z−1
2 −t

)
M1(x, t)M1(y, t) , (x or y is even), z is odd

1
6

∑z−1
t=0

(
x

x−1
2 −t

)( y
y−1
2 −t

)(
z

z−1
2 −t

)
+2
∑ z−1

2
t=0

(
z

z−1
2 −t

)
M1(x, t)M1(y, t) x, y and z are odd

Theorem 15 immediately implies:

Corollary 16. Consider the Voronoi game 〈Hd, [3]〉. Fix an antipodal profile
〈α, β, γ〉, with dist(α, γ) = d, dist(α, β) = p and dist(β, γ) = q. Then,

U2(〈α, β, γ〉) =
1
4

2d +

{
0 p or q is odd
1
12
(

p
p
2

) (
q
q
2

)
, p and q are even .

We now show:

Theorem 17. For any odd integer d, the Voronoi game 〈Hd, [3]〉 has a Nash
equilibrium (specifically, any antipodal profile 〈α, β, γ〉 with distHd

(α, β) = 1).

Proof. Fix such an antipodal profile 〈α, β, γ〉. By Lemma 13, 〈α, β, γ〉 is linear;
so, dist(β, γ) = d − 1. Since d is odd, Corollary 7 implies that for any vertex
χ ∈ V(Hd), U2(〈α, χ, γ) = 1

4 2d; so, player 2 cannot improve her utility U2(α, β, γ)
by switching. So, in order to prove that the profile 〈α, β, γ〉 is a Nash equilibrium,
we only need to consider players 1 and 3. By Lemma 14 (and its proof), there
is an equivalent profile 〈α, β, γ〉 with α = 0d, β = 1p+q0r and γ = 1p0q1r, where
p+q = distHd

(α, β) = 1, p+r = distHd
(α, γ) = d, and q+r = distHd

(α, γ) = d−1.
It follows that p = 1, q = 0 and r = d − 1, so that α = 0d, β = 10d−1 and
γ = 1d. We use an appropriate automorphism and Theorem 15 to get that
U1(〈0d, 10d−1, 1d〉) = 1

4 2d + 1
2
(d−1

d−1
2

)
. By the constant-sum property and the

inequaity
(d−1

d−1
2

)
≤ 2d−1, we get that U3(〈0d, 10d−1, 1d〉) ≥ 1

4 2d. We now use

Corollary 16 to prove that 〈0d, 10d−1, 1d〉 is a Nash equilibrium. �

8 Open Problems

The full power of Two-Guards-like theorems is yet to be realized. Are there
similar theorems when either G comes from some broader class encompassing
the friendly graphs, or κ > 3? More concretely, it is very interesting to generalize
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Theorem 15 and find combinatorial formulas for the three players’ utilities when
G = Td; this may enable generalizing Theorem 17 to the torus Td (with odd d).
It is also interesting to study the uniqueness of Nash equilibria; in particular, we
know no non-antipodal Nash equilibrium on some friendly graph G with κ ≥ 3.

Beyond Theorems 8 and 9, nothing is known for the case κ ≥ 4. (For example,
we do not know if these resuts can be extended to broader classes encompassing
friendly graphs.) We invite the reader to prove or disprove the following con-
jectures: (1) The game 〈Hd, [κ]〉 with odd diameter d has a Nash equilibrium,
whatever κ is. (2) The game 〈Hd, [κ]〉 with even κ has a Nash equilibrium, what-
ever d is. (3) The game 〈Hd, [κ]〉 with even d and odd κ has no Nash equilibrium.
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Abstract. We study multiprocessor scheduling games with setup times
on identical machines. Given a set of scheduling policies (coordination
mechanism) on the machines, each out of n players chooses a machine to
assign his owned job to, so as to minimize his individual completion time.
Each job has a processing length and is of a certain type. Same-type jobs
incur a setup overhead to the machine they are assigned to. We study
the Price of Anarchy with respect to the makespan of stable assignments,
that are pure Nash or strong equilibria for the underlying strategic game.
We study in detail the performance of a well established preemptive
scheduling mechanism. In an effort to improve over its performance, we
introduce a class of mechanisms with certain properties, for which we
examine existence of pure Nash and strong equilibria. We identify their
performance limitations, and analyze an optimum mechanism out of this
class. Finally, we point out several interesting open problems.

1 Introduction

We study multiprocessor job scheduling games with setup times, where each out
of n players assigns his owned job for execution to one out of m machines. Jobs
are of certain types. On any machine, jobs of a given type may be executed only
after a type-dependent preprocessing (performed once for all same-type jobs)
called setup. Each machine schedules its assigned jobs according to a scheduling
policy (algorithm). Given the deployed scheduling policies, players assign their
jobs selfishly, to minimize their individual completion times. We examine the
impact of selfish behavior on the overall (social) cost of stable assignments and
how this can be alleviated, by deployment of appropriate scheduling policies on
the machines. Stable assignments are pure Nash equilibria (PNE) of an under-
lying strategic game, or strong equilibria (SE); the latter extend PNE by being
resilient to coalitional deviations [1]. The overall cost of stable assignments is
measured by the latest completion time among all players, known as makespan.
System performance degradation due to selfish behavior is measured by the
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Price of Anarchy, the worst-case ratio of the makespan of the most expensive
equilibrium, relative to the optimum achievable makespan [2].

Our work is motivated by concerns in performance optimization of large-
scale distributed systems (computational grids, P2P file sharing systems etc.).
In these systems autonomous entities (end-users, communities, enterprises) com-
pete strategically for resources (distributed storage, processing power, band-
width) to increase their individual profit. Setup overheads in these systems may
well dominate the net processing load of tasks assigned by users; consider e.g.
loading application environments, booting operating systems, establishing QoS
for network connections. Scheduling with setup times also provides for model-
ing another very natural situation; the case where many autonomous users may
benefit from the output of an identical process. In this case users may only care
for the output of the setup (which takes non-negligible time) but their jobs may
have virtually zero load for the machine. As an example, consider the setup cor-
responding to computation and writing of output to a remote file which users
simply read. Then the machine may also have to deal obliviously of users’ pres-
ence; only one of them may actually declare his presence by requesting execution
of the setup, whereas the rest simply benefit from the request.

The vast number of resources and users in modern distributed environments
renders centralized deployment of global resource management policies expensive
and inefficient; a central authority may only specify local operational rules per
resource, to coordinate users towards globally efficient system utilization. The
deployment of such local rules was formalized in [3], under the notion of coor-
dination mechanisms and demonstrated for scheduling and network congestion
games. In scheduling, local policies are scheduling algorithms deployed on the
machines; their set is referred to as a coordination mechanism. The policies may
be preemptive or non-preemptive, deterministic or randomized; a policy decides
the order of execution of assigned jobs on each machine and may also introduce
delays in a systematic manner. A coordination mechanism induces a strategic
game, by affecting the players’ completion times. The purpose of designing coor-
dination mechanisms is to induce a strategic game that has stable assignments
(in our case, PNE or SE outcomes) with low PoA, that can be found efficiently.

A series of works concerned the study of strategic games induced by well
established and novel scheduling policies applied on basic scheduling settings [2,
4, 3, 5, 6, 7, 8, 9, 10]. The PoA of strong equilibria (SPoA) was first studied for
selfish scheduling games in [11] under the preemptive mechanism introduced
in [2]. We give a brief account of these works below, in section 2. Our focus is
on strongly local scheduling policies under which, the completion time of a job
j on a machine i is solely dependent on the parameters (with respect to i) of
jobs assigned to i. It is called simply local if the completion time of j depends
on parameters of jobs assigned to i across all machines. We investigate in detail
the performance of strongly local mechanisms that can handle the challenges
outlined above.

Contribution. We analyze the performance of deterministic strongly local co-
ordination mechanisms for selfish scheduling with setup times, on identical
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machines. We give a detailed analysis of a preemptive scheduling mechanism, re-
ferred to as Makespan (section 4), which was introduced in [2] and studied subse-
quently in [7,11,12]. We show existence of SE for the game induced by Makespan.
If k denotes the number of different types of jobs, the PoA of Makespan ism, when
m ≤ k and k + 1 − ε, for 1 > ε ≥ 1/m when m > k. We prove SPoA = 3/2 for
m = 2 and 2 form ≥ 3. In section 5 we study a class of deterministic strongly local
mechanisms, referred to as type ordering mechanisms, that can schedule jobs obliv-
iously of the number of players with zero processing lengths. We prove that any
deterministic type ordering mechanism induces a strategic game that has PNE,
for any number of machines, and SE for 2 machines. We prove a lower bound of
m+1

2 for the PoA of type ordering mechanisms, and argue that other intuitive solu-
tions are no more powerful. In section 6 we analyze the performance of an optimal
type ordering mechanism. It achieves a PoA of m+1

2 , when m ≤ k, and k+3
2 − ε

(ε = k
m , when m is even and ε = k−1

m−1 otherwise) when m > k. We conclude with
challenging open problems in section 7.

2 Related Work

Performance of coordination mechanisms with respect to Nash equilibria in
multi-processor scheduling games has been the subject of several recent works [2,
4,3,7,6,5,11,12,8,9]. The preemptive mechanism known as Makespan was intro-
duced and studied in [2] in the scheduling setting of uniformly related machines;
each machine i has speed vi and each job j has processing length �j, so that the
time needed by i to execute j is �j/vi. The Makespan mechanism schedules jobs
in parallel on each machine, so that they all have the same completion time.
Makespan was shown to have PoA = Θ( log m

log log m ) on uniformly related machines
in [4, 5] (see also [13]). In case of identical machines, all speeds are equal and
the PoA of PNE is known to be 2m

m+1 by the works of [14, 15]. This holds also
for the (S)PoA of strong equilibria, which were shown to exist in any machine
model [11]. [12] studied the SPoA as a function of the number of different speeds.

Scheduling games in unrelated machines were additionally studied in [7,8, 9].
In the unrelated machines model a job’s processing time depends solely on the
machine it is assigned to. In [7], bounds on the PoA of well known deterministic
and randomized scheduling policies were studied for unrelated machines. A wide
class of non-preemptive strongly local scheduling policies was shown in [8] to have
PoA ≥ m

2 . This class contains well known policies such as “longest” and “short-
est job first”. The authors designed a simply local mechanism that induces PNE
with PoA = O(log2m). A local mechanism with PNE having PoA = O(logm)
was given recently in [9]. Deterministic and randomized non-clairvoyant mecha-
nisms for scheduling on unrelated machines were studied in [10].

Preemptive multi-processor scheduling with setup times [16] (see also [17]
[SS6]) requires a minimum makespan preemptive schedule, such that the setup
is executed by a machine between execution of two job portions of different type.
The best known approximation algorithm has a performance guarantee of 4

3 [18]
(see [19] for a previous 3

2 factor). For equal setup times a PTAS is given in [18]
and an FPTAS for 2 machines in [20]. See [21] for a slightly different version.
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3 Definitions

We consider m identical machines, indexed by i ∈ M = {1, . . . ,m} and n jobs
j ∈ J = {1, . . .n}, each owned by a self-interested player. We use interchange-
ably the terms job and player. Every job j has a type tj ∈ U , where U is the
universe of all possible types 1. The subset of U corresponding to the set of jobs
J is denoted by T = {tj |j ∈ J } and define k = |T |. We refer to any specific
type by θ. Each job j ∈ J and each type θ ∈ U are respectively associated to
processing length �j ≥ 0 and setup time w(θ) ≥ 0. If w(θ) = 0, then �j > 0
for all j with tj = θ. Otherwise, we allow �j = 0. Agent j ∈ J chooses a strat-
egy sj ∈ M (a machine to assign his job to). A strategy profile (assignment) is
denoted by s = (s1, . . . , sn); s−j refers to s, without the strategy of j.

The cost of a player j under assignment s is cj(s), the completion time of
his job. cj(s) depends on the scheduling policy deployed on machine sj . The
completion time of machine i ∈ M under s is Ci(s) = maxj:sj=i cj(s). The social
cost function is the makespan C(s) = maxiCi(s) = maxj cj(s). We use Li(s) =∑

j:sj=i �j for the total job processing load on machine i under assignment s,
excluding setup times. Li,θ(s) =

∑
tj=θ,sj=i �j is the total processing length of

type θ assigned on machine i. Ti(s) denotes the subset of types that have jobs
on machine i under s. A scheduling policy is a scheduling algorithm. The set of
scheduling policies deployed on all machines is a coordination mechanism.

Definition 1 [1, 11]. A strategy profile s is a strong equilibrium if for every
subset of players J ⊆ J and every assignment s′ = (s−J , s

′
J), where s′j �= sj for

all j ∈ J , there is at least one player j0 ∈ J with cj0(s) ≤ cj0(s′).

The makespan of a socially optimum assignment s∗ can be lower bounded as:

(a) mC(s∗) ≥
∑

θ∈T w(θ) +
∑

j∈J �j (1)
(b) C(s∗) ≥ w(tj) + �j for any j ∈ J
(c) (k − 1)C(s∗) ≥

∑
ξ∈T \{θ}w(ξ) for any θ ∈ T

The only restriction that we impose on the scheduling policies is that the setup
of any type θ on any machine i is executed before execution of type θ jobs on i.

4 On the Makespan Mechanism

We study an adaptation of the preemptive mechanism introduced in [2] and
referred to as Makespan [7,10]. In any assignment s under Makespan it is cj(s) =
Csj (s) for every j ∈ J ; completion time of j equals completion time of the
machine that j is assigned to. Makespan schedules jobs on a machine in parallel by
usage of time multiplexing. They are broken into small pieces that are executed
in a round-robin fashion; each job is assigned a fraction of the machine’s time
proportionally to its processing length.
1 E.g. the set of application environments installed on each machine.
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Theorem 1. Strong Equilibria exist in the scheduling game with setup times,
under the Makespan mechanism.

See full version for the proof; it generalizes a related proof of theorem 3.1 in [11].
Thus, theorem 1 is valid even for uniformly related or unrelated machines.

Theorem 2. The PoA of the Makespan mechanism for the scheduling game with
setup times is m when m ≤ k, at most k + 1 − k/m when m > k and at least
k+1
1+ε for m ≥ 3k − 2 and ε = 2k−1

m−k+1 .

Proof. Casem ≤ k: The most expensive PNE s has makespanC(s) ≤
∑

θ w(θ)+∑
j �j (all jobs on one machine). By (1a), it is PoA ≤ m. For the lower bound

take k = m types of jobs, each type θ having w(θ) = 1 and containing m jobs
of zero processing length. A job of each type is assigned to each machine in s.
Then C(s) = m and s is clearly a PNE. In the social optimum s∗ each type is
assigned to a dedicated machine, thus C(s∗) = 1.

Case m > k: Assume that for the most expensive PNE s it is C(s) = C1(s).
Let x be a job of type tx = θ executed on machine 1. x cannot decrease its cost
cx(s) = C1(s) by switching to any machine i �= 1. Then C1(s) ≤ Ci(s) + �x if
θ ∈ Ti(s) or C1(s) ≤ Ci(s) + w(θ) + �x otherwise. We sum up the inequalities
over all machines, assuming that θ does not appear on α machines, and add
C1(s) to both sides to obtain mC1(s) ≤

∑m
i=1 Ci(s) + αw(θ) + (m − 1)�x ≤

m
∑

ξ∈T w(ξ) + (m− 1)�x +
∑

j∈J �j. Divide by m and rewrite it as:

C1(s) ≤
m− 1
m

( ∑
ξ∈T \{θ}

w(ξ) + w(θ) + �x
)

+
1
m

(∑
ξ∈T

w(ξ) +
∑
j∈J

�j
)

Using (1a,b,c), C(s) ≤ m−1
m ((k − 1)C(s∗) + C(s∗))+C(s∗) = (k+1− k

m)C(s∗).
For the lower bound take k types, m ≥ 3k−2, and let w(1) = 0 and w(θ) = 1

for θ ∈ {2, . . . , k}. There are k + 1 jobs of type 1 and length 1 and m−1
ε jobs

of type 1 and length ε = 2k−1
m−k+1 . Types θ ∈ {2, . . . , k} have m − 1 jobs each,

of processing length 0. A PNE s is as follows. k + 1 jobs of type 1 and length
1 are assigned to machine 1. One job from each type θ ≥ 2 is assigned to each
machine i = 2, . . . ,m. 1

ε jobs of type 1 and length ε are also assigned to each
machine i ≥ 2. Thus Ci(S) = k for i ≥ 2 and C1(s) = k+1. No job may decrease
its completion time (equal to the makespan of the machine it is assigned to) by
switching machine. In the optimum assignment s∗ assign two jobs of type 1 - with
lengths 1 and ε - to each machine i = 1 . . .k+ 1. Every machine i = k+ 2 . . . 2k,
has m − 1 jobs of type i− k, each of length 0. Every machine i = 2k + 1 . . .m,
has 1/ε+ 1 jobs of type 1, of length ε. The makespan of s∗ is 1 + ε. 	


Theorem 3. The Price of Anarchy of strong equilibria under Makespan for the
scheduling game with setup times is 2 for m ≥ 3, and 3

2 for m = 2 machines.

Proof. We give the proof for the case m ≥ 3 (the proof for m = 2 is deferred
to the full version). Let s be a SE, s∗ the socially optimum assignment, and
C(s) = C1(s). If C1(s) ≤ C(s∗) we get SPoA = 1. If C1(s) > C(s∗), there is



Selfish Scheduling with Setup Times 297

machine i �= 1 with Ci(s) ≤ C(s∗), because otherwise s would not be a SE; all
jobs would reduce their completion time by switching from s to s∗. For any job
x with sx = 1, it is cx(s) ≤ cx(s−x, i). Thus C1(s) = cx(s) ≤ Ci(s) +w(tx) + �x.
Thus C(s) = cx(s) ≤ 2C(s∗), because Ci(s) ≤ C(s∗) and (1b). For the lower
bound, take 3 machines and 4 jobs, with t1 = t2 = θ1 and t3 = t4 = θ2. Set
w(θ1) = ε, �1 = �2 = 1 and w(θ2) = 1, �3 = �4 = ε. An assignment where
jobs 1, 2 play machine 1 and jobs 3, 4 play machines 2, 3 respectively is a strong
equilibrium of makespan 2 + ε. In the social optimum jobs 3, 4 are assigned to
the same machine and 1 and 2 on dedicated machines; the makespan becomes
then 1 + 2ε. Thus SPoA ≥ 2+ε

1+2ε → 2, as ε→ 0. 	


5 Type Ordering Mechanisms

We describe a class of (deterministic) type ordering mechanisms, for batch sche-
duling of same-type jobs. Each machine i groups jobs of the same type θ, into a
batch of type θ. A type batch is executed as a whole; the setup is executed first,
followed by preemptive execution of all jobs in the batch, in a Makespan fashion.
Jobs within the same batch have equal completion times and are scheduled
preemptively in parallel. Type batches are executed serially by each machine.

Policies in type ordering mechanisms satisfy a version of the property of In-
dependence of Irrelevant Alternatives (IIA) [8]. Under the IIA property, for any
set of jobs Ji ⊆ J assigned to machine i ∈M and for any pair of types θ, θ′ ∈ U
with jobs in Ji if the θ-type batch has smaller completion time than the θ′-type
batch, then the θ batch has a smaller completion time than the θ′ batch in any
set Ji ∪ {j}, j ∈ J \ Ji. Presence of j does not affect the relative order of exe-
cution of θ and θ′ batches. The IIA property was used in [8] for proving a lower
bound on the PoA of a class of job ordering mechanisms in the context of unre-
lated machines scheduling. Type ordering policies do not introduce delays in the
execution of batches, but only decide the relative order of their execution, based
on a batch’s type index and setup time. They do not use the number of jobs
within each batch; otherwise the IIA property may not be satisfied. Job lengths
are used only for Makespan-wise scheduling within batches. Hence type ordering
mechanisms function obliviously of “hidden” players with zero job lengths.

We prove next existence of PNE for any number of machines, and of SE for
m = 2 under type ordering mechanisms. An algorithm for finding PNE follows.
Let o(i) be the ordering of types on machine i, and O = {o(i)|i ∈M} be the set
of all orderings of the mechanism. By ≺o denote the precedence relation of types,
prescribed by o ∈ O. Let Mo be the set of machines that schedule according to
o ∈ O. Initialize o ∈ O arbitrarily, and repeat until all jobs are assigned:

1. Find the earliest type θ according to ≺o, with at least one unassigned job.
2. Let j be the largest length unassigned job with tj = θ.
3. Pick i ∈M minimizing completion time of j 2 (break ties in favor of i ∈Mo).
4. If i ∈Mo set sj = i else switch ordering o to o(i).

2 j incurs processing load w(tj) + 	j if a tj-type job is not already assigned to i.
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Theorem 4. The scheduling game with setup times has pure Nash equilibria,
under type ordering mechanisms.

Proof. The algorithm terminates in polynomial time; once a job is assigned, it is
never considered again and within every O(m+ n) iterations some job is always
assigned. For any type θ, denote by ŝθ the partial assignment up to the time
after the last job of type θ has been assigned. We show by contradiction that no
job j has incentive to deviate under an assignment s returned by the algorithm.

Assume that j does have incentive to deviate from sj , and let s′ be the re-
sulting assignment after deviation of j. At the time corresponding to the partial
assignment ŝtj , there is no type θ �= tj and machine i such that θ ∈ Ti(ŝtj ) and
tj ≺o(i) θ. If it was the case, the first job of type θ �= tj assigned to i would
have been chosen before jobs of type tj were exhausted, which contradicts step
1. of the algorithm. Thus, batches of type tj are scheduled - under ŝtj - last
on all machines with tj ∈ Ti(ŝtj ). Furthermore, if j wishes to deviate to a ma-
chine i �= sj , then cj(s) = cj(ŝtj ) > Ci(ŝtj ) + �j = cj(s′), if tj ∈ Ti(ŝtj ), and
cj(s) = cj(ŝtj ) > Ci(ŝtj ) + w(tj) + �j = cj(s′), if tj �∈ Ti(ŝtj ). Let j′ be the last
job of type tj assigned to machine sj (it may be j′ = j). Because �j′ ≤ �j , it is
also cj′ (ŝtj ) = cj(ŝtj ) > Ci(ŝtj )+ �j′ or cj′(ŝtj ) = cj(ŝtj ) > Ci(ŝtj )+w(tj′ )+ �j′

accordingly. By the time j′ was assigned, the completion time of i was at most
Ci(ŝtj ). This contradicts step 3. of the algorithm with respect to j′. 	


Note that the previous result can be easily extended to hold in the case of
uniformly related machines (to appear in the full version - see also [13]).

Theorem 5. For the scheduling game with setup times under type ordering
mechanisms, any pure Nash equilibrium is strong, when m = 2.

Proof. Assume that s is PNE, but not SE, and let J ⊆ J be a coalition of jobs
that have incentive to deviate jointly. Define J1 = {j ∈ J |sj = 1}, J2 = {j ∈
J |sj = 2}; since s is PNE, J1, J2 �= ∅. Let θi be the earliest type according to
≺o(i) with jobs in Ji and denote by J ′

i type θi jobs in Ji. Take two jobs j1 ∈ J ′
1,

j2 ∈ J ′
2, and let s′ be the resulting assignment after deviation.

CASE 1: θ1 �= θ2. Since s is a PNE, it must be θ1 ≺o(1) θ2 and θ2 ≺o(2) θ1
because, if e.g. θ2 ≺o(1) θ1, j2 would have incentive to deviate unilaterally to
machine 1, since it wishes to deviate jointly with coalition J . Hence cj2(s′) ≥
cj1(s) −

∑
j∈J′

1
�j +
∑

j∈J′
2
�j + w(θ2) if J ′

1 does not contain the entire batch of
type θ1 and cj2(s′) ≥ cj1(s)−

∑
j∈J′

1
�j−w(θ1)+

∑
j∈J′

2
�j +w(θ2) otherwise. So,

in the worst case, we get cj2(s′) ≥ cj1(s)−
∑

j∈J′
1
�j −w(θ1)+

∑
j∈J′

2
�j +w(θ2).

Similarly, cj1(s
′) ≥ cj2(s) −

∑
j∈J′

2
�j − w(θ2) +

∑
j∈J′

1
�j + w(θ1). Summing

up these two inequalities, we obtain cj2(s′) + cj1(s′) ≥ cj2(s) + cj1(s) which is
impossible since it must be cj2(s′) < cj2(s) and cj1(s′) < cj1(s).

CASE 2: θ1 = θ2. Then, in the worst case we obtain cj2(s′) = cj1(s)−
∑

j∈J′
1
�j+∑

j∈J′
2
�j and cj1(s

′) = cj2(s) −
∑

j∈J′
2
�j +
∑

j∈J′
1
�j . The rest of the proof is

similar to the previous case. 	
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For m ≥ 3, a PNE under type ordering mechanisms is not generally SE (see full
version). The following result identifies performance limitations of type ordering
mechanisms, due to lack of a priori knowledge of T ⊆ U .

Theorem 6. The Price of Anarchy of the scheduling game with setup times is
at least m+1

2 for every deterministic type ordering mechanism.

Proof. For any deterministic type ordering mechanism, assume there is a subset
T ⊆ U of k = 2m − 1 types, say T = {1, · · · , 2m − 1}, such that: all types
of T are scheduled in order of ascending index in a machines and in order of
descending index in d = m − a machines. Then, there is a family of instances
with PoA ≥ m+1

2 . Next we prove existence of T . Set w(θ) = 1 for all θ ∈ U .
When a = m or d = m, take an instance of m zero length jobs for each type
θ ∈ {1, · · · ,m}. Placing one job of each type on every machine yields a PNE
with makespan m. An assignment of makespan 1 has all same-type jobs assigned
to a dedicated machine, thus PoA ≥ m. When a ≥ 1 and d ≥ 1, the instance has:

– a jobs of zero length for each type θ ∈ {1, · · · ,m− 1}
– d jobs of zero length for each type θ ∈ {m+ 1, · · · , 2m− 1}
– m− 1 jobs of of zero length and type m
– one job of length 1 and type m
– no jobs for θ ∈ U \ T

Assign one job of type θ ∈ {1, · · · ,m − 1} on each of the a ascending type
index machines, and one job of type θ ∈ {m+ 1, · · · , 2m− 1} on each of the d
descending type index machines. Put one job of type m on every machine. This
is a PNE of makespan m+1. Placing all jobs of type θ ∈ {i, 2m− i} on machine
i yields makespan 2. Thus it is PoA ≥ m+1

2 .
We show existence of T for sufficiently large universe U . We use the fact that

any sequence of n different real numbers has a monotone (not necessarily con-
tiguous) subsequence of

√
n terms (a corollary of Theorem 4.4, page 39 in [22]).

By renaming types in U we can assume w.l.o.g. that U is ordered monotonically
(index-wise) on machine 1, and set T1 = U . Then, there is T2 ⊆ T1 such that
|T2| ≥

√
|T1| and all the types of T2 are ordered monotonically according to

index, on machines 1 and 2. After m− 1 applications of the corollary, we obtain
a set Tm ⊆ Tm−1 ⊆ · · · ⊆ T1 = U with |Tm| ≥ |U|21−m

and all its types are
scheduled monotonically to their index on every machine. We set T = Tm, and
take a universe U of types with |U| = (2m − 1)2

m−1
, to ensure existence of T

with k = |T | = 2m− 1 types. 	

Let us note that “longest” or “shortest batch first” policies are no more powerful
than type ordering mechanisms; they reduce to them for zero length jobs.

6 An Optimal Type Ordering Mechanism

We analyze the PoA of a type ordering mechanism termed AD (for Ascending-
Descending), that schedules type batches by ascending type index on half of
the machines, and by descending type index on the rest. If m is odd one of the
policies is applied to one machine more. First we prove the following lemma.
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Lemma 1. Let T ′ ⊆ T include types with non-zero setup times. If two jobs
of the same type in T ′ play an ascending and a descending index machine re-
spectively under the AD mechanism, their type batches are scheduled last on the
respective machines.

Proof. We show the result by contradiction. Let jobs x1, x2 with tx1 = tx2 = θ
be assigned on the ascending and descending machines 1, 2 respectively. Assume
that a job y, ty = θ′ �= θ, is scheduled on 1 after type θ. Because s is a PNE, job
x2 does not decrease its completion time if it moves to machine 1; because y is
scheduled after x1 on 1:

cx1(s) ≥ cx2(s)− �x2 , and cy(s) ≥ cx1(s) + w(θ′) + �y (2)

If y switches to machine M2 then it will be scheduled before type θ, thus its
completion time will be at most cx2(s) − w(θ) − �x2 + w(θ′) + �y if θ′ �∈ T2(s)
(and at most cx2(s)− w(θ) − �x2 + �y otherwise). In the worst case, we obtain:

cy(s) ≤ cx2(s)− w(θ) − �x2 + w(θ′) + �y (3)

By (2) and (3), cy(s) ≤ cy(s)−w(θ) < cy(s), a contradiction, because θ ∈ T ′. 	


The next result identifies upper bounds on the PoA of AD. A proposition that
follows proves tightness, through lower bounds on the Price of Stability, the
ratio of the least expensive PNE makespan over the optimum makespan. We
take k ≥ 2; AD is identical to Makespan for k = 1.

Theorem 7. The Price of Anarchy of the AD mechanism for the scheduling game
with setup times is at most m+1

2 when m ≤ k and at most k+3
2 − ε (ε = k

m when
m is even and ε = k−1

m−1 otherwise), when m > k.

Proof. Let s be a PNE assignment and T ′ ⊆ T contain types with non-zero
setups. Assume C(s) = C1(s) = maxi Ci(s). Let θ0 be the type scheduled last
on machine 1 and x a job with tx = θ0. Define T ′

C ⊆ T ′ to be types with jobs
assigned to both ascending and descending machines under s. Let T ′

A ⊆ T ′ \ T ′
C

and T ′
D ⊆ T ′\T ′

C contain types exclusively assigned to ascending and descending
machines respectively. Notice that at most one type θ1 ∈ T ′

C may appear on at
least m

2 + 1 machines, when m even, and m+1
2 machines, when m odd; thus any

type in T ′
C \{θ1} appears on at most m

2 or m−1
2 machines respectively. We study

2 cases depending on whether θ1 exists and whether it coincides with θ0 or not.

CASE 1: θ0 = θ1 or θ1 does not exist. Job x will not decrease its completion
time by moving to machine p for p = 2, . . . ,m. If Mθ0(s) are the indices of
machines which contain type θ0, then:

∀p ∈Mθ0(s), cx(s) ≤ Cp(s) + �x and
∀p /∈Mθ0(s), cx(s) ≤ Cp(s) + w(θ0) + �x (4)

To obtain the upper bound we sum up (4) for p ∈ {2, . . . ,m}, add C1(s) in the
left and right hand part, and take

∑
θ �∈T ′ w(θ) = 0. We will do this analysis

below, collectively for cases 1 and 2.
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CASE 2: θ0 �= θ1 and θ1 exists. Assume θ0 < θ1 and let R contain the indices
of ascending machines which have at least one job of type θ1 assigned (if θ0 > θ1,
we consider the indices of descending machines). Let R be the indices of these
machines and R′ ⊆ R be the indices of machines that are also assigned type
θ0 jobs (note that θ0 /∈ T ′

C if R′ �= ∅). If job x moves to a machine with index
in p ∈ R′, the completion time of x becomes at most Cp(s) − w(θ1) + �x and
Cp(s)− w(θ1) + w(θ0) + �x if p ∈ R′′ = R \R′. Since s is a PNE:

∀p ∈ R′, cx(s) ≤ Cp(s)− w(θ1) + �x,

∀p ∈ R′′, cx(s) ≤ Cp(s)− w(θ1) + w(θ0) + �x (5)

We will sum up inequalities (4) or (5) for p ∈ {2, . . . ,m} depending on whether
p ∈ R or not. As in case 1 we add C1(s) to left and right hand parts and
consider

∑
θ/∈T ′ w(θ) = 0. Before summing note that when m is even, each type

in T ′
A ∪ T ′

D has jobs assigned to at most r
2 machines, for r = m. When m is odd

assume w.l.o.g. that there are m+1
2 descending machines. We ignore one of them

- different than M1 - in the summation (we assume m ≥ 3; otherwise m = 1 and
C(s) = C(s∗)). Then, in case 2, type θ1 appears at most r

2 times, r = m− 1, in
the remaining m− 1 machines.

rC1(s) ≤
r

2

⎛⎝ ∑
θ∈T ′

A∪T ′
D\{θ0}

w(θ) +
∑

θ∈T ′
C\{θ0}

w(θ)

⎞⎠ + rw(θ0) +
∑
j∈J

�j + (r − 1)�x

=
r

2

⎛⎝∑
θ∈T

w(θ) +
∑
j∈J

�j

⎞⎠+
r

2
w(θ0) + (r − 1)�x −

r − 2
2

∑
j∈J

�j (6)

≤ r

2

⎛⎝∑
θ∈T

w(θ) +
∑
j∈J

�j

⎞⎠+
r

2
(w(θ0) + �x) since

∑
j∈J �j ≥ �x (7)

When k ≥ m we use (1a,b) with (7) to obtain C1(s) ≤ m+1
2 OPT . When k < m

we rewrite (6) as:

C(s) ≤ 1
r

⎛⎝∑
θ∈T

w(θ) +
∑
j∈J

�j

⎞⎠+(
1
2
− 1
r
)

(∑
θ∈T

w(θ) + �x

)
+

1
2

(w(θ0) + �x) (8)

Using (1b,c), we get kC(s∗) ≥
∑

θ∈T w(θ)+�x and replacing r = m and r = m−1
for even and odd m respectively, yields the stated bounds with respect to k. 	


Proposition 1. The Price of Stability of the scheduling game with setup times
under the AD mechanism is m+1

2 when k > m and k+3
2 − ε (ε = k

m when m is
even and ε = k−1

m−1 otherwise) when k ≤ m.

Proof. For k > m we use the same example as in the proof of theorem 6, but
replace the zero length jobs with very small ε > 0 length. For AD the described
assignment for a, d ≥ 1 applies, and it is a PNE with makespan m+1+(m−1)ε;
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the socially optimum makespan has length 2+mε. In any PNE, all jobs of types
1 and 2m − 1 will play exactly the strategies specified in the described PNE
assignment, because a lower completion time is not achievable for them in any
assignment. Inductively, jobs of types i and 2m − i, i = 2 . . .m − 1, follow the
same practice, given the strategies of jobs of types i − 1, 2m − i + 1. For the
jobs of type m, the strategies described in the aforementioned assignment are
best possible, given the strategies of all other jobs. Therefore the described PNE
is unique, hence PoS → m+1

2 for ε → 0. The same uniqueness argument holds
when k ≤ m, for the instances given below.

k ≥ 2 even. There are m = 2k machines, k ascending Ai and k descending Di

for i = 1, . . . , k. For each type θ �= k
2 + 1, w(θ) = 1 and there are k jobs of

this type with length ε. Finally, there are k + 1 jobs of type k
2 + 1 with length

1 and w(1 + k/2) = 0. Consider the state s where A1 has a job of each type
1, . . . , k

2 + 1, machine Ai, i = 2, . . . , k, has one job of each type 1, . . . , k
2 , and

finally descending machine Di, i = 1, . . . , k, has a job of each type k
2 +1, . . . , k. s

is a PNE and C(s) = k
2 +1+ k

2ε. A socially optimum assignment s∗ is defined as
follows. For each type θ �= k

2 + 1, a dedicated machine schedules all jobs of type
θ. Thus, k − 1 machines are busy and k + 1 are free. Each job of type k

2 + 1 is
scheduled on a dedicated machine out of the k+1 free ones. Then C(s∗) = 1+kε.
Since m = 2k, when ε tends to 0, we get: PoA = k

2 + 1 = k+3
2 − k

m .

k ≥ 3 odd. Takem = k machines: k+1
2 of ascending index and k−1

2 of descending
index. Each type has setup time 1 and the length of each job is ε. There are
k+1
2 jobs for each of the first k−1

2 types, assigned to a distinct ascending index
machine each. There are k−1

2 jobs for each of the last k−1
2 types, assigned to a

distinct descending index machine each. The middle type (with index k+1
2 ) has

k jobs, each assigned to a distinct machine. This assignment is a PNE and has
makespan k+1

2 (1 + ε). In the socially optimum assignment we place all jobs of
every type on a dedicated machine and achieve makespan 1+kε (type k+1

2 ). The
ratio tends to k+1

2 = k+3
2 − k−1

m−1 as ε→ 0. 	


7 Open Problems

The universe of types U is required to be huge (double exponential) in the proof
of Theorem 6. This size is non-realistic for most interesting practical settings. Is
there a lower size of U that yields PoA ≥ m+1

2 for type ordering mechanisms?
E.g., the proof requires that |U| ≥ 9 when m = 2, although |U| ≥ 3 suffices.
The performance of type ordering mechanisms is not fully characterized by the-
orem 6; there may be certain sizes of |U| below which these mechanisms may
perform better. Another interesting issue is when type ordering mechanisms are
a priori aware of the subset of types T that corresponds to players J . What is
the impact of such an a priori knowledge to the achievable PoA by type order-
ing mechanisms? We have not considered in this paper simply local mechanisms
or more challenging machine environments (uniformly related or unrelated ma-
chines). All these are interesting aspects for future developments on the subject.
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Abstract. We consider the complexity of decision making with regards
to predatory pricing in multimarket oligopoly models. Specifically, we
present multimarket extensions of the classical single-market models of
Bertrand, Cournot and Stackelberg, and introduce the War Chest Mini-
mization Problem. This is the natural problem of deciding whether a firm
has a sufficiently large war chest to win a price war. On the negative side
we show that, even with complete information, it is hard to obtain any
multiplicative approximation guarantee for this problem. Moreover, these
hardness results hold even in the simple case of linear demand, price, and
cost functions. On the other hand, we give algorithms with arbitrarily
small additive approximation guarantees for the Bertrand and Stackel-
berg multimarket models with linear demand, price, and cost functions.
Furthermore, in the absence of fixed costs, this problem is solvable in
polynomial time in all our models.

1 Introduction

This paper concerns price wars and predatory pricing in markets. We focus
on multiple markets (or a single segmentable market) as it allows us to model a
broader and more realistic set of interactions between firms. A firm may initiate a
price war in order to increase market share or to deter other firms from competing
in particular markets. The firm suffers a short-term loss but may gain large future
profits, particularly if the price war forces out the competition and allows it to
price as a monopolist.

Price wars (and predatory pricing) have been studied extensively from both
an economic and a legal perspective. A detailed examination of all aspects of
price wars is far beyond the scope of this paper. Rather, we focus on just one im-
portant aspect: the complexity of decision making in oligopolies (e.g. duopolies).
Specifically, we consider the budget required by a firm in order to successfully
launch a price war. This particular question is fundamental in determining the
risk and benefits arising from predatory practices. Moreover, it arises naturally
in the following two scenarios:
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Entry Deterrence: How much of a war chest must a monopolist or
cartel have on hand so that they are able to successfully repel a new
entrant?

Competition Reduction: How much money must a firm or cartel
have to force another firm out of business? For example, in a duopoly
how much does a firm need to save before it can defeat the other to
create a monopoly?

The War Chest Minimization Problem, a generalization of the above scenarios,
is the problem of determining how large a budget one firm or cartel needs before
it can legally win a price war. This paper studies the computational complexity
of and approximation algorithms for this more general problem.

1.1 Background

Price wars and predatory pricing are tools that have been long associated with
monopolies and cartels. The literature on these topics is vast and we touch upon
just a small sample in this short background section.

Given the possible rewards for monopolies and cartels engaging in predatory
behaviour, it is not surprising that it has been a recurrent theme over time. The
late 19th century saw cartels engaging in predation in a plethora of industries.
Prominent examples include the use of “fighting ships” by the British Shipping
Conferences ([19], [17]) to control trade routes, the setting up of phoney indepen-
dents by the American Tobacco Company to undercut smaller competitors [6].
Perhaps the most infamous instance, though, of a cartel concerns Standard Oil
under the leadership of John D. Rockefeller [16]. More recent examples of price
wars include the cigarette industry [9], the airline industry [4], and the retail
industry [5]. In the computer industry, Microsoft regularly faces accusations of
predatory practices ([12], [15]).

Antitrust legislation has been introduced in many countries to prevent anti-
competitive behaviour like predatory pricing or oligopolistic collusion1. In the
United States, the most important such legislation is the Sherman Act of 1890.
One of the Act’s earliest applications came in 1911 when the Supreme Court or-
dered the break-up of both Standard Oil and American Tobacco; more recently,
it was applied when the Court ordered the break-up of American Telephone and
Telegraph (AT&T) in 1982.2

Given that such major repercussions may arise, there is a need for a cloak
of secrecy around any act of predation. This has meant the extent of predatory
pricing is unknown and has been widely debated in the literature. Indeed, early
1 Whilst it is easy to see the negative aspect of cartels, it is interesting to note that

there may even be some positive consequences. For example, it has been argued [11]
that the predatory actions of cartels may increase consumer surplus.

2 In 2000, a lower court also ordered the breakup of Microsoft for antitrust violations
under the Sherman Act. On appeal, this punishment was removed under an agreed
settlement in 2002.
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economic work of McGee [16] suggested that predatory pricing was not ratio-
nal. However, in Stigler’s seminal work on oligopolies [21], price wars can be
viewed as a break-down of a cartel, albeit they do not arise in equilibria because
collusion can be enforced via punishment mechanisms. Moreover, recent models
have shown how price wars can be recurrent in a “functioning” cartel! For ex-
ample, this can happen assuming the presence of imperfect monitoring [14] or of
business cycles [18]. This is particularly interesting as recurrent price wars were
traditionally seen as indicators of a healthy competitive market3.

Based primarily on the work of McGee, the US Supreme court now considers
predatory pricing to be generally implausible4 . As a result of this, and in an
attempt to strike a balance between preventing anti-competitive behaviour and
overly restricting normal competition, the Court applied the following strict
definition to test for predatory practices.

(a) The predator is pricing below its short-run costs.
(b) The predator has a strong chance or recouping the losses incurred during

the price-war.

The established way for the Court to test for the first requirement is the Areeda-
Turner rule of 1975 [1] which established marginal cost (or, as an approximate
surrogate, average variable cost) as the primary criteria for predatory pricing.5

We will incorporate the Areeda-Turner rule as a legal element in our multimarket
oligopoly models in Section 2. The second requirement essentially states that
the “short-run loss is an investment in prospective monopoly profits” [8]. This
requirement is typically simpler to test for in practice, and will be implicit in
our models.

Finally, we remark that we are not aware of any other work concerning the
complexity of price wars. One interesting related pricing strategy is that of loss-
leaders which Balcan et al. [2] examine with respect to profit optimization. For
the scale and type of problem we consider, however, using strategies that corre-
spond to ”loss-leaders” is illegal. Alternative models for oligopolistic competition
and collusion in a single market setting can be found in the papers of Ericson
and Pakes [10] and Weintraub et al. [24].

3 Therefore, should such behaviour also arise in practice it would pose intriguing ques-
tions for policy makers. Specifically, when is a price war indicative of competition
and when is it indicative of the presence of a cartel or a predatory practice?

4 See the 1986 case Matsushita Electric Industrial Company vs Zenith Radio

Corporation and the 1993 case Brooke Group Limited vs Brown and Williamson

Tobacco Corporation.
5 We note that the Areeda-Turner rule may be inappropriate in high-tech industries

because fixed costs there are typically high. Therefore, measures of variable costs may
not be reflective of the presence of a price-wars. In fact, hi-tech industries may be
particularly susceptible to predatory practices as large marginal profits are required
to cover the high fixed costs. Consequently, predatory pricing can be used to inflict
great damage on smaller firms.
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1.2 Our Results

A firm with price-making power belongs to an industry that is a monopoly or
oligopoly. In Section 2, we develop three multimarket models of oligopolistic
competition. We then introduce the War Chest Minimization Problem to cap-
ture the essence of the Entry Deterrence and Competition Reduction scenarios
outlined above.

In Section 3, we prove that this problem is NP-Hard in all three multimar-
ket models under the legal constraints imposed by the Areeda-Turner rule. We
emphasise that decision making is hard even under complete information.

The hardness results of Section 4 imply that no multiplicative approximation
guarantee can be obtained for the Minimum War Chest Problem, even in the
simple case of linear cost, price, and demand functions. The situation for po-
tential predators is less bleak than this result appears to imply. To see this we
present two positive results in Section 4, assuming linear cost, price, and demand
functions. First, the problem can be solved in polynomial time if the predator
faces no fixed costs. In addition, for the Bertrand and Stackelberg models there
is a natural way to separate the markets into two types, those where player one
is making a profit and those in which she is truly fighting a price war. Our second
result states that in these models, we can solve the problem on the former set of
markets exactly and can find a fully polynomial time approximation scheme for
the problem on the latter markets. This leads to a polynomial time algorithm
with an arbitrarily small additive guarantee.

2 Models

2.1 Multimarket Models of Oligopoly

In this section, we formulate multimarket versions of the classical models of
Bertrand, Cournot, and Stackelberg for oligopolistic competition. Our models
allow for the investigation of the numerous and assorted interactions between
firms.

A Multimarket Bertrand Model. The Bertrand model is a natural model
of price competition between firms (henceforth referred to as “players”) in an
oligarchy [3]. In this paper, we will focus on the following generalization of the
asymmetric Bertrand model to multiple markets6. We will describe the model
for the duopoly case, but all of the definitions are easily generalizable. Suppose
we have two players and n markets m1,m2, ...,mn. Every player i has a budget
Bi where a negative budget is thought of as the fixed cost for the firm to exist
and a positive budget is thought of as a war chest available to that firm in the
round. Every market mk has a demand curve Dk(p) and each player i also has
a marginal cost, cik, for producing one unit of good in market mk. In addition,

6 We remark that this multimarket Bertrand model is also a generalization of the
multiple market model used in the facility location game of Vetta [23].
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each player i has a fixed cost, fik, for each market mk that she pays if and only
if she enters the market, i.e. if she sets some finite price.

We model the price war as a game between the two players. A strategy for
player i is a complete specification of prices in all the markets. Both players
choose their strategies simultaneously. If pik <∞ then we will say that player i
enters market mk. If player i chooses not to enter market mk, this is signified by
setting pik = ∞. The demand for each market then all goes to the player with
the lowest price. If the players set the same price, then the demand is shared
equally. Thus if player i participates, then she gets profit Πik in market mk

where Πik(pik, pjk) = (pik− cik)Dik(pik, pjk)−fik and where Dik is the demand
for player i’s good in market mk and is defined as

Dik(pik, pjk) =

⎧⎨⎩
Dk(pik) if pik < pjk
1
2Dk(pik) if pik = pjk

0 if pik > pjk

If player i chooses not to participate then her revenue and costs are both zero;
thus, she gets 0 profit. The sum of these profits over all markets is added to each
player’s budget. A player is eliminated if her budget is negative at the end of
the round.

Our hardness results will apply even when the demand functions are linear.
So, unless stated otherwise, for the remainder of this paper we will assume our
demand functions are of the form D(p) = a− bp.

Multimarket Cournot and Stackelberg Models. Economists have consid-
ered a number of alternative models for competition [22]. One prominent alterna-
tive is the Cournot model, formulated by Augustin Cournot in 1838 [7]. We now
formulate a multimarket version of this model. Again we will restrict ourselves to
the case of the duopoly as the generalization is obvious. In this Cornout model,
there are n independent Cournot markets m1, ...,mn. Each market mk has a
price function Pk(q) = ak − q. Each player also has a budget Bi, which serves
the same role as in the Bertrand case. Each player also has a cost function in ev-
ery market Cik(qik). We only consider cost functions of the form Ci(qi) = ciqi+fi

for qi > 0 where ci is a constant marginal cost and fi is a fixed cost.
As before we model the price war as a game. This time, a strategy for each

player i is a choice of quantities qik for each market mk. Again, both players
choose a strategy simultaneously. We say that player i enters market mk if
qik > 0. Player i then makes a profit in market mk equal to Πik(qik, qjk) =
qikPk(qik + qjk)− Cik(qik).

Again, if player i does not enter a market then her profits and revenues are
zero. Each player’s total profit is added to their budget at the end of the round.
A player is eliminated if her resulting budget is negative.

The Stackelberg model was formulated by Heinrich von Stackelberg in 1934
as an adaptation of the Cournot model [20]. For the multimarket Stackelberg
model, we define all of the quantities and functions as in the Cournot case.
However, we now consider one player to be the leader and one to be the follower.
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The game is no longer simultaneous, as the leader gets to commit to a production
level in each market before the follower moves.

2.2 The War Chest Minimization Problem

We will examine the questions of entry deterrence and competition reduction in
the two-firm setting. Thus, we focus on the computational problems facing (i)
a monopolist fighting against a potential market entrant (entry deterrence) and
(ii) a firm in a duopoly trying to force out the other firm (competition reduction).
We model both these situations using the same duopolistic multimarket models
of Section 2.1.

We remark that our focus on a firm rather than a cartel does not effect the
fundamental computational aspects of the problem. This restriction, however,
will allow us to avoid the distraction arising from the strategic complications
that occur in ensuring coordination amongst members of a cartel.

Our game is then as follows. We assume that players one and two begin with
budgets B1 and B2, respectively. They then play one of our three multimarket
games. The goal of firm one is to stay/become a monopoly; if it succeeds it will
subsequently be able to act monopolistically in each market. To achieve this goal
the firm needs a non-negative payoff at the end of the game whilst its opponent
has a negative payoff (taking into account their initial budgets). This gives us
the following natural question:

War Chest Minimization Problem: How large a budget B1 does player one
need to ensure that it can eliminate an opponent with a budget B2 < 0.

The players can play any strategy they wish provided it is legal, that is, they
must abide by the Areeda-Turner Rule. All our results will be demonstrated un-
der the assumptions of this rule, as it represents the current legal environment.
However, similar complexity results can be obtained without assuming this rule.

Areeda-Turner Rule: It is illegal for either player to price below their marginal
cost in any market.

Before presenting our results we make a few comments about the problem and
what the legal constraints mean in our setting. First, notice that we specify a
negative budget for player two but place no restriction on the budget for player
one. This is natural for our models. We can view the budget as the money a firm
initially has at its disposable minus the fixed costs required for it to operate;
these fixed costs are additional to the separate fixed costs required to operate
in any individual market. Consequently, if the second firm has a positive budget
it cannot be eliminated from the game as it has sufficient resources to operate
(cover its fixed costs) even without competing in any of the individual markets;
thus we must constrain the second firm to have a negative budget. On the other
hand, for the first firm no constraint is needed. Even if its initial budget is
negative, it is plausible that it can still eliminate the second firm and end up
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with a positive budget at the end of the game, by making enough profit from
the individual markets. Specifically, the legal constraints imposed by the Areeda-
Turner rule may ensure that the second firm cannot maliciously bankrupt the
first firm even if the first firm has a negative initial war-chest.

Second, since we are assuming that player one wishes to ensure success re-
gardless of the strategy player two chooses, we will analyze the game as an
asynchronous game where player two may see player one’s choices before mak-
ing her own. Player two will then first try to survive despite player one’s choice
of strategy. If she cannot do so, she will undercut player one in every market
in an attempt to eliminate her also. To win the price war, player one must find
strategies that keep herself safe and eliminate player two irrespective of how
player two plays. Therefore, an optimal strategy for player one has maximum
profit (i.e. minimum negative profit) amongst the collection of strategies that
achieve these goals, assuming that player two plays maliciously.

Finally, the Areeda-Turner Rule has a straightforward interpretation in the
Bertrand model of price competition, that is, neither player can set the price in
any market below their marginal cost in that market! In models of quantity com-
petition, however, the interpretation is necessarily less direct. For the Cournot
model of quantity competition, we interpret the rule as saying that neither player
can produce a quantity that will result in a price less than their marginal costly
assuming the other player produces nothing, in other words qik < ak − cik. This
is the weakest interpretation possible for this simultaneous game. Finally, for the
Stackelberg game, we assume that the restriction imposed by the Areeda-Turner
rule is the same for player one as in the Cournot model, as she acts first and
player two has not set a quantity when player one decides. Player two on the
other hand, must produce a quantity so that her marginal price is greater than
her marginal cost, given what player one has produced. In other words, for the
Stackelberg game q1k < ak − c1k and q2k < ak − q1k − c2k.

3 Hardness Results

We are now in a position to show that the War Chest Minimization Problem is
hard in all three models.

Theorem 1. The War Chest Minimization Problem is NP-hard for the multi-
market Bertrand, Cournot, and Stackelberg models (the latter assuming player
one is the Stackelberg leader), even in the case of linear demand, price and cost
functions.

Proof. We only include the proof for the Stackelberg case, due to space limita-
tions. The other proofs are similar and can be found in the full paper.

We give a reduction from the knapsack problem. There we have n items, each
with value vi and weight wi, and a bag which can hold weight at most W . In
general, it is NP-hard to decide whether we can pack the items into the bag so
that
∑
wi ≤ W and

∑
vi > V for some constant V (where the sums are taken

over packed items).
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We will now create a multimarket Stackelberg game based on the above in-
stance. Set ak = 4

√
vk, and suppose that there are n markets and each market

has price function Pk(q) = ak − q. We now set player one’s marginal cost in
market mk to be c1k = 0 and her fixed cost to be f1k = 4vk + wk. Player two’s
marginal cost in market mk is set to be c2k = ak/2 = 2

√
vk and her fixed cost is

set to be f2k = 0. Finally, set the budgets to be B1 = W and B2 = V −
∑n

k=1 vk.
Now consider the decision player one faces when deciding whether or not

to enter market mk. First notice that her monopoly quantity is q∗1k = ak/2 =
2
√
vk which we can calculate by maximizing Π1k(q1k, 0) through simple calculus.

Notice also that ak − q∗1k − c2k = 0 and so, by the Areeda-Turner rule, player
two cannot produce in any market in which player one is producing.

Thus, if player one enters any market then she will produce her monopoly
quantity in that market and player two will not enter that market. In this case,
player one makes profit

Π1k(q∗1k, 0) = q∗1k(Pk(q∗1k)− c1k)− f1k = 2
√
vk(2

√
vk − 0)− (4vk + wk) = −wk

and player two makes profit Π2k(q∗1k, 0) = 0. On the other hand, if player one
does not enter the market then player two will produce her monopoly quantity,
q∗2k = ak/4 =

√
vk, and will make profit

Π2k(0, q∗2k) = q∗2k(Pk(q∗2k)− c2k)− f2k =
√
vk(3

√
vk − 2

√
vk)− 0 = vk

Since player one did not enter, she will make profit 0.
Thus, if player one could solve the War Chest Minimization Problem then she

could determine whether or not there exists a set of indices K of markets that
she should enter such that both of the following equations hold simultaneously:

W −
∑
k∈K

wk ≥ 0

V −
n∑

k=1

vk +
∑
k/∈K

vk < 0

Rearranging these equations, we obtain the conditions of the knapsack equations,
namely

∑
k∈K wk ≤W and

∑
k∈K vk > V . 	


4 Algorithms

In this section, we explore algorithms for solving the War Chest Minimization
Problem. We highlight a case where the problem can be solved exactly and
explore the approximability of the problem in general. For the entirety of this
section, we assume linear cost, demand, and price functions.

4.1 A Polynomial Time Algorithm in the Absence of Fixed Costs

All of the complexity proofs in Section 3 have a similar flavor. We essentially
use the fixed costs in the markets to construct weights in a knapsack problem.
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It turns out that in the absence of these fixed costs, it is computationally easy
for a player to determine if they can win a multimarket price war even under
the restrictions of the Areeda-Turner rule. For space reasons, we omit the proof
of this result, though it can be found in the full paper.

Theorem 2. In the absence of fixed costs and assuming linear cost, price, and
demand functions, the War Chest Minimization Problem in the Cournot,
Bertrand, and Stackelberg models can be solved in polynomial time. 	


4.2 An Inapproximability Result

In this section, we will explore approximation algorithms for the War Chest Min-
imization Problem. A first inspection is disheartening for would-be predators, as
demonstrated by the following theorem.

Theorem 3. It is NP-hard to obtain any approximation algorithm for the War
Chest Minimization Problem under the Bertrand, Stackelberg, or Cournot model.

Proof. We prove this for the Stackelberg model - the other cases are similar. Let
n,W, V,wi, and vi be an instance of the knapsack problem. Construct markets
m1, ...,mn exactly as in Theorem 1, with identical price functions, fixed costs,
and marginal costs. Let W ∗ denote the optimal solution to the War Chest Min-
imization Problem in this case. Notice that W ∗ > 0 since player one makes a
negative profit in all of her markets. We now construct a new market mn+1 as
follows. Let Pn+1(q) = 2

√
W ∗ − q be the price function. Let player one’s fixed

and marginal costs be c1,n+1 = f1,n+1 = 0. Let player two’s marginal cost be
c2,n+1 = 2

√
W ∗ and let her fixed cost be an arbitrary nonnegative value. Then

player one will clearly enter the market and produce her monopoly quantity,
q1,n+1 =

√
W ∗, thereby forcing player two to stay out of the market, by the

Areeda-Turner rule. Thus player one will earn her monopoly quantity of W ∗ in
this market. Consequently, the budget required for this War Chest Minimiza-
tion Problem is zero. Any approximation algorithm would then have to solve
this problem, and thereby the knapsack problem, exactly. 	


4.3 Additive Approximation Guarantees

Observe that the difficulty in obtaining a multiplicative approximation guarantee
arises due to conflict between markets that generate a loss for player and markets
that generate a profit. Essentially the strategic problem for player one is to
partition the markets into two groups, α and β, and then conduct a price war
in the markets in group α and try to gain revenue to fund this price war from
markets in group β. This is still not sufficient because, in the presence of fixed
costs, the optimal way to conduct a price war is not obvious even when the group
α has been chosen. However, in this section we will show how to partition the
markets and generate an arbitrarily small additive guarantee in the Bertrand
and Stackelberg cases.

Given an optimal solution with optimal partition {α∗, β∗}, let wα∗ be the
absolute value of the sum of the profits of the markets with negative profit, and
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let wβ∗ be the sum of the profits in positive profit markets. Then the optimal
budget for player one is simply OPT = wα∗ − wβ∗ . For both the Bertrand
and Stackelberg models, we present algorithms that produce a budget of most
(1+ε)wα∗−wβ∗ , for any constant ε. Observe this can be expressed asOPT+εwα∗ ,
and since wα∗ represents the actual cost of the price war (which takes place in
the markets in α∗), our solution is then at most OPT plus epsilon times the
optimal cost of fighting the price war. We begin with the Bertrand model.

Theorem 4. There is an algorithm that solves the War Chest Minimization
Problem for the Bertrand model within an additive bound of εwα∗ , and runs in
time polynomial in the input size and 1

ε , assuming linear demand functions.

Proof. We begin by proving that we can find the optimal partition {α∗, β∗} of
the markets. Towards this goal we show that there is a optimal pricing scheme
for any market, should player one choose to enter the market. Using this scheme
we will be able to see which markets are revenue generating for player one and
which are not. This will turn out to be sufficient to obtain {α∗, β∗}. This is
because, in the Bertrand model, player two cannot make a profit in a market
if player one does and vice versa and because player one needs a strategy that
maintains a non-negative budget even if player two acts maliciously (but legally).

The pricing scheme for player one should she choose to enter market mk is
p+
1k = max{c1k,min{p∗1k, c2k − γ}}, where γ is the minimum increment of price

and p∗1k is player one’s monopoly price. She should not price below p+
1k as either

(i) it is illegal by the Areeda-Turner rule or (ii) she cannot increase her profit by
doing so (as the profit function for player one is a concave quadratic in p1k). She
also should not price above p+

1k. If she did then either (i) she cannot increase her
profit (due to concavity) or (ii) player two could undercut her or increase her
own existing profits in the market. Indeed, it is certain that player two will try
to undercut her if player one succeeds in keeping player two’s budget negative.

Given that we have the optimal pricing scheme for player one, we may calcu-
late the profit she could make on entering a market assuming that player two
acts maliciously. Let α be the set of markets where she makes a negative profit
under these conditions, and let β be the set of markets where she makes a non-
negative profit. Since all markets in β give player one a non-negative profit even
if player two is malicious, she will clearly always enter all of them. Consequently,
as we are in the Bertrand model, player two cannot make any profit from mar-
kets in β. Thus by entering every market in β player one will earn wβ profit,
and this must be the optimal for player one if the goal is to put player two out
of business. So {β, α} = {β∗, α∗} is an optimal partition.

It remains only to show that there is a fully polynomial time approximation
scheme for the markets in α. We will prove this result by demonstrating an
approximation preserving reduction of the War Chest Minimization Problem
with only α-type Bertrand markets to the Minimization Knapsack Problem.
Define wk to be the negative of the profit earned by player one if she enters the
market mk and assuming player two undercuts if possible. By the above, she
will price at p1k = p+

1k and thus



314 N. Thain and A. Vetta

wk =
{
−(p+

1k − c1k)D(p+
1k) + f1k if c1k < c2k

f1k otherwise.

Recall that wk is non-negative for markets in α. Let p∗2k be player two’s monopoly
price in market mk and let Π∗

2k be her monopoly profit in that market. We also
let vk = Π∗

2k−Π2k(p+
1k), where Π2k(p+

1k) is the maximum profit that player two
can achieve in market mk if player one enters and prices at p+

1k. The War Chest
Minimization Problem is that of maximizing player one’s profit (i.e. minimizing
the negative of her profit) even if player two acts maliciously, while ensuring that
player two’s budget is always negative. So it can be expressed as

min
∑

k wkyk

s.t. B2 +
∑

k(Π∗
2k(1 − yk) +Π2k(p+

1k) · yk) ≤ 0
yk ∈ {0, 1}

Setting the constant C to be the sum of player two’s budget and her monopoly
profit in all of the markets, that is C = B2 +

∑
k Π

∗
2k, the problem can be

rewritten as
min
∑

k wkyk

s.t.
∑

k vkyk ≥ C
yk ∈ {0, 1}

Finally, since the wk are non-negative, this formulation is exactly the minimiza-
tion knapsack problem. The reduction is approximation preserving and so we
are done as there is a fully polynomial time approximation scheme for the min-
imization knapsack problem [13]. 	


A slightly more complex idea is needed for the Stackelberg model. Instead of
reducing to the minimization knapsack problem, we reduce to a different problem
that can be solved via rounding a dynamic program. The proof is omitted here,
for space reasons, but can be found in the full paper.

Theorem 5. There is an algorithm that solves the War Chest Minimization
Problem for the Stackelberg model within an additive bound of εwα∗ and with
running time polynomial in the input size and 1

ε , assuming linear cost and price
functions. 	


The approach taken for the Stackelberg model does not apply directly to the
Cournot model as a more subtle rounding scheme is required there when player
one is more competitive than player two. We conjecture, however, that a similar
type of additive approximation guarantee is possible in the Cournot model.
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Abstract. We consider weighted linear congestion games, and investigate how
social ignorance, namely lack of information about the presence of some players,
affects the inefficiency of pure Nash equilibria (PNE) and the convergence rate of
the ε-Nash dynamics. To this end, we adopt the model of graphical linear conges-
tion games with weighted players, where the individual cost and the strategy se-
lection of each player only depends on his neighboring players in the social graph.
We show that such games admit a potential function, and thus a PNE. Our main
result is that the impact of social ignorance on the Price of Anarchy (PoA) and
the Price of Stability (PoS) is naturally quantified by the independence number
α(G) of the social graph G. In particular, we show that the PoA grows roughly as
α(G)(α(G)+2), which is essentially tight as long as α(G) does not exceed half
the number of players, and that the PoS lies between α(G) and 2α(G). Moreover,
we show that the ε-Nash dynamics reaches an α(G)(α(G)+2)-approximate con-
figuration in polynomial time that does not directly depend on the social graph.
For unweighted graphical linear games with symmetric strategies, we show that
the ε-Nash dynamics reaches an ε-approximate PNE in polynomial time that ex-
ceeds the corresponding time for symmetric linear games by a factor at most as
large as the number of players.

1 Introduction

Congestion games provide a natural model for non-cooperative resource allocation
in large-scale systems and have recently been the subject of intensive research. In a
(weighted) congestion game, a finite set of non-cooperative players, each controlling an
unsplittable (weighted) demand, compete over a finite set of resources. All players us-
ing a resource experience a delay (or cost) given by a non-negative and non-decreasing
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function of the resource’s total demand (or congestion). Among a given set of resource
subsets (or strategies), each player selects one selfishly trying to minimize her individ-
ual cost, that is the sum of the delays on the resources in her strategy. The most natural
solution concept is that of a pure Nash equilibrium (PNE), a configuration where no
player can decrease her individual cost by unilaterally changing her strategy. Rosenthal
[20] proved that the PNE of (unweighted) congestion games correspond to the local op-
tima of a potential function, and thus every congestion game admits a PNE. A similar
result was recently shown for weighted congestion games with linear delays [15].

Motivation and Previous Work. The prevailing questions in recent work on congestion
games have to do with quantifying the inefficiency due to the players’ non-cooperative
and selfish behaviour (see e.g. [19,3,5,12,11,2,9,13]), and bounding the convergence
time to (approximate) PNE if the players select their strategies in a selfish and decen-
tralized fashion (see e.g. [14,1,10,21,6]).

Inefficiency of Pure Nash Equilibria. It is well known that a PNE may not optimize the
system performance, usually measured by the total cost incurred by all players. The
main tools for quantifying and understanding the performance degradation due to the
players’ non-cooperative and selfish behaviour have been the Price of Anarchy (PoA),
introduced by Koutsoupias and Papadimitriou [19], and the Price of Stability (PoS),
introduced by Anshelevich et al. [3]. The (pure) PoA (resp. PoS) is the worst-case
(resp. best-case) ratio of the total cost of a PNE to the optimal total cost.

Many recent contributions have provided tight bounds on the PoA and the PoS for
several interesting classes of congestion games, mostly congestion games with linear
and polynomial delays. Awerbuch et al. [5] and Christodoulou and Koutsoupias [12]
proved that the PoA of congestion games is 5/2 for linear delays and dΘ(d) for poly-
nomial delays of degree d. Subsequently, Aland et al. [2] obtained exact bounds on
the PoA for congestion games with polynomial delays. For weighted congestion games
with linear delays, Awerbuch et al. [5] proved that the PoA is (3+

√
5)/2. Christodoulou

and Koutsoupias [11] and Caragiannis et al. [9] proved that the PoS for congestion
games with linear delays is 1+

√
3/3. Recently, Christodoulou et al. [13] obtained tight

bounds on the PoA and the PoS of approximate PNE for games with linear delays.
Convergence Time to Pure Nash Equilibria. The existence of a potential function im-
plies that a PNE is reached in a natural way when the players iteratively select strategies
that improve on their individual cost, given the strategies of the rest. Nevertheless, this
may take an exponential number of steps, since computing a PNE is PLS-complete
for symmetric congestion games and for asymmetric network games with linear de-
lays [14,1]. In fact, the proofs of [14,1] establish the existence of instances where any
sequence of players’ improvement moves is exponentially long.

A natural approach to circumvent the strong negative results of [14,1] is to resort
to approximate PNE, where no player can significantly improve her individual cost by
changing her strategy. Chien and Sinclair [10] considered symmetric congestion games
with a weak restriction on the delay functions, and proved that several natural families
of sequences of significant improvement moves converge to an approximate PNE in
polynomial time. On the other hand, Skopalik and Vöcking [21] proved that comput-
ing an approximate PNE for asymmetric congestion games is PLS-complete, and that
even with the restriction of [10] on the delay functions, there are instances where any
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sequence of significant improvement moves leading to an approximate PNE is expo-
nentially long. However, Awerbuch et al. [6] showed that for unweighted games with
polynomial delays and for weighted games with linear delays, many families of se-
quences of significant improvement moves reach an approximately optimal configura-
tion in polynomial time, where the approximation ratio is arbitrarily close to the PoA.

Social Ignorance in Congestion Games. Most of the recent work on congestion games
focuses on the full information setting, where each player knows the precise weights
and the actual strategies of all players, and her strategy selection takes all this infor-
mation into account. In many typical applications of congestion games however, the
players have incomplete information not only about the weights and the strategies, but
also about the mere existence of (some of) the players with whom they compete for
resources1 (see also e.g. [16,18,17,7,8]). In fact, in many applications, it is both natural
and convenient to assume that there is a social context associated with the game, which
essentially determines the information available to the players. In particular, one may
assume that each player has complete information about the set of players in her social
neighborhood, and limited (if any) information about the remaining players.

Our motivation is to investigate how such social-context-related information consid-
erations affect the inefficiency of PNE and the convergence rate to approximate PNE.
To come up with a manageable setting that allows for some concrete answers, we make
the simplifying assumption that each player has complete information about the players
in her social neighborhood, and no information whatsoever about the remaining players.
Therefore, since each player is not aware of the players outside her social neighborhood,
her individual cost and her strategy selection are not affected by them. In fact, this is
the model of graphical congestion games, introduced by Bilò, Fanelli, Flammini, and
Moscardelli [7]. The new ingredient in the definition of graphical congestion games is
the social graph, which represents the players’ social context. The social graph is de-
fined on the set of players and contains an edge between each pair of players that know
each other. The basic idea (and assumption) behind graphical congestion games is that
the individual presumed cost of each player only depends on the players in her social
neighborhood, and thus her strategy selection is only affected by them.

Bilò et al. [7] considered unweighted graphical congestion games, and proved that
such games with linear delays and undirected social graphs admit a potential function,
and thus a PNE. For unweighted linear graphical games, Bilò et al. proved that the PoS
is at most n, and the PoA is at most n(degmax +1), where n is the number of players
and degmax is the maximum degree of the social graph, and presented certain families
of instances for which these bounds are tight. To the best of our understanding, the fact
that these bounds are tight for some instances illustrates that expressing the PoA and
the PoS as functions of n and degmax only does not provide an accurate picture of the
impact of social ignorance (see also [7, Section 1.2]). In particular, the bound on the
PoA conveys the message that the more the players know (or learn) about other players,
the worse the PoA becomes, and fails to capture that as the social graph tends to the
complete graph, the PoA should become a small constant that tends to 5/2.

1 In many applications, information considerations have to do not only with what the players
actually know or are able to learn about the game, but also with how much information they
are able or willing to handle in their strategy selection process.
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Contribution. Adopting graphical linear congestion games as a model, we investigate
whether there is a natural parameter of the social graph that completely characterizes the
impact of social ignorance on the inefficiency of PNE and on the convergence rate of the
ε-Nash dynamics. We restrict our attention to graphical linear games with undirected
social graphs. We consider weighted players, so as to investigate the impact of different
weights (i.e. could the PoA and the PoS become worse, and if yes, by how much,
when many “small” players ignore a few “large” ones compared against the same social
situation with all players having the same weight?). With a single exception, the PoA
(resp. PoS) is defined with respect to the actual total cost of the worst (resp. best) PNE,
while equilibria are defined with respect to the players’ presumed cost, which is an
underestimation of their actual individual cost due to limited social knowledge.

We prove that the impact of social ignorance on the PoA and the PoS is naturally
quantified by the independence number α(G) of the social graphG, i.e. by the cardinal-
ity of the largest set of players that do not know each other. In particular, we show that
the PoA is at most α(G)(α(G) + 2), which is essentially tight as long as α(G) ≤ n/2,
and that the PoS lies between α(G) and 2α(G).

More specifically, we first show that graphical linear games with weighted players
admit a potential function, and thus a PNE (Theorem 1). Our potential function gener-
alizes the potential function of [15, Theorem 3.2], where the social graph is complete,
and the potential function of [7, Theorem 1], where the players are unweighted.

To bound the inefficiency of PNE, we show that the total actual cost in any config-
uration is an α(G)-approximation of the total presumed cost in the same configuration
(Lemma 1). Then, we prove that the PoA of any graphical linear congestion game with
weighted players is at most α(G)(α(G)+2+

√
α2(G) + 4α(G))/2, which varies from

(3+
√

5)/2, when the social graph is complete2 to α(G)(α(G)+2), when α(G) is large
(Theorem 2). This bound is essentially tight, even for unweighted players, as long as
α(G) ≤ n/2 (Theorem 3). For games with unweighted players, we show that the PoA
is also bounded from above by 2n(n− α(G) + 1) (Theorem 4), which is tight (up to a
small constant factor) when α(G) ≥ n/2 (Theorem 5). Furthermore, we prove that the
upper bound of α(G)(α(G) + 2 +

√
α2(G) + 4α(G))/2 remains valid if the PoA is

calculated with respect to the total presumed cost (Theorem 6), and that this bound is
essentially tight as long as α(G) ≤

√
n/2 (Theorem 7). As for the PoS, we prove that

it is at most 2nα(G)
n+α(G) (Theorem 8) and at least α(G)− ε, for any ε > 0 (Theorem 9).

It is rather surprising that the upper bounds on the PoA and the PoS only depend on
the cardinality of the largest set of players that do not know each other, not on their
weights. In addition, the fact that all our lower bounds are established for the case of
unweighted players implies that as long as the worst-case PoA and PoS are concerned,
considering players with different weights does not make things worse.

As for the convergence time to approximately optimal configurations, we show that
it does not directly depend on the structure of the social graph, only the approximation
ratio does. In particular, using the techniques of Awerbuch et al. [6], we show that the
largest improvement ε-Nash dynamics reaches an approximately optimal configuration

2 Moreover, we can show that the PoA for unweighted linear games is at most 3α(G)+7
3α(G)+1

α2(G).
We omit the details, since this bound is better than the one stated only if α(G) ∈ {1, 2}.
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in a polynomial number of steps (Theorem 10). The approximation ratio is arbitrarily
close to the PoA, so it is roughly α(G)(α(G)+ 2), while the convergence time is linear
in n and in the logarithm of the initial potential value, with the only dependence on
the social graph hidden in the latter term. For graphical linear games with unweighted
players and symmetric strategies, we use the techniques of Chien and Sinclair [10], and
show that the largest improvement ε-Nash dynamics converges to an ε-PNE in a poly-
nomial number of steps (Theorem 11). Compared to the bound of [10, Theorem 3.1]
for symmetric linear congestion games, the convergence time increases by a factor up
to n due to social ignorance. Both results can be extended to the unrestricted ε-Nash
dynamics, which proceeds in rounds of bounded length, and the only requirement is
that each player gets a chance to move in every round.

A subtle point about our results is that they refer to a static social information con-
text, an assumption questionable in many settings. This is especially true for the results
on the convergence rate of the ε-Nash dynamics, since during the convergence process,
players can become aware of some initially unknown players. However, our results con-
vey the message that the more the available social information, the better the situation
becomes due to the fact that α(G) tends to decrease. So as the players increase their
social neighborhood, the ε-Nash dynamics keeps reaching better and better configura-
tions. The entire process takes a polynomial number of steps, since there are O(n2)
edges to be added to the social graph, and for each fixed social graph, the ε-Nash dy-
namics reaches a configuration with the desired properties in polynomially many steps.

Other Related Work. To the best of our knowledge, Gairing, Monien, and Tiemann
[16] were the first to investigate the impact of incomplete social knowledge on the
basic properties of weighted congestion games. They adopted a Bayesian approach,
and mostly focused on parallel-link games.

Our information model can be regarded as a simplified version of the information
model considered by Koutsoupias, Panagopoulou, and Spirakis [18]. Their model is
based on a directed social graph, where each player knows the precise weights of the
players in her social neighborhood, and only a probability distribution for the weights
of the rest. Koutsoupias et al. obtained upper and lower bounds on the PoA for a very
simple game with just two identical parallel links.

An alternative information model was suggested by Karakostas et al. [17]. In [17],
a fraction of the players are totally ignorant of the presence of other players, and thus
oblivious to the resource congestion when selecting their strategies, while the remain-
ing players have full knowledge. Karakostas et al. considered non-atomic congestion
games, and investigated how the PoA depends on the fraction of ignorant players.

After introducing graphical congestion games in [7], Bilò et al. [8] considered the
PoA and the PoS of graphical multicast cost sharing games, and proved that one can
dramatically decrease the PoA by enforcing a carefully selected social graph.

In an orthogonal approach, Ashlagi, Krysta, and Tennenholtz [4] associated the so-
cial graph not with the information available to the players, but with their individual
cost. They suggested that the individual cost of each player is given by an aggregation
function of the delays of the players in her social neighborhood (including herself). The
aggregation function is also part of the social context, since it represents the players’
attitude towards their neighbors.
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2 Model and Preliminaries

For an integer k ≥ 1, we let [k] ≡ {1, . . . , k}. For a vector x = (x1, . . . , xn), we denote
x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x

′
i) ≡ (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).

Weighted Congestion Games. A congestion game with weighted players is defined by
a set V = [n] of players, a positive integer weightwi associated with each player i, a set
R of resources, a strategy space Σi ⊆ 2R \ {∅} for each player i, and a non-decreasing
delay function de : IN �→ IR≥0 associated with each resource e. The game is (or the
players are) unweighted if wi = 1 for all i ∈ [n]. A congestion game has symmetric
strategies if all players share a common strategy space. We consider linear congestion
games, where the delay of each resource e is given by de(x) = aex+ be, ae, be ≥ 0.

A configuration is a tuple s = (s1, . . . , sn) consisting of a strategy si ∈ Σi for each
player i. We let se =

∑
i:e∈si

wi denote the congestion induced on each resource e by
s, and let ci(s) =

∑
e∈si

wi(aese + be) denote the (actual) cost of player i in s.

Graphical Congestion Games. The new ingredient in the definition of graphical con-
gestion games is the social graphG(V,E), which is defined on the set of players V and
contains an edge {i, j} ∈ E between each pair of players i, j that know each other. We
consider graphical games with weighted players and simple undirected social graphs.

Given a graphical congestion game with a social graph G(V,E), let α(G) be the
independence number of G, i.e. the cardinality of the largest set of players that do not
know each other. For a configuration s and a resource e, let Ve(s) = {i ∈ V : e ∈ si}
be the set of players using e in s, let Ge(s)(Ve(s), Ee(s)) be the social subgraph of
G induced by Ve(s), and let ne(s) = |Ve(s)| and me(s) = |Ee(s)|. For each player
i (not necessarily belonging to Ve(s)), let Γ i

e(s) = {j ∈ Ve(s) : {i, j} ∈ E} be i’s
social neighborhood among the players using e in s. In any configuration s, a player i is
aware of a presumed congestion si

e = wi +
∑

j∈Γ i
e (s) wj on each resource e, and of her

presumed cost pi(s) =
∑

e∈si
wi(aes

i
e + be). We note that the presumed cost coincides

with the actual cost if the social graph is complete.
For graphical congestion games, a configuration s is a pure Nash equilibrium (PNE)

if no player can improve her presumed cost by unilaterally changing her strategy. For-
mally, s is a PNE if for every player i and all strategies σi ∈ Σi, pi(s) ≤ pi(s−i, σi).

Social Cost, Price of Anarchy, and Price of Stability. We evaluate configurations
using the objective of total (actual) cost. The total cost C(s) of a configuration s is the
sum of players’ actual costs in s, i.e. C(s) =

∑n
i=1 ci(s) =

∑
e∈E(aes

2
e + bese). The

optimal configuration, denoted o, minimizes the total cost among all configurations.
The (pure) Price of Anarchy (PoA) of a graphical congestion game C is the maximum

ratio C(s)/C(o) over all PNE s of C. The (pure) Price of Stability (PoS) of C is the
minimum ratio C(s)/C(o) over all PNE s of C.

Other Notions of Cost. We also consider the total presumed cost P (s) of a configura-
tion s, defined as P (s) =

∑n
i=1 pi(s). We note that P (s) ≤ C(s), which holds with

equality if the social graph is complete. We let o′ denote the configuration of minimum
total presumed cost. The Price of Anarchy with respect to the total presumed cost is the
maximum ratio P (s)/P (o′) over all PNE s.



322 D. Fotakis et al.

Moreover, it is helpful to define U(s) =
∑n

i=1
∑

e∈si
wi(aewi + be). We note that

U(s) ≤ P (s), which holds with equality if the social graph is an independent set.

Potential Functions. A function Φ : Σ1 × · · · × Σn �→ IR≥0 is a potential function
for a (graphical congestion) game if when a player i moves from her current strategy
in a configuration s to a new strategy s′i, the difference in the potential value equals the
difference in the (presumed) cost of player i, i.e. Φ(s−i, s

′
i)−Φ(s) = pi(s−i, s

′
i)−pi(s).

Improvement Moves and Approximate Equilibria. A strategy s′i is a best response
of a player i to a configuration s if for all σi ∈ Σi, pi(s−i, s

′
i) ≤ pi(s−i, σi). We

let Δ(s) =
∑n

i=1(pi(s) − pi(s−i, s
′
i)) denote the sum of the improvements on the

presumed cost if each player i moves from her current strategy in a configuration s to
her best response s′i. A strategy σi is an improvement move of player i in a configuration
s if pi(s−i, σi) < pi(s). Given an ε ∈ (0, 1), a strategy σi is an (improvement) ε-move
of player i in s if pi(s−i, σi) < (1 − ε)pi(s), i.e. if player i moving from her current
strategy in s to σi improves her presumed cost by a factor more than ε.

For a (graphical congestion) game that admits a potential function, every improve-
ment move decreases the potential. Hence, the Nash dynamics, i.e. any sequence of
improvement moves, converges to a PNE in a finite number of steps, and the ε-Nash dy-
namics, i.e. any sequence of ε-moves, converges to a pure Nash ε-equilibrium (ε-PNE),
i.e. a configuration where no player has an ε-move available. Formally, a configuration
s is a ε-PNE if for every player i and all strategies σi ∈ Σi, (1− ε)pi(s) ≤ pi(s−i, σi).

3 Potential Function and Cost Approximation

Potential Function. We first show that graphical linear congestion games with
weighted players admit a potential function.

Theorem 1. Every graphical linear congestion game with weighted players admits a
potential function, and thus a pure Nash equilibrium.

Proof. Let s be a configuration of a graphical linear game with weighted players. Then,

Φ(s) =
∑
e∈R

⎡⎣ae

⎛⎝ ∑
i∈Ve(s)

w2
i +

∑
{i,j}∈Ee(s)

wiwj

⎞⎠+ be
∑

i∈Ve(s)

wi

⎤⎦ =
P (s) + U(s)

2

is a potential function for such a game, since when a player i switches from her current
strategy in s to a strategy s′i ∈ Σi, Φ(s−i, s

′)− Φ(s) = pi(s−i, s
′)− pi(s). 	


Actual Cost vs Presumed Cost. Next we show that for any configuration s, the total
actual cost C(s) is an α(G)-approximation of the total presumed cost P (s).

Lemma 1. Let G(V,E) be the social graph associated with a graphical linear conges-
tion game with weighted players, and let α(G) be the independence number ofG. Then
for any configuration s, C(s) ≤ α(G)P (s).

Proof. For any configuration s and any resource e, let Ge(s)(Ve(s), Ee(s)) be the sub-
graph induced by the players in Ve(s), and let Pe(s) =

∑
i∈Ve(s) wi(aes

i
e + be) and

Ce(s) = aes
2
e + bese. It suffices to show that Ce(s) ≤ α(Ge(s))Pe(s). For simplic-

ity and since we consider a fixed configuration s throughout this proof, we omit the
dependence of the social subgraph and its parameters on s.
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We first establish the lemma for unweighted players, and then reduce the weighted
case to the unweighted one. For the unweighted case, it suffices to show a lower bound
on the number of edges me, since Pe(s) = ae(2me + ne) + bene, i.e. Pe(s) only
depends on the number of edges in Ge, not on which players are connected by them.

We let k = ne/α(Ge) and r = k−�k� (resp. k− r) be k’s fractional (resp. integral)
part. We partition the vertices of Ge into a sequence of at least �k� independent sets of
non-increasing cardinality as follows: We begin with � = 1 and G(1)

e = Ge. As long
as G(�)

e is non-empty, we find a maximum independent set I� of G(�)
e , obtain the next

graph G(�+1)
e by removing the vertices of I� from G

(�)
e , increase � by one, and iterate.

Let q ≥ �k� be the number of independent sets obtained by the decomposition above.

Since I� is a maximum independent set of G(�)
e , for every j = � + 1, . . . , q, each

vertex u ∈ Ij is connected by an edge to at least one vertex in I�. Otherwise, I� ∪ {u}
would be an independent set larger than I�. Hence, for every j = 2, . . . , q, each vertex
u ∈ Ij is incident to at least j − 1 edges connecting it to vertices in the independent
sets I1, . . . , Ij−1, and me ≥

∑q
j=2(j − 1)|Ij |. Since

∑q
j=2 |Ij | = ne − α(Ge) and

|Ij | ≤ α(Ge) for all j ∈ [q], the lower bound on the total number of edges is minimized
when q = �k�, |Ij | = α(Ge) for all j = {1, . . . , �k�}, and |I�k�| = rα(Ge). Therefore,

me ≥
(k − r)(k − r − 1)

2
α(Ge) + (k − r)rα(Ge) =

(k − r)(k + r − 1)
2

α(Ge)

Using that r ≥ r2, since r ∈ [0, 1), we conclude the proof for the unweighted case:

α(Ge)Pe(s) ≥ ae[(k − r)(k + r − 1) + k]α2(Ge) + bekα
2(Ge)

≥ aek
2α2(Ge) + bekα(Ge) = Ce(s)

For weighted players, we create a new graph G′
e by replacing each player i ∈ Ve with

a clique Qi of wi unweighted players that use the same strategy si. For each edge
{i, j} ∈ Ee, we add wiwj edges to G′

e that connect every vertex in the clique Qi to
every vertex in the clique Qj . The lemma follows since G′

e consists of unweighted
players, α(Ge) = α(G′

e), and the transformation does not affect Pe(s) and Ce(s). 	


4 The Price of Anarchy and the Price of Stability

The following lemma is useful both in bounding the PoA and in establishing the fast
convergence of the ε-Nash dynamics to approximately optimal configurations.

Lemma 2. For any configuration s of a graphical linear congestion game with
weighted players arranged in a social graph G,

P (s) ≤ α(G) + 2 +
√
α2(G) + 4α(G)
2

C(o) + 2Δ(s) (1)

Proof. We follow the general approach of [6, Lemma 4.1] and [5, Theorem 3.1]. The
presumed cost of each player i if she switches to her best response strategy s′i is at most
her presumed cost if she switches to her optimal strategy oi. Thus,

pi(s−i, s
′
i) ≤ pi(s−i, oi) ≤

∑
e∈oi

wi(ae(se + wi) + be)
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Summing up over all players, and using the Cauchy-Schwarz inequality and Lemma 1,
we obtain that:

n∑
i=1

pi(s−i, s
′
i) ≤
√
C(o)C(s) + C(o) ≤

√
C(o)α(G)P (s) + C(o) (2)

Adding Δ(s) to both sides of (2) and dividing by C(o), we obtain that :

P (s)/C(o) ≤
√
α(G)
√
P (s)/C(o) + 1 +Δ(s)/C(o) (3)

Setting β =
√
P (s)/C(o) and γ = Δ(s)/C(o), (3) becomes β2 ≤

√
α(G)β + 1 + γ.

By simple algebra, we obtain that 2β ≤
√
α(G) +

√
α(G) + 4(1 + γ). The lemma

follows by taking the squares of both sides of the previous inequality and observing
that
√
α2(G) + 4α(G)(1 + γ) ≤

√
α2(G) + 4α(G) + 2γ. 	


The Price of Anarchy. In Lemma 2, when s is a PNE, we get Δ(s) = 0. Therefore,
Lemma 1 and Lemma 2 immediately imply the following upper bound on the PoA.

Theorem 2. For graphical linear congestion games with weighted players, the Price
of Anarchy is at most α(G)(α(G) + 2 +

√
α2(G) + 4α(G))/2.

Therefore, the PoA of graphical linear games with weighted players is less than
α(G)(α(G) + 2). Bilò et al. [7, Theorem 13] present a family of unweighted graph-
ical games with n players arranged in a bipartite social graph G with α(G) = n/2,
for which the PoA can be as large as α2(G). Next we present a different family of un-
weighted graphical games for which the ratio α(G)/n can take any value in (0, 1

2 ] and
the PoA is at least α(G)(α(G)+1). This implies that as long as α(G) ≤ n/2, the upper
bound of Theorem 2 is essentially tight.

Theorem 3. For any integers � ≥ 1 and n ≥ 2�, there is a graphical linear congestion
game with n unweighted players arranged in a social graph G with α(G) = �, for
which the PoA is �(�+ 1).

Proof sketch. For simplicity, we focus on the case where k = n/� is an integer. The
social graph G is the complete k-partite graph with � vertices in each part. There are
k(�+ 1) resources ej

i , j ∈ [k], i ∈ {0} ∪ [�], with delay function d(x) = x.
Each player has two strategies, the “short” and the “long” one. In particular, for

the i-th player in the j-th part, the “short” strategy is {ej
i}, and the “long” strategy is

{e(j mod k)+1
0 , e

(j mod k)+1
1 , . . . , e

(j modk)+1
� }. The optimal configuration o assigns all

players to their “short” strategies and has C(o) = k�. On the other hand, there is a PNE
s with C(s) = k�2(�+ 1) where all players use their “long” strategies. 	


Next we establish a stronger upper bound on the PoA of graphical linear games with
unweighted players and social graphs with a very large independence number, and show
that this bound is tight (up to a small constant factor) when α(G) ≥ n/2. The proofs of
the following two theorems are omitted due to lack of space.

Theorem 4. For graphical linear congestion games with n unweighted players, the
Price of Anarchy is at most 2n(n− α(G) + 1).
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Theorem 5. For any integers � ≥ 1 and � ≤ n ≤ 2�, there is a graphical linear game
with n unweighted players arranged in a social graph G with α(G) = �, for which the
Price of Anarchy is at least �(n− �+ 1)− (n− �).

In addition, we observe that Lemma 1 and Lemma 2 imply that the bound of Theorem 2
remains valid if the PoA is calculated with respect to the total presumed cost.

Theorem 6. For a graphical congestion game with weighted players, let o′ be the con-
figuration that minimizes the total presumed cost, and let s be any PNE. Then,

P (s)/P (o′) ≤ α(G)(α(G) + 2 +
√
α2(G) + 4α(G))/2

Moreover, we show that the bound of Theorem 6 is essentially tight for social graphs
G with α(G) ≤

√
n/2, even for unweighted players. We emphasize that such a lower

bound is best possible, since the PoA with respect to the total presumed cost is at most
n (see e.g. [7, Theorem 9], which can be easily generalized to the weighted case).

Theorem 7. For any integers � ≥ 1 and n ≥ 2�2, there is a graphical linear congestion
game with n unweighted players arranged in a social graphGwith α(G) = �, for which
the Price of Anarchy with respect to the total presumed cost is �2.

Proof sketch. For simplicity, we focus on the case where k = n/�2 is an integer. The
social graph G consists of k groups Gi, i ∈ [k], where each Gi consists of � disjoint
independent sets Ij

i , j ∈ [�], with � vertices each. The vertices within each part Gi are
also partitioned into � cliques of cardinality �, with each clique including one vertex
from each independent set Ij

i , j ∈ [�]. The edges between the vertices in the same
clique are the only edges between vertices in the same group. All pairs of vertices from
different groups are connected to each other by an edge. There are k� resources ej

i ,
i ∈ [k], j ∈ [�], one for each independent set Ij

i , with delay function d(x) = x.
Each player has two strategies, the “short” and the “long” one. More specifically, for

a player in the independent set Ij
i , the “short” strategy is {ej

i}, and the “long” strategy is
{e1(i modk)+1, . . . , e

�
(i modk)+1}. The configuration o′ of minimum total presumed cost

assigns each player to her “short” strategy and has P (o′) = k�2. On the other hand,
there is a PNE s with P (s) = k�4 where all players use their “long” strategies. 	

The Price of Stability. An upper bound on the PoS follows easily from the potential
function of Theorem 1 and Lemma 1.

Theorem 8. For graphical linear congestion games with n weighted players, the Price
of Stability is at most 2nα(G)

n+α(G) .

Proof sketch. Let s be a minimizer of the potential function Φ. Clearly, s is a PNE.
We observe that C(o) ≥ Φ(o) ≥ Φ(s) = P (s)/2 + U(s)/2. The lemma follows by
observing that (i) P (s) ≥ C(s)/α(G), by Lemma 1, and (ii) U(s) ≥ C(s)/n, by the
Cauchy-Schwarz inequality. 	

The following theorem, whose proof is omitted due to lack of space, shows that the
upper bound of Theorem 8 is essentially tight.

Theorem 9. For any positive integers � and n ≥ �, and any ε > 0, there is a graphical
linear congestion game with n unweighted players arranged in a social graph G with
α(G) = �, for which the Price of Stability is �− ε.
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5 Convergence Rate of the ε-Nash Dynamics

Convergence to Near Optimal Configurations. Employing the techniques of Awer-
buch et al. [6], we show that the largest improvement ε-Nash dynamics reaches an
approximately optimal configuration in a polynomial number of steps, where the ap-
proximation ratio is arbitrarily close to the PoA of the graphical congestion game. In
each step of the largest improvement ε-Nash dynamics, among all players with an ε-
move available, the player with the largest improvement on his presumed cost moves.
The proof of the following theorem is omitted due to lack of space.

Theorem 10. For a graphical linear game with nweighted players arranged in a social
graph G, let s∗ be a minimizer of the potential function Φ, and let 1

8 ≥ δ ≥ ε > 0.
Starting from a configuration s0, the largest improvement ε-Nash dynamics reaches a
configuration s with C(s) ≤ α(G)

2 (α(G) + 2 +
√
α2(G) + 4α(G))(1 + 8δ)C(o) in

O(n
δ log Φ(s0)

Φ(s∗) ) steps.

Following the approach of [6, Theorem 3.3], we can establish a similar convergence
time for the unrestricted ε-Nash dynamics, which proceeds in rounds of bounded length,
and the only requirement is that each player gets a chance to move in every round.

Convergence to Approximate Equilibria. For graphical linear games with unweighted
players and symmetric strategies, we employ the techniques of Chien and Sinclair [10]
and show that the largest improvement ε-Nash dynamics converges to an ε-PNE in
polynomial time. The proof of the following theorem is omitted due to lack of space.

Theorem 11. For a graphical linear congestion game with symmetric strategies and n
unweighted players, let s∗ be a minimizer of the potential function Φ, and let ε ∈ (1, 0).
Starting from a configuration s0, the largest improvement ε-Nash dynamics converges
in O(n2

ε log Φ(s0)
Φ(s∗) ) steps.

Following the approach of [10, Theorem 4.1], we can establish a similar convergence
time to an ε-PNE for the unrestricted ε-Nash dynamics, where the only requirement is
that each player gets a chance to move in every round.

Acknowledgements. The first author thanks Piotr Krysta for helpful discussions that
greatly contributed to shaping his view on the topic of this work.
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Abstract. We show a range of complexity results for the Ricardo and
Heckscher-Ohlin models of international trade (as Arrow-Debreu pro-
duction markets). For both models, we show three types of results:

1. When utility functions are Leontief and production functions are
linear, it is NP-hard to decide if a market has an equilibrium.

2. When utility functions and production functions are linear, equilibria
are efficiently computable (which was already known for Ricardo).

3. When utility functions are Leontief, equilibria are still efficiently
computable when the diversity of producers and inputs is limited.

Our proofs are based on a general reduction between production and
exchange equilibria. One interesting byproduct of our work is a gener-
alization of Ricardo’s Law of Comparative Advantage to more than two
countries, a fact that does not seem to have been observed in the Eco-
nomics literature.

1 Introduction

How does production in an economy affect the computability of equilibria?
A wave of research has shown a broad spectrum of results for pure exchange
economies (e.g. [5,6,2]); however, only a handful of papers approach equilibria
in the presence of production (e.g. [11,8,9]). The papers that do consider pro-
duction typically construct sophisticated algorithms to compute equilibria, and
they do not present negative results.

We take a different approach: in the spirit of Jain and Mahdian’s reduction for
the Fisher market[7], we reduce production economies to exchange economies.
The reduction yields a variety of complexity results for two classical models
of trade: the Ricardo model and the Heckscher-Ohlin model. Mathematically,
both are special cases of the Arrow-Debreu production market[1]. Economists
use them because they represent different motivations for international trade:
differentiation in production technology and differentiation in raw materials. For
our purposes, their formulations are conveniently simple: the Ricardo model uses
linear production functions with a single raw material, and the Heckscher-Ohlin
model specifies that agents have identical production functions.
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Our reductions will leverage the plentiful literature on computing equilib-
ria in pure exchange economies. The simplest results reduce the Ricardo and
Heckscher-Ohlin models to exchange economies with linear utilities. A wide va-
riety of algorithms already exist for this case — for example, Devanur et al. use
a primal dual approach[5] and Garg and Kapoor use an auction algorithm[6].

Our hardness results are based on the NP-hardness result of Codenotti et al.
for pure exchange economies[2]. Revisiting their proof yields a convenient tool
for showing NP-hardness for our production economies. It is noteworthy that the
production model need not be complicated — we show that linear production
functions with a single production input suffice to preserve hardness.

Our most interesting computational result is that equilibria may become eas-
ier to compute when there are only a few types of producers or raw materials.
Devanur and Kannan[4] show that for exchange markets, equilibria in a Leon-
tief exchange economy become easier to compute when there are few goods or
agents. We use their result to show that equilibria in the Ricardo model are
easy to compute when there are few types of producers. Mathematically, this
translates to a type of low-rank constraint on the production coefficients in the
Ricardo economy. Similarly, for the Heckscher-Ohlin model, we show that equi-
libria are efficiently computable under Leontief utilities and production functions
independent of the number of goods, provided the number of raw materials is
small.

The previous two results are interesting in a broader context because real
economies have less variation in technologies and raw materials than they do in
consumers, goods, and preferences. For example, typical uses of the Heckscher-
Ohlin model[12] employ very few raw materials: labor, land, capital, etc. Thus,
our results concern economies which may be closer to reality or to patterns
studied by economists.

Our complexity results are summarized in Table 1.

Table 1. A summary of the results in this paper

Model Production Utilities Complexity Note

Ricardo Linear
Leontief NP-hard
Linear P Already known, e.g. [11]

Leontief P Similar producers

Heckscher-Ohlin
Linear Leontief NP-hard
Linear Linear P

Leontief Leontief P O(1) raw materials

As a bonus, we encounter a novel generalization of a classical theorem of
economics: Ricardo’s law of comparative advantage. This law states that each
of two trading countries will specialize in the production of goods for which
its relative labor efficiency is larger, with the ratio of the equilibrium price of
labor (wage) as the cut-off point. We establish a multi-dimensional generalization
(from the interval [0, 1] to the simplex, see Figure 1).
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2 Markets, Equilibria, and Production

We will use four special cases of Arrow and Debreu’s market model[1]: the ex-
change economy, the paring exchange economy, the Ricardo production economy,
and the Heckscher-Ohlin production economy.

2.1 Exchange Economies

An exchange economy consists of n agents and m divisible goods. Each agent i
is initially given eij units of good j and has a utility function ui(x) mapping a
bundle of of goods x = {x1, . . .xm} to a nonnegative utility. Agents trade goods
to improve their utilities.

We will use both linear and Leontief utilities in this paper. Linear utility
functions take the form

ui(x1, . . .xm) =
∑

j

φij · xj .

A player with Leontief utilities desires goods in fixed proportions. The utility
functions take the form

ui(x1, . . .xm) = min
j

xj

φij
.

Let Φ = [φij ] be the matrix of coefficients φij .
An equilibrium in an exchange economy is an allocation x and a set of prices π

such that x maximizes the utility of each agent subject to the budget constraint∑
j

πj · xij ≤
∑

j

πj · eij .

The Pairing Leontief Economy. In the pairing model (Ye [13]), agent i is endowed
with exactly 1 unit of good i and nothing else. When the agents have Leontief
utilities, we call it a pairing Leontief economy. Since endowments are fixed, the
pairing Leontief economy is completely specified by Φ.

Codenotti et al. used pairing Leontief economies to show that it is NP-hard
to decide whether a general Leontief exchange economy has an equilibrium[2].
In fact, the pairing constraint is not violated by their proof, yielding:

Theorem 1. (Derived from Codenotti et al.[2]) It is NP-hard to decide whether
a pairing Leontief exchange economy has an equilibrium. (Proof omitted.)

2.2 Production Economies

We will restrict Arrow and Debreu’s production model. We say that each agent
i has one production function fij for each tradable good j (of m total). Each
function fij(l) maps a bundle l ofK non-tradable raw materials (indexed by k) to
fij(l) units of the j-th good. An agent is endowed with a bundle of raw materials
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li (for which he has no utility). For our purposes, the production functions will
be either linear or Leontief, parameterized by coefficients aij with matrix form
A = [aij ]. As before, each agent has a utility function ui.

Such a production economy may be understood to operate in two stages.
First, agent i chooses a production plan to turn his endowment li into a bundle
of tradable goods xi using the functions fij . Second, the agents exchange goods
as in an exchange economy.

We will use wik to denote the effective price of raw material k of agent i.

The Ricardo Model. The special case with a single raw material (K = 1) and
linear production technologies was used by economist David Ricardo and is com-
monly known as the Ricardo model. In this restricted setting, the production
functions take the form

fij(l) = aij · l

where l is a scalar. We use li to denote the amount of raw material possessed by
agent i and wi the price for agent i’s raw material. Historically, the raw material
l represents labor and the price wi represents wages.

The Heckscher-Ohlin Model. The case where there are many inputs but produc-
tion technologies are identical is known as the Heckscher-Ohlin model. In this
model, the form of the production functions is not specified.

3 The Upside-Down Reduction

Many of our theorems reduce a production economy to an upside-down exchange
economy. In an upside-down economy, trade precedes production — agents trade
raw materials, then produce their optimal bundles given the raw materials they
acquire. To preserve the possibilities of the original economy, raw materials retain
the production technology of their original agent. As a result, the production
functions are absorbed into the utilities, as each players’ utility function for a
bundle of raw materials l will be

ui(l) = max
x∈X

ui(x)

where X is the set of all bundles agent i can produce given l. This type of
reduction was used by Jain and Mahdian in the context of the Fisher model[7],
but we use it more broadly.

When the production functions exhibit constant returns to scale, the pro-
duction possibilities in the upside-down economy are identical to those in the
original production economy. Thus, the equilibria are also identical. We use the
fact that both linear and Leontief functions exhibit constant returns to scale.

We denote functions and variables in the upside-down economy with a (′). In
general, an upside-down economy will have n′ = n agents and m′ = (n × K)
goods. (Since raw materials carry technology, the raw materials of two agents
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are different goods.) We index goods as (ik) and use x′(ik) to refer to an amount
of raw material k that has the production technology of agent i.

The following lemmas give three cases where the reduction behaves nicely —
the Leontief/Leontief, linear/Leontief, and linear/linear cases respectively. The
technique is similar, so we only prove the Leontief/Leontief case.

Lemma 2. When all agents have identical production functions, and both pro-
duction functions and utilities are Leontief, then

1. the utility functions in the upside-down economy are also Leontief with easily
computable parameters, and

2. we can recover equilibrium prices as

πj =
∑

k

π(k)

ajk
.

Proof. Since all agents have identical production functions, there will be K dis-
tinct goods in the upside-down economy.

Consider the behavior of a single agent, Alice, and drop her subscripts for
clarity. Let x′(k)j be the amount of raw material k that Alice uses to produce
good j. We can write the amount of good j that Alice produces as

min
k

x′(k)j

ajk

and Alice’s subsequent utility as

u(x′) = min
j

mink
x′
(k)j

ajk

φj
= min

k
min

j

x′(k)j

ajk · φj
.

In order to maximize her utility, Alice will distribute each input x(k) over goods

so as to maximize minj
x′
(k)j

ajk·φj
. This will occur when all terms are equal, so we

know that

min
j

x′(k)j

ajk · φj
=

1
m

∑
j

x′(k)j

ajk · φj
=
x′(k)

m

∑
j

1
ajk · φj

.

Substituting gives Alice’s utility function:

u(x′) = min
k

⎛⎝x′(k)

m

∑
j

1
ajk · φj

⎞⎠ .

As claimed, this is Leontief. Moreover, the coefficients φ′ may be easily computed
from φ, a, and m.

Since there is only one production technology for each good, we can compute
the price of good j as the total cost of the inputs required to make one unit:

πj =
∑

k

π(k)

ajk
.
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Lemma 3. When there is a single type of raw material, production functions
are linear, utilities are Leontief, and for all goods j we are told that agents use
the raw material of agent ij to produce good j, then

1. the utility functions in the upside-down economy are Leontief and easily com-
putable, and

2. we can recover equilibrium prices as

πj =
π(ij)

aijj
.

Lemma 4. (Like Jain and Mahdian with multiple raw materials[7].) When the
production functions and utilities in the production economy are linear, then

1. the utility functions in the upside-down economy are linear and easily com-
putable, and

2. equilibrium prices π in the original economy may be recovered from equilib-
rium prices π′ in the upside-down economy as

πj = min
i,k

π′
(ik)

aijk
.

4 Computability in the Ricardo Model

We show a broad range of computational results for the Ricardo model. Com-
putability with linear and Leontief utilities parallels the exchange economy. Inter-
estingly, we find that with Leontief utilities, equilibria are efficiently computable
when producers are sufficiently similar.

Linear Utilities
As a warm-up, we use an upside-down reduction to show that Ricardo equilibria
are efficiently computable when the utility functions are linear. (The computabil-
ity was already known, e.g. the auction algorithm of Kapoor et al.[11].) Note that
Jain and Mahdian use the same proof for the Fisher model in [7].

Theorem 5. Equilibria in the Ricardo model are efficiently computable when
agents’ utility functions are linear.

Proof. The Ricardo model, with linear production functions and one raw ma-
terial, is a special case of the linear production economy reduced in Lemma 4.
Following this lemma, the upside-down counterpart to the linear Ricardo econ-
omy has linear utility functions that are efficiently computable from the original
utilities. Furthermore, we can recover equilibrium prices from the upside-down
equilibrium and use them to compute demands (given prices, it is easy to com-
pute demands under linear utilities.)

To complete the proof, we note that many algorithms exist to compute equi-
libria in linear exchange economies, e.g. [5,6]. Thus, linear Ricardo equilibria are
efficiently computable. 	
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Leontief Utilities
While it seems nontrivial to reduce a general exchange economy to a Ricardo
economy, it is easy to reduce a pairing one — this yields the following hardness
result:

Theorem 6. It is NP-hard to decide whether a Ricardo model economy with
Leontief utility functions has an equilibrium.

Proof. Let Φ represent the preferences in a pairing Leontief exchange economy.
Observe that choosing A = I and li = 1, i-th country can only produce the i-th
good and can produce at most 1 unit of it. Since it has no value for the raw
material, it may be assumed to produce 1 unit of the i-th good.

Since each agent i has the same goods for trade and the same utilities in
both economies, the equilibria must also be the same. NP-hardness follows from
Theorem 1. 	


Similar Producers
We show that equilibria are efficiently computable when the utility functions are
Leontief provided that the producers are similar. Specifically, we will require a
low-rank-like requirement on the matrix of production parameters A.

First, we make the following common observation about the Ricardo model:

Observation 7. In equilibrium, agent i may produce good j only if πj = wi

aij
=

mini
wi

aij
. Alternatively, country i may produce a good if and only if wi

wi′
≤ aij

ai′j

for all other countries i′.

Intuitively, this holds because when πi <
wi

aij
, then country i loses by producing

good j. On the other hand, if πi >
wi

aij
, then a buyer would resist buying and

force the price down.
A key insight is that given prices (which may be completely specified by either

the πi’s or the wi’s,) the pattern of production is fixed. This will allow us to prove
the following lemma decomposing the price space into production patterns:

Lemma 8. In a Ricardo economy with n producers and m goods, there are at
most O(mO(n2)) distinct production patterns. Moreover, each production pattern
occurs in a convex polytope in the price space.

Proof. Observation 7 implies that if
ai1

ai′1
≥ . . . ≥ aik

ai′k
>

wi

wi′
>

ai(k+1)

ai′(k+1)
≥ . . . ≥ aim

ai′m
,

then agent i cannot produce any good for which wi

wi′
>

aij

ai′j
while agent i′ cannot

produce any good for which aij

ai′j
> wi

wi′
. Thus, we may give a combinatorial spec-

ification of the pattern of production between two countries by specifying where
wi

wi′
appears in the ordering of goods. Note that there are (2m+ 1) possibilities.

Extending this idea to n agents, we want to show that specifying the pairwise
combinatorial production patterns will specify the overall pattern of production.
For a given good j, either
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1. There is some agent i such that aij

ai′j
> wi

wi′
for all other agents i′, or

2. there is a cycle of agents i, i2,. . . ir such that aij

ai2j
> wi

wi2
, . . . airj

aij
>

wir

wi
.

However, option (2) is impossible: multiplying the first r − 1 inequalities gives
aij

airj
> wi

wir
, which contradicts the final inequality. Thus, for each good, there is

some producer who can produce it. It follows that specifying all the combinatorial
pairwise patterns must specify the overall pattern of production.

Since there are O(n2) pairs of agents and (2m+1) patterns for each pair, there
are at most O(mO(n2)) different combinatorial characterizations and therefore
production patterns in the economy.

Finally, note that the production pattern will be specified by O(n2) inequali-
ties of the form

aik

ai′k
>

wi

wi′
>
ai(k+1)

ai′(k+1)

or an equality of the form
aik

ai′k
=

wi

wi′

Each equality/inequality bounds the equilibrium prices between a pair of hyper-
planes. The union of the hyperplanes defines the convex polytope in the price
space in which this production pattern occurs. 	


Lemma 9. If the rows of the production matrix A are scalar multiples of K =
O(1) different vectors, then computing eqilibria in the Leontief Ricardo economy
is as easy as finding equilibria in a Leontief exchange economy with K goods
restricted to a convex polytope in the price space.

Proof. Briefly, the K = O(1) bound dictates that there areK = O(1) interesting
raw materials. Combined with Lemma 8, we will conclude that there are a poly-
nomial number of distinct production patterns. This permits an upside-down
reduction for each production pattern using Lemma 3 to reduce to a Leontief
exchange economy.

First, Observation 7 and our restriction on A will imply that agents see K
distinct producers in the economy. Let Ai denote the i-th row of A. Let i and
i′ be agents whose production vectors are scalar multiples, i.e. Ai = c · Ai′ for
some constant c. We claim that in equilibrium, wi = c ·wi′ , and therefore agents
are ambivalent between having one unit of i’s raw material and c units of i′’s
raw material.

Assume the contrary, i.e. wi �= c · wi′ If wi < c · wi′ , then wi

aij
<

w′
i

ai′j
for all

goods j. By Observation 7, this implies that agent i′ does not produce anything.
Similarly, wi > c ·wi′ would imply that agent i does not produce anything. This
can only happen in equilibrium if neither agent i nor agent i′ produce anything,
in which case it must be that wi = wi′ = 0.

Thus, the raw materials of i and i′ are indistinguishable. It follows that from
a computational perspective, we need only consider an economy with K distinct
producers (we can normalize so that Ai = Ai′ .)
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According to Lemma 8, this implies that there are at most O(mO(K2)) =
O(mO(1)) different production patterns. Since we have one raw material, linear
production functions, Leontief utilities, and knowledge of the production pattern,
we apply Lemma 3 to reduce the problem to a Leontief exchange economy with
K goods in a polytope in the price space. (The relationship between prices in
the Ricardo and upside-down economies tells us how to transform the Ricardo
price polytope to the price space of the upside-down economy.) 	


Theorem 10. If the rows of the production matrix A are scalar multiples of
K = O(1) different vectors in a Leontief Ricardo economy, then equilibria are
efficiently computable.

Proof. We use the method of Devanur and Kannan[4] to compute equilibria in a
polytope for a Leontief exchange economy. Combining this with Lemma 9 gives
a polynomial time algorithm. 	


4.1 Ricardian Comparative Advantage

The price-space decomposition implied by Observation 7 suggests a new gen-
eralization of Ricardo’s law of comparative advantage. A well-known theorem
in economics, Ricardo’s law of comparative advantage for two agents (originally
countries) is as follows:

Theorem 11. (David Ricardo) In equilibrium for a two agent Ricardo economy,
if the goods are ordered by relative production factors aij and equilibrium raw
material prices wi as

a11

a21
≥ . . . ≥ a1k

a2k
>
w1

w2
>
a1(k+1)

a2(k+1)
≥ . . . ≥ a1m

a2m

then agent 1 produces goods 1 through k and agent 2 produces goods (k + 1)
through m. If, for some good j we have w1

w2
= a1j

a2j
, then either country may

produce good j.

Interestingly, previous attempts to generalize comparative advantage failed to
produce a nice theory[10,3]. However, hyperplane-partitioning leads to the fol-
lowing intuitive generalization:

Theorem 12. Comparative advantage in an n-agent Ricardo economy may be
understood as a partition of an (n− 1)-dimensional simplex by the price vector
w into n convex polytopes. A good j is produced by country i if and only if its
relative production technologies map to a point in i’s polytope.

Proof. Observation 7 tells us that in equilibrium, country i produces all goods
for which wi

w′
i
<

aij

ai′j
for all other countries i′, and that it may produce goods for

which wi

w′
i
≤ aij

ai′j
for all i′.

Consider the material prices and production coefficients as vectors

w = (w1, . . . , wn), aj = (a1j , . . . , anj)
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and normalize them according to their L1 norm,

w′ =
w

|w|1
, a′j =

aj

|aj |1
.

Since all aij are positive, this maps the wage and production vectors to points
on the (n− 1)-dimensional simplex.

The points π in the price space where πi

πi′
= wi

wi′
form a hyperplane. By Ob-

servation 7, this hyperplane partitions the space (and therefore the simplex)
between goods possibly produced by i and goods possibly produced by i′. To-
gether, the hyperplanes partition the simplex into n convex polytopes Pi where
country i produces those goods whose normalized production technology a′j falls
inside Pi.

Figure 1 illustrates the generalization. 	


Fig. 1. Comparative advantage for 3 agents in the Ricardo model. The space of relative
production ratios is visualized as a 2-dimensional simplex (i.e. triangle) following The-
orem 12. If w represents the equilibrium price vector for the raw material, then good
1 will be produced by country B, 3 will be produced by C, 4 will be produced by A,
and 2 may be produced by either A or C.

5 Computability in the Heckscher-Ohlin Model

The Heckscher-Ohlin model stipulates that agents’ production functions are
identical. Again, we show a variety of results and, most interestingly, see that
when the number of raw materials is small (K = O(1)), the number of goods
may not matter (see Corollary 15).

Theorem 13. It is NP-hard to determine if a Heckscher-Ohlin economy with
linear production functions and Leontief utilities has an equilibrium.

Proof. Like Theorem 6, it is easy to simulate a pairing Leontief exchange econ-
omy. Let Φ parameterize a paring Leontief exchange economy. Construct a
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Heckscher-Ohlin economy with n raw materials, n outputs, and production func-
tions parameterized by

ajk =
{

1 i = j
0 otherwise

Endow agent i with one unit of raw material i and nothing else, i.e.

lik =
{

1, i = k
0, otherwise

Agent i can produce exactly one unit of good i and nothing else, so the goods
for trade are identical to the pairing Leontief economy. Thus, the equilibria must
be the same. 	


Our next two results will be corollaries of the following theorem:

Theorem 14. When the utility and production functions are both linear (or
both Leontief), computing equilibria in the Heckscher-Ohlin model reduces to
computing equilibria in an exchange economy with linear (Leontief) utilities and
K goods.

Proof. The linear and Leontief cases are straightforward applications of Lemmas
4 and 2 respectively. In both cases, the reductions are efficiently computable. 	


Corollary 15. When the utility and production functions are both Leontief and
there are K = O(1) raw materials, equilibria in the Heckscher-Ohlin model are
efficiently computable.

Proof. It is sufficient to compute equilibria in an exchange economy with Leontief
utilities and m = O(1) goods. Devanur and Kannan show that such equilibria
are efficiently computable[4]. 	


Corollary 16. When the utility and production functions are both linear, equi-
libria in the Heckscher-Ohlin model are efficiently computable.

Proof. It is sufficient to compute equilibria in an exchange economy with linear
utilities, a problem for which many efficient algorithms exist, e.g. [5,6]. 	
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Abstract. We study the geometrical shape of the partitions of the in-
put space created by the allocation rule of a truthful mechanism for
multi-unit auctions with multidimensional types and additive quasilin-
ear utilities. We introduce a new method for describing the allocation
graph and the geometry of truthful mechanisms for an arbitrary num-
ber of items(/tasks). Applying this method we characterize all possible
mechanisms for the case of three items.

Previous work shows that Monotonicity is a necessary and sufficient
condition for truthfulness in convex domains. If there is only one item,
monotonicity is the most practical description of truthfulness we could
hope for, however for the case of more than two items and additive valu-
ations (like in the scheduling domain) we would need a global and more
intuitive description, hopefully also practical for proving lower bounds.
We replace Monotonicity by a geometrical and global characterization of
truthfulness.

Our results apply directly to the scheduling unrelated machines prob-
lem. Until now such a characterization was only known for the case of
two tasks. It was one of the tools used for proving a lower bound of
1 +
√

2 for the case of 3 players. This makes our work potentially useful
for obtaining improved lower bounds for this very important problem.

Finally we show lower bounds of 1 +
√

n and n respectively for two
special classes of scheduling mechanisms, defined in terms of their ge-
ometry, demonstrating how geometrical considerations can lead to lower
bound proofs.

1 Introduction

Mechanism design is the branch of game theory that tries to implement social
goals taking into account the selfish nature of the individuals involved. Mech-
anism design constructs allocation algorithms that together with appropriate
payments elicit from the players their secret values or preferences. In this pa-
per we give a characterization result that reveals the exact geometry of truthful
mechanisms. The goal of this paper is to understand and visualize truthful mech-
anisms better. We realized the need for such a result while trying to improve
the lower bound for the scheduling selfish unrelated machines problem [14,7,10],
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however the result is more broadly applicable and interesting from itself con-
tinuing a line of research attempting to grasp truthfulness better [17,9,12,1,4].
What differentiates our work from this line of research is that we fully exploit
the linearity in the geometry of additive valuations.

There exists a simple necessary and sufficient condition for truthfulness in
convex domains and a finite number of outcomes, the Monotonicity Property.
In single parameter domains, like for example in an auction where there is only
one item, monotonicity is exactly the monotonicity we know from calculus and
the most practical description of truthfulness we could hope for. The allocation
should be a monotone (for the case of auctions an increasing, while for the case of
scheduling a decreasing) function of the player’s valuation for the item. However
for the case of two or more items Monotonicity is a local condition that should
be satisfied by any pair of instances of the problem and does not give us any clue
about the global picture of the mechanism, when considering the whole space of
inputs together. We would instead need a global and more intuitive description,
hopefully also practical for proving lower bounds. We replace Monotonicity by
a geometrical and global characterization of truthfulness, for the case when the
valuations are additive.

Until now such a characterization was known in the context of the scheduling
unrelated machines problem only for the easy case of two tasks [7] and it turned
out to be a a quintessential element of the characterization proof in [6] and the
lower bound in [7]. We believe that our result here can be used for obtaining
new lower bounds. The only discouraging fact is that even for the case of 3 tasks
the different mechanisms are too many and geometrically complicated.

No matter how many are the players participating in a mechanism, determin-
ing whether a mechanism is truthful boils down to a single-player case. Truth-
fulness requires that for fixed values of the other players, a player should not be
able to increase his utility by lying. Studying the mechanism for fixed values of
the other players is like studying a single-player case. Consequently in our setting
there is a single player and m different indivisible items (or tasks). The player’s
type is denoted by the vector t = (t1, . . . , tm), where ti is the valuation of the
bidder for the i-th item/task and the allocation is denoted by a = (a1, . . . , am)
where ai ∈ {0, 1}.

We assume that the bidder has additive valuations and hence the bidder’s
valuation function when his type is t and his allocation a is vt(a) = a · t. In
fact it is easy to see that our results also apply if the valuations are of the
form vt(a) = λ(a · t) + γa for some constants λ, γa (we can have one different
γa for each different allocation a). The reason for this is simple namely these
valuations also satisfy the Monotonicity Property and moreover the possible
truthful mechanisms for such valuations are like in Figure 1 (this would not be
the case for valuations with vt(11) = t1 · t2 or vt(11) = 2t1 + t2 as the sloped
hyperplane would not be 45◦). A mechanism consists of an allocation algorithm a
and a payment algorithm p. We make the standard assumption that the utilities
are quasilinear, that is the utility of the player is u(a, t) = vt(a)− p(a).
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The allocation part of the mechanism gives a partition of the space Rm of
possible values of a player to 2m different regions, one for each possible different
allocation a of the player. But which are exactly the possible partitions of the
space the mechanism creates? This is exactly the question we address in this
paper.

We know [17] that a mechanism is truthful if and only if its allocation part
satisfies the monotonicity property.

Definition 1 (Monotonicity Property). An allocation algorithm is called
monotone if it satisfies the following property: for every two sets of tasks t and
t′ the associated allocations a and a′ satisfy (a−a′) · (t− t′) ≤ 0, where · denotes
the dot product of the vectors, that is,

∑m
j=1(aj − a′j)(tj − t′j) ≤ 0.

Notice that the Monotonicity Property is a necessary and sufficient condition
for truthfulness and that it only involves the allocation part of the mechanism.
Consequently by determining the possible partitions of the input space created
by the allocation part of the mechanism we will eventually give a characterization
of truthfulness.

As it has already been noticed in [9] in the case of additive valuations the
boundaries of the mechanism are hyperplanes of a very specific form, every
region created by this partition is a convex polyhedron. In this paper we show
exactly which (rather few) polytopes are involved in such a partition. For proving
our results we reduce the problem to that of determining the allocation graph of
the mechanism, i.e. which of the regions share a common boundary. We can then
determine the exact geometrical shape of the mechanism because the hyperplane
that separates two regions can be easily derived from the monotonicity property.

Our results apply directly to the scheduling unrelated machines problem:

Definition 2 (The scheduling unrelated machines problem). The input
to the scheduling problem is a nonnegative matrix t of n rows, one for each
machine-player, and m columns, one for each task. The entry tij (of the i-th
row and j-th column) is the time it takes for machine i to execute task j. Let ti
denote the times for machine i, which is the vector of the i-th row. The output
is an allocation a = a(t), which partitions the tasks into the n machines. We
describe the partition using indicator values aij ∈ {0, 1}: aij = 1 iff task j is
allocated to machine i. We should allocate each task to exactly one machine,
or more formally

∑n
j=1 aij = 1. The goal is to minimize the makespan, i.e. to

minimize the total processing time of the player that finishes last.

1.1 Our Tools

Besides the potential applications of our characterization, we believe that also
the method we introduce for studying the allocation graph is of particular inter-
est as it provides a very simple way to handle a very complicated partition of the
space. We propose a method for determining all possible allocation graphs and
the geometrical shapes of the mechanism: For each region Ra of the mechanism
instead of considering its complicated geometrical shape we define a box that
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contains the region. The signs of distances between parallel to each other bound-
aries of the mechanism determine whether two of these boxes intersect. If two
boxes intersect then the corresponding regions share a common boundary. Alter-
natively if two boxes intersect then there is an edge between the corresponding
edges in the allocation graph. These distances however are not independent from
each other. Applying cycle-monotonicity for appropriately chosen zero-length cy-
cles allows us to determine how these constants relate. As boundaries between
regions that differ only in one allocation always exist we will concentrate on
the subgraph of the allocation graph that consists of the edges corresponding to
Hamming distance-1 boundaries.

1.2 Related Work

Myerson [13] gave a characterization of truthful algorithms for one-parameter
problems, in terms of a monotonicity condition, which was rediscovered by
Archer and Tardos [2]. For the case of multidimensional types Bikchandani
et al. [5] prove that a simple necessary monotonicity property of the allocations
of different inputs (and without any reference to payments) is also sufficient for
truthful mechanisms, while Gui, Müller, and Vohra [9] extend this to a greater
variety of domains (this work is rather close to ours as it also follows a geo-
metrical approach). Saks and Yu [17] generalize this result to cover all convex
domains of finitely many outcomes. Monderer [12] showed that this result cannot
be essentially extended to a larger class of domains. Both these results concern
domains of finitely many outcomes. There are however cases, like the fractional
version of the scheduling problem, when the set of all possible allocations is in-
finite. For these, Archer and Kleinberg [1] provided a necessary and sufficient
condition for truthfulness. Very recently Berger et al. [4] generalize all these
results for the case of convex valuations.

Nisan and Ronen introduced the mechanism-design version of the schedul-
ing problem on unrelated machines in the paper that founded the algorithmic
theory of Mechanism Design [14,15]. They showed that the well-known VCG
mechanism, which is a polynomial-time algorithm and truthful, has approx-
imation ratio n. They conjectured that there is no deterministic mechanism
with approximation ratio less than n. They also showed that no mechanism
(polynomial-time or not) can achieve approximation ratio better than 2. This
was improved to 1 +

√
2 [7], and further to 1 + ϕ in [10]. For the case of two

machines [8] Dobzinski and Sundararajan characterized all mechanisms with fi-
nite approximation ratio, while [6] gave a characterization of all (regardless of
approximation ratio) decisive truthful mechanisms in terms of affine minimizers
and threshold mechanisms. In a very recent paper [3] Ashlagi, Dobizinski and
Lavi prove a lower bound of n for a special class of mechanisms, which they call
anonymous. Lavi and Swamy [11] considered another special case of the same
problem when the processing times have only two possible values low or high;
the use of cycle monotonicity played a central role in this work as well.
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2 Preliminaries

We denote by Ra the closure of the subset of Rm where the mechanism gives
assignment a and we will call it a region of the mechanism. For any two different
assignments a, b for player i we define fa:b := sup{(a− b) · t | t ∈ Ra}.

We define the Hamming Distance Hd(a, b) between two vectors a, b, as the
number of positions in which the two vectors are different. The Minkowski sum
of two sets A,B ⊆ Rm is A ⊕ B = {a + b | a ∈ A, b ∈ B}. Let also Ba := {t |
(−1)aj tj ≥ 0, j = 1, . . . ,m}. For m = 2 each Ba is a quadrant of R2.

Lemma 1

a) If a point b belongs to region Ra of a truthful mechanism, then also b⊕Ba ⊆
Ra.

b) Regions Ra and Ra′ are separated by the hyperplane (a− a′) · t = fa:a′ and
each region is bounded by a convex polytope.

c)For Fa := (fa:a−1,1−a1 , . . . , fa:a−m,1−am) every region Ra satisfies Ra ⊆
Fa ⊕ Ba. In other words region Ra is included in the box we get by shifting the
box Ba so that it that has its vertex at the point Fa.

This means that every region Ra is included in a box defined by the boundaries
of Ra with all regions Rb such that Hd(a, b) = 1. The proof is immediate by the
monotonicity property and the definition of fa:b.

2.1 The Allocation Graph of Each Player

We define an edge-weighted directed graph G, the allocation graph, whose vertex
set are all possible allocations of the player. For each two allocations a, b the
weight of the edge from a to b is fa:b.

The following property is necessary and sufficient for truthfulness [16].

Definition 3 (Cycle monotonicity). An allocation algorithm satisfies cycle
monotonicity if for every integer K and cycle a1, . . . , aK , aK+1 = a1 on the
allocation graph

∑K
k=1 fak:ak+1 ≤ 0.

The following Lemma is an essential tool for our proofs.

Lemma 2

a) Two regions Ra, Ra′ that share at least one common boundary point satisfy
p(a)− p(a′) = fa:a′ = −fa′:a.

b) Any cycle on the allocation graph in which each pair of consecutive nodes
corresponds to a pair of regions sharing a common boundary point has length
zero.

3 New Tools for the Case of m Items

The mechanism consists of sloped hyperplanes, as well as hyperplanes vertical to
some axis, which we will call Hd-1 boundaries (because they separate regions that
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Fig. 1. The two possible ways to partition the positive orthant for the case of 2 tasks
and the threshold mechanism as a degenerate case of both

have Hamming distance equal to 1, i.e. differ in only one task). The trouble with
the sloped hyperplanes is that they do appear as boundaries in all possible shapes
of the mechanism, so we have to take cases. Luckily the hyperplanes vertical to
some axis appear in all possible shapes. We will use the distance between these
hyperplanes in order to describe the allocation graph of the mechanism. The
sign of these distances determines exactly which of the sloped lines appear in
the geometrical picture of the mechanism. Knowing the allocation graph we can
then easily draw the picture of the mechanism.

The idea of our approach is best depicted if we apply it for the easy case
of two tasks (for which we already know that the two possible mechanisms are
depicted in Figure 1). A purely algebraic to obtain this description is to just to
apply once cycle monotonicity. Taking the cycle 00 → 01 → 11 → 10 → 00 we
get f11:01 + f00:10 = f11:10 + f00:01. If we define c12 := f11:01 + f00:10 (This is
the distance between the two lines vertical to the axis t1.) then by the previous
cycle it turns out that the distance between the two lines vertical to the axis
t2, which can be expressed as f11:01 + f00:10 is also equal to c12. Region R11 is
contained in the box defined by f11:01, f11:10 and R11 and R00 share a common
boundary line if and only if the boxes that contain them intersect i.e. if and only
if c12 > 0. That is the sign of c12 determines which of the two possible shapes
has the mechanism.

We proceed to define some constants that express the distances between re-
gions, generalizing this idea we demonstrated for the case of two tasks. The
constant cij|a−{i,j} measures the distance between the two parallel hyperplanes
ti = f11a−{i,j}:01a−{i,j} and ti = f10a−{i,j}:00a−{i,j} , which correspond to sepa-
rating hyperplanes of the mechanism between regions in Hamming distance 1.
This constant fully describes the geometry of the mechanism if the allocation
of all tasks, except for tasks i, j, is fixed to a−{i,j}. To provide some intuition
why we choose these consider that in a decisive mechanism this would give an
asymptotic picture of the mechanism: If the values of only two tasks i, j are
allowed to be variables, while the remaining tasks with allocation 1 are fixed to
the biggest possible value (+∞) and the tasks with allocation 0 are fixed to the
smallest possible value, this constant describes the geometry of the mechanism
that allocates tasks i, j.
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Definition 4. For all i, j and all possible m−2-tuples (/allocations) a−{i,j} we
define

cij|a−{i,j} := f11a−{i,j}:01a−{i,j} + f00a−{i,j}:10a−{i,j}

= f11a−{i,j}:10a−{i,j} + f00a−{i,j}:01a−{i,j} (1)

But are these constants independent from each other? As the following Lemma
shows, the answer is no and the relation between these constants is derived from
Cycle Monotonicity.

Lemma 3. If a mechanism is truthful then the constants cij|a−{i,j} satisfy the
following equation cij|1a−{i,j,k} − cij|0a−{i,j,k} = cik|1a−{i,j,k} − cik|0a−{i,j,k} .

By Lemma 1 each region Ra of the mechanism is contained in a box formed
by the separating hyperplanes between Ra and all regions with assignment in
Hamming distance 1 from a. If we concentrate on a pair of intersecting regions,
then the boxes that contain them have a non-empty intersection. But it is also
the other way round:

Lemma 4. If the boxes corresponding to two regions intersect then the regions
share a common boundary hyperplane.

We proceed to define di
a:b as the difference of the Hd-1 boundaries on axis i

corresponding to two distinct regions Ra, Rb. We have di
a:1−a > 0 for all i =

1, . . . ,m if and only if regions Ra and R1−a intersect.
Even though the geometry of the mechanism is complicated it turns out that

we can derive a general formula for the di
a:bs using now a more complicated

zero-length cycle on the allocation graph.

Definition 5. We define the distance di
a:b := fa:1−ai,a−i + fb:1−bi,b−i .

Lemma 5. We have di
a:b = di

b:a (symmetry) and di
a:b = −di

1−ai,a−i:1−bi,b−i
.

Lemma 6. The distance di
a:1−a can be expressed as the following sum of con-

stants: di
a:1−a :=

∑
j �=i,j∈{1,...,m}(−1)ai+ajcij|b−{i,j} , where the k-th coordinate

of the allocation bk is bk =

{
1− ak if k < j

ak if k > j.

4 Characterization of 3-Dimensional Mechanisms

4.1 Calculating the Distances

We believe that the tools we have developed in the preceding section are useful
for the study of the allocation graph for an arbitrary number of tasks m. We
demonstrate this by using them in order to determine the allocation graphs and
the corresponding geometrical shapes a truthful mechanism can take for the case
m = 3.
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For the case of 3 tasks we will apply Lemmas 6 and 5 in order to compute
the distances di

a:1−a with respect to the constants ci,j|a−{i,j} . For simplicity of
notation we will write dj instead of dj

111:000, for j = 1, 2, 3 and it turns out that
all other distances dj

a:b, between regions Ra and Rb, can be expressed using the
three distances d1, d2, d3 between regions R111 and R000. We define the constant
e as e := c12|0− c12|1 = c13|0 − c13|1 = c23|0 − c23|1. then c12|0 = c12|1 + e and we
can rewrite the equalities in the following way:

d1
111:000 = c13|1 + c12|0 = c13|1 + c12|1 + e = c13|0 + c12|0 − e = d1

d2
111:000 = c12|1 + c23|0 = c12|1 + c23|1 + e = c12|0 + c23|0 − e = d2

d3
111:000 = c13|1 + c23|0 = c13|1 + c23|1 + e = c13|0 + c23|0 − e = d3

Simmilarly for the rest of the distances we have d1
011:100 = −d1, d2

011:100 =
−c12|1 + c23|1 = d3 − d1, d3

011:100 = −c13|1 + c23|1 = d2 − d1 and then d1
101:010 =

−c12|1 + c13|1 = d3 − d2, d2
101:010 = −d2, d3

101:010 = −(d2 − d1) and d1
110:001 =

−(d3 − d2), d2
110:001 = −(d3 − d1), d3

110:001 = −d3.

4.2 Properties Satisfied by the Allocation Graph

Lemma 7. There always exist two regions Ra, Rb in Hd = 3 such that di
a:b ≥ 0

for i = 1, 2, 3.

In what follows we will make the assumption that this pair of regions Ra, Rb in
Hd = 3 such that di

a:b ≥ 0 for i = 1, 2, 3, guaranteed to exist by Lemma 7 are
R111 and R000.

For any mechanism we present here you can get another truthful mechanism
by applying the following rotations: Think of the mechanism as a partition of
the cube, if you rotate one of the possible partitions so that the faces of the
cube go to faces of the cube after the rotation (and the center of axes goes to
another vertex of the cube), you also get a truthful mechanism. The reason is
that the slope of the separating hyperplane between two regions only depends
on their Hamming Distance, i.e. on the number of tasks on which they differ.
The characteristic of the rotation we described is that it respects the Hamming
distances.

Lemma 8. If R111 and R000 intersect then a) if e < 0 then at least two of the
constants c12|1, c13|1, c23|1 are strictly positive,

b) if e > 0 then at least two of the constants c12|0, c13|0, c23|0 are strictly
positive.

Lemma 9. If a pair of regions Ra, R1−a share a common Hd-3 boundary then
no other pair Rb, R1−b of regions share a common Hd-3 boundary.

4.3 All Possible Mechanisms

Definition 6. A degenerate version of a mechanism M is a mechanism for
which some of the constants cij|0, cij|1, dk

a:b, for some i, j, k ∈ {1, 2, 3} and some
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Fig. 2. 3D models of the possible partitions (up to rotation). Looking just at the blue
projections you can determine the constants cij|0 and from the red projections the
constants cij|1.

allocations a, b, become 0, while all other such constants retain the same sign as
in the non-degenerate mechanism.

We describe the possible shapes of the mechanism when a Hd-3 boundary ex-
ists and thanks to Lemma 7 any other mechanism is a degenerate version of a
mechanism with a Hd-3 boundary. Summarizing all restrictions to the shape of
the mechanism we obtained in the previous section we get the following charac-
terization:

Theorem 1. The possible truthful mechanisms are the following five possible
partitions of the space and all their rotations. (In Figure 2 you can see their
geometrical shapes.)

As for any mechanism we give here we also include in our characterization
all its rotations, we suppose without loss of generality that R111, R000 share a
common boundary, that e < 0 and that the two constants guaranteed to be positive
by Lemma 8 are c12|1 > 0, c23|1 > 0.

1. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 > 0, c13|0 > 0, c23|0 > 0
2. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 < 0, c13|0 < 0, c23|0 < 0
3. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 < 0, c13|0 < 0, c23|0 > 0
4. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 > 0, c13|0 < 0, c23|0 > 0
5. c12|1 > 0, c13|1 < 0, c23|1 > 0, c12|0 > 0, c13|0 < 0, c23|0 > 0.

5 Lower Bounds for Some Scheduling Mechanisms

Observing the figures we got from our characterization we see that many of the
regions have the shape of a box, for some of these cases the region that has
the shape of the box is R1...1. Threshold(/additive) mechanisms [6,14] are the
special case of these mechanisms, when all regions are boxes. Even though these
mechanisms are much more general, we can still show the same lower bound of
1 +

√
n using an argument very simmilar to the one used in [6]. For these cases

we can prove a lower bound of 1 +
√
n.
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Theorem 2. Every mechanism for which R1...1 is a box has approximation ratio
at least 1 +

√
n.

Finally there is a non-trivial geometrically defined class of mechanisms for which
we can provide an n lower bound. We say that a mechanism is non-penalizing
if in the allocation graph no pair of regions of the form Ra10, Rb01, where a, b
are (m− 2)-dimensional allocation vectors, share a common boundary. The first
mechanism in Figure 2 is an example of such a mechanism. The intuition behind
these mechanisms is that, if for fixed values of the other players, a player lowers
one of his values he only gets more tasks (regardless of his initial allocation for
the tasks he lowers), in other words a machine never loses a job, just because it
becomes faster for another job.

Theorem 3. Every non-penalizing mechanism has approximation ratio at
least n.

6 Concluding Remarks and Open Problems

Our characterization is only for the case of 3 tasks, the tools we have developed
to obtain this characterization are however for the general case of m tasks. Can
we find a succinct way to describe all possible allocation graphs for the general
case?

We would like to stress the connection of our results with the scheduling
unrelated machines problem. The lower bounds in the last section show that
many mechanisms have bad approximation ratio just because of the geometrical
shape of their projections. Finally we believe that the characterization for the
case of three tasks can be used to improve the existing [10] lower bound of 2.465
for the case of 4 machines to a better constant.
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nisms. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454–464.
Springer, Heidelberg (2007)

11. Lavi, R., Swamy, C.: Truthful mechanism design for multi-dimensional scheduling
via cycle monotonicity. In: EC, pp. 252–261 (2007)

12. Monderer, D.: Monotonicity and implementability. In: EC (2008)
13. Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6(1),

58–73 (1981)
14. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In:

STOC, pp. 129–140 (1999)
15. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-

havior 35, 166–196 (2001)
16. Rochet, J.-C.: A necessary and sufficient condition for rationalizability in a quasi-

linear context. Journal of Mathematical Economics 16, 191–200 (1987)
17. Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains.

In: EC, pp. 286–293 (2005)



Optimal Incentives for Participation with
Type-Dependent Externalities�

Michal Feldman1, Ran Tessler2, and Yoav Wilf3

1 School of Business Administration and Center for the Study of Rationality,
Hebrew University of Jerusalem

mfeldman@huji.ac.il
2 Mathematics Division, Hebrew University of Jerusalem

ran.tessler@mail.huji.ac.il
3 Computer Science Division, Hebrew University of Jerusalem

yoavwilf@gmail.com

Abstract. We study a “principal-agent” setting in which a principal
motivates a team of agents to participate in her project (e.g., friends in
a social event or store owners in a shopping mall). A key element in our
model is the externalities among the agents; i.e., the benefits that the
agents gain from each others’ participation. Bernstein and Winter [6] de-
vised a basic model for this setting and characterized the optimal incen-
tive mechanism inducing full participation as a unique Nash equilibrium.
Here we suggest and embark on several generalizations and extensions
to the basic model, which are grounded in real-life scenarios. First, we
study the effect of side payments among the agents on the structure
of the optimal mechanism and the principal’s utility. Second, we study
the optimal partition problem in settings where the principal operates
multiple parallel projects.

1 Introduction

Should you pay a celebrity to attend you party? Should you have special ad-
missions for the “rich and famous”? Would it make sense for you to reduce the
rental fees for anchor stores? These are some of the questions that motivate us
in this study.

Suppose you wish to organize a social event and you desire as many people to
attend. Obviously, the happiness of the participants would be directly affected
by the identity of the other participants, which will in turn determine your
cost to attract them to join your party. Similarly, if you wish to open up a
shopping mall, the willingness of chain stores you may want to attract depends
heavily on the identity of the other stores located at your shopping mall and
how likely they are to attract potential customers. This is the case in many other
social events, economic ventures, academic conferences, and commercial projects,
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whose success depends to a large extent on the identity of their participants. In
many cases attracting your participants is a costly task, but you can use the
benefit your potential participants obtain from each other to construct a well-
designed incentive scheme that will attract your wishful participant list at the
lowest possible cost.

Bernstein and Winter [6] devised a principal-agent model (henceforth the
basic model) of multi-agent projects in which a “principal” runs a project, whose
success depends on the identities of the “agents” participating in the project. In
this setting, the principal motivates the agents to participate by offering them a
set of payments, which together put the agents in an equilibrium of the induced
game. At the heart of the model lies the externalities structure, representing the
benefits and losses the agents gain or incur from each others’ participation. The
principal’s problem, our problem in this paper, is that of designing the optimal
set of payments; i.e., the payments that maximize the principal’s net benefit.

The design of optimal incentives consist of two stages, namely the selection
problem, in which the principal selects the set of agents for her project, and
the participation problem, in which the principal introduces a set of payments
in order to induce the participation of the selected group. The optimal solution
can be obtained by first characterizing the optimal incentive scheme that induces
the participation of a given set of agents (i.e., the participation problem), then
working backward to determine the optimal set of agents (i.e., the selection
problem). In this paper, as in Bernstein and Winter [6], the focus is on the
participation problem. An optimal solution to the participation problem is a
vector of payments offered by the principal that sustain full participation of the
given set at minimal total cost.

The externalities among the n agents are represented by an n by n matrix w,
where entry wi,j represents the extent to which agent i is attracted to the project
when agent j participates. We denote this entry by wi(j). Under additive exter-
nalities, the benefit to a participant i when the set S participates is

∑
j∈S wi(j).

Bernstein and Winter characterized the optimal incentive mechanism sustaining
full participation in a unique Nash equilibrium (NE) under this setting.

In this paper we study two natural extensions to the basic model, namely
side payments and parallel projects. Some of the proofs are deferred to the
full version. The basic model [6] assumes that payments transfer only between
the principal and the agents while no communication exists among the agents
themselves. Here we consider the scenario in which the agents can encourage
or discourage each other to participate through payments (in addition to the
offers made by the principal). The motivation for this extension is very natural;
if agent i earns or loses from j’s participation, he might be willing to pay in
order to affect it. Thus, agents may be willing to transfer side payments among
themselves to induce a particular outcome. For example, an agent running a
store at a shopping center might be willing to pay an anchor store to co-locate
at the same center in order to attract potential consumers. Alternatively, the
store owner might be willing to pay another store for not participating if he has
a reason to believe it might cause him some economic loss due to competition.
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Additionally, when agents coordinate their actions, Nash equilibrium is not a
well-suited solution concept. A more natural solution concept to consider in this
case is the strong equilibrium (SE) solution concept, where no coalition can
deviate such that each coalition member is strictly better-off.

We find that if the principal wishes to induce full participation as a unique
strong equilibrium, the principal’s utility in scenarios with side payments never
exceeds her utility in the basic model, and it is equal if and only if all the exter-
nalities are positive. Thus, if some agents incur losses from others’ participation,
the principal strictly loses if side payments can take place. This is interesting in
light of the fact that side payments can never be realized in an equilibrium. It
is their virtual existence which affects the agents’ behavior in equilibrium.

We also consider side payment in dynamic settings. We find that the prin-
cipal’s utility when inducing a subgame perfect equilibrium (SPE) of full par-
ticipation is the same in the basic model and under side payments, but when
side payments take place, a wide range of optimal mechanisms exist, compared
to a unique optimal mechanism in the basic model. Within dynamic settings,
we also consider a perturbed game, which demonstrates scenarios in which some
agents might get “cold feet” and decide irrationally not to participate with a
small probability. We compute the optimal mechanism in the perturbed game
under side payments, and show that it can be attained only if side payments are
allowed.

Finally, we consider the case in which the principal runs multiple parallel
projects and wishes to partition the agents among the different projects in an
optimal manner. We show that if all the externalities are positive, it is optimal
for the principal to concentrate all the agents in a single project. In contrast,
under negative externalities, it is always optimal for the principal to spread out
the agents among all the projects, but it is NP-hard to compute the optimal
partition. On the positive side, based on well-known approximation results, the
optimal partition can be approximated up to a constant factor.

The general approach of contracting with externalities is closely related to
[9,10]. Our approach is also related to the analysis of optimal incentive schemes
under hidden action of the agents considered in [12] and later in [3,4]. Like
in the papers above, the principal offers payments to the agents in order to
motivate them to follow some desired outcome in equilibrium. Type-dependent
externalities were also considered in [7] in the context of single-item auctions.

2 Model and Preliminaries

The basic model of multi-agent projects is given by a tuple < N,w, c >. N is a
set of n agents, w is the externalities matrix. Each agent has a binary decision
whether to participate in the principal’s project or not, where c = (c1, . . . , cn)
is the outside-option vector of the agents if they choose not to participate. For
simplicity of presentation we assume that the outside option is uniform across
agents and equals zero, but all of our results can be easily generalized.

The externalities structure, w, is given by an n by n matrix specifying the
bilateral externalities among the agents, such that the entry wi,j represents the
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benefit agent i obtains from agent j’s participation; i.e., the extent to which
agent i is attracted to the project when agent j is participating. We denote this
entry wi(j), and also denote the subset of agents affected negatively by agent
i by N(i) = {j|wj(i) < 0}. Under additive preferences, agent i’s utility from
participating jointly with a set S of agents is

∑
j∈S wi(j) for every S ⊆ N . The

externalities structure w is fixed and exogenous. In addition, we assume that
agents gain no additional benefit from their own participation (i.e., wi(i) = 0
for every i), and that if an agent gains the same benefit if he participates or not
he prefers to participate. Similarly, if an agent i gains the same benefit if agent
j participates or not, he prefers that agent j participates.

In the basic model [6], the set of contracts can be described by a payment
vector v = (v1, v2, . . . , vn), where agent i receives a payment of vi if he decides
to participate and zero otherwise (where vi is not constrained in sign; i.e., the
principal can either pay or charge each agent). Given a mechanism v agents face
a normal form game G(v, w, c), and each agent chooses whether to participate or
not. The decision is made by all the agents simultaneously. For a given set S of
participating agents, the utility of an agent i ∈ S is ui(v, S) =

∑
j∈S wi(j) + vi,

and the utility of an agent i �∈ S is his outside option.
We consider both simultaneous and sequential models with side payments.

In the simultaneous case, the principal offers the agents a payment vector v =
(v1, v2, . . . , vn) as above, but the agents can also offer payments to each other
for participating or not participating. The agents simultaneously decide whether
or not to participate in the project and how much to offer every other agent for
participating or not. In the sequential case the offers are made sequentially, and
consequently agents make their decisions (both their participation and their side
payments decisions) sequentially. We assume a model with complete information,
where each agent fully observes the history of the decisions made thus far.

3 Side Payments in Simultaneous Games

A mechanism in the simultaneous game is denoted by v = (v1, . . . , vn), repre-
senting the payments the principal offers to the agents. A strategy for agent j,
denoted aj , consists of the agent’s decision of participating or not participating
and the payment for each player in order for him to participate or not. The
participation decision of agent j is denoted by ej ∈ {0, 1}, where ej = 1 iff agent
j participates. The payment agent j offers agent i is based on agent i’s partici-
pation decision ei and is denoted tj,i(ei). Under a mechanism v, and a profile of
strategies a = (a1, . . . , an) the set of agents who decide to participate is denoted
by S(v, a). When clear in the context, we denote it simply by S.

The utility of agent i under mechanism v, profile a and the participation of
the set S is given by

ui(S, v, a) = ei ·

⎛⎝vi +
∑
j∈S

wi(j)

⎞⎠−∑
j �=i

(ti,j(ej)− tj,i(ei)) (1)
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An optimal mechanism for the principal is a mechanism that achieves full par-
ticipation in equilibrium at lowest possible cost.

A trivial, yet important observation, is that side payments can never be re-
alized in a Nash equilibrium of a simultaneous game. Clearly, a unilateral devi-
ation does not change the participation decision of the other agents, therefore,
not paying is always a beneficial deviation.

Observation 1. Side payments can never occur as part of a Nash equilibrium
in a simultaneous game.

It is easy to see that by the above observation, side payments have no effect on the
optimal mechanism that induces full participation as a unique Nash equilibrium.
However, when coordination among the agent is possible, a more natural solution
concept to consider is a strong equilibrium. A strong equilibrium, introduced by
Aumann [2], is a strategy profile from which no coalition can deviate and improve
the utility of each member of the coalition.

One can easily verify that in the basic model the optimal mechanism that
induces full participation as a strong equilibrium is vi = −

∑
j �=i wi(j) for every i.

In contrast, the following theorem shows that under side payments, the structure
of the optimal mechanism is different.

Theorem 2. The mechanism given by vi = −
∑

j �=i wi(j) −
∑

j∈N(i) wj(i) for
every i is the optimal mechanism which induces full participation as a strong equi-
librium. Moreover, under this mechanism, full participation is a unique strong
equilibrium.

Proof. We first show that in any mechanism that induces full participation as a
strong equilibrium, it holds that for every i:

vi ≥ −
∑
j �=i

wi(j)−
∑

j∈N(i)

wj(i). (2)

Suppose towards contradiction that there is a mechanism v that induces full par-
ticipation as a SE, in which for some agent i, vi < −

∑
j �=i wi(j)−

∑
j∈N(i) wj(i).

The obtained profile is in particular a NE, thus by Observation 1 has no
side payments. Thus, it follows from Equation 1 that ui < −

∑
j �=i wi(j) −∑

j∈N(i) wj(i) +
∑

j �=i wi(j) = −
∑

j∈N(i) wj(i). Let R = −ui −
∑

j∈N(i) wj(i),
and |N(i)| = k. Clearly R > 0, and the sum of influences of i on the set N(i) is
exactly

∑
j∈N(i) wj(i). We claim that the coalition T = N(i) ∪ {i} has a bene-

ficial deviation to a new profile in which agent i does not participate and each
agent j ∈ N(i) pays i a value of −wj(i)−R/(k+1). The utility of each member
of N(i) after the deviation is increased by R/(k + 1) > 0. The same is true for
i’s utility, which becomes −

∑
j∈N(i) wj(i)− kR/(k+1) = ui +R/(k+1) by the

definition of R; thus reaching a contradiction.
It is now left to show that under the above payment structure, full participa-

tion is indeed a strong equilibrium. Assume towards contradiction that this is
not a strong equilibrium, and let C ⊆ N be a coalition with a beneficial devia-
tion. Clearly, it is not beneficial for any of its members to pay any amount to an



356 M. Feldman, R. Tessler, and Y. Wilf

agent that is not part of the coalition. Let us divide the set C into two subsets,
C = C+∪C−, such that C− denotes the set of agents that leave the project, and
C+ denotes the set of agents staying in the project (and perhaps compensating
the members of C−). We next show that the total gain of the coalition’s mem-
bers decreases, hence at least one of its members must be worse-off by joining
the coalitional deviation. The total benefit before the deviation is:∑

i∈C

ui = −
∑

i∈C+

∑
j∈N(i)

wj(i)−
∑

i∈C−

∑
j∈N(i)

wj(i).

After the deviation, the total benefit of the members of C− is 0, and the benefit
of every player i in C+ is:

−
∑

j

wi(j)−
∑

j∈N(i)

wj(i) +
∑

j /∈C−
wi(j)

= −
∑

j∈N(i)

wj(i)−
∑

j∈C−
wi(j)

≤ −
∑

j∈N(i)

wj(i)−
∑

j∈C−∧i∈N(j)

wi(j).

Summing over all the members of C+, their total benefit is given by:

−
∑

i∈C+

∑
j∈N(i)

wj(i)−
∑

i∈C+

∑
j∈C−∧i∈N(j)

wi(j)

= −
∑

i∈C+

∑
j∈N(i)

wj(i)−
∑

j∈C−

∑
i∈C+∩N(j)

wi(j)

≤ −
∑

i∈C+

∑
j∈N(i)

wj(i)−
∑

j∈C−

∑
i∈N(j)

wi(j),

as required.
We next show that under the above scheme full participation is the unique

strong equilibrium. Assuming towards contradiction that there is an additional
SE in the game, without full participation. It must also be a NE. Let S ⊂ N be
the set of players that participate. As we are in a NE, according to Observation 1
no side payments are made, hence the total net benefit of the players is exactly
the sum of benefits of S’s elements. This yields:

∑
i,j∈S

wi(j)−
∑
i∈S

⎛⎝∑
j

wi(j) +
∑

j∈N(i)

wj(i)

⎞⎠
= −
∑
i∈S

∑
j∈N(i)

wj(i)−
∑

i∈S,j /∈S

wi(j)

≤ −
∑
i∈S

∑
j∈N(i)

wj(i)−
∑
j /∈S

∑
i∈S∩N(j)

wi(j)
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≤ −
∑
i∈S

∑
j∈N(i)

wj(i)−
∑
j /∈S

∑
i∈N(j)

wi(j)

= −
∑

i

∑
j∈N(i)

wj(i)

This shows that if everyone participates, the total utility of all the agents does
not decrease. Consequently, they can redistribute the money such that all the
agents are better off. Note that if their total utility remains the same, the agents
are better-off in a full participation profile by the assumption on the agents’
preferences. 	


4 Side Payments in Sequential Games

Static notions like Nash or strong equilibrium are not rich enough to convey the
full power of side payments. In what follows we study the participation problem
in a dynamic setting, and concentrate on the subgame perfect equilibrium and a
variant of the trembling hand equilibrium solution concepts. Under the sequential
model, the principal induces some order on the agents, and each agent, in his
turn, decides whether to participate or not and how much to pay each one
of the other agents for participating. We assume that each agent, at the time
of decision, knows the history of the decisions made thus far. A strategy is
now a function from the decisions of the previous players and the principal’s
compensation scheme to the decision on participation and side payments. We
restrict attention to positive externalities. In this case, paying an agent who has
already decided to participate is a dominated strategy since agents cannot change
their decision after their turn. The strategy of an agent is denoted as aj(v) =
(ej , tj,j+1, . . . , tj,n), where ej ∈ {0, 1} (i.e., ej = 1 iff agent j participates), and
tj,i is j’s non-negative offer to agent i for participating.

4.1 Subgame Perfect Equilibrium

Definition 1. Given an order on the agents, a mechanism v is called the stable
vector with respect to this order if v1 = 0, and vi = −

∑
j<i (wi(j) + wj(i)) for

every i > 1 .

The following theorem shows that the stable vector with respect to any order
induces full participation as a subgame perfect equilibrium (SPE). Moreover,
this is the optimal mechanism that induces full participation as an SPE.

Theorem 3. For every order on the agents, the stable vector with respect to
that order is an optimal mechanism that induces full participation as a subgame
perfect equilibrium.

Proof (Sketch). Let M =
∑

i,j wi(j). First observe that in any SPE of full par-
ticipation the principal must pay at least −M ; otherwise the sum of the agents’
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utilities is negative, thus there must be an agent who prefers to deviate. There-
fore, it is sufficient to show that the stable vector induces full participation as
an SPE. Consider an arbitrary order of the players and the stable vector with
respect to that order. We claim that the strategy profile defined below is an SPE:

The first player’s strategy is to participate and to offer each player i > 1
a payoff w1(i) to participate. The strategy of the ith player for i > 1 is the
following: If every agent k < i entered and offered each player j such that j > k
a payoff wk(j), the ith agent does the same (i.e., participates and offers every
player j such that j > i a payoff wi(j)). It will be shown to be an optimal action.
Otherwise, player i acts according to an optimal strategy; i.e., a strategy that
maximizes his net benefit (with ties broken arbitrarily). It can be shown that
while the utility function is not continuous and hence compactness arguments
cannot be directly applied, an optimal strategy does exist, and thus the definition
is well defined.

Either if all the agents decided to participate or only a subset, it can be shown
that their total utility is not positive. If there exists an agent with negative utility,
clearly it cannot be an SPE. Otherwise, all the agents gain zero. In this case,
however, based on the assumption, each agent prefers full participation. Using
backward induction it follows that each agent participates and makes offers as
described above, which ensures a full participation with zero utility. 	


The following proposition considers the optimal mechanism in the basic model
which induces full participation as an SPE.

Proposition 1. Under positive externalities, there is a unique optimal mech-
anism which induces an SPE of full participation in the basic model, and the
principal’s utility under this mechanism is identical to the principal’s utility in
the optimal mechanism in the simultaneous side payments model.

Proof (Sketch). An argument similar to the one given in the proof of Theorem 3
(stating that the stable vector allows an SPE of full participation), can be carried
out for the vector described in Theorem 2 as well. This vector guarantees a total
gain of 0 to all the group. If it does not hold that all the agents participate,
at least one of the participating agents will have a negative utility. Thus this
mechanism induces an SPE of full participation in the side payments model.
As the variety of possible strategies in the basic model is narrower (there are
less possible action options), it follows easily from a simple backward induction
argument that this mechanism induces an SPE in that model too. Moreover,
in the basic model this is the only optimal mechanism that induces an SPE,
as a cheaper mechanism cannot even induce a NE of full participation, since
otherwise the sum of the agents’ utilities will be negative, and thus at least one
of these utilities will be negative. It can be easily seen that the total payments
under the above compensation scheme and the stable vectors is the same. They
both equal −

∑
i,j wi(j). 	


We conclude that under positive externalities, the principal’s utility under the
optimal mechanisms achieving full participation as an SPE with and without
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side payments is the same. Yet, while in the basic model, there is a unique
optimal mechanism, side payments allow for a wide range of optimal mechanisms,
e.g. the stable vectors with respect to any order of the agents. The following
observation, which is used in the sequel, considers the utility of the agents under
these mechanisms:

Observation 4. In every optimal mechanism that induces an SPE of full par-
ticipation the utility of each agent is zero.

4.2 Perturbation-Proof Equilibrium

The above analysis assumes full rationality of the agents. Yet, if one of the
agents gets cold feet and decides irrationally not to participate, it might be in
the best interest of some of the other agents to quit as well. We next come up
with an equilibrium notion that is stable against such situations. We first define
a perturbed strategy. Given a strategy aj of player j in the sequential game, we
denote by aε

j an ε-perturbed version of aj , where agent j plays according to aj

with probability 1− ε, and with probability ε he does not participate and offers
zero payments to the other agents, independent of their actions and the original
strategy a. We also denote aε = (aε

1, . . . , a
ε
n). With this we are ready to define

the notion of perturbation-proof equilibrium.

Definition 2. Given a mechanism v, a strategy profile a = (a1, . . . , an) is a
perturbation proof equilibrium (PPE) with respect to v if a is an SPE with
respect to v, and there exists a positive value c such that for every 0 < ε < c,
and for every agent i, if every agent k such that k < i played according to ak,
then if every agent k > i plays according to aε

k, playing ai is an optimal strategy
for agent i.

We wish to find a mechanism v under which there is an equilibrium of full
participation even if every agent does not enter the project (irrationally) with
some small probability. That is, a mechanism v under which there exists a PPE
with full participation.

Given the stable vector with respect to some order on the agents, consider
the following strategy profile: For every agent j, if every player k < j acted
according to the strategy defined in the proof of Theorem 3, agent j also follow
this strategy. If there exists an agent k < j who did not follow that strategy,
agent j plays an optimal strategy (as computed using backward induction by
computing expected benefits given ε). Note that agents cannot change their
strategies after their turn.

Theorem 5. Under the above strategies full participation is a perturbation proof
equilibrium. Moreover, every optimal mechanism which allows a perturbation
proof equilibrium of full participation must be a stable vector with respect to
some order.

Note that the optimal mechanism (i.e., the one achieving full participation at
minimum cost) cannot be attained in the absence of side payments (yet can get
arbitrarily close to the minimum payment).
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5 Operating Multiple Projects

In this section we study scenarios in which the principal operates k parallel
projects, for an exogenously given k, and wishes to optimally divide the agents
among them; i.e., find the mechanism with the cheapest total payments that
induces full participation as a Nash equilibrium. We assume that the principal
can charge (or pay) differently for different projects (even from the same agent).
In addition, the principal does not necessarily have to operate all k projects,
but he cannot operate more than k projects. This is the case, for example, in
situations where an economic entity has a concession for opening k shopping
malls.

As before, a mechanism is denoted by v = (v1, ...,vn), but here vi is itself
a vector of payments for agent i for participating in the different projects; i.e.,
vi = (vi

1, ..., vi
k), where vj

i for 1 ≤ j ≤ k is the payment the principal offers
agent i for participating in project j. Given a mechanism v, each agent chooses
whether or not to participate and in which project. The participation vector
is denoted by S = (S1, ..., Sk), where Sj is the set of agents participating in
project j. We also denote by nj the number of agents participating in project j;
i.e., nj = |Sj | for 1 ≤ j ≤ k.

We assume that the principal wishes to induce full participation of the agents
at the lowest possible cost. That is, the principal wishes to minimize the following
expression:

P =
k∑

j=1

∑
i∈Sj

vi
j .

The utility of agent i under mechanism v and participation vector S if he chooses
to participates in project j is given by vi

j +
∑

l∈Sj
wi(l).

In what follows we present some observations regarding the cases of positive
externalities and negative externalities.

Positive Externalities. We first observe that in the case of positive externalities,
it is optimal for the principal to induce an equilibrium in which all the agents
participate in the same project.

Observation 6. Under positive externalities, the optimal mechanism that in-
duces full participation as a NE motivates all the agents to participate in the
same project.

By the last observation, the problem of finding the optimal mechanism can
be solved by solving k copies of the optimal mechanism problem in the basic
model [6]. The last problem can be shown to be NP-hard by a reduction from
the feedback arc set problem.

Negative Externalities. The exact opposite case is where the externalities are all
negative. In this case the principal wishes to distribute the agents as much as
possible, as stated in the following observation.
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Observation 7. Under negative externalities, in the optimal mechanism that
induces full participation as a NE, if n≥k then ni > 0 for every j ∈ {1, ..., k}.

Given some partition of the agents into k subsets, the principal should pay each
agent the sum of the externalities he incurs from all the agents in his subset.
Given the last observation, the problem can be described as an undirected graph
in which the agents are the vertices and the edge between any two vertices has
weight equals to the absolute value of the sum of their corresponding mutual
externalities. The problem of finding the optimal mechanism that sustains full
participation as a NE is actually that of finding a partition of the set of vertices
into k subsets of minimal total weight. This problem is equivalent to the MAX-
K-CUT problem: finding a partition of the vertices into k subsets with maximal
total weight of crossing edges.

The MAX-K-CUT problem is known to be NP-hard. It can be approximated
within a constant factor [8] but does not admit a polynomial-time approximation
scheme (PTAS) unless P=NP [11]. In some special cases (e.g., dense graphs) the
problem admits a PTAS [5,1].
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Abstract. We study convergence of ε-Nash dynamics in congestion
games when delay functions of all resources are similar. Delay functions
are said to be similar if their values are within a polynomial factor at
every congestion level. We show that for any ε > 0, an ε-Nash dynam-
ics in symmetric congestion games with similar resources converge in
steps polynomial in 1/ε and the number of players are resources, yield-
ing an FPTAS. Our result can be contrasted with that of Chien and
Sinclair [3], which showed polynomial convergence result for symmetric
congestion games where the delay functions have polynomially bounded
jumps. Our assumption of similar delay functions is orthogonal to that
of bounded jumps in that neither assumption implies the other. Our
convergence result also hold for several natural variants of ε-Nash dy-
namics, including the most general polynomial liveness dynamics, where
each player is given a chance to move frequently enough. We also ex-
tend our positive results to give an FPTAS for computing equilibrium
in asymmetric games with similar resources, in which players share k
distinct strategy spaces for any constant k.

We complement our positive results by showing that computing an
exact pure Nash equilibrium in symmetric congestion game with similar
resources is PLS-complete. Furthermore, we show that for any ε > 0,
all sequences of ε-Nash dynamics takes exponential steps to reach an
approximate equilibrium in general congestion games with similar re-
sources, as well as in symmetric congestion games with two groups of
similar resources.

1 Introduction

A fundamental problem in algorithmic game theory is the computational com-
plexity of computing a Nash equilibrium for various classes of non-cooperative
games. Nash [8] showed that a mixed Nash equilibrium always exists in any
normal-form game with a finite number of players and strategies. In a mixed
Nash equilibrium, players are allowed to play randomized strategies, and they
wish to maximize their expected payoff. In contrast, a pure Nash equilibrium,
where players play deterministic strategies only, may not exist in all games.
However, there are natural classes of games which always have a pure Nash
equilibrium. A prominent class with this property is congestion games, defined
by Rosenthal [9].

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 362–373, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Nash Dynamics in Congestion Games with Similar Resources 363

Nash Dynamics: Nash equilibrium is especially interesting in systems where
selfish agents make their own decisions, in a decentralized fashion. The joint
strategy of all the players is said to define a state of the game. Given a state of
the game, a better response of a player is any of its strategies that has a higher
payoff (or less cost) if the strategies of the other players remain unchanged. A
pure Nash equilibrium is a state where no player has a better response. Nash
dynamics is an evolution of the game over time that starts from some initial
state), and in each step, a player switches to a better response given the current
state. We refer to each such step as an improving move. Clearly, Nash dynamics
stops (converges) when no player has a better response, that is, the dynamics
has reached a pure Nash equilibrium. Nash dynamics is a well-studied model
of selfish decentralized decision-making in a game, where players always play
deterministic strategies (eg. [12]).

Congestion Games: A congestion game is an n-player game with m resources,
and each player is assigned several strategies that it may choose from, where a
strategy of a player is a subset of the resources. A player playing a strategy s is said
to be using the resources in s. Each resource e is also associatedwith a non-negative
increasing integral delay function de(fe), where fe is the number of players using
e, also called the congestion of e. Each player that uses e suffers a delay of de(fe)
on e, and the total delay of a player playing strategy s is

∑
e∈s de(fe). Every player

must play one strategy, and selfishly seeks to reduce its own delay. Rosenthal [9]
showed that every congestion game has a pure Nash equilibrium.

Computational Complexity: Nash dynamics can be viewed as a natural al-
gorithm to compute pure Nash equilibrium in congestion games. However, the
number of steps required to converge to an equilibrium from some initial state
may not be polynomially bounded, and so this algorithm need not run in polyno-
mial time. Johnson et. al. [7] introduced a complexity class PLS (polynomial-time
local search) related to local search problems, and Nash dynamics implies that
computing a pure Nash equilibrium for congestion games belong to PLS. In
fact, Fabrikant et. al. [5] proved that the computing a pure Nash equilibrium in
congestion games is PLS-complete. Moreover, they showed that computing an
equilibrium in symmetric congestion games, where every player has the same
strategy space, is PLS-complete. The PLS-completeness proofs for these prob-
lems also show that there exists initial states such that any sequence of improving
moves from the initial state to an equilibrium state is exponential in length.

Approximate Nash Equilibrium and Greedy Dynamics: Since it is con-
sidered to be unlikely that PLS = P, much research has focused on computing
approximate equilibria of congestion games. For any ε > 0, an ε-Nash equilibrium
(see, eg. [10, 4, 1, 6, 3, 11, 2]) is defined to be a state where no player can unilat-
erally change its own strategy so that her delay decreases by at least an ε fraction
of its current delay. In other words, a player switches strategy only if there is
a significant improve in delay. We note here that the definition of approximate
equilibrium has varied in literature, though most of them are equivalent, with
different parameters. In particular, ε-Nash equilibrium in the language of Chien
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and Sinclair [3] is a 1
1−ε -approximate equilibrium in the language of Skopalik

and Vöcking [11]. In this paper, we follow the terminology of [3]; precise def-
initions are given in Section 2. When searching for ε-Nash equilibrium using
Nash dynamics, it is natural to assume that all players shall make ε-moves only,
that is, a player may switch to a better response during Nash dynamics if the
move reduces its delay by at least an ε fraction of its current delay. Such greedy
dynamics, called ε-Nash dynamics, were first studied in [4].

A resource e is said to satisfy the bounded jump condition if its delay in-
creases by a factor of at most β with the addition of a new player using e, for
some parameter β. Chien and Sinclair [3] showed that while computing exact
equilibrium in these games remains PLS-complete, however, starting from any
state s, an ε-Nash dynamics converges in time that is polynomial in the size of
the input, β, and 1/ε, thus yielding an FPTAS (fully-polynomial time approxi-
mation scheme) for polynomially bounded β. Note that Nash dynamics does not
specify the method to select a move if several players can make an ε-move. Chien
and Sinclair [3] showed that their fast convergence result holds for several nat-
ural methods, such as largest gain, largest relative gain, heaviest first, and the
most general polynomial liveness, where it is only required that every player is
given an opportunity to make an ε-move, if available, in every polynomially long
sequence of steps. Finally, Chien and Sinclair [3] also showed fast convergence of
ε-Nash dynamics for symmetric congestion games where only a constant number
of edges have unbounded jump, again yielding an FPTAS. The last result easily
implies fast convergence in games where the players share a constant number of
distinct strategy spaces, a generalization of symmetric games.

Progress has also been made on the inapproximability of equilibria in conges-
tion games. Skopalik and Vöcking [11] showed that the fast convergence results
in [3] does not extend to arbitrary asymmetric congestion games with bounded
jumps, by constructing such a game where there exists an initial state such that
any sequence of ε-moves from this state takes exponential number of steps to con-
verge. They also showed that for asymmetric congestion games with unbounded
jumps (that is, general congestion games), computing an ε-Nash equilibrium is
PLS-complete for any polynomially computable ε < 1. The last result is true for
symmetric congestion games as well.

Our Results and Techniques: In this paper, we study Nash dynamics in
congestion games with similar resources. While the bounded jump assumption
of [3] is well-motivated, it disallows a natural class of resources, namely, resources
with a threshold behavior, that is, delay of a resource may suddenly jump once
a certain congestion is reached. Since the results of [11] show that computing an
approximate equilibrium in symmetric congestion games is hard, elimination of
the bounded jump condition makes it necessary to impose some other restriction.
We make a novel assumption that the delay functions of the resources are similar.
A set of delay functions are said to be similar, with a similarity factor of Q, if for
any positive integer k, the maximum and minimum delay values at congestion
k for all resources are within a factor Q. We assume that Q is polynomial in
the size of the input. In particular, Q = 1 implies that the delay functions are
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identical. Note that similarity of resources does not imply that the jumps are
bounded, and vice versa. The similar resources assumption is of interest in many
applications, for example, when the roads in a traffic routing game have similar
dimensions, or the wires in a routing network are made of the same material.
Moreover, constructions of hard instances such as those in [11] use resources
whose delay functions have very different properties, and the use of such distinct
delay functions seem intrinsic to their proof. So it is interesting from a theoretical
perspective that very different delay functions are in fact necessary for proving
the hardness results. Intuitively, we require that any threshold behavior in the
delay values, should happen at a similar congestion value for all resources.

We show fast convergence of ε-Nash dynamics in symmetric congestion games
with similar resources. We show that several natural dynamics, including the
most general condition of polynomial liveness, converge in time that is polyno-
mial in the size of the input, Q and 1/ε, thus giving an FPTAS. We extend our
FPTAS result to the case when there are only k distinct types of players for some
constant k. Our technique is based on splitting the delay functions into multiple
levels. Within the same level, the delay function has polynomially bounded jump
for each increase in congestion. When the delay function jumps by a large fac-
tor, the level changes. Intuitively, the level change corresponds to the threshold
behavior of the delay function.

We match our positive results with appropriate negative results showing that
computing exact equilibrium in these games in PLS-complete. Moreover, if we re-
lax any of the assumptions, then we show that one cannot find even approximate
equilibrium by Nash dynamics. That is, ∀ 0 < ε < 1, there exists a game and a
state in the game from which all sequences of improving moves take exponential
number of steps to reach an ε-Nash equilibrium. In particular, we show this last
result for general congestion games (asymmetric, with arbitrarily many types of
players) with similar resources, as well as symmetric congestion games with only
two types of resources, that is, the resources can be divided into two groups of
similar resources. This result is derived by a modification of the construction in
[11] to show such a result for asymmetric games with bounded jumps. Thus, with
respect to these assumptions, our results are tight. A summary of our results is
given in Table 1.

Table 1. Summary of our results

Class of game Computing exact
equilibrium

FPTAS Arbitrary approximation
factor

Symmetric game, simi-
lar resources

PLS-complete Yes Yes

Constant types of play-
ers, similar resources

PLS-complete Yes Yes

Arbitrary types of play-
ers, similar resources

PLS-complete All sequences
exponential

All sequences exponential

Symmetric game, two
types of resources

PLS-complete All sequences
exponential

All sequences exponential
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Organization. The rest of the paper is organized as follows: we formally define
congestion games and its various restrictions in Section 2. In Section 3, we give
an efficiently computable sequence of ε-moves that converges fast in symmetric
games with similar resources. In Section 4, we show that several natural dynamics
converge fast in these games. In Section 5, we generalize our positive result to
games with constant types of players and similar resources. Finally, we present
our negative results in Section 6.

2 Preliminaries

A game consists of a finite set of players p1, p2 . . . pn. Each player pi has a finite
set of strategies Si and a cost or delay function ci : S1 × . . .Si × . . .Sn → N
that it wishes to minimize. We refer to Si as the strategy space of pi. A game is
called symmetric if all strategy spaces Si are identical. Two players are said to
be of the same type if they have the same strategy space. An n-tuple of strategies
s = (s1, s2 . . . sn) ∈ S1× . . .Si× . . .Sn is called a state of the game, where player
pi plays strategy si ∈ Si. A state s is a pure Nash equilibrium if for each player pi,
ci(s1, ..., si, ..., sn) ≤ ci(s1, ..., s′i, ..., sn) for every s′i ∈ Si. Thus in a equilibrium
state, no player can improve its cost by unilaterally changing its strategy.

Congestion games is a class of games where players’ costs are based on the
shared usage of a common set of resources R = {r1, r2 . . . rm}. The strategy set
of a player pi is Si ⊆ 2R, an arbitrary collection of subsets of R. Each resource
r ∈ R has a non-decreasing delay function dr : N → N associated with it. If
j players are using a resource r, each of these players incurs a delay of dr(j)
on resource r. The delay incurred by a player pi in a state s = (s1, . . . sn) is
the sum of the delays it incurs on each resource in its strategy, that is, ci(s) =∑

r∈si
dr(fs(r)), where fs(r) is the number of players using resource r in state

s, that is, fs(r) = |{j : r ∈ sj}|.
Given any state s = (s1 . . . si . . . sn) of a congestion game, the potential func-

tion φ of the game ([9]) is defined to be φ(s) =
∑

r

∑fs(r)
i=1 dr(i). Note that if pi

unilaterally changes its strategy from si to s′i, then the potential of the resulting
state s′ = (s1 . . . s′i . . . sn) is φ(s′) = φ(s) + (ci(s′)− ci(s)), that is, the change in
potential is equal to the change in the delay of pi. Thus the potential decreases
whenever any player makes a move which decreases its delay.

Given a state s = (s1 . . . sn), a better response strategy of a player pi is any
strategy s′i ∈ Si such that if the player switches its strategy from si to s′i its delay
decreases. A best response strategy is a better response strategy that maximizes
this decrease. Changing the state by making a player switch to a better response
strategy is called an improving move. A Nash dynamics starting from some initial
state s refers to a sequence of states such that only one player changes strategy
in each step, and each such change is an improving move for the player with
respect to the preceding state.

Definition 1. ([3]) An ε-Nash equilibrium is a state s such that for any strategy
s′i ∈ Si, if s′ = (s1, s2, . . . , s′i, . . . sn), then ci(s′) > (1− ε)ci(s), for all 1 ≤ i ≤ n
i.e. no player can decrease its delay at least by a factor of ε by unilaterally
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changing its strategy. An ε-move is an improving move where the change of
strategy causes the player’s delay to decrease by at least ε fraction, that is, if
state s changed to state s′, ci(s′) ≤ (1 − ε)ci(s). An ε-Nash dynamics is Nash
dynamics where each improving move is an ε-move.

2.1 Similar Resources

We now formalize the notion of of similar resources.

Definition 2. A congestion game is said to have similar resources if there exists
a function Q that is polynomial in n,m, and a function d such that given an
instance of the game with n players and m resources for any m,n ≥ 1, for every
resource r, dr(k) ∈ [d(k), d(k)Q] for 1 ≤ k ≤ n. The function d is said to be
a common delay function for the resources. The function Q is the similarity
factor for the delay functions of the resources.

The concept of similar resources is a generalization of identical resources. In
the case of identical resources i.e. when all resources have same delay function,
Q = 1. The function Q is the measure of how closely related delay functions
for the resources are. For the sake of smooth presentation of our proofs, which
involve a recursive argument, we shall prove our algorithmic results for a slightly
more general concept of synchronized resources.

Definition 3. A congestion game is said to have synchronized resources if there
exists Q which is polynomial in (n,m) and a function d such that such that
∀m,n ≥ 1, in a game with n players and m resources, for every resource r,
there exists an integer shift(r) such that ∀k ≥ 1, dr(k) ∈ [d(k + shift(r)), d(k +
shift(r))Q]. The function d is said to be a common function for the resources.

Thus a congestion game with similar resources is a special case of congestion
game with synchronized resources with shift(r) = 0 for every resource r. The
concept of synchronized resources allow resources to synchronize with the com-
mon delay function at a different congestion value.

Definition 4. Let s1, s2 . . . sk be a sequence of states derived by an ε-Nash dy-
namics. We say that a good event occurs in the sequence if φ(s1) − φ(sk) ≥

εφ(s1)
32m2Q2n , where Q is polynomial in (m,n). If a good event occurs in a sequence
comprising only of 2 states, we call the associated ε-move a good ε-move.

As in [3], the following simple lemma will be useful in our analysis.

Lemma 1. Consider a sequence of states derived by ε-Nash dynamics. Consider
any partition of the sequence into segments such that a good event occurs in each
segment. If the first state of the sequence is sbegin, then there can be at most
O(m2Q2nε−1 logφ(sbegin)) segments.

We now list some simple lemmas about congestion games with synchronized
resources, whose proofs are deferred to the full version.
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Definition 5. Let G be a congestion game with synchronized resources with
common function d. We define levels of congestion based on the jumps in value
of d. Let level(1) = 1, and if d(i + 1) ≤ 2mQd(i), then level(i+ 1) = level(i),
otherwise level(i+ 1) = level(i) + 1. Note that level() is a non-decreasing func-
tion. In a state s, if j players are using a resource r, then we define the level
of r to be level(j + shift(r)). We define the level of a player pi in state s to be
maxr∈si level(r).

Lemma 2. For any � > 1, the minimum delay incurred by any player in level
�, is at least twice the maximum delay that can be incurred by any player in level
(�− 1) or below.

Corollary 1. Whenever a player pi lowers its level by making a move, then the
move decreases the delay of player pi by at least a factor of 1/2.

Corollary 2. Suppose a player pi at level � in current state s makes an im-
proving move, and let s′ be the state of the game after the move. Then for every
player pj at a level above � in s, its level remains the same in s′. For every player
pj in level � in s, its level does not increase in going to s′.

Lemma 3. Let pi and pj be two players with the same strategy space such that
pi has level � and pj has level at most (�− 2) in some state s, for some integer
�. Then pi has an ε-move from si to sj, for 0 < ε ≤ 1/2.

Lemma 4. Let 0 < ε ≤ 1/2. Let pj be a player in level � in some state s, and let
pi be another player in level � that has the same strategy space as pj, and has an
ε-move. Then there exists an ε-move by some player in level � with current delay
at least (cj(s))/(8m2Q2). Consequently, such a move decreases the potential by
at least ε

(
cj(s))/(8m2Q2)

)
. If pj were a player with maximum delay in state s,

then this move would be a good ε-move.

Proof. Note that if pj is a player with maximum delay in state s, then cj(s) ≥
φ(s)/n. If ci(s) ≥ cj(s)

8m2Q2 , then the said ε-move of pi is itself the required move.
Otherwise, we show that pj can make an ε-move to si.

There is a resource in sj with delay at least 8mQ2cj(s). Also, delay of each
resource in si is at most ci(s). Here we will show that resources in level � in si

will not increase their level by increase in congestion by one. Since level of both
pi and pj is �, there is a delay value ≥ 8mQ2ci(s) which is in level � as well as
there is a delay value ≤ ci(s) which is in level �. It implies increasing congestion
by one for a resource in level � in si will not increase the level of that resource
beyond �. Consider the delay on each resource in si, if the congestion on them
were increased by one more player. It follows from the definition of levels that if
such a resource were in level � in s, then its delay increases by a factor of at most
2mQ2, and so is at most 2mQ2ci(s). If a resource were in a lower level in s, then
it either remains in a lower level or just reaches level �. In either case, the fact
that the resources are synchronized implies that the delay on the resource is at
most Qci(s), since there is a resource in si with level �, and delay at most ci(s).
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Since si has at most m resources, it follows that the delay faced by pj when it
switches to si is at most 2m2Q2ci(s) +mQci(s) < cj/2 ≤ (1 − ε)cj , completing
the proof.

Our algorithms are recursive, for which we shall define a reduced game.

Definition 6. Let P be an arbitrary subset of players in a congestion game G,
and let s be a state of the game. Then a reduced game G(s, P ) is defined as
a game derived from G by removing all players in P and modifying the delay
function of each resource r from dr to d′r such that if x is the number of players
in P using r in s, then d′r(k) = dr(k + x).

Lemma 5. If G is a congestion game with synchronized resources, then any
reduced game G(s, P ) is also a congestion game with synchronized resources,
with the same common function. Moreover, if the players pi /∈ P play si in
G(s, P ), then the level of each player and resource is the same as that in state s
of the game G.

3 FPTAS for Symmetric Games with Similar Resources

In this section, we give an FPTAS for computing an ε-Nash equilibrium for
symmetric congestion games with similar resources.

Theorem 1. For any ε ∈ (0, 1/2], given a symmetric congestion game with sim-
ilar resources in some initial state sbegin, there exists a poly-time computable se-
quence ofO((nm2Q2 log(φ(sbegin))/ε)2) ε-moves leading to an ε-Nash equilibrium.

We shall now prove Theorem 1. As mentioned earlier, we shall prove the re-
sult for congestion games with synchronized resources. Let d be the common
function for the resources. By Lemma 1, it suffices to show that the behav-
ior of the algorithm can be partitioned into segments each of which contains
O(nm2Q2ε−1 log(φ(sbegin))) ε-moves and terminates with a good ε-move.

Consider a segment with starting state s. If � is the maximum level of any
player in s and there is a player at level (�− 2) or below, then Lemma 3 implies
that the heaviest player has a good ε-move, and we complete the segment with
this move. If all players are either in level � or (�− 1), and some player in level
� has an ε-move, then some player again has a good ε-move, by Lemma 4.

Suppose that no player in � has an ε-move, but some player in level (� − 1)
does. In this case, we recursively consider the reduced game G(s, P ), where
P is the set of players in level �. We terminate the recursion if at any time
some player in P has an ε-move, since we can then complete the segment by
making a good ε-move. We refer to the above mentioned condition as the ter-
mination condition. From Corollary 2, it follows that no player in level (� − 1)
can get their level increased and no player in P can have its level changed as
a result of ε-Nash dynamics in the reduced game. Note that, from Lemma 3,
termination condition for reduced game also implies that no player in reduced
game drops its level to (� − 2) or below. Thus dynamics in the reduced game
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keeps the level of all players unchanged, and since the reduced game is also a
game with synchronized resources (by Lemma 5), we apply Lemma 4 to ob-
serve that whenever there exists an ε-move, there also exists a good ε-move
in the reduced game. We shall always choose such a good ε-move, and so, by
Lemma 1, the reduced game either reaches an ε-Nash equilibrium or is termi-
nated within O(m2Q2nε−1 log(φ(s))) = O(m2Q2nε−1 log(φ(sbegin))) steps. If
the reduced game reaches an ε-Nash equilibrium without getting terminated,
then the original game itself has reached an ε-Nash equilibrium. This completes
the proof of Theorem 1.

4 Fast Convergence of Natural Dynamics

In this section, we show that several natural dynamics also converge fast.

Largest gain dynamics: The largest gain ε-Nash dynamics [3] is defined as
follows: among all the ε-moves that can be made in the current state, the dy-
namics chooses a move with the largest absolute decrease in delay for the player
who moves (thus causing the largest drop in potential). The proof of the theorem
below is deferred to the full version.

Theorem 2. For any 0 < ε ≤ 1/2, given a symmetric congestion game with
similar resources in some initial state sbegin, a largest gain ε-Nash dynamics
converges to an ε-Nash equilibrium in O((nm2Q2 log(φ(sbegin))/ε)2) ε-moves.

Heaviest First Dynamics: The heaviest first dynamics [3] is defined as follows:
among all the players which have an ε-move, a player with maximum delay in
the current state moves. The proof of the theorem below is deferred to the full
version.

Theorem 3. For any 0 < ε ≤ 1/2, given a symmetric congestion game with
similar resources in some initial state sbegin, a heaviest first ε-Nash dynamics
converges to an ε-Nash equilibrium in O((nm2Q2 log(φ(sbegin))/ε)2) ε-moves.

Unrestricted Dynamics with Liveness Condition: Now we study conver-
gence properties of ε-Nash dynamics in a much more general setting,namely,
unrestricted ε-Nash dynamics with liveness condition [3]. Under these dynamics,
every player is given at least one opportunity to make a move in each interval
of T steps for some polynomially bounded parameter T . When an opportunity
to move is given to a player p, it does not imply that p can make an ε-move: it
makes an ε-move if it can, otherwise it does not move. Independent asynchronous
updates by players according to most random processes, such as Poisson clocks,
belong to this class of dynamics almost surely. The analysis of this dynamics re-
quires new ideas, since unlike Theorem 1, we cannot always reduce the analysis
to the case when all players are in only two levels.

The following lemmas are variations of Lemma 4.2 of Chien and Sinclair [3],
and their proofs are deferred to the full version.
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Lemma 6. In any congestion game G with ε-Nash dynamics, where G pro-
gresses from some state s1 to another state s2, then for any player pi, we have
φ(s1)−φ(s2) ≥ |ε(ci(s1)−ci(s2))|. Moreover, if a player pi has made at least one
ε-move as G progressed from s1 to s2, then we can make a stronger inference,
namely φ(s1)− φ(s2) ≥ ε(max{ci(s1), ci(s2)}).

Corollary 3. In any congestion game G with ε-Nash dynamics, where G pro-
gresses from some state s1 to another state s2, if a player pi has made an ε-
move between s1 and s2, and there exists a state s3 between s1 and s2 with
cj(s3) ≥ φ(s1)/C for some C ≥ 1, then φ(s1)− φ(s2) ≥ εφ(s1)/2C.

Theorem 4. For any 0 < ε ≤ 1/2, given a symmetric congestion game with
similar resources in some initial state sbegin, an unrestricted ε-Nash dynamics
where every player gets an opportunity to move in every T steps, converges to
an ε-Nash equilibrium in O((nm2Q2 log(φ(sbegin))/ε)2T ) steps.

Proof. Consider an interval of T steps, where all players have got at least one
chance to move. Let sstart and send be the first and last states of the game
in this interval. Let pi be a player with highest delay in the state sstart, then
ci(sstart) ≥ φ(sstart)/n. Let � be its level in sstart. Then by Corollary 2, the
maximum level of any player is at most � in all states that the dynamics can
reach from sstart. We consider two cases.

Case 1: Suppose that at least one player, which is in level � in state sstart, makes
an ε-move in the interval (the player need not belong to level � when it makes a
move). We will show that in this case, a good event occurred in this interval.

If pi made an ε-move in the interval, then by Lemma 6, φ(sstart)− φ(send) ≥
εci(sstart) ≥ εφ(sstart)/n. Hence a good event happened in this interval. We next
consider the case that pi did not make any ε-move in the interval.

If ci(s) < ci(sstart)/2 for some state s in the interval, then by Lemma 6, the
drop in potential in the interval is at least ε(ci(sstart)− ci(s)) ≥ εci(sstart)/2 ≥
εφ(sstart)/2n, so a good event has occurred. Now suppose that for all states s
between sstart and send, ci(s) ≥ ci(sstart)/2. Then by Lemma 2, it follows that
the level of pi is � in all states in this interval.

Let pj be the first player, which is in level � in state sstart, that makes an ε-
move in the interval. If cj(s) ≥ φ(sstart)/16nm2Q2 for any state s in the interval,
then Corollary 3 implies that a good event occurs in the interval.

We now consider the only remaining case, where for every state s in the
interval, we have ci(s) ≥ ci(sstart)/2 and cj(s) < φ(sstart)/16nm2Q2. Thus for
every state s, we have ci(s) ≥ 8m2Q2cj(s), that is, delays of pi and pj are widely
separated. Let s′ be the first state when pi was given a chance to move. Then
we show that pi can make an ε-move from s′i to s′j in state s′, a contradiction to
the assumption that pi did not make an ε-move in the interval.

If pj is in level � in s′, then since pi is also in level � and has delay at least
8m2Q2 times that of pj , it follows (since the resources are synchronized) that
increasing congestion on the resources in s′j by one player does not change their
level, and in fact their delays change by a factor of at most 2mQ, so pi can make
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an ε-move to s′j . If pj is in level less than � in s′, then using the fact that pj was
in level � in sstart and the fact that the resources are synchronized, we know that
the maximum delay any resource r can have when it first enters level � is at most
Qcj(sstart). Thus, if pi switches to s′j , either the resources in s′j still remain below
level �, or just reached level �, and have delays of at most Qcj(sstart). Hence pi

faces a delay of at most mQcj(sstart) < ci(sstart)/4 ≤ ci(s′)/2 by moving to s′j ,
so the move is an ε-move.

Case 2: Now suppose that no player in level � in state sstart made an ε-move in
the entire interval. In this case, if no player which is in level (�−1) in state sstart

has also not been able to make an ε-move in the interval, then by Corollary 2,
the sets of players in levels (�−1) and � remain unchanged in the entire interval.
If there is no player in a lower level, the dynamics has already reached an ε-Nash
equilibrium. If there is a player, say pk, below level (� − 1) in state sstart, then
when an opportunity to move is given to player pi, player pk is still below level
(�− 1). So if pi switches to the strategy of pk, it would make the level of pi drop
to (� − 1) or less, thus giving an ε-move, which is a contradiction.

So the only remaining case is that some player, say pj , belonging to level
(�− 1) in state sstart has been able to make an ε-move in the interval. Let P be
the set of players which are in level � in sstart, and consider the reduced game
G(sstart, P ). It can be argued, as we did in Case 1, that a good event happens
for the reduced game in this interval.

In conclusion, in every interval of T steps where approximate equilibrium has not
been reached, either a good event happens in the original game or a good event
happens in the reduced game. By Lemma 1, at most O(nm2Q2 log(s(begin))/ε)
good events can happen in the reduced game before it reaches an equilibrium, so a
good event must happen in the original game in every O(nm2Q2 log(s(begin))/ε)
intervals of T steps each. Applying Lemma 1 on the original game, we get that
the number of steps required for convergence is O((nm2Q2 log(φ(sbegin))/ε)2T ).

5 FPTAS for Constant Types of Players

We now generalize the FPTAS result of Theorem 1 to congestion games which
allow constant types of players: two players are said to be of the same type if they
have the same strategy space. Thus we shall assume that the n players share k
distinct strategy spaces for some constant k. Note that k = 1 implies that the
game is symmetric. We defer the proof of the theorem below to full version.

Theorem 5. For any 0 < ε ≤ 1/2, given a symmetric congestion game with
similar resources in some initial state sbegin, there exists a poly-time computable
sequence of O((m2Q2n log(φ(sbegin))/ε)2k) ε-moves leading to an ε-Nash equi-
librium, thus yielding a FPTAS when k is a constant.

6 Hardness Results

In this section, we present our negative results.
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Theorem 6. Computing an exact pure Nash equilibrium in symmetric conges-
tion games with similar resources is PLS-complete.

Moreover, the assumptions of symmetry among players and similarity among
resources are both necessary to get any non-trivial approximation using Nash
dynamics. The following theorem states that similarity of resources is not a
sufficient condition, and its proof is essentially a modification of the construction
used to prove Theorem 3 in [11]. We also show that the game being symmetric
does not suffice either, even if there are only two types of resources.

Theorem 7. For every ε ∈ (0, 1), ∃n0 such that for all n ≥ n0, there is a conges-
tion game G(n) with similar resources and a state s with following properties: the
description of G(n) is polynomial in n, and every sequence of improving moves
from s to an ε-Nash equilibrium is exponential in n.

Theorem 8. For every ε ∈ (0, 1), ∃n0 such that for every n ≥ n0, there is a
symmetric congestion game G(n) and a state s with following properties: the
description of G(n) is polynomial in n, its resources can be divided into two
groups such that all resources in a group are similar, and every sequence of
improving moves from s to ε-Nash equilibrium is exponential in n.
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[10] Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259

(2002)
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Abstract. We study an online weighted assignment problem with a set
of fixed nodes corresponding to advertisers and online arrival of nodes
corresponding to ad impressions. Advertiser a has a contract for n(a)
impressions, and each impression has a set of weighted edges to adver-
tisers. The problem is to assign the impressions online so that while each
advertiser a gets n(a) impressions, the total weight of edges assigned is
maximized.

Our insight is that ad impressions allow for free disposal, that is, adver-
tisers are indifferent to, or prefer being assigned more than n(a) impres-
sions without changing the contract terms. This means that the value of
an assignment only includes the n(a) highest-weighted items assigned to
each node a. With free disposal, we provide an algorithm for this problem
that achieves a competitive ratio of 1− 1/e against the offline optimum,
and show that this is the best possible ratio. We use a primal/dual frame-
work to derive our results, applying a novel exponentially-weighted dual
update rule. Furthermore, our algorithm can be applied to a general set
of assignment problems including the ad words problem as a special case,
matching the previously known 1− 1/e competitive ratio.

1 Introduction

Motivation: Display Ads Allocation. Many web publishers (e.g., news sites) have
multiple pages (sports, arts, real estate, etc) where they show image, video or
text ads. When a visitor to such a web site is exposed to an ad, this is called
an “impression.” Advertisers typically buy blocks of impressions ahead of time
via contracts, choosing blocks carefully to target a particular market segment,
typically as part of a more general advertising campaign across various web
sites and other media outlets. Once the contract is agreed upon, the advertiser
expects a particular number of impressions to be delivered by the publisher over
an agreed-upon time period.

The publisher enters all such impression contracts into an ad delivery system.
Such systems are typically provided as a service by third party companies, but
sophisticated publishers may develop their own software. When a user views one
of the pages with ad slots, this system determines the set of eligible ads for that
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slot, and selects an ad to be shown, all in real time. Because traffic to the site
is not known beforehand, it must solve an online matching problem to satisfy
the impression contracts. However, before committing to a set of contracts, it
would have been already determined using traffic forecasts that the contracts are
likely to be fulfillable. Thus, if this were purely a cardinality matching problem,
it would typically be easy to solve; what makes the problem challenging is the
fact that not all impressions are of equal value to an advertiser (e.g., top vs.
side slots, sports vs. arts pages). The publisher is interested not only in filling
the impression contracts, but also delivering well-targeted impressions to its
advertisers (as measured, e.g., by click-throughs). Thus the ADS, when deciding
which ad to serve, has the additional goal of maximizing the overall quality
of impressions used to fill the contracts. We formulate and study this online
optimization problem.

Online Ad Allocation Problem. We have a set of advertisers A known in advance,
together with an integer impression contract n(a) for each advertiser a ∈ A. Each
a ∈ A corresponds to a node in one partition of the bipartite graph we define. The
set of impressions I forms the nodes of the other partition and they arrive online.
When an impression i ∈ I arrives, its value wia ≥ 0 to each advertiser a becomes
known (some of the wia’s are possibly zero). The value wia might be a prediction
of click-through probability, an estimate of targeting quality, or even the output of
a function given by the advertiser; we treat this abstractly for the purposes of this
work. The impression i must be assigned immediately to some advertiser a ∈ A.

Let Ia ⊆ I be the set of impressions assigned to a during the run of the algo-
rithm. The goal of the algorithm is to maximize overall advertiser satisfaction,
i.e.,
∑

a∈A S(a, Ia) for some satisfaction function S. To encode the impression
contracts n(a) as part of S, one possible choice is to say S(a, Ia) =

∑
i∈Ia wia

if |Ia| ≤ n(a) (and S(a, Ia) = −∞ otherwise). In other words, maximize overall
quality without exceeding any of the contracts n(a). As stated, no bounded com-
petitive ratio can be obtained for this problem: just consider the simple case of
a single advertiser, n(a) = 1, and two items arriving. The first item that arrives
has value 100. If it is assigned, then the next item has value 10000; if it is not
assigned, the next item has value 1. (In both cases the algorithm achieves less
than 1/100th the value of the optimal solution.)

The main insight that inspires our model is that the strict enforcement of
the impression contract as an upper bound is inappropriate, since impressions
exhibit what is known as the property of free disposal in Economics. That is, in
the presence of a contract for n(a) impressions, the advertiser is only pleased —
or is at least indifferent to — getting more than n(a) impressions. Therefore, a
more appropriate formulation of the problem is the following. We let Ia

k be the
k impressions i ∈ Ia with the largest wia. Then, define

S(a, Ia) =
∑

i∈Ia
n(a)

wia.

In other words, each advertiser draws its value from its top n(a) impressions,
and draws zero value from its remaining impressions (yielding free disposal).
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We call this the display ads (DA) problem. Free disposal makes the problem
tractable; e.g., for the counterexample above with a single advertiser a, the
trivial algorithm that assigns all the impressions to that advertiser is optimal.
(The general problem with multiple advertisers is, of course, nontrivial.) This
choice of S also allows us to tradeoff between quality and contract fulfillment by
adding a constant W to each wia; for large W the problem becomes closer to a
pure maximum-cardinality matching.

Our Results and Techniques. Our main technical contribution is an online algo-
rithm for the DA problem with competitive ratio of 1−1/e, as long as n(a) →∞.
Further, this is the best possible for any (even randomized) online algorithm.

We generalize our algorithm to the case of non-uniform item sizes, the so-
called Generalized Assignment Problem (GAP). More specifically, we can add
“sizes” sia to the model, where the contract then refers to the total size of im-
pressions assigned to an advertiser (and the function S is defined appropriately;
see Section 3 for more details). This generalization captures both the DA problem
as well as the well-studied ad words (AW) problem [19], where the advertisers
express budgets Ba (simply set sia = wia). Our bound of 1 − 1/e when sizes
are “small” matches the best known ratio for the AW problem. Furthermore,
GAP is a unifying generalization that can handle hybrid instances where some
advertisers are budget-constrained, and some are inventory constrained.

Our algorithm for the DA problem is inspired by the techniques developed
for the online Ad Words (AW) allocation problem in [19], as well as the general
primal-dual framework for online allocation problems [4]. The key element of this
technique is to develop a dual update rule that will maintain dual feasibility as
well as a good bound on the gap between the primal and dual solutions. Previous
algorithms for related online packing problems such as AW [5] typically update
dual (covering) variables by multiplying them by a small factor (such as 1+1/n)
at each step, and adding a term proportional to the increase in primal value.
By contrast, our update rule sets the dual variable for each advertiser a to be a
carefully weighted average of the weights of the top n(a) impressions currently
assigned to a. In fact, the value of the dual variable for an advertiser with a set
of impressions Ia is the same as it would be if we re-ordered the impressions in
increasing order of weight and used the update rules of previous algorithms (as
in [4]) on Ia. By choosing our exponentially-weighted update rule, we balance
the primal and dual objectives effectively and obtain an optimal algorithm for
the DA problem.

Related Work. The related AW problem discussed above is NP-Hard in the of-
fline setting, and several approximations have been designed [6,22,2]. For the
online setting, it is typically assumed that every weight is very small compared
to the corresponding budget, in which case there exist (1 − 1/e)-factor online
algorithms [19,4,15,1], and this factor is tight. In order to go beyond the com-
petitive ratio of 1− 1

e in the adversarial model, stochastic online variants of the
problem have been studied, such as the random order and i.i.d models [15]. In
particular, for any ε, a primal-dual 1− ε-approximation has been developed for
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this problem in the random order model with the assumption that opt is larger
than O(n2

ε3 ) times each bid [9]. Moreover, a 0.67-competitive algorithm has been
recently developed for the (unweighted) max-cardinality version of this problem
in the i.i.d. model (without any extra assumption) [12]. Previously, a random-
ized (1− 1

e )-competitive algorithm for the max-cardinality problem was known in
the adversarial model [16]. The online maximum weighted b-matching problem
without free disposal in the random permutation model has also been studied,
and a 1

8 -approximation algorithm has been developed for this problem [17].
Prior to the development of the (1 − 1

e )-approximation algorithm for the
offline GAP, various 1

2 -approximation algorithms had been obtained for this
problem [8,21,13]. It has been observed that beating the approximation ra-
tio 1 − 1

e for more general packing constraints is not possible unless NP⊆
DTIME(nO(log log n)). However, for GAP with simple knapsack constraints, an
improved 1− 1

e +δ-approximation (with δ ≈ 10−180) was developed by Feige and
Vondrak [11]. In the online model with small sizes, our approximation factor of
1− 1

e is tight.
The offline variants of DA, AW, and GAP are special cases of the problem of

maximizing a monotone submodular function subject to a matroid constraint [13].
Recently, the approximation factor for this problem has been improved from 1

2 to
1 − 1

e [23], but these algorithms do not work in the online model. The algorithm
in [18], although studied for the offline setting, works for the online DA problem
and gives a 1

2 -competitive algorithm (discussion below).

2 The Display Ads Problem

In this section, we provide online algorithms for the DA problem with small
competitive ratios. Recall that the competitive ratio of an online algorithm for
a maximization problem is defined as the minimum, over all possible input se-
quences, of the ratio between the value obtained by the algorithm and the opti-
mum value on that sequence. We first give a simple upper bound:

Lemma 1. No deterministic algorithm for the Display Ads problem achieves a
competitive ratio better than 1/2.

Proof. Consider an instance in which there are two advertisers a1, a2 each with
capacity 1, and two impressions i1, i2. Impression i1 has value w for both adver-
tisers, and arrives first. Once it has been assigned, i2 arrives, and has value w
for the same advertiser to which i1 was assigned. Thus we obtain a value of w,
while the optimal solution has value 2w. 	


In this section, we show that a greedy algorithm is always 1/2-competitive,
matching the bound of Lemma 1. On real instances of the Display Ads problem,
though, advertisers request far more than a single impression, and so a natural
question is whether one can obtain better deterministic algorithms if n(a) is large
for each advertiser a. Also in this section, we answer this question affirmatively,
giving an algorithm that achieves a competitive ratio tending to 1− 1/e as n(a)
tends to infinity.
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The Greedy Algorithm. Consider an algorithm for the DA problem, assigning
impressions online. When impression i arrives, what is the benefit of assigning
it to advertiser a? This impression can contribute wia to the value obtained by
the algorithm, but if advertiser a already has n(a) impressions assigned to it,
one of these impressions cannot be counted towards the value. Let v(a) denote
the value of the least valuable impression currently assigned to a (if there are
fewer than n(a) such impressions, v(a) = 0). Clearly, if wia ≤ v(a), there is no
benefit to assigning impression i to advertiser a. Let Ai = {a : wia > v(a)}; any
algorithm should only assign i to an impression in Ai.

Perhaps the simplest algorithm is to assign an impression i to the advertiser
a ∈ Ai that maximizes wia. The competitive ratio of this naive algorithm is ar-
bitrarily bad: Consider a set of advertisers {a∗, a1, a2, . . . an} each with capacity
1, and impressions {i1, i2, . . . in} that appear in that order. Impression ij has
value 1+ jε for a∗, and value 1 for aj . The algorithm above obtains value 1+nε,
while the optimal solution has value n+ nε.

One can do better by noticing that the increase in value by assigning impres-
sion i to a is wia − v(a), and therefore greedily assigning i to the advertiser a
maximizing this quantity, which we call the marginal gain from assigning i to a.

The following theorem shows that the greedy algorithm (maximizing the
marginal gain at each step) is 1/2-competitive:

Theorem 1. The greedy algorithm is 1
2 -competitive for display ad allocation.

This theorem is a special case of Theorem 8 in [18] which studies combinatorial
allocation problems with submodular valuation functions. This follows from the
fact that the valuation function of each advertiser in the online DA problem is
submodular in terms of the set of impressions assigned to it, i.e.,

∑
i∈Ia

n(a)
wia is

submodular in Ia. Though [18] studied this problem in the offline setting, their
greedy algorithm can be implemented as an online algorithm. Other offline 1

2
and 1− 1

e -approximation algorithms for a more general problem of submodular
maximization under matroid constraints are known [13,23], but these offline
algorithms do not provide an online solution.

When n(a) is large for each advertiser a, the upper bound of Lemma 1 does
not hold; it is possible to achieve competitive ratios better than 1/2. However,
even in this setting, the performance of the greedy algorithm does not improve.

Lemma 2. The competitive ratio of the greedy algorithm is 1/2 even when n(a)
is large for each advertiser a ∈ A.

Proof. Let each of advertisers a1, a2 have capacity n; suppose there are n copies
of impression i1 with value w to a1 and w − 1/n to a2. The greedy algorithm
assigns all of these impressions to a1, obtaining value wn. Subsequently, n copies
of impression i2 arrive, with value w to a1 and 0 to a2. Thus, the optimal solution
has value 2nw − 1, while the greedy algorithm only obtains a value of nw. 	


The greedy algorithm does badly on the instance in Lemma 2 because it does
not take the capacity constraints into account when assigning impressions.
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Primal-Dual algorithms for the DA problem. We write a linear program where
for each we have variables xia to denote whether impression i is one of the n(a)
most valuable impressions assigned to advertiser a.

Primal: max
∑
i,a

wiaxia∑
a

xia ≤ 1 (∀ i)∑
i

xia ≤ n(a) (∀ a)

Dual: min
∑

a

n(a)βa +
∑

i

zi

βa + zi ≥ wia(∀i, a)

[xia, βa, zi ≥ 0]

The algorithms we consider simultaneously construct feasible solutions to the
primal and dual LPs, using the following outline:

– Initialize the dual variables βa to 0 for each advertiser.
– Subsequently, when an impression i arrives online, assign i to the advertiser
a′ ∈ A that maximizes wia − βa. (If this value is negative for each a, leave
impression i unassigned.)

– Set xia′ = 1. If a′ previously had n(a′) impressions assigned, let i′ be the
least valuable of these; set xi′a′ = 0.

– In the dual solution, set zi = wia′ − βa′ and increase βa′ using an appro-
priate update rule (see below); different update rules give rise to different
algorithms/assignments.

The outline above results in a valid integral assignment (primal solution) and a
feasible dual solution; to completely describe such an algorithm, we only need
to specify the update rule used. We consider the following update rules:

1. Greedy: For each advertiser a, βa is the weight of the lightest impression
among the n(a) heaviest impressions currently assigned to a. That is, βa

is the weight of the impression which will be discarded if a receives a new
high-value impression.

2. Uniform Weighting: For each advertiser a, βa is the average weight of
the n(a) most valuable impressions currently assigned to a. If a has fewer
than n(a) assigned impressions, βa is the ratio between the total weight of
assigned impressions and n(a).

3. Exponential Weighting: For each advertiser a, βa is an “exponentially
weighted average” (see Def. 1) of the n(a) most valuable impressions.

It is easy to see that the Greedy rule simply gives rise to the greedy algorithm
that assigns each impression to the advertiser that maximizes marginal gain. Us-
ing Uniform Weighting, one can obtain an improved ratio ≈ 3/4 on the instance
of Lemma 2, as the first n copies of impression i1 are split evenly between ad-
vertisers a1 and a2, and thus half the copies of impression i2 can be assigned to
a1. We state and analyze the Exponential Weighting rule in more detail below,
but as a warm-up, we use the primal-dual technique to show that the Uniform
Weighting rule gives a 1/2-competitive algorithm.
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Lemma 3. The primal-dual algorithm with Uniform Weighting is 1
2 -competitive.

Proof. We show that the value of the feasible dual solution constructed by the
algorithm is at most twice the value of the assignment; by weak duality, this
implies that the algorithm is 1/2-competitive. It suffices to show that in any
step, the increase in value of the assignment is at least 1/2 of the increase in
value of the dual solution. If impression i is assigned to advertiser a, let v be the
value of the least valuable impression among the best n(a) impressions previously
assigned to a. Thus, the increase in value of the assignment is wia − v. We set
zi = wia − βa ≤ wia − v, as the least valuable impression is worth no more
than the average. The increase in βa is precisely 1

n (wia− v), and hence the total
increase in the dual objective function is at most 2(wia − v). 	


Using the Greedy Rule, βa is simply the weight of the edge/impression that will
be discarded, while with Uniform Weighting, βa is the average of all the best
n(a) weights currently assigned to a. The disadvantage of the first approach is
that it only takes into account the least valuable impression, ignoring how much
capacity is unused. For Uniform Weighting, Lemma 3 showed that the increase
in dual value is (wia − v) + (wia − βa), but as one can only use the fact that
v ≤ βa, we get a ratio of 2. To obtain a (1 − 1/e)-competitive algorithm, we
use an intermediate exponentially-weighted average in which the less valuable
impressions are weighted more than the more valuable ones, as follows:

Definition 1 (Exponential Weighting). Let w1, w2, . . .wn(a) be the weights
of impressions currently assigned to advertiser a, sorted in non-increasing order.

Let βa = 1
n(a)·((1+1/n(a))n(a)−1)

∑n(a)
j=1 wj

(
1 + 1

n(a)

)j−1
.

Theorem 2. The primal-dual algorithm with the Exponential Weighting update
rule has a competitive ratio of (1− 1/e) as n(a) →∞ for each advertiser a.

Proof. Let en = (1 + 1/n)n; we have limn→∞ en = e. Analogous to the proof
of Lemma 3, it suffices to show that at each impression/step of the algorithm,
the increase in the value of the assignment is at least (1 − 1/en(a)) times the
increase in value of the feasible dual solution, where a is the advertiser to which
this impression is assigned.

As before, let impression i be assigned to advertiser a, and let v be the value
of the least valuable impression among the best n(a) impressions previously
assigned to a. Thus, the increase in value of the assignment is wia − v, and we
set zi = wia−βa. It remains to bound the increase in βa, which we do as follows.

Let βo, βn denote the old and new values of βa respectively. Suppose that after
i is assigned to a, it becomes the most valuable impression assigned to a. Then,
we have βn = (1+1/n)βo− ven

n(en−1)+
wia

n(en−1) . Thus, n(βn−βo) = βo− ven

en−1+ wia

en−1 .
Therefore, the total dual increase, which is the sum of zi and n times the increase
in βa is (wia−βo)+βo− ven

en−1 + wia

en−1 = (wia−v)en

en−1 . Therefore, the ratio between
the increase in assignment value and dual objective function is 1− 1/en.

We assumed above that i became the most valuable impression assigned to
a; what if this is not true? It is not difficult to verify that in this case, the
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increase in βa is less than otherwise; to see this, note that if it is the jth most
valuable impression, the contribution of wia to βa must be multiplied by a factor
of (1 + 1/n)j−1 compared to the previous case, but the contributions of j − 1
more valuable impressions will be decreased by a factor of (1 + 1/n). 	


Theorem 3 ([19]). No algorithm achieves a competitive ratio of greater than
1 − 1/e for the display ad allocation problem. This is true even with weights in
{0, 1}, and for randomized algorithms against oblivious adversaries.

The lower bound of Theorem 3 was proved by [19] for the Ad words problem; the
example they give is a valid instance of the Display Ads problem, and hence the
same lower bound applies. Thus, our primal-dual algorithm with the Exponential
Weighting update rule is optimal for the DA problem.

3 The Generalized Assignment Problem

In the Generalized Assignment Problem (GAP), a set A of bins/machines and
a set I of items/jobs is given. Each bin a ∈ A has a capacity Ca; for each item i
and bin a, we have a size sia that item i occupies in bin a and a weight/profit wia

obtained from placing i in a. (Alternately, one can think of GAP as a scheduling
problem with sia as the processing time job i takes on machine a, and with
wia being the value gained from scheduling job i on machine a.) Note that the
special case of GAP with a single bin/machine is simply the Knapsack problem.

We first note that GAP captures both the Display Ads problem and the Ad
Words problem as special cases, where bins correspond to advertisers and items
to impressions. The DA problem is simply the special case in which sia = 1 for
all i, a, and the AW problem is the special case in which wia = sia for all i, a.

For the offline GAP, the best approximation ratio known is 1−1/e+ δ, where
δ ≈ 10−180 [11]; this improves on the previous (1−1/e)-approximation of [14]. In
an online instance of GAP, the set of bins A is known in advance, together with
the capacity of each bin. Items arrive online, and when item i arrives, wia and
sia are revealed for each a ∈ A. The only previous work on online GAP appears
to have been for the special case corresponding to the Knapsack problem [3].

Recall that without free disposal, the online Display Ads problem was in-
tractable. We make a similar assumption to solve GAP online; here, we assume
that we can assign items of total size more than Ca to bin a, but that the total
value derived by bin a is given by the most profitable set of assigned items that
actually fits within capacity Ca. (Note that such an assumption is not necessary
for the easier Ad Words problem, in which the value/weight of an item in a bin
is equal to its size; thus, there is never a need for over-assignment.) Thus, an on-
line algorithm for GAP immediately gives algorithms with the same competitive
ratio for the DA and AW problems. In fact, an algorithm for GAP allows one to
simultaneously handle ad allocation problems in which some bidders have bud-
get constraints and others have inventory constraints. Unfortunately, we have:
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Lemma 4. No deterministic online algorithm for GAP with free disposal can
achieve a competitive ratio better than n−1/2.

Given this lower bound, for the rest of this section, we consider the case of small
items ; that is, we assume that for each item i and bin a such that wia > 0,
sia ≤ εCa.1 This is a reasonable assumption for both the DA and AW problems,
where contracts are for large numbers of impressions or individual bids are small
compared to budgets. We refer to GAP restricted to such instances – where no
individual item can occupy more than an ε fraction of any bin – as ε-GAP. Let
e1/ε = (1 + ε)1/ε; we prove the following theorem:

Theorem 4. There is a (1− 1/e)-competitive algorithm for ε-GAP as ε→ 0.2

Proof Sketch. We construct a feasible dual solution (primal and dual linear pro-
grams for GAP are given below) as in the proof of Theorem 2, but a problem
arises in dealing with non-uniform sizes. It may sometimes be necessary for the
algorithm to place an item in a bin even when doing so would decrease the value
of the solution; this holds even when item sizes are all less than ε times the bin
capacities. The intuition is as follows: Suppose an item i arrives with value/size
ratio significantly better than the average for a given bin a; it is clear that we
should take it, and discard the existing items. (The inability to do this provides
the lower bound of Lemma 4.) But if the items already in the bin are larger than
the new item, one may lose value by discarding the existing items. This diffi-
culty appears because in integral solutions an item cannot continuously move
from being in the bin to outside. We deal with this issue by having the algorithm
act as though it could derive value from such fractional solutions, in which the
item of lowest value/size ratio is partly in the bin, and the value obtained from
this item depends on how much of it is in the bin. Under this metric, we show
the algorithm’s (fractional) value is at least (1− 1/e1/ε) times that of a feasible
dual solution. Since the algorithm does not truly obtain any integral value from
such partially assigned items, it loses at most the value of these items, which
is an ε fraction of its overall value. Thus, we obtain an integral solution which
achieves an approximation ratio of (1− 1/e1/ε)(1− ε).

Primal: max
∑
i,a

wiaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

Dual : min
∑

a

Caβa +
∑

i

zi

siaβa + zi ≥ wia(∀i, a)

[xia, βa, zi ≥ 0]

1 This lower bound does not apply to randomized algorithms; see Section 4.
2 More formally, we obtain a ratio of (1 − 1/e1/ε)(1 − ε) for ε-GAP. This is greater

than 1/2 for ε ≤ 0.17.
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4 Extensions and Future Work

Randomized Algorithms and Lower Bounds. For the basic Display Ads problem,
we showed an upper bound of (1 − 1/e) on the competitive ratio of all algo-
rithms, and a deterministic algorithm that matches this bound when n(a) is
large. Further, Lemma 1 shows that no deterministic algorithm has competitive
ratio larger than 1/2 when n(a) is small; does this bound also apply to random-
ized algorithms? The randomized algorithm of [16] gets a competitive ratio of
1−1/e for the unweighted case. Extending this result to the weighted case seems
difficult; a new approach may be necessary.

Similarly, Lemma 4 shows that no deterministic online algorithm for GAP
has a competitive ratio better than n−1/2. One can avoid this bound using
randomization: Toss a coin to determine whether bins should accept only large
items (that occupy more than 1/3 the bin), or only small items (that occupy
at most 1/3 the bin.) In the latter case, use the algorithm of Theorem 4; in
the former case, have each bin accept a single item. Since each bin can accept
only two big items, we obtain a constant-competitive algorithm in both cases.
(A similar observation was also made in [3] for the easier Knapsack problem.)
Optimizing constants, we obtain the following theorem:

Theorem 5. There is a 0.15-competitive randomized online algorithm for GAP.

Extending these results for the online GAP to more general packing problems
is an interesting subject of study. In particular, this idea may be applicable to
packing problems with sparse constraint matrices; see [20,7] for recent work on
the offline versions of these problems.

General non-linear valuation functions. The display ad business is performed
through a set of pre-determined contracts. Hence, in many settings, the number
of impressions assigned to an advertiser is an important quality measure in
addition to the total valuation (or total weight) of the impressions. In other
words, the valuation (or utility) of an advertiser a for receiving a set Ia of
impressions is va(Ia) =

∑
i∈Ia

n(a)
wia + fa(|Ia|) where fa : N → N is a non-

decreasing function of the number of impressions assigned to a. We may also
assume that fa(x) = fa(n(a)) for any x ≥ n(a). The corresponding online ad
allocation problem here is to assign impressions to advertisers and maximize∑

a∈A va(Ia).
Depending on various quality measures, this function fa could be concave or

convex. A convex function fa models the guaranteed delivery property of adver-
tisers in that receiving a number of impression close to n(a) is very important.
A concave function fa, on the other hand, captures the diminishing return prop-
erty of extra impressions for advertisers. We observe that for convex functions
f , the ad allocation problem becomes inapproximable, even in the offline case;
this hardness result uses a reduction from a banner ad allocation problem with
penalties studied in [10]. On the other hand, if all functions fa are concave,
the problem becomes a special case of submodular valuation and the greedy
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algorithm gives a 1
2 -competitive algorithm. An interesting question is whether

the competitive ratio of 1
2 can be improved to 1− 1

e .

“Underbidding” and Incentives. One disadvantage of using the free disposal
property is that it may incentivize advertisers to declare smaller n(a), in the
hope of getting more impressions in the final allocation. We can partially address
this concern by modifying the algorithm slightly so that the sum of weights of
all impressions assigned to a is at most twice the sum of weights of the top n(a)
impressions:

Theorem 6. There is a 1−1/e
2 -competitive algorithm for the DA problem such

that for each advertiser,
∑

i∈Ia wia ≤ 2
∑

i∈Ia
n(a)

wia.

To prove this theorem, one simply needs to use the Exponential Weighting up-
date rule but double βa for each a; we omit details from this extended abstract.

Concluding Remarks: We have used free disposal to solve the online DA
problem with a competitive ratio of 1 − 1/e. An outstanding issue is to under-
stand how free disposal affects the incentives of advertisers, who may be led to
speculate. (Note that even the sub-optimal algorithm of Theorem 6 only bounds
the total weight of impressions assigned to an advertiser, not the number of im-
pressions received.) A model for incentives must simultaneously handle contract
selection/pricing and the online ad allocation problem; this is an interesting
subject of future research.
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Abstract. Query incentive networks capture the role of incentives in
extracting information from decentralized information networks such as
a social network. Several game theoretic models of query incentive net-
works have been proposed in the literature to study and characterize the
dependence, of the monetary reward required to extract the answer for a
query, on various factors such as the structure of the network, the level of
difficulty of the query, and the required success probability. None of the
existing models, however, captures the practical and important factor
of quality of answers. In this paper, we develop a complete mechanism
design based framework to incorporate the quality of answers, in the
monetization of query incentive networks. First, we extend the model of
Kleinberg and Raghavan [2] to allow the nodes to modulate the incentive
on the basis of the quality of the answer they receive. For this quality
conscious model , we show the existence of a unique Nash equilibrium
and study the impact of quality of answers on the growth rate of the
initial reward, with respect to the branching factor of the network. Next,
we present two mechanisms, the direct comparison mechanism and the
peer prediction mechanism, for truthful elicitation of quality from the
agents. These mechanisms are based on scoring rules and cover different
scenarios which may arise in query incentive networks. We show that the
proposed quality elicitation mechanisms are incentive compatible and
ex-ante budget balanced. We also derive conditions under which ex-post
budget balance can be achieved by these mechanisms.

1 Introduction

We consider the scenario where a person is seeking some information from a social
network. She formulates a query and asks her friends in the social network. If
they know the answer, they reply her back, otherwise they forward the query
to their friends and like that the query propagates through the social network.
Similarly, when someone answers the query, the answer propagates back to the
original person. In the real world, however, the picture is not so simplistic. Since
every person is an intelligent and rational agent and since forwarding the query
(and then reporting back the answer) requires a certain amount of effort on her
part, she may not be willing to do so.
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c© Springer-Verlag Berlin Heidelberg 2009



Truthful and Quality Conscious Query Incentive Networks 387

At present, the concept of incentive based queries is used in various QA net-
works such as Yahoo! Answers, Orkut’s Ask Friends, LinkedIn, etc. However, in
these cases, only the person who answers the query is rewarded, with no reward
for the intermediaries. The net result is lack of enough exposure and propaga-
tion of the query over the social network with, generally, only the immediate
friends viewing/answering the query. While offering an appropriate incentive to
the intermediate nodes will increase the total reward which must be offered by
the person posing the query, it will also increase the exposure of the query. This
concept was captured by the model of Kleinberg and Raghavan [2]. Their model
however, does not take into account the relevance or quality of the answer.

As an example, consider a query that seeks a complete proof of existence of
mixed strategy Nash equilibria in a finite strategic form game and someone an-
swers with only a sketch of the proof but not with full mathematical details.
Then the root agent (the agent who originally posed the query) may not be
willing to give the full incentive promised, as the answer is not complete. How-
ever, an appropriate fractional incentive is required to be paid to the answering
agent and the intermediate agents. This motivates the need to develop a system-
atic scheme where the quantum of reward depends on the quality of the answer
offered. An important research gap in this setting is the absence of a proper
mechanism for eliciting and determining the quality of an answer, in a highly
decentralized setting of social networks.

1.1 Relevant Work

The branching process model for query incentive networks, proposed by Klein-
berg and Raghavan [2], is as follows. First, without loss of generality, assume
that the query is originated at the root node vroot of a tree. Let n denote the
rarity of the answer implying that one out of n nodes, on an average, holds the
answer to the question being posed. This means that every node has the answer
to the query, independently, with probability 1

n . Now take the case of any gen-
eral node v. Let r be the reward offered to v by its parent and let fv(r) be the
reward which v offers to its children. Here, fv(·) denotes the reward function
for node v. Then the payoff for node v is (r − fv(r) − 1). The factor of −1 is
introduced to account for the effort put in by the agent in forwarding the query.
Kleinberg and Raghavan [2] proved that in the Nash equilibrium profile, each
agent will offer a reward x to her children where x maximizes (r−x−1)αv(f, x).
Here, αv(f, x) is the probability that node v will receive the answer from its
children if it offers the reward x and f is the common reward function. They
proved that this Nash equilibrium is in fact unique under fairly weak technical
conditions. Further, they investigated the relation between the growth rate of
required reward and the branching factor of the tree network.

Arcaute, Kirsch, Kumar, Liben-Nowell, and Vassilvitskii [3] generalized the
results of [2] to an arbitrary branching process model and proved some additional
bounds. The combined results of [2] and [3] show that for any constant failure
probability σ, the growth rate of reward at vroot is linear in the expected depth
of the search tree if b > 2 where b is the branching factor. For 1 ≤ b ≤ 2,
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the growth rate of reward is exponential. However when σ is a polynomial in
1/n, then this threshold effect disappears and the growth rate is exponential for
all values of the branching factor. It should be mentioned here that the above
analysis is not applicable for b < 1 since the tree becomes finite in nature.

1.2 Contributions and Outline

The related work in the area does not capture quality or relevance of answers in
any way. In this paper, we design a complete framework for incorporating the
factor of quality of answers in determining the payments in a query incentive
network. Our specific contributions are as follows.

We first non-trivially extend the strategic form game model of query incen-
tive networks proposed by Kleinberg and Raghavan [2] to capture a key factor,
namely, the quality of answers into the model. We prove the existence of a unique
Nash equilibrium for the reward functions employed by the nodes in our model.
We next investigate the impact of quality of answers on the growth rate of reward
in the proposed model.

Our next contribution in this paper involves development of two mechanisms,
namely the Direct Comparison (DC) and the Peer Prediction (PP) mechanisms,
for honest elicitation of quality from the agents. These two mechanisms are based
on the concept of scoring rules [4]. We show that the DC and PP mechanisms are
incentive compatible. We then investigate the issue of budget balance in these
two mechanisms.

2 Quality Conscious Model: Formulation and Analysis

Throughout this paper, we will consider the underlying network to be a branch-
ing process. As will be evident in the following analysis, the branching process
assumption does not affect the analysis much and similar analysis can be re-
peated for other network structures also. Also, during the analysis, we will use
the terms agents and nodes interchangeably.

2.1 Design of the Model

Consider an infinite d-ary tree where every node is active independently with a
probability q. A node is said to be active when it is willing, as well as, able to
participate in the query propagation process. For such a network, we will have
the branching factor as b = qd. Also let vroot be the root node of the tree where
the query is originated. Let vi denote any general node at level i; we assume
that the root is at level 0. Now the process of incentive based query propagation
will progress in three steps as follows (see Figure 1).

(1) The query originates at the root and an initial reward of r1 is offered to
all the nodes at level 1. This query propagates down the tree. At each level i,
node vi is offered a reward ri for answering the query. If vi does not have the
answer, it keeps a fraction of reward ri for itself and offers the rest of it as reward
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Fig. 1. The model for quality conscious query incentive networks

ri+1 (= fvi(ri)) to its children for answering the query. Here fvi(.) is the reward
function employed by vi. The propagation continues until either (a) some node
comes up with the answer, or, (b) the reward becomes zero, or, (c) a node is not
active at the time of propagation.

(2) In step 2, The answer propagates back to the root node through ap-
propriate intermediate nodes. With respect to the formulation above, let us
assume that node vm answered the query. Then the intermediate nodes will be
vm−1, vm−2, . . . , v2, v1. We say that these nodes form a Link Chain for the given
query answering process. Further, in this step, all the intermediate nodes along
with vroot and vm declare the quality of the answer as they perceive it to be.
For node vi, the quality of the answer which it perceives will be denoted by
θ∗i (∈ Δ(T )), with T = {1, 2, . . . , t} representing the set of possible levels of qual-
ity. If θ∗i = (0, 0, . . . , 0, 1), then the implication is that the answer is perceived
to be perfect by vi. Declaration of quality by the nodes in the above manner
implies that, due to the tree structure, only nodes vi−1 and vi+1 are aware of
the quality reported by the agent vi. For now, we will assume that the agents
declare their quality assessment truthfully. Also, we will make the reasonable
assumption that, while reporting the quality, the agents are not aware of the
quality announcements of the other agents. This restriction will be helpful in
Section 3, where we will design mechanisms which will make honest reporting,
a best response strategy for the agents.

(3) In the final step, the rewards will propagate down from the root node
along the sequence of agents which acted as intermediaries, all the way to the final
agent that answered the query. The actual reward r̂i for agent vi will depend only
upon the initial reward offered ri and the reported types θi−1 and θi of agents
vi−1 and vi, respectively. This is because agent vi is not aware of existence any
of the nodes vj(j < i− 1). For agent vi, vi−1 posed the question. Similarly, vi−1
is not aware of any of the children of vi, for him vi answered the query. Thus the
only common information between vi and vi−1 is the promised reward ri and
their respective reported qualities.

It might happen that at a particular node, two or more of its children might
reply with an answer. Selection criteria of answers, for example on the basis of
the quality, will not have any impact on the working of our model.
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2.2 Quality Aggregation Function

We consider a general function of the form ϕ : Δ(T )×Δ(T ) → [0, 1] which takes
as input reported quality values from two nodes and outputs a representative
quality of the answer. This function can be viewed as an agreement by the agents
over the quality of answer when each one of them independently perceives a
different quality. We will not use any particular function for ϕ till Section 3
where we show how ϕ can be modeled for honest quality elicitation. We will call
ϕ as the quality aggregation function. Using this quality aggregation function ϕ,
we can model the incentives as follows: Reward promised to vi by its parent =
ri. Reward promised by vi to its children = ri+1. Actual reward (r̂i) received by
vi = riϕ(θi−1, θi). Actual reward (r̂i+1) given by vi = ri+1ϕ(θi, θi+1). Thus the
actual incentive for agent vi is riϕ(θi−1, θi) − ri+1ϕ(θi, θi+1) − 1. The factor of
−1 is the cost incurred by agent vi in forwarding the query to its children and
then reporting back the answer to its parent.

2.3 Nash Equilibrium Analysis

Let us take αv(f, x) to be the probability that node v will receive the answer
from its children, if it offers the reward x and f is the common reward function.
Let βv(f, x) be the corresponding complementary probability. Then it can be
recursively defined as:

βv(f, x) =
∏

w∈ child(v)

(1 − q(1− pβw(f, fw(x))))

where p is the constant probability that a node does not hold the answer, q is the
probability that the node is active at the time the query is asked and child(v)
is the set of all children of v. Note that, the probability with which an agent
v receives the answer, increases with the reward fv offered by v. This happens
because a higher level of reward leads to deeper propagation of the query within
the network and hence higher exposure. With this setup, we state the follow-
ing lemmas which can be proved as an extension of results in [2]. Due to lack
of space, we have omitted several proofs from the paper. These can be found
in [8].

Lemma 1. A set of payoff functions f is a Nash equilibrium if it maximizes
Eθ[(rϕ(θi−1, θi)− fv(r)ϕ(θi, θi+1)− 1)αv(f, fv(r))].

Let ei,j = E[ϕ(θi, θj)]. Then, using elementary probability, we can rewrite the
term for the Nash equilibrium as f which maximizes (rei−1,i − fv(r)ei,i+1 −
1)αv(f, fv(r)). For proving the uniqueness, we will have to show that there
cannot be two reward functions f and g, both of which attain the maximum
explained above. We will take g to be the set of payoff functions corresponding
to a Nash equilibrium as computed in Lemma 1. Also, we will assume gv(2) = 1
because v will anyway get zero reward whether gv(2) = 1 (1 unit for her effort)
or gv(2) = 0 (query does not propagate forward).
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Lemma 2. If p is generic with respect to q and f is a Nash Equilibrium in
which fv(2) = 1 for all nodes v, then fv(r) = gv(r) ∀v, ∀r, where gv(r) is any
Nash equilibrium as calculated above.

2.4 Breakpoint and Growth-Rate Analysis

In this section, we investigate the impact of the quality factor on the growth rate
of the initial reward which must be offered by the root agent, in order to get an
answer with a certain probability. We begin by introducing some notation. Let
Rσ(n, b) denote the minimum reward, which must be offered by the root node,
in order to receive the answer with probability σ, given the branching factor b
and rarity of the answer n. The rarity of the answer can be expressed in terms
of p, the probability that a particular node holds the answer as n = 1/(1 − p).
Also, let φ̂j denote the probability that none of the nodes in the first j levels
from the root, holds the answer to the query. To establish a relation between
Rσ(n, b) and φ̂j , we need to look at the equilibrium behavior of each node.

Breakpoint Analysis. Consider a typical node v, which has been offered an
incentive r for finding an answer to a particular query. In case v does not possess
the answer, it will offer a reward g(r) to its children to come up with the answer
to the query, where g(.) is the equilibrium reward function. Let δ(r) denote the
number of times we have to iterate g on r in order to reduce it to zero. Then δ(r)
will represent the depth up to which the query will further propagate from v. We
further define uj as the minimum reward r for which δ(r) is at least j implying
that uj is the minimum reward for which the query will propagate for at least
j more levels. Note that the growth rate of reward is actually a step function
of σ. To see this, suppose by offering a reward of uj , the query will be pushed
up to j levels. Then to push the query up to j + 1 levels, v needs to offer, by
definition, at least a reward of uj+1. Thus for any reward value between any two
such levels, the reward can be reduced to the next highest break point without
affecting the probability of success and in the process increasing the payoff.

With respect to the above analysis, the expected payoff for a particular node
vi which has been offered reward uj will be (ujei−1,i−uj−1ei,i+1−1)(1− φ̂j−1).
Let Δj be the gap between the breakpoints, that is, Δj = uj − uj−1. We will
assume that the agents are identical, which implies that they have a common
prior about each other’s beliefs. Using the properties of the quality aggregation
function ϕ, one can easily show that ei−1,i = ei,i+1. Let us use the notation
μ = ei−1,i = ei,i+1. Here, μ signifies the expected value of the quality agreement
between any two agents in the network. We are now in a position to prove the
following result relating the breakpoints of the reward to the success probability.

Lemma 3. For a quality conscious query incentive network, Δj+1
Δj

≥ μ
1−φ̂j+1
1−φ̂j

−1

Growth-Rate Analysis. In this section, we will show as to how varying the
incentives on the basis of the quality helps in reduction of the required reward at
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the root level, when the branching factor b is less than 2. Throughout this section
we will assume that σ * n−1. This is not a serious restriction as practically the
model will be extensively used only for queries with rare answers. Thus the value
of n will be usually very large.

We begin by formulating a relation between φ̂j and φ̂j−1. Let φ̂j = t(φ̂j−1).
Then by definition of the probability of finding an answer within the subtree
rooted at a particular node explained in Section 2.3, we have t(x) = (1 − q(1 −
px))d. Recall that the setting corresponds to a d-ary tree. The next step in the
analysis involves bounding of the number of iterations of t required to reduce the
initial failure probability (= 1−Θ(n−1)) to the final required failure probability
(= 1−Θ(1)). This can be summed up in the form of the following results.

Theorem 1. If b < 2 and φ̂j < 1−σ for any j, then Rσ(n, b) ≥ μlog nnc, where
c > 1.

Since we have 0 ≤ μ ≤ 1, this is a significant improvement over the earlier bound
of Θ(nc). The effect of this factor will be even more significant in the case of
rare/tough queries where practically the low expected quality of the answer will
negate the effect of large n.

Theorem 2. If b > 2 and φ̂j < 1− σ for any j, then Rσ(n, b) is O(log n).

Without the incorporation of the quality factor, the growth rate of reward is
O(log n). Thus although there is no change in the asymptotic rate or growth,
the factor μ, which is independent of n, reduces the constant term involved.
Again we can have the intuitive argument of low quality answers, in the case of
tough queries, having significant effect on the behavior of the growth rate in this
case. Also, the significant point to note here is that since the agents are assumed
to be rational, therefore each agent involved as an intermediary must be offered
some reward. Since one out of every n persons, on an average, has the answer,
in the worst case there will be O(log n) intermediaries in a tree structure. So
asymptotic reduction in the growth rate of O(log n) really seems to be out of
question.

3 Honest Quality Elicitation

In this section, we address the key issue that is necessary to ensure practical
viability of quality conscious query incentive networks. As mentioned, the final
payment to any agent vi is dependent on the quality of the answer reported by
her. This induces strategic behavior among the agents. Therefore it is important
to design an incentive compatible quality aggregation function. It is easy to see
that naive functions, such as mean of quality levels, lead to a scenario where the
payment is directly related to the reported quality type.

Before going into details of designing a quality elicitation mechanism, we
would like to emphasize two technical assumptions about the process. First, an
agent does not know the reported quality of other agents, in particular that of
her child and parent, until after she declares her own perceived quality. Secondly,
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all the monetary transfers are via a social planner, in this case the social net-
working site. One can see that these two assumptions are quite logical, not very
restrictive, and are also easy to implement.

3.1 Quality Elicitation Mechanism

To summarize the scenario at the most basic level, we have an agent vi along
with her parent vi−1 and child vi+1. The observed quality valuation, henceforth
referred to as the observed type, of agent vi is θ∗i with the type variable θi ∈ Δ(T )
where T is the set of possible quality levels. The reported type of agent vi will
be represented by θ̂i which can be different from her true observed type. The
target is to define the quality aggregation function ϕ() in a way that the agent
maximizes her profit by reporting her true type. For this we will use scoring
rules which are explained next.

Scoring Rules. A scoring rule S is a sequence of scoring functions, S1, S2, . . . ,
St, such that Si assigns a score Si(z) to every z ∈ Δ(T ) [4]. Note that z =
(z1, z2, . . . , zt). We will consider only real valued scoring rules. Scoring rules are
primarily used for comparing the predicted distribution with the true observed
one. Suppose w ∈ Δ(T ) is the true observed distribution. Then the expected
score of any general distribution z ∈ Δ(T ) against w is defined as V (z|w) =∑t

i=1 wiSi(z). The expected score loss is defined as L(z|w) = V (w|w)− V (z|w).
A scoring rule S is called strictly proper or incentive compatible if ∀z, w ∈ Δ(T )
with z �= w, L(z|w) > 0. There are three popular proper scoring rules in the
literature [4]:

– Quadratic scoring rule: Si(z1, . . . , zi, . . . , zt) = 2zi −
∑t

j=1 z
2
j

– Logarithmic scoring rule: Si(z1, . . . , zi, . . . , zt) = ln zi

– Spherical scoring rule: Si(z1, . . . , zi, . . . , zt) = zi√∑
t
j=1 z2

j

We will consider only the quadratic scoring rule in this paper. A strong motiva-
tion for this is that the quadratic scoring rule and its derivatives or variants alone
follow the property of neutrality, along with other desirable properties. A scoring
rule is neutral if, for any two given distributions z and w, L(z|w) = L(w|z). Thus
in scenarios like social networks, where there is no actual/observed distribution
and agents are valued against each other’s reports, neutrality is a desirable prop-
erty. The continuous version of the quadratic scoring rule, which will be required
in the later part of this paper, is given by:

S(z(x)) = 2z(x)−
∫ +∞

−∞
z(x)2dx ;x ∈  

where z(x) is the probability density at x.
We now formulate two mechanisms, based on scoring rules: (1) Direct Com-

parison (DC) mechanism (2) Peer Prediction (PP) mechanism.
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3.2 Direct Comparison Mechanism

This mechanism is applicable in the scenario where the agents have absolutely no
prior information about each other’s possible behavior. The only way an agent
can predict another agent’s perceived quality of an answer is through her own
assessment of it. Technically speaking, given any pair of nodes vi and vj , the
conditional probability distribution functions P (θ∗j |θ∗i ) over the space of unit-t
simplex corresponding to θj has all the probability mass concentrated at θj = θ∗i .

In the direct comparison mechanism, the monetary transfer between two
agents i and j is dependent on the difference between the reported quality types
θ̂i and θ̂j , a measure of which is calculated by a proper scoring rule. For a
particular agent vi, the final amount received would be

= ri

t∑
j=1

θ̂i−1,jSj(θ̂i)− ri+1

t∑
j=1

θ̂i+1,jSj(θ̂i)− 1

where θ̂i,j is the jth component of the probability vector θ̂i.

Theorem 3. All agents reporting true quality is a Nash equilibrium in the DC
mechanism when the agents are identical and the root agent is truthful.

Proof. Let us assume a dummy amount vm+1(= 0) to be paid by the last node
vm of the Link chain. Now for any node vi, the actual amount she receives is
riV (θ̂i−1|θ̂i)−ri+1V (θ̂i+1|θ̂i)−1. However, at the time of announcing her quality,
the reported quality types of other agents are unknown to her. Thus the expected
amount before reporting her quality is given by:(∫

θi−1

riP (θi−1|θ∗
i )V (θ̂i−1|θ̂i)dθi−1

)
−
(∫

θi+1

ri+1P (θi+1|θ∗
i )V (θ̂i+1|θ̂i)dθi+1

)
− 1

where both the integrals represent shorthand for t integrations, one over each
dimension of the unit-t simplex corresponding to the two qualities θi+1 and θi−1.
Using the identical agents assumption, this can be simplified to:(∫

θj

(ri − ri+1)P (θj |θ∗i )V (θ̂j |θ̂i)dθj

)
− 1

where θj is the quality distribution corresponding to any general node j. Now
when other agents, except vi, are truthful, it implies that θ̂j = θ∗j . However, in the
above expression, since it represents the expected payoff, truthfulness amounts to
θ∗j = θj in the score function V (). Also since V () corresponds to a strictly proper
scoring rule, V (θ̂j |θ̂i) maximizes when θ̂i = θ̂j . Combining this with the proba-
bility mass assumption, the expected payment for vi is maximized when θ̂i = θ∗i .
Thus reporting true quality value is a Nash equilibrium for the agents.

Note that the above arguments are not valid for the root agents, as the root
node has no monetary incentive. Hence we require the assumption of her being
truthful. This is a reasonable assumption as the root node will be deriving some
value from the answer which will contribute towards her overall payoff.
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3.3 Peer Prediction Mechanism

The DC mechanism is applicable in a scenario where agents cannot form beliefs
about each other’s assessment. However, in practice, that may not be the case
always. In fact, it would be more beneficial if we can formulate a mechanism for
a more general setting where, given her own assessment of the quality, an agent
can form a belief about other agents’ assessments. The proposed peer prediction
mechanism aims to achieve exactly this.

In the proposed PP mechanism, we ask agents to predict the assessment of
other agents, specifically her parent and child. The actual payment made is based
on the score computed by a scoring rule rather than the expected score as in DC
mechanism. The score is calculated using the conditional probability of quality
announcement rather than based on the actual reported qualities. That is, the
payment to agent vi is riS(P (θ̂i−1|θ̂i)) − ri+1S(P (θ̂i+1|θ̂i)) − 1. Note that here
an agent is asked for a common prediction for both her child and parent, which
is consistent with our assumption of identical agents. Also, since the score is
now calculated upon the probability function, we will have to use a continuous
scoring rule for PP mechanisms.

Theorem 4. All agents reporting true quality is a Nash equilibrium in the PP
mechanism when the agents are identical and the root agent is truthful.

Proof. The expected payoff for agent vi is:

= ri

(∫
θi−1

P (θi−1|θ∗
i )S(P (θi−1|θ̂i))dθi−1

)
− ri+1

(∫
θi+1

P (θi+1|θ∗
i )S(P (θi+1|θ̂i))dθi+1

)
− 1

Note that inside the scoring function, the probability used is conditioned on
the announced type of vi, while the expectation is calculated on the probability
conditioned on the actual type of vi. Also there is an underlying assumption in
the above expression that other agents are truthful. Now, using the symmetric
agents assumption, the above expression can be written as:

= (ri − ri+1)

(∫
θj

P (θj |θ∗i )S(P (θj |θ̂i))dθj

)
− 1

The first part is precisely the expression for the expected score of the scoring rule
while the second part is a constant. Therefore the expected payoff is uniquely
maximized when θ̂i = θ∗i . Thus reporting true quality value is a Nash equilib-
rium strategy. The arguments for vroot and vm are similar as in the case of DC
mechanism.

3.4 Weighted Scoring Rules

Note that the expected score calculated by a proper scoring rule is high when
the two probability distributions being compared are identical to each other.
While this partially serves our purpose, it does not capture our original intent
of modulating payments on the basis of quality of answer. Specifically, we would
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like to have a high score when the quality of answer is high and in addition, the
agents agree on that. For this, we introduce the notion of weighted scoring rules
with higher quality levels having more weight in calculation of scores. To the best
of our knowledge, there does not seem to be any relevant work in this direction.
Also, in this section we address the issue of normalizing the scoring rule such that
its value lies in the interval (0, 1). We propose the weighted discrete quadratic
scoring rule (WDQSR) as follows:

Si(z1, . . . , zi, . . . , zt) =
2zii−

∑t
j=1 z

2
j j

t

Lemma 4. The WDQSR is a proper scoring rule.

For the continuous case, we need to define weights which are applicable at each
point in the unit-t simplex and capture the notion of importance of dimensions
as well. For this, we will use the generalized Euclidean distance of a point,
x = (x1, x2, . . . , xt), from the origin, as the weight for the corresponding point.
We define the weighted continuous quadratic scoring rule (WCQSR) as follows:

S(p(x)) =
2z(x)ρ(x) −

∫
Δ(T ) z

2(x)ρ(x)dx

t
; ρ(x) =

√√√√ t∑
j=1

x2
j j

Lemma 5. The WCQSR is a proper scoring rule.

3.5 Budget Balance

In this final part, we consider the issue of budget balance. Note that the quality
aggregation function introduced in Section 2.2 was inherently budget balanced
because the same function was used for agents vi and vi+1 for all i. However while
designing the quality elicitation mechanism, the quality aggregation function was
modified in a way that the payment by a particular agent might not always be
equal to the receipt by her child. However, for the viability of the model, it
is necessary that the payment is always greater than or at least equal to the
receipts. This issue is important from the social planner’s point of view which
in this case happens to be the social networking site.

Budget Balance of DC Mechanism. Consider an agent vi and her child vi+1.
In the DC mechanism, the payment by agent vi would be ri+1V (θ̂i+1|θ̂i). The
receipt by agent vi+1 for the corresponding transaction would be ri+1V (θ̂i|θ̂i+1).
We have the following results for the budget balance in DC mechanism.

Lemma 6. The DC mechanism is ex-ante strictly budget balanced.

Lemma 7. A DC mechanism based on WDQSR is ex-post budget balanced if∑t
j=1 θ̂

2
i,jj

2 ≤
∑t

j=1 θ̂
2
i+1,jj

2 ∀i ∈ {2, . . . ,m}.
Lemma 8. A DC mechanism which is based on a scoring rule and is ex-post
budget balanced, need not be incentive compatible.
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Budget Balance of PP Mechanism. In the PP mechanism, the payment
by an agent vi would be ri+1S(P (θ̂i−1|θ̂i)). The receipt by agent vi+1 for the
corresponding transaction would be ri+1S(P (θ̂i|θ̂i−1)). To this end, we can prove
following results for budget balance in a PP mechanism.

Lemma 9. The PP mechanism is ex-ante strictly budget balanced.

Lemma 10. The PP mechanism is ex-post budget balanced if and only if, for
each agent, the observed quality type has a uniform density over a unit-t simplex.

4 Conclusion

We have shown in this paper how the classical query incentive network model
can be extended to incorporate quality of answers. Our work opens up several
possibilities for future research. One can explore the formulation of similar mod-
els in other network settings such as arbitrary branching process, power law
networks, etc. As already mentioned in the paper, the effect of the selection cri-
teria, when more than one child replies with the answer, on the answer quality
and the reward structure, can be explored. In the scoring rule technique that we
have employed, there is a monetary incentive for agents to report their true val-
uations. We believe that similar objectives can be attained by using reputation
based mechanisms also.
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Abstract. In this paper we study the Nash-equilibrium and equilibrium
bidding strategies of the Pooled Reverse Auction for troubled assets.
The auction was described in (Ausubel & Cramton 2008[1]). We fur-
ther extend our analysis to a more general class of games which we call
Summation Games. We prove the existence and uniqueness of a Nash-
equilibrium in these games when the utility functions satisfy a certain
condition. We also give an efficient way to compute the Nash-equilibrium
of these games. We show that then Nash-equilibrium of these games can
be computed using an ascending auction. The aforementioned reverse
auction can be expressed as a special instance of such a game. We also,
show that even a more general version of the well-known oligopoly game
of Cournot can be expressed in our model and all of the previously men-
tioned results apply to that as well.

1 Introduction

In this paper, we primarily study the equilibrium strategies of the pooled re-
verse auction for troubled assets which was described in [1]. The US Treasury
is purchasing the troubled assets to infuse liquidity into the market to recover
from the current financial crisis. Reverse auctions in general have been a pow-
erful tool for injecting liquidity into the market in places where it will be most
useful. As explained in [1] a simple and naive approach for the government could
be to run a single reverse auction for all the holders of toxic assets as follows.
The auctioneer(government) then sets a total budget to be spent. The auction-
eer starts at a price like 100¢ on a dollar. All the holders, bid the quantity of
their shares that they are willing to sell at the current prices. There can be
excess supply. The auctioneer then lowers the price in steps e.g. 95¢, 90¢, etc.
and bidders indicate the quantities that they are willing to sell at each price.
At some point (for example at 30¢ on a dollar) the total supply offered by all
the holders for sale equals or falls bellow the specified budget of the treasury. At
that point the auction concludes and the auctioneer buys the securities offered
at the clearing price. As explained in [1], this simple approach is flawed as it
leads to a severe adverse selection problem. Note that at the clearing price the
securities that are offered are only the ones that are actually worth less than 30¢
on each dollar of face value. They could as well worth far bellow 30¢. In other
words, the government would pay most of its budget to buy the worst of the
securities.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 398–409, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In [1], the authors propose the following two type of auctions.

– A Security by Security Reverse Auction
– A Pooled Reverse Auction

They are both part of a two phase plan. The first one can be used to extract
private information of holders about the true value of the securities to give an
estimate on how much each security and similar securities are actual worth of.
Later, that information can be used to establish reference prices in the Pooled
Reverse Auction.

In this paper we focus our attention on the second class of auction. In a Pooled
Reverse Auction, different securities are pooled together. The government puts
a reference price on each security and then runs a reverse auction on all of them
together. We explain this auction in more detail in section 2.

In section 3, we study the Nash-equilibrium and the bidding strategies of the
Pooled Reverse Auctions in detail. We then create a more abstract model of it
at the end of section 2. In section 4 we describe a general class of games that
can be used to model the Pooled Reverse Auction as well as other problems. In
section 4, we give some exciting result on these games. We give a condition which
is sufficient for the existence of a Nash-equilibrium. We further explain how the
Nash-equilibrium can be computed efficiently using a an ascending auction-like
mechanism. Later in section 5, we show how we can apply our result of section 4
to Pooled Reverse Auctions. section 6 explains how a more general version of
the Cournot’s oligopoly game can be expressed in our model.

1.1 Related Work

We partition the related works to two main groups. The first group that is closely
related to our model, are computing equilibrium in Cournot and public good
provision games. The second one with similar model but different objective are
the works related to bandwidth sharing problems and the efficiency of computed
equilibria.

One well known problem that can be considered as an example of our model
is the Cournot’s oligopoly game. It can be described as an oligopoly of firms
producing a homogeneous good. The strategy of firm i is to choose qi which is
the quantity it produces. Assuming that the production cost is ci per item, the
utility of firm i is (p(Q) − ci)qi for which Q =

∑
i qi is the total production

and p(Q) is the global price of the good based on the total production. There
is a vast amount of literature on Cournot games (e.g. [7]). Different aspect of
Cournot equilibrium has been studied (For example, in [3] Bergstrom and Varian,
studied the effect of taxation on Cournot equilibrium and also showed some
characteristics of the Cournot equilibrium.)

Another set of results, with similar model, but with different criteria are the
works related to bandwidth sharing problem. At a high level, the problem is to
allocate a fixed amount of an infinitely divisible good among rational competing
users. [8] studies this problem from pricing perspective. Kelly [6], considered
a generalized variant of this problem in the context of routing and charging
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(However the equilibrium point of his mechanism was not fully efficient) His
model, for a single resource with fixed supply, is to give each person proportional
to his bid from the resource and charge him his bid. Later, Johari et al in [4],
showed that Kelly’s mechanism is at least 75% efficient at the equilibrium point.
In another work, Johari et al show that, Kelly’s model minimizes efficiency loss
(at the equilibrium point) when price discrimination is not allowed and then they
present a class of mechanisms that has an efficient outcome at the equilibrium
point assuming that price discrimination is allowed ([5]).

2 Model for Pooled Reverse Auction

In this section, we explain the basic model for the reverse auction of pooled
securities. We will use this model throughout the rest of this paper. We start by
explaining our notations:

– There are n bidders N = {1, · · · , n}, and m securities.
– Government has evaluated a reference price of rj for each security j. Also let

r = (r1, · · · , rm) denote the vector of reference prices for all the m securities.
The reference prices are public information. These prices are in the form of
the ratio of the evaluated price to the face price and are expressed in cents
per dollar. For example rj = 0.75 means every dollar of the face value of the
security is actually worth 75¢.

– Each bidder i holds q̄i,j shares of security j. Also let q̄i = (q̄i,1, · · · , q̄i,m)
denote the vector of the quantities of shares that bidder i holds from each
security. The shares are expressed in quantity of the face value.

– Each bidder has a private valuation function vi(l) for receiving a liquidity
amount of l. In a quasi-linear setting, we would assume that vi(l) = l. In
our model, we assume the vi could be an arbitrary function. vi can capture
the bonus for acquiring a needed amount of liquidity or can be negative to
account for the cost incurred by the shortage thereof. For example consider
the following:

vi(l) =

{
l + (l − Li) l ≤ Li

l l ≥ Li

(2.1)

We could interpret the above vi as the following. Bidder i has a liquidity
need of Li dollars. She incurs a cost of Li − l dollars if she raises only l
dollars where l < Li. Her value for any liquidity that she receives beyond Li

is just the same as the amount that she receives. The experimental study of
reverse auction for troubled assets in [2] considers two cases for vi. In the
first case, each bidder i has a liquidity need Li and vi(l) = 2l for l ≤ Li and
vi(l) = l+Li for l > Li. In the second case, bidders don’t have liquidity needs,
so vi(l) = l. In this paper, we consider arbitrary vi under some constraints
as we will see later.

– Each bidder i has a private value of wi,j for each dollar of security j. Also
let wi = (wi,1, · · · , wi,m) denote the vector of the valuations of bidder i
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for different securities. In reality, we should have assumed a single common
value for each security which is unknown and can only be computed by
aggregating all the private information of all bidders. However, that model
is prohibitively hard to analyze in case of non trivial valuation functions for
liquidity (i.e. when vi(l) is not the identity function). Therefore, we assume
that wi is the private values of bidder i for the securities.

Next, we briefly explain the reverse auction mechanism for pooled securities as
described in [1].

Auction 1 (Pooled Reverse Auction). Initially, the auctioneer (govern-
ment) establishes the reference prices for all the securities. These reference prices
are supposed to be the best estimate of the government about the true value of
the securities. The reference prices are announced publicly.

The auction uses a single descending clock α which specifies the current prices
as a percentage of the reference prices. For example, α = 110% means the current
price of each security is 110% of its reference price. As the clock goes down,
participants update their bids. Bidder i submits a bid bi = (bi,1, · · · , bi,m), where
bi,j is the quantity of shares from security j that bidder i would like to sell at the
current prices. These quantities are specified in terms of dollars of face value.
The auctioneer collects all the bids and computes the activity points for each
bidder i as ai = r · bi (remember r is the vector of reference prices) . In other
words, the activity points of each bidder is her bid quantity for each security
times the reference price of that security summed over all the securities. The
auctioneer also computes the total activity point A =

∑
i ai. Assuming that M

is the total budget of the government, the clock keeps going down for as long
as Aα > M . In practice, the clock goes down in discrete steps. At each step
the auctioneer collects all the bids and computes the aggregate activity point.
At the first step that Aα becomes less than or equal to M , the clock stops and
the auction concludes. The auctioneer then buys from each bidder the quantity
of shares specified in her bid. Bidders are paid at the current prices (i.e. the
reference price scaled by the current value of the clock). Assuming that α∗ was
the final value of the clock and for each bidder i, b∗

i was the final bid of bidder
i, the amount of liquidity that bidder i receives is α∗ri · b∗

i .

In the next section we study the equilibrium of the above auction.

3 The Equilibrium of Pooled Reverse Auction

In this section, we study the Nash-equilibrium of Auction. 1 and propose a
method that can be used to efficiently compute that. We also develop a bid-
ding strategy that leads to the Nash-equilibrium.

First, we show how to compute the utility of each bidder i. Assume that bi is
the bid of bidder i and α is the current value of the clock. Also, as we defined in
section 2, vi(l) is the valuation of bidder i for receiving amount l of liquidity and
wi = (wi,1, · · · , wi) is the vector of her valuations for different securities. We
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denote by ui, the tentative utility of bidder i which is her utility if the auction
stops at the current value of the clock. ui can be computed as the following:

ui = vi(αr · bi)−wi · bi (3.1)

Before we start with the bidding strategies, we restate some of the definitions
from Auction. 1.

– For a bidder i with current bid bi, we use ai to define her activity point
which is defined as:

ai = r · bi (3.2)

– The total activity point of all bidders is defined as:

A =
n∑

i=1

ai (3.3)

– The auction clock, α, keeps going down for as long as αA > M where M is
the total budget of the auctioneer. If we denote the value of the clock when
the auction stops by α∗, then α∗A ≤M . Note that, to simplify the analysis,
we assume quantities do not need to be integers. We also assume that the
clock changes continuously and bidders update their bids continuously as
well. Respectively, we may assume that when the auction concludes, the
auctioneers budget constraint is met with equality so:

α∗A = M (3.4)

Next, we show that the best strategy for each player i can be described by just
specifying the activity points that she needs to generate. In other words, the
only thing that bidder i has to decide is how much activity point to generate
and her best bid vector can be specified as a function of that.

Lemma 1. In order to play her best strategy, bidder i only needs to choose her
activity points ai and then among all the bid vectors bi ∈ [0, q̄i]1 such that
r · bi = ai her best strategy is to submit a bid bi that minimizes wi · bi. We will
refer to one such bid vector as bi(ai). Formally:

bi(a) = argminb wi · b : b ∈ [0, q̄i] ∧ r · b = a (3.5)

Proof. See the full version.

Based on Lemma 1 to describe a best strategy for a bidder i we only need to
specify the activity points ai that she should bid and then Lemma 1 tells us what
condition the corresponding bid vector should satisfy. The next lemma describes
how we can efficiently compute bi(ai) for any given ai.
1 We use the notation [a,b] to denote all the vectors that are componentwise greater

than or equal to a and less than or equal to b.
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Lemma 2. For any given ai ∈ [0, r · q̄i] we can compute bi(ai) by using the
following procedure.

Without loss of generality, assume securities are sorted in decreasing order of
rj

wi,j
so that rj

wi,j
≥ rj+1

wi,j+1
. To find the bid vector, we start from an initial zero

bid vector and increase each qi,j up to q̄i,j starting at j = 1 until the generated
activity point reaches ai. The following is a more formal definition of bi(a):

bi(a) = (q̄i,1, · · · , q̄i,y−1, bi,y, 0, · · · , 0) (3.6)

such that:

rybi,y +
y−1∑
j=1

rj q̄i,j = a (3.7)

Proof. See the full version.

Intuitively, Lemma 2 is saying that a strategic bidder should never sell any shares
of a security j unless for any other security k for which rk

wi,k
>

rj

wi,j
she has already

sold all of her shares of security k.

Definition 1. We can define a cost function ci(a) : [0,wi · q̄i] → � for each
bidder i which only depends on her activity points:

ci(a) = wi · bi(a) 0 ≤ a ≤ r · q̄i (3.8)

Intuitively, for bidder i, ci(a) is the minimum cost of generating ’a’ activity
points.

At this point, we can define the bid vectors and all the equations only in
terms of ai. Bidders only need to specify their activity point ai. We denote the
final activity points of bidder i when the auction concluded by a∗i and the final
total activity point by A∗. The utility of each bidder i can now be written as
the following:

ui = vi(α∗a∗i )− ci(a∗i ) (3.9)

Also, the auction concludes at the highest clock α∗ such that:

n∑
i=1

α∗A∗ = M (3.10)

Next, we define the Nash-equilibrium. Before that, notice we can write the utility
of each bidder i as ui(a,A) which is a function of her own bid and the total
aggregate bid. Formally:

ui(a,A) = vi(
a

A
M)− ci(a) (3.11)

Now we are ready to describe the Nash-equilibrium. Suppose a∗1, · · · , a∗n are
the activity points at which the auction has concluded. We say the outcome of
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the auction is stable or is a Nash-equilibrium if for every bidder i, a∗i is a best
response to a∗−i. For a Nash equilibrium, the first order and boundary conditions
are sufficient. Assume that āi denotes the maximum possible activity points that
bidder i can generate (i.e., āi = r · q̄i). The first order and boundary conditions
of the Nash-equilibrium are the following:

∀i ∈ N :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
da∗

i
ui(a∗i , A

∗) = 0 and 0 < a∗i < āi

or
d

da∗
i
ui(a∗i , A

∗) ≤ 0 and a∗i = 0

or
d

da∗
i
ui(a∗i , A

∗) ≥ 0 and a∗i = āi

(3.12)

A∗ =
n∑

i=1

a∗i (3.13)

Note that, to use the first order conditions, we need ui(a,A) to be a continuous
and differentiable function in its domain. We can however relax the differentia-
bility requirement and allow ui(a,A) to have different left and right derivatives
at a finite number of points. In that case, if assume that ρ−i is the left derivative
of d

da∗
i
ui(a∗i , A

∗) and ρ+
i is its right derivative, then in the first condition, we can

replace d
da∗

i
ui(a∗i , A

∗) = 0 with ρ−i ≤ 0 ≤ ρ+
i . To keep the proofs simple, we do

not use this general form but we will refer to it later when we explain how to
compute the equilibrium.

We further expand the first order and boundary conditions. Notice that
d

da∗
i
ui(a∗i , A

∗) = ∂
∂aui(a∗i , A

∗) + ∂
∂Aui(a∗i , A

∗) d
da∗

i
A∗. Because we always have

d
da∗

i
A∗ = 1, we can write d

da∗
i
ui(a∗i , A

∗) = ∂
∂aui(a∗i , A

∗) + ∂
∂Aui(a∗i , A

∗). So the
first order and boundary conditions can be rephrased as:

∀i ∈ N :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂aui(a∗i , A

∗) + ∂
∂Aui(a∗i , A

∗) = 0 and 0 ≤ a∗i ≤ āi

or
∂
∂aui(a∗i , A

∗) + ∂
∂Aui(a∗i , A

∗) ≤ 0 and a∗i = 0
or

∂
∂aui(a∗i , A

∗) + ∂
∂Aui(a∗i , A

∗) ≥ 0 and a∗i = āi

(3.14)

A∗ =
n∑

i=1

a∗i (3.15)

Next, we state the main theorem of this section which gives a sufficient condition
for the existence of a Nash-equilibrium and provides a method for computing it
as well as a bidding strategy.

Theorem 1. Consider the Auction. 1, in which as explained before, each bid-
der’s utility is given by ui = vi(αr ·bi)−ci ·bi if the auction stops at the current
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clock α. Assuming that the valuation functions vi are continuous, differentiable2

and concave, there exists a unique Nash-equilibrium that satisfies the first order
and boundary conditions of (3.14). Furthermore, there are bid functions gi(α),
such that for every i if bidder i bids b∗

i (ai) where ai = gi(α), then the outcome
of the auction coincides with the unique Nash-equilibrium. gi(α) is given bellow
(v′i and c′i are the derivatives of vi and ci):

gi(α) = argmina∈[0,āi]

∣∣∣∣v′i(αa)M − αa

M
α− c′i(a)

∣∣∣∣ (3.16)

Furthermore, the gi(α) can be computed efficiently using binary search on ’a’
(the parameter of the argmin) because the expression inside the absolute value is
a decreasing function of a.

Note that the requirement of vi functions being concave is quite natural. It simply
means that the derivative of vi should be decreasing which can be interpreted
as the marginal value of the first dollar received being more than the marginal
value of the last dollar.

It is worth mentioning that the bid function gi(α), as described in (3.16) is not
necessarily an increasing function of α. In other words, as the clock goes down,
gi(α) may increase at some points which means bidder i is actually offering more
for sale although the prices are going down. This phenomenon is in fact quite
common when bidder i has liquidity needs as we will explain in section 5 .

We defer the proof of Theorem 1 to section 5. Instead of proving Theorem 1
directly, we prove a more general theorem in the next section. Later, in section 5,
we show that Theorem 1 is a special case of that.

4 Summation Games

In this section, we describe a general class of games which we will refer to as sum-
mation games. Later, we show that the reverse auction explained in the previous
section and some well known problems like the Courant-Nash equilibrium of an
oligopoly game [7] can be expressed in this model. Next, we define a Summation
Game:

Definition 2 (Summation Game). There are n players N = {1, · · · , n}.
Each player can choose a number ai from the interval [0, āi] where āi is a con-
stant. The utility of each bidder depends only on her own number as well as the
sum of all the numbers. In other words, assuming that A =

∑n
i=1 ai, the utility

of each bidder i is given by ui(ai, A).

We next show that if the utility functions ui(a,A) meet a certain requirement,
the summation game has a unique Nash-equilibrium that can be computed effi-
ciently. Before that, we define the following notation

2 We may relax this to allow vi to have different left and right derivatives at a finite
number of points.
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Definition 3. For each player i, assuming that ui(a,A) is her utility function,
define her characteristic function hi(x, T ) as the following:

hi(x, T ) =
∂

∂a
ui(xT, T ) +

∂

∂A
ui(xT, T ) (4.1)

Theorem 2. If all the characteristic functions hi(x, T )3 are strictly decreasing
functions in both x and T , then the game has a unique Nash-equilibrium 4 and
in that equilibrium, the bid of each player i is ai = xi(A)A where xi is defined
as the following:

xi(T ) = argminx∈[0,min(1,
āi
T )] |hi(x, T )| (4.2)

Furthermore, because hi(x, T ) is decreasing in both x and T , xi(T ) is also de-
creasing in T and the equilibrium can be computed efficiently using two nested
binary searches or using an auction-like mechanism with an ascending clock T
in which the each bidder i submits ai = xi(T )T and the clock T keeps going up
as long as

∑
i ai > T .

Proof. See the full version.

To find the values of ai’s at the Nash-equilibrium we can use the following
algorithm:

Algorithm 1

– Start with T = 0 (or a sufficiently small positive T ).
– Keep increasing T for as long as

∑n
i=1 xi(T ) > 1.

– Stop as soon as
∑n

i=1 xi(T ) ≤ 1 and then set each bid ai = xi(T )T 5

Proof. See the full version.

Note that Alg. 1 can be implemented either using binary search on T or as
an ascending auction-like mechanism in which each player submits the bid ai =
xi(T )T where T is the ascending clock and in which the clock stops once

∑
i ai ≤

T .
In the next section we finish our analysis of the pooled reverse auction of

1. Later, in section 6, we give example of a well-known problem that can be
expressed in our model and its Nash-equilibrium can be computed using Alg. 1.

3 Note that we allow hi(x, T ) to be discontinuous at a finite number of points (e.g. a
step function).

4 If we relax the requirement of hi’s being strictly decreasing to just being non-
increasing then there is a continuum of Nash-equilibria in which there is one Nash-
equilibrium that is strictly preferred by some players and is just as good as other
Nash equilibria for other players.

5 If
∑n

i=1 xi(T ∗) < 1 then arbitrarily choose each a∗
i from the interval

[limε→0+ xi(T ∗ − ε)T ∗, xi(T ∗)T ∗] such that
∑n

i=1 a∗
i = T ∗ (It is easy to show that

each player i is indifferent to all a∗
i ∈ [limε→0+ xi(T ∗ − ε)T ∗, xi(T ∗)T ∗]).
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5 Back to Pooled Reverse Auction

In the previous section we described a more general class of games and in
Theorem 2 we gave sufficient conditions for the existence of a Nash-equilibrium.
We explained when it is unique and how to compute it. In this section we con-
tinue our analysis of Auction. 1. We first give a proof for Theorem 1 be reducing
it to a special case of Theorem 2.

Next, we give a proof for Theorem 1 which is based on a reduction to
Theorem 2.

Proof (Proof of. Theorem 1). To be able to apply Theorem 2, we first need to
show that the utility function of each bidder in Auction. 1 meets the requirement
of Theorem 2. More specifically, we have to show that hi(x, T ) = ∂

∂aui(xT, T )+
∂

∂Aui(xT, T ) is a decreasing function in both x and T . Remember that in our
model for Auction. 1, we can write the utility of bidder i as ui(a,A) = vi( a

AM)−
ci(a). First, we show that ci(a) is a convex function.

Lemma 1. The cost function ci(x) as defined in (3.8) is always a convex func-
tion and has an non-decreasing first order derivative in [0, r.q̄] although its
derivative might be discontinuous in at most m points.

Proof. See the full version.

Lemma 2. The hi(x, T ) functions for bidders in Auction. 1 are decreasing in
both x and T :

hi(x, T ) =
∂

∂a
ui(xT, T ) +

∂

∂A
ui(xT, T ) (5.1)

= v′i(xM)
1 − x

T
+ c′i(Tx) (5.2)

Proof. See the full version.

Since in Lemma 2 we proved that hi(x, T ) is decreasing in both x and T , we can
now apply Theorem 2 and all of the claims of Theorem 1 follow from Theorem 2.
Also note that gi(α) which was defined in (3.16) is actually the same as xi(T )T ,
where T = M

α

It is interesting to notice that the auction-like mechanism of Theorem 2 and
Auction. 1 are actually equivalent. In fact, the xi(T ) where T = M/α, has a
very natural interpretation in Auction. 1. It specifies the fraction of the budget
of the auctioneer that the bidder i is demanding at the clock α. In fact we may
modify the auction to ask the bidders to submit the amount of liquidity that
they are demanding directly at each step of the clock and then the auction stops
when the demand becomes less than or equal to the budget of the auctioneer.
Then, each bidder will be required to sell enough quantity of her shares at the
current prices to pay for the liquidity that she had demanded.

It is easy to see that the liquidity that each bidder demands may only decrease
as the α increases. However, the value of the bid, xi(T )T , may actually increase
because bidder I may want to maintain her demand for the liquidity.
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6 Application to Cournot’s Oligopoly

In this section, we show how the well-known problem of Cournot’s Oligopoly can
be expressed in our model of a summation game and all the results of Theorem 2
can therefore be applied:

Definition 4 (Cournot’s Oligopoly)

– There are n firms. The firms are oligopolist suppliers of a homogenous good.
– At each period, each firm chooses a quantity qi to supply.
– The total supply Q on the market is the sum of all firms’ supplies:

Q =
∑

i

qi (6.1)

– All firms receive the same price p per unit of the good. The price p on the
market depends on the total supply Q as:

p(Q) = p0(Qmax −Q) (6.2)

– Each firm i incurs a cost ci per unit of good. These costs can be different for
different firms and are private information

– Each firm i’s profit is given by:

ui(qi, Q) = (p(Q)− ci)qi (6.3)

– After each market period, firms are informed of the total quantity Q and the
market price p(Q) of the previous period.

If we write down the hi(x, T ) for each firm i we get:

hi(x, T ) =
∂

∂a
ui(xT, T ) +

∂

∂A
ui(xT, T ) (6.4)

= p(T )− ci + p′(T )Tx (6.5)
= p0(Qmax − T )− ci − p0Tx (6.6)

Notice that clearly the above hi(x, T ) is a decreasing function of both x and T
and therefore all of the nice results of Theorem 2 can be applied. Notice in fact
that as long as p(Q) is concave and a decreasing function of Q, hi(x, T ) is still
a decreasing function of both x and T and all of the results of Theorem 2 still
holds.

7 Conclusion

In this paper we studied the Nash-equilibrium and equilibrium bidding strategies
of the troubled assets reverse auction. We further generalized our analysis to
a more general class of games with non quasi-linear utilities. We proved the
existence and uniqueness of a Nash-equilibrium in those games and we also gave
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an efficient way to compute the equilibrium of those games. We also showed that
finding the Nash equilibrium can be implemented using an ascending mechanism
so that the participants don’t need to reveal their utility functions. We also,
showed that even a more general version of the well-known problem of Cournot’s
Oligopoly can be expressed in our model and all of the previously mentioned
results apply to that as well.
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Abstract. We study the connection between the direction preserving
zero point and the discrete Brouwer fixed point in terms of their compu-
tational complexity. As a result, we derive a PPAD-completeness proof
for finding a direction preserving zero point, and a matching oracle com-
plexity bound for computing a discrete Brouwer’s fixed point.

Building upon the connection between the two types of combinato-
rial structures for Brouwer’s continuous fixed point theorem, we derive
an immediate proof that TUCKER is PPAD-complete for all constant
dimensions, extending the results of Pálvölgyi for 2D case [20] and Pa-
padimitriou for 3D case [21]. In addition, we obtain a matching algorith-
mic bound for TUCKER in the oracle model.

1 Introduction

Fixed point theorems have been fundamental in the literatures of Economics,
such as equilibrium analysis of markets [1]. Fixed point computation has also
been important in computational complexity study of equilibria. There is how-
ever a choice to make when we discretize the original concept of fixed point from
the continuous domain.

Clearly, Sperner’s simplex is a natural candidate for a discrete version of the
fixed point concept. Scarf, on the other hand, proposed a primitive set structure
in his study of fixed point computation [23]. Iimura [13] defined the direction
preserving function as a discrete version for the continuous function, and de-
veloped theorems for the existence of a zero point for any bounded direction
preserving function.

The direction preserving function is defined on hypergirds, consisting of nu-
merous hypercubes aligned along hyperplanes perpendicular to the coordinates.
Informally, values of a direction preserving function will not have opposite signs
on any pair of neighboring nodes. Based on such a concept in modeling con-
tinuous functions, Chen and Deng proved a matching algorithmic bound for
approximate fixed point computation under the oracle complexity model [2].

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 410–421, 2009.
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Daskalakis, et al., on the other hand, developed a different discrete version of
fixed point, defining it to be a unit hypercube on which all d+ 1 colors appear,
for a hypergrid colored with d + 1 colors. Its computation lays down the foun-
dation for the settlement of the computational complexity of Nash equilibrium
computation [8,5].

In this paper, we establish the equivalence of the two concepts in terms of
their computation, both under the oracle function model, and the polynomial
time computable function model. Therefore, it derives two immediate new re-
sults: PPAD-completeness for finding a zero point for any direction preserving
function, and a matching algorithmic bound for finding a unit hypercube that
contains all colors.

The computational equivalence of those two important models for discrete
fixed point solutions has important implications. Based on the PPAD-complete
result for zero point computation for direction preserving functions, we establish
a PPAD-completeness proof of Tucker’s problem for all constant dimensions. In
the seminal paper of Papadimitriou introducing the PPAD class [21], he proved
the PPAD-completeness of Tucker for 3D. It was also noticed that there is a
similarity in difficulties to attempt PPAD-complete proofs for 2D SPERNER
and 2D TUCKER. For 2D SPERNER, the difficulty was solved later by Chen
and Deng [4]. The recent proof of PPAD-completeness for 2D Tucker by Pálvölgyi
[20] exploits the techniques developed by Chen and Deng for 2D Sperner’s PPAD
proof. Our proof unifies the proof for all constant dimensions, through a modular
approach. The connection also allows us to derive a matching oracle complexity
bound for the computation of Tucker, for all constant dimensions.

The connection between DPZP and BROUWER requires a combinatorial
structure that relates an integer function of values from 0 through d to a di-
rection preserving function of values {0,±ei : i = 1, 2, · · · , d}. For the oracle
complexity of TUCKER, we develop a combinatorial parity lemma that relates
the existence of complementary edges on the boundary with certain parity prop-
erty of the fully colored simplexes on the boundary of the polyhedron.

Integer fixed point computation has important applications in Economics [13].
The PPAD-complete proof for direction preserving functions further reinforces
our understanding of the correct complexity class it belongs to. The connection
of the two different discrete fixed points may help in the studies of other related
applications.

Tucker’s lemma characterizes the fundamental combinatorial property under-
lying important mathematical problems such as the Borsuk-Ulam theorem, and
Lovász’s theorem on Kneser Graph (by Matoušek [18]). It has also applications
to a type of the fair division problem called consensus-halving problem (Simmons
and Su [24]) It has also been applied to the necklace problem and consensus- 1

k -
division problem (Longueville and Z̆ivaljević [16]).

In section 2, we review related concepts such as BROUWER, Direction Pre-
serving Zero Point (DPZP for short) and TUCKER. In section 3, we prove
DPZP is PPAD-complete and derive a matching bound for BROUWER. In sec-
tion 4, we prove TUCKER is PPAD-complete for all constant dimension d, which



412 X. Deng, Q. Qi, and J. Zhang

extends the result for 2-D Tucker by [20] and 3-D Tucker by [21]. In section 5,
we derive an oracle computational matching bound for finding a complementary
edge in TUCKER.

2 Preliminaries

In this section, we formally introduce three problems: the BROUWER, DPZP
and the TUCKER.

Those three problems have solutions as guaranteed by mathematical theorems,
often with an embedded parity argument. Complexities for finding such solutions
of search problems are characterized by the classes of FNP and TFNP [19].
PPAD is a subclass of TFNP that is defined by a complete problem, the End
of Line problem (or called LEFFE as in [3]). Several important fundamental
problems are shown to be complete in this class, including SPERNER [21,4],
NASH [8,9,3,5], BROUWER, KAKUTANI, BORSUK-ULAM [21], approximate-
NASH [6], Exchange Economy [21].

2.1 BROUWER

We should start with one class of those PPAD-complete classes, BROUWER,
defined as follows.

Consider a d dimension hypercube (d-hypercube for short) of size N . A d
dimension hypergrid (d-hypergrid for short) of scale N places N − 1 equally
spaced hyperplanes parallel to each of the boundary faces of the hypercube and
divides the hypercube into Nd base hypercubes.

Let
V d

N = {p = (p1, p2, · · · , pd) ∈ Zd|∀i : 0 ≤ pi ≤ N}
Its boundary Bd

N consists of point p ∈ V d
N with pi ∈ {0, N} for some i:

Bd
N = {p ∈ V d

N : pi ∈ {0, N} for some i}.

For each p ∈ Zd, let
Kp = {q : qi ∈ {pi, pi + 1}}.

Let m(p) = 0 if ∀i, pi > 0 and m(p) = min{i : pi = 0}, otherwise. A color
function g : V d

N ⇒ {0, 1, · · · , d} is valid if g(p) = m(p), ∀p ∈ Bd
N .

Definition 1. The input of BROUWER is a pair (G, V d
N ) where G generates a

valid d-coloring g on V d
N . That is, given any p ∈ V d

N , G takes time polynomial
in N to compute the color g(p) of a point p.

The output of BROUWER is a point p ∈ V d
N such that Kp is fully colored,

that is, Kp has all d+ 1 colors.

It is known that BROUWER is PPAD-complete [21,4] when G is a polynomial
time algorithm. As it is closely related to the Sperner’s problem SPERNER [4],
it is known to have a matching bound for the oracle model [2] as a result of the
same lower bound for SPERNER [10].
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2.2 Direction Preserving Zero Point

We should introduced another problem closely related to the fixed-point problem
but for a restricted class of functions, the direction preserving functions.

Definition 2. A function f : V d
N ⇒ {0,±ei, i = 1, 2, · · · , d} is direction pre-

serving if for any p ∈ V d
N , s, t ∈ Kp, f(s) + f(t) �= 0.

We call a direction preserving function f on V d
N is bounded if ∀p ∈ V d

N , p+f(p) ∈
V d

N .
We define the DPZP (Direction Preserving Zero Point) problem as follows:

Definition 3. The input of DPZP is a pair (F, V d
N ) where F computes the value

f(p) of a bounded direction preserving function for each p ∈ V d
N . That is, given

any p ∈ V d
N , F takes time polynomial in N to compute the function value f(p)

of a point p. The output of DPZP is a point p ∈ V d
N such that f(p) = 0, which

is called a zero point.

It was known that a bounded direction preserving function f on V d
N always has

a zero point [13,14], and there is a matching algorithmic bound [2] for the oracle
model.

2.3 TUCKER

The complexity of TUCKER was first considered by Papadimitriou in [21], it
was proved that TUCKER is in PPAD, and 3D TUCKER is PPAD-complete.
The problem can be defined as follows:

Definition 4. (TUCKER) Consider the d dimension hypercube which is trian-
gulated to be base simplexes. All vertices V of the triangulated hypercube are
colored by a function f : V ⇒ {±1, · · · ,±d} and the boundary vertices are col-
ored antipodal preserving, that is, f(−v) = −f(v) for any boundary vertex v.
The problem is to find out a complementary 1-simplex in the hypercube, i.e., find
out an edge in the triangulated hypercube so that the coloring of its two endpoints
p, q satisfying f(p) = −f(q).

The existence of the solution for this problem is guaranteed by a combinatorial
topology theorem, Tucker’s lemma [26]. The original problem is built on a d
dimension ball, here we cast it into a d-hypercube to simplify of discussion.

3 PPAD-Completeness of Direction Preserving Zero
Point

In this section, we assume there is a polynomial time algorithm to compute F
in the DPZP problem. We prove DPZP is PPAD-complete and give a matching
bound for BROUWER.

We will first introduce a reduction from DPZP to BROUWER. We then intro-
duce a reduction from BROUWER to DPZP. As both reduction are polynomial
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time with respect to the algorithm F and G, it shows that DPZP is PPAD-
complete for the case F is a polynomial time algorithm. Since DPZP has a
matching algorithmic bound of θ(Nd−1) [2], it shows that BROUWER has a
same matching algorithmic bound of θ(Nd−1).

Lemma 1. DPZP is in PPAD class.

Proof. We prove it in two steps. First we add one more layer to any given input
of DPZP to achieve a specific boundary condition. Then we reduce the expanded
DPZP to BROUWER.

Given an input of DPZP (F, V d
N ), first we add one more layer on each face of

its boundary which expands V d
N to V d

N+2. Next we define a function H : for each
vertex p ∈ V d

N , h(p) = F (p) and for any boundary point p ∈ V d
N+2 \ V d

N , either
h(p) = ei if pi = 0 and ∀j < i : pj > 0, or h(p) = −ei if p >> 0 (all coordinates
of p are positive), pi = N + 2 and ∀j < i : pj < N + 2. It is easy to verify that
(H,V d

N+2) is still a DPZP.
Next, we reduce DPZP (H,V d

N+2) to BROUWER (G, V d
N+2) as follows: define

g(p) = i if H(p) = ei; g(p) = 0 otherwise.
We illustrate the processes in Fig.1.

Fig. 1. The Proof of Lemma 1

Clearly, a direction preserving with a bounded specific boundary condition
function h for DPZP translates into a valid coloring for BROUWER. For a
solution of BROUWER, Kp, we should have q ∈ Kp such that g(q) = 0. Then
h(q) ∈ {0,−e1,−e2, · · · ,−ed} by the process of our reduction. For t ∈ Kp and
g(t) = i �= 0, we have h(t) = ei. Since all colors appear in Kp, by direction
preserving property of h, we must have h(q) = 0, and hence q is a solution to
DPZP.

Lemma 2. DPZP is PPAD-hard.

Proof. Given an input of BROUWER (G, V d
N ), we define an input for DPZP

on an expanded hypergrid. The expanded hypergrid obtained by placing 2N
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more hyperplanes parallel to each of the boundary faces which refine each base
hypercube in V d

N into 3d smaller hypercubes.
The assignment of values to a grid point depends on the minimum dimension

original unit hypercube that contains it. The main idea is maintain the following
properties (see the full version for details):

(I) A valid coloring g in BROUWER is translated into a bounded direction
preserving function f for DPZP;

(II) Once finding a zero point in DPZP, we can get a corresponding fixed point
set in BROUWER.

Combining the above two lemmas, we have

Theorem 1. Direction Preserving Zero Point(DPZP) is PPAD-complete.

Since DPZP has a matching algorithmic bound of θ(Nd−1) [2], by the above
reduction processes from DPZP to BROUWER and from BROUWER to DPZP,
we obtain the following corollary.

Corollary 1. BROUWER has a matching algorithmic bound of θ(Nd−1).

4 The Complexity of TUCKER

In this section, we prove that d-D TUCKER is PPAD-complete for all constant
dimension d, and hence extending the results for 2-D Tucker by [20] and 3-D
Tucker by [21].

First of all, it is known that TUCKER is in PPAD.

Lemma 3. [21] d-D TUCKER is in PPAD.

We prove TUCKER is PPAD-hard for any dimension d. The reduction is based
on DPZP and Kuhn’s triangulation [15]. We should introduce Kuhn’s triangu-
lation first before giving the formal proof of PPAD-hardness.

Definition 5. (Kuhn’s Triangulation) Let a d-hypercube of side length N be lo-
cated in the first quadrant and one of its corner point at the origin, denote this
vertex as v0 = (0, 0, · · · , 0)1×d and its diagonal vertex as (N,N, · · · , N)1×d. We
apply hyperplanes of side length 1 which parallel to coordinate axes to cut the
big hypercube into Nd unit d-hypercubes. Let ei be a d-dimension vector that
its i-th coordinate be 1 and others be 0. Let π = (π(1), π(2), · · · , π(d)) be any
permutation of integers 0, 1, · · · , d− 1. Next we triangulate each unit hypercube
in the following way: Let the vertex which is closest to v0 in each unit hypercube
be the base point. Each permutation π corresponds to one base simplex whose
vertices are given by vi

π = vi−1
π + eπ(i), where v0

π is the base point of that unit
hypercube. Then each of the unit hypercube is triangulated to d! base simplexes.

We illustrate Kuhn’s triangulation for a 3-dimension hypercube with side length
1 in Fig. 2. It is easy to see that all vertices of the base simplexes are the vertices
of the hypercubes. We claim that these simplexes all have disjoint interiors and
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Fig. 2. Kuhn’s triangulation in 3 dimension

the union of them is the d-hypercube. In fact, Kuhn’s triangulation can be ac-
quired by an equivalent cutting approach, that is, first using the d! permutations
π to triangulate the big hypercube to d! simplexes, and then triangulate each
big simplex into Nd base simplexes.

Lemma 4. d-D TUCKER is PPAD-hard.

Proof. To prove TUCKER is PPAD-hard, we reduce DPZP to it. For any input
of DPZP (F, V d

N ), we first add one more layer to make DPZP (H,V d
N+2) satisfy

the antipodal constraint for the function values. This can be done by defining
h as: for each vertex p ∈ V d

N , h(p) = F (p) and for any boundary point p ∈
V d

N+2 \V d
N , either h(p) = ei if pi = 0 and ∀j < i : N+2 > pj > 0, or h(p) = −ei

if pi = N + 2 and ∀j < i : 0 < pj < N + 2. It is easy to verify that (H,V d
N+2) is

still a DPZP.
Next we reduce DPZP (H,V d

N+2) to TUCKER (G, V d
N+2) by defining function

g as: g(p) = i if h(p) = ei; g(p) = −i if h(p) = −ei; g(p) = −1 if h(p) =
0. Obviously, the function values of g satisfy TUCKER’s antipodal boundary
condition.

The last step is to triangulate each small hypercube by Kuhn’s triangulation.
Since Kuhn’s triangulation will not add any extra vertices, the output of Kuhn’s
triangulation combining with the function g is an instance of TUCKER (G, V d

N+2).
By TUCKER’s lemma, it has a complementary edge. Because of the direction
preserving property of the original function h, the complementary edge has to be
(1,−1). Again because of the direction preserving property, that node p with value
−1 in the complementary (1,−1) must corresponding to h(p) = 0 in the original
problem. The result follows. We illustrate the reduction process in Fig. 3.

Theorem 2. d-D TUCKER is PPAD-complete.

5 Matching Bound of TUCKER in Oracle Model

In this section, we derive the orale matching bound for TUCKER.
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Fig. 3. The Proof of Lemma 4

Theorem 3. (Lower Bound) For any instance of d-D TUCKER, finding a com-
plementary 1-simplex takes time Ω(Nd−1).

Proof. Using the same reduction as in PPAD-hardness proof of Tucker, we
notice that if there is an algorithm that solves a problem of sizeNd for TUCKER,
it solves a problem of size Nd for DPZP. Since there is a lower bound of Ω(Nd−1)
of DPZP [2], it results in a same lower bound Ω(Nd−1) for TUCKER.

The upper bound can be derived in two steps. First, we check if there is a
complementary edge on the boundary. This takes time complexity O(Nd−1). If
the answer is no, we prove that the number of (d− 1)-simplexes which are fully
colored on the boundary must be odd. Then by using binary search based on the
parity argument, one can find a complementary edge in time O(Nd−1). Hence,
the total time complexity is O(Nd−1).

For d = 2, the following boundary lemma is easy to check.

Lemma 5. For any instance of 2D TUCKER, if there is no complementary
edge on the boundary, then the number of {1, 2} edges on the boundary must be
odd.



418 X. Deng, Q. Qi, and J. Zhang

For higher dimensions, we employ the parity argument in Cohen’s proof of
Tucker’s lemma [7] to prove the boundary lemma. A proof for the 3D case is
presented here.

Lemma 6. For any instance of 3-D TUCKER, if there is no complementary
edge on the boundary, then there must exist one kind of {a, b, c}-simplex, where
a, b, c are of distinct different absolute values, whose total number on the bound-
ary is odd.

Proof. For contradiction, we assume that the number of all {a, b, c}-simplexes
on the boundary are even. Let A and A′ be the center of two opposite faces. Let
P be a path on the boundary from A to A′, and P ′ is the antipodal path of P .
Then P and P ′ separate the boundary of the cube to two parts. Let us denote
one part as S and the other part denoted as S′.

Let S(a, b, c) be the number of {a, b, c}-simplex on S, and S′(a, b, c) be the
number of {a, b, c}-simplex on S′. According to the assumption, we have

S(a, b, c) + S′(a, b, c) = 0 mod 2

since the number of {a, b, c}-simplex on S′ is equal to the number of {−a,−b,
−c}-simplex on S, i.e.,

S′(a, b, c) = S(−a,−b,−c)

we get
S(a, b, c) + S(−a,−b,−c) = 0 mod 2

On the other hand, let P (a, b) denotes the number of {a, b} edges on P . As A
and A′ are of different signs, P must has odd number of {a, b} edges where a and
b possess different signs. Since there is no complementary edge on the boundary,
there are six possible this kind of edges, i.e., {1,−2},{1,−3},{2,−1},{2,−3},
{3,−1} and {3,−2}. So, we have

P (1,−2) + P (1,−3) + P (2,−1) + P (2,−3) + P (3,−1) + P (3,−2) = 1 mod 2

Now we going to derive a contradiction by parity argument. See Fig.4 for illus-
tration.

Take S into consideration, and consider the 2-simplexes on the boundary
starting from edges {1,−2} lying on P

⋃
P ′, since there is no complementary

edge on S, those {1,−2} edges will either reach another {1,−2} edge on P
⋃
P ′,

or will terminate with a {1,−2,±3}-simplex on S. Starting from {1,−2} edges
lying on S \(P

⋃
P ′), they will be pairwised in two {1,−2,±3} simplexes, or one

in a {1,−2,±3} simplex while another on P
⋃
P ′. This gives a parity argument

that
S(1,−2, 3) + S(1,−2,−3) = P (1,−2) + P ′(1,−2) mod 2

which implies

S(1,−2, 3) + S(1,−2,−3) = P (1,−2) + P (−1, 2) mod 2
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Fig. 4. The proof of Lemma 6

Similarly, we have

S(1, 2,−3) + S(−1, 2,−3) = P (2,−3) + P (−2, 3) mod 2

and
S(−1, 2, 3) + S(−1,−2, 3) = P (−1, 3) + P (1,−3) mod 2

Summing up these three equations we get a contradiction with the assumption,
that gives a proof to the lemma.

We can transfer the kind of {a, b, c}-simplex whose number is odd to {1, 2, 3}-
simplex as follows: for example, if it is {1,−2, 3}-simplex whose number is odd,
then we exchange labels of 2 and -2, then the numbers of {1,−2, 3}-simplexes
and {1, 2, 3}-simplexes are exchanged and this process does not affect the com-
plementary edges in the instance.

Proposition 1. If there is no complementary edge on the boundary, then the
number of {1, 2, · · · , d}-simplexes on the boundary of d-dimensional hypergrid
triangulated by Kuhn’s triangulation has the same parity as the number of
{−i, 1, 2, · · · , d}-simplexes, i = 1, 2, · · · , d, in the hypergrid.

Proof. We change the labels of all nodes with negative labels to zero. Then the
claim follows from standard theorems on indexes(see, e.g., [2]).

Theorem 4. (Upper Bound) The upper bound of d-TUCKER is O(Nd−1) under
Kuhn’s triangulation when the utility functions are given by oracle.

Proof. First, by checking boundary we can see whether there is a kind of
{v1, v2, · · · , vd}-simplex whose number is odd on the boundary. If not, there
must exist complementary edges on the boundary, finding it can be completed
in time O(Nd−1). If we did not find any complementary edge on the boundary,
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we relabel all nodes of negative labels by changing them to 0. Then the divide-
&-conquer approach applies. We will end with a simplex of labels {0, 1, · · · , d}.
As 0 was transferred from some negative labelled node, say one labelled with −i.
Then (i,−i) in this simplex will be the complementary edge we set off to find.

Since the size of the hypercube decrease geometrically, the complexity of
checking which case occurred will not exceed O(Nd−1).

Theorem 5. For any d-hypercube which is an instance of TUCKER and it is
triangulated by Kuhn’s triangulation, the complementary 1-simplex can be found
in time θ(Nd−1) under oracle model.

6 Conclusion

Our study builds a computational complexity connection between two types of
discrete versions of fixed point concepts, which implies two new results: a PPAD-
completeness proof for computing direction preserving zero point, and a match-
ing oracle complexity bound for discrete BROUWER’s fixed point. Furthermore,
the connection allows for a clear proof that TUCKER is PPAD-complete for all
constant dimensions, that extend the results of Pálvölgyi for 2D case [20] and
Papadimitriou for 3D case [21]. At the same time, a matching algorithmic bound
for TUCKER is obtained in the oracle model.

As fixed point analysis is fundamental for many economic equilibrium prob-
lems, our study, though purely out curious minds for the fundamentals, could
be of application values for other algorithmic game theory problems, in one way
or another. We strongly believe that simplicity carries a value in its own right in
theory building, and could play an important role in the development of a field.
We demonstrate this value by presenting a simple and clear proof of complex-
ities of TUCKER, both in the oracle function model and the polynomial time
function model.

Acknowledgement. Work reported in this work is sponsored by a matching
research grant from Comet Electronics (HK) Ltd and Research Grants Council
of Hong Kong SAR (Proj. No. 9220046).
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Continuity Properties of Equilibria in Some
Fisher and Arrow-Debreu Market Models
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Abstract. Following up on the work of Megiddo and Vazirani [10], who
determined continuity properties of equilibrium prices and allocations
for perhaps the simplest market model, Fisher’s linear case, we do the
same for:
– Fisher’s model with piecewise-linear, concave utilities
– Fisher’s model with spending constraint utilities
– Arrow-Debreu’s model with linear utilities
– Eisenberg-Gale markets.

1 Introduction

Three basic properties that a desirable model of an economy should possess are
existence, uniqueness, and continuity of equilibria (see [3], Chapter 15, “Smooth
preferences”). These lead to parity between supply and demand, stability and
predictive value, respectively. In particular, without continuity, small errors in
the observation of parameters of an economy may lead to entirely different
predicted equilibria.

Although mathematical economists studied very extensively questions of
existence and uniqueness for several concrete and realistic market models, the
question of continuity was studied only in very abstract settings. Megiddo
and Vazirani [10] attempted to rectify this situation by starting with perhaps
the simplest market model – the linear case of Fisher’s model. They showed
that the mapping giving the unique vector of equilibrium prices is continuous
and the correspondence giving the set of equilibrium allocations, is upper
hemicontinuous. In this paper, we determine continuity properties of equilibrium
prices, allocation and utilities for the models given in the Abstract; our results
are in the following table.

Equilibrium Price Equilibrium Allocation Equilibrium Utility
Fisher-PL No No No
Fisher-SC Yes Yes Yes

AD-L No Yes Yes
EG Yes not defined Yes
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[10] crucially used the Eisenberg-Gale convex program [5] for proving their
results, hence their proofs were steeped in polyhedral combinatorics. For the
Arrow-Debreu model with linear utilities, we use a convex program due to
Jain [6]. For the remaining three cases, such convex programs are not known,
and instead, we use the combinatorial structure of equilibria for proving our
theorems. The groundwork for discovering such structure was done in [4] in the
context of obtaining a polynomial time algorithm for computing the equilibrium
the linear case of Fisher’s model. Each of the remaining three cases is a
generalization of this case and the relevant structure is also a generalization of
that for the Fisher’s linear case. For the first case in the table, we use structure
found by [12] (and used for proving that equilibirum prices and allocations are
rational numbers). For the second case, we use structure found by [11] (and used
for obtaining a polynomial time algorithm for computing the equilibrium). We
refer the reader to [4,6,11,12,7] for definitions of the market models studied.

2 Eisenberg-Gale Markets

Eisenberg-Gale market (EG, in brief) is an abstract market model. The
equilibrium utilities can be captured as the optimal solution of the following
Eisenberg-Gale convex program [5]:

max
n∑

i=1

mi log ui

s.t.

n∑
i=1

aijui ≤ bj , ∀j ∈ [n′]

ui ≥ 0, ∀i ∈ [n]

Here, mi, aij , bj are constants.
By the KKT conditions, u = (ui)i∈[n] is the optimal solution iff there exists

some p = (pj)j∈[n′] such that the following hold: (1) For ∀j ∈ [n′], pj ≥ 0 and

pj > 0 ⇒
n∑

i=1
aijui = bj ; (2) For ∀i ∈ [n], mi

ui
=

n′∑
j=1

aijpj. We call an optimal

dual solution p = (p1, ..., pn′) an equilibrium price.
We introduce a matrix A = (aij) and vectors b = (bj), m = (mi) to specify

the coefficients in the Eisenberg-Gale convex program.

Theorem 1. The equilibrium utility u(m, A,b) in the given EG market is a
continuous function.

Proof. Assume that mk,Ak,bk converge to m0,A0,b0 respectively. For any k ≥
0, let Pk be the feasible polytope corresponding to Ak,bk and let uk be the
corresponding optimal solution. We may assume {uk} is convergent. Suppose
uk → u′, we want to show u′ = u0.

Let f(m,u) =
∑
mi log ui be the objective function of EG convex program.

Since it is strictly convex, an EG convex program has a unique optimal solution.
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By our assumption, u0 is the optimal solution corresponding to m0,A0,b0, hence
if we can show: (i) u′ is feasible, i.e. u′ ∈ P0 and (ii) f(m0,u′) ≥ f(m0,u0),
then we are done.

In the above, (i) can be shown easily: From the condition Ak ·uk ≤ bk,uk ≥ 0,
taking the limit, we have A0 · u′ ≤ b0, u′ ≥ 0, i.e. u′ ∈ P0.

Now we prove (ii). If for some i, u0
i = 0, then we have f(m0,u0) = −∞ and

(ii) holds trivially. So we may assume that u0
i ≥ 2δ1, ∀i ∈ [n], for some constant

δ1 > 0. For each k, let dist(u0,Pk) be the distance between u0 and Pk. Let wk

be a point in Pk which is closest to u0. Since Pk → P0 and u0 ∈ P0, we know
that wk → u0. Now, we can assume that {wk} and u0 are in a closed region S
without the origin. (Indeed, we can take S to be

{
x | δ1 ≤ ‖x‖ ≤ ‖u0‖+ δ1

}
)

By considering the derivative of f , it’s easy to see, f is Lipchitz continuous
with respect to the second coordinate in a region without the origin, i.e. there
exists a constant L > 0 such that: f(mk,u0) − f(mk,wk) ≤ L‖u0 − wk‖ =
L · dist

(
u0,Pk

)
Thus f(mk,u0) ≤ f(mk,wk)+L·dist

(
u0,Pk

)
≤ f(mk,uk)+L·dist

(
u0,Pk

)
where the last inequality holds because uk maximizes f(mk,u) in Pk and
wk ∈ Pk.

Let k → +∞, we have f(m0,u0) ≤ f(m0,u′).

KKT condition gives us a connection between equilibrium utility and equilibrium
price. Since we have shown that the equilibrium utility is continuous, by KKT,
we can show:

Theorem 2. The equilibrium price p(m, A,b) in the given EG market is a
upper hemicontinuous set-valued function.

3 Arrow-Debreu Market with Linear Utilities

In this model, agent i’s utility as a function of allocation x is linear: Ui(x) =∑
j uijxij . Given the utility functions, we write the uij ’s in a matrix U = (uij).

We use X(U) and T (U) to denote the equilibrium allocation and utility. Note
that a multiple of an equilibrium price in AD-L is again an equilibrium price,
so we adopt the notion of normalized equilibrium price which is defined to be
an equilibrium price whose l1 norm is 1. We use P (U) to denote the set-valued
function of normalized equilibrium prices.

We start by giving a convex program due to Jain [6] that captures equilibrium
allocations for this model. For any given utilities, construct a directed graph G
with n vertices to represent the n agents. Draw an edge from i to j if uij > 0.

Define w(i, j) =
∑

1≤t≤n uitxit

uij
. Then consider the following convex program:

∀j :
∑

i

xij = 1,

∀i, j : xij ≥ 0,

For every cycle C of G :
∏

(i,j)∈C

w(i, j) ≥ 1.
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Theorem 3. ([6]) An allocation x is an equilibrium allocation if and only if x
is a feasible solution of the above convex program.

Now we prove that equilibrium allocations and utilities are upper hemicontinuous
set-valued functions. The idea is to show that a small perturbation won’t affect
the feasible region of the convex program much.

Theorem 4. In AD-L, equilibrium allocation and utility are upper hemicon-
tinuous.

Proof. Suppose {Uk} is a sequence of utilities and Uk → U0. Suppose {xk} is a
sequence of allocations such that xk ∈ X(Uk) and xk → x0. We want to show
x0 ∈ X(U0).

Because xk ∈ X(Uk), by Theorem 3, for every k, xk is a feasible solution to
the convex program. Let Gk be the graph formed by all the edges (i, j) where
uk

ij > 0. Then we have:

∀j :
∑

i

xk
ij = 1, (1)

∀i, j : xk
ij ≥ 0, (2)

For every cycle C of Gk :
∏

(i,j)∈C

wk(i, j) ≥ 1. (3)

Now consider the graph G0. Because Uk → U0, when k is large enough, for every
i, j such that u0

ij > 0, we have uk
ij > 0. Therefore if an edge (i, j) is presented

in G0, it is also presented in Gk. This implies if a cycle C is presented in G0, it
is also presented in Gk when k is large enough. Therefore xk satisfies a weaker
condition than (3): For every cycle C of G0 :

∏
(i,j)∈C w

k(i, j) ≥ 1.

Now in the above inequalities, let k →∞, we have x0 ∈ X(U0), hence X(U)
is upper hemicontinuous.

Since the equilibrium utility is a linear function of the equilibrium allocation,
we have that T (U) is also upper hemicontinuous.

At last, we show that the equilibrium price is not upper hemicontinuous by the
following example: There are two agents, each of them has one good. Suppose

{Uk}∞k=1 is a sequence of utilities where Uk =
(

1− 1
k 0

0 1− 1
k

)
. Let pk = ( 1

k , 1−

1
k ). It’s easy to see that pk ∈ P (Uk) and Xk =

(
1 0
0 1

)
is the corresponding

equilibrium allocation.

Since Uk → U0 =
(

1 0
0 1

)
but pk → (0, 1) �∈ P (U0), we conclude that P (U) is

not upper hemicontinuous.
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4 Fisher’s Market Model

4.1 Linear Utilities

In Fisher-L model, for each i, j, Uij(xij) = uijxij is a linear function. Each
buyer i has an initial endowment of money ei. The amount of each good is
assumed to be 1 unit. We use e to denote (e1, ..., en) and U to denote the matrix
(uij).

Given a price p, we can decide whether p is an equilibrium price by looking
at the following network N(e,U,p) defined in [4]: Consider a bipartite graph
with bipartition B and G, vertices in B and G represent buyers and goods
respectively. Under the price p, compute the optimal bang-per-buck αi of buyer
i. Connect good j to buyer i if good j is desired by buyer i, i.e. uij/pj = αi.
Set the capacity of the edge to be ∞. Then add a source s and a sink t into the
graph. Connect the source to each good and connect each buyer to the sink. For
each j ∈ G, set the capacity of the edge (s, j) to be pj and for each buyer i ∈ B,
set the capacity of the edge (i, t) to be ei.

The following theorem reveals the connection between the network and the
market equilibrium:

Theorem 5. ([4]) p is the equilibrium price if and only if both (s,G ∪ B ∪ t)
and (s ∪ G ∪ B, t) are min cuts in N(e,U,p). Moreover, when both cuts are
min cuts, let f be a maximum flow, then the equilibrium allocation is given by
xij = f(j,i)/pj for any directed edge (j, i).

There is a simple way to test whether (s,G ∪ B ∪ t) is a min cut or not. For
any subset S of goods, let Γ (S) be the neighbor of S, which consists of the
buyers who desire some goods in S, i.e. Γ (S) = {i ∈ B : ∃j ∈ S, s.t. (j, i) ∈
N(e,U,p)}. The set S is called tight, if

∑
j∈S pj =

∑
i∈Γ (S) ei. It is called

overtight if
∑

j∈S pj >
∑

i∈Γ (S) ei.

Theorem 6. ([4]) (s,G ∪ B ∪ t) is a min cut if and only if no subset of G is
overtight.

To show continuity of the equilibrium price, we only need to show that for any
ε > 0, when a small enough perturbation is made to U and e, the change in the
equilibrium price can be bounded by ε.

We can view a perturbation in the following way: the perturbation occurs
on uij ’s and ei’s one by one. Therefore, it suffices to prove the following two
lemmas:

Lemma 1. For any ε > 0 and for any buyer k, if |ek−e′k| is small enough, then
|p − p′| < ε where p and p′ are the equilibrium prices corresponding to ek and
e′k respectively.

Lemma 2. For any ε > 0 and for any buyer k and good l, if |ukl−u′kl| is small
enough, then |p−p′| < ε where p and p′ are the equilibrium prices corresponding
to ukl and u′kl respectively.
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In the above, |p− p′| denote the l1 norm of the vector p− p′.

Proof (Proof of Lemma 1). Consider buyer k. Suppose her money has a
small perturbation δ, i.e. e′k = ek(1 + δ). We assume δ > 0. In the
case when δ < 0, similar argument applies. Let e′ be the money vector
(e1, ..., ek−1, e

′
k, ek+1, ..., en).

Consider the network N ′ by increasing the capacity of the edge (k, t) to e′k.
In N ′, (s∪G∪B, t) is not a min cut. Let C be a maximal min cut in N ′, which
is defined to be the min cut with maximum number of vertices in the s-side.
This min cut has the form (s ∪ G2 ∪ B2, G1 ∪ B1 ∪ t), where B1, B2 ⊆ B and
G1, G2 ⊆ G. The following are some observations: (1) k must be in B1; (2) there
is no edge from G2 to B1; (3) we can drop edges from G1 to B2; (4) no subset
of G1 is tight.

Now for all j ∈ G1, define p′j = pj(1 + ε′) where ε′ satisfies the equation
ekδ = ε′

∑
j∈G1

pj . For all j ∈ G2, let p′j = pj. By this, we get a new price vector
p′. By our choice of ε′, we have that in the new network, both (s,G∪B ∪ t) and
(s ∪G ∪B, t) are min cuts, hence p′ is the equilibrium price corresponds to e′.
Thus for any ε > 0, choose δ small enough, we can make sure |p′ − p| < ε.

Proof (Proof of Lemma 2). Suppose for buyer k and good l, u′kl = ukl(1 + δ).
Again, we assume δ > 0 and the case when δ < 0 is similar. Let p be the
equilibrium price before the perturbation. Let U′ be the new utility matrix. We
may assume good l is desired by buyer k under price p.

In this case, when we increase ukl to u′kl, under the price p, buyer k desires
only good l. We construct a network N ′ by dropping all the edges of the form
(j, k),j �= l from N(e,U,p). Let C = (s ∪G2 ∪B2, G1 ∪B1 ∪ t) be a maximum
min cut in N ′. All the four observations in the proof of claim 1 hold in this case.
In addition, good l must be in G1 and any good j such that (j, k) is presented
in N(e,U,p) must be in G2.

We construct a new price p′ in the following way: For each j ∈ G1, let p′j =
pj(1 + ε1); For each j ∈ G2, let p′j = pj(1 − ε2). Here ε1, ε2 are solutions to the
system

ε1
∑

j∈G1

pj = ε2
∑

j∈G1

pj

1 + δ

1 + ε1
=

1
1− ε2

.

By this, in the new network, all the lost edges come back and when δ is small
enough, no subset of G is overtight, hence p′ is the new equilibrium price. At
last, for any ε > 0, when δ is small enough, we can make sure |p′ − p| < ε.

Hence, we have given an alternative proof of the following:

Theorem 7. ([10]) In Fisher-L, the equilibrium price is continuous.
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4.2 Spending Constraint and Piecewise-Linear, Concave Utilities

For the spending constraint model, a similar network (see [11]) as the one given in
the last section can be set up to decide whether a given price is an equilibrium price
or not, therefore our combinatorialproof in the last section generalizes naturally to
Fisher-SC. Since the idea is similar, we omit the proof in this extended abstract.

Theorem 8. In Fisher-SC, the equilibrium price is continuous, the equilibrium
allocation and utility are upper hemicontinuous.

For piecewise linear utility model, even though it is a natural market model,
surprisingly, we have examples to show the following negative results:

Theorem 9. In Fisher-PL, the equilibrium price, allocation and utility are not
upper hemicontinuous.

Proof. The following example shows that the equilibrium price, which is a set-
valued function, is not upper hemicontinuous. Suppose in the market, there is
only one buyer with money m and there are two goods, each of 1 unit. Suppose
U1,U2 are her utility functions for good 1 and good 2: U1(x) = x if 0 ≤ x ≤ 1
and U1(x) = 1 for all x > 1; U2(x) = x for all x.

Suppose the price for good 1 is p1 and the price for good 2 is p2. Then
p = (p1, p2) is an equilibrium price if and only if p1 > 0, p2 > 0, 1

p1
≥ 1

p2
and

p1 + p2 = m. Now we take pk = ( 1
k ,m − 1

k ). For each k, pk is an equilibrium
price. However, pk → (0,m) which is not an equilibrium price. Thus the set of
equilibrium prices is not upper hemicontinuous.

For equilibrium allocation and utility, consider the following example. There
are two buyers and three goods in the market. Suppose we have {(mk, Uk)}k≥0
where mk = (1, 1 + 1

k ) and the picture of Uk is below, The slopes of the line
segments are indicated in the picture.
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It is easy to see pk = ( 1
k , 1, 1) and

xk =
(

1 1
2 −

1
k

1
2

0 1
2 + 1

k
1
2

)
are equilibrium price and allocation. However,

xk → x0 =
(

1 1
2

1
2

0 1
2

1
2

)
,

which is not an equilibrium allocation for (m0, U0). Therefore the equilibrium
allocation is not upper hemicontinuous. Similar for equilibrium utility.
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Abstract. We present an incentive model for route distribution in the context of
path vector routing protocols and focus on the Border Gateway Protocol (BGP).
We model BGP route distribution and computation using a game in which a
BGP speaker advertises its prefix to its direct neighbors promising them a re-
ward for further distributing the route deeper into the network. The result of this
cascaded route distribution is an advertised prefix and hence reachability of the
BGP speaker. We first study the convergence of BGP protocol dynamics to a
unique outcome tree in the defined game. We then study the existence of equilib-
ria in the full information game considering competition dynamics focusing on
the simplest two classes of graphs: 1) the line (and the tree) graphs which involve
no competition, and 2) the ring graph which involves competition.

1 Introduction

The Border Gateway Protocol (BGP) [12] is a policy-based path vector protocol and is
the de-facto protocol for Internet interdomain routing. BGP is intrinsically about dis-
tributing route information about destinations (which are IP prefixes) to establish paths
in the network. Path discovery, or simply discovery hereafter, starting with some desti-
nation prefix is the outcome of route distribution and route computation. Accounting for
and sharing the cost of discovery is an interesting problem and its absence from current
path discovery schemes has led to critical economic and scalability concerns. As an ex-
ample, the BGP control plane functionality is oblivious to cost. A node (BGP speaker)
that advertises a provider-independent prefix (identifier) does not pay for the cost of
being discoverable. Such a cost, which may be large given that the prefix is maintained
at every node in the Default Free Zone (DFZ), is paid by the rest of the network. For ex-
ample, Herrin [5] has preliminarily analyzed the non-trivial cost of maintaining a BGP
route. Such incentive mismatch in the current BGP workings is further exacerbated by
provider-independent addressing, multi-homing, and traffic engineering practices [11].
The fact that the number of BGP prefixes in the global routing table (or RIB) is con-
stantly increasing at a rate of roughly 100,000 entries every 2 years and is expected to
reach a total of 388,000 entries in 2011 [6], has motivated us to devise a model that
accounts for distribution incentives in BGP.

A large body of work has focused on choosing the right incentives given that Au-
tonomous Systems (AS) are self-interested, utility-maximizing agents. Most previous
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work has ignored the control plane incentives 1 (route advertisement) and has instead
focused on the forwarding plane incentives (e.g. transit costs). One possible explana-
tion is based on the fact that a node has an incentive to distribute routes to destinations
since the node will get paid for transiting traffic to these destinations, and hence route
distribution is ignored as it becomes an artifact of the transit process. We argue that
this assumption is not economically viable by considering the arrival of a new customer
(BGP speaker). While the servicing edge provider makes money from transiting the new
customer’s traffic to the customer, the middle providers do not necessarily make money
while still incurring the cost to maintain and distribute the customer’s route informa-
tion. In this work, we separate the control plane incentives (incentives to distribute route
information) from the forwarding plane incentives (incentives to forward packets) and
use game theory to model a BGP distribution game. The main problem we are interested
in is how to allow BGP prefix information to be distributed globally while aligning the
incentives of all the participating agents.

Model and Results. We synthesize many of the ideas and results from [2,4,8,9] into
a coherent model for studying BGP route distribution incentives. A destination d is
willing to invest some initial amount of money rd to get its route information to be
globally distributed. Since d may only advertise its prefix to its direct neighbors, d must
incentivize them to further distribute the route. The neighbors then incentivize their
neighbors, and so on. While this work takes BGP as the motivating application, we are
interested in the general setting of distributing a good to a set of agents. In this paper, we
define a BGP distribution game by building upon the general model for studying BGP
devised by Griffin et. al in [4]. We assume full information since our main goal is to
study the existence of equilibria rather than how to reach the equilibrium. Studying the
equilibria for arbitrary graph structures is difficult given the complexity of the strategic
dependencies and the competition dynamics. Since are not aware of general existence
results that apply to our game, we initially focus on two simple graphs: 1) the line (and
the tree) graphs which involve no competition, and 2) the ring graph which involves
competition. Our results are detailed in section 3, and more fully in [7].

Related work. The Simple Path Vector Protocol (SPVP) formalism [4] develops suf-
ficient conditions for the outcome of a path vector protocol to be stable. A respective
game-theoretic model was developed by Levin [9] to capture these conditions and in-
centives in a game theoretic setting. Feigenbaum et. al study incentive issues in BGP by
considering least cost path (LCP) policies [1] and more general policies [2]. Our model
is fundamentally different from [1] (and other works based in mechanism design) in
that the prices are strategic, the incentive structure is different, and we do not assume
the existence of a central “designer” (or bank) that allocates payments to the players
but is rather completely distributed as in real markets. The bank assumption is limiting
in a distributed setting, and an important question posed in [2] is whether the bank can
be replaced by direct payments by the nodes. Li et. al [10] study an incentive model for
query relaying in peer-to-peer (p2p) networks based on rewards, upon which Kleinberg

1 In this paper, we use the term“control plan” to refer only to route prefix advertisements (not
route updates) as we assume that the network structure is static.
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et. al [8] build to model a more general class of trees. In [8], Kleinberg and Raghavan
allude to a similar version of our distribution game in the context of query incentive
networks. They pose the general question of whether an equilibrium exists for general
Directed Acyclic Graphs (DAGs) in the query propagation game. Both of these prob-
abilistic models do not account for competition. While we borrow the basic idea, we
address the different problem of route distribution rather than information seeking.

2 The General Game

Borrowing notation from [2,9], we consider a graph G = (V,E) where V is a set of
n nodes (alternatively termed players, or agents) each identified by a unique index
i = {1, . . . ,n}, and a destination d, and E is the set of edges or links. Without loss of
generality (WLOG), we study the BGP discovery/route distribution problem for some
fixed destination AS with prefix d (as in [4,2,9]). The model is extendable to all possi-
ble destinations (BGP speakers) by noticing that route distribution and computation are
performed independently per prefix. The destination d is referred to as the advertiser
and the set of players in the network are termed seekers. Seekers may be distributors
who participate in distributing d’s route information to other seeker nodes or consumers
who simply consume the route. For each seeker node j, Let P( j) be the set of all routes
to d that are known to j through advertisements, P( j) ⊆P( j), the latter being the set
of all simple routes from j. The empty route φ ∈P( j). Denote by R j ∈ P( j) a simple
route from j to the destination d with R j = φ when no route exists at j, and let (k, j)R j

be the route formed by concatenating link (k, j) with R j, where (k, j) ∈ E . Denote by
B(i) the set of direct neighbors of node i and let next(Ri) be the next hop node on the
route Ri from i to d. Finally, define node j to be an upstream node relative to node i
when j ∈ Ri. The opposite holds for a downstream node. The general distribution game
is as follows: destination d first exports its prefix (identifier) information to its neigh-
bors promising them a reward rd ∈ Z+ which directly depends on d’s utility of being
discoverable. A node i, a player, in turn receives offers from its neighbors where each
neighbor j’s offer takes the form of a reward r ji. We use rnext(Ri) to refer to the reward
that the upstream parent from i on Ri offers to i.

Strategy Space: Given a set of advertised routes P(i) where each route Ri ∈ P(i) is as-
sociated with a promised reward rnext(Ri) ∈Z+, a pure strategy si ∈ Si of an autonomous
node i comprises two decisions:

First, after receiving offers from neighboring nodes, pick a single “best” route Ri ∈
P(i) (where “best” is defined shortly in Theorem 1);

Second, pick a reward vector ri = [ri j] j promising a reward ri j to each candidate
neighbor j ∈ B(i) that it has not received a competing offer from (i.e., such that r ji < ri j

where r ji = 0 means that i did not receive an offer from j). Then export the route and
reward to the respective candidate neighbors. The distribution process repeats up to
some depth that is directly dependent on the initial investment rd as well as on the
strategies of the players.
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Cost: The cost of participation is local to the node and includes for example the cost
associated with the effort spent in maintaining the route information. We assume that
every player i incurs a cost of participation ci and for simplicity we take ci = c = 1.

Utility: A strategy profile s = (s1, . . . ,sn) and a reward rd define an outcome of the
game.2 Every outcome determines a set of paths to destination d given by
Od = (R1, . . . ,Rn). A utility function ui(s) for player i associates every outcome with
a real value in R. We use the notation s−i to refer to the strategy profile of all play-
ers excluding i. A simple class of utility functions we experiment with rewards a node
linearly based on the number of sales that the node makes. This model incentivizes dis-
tribution and potentially requires a large initial investment from d. More clearly, define
Ni(s) = { j ∈ V\{i}|i ∈ R j} to be the set of nodes that pick their best route to d going
through i (nodes downstream of i) and let δi(s) = |Ni(s)|. Let the utility of a node i from
an outcome or strategy profile s be:

ui(s) = (rnext(Ri)− ci)+ ∑
{ j|i=next(R j)}

(rnext(Ri)− ri j)(δ j(s)+ 1) (1)

The first term (rnext(Ri)− ci) of (1) is incurred by every participating node and is the
one unit of reward from the upstream parent on the chosen best path minus the local
cost. Based on the fixed cost assumption, we often drop this first term when comparing
player payoffs from different strategies since the term is always positive when c = 1.
The second term of (1) (the summation) is incurred only by distributors and is the total
profit made by i where (rnext(Ri)− ri j)(δ j(s)+ 1) is i’s profit from the sale to neighbor
j (which depends on δ j). A rational selfish node will always try to maximize its utility
by picking si = (Ri, [ri j] j). There is an inherent tradeoff between (rnext(Ri)− ri j) and
(δ j(s)) s.t. i = next(R j) when trying to maximize the utility in Equation (1) in the face
of competition as shall become clear later. A higher promised reward ri j allows the node
to compete (and possibly increase δ j) but cuts the profit margin. Finally, we implicitly
assume that the destination node d gets a constant marginal utility of rd for each dis-
tinct player that maintains a route to d - the marginal utility of being discoverable by
any seeker - and declares rd truthfully to its neighbors i.e., rd is not strategic.

Assumptions: We take the following simplifying assumptions to keep our model
tractable:

1. the advertiser d does not differentiate among the different players (ASes).
2. the advertised rewards are integers and are strictly decreasing with depth i.e. ri j ∈

Z+ and ri j < rnext(Ri),∀ i, j and let 1 unit be the cost of distribution.
3. finally, our choice of the utility function isolates a class of policies which we refer

to as the Highest Reward Path (HRP). We assume for the scope of this work that
transit costs are extraneous to the model.

Convergence under HRP. Before proceeding with the game model, we first prove the
following theorem which results in the Highest Reward Path (HRP) policy. All proofs
may be found in the full version of this paper [7].

2 We abuse notation hereafter and we refer to the outcome with simply the strategy profile s
where it should be clear from context that an outcome is defined by the tuple < s,rd >.
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Theorem 1. In order to maximize its utility, node i must always pick the route Ri with
the highest promised reward i.e. such that rnext(Ri) ≥ rnext(Rl),∀ Rl ∈ P(i).

Theorem (1) implies that a player could perform her two actions sequentially, by first
choosing the highest reward route Ri, then deciding on the reward vector ri j to export to
its neighbors. Thus, we shall represent player i’s strategy hereafter simply with the re-
wards vector [ri j] and it should be clear that player i will always pick the “best” route to
be the route with the highest promised reward. When the rewards are equal however, we
assume that a node breaks ties consistently. Given the asynchronous nature of BGP, we
ask the question of whether the BGP protocol dynamics converge to a unique outcome
tree Td under some strategy profile s [4]. From Theorem (1), it may be shown that the
BGP outcome converges under any strategy profile s, including the equilibrium (see [7]
for proof). This result allows us to focus on the existence of equilibria.

2.1 The Static Multi-stage Game with Fixed Schedule

We restrict the analysis of equilibria to the simple line and ring graphs. In order to
apply the correct solution concept, we fix the schedule of play (i.e. who plays when?)
based on the inherent order of play in the model. We resort to the multi-stage game with
observed actions [3] where stages in our game have no temporal semantics. Rather,
stages identify the network positions which have strategic significance due to the strictly
decreasing rewards assumption. Formally, and using notation from [3], each player i
plays only once at stage k > 0 where k is the distance from i to d in number of hops.
At every other stage, the player plays the “do nothing” action. The game starts at stage
1 after d declares rd . Players at the same stage play simultaneously, and we denote by
ak = (ak

1, , . . . ,a
k
n) the set of player actions at stage k, the stage-k action profile. Further,

denote by hk+1 = (rd ,a1, . . . ,ak), the history at the end of stage k which is simply the
initial reward rd concatenated with the sequence of actions at all previous stages. We let
h1 = (rd). Finally, hk+1 ⊂ Hk+1 the latter being the set of all possible stage-k histories.
When the game has a finite number of stages, say K +1, then a terminal history hK+1 is
equivalent to an outcome of the game (which is a tree Td) and the set of all outcomes is
HK+1.The pure-strategy of player i who plays at stage k > 0 is a function of the history
and is given by si : Hk → Rmi where mi is the number of direct neighbors of player i
that are at stage k + 1 (implicitly, a player at stage k observes the full history hk before
playing). We resort to the multi-stage model (the fixed schedule) on our simple graphs
to eliminate the synchronization problems inherent in the BGP protocol and to focus
instead on the existence of equilibria. By restricting the analysis to the fixed schedule,
we do not miss any equilibria (see [7]). The key concept here is that it is the information
sets [3] that matter rather than the time of play i.e. since all the nodes at distance 1 from
d observe rd before playing, all these nodes belong to the same information set whether
they play at the same time or at different time instants.

Starting with rd (which is h1), it is clear how the game produces actions at every later
stage based on the player strategies resulting in a terminal action profile or outcome.
Hence, given rd , an outcome in HK+1 may be associated with every strategy profile s
and so the definition of Nash equilibrium remains unchanged (see [3] for definitions
of Nash equilibrium, proper subgame, and subgame perfection). In our game, each
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stage begins a new subgame which restricts the full game to a particular history. For
example, a history hk begins a subgame G(hk) such that the histories in the subgame
are restricted to hk+1 = (hk,ak), hk+2 = (hk,ak,ak+1), and so on. Hereafter, the general
notion of equilibrium we use is the Nash equilibrium and we shall make it clear when
we generalize to subgame perfect equilibria. We are only interested in pure-strategy
equilibria [3] and in studying the existence question as the incentive rd varies.

3 Equilibria on the Line Graph, the Tree, and the Ring Graph

In the general game model defined thus far, the tie-breaking preferences of the players is
a defining property of the game, and every outcome (including the equilibrium) depends
on the initial reward/utility rd of the advertiser. In the same spirit as [8] we inductively
construct the equilibrium for the line graph of Figure 1(a) given the utility function
of Equation (1). We present the result for the line which may be directly extended
to trees. Before proceeding with the construction, notice that for the line, mi = 1 for
all players except the leaf player since each of those players has a single downstream
neighbor. In addition, δi(s) = δ j(s) + 1,∀i, j where j is i’s child (δi = 0 when i is a
leaf). We shall refer to both the player and the stage using the same index since our
intention should be clear from the context. For example, the child of player i is i + 1
and its parent is i− 1 where player i is the player at stage i. Additionally, we simply
represent the history hk+1 = (rk) for k > 0 where rk is the reward promised by player
k (player k’s action). The strategy of player k is therefore sk(hk) = sk(rk−1) which is
a singleton (instead of a vector) since mi = 1 (for completeness, let r0 = rd). This is a
perfect information game [3] since a single player moves at each stage and has complete
information about the actions of all players at previous stages. Backward induction may
be used to construct the subgame-perfect equilibrium. We construct the equilibrium
strategy s∗ inductively as follows: first, for all players i, let s∗i (x) = 0 when x≤ c (where
c is assumed to be 1). Then assume that s∗i (x) is defined for all x < r and for all i.
Obviously, with this information, every player i may compute δi(x,s∗−i) for all x < r.

(a) (b)

Fig. 1. (a) Line graph: a player’s index is the stage at which the player plays; d advertises at stage
0; K = n; (b) Ring graph with even number of players: (i) 2-stage game, (ii) 3-stage game, and
general (iii) K-stage game
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This is simply due to the fact that δi depends on the downstream players from i who
must play an action or reward strictly less than r. Finally, for all players i we let s∗i (r) =
argmaxx(r− x)δi(x,s∗−i) where x < r.

Theorem 2. The strategy profile s∗ is a subgame-perfect equilibrium.

The proof may be directly extended to the tree since each player in the tree has a single
upstream parent as well and backward induction follows in the same way. On the tree,
the strategies of the players that play simultaneously at each stage are also independent.

Competition: the ring. We present next a negative result for the ring graph. In a ring,
each player has a degree = 2 and mi = 1 for all players except the leaf player. We
consider rings with an even number of nodes due to the direct competition dynamics.
Figure 1(b) shows the 2-, the 3-, and general K-stage versions of the game. In the multi-
stage game, after observing rd , players 1 and 2 play simultaneously at stage 1 promising
rewards r1 and r2 respectively to their downstream children, and so on. We refer to the
players at stage j using ids 2 j−1 and 2 j where the stage of a player i, denoted as l(i),
may be computed from the id as l(i) = � i

2�. For the rest of the discussion, we assume
WLOG that the player at stage K (with id 2K − 1) breaks ties by picking the route
through the left parent 2K−3. For the 2-stage game in Figure 1(b)(i), it is easy to show
that an equilibrium always exists in which s∗1(rd) = s∗2(rd) = (rd−1) when rd > 1 and 0
otherwise. This means that player 3 enjoys the benefits of perfect competition due to the
Bertrand-style competition [3] between players 1 and 2. The equilibrium in this game
is independent of player 3’s preference for breaking ties. We now present the following
negative result,

Claim 1. The 3-stage game induced on the ring (of Figure 1(b)(ii)) does not have a
subgame-perfect equilibrium. Particularly, there exists a class of subgames for h1 =
rd > 5 for which there is no Nash equilibrium.

The value rd > 5 signifies the breaking point of equilibrium or the reward at which
player 2, when maximizing her utility (rd − r2)δ2, will always oscillate between com-
peting for 5 (by playing large r2) or not (by playing small r2). This negative result for
the game induced on the 3-stage ring may be directly extended to the general game for
the K-stage ring by observing that a class of subgames G(hK−2) of the general K-stage
game are identical to the 3-stage game. While the full game does not always have an
equilibrium when K > 2 stages, we shall show next that there always exists an equilib-
rium for a special subgame.

Growth of Incentives, and a Special Subgame. We next answer the following question:
Find the minimum incentive r∗d , as a function of the depth of the network K (equivalently
the number of stages in the multi-stage game), such that there exists an equilibrium
outcome for the subgame G(r∗d) that is a spanning tree. We seek to compute the function
f such that r∗d = f (K). First, we present a result for the line, before extending it to
the ring. On the line, K is simply the number of players i.e. K = n, and f (K) grows
exponentially with the depth K as follows:

Lemma 1. On the line graph, we have f (0) = 0, f (1) = 1, f (2) = 2, and ∀ k > 2,
f (k) = (k−1) f (k−1)− (k−2) f (k−2).
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We now revisit the the K-stage game of Figure 1(b)(iii) on the ring and we focus on
a specific subgame which is the restriction of the full game to h1 = r∗d = f (K), and
we denote this subgame by G(r∗d). Consider the following strategy profile s∗ for the
subgame: players at stage j play s∗2 j−1(h

j) = f (K− j), and s∗2 j(h
j) = f (K− j− 1),∀

1≤ j ≤ K−1, and let s∗2K−1(h
K) = 0.

Theorem 3. The profile s∗ is a Nash equilibrium for the subgame G(r∗d) on the K-stage
ring, ∀ K > 2.

This result may be interpreted as follows: if the advertiser were to play strategically
assuming she has a marginal utility of at least r∗d and is aiming for a spanning tree
(global discoverability), then r∗d = f (K) will be her Nash strategy in the game induced
on the K-stage ring, ∀ K > 2 (given s∗). We can now extend the growth result of Lemma
(1) to the ring denoting by fr(K) the growth function for the ring.

Corollary 1. On the ring graph, we have fr(k) = f (k) as given by Lemma (1).

In this paper, we have studied the equilibria existence question for a simple class of
graphs. Many questions remain to be answered including extending the results to gen-
eral network structures (and to the Internet small-world connectivity graph), relaxing
the fixed cost assumption, quantifying how hard is it to find the equilibria, and devising
mechanisms to get to them. All these questions are part of our ongoing work [7].
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Abstract. We consider the problem of maximizing the probability of
hitting a strategically chosen hidden virtual network by placing a wire-
tap on a single link of a communication network. This can be seen as
a two-player win-lose (zero-sum) game that we call the wiretap game.
The value of this game is the greatest probability that the wiretapper
can secure for hitting the virtual network. The value is shown to be
equal the reciprocal of the strength of the underlying graph. We pro-
vide a polynomial-time algorithm that finds a linear-sized description of
the maxmin-polytope, and a characterization of its extreme points. It
also provides a succint representation of all equilibrium strategies of the
wiretapper that minimize the number of pure best responses of the hider.
Among these strategies, we efficiently compute the unique strategy that
maximizes the least punishment that the hider incurs for playing a pure
strategy that is not a best response. Finally, we show that this unique
strategy is the nucleolus of the recently studied simple cooperative span-
ning connectivity game.

Keywords: Network security, nucleolus, wiretapping, zero-sum game.

1 Introduction

We consider the problem of maximizing the probability of hitting a strategically
chosen hidden virtual network by placing a wiretap on a single link of a commu-
nication network, represented by an undirected, unweighted graph. This can be
seen as a two-player win-lose (zero-sum) game that we call the wiretap game. A
pure strategy of the wiretapper is an edge to tap, and of his opponent, the hider,
a choice of virtual network, a connected spanning subgraph. The wiretapper wins,
with payoff one, when he picks an edge in the network chosen by the hider, and
loses, with payoff zero, otherwise. Thus, the value of this game is the greatest
probability that the wiretapper can secure for hitting the hidden network. He
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does this by playing a maxmin strategy, which is a probability distribution on the
edges. The value also equals the smallest probability that the hider can secure,
which she does by playing a minmax strategy, which is a probability distribution
on connected spanning subgraphs.

Our results. The value is shown to be equal to the strength of the underlying
graph [6]. We obtain in polynomial time a linear number of simple two-variable
inequalities that define the maxmin-polytope, and a characterization of its ex-
treme points. In contrast, the natural description of the maxmin-polytope is
as the solutions to a linear program with exponentially many constraints. This
allows us to efficiently find all equilibrium strategies of the wiretapper that mini-
mize the number of pure best responses of the hider, and, among these strategies,
the unique strategy that maximizes the least punishment that the hider incurs
for playing a pure strategy that is not a best response. This special maxmin
strategy corresponds to the nucleolus of the spanning connectivity game, a sim-
ple cooperative game [1].

Related work. The strength of an unweighted graph, which has a central role
in our work, is also called the edge-toughness, and relates to the classical work
of Nash-Williams [8] and Tutte [12]. Cunningham [4] generalized the concept
of strength to edge-weighted graphs and proposed a strongly polynomial-time
algorithm to compute it. Computing the strength of a graph is a special type
of ratio optimization in the field of submodular function minimization [5]. Cun-
ningham used the strength of a graph to address two different one-player op-
timization problems: the optimal attack and reinforcement of a network. The
prime-partition we use is a truncated version of the principal-partition, first in-
troduced by Narayanan [7] and Tomizawa [11]. The principal-partition was used
in an extension of Cunningham’s work to an online setting [9].

The nucleolus of the spanning connectivity game can be seen as a special
maxmin strategy in the wiretap game. The connection between the nucleolus of
a cooperative game and equilibrium strategies in a zero-sum game has been in-
vestigated before in a general context [10]. However, in many cases the nucleolus
is hard to compute. Our positive results for the spanning connectivity game are
in contrast to the negative results presented in [1], where it is shown that the
problems of computing the Shapley values and Banzhaf values are #P-complete
for the spanning connectivity game.

2 The Wiretap Game

The strategic form of the wiretap game is defined implicitly by the graph G =
(V,E). The pure strategies of the wiretapper are the edges E and the pure
strategies of the hider are the set of connected spanning subgraphs S. An element
of S is a set of edges, with a typical element denoted by S. The wiretapper
receives payoff one if the edge he chooses is part of the spanning subgraph chosen
by the hider, and receives payoff zero otherwise. Thus, the value of the game is
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the probability that the wiretapper can secure for wiretapping the connected
spanning subgraph chosen by the hider.

Let Δ(A) be the set of mixed strategies (probability distributions) on a finite
set A. By the well-known minmax theorem for finite zero-sum games, the wiretap
game Γ (G) has a unique value, defined by

val(Γ ) = max
x∈Δ(E)

min
S∈S

∑
e∈S

xe = min
y∈Δ(S)

max
e∈E

∑
{S∈S:e∈S}

yS . (1)

The equilibrium or maxmin strategies of the wiretapper are the solutions {x ∈
Δ(E) |

∑
e∈S xe ≥ val(Γ ) for all S ∈ S} to the following linear program, which

has the optimal value val(Γ ).

max z
s.t.
∑

e∈S xe ≥ z for all S ∈ S ,
x ∈ Δ(E) .

(2)

Playing any maxmin strategy guarantees the wiretapper a probability of suc-
cessful wiretapping of at least val(Γ ). The equilibrium or minmax strategies of
the hider are {y ∈ Δ(S) |

∑
{S∈S:e∈S} yS ≤ val(Γ ) for all e ∈ E}. Playing

any minmax strategy guarantees the hider to suffer a probability of successful
wiretapping of no more than val(Γ ). The following simple observation shows
the importance of minimum connected spanning graphs in the analysis of the
wiretap game. For a mixed strategy x ∈ Δ(E) and pure strategy S ∈ S, the
resulting probability of a successful wiretap is

∑
e∈S xe. We denote by Gx the

edge-weighted graph comprising the graphG with edge weights x(e) for all e ∈ E.
Let w∗(x) be the weight of a minimum connected spanning graph of Gx.

Fact 1. The set of pure best responses of the hider against the mixed strategy
x ∈ Δ(E) is

{S ∈ S |
∑
e∈S

xe = w∗(x)} .

We could define the wiretap game by only allowing the hider to pick spanning
trees, however, our definition with connected spanning subgraphs allows a clean
connection to the spanning connectivity game.

3 Overview of Results

In this section, we present our results. Proofs of the results appear in [2]. We start
with the basic notations and definitions. From here on we fix a connected graph
G = (V,E). Unless mentioned explicitly otherwise, any implicit reference to a
graph is to G and α is an edge-distribution, which is a probability distribution
on the edges E. For ease, we often refer to the weighted graph Gα simply by α,
where this usage is unambiguous. For a subgraph H of G, we denote by α(H)
the sum

∑
e∈E(H) α(e), where E(H) is the edge set of H . We refer to equilibrium

strategies of the wiretapper as maxmin-edge-distributions.
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Definition 1. For every edge-distribution α, we denote its distinct weights by
xα

1 > . . . > xα
m ≥ 0 and define E(α) = {Eα

1 , . . . , E
α
m} such that Eα

i = {e ∈
E | α(e) = xα

i } for i = 1, . . . ,m.

Our initial goal is to characterize those partitions E(α) that can arise from
maxmin-edge-distributions α. We start with the following simple setting. Assume
that the wiretapper is restricted to choosing a strategy α such that |E(α)| = 2,
and xα

2 = 0. Thus, the wiretapper’s only freedom is the choice of the set Eα
1 .

What is his best possible choice? By Fact 1, a best response against α is a
minimum connected spanning subgraphH of α. So the wiretapper should choose
Eα

1 so as to maximize α(H). How can such an Eα
1 be found? To answer, we relate

the weight of a minimum connected spanning subgraph H of α to Eα
1 .

To determine α(H), we may assume about H that for every connected com-
ponent C of (V,E \Eα

1 ) we have E(H)∩E(C) = E(C), since α(e) = 0 for every
e ∈ E(C). We can also assume that |Eα

1 ∩ E(H)| is the number of connected
components in (V,E \ Eα

1 ) minus 1, since this is the minimum number of edges
in E(H) that a connected spanning subgraph may have. To formalize this we
use the following notation.

Definition 2. Let E′ ⊆ E. We set CG(E′), to be the number of connected
components in the graph G \ E′, where G \ E′ is a shorthand for (V,E \ E′). If
E′ = ∅ we just write CG.

Using the above notation, a connected spanning subgraph H is a minimum
connected spanning subgraph of α if |H ∩ Eα

1 | = CG(Eα
1 )− CG = CG(Eα

1 ) − 1.
Now we can compute α(H). By definition, xα

1 = 1
|Eα

1 | and xα
2 = 0 and therefore

α(H) =
CG(Eα

1 )− CG

|Eα
1 |

.

We call this ratio that determines α(H) the cut-rate of Eα
1 . Note that it uniquely

determines the weight of a minimum connected spanning subgraph of α.

Definition 3. Let E′ ⊆ E. The cut-rate of E′ in G is denoted by crG(E′) and
defined as follows.

crG(E′) :=

{
CG(E′)−CG

|E′| if |V | > 1 and |E′| > 0 ,

0 otherwise .
(3)

We write cr(E′), unless we make a point of referring to a different graph.

Thus, when |E(α)| = 2 and xα
2 = 0, a best choice of Eα

1 is one for which cr(Eα
1 )

is maximum. Since E is finite, an Eα
1 that maximizes cr(Eα

1 ) exists.

Definition 4. The cut-rate of G is defined as opt := maxE′⊆E cr(E′) .

By opt, we always refer to the cut-rate of the graph G. In case we refer to the
cut-rate of some other graph, we add the name of the graph as a subscript.
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The value opt is a well known and studied attribute of a graph. It is equal to
the reciprocal of the strength of a graph, as defined by Gusfield [6] and named
by Cunningham [4]. There exists a combinatorial algorithm for computing the
strength, and hence opt , that runs in time polynomial in the size of the graph,
by which we always mean |V |+ |E|.

We generalize the above technique to the case that α is not restricted.

Definition 5. For � = 1, . . . , |E(α)| we set

crα
� =

CG(∪�
i=1E

α
i )− CG(∪�−1

i=1E
α
i )

|Eα
� |

.

Proposition 1. Let H be a minimum connected spanning subgraph of α. Then
|E(H) ∩ Eα

� | = |Eα
� |crα

� for every � such that xα
� > 0.

Using Proposition 1 we can relate the weight of a minimum connected span-
ning subgraph of α to the sets of E(α). This relationship also characterizes the
maxmin-edge-distributions, which are the edge-distributions whose minimum
connected spanning subgraph weight is the maximum possible.

Theorem 1. Let H be a minimum connected spanning subgraph of α and m =
|E(α)|. Then α(H) ≤ opt and we have α(H) = opt if and only if

1. crα
� = opt for � = 1, . . . ,m− 1, and

2. if crα
m �= opt then xα

m = 0.

An immediate implication of Theorem 1 is that opt is an upper bound on the
value the wiretapper can achieve. This also follows from the well-known fact
that the fractional packing number of spanning trees of a graph is equal to the
strength of a graph, which in turn follows from the theorems of Nash-Williams [8]
and Tutte [12] on the integral packing number (see also [3]). Since we have al-
ready seen that indeed the wiretapper can achieve opt by distributing all prob-
ability mass equally over an edge set that has cut-rate opt, we get the following.

Corollary 1. The value of the wiretap game is opt.

We know what the value of the game is and we know a characterization of
the E(α)’s for maxmin-edge-distributions α. Yet this characterization does not
give us a simple way to find maxmin-edge-distributions. Resolving this is our
next goal.

Definition 6. Let E1, E2 be partitions of E. Then E1 refines E2 if for every set
E′ ∈ E1 there exists a set E′′ ∈ E2 such that E′ ⊆ E′′.

Thus, there exists a partition of E that is equal to E(β) for some maxmin-edge-
distribution β and refines E(γ) for every maxmin-edge-distribution γ. We call
such a partition the prime-partition. It is unique since there can not be different
partitions that refine each other.
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Definition 7. The prime-partition P is the unique partition that is equal to
E(β) for some maxmin-edge-distribution β and refines E(γ) for every maxmin-
edge-distribution γ.

Theorem 2. The prime-partition exists and can be computed in time polynomial
in the size of G.

The prime-partition P reveals a lot about the structure of the maxmin-edge-
distributions. Yet by itself P does not give us a simple means for generating
maxmin-edge-distributions. Using the algorithm for finding P one can show that,
depending on G, there may be a unique element in P whose edges are assigned
0 by every maxmin-edge-distribution.

Lemma 1. crG(E) �= opt if and only if there exists a unique set D ∈ P such
that for every maxmin-edge-distribution α and e ∈ D we have α(e) = 0. If D
exists then it can be found in time polynomial in the size of G.

From here on we shall always refer to the set D in Lemma 1 as the degenerate
set. For convenience, if D does not exist then we shall treat both {D} and
D as the empty set. We use the prime-partition to define a special subset of
the minimum connected spanning subgraphs that we call the omni-connected-
spanning-subgraphs.

Definition 8. A connected spanning subgraphH is an omni-connected-spanning-
subgraph if for every P ∈ P \ {D} we have |E(H) ∩ P | = |P | · opt .

Proposition 2. There exists an omni-connected-spanning-subgraph.

The omni-connected-spanning-subgraphs are the set of the hider’s pure strategies
that are best responses against every maxmin-edge-distribution.

Proposition 3. For every edge-distribution α such that P refines E(α) and
α(e) = 0 for every e ∈ D and omni-connected-spanning-subgraph H, we have
α(H) = opt .

The importance of omni-connected-spanning-subgraphs stems from the following
scenario. Assume that P refines E(α) and α(e) = 0 for every e ∈ D, and let
H be an omni-connected-spanning-subgraph. By Proposition 3, we know that
α(H) = opt . Suppose we can remove from H an edge from E(H)∩P , where P is
a nondegenerate element of P , and add a new edge from another set P ′ \E(H)
in order to get a new connected spanning subgraph. Assume α assigns to the
edge removed strictly more weight than it assigns to the edge added. Then the
new connected spanning subgraph has weight strictly less than α(H) and hence
strictly less than opt , since α(H) = opt by Proposition 3. Consequently, α is
not a maxmin-edge-distribution and we can conclude that any edge-distribution
β that assigns to each edge in P strictly more weight than to the edges in P ′

is not a maxmin-edge-distribution. This intuition is captured by the following
definition, which leads to the characterization of maxmin-edge-distributions in
Theorem 3.
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Definition 9. Let P, P ′ ∈ P \ {D} be distinct. Then P leads to P ′ if and only
if there exists an omni-connected-spanning-subgraph H with e ∈ P \ E(H) and
e′ ∈ P ′ ∩ E(H) such that (H \ {e′}) ∪ {e} is a connected spanning subgraph.

Definition 10. Let P, P ′ ∈ P\{D} be distinct. We say that P is a parent of P ′

(conversely P ′ a child of P ) if P leads to P ′ and there is no P ′′ ∈ P such that
P leads to P ′′ and P ′′ leads to P ′. We refer to the relation as the parent-child
relation and denote it by O.

Definition 11. An edge-distribution α agrees with O if P refines E(α) and for
every P ∈ P \ {D} that is a parent of P ′ ∈ P \ {D} and e ∈ P , e′ ∈ P ′ we have
α(e) ≥ α(e′), and for every e ∈ D we have α(e) = 0.

Theorem 3. An edge-distribution α is a maxmin-edge-distribution if and only
if it agrees with O.

Theorem 3 defines a linear inequality for each parent and child in the relation O.
Along with the inequalities that define a probability distribution on edges,
this gives a small number of two-variable inequalities describing the maxmin-
polytope. In [2], we characterize the extreme points of the maxmin-polytope.

Theorem 4. The parent-child relation O can be computed in time polynomial
in the size of G.

The wiretapper will in general have a choice of infinitely many maxmin-edge-
distributions. To choose a maxmin-edge-distribution, it is natural to consider
refinements of the Nash equilibrium property that are beneficial to the wiretap-
per if the hider does not play optimally. First we show how to minimize the
number of pure best responses of the hider. To do this, we use the relation O to
characterize a special type of maxmin-edge-distribution which achieves this. We
call this a prime-edge-distribution. The prime-edge-distributions are character-
ized by the following lemma.

Definition 12. A maxmin-edge-distribution α is a prime-edge-distribution if
the number of the hider’s pure best responses against it is the minimum possible.

Lemma 2. An edge-distribution γ is a prime-edge-distribution if and only if
γ(e) > 0 for every e ∈ E \D, and for every P, P ′ ∈ P \ {D} such that P is a
parent of P ′ and every e ∈ P , e′ ∈ P ′, we have γ(e′) > γ(e′′).

Using this characterization one can easily check whether α is a prime-edge-
distribution and one can also easily construct a prime-edge-distribution.

We have already seen how to minimize the number of pure best responses of
the hider, by playing a prime-edge-distribution. We now show how to uniquely
maximize the weight of a pure second-best response by choosing between prime-
edge-distributions. This maximizes the least punishment that the hider will incur
for picking a non-optimal pure strategy.

Against a prime-edge-distribution, the candidates for pure second-best re-
sponses are those connected spanning subgraphs that differ from omni-connected-
spanning-subgraphs in at most two edges. For each parent and child we have at
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least one of these second-best responses. A second-best response either is a best
response with one extra edge, or it differs from a best response in two edges,
where it has one less edge in a child of O and one more in the child’s parent.

We are only interested in the case that opt < 1, since the graph has opt = 1
if and only if it contains a bridge, in which case the value of the game is 1 and
the hider does not have a second-best response. So we assume that opt < 1.

Intuitively, to maximize the weight of a second-best response, we want to min-
imize the number of distinct weights. The minimum number of distinct positive
weights we can achieve for a prime-edge-distribution is equal to the number of
elements in the longest chain in the parent-child relation. This motivates the
following definition.

Definition 13. We define L1,L2, . . . inductively as follows. The set L1 is all
the sinks of O excluding D. For j = 2, . . . , we have that Lj is the set of all the
sinks when all elements of {D} ∪ (∪i=1,...,j−1Li) have been removed from O.

Note that O is defined only over nondegenerate elements of P and hence the
degenerate set is not contained in any of L1,L2, . . . .

The following theorem shows that there is a unique prime-edge-distribution
that maximizes the difference between the payoff of a best and second-best re-
sponse. This unique prime-edge-distribution turns out to be the nucleolus of the
spanning connectivity game, as explained in [2]. For convenience, we refer to this
strategy as the nucleolus.

Theorem 5. Let Li = ∪E′∈LiE
′ for i = 1, . . . , t. Let

κ =
1∑t

i=1 i · |Li|
.

The nucleolus ν has ν(e) = i · κ for every i ∈ {1, . . . , t} and e ∈ Li and ν(e) = 0
otherwise.
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Refining the Cost of Cheap Labor
in Set System Auctions

Ning Chen, Edith Elkind, and Nick Gravin

Division of Mathematical Sciences, Nanyang Technological University, Singapore

Abstract. In set system auctions, a single buyer needs to purchase services from
multiple competing providers, and the set of providers has a combinatorial struc-
ture; a popular example is provided by shortest path auctions [1,7]. In [3] it has
been observed that if such an auction is conducted using first-price rules, then,
counterintuitively, the buyer’s payment may go down if some of the sellers are
prohibited from participating in the auction. This reduction in payments has been
termed “the cost of cheap labor”. In this paper, we demonstrate that the buyer
can attain further savings by setting lower bounds on sellers’ bids. Our model
is a refinement of the original model of [3]: indeed, the latter can be obtained
from the former by requiring these lower bounds to take values in {0, +∞}. We
provide upper and lower bounds on the reduction in the buyer’s payments in our
model for various set systems, such as minimum spanning tree auctions, bipartite
matching auctions, single path and k-path auctions, vertex cover auctions, and
dominating set auctions. In particular, we illustrate the power of the new model
by showing that for vertex cover auctions, in our model the buyer’s savings can
be linear, whereas in the original model of [3] no savings can be achieved.

1 Introduction

Combinatorial procurement auctions, or set system auctions, play an important role in
electronic commerce [13]. In such auctions, a buyer (center) needs to purchase products
or services from a number of competing sellers, and the subsets of sellers that satisfy
the buyer’s requirements can be characterized combinatorially. A well-known example
is provided by path auctions [1,7], where the buyer’s aim is to obtain a path in a network
whose edges are owned by selfish agents; other examples include minimum spanning
tree auctions [14], bipartite matching auctions [3], and vertex cover auctions [2]. An
important research goal in this setting is the minimization of the buyer’s total payment.
While most of the work on this topic focuses on dominant-strategy incentive compatible
mechanisms (e.g., [1,14,9,7,5]), the properties of Nash equilibria of first-price auctions
have recently received a lot of attention as well [8,6,3].

An interesting — and, perhaps, counterintuitive — property of set system auctions
is that the buyer can lower her total payment by prohibiting some of the agents from
participating in the auction. In other words, reducing competition in the market can
benefit the buyer. This has been observed for VCG mechanisms by Elkind [5] in the
context of path auctions (see also [4]). Later, Chen and Karlin [3] discovered that this
can also happen in first-price auctions for a variety of set systems. They labeled this
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phenomenon “the cost of cheap labor”, and provided tight bounds on the cost of cheap
labor in several set systems.

Prohibiting an agent from participating in an auction can be interpreted as requiring
him to raise his bid to +∞. The goal of this paper is to explore a more general ap-
proach, namely, allowing the center to place arbitrary lower bounds on all sellers’ bids,
in a manner reminiscent of using reserve prices in combinatorial auctions. Clearly, this
technique is more flexible than simply deleting agents, and hence the resulting savings,
which we term “the refined cost of cheap labor”, may be even higher than the cost of
cheap labor, as defined in [3]. In this paper, we study the benefits of this approach by
quantifying the refined cost of cheap labor for a number of well-known set systems.

We start by providing general upper and lower bounds on the refined cost of cheap
labor for arbitrary set systems (Section 3). We then consider several classes of set sys-
tems for which we can show that the refined cost of cheap labor and the cost of cheap
labor coincide. These include matroids and (single) paths considered in [3], as well as
a richer set system not considered in [3], namely, k-paths. For k-path auctions, we sig-
nificantly extend the techniques of [3] to provide tight bounds on the (refined) cost of
cheap labor.

We then move on to vertex cover set systems. In these set systems, deleting an agent
creates a monopoly, and hence the cost of cheap labor is exactly 1. On the other hand,
artificially inflating the agents’ bids may prove to be very profitable for the buyer: we
show that there exist vertex cover auctions for which the refined cost of cheap labor is
linear in the number of agents, matching the general upper bound of Section 3. Finally,
we consider set systems that are based on dominating sets and perfect bipartite match-
ings. For such set systems, we show that both the cost of cheap labor and the refined
cost of cheap labor can be quite large, and also that these two quantities can differ by a
large factor. These set systems illustrate that setting lower bounds on the sellers’ bids is
a very powerful — yet simple and practically applicable — technique. Thus, we believe
that the refined cost of cheap labor is an important characteristic of a set system auction,
which deserves further study.

2 Preliminaries

A set system is a pair (E,F), where E is the ground set and F ⊆ 2E is a collection of
feasible subsets of E. Throughout the paper, we only consider set systems with |E| <
+∞ and set n = |E|. The set F can be listed explicitly, or defined combinatorially. In
this paper, we consider the following set systems:

– spanning trees: the setE is the set of all edges of a given graphG andF consists of
all sets S ⊆ E that contain a spanning tree. This is a special case of a more general
matroid set system [12], in which the set E is the ground set of a given matroidM ,
and the set F is the collection of all subsets of 2E that contain a base of M .

– perfect bipartite matchings: the set E is the set of all edges of a given bipartite
graphG and F consists of all sets S ⊆ E that contain a perfect bipartite matching.

– k-paths: the set E is the set of all edges of a given network G with a source s and
a sink t, and F consists of all sets S ⊆ E that contain k edge-disjoint s-t paths.
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– vertex covers: the set E is the set of all vertices of a given graphG, and F consists
of all sets S ⊆ E that contain a vertex cover of G.

– dominating sets: the set E is the set of all vertices of a given graph G, and F
consists of all sets S ⊆ E that contain a dominating set of G, i.e., for each vertex
v /∈ S, there is u ∈ S such that there is an edge between u and v.

Observe that all set systems listed above are upwards closed, i.e.,S ∈ F impliesS′ ∈
F for any S′ ⊇ S. A set system is said to be monopoly-free if ∩S∈FS = ∅. Throughout
this paper, we restrict ourselves to upwards closed, monopoly-free set systems.

In a set system auction for a set system (E,F), each e ∈ E is owned by a selfish
agent, and there exists a center (auctioneer) who wants to purchase a feasible solution,
i.e., an element of F . Each agent e ∈ E has a cost ce ≥ 0, which is incurred if this ele-
ment is used in the solution purchased by the center. We will refer to a triple (E,F , c),
where c = (ce)e∈E as a market. For any subset S ⊆ E, we write c(S) to denote∑

e∈S ce.
Throughout the paper, we assume that the sale is conducted by means of a first-price

auction: each agent e announces his bid be, indicating how much he wants to be paid
for the use of his element, the auctioneer selects the cheapest feasible set breaking ties
in an arbitrary (but deterministic) way, and all agents in the winning set are paid their
bid. Thus, the payoff of a winning agent e with bid be is be − ce, whereas the payoff
of any losing agent is 0. The agents are selfish, i.e., they aim to maximize their payoff.
Therefore, we are interested in Nash equilibria (NE) of such auctions, i.e., vectors of
bids b = (be)e∈E such that no agent e can increase his payoff by bidding b′e �= be as
long as all other agents bid according to b. We restrict ourselves to equilibria in which
no agent bids below their cost, i.e., be ≥ ce for all e ∈ E.

Unfortunately, as shown in [8], for some markets and some tie-breaking rules, first-
price auctions may have no NE in pure strategies. However, they do have ε-Nash
equilibria in pure strategies for any ε > 0, i.e., a bid vector such that no agent can
unilaterally change his bid to increase the payoff by more than ε. Moreover, for any
market (E,F , c), there exists a tie-breaking rule (e.g., one that favors the feasible set
with the smallest cost) that ensures the existence of a pure NE. Thus, in what follows,
we will ignore the issues of existence of pure NE, and use the term ”Nash equilibrium”
to refer to a bid vector that is a pure NE of a first-price auction for a given market un-
der some tie-breaking rule, or, equivalently, can be obtained as a limit of ε-NE for that
market as ε→ 0.

Following the approach of [3], we will focus on NE of set system auctions that are
buyer-optimal, i.e., minimize the center’s total payment. For a given market (E,F , c),
we denote the center’s total payment in such a NE with the smallest total payment by
ν(E,F , c).

This quantity is similar to—but different from—the quantity ν0 that is used in [9]
as a benchmark to measure the frugality of dominant-strategy set system auctions.
Indeed, the latter can be interpreted as the minimal total payment in a buyer-
optimal efficient NE of a first-price auction (i.e., a NE in which the winning set S
satisfies S ∈ argminS∈Fc(S)), in which, in addition, all losing agents bid their
cost.
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3 Refined Cost of Cheap Labor: General Bounds

In this section, we introduce our new measure of the cost of cheap labor, which we will
call the refined cost of cheap labor, and compare it to the notion of the cheap labor cost
introduced in [3].

The following definition of cheap labor cost is adapted from [3].

Definition 1. Given a market (E,F , c), its cheap labor cost δ1(E,F , c) is defined as
follows:

δ1(E,F , c) = max
S⊆E

ν(E,F , c)
ν(S,F [S], c[S])

,

where F [S] = {S′ ∈ F | S′ ⊆ S}, and c[S] = (ce)e∈S . The cheap labor cost of a set
system (E,F) is defined as δ1(E,F) = supc δ1(E,F , c).

Informally, δ1(E,F) measures how much the center can save by removing some of
the agents from the system. Alternatively, the center’s actions can be interpreted as
setting the costs of some agents to +∞ (or some appropriately large number). The
notion of refined cheap labor cost, which we will now introduce, allows the center more
flexibility, permitting him to raise the cost of any agent e ∈ E to any value between its
cost ce and +∞.

Definition 2. Given a market (E,F , c), its refined cheap labor cost δ2(E,F , c) is de-
fined as follows:

δ2(E,F , c) = sup
c′�c

ν(E,F , c)
ν(E,F , c′) .

where c′ - c means that c′e ≥ ce for all e ∈ E. The refined cheap labor cost of a set
system (E,F) is defined as δ2(E,F) = supc δ2(E,F , c).

As argued above, Definition 1 can be obtained from Definition 2 by requiring that c′e ∈
{ce,+∞} for all e ∈ E. The following theorem provides some simple bounds on δ1
and δ2.

Theorem 1. Fix a market (E,F , c), and let S be a cheapest feasible solution inF with
respect to c. Then the following inequalities hold:

1 ≤ δ1(E,F , c) ≤ δ2(E,F , c) ≤ |S|.

In what follows, we present upper and lower bounds on δ2 for specific set systems.

4 Spanning Trees and Other Matroids

For any spanning tree set system, artificially inflating the agents’ costs cannot lower the
center’s payments, i.e., δ1 = δ2 = 1 (where δ1 = 1 is shown in [3]). In fact, this result
holds for the more general case of matroid set systems. We refer the readers to [12] for
a formal definition of a matroid.

Theorem 2. For any matroid marketM = (E,F , c) we have δ2(E,F , c) = 1.



Refining the Cost of Cheap Labor in Set System Auctions 451

5 Paths and k-Paths

Throughout this section, for a given network G = (V,E) with a source s and a sink t,
we denote by Fk the collection of sets of edges that contain k edge-disjoint paths from
s to t.

For k-paths set systems, it turns out that the optimal cost reduction can be achieved
by simply deleting edges in E, i.e., δ1 = δ2. Furthermore, δ2 = δ1 ≤ k + 1 for any
network, and this bound is tight, i.e. for any k there is a k-path set system (E,Fk) with
δ1(E,Fk) = δ2(E,Fk) = k + 1. This generalizes the result of [3], which proves this
claim for k = 1.

Theorem 3. For any network G = (V,E) with a source s and a sink t, and any cost
vector c, we have δ2(E,Fk, c) = δ1(E,Fk, c).

We also give a tight bound on the cost of cheap labor (and hence, by Theorem 3, a tight
bound on the refined cost of cheap labor) in any k-paths set system.

Theorem 4. For any network G = (V,E) with a source s and a sink t, and any cost
vector c, we have δ1(E,Fk, c) ≤ k + 1, and this bound is tight.

6 Vertex Covers

In this section, we consider vertex cover auctions. In these auctions, as well as in the
auctions considered in Section 7, the sellers are the vertices. Therefore, in these two
sections we depart from the standard graph-theoretic notation, and use E to denote the
set of vertices of a graph G, and H to denote the set of edges of G. Also, we denote
by F the collection of all sets of vertices that contain a vertex cover (respectively, a
dominating set) for G.

The vertex cover set systems demonstrate that δ1 and δ2 can be very different: for
any such set system δ1 = 1, whereas δ2 can be linear in |E|.
Proposition 1. For any graph G = (E,H) and any costs c, we have δ1(E,F , c) = 1.

In contrast, we will now show that there is a graphG = (E,H) with |E| = n such that
the corresponding set system (E,F) satisfies δ2(E,F) = Ω(n).

Proposition 2. There exists a graph G = (E,H) and a cost vector c that satisfy
δ2(E,F , c) ≥ n−3

2 , where n = |E|.
Proof. Consider a graph G obtained from complete graph Kn−2 by adding two new
vertices u and u′ and connecting them to two adjacent vertices v and v′ of Kn−2,
respectively (see Fig. 1). In addition, consider a cost vector c given by cv = cv′ = 1,
and ce = 0 for e �= v, v′.

For the cost vector c, it can be seen that the buyer-optimal NE b is bu = bu′ = 0,
be = 1 for e �= u, u′. Thus, ν(E,F , c) = n − 3. On the other hand, consider a cost
vector c′ - c given by c′v = c′v′ = c′u = c′u′ = 1 and ce = 0 for e �= v, v′, u, u′. It
is easy to see that for this cost vector, the buyer-optimal NE b′ satisfies b′ = c′ and
the winning set consists of all vertices of Kn−2. Hence, ν(E,F , c′) = 2, and we have
δ2(E,F , c) ≥ n−3

2 .
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7 Dominating Sets

For dominating sets, note that deleting an agent that corresponds to a vertex e is not
equivalent to deleting the vertex e itself from the graph: e still needs to be dominated,
even though it cannot be a member of a feasible set.

For dominating sets, δ1 does not necessarily equal δ2. Furthermore, δ1 and δ2 can be
as large as Ω(

√
n). We will now present two examples to illustrate this. Both examples

are obtained by a modification of the construction used in the last section.

Definition 3. Given a complete graph Kn, n ≥ 3, let K ′
n be the graph obtained from

Kn by replacing each of its edges (vi, vj) by a pair of edges (vi, wij), (wij , vj). Define
W = {wij}i,j∈{1,...,n} and V = {vi}i∈{1,...,n}.

Proposition 3. There exists a graph G = (E,H) and a cost vector c that satisfy
δ1(E,F , c) = 1 and δ2(E,F , c) = Ω(

√
n).

The graph G is constructed from K ′
n by selecting two adjacent vertices v, v′ ∈ V

and adding three new vertices t, u, u′ and n + 2 new edges (u, v), (u′, v′), (t, v)v∈V

(see Fig. 3 [left]). For cost vector c, we set ce = n2 for e ∈ W , cv = cv′ = 1,
cu = cu′ = ct = 0, and ce = 0 for e ∈ V \ {v, v′}.

Proposition 4. There is a graph G = (E,H) such that δ1(E,F) = Ω(
√
n) and

δ2(E,F) = Ω(
√
n).

The graph G is constructed from K ′
n by selecting a vertex v ∈ V and adding three

new vertices t, u, u′ and n + 3 new edges (u, v), (u′, v), (u, u′), (t, v)v∈V (see Fig. 3
[right]). For cost vector c, we set ce = n2 for e ∈ W , cv = 1, cu = cu′ = ct = 0, and
ce = 0 for e ∈ V \ {v}.

8 Perfect Bipartite Matchings

Perfect bipartite matching systems have a similar flavor to dominating set systems—δ2
can be very different from δ1, and both of them can be very large. For perfect matching
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Fig. 3. Dominating Set (graph G [left] and G′ [right] with n = 5)

in bipartite graphs, [3] shows that there is a graph G such that the corresponding set
system satisfies δ1(E,F) = Ω(n). As any bipartite matching in a graph with n edges
has size O(n), by Theorem 1 we have the following claim.

Proposition 5. There is a graph G = (V,E) such that δ1(E,F) = Θ(n) and
δ2(E,F) = Θ(n), where n = |E|.

Proposition 5 shows that in the worst case δ1 and δ2 coincide. However, they can also
differ by a linear factor.

Proposition 6. There is a graph G = (V,E) such that δ1(E,F) = 1 and δ2(E,F) =
Ω(n).

Proof. Consider the graph shown in Fig. 2. For any cost vector c, since we cannot delete
any edge without creating a monopoly, we have δ1(E,F , c) = 1.

On the other hand, to see that δ2(E,F) = Ω(n), consider a cost vector c where
c(ui,u) = 1 for i = 3, . . . , n, and ce = 0 for any other edge e ∈ E. In any buyer-
optimal Nash equilibrium b, we have to set b(ui,vi) = 1 for i = 3, . . . , n, which implies
that ν(E,F , c) = n − 2. Consider another cost vector c′ - c, where c(ui,u) = 1 for
i = 1, . . . , n and ce = 0 for any other edge e ∈ E. It can be seen that ν(E,F , c′) = 1,
and thus δ2(E,F , c) ≥ n− 2.

9 Conclusions and Future Work

We have introduced the notion of refined cost of cheap labor for set system auctions,
and analyzed it for several classes of set systems. A number of questions suggest them-
selves for further study. First, in this paper we largely ignored computational issues
related to our problem, such as, e.g., computing the refined cost of cheap labor for a
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given set system, or identifying an optimal or close-to-optimal modified cost vector c′.
We believe that this is a fruitful topic that deserves to be investigated further. Another
promising research direction is bounding the ratio between ν and ν0, i.e., the additional
cost of requiring the winning set to be optimal with respect to the true costs; this quan-
tity can be seen as “the cost of efficiency”. In particular, it would be interesting to see
if the latter can be bounded in terms of the (refined) cost of cheap labor.
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Abstract. We consider a problem at the intersection of distributed com-
puting and game theory, namely: Is it possible to achieve the “windfall
of malice” even without the actual presence of malicious players? Our
answer to this question is “Yes and No”. Our positive result is that for
the virus inoculation game, it is possible to achieve the windfall of malice
by use of a mediator. Our negative result is that for symmetric conges-
tion games that are known to have a windfall of malice, it is not possible
to design a mediator that achieves this windfall. In proving these two
results, we develop novel techniques for mediator design that we believe
will be helpful for creating non-trivial mediators to improve social welfare
in a large class of games.

1 Introduction

Recent results show that malicious players in a game may, counter-intuitively,
improve social welfare [7,4,9]. For example, in [7] it is showed that for a virus
inoculation game, the existence of malicious players will actually lead to bet-
ter social welfare for the remaining players than if such malicious players are
absent.This improvement in the social welfare with malicious players has been
referred to as the “windfall of malice” [4]. The existence of the windfall of malice
for some games leads to an intriguing question: Can we achieve the windfall of
malice even without the actual presence of malicious players?

We show that the answer to the previous question is sometimes “Yes”. How
do we achieve the beneficial impact of malicious players without their actual
presence? Our approach is to use a mediator. Informally, a mediator is a trusted
third party that suggests actions to each player. The players retain free will and
can ignore the mediator’s suggestions. The mediator proposes actions privately
to each player, but the algorithm the mediator uses to decide what to propose is
public knowledge. In this paper, we introduce a general technique for designing
mediators that is inspired by careful study of the “windfall of malice” effect.
In our approach, the mediator makes a random choice of one of two possible
� This research was partially supported by: for the 1st. 2nd authors, the FP7-ICT-
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configurations, where a configuration is just a set of proposed actions for each
player. The first configuration is optimal: the mediator proposes a set of actions
that achieves the social optimum (or very close to it). The second configuration is
“fear inducing”: the mediator proposes a set of actions that leads to catastrophic
failure for those players who do not heed the mediators advice. The purpose of
the second configuration is to ensure that the players follow the advice of the
mediator when the optimal configuration is chosen. Thus, the random choice of
which configuration is chosen must be hidden from the players. We show the
applicability of our technique by using it to design a mediator for the virus
inoculation game from [7] that achieves a social welfare that is asymptotically
optimal.

We also show the limits of our technique by proving an impossibility result
that shows that for a large class of games, no mediator will improve the so-
cial welfare over the best Nash equilibrium. In particular, this impossibility re-
sult holds for the congestion games that in [4] is shown to have a windfall of
malice.

Related Work. The concept of a mediator is closely related to that of a cor-
related equilibrium, which was introduced by Aumann in [3]. In particular, if a
mediator proposes actions to the players such that it is in the best interest of
each player to follow the mediators proposal, then the mediator is said to im-
plement a correlated equilibrium. There are several recent results on correlated
equilibrium and mediators. The authors in [8] give polynomial time algorithms
that can optimize over correlated equilbria, via a LP approach, for a large class of
multiplayer games that are “succinctly representable” . Christodoulou et al. [6]
study the price of anarchy and stability in congestion games where each edge
has a linear cost function with positive coefficients. They show that in such a
setting, the price of anarchy for pure equilibrium is almost the same as the price
of anarchy of correlated equilibrium. Balcan et al. [5], describe techniques for
moving from a high cost Nash equilibrium to a low cost Nash equilibrium via a
“public service advertising campaign”. They show that in many games, even if
not all players follow instructions, it is possible to ensure such a move . While
their result does not explicitly consider mediators, it is similar in flavor to ours in
the sense that an outside third party is acting to improve social welfare. Recent
work by Abraham et al. [1] presents distributed algorithms that enable a group
of players to implement a mediator, entirely through point-to-point communica-
tion, even when there is a constant fraction of adversarial players.

Basic definitions and notation. A correlated equilibrium is a probability
distribution over strategy vectors that ensures that no player has incentive to
deviate. We define a configuration for a given game to be a vector of pure strate-
gies for that game, one for each player. We define a mediator for a game to be a
probability distribution D(C) over a finite set of different configurations C. The
set of configurations C and the distribution D(C) are known to all players. How-
ever, the actual configuration chosen is unknown, and the advice the mediator
gives to a particular player based on the chosen configuration is known only to
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that player. We say that a mediator is valid if all players are incentivized to
follow its advice. In this case, the mediator implements a correlated equilibrium.
From a distributed computing viewpoint, the major difference between a cor-
related equilibrium and a Nash equilibrium is that in a correlated equilibrium,
players share a global coin, but in a Nash equilibrium, players only have access
to private coins.

Throughout this paper, we will only consider mediators that treat all players
equally, i.e., once having decided (by a random experiment according to D(C))
which is the configuration the mediator is choosing from, all players have the
same probability to be proposed a particular strategy. Also, throughout the
paper we assume that the number of strategic players, n, is very large (tending
to infinity). Finally, we will use the notation a(n) ∼ b(n) if a(n) = b(n)(1±o(1)).
We also use the notation [n] = {1, . . . , n}.

2 Virus Inoculation Game

We now describe the virus inoculation game from [2,7]. There are n players,
each corresponding to a node in a square grid G. Each player has two choices:
either to inoculate itself (at a cost of 1) or to do nothing and risk infection
(which costs L). After the decision of the nodes to inoculate or not, one node
selected uniformly at random is infected with a virus. A node v that chooses not
to inoculate gets infected by the virus if either the virus starts at v or the virus
starts at another node v′ and there is a path of not inoculated nodes connecting
v and v′.

The attack graph Ga is the graph induced on G by the set of all nodes that
do not inoculate. Aspnes et al. [2] proved that in a pure Nash equilibrium every
component of the attack graph has size n/L. The social welfare achieved in such
an equilibrium is thus Θ(n). Following Moscibroda et al. [7], we will focus on
outcomes of the game on the grid. It is proved there that the minimum social
welfare on the grid is Θ(n2/3L1/3), which occurs when the components in Ga

are of size (n/L)2/3. This implies that the cost of anarchy for this game is large
when L is large. However, Moscibroda et al. show that the existence of enough
Byzantine players, who can never be trusted to inoculate, ensures that the social
welfare of any Nash equilibrium is slightly better than Θ(n).

Based on the result from [7], we observe that the main problem in this game
is that the individual players do not have enough fear of being infected. In par-
ticular, they are unable to achieve the optimal social welfare because they form
connected components in Ga that are too large. Thus, we design a mediator
that randomly chooses between two configurations (see Figure 1). The first con-
figuration is optimal: all components in Ga are of size (n/L)2/3. The second
configuration is “fear inducing”: any node that does not inoculate in this con-
figuration has probability about 1/2 of being infected. The only purpose of the
second configuration is to ensure that the selfish players follow the advice of the
mediator when the optimal configuration is chosen.
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We now formally describe the mediator for this game.1 The mediator will
choose randomly between one of the following two configurations C1 and C2.

Configuration C1: The mediator proposes a pattern of inoculation ensuring
that 1) each component in Ga is of size no more than (n

L)2/3; 2) each node is
advised to inoculate with equal probability; and 3) the probability that a fixed
node is advised to inoculate is at most 2(L/n)1/3. It does this as follows.

1. The mediator chooses a random integer x uniformly in [0, (n/L)1/3 − 1].
2. For every node v in row r and column c, if one of the following two conditions
hold, the mediator proposes v to inoculate: 1) r ≡ x mod (n/L)1/3; or 2) c ≡ x
mod (n/L)1/3. Otherwise the mediator tells v not to inoculate.

Configuration C2: The mediator proposes a pattern of inoculation such that
1) all nodes that do not inoculate are in one giant component in Ga; 2) each
node has equal probability of being chosen to inoculate; and 3) the probability
that a fixed node is advised to inoculate is 1

2 −
1

2
√

n
. The mediator accomplishes

this in the following manner:

1. The mediator flips a coin. If it comes up heads, it proposes that all nodes in
even columns do not inoculate. If it comes up tails, it proposes that all nodes in
odd columns do not inoculate.
2. The mediator chooses a random integer, x, uniformly in [1,

√
n]. For each

of the columns that have not already been told not to inoculate, the mediator
proposes that each node in that column inoculate except for the x-th node in
that column.

(n/L)1/3

√
n

C2 C1

Fig. 1. The
√

n×√n grid with configurations C1, C2

For these two configurations C1 and C2 we now define the probability distri-
bution D({C1, C2}) with p1 = (1− cL−2/3n−1/3) and p2 = cL−2/3n−1/3, where
c > 0 can be chosen to be any small constant satisfying c > 4L/(L − 2). The
following result shows that D({C1, C2}) is asymptotically optimal.
1 For ease of analysis, we assume that both

√
n and ( n

L
)1/3 are integers. Also,

√
n

should be an integer multiple of ( n
L

)1/3 (this assumption can be removed easily
without effecting our asymptotic results).
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Theorem 1. D({C1, C2}) is a mediator with social welfare Θ(n2/3L1/3).

Proof. Define by Ej
I the event that the mediator advises player j to inoculate and

define by Ej

Ī
the event that the mediator advises player j not to inoculate. Since

all players are to be treated equally by the mediator, we omit j. Let EA be the
event that a node gets infected by the virus, and denote by CA the infection cost.
Denote by CI the cost of inoculation. We need to show that D({C1, C2}) yields a
mediator, i.e. that E [CA|EI ] ≥ E [CI |EI ] = 1 and E [CA|EĪ ] ≤ E [CI |EĪ ] = 1, which
is equivalent to showing that: (1) Pr (EA|EI) ≥ 1/L and (2) Pr (EA|EĪ) ≤ 1/L.

Let Ei, i = 1, 2, be the event that Ci, i = 1, 2 is chosen. To prove (1), observe
that

Pr (E1|EI) = Pr (E1, EI)/Pr (EI) ∼
p1(2(L/n)1/3)

p1(2(L/n)1/3) + p2(1/2− 1/(2
√
n))

,

and similarly for Pr (E2|EI). Now, plugging in the values of p1, p2 and using that
L ∈ o(n) we get2

Pr (EA|EI) = Pr (EA, E1|EI) + Pr (EA, E2|EI)
= Pr (EA|E1, EI)Pr (E1|EI) + Pr (EA|E2, EI)Pr (E2|EI)

∼ 2
L2/3n1/3 Pr (E1|EI) +

1
2
Pr (E2|EI) ∼

c

2c+ 4L
,

which is greater than 1/L for c > (4L)/(L− 2). Reasoning in a similar way we
get,

Pr (EA|EĪ) ∼
c+ 2

2L2/3n1/3 ,

which is smaller than 1/L since L ∈ o(n), so we proved (2). To compute
the social cost for this mediator, let I1 (Ī1) be the set of nodes that inoculate
(respectively do not inoculate) in C1, and let I2 (Ī2) be the set of nodes that
inoculate (respectively do not inoculate) in C2. Then the social cost for the
mediator can be written as

p1(|I1|+
∑
v∈Ī1

LPr (EA|E1, EĪ)) + p2(|I2|+
∑
v∈Ī2

LPr (EA|E2, EĪ)) ∼ Θ(n2/3L1/3).

3 Impossibility Result

In light of the results in the previous section, a natural question is: Is it pos-
sible to design a mediator that will always improve the social welfare in any
game for which there is a windfall of malice? Unfortunately, the answer to this
question is “No”, as we show in this section. In particular, we show that the
congestion games which Babaioff, Kleinberg and Papadimitriou [4] have proven
have a windfall of malice effect do not admit a mediator that is able to improve
the social welfare. In fact, we prove a stronger impossibility result, showing that
2 If L = θ(n), then any pure Nash equilibrium is trivially asymptotically optimal.
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for any non-atomic, symmetric congestion game where the cost of a path never
decreases as a function of the flow through that path (of which class of games,
the examples in [4] are special instances), no mediator can improve the social
optimum.

A non-atomic, symmetric congestion game (henceforth, simply a congestion
game) is a specified by a set of n → ∞ players; a set of E facilities (or edges);
A ⊂ 2E actions (or paths); and finally, for each facility e a cost function fe

associated with that facility. A pure strategy profile A = (A1, . . . , An) is a vector
of actions, one for each player. The cost of player i for action profile A is given by
Fi(A) =

∑
e∈Ai

fe(xe(A)) where xe(A) is the fraction of players using e in A. As
in [4], we assume that the game is non-atomic: since n→∞ the contribution of
a single player to the flow over a facility is negligible; and symmetric: all players
have the same cost functions.

For an action a and a flow x ∈ [0, 1], let Fh(a, x) be the maximum possible
cost of following action a when the total fraction of players following this action
is x, where the maximum is taken over all ways that the remaining flow of 1−x
can be distributed over other actions. Similarly, let F�(a, x) be the minimum
cost of following action a when the total fraction of players following this action
is x.

The following theorem says that for congestion games where the cost function
of every action is non-decreasing in the fraction of players performing that action,
the coordination between the agents in order to establish a correlated equilibrium
will not decrease the social cost.

Theorem 2. Consider a non-atomic, anonymous congestion game. If for all
a ∈ A and 0 ≤ x ≤ x′ ≤ 1, Fh(a, x) ≤ F�(a, x′) then the smallest social
cost achieved by a correlated equilibrium is no less than the smallest social cost
achieved by a Nash equilibrium.

We next give a high level sketch of how we prove this theorem. We will fix a non-
atomic, anonymous congestion game G with q actions, a1, . . . , aq, and n players.
We define a configuration, C, for such a game to be a partitioning of the set of
players across the q actions. We note that the number of possible configurations
is finite; in particular, qn. We next fix a mediator, M , for this game. We assume
the mediator uses � different configurations C1, . . . , C�; that 0 ≤ xi,j ≤ 1 is
the fraction of the players in configuration Cj assigned to action ai; and that
ci,j ∈ R is the cost in configuration Cj for action ai. We further assume that for
all j ∈ [�], pj is the probability with which the mediator M chooses Cj .

For any two actions a, a′ we define the a posteriori cost of a given a′ as the
expected cost for a player of performing action a when action a′ is suggested
by the mediator M ; formally, POST (a, a′) = E [Ca|Ea′ ], where Ca is a random
variable (over the configuration chosen by the mediator) and Ea′ is the event
that action a′ is recommended by the mediator. We define the a priori cost of
action a as the cost of a player completely ignoring what the mediator suggests
and always performing action a; formally, PRI (a) :=

∑�
j=1 pjci,j .

The sketch behind our proof for this theorem is as follows. First, we show
in Lemma 1 that for all actions a, if the cost of a is non-decreasing in the flow
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through a, then POST (a, a) ≥ PRI (a). This is done by repeated decompositions
of terms in summations for the a priori and posterior costs. Next, let Y be the
cost of a player following the advice of the mediator, and let X be the cost of the
player if she ignores the advice of the mediator and always chooses the action a
that minimized PRI (a). In Lemma 2 we show that E(Y ) ≤ E(X). This lemma
is shown by summing up inequality constraints on the mediator. Finally, we use
these two lemmas to show the main theorem by showing that if Lemma 1 holds,
then E(Y ) > E(X). The main technical challenge is the fact that we must show
that E(Y ) > E(X) even though Lemma 1 does not necessarily give a strict
inequality. We address this problem by a subtle case analysis in the proof of the
main theorem, and by augmenting Lemma 1 to show that in some cases, the
inequality it implies is strict.

We now sketch the main points and defer the full proof to the full version
of our paper. Observe that the condition for all a ∈ A and 0 ≤ x ≤ x′ ≤ 1,
Fh(a, x) ≤ F�(a, x′) implies that for all i ∈ [m], ∀j, k ∈ [�] we have that xij ≤ xik

implies cij ≤ cik, and so the conditions of the following lemma are satisfied.

Lemma 1. Given � ≥ 2 configurations C1, . . . , C�, with corresponding probabil-
ities pr > 0, r ∈ [�]. If for i ∈ [m], ∀j, k ∈ [�] we have that xij ≤ xik implies
cij ≤ cik, then POST (ai, ai) ≥ PRI (ai). Moreover, if for any i ∈ [q], not all cij,
j ∈ [�] are the same, then POST (ai, ai) > PRI (ai).

Define by apri := argminaPRI (a). Given a mediator over a fixed set of con-
figurations, let X be the random variable denoting the cost of an arbitrary
player when he decides to use action apri, i.e., E [X ] =

∑�
j=1 pjcaprij . Let Y be

a random giving the cost of a player that follows the advice of the mediator,
i.e., E [Y ] =

∑m
i=1 POST (ai, ai)Pr (Ei) =

∑m
i=1
∑�

j=1 pjxijcij . In the following
lemma we give the relationship between Y and X . The proof is based on sum-
ming the q−1 inequalities resulting from constraints for a correlated equilibrium,
and again it is deferred to the full version.

Lemma 2. For any mediator we have E [Y ] ≤ E [X ].

To prove the main theorem, denote by apost := argminsPOST (s, s) the action
with minimum a posteriori cost. We will consider two cases.

Case 1: Not all actions have the same a posteriori cost. Using Lemma 2.2:

E [Y ] > POST (apost, apost) ≥ PRI (apri) = E [X ].

Case 2: All actions have the same a posteriori cost. Assume it is not true that
there is an action that does not have equal costs in each configuration. Then
the cost of each action is the same in every configuration, and so any particular
configuration must be a Nash equilibrium that achieves social cost equal to the
social cost of the correlated equilibrium. Thus, we let ax be some action that
does not have the same cost in all configurations. Then using Lemma 3.2:

E [Y ] = POST (ax, ax) ≥ PRI (apri) = E [X ].
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In both cases we have E [Y ] > E [X ]. This however contradicts Lemma 2, hence
there can not exist a correlated equilibrium achieving social cost less than the
optimal Nash equilibrium.

4 Conclusion

We have shown that a mediator can improve the social welfare in some strategic
games with a positive windfall of malice. Several open questions remain including
the following. First, can we determine necessary and sufficient conditions for a
game to allow a mediator that improves social welfare over the best Nash? In
particular, can we find such conditions for general congestion games? What
about arbitrary anonymous games? Second, for games where each player can
choose among k actions, can we say how many configurations are needed by any
mediator? Preliminary work in this direction shows that for 2 actions, sometimes
more than 2 configurations are needed. Finally, can we use approaches similar
to those in this paper for designing mediators for multi-round games? We have
already made some preliminary progress in this direction for multi-round games
where the number of rounds is determined by a geometric random variable.
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Abstract. We provide an axiomatic framework for the the well studied lexico-
graphical improvement property and derive new results on the existence of strong
Nash equilibria for a very general class of congestion games with bottleneck ob-
jectives. This includes extensions of classical load-based models, routing games
with splittable demands, scheduling games with malleable jobs, and more.

1 Introduction

A main criticism about Nash equilibria is the fact that they do not consider deviations
of coalitions. To cope with the issue of coordination, we adopt the solution concept of a
strong equilibrium (SNE for short) proposed in [2]. In a SNE, no coalition (of any size)
can deviate and strictly improve the private cost of each of its members. Even though a
SNE may rarely exist, it forms a very robust and appealing stability concept.

One of the most successful approaches in establishing existence of PNE (as well
as SNE) is the potential function approach initiated in [12]: one defines a real-valued
function P on the set of strategy profiles of the game and shows that every improving
move of a coalition strictly reduces the value of P. Given that the set of strategy profiles
is finite, every sequence of improving moves reaches a SNE. In particular, the global
minimum of P is a SNE. For most games, however, it is hard to prove or disprove the
existence of such a potential function.

In this paper, we introduce vector-valued potential functions and say that a game has
the lexicographic improvement property (LIP) if there is a vector-valued function that
lexicographically decreases for every improving move. A game has the π-LIP if the
vector of private cost itself constitutes such a vector-valued potential function.

The main contribution of this paper is twofold. We first study desirable properties of
arbitrary finite and infinite games having the LIP and π-LIP, respectively. These proper-
ties concern the existence of SNE, efficiency and fairness of SNE, and computability of
SNE. Secondly, we identify an important class of games that we term bottleneck con-
gestion games for which we can actually prove the π-LIP and, hence, prove that these
games possess SNE with the above desirable properties.

Before we outline our results in more detail, we briefly explain the importance of bot-
tleneck objectives in congestion games with respect to real-world applications. Refer-
ring to previous work by Keshav, it has been pointed out in [5] that the performance of
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a communication network is closely related to the performance of its bottleneck (most
congested) link. This behavior is also stressed by [3], who investigated PNE in routing
games with bottleneck objectives. Similar observations are reported in [14], where the
applicability of selfish routing models to realistic models of the Internet is investigated.

Our Results. We characterize games having the LIP by means of the existence of a
generalized strong ordinal potential function. The proof of this characterization is con-
structive, that is, given a game G having the LIP for a function φ, we explicitly construct
a generalized strong ordinal potential P. We then investigate games having the π-LIP
with respect to efficiency and fairness of SNE. Our characterization implies that there
are SNE satisfying various efficiency and fairness properties, e.g., bounds on the prices
of stability and anarchy, Pareto optimality, and min-max fairness.

We establish that bottleneck congestion games possess the π-LIP and thus possess
SNE with the above mentioned properties. Moreover, our characterization of games
having the LIP implies that bottleneck congestion games possess the strong finite im-
provement property.

In contrast to most congestion games considered so far, we require only that the
cost functions on the facilities satisfy three properties: ”non-negativity”, ”independence
of irrelevant choices”, and ”monotonicity”. Roughly speaking, the second and third
conditions assume that the cost of a facility solely depends on the set of players using
the respective facility and that this cost decreases if some players leave this facility.
Thus, this framework extends classical load-based models in which the cost of a facility
depends on the number or total weight of players using the respective facility.

We then study the LIP in infinite games, that is, games with infinite strategy spaces
that can be described by compact subsets of Rp, p ∈ N. Infinite games need not admit a
strong potential function even if the LIP is satisfied. We prove, however, that continuity
of φ in the definition of LIP is sufficient for the existence of SNE. Our existence proof
(which can be found in [9]) is constructive, that is, we outline an algorithm whose output
is a SNE.

We then introduce infinite bottleneck congestion games. An infinite bottleneck con-
gestion game arises from a bottleneck congestion game G by allowing players to frac-
tionally distribute a certain demand over the pure strategies of G. We prove that these
games have the π-LIP provided that the cost functions on the facilities are non-negative
and non-decreasing. It turns out, however, that the function π may be discontinuous on
the strategy space (even if the cost functions on the facilities are continuous). Thus, the
existence of SNE does not immediately follow. We solve this difficulty by generalizing
the LIP. As a consequence, we obtain for the first time the existence of SNE for infinite
bottleneck congestion games with non-decreasing and continuous cost functions.

In the final section, we show that the methods presented here also apply to a more
general framework.

Because of lack of space, the results of this work are presented without proofs. For
the proofs, examples and further explanatory notes, we refer to [9].

Related Work. Congestion games were introduced in [16] and further studied in [12].
The existence of SNE in congestion games with monotone increasing cost functions
has been studied in [10]. They showed that SNE need not exist in such games and gave
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a structural characterization of the strategy space for symmetric (and quasi-symmetric)
congestion games that admit SNE. Based on the work in [12], they also introduced the
concept of a strong potential function, that is, a function on the set of strategy profiles
that decreases for every profitable deviation of a coalition. The existence of (correlated)
SNE in congestion games with non-increasing cost functions is explored in [18].

Several authors studied the existence and efficiency (price of anarchy and stability) of
PNE and SNE in various specific classes of congestion games. Referring to an observa-
tion of Mehlhorn, a lexicographic argument was used first in [8] in order to establish the
existence of PNE in singleton congestion games. Similar arguments have been applied
to job scheduling games in [6] and to more general job scheduling games, where the
processing time of a machine may depend on the set of jobs scheduled on the respective
machine in [7]. Moreover, this line of argumentation has been used in [1] to prove even
the existence of SNE in scheduling games on unrelated machines. They further studied
differences between PNE and SNE and derived bounds on the (strong) price of anarchy
and stability, respectively.

Bottleneck congestion games with network structure have been considered by Ban-
ner and Orda [3]. They studied existence of PNE in the unsplittable flow and in the
splittable flow setting, respectively. They observed that standard techniques (such as
Kakutani’s fixed-point theorem) for proving existence of PNE do not apply to bottle-
neck routing games as the private cost functions may be discontinuous. They proved
existence of PNE (but not SNE) by showing that bottleneck games are better reply
secure, quasi-convex, and compact. Under these conditions, they recall Reny’s exis-
tence theorem [15] for better reply secure games with possibly discontinuous private
cost functions. In contrast, we show the existence of SNE with direct and constructive
methods.

2 Preliminaries

We consider strategic games G = (N,X,π), where N = {1, . . . ,n} is the non-empty and
finite set of players, X =

�
i∈N Xi is the non-empty strategy space, and π : X→ Rn

+ is the
combined private cost function that assigns a private cost vector π(x) to each strategy
profile x ∈ X. These games are cost minimization games and we assume additionally
that the private cost functions are non-negative. A strategic game is called finite if X is
finite. We use standard game theory notation; for a coalition S ⊆ N we denote by −S its
complement and by XS =

�
i∈S Xi we denote the set of strategy profiles of players in S .

A pair
(
x, (yS , x−S )

) ∈ X×X is called an improving move if πi(xS , x−S )−πi(yS , x−S ) >
0 for all i ∈ S . We denote by I(S ) the set of improving moves of coalition S and we set
I :=
⋃

S⊆N I(S ). We call a sequence of strategy profiles γ = (x0, x1, . . .) an improvement
path if every tuple (xk, xk+1) ∈ I. A strategy profile x is a strong Nash equilibrium (SNE)
if
(
x, (yS , x−S )

)
� I for all ∅ � S ⊆ N and yS ∈ XS .

In recent years, much attention has been devoted to games admitting the finite im-
provement property (FIP), that is, each path of single-handed (one player) deviations
is finite. Equivalently, we say that G has the strong finite improvement property (SFIP)
if every improvement path is finite. A necessary and sufficient condition for the SFIP
is the existence of a generalized strong ordinal potential function, that is, a function
P : X→ R such that P(x)−P(y) > 0 for all (x,y) ∈ I.
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It is known that both the SFIP and the existence of a generalized strong ordinal
potential are hard to prove or disprove for a particular game. We define a class of games
that we call games with the Lexicographical Improvement Property (LIP) and show that
such games possess a generalized strong ordinal potential.

Definition 1 (Sorted lexicographical order). Let a,b ∈ Rq
+ and denote by ã, b̃ ∈ Rq

+ be
the sorted vectors derived from a,b by permuting the entries in non-increasing order.
Then, a is strictly sorted lexicographically smaller than b (written a ≺ b) if there exists
an index m such that ãi = b̃i for all i < m, and ãm < b̃m.

Definition 2 (Lexicographical improvement property, π-LIP). A finite strategic
game G = (N,X,π) possesses the lexicographical improvement property (LIP) if there
exist q ∈ N and a function φ : X→ Rq

+ such that φ(x) � φ(y) for all (x,y) ∈ I. G has the
π-LIP if G has the LIP for φ = π.

The function φ is a generalized strong ordinal potential if q = 1. Taking the M-norm of
φ for a sufficiently large M it is easy to verify that the LIP is equivalent to the existence
of a generalized strong ordinal potential, regardless of q.

Theorem 1. Let G = (N,X,π) be a finite strategic game. Then, G has the LIP if and
only if there exists φ : X → Rq

+, q ∈ N, and M ∈ N such that P(x) =
∑q

i=1 φi(x)M is a
generalized strong ordinal potential function for G.

3 Properties of SNE in Games with the π-LIP

As the existence of SNE in games with the LIP is guaranteed, it is natural to ask which
properties these SNE may satisfy. In recent years, several notions of efficiency have
been discussed in the literature, see [11]. We here cover the price of stability, Pareto
optimality and min-max-fairness.

Price of Stability. We study the efficiency of SNE with respect to the optimum of a
predefined social cost function. Given a game G = (N,X,π) and a social cost function
C : X→ R+, whose minimum is attained in a strategy profile y ∈ X, let XSNE ⊆ X denote
the set of strong Nash equilibria. Then, the strong price of stability for G with respect
to C is defined as infx∈XSNE C(x)/C(y). We consider the following natural social cost
functions: the sum-objective or L1-norm defined as L1(x) =

∑
i∈N πi(x), the Lp-objective

or Lp-norm, p ∈ N, defined as Lp(x) =
(∑

i∈N πi(x)p)1/p, and the min-max objective or
L∞-norm defined as L∞(x) =maxi∈N{πi(x)}.
Proposition 1. Let G be a strategic game with the π-LIP. Then, the strong price of
stability w.r.t. L∞ is 1, and for any p ∈ R, the strong price of stability w.r.t. Lp is smaller
than n.

Pareto Optimality. Pareto optimality is one of the fundamental concepts studied in
economics, see Osborne and Rubinstein [13]. For a strategic game G = (N,X,π), a strat-
egy profile x is called weakly Pareto efficient if there is no y ∈ X such that πi(y) <
πi(x) for all i ∈ N. A strategy profile x is strictly Pareto efficient if there is no y ∈ X such
that πi(y) ≤ πi(x) for all i ∈ N, where at least one inequality is strict.
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So strictly Pareto efficient strategy profiles are those strategy profiles for which every
improvement of a coalition of players is to the expense of at least one player outside the
coalition. Pareto optimality has also been studied in the context of congestion games,
see Chien and Sinclair [4] and Holzman and Law-Yone [10].

Proposition 2. Let G be a finite strategic game with the π-LIP. Then, there is a SNE
that is strictly Pareto optimal.

Min-Max-Fairness. We next define the notion of min-max fairness, which is a cen-
tral topic in resource allocation in communication networks, see Srikant [19] for an
overview and pointers to the large body of research in this area. While strict Pareto
efficiency requires that there is no improvement to the expense of anyone, the notion
of min-max-fairness is stricter. Here, it is only required that there is no improvement
at the cost of someone who receives already higher costs (while an improvement that
increases the cost of a player with smaller original cost is allowed). It is easy to see that
every min-max-fair strategy profile constitutes a strict Pareto optimum, but the converse
need not hold. A strategy profile x is called min-max fair if for any other strategy pro-
file y with πi(y) < πi(x) for some i ∈ N, there exists j ∈ N such that π j(x) ≥ πi(x) and
π j(y) > π j(x).

Proposition 3. Let G be a finite strategic game with the π-LIP. Then, there is a SNE
that is min-max fair.

4 Bottleneck Congestion Games

We now present a rich class of games satisfying the π-LIP. We call these games bot-
tleneck congestion games. They are natural generalizations of variants of congestion
games. In contrast to standard congestion games, we focus on makespan-objectives,
that is, the cost of a player when using a set of facilities only depends on the highest
cost of these facilities.

Definition 3 (Congestion model). A tupleM = (N,F,X, (c f ) f∈F) is called a conges-
tion model if N = {1, . . . ,n} is a non-empty, finite set of players, F = {1, . . . ,m} is a non-
empty, finite set of facilities, and X =

�
i∈N Xi is the set of strategies. For each player

i ∈ N, her collection of pure strategies Xi is a non-empty, finite set of subsets of F. Given
a strategy profile x, we defineN f (x) = {i ∈ N : f ∈ xi} for all f ∈ F. Every facility f ∈ F
has a cost function c f :

�
i∈N Xi→ R+ satisfying

Non-negativity: c f (x) ≥ 0 for all x ∈ X
Independence of Irrelevant Choices: c f (x)=c f (y) for all x,y ∈ X with N f (x)=N f (y)
Monotonicity: c f (x) ≤ c f (y) for all x,y ∈ X with N f (x) ⊆ N f (y).

Bottleneck congestion games generalize congestion games in the definition of the cost
functions on the facilities. For bottleneck congestion games, the only requirements are
that the cost c f (x) on facility f for strategy profile x only depends on the set of players
using f in their strategy profile and that costs are increasing with larger sets.
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Definition 4 (Bottleneck congestion game). LetM be a congestion model. The corre-
sponding bottleneck congestion game is the strategic game G(M) = (N,X,π) in which
π is defined as π =

�
i∈N πi and πi(x) =max f∈xi c f

(
x
)
.

We are now ready to state our main result concerning bottleneck congestion games,
providing a large class of games that satisfies the π-LIP.

Theorem 2. Let G(M) be a bottleneck congestion game with allocation model M.
Then, G fulfills the LIP for the functions φ : X→ Rn

+ and ψ : X→ Rmn
+ defined as

φi(x) = πi(x) for all i ∈ N, ψi, f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

c f (x) if f ∈ xi

0 else
for all i ∈ N, f ∈ F.

As a corollary of Theorem 2 we obtain that each bottleneck congestion game has the
π-LIP and hence possesses the SFIP. In addition, the results on the price of stability,
Pareto optimality and min-max-fairness apply.

The class of bottleneck congestion games contains some special cases of particular
interest. For example, scheduling games on unrelated machines can be seen as bottle-
neck congestion games in which all strategies are singletons. As the private costs re-
ceived from each machine may depend on the set of players on that machine we cover
certain interference games as well, see [9] for details. Another special case of bottle-
neck congestion games are bottleneck routing games. To the best of our knowledge, this
work establishes for the first time the existence of the FIP and SFIP in such games. In
the full version of this paper [9], we identify some special cases of bottleneck routing
games in which the SNE can be computed in polynomial time.

5 Infinite Bottleneck Congestion Games

From M we derive an infinite congestion model IM = (N,F,X,d,Δ, (c f ) f∈F), where
d ∈Rn

+, Δ = Δ1×· · ·×Δn, and Δi = {ξi = (ξi1, . . . , ξini) :
∑ni

j=1 ξi j = di, ξi j ≥ 0, j = 1, . . . ,ni}.
The strategy profile ξi = (ξi1, . . . , ξini) of player i can be interpreted as a distribution of
non-negative intensities over the elements in Xi satisfying

∑ni
j=1 ξi j = di for di ∈ R+, i ∈

N. Clearly, Δi is a compact subset of Rni
+ for all i ∈ N. For a profile ξ = (ξ1, . . . , ξn),

we define the set of used facilities of player i as Fi(ξ) =
{
f ∈ F : there exists j ∈

{1, . . .ni} with f ∈ xi j and ξi j > 0
}
. We define the load of player i on f under profile

ξ by ξ f
i =
∑

xi j∈Xi : f∈xi j
ξi j, i ∈ N, f ∈ F. In contrast to finite bottleneck congestion games,

we assume that cost functions c f : X → R+ only depend on the total load defined as

	 f (ξ) =
∑

i∈N ξ
f
i , and are continuous and non-decreasing.

Definition 5 (Infinite bottleneck congestion game). Let IM = (N,F,X,d,Δ, (c f ) f∈F)
be an infinite congestion model derived fromM. The corresponding infinite bottleneck
congestion game is the strategic infinite game G(IM) = (N,Δ,π), where π is defined
as π =

�
i∈N πi and πi(ξ) =max f∈Fi(ξ) c f

(
	 f (ξ)

)
.

Examples of such games are bottleneck routing games with splittable demands.

Theorem 3. Let G(IM) = (N,Δ,π) be an infinite bottleneck congestion game. Then,
G(IM) has the LIP for the functions φ : Δ→ Rn

+ and ψ : X→ Rmn
+ defined as
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φi(ξ) = πi(ξ), for all i ∈ N, ψi, f (ξ) =

⎧
⎪⎪⎨
⎪⎪⎩

c f (	 f (ξ)), if f ∈ Fi(ξ)

0, else
for all i ∈ N, f ∈ F.

We remark that for infinite games, the LIP does not imply the existence of a strong
potential function. However, if the LIP is satisfied for a continuous function and the
strategy space is compact, we can prove the existence of a SNE, see [9] for details. Un-
fortunately, a simple example reveals that the functions used in Theorem 3 for proving
the LIP are not necessarily continuous. In order to obtain a the LIP for a continuous
function, we generalize the notion of lexicographical ordering to ordered sets that are
different from (R,≤). To this end, consider a totally ordered set (A,≤A). Similar to
Definition 1, we introduce a lexicographical order on A-valued vectors. For two vec-
tors a,b ∈ Aq, let ã and b̃ be two vectors that arise from of a and b by ordering them
w.r.t ≤A in non-increasing order. We say that a is A-lexicographically smaller than b,
written a ≺A b if there is m ∈ {1, . . . ,q} such that ãi =A b̃i for all i < m and ãm <A b̃m.
A game satisfies the A-LIP if there are q ∈ N and a function φ : X → Aq such that
φ(x) �A φ(y) for all (x,y) ∈ I.

The following theorem establishes the A-LIP for infinite bottleneck congestion
games, where (A,≤A) = (R2,≤lex) and ≤lex denotes the ordinary lexicographical or-
der (that does not involve any sorting of the entries) on R2, that is, (a1,a2) <lex (b1,b2)
if either a1 < b1 or

(
a1 = b1 and b2 < b2

)
.

Theorem 4. Let (A,≤A) = (R2,≤lex) and let G(IM) = (N,Δ,π) be an infinite bot-
tleneck congestion game. Then, G(IM) has the A-LIP for φ : Δ → Am defined as
φ f (ξ) =

(
c f (	 f (ξ)), 	 f (ξ)

)
for all f ∈ F.

The function φ in Theorem 4 is continuous. Hence, we obtain for the first time the
existence of SNE for a variety of games such as scheduling games with malleable jobs,
bottleneck routing games with splittable demands, etc. Note that, compared with the
proof in [3], our result gives also an alternative and constructive proof for the existence
of PNE in bottleneck routing games with splittable demands.

6 Extensions

We present three extensions that (as we feel) are the most interesting ones.
Regarding α-approximate strong Nash equilibria it is possible to soften the condi-

tions on the cost functions that establish the existence of an equilibrium point. In fact,
we can show that every infinite bottleneck congestion game with bounded cost functions
possesses an α-approximate SNE for every α > 0.

A natural generalization of bottleneck congestion games can be obtained by assum-
ing that players are heterogeneous with respect to the cost of the most expensive facility,
that is, they attach different values to the cost of the most expensive facility.

Assuming that higher costs on facilities are associated with higher private costs we
can show that these games possess the LIP (though not the π-LIP).
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Abstract. Strictly competitive games are a class of 2-player games often
quoted in the literature to be a proper generalization of zero-sum games.
Other times it is claimed, e.g. by Aumann, that strictly competitive
games are only payoff transformations of zero-sum games. But to the
best of our knowledge there is no proof of such claim. We shed light
to this point of confusion in the literature, showing that any strictly
competitive game is indeed a payoff transformation of a zero sum-game;
in fact, an affine transformation. We offer two proofs of this fact, one
combinatorial and one algebraic.

1 Introduction

A two-person game is strictly competitive [1] if it has the following property: if
both players change their mixed strategies, then either there is no change in the
expected payoffs, or one of the two expected payoffs increases and the other de-
creases. That is, all pairs of mixed strategies are Pareto optimal. Mathematically,
a game (A,−B) is strictly competitive if for any two pairs of mixed strategies
(x, y) and (x′, y′), xTAy− x′TAy′ and xTBy− x′TBy′ have the same sign.1 Ob-
viously, these games generalize zero-sum games (the case A = B). The question
is, how much more general than zero-sum games is this class?

There is much confusion in the literature about this question. Aumann writes
“Recall that a strictly competitive game is defined as a two-person game in which
if one outcome is preferred to another by one player, the preference is reversed
for the other. Since randomized strategies are admitted, this condition applies
also to mixed outcomes (probability mixtures of pure outcomes). From this it
may be seen that a two-person game is strictly competitive if and only if, for an
appropriate choice of utility functions, the utility payoffs of the players sum to
zero in each square of the matrix.”

Notice that “appropriate choice” is not defined, and no proof, or outline, is
given. Aumann’s insight above is mirrored elsewhere in the literature, e.g. in
the textbooks, [3,4], also without proof. Elsewhere, in lieu of proof a rather

1 For our purposes the sign function takes on three values, +, −, and 0.
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straightforward weaker fact is pointed out: Let a1, . . . , an be n events and let
u(ai), v(ai) be the utilities of players 1 and 2 respectively. Now suppose that for
any pair of probability vectors p, q we have

∑
piu(ai) ≥

∑
qiu(ai) iff

∑
piv(ai) ≤∑

qiv(ai). Then it is easy to see that there exist affine transformations of u, v, call
them u′, v′, such that v′(ai) = −u′(ai) for all i. Aumann’s assertion is stronger:
Its hypothesis is that the inequalities hold for all distributions that are products
of mixed strategies. To increase the confusion, in [5], strictly competitive games
are defined with x, y, x′, y′ above restricted to pure strategies—this is a proper
generalization, albeit of no interest. And elsewhere, strictly competitive games
are treated as a proper generalization of zero-sum games.

In this note we prove Aumann’s assertion. In fact, we give two very different
proofs, one combinatorial and one algebraic (both are quite nontrivial). Let
A and B be m × n real matrices. By Δn we denote all distributions (mixed
strategies) over [n]. We say that matrix B is an affine variant of matrix A if for
some λ > 0 and unrestricted μ, B = λ · A + μ · U , where U is m × n all-ones
matrix. Our main result is the following:

Theorem 1. If for all x, x′ ∈ Δm and y, y′ ∈ Δn, xTAy − x′TAy′ and xTBy−
x′TBy′ have the same sign, then B is an affine variant of A.

Note that the converse is trivial.

2 A Combinatorial Proof

Consider the strictly competitive game (A,−B) with at least two pure strategies
for each player. Let

amax = max
ij

Aij , amin = min
ij

Aij

and bmax = max
ij

Bij , bmin = min
ij

Bij .

Lemma 1. For all i, j:

aij = amax ⇐⇒ bij = bmax; (1)
aij = amin ⇐⇒ bij = bmin. (2)

Proof. We only show the first assertion. The other assertion can be shown simi-
larly. Suppose there exist i, j such that aij = amax, but bij < bmax. Let then k, �
be such that bk� = bmax. If x, x′ are the pure strategies i, k and y, y′ the pure
strategies j, �, then the pairs of strategies (x, y) and (x′, y′) violate the condition
of strict competitiveness. �

Corollary 1. amax = amin ⇔ bmax = bmin.

If amax = amin and bmax = bmin, then clearly B is an affine variant of A. If
amax > amin and bmax > bmin, we define the following affine variants of the
matrices A and B.
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A
′
=

1
amax − amin

[A− aminU ],

B
′
=

1
bmax − bmin

[B − bminU ].

Observe that all entries of A′, B′ are in [0, 1]; in particular, both the value 0 and
the value 1 appear as entries in both A′ and B′. Moreover, (A′,−B′) is a strictly
competitive game. We show the following.

Lemma 2. A
′
= B

′
.

Proof. Suppose that A
′ �= B

′
. By Lemma 1 and by rearranging the rows and

columns of A
′

and B
′
, we can assume without loss of generality that A

′
11 =

B
′
11 = 1 and either A

′
22 = B

′
22 = 0 (case 1) or A

′
12 = B

′
12 = 0 (case 2). Let

D = B
′ − A

′
and let |Drs| = maxij |Dij |. For 0 ≤ p ≤ 1, let x(p), y(p) be

probability vectors whose non-zero elements are:

– Case 1: x1(p) = y1(p) = p, x2(p) = y2(p) = 1− p;
– Case 2: x1(p) = 1, y1(p) = p, y2(p) = 1− p.

Since x(p)TA
′
y(p) = 0 for p = 0 and x(p)TA

′
y(p) = 1 for p = 1, there exists p̄

such that x(p̄)TA
′
y(p̄) = A

′
rs. Assuming Drs �= 0, we have 0 < p̄ < 1. Since the

game is strictly competitive, we have that x(p̄)TB
′
y(p̄) = B

′
rs. If this weren’t

the case, then by taking x′ to be the pure strategy r and y′ the pure strategy
s we would obtain a contradiction to the strict competitiveness of the game by
considering the pairs of mixed strategies (x(p̄), y(p̄)) and (x′, y′).

Given the above we have x(p̄)T(A
′

+ D)y(p̄) = B
′
rs, which implies that

x(p̄)TDy(p̄) = B
′
rs − A

′
rs = Drs. Noting that D11 = 0, x1(p̄) · y1(p̄) > 0, |Drs|

= maxij |Dij |, and that x(p̄)TDy(p̄) is a weighted average of the elements in D,
we can’t have x(p̄)TDy(p̄) = Drs. Thus D = 0, implying A

′
= B

′
. �

Since A
′
, B

′
are affine variants of A, B, this completes the proof of Theorem 1.

3 An Algebraic Proof

For any matrix A we consider the polynomial pA(z) = xTAy−x′TAy′, where by
z we denote the vector of variables x, y, x′, y′. The hypothesis then states that
pA(z) and pB(z) always have the same sign.

First note that, as polynomials, pA and pB are irreducible (there is no way to
factor them without getting extra terms involving both primed and unprimed
variables). Consider now the polynomial pA+B, and consider a z∗ such that
pA+B(z∗) = 0. It is easy to see that such a z∗ exists. We claim that also pA(z∗) =
0 — otherwise, pA(z∗) and pB(z∗) = pA+B(z∗) − pA(z∗) would have opposite
signs.

We conclude that the roots of the irreducible polynomial pA+B(z) are a sub-
set of the roots of the irreducible polynomial pA(z). It follows from Hilbert’s
Nullstellensatz [2] that pA(z) is a multiple of pA+B(z) (where we used that pA is



474 I. Adler, C. Daskalakis, and C.H. Papadimitriou

irreducible);2 since pA is irreducible, a constant multiple. Therefore, pA(z) and
pB(z) are multiples of one another, and thus positive multiples.

Now, it is easy to see that pC(z) = pD(z) iff C and D differ by a multiple of
U (that is, the multiples of U comprise the kernel of the homomorphism from
matrices A to polynomials pA). We conclude that B is an affine variant of A,
completing the proof.
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Abstract. We study the impact of fairness on the efficiency of allo-
cations. We consider three different notions of fairness, namely propor-
tionality, envy-freeness, and equitability for allocations of divisible and
indivisible goods and chores. We present a series of results on the price of
fairness under the three different notions that quantify the efficiency loss
in fair allocations compared to optimal ones. Most of our bounds are ei-
ther exact or tight within constant factors. Our study is of an optimistic
nature and aims to identify the potential of fairness in allocations.

1 Introduction

Fair division (or fair allocation) dates back to the ancient times and has found
applications such as border settlement in international disputes, greenhouse
gas emissions reduction, allocation of mineral riches in the ocean bed, inheri-
tance, divorces, etc. In the era of the Internet, it appears regularly in distributed
resource allocation and cost sharing in communication networks.

We consider allocation problems in which a set of goods or chores has to be
allocated among several players. Fairness is an apparent desirable property in
these situations and means that each player gets a fair share. Depending on
what the term “fair share” means, different notions of fairness can be defined.
An orthogonal issue is efficiency that refers to the total happiness of the players.
An important notion that captures the minimum efficiency requirement from an
allocation is that of Pareto-efficiency; an allocation is Pareto-efficient if there is
no other allocation that is strictly better for at least one player and is at least
as good for all the others.

Model and problem statement. We consider two different allocation scenaria,
depending on whether the items to be allocated are goods or chores. In both
cases, we distinguish between divisible and indivisible items.

The problem of allocating divisible goods is better known as cake-cutting.
In instances of cake-cutting, the term cake is used as a synonym of the whole
set of goods to be allocated. Each player has a utility function on each piece
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of the cake corresponding to the happiness of the player if she is allocated the
particular piece; this function is non-negative and additive. We assume that the
utility of each player for the whole cake is 1. Divisibility means that the cake can
be cut in arbitrarily small pieces which can then be allocated to the players. In
instances with indivisible goods, the utility function of a player is defined over
sets of items; again, utilities are non-negative and additive and the utility of each
player for the whole set of items is 1. Each item cannot be cut in pieces and has
to be allocated as a whole to some player. Given an allocation, the utility of a
player is simply the sum of her utilities over the (pieces of) items she receives.
An allocation with n players is proportional if the utility of each player is at least
1/n. It is envy-free if the utility of a player is not smaller than the utility she
would have when exchanging the (pieces of) items she gets with the items of any
other player. It is equitable if the utilities of all players are equal. An allocation
is optimal if it maximizes the total utility of all players, i.e., each (piece of) item
is allocated to the player that values it the most (ties are broken arbitrarily).

In instances with divisible chores, each player has a disutility function for each
piece of the cake which denotes the regret of the player when she is allocated the
particular piece. Again, the disutility functions are non-negative and additive
and the disutility of a player for the whole cake is 1. The case of indivisible
chores is defined accordingly; indivisibility implies that an item cannot be cut
into pieces and has to be allocated as a whole to some player. Given an allocation,
the disutility of a player is simply the sum of her disutilities over the (pieces of)
items she receives. An allocation with n players is proportional if the disutility
of each player is at most 1/n. It is envy-free if the disutility of a player is not
larger than the disutility she would have when exchanging the (pieces of) items
she gets with the items of any other player. It is equitable if the disutilities of
all players are equal. An allocation is optimal if it minimizes the total disutility
of all players, i.e., each (piece of) item is allocated to the player that values it
the least (ties are broken arbitrarily).

Note that envy-freeness implies proportionality. Furthermore, instances with
divisible items always have proportional, envy-free, or equitable allocations. It
is not hard to see that this is not always the case for instances with indivisible
items. Furthermore, there are instances in which no optimal allocation is fair.

Models similar to ours have been considered in the literature; the focus has
been on the design of protocols for achieving proportionality [3,4,8], envy-freeness
[3,6,7], and equitability [3] or on the design of approximation algorithms in set-
tings where fulfilling the fairness objective exactly is impossible [2,5]. However,
the related literature seems to have neglected the issue of efficiency. Although
several attempts have been made to characterize fair division protocols in terms
of Pareto-efficiency [3], the corresponding results are almost always negative.
Most of the existing protocols do not even provide Pareto-efficient solutions and
this seems to be due to the limited amount of information they use for the utility
functions of the players. Recall that in the case of divisible goods and chores,
complete information about the utility or disutility functions of the players may
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not be compactly representable. Furthermore, Pareto-efficiency is rather unsat-
isfactory, since it may imply that an allocation is far from optimal.

Instead, in the current paper we are interested in quantifying the decrease of
efficiency due to fairness (price of fairness). Our study has an optimistic nature
and aims to identify the potential of fairness in allocations. We believe that such
a study is well-motivated since the knowledge of tight bounds on the price of
fairness may detect whether a fair allocation can be improved. In many settings,
complete information about the utility functions of the players is available (e.g.,
in a divorce) and computing an efficient and fair allocation may not be infeasible.
Fair allocations can be thought of as counterparts of equilibria in strategic games;
hence, our work is similar in spirit to the line of research that studies the price
of stability in games [1].

In order to capture the price of fairness, we define the price of proportionality,
envy-freeness, and equitability. Given an instance I for the allocation of goods,
its price of proportionality (resp., envy-freeness, resp., equitability) is defined
as the ratio of the total utility of the players in the optimal allocation for I
over the total utility of the players in the best proportional (resp., envy-free,
resp., equitable) allocation for I. Similarly, if I is an instance for the allocation
of chores, its price of proportionality (resp., envy-freeness, resp., equitability) is
defined as the ratio of the total disutility of the players in the best proportional
(resp., envy-free, resp., equitable) allocation for I over the total disutility of the
players in the optimal allocation for I. The price of proportionality (resp., envy-
freeness, resp., equitability) of a class I of instances is then the maximum price
of proportionality (resp., envy-freeness, resp., equitability) over all instances of
I. The classes of instances considered in this paper are defined by the number
of players, the type of items (goods or chores), and their divisibility property
(divisible or indivisible). We remark that, in order for the price of proportional-
ity, envy-freeness, and equitability to be well-defined, in the case of indivisible
items, we assume that the class of instances contains only those ones for which
proportional, envy-free, and equitable allocations, respectively, do exist.

Overview of results. In this paper we provide upper and lower bounds on the price
of proportionality, envy-freeness, and equitability in fair division with divisible
and indivisible goods and chores. Our work reveals an almost complete picture.
In all subcases except the price of envy-freeness with divisible goods and chores,
our bounds are either exact or tight within a small constant factor.

Table 1 summarizes our results. For divisible goods, the price of proportional-
ity is very close to 1 (i.e., 8−4

√
3 ≈ 1.072) for two players and Θ(

√
n) in general.

The price of equitability is slightly worse for two players (i.e., 9/8) and Θ(n) in
general. Our lower bound for the price of proportionality implies the same lower
bound for the price of envy-freeness; while a very simple upper bound of n−1/2
completes the picture for divisible goods. For indivisible goods, we present an
exact bound of n−1+1/n on the price of proportionality while we show that the
price of envy-freeness is Θ(n) in this case. Although our upper bounds follow by
very simple arguments, the lower bounds use quite involved constructions. The
price of equitability is proven to be finite only for the case of two players. These
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Table 1. Summary of our results (lower and upper bounds)

LB UB n = 2 LB UB n = 2
Price of Divisible goods Indivisible goods
Proportionality Ω(

√
n) O(

√
n) n− 1 + 1/n n− 1 + 1/n

Envy-freeness Ω(
√

n) n− 1/2
8− 4

√
3 3n+7

9
−O(1/n) n− 1/2

3/2

Equitability (n+1)2

4n
n 9/8 ∞ ∞ 2

Divisible chores Indivisible chores

Proportionality (n+1)2

4n
n n n

Envy-freeness (n+1)2

4n
∞ 9/8 ∞ ∞ 2

Equitability n n 2 ∞ ∞ ∞

results are presented in Section 2. For divisible chores, the price of proportion-
ality is 9/8 for two players and Θ(n) in general while the price of equitability is
exactly n. For indivisible chores, we present an exact bound of n on the price of
proportionality while both the price of envy-freeness and the price of equitability
are infinite. These last results imply that in the case of indivisible chores, envy-
freeness and equitability are usually incompatible with efficiency. These results
are presented in Section 3. Due to lack of space, many proofs have been omitted.

2 Fair Division with Goods

In this section, we focus on fair division and goods. We begin by presenting our
results for the case of divisible goods.

Theorem 1. For n players and divisible goods, the price of proportionality is
Θ(
√

n).

Proof. Consider an instance with n players and let O denote the optimal alloca-
tion and OPT be the total utility of O. We partition the set of players into two
sets, namely L and S, so that if a player obtains utility at least 1/

√
n in O, then

she belongs to L, otherwise she belongs to S. Clearly, OPT < |L|+ |S|/
√

n. We
now describe how to obtain a proportional allocation A; we distinguish between
two cases depending on |L|.

We first consider the case |L| ≥
√

n; hence, |S| ≤ n −
√

n. Then, for any
negligibly small item that is allocated to a player i ∈ L in O, we allocate to i a
fraction of

√
n/n of the item, while we allocate to each player i ∈ S a fraction

of n−
√

n
n|S| ≥ 1/n. Furthermore, for any negligibly small item that is allocated to

a player i ∈ S in O, we allocate to each player i ∈ S a fraction of 1/|S| > 1/n.
In this way, all players obtain a utility of at least 1/n, while all items are fully
allocated; hence, A is proportional. For every player i ∈ L, her utility in A is
exactly 1/

√
n times her utility in O, while every player i ∈ S obtained a utility

strictly less than 1/
√

n in O and obtains utility at least 1/n in A. So, we conclude
that the total utility in A is at least 1/

√
n times the optimal total utility.
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Otherwise, let |L| < √
n. Since OPT < |L|+ |S|/√n, we obtain that OPT <

2
√

n−1, while the total utility of any proportional allocation is at least 1. Hence,
in both cases we obtain that the price of proportionality is O(

√
n). We continue

by presenting a lower bound of Ω(
√

n).
Consider the following instance with n players and m < n items. Player i, for

i = 1, ..., m, has utility 1 for item i and 0 for any other item, while player i, for
i = m + 1, ..., n, has utility 1/m for any item. In the optimal allocation, item i,
for i = 1, ..., m, is allocated to player i, and the total utility is m. Consider any
proportional allocation and let x be the sum of the fractions of the items that
are allocated to the last n−m players. The total utility of these players is x/m.
Clearly, x ≥ m(n − m)/n, otherwise some of them would obtain a utility less
than 1/n and the allocation would not be proportional. The first m players are
allocated the remaining fraction of m− x of the items and their total utility is
at most m − x. The total utility of all players is m− x + x/m ≤ m2+n−m

n . We
conclude that the price of proportionality is at least mn

m2+n−m which becomes
more than

√
n/2 by setting n = m2. ��

For the price of equitability, we can show that when the number of players is
large, equitability may provably lead to less efficient allocations.

Theorem 2. For n players and divisible goods, the price of equitability is at
most n and at least (n+1)2

4n .

Since every envy-free allocation is also proportional, the lower bound on the price
of proportionality also holds for envy-freeness. Interestingly, in the case of two
players, there always exist almost optimal proportional or equitable allocations.
Recall that in this case proportionality and envy-freeness are equivalent.

Theorem 3. For two players and divisible goods, the price of proportionality
(or envy-freeness) is 8− 4

√
3 ≈ 1.072, and the price of equitability is 9/8.

Proof. We only present the result for proportionality here. Consider an optimal
allocation O and a proportional allocation E that maximizes the total utility of
the players. We partition the cake into four parts A, B, C, and D: A is the part
of the cake which is allocated to player 1 in both O and E , B is the part which is
allocated to player 2 in both O and E , C is the part which is allocated to player
1 in O and to player 2 in E , and D is the part of the cake which is allocated to
player 1 in E and to player 2 in O. In the following, we use the notation ui(X)
to denote the utility of player i for part X of the cake.

Since O maximizes the total utility, we have u1(A) ≥ u2(A), u1(B) ≤ u2(B),
u1(C) ≥ u2(C), and u1(D) ≤ u2(D). First observe that if u1(C) = u2(C) and
u1(D) = u2(D), then E has the same total utility with O. So, in the following
we assume that this is not the case.

We consider the case u1(C) > u2(C); the other case is symmetric. In this case,
we also have that u1(D) = u2(D) = 0. Assume otherwise that u2(D) > 0. Then,
there must be a subpart X of C for which player 1 has utility x and player 2
has utility at most x ·u2(C)/u1(C) and a subpart Y of D for which player 2 has
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utility x and player 1 has utility at least x · u1(D)/u2(D). Then, the allocation
in which player 1 gets parts A, X , and D−Y and player 2 gets parts B, C −X ,
and Y is proportional and has larger utility than E .

Now, we claim that u2(A) = 1/2. Clearly, since E is proportional, the utility of
player 2 in E is at least 1/2, i.e., u2(B)+u2(C) ≥ 1/2. Since the utilities of player
2 sum up to 1 over the whole cake, we also have that u2(A) ≤ 1/2. If it were
u2(A) < 1/2, then we would have u2(B)+u2(C) > 1/2. Then, there would exist
a subpart X of C for which player 2 has utility x for some x ≤ 1/2− u2(A) and
player 1 has utility larger than x. By allocating X to player 1 instead of player
2, we would obtain another proportional allocation with larger total utility.

Also, it holds that u2(A)/u1(A) ≤ u2(C)/u1(C). Otherwise, there would exist
a subpart X of C for which player 1 has utility x and player 2 has utility u2(X)
at most x·u2(C)/u1(C) and a subpart Y of A for which player 1 has utility x and
player 2 has utility u2(Y ) at least x · u2(A)/u1(A) > x · u2(C)/u1(C) ≥ u2(X).
By allocating the subpart X to player 1 and subpart Y to player 2, we would
obtain another proportional allocation with larger total utility.

By the discussion above, we have u2(C) ≥ u1(C)
2u1(A) . We are now ready to bound

the ratio of the total utility of O over the total utility of E which will give us
the desired bound. We obtain that the price of proportionality is

u1(A) + u2(B) + u1(C)
u1(A) + u2(B) + u2(C)

=
u1(A) + 1/2− u2(C) + u1(C)

u1(A) + 1/2

≤
u1(A) + 1/2 + u1(C)

(
1− 1

2u1(A)

)
u1(A) + 1/2

≤
u1(A) + 1/2 + (1− u1(A))

(
1− 1

2u1(A)

)
u1(A) + 1/2

where the last inequality follows since u1(A) ≥ u2(A) = 1/2 and u1(C) ≤
1 − u1(A). The last expression is maximized to 8 − 4

√
3 for u1(A) = 1+

√
3

4 and
the upper bound follows.

In order to prove the lower bound, it suffices to consider a cake consisting of
two parts A and B. Player 1 has utility u1(A) = 1 and u1(B) = 0 and player 2
has utility u2(A) =

√
3− 1 and u2(B) = 2−

√
3. ��

Moreover, it is easy to show an upper bound of n − 1/2 for the price of envy-
freeness for both divisible and indivisible goods.

We next present our results that hold explicitly for indivisible goods; these
results are either exact or tight within a constant factor.

Theorem 4. For n players and indivisible goods, the price of proportionality is
n− 1 + 1/n.

Proof. We begin by proving the upper bound. Consider an instance and a cor-
responding optimal allocation. If this allocation is proportional, then the price
of proportionality is 1; assume otherwise. In any proportional allocation, each
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player has utility at least 1/n on the pieces of the cake she receives and the total
utility is at least 1. Since the optimal allocation is not proportional, some player
has utility less than 1/n and the total utility in the optimal allocation is at most
n− 1 + 1/n.

We now present the lower bound. Consider the following instance with n
players and 2n−1 items. Let 0 < ε < 1/n. For i = 1, ..., n−1, player i has utility
ε for item i, utility 1−1/n for item i+1, utility 1/n− ε for item n+ i and utility
0 for all other items. The last player has utility 1/n− ε for items 1, 2, ..., n− 1,
utility 1/n + (n− 1)ε for item n, and utility 0 for all other items.

We argue that the only proportional allocation assigns items i and n + i to
player i for i = 1, ..., n− 1, and item n to player n. To see that, notice that each
player must be allocated at least one of the first n items, regardless of what other
items she obtains, in order to be proportional. Since there are n players, each of
them must be allocated exactly one of the first n items. Now, consider player n.
It is obvious that she must be allocated item n, since she has utility strictly less
than 1/n for any other item. The only available items (with positive utility) left
for player n−1 are items n−1 and 2n−1, and it is easy to see that both of them
must be allocated to her. Using the same reasoning for players n− 2, n− 3, ..., 1,
we conclude that the only proportional allocation is the aforementioned one,
which has total utility 1 + (n− 1)ε.

Now, the total utility of the optimal allocation is lower-bounded by the total
utility of the allocation where player i gets items i+1 and n+i, for i = 1, ..., n−1,
and player n gets the first item. The total utility obtained by this allocation is
(1− 1/n + 1/n− ε) (n− 1) + 1

n − ε = n − 1 + 1/n − nε. By selecting ε to be
arbitrarily small, the theorem follows. ��

The above lower bound construction uses instances with no envy-free allocation
and, hence, the lower bound on the price of proportionality does not extend
to envy-freeness. We have a slightly weaker lower bound on the price of envy-
freeness for indivisible goods which uses a more involved construction.

Theorem 5. For n players and indivisible goods, the price of envy-freeness is
at least 3n+7

9 −O(1/n).

Unfortunately, equitability may lead to arbitrarily inefficient allocations of indi-
visible goods when the number of players is at least 3.

Theorem 6. For n players and indivisible goods, the price of equitability is 2
for n = 2 and infinite for n > 2.

3 Fair Division with Chores

Our next theorem considers divisible chores.

Theorem 7. For n players and divisible chores, the price of proportionality is
at most n and at least (n+1)2

4n , and the price of equitability is n.
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Since every envy-free allocation is also proportional, the lower bound on the
price of proportionality also holds for envy-freeness. We also have a matching
upper bound of 9/8 for proportionality (or envy-freeness) in the case n = 2.

Finally, we consider the case of indivisible chores. Although the price of pro-
portionality is bounded, the price of envy-freeness and equitability is infinite.

Theorem 8. For n players and indivisible chores, the price of proportionality
is n, whereas the price of envy-freeness (for n ≥ 3) and equitability (for n ≥ 2)
is infinite.

Proof. Due to lack of space, we only present the case of envy-freeness. Consider
the following instance with n players and 2n items. Let ε < 1/ (2n). For i =
1, . . . , n− 2, player i has disutility 1/n for the first n items and disutility 0 for
every other item. Player n− 1 has disutility 0 for the first n− 1 items, disutility
ε for item n, disutility 1/n for items n + 1, . . . , 2n − 1 and disutility 1/n − ε
for item 2n. Finally, player n has disutility 0 for the first n− 1 items, disutility
1/(2n) for items n and 2n, and disutility 1/n for items n + 1, . . . , 2n− 1.

Clearly, the optimal allocation has total disutility ε and is obtained by allo-
cating items n + 1, . . . , 2n to players 1, . . . , n − 2, item n to player n − 1, and
items 1, . . . , n−1 either to player n−1, or to player n. In each case, player n−1
envies player n. Furthermore, the allocation in which player i, for i = 1, . . . , n is
allocated items i and i + n is envy-free. The remark that concludes this proof is
that there cannot exist an envy-free allocation having negligible disutility (i.e.,
less than 1/(2n)). ��
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Abstract. We are interested in mechanisms that maximize social wel-
fare. In [2] this problem was studied for multi-unit auctions and for public
project problems, and in each case social welfare undominated mecha-
nisms were identified. One way to improve upon these optimality re-
sults is by allowing the players to move sequentially. With this in mind,
we study here a sequential version of the Bailey-Cavallo mechanism, a
natural mechanism that was proved to be welfare undominated in the
simultaneous setting by [2]. Because of the absence of dominant strate-
gies in the sequential setting, we focus on a weaker concept of an optimal
strategy. We proceed by introducing natural optimal strategies and show
that among all optimal strategies, the one we introduce generates max-
imal social welfare. Finally, we show that the proposed strategies form
a safety level equilibrium and within the class of optimal strategies they
also form a Pareto optimal ex-post equilibrium1.

1 Introduction

In many resource allocation problems a group of agents would like to determine
who among them values a given object the most. A natural way to approach this
problem is by viewing it as a single unit auction. Such an auction is traditionally
used as a means of determining by a seller to which bidder and for which price the
object is to be sold. The absence of a seller however changes the perspective and
leads to different considerations since in our setting, the payments that the agents
need to make flow out of the system (are “burned”). Instead of maximizing the
revenue of the seller we are thus interested in maximizing the final social welfare.

This has led to the problem of finding mechanisms that are optimal in the
sense that no other feasible, efficient and incentive compatible mechanism gen-
erates a larger social welfare. Recently, in [2] this problem was studied for two
domains: multi-unit auctions with unit demand bidders and the public project
problem of [8]. For the first domain a class of optimal mechanisms (which in-
cludes the Bailey-Cavallo mechanism) was identified, while for the second one
1 A full version of this work along with all the missing proofs is available at
http://pages.cs.aueb.gr/~markakis/research/pubs.html
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it was proved that the pivotal mechanism is optimal. Other related aspects and
objectives have also been recently studied in a series of works on redistribution
and money-burning mechanisms, see among others [9,12,10,13,16,7].

We continue this line of research by relaxing the assumption of simultaneity
and allowing the players to move sequentially. This set up has been recently
studied in [3] for the public project problem and here we consider such a modified
setting for the case of single unit auctions. We call it sequential bidding as the
concept of a “sequential auction” usually refers to a sequence of auctions, see,
e.g. [14, chapter 15].

Hence we assume that there is a single object for sale and the players announce
their bids sequentially in a fixed order. In contrast to the open cry auctions each
player announces his bid exactly once. Once all bids have been announced, a
mechanism is used to allocate the object to the highest bidder and determine
the payments. Such a sequential setting can be very natural in many decision
making or coordination problems without a central authority.

1.1 Results

We study here a sequential version of the Bailey-Cavallo mechanism of [5] and
[6], as being a simplest, natural and most intuitive mechanism in the class of
OEL mechanisms [11]. Our main results start in Section 4, where we first show
that in a large class of sequential Groves auctions no dominant strategies exist.
Therefore we settle on a weaker concept, that of an optimal strategy. An optimal
strategy is a natural relaxation of the notion of dominant strategy, which also
captures precisely the way a “prudent” player would play (see Lemma 1).

We proceed in Section 5 with proposing optimal strategies that differ from
truth telling in the Bailey-Cavallo mechanism. We show that the proposed strate-
gies yield maximal social welfare among all possible vectors of optimal strategies.
Finally in Section 6 we further clarify the nature of the proposed strategies by
studying what type of equilibrium they form. First we point that they do not
form an ex-post equilibrium, a concept criticized in [4] and [1], where an al-
ternative notion of a safety-level equilibrium was introduced for pre-Bayesian
games. This concept captures the idea of an equilibrium in the case when each
player is “prudent”. We prove that the proposed strategies form a safety-level
equilibrium. We also show that our strategies form a Pareto optimal ex-post
equilibrium within the class of optimal strategies.

2 Preliminaries

Assume that there is a finite set of possible outcomes or decisions D, a set
{1, . . ., n} of players where n ≥ 2, and for each player i a set of types Θi and an
(initial) utility function vi : D×Θi → R. Let Θ := Θ1×· · ·×Θn. A decision
rule is a function f : Θ→D. A mechanism is given by a pair of functions (f, t),
where f is the decision rule and t = (t1, ..., tn) is the tax function that determines
the players’ payments. We assume that the (final) utility function for player
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i is a function ui defined by ui(d, t1, . . ., tn, θi) := vi(d, θi) + ti. Thus, when the
true type of player i is θi and his announced type is θ′i, his final utility under
the mechanism (f, t) is:

ui((f, t)(θ′i, θ−i), θi) = vi(f(θ′i, θ−i), θi) + ti(θ′i, θ−i),

Given a sequence a := (a1, . . ., aj) of reals we denote the least l such that al =
maxk∈{1,...,j} ak by argsmaxa. A single item sealed bid auction , is modelled
by choosing D = {1, . . . , n}, each Θi to be the set of non-negative reals and
f(θ) := argsmaxθ. Hence the object is sold to the highest bidder and in the case
of a tie we allocate the object to the player with the lowest index.2

By a Groves auction we mean a Groves mechanism for an auction setting
(for details on Groves mechanisms see [15]). Below, given a sequence θ of reals we
denote by θ∗ its reordering in descending order. Then θ∗k is the kth largest element
in θ. For example, for θ = (1, 5, 0, 3, 2) we have (θ−2)

∗
2 = 2 since θ−2 = (1, 0, 3, 2).

The Vickrey auction is the pivotal mechanism for an auction (also referred to
as the VCG mechanism). In it the winner pays the second highest bid.

The Bailey-Cavallo mechanism, in short BC auction , was originally pro-
posed in [5] and [6]. To define it note that each Groves mechanism is uniquely
determined by its redistribution function r := (r1, . . ., rn). Given the redis-
tribution function r, the tax for player i is defined by ti(θ) := tpi (θ) + ri(θ−i),
where tpi is the tax of player i in the Vickrey auction. So we can think of a
Groves auction as first running the pivotal mechanism and then redistributing
some amount of the pivotal taxes.

The BC auction is a Groves mechanism defined by using the following redis-
tribution function r := (r1, . . ., rn) (assuming that n ≥ 3):

ri(θ−i) :=
(θ−i)

∗
2

n

It can be seen that the BC auction always yields at least as high social welfare
as the pivotal mechanism. Note also that the aggregate tax is 0 when the second
and third highest bids coincide.

3 Sequential Mechanisms

We are interested in sequential mechanisms, where players announce their types
according to a fixed order, say, 1, 2, ..., n. Each player i observes the actions an-
nounced by players 1, . . ., i−1 and uses this information to decide which action to
select. Thus a strategy of player i is now a function si : Θ1×. . .×Θi−1×Θi →Θi.
Then if the vector of types that the players have is θ and the vector of strategies
that they decide to follow is s(·) := (s1(·), . . ., sn(·)), the resulting vector of the
selected actions will be denoted by [s(·), θ], where [s(·), θ] is defined inductively
by [s(·), θ]1 := s1(θ1) and [s(·), θ]i+1 := si+1([s(·), θ]1, . . ., [s(·), θ]i, θi+1).
2 If we make a different assumption on breaking ties, some of our proofs need to be

adjusted, but similar results hold.
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Given θ ∈ Θ and i ∈ {1, . . ., n} we denote the sequence θi+1, . . ., θn by θ>i

and the sequence Θi+1, . . ., Θn by Θ>i, and similarly with θ≤i and Θ≤i.
A strategy si(·) of player i is called dominant if for all θ ∈ Θ, all strategies

s′i(·) of player i and all vectors s−i(·) of strategies of players j �= i

ui((f, t)([(si(·), s−i(·)), θ]), θi) ≥ ui((f, t)([(s′i(·), s−i(·)), θ]), θi),

We call a joint strategy s(·) = (s1(·), . . ., sn(·))
– an ex-post equilibrium if for all i ∈ {1, . . ., n}, all strategies s′i(·) of player

i and all joint types θ ∈ Θ

ui((f, t)([(si(·), s−i(·)), θ]), θi) ≥ ui((f, t)([(s′i(·), s−i(·)), θ]), θi),

– a safety-level equilibrium if for all i ∈ {1, . . ., n}, all strategies s′i(·) of
player i and all θ≤i ∈ Θ≤i

min
θ>i∈Θ>i

ui((f, t)([(si(·), s−i(·)), θ]), θi) ≥ min
θ>i∈Θ>i

ui((f, t)([(s′i(·), s−i(·)), θ]), θi).

Intuitively, given the types θ≤i ∈ Θ≤i of players 1, . . ., i and the vector s(·) of
strategies used by the players, the quantity minθ>i∈Θ>i ui((f, t)([s(·), θ]), θi) is
the minimum payoff that player i can guarantee to himself.

4 Sequential Groves Auctions

In Groves auctions truth telling is a dominant strategy. In the case of sequen-
tial Groves auctions the situation changes as for a wide class, which includes
sequential BC auctions no dominant strategies exist (except for the last player).

Theorem 1. Consider a sequential Groves auction. Suppose that for player i ∈
{1, . . ., n− 1}, the redistribution function ri is such that there exists z > 0 such
that ri(0, 0, . . ., z, 0, . . ., 0) �= ri(0, . . ., 0) + z (in the first term z is in the ith
argument of ri). Then no dominant strategy exists for player i.

In light of this negative result, we would like to identify strategies that players
could choose. We therefore focus on a concept that formalizes the idea that
the players are “prudent” in the sense that they want to avoid the winner’s
curse by winning the item at a too high price. Such a player i could argue as
follows: if his actual type is no more than the currently highest bid among players
1, . . ., i− 1, then he can safely bid up to the currently highest bid. On the other
hand, if his actual type is higher than the currently highest bid among players
1, ..., i − 1, then he should bid truthfully (overbidding can result in a winner’s
curse and underbidding can result in losing). Lemma 1 below shows that the
above intuition is captured by the following definition.

Definition 1. We call a strategy si(·) of player i optimal if for all θ ∈ Θ and
all θ′i ∈ Θi

ui((f, t)(si(θ1, . . ., θi), θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).
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By choosing truth telling as the strategies of players j �= i we see that each
dominant strategy is optimal. For player n the concepts of dominant and optimal
strategies coincide.

Definition 1 is a natural relaxation of the notion of dominant strategy as it
calls for optimality w.r.t. a restricted subset of the other players’ strategies. Call
a strategy of player j memoryless if it does not depend on the types of players
1, . . ., j − 1. Then a strategy si(·) of player i is optimal if for all θ ∈ Θ it yields
a best response to all joint strategies of players j �= i in which the strategies of
players i + 1, . . ., n are memoryless. In particular, an optimal strategy is a best
response to the truth telling by players j �= i.

The following lemma provides the announced characterization of optimal
strategies. For any i, define θ̄i := maxj∈{1,...,i−1} θj . We stipulate here and else-
where that for i = 1 we have θ̄1 = −1 so that for i = 1 we have θi > θ̄i.

Lemma 1. In each sequential Groves auction a strategy si(·) is optimal for
player i if and only if the following holds for all θ1, . . ., θi:

(i) Suppose θi > θ̄i and i < n. Then si(θ1, . . ., θi) = θi.
(ii) Suppose θi > θ̄i and i = n. Then si(θ1, . . ., θi) > θ̄i.
(iii) Suppose θi ≤ θ̄i and i < n. Then si(θ1, . . ., θi) ≤ θ̄i.
(iv) Suppose θi < θ̄i and i = n. Then si(θ1, . . ., θi) ≤ θ̄i.

Note that no conclusion is drawn when θn = maxj∈{1,...,n−1} θj . Player n can
place then an arbitrary bid.

The following simple observation, see [3], provides us with a sufficient condi-
tion for checking whether a strategy is optimal in a sequential Groves mechanism.

Lemma 2. Consider a Groves mechanism (f, t). Suppose that si(·) is a strategy
for player i such that for all θ ∈ Θ, f(si(θ1, . . ., θi), θ−i) = f(θ). Then si(·) is
optimal in the sequential version of (f, t).

In particular, truth telling is an optimal strategy.

5 Sequential BC Auctions

As explained in the Introduction the BC mechanism cannot be improved upon in
the simultaneous case, as shown in [2]. As we shall see here, the final social welfare
can be improved in the sequential setting by appropriate optimal strategies that
deviate from truth telling.

Theorem 1 applies for the BC auction, therefore no dominant strategies exist.
We will thus focus on the notion of an optimal strategy. As implied by Lemma 2
many natural optimal strategies exist. In the sequel we will focus on the following
optimal strategy which is tailored towards welfare maximization as we exhibit
later on:

si(θ1, . . . , θi) :=

⎧⎪⎪⎨⎪⎪⎩
θi if θi > maxj∈{1,...,i−1} θj

(θ1, . . . , θi−1)
∗
1 if θi ≤ maxj∈{1,...,i−1} θj

and i ≤ n− 1
(θ1, . . . , θi−1)

∗
2 otherwise

(1)
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According to strategy si(·) if player i cannot be a winner when bidding truthfully
he submits a bid that equals the highest current bid if i < n or the second
highest current bid if i = n. Note that si(·) is indeed optimal in the sequential
BC auction, since Lemma 2 applies.

We now exhibit that within the universe of optimal strategies, if all players fol-
low si(·), maximal social welfare is generated. Given θ and a vector of strategies
s(·), define the final social welfare of a sequential mechanism (f, t) as:

SW (θ, s(·)) =
n∑

i=1

ui((f, t)([s(·), θ]), θi) =
n∑

i=1

vi(f([s(·), θ]), θi) +
n∑

i=1

ti([s(·), θ]).

Theorem 2. In the sequential BC auction for all θ ∈ Θ and all vectors s′(·) of
optimal players’ strategies,

SW (θ, s(·)) ≥ SW (θ, s′(·))

where s(·) is the vector of strategies si(·) defined in (1).

The maximal final social welfare of the sequential BC auction under s(·) is always
greater than or equal to the final social welfare achieved in a BC auction when
players bid truthfully.

6 Implementation in Safety-Level Equilibrium

In this section we clarify the status of the strategies studied in Section 5 by ana-
lyzing what type of equilibrium they form. The notion of an ex-post equilibrium
is somewhat problematic, since in pre-Bayesian games (the games we study here
are a special class of such games) it has a different status than Nash equilibrium
in strategic games. Indeed, as explained in [1], there exist pre-Bayesian games
with finite sets of types and actions in which no ex-post equilibrium in mixed
strategies exists.

The vector of strategies si(·) defined in (1) is not an ex-post equilibrium in
the sequential BC auction. Indeed, take three players and θ = (1, 2, 5). Then for
player 1 it is advantageous to deviate from s1(·) strategy and submit, say 4. This
way player 2 submits 4 and player’s 1 final utility becomes 4/3 instead of 2/3.

We believe that an appropriate equilibrium concept for the (sequential) pre-
Bayesian games is the safety-level equilibrium introduced by [4] and [1] and
defined in Section 3. In the case of sequential mechanisms it captures a cautious
approach by focusing on each player’s guaranteed payoff in view of his lack of
any information about the types of the players who bid after him. We have the
following result.

Theorem 3. The vector of strategies si(·) defined in (1) is a safety-level equi-
librium in the sequential BC auction.

One natural question is whether one can extend our Theorem 2 to show that our
proposed vector of strategies in (1) generates maximal social welfare among all
safety-level equilibria. The answer to this turns out to be negative as illustrated
by the next example:
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Example 1. Consider truth telling as the strategy for players 1, ..., n − 2 and
n. For any i, define θ̂i := maxj∈{1,...,i−1} [s(·), θ]j . For player n − 1 define the
strategy:

s′n−1(θ1, ..., θn−1) =
{

θ̂n−1 + ε if θn−1 > θ̂n−1,
θn−1 otherwise.

where ε is a positive number in the interval (θ̂n−1, θn−1). This vector of strategies
forms a safety-level equilibrium (we omit the proof here due to lack of space).
Consider now the vector θ = (0, 0, ...1, 15, 16). The sum of taxes under the set of
strategies we have defined will be 2ε

n . On the other hand, under the vector s(·)
defined in (1), the sum of the taxes is 2

n (15− 1). �

The set of safety-level equilibria is quite large. The above example illustrates
that we can construct many other safety-level equilibria, by slight deviations
from the truth telling strategy. In fact, there are even equilibria in which some
players overbid and yet for some type vectors they generate higher social welfare
than our proposed strategies. These equilibria, however, may be unlikely to form
by prudent players and Theorem 2 guarantees that among equilibria where all
players are prudent our proposed strategies generate maximal welfare.

Finally, if we assume that players select only optimal strategies, then we could
consider an ex-post equilibrium in the universe of optimal strategies. We have
then the following positive result.

Theorem 4. If we allow only deviations to optimal strategies, then in the se-
quential BC auction, the vector of strategies si(·) defined in (1) is an ex-post
equilibrium that is also Pareto optimal.

7 Final Remarks

This paper and our previous recent work, [3], forms part of a larger research en-
devour in which we seek to improve the social welfare by considering sequential
versions of commonly used incentive compatible mechanisms. The main con-
clusion of [3] and of this work is that in the sequential version of single-item
auctions and public project problems there exist optimal strategies that devi-
ate from truth telling and can increase the social welfare. Further, the vector
of these strategies generates the maximal social welfare among the vectors of
all optimal strategies. Here, we also showed that the vector of the introduced
strategies forms a safety-level equilibrium.

We would like to undertake a similar study of the sequential version of the
incentive compatible mechanism proposed in [17], concerned with purchasing a
shortest path in a network.
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Abstract. In this paper we study the design and characterization of prediction
markets in the presence of traders with unknown risk-aversion. We formulate a
series of desirable properties for any “market-like” forecasting mechanism. We
present a randomized mechanism that satisfies all these properties while guaran-
teeing that it is myopically optimal for each trader to trade honestly, regardless
of her degree of risk aversion. We observe, however, that the mechanism has an
undesirable side effect: the traders’ expected reward, normalized against the in-
herent value of their private information, decreases exponentially with the number
of traders. We prove that this is unavoidable: any mechanism that is myopically
strategyproof for traders of all risk types, while also satisfying other natural prop-
erties of “market-like” mechanisms, must sometimes result in a player getting an
exponentially small normalized expected reward.

1 Introduction and Related Work

Prediction markets are markets designed and deployed to aggregate information about
future events by having agents with private beliefs trade in these markets. One market
format that is gaining in popularity is the market scoring rule [8]. A market scoring
rule is a market mechanism with an automated market maker that guarantees liquidity,
effectively subsidizing the market to incentivize trade.

Hanson [8] has shown that, for risk-neutral agents who are myopic, it is optimal for
each to reveal their true beliefs on the traded event. This results leaves two questions.
The first question, partially addressed by Chen et al. [6], is: What happens when agents
take into account future payoffs?.

In this paper, we tackle the second question: What happens when agents are not
risk-neutral? In practice, most people are better modeled as being risk-averse in their
decision making. Therefore, we model traders as expected-utility maximizers with an
arbitrary weakly monotone and concave utility function. Current prediction market
mechanisms, like the Market Scoring Rule or the Dynamic Pari-mutuel Market [11], do
not always give appropriate incentives to risk-averse traders. For example, a sufficiently
risk-averse informed trader, who knows that an event will occur with 80% probability
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even though it is currently priced at 50%, may not want to push up the price in a mar-
ket because of the 20% chance of making a loss. This suggests that current subsidized
prediction markets may converge to a non-truthful price in a sequential equilibrium.

If traders have known risk aversion, the scoring rules could be adjusted, retaining
the original incentive properties. In this paper, we focus on the setting where traders
have unknown risk aversion, and study whether it is possible to modify the market
mechanism to guarantee myopic honesty and preserve other desirable properties. We
first list a set of properties that any prediction market-like mechanism must satisfy: (1)
myopic strategyproofness; (2) sequential trade, giving traders the opportunity to update
beliefs; (3) a variant of sybilproofness, capturing the idea that trading under multiple
identities does not yield any direct advantage; and (4) the expected subsidy should be
bounded.

We propose one mechanism that satisfies all of these properties in the presence of
traders with unknown risk-averse preferences. The key building block of our result is
a sweepstakes technique, developed by Allen [2]. Unfortunately, the proposed mecha-
nism reduces the expected reward exponentially with the number of agents.

We then establish that exponentially decreasing rewards are unavoidable for any
mechanism satisfying all the properties listed above. To exclude trivial examples of
decreasing rewards, we normalize all rewards by a measure of the intrinsic informative-
ness of a trader’s private information. We show that exponential decrease in the nor-
malized expected reward is necessary for any mechanism that satisfies the properties
we propose in the presence of arbitrarily risk-averse agents.

1.1 Related Work

In this section we discuss some of the previous work in prediction markets and scoring
rules. Hanson [8] introduced the concept of a market scoring rule, a form of
subsidized prediction market, and proved a myopic strategyproofness property for risk-
neutral traders, as well as a bound on the total subsidy. Pennock [11] introduced an-
other mechanism, the dynamic pari-mutuel market, for a subsidized prediction market.
Both these mechanisms introduce some of the properties in section 2. However, both
mechanisms assume risk neutrality of the traders, which is not assumed in this paper.
Lambert et al. [9] introduce a class of self-financed wagering mechanism along with the
properties such mechanisms must satisfy. The authors assume risk neutral traders and an
absence of subsidy in the mechanism. Chen and Pennock [5], and later generalized by
Agrawal et al. [1], consider a risk-averse market maker in a subsidized market and show
that the market maker has bounded subsidy in most forms of risk aversion. However,
unlike our paper, the incentive consequence of risk-averse traders is not addressed.

Several prediction market mechanisms are extensions of proper scoring rules. The
notion of scoring rules was introduced by Brier [3], in the form of the quadratic scoring
rule (which is proper), to measure the accuracy of weather forecasters. Proper scoring
rules provide a way to reward forecasters such that honest reports are made. Most of the
early work on scoring rules assumed that forecasters were risk neutral.

There has been some research on addressing risk aversion in scoring rules. Winkler
and Murphy [12] showed that, if forecasters have a known risk type, scoring rules can
be transformed to recapture the honest reporting property. One approach to handling
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forecasters with unknown risk type, as proposed by Chen et al. [4] and Offerman et
al. [10], is to figure out every participant’s risk type by asking them a series of questions,
and then calibrate their future reports using this data. This mechanism may work for a
prediction market mechanism if the group of traders can be pre-screened. However, this
may not be the case, and ideally we would like to have an “online” mechanism that can
handle traders regardless of their risk type without any calibration. Allen [2] proposed
one such “online” scoring rule for forecasters with arbitrary risk type. Our mechanism
is based on Allen’s result, and we discuss this idea in section 3.

2 Model, Notation, and Definitions

In this section and section 4 we consider a class of mechanisms defined by a set of prop-
erties satisfied by most subsidized prediction markets described in literature. We do not
claim that the outlined properties are sufficient to completely characterize the space of
prediction market mechanisms; rather, they identify a class of broad market-like mech-
anisms. We first describe our basic model of the information and interaction setting
in which the mechanism operates, and then list the properties that the mechanisms we
study must satisfy.

We consider a class of mechanisms designed to aggregate information from a set of
agents (or traders) in order to forecast the outcome of a future event ω. Each agent i
receives a private information signal, si, relevant to the outcome of the event; we assume
si is binary, as is ω.

A central feature of the market-like mechanisms we consider is that the agents ex-
press a predicted probability of the event in the mechanism, through a sequence of
public trades or reports. Other agents can update their beliefs based on the observed
history of reports. We use rk ∈ [0,1] to denote the kth report made in the market, and let
µk = (r1, · · · ,rk−1) denote the history up to the start of the kth trade. rk can thus depend
on µk as well as any private information available to the trader making the report. We
let n denote the total number of trades in the market.

We assume the identity of the agents making the reports cannot be verified, and the
total number of agents participating is unknown. As each agent’s signal is static, there
is no need for any agent to trade more than once. Therefore, we will treat each report as
if were made by separate traders and is natural for a market setting. However, an agent
may masquerade as multiple agents, which is a consideration of sybilproofness.

Once the true outcome of the event is realized, ω = 1 if the event occurs and ω = 0
otherwise, the mechanism determines the reward for every agent. The reward for agent
i, ρ(ri,µi,n,ω), is a function of the agent’s report, market state, the total number of
agents participating in the mechanism, and the event outcome. We allow the mecha-
nism to randomize the distribution of the rewards, and we propose one such mechanism
in section 3. We assume that the reward does not depend on the value of any reports
made in the future. This is a nontrivial technical assumption that enables us to simplify
the analysis of agents’ myopic strategies, as agents can make decisions based on their
current beliefs about the outcome, without forming beliefs about future agents’ signals
and strategies. This assumption is satisfied by most securities markets as well as market
scoring rule markets, but not necessarily true for pari-mutuel markets.
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Every agent i values the distributed reward according to her value function Vi(·),
where Vi(·) is a weakly monotone increasing concave function. We make the normal-
izing assumption that Vi(0) = 0. In order to make her report, an agent maximizes her
expected reward, with respect to her true belief pi, over the outcome of the event and
any randomization of the mechanism over the rewards, written as Eω∼piVi(ρ(r,µi,n,ω)).
Though there may be other sources of uncertainty in the mechanism, we do not consider
them in our model.

We identify the properties mechanisms should satisfy by examining literature in pre-
diction market design and other wagering mechanisms. Hanson [8], in introducing the
market scoring rule, had a subsidized prediction market be myopically strategy proof
and have bounded market subsidy, both defined below. The same properties also hold
in the dynamic pari-mutuel market introduced by Pennock [11]. As both of the mech-
anisms were subsidized, both had guaranteed liquidity by having a market maker that
is always willing to trade with an agent. Prediction markets provide anonymity, i.e.,
the reward given due to a report is independent of who made the report. Finally, pre-
diction markets are sybilproof, meaning that an agent reporting once with some infor-
mation is no better off reporting twice in the market with the exact same information.
Though anonymity and sybilproofness were not explicitly stated by Hanson or Pennock,
they still hold in their proposed mechanisms and were explicitly defined by Lambert et
al. [9]. We use a relaxed version of sybilproofness by requiring agents to be no better
off reporting twice, as opposed to having the same payoff as presented by Lambert et
al.. Using the notation established above, we formally define the desired properties:

P1: Myopically Strategyproof: If an agent making trade i has true belief pi, and trades
only once in a market, her reported belief will be her true belief. Mathematically,

∀n, i ∈ {1..n},µi pi = argmax
r∈[0,1]

Eω∼piVi(ρ(r,µi,n,ω)). (1)

Further, we also require maxr∈[0,1] Eω∼piVi(ρ(r,µi,n,ω))≥ 0 so that myopic strate-
gyproofness includes a standard individual rationality condition.

P2: Sybilproofness: An agent is no worse off reporting once honestly than making any
two consecutive reports r(1),r(2) with the same information. Mathematically,

∀n, i ∈ {1..n},µi Eω∼piVi(ρ(pi,µi,n,ω))≥
Eω∼piVi(ρ(r(1),µi,n + 1,ω)+ ρ(r(2),µi+1,n + 1,ω)).

(2)

P3: Bounded Subsidy: The expected subsidy the market maker needs to invest into
the market is bounded by a value β:

∀n, i ∈ {1..n},µi,ri ∑
all players i

Eωρ(ri,µi,n,ω) < β

To summarize, we define the class of market-like mechanisms to be all mechanisms
that are anonymous, guarantee liquidity, myopically strategy proof, sybilproof, and have
bound market subsidy.

Before we introduce our results, we must introduce the concepts of information
structure, report informativeness, and normalized expected reward.
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Information Structure: We define an information structure to consist of a set of pos-
sible signal realizations for each trader, and the posterior probability of events given
a subset of signal realizations (equivalently, the joint probability of signal realiza-
tions and the true outcomes).

Informativeness: For a given information structure, we define informativeness of an
agent k, given a history µk, as the expected reduction in forecasting error, as mea-
sured by the reduction in entropy of the event, after conditioning on k’s
signal.

Normalized Expected Reward: The informativeness and the reward of each agent
may deviate. Therefore, in order to compare the reward an agent receives from
a report, we define the normalized expected reward as the ratio of the expected
reward to the informativeness of the report given the history up to that point.

3 Proposed Mechanism

In this section we review the work presented by Allen [2] and then present one mecha-
nism that satisfies the properties outlined in section 2.

Allen shows that an agent with a monotone value function V (·) with unknown risk
preference will set her report, p̂, to her true belief, p, on an outcome ω if she participates
in a sweepstakes. According to the sweepstakes, the agent will receive a reward of 1
with probability q(p̂) = 1− (1− p̂)2 if the event occurs and probability q̂(p̂) = 1− p̂2

if the event does not occur. Allen’s result follows from the fact that the expected value
is linear in probabilities and the value function is monotonically increasing.

Now consider the following serial sweepstakes that is a derivative of Allen’s result:

1. An agent observes the previous agents’ reports, and plays an individual sweepstake
as defined by Allen with sweepstake functions described above.

2. The outcome of the event is observed.
3. If there are n reports in the mechanism, then each player reporting p̂ wins a reward

of 1 with probability q(p̂) = 1
4n (1−(1− p̂)2) if the event occurs and q̂(p̂) = 1

4n (1−
p̂2) if the event does not occur.

The mechanism above possesses all of the properties outlined in section 2; however,
the mechanism distributes rewards that are exponentially decreasing with the number
of agents. Moreover, if all the reports are equally informative, then the normalized ex-
pected reward also decreases exponentially with the number of reports.

4 Impossibility Result

Theorem 1. If an anonymous, guaranteed liquidity mechanism satisfies properties P1–
P3, then, there is a family of information structures I(n), each parameterized by a num-
ber n of agents, such that, even if all agents perform perfect Bayesian updating accord-
ing to the structure I(n) and report their posteriors honestly, the minimum normalized
expected reward of an agent must decrease exponentially with n.
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We start by showing that if agents with arbitrary risk-averse preferences are to partic-
ipate in a mechanism in our class, all rewards must be non-negative. We then observe
that the informativeness of a report is a constant multiple of the square of the differ-
ences between the posteriors after every report, so long as the posteriors are bounded
in [0.5−c,0.5+c], for c≤ 0.2. We then show that for any two sequential reports made
under two different posterior beliefs, the expected reward from the reports under the
first posterior is a constant multiple of the expected reward under the second posterior,
so long as the two posterior beliefs are bounded within [0.5− c,0.5 + c],c≤ 0.2.

The theorem proof follows by inductively building a family of information structures
starting with the structure of two agents both making symmetric reports. In the base
structure I(2), two agents start with a common prior of 0.5 on the event and receive a
binary signal. If the agents report honestly, each agent will change the posterior report
by± c

2 . This results in information structure I(2) with bounded posteriors between [0.5−
c,0.5 + c]. We now consider a sybil attack in this setting, where one of the agents is
making two reports under the same priors. To make this consideration we construct
I(3). This construction is dependent on the mechanism: If the expected reward of the
first agent is larger than 4 times the expected reward of the second, we construct a
structure I(3′), otherwise I(3′′).

In either case, we split one of the reports into two, such that the histories up to the
split report are consistent with I(2). By the sybilproofness property, we know that the
sum of the expected rewards of the split reports is no larger than the original. Even
accounting for the reduction in informativeness, we show that there is a report with
normalized expected reward of at most γ times that of the split report in I(2), where
γ = 0.5+c

0.5−c ·
80
81 < 1 for a suitable c.

From I(3) we construct I(4) in a similar manner. Iteratively applying this procedure
we show that there exists at least one report in I(n) with normalized expected reward
that is exponentially smaller than one of the two reports in I(2).

5 Conclusion

In this paper we present one mechanism that satisfies properties in section 2 that allows
agents with arbitrary risk-averse value function to participate. However, this mechanism
requires that the normalized expected reward exponentially decrease with the number
of agents. We then show that as long as the risk aversion structure of the agents is not
known, for any mechanism in the class of interest that allows agents with arbitrary risk-
averse value functions to participate, the normalized expected reward must decrease
exponentially with the number of agents.
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Abstract. We study the envy free pricing problem faced by a seller
who wishes to maximize revenue by setting prices for bundles of items. If
there is an unlimited supply of items and agents are single minded then
we show that finding the revenue maximizing envy free allocation/pricing
can be solved in polynomial time by reducing it to an instance of weighted
independent set on a perfect graph.

We define an allocation/pricing as multi envy free if no agent wishes
to replace her allocation with the union of the allocations of some set of
other agents and her price with the sum of their prices. We show that it is
coNP -hard to decide if a given allocation/pricing is multi envy free. We
also show that revenue maximization multi envy free allocation/pricing
is APX hard.

Furthermore, we give efficient algorithms and hardness results for var-
ious variants of the highway problem.

1 Introduction

We consider the combinatorial auction setting where there are several different
items for sale, not all items are identical, and agents have valuations for subsets
of items. We allow the seller to have identical copies of an item. We distinguish
between the case of limited supply (e.g., physical goods) and that of unlimited
supply (e.g., digital goods). Agents have known valuations for subsets of items.
We assume free disposal, i.e., the valuation of a superset is ≥ the valuation of
a subset. Let S be a set of items, agent i has valuation vi(S) for set S. The
valuation functions, vi, are public knowledge. Ergo, we are not concerned with
issues of truthfulness or incentive compatible bidding. Our concern here is to
maximize revenue in an envy free manner.

Our goal is to determine prices for sets of items while (approximately) max-
imizing revenue. The output of the mechanism is a payment function p that
assigns prices to sets of items and an allocation a. Although there are expo-
nentially many such sets, we will only consider payments functions that have a
concise representation. For a set of items S let p(S) be the payment required for
set S. Let ai be the set assigned to agent i.

In general, every agent i has valuation function vi defined over every subset
of items.

Given a payment function p, and a set of valuation functions vi, let zi =
maxS(vi(S)− p(S)), and let Si to be a collection of sets such that S ∈ Si if and
only if vi(S)− p(S) = zi.

We now distinguish between two notions of envy freeness.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 498–504, 2009.
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Definition 1. We say that (a, p) is envy free if

– If zi > 0 then ai ∈ Si.
– If zi = 0 then either ai ∈ Si or ai = ∅.
– If zi < 0 then ai = ∅.

Definition 2. A pricing p is monotone if for each subset S and for each collec-
tion of subsets C such that S ⊆

⋃
T∈C T the following inequality holds: p(S) ≤∑

T∈C p(T ).

Definition 3. An allocation/pricing (a, p) is multi envy free if it is envy free
and its pricing is monotone.

Clearly, multi envy-freeness is a more demanding requirement than envy-freeness,
so any allocation/pricing that is multi envy-free is also envy-free. In item pricing,
a price is set for every item, identical copies of an item are priced the same, and
the price of a set is the sum of the individual item prices. In subset pricing one may
assign a sets of items prices that cannot be consistently expressed as a sum of the
item prices comprising the set. E.g., discounts for volume would not generally be
consistent with item pricing.

In the unlimited supply setting, item pricing is always multi envy-free (and
hence also envy-free). With a limited supply of items, achieving item-pricing
[multi] envy-freeness is not automatic. Circumstances may arise where some
agent has a valuation less than the price of some set of items she is interested in,
but there is insufficient supply of these items. An envy-free solution must avoid
such scenarios. Even so, for limited or unlimited supply, item pricing is envy-free
if and only if item pricing is multi envy-free (this follows from the monotonicity
of the item pricing).

For subset pricing, it does not necessarily follow that every allocation/pricing
that is envy-free is also multi envy-free.

Although the definitions above are valid in general, we are interested in single
minded bidders, and more specifically in a special case of single minded bidders
called the highway problem ([7,1]) where items are ordered and agents bid for
consecutive interval of items.

2 Our Results

Unfortunately, due to lack of space we have omitted all proofs and construc-
tions with one exception. In this extended abstract we show that for unlimited
supply, and single minded bidders, finding the envy free allocation/pricing that
maximizes revenue is polynomial time. Missing proofs can be found in the full
version of this paper [5].

In the full version of this paper we show gaps in revenue between the item
pricing (where envy freeness and multi envy freeness are equivalent), multi envy
freeness, and envy freeness. These results are summarized in Table 1. These gaps
are for single minded bidders. In all cases (single minded bidders or not)
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Table 1. Revenue gaps for single minded bidders (n items, m agents)

Lower [Multi] Envy-free Multi envy-free Envy-free Type of
Bound item pricing subset pricing subset pricing Instance

Limited #1 Hn n Highway
Hm m

Unlimited #2 1 Hn Single Minded
1 Hm

Unlimited #3 1 Hn Highway
1 log log m

Revenue([Multi] EF item pricing) ≤ Revenue(Multi EF subset pricing)
≤ Revenue(EF subset pricing)
≤ Social Welfare.

Clearly, if a lower bound holds for unlimited supply it also holds for (big enough)
limited supply.

All of our lower bound constructions are for single minded bidders, for single
minded bidders with unlimited supply the bounds are almost tight as from [7]
it follows directly:

(Social welfare)/(Envy-free item pricing) ≤ Hm + Hn.

In the full version of this paper, we also show the following:

1. The decision problem of whether an allocation/pricing is multi envy free is
coNP -hard.

2. Finding an allocation/pricing that is multi envy free and maximizes the
revenue is APX -hard.

3. For the the highway problem, if all capacities are O(1) then the (exact)
revenue maximizing envy free allocation/pricing can be computed in poly-
nomial time. I.e., the problem is fixed parameter tractable with respect to
the capacity.

4. For the highway problem with O(1) capacities, we give a FPTAS for revenue
maximization on the more difficult Multi envy-free setting.

3 Related Work

Much of the work on envy free revenue maximization is on item pricing rather than
on subset pricing. Guruswami et al. [7] give an O(log m+log n)-approximation for
the general single minded problem, where n is the number of items and m is the
number of agents. This result was extended by Balcan et al. [2] to an O(log m +
log n)-approximation for arbitrary valuations and unlimited supply using single
fixed pricing which is basically pricing all bundles with the same price. Demaine
et al. [4] show that the general item pricing problem with unlimited availability
of items is hard to approximate within a (semi-)logarithmic factor.
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4 Notation and Definitions

The capacity of an item is the number of (identical) copies of the item available
for sale. The supply can be unlimited supply or limited supply. In a limited supply
seller is allowed to sell up to some fixed amount of copies of each item. In the
unlimited supply setting, there is no limit as to how many units of an item can
be sold.

We consider single-minded bidders, where each agent has a valuation for a
bundle of items, Si, and has valuation 0 for all sets S that are not supersets
of Si. The valuation function for i, vi, has a succinct representation as (Si, vi)
where vi = vi(Si). For every S such that Si ⊆ S, vi(S) = vi(Si) = vi, for all
other sets S′, vi(S′) = 0. Without lost of generality, an allocation/pricing must
either have ai = ∅ and pi(ai) = 0 or ai = Si and pi(ai) ≤ vi(Si).

For single minded bidders, the definition of envy free can be simplified:

Observation 4. For single minded bidders an allocation/pricing is envy free if
and only if

1. For any two agents i and j with non-empty allocations, if Si ⊆ Sj, it must
be that p(Si) ≤ p(Sj)

2. For any agent i that receives nothing and any other agent j that receives Sj,
where Si ⊆ Sj, it must be that v(Si) ≤ p(Sj)

5 Polynomial Time Envy-Free Revenue Maximization
(Unlimited Supply, Single Minded Bidders)

For the unlimited supply setting we show that:

Theorem 5. For single minded bidders the revenue maximizing envy free allo-
cation/pricing with unlimited supply can be computed in polynomial time.

Allocating a bundle at price p means that any bundle that is a superset and
has valuation < p must not be allocated. We transform the problem into a
perfect graph H and then compute the revenue maximizing allocation/pricing
by computing a maximal independent set on H (which can be done in polytime
for perfect graph). A similar construction was used by Chen et al. [3] for envy
free pricing with metric substitutability.

5.1 Construction of Graph H

For each i ∈ {1, . . . , m}, define

A(i) = {1 ≤ j ≤ m|Si ⊆ Sj and vj < vi}.

Given price p for agent i, all requests in A(i) with valuation < p cannot be
allocated. For each agent i , define an ordering πi on A(i) in non-decreasing
order of valuation. I.e., for each pair j, k such that 1 ≤ j ≤ k ≤ ni, where
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ni = |A(i)|, the valuations must be ordered, vπi(j) ≤ vπi(k) (ties are broken
arbitrarily).

We construct an undirected vertex-weighted graph H as follows. For each
agent i we associate ni + 1 weighted vertices. These vertices constitute the T (i)
component, the vertices of which are {i1, i2, ..., ini+1}. The set of all H vertices
is defined as

⋃
i∈V Ti. The weight of each vertex in T (i) is given as follows:

w(i1) = vπi(1), w(i2) = vπi(2) − vπi(1), . . ., w(in) = vπi(ni) − vπi(ni−1), and
w(ini+1) = vi − vπi(ni).

By definition, all weights are non-negative and
∑

j∈T (i) w(j) = vi. Some ver-
tices in T (i) have edges to vertices of T (j) such that j ∈ A(i) (connecting a
vertex ik ∈ T (i) to a component T (j) means that there are edges from ik to
all vertices of T (j)). More specifically, Vertex ini+1 is connected to all compo-
nents T (j) for j ∈ A(i). Vertex ik, 1 ≤ k ≤ ni, is connected to all components
T (πi(j)) for all 1 ≤ j < k. E.g. , vertex i3 is connected to components T (πi(1))
and T (πi(2)) (See Figure 1). It is easy to see that for any a < b, ib is connected to
each component that ia is connected to (and possibly to additional components).

Lemma 6. The value of the maximum weighted independent set on H is equal
to the revenue obtained from the optimal envy free pricing of our problem.

Proof. We prove that a maximal revenue envy-free allcation/pricing can be
translated into an independent set in H and that a maximal independent set in
H can be translated into a revenue maximizing envy free allocation/pricing.

(envy free ⇒ independent set) It is easy to see that the price pi is equal to
one of the valuations vj for j such that j ∈ A(i) or j = i (otherwise the prices
can be increased). We will choose all vertices of ik ∈ T (i) such that k ≤ π(j).
By construction, the sum of weights is vj = pi.

By the envy free pricing we have that ∀i, j : Si ⊂ Sj ⇒ pi ≤ pj . If this does
not result in an independent set, then there exist two vertices, ik and jm, such
that j ∈ A(i) and there is an edge between them. But the price paid by agent i
(≥
∑

1≤t<k w(it)) is greater than j’s valuation (by construction of H) so pi > pj ,
a contradiction.

(independent set ⇒ envy free) By construction, a node ik in component T (i)
has an edge to all neighbors of im, 1 ≤ m < k. Therefore, vertices in a maximal
independent set from T (i) are of the form {ik|k ≤ imax} for some 1 ≤ imax ≤ ni.
We transform the independent set into a pricing as follows:

– If none of T (i)’s vertices were chosen to the independent set then agent i
receives nothing.

– If vertices {ik|k ≤ imax} ⊂ T (i) were chosen to the independent set then
agent i receives Si at price

∑
k≤imax w(ik)

Assume that the pricing is not envy-free and we have requests i, j such that
Si ⊂ Sj and pi > pj :

– If pj = vj then j ∈ A(i), pi > vj which implies that iimax has an edge to all
vertices of T (j). But both iimax and j1 were chosen to the independent set,
a contradiction.
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Fig. 1. Pricing problems to independent set problems: Single minded agents and their
bundles/valuations, each agent would like to buy a set of products (the black balls)
at a price less than her valuation (the numbers in the bundle requests are valuations).
A is represented as a dependency graph (top right), there is an edge from vertex i to
A(i), (note there is no edge between 2 and 7 since 2 ≤ 7). The graph H appears in the
center, the edges between T (i) components are described at the bottom.
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– If pj < vj then let a be the minimum index in 1, . . . , nj such that vertex
ja was not chosen to the independent set. This is only possible because ja

has edges to some T (j′), at least one of whose vertices, j′1, was chosen. Now,
vj′ < pj which implies that vj′ < pi, thus j′ ∈ A(i). As iimax has an edge to
all vertices of T (j′), we derive a contradiction to both iimax and j′1 being in
the independent set.

Lemma 7. H is a comparability graph.

Proof. Orient an edge from a node v of T (i) to a node w of T (j) from v to w
if j ∈ A(i). It is not hard to show that this orientation guarantees transitivity
which implies that the graph is a comparability graph.

A graph is said to be perfect if the chromatic number (the least number of colors
needed to color the graph) of every induced subgraph equals the clique number
of that subgraph. Lemma 7 implies:

Corollary 8. H is a perfect graph.

Maximal weighted independent set can be solved in polynomial time on perfect
graphs [6]. By Lemma 6 and Corollary 8 we conclude that finding the optimal
envy free allocation/pricing in the general single minded setting can be done in
polynomial time. This completes the proof of Theorem 5.
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Abstract. We study the adoption dynamics of two competing tech-
nologies and the efficacy of viral pricing strategies for driving adoption.
Our model considers two incompatible technologies of differing quality
and a market in which user valuations are heterogeneous and subject
to network effects. We provide partial characterization results about the
structure and robustness of equilibria and give conditions under which
the higher quality technology purveyor can make significant inroads into
the competitor’s market share. We then show that myopic best-response
dynamics in our setting are monotonic and convergent, and propose two
pricing mechanisms that use this insight to help the entrant technol-
ogy seller tip the market in its favor. Comparable implementations of
both mechanisms reveals that the non-discriminatory strategy, based on
a calculated public price subsidy, is less costly and just as effective as a
discriminatory policy.

1 Introduction

We study the pattern and dynamics of adoption of two technologies of differing
qualities, where consumers’ valuations are heterogeneous and subject to network
effects (positive externalities) from the installed base. Such positive externalities
occur in a variety of settings: for example, the value of an Internet chat client to
a user increases as more of his friends use the same chat client service. Network
externalities have an important impact on buyer decisions and can be leveraged
to sell a technology more effectively. In this paper, we study the efficacy of
simple (discriminatory and non-discriminatory) pricing mechanisms to generate
adoption cascades.

Throughout, we take the perspective of the higher quality (entrant) tech-
nology seller and study the market through the lens of incomplete information
about actual user valuations. As such, we present probabilistic characteriza-
tions of equilibrium market shares under exogenously specified price and quality
differences between two technologies, which are suggestive of the likelihood of
successful market entry of the higher quality technology. We observe, for exam-
ple, that substantial network effects can often stand in the way of significant
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initial market penetration, even when the entrant offers a substantial quality
improvement.

Even so, our characterization of best response dynamics offers a way for an
entrant with the better product to tip the market considerably in its favor. We
study two such pricing strategies, which we call “nudging” mechanisms, that
leverage the monotonicity of best response dynamics and focus on enticing a
small group of non-adopters to make the switch, with the hope that this fosters
an adoption avalanche. In the full paper, we report that a non-discriminatory
nudging mechanism based on a public price subsidy is as effective in growing
market share as a discriminatory alternative that “seeds” (provides a targeted
subsidy to) a sufficient number of non-adopters, all the while costing less. The
full paper also addresses the general problem of profit maximization under un-
certainty in our setting for both discriminatory and non-discriminatory pricing
regimes. There, we show that the problem is NP-Hard in general, but observe
that the simple nudging approaching can serve as effective heuristics.

The role of network externalities on equilibrium adoption of standards and
technologies has received much interest recently. Indeed, an active line of re-
search in economics, mathematical sociology, and marketing is concerned with
studying how behaviors, decisions, and trends propagate through a population.
These types of diffusion processes naturally suggest a game [7,10], which in turn
suggests the use of incentive mechanisms to maximize some specified objective,
like profit [4] or influence [9,3,2]. Furthermore, our focus on pricing mechanisms
for a seller is more closely related to the work by [4] on marketing in social
networks.

2 The Model

Suppose there are two competing technologies (1 and 2), each with a fixed and
commonly known one-dimensional measure of quality q1 and q2 and prices p1
and p2 respectively. We assume that 0 ≤ qk, pk ≤ 1, doing so primarily for
convenience of exposition as most of our results easily generalize. In what follows,
differences between qualities and prices will be most germane to our analysis, in
which case we denote Δq = q2−q1 > 0 and Δp = p1−p2. We assume throughout
that q2 > q1 or Δq > 0 (where the inequality is strict).

There are N players that are interested in adopting one of these two tech-
nologies; moreover, we require that they adopt one of the two technologies. Each
player i has a parameter θi ∈ [0, 1] which determines his strength of preference
for a higher quality technology. θi are distributed i.i.d. according to some distri-
bution F () with density f(), which we assume to be strictly positive on [0, 1] and
zero everywhere else. Thus, F () is non-atomic and strictly increasing on [0, 1].
The utility that player i receives from choosing technology k ∈ {1, 2} is given by:

uk
i = θiqk + v(xk)− pk,

where xk is the proportion of players currently choosing technology k and v :
[0, 1] → [0, 1] is a continuous and strictly increasing function representing
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network effects on player preferences over the two technologies. Assume that
v(0) = 0 and v(1) = 1. If x1 = x and x2 = 1−x, define Δv(x) = v(x)− v(1−x).

Observe that the particular realizations of θi for all players define a static game
between them. The equilibrium outcomes can be viewed as the fixed points of
player best-response dynamics, in which case we need not assume that player
types are public knowledge. We now define equilibria (fixed points) formally.

Let ai ∈ {1, 2} be a technology choice of player i, which we subscript by a
time (iteration) t where appropriate.

Definition 1. A profile of technology choices a of all players and corresponding
adoption proportions x1 = x and x2 = 1 − x constitute an equilibrium if for
every i ∈ I with u1

i (x) > u2
i (x), ai = 1 and for every i with u2

i (x) > u1
i (x),

ai = 2.

While we consider iterative best response and its fixed points in the “underlying”
complete information game, we take the perspective of a technology seller and
assume that consumer types θi are unknown, although we have a prior distribu-
tion F () over these. We view the adoption outcomes and dynamics through the
lens of this distribution.

We now make several very natural observations about the monotonicity of
player preferences, which, while only of limited interest in their own right, will
serve as building blocks for other results below. The first lemma states that,
given a fixed market share of each technology, if θ is a marginal type (a player
with this type is indifferent between the two technologies), then a player j with
θj > θ prefers technology 2, whereas a player with θj < θ prefers technology 1.
The second lemma states that increasing the market share of technology 1 will
not induce any player who currently prefers technology 1 to switch to technology
2 (the converse is true as well).

Lemma 1. Let θi be the type of player i, uk
i the corresponding utility of player

i given fixed market shares x1 and x2, and suppose that u1
i ≥ u2

i . Then θj < θi

for some player j implies that u1
j > u2

j . Similarly, if u1
i ≤ u2

i , then θj > θi for
some player j implies u1

j < u2
j .

Proof. For the first case, note that if u1
i ≥ u2

i , then θiq1+v(x1)−p1 ≥ θiq2+v(1−
x1)−p2, or, equivalently, v(x1)−p1 ≥ θiΔq+v(1−x1)−p2 > θjΔq+v(1−x1)−p2.
The latter inequality then implies that θjq1 + v(x1)− p1 > θjq2 + v(1−x1)− p2.
The second case is proved analogously.

Lemma 2. Fix a player i with type θi and suppose that x1 ≤ x′
1 and u1

i (x1) ≥
u2

i (x1). Then u1
i (x

′
1) ≥ u2

i (x
′
1). Conversely, if x1 ≥ x′

1 and u1
i (x1) ≤ u2

i (x1),
then u1

i (x
′
1) ≤ u2

i (x
′
1).

Proof. u1
i (x1) ≥ u2

i (x1) means that θiq1 + v(x1) − p1 ≥ θiq2 + v(1 − x1) − p2.
x1 ≤ x′

1 implies that v(x1) ≤ v(x1)′ and v(1 − x1) ≥ v(1 − x′
1). Hence θiq1 +

v(x′
1)− p1 ≥ θiq2 + v(1− x′

1)− p2. A symmetric argument proves the converse.

A useful result that follows directly from these lemmas is that every equilibrium
corresponds to some θ̄ which separates all player types into those who prefer
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technology 1 and those who prefer technology 2, that is, all players with θi ≤ θ̄
choose (and prefer) technology 1 and all players with θi > θ̄ choose (and prefer)
technology 2. Without loss of generality and to simplify the analysis, we assume
from now on that all indifferent players select technology 1.

Theorem 1. Let a be an equilibrium profile with corresponding x1 = x and
x2 = 1− x. Then there exists θ̄ such that θi ≤ θ̄ if and only if ai = 1.

Proof. Let θ be such that given x, the player with preference θ is indifferent
between the two technologies. Then by Lemma 1, any i with θi < θ strictly
prefers technology 1, whereas any i with θi > θ strictly prefers technology 2.
Letting θ̄ = θ yields the result.

We now establish the monotonicity and convergence of best-response dynamics,
crucial properties for the nudging mechanisms in the next section. Let nt denote
the number of players in iteration t that adopt technology 1. Let xt = nt

N be the
fraction of all players adopting technology 1 and let 1 − xt be the fraction of
players adopting technology 2. The dynamics will be characterized by the change
in the numbers (and, consequently, proportions) of players adopting technology
1 as iterations progress. Let ai,t be the adoption strategy of player i at time t.
Thus, ai,t = 1 means that player i chooses technology 1 at time t.

Definition 2. Let at be a vector of player strategies at time t, nt the cor-
responding number of adopters of technology 1, xt the corresponding propor-
tion of technology 1 adopters. at+1 is a best response to at when for all i,
θiq1 + v(xt) − p1 > θiq2 + v(1 − xt) − p2 ⇒ ai,t+1 = 1 and θiq1 + v(xt) − p1 <
θiq2 + v(1 − xt)− p2 ⇒ ai,t+1 = 0.

Lemma 3. Suppose that at time t players make some arbitrary choices at which
result in some xt. Let at+1 be a best response to at. Then there is θ̄t+1 such that
∀θi ≤ θ̄t+1, ai,t+1 = 1 and ∀θi > θ̄t+1, ai,t+1 = 2.

Proof. Sort players by θi and let the indices i of players correspond to this
ordering, with θ1 being the smallest type. Let θj be the largest type with u1

j ≥ u2
j .

By Lemma 1, all players with j′ < j strictly prefer 1, and since j is the largest
such type, all players with j′ > j strictly prefer 2. Setting θ̄ = θj completes the
proof.

By Lemma 3, we can assume without loss of generality that there exists such θ̄0
which separates the players into those who prefer technology 1 and those who
prefer 2. We will therefore assume that for every t there is some player θj = θ̄t

with θ̄t as in Lemma 3.

Lemma 4. Let θj = θ̄t and suppose that θ̄t is not an equilibrium. Then either
(a) u1

j < u2
j or (b) u1

j+1 > u2
j+1.

Proof. Suppose that neither (a) nor (b) hold, but θ̄t is not an equilibrium. That
means that u1

j ≥ u2
j and u2

j+1 ≥ u1
j+1. By Lemma 1, this implies that for all

j′ ≤ j, u1
j′ ≥ u2

j′ and for all j′ > j, u2
j′ ≥ u1

j′ , which means that θ̄t is an
equilibrium, a contradiction.
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We now define the best-response dynamic.

Definition 3. A sequence {at}t is a best response (BR) dynamics if at+1 is a
best response to at for all t.

Definition 4. {xt}t is monotone if x1 ≤ x0 ⇒ xt+1 ≤ xt ∀t and x1 ≥ x0 ⇒
xt+1 ≥ xt ∀t.

The following result establishes that best response dynamics is monotone in the
above sense, and from this it will follow directly that best response dynamics
converges to an equilibrium from any starting point.

Theorem 2. If {xt}t is generated by best response dynamics, then it is mono-
tone for t ≥ 1. Furthermore, xt+1 = xt if and only if θ̄t is an equilibrium.

Proof. Note that by Lemma 3, for all t > 0, there is θ̄t which separates player
types linearly based on preferences. Thus, let t ≥ 1. Now, assume that condition
(a) in Lemma 4 holds at time t. Then Δnt < 0 since by Lemma 1 we are
guaranteed that all players adopting 2 at time t will still prefer it at time t + 1,
and (a) means that, additionally, the marginal type prefers it also. If Δnt < 0,
then clearly xt+1 < xt. By Lemma 3, there again exists θ̄t+1 which separates
player types linearly based on their preferences. Then, if xt+1 (and corresponding
θ̄t+1) is an equilibrium, it remains constant forever after. Suppose xt+1 is not
an equilibrium. By Lemma 2 and Lemma 4 it follows that condition (a) obtains
again (i.e., it cannot be that (b) holds by Lemma 2), and, hence (by the same
argument) Δnt+1 < 0. By induction, then, Δnt′ ≤ 0 for all t′ ≥ t, and the
sequence is stationary if and only if the equilibrium is reached. If we assume
that condition (b) holds in Lemma 4, the result can be proved by a symmetric
argument.

Corollary 1. Best response dynamics converges from any starting point.

The monotonicity and convergence of best response dynamics suggest a simple
class of simple mechanisms to affect substantial changes in the market shares of
the two technologies. We explore these presently.

3 Market Penetration with “Nudging”

The idea of inducing general consensus in networks by influencing a set of key
players is certainly not new. It has appeared in the context of interdependent
security games [5] as a minimum critical coalition (i.e., the minimal set of players
to seed that is sufficient to incentivize the rest to invest in security), as well
as in more abstract treatments of maximizing network influence, such as [9],
where a set of network nodes are seeded so as to achieve as great a number
of additional adopters as possible. More significantly, we make use of another
weapon of influence which is now available to us: price. Specifically, we analyze
the effect of lowering the market price of the entrant technology on its adoption
under incomplete information.
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3.1 Nudging via Seeding

Our first mechanism for effecting a change is via seeding a subset of players
who are technology 1 adopters under the current equilibrium. We would like to
know how many players we have to seed in order to have an additional voluntary
adoption which (the hope is) will start an adoption avalanche. To simplify nota-
tion below, we define f(x) = F

(
Δv(x)−Δp

Δq

)
. Additionally, we let x′ = x− k/N ,

where x is the current equilibrium adoption of technology 1 and k is the num-
ber that we will seed with technology 2. Thus, x′ is the resulting proportion of
technology 1 adopters after k of the initial adopters are seeded with the higher
quality technology.

Theorem 3. Given an equilibrium x, at least l = xyN (with y a desired pro-
portion) of xN technology 1 adopters will prefer technology 2 with probability
at least 1 − z if k or more technology 1 adopters are randomly seeded, where k
solves

xN∑
j=l

(
xN
j

)⎡⎣f(x)− F (Δv(x′)−Δp
Δq )

f(x)

⎤⎦j ⎡⎣F (Δv(x′)−Δp
Δq )

f(x)

⎤⎦xN−j

= 1− z.

Proof. The probability that exactly l of K players will adopt is binomial with

parameters p and K, where p =
[

f(x)−F ( Δv(x′)−Δp
Δq )

f(x)

]
, which is just the probability

that θi ≥ Δv(x′)−Δp
Δq (i.e., that i now adopts) given θi < f(x) (i.e., that i hadn’t

yet adopted). The result follows since it is the probability of a union of mutually
exclusive events.

An especially clean and convenient form of nudging would attempt to influence
only one additional player to adopt, and hope that an adoption avalanche follows
a tiny “nudge”.

Theorem 4. Given an equilibrium x, at least 1 player out of xN technology
1 adopters will prefer technology 2 with probability at least 1 − z if k or more
technology 1 adopters are randomly seeded, where

k ≥ N
[
x−Δv−1

(
ΔqF−1

(
f(x)z

1
xN

)
+ Δp

)]
. (1)

Proof. Since probability that at least one player adopts is the same as 1 less the
probability that no one adopts technology 2, and since θi are i.i.d. for all current

non-adopters of the better technology, we need
[

F ( Δv(x′)−Δp
Δq )

f(x)

]xN

≤ z. Solving

first for x′ and then for k yields the desired result.

Letting k(x) be the minimal number of players that we need to seed to incentivize
a switch by a single non-adopter (as given in Theorem 4), we now consider what
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happens when the number of players N grows large while the proportion of non-
adopters x remains fixed. Note that for any z > 0, if N is sufficiently large, z

1
xN

tends to 1. Thus, ΔqF−1
(
f(x)z

1
xN

)
becomes ΔqF−1 (f(x)) = (Δv(x) − Δp).

Consequently, k(x) → N(x − Δv−1(v(x))) = 0. This is very much congruent
with our expectations: when the number of players is very large, even after a
very small change to the current state we are quite likely to find at least one
player whose preferences now flip towards the higher quality technology (another
way of saying this is that the probability of finding a marginal user becomes very
large when N grows).

A related question is how k(x) changes as x falls when N becomes large. We
address this question in the special case of F (θ) = θ (uniform distribution on
player types) and v(x) = x (linear network effects). In this case,

k(x) = N

[
x− Δq(2x− (1 + Δp))z

1
xN + (1 + Δp)

2

]
.

Differentiating k(x) with respect to x we get

dk(x)
dx

= N

[
1− 1

2

(
2z

1
xN − (2x− (1 + Δp))z

1
xN

log (z)
x2N

)]
.

As N grows large, z
1

xN tends to 1 and log (z)
x2N to 0, and thus dk(x)

dx → N(1−1) = 0.
We thus observe that when N is very large, k(x) is essentially insensitive to the
changes in adoption proportions. Both this observation and the tendency of
k(x) towards zero in general as the number of technology users grows offer a
very optimistic perspective on what previously may have seemed as a rather
intractable problem of breaking incumbent network externalities: at relatively
little cost, via a series of minor nudges to the market share, the higher quality
entrant can establish a firm foothold in the market.

3.2 Nudging via Posted Prices

In the last section we presented a characterization of the impact that seeding k
players has on adoption preferences of l others who currently prefer the incum-
bent technology. We now proceed towards a similar characterization of nudging
that uses the price of the entrant technology as an incentive mechanism.

Let p2 be the initial price of technology 2, and p′2, the new (discounted) price.
Let Δp′ = p1 − p′2.

Theorem 5. Given an equilibrium x, at least l = xyN (with y a desired pro-
portion) of xN technology 1 adopters will prefer technology 2 with probability at
least 1− z under Δp′, where Δp′ solves

xN∑
j=l

(
xN
j

)⎡⎣f(x)− F (Δv(x)−Δp′

Δq )

f(x)

⎤⎦j ⎡⎣F (Δv(x)−Δp′

Δq )

f(x)

⎤⎦xN−j

= 1− z.

Again, if we restrict ourselves to targeting just one player, we obtain the following
characterization.
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Theorem 6. Given an equilibrium x, at least 1 player out of xN technology 1
adopters will prefer technology 2 with probability at least 1− z under p′2 if

p′2 ≤ ΔqF−1
(
f(x)z

1
xN

)
−Δv(x) + p1.

We now let p′2(x) be the largest new price that satisfies the inequality in Theo-
rem 6. Performing a similar limiting analysis as N grows large while x remains
fixed, we can observe that p′2(x) → p2, that is, only a tiny drop in price can effect
adoption by at least one (marginal) user. Similarly, differentiating p′2(x) with re-
spect to x and letting N go to infinity (under the assumption of F (θ) = θ and
v(x) = x) gives us dp′

2(x)
dx → 0. Thus, p′2(x) is nearly insensitive to the changes in

adoption proportions when the user population is very large. The news, again, is
optimistic: no matter how widespread the adoption of the incumbent technology
is, as long as the number of users is large, a sequence of small price changes can
allow the entrant to make inroads into the market.

While the above nudging mechanisms are described in the context of adoption
growth, they apply to a number of problems. In the full paper, we look at profit
maximization using discriminatory and non-discriminatory nudging mechanisms.
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9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD 2003: Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pp. 137–146. ACM,
New York (2003)

10. Morris, S.: Contagion. Review of Economic Studies 67(1), 57–78 (2000)
11. Sundararajan, A.: Local Network Effects and Complex Network Structure. The

B.E. Journal of Theoretical Economics 7(1), Article 46 (Contributions)



Mechanism Design for Complexity-Constrained Bidders

Ravi Kumar1, Mohammad Mahdian1, and Amin Sayedi2,�

1 Yahoo! Research, 701 Sunnyvale, CA 94089
{ravikumar,mahdian}@yahoo-inc.com

2 Carnegie Mellon University, Pittsburgh, PA 15213
ssayedir@cmu.edu

Abstract. A well-known result due to Vickery gives a mechanism for selling a
number of goods to interested buyers in a way that achieves the maximum so-
cial welfare. In practice, a problem with this mechanism is that it requires the
buyers to specify a large number of values. In this paper we study the problem
of designing optimal mechanisms subject to constraints on the complexity of the
bidding language in a setting where buyers have additive valuations for a large set
of goods. This setting is motivated by sponsored search auctions, where the val-
uations of the advertisers are more or less additive, and the number of keywords
that are up for sale is huge. We give a complete solution for this problem when the
valuations of the buyers are drawn from simple classes of prior distributions. For
a more realistic class of priors, we show that a mechanism akin to the broad match
mechanism currently in use provides a reasonable bicriteria approximation.

1 Introduction

Consider the following setting: there are m buyers who are interested in buying n goods,
each with a unit supply. Each buyer has a value for each good, and her valuation for a
bundle of goods is simply the sum of her valuations for each good in the bundle.

This is perhaps the simplest model for selling multiple non-identical goods, as the
buyers’ valuations are assumed to be additive and not combinatorial. From a mechanism
design perspective, designing optimal (i.e., social welfare maximizing) auctions for this
setting is trivial: simply run an independent second-price auction for each good. Each
buyer will have the incentive to bid her true value for each good, and each good will be
allocated to the buyer who has the maximum value for it.

The problem with this simple mechanism is that each bidder has to provide n values,
one for each type of good, as her bid. This is especially problematic in applications such
as sponsored search auctions, where the number of different types of goods is quite large
or possibly infinite.1 This motivates the following problem, which is the main subject of
this paper: what is the maximum social welfare that can be achieved with a mechanism
that is restricted to ask each bidder for only a small amount of information?

� Part of this work was done while the author was at Yahoo! Research.
1 The valuations of bidders (i.e., advertisers) in sponsored search auctions are quite close to

being additive. The only non-additive valuations that sponsored search systems allow bidders
to specify are those involving budget constraints. However, binding budget constraints seem to
be rare. Furthermore, since in sponsored search auctions advertisers can bid on any user query,
the number of goods that are available for sale is essentially infinite.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 513–520, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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To make this more precise, we denote the value of a bidder i for a good j by vij , and
assume a prior on the n-tuple (vij)j of values, i.e., we assume these values are picked
from a given joint distribution. This prior is supposed to capture the information on how
the valuation of a bidder on different goods are correlated. The algorithm is allowed to
query each bidder i for a fixed number k of vij ’s, and based on the responses it gets,
it allocates each good to one bidder. We evaluate the algorithm based on the social
welfare it achieves, i.e., the sum of the valuations of the bidders for the goods they
receive. Our objective is to design an allocation algorithm that achieves the maximum
expected social welfare (where the expectation is over the draw of the valuations from
the prior) among all algorithms that ask each bidder for at most k of her values.

Designing the optimal algorithm in the above model is often a complicated task, and
depends on the type of prior we assume on the valuations. The main results of this
paper include exact and approximate solutions of this problem for a few simple yet
important classes of distributions, and a proof that for a more realistic class of distri-
butions, clustering-based bidding languages — akin to the concept of broad match or
advanced match that is currently in use — provide a reasonable bicriteria approximation
for the optimal algorithm. Although the major technical contribution of the paper is on
the problem of designing the optimal or approximately optimal allocation algorithms,
we will also observe that these algorithms, combined with suitable payment schemes,
result in mechanisms with good incentive properties.

Related work. Ronen [4] and Ronen and Saberi [5] studied the design of revenue-
optimal mechanisms when the mechanism designer has communication complexity
constraints in accessing the distribution of bidders’ values. Mechanism design for single-
item auctions under a constraint on the number of bits that each bidder can send to the
auctioneer was studied by Blumrosen, Nisan, and Segal [1]. Earlier, Nisan and Segal [3]
studied the communication complexity of maximizing social welfare in combinatorial
auctions. The main difference between this line of work and ours is that in their models
the constraint is on the communication complexity of the bidders, whereas our model
focuses on query complexity, if each bidder is thought of as an oracle that can be queried
for their value for each good. This is because in our motivating application (sponsored
search auctions), the costly operation for an advertiser is to compute their value for a
keyword, and not transmitting information to the auctioneer.

The setting of additive utilities for a large number of goods (motivated by sponsored
search auctions) was studied by Mahdian and Wang [2]. Their focus is on a specific
class of bidding languages called clustering-based bidding languages that are similar
to the broad match scheme used in sponsored search systems. We address a more basic
question: finding the most socially efficient algorithm without imposing any constraint
other than the complexity constraint on the bidding language.

2 Model

Assume there are m buyers numbered 1 through m, and n different goods 1, . . . , n that
are offered for sale (n � m). Without loss of generality, we can normalize the supply
of each good to one. Buyer i has a non-negative real value vij for good j. We assume
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that the valuations of buyers are additive, i.e., the value that buyer i has for a set S of
goods is simply

∑
j∈S vij .

We assume a prior on the values vij . For simplicity, we assume that the valuation
of different bidders are independently and identically distributed, i.e., there is a joint
distribution D over the set of all n-tuples of non-negative numbers, and for each buyer
i, the tuple of valuations (vij)j is drawn independently from D.

Given the distributionD and an integer k, the problem is to design an algorithm that
asks each buyer for at most k of their values (i.e., asks buyer i for vij for at most k
different values of j to be chosen by the mechanism), and among all such algorithms
achieves the maximal social welfare. This problem can be studied both in an adaptive
and in a non-adaptive framework. We focus on the non-adaptive variant, i.e., the algo-
rithm asks all the questions at once and then receives the answers. The adaptive version
(where the algorithm asks the questions one by one and can use the earlier answers to
decide what question to ask next), although theoretically intriguing, is of less practical
value in sponsored search systems.2

Perhaps the simplest possible case is when the distribution D is a product distri-
bution, i.e., all vij ’s are drawn independently. Even in this case, finding the optimal
algorithm is non-trivial. However, we show (Section 3) that a mechanism based on
spreading the questions among different goods is optimal. A more interesting class of
distributions correspond to the case where each buyer i has a one-dimensional type ti
drawn from a distribution D∗, and the values of buyer i on various goods are indepen-
dent conditioned on the type ti (Section 4). Finally, we study a model where the set of
goods are partitioned into a number of clusters, and the valuation of each buyer on each
cluster followed the model of buyers with types described above, while the values are
independent for distinct clusters (Section 5).

Incentive properties. Most of this paper is devoted to the problem of designing the
optimal allocation algorithm subject to the number of queries this algorithm can make.
Ideally, we would like to match such an algorithm with a suitable payment scheme
to turn it into an incentive-compatible mechanism, i.e., a mechanism where bidders
are better off answering the questions truthfully. However, in our setting, we need to
be careful about the notion of incentive compatibility, for the following reason. If we
assume that the bidder knows her value for all goods, then for any mechanism that infers
something from the values of queried goods about the unknown values, there is some
chance that the queried goods under- or over-represent the values of other goods. In such
cases the bidder might have an incentive to bid untruthfully to “correct” the mistake of
the allocation algorithm. This intuitive argument can be made precise to show that with
the strict notion of incentive compatibility in dominant strategies, essentially no non-
trivial learning can be done.

However, it is possible (details omitted) to get around this problem by weakening the
incentive requirement to one of the following:

2 This is mainly because the algorithm cannot interleave the questions asked from two different
advertisers in any way it wants, due to timing constraints. However, a hybrid between the
adaptive and non-adaptive models, where the algorithm can use the answers provided by an
advertiser to decide its next questions of the same (but not other) advertisers might be feasible
in practice. We will comment on this in Section 6.
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(1) If the bidder does not know her value for goods about which she is not queried,
then her best strategy is to answer the questions truthfully; this can be thought of as an
ex ante notion of incentive compatibility.

(2) As the number of questions that can be asked of each bidder grows, the incentive
to deviate from truthfulness quickly approaches zero.

3 Independent Valuations

In this section we consider the case where the prior distribution D is a product distri-
bution, i.e., each value vij is picked independently from a distribution. This is a simple
case since there is no learning involved: the answers that the mechanism receives on
one good cannot help with the allocation of other goods. However, the problem is still
non-trivial as it involves optimally distributing the queries among different goods.

For simplicity of exposition, we further assume that all vij ’s are independently and
identically distributed according to a distribution with cdf F and pdf f . The assumption
that the distributions for different goods are identical is not necessary, but will simplify
the statement of our results. The following lemma gives the optimal allocation of the
goods, given the questions that the mechanism asks and their answers.

Lemma 1. Suppose that values of bidders for a good come from a distribution with
cdf F (·) and pdf f(·) and expectation μ. If the auctioneer knows the values of i < m
bidders in a set S for this good, then the expected welfare W (i) of allocating this good is
maximized when it is given to the bidder in S with the maximum known value v if v ≥ μ

or to an arbitrary bidder not in S if v < μ. Furthermore, W (i) = M −
∫M

μ
F (x)idx,

where M is the upper bound for the valuation (i.e., F (M) = 1).

Using this, we show that the expected welfare that the mechanism gets from a good is
a concave function of the number of queries it makes about the value of that good.

Lemma 2. The function W (i) = M −
∫M

μ
F (x)idx is a concave function of i, i.e.,

W (i)−W (i + 1) ≥ W (i + 1)−W (i + 2) for every i.

Theorem 1. If all values vij are drawn iid from a distribution F with expectation μ,
then any mechanism of the following form is optimal: ask each bidder for their value
for k goods in such a way that each good is asked about �km/n� or �km/n� times,
and then allocate each good as prescribed by Lemma 1.

If getting an approximation to the optimal social welfare is enough, we show that when
km ≤ n, a simple mechanism that allocates all the goods arbitrarily without asking
any questions about the values extracts at least half of the social welfare of the optimal
mechanism. In other words, when n is large, a mechanism with limited knowledge
about values cannot do much better than a random mechanism.

Lemma 3. If n ≥ mk, and all the values vij are independent, a mechanism that al-
locates the good randomly to the bidders extracts welfare at least OPT/2, where OPT

is the welfare of optimal mechanism subject to the same constraints. Furthermore, the
bound is tight.

The assumption n ≥ km in the this lemma (also in Theorem 3) is indeed necessary.
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4 Bidders with Types

In reality, buyers’ valuations for different goods are not independent. For example, if a
buyer has high valuation for a good, she is more likely to have high valuation for other
related goods as well. To capture this, we consider the following class of distributions:
each buyer i has a one-dimensional type ti drawn from a distribution D∗ over non-
negative numbers. Conditioned on the type ti, the values of this buyer for the goods are
independently and identically distributed according to some distribution D(ti). This is
a good model for settings where all the goods are related. In this case, the buyer i’s base
value for the goods is determined by the type ti, and her value for an individual good
depends on her base value as well as another factor that is independently distributed.
E.g., the value of the buyer for a good can be equal to her base value plus an iid noise.
Another important example in the context of sponsored search is when the base value
of the buyer (the advertiser) is her value per conversion, and her value for an individual
good (keyword) is her value per conversion times a keyword-specific conversion rate.3

As in Section 3, we give an exact optimal allocation algorithm and a 2-approximation,
in the case that the number of goods n is larger than mk. We start with a lemma that
gives an upper bound on the social welfare of the optimal algorithm. Before stating the
lemma, we need to define a few random variables ai,j’s, μi’s, μ̂i’s, and μ̂:

Definition 1. Consider the following random experiment: for every i = 1, . . . , m, gen-
erate a random number ti according to D∗, and then for every j = 1, . . . , k, generate
ai,j iid according to D(ti). Let the random variable μi denote the expected value of a
random variable distributed according to D(t) where t is drawn from D∗, conditioned
on k samples of this distribution (generated with the same t) being ai,1, . . . , ai,k. Fi-
nally, let μ̂ = maxj=1,...,m{μj} and μ̂i = maxj �=i{μj}. Note that the random vari-
ables μi’s, μ̂i’s, and μ̂ are functions of the random variables ai,j’s.

Lemma 4. Assume n ≥ mk. Then the social welfare of any algorithm that asks at most
k questions from each buyer is at most E[

∑m
i=1
∑k

j=1 max(ai,j , μ̂i) + (n− km)μ̂].

Theorem 2. Assume n ≥ mk. The following algorithm is optimal: query each buyer
for the values of k goods in such a way that no good is queried more than once, compute
the values of μi’s as in Definition 1, and allocate each good j either to the bidder who
queried about j, or to the one who has the maximum value of μi, whichever is larger.

Since the algorithm given in the above theorem might be too complicated for imple-
mentation, or impractical as it treats different buyers asymmetrically, we also present a
simple and natural algorithm that is a 2-approximation to the optimal welfare.

3 One might argue that the conversion rate of an advertiser for different keywords are not inde-
pendent. This is in fact true, however, in sponsored search systems it is common to assume
that conversion rates are separable, i.e., the conversion rate of an advertiser for a keyword is
the product of an advertiser-specific conversion rate and a keyword-specific one. Such a sys-
tem can be captured by our model by letting the type ti be the value per conversion times the
advertiser-specific conversion rate.
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Theorem 3. If n ≥ k(m + 1), the algorithm A that asks all the buyers about their
value for the first k goods, allocates each of these goods to the buyer with the highest
value, and allocates all other goods to the buyer with the highest value of μi (as in
Definition 1) gets a welfare that is at least half of the welfare of the optimal algorithm
in expectation. Moreover, the bound is tight.

Proof. Consider an optimal algorithm OPT. It is clear that the welfare that A receives
from the first k goods is at least as large as the welfare that OPT gets on those goods. For
the remaining goods, it is easy to adapt the proof of Lemma 4 to show that the welfare
that OPT gets from goods k + 1, . . . , n is at most E[

∑m
i=1
∑k

j=1 max(ai,j , μ̂i) + (n−
k − km)μ̂], where ai,j’s, μi’s, μ̂i’s, and μ̂ are as in Definition 1. This is at most

E[
∑m

i=1
∑k

j=1(ai,j + μ̂) + (n− k − km)μ̂]. (1)

We claim that E[ai,j] = E[μi]. This can be proved using the following experiment:
draw t from D∗ and then k + 1 numbers ai,1, . . . , ai,k+1 from D(t). Clearly, we have
E[ai,j ] = E[ai,k+1]. On the other hand, fixing the values of ai,1, . . . , ai,k, the value of
ai,k+1 has a distribution with mean μi. Therefore, taking the expectation over values of
ai,1, . . . , ai,k, we have E[ai,k+1] = E[μi]. Therefore, E[ai,j ] = E[μi] ≤ E[μ̂].

Using this inequality, the expression in (1) is at most (n − k − km + 2km)E[μ̂] ≤
2(n− k)E[μ̂], where the latter inequality follows from the assumption n ≥ k(m + 1).

On the other hand, we analyze the expected welfare that algorithm A receives from
goods k + 1, . . . , n as follows: the answers that A gets on queries that it makes on the
first k goods are distributed as the ai,j’s of Definition 1. Therefore, fixing the values of
ai,j’s, the expected welfare thatA gets on any of the goods k + 1, . . . , n is precisely μ̂.
Thus, the total expected welfare of A on these goods is (n− k)E[μ̂].

To sum things up, the total welfare ofA on the first k goods is at least that of OPT on
these goods, and its total welfare on the other n − k goods is at least half that of OPT.
Therefore,A is a 2-approximation to OPT.

For the tightness, suppose there is only one type. Value of a bidder for a good is 0
with probability 1 − ε and is 1 with probability ε. Also, let n = k(m + 1). Since all
bidders are of the same type, A allocates all goods k + 1, . . . , n to an arbitrary bidder
for expected welfare of (n− k)ε = mkε. Therefore, the total welfare of this algorithm
is at most k+mkε. On the other hand, OPT asks one question about each of the first mk
goods, and gets an expected welfare of ε + (1 − ε)ε on each such good. Therefore, the
total welfare of OPT is at least 2mkε −mkε2. Taking ε = 1/

√
m and letting m grow,

the welfare of A will tend to half that of OPT. ��

The proof of the above theorem also implies the following, which will be useful in
Section 5.

Lemma 5. Assume n ≥ km. An algorithm that knows the types of all buyers and
allocates all goods to the buyer that has the maximum expected value (given the type)
without asking any question gets a welfare of at least half of the optimal algorithm.

Non-uniform supplies. We can extend these results to a more general model in which
every good j has some supply sj . In other words, value of buyer i for good j is sjvij . By
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slightly modifying algorithmA in Theorem 3 and replacing the condition n ≥ (m+1)k
by
∑n

j=1 sj ≥ (m+1)
∑k

j=1 sj , we can show that algorithmA can be adopted for this
more general model. More formally, assume without loss of generality that s1 ≥ · · · ≥
sn. If algorithm A in Theorem 3 asks all the buyers about the k goods with largest
amount of supply, namely s1, . . . , sk, it gets a welfare that is at least half of the welfare
of the optimal algorithm in expectation.

5 A Cluster Model

The model studied in Section 4 captures situations where all goods are related, and
therefore buyers’ valuations for these goods are correlated by their types. Our final
model captures the more realistic setting where goods can be partitioned into a number
c of clusters, with each cluster containing a number of related goods. Different clusters
are unrelated, and each buyer has a type for each cluster. The valuations of a buyer for
the goods within a cluster follows the model from Section 4 with the buyer’s type for
the cluster. This is a good model for applications such as sponsored search, where the
goods (keywords) can be partitioned based on their topic, with keywords within a topic
being related and keywords from different topics being essentially independent.

Formally, there are c disjoint clusters, with the jth cluster containing nj goods. Buyer
i has a type tij for cluster j, drawn iid according to a distribution D∗.4 Given these
types, the value of this buyer for each good in cluster j is picked iid according to a
distribution D(tij). We denote the expected value of this distribution by μij . Note that
μij is a function of tij and is therefore a random variable.

The problem of designing the optimal algorithm boils down to deciding how the
queries of each buyer should be allocated across different clusters. In one extreme, we
might want to ask many queries about the same cluster to get a better estimate of the val-
ues of the buyer for that cluster, and forgo other clusters. In the other extreme, we might
want to spread the queries evenly across different clusters, to get a rough estimate of
the values of the buyer for all clusters. Interestingly, there are cases where each of these
strategies outperforms the other by an arbitrary factor. This suggests that finding the
optimal algorithm in the cluster model is a difficult problem, as the optimal allocation
of the queries can be highly dependent on the nature of underlying distribution.

On the positive side, we can show that if we are allowed to ask more queries than
OPT, enough to ask a logarithmic number of queries for each cluster, then we can get a
good estimate of μij ’s for each cluster and therefore the machinery from Section 4 gives
us a good approximation to the optimal welfare. This result (Theorem 4) is essentially a
bicriteria approximation of the optimal algorithm. To prove this result, we start with the
following lemma (proof omitted), which shows that an algorithm that knows all μij’s
can guarantee welfare of at least half of the optimal algorithm, if all clusters are large.

Lemma 6. Suppose we are given all expected values μij , and for every j, nj ≥ mk. An
algorithm A that allocates all goods of each cluster to the buyer with highest expected
value gets welfare of at least OPT/2 where OPT is the optimal expected welfare.

4 It is not hard to see that our result holds in the more general case where the distribution of
types for different clusters are different (but still independent).
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Let L denote the maximum, over the choice of the type t, of the ratio between the max-
imum value from the distribution D(t) and the expected value of D(t); this parameter
captures how difficult it is to estimate the mean of the distribution by sampling.

Theorem 4. Assume nj≥mk, ∀j. There is an algorithmA that asks O(cL2ε−2 log m)
queries, and achieves at least a 0.9

2(1+ε)2 fraction of the welfare of the optimal algorithm.

6 Conclusions

We studied the problem of designing the optimal allocation algorithms for an auction
setting where buyers have additive values, but the number of different types of goods
is large and we are limited in the number of queries we can make to each buyer. We
believe this is a promising direction for research, as in many realistic situations, we are
faced with valuations that lie in a high-dimensional space, even though the distribution
that these valuations come from can allow for “learning” the valuation given only a
small-dimensional sample. The problem we studied is essentially about the interaction
between this learning aspect, and the optimization aspect of queries. In other words, in
our optimization, we must take into account not only the additional information that a
query gives us, but also the amount of additional welfare it can lead to.

There are many open problems left for future research. For example, our results
for the model of typed buyers (Section 4) cannot handle the case with non-identical
distributions, except for the case of non-uniform supplies. Extending the results to such
a setting seems difficult, as it requires ways to capture the information contents of each
distribution. Also, it would be nice to get rid of the n ≥ mk assumption in our results.
In particular, in Section 4, it might be possible to prove that the algorithm that spreads
the questions almost evenly across the goods is optimal. Finally, it would be interesting
to solve the adaptive variant of the problem, or at least the more practical “hybrid”
between adaptive and non-adaptive variants where the questions the mechanism asks
can depend on the previous answers of the same buyer but not the other buyers.
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Abstract. We develop an auction system that determines a fair number
of komi for holding black stones in a GO game between two players
of equal strength, and hence the right to the first move. It is modeled
as a priority right pricing problem that demands for budget-balanced
and egalitarian conditions, where a negative utility is associated with
the losers. We establish results involved with the incentive compatible
properties for this problem under both deterministic and randomized
protocols.

1 Introduction

GO is a competitive territorial game1 between two players on a grid of 19 lines
by 19 lines. The players take turns to place their stones at the intersections of
the lines, the black stone holder (BLACK) first, and alternating with the white
stone holder (WHITE). The goal of a player is to occupy more grid points than
the opponent.

Being the first to move, BLACK has an advantage. For two players of equal
strength, if WHITE has w grid points, BLACK is required to occupy more than
b = w + k grid points to win for some k > 0, a number referred to as komi by
the Japanese. Despite of a long history, the GO game does not have a unified set
of rules yet, one of which is how to decide the value for komi. It is a problem of
allocating the priority right to one of the two players, and determining a price
that the winner pays to the loser.

Priority right is an important phenomenon in human activities. This issue
arises in a competitive environment where the winner of the priority right may
have an advantage and the loser(s) may suffer disadvantages such as home team
advantage in sports.

For the game of GO, a fixed komi is adopted, but there is a disagreement on
what it should be. For example, AGA (American GO Association) sets 6.5 as

1 Originated from China, stretching back some four thousand years ago. The legend
goes that it was invented by Emperor YAO for his son Dan Zhu.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 521–528, 2009.
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the current standard for komi. Chinese rule for today’s komi is equivalent to 7.5.
As a further complication, komi is dependent on strengths and preferences of
individual players who have their own opinions, corresponding to their different
types of strengths in terms of attack and defense.

Auction has naturally emerged as an alternative solution to determine the
compensation point for players with different private values for the komi. Two
types of solutions have already been appeared in GO competitions over the
Internet: the cut-&-choose method and the English auction [1].

However, the above straight forward applications of typical pricing models are
not fully fair in the GO game. With the cut-&-choose method, the cutter sets
a komi that equalizes its probability of winning in either black or white. The
chooser, however, will be able to take an advantage by choosing one with higher
probability to win. The English auction on the other hand, favors the player
with a large private komi who pays its opponent’s (smaller) komi for the first
move.

Therefore, to be completely fair in setting the komi between two different
players, we would need to design a system that decides on a komi which results in
the same utility to each. In addition, modeling the priority right as an indivisible
good for the two players and komi as money, the problem requires for a budget-
balanced condition.

Motivated by the application, we set to study the problem of finding a strategy-
proof auction protocol that is budget-balanced and

– We derive a relationship for allocation and pricing in our model for strategy-
proof protocols that observe egalitarian and budget-balanced conditions. As a
corollary, it follows that no deterministic incentive compatible protocol exists
under those conditions.

– We design a randomized auction protocol that is both egalitarian and budget-
balanced, and that, at the same time, truth-telling strategy is a (weakly) best
response for everyone.

– We prove that the randomized protocol is unique in the sense that there is
no other randomized protocol that would satisfy the above three conditions.
In this randomized protocol, no player would gain by misreporting his true
private value. However, it would not be worse off either. By the uniqueness
result, there is no randomized strategy-proof protocol that is simultaneously
budget-balanced and egalitarian.

– We extend all our results to other related models in multi-player environ-
ment. We establish similar results as in the two-player model for cases where
many players are present, both the protocol and the uniqueness result.

We should present those results in the subsequent sections.

2 Model and Notations

To solve the problem of competing for a priority right in games (called PRP
for short) such as GO, we consider an auction system to price it and allocate
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it. The priority right can be considered as an item for sale in the auction. We
first consider the case of two risk neutral players, i = {1, 2}. Each has a private
value, v1 and v2, for the priority right. The protocol assigns the item to one of
them depends on their bids b1 and b2. If i is the winner of the right, it gains vi,
while the loser j gains −vj .

Let oi(b1, b2) = 1 if the item is assigned to player i; else oi(b1, b2) = −1. It is
required that the item is assigned to one player only: o1(·) + o2(·) = 0. At the
same time, Player i will be charged ti(b1, b2), which is positive for the winner and
negative for the loser, i.e., which will be paid to the loser as a compensation.
With those notations, we formulate the payoffs of player i’s, i = 1, 2, by the
usual quasi-linear utility functions.

Definition 1. Quasi-linear utility functions: The utility function of player i,
i = 1, 2, is

ui(b1, b2) = oi(b1, b2)× vi − ti(b1, b2).

As the payment is between the winner and the loser, we have the following
budget requirement.

Definition 2. Budget-Balancedness: A protocol for priority assignment is budget-
balanced if the total charge to the two players are zero, i.e.,

t1(b1, b2) + t2(b1, b2) = 0.

In the context of the GO game, a completely fair komi setting would even out the
differences of the two players’ private values, which leads us to the egalitarian
condition. Pazner and Schmeidler [11] proposed a general concept of egalitarian-
equivalence, which equalizes two agents if their allocations are equivalent to some
reference bundle consisting of goods and money. What we need here is a simple
monetary-only reference bundle.

Definition 3. Egalitarian: A protocol for priority assignment is egalitarian if
the protocol leads to equal utilities for both players: u1(b1, b2) = u2(b1, b2).

Vickrey laid down the fundamental principle in auction design to provide bidders
an incentive to bid their true value [12]. There are some minor differences in the
definitions of the concept, with different names, in the literatures [2,3,8,9,10],
We should focus on the following two related concepts: one standard incentive
compatible concept and another weaker concept of incentive compatibility, call
equal-or-dominant incentive compatibility. For our application, a subtle variation
in their definitions results in a big difference.

Definition 4. Dominant Incentive Compatibility (or strategy-proof or truthful):
A protocol for priority assignment is Dominant Incentive Compatibility if under
the protocol, truth-revelation is everyone’s dominant-strategy: ∀i, b−i, v

′
i ,

ui(vi, b−i) ≥ ui(v′i, b−i) (with at least one strict inequality),

where b−i is the bidding profile of all other bidders except bidder i.
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Definition 5. Equal-or-dominant Incentive Compatibility (EIC): A protocol for
priority assignment is EIC if under the protocol, truth-revelation is always a
(weakly) best response for every player no matter what are other players’ strate-
gies: ∀i, b−i, v

′
i ,

ui(vi, b−i) ≥ ui(v′i, b−i).

Informally, in a Dominant Incentive Compatible protocol, every player has in-
centive to bid truthfully, while an EIC protocol only requires that no player has
incentive not to bid truthfully.

Finally, we also list some definitions we will refer to later during the discussion,
though they are not our main focuses.

Definition 6. Truthful Nash Equilibrium Protocol: A protocol has truthful Nash
equilibrium if revealing the true private value is a Nash equilibrium for the play-
ers:

Definition 7. Envy-free: A protocol is envy-free if none of the players would be
better off by exchange the solution with another player in the same game.

Definition 8. Efficiency(or allocation efficiency): A protocol is efficient if its
solution always maximizes the total value over all agents.

3 On Incentive Compatibility

We first characterize the price structure in our model under the conditions of
egalitarian and budget-balancedness. As an immediate corollary, the character-
ization derives the impossibility result for deterministic incentive compatible
protocols satisfying egalitarian and budget-balanced conditions for our model.
The non-existence deterministic protocol result drives us to study randomized
protocols.

3.1 Characterization of Budget-Balancedness and Egalitarian
Property

In this subsection, we characterize protocols satisfying both budget-balanced
and egalitarian conditions.

Lemma 1. An incentive compatible protocol for two-player PRP is egalitarian
and budget-balanced if and only if

ti(b1, b2) = oi(b1, b2)
b1 + b2

2
.

Theorem 1. There does not exist a deterministic protocol for two-player PRP
which is incentive compatible, budget-balanced and egalitarian.



Priority Right Auction for Komi Setting 525

3.2 On Randomized Incentive Compatible Protocols

We consider a randomized protocol for two-player PRP as follows:

Protocol 1 (EQUAL CUT)

1. Each player submits its own bid: bi, i = 1, 2.
2. The system sets price to be b1+b2

2 , and randomly selects a winner for the
priority right.

3. Winner yields to the opponent a compensation of b1+b2
2 .

Theorem 2. EQUAL CUT is an EIC protocol for the players, and satisfies
budget- balanced and ex ante egalitarian conditions.

Corollary 1. EQUAL CUT is ex post egalitarian under truth-telling.

The result presents a simple protocol satisfies budget-balanced and egalitarian
conditions, and is EIC. Examining it carefully, bidding truthfully is always an
optimal strategy, but it is not (weakly) dominant in that there is no strategy
which is dominated by bidding the truth. Similar protocol was known previously
to Morgan [7] for a different problem of partnership dissolution under the com-
mon value model. It leaves open the question whether there is a randomized
strategy-proof protocol.

Next, we will show a uniqueness theorem that EQUAL CUT is in essence the
only candidate for the egalitarian, budget-balanced dominant IC protocol.

Proposition 1. Any protocol that satisfies dominant incentive compatible, bud-
get balanced and egalitarian, will choose the winner with equal probability and
set the payment as b1+b2

2 no matter who is the winner.

It follows immediately,

Corollary 2. EQUAL CUT is the only protocol that simultaneously satisfies
EIC, budget-balanced and egalitarian conditions.

Furthermore, Corollary 2 implies the following conditions.

1. No randomized EIC protocol could be simultaneously budget-balanced, egal-
itarian and envy-free;

2. No randomized EIC protocol could be simultaneously budget-balanced, egal-
itarian and efficient.

However, EQUAL CUT doesn’t satisfy the dominant condition. It follows that
we don’t have a (randomized) dominant incentive compatible protocol for our
problem.

Theorem 3. There is no randomized protocol that simultaneously satisfies dom-
inant incentive compatibility, egalitarian and budget-balanced conditions.
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Note that under the risk-averse condition, EQUAL CUT is a Nash implemen-
tation of the properties of budget-balancedness and egalitarian. In the game of
go, players only care the difference of the utilities. In EQUAL CUT protocol, if
player 1 bids truthfully, player 2’s truthful bidding results in u2 − u1 = 0 for
both outcomes of the random pick. Any other bids of player 2 would result in a
non-zero utility for both of the two outcomes though the expected utility is zero.
Therefore, any risk-averse player would bid truthfully if another does so. The
Nash implementation theory was developed especially for such problem when
impossibility is present obstructing social goal of certain properties [4,6]. Our
results can be a positive one in such cases.

4 Generalization

In this section, we consider one priority right for sale to n players. In an alterna-
tive formulation, we may view this problem as having three types of goods: one
type of a single item representing the priority right (PR), and another of (n-1)
items representing no such right (no-PR), as well as a numeraire good (money)
initially at a total zero amount. The players prefer PR but dislike no-PR. Each
player’s valuations of the n goods are ((n−1)vi,−vi,−vi, · · · ,−vi), i.e., (n−1)vi

for the PR and −vi for each of no-PRs. The problem is to decide how to assign
each player one of the n goods and a certain amount of money such that each
player has the same utility.

More formally, we have n players i = {1, 2, · · · , n}. Each has a private value
vi. The protocol assigns priority right to one of them depending on their bid-
ding profile b = (b1, b2, · · · , bn). Let oi(b) = n − 1 for player i who wins the
priority right; and oi(b) = −1, otherwise. The single winner condition implies:∑

i oi(b) = 0. Denote by ti(b) the amount charged to player i, i = 1, 2, · · · , n
by the auction system when the bid vector is b. The utility function of player i,
i = 1, 2, · · · , n, will be:

ui(vi,b) = oi(b)vi − ti(b).

We define the allocation and pricing for the above model as the n-player priority
right pricing problem (n-PRP for short). We first give the formal definition for
budget-balancedness and egalitarian for n player case.

Definition 9. Budget-Balancedness: A protocol for priority assignment is budget-
balanced if the total charge to all players are zero, i.e.,

n∑
i=1

ti(b) = 0.

Definition 10. Egalitarian: A protocol for priority assignment is egalitarian if
the protocol leads to equal utilities for all players: u1(b) = u2(b) = · · · = un(b).

Next we characterize incentive compatible protocols which are egalitarian and
budget-balanced.
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Lemma 2. An incentive compatible protocol for n-PRP is egalitarian and budget-
balanced if and only if the winner i pays

ti = (n− 2)bi +
1
n

n∑
j=1

bj

and the loser j �= i receives

−tj = bj + bi −
1
n

n∑
k=1

bk.

Denote wi(b1, b2, · · · , bn) ≥ 0 as the probability that player i wins the auction
under our protocol (as a function of the bidding profiles), we have

∑n
i=1 wi(b1, b2,

· · · , bn) = 1. Note that wi(b1, b2, · · · , bn) is dependent on the particular random-
ized protocol. We immediately have the following corollary.

Corollary 3. Under the conditions of Lemma 2, the expected utility of player i
can be written as

Ui = wi((n− 1)vi − (n− 2)bi −
1
n

n∑
j=1

bj) +
∑
j �=i

wj(−vi + bi + bj −
1
n

n∑
k=1

bk).

We obtain a similar uniqueness result as the two-player case.

Theorem 4. There is no randomized dominant incentive compatible protocol
but a unique EIC protocol for the n-player PRP, which is budget-balanced and
egalitarian.

5 Discussion

Our study opens up a possibility of placing the study of priority right under
the auction model. Further applications are possible with priority right auction
protocols such as home court advantages in pairwise competitions. Other appli-
cations include games of many players where the dealer has an advantage over
other players.

Further more, such types of advantages may not be the same for different
players in the group to become the dealer. The disadvantages of losers may
also be different with respect to different leaders. Those situations are in wide
existence in human activities such as chairmanship in elected committees, choice
of reserve currencies, etc. In this sense, our model falls under a general framework
of endogenous valuations such as discussed in [5].

In addition, auction may not be the only possible protocol for determining
winners of priority rights. The particular setting of GO allows us to develop
a tight bound for the incentive compatibility paradigm. This may not always
be possible for the general framework. Instead, our negative results reveal the
difficulty in this paradigm and may suggest further effort to be made using
different methodologies.
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Randomized Online Algorithms for the Buyback
Problem

B.V. Ashwinkumar and Robert Kleinberg�
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Abstract. In the matroid buyback problem, an algorithm observes a
sequence of bids and must decide whether to accept each bid at the mo-
ment it arrives, subject to a matroid constraint on the set of accepted
bids. Decisions to reject bids are irrevocable, whereas decisions to accept
bids may be canceled at a cost which is a fixed fraction of the bid value.
We present a new randomized algorithm for this problem, and we prove
matching upper and lower bounds to establish that the competitive ra-
tio of this algorithm, against an oblivious adversary, is the best possible.
We also observe that when the adversary is adaptive, no randomized al-
gorithm can improve the competitive ratio of the optimal deterministic
algorithm. Thus, our work completely resolves the question of what com-
petitive ratios can be achieved by randomized algorithms for the matroid
buyback problem.

1 Introduction

Imagine a seller allocating a limited inventory (e.g. impressions of a banner
ad on a specified website at a specified time in the future) to a sequence of
potential buyers who arrive sequentially, submit bids at their arrival time, and
expect allocation decisions to be made immediately after submitting their bid.
An informed seller who knows the entire bid sequence can achieve much higher
profits than an uninformed seller who discovers the bids online, because of the
possibility that a very large bid is received after the uninformed seller has already
allocated the inventory. A number of recent papers [1,2] have proposed a model
that offsets this possibility by allowing the uninformed seller to cancel earlier
allocation decisions, subject to a penalty which is a fixed fraction of the canceled
bid value. This option of canceling an allocation and paying a penalty is referred
to as buyback, and we refer to online allocation problems with a buyback option
as buyback problems.

Buyback problems have both theoretical and practical appeal. In fact,
Babaioff et al. [1] report that this model of selling was described to them
by the ad marketing group at a major Internet software company. Constantin
et al. [2] cite numerous other applications including allocation of TV, radio, and
newsprint advertisements; they also observe that advance booking with cancel-
lations is a common practice in the airline industry, where limited inventory is

� This research was supported by NSF CAREER Award CCF-0643934.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 529–536, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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oversold and then, if necessary, passengers are “bumped” from flights and com-
pensated with a penalty payment, often in the form of credit for future flights.

Different buyback problems are distinguished from each other by the con-
straints that express which sets of bids can be simultaneously accepted. In the
simplest case, the only constraint is a fixed upper bound on the total number of
accepted bids. Alternatively, there may be a bipartite graph whose two vertex
sets are called bids and slots, and a set of bids may be simultaneously accepted
if and only if each bid in the set can be matched to a different slot using edges of
the bipartite graph. Both of these examples are special cases of the matroid buy-
back problem, in which there is a matroid structure on the bids, and a set of bids
may be simultaneously accepted if and only if they constitute an independent
set in this matroid. Other types of constraints (e.g. knapsack constraints) have
also been studied in the context of buyback problems [1], but the matroid buy-
back problem has received the most study. This is partly because of its desirable
theoretical properties — the offline version of the problem is computationally
tractable, and the online version admits an online algorithm whose payoff is
identical to that of the omniscient seller when the buyback penalty is zero —
and partly because of its well-motivated special cases, such as the problem of
matching bids to slots described above.

As is customary in the analysis of online algorithms, we evaluate algorithms
according to their competitive ratio: the worst-case upper bound on the ratio
between the algorithm’s (expected) payoff and that of an informed seller who
knows the entire bid sequence and always allocates to an optimal feasible subset
without paying any penalties. The problem of deterministic matroid buyback
algorithms has been completely solved: a simple algorithm was proposed and
analyzed by Constantin et al. [2,3] and, independently, Babaioff et al. [4], and
it was recently shown [1] that the competitive ratio of this algorithm is opti-
mal for deterministic matroid buyback algorithms, even for the case of rank-one
matroids (i.e., selling a single indivisible good). However, this competitive ratio
can be strictly improved by using a randomized algorithm against an oblivious
adversary. Babaioff et al. [1] showed that this result holds when the buyback
penalty factor is sufficiently small, and they left open the question of determin-
ing the optimal competitive ratio of randomized algorithms — or even whether
randomized algorithms can improve on the competitive ratio of the optimal de-
terministic algorithm when the buyback factor is large.

Our work resolves this open question by supplying a randomized algorithm
whose competitive ratio (against an oblivious adversary) is optimal for all values
of the buyback penalty factor. We present the algorithm and the upper bound on
its competitive ratio in Section 3 and the matching lower bound in Section 4. Our
algorithm is also much simpler than the randomized algorithm of [1], avoiding
the use of stationary renewal processes. It may be viewed as an online random-
ized reduction that transforms an arbitrary instance of the matroid buyback
problem into a specially structured instance on which deterministic algorithms
are guaranteed to perform well. Our matching lower bound relies on defining
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and analyzing a suitable continuous-time analogue of the single-item buyback
problem.

Adaptive adversaries. In this paper we analyze randomized algorithms with an
oblivious adversary. If the adversary is adaptive1, then no randomized algorithm
can achieve a better competitive ratio than that achieved by the optimal deter-
ministic algorithm. This fact is a direct consequence of a more general theorem
asserting the same equivalence for the class of request answer games (Theorem
2.1 of [5] or Theorem 7.3 of [6]), a class of online problems that includes the
buyback problem.2

Strategic considerations. In keeping with [1,4], we treat the buyback problem
as a pure online optimization with non-strategic bidders. For an examination of
strategic aspects of the buyback problem, we refer the reader to [2].

Related work. We have already discussed the work of Babaioff et al. [1,4] and
of Constantin et al. [2,3] on buyback problems. Prior to this aforementioned
work, several earlier papers considered models in which allocations, or other
commitments, could be cancelled at a cost. Biyalogorsky et al. [7] studied such
“opportunistic cancellations” in the setting of a seller allocating N units of
a good in a two-period model, demonstrating that opportunistic cancellations
could improve allocative efficiency as well as the seller’s revenue. Sandholm and
Lesser [8] analyzed a more general model of “leveled commitment contracts” and
proved that leveled commitment never decreases the expected payoff to either
contract party. However, to the best of our knowledge, the buyback problem
studied in this paper and its direct precursors [1,2,3,4] is the first to analyze
commitments with cancellation costs in the framework of worst-case competitive
analysis rather than average-case Bayesian analysis.

2 Preliminaries

Consider a matroid3 (U , I) where U is the ground set and I is the set of inde-
pendent subsets of U . We will assume that the ground set U is identified with the
set {1, . . . , n}. There is a bid value vi ≥ 0 associated to each element i ∈ U . The
information available to the algorithm at time k (1 ≤ k ≤ n) consists of the first
k elements of the bid sequence — i.e. the subsequence v1, v2, . . . , vk — and the
restriction of the matroid structure to the first k elements. (In other words, for
every subset S ⊆ {1, 2, . . . , k}, the algorithm knows at time k whether S ∈ I.)
1 A distinction between adaptive offline and adaptive online adversaries is made

in [5,6]. When we refer to an adaptive adversary in this paper, we mean an adaptive
offline adversary.

2 The definition of request answer games in [6] requires that the game must have a
minimization objective, whereas ours has a maximization objective. However, the
proof of Theorem 7.3 in [6] goes through, with only trivial modifications, for request
answer games with a maximization objective.

3 See [9] for the definition of a matroid.
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At any step the algorithm can choose a subset Sk ⊆ Sk−1 ∪ {k}. This set
Sk must be an independent set, i.e Sk ∈ I. Hence the final set held by the
algorithm is R = Sn. The algorithm must perform a buyback for every element
of B =

(
∪n

i=1S
i
)
\Sn. For any set S ⊆ U let val(S) =

∑
i∈S vi. Finally we define

the payoff of the algorithm as val(R)− f · val(B).

3 Randomized Algorithm against Oblivious Adversary

This section gives a randomized algorithm with competitive ratio −W
(

−1
e(1+f)

)
against an oblivious adversary. Here W is Lambert’s W function4, defined as
the inverse of the function z �→ zez. The design of our randomized algorithm is
based on two insights:

1. Although the standard greedy online algorithm for picking a maximum-
weight basis of a matroid can perform arbitrarily poorly on a worst-case
instance of the buyback problem, it performs well when the ratios between
values of different matroid elements are powers of some scalar r > 1 + f .
(We call such instances “r-structured.”)

2. There is a randomized reduction from arbitrary instances of the buyback
problem to instances that are r-structured.

3.1 The Greedy Algorithm and r-Structured Instances

Definition 1. Let r > 1 be a constant. An instance of the matroid buyback
problem is r-structured if for every pair of elements i, j, the ratio vi/vj is equal
to rl for some l ∈ Z.

Lemma 1. Consider the greedy matroid algorithm GMA that always sells ele-
ments and buys them back as necessary to maintain the invariant that the set Sk

is a maximum-weight basis of {1, 2, . . . , k}. For r > 1 + f , when the greedy al-
gorithm is executed on an r-structured instance of the matroid buyback problem,
its competitive ratio is at most r−1

r−1−f .

Proof. As is well known, at termination the set S selected by GMA is a maximum-
weight basis of the matroid. To give an upper bound on the total buyback
payment, we define a set B(i) for each i ∈ U recursively as follows: if GMA
never sold to i, or sold to i without simultaneously buyback back any element,
then B(i) = ∅. If GMA sold to i while buying back j, then B(i) = {j} ∪ B(j).
By induction on the cardinality of B(i), we find that the set {vx/vi |x ∈ B(i)}
consists of distinct negative powers of r, so

∑
x∈B(i)

vx ≤ vi ·
∞∑

i=1

r−i =
vi

r − 1
.

4 Lambert’s W function is multivalued for our domain. We restrict to the case where
W
(

−1
e(1+f)

)
≤ −1.
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Algorithm Filter(ALG):

1: Initialize S = ∅.
2: for i = 1, 2, . . . , n do
3: Observe vi, wi.
4: Let xi = 1 with probability wi/vi,

else xi = 0.
5: Present i with value wi to ALG.
6: if ALG sells to i and xi = 1 then
7: Sell to i.
8: end if
9: if ALG buys back j and xj = 1 then

10: Buy back j.
11: end if
12: end for

Algorithm RandAlg(r):

1: Given: a parameter r > 1 + f .
2: Sample uniformly random u ∈ [0, 1].
3: for all elements i do
4: Let zi = u + �lnr(vi)− u�.
5: Let wi = rzi .
6: end for
7: Run Filter(GMA) on instances v,w.

Fig. 1. Randomized algorithms Filter(ALG) and RandAlg(r)

By induction on the number of iterations of the main loop, the set
⋃

i∈S B(i) con-
sists of all the elements ever bought back by GMA; consequently, the total buyback
payment is bounded by f ·

∑
i∈S

∑
x∈B(i) vx ≤ f

r−1

∑
i∈S vi. Thus, the algorithm’s

net payoff is at least 1− f
r−1 times the value of the maximum weight basis.

3.2 The Random Filtering Reduction

Consider two instances v,w of the matroid buyback problem, consisting of the
same matroid (U , I), with its elements presented in the same order, but with dif-
ferent values: element i has values vi, wi in instances v,w, respectively. Assume
furthermore that vi ≥ wi for all i, and that both values vi, wi are revealed to the
algorithm at the time element i arrives. Given a (deterministic or randomized)
algorithm ALG which achieves expected payoff P on instance w, we present in
Figure 1 an algorithm Filter(ALG) achieving expected payoff P on instance v.

Lemma 2. The expected payoff of Filter(ALG) on instance v equals the expected
payoff of ALG on instance w.

Proof. For each element i ∈ U , let σi = 1 if ALG sells to i, and let βi = 1 if
ALG buys back i. Similarly, let σ′

i = 1 if Filter(ALG) sells to i, and let β′
i = 1 if

Filter(ALG) buys back i. Observe that σ′
i = σixi and β′

i = βixi for all i ∈ U , and
that the random variable xi is independent of (σi, βi). Thus,

E

[∑
i∈U

σ′
ivi − (1 + f)β′

ivi

]
= E

[∑
i∈U

σixivi − (1 + f)βixivi

]
=
∑
i∈U

E[σi − (1 + f)βi]E[xivi] =
∑
i∈U

E[σi − (1 + f)βi]wi

= E

[∑
i∈U

σiwi − (1 + f)βiwi

]
.
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The left side is the expected payoff of Filter(ALG) on instance v while the right
side is the expected payoff of ALG on instance w.

3.3 A Randomized Algorithm with Optimal Competitive Ratio

In this section we put the pieces together, to obtain a randomized algorithm
with competitive ratio−W

(
−1

e(1+f)

)
against oblivious adversary5. The algorithm

RandAlg(r) is presented in Figure 1.

Lemma 3. For all i ∈ U , we have vi ≥ wi and E[wi] = r−1
r ln(r)vi.

Proof. The random variable lnr(vi) − zi is equal to the fractional part of the
number lnr(vi) − u, which is uniformly distributed in [0, 1] since u is uniformly
distributed in [0, 1]. It follows that wi/vi has the same distribution as r−u, which
proves that vi ≥ wi and also that

E
[
wi

vi

]
=
∫ 1

0
r−u du = − 1

ln(r)
· r−u

∣∣∣∣1
0

=
r − 1
r ln(r)

.

Theorem 1. The competitive ratio of RandAlg(r) is r ln(r)
r−1−f .

Proof. Let S∗ ⊆ U denote the maximum-weight basis of (U , I) with respect to
the weights v. Since the mapping from vi to wi is monotonic (i.e., vi ≥ vj implies
wi ≥ wj), we know that S∗ is also a maximum-weight basis of (U , I) with respect
to the weights w6. Let v(S∗) =

∑
i∈S∗ vi and let w(S∗) =

∑
i∈S∗ wi.

The input instance w is r-structured, so the payoff of GMA on instance w is
at least r−1−f

r−1 w(S∗). The modified weights wi satisfy two properties that allow
application of algorithm Filter(ALG): the value of wi can be computed online
when vi is revealed at the arrival time of element i, and it satisfies wi ≤ vi.
By Lemma 2, the expected payoff of Filter(GMA) on instance v, conditional on
the values {wi : i ∈ U}, is at least

(
r−1−f

r−1

)
· w(S∗). Finally, by Lemma 3 and

linearity of expectation, E [w(S∗)] ≥
(

r−1
r ln(r)

)
· v(S∗). The theorem follows by

combining these bounds.

The function f(r) = r ln(r)
r−1−f on the interval r ∈ (1 + f,∞) is minimized when

− r
1+f = W

(
−1

e(1+f)

)
and f(r) = −W

(
−1

e(1+f)

)
. This completes our analysis of

the randomized algorithm RandAlg(r).

4 Lower Bound

We prove the lower bound against an oblivious adversary. The proof first reduces
to a continuous version of the problem and then applies Yao’s Principle [10]. A
detailed version of the proof sketches can be found at [11].
5 Note that the algorithm is written in an offline manner just for convenience and can

be implemented as an online algorithm.
6 There may be other maximum-weight basis of w which were not maximum-weight

basis of v.
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4.1 Reduction to Continuous Version

Consider a new problem. Time starts at t = 1 and stops at time t = x, where x
is not known to the algorithm. The algorithm at any instant in time can make a
mark. The payoff of the algorithm is equal to the time at which it made its final
mark minus f times the sum of times of marks before the final mark. We note
that any algorithm for the single item buyback problem with competitive ratio
c can be transformed into an algorithm for the continuous case with competitive
ratio c × (1 + ε) for arbitrarily small ε > 0, by discretizing time into small
intervals. We prove lower bound for this new problem.

4.2 Lower Bound against Oblivious Adversaries

Theorem 2. Any randomized algorithm for the continuous version of the single
item buyback problem has competitive ratio at least −W

(
−1

e(1+f)

)
.

The proof is an application of Yao’s Principle [10]. We give a one-parameter fam-
ily of input distributions (parametrized by a number y > 1) for the continuous
version and prove that any deterministic algorithm for the continuous version
of the problem must have a competitive ratio which tends to −W

(
−1

e(1+f)

)
as

y → ∞. Note that for the continuous version of the problem input is just stop-
ping time x. For a given y > 1, let the probability density for the stopping times
be defined as follows.

f(x) = 1/x2 if x < y

f(x) = 0 if x > y (1)

Note that the above definition is not a valid probability density function, so we
place a point mass at x = y of probability 1

y . Hence our distribution is a mixture
of discrete and continuous probability. For notational convenience let d(F (x)) =
f(x) where F is the cumulative distribution function. Also let G(x) = 1− F (x).
Any deterministic algorithm is defined by a set T = {u1, u2, . . . , uk} of times at
which it makes a mark (given that it does not stop before that time).

Lemma 4. There exists an optimal deterministic algorithm described by the set
T = {1, w, w2, . . . , wk−1} for some w,k.

Proof. Let T = {u1, u2, . . . , uk}. We prove that ui = u
(i−1)/i
i+1 for i ∈ [k − 1]

by induction and it is easy to see that the claim follows from this. For lack of
space we just prove the inductive case. Let u0 = 0 and uk+1 = ∞. Let P be the
expected payoff of the algorithm.

Note that P =
∑k

i=1

∫ ui+1

ui
(ui − f ·

∑i−1
j=1 uj) d(F (y)). We can rewrite the

equation as P =
∑k

i=1(ui−(1+f)·ui−1)·G(ui). If we differentiate P with respect
to ui, equate to 0, and solve, then we obtain the equation u2

i = ui−1 · ui+1. By
induction we know that ui−1 = u

(i−2)/(i−1)
i . Substituting and solving we get the

necessary equation.
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Lemma 5. For any algorithm described by T = {1, w, w2, . . . , wk−1}, the com-
petitive ratio is bounded below by a number which tends to −W

(
−1

e(1+f)

)
as y

tends to ∞.

Proof. For lack of space we just give a sketch here. Note that if V is the expected
payoff of a prophet who knows the stopping time x, then V = 1 + ln(y). Also
for any algorithm described by T = {1, w, w2, . . . , wk−1} we have that P =
1 + (k − 1) · w−1−f

w . Hence if c is the competitive ratio then c = V/P . By
simple manipulation we see that this is larger than a number which tends to
−W
(

−1
e(1+f)

)
as y tends to ∞.
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Abstract. We study the problem of identifying prices to support a given
allocation of items to bidders in an envy-free way. A bidder will envy
another bidder if she would prefer to obtain the other bidder’s item at
the price paid by that bidder. Envy-free prices for allocations have been
studied extensively; here, we focus on the impact of budgets: beyond their
willingness to pay for items, bidders are also constrained by their ability
to pay, which may be lower than their willingness.

In a recent paper, Aggarwal et al. show that a variant of the Ascending
Auction finds a feasible and bidder-optimal assignment and supporting
envy-free prices in polynomial time so long as the input satisfies certain
non-degeneracy conditions. While this settles the problem of finding a
feasible allocation, an auctioneer might sometimes also be interested in
a specific allocation of items to bidders. We present two polynomial-time
algorithms for this problem, one which finds maximal prices support-
ing the given allocation (if such prices exist), and another which finds
minimal prices. We also prove a structural result characterizing when
different allocations are supported by the same minimal price vector.

1 Introduction

One of the most central and basic economic problems is the allocation of items
to individuals. This is frequently accomplished via auctions, wherein the bidders
communicate their values for the items to an auctioneer, who then decides on
an allocation of items to bidders and prices to be paid.

An important property of an auction is that it be envy-free: no bidder wishes
to receive one or more items assigned to other bidders at the price the other
bidders are paying. If bidders were envious in this sense, the outcome of the
auction might not be stable, or bidders might refuse to participate in the auction
in the future. There has been a big surge in interest in envy-free allocations and
pricing of items within the computer science community recently [9,12,6,2]. Much
of the work focuses on the interplay between combinatorial structure among the
item sets bidders are interested in and the revenue that can be extracted, usually
with efficient computation.

In reality, bidders are not only constrained by their willingness to pay for
items, but also by their ability to pay [5,8]. For instance, a bidder looking for a
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house might have an extremely high valuation for a mansion, but nowhere near
the resources to buy it at a price close to her valuation. Then, her envy will only
be relevant if another bidder gets to purchase the mansion at a price which this
bidder could afford.

Introducing budget limitations changes the problem significantly. For instance,
there may now be feasible allocations which do not maximize social welfare, and
efficient allocations may not be feasible any more. More generally, the structure
of feasible allocations and matching prices becomes quite rich. In a recent pa-
per, Aggarwal et al. [1] show that a variant of the Ascending Auction finds, in
polynomial time, a feasible assignment and supporting envy-free budget-friendly
truthful prices so long as the input satisfies certain non-degeneracy conditions.
In fact, the allocation they find is bidder-optimal, in the sense that the price
paid by every bidder is a lower bound on the price the bidder could pay for any
feasible allocation and corresponding prices.

While this settles the problem of finding a feasible allocation, an auctioneer
might sometimes also be interested in a specific allocation. For instance, there
may be constraints not captured otherwise which prescribe that certain alloca-
tions are preferable from the auctioneer’s point of view. Thus, an important and
natural question is whether, given the bidders’ valuations and budgets (as well
as the auctioneer’s reserve prices), a given allocation of items to bidders can be
supported with envy-free prices.

In this paper, we give two polynomial-time algorithms for this problem, one
which finds maximal envy-free prices supporting the given allocation (if such
prices exist), and another which finds minimal prices. In particular, our al-
gorithms show the existence of maximal and minimal price vectors. Both al-
gorithms are based on label-relaxation schemes (of a dynamically constructed
graph) in the style of the Bellman-Ford algorithm for shortest paths; in the case
of the minimal prices, this algorithm has to be augmented by a further insight
to prevent pseudo-polynomial running time. Furthermore, as a first step toward
a more complete characterization of feasible allocations and the corresponding
supporting envy-free budget-friendly prices, we give a combinatorial condition
for minimal price vectors to be the same.

Related Work. Guruswami et al. [11] initiated the study of envy-free revenue-
maximization for non-budget-constrained unit-demand bidders. If all items must
be allocated, the maximum price vector can be found in polynomial time [13].
However, if some items can be omitted to increase competition, then this gen-
eral problem becomes APX-hard; the current best approximation guarantee is
O(log n) [11]. Multi-unit truthful auctions for budget-constrained bidders with
linear valuations were first studied by Borgs et al. [4]. They constructed a truth-
ful randomized mechanism which asymptotically achieves revenue maximization.
Dobzinski et al. [8] essentially show that a deterministic truthful Pareto-optimal
auction exists if and only if budgets are public information. Additionally, for
the case of an infinitely-divisible single good, no anonymous truthful mechanism
can produce Pareto-optimal allocations if bidders are budget-constrained [8],
whereas if randomization is allowed, such mechanisms do exist [3].
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2 Model and Preliminaries

We consider a set M of n distinct indivisible items, and a set N of n bidders.
Bidders are unit-demand, i.e., each bidder is interested in purchasing at most one
item. Bidder i’s willingness to pay is captured by a valuation function v. Thus,
bidder i has value vi(j) for item j. Additionally, each bidder has an item-specific
budget bi(j), indicating her ability to pay for item j: the maximum amount of
money the bidder can afford for this item. A particularly natural special case
is when bi(j) = bi for all j, i.e., bidder i is constrained by a fixed amount of
money. However, our results hold in more generality. If bi(j) ≤ vi(j) for at least
one item j, we call bidder i budget-constrained, otherwise, bidder i is non-budget-
constrained. For convenience, we denote v

(0)
i (j) = min(vi(j), bi(j)).

Item j will be assigned price pj ; we use p to denote the vector of all prices.
The prices may be constrained by the auctioneer: the auctioneer has reserve
prices rj ≥ 0 for items j, such that an item cannot be sold at a price less than
rj . In other words, a price vector p is feasible only if p ≥ r. Additionally, when
pj < bi(j), we say that bidder i can afford item j with prices p. (We require strict
inequality for technical convenience; among other things, it makes the notion of
a minimal price vector well-defined.) When assigned item j at price pj , bidder i
derives a utility of ui(j) = vi(j)−pj if pj < bi(j) and −∞ otherwise. Therefore,
the utility is positive whenever pj < v

(0)
i (i).

In general, an allocation a is a partition A1, . . . , An of the n items among
the n bidders, where Ai is the set of items allocated to bidder i. Since we focus
on unit-demand bidders, we are particularly interested in allocations that are
assignments, in that |Ai| = 1 for all i, i.e., each bidder gets exactly one item. In
that case, we write ai for the unique item assigned to bidder i.

Definition 1 (Envy-Free Budget-Friendly Allocations, Supporting
Prices). An allocation a is envy-free budget-friendly if there exists a price vector
p ≥ r such that for every i = 1, . . . , n:

1. pai < bi(ai) (bidder i can afford the item allocated to her) and pai ≤ vi(ai)
(bidder i derives non-negative utility from her item).

2. vi(ai) − pai ≥ vi(j) − pj for all items j with pj < bi(j). That is, bidder i
would not prefer another item she can afford over her own at the current
prices.

A feasible price vector p satisfying these conditions is said to support the allo-
cation a.

The notion of envy-free budget-friendly allocations can be considered a gener-
alization of a Walrasian Equilibrium [7,10] to budget-constrained bidders.1 Un-
like the case of non-budget-constrained bidders, there need not be any envy-free
budget-constrained assignments (e.g., [14]). Furthermore, even when such assign-
ments do exist, the efficient allocation might not be envy-free budget-friendly.
1 We are mainly interested in assignments; therefore, we do not require that any

unallocated items have zero price.
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Formally, the input consists of the matrix of valuations V = (vi(j))i,j , the
matrix of budget limits B = (bi(j))i,j , and an allocation a. The goal is to identify
a price vector p supporting a, or to conclude that no such price vector exists.

3 Polynomial-Time Algorithms

For simplicity, we assume that the desired allocation a is ai = i for all bidders.
We then use pi to denote the price of the item assigned to bidder i. We can also
assume that v

(0)
i (i) ≥ ri; otherwise, no supporting price vector exists.

Both of our algorithms for the assignment problem are based on the notion
of an envy graph.

Definition 2 (Envy Graph Gp). Given an arbitrary price vector p, the envy
graph Gp has one node for each bidder, and a directed edge from bidder i to
bidder j if and only if pj < bi(j), i.e., if and only if bidder i could afford bidder
j’s assigned item at the current prices. Whenever the edge (i, j) is present, it is
labeled λ(i,j) = vi(i)− vi(j).

Intuitively, the label captures how much bidder i “prefers” bidder j’s item over
her own, if both were priced the same. (The more negative λ(i,j) is, the more i
prefers j’s item.) Notice that the edge labels are independent of the price vector
p, and only the existence or non-existence of edges depends on the prices. The
following two simple insights lie at the heart of our algorithms:

Proposition 1. Let P be any directed path from i to j in Gp, and L =
∑

e∈P λe

the sum of labels along the path.

1. Let p be any price vector such that for every price vector p′ supporting the
allocation a, we have p ≤ p′ (component-wise). Then, p′j ≥ pi − L.

2. Let p be any price vector such that for every price vector p′ supporting the
allocation a, we have p ≥ p′ (component-wise). Then, p′i ≤ pj + L.

Proof. We prove the first statement — the second one is analogous. For any
edge (u, v) ∈ P , envy-freeness of p′ implies that p′v ≥ p′u − λ(u,v). Adding the
inequalities for all edges e ∈ P , and using that p′i ≥ pi now proves the claim.

By setting i = j in Proposition 1, we obtain the following simple corollary:

Corollary 1. If p is an envy-free price vector, then Gp contains no negative
cycles.

3.1 Finding Minimal Prices

The first part of Proposition 1 suggests a simple pseudo-polynomial algorithm
for finding supporting minimal prices for an allocation (or concluding that no
supporting prices exist). Algorithm 1 is a label relaxation algorithm in the style
of the Bellman-Ford shortest paths algorithm.
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Algorithm 1. Label Relaxation for Minimal Supporting Prices
1: Start with pi = ri for all i.
2: while there is an edge (i, j) ∈ Gp with pi > pj + λ(i,j) do
3: Update pj := min(bi(j), pi − λ(i,j)).
4: Remove any edge (u, j) with pj ≥ bu(j) from Gp.
5: if pi ≥ bi(i) for any i then
6: No supporting prices exist.
7: else
8: p is a supporting price vector.

The pseudo-polynomial running time results from negative cycles in Gp. To
speed up the algorithm, we will therefore choose the edge (i, j) in the while loop
judiciously to break negative cycles fast. Let C be a negative cycle in Gp, with
nodes u1, u2, . . . , uk. Let Pij denote the unique path from ui to uj on C, and
Lij =

∑
e∈Pij

λ(ui,uj) the total edge weight on Pij . Intuitively, the update step
from Algorithm 1 will have to continue until at least one of the edges (ui, ui+1)
is broken, because item i + 1 is not affordable to bidder i any more. However,
this may take pseudo-polynomial time. Our goal is to “fast-forward” the update
steps along the cycle.

Lemma 1. There exists a node ui such that pui > puj + Lij for all j.

Proof. Suppose for contradiction that for each i, there exists a j(i) such that
pui ≤ puj(i) +Lij(i). Consider the graph on nodes ui with an edge from ui to uj(i).
Because each node has an outgoing edge, this graph must contain some cycle
C′ = {ui1 , . . . , ui�

, ui�+1 = ui1} such that puir
≤ puir+1

+Lirir+1 for all 1 ≤ r ≤ �.
Because each node appears once on the right and left side, after adding up these
inequalities and canceling out, we obtain that

∑�
r=1 Lirir+1 ≥ 0. But the sum

is exactly the weight of going around C one or more times (following C′), and
thus negative, a contradiction.2

If we update the node prices in the order u2, u3, . . . , uk, it is easy to see by
induction that (1) each node will need to be updated upon its turn, and (2) ui

will be updated to pu1 − L1i. Extending this observation to updates continuing
around C, we can see the following:

Proposition 2. If the algorithm has updated the prices going around C, and
has updated node ui c times, then its new price is p′ui

= pu1 − cL− L1i > pui .

Thus, we can determine the outcome of the update process as follows: For each
i, let ci = � bui−1 (ui)−(pu1−L1i)

L � be the number of iterations around the cycle
after which bidder ui−1 cannot afford item ui any more (where u0 = uk). Then,
let j = argmini ci, with ties broken for the smallest i. According to Proposition
2 and the definition of j, if we update each ui (for i ≤ j) ci times, and each ui

2 An alternative proof reduces this statement to the well-known “Racetrack” puzzle.
We thank Peter Winkler for this observation.
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for i > j ci − 1 times, then p′uj
> buj−1 (uj), and p′ui

≤ bui−1(ui) for all i �= j. In
particular, this means that the updates are consistent with an execution of the
relaxation algorithm.

Thus, Algorithm 2 is a polynomial-time version of Algorithm 1.

Algorithm 2. Polynomial-Time Minimal Supporting Prices
1: Start with pi = ri for all i.
2: while Gp contains a negative cycle C do
3: Let u1 ∈ C be a node satisfying Lemma 1, and C = {u1, . . . , uk}.
4: Compute L1i =

∑i−1
j=1 λ(uj ,uj+1) for all i.

5: Compute ci = � bui−1 (ui)−(pu1−L1i)

L
� for all i.

6: Let j = argmini ci, ties broken for smallest i.
7: Update p′

ui
= pu1 −L1i− cjL for i ≤ j, and p′

ui
= pu1 −L1i− (cj − 1)L for i > j.

8: Update p = p′, and update Gp.
9: if pi ≥ bi(i) for any i then

10: No supporting prices exist.
11: else
12: p is a supporting price vector.

The running time in each iteration is dominated by finding a negative cycle,
which can be accomplished in time O(mn) by a simple extension of the Bellman-
Ford algorithm. All other operations take time O(n). Since each iteration of the
while loop removes at least one edge, the total running time is at most O(m2n).

Proposition 1 implies by induction that in each iteration, the vector p of the
algorithm satisfies p ≤ p′ (component-wise) for any price vector p′ supporting
a. Thus, whenever Algorithm 1 outputs a price vector p, we have that p ≤ p′ for
any price vector p′ supporting a. Because Algorithm 2 outputs the same final
vector as Algorithm 1, we have proved:

Corollary 2. If a is an envy-free budget-friendly allocation for V,b, then Al-
gorithm 1 outputs the (unique) minimal price vector p− satisfying p− ≤ p′

(component-wise) for all price vectors p′ supporting a. In particular, there ex-
ists a unique minimal price vector supporting a.

Maximal Prices. It is possible to find maximal prices supporting a. In this
case, the procedure starts with prices pi = v

(0)
i (i) and iteratively makes price-

adjustment similar to Algorithm 1, except prices are decreased in response to
envy. If there remains a negative cycle once the algorithm terminates, we deduce
that no supporting prices exist. The algorithm can be shown to run in polynomial
time even without fast-forwarding. Due to space constraints, the algorithm will
be discussed in detail in the full version of this paper.

4 Affordability Graphs and Minimal Price Vectors

The structure of feasible allocations and corresponding supporting prices is much
richer in the presence of budgets than for traditional envy-free auctions. If all
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bidders are non-budget-constrained, an allocation is feasible if and only if it is
efficient (i.e.,

∑
i vi(ai) ≥

∑
i vi(aπ(i)) for any permutation π). A price vector

supports either all allocations, or none of them [10]. However, once we introduce
budgets, the situation changes significantly. The efficient allocation may not be
feasible with budgets, while inefficient allocations are. Furthermore, there can be
allocations a,a′ with corresponding supporting prices p,p′ such that p does not
support a′, and vice versa. As a first step toward a complete characterization,
we give a combinatorial condition for minimal price vectors to be the same. The
condition is based on the concept of an affordability graph.

Definition 3 (Affordability Graph Hp). The affordability graph Hp is a
bipartite graph on bidders and items, containing an edge (i, j) if and only if
bidder i can afford item j at the prices p, i.e., pj < bi(j).

If p is a minimal price vector, Hp captures all of the essential information about
p, in the following sense (a generalization of Lemma 6 in [10]):

Lemma 2. Let a,a′ be two envy-free budget-friendly assignments, and p,p′ the
corresponding minimal supporting prices. Then p = p′ if and only if Hp = Hp′ .
Furthermore, if Hp = Hp′ , then the social welfare of all bidders is the same
under (a,p) and (a′,p′), i.e.,

∑
i vi(ai) =

∑
i vi(a′

i).

Proof. One direction is obvious: if p = p′, then the edge (i, j) is in Hp if and
only if it is in Hp′ . Hence, Hp = Hp′ . For the converse direction, assume that
Hp = Hp′ . Because a is envy-free and supported by p, each bidder prefers her
own assigned item to all items she can afford, i.e.,

vi(ai)− pai ≥ vi(j)− pj (1)

for every item j with pj < bi(j). Because a′ is an allocation, we can write j = a′
k

for a (unique) k in the right-hand side above, obtaining:

vi(ai)− pai ≥ vi(a′
k)− pa′

k
(2)

for each k with pa′
k

< bi(a′
k). Because bidder i can afford item a′

i with the
price vector p′, and the affordability graphs are the same, i can also afford a′

i

with prices p. Thus, we can apply Inequality (2) with k = i, to obtain that
vi(ai) − pai ≥ vi(a′

i) − pa′
i
. Summing this inequality over all bidders i, and

noticing that both a and a′ are permutations, gives us that∑
i(vi(ai)− pai) ≥

∑
i(vi(a′

i)− pa′
i
)

Adding
∑

i pai on both sides shows that
∑

i vi(ai) ≥
∑

i vi(a′
i). A completely

symmetric argument shows the opposite inequality, so we have proved that∑
i vi(ai) =

∑
i vi(a′

i).
Subtracting

∑
i pai =

∑
i pa′

i
on both sides implies that

∑
i(vi(ai) − pai) =∑

i(vi(a′
i) − pa′

i
). If there were an i with vi(ai) − pai > vi(a′

i)− pa′
i
, then there

would have to be some k with vk(ak)−pak
< vk(a′

k)−pa′
k
, which would contradict
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the fact that p supports a. Thus, vi(ai) − pai = vi(a′
i) − pa′

i
for all bidders i.

Combining this with Inequality (1) we get that vi(a′
i) − pa′

i
≥ vi(j) − pj for

every item j with pj < bi(j). Thus, p supports the assignment a′
, and by the

minimality of p′, we get that p′ ≤ p component-wise. A symmetric argument
shows that p ≤ p′, and thus completes the proof.

Acknowledgments. We would like to thank Itai Ashlagi, Liad Blumrosen, Ron
Lavi, John Ledyard, Debasis Mishra and Noam Nisan for helpful discussions and
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Abstract. Price of anarchy and price of stability are the primary no-
tions for measuring the efficiency (i.e. the social welfare) of the outcome
of a game. Both of these notions focus on extreme cases: one is defined
as the inefficiency ratio of the worst-case equilibrium and the other as
the best one. Therefore, studying these notions often results in discov-
ering equilibria that are not necessarily the most likely outcomes of the
dynamics of selfish and non-coordinating agents.

The current paper studies the inefficiency of the equilibria that are
most stable in the presence of noise. In particular, we study two vari-
ations of non-cooperative games: atomic congestion games and selfish
load balancing. The noisy best-response dynamics in these games keeps
the joint action profile around a particular set of equilibria that mini-
mize the potential function. The inefficiency ratio in the neighborhood
of these “stable” equilibria is much better than the price of anarchy.
Furthermore, the dynamics reaches these equilibria in polynomial time.

Our observations show that in the game environments where a small
noise is present, the system as a whole works better than what a pessimist
may predict. They also suggest that in congestion games, introducing a
small noise in the payoff of the agents may improve the social welfare.

1 Introduction

The inefficiency of equilibria in noncooperative games has been studied vastly
in the algorithmic game theory community during the last decade. It has been
observed that the rational behavior of selfish players can be worse than a cen-
trally designed outcome, where the decency of the outcome is measured by its
corresponding (expected) social welfare (or cost) either in the long run or a
certain period of time. There have been different attempts to understand how
much these outcomes might be different from each other. The two most used
notions are price of anarchy to understand how inferior the worst equilibrium is
(comparing to the best possible outcome), and price of stability to compare the
worst possible gap between the best equilibrium and the optimal outcome.

These notions are representing some extreme equilibria of the game which
might be unstable in the presence of noise. In other words, even a small noise
in either the behavior or payoffs of the players may move the game quickly out
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of these equilibria. Motivated by this observation, and following the literature
on evolutionary game theory, we study the noisy best response dynamics. In
such dynamics, with overwhelming probability players take the best response
action, but with a small probability they may take another action. This may be
attributed to actual noise in the payoff, to the noise in the perceived information
from the environment, or simply to the failure in realizing the “exact” best
response.

Noisy best response dynamics, introduced by Fudenberg and Kreps [12] have
been used extensively in evolutionary game theory to model the behavior of
agents. They also have been used in the context of experimental economics to
rationalize the perceived data. The corresponding perturbed equilibrium in this
context is called “Quantal Response Equilibrium (QRE)”. Logit dynamics, first
appeared in Blume [5], is one of the most widely used model of noisy best
response dynamics in evolutionary game theory and experimental economics.
This dynamics defines a Markov chain with stationary measure μβ where the
parameter β is the inverse of the noise in the system. The dynamics of this chain
is similar to that of simulated annealing. It has a drift towards equilibria with
lower potential function.

1.1 Our Results

We study unweighted finite (i.e. atomic) congestion games (Section 3) and selfish
load balancing games with identical machines. (We omit the proofs for the load
balancing games here due to the lack of space, and present them in the longer
version.) Our main contribution is to show that for these games and under
certain mild assumptions, the dynamics reaches the neighborhood of equilibria
with the globally minimum potential function after a reasonable time and then
spends most of the time there. We also characterize the inefficiency ratio in this
neighborhood.

Let us explain the statements in the previous paragraph more precisely. Define
Aε to be the subset of the states of the game for which the potential function is
within a factor 1 + ε of the minimum potential function. We make the following
observations.

1. For every constant ε > 0, the game reaches an state in Aε in polynomial
time in the number of players. We show that for any constant ε > 0,
limβ→∞ μβ(Aε) = 1. Consequently, when the noise is sufficiently small, the
dynamics spends almost all the time in Aε. We call Aε a stable region of
the game.

2. Define the Inefficiency Ratio of Stable Equilibria (IRSE) of a non-
cooperative potential game to be the “worst case inefficiency ratio of the
equilibria that are potential function minimizers”. We will show that the
inefficiency ratio of all the states in Aε is at most IRSE + cε for a constant
c independent of the number of players.

These two observations together suggest that IRSE is a proper notion of the
inefficiency ratio of the most plausible and stable outcome of the game: by the
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Table 1. IRSE vs. Price of Stability and Anarchy, (*) means folk theorem

Game Cost Function PofS IRSE PofA
Load Balancing on Makespan 1 (*) ≥ 19

18
, ≤ 3

2
2(1− 1

m+1
) [11]

identical machines
Unweighted Atomic Linear 1 + 1√

3
≈ 1.578 [6] 1 + 1√

3
2.5 [8][2]

Congestion games Degree p Polynomial Θ(p) (*) p + 1 pΘ(p) [8]
Linear (Symmetric/Network) 4

3
[1] 4

3
≥ 2

first observation, we know that the game will quickly reaches some state in the
stable region Aε, and stays there almost all the time afterwards. On the other
hand, the second observation implies that for small enough values of ε the worst
inefficiency ratio of any state in the stable region gets arbitrarily close to IRSE.

Our results on IRSE are summarized in Table 1. We use the well-known “vari-
ational inequalities” for deriving these results. They show that the inefficiency
ratio of stable equilibria in such games are usually much better than the price
of anarchy and often close to the price of stability. Note that IRSE interestingly
coincides with the price of stability in atomic congestion games and atomic self-
ish routings with linear cost functions. Although this may raise the speculation
that the IRSE is in fact equal to the price of stability, we will see that it is not
true in general. The IRSE for load balancing games can be at least 19

18 while
the price of stability is 1. Possibly, the most challenging part of our proofs is
to bound the hitting time of Aε. It has been argued that stable equilibria is a
good measure for predicting the outcome of a play only if it takes reasonable
time for the dynamics to reach it [10,15]. We will show that when the number of
resources is constant, the dynamics reaches Aε in polynomial time in the number
of players. Our convergence times are all polynomial in the number of players,
but might be exponential in the number of resources (e.g. size of the network
in the network congestion games, or the number of machines in the selfish load
balancing games). In the longer version of this paper we show that it is impossi-
ble to get a convergence time which is polynomial in the number of resources. In
fact, we show that such a result cannot exist even in games with three players.
Furthermore, note that due to results of [7] and [3], proving a fast convergence
to the exact potential minimizer solution also seems hopeless.

One interesting implication of our results in the context of protocol design is
that in such games introducing a small noise in the payoff of the agents may
increase the social welfare. In other words, apart from relying on the actual
noises in the environment, the designer can introduce some noise in the system
(for example by adding random Gaussian delays to the routing systems). Our
results imply that this noise, while most likely not hurting individuals, may have
a considerable positive effect on the social welfare.

1.2 Related Works

There have been several aims to analyze “no-regret learning” algorithms, where
each player is essentially running a regret minimization algorithm on her observed
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payoffs. For a detailed description and more references we encourage the reader
to study [14] and [4]. Our work however, is conceptually different from them.
We do not assume that the players are running a learning algorithm. Instead,
we consider myopic agents in the presence of the noise. In this sense, our work
is in the line of the literature on the “evolutionary stable states (ESS)”. For
a comprehensive survey on the topic one can refer to the book by Fudenberg
and Levine [13]. One of the most related works to ours in this subject is the
paper by Chung, et al [9] which considers price of stochastic anarchy for the
load balancing games and shows its boundedness.

2 Noisy Best-Response Dynamics

Suppose that a set V = {1, 2, · · · , n} of players are playing a game in the course
of time. Each player i has a set of pure strategies Si. The set S, Cartesian
product of Si’s, denote the set of all pure strategy profiles. We show by S−i the
set of all strategy profiles of players other than i. For a strategy profile s, the
utility of player i is shown by us

i . In a best-response dynamics (without noise)
each player i would change her own pure strategy if it leaves her better off.

In this section we address noisy best-response dynamics in potential games.
In particular, we study “logit dynamics”. The observations made in this section
are heavily based on the classic works of Blume [5] and Fudenberg et. al. [13].

Noisy best-response dynamics are defined by a parameterized family of Markov
chains Prβ indexed by β. The parameter β ∈ R+ indicates how noisy the system
is, and can be interpreted as the inverse noise of the system. Each player updates
its current strategy si to s′i ∈ Si with probability pβ(s′i, s−i) where:

pβ(s′i, s−i) ∝ e−βus′
i . (1)

In above, s′ = (s′i, s−i) is the same as s with only si replaced by s′i (and hence,
s−i = s′−i). Note that when β = +∞, the system behaves with a noise-free
best-response dynamics. In the potential games, the update rule in Eq. (1) can
be rephrased as below.

pβ(s′i, s−i) ∝ e−βΦ(s′). (2)

Here, Φ is the potential function of the game and thus, Φ(s′) − Φ(s) = us′
i −

us
i . In weighted potential games there exists values of wi such that Φ(s′) −

Φ(s) = wi(us′
i −us

i ). In such games we consider the noisy best-response dynamics
explained by Eq. (2).

This game defines a reversible Markov chain on S with respect to the sta-
tionary distribution μ(s) ∝ e−βΦ(s) (for more details, see [5] and [13]). It is
immediate that as β →∞ the measure of Aε (for any constant ε) goes to 1.

An interesting implication of the fact that the inverse noise, β, is unbounded
from above is that as the system approaches to best response (i.e. β →∞), the
inefficiency ratio of the system in the long run is determined by IRSE. Whereas
in contrast, in the best response itself (β = ∞), the inefficiency ratio might be
as bad as the price of anarchy.
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3 Unweighted Congestion Games

Congestion games are one of the important classes of noncooperative games. In
this section we study selfish routing in networks. We note that are all proofs
can be extended to congestion games. In a selfish routing game, selfish players
control their own traffic and want to route it through a congested network. We
assume that we have a directed graph G = (V, E), k source and sink pairs
(or commodities) (s1, t1), · · · , (sk, tk) each of them corresponding to one selfish
agent. We will be considering “unweighted” instances where each agent i is
aiming to send one unit of traffic from si to ti through a single path. There also
is a nonnegative continuous nondecreasing cost function ce : R+ → R+ for each
edge e in the graph. The cost that agent i bears is the total sum of the costs
of the edges through the path she has chosen. Therefore, the social cost will be
C(f) =

∑
i

∑
e∈Pi

ce(fe) =
∑

e∈E ce(fe)fe. It is well-known that this game is a
potential game with the potential function Φ defined as Φ(f) =

∑
e∈E

∑fe

i=1 ce(i).
For brevity, in this section we only work with the cost functions of the form

ce(x) = xp. For general polynomials of degree p, the same price of anarchy and
congestion results hold. Only the lowerbound for β will be multiplied by a factor
of ℵ, where ℵ is the biggest absolute value of the coefficients of cost functions.

First, we study the rate of convergence of this dynamics to the stable region.

Theorem 1. Consider an unweighted atomic selfish routing game being played
on a graph G = (V, E) with K vertices and M edges where n units of traffic are
being routed between their corresponding sources and sinks. Also, suppose that
the cost functions are polynomials of degree at most p. Then for any constant
ε > 0 there exists a value β0(M, K, p, ε), so that for any β ≥ β0(M, K, p, ε),
the hitting time of Aε is at most Kn3. Moreover, the Markov chain will almost
always be in Aε after hitting it.

Proof. we show that there exists a constant c = c(M, K, p, ε) such that for

– [Case I]: For any n ≥ c, the hitting time of Aε is at most Kn3.
– [Case II]: For n < c, the hitting time is bounded by O(1).

The idea of the proof for the CASE I is to show that the value of poten-
tial function is defining a random walk with a negative drift and hence, it will
eventually end up near its minimum value. The similar argument does not hold
in CASE II. Instead, we will prove that in this case the mixing time of the
Markov chain is small. We also show that the measure of Aε is almost 1. This
clearly bounds the hitting time.

CASE I. We first need to prove that if no player can make a huge gain by
changing her path, then the value of potential function is close to its optimal
value.

Lemma 1. Let f be an arbitrary flow and g be any equilibrium flow. Suppose
that for some given value X, no player can change her path in f and decrease
her cost by more than X. Then,
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Φ(f) ≤ Φ(g)(1 +
pMp+1(X + K2p+1)

1
p+1

n
p

p+1
).

Proof. [Lemma 1.] Let Pi and P ′
i be the path selected by agent i in f and g,

respectively. Since g is an equilibrium, we have∑
e∈P ′

i

ge ≤
∑
e∈Pi

(ge + 1)p ≤
∑
e∈Pi

(gp
e + 2pnp−1).

Similarly, by the assumption about f we get∑
e∈Pi

fe ≤ Xnp−1 +
∑
e∈P ′

i

(fe + 1)p ≤ Xnp−1 +
∑
e∈P ′

i

(fp
e + 2pnp−1).

Adding the two inequalities above and taking the sum for all values of i, we
conclude

∑
e(g

p
e −fp

e )(ge−fe) ≤ np(X +K2p+1). It means that the difference of
potential functions can be bounded from above by np(np(X + K2p+1))1/(p+1).
Note that the potential function is at least np+1

pMp+1 . Substituting this value will
complete the proof. ��

Define c = c(M, K, p, ε) := 2p+1M2p+2K
εp+1 . For n ≥ c, we define a region Aδ where

δ =
pMp+1(X + K2p+1)

1
p+1

n
p

p+1
,

and X = Knp−1. We prove that if we are outside of the set Aδ we have a
tendency to go back there. More formally, we show that there will be a negative
drift for the value of Φ of the current state of the Markov chain. By Lemma 1
there always exists a move with payoff at least X . Hence, the expected change
in the value of potential function will be

−XeβX +
∑

p ΔΦ(p)e−βΔΦ(p)

eβX +
∑

p e−βΔΦ(p) ,

where the sums are over all possible paths p and ΔΦ(p) is the payoff of switching
to path p. Note that the total number of possible paths is at most K!. One can
check that for β = Ω(K log K), the above fraction is under −X/2. It shows that
the random walk on the value of potential function has a negative drift of size
at least X/2n.

Note that the initial value of potential function can be at most Mnp+1 ≤
K2np+1. It means that for β = Ω(K log K), after at most O(K2np+2/X) =
O(Kn3) steps we get to Aδ. On the other hand, during these O(Kn3) steps, the
probability that the value of the potential function reaches a distance 2X from
all of the states in Aδ is exponentially small. But note that the the potential
function cannot be less than np+1

pMp . Hence in these O(Kn3) steps, w.h.p we will not
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leave A2δ. And therefore, A2δ is a stable region. The statement of the theorem
in this case follows by realizing that δ = O(ε).

CASE II. Note that the the payoff of each move for any player is bounded
between −Knp and Knp. The total number of moves for each person is bounded
by K!. Therefore, the non-negative entries of the transition matrix are bounded
from below by e−βKnp

/(K!eβKnp

) = e−2βKnp

/K!.
Each state of the Markov chain represents a joint pure strategy profile of the

players. The total number of such strategy profiles is at most K!n. So, in the
stationary distribution, the probability of each state is bounded from below by
e−β max Φ/(K!ne−β minΦ) ≤ e−βMnp+1

/K!n.
To bound the mixing time of the Markov chain, we define paths between

its states as follows: we fix an ordering of players, and to go from each state
to another players change their paths one by one according to the ordering.
It is easy to see that the maximum congestion is K!n−1 and also the maximum
length of these paths is n. Thus, the mixing time is bounded by neβK2np+1

K!2n ≤
e2βK2np+1

, which is O(1) since n < c.
As the final step, we prove that the measure of Aε in the stationary distribu-

tion is large. Let Y be the optimum value of the potential function. The measure
of Aε will be at least e−βY /((K!)ne−(1+ε)βY ) = eβεY K!−n. Note that the value
of Y cannot be less than np+1

pMp . Therefore, values of β ≥ KMp log K
εnp ensures a

measure of 1− o(1) for Aε. ��

Lemma 2 establishes a relation between the cost of the flows that approximately
minimize the potential function Φ and a flow that minimizes the cost C. The
proof for the degree p > 2 polynomial case is straightforward and is done by
bounding the inequality Φ(f) ≤ (p + 1)C(f) for every routing f . The proof for
the linear case is quite similar to the one in [6] and we omit it here.

Lemma 2. In the unweighted atomic selfish routing game with linear costs let f
be the equilibrium flow that minimizes the potential function Φ and g be the op-
timal flow. We have C(f) ≤ (1 + 1√

3
)C(g). Also when the costs are polynomials

of degree p, then C(f) ≤ (p + 1)C(g). Also, the ratio between the social cost of
the flows in the stable region Aε and the optimum social cost will be respectively
(1 + ε)(1 + 1√

3
) and (1 + ε)(p + 1).

Note that the price of anarchy in these cases can be as large as 2.5 and pΘ(p),
respectively. Also, when the game is symmetric (single-source/single-sink), [1]
implies that the inefficiency of the best equilibrium is at most 4

3 (which inter-
estingly coincides with the price of anarchy in non-atomic selfish routing). On
the other hand, the exact upperbound for the price of anarchy is not known in
this case (it is of course at most 2.5). Through a series of unweighted symmetric
routing instances whose price of anarchy gets arbitrary close to 2 from below,
we can show that the price of anarchy in this case is at least 2. The example can
be found in the longer version of the paper.

Note that Theorem 1 implies that the game will eventually settles down in
the stable region of these potential games. Lemma 2 bounds the ratio of the
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worst social cost in this region to the optimum social cost of the game. Hence,
combining Theorem 1 and Lemma 2 enables us to bound the inefficiency ratio
of the stable equilibria in such games, which is the ultimate result of this work.

Theorem 2. For symmetric unweighted routing games with linear cost func-
tions, IRSE is exactly 4

3 . Also, for congestion games, IRSE is exactly 1 + 1√
3

(resp. at most p + 1) when the cost functions are linear (resp. polynomials of
degree at most p).
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Abstract. We study the problem of designing prediction markets for
random variables with continuous or countably infinite outcomes on the
real line. Our interval betting languages allow traders to bet on any inter-
val of their choice. Both the call market mechanism and two automated
market maker mechanisms, logarithmic market scoring rule (LMSR) and
dynamic parimutuel markets (DPM), are generalized to handle interval
bets on continuous or countably infinite outcomes. We examine problems
associated with operating these markets. We show that the auctioneer’s
order matching problem for interval bets can be solved in polynomial
time for call markets. DPM can be generalized to deal with interval
bets on both countably infinite and continuous outcomes and remains
to have bounded loss. However, in a continuous-outcome DPM, a trader
may incur loss even if the true outcome is within her betting interval.
The LMSR market maker suffers from unbounded loss for both count-
ably infinite and continuous outcomes.

Keywords: Prediction Markets, Combinatorial Prediction Markets, Ex-
pressive Betting.

1 Introduction

Prediction markets are speculative markets created for forecasting random vari-
ables. In practice, they have been shown to provide remarkably accurate proba-
bilistic forecasts [1,2]. Existing prediction markets mainly focus on providing an
aggregated probability mass function for a random variable with finite outcomes
or discretized to have finite outcomes. For example, to predict the future printer
sales level, the value of which lies on the positive real line, Hewlett-Packard’s
sales prediction markets partition the range of the sales level into about 10 ex-
clusive intervals, each having an assigned Arrow-Debreu security that pays off $1
if and only if the future sales level falls into the corresponding interval [3]. The
price of each security represents the market probability that the sales level is
within the corresponding interval. The set of prices provides a probability mass
function for the discretized random variable.

However, many random variables of interest have continuous or countably in-
finite outcome spaces. For example, the carbon dioxide emission level in a certain
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period of time can be thought of as a continuous random variable on the positive
real line; the printer sales level can be treated as a random variable with count-
ably infinite outcomes, taking positive integer values. Discretizing such random
variables into finite outcomes can potentially hurt information aggregation, as
market participants may have information that can not be easily expressed with
the ex-ante specified discretization. It is desirable to provide more expressive bet-
ting languages so that market participants can express their information more
accurately and preferably in the same way they possess it.

In this paper, we design and study prediction market mechanisms for pre-
dicting random variables with continuous or countably infinite outcomes on the
real line. We provide betting languages that allow market participants to bet
on any interval of their choice and create the security on the fly. We generalize
both the call market mechanism and two automated market maker mechanisms,
logarithmic market scoring rules (LMSR) [4] and dynamic parimutuel markets
(DPM) [5,6], to handle interval bets on continuous or countably infinite out-
comes, and examine problems associated with operating these markets. We show
that the auctioneer’s order matching problem can be solved in polynomial time
for call markets. DPM can be generalized to deal with interval bets on both
countably infinite and continuous outcomes and remains to have bounded loss.
However, in a continuous-outcome DPM, a trader may incur loss even if the
interval she bets on includes the true outcome. The LMSR market maker suffers
from unbounded loss for both countably infinite and continuous outcomes. Due
to space constraints, the Appendix is omitted and available upon request.

Related Work. Our work is situated in the broad framework of designing
combinatorial prediction market mechanisms that provide more expressiveness
to market participants. Various betting languages for permutation combinatorics
have been studied for call markets, including subset betting and pair betting [7],
singleton betting [8], and proportional betting [9]. Fortnow et al. [10] analyzed
betting on Boolean combinatorics in call markets. For LMSR market makers,
Chen et al. [11] showed that computing the contract price is #P-hard for subset
betting, pair betting, and Boolean formulas of two events. In a tournament
setting, pricing in LMSR becomes tractable for some restricted Boolean betting
languages [12]. Yoopick is a combinatorial prediction market implementation of
LMSR that allows traders to bet on point spreads of their choice for sporting
events [13]. It is implemented as a LMSR with a large number of finite outcomes.
Agrawal et al. [14] proposed Quad-SCPM, which is a market maker mechanism
that has the same worst-case loss as a quadratic scoring rule market maker.
Quad-SCPM may be used for interval bets on countably infinite outcomes since
its worst-case loss does not increase with the size of the outcome space.

2 Background

In this section, we briefly introduce three market mechanisms that have been
used by prediction markets to predict random variables with finite outcomes.



Betting on the Real Line 555

2.1 Call Markets

A call market is an auctioneer mechanism, where the auctioneer (market insti-
tution) risklessly matches received orders. In a call market, participants submit
buy or sell orders for individual contracts. All orders are assembled at one time
in order to determine a market clearing price at which demand equals supply.
Buy orders whose bid prices are higher than the clearing price and sell orders
whose ask prices are lower than the clearing price are accepted. All transactions
occur at the market clearing price. Most call markets are bilateral — matching
buy and sell orders of the same contract. For multi-outcome events, call mar-
kets can be multilateral — allowing participants to submit orders on different
contracts and performing global order matching [15,16,17,18].

2.2 Logarithmic Market Scoring Rules

Let v be a random variable with N mutually exclusive and exhaustive outcomes.
A logarithmic market scoring rule (LMSR) [4,19] is an automated market maker
that subsidizes trading to predict the likelihood of each outcome. An LMSR mar-
ket maker offers n contracts, each corresponding to one outcome and paying $1
if the outcome is realized [4,20]. Let qi be the total quantity of contract i held
by all traders combined, and let q be the vector of all quantities held. The mar-
ket maker utilizes a cost function C(q) = b log

∑N
j=1 eqj/b that records the total

amount of money traders have spent. A trader that wants to buy any bundle of
contracts such that the total number of outstanding shares changes from q to q̃
must pay C(q̃)−C(q) dollars. Negative quantities encode sell orders and negative
“payments” encode sale proceeds earned by the trader. At any time, the instan-
taneous price of contract i is pi(q) = eqi/b∑

N
j=1 eqj /b , representing the cost per share of

purchasing an infinitesimal quantity. An LMSR is built upon the logarithmic scor-
ing rule, si(r) = b log(ri). It is known that if the market maker starts the market
with a uniform distribution its worst-case loss is bounded by b logN .

2.3 Dynamic Parimutuel Markets

A dynamic parimutuel market (DPM) [5,6] is a dynamic-cost variant of a pari-
mutuel market. From a trader’s perspective, DPM acts as a market maker in
a similar way to LMSR. There are N securities offered in the market, each
corresponding to an outcome of the random variable. The cost function of the
market maker, which captures the total money wagered in the market, is C(q) =

κ
√∑N

j=1 q2
j , while the instantaneous price for contract i is pi(q) = κqi√∑N

j=1 q2
j

,

where κ is a free parameter. Unlike in LMSR, the contract payoff in DPM is not
a fixed $1. If outcome i happens and the quantity vector at the end of the market

is q f , the payoff per share of the winning security is oi = C(q f )
qf

i

=
κ
√∑

j(q
f
j )2

qf
i

.
A nice property of DPM is that if a trader wagers on the correct outcome, she

is guaranteed to have non-negative profit, because pi is always less than or equal
to κ and oi is always greater than or equal to κ. Because the price functions
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are not well-defined when q = 0, the market maker must begin with a non-zero
quantity vector q 0. Hence, the market maker’s loss is bounded by C(q 0).

3 Call Markets for Interval Betting

For a random variable X that has continuous or countably infinite outcomes
on the real line, we consider the betting language that allows traders to bet on
any interval (l, u) of their choice on the real line and create a security for the
interval on the fly. The security pays off $1 per share when the betting interval
contains the realized value of X . For countably infinite outcomes, the interval is
interpreted as a set of outcomes that lie within the interval.

Suppose that the range of X is (L, U) where L ∈ �∪{−∞} and U ∈ �∪{+∞}.
Traders submit buy orders. Each order i ∈ O is defined by (bi, qi, li, ui), where
bi denotes the bid price for a unit share of the security on interval (li, ui), and
qi denotes the number of shares of the security to purchase at price bi. We note
li ≥ L and ui ≤ U . Given a set of orders O submitted to the auctioneer, the
auctioneer needs to decide which orders can be risklessly accepted. We consider
the auctioneer’s problem of finding an optimal match to maximize its worst-case
profit given a set of orders O.

We first define the state space S to be the partition of the range of X formed
by orders O. For any order i ∈ O, (li, ui) defines 2 boundary points of the
partition. Let A = (∪i∈Oli)∪{L} be the set of left ends of all intervals in O and
the left end of the range of X , and B = (∪i∈Oui) ∪ {U} be the set of right ends
of all intervals in O and the right end of the range of X . We rank all elements of
A and B in order of increasing values, and denote the i-th element as ei. Clearly,
e1 = L and e|A|+|B| = U . We formally define the state space S as follows.

Definition 1. Let si ∈ S be the i-th element of the state space S for all 1 ≤ i ≤
(|A| + |B| − 1). If ei = ei+1, then si = {ei}. Otherwise, si = (ei, ei+1] if both
ei ∈ A and ei+1 ∈ A; si = (ei, ei+1) if ei ∈ A and ei+1 ∈ B; si = [ei, ei+1] if
ei ∈ B and ei+1 ∈ A; and si = [ei, ei+1) if ei ∈ B and ei+1 ∈ B.

Because |S| = |A|+|B|−1, |A| ≤ |O|+1, and |B| ≤ |O|+1, we have |S| ≤ 2|O|+1.
With the definition of states given orders O, we formulate the auctioneer’s

optimal match problem as a linear program, analogous to the one used for per-
mutation betting [7].

Definition 2 (Optimal Match). Given a set of order O, choose xi ∈ [0, 1]
such that the following linear program is optimized.

max
xi,c

c (1)

s.t.
∑

i (bi − Ii(s))qixi ≥ c, ∀s ∈ S

0 ≤ xi ≤ 1, ∀i ∈ O

Ii(s) is the indicator variable for whether order i is winning in state s. Ii(s) = 1
if the order gets a payoff of $1 in s and Ii(s) = 0 otherwise. The variable c
represents the worst-case profit for the auctioneer, and xi ∈ [0, 1] represents the
fraction of order i ∈ O that is accepted. As the number of structural constraints
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is at most 2|O|+1 and the number of variables is |O|, (1) can be solved efficiently.
We state it in the following theorem.

Theorem 3. For call markets, the auctioneer’s optimal order matching problem
for interval betting on countably infinite and continuous outcomes can be solved
in polynomial time.

Thus, if the optimal solution to (1) generates positive worst-case profit c, the
auctioneer accepts orders according to the solution. Otherwise, when c ≤ 0, the
auctioneer rejects all orders.

When there are few traders in the market, finding a counterpart to trade in a
call market may be hard and the market may suffer from the thin market problem.
Allowing traders to bet on different intervals further exacerbates the problem by
dividing traders’ attention among a large number of subsets of securities, mak-
ing the likelihood of finding a multi-lateral match even more remote. In addition,
call markets are zero-sum games and hence are challenged by the no-trade theo-
rem [21]. In the next two sections, we examine market maker mechanisms, which
not only provide infinite liquidity but also subsidize trading, for interval betting.

4 Dynamic Parimutuel Markets for Interval Betting

For interval betting in DPMs, traders also create a security on the fly by choosing
an interval (l, u). However, the payoff of the security is not fixed to be $1. Instead,
each share of the security whose interval contains the realized value of the random
variable entitles its holder to an equal share of the total money in the market. We
generalize DPM to allow for (but not limited to) interval betting on countably
infinite and continuous outcomes. The problem that we consider is whether these
mechanisms still ensure the bounded loss of the market maker.

4.1 Infinite-Outcome DPM

We generalize DPM to allow for countably infinite outcomes, and call the re-
sulting mechanism infinite-outcome DPM. In an infinite-outcome DPM, the un-
derlying forecast variable can have countably infinite mutually exclusive and
exhaustive outcomes. Each state security corresponds to one potential outcome.
An interval bet often includes a set of state securities. The market maker keeps
track of the quantity vector of outstanding state securities, still denoted as q,
which is a vector of dimension ∞. The cost and price functions for the infinite-
outcome DPM are CI(q) = κ

√∑∞
j=1 q2

j , and pI
i (q) = κqi√∑∞

j=1 q2
j

. The payoff

per winning security if outcome i happens is oI
i =

κ
√∑∞

j=1(qf
j )2

qf
i

.
The loss of the market maker in an infinite-outcome DPM is still her cost to

initiate the market. The market maker needs to choose an initial quantity vector
q0 such that her loss CI(q0) is finite. In practice, an infinite-outcome DPM
market maker can start with a quantity vector that has only finite positive
elements and all others are zeros, or use an infinite converging series. Whenever
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a trader purchases a state security whose current price is zero or that has not
been purchased before, the market maker begins to track quantity and calculate
price for that security. Hence, infinite-outcome DPM can be operated as a finite-
outcome DPM that can add new state securities as needed. The market maker
does not need to record quantities and calculate prices for all infinite outcomes,
but only for those having outstanding shares. Infinite-outcome DPM maintains
the desirable price-payoff relationship of DPM — the payoff of a security is
always greater than or equal to κ and its price is always less than or equal to κ.

4.2 Continuous-Outcome DPM

We then generalize DPM to allow for continuous outcomes, and call the re-
sulting mechanism continuous-outcome DPM. The cost and price functions of a

continuous-outcome DPM are C = κ
√∫ +∞

−∞ q(y)2 d y and p(x) = κq(x)√∫ +∞
−∞ q(y)2 d y

.

A trader can buy δ shares of an interval (l, u). The market maker then increases
q(x) by δ for all x ∈ (l, u). The trader’s payment equals the change in value
of the cost function. However, strictly speaking, function p(x) does not repre-
sent price, but is better interpreted as a density function. The instantaneous
price for buying infinitely small amounts of the security for interval (l, u) is
p(l,u) =

∫ u

l
p(x)d x = κ

∫
u
l

q(x)d x√∫ +∞
−∞ q(y)2 d y

. If the realized value of the random vari-

able is x∗, each share of a security on any interval that contains x∗ has payoff

o(x∗) = C
qf (x∗) =

κ
√∫ +∞

−∞ qf (y)2 d y

qf (x∗) , where qf (y) is the number of outstanding
shares for securities whose interval contains y at the close of the market.

A continuous-outcome DPM market maker can choose an initial quantity
distribution q0(x) such that her loss is finite. However, the desirable price-payoff
relationship that holds for the original DPM no longer holds for continuous-
outcome DPM. A trader who bets on the correct outcome may still lose money.
Theorem 4 states the price-payoff relationship for continuous-outcome DPM.
Proof of the theorem is provided in the Appendix of the full paper.

Theorem 4. The price per share for buying a security on interval (l, u) is al-
ways less than or equal to κ

√
u− l. If traders can bet on any non-empty open

interval, the payoff per share is bounded below by 0. If traders could bet only on
open intervals of size at least z, the payoff per share is bounded below by κ

√
2z

2 .

5 Logarithmic Market Scoring Rule for Interval Betting
For LMSR, we define the same interval betting language as in call markets. A
trader can create a security by specifying an interval (l, u) to bet on. If the
realized value of X falls into the interval, the security pays off $1 per share. We
generalize LMSR to allow countably infinite and continuous outcomes and study
whether the market maker still has bounded loss.

LMSR for finite outcomes can be extended to accommodate interval betting
on countably infinite outcomes simply by changing the summations in the price
and cost functions to include all countably infinite outcomes. However, as the
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LMSR market maker’s worst-case loss is b logN , the market maker’s worst-case
loss is unbounded as N approaches ∞.

We generalize LMSR to accommodate continuous outcome spaces. A loga-
rithmic scoring rule for a continuous random variable is s(r(x)) = b log(r(x))
where x is the realized value for the random variable and r(x) is the reported
probability density function for the random variable evaluated at x. Using an
equation system similar to the one proposed by Chen and Pennock [20], we de-
rive the corresponding price and cost functions for the continuous logarithmic
scoring rule: C = b log(

∫ +∞
−∞ eq(y)/bd y), and p(x) = eq(x)/b∫ +∞

−∞ eq(y)/bd y
. Here, p(x)

does not represent price, but is best interpreted as a density function. The in-
stantaneous price for buying infinitely small amounts of the security for interval
(l, u) is

∫ u

l
p(x)d x. If the interval (l, u) contains the realized value, one share of

the security entitles its holder $1 payoff.
However, by Theorem 5, the worst-case loss is still unbounded for a continuous

LMSR market maker even with the restriction on the size of allowable intervals.
Proof of Theorem 5 is presented in the Appendix of the full paper.

Theorem 5. A continuous logarithmic market scoring rule market maker has
unbounded worst-case loss, with or without the restriction that traders can bet
only on intervals of size at least z.

6 Conclusion and Future Directions

We study interval betting on random variables with continuous or countably
infinite outcomes for call markets, DPM, and LMSR. We show that the auction-
eer’s order matching problem in call markets can be solved in polynomial time
for interval bets. DPM can be generalized to handle both countably infinite and
continuous outcomes. Unfortunately, in a continuous-outcome DPM, a trader
may incur loss even if her betting interval contains the true outcome. LMSR
market makers, however, suffer from unbounded loss for both countably infinite
and continuous outcomes.

One important future direction is to design automated market maker mecha-
nisms with desirable properties, especially bounded loss, when handling contin-
uous outcome spaces. In particular, it may be fruitful to explore interval bets
with variable payoffs for outcomes within the interval. The interval contracts for
call markets and LMSR give the same payoff as long as the outcome falls within
the specified interval. Implicitly, this assumes that a trader’s prediction of the
random variable is a uniform distribution over the given interval. Alternatively,
it would be interesting to allow for the trader’s probability distribution of the
random variable to take other shapes over the given interval, and hence to allow
payoffs to vary correspondingly for outcomes within the interval.
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Abstract. A combinatorial auction mechanism consists of an allocation
rule and a payment rule. There have been several studies on characteriz-
ing strategy-proof allocation rules. In particular, conditions called weak-
monotonicity has been identified as a full characterization of them. On
the other hand, revenue monotonicity is recognized as one of the desir-
able properties. A combinatorial auction mechanism is revenue monotone
if a seller’s revenue is guaranteed to weakly increase as the number of
bidders grows. Though the property is quite reasonable, there exists vir-
tually no work on the characterization. In this paper, we identified a
simple condition called summation-monotonicity. We then proved that
we can construct a strategy-proof, revenue monotone mechanism if and
only if the allocation rule satisfies weak-monotonicity and summation-
monotonicity. To the best of our knowledge, this is the first attempt to
characterize revenue monotone allocation rules. In addition, we shed light
on a connection between revenue monotonicity and false-name-proofness.
In fact, we proved that, assuming a natural condition, revenue mono-
tonicity is equivalent to false-name-proofness for single-item auctions.

1 Introduction

Mechanism design of combinatorial auctions has become an integral part of Elec-
tronic Commerce and a promising field for applying AI and agent technologies.
Among various studies related to Internet auctions, those on combinatorial auc-
tions have lately attracted considerable attention. Mechanism design is the study
of designing a rule/protocol that achieves several desirable properties assuming
that each agent/bidder hopes to maximize his own utility. One desirable prop-
erty of a combinatorial auction mechanism is strategy-proofness. A mechanism
is strategy-proof if, for each bidder, reporting his true valuation is a dominant
strategy, i.e., an optimal strategy regardless of the actions of other bidders.

A combinatorial auction mechanism consists of an allocation rule that defines
the allocation of goods for each bidder, and a payment rule that defines the pay-
ment of each winner. There have been many studies on characterizing strategy-
proof social choice function (an allocation rule in combinatorial auctions) in

� The full version of this paper [1] is provided in the author’s web-site.
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the literature of social choice theory. In particular, a family of monotonicity
concepts was identified to characterize implementable social choice functions.
For example, Lavi et al. proposed weak-monotonicity and showed that it is a
necessary and sufficient condition for strategy-proof mechanisms when several
assumptions hold on the domain of types [2]. Such a characterization of allo-
cation rules is quite useful for developing/verifying strategy-proof mechanisms.
These conditions are defined only on an allocation rule; i.e., if it satisfies such
a condition, it is guaranteed that there exists an appropriate payment rule that
achieves strategy-proofness. Thus, a mechanism designer can concentrate on the
allocation rule when developing a new mechanism or verifying an existing one.

As a line of these studies, false-name-proofness is recognized as one of the
desirable properties of combinatorial auctions. It is a kind of generalization of
strategy-proofness in an environment where a bidder can use multiple identifiers,
e.g., multiple e-mail addresses [3]. Todo et al. characterized false-name-proof
allocation rules by a condition called sub-additivity [4]. Rastegari et al. mentioned
a connection between false-name-proofness and revenue monotonicity [5], which
is known as another desirable property of combinatorial auctions.

A mechanism is revenue monotone if a seller’s revenue from an auction is
guaranteed to weakly increase as the number of bidders grows. The property is
quite reasonable, since growing number of bidders increases competition. How-
ever, though it is shown that even the theoretically well-founded Vickrey-Clarke-
Groves (VCG) mechanism does not always achieve this property. Furthermore,
there exists virtually no work on characterizing revenue monotone combinatorial
auction mechanisms. One notable exception is the work by Rastegari et al. [5],
who introduced a notion called weak-maximality, which is a weaker notion of
Pareto efficiency, and proved that there exists no mechanism that achieves rev-
enue monotonicity, strategy-proofness, and weak-maximality.

To the best of our knowledge, our paper is the first attempt to characterize
revenue monotone allocation rules in combinatorial auctions. We first identify a
condition called summation-monotonicity and prove that we can find an appro-
priate payment rule if and only if the allocation rule satisfies weak-monotonicity
and summation-monotonicity. We have actually verified existing combinatorial
auctions and found that several non-trivial mechanisms are not revenue mono-
tone. In addition, we shed light on a connection between revenue monotonicity
and false-name-proofness. We prove that false-name-proofness is equivalent to
revenue monotonicity for single-item auctions, assuming a natural condition.

2 Preliminaries

Assume there exists a set of potential bidders N = {1, 2, . . . , n} and a set of goods
G = {g1, g2, . . . , gm}. Let us define N ⊆ N as the set of bidders participating
in an auction. Each bidder i ∈ N has his preferences over each bundle or goods
B ⊆ G. Formally, we model this by supposing that bidder i privately observes
a parameter, or signal, θi that determines his preferences. We refer to θi as the
type of bidder i and assume it is drawn from a set Θi.
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Let us denote the set of all possible type profiles as ΘN = Θ1× . . .×Θn and a
type profile as θ = (θ1, . . . , θn) ∈ ΘN. Observe that type profiles always have one
entry for every potential bidder, regardless of the set of participating bidders N .
We use the symbol ∅ in the vector θ as a placeholder for each non-participating
bidder i �∈ N . Then, we represent θ = (θ1, . . . , θi−1, ∅, θi+1, . . . , θn) as θ−i if
i �∈ N . When a set of bidders N is participating in the auction, let us denote the
set of possible type profiles reported by N as ΘN (⊆ ΘN). That is, ΘN is the set
of all type profiles θ for which θi = ∅ if and only if i �∈ N .

We assume a valuation v is normalized by v(θi, ∅) = 0, satisfies free disposal,
i.e., v(θi, B

′) ≥ v(θi, B) for all B′ ⊇ B, and satisfies no externalities, i.e., a
valuation v is determined only by his obtained bundle. We call each Θi that
satisfies these conditions a order based domain in combinatorial auctions [2].
In other words, the domain of types Θi is rich enough to contain all possible
valuations. We require this assumption so that weak-monotonicity characterizes
strategy-proofness.

A combinatorial auction mechanism M consists of an allocation rule X and
a payment rule p. When a set of bidders N participates, an allocation rule is
defined as X : ΘN → AN , where AN is a set of possible outcomes. Similarly, a
payment rule is defined as p : ΘN → RN

+ . Let Xi and pi respectively denote the
bundle allocated to bidder i and the amount bidder i must pay.

For simplicity, we restrict our attention to a deterministic mechanism and as-
sume that a mechanism is almost anonymous, i.e., obtained results are invariant
under permutation of identifiers except for the cases of ties. We also assume that
a mechanism satisfies consumer sovereignty [5], i.e., there always exists a type
θi for bidder i, where bidder i can obtain bundle B regardless of reported types
θ−i by other agents except i. In other words, if bidder i’s valuation for B is high
enough, then i can obtain B. Furthermore, we restrict our attention to indi-
vidually rational mechanisms. A mechanism is individually rational if ∀N ⊆ N,
∀i ∈ N , ∀θi, ∀θ−i, v(θi, Xi(θ)) − pi(θ) ≥ 0 holds. This means that no partici-
pant suffers any loss in a dominant strategy equilibrium, i.e., the payment never
exceeds the valuation of the allocated goods.

Let us introduce two desirable properties for combinatorial auction mech-
anisms: strategy-proofness and revenue monotonicity. First, we introduce the
notion of strategy-proofness.

Definition 1 (Strategy-proofness). A combinatorial auction mechanism
M(X, p) is strategy-proof, if ∀N ⊆ N, ∀i ∈ N , ∀θ−i, ∀θi, θ

′
i, v(θi, Xi(θ))−pi(θ) ≥

v(θi, Xi(θ′i, θ−i))− pi(θ′i, θ−i) holds.

In other words, a mechanism is strategy-proof if reporting true type maximizes
his utility regardless of the other bidders’ reports. Then, we introduce a condition
called weak-monotonicity, which fully characterizes allocation rules in strategy-
proof combinatorial auction mechanisms.

Definition 2 (Weak-monotonicity [2]). An allocation rule X satisfies
weak-monotonicity if ∀N ⊆ N, ∀i ∈ N , ∀θ−i, ∀θi, θ

′
i, v(θi, Xi(θi, θ−i)) −

v(θ′i, Xi(θi, θ−i)) ≥ v(θi, Xi(θ′i, θ−i))− v(θ′i, Xi(θ′i, θ−i)) holds.
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Theorem 1 ([2]). There exists an appropriate payment rule p such that a com-
binatorial auction mechanism M(X, p) is strategy-proof, if and only if X satisfies
weak-monotonicity.

This theorem indicates that if an allocation rule is weakly monotone, we can
always find an appropriate payment rule to truthfully implement the allocation
rule. Thus, when designing an auction mechanism, we can concentrate on de-
signing an allocation rule and forget about a payment rule, at least for a while.

Next, we introduce revenue monotonicity, a well-known desirable property in
combinatorial auctions.

Definition 3 (Revenue monotonicity [6]). A combinatorial auction mech-
anism M(X, p) is revenue monotone if ∀N ⊆ N, ∀θ, ∀j ∈ N, the following
inequality holds: ∑

i∈N

pi(θ) ≥
∑

i∈N\{j}
pi(θ−j) (1)

The left side of Eq. 1 indicates the seller’s revenue from the auction when the
set of bidders N participates in the auction. The right side indicates the seller’s
revenue when bidder j drops out. In other words, a combinatorial auction is
revenue monotone if the seller’s revenue does not increase by dropping bidders.

3 Characterizing Revenue Monotone Allocation Rules

This section introduces a simple condition called summation-monotonicity that
fully characterizes revenue monotone allocation rules.

Definition 4 (Summation-monotonicity). An allocation rule X satisfies
summation-monotonicity if ∀N ⊆ N, ∀θ, ∀j ∈ N, the following inequality holds:

∀i ∈ N, ∀θ′i s.t. Xi(θ′i, θ−i) ⊇ Xi(θ), v(θ′i, Xi(θ′i, θ−i)) = v(θ′i, Xi(θ)),
∀i ∈ N \ {j}, ∀θ′′i s.t. v(θ′′i , Xi(θ′′i , θ−{i,j})) = 0,

∑
i∈N

v(θ′i, Xi(θ)) ≥
∑

i∈N\{j}
v(θ′′i , Xi(θ−j)) (2)

Note here that θ−{i,j} denotes a type profile excluding bidder i and j.
A intuitive explanation why summation-monotonicity holds for a strategy-

proof and revenue monotone mechanism is as follows. Let us consider a combi-
natorial auction mechanism with two goods g1 and g2. Assume that it allocates
g1 to bidder 1 and g2 to bidder 2 when the set of bidders N participates. On the
other hand, also assume that it allocates g1 to bidder 3 and g2 to bidder 4 when
bidder j drops out from the auction. The two squares on the top of Figure 1
represents the total payments for bidder 1 and 2 and those on the bottom for
bidder 3 and 4. The figure means that if the mechanism is revenue monotone,
p1(θ) + p2(θ) ≥ p3(θ−j) + p4(θ−j) holds for the payment rule p.



Characterization of Strategy-Proof 565

Fig. 1. Summation-monotonicity

The arrows on the top of Figure 1 indicates the left side of Eq. 2. Here, θ′1
means the minimum type that bidder 1 obtains g1 or any superset, fixing other
bidders’ types than bidder 1. Under the mechanism, v(θ′1, g1) must be greater
than p1(θ). Otherwise, 1 has an incentive not to participate in the auction and
individual rationality is violated. Similarly, θ′2 means the minimum type that
bidder 2 obtains g2 or any superset, fixing other bidders’ types than bidder 2
and v(θ′2, g2) must be greater than p2(θ).

The arrows on the bottom indicates the right side of Eq. 2. Here, θ′′3 means
the maximum type that bidder 3 cannot obtain g1, i.e., he obtains nothing,
fixing other bidders’ types than bidder 3. Under the mechanism, v(θ′′3 , g1) must
be smaller than p3(θ). Otherwise, a bidder with θ′′3 as the true type has an
incentive to pretend that his type is θ3 and to obtain g1. Similarly, θ′′4 means the
minimum type that bidder 4 cannot obtain g2, fixing other bidders’ types than
bidder 4 and v(θ′′4 , g2) must be smaller than p4(θ−j).

For these facts, summation-monotonicity must hold for strategy-proof, rev-
enue monotone mechanisms. Furthermore, as long as summation-monotonicity
and weak-monotonicity hold, we can find an appropriate payment rule p so that
p1(θ) + p2(θ) ≥ p3(θ−j) + p4(θ−j) holds. Then, we derive the following theorem.
For space reasons, we omit the proof of the theorem.

Theorem 2. There exists an appropriate payment rule p such that a combina-
torial auction mechanism M(X, p) is strategy-proof and revenue monotone, if
and only if X satisfies weak-monotonicity and summation-monotonicity.

This theorem shows that, if an allocation rule satisfies weak-monotonicity and
summation-monotonicity, we can always find a payment rule so that the obtained
mechanism is strategy-proof and revenue monotone. If it does not satisfy weak-
monotonicity or summation-monotonicity, it is impossible to find such a payment
rule. Notice that the impossibility result for strategy-proof, revenue monotone
mechanisms in [5] states that there exists no strategy-proof, revenue monotone
mechanism that always achieves weak-maximality.

Thus, our proposed summation-monotonicity condition would enable us to
design such a mechanism, that does not always achieve weak-maximality. The
condition also enables us to verify whether a mechanism is revenue monotone.
We demonstrate whether summation-monotonicity is satisfied in two allocation
rules in the following claims.



566 T. Todo, A. Iwasaki, and M. Yokoo

Table 1. A Pareto efficient allocation rule is not summation-monotone

g1 g2 {g1, g2}
bidder 1 7 0 7
bidder 2 0 0 8
bidder 3 0 7 7

Claim. A Pareto efficient allocation rule does not satisfy summation-
monotonicity.

Assume there are three bidders 1, 2, and 3 and two goods g1 and g2 for sale. First,
let us consider the situation where their reported types are given in Table 1. For
an allocation rule that achieves Pareto efficiency, g1 is allocated to bidder 1 and
g2 is allocated to bidder 3. Let bidder 1 have θ′1 such that v(θ′1, g1) = 1 + ε. He
is allocated g1. Similarly, let bidder 3 have θ′3 such that v(θ′3, g2) = 1 + ε. He is
allocated g2. Thus, by a Pareto efficient allocation rule, we obtain 2(1 + ε), as
the left side of Eq. 2 illustrates.

On the other hand, let us consider the situation where bidder 3 drops out
from the auction. Since the allocation rule is Pareto efficient, bidder 2 obtains
{g1, g2} if he has a greater value than 7 on {g1, g2}. Thus, if he has a type θ′′2
such that v(θ′′2 , {g1, g2}) = 7 − ε and v(θ′′2 , g1) = v(θ′′2 , g2) = 0, he obtains no
good, i.e., X(θ′′2 ) = ∅. On the other hand, for bidder 1, since he obtains no good
under the Pareto efficient allocation rule, v(θ′′1 , ∅) = 0. Therefore, the right side
of Eq. 2, that is, the maximum bid in which bidder 2 loses, is 7− ε.

Thus, we obtain 2(1 + ε) < 7− ε, and the Pareto efficient allocation rule does
not satisfy summation-monotonicity. In fact, by bidder 3’s dropping out, the
seller’s revenue increases from 2 to 7, and revenue monotonicity fails.

Claim. The allocation rule in the Set mechanism satisfies summation-
monotonicity.

The Set mechanism is one of the simplest mechanisms. It allocates all goods
to a single bidder, namely, the bidder with the largest valuation for the grand
bundle of all goods. Effectively, it sells the grand bundle as a single good, in
a Vickrey/second-price auction. The allocation rule in the Set mechanism is
described as follows:

Xi(θi, θ−i) =
{

G if v(θi, G) ≥ maxl∈N\{i} v(θl, G)
∅ otherwise.

Assume that bidder i wins when a set of bidders N participates. The left side
v(θ′i, G) of Eq. 2, that is, the minimum bid in which bidder i still wins, satisfies
v(θ′i, G) ≥ maxl∈N\{i} v(θl, G).

On the other hand, let us consider the situation where bidder j drops out and
assume that bidder k(∈ N \ {j}) wins. Then, the right side of Eq. 2 is the maxi-
mum bid in which bidder k loses. First, let us consider the case where j �= i holds.
In this case, winner doesn’t change by j’s dropping out. That is, k = i holds.
Then, the right side v(θ′′i , G) of Eq. 2 satisfies v(θ′′i , G) ≤ maxl∈N\{i,j} v(θl, G)
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and clearly maxl∈N\{i} v(θl, G) ≥ maxl∈N\{i,j} v(θl, G) holds. Therefore, we ob-
tain v(θ′i, G) ≥ v(θ′′i , G) and Eq. 2 holds.

Next, let us consider the case where j = i holds. Here, the winner changes by
j’s dropping out. Then, the right side v(θ′′k , G) of Eq. 2 satisfies v(θ′′k , G) ≤
maxl∈N\{i,k} v(θl, G) and clearly maxl∈N\{i} v(θl, G) ≥ maxl∈N\{i,k} v(θl, G)
holds. Therefore, we obtain v(θ′i, G) ≥ v(θ′′k , G), and Eq. 2 holds. Thus, this
allocation rule satisfies summation-monotonicity.

4 Revenue Monotonicity and False-Name-Proofness

This section considers a connection between revenue monotonicity and false-
name-proofness mentioned in [5]. False-name-proofness is a kind of generalization
of strategy-proofness in an environment where a bidder can use multiple identi-
fiers, e.g., multiple e-mail addresses [3]. A mechanism is false-name-proof if for
each bidder, reporting his true valuations using a single identifier (although the
bidder can use multiple identifiers) is a dominant strategy. It has been shown that
the VCG is not false-name-proof and there exists no false-name-proof, Pareto ef-
ficient mechanism [3]. Todo et al. characterized false-name-proof allocation rules
by a condition called sub-additivity. They proved that we can find an appro-
priate payment rule if and only if the allocation rule simultaneously satisfies
weak-monotonicity and sub-additivity [4].

Theorem 3 ([4]). There exists an appropriate payment rule p such that a com-
binatorial auction mechanism M(X, p) is false-name-proof, if and only if X si-
multaneously satisfies weak-monotonicity and sub-additivity.

The sub-additivity condition is quite similar to our proposed summation-
monotonicity condition. Indeed, it has been considered that there is some connec-
tion between revenue monotonicity and false-name-proofness [6,5]. For example,
Table 1 , which provides an example where VCG does not achieve revenue mono-
tonicity, also provides an example that it does not achieve false-name-proofness.
Let us consider a situation where bidder 1′, who has a type θ1′ = (0, 0, 14), uses
two identifiers 1 and 3. Since VCG allocates g1 and g2 to bidders 1 and 3, re-
spectively, bidder 1′ obtains {g1, g2} and pays 2. On the other hand, when only
two bidders 1′ and 2 participate in the auction, i.e., when bidder 1′ does not use
false identifiers, bidder 1′ obtains {g1, g2} and pays 8.

As the above example shows, increasing the number of participating bidders
by, or not by false identifiers reduces the seller’s revenue. Therefore, it seems
that a sub-additive allocation rule coincides with a summation-monotone one,
and vice versa. However, in general, it is not always true. It is straightforward to
make a counter example, though this paper does not give a rigorous proof. Never-
theless, for single-item auctions, we prove that false-name-proofness is equivalent
to revenue monotonicity, assuming the following natural condition.

Assumption 1. For any set of participating bidder N and for any bidder j(∈
N), if a mechanism allocates a good to a bidder when N \ {j} participates, it
always allocates the good to someone including the bidder when N participates.
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We believe that introducing Assumption 1 is quite natural. For a seller, it is un-
desirable that a good is no longer allocated when more bidders join the auction.
Now, let us introduce the next theorem. For space reasons, we omit the proof.

Theorem 4. Under Assumption 1, a single-item auction mechanism is false-
name-proof if and only if it is strategy-proof and revenue monotone.

5 Conclusions and Future Works

We identified a simple condition called summation-monotonicity, which charac-
terizes strategy-proof, revenue monotone allocation rules in combinatorial auc-
tions. We proved that we can construct a strategy-proof, revenue monotone
mechanism if and only if the allocation rule satisfies weak-monotonicity and
summation-monotonicity.

To the best of our knowledge, this is the first attempt to characterize revenue
monotone allocation rules. To demonstrate the power of our characterization,
we verified existing combinatorial auction mechanisms and found that several
non-trivial mechanisms are not revenue monotone. In addition, we shed light
on a connection between revenue monotonicity and false-name-proofness and
proved that assuming a natural condition, revenue monotonicity is equivalent to
false-name-proofness for single-item auctions.

In future works, we hope to design a novel deterministic strategy-proof, rev-
enue monotone combinatorial auction mechanism, that does not always achieve
weak-maximality, since such a deterministic mechanism has not been proposed
yet, although a randomized mechanism has been [7].
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Abstract. Tucker’s lemma states that if we triangulate the unit disc
centered at the origin and color the vertices with {1,−1, 2,−2} in an
antipodal way (if |z| = 1, then the sum of the colors of z and −z is
zero), then there must be an edge for which the sum of the colors of its
endpoints is zero. But how hard is it to find such an edge? We show that if
the triangulation is exponentially large and the coloring is determined by
a deterministic Turing-machine, then this problem is PPAD-complete
which implies that there is not too much hope for a polynomial algorithm.

1 Introduction

Papadimitriou defined in [3] the complexity class PPAD which is a special class
of search problems. It contains the problems which are reducible to LEAFD, a
total search problem defined as follows.

Definition 1 (LEAFD). We are given the description of a deterministic Turing
machine M which for every input v ∈ {0, 1}n returns an ordered pair from the
set {0, 1}n∪{no} in time poly(n). These will be denoted by Min(v) and Mout(v).
This defines a directed graph on V = {0, 1}n such that uv ∈ E if Mout(u) = v
and Min(u) = v. This graph is a collection of directed cycles and paths. We also
require that Min(0n) = no, meaning that 0n is a leaf (or an isolated node). The
parity argument implies that in the former case there must be another leaf. The
input is 0n (apart from the description of M), the output of the search problem
is another leaf (or 0n if it is an isolated node).

Remark 2. We can suppose that M is equipped with a standard built-in mech-
anism that checks its running time and if M would run too long, it halts and
outputs no. It can also guarantee Min(0n) = no. It can be easily checked whether
the description of M has this property and if not, then the output of the search
problem can also be violation. In the problems that we will define later, we sim-
ilarly allow the output to be violation if M violates one of the properties that we
require.

Remark 3. This problem is almost in TFNP, the class of total search problems
verifiable in polynomial time. We do not want to define this class here (see [2]).
The reason why it is not in the class with this definition is that the verification
time will depend on the running time of M, so it is not bounded by some fixed
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polynomial like it is in the case of SAT. An alternative definition would be to
define a class called LEAFD-c where the running time of M would be bounded
by nc or to define M as a boolean circuit. It is not the goal of this paper to go
deeper in this problem.

For the definition of reduction among search problems, we direct the reader to
the original paper of Papadimitriou [3]. It was also shown there that the search
versions of many well-known theorems that use some kind of parity argument
belong to PPAD, moreover, many are also complete for this class. The following
analogue of Sperner’s lemma was shown to be PPAD-complete by Chen and
Deng [1]. (When we write x ∈ {0, 1}n, we also mean the number in base two
that it represents.)

Definition 4 (2D-SPERNER). We are given the description of a deterministic
Turing machine M which for every input (u, v) ∈ {0, 1}2n such that u + v ≤ 2n

returns either 1, 2 or 3 in time poly(n). Furthermore, M(0, 0) = 1, M(2n, 0) = 2,
M(0, 2n) = 3, for all i < 2n M(0, i) �= 3, M(i, 0) �= 2 and for all i + j = 2n

M(i, j) �= 1. The output (whose existence is guaranteed by Sperner’s lemma) is
(u, v) ∈ {0, 1}2n for which M(u, v), M(u+1, v) and M(u, v+1) are all different.

One can similarly define 3D-SPERNER and other higher dimensional ana-
logues. It is also possible to define a continuous version, which can be denoted
by 2D-BROUWER, the interested reader is again directed to [3] where it is also
shown that all these variants are equivalent to LEAFD and thus are PPAD-
complete.

Definition 5 (2D-TUCKER). We are given the description of a deterministic
Turing machine M which for every input (u, v) ∈ {0, 1}2n returns either 1,
−1, 2 or −2 in time poly(n). Furthermore, for all i M(0, i) = −M(2n, 2n − i)
and M(i, 0) = −M(2n − i, 2n). The output (whose existence is guaranteed by
Tucker’s lemma) is (u, v) ∈ {0, 1}2n and (u′, v′) ∈ {0, 1}2n for which |u−u′| ≤ 1,
|v − v′| ≤ 1 and M(u, v) = −M(u′, v′).

Remark 6. Tucker’s lemma is often stated in a slightly different way, more
similar to Sperner’s, and it requires the square to be triangulated. The above
search problem is clearly easier than the triangulated one, so when we prove
a hardness result about 2D-TUCKER, that also implies the hardness of the
triangulated version, so our results hold for both cases.

The respective higher dimensional and continuous versions are denoted by
3D-TUCKER and 2D-BORSUK-ULAM, the interested reader is again di-
rected to [3] where it is shown that the higher dimensional version is PPAD-
complete and 2D-BORSUK-ULAM is equivalent to 2D-TUCKER. The
PPAD-completeness of 2D-TUCKER was posed as an open problem both in
[3] and in [1]. In this note we prove this result.

Theorem 7. 2D-TUCKER is PPAD-complete.
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2 Reduction of LEAFD to 2D-TUCKER

It was shown in [3] that 2D-TUCKER ∈ PPAD, to prove hardness, we will
reduce LEAFD to it. The reduction is surprisingly easy and only uses technics
similar to the ones appearing already in [1].

We will call the vertices of the grid points and the vertices of the graph
generated by M simply vertices. We say that two points are neighbors if their
distance is ≤

√
2 (meaning there is a little square that has both as its vertex).

We call two points negated if the sum of their colors is zero.
The goal is, that given any M that generates an input for LEAFD, we want

to produce a coloring c of the points of the 20 · 22n × 20 · 22n grid with colors
±{1, 2} such that if one finds two negated neighbors, then we can find a leaf in
the graph generated by M .

The idea is that for every vertex we reserve a part of the grid and if there
are two negated neighbors in a reserved part, that will imply that the vertex to
which this part belongs to is a leaf (there cannot be negated neighbors outside
the parts reserved for vertices). Most part of the square is filled with 1’s, the
edges are represented by tubes of −2,−1, 2 going from one reserved part to the
other, and these tubes are disjoint (if two tubes would cross, we slightly modify
them in the vicinity of the crossing so as they evade each other). Unfortunately
it is quite ugly to give a precise description of this construction by words, we
advice the reader to consult the Figures which might be sufficient even without
reading the text to understand the whole reduction.

For a vertex vi (where the indices are an arbitrary enumeration of the 2n

vertices with v0 being 0n) we reserve a part close to the left side of the square,
Vi = [8, . . . , 10]× [20i2n + 10, . . . , 20(i + 1)2n − 10]. For different i’s, these parts
are disjoint and are above each other. We also reserve a part for every possible
edge of the graph. For the possible vivj edge we reserve a part that connects the
lower half of Vi and the upper half of Vj via a � shape1, Ei = [11, . . . , 20i2n +
10+10j]×[20i2n+10+10j, . . . , 20i2n+10+10j+2]∪[20i2n+10+10j, . . . , 20i2n+
10+10j+2]× [20i2n+10+10j, . . . , 20j2n+10 ·2n+10+10i+2]∪[11, . . . , 20i2n+
10+10j+2]× [20j2n +10 ·2n +10+10i, . . . , 20j2n +10 ·2n +10+10i+2]. These
regions are mainly disjoint, every intersection Ei ∩Ej is a little square, far from
the other edges. If vivj is an edge, then we fill out this tube of thickness 3 with
−2,−1, 2, with the −1’s being in the middle, the −2’s being in the bottom when
leaving vi and in the top when entering vj , the 2’s being in the top when leaving
vi and in the bottom when entering vj . (We deal with the intersections of filled
out tubes later). Remember that most of the square is filled out with 1’s, so if a
point does not belong to a part reserved to an edge or vertex, then its color is 1.
This way we do not create any negated neighbors outside of the parts reserved
for vertices, since the boundaries of the tubes are always ±2’s. Inside Vi, if vhvi

and vivj are both edges, we fill out the vertical tube of thickness 3 leading from
where the tube of the edge from vh enters down to where the tube of the edge to

1 We suggest to skip the following ugly description and just read the properties in the
next sentence.
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Fig. 3. The graph of the path v0v3v1v4v2 before and after handling the crossings
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vj starts ([8, . . . , 10]× [20i2n + 10 + 10j, . . . , 20i2n + 10 · 2n + 10 + 10h + 2]) with
−2,−1, 2 such that the −1’s are in the middle, the −2’s are to the left and the
2’s are to the right. This way again do not create any negated neighbors. If vi

is a leaf, then leave it filled out with 1’s (which gives negated neighbors) except
for v0. To v0 we “drive in” the boundary of the square, we set c(m, m) = 2,
c(0, 0) = c(0, 1) = −2, for all 1 < i c(0, i) = c(i, m) = −1, for 0 < i < m
c(i, m− 1) = 2, for 2 < i < m c(1, i) = 2 and continue this tube to inside v0 and
from there to the start of the tube of the edge to its only neighbor.

We have almost solved the problem, the only thing left that we must handle
is if two filled out tubes cross. In this case we can simply modify the tubes in
the vicinity of their crossing such that we do not create negated neighbors. If
for example the edge ab would cross cd, then we modify the tubes such that
we obtain an ad and a bc edge (see Figures). Of course these will not really
be tubes leading from Va to Vd and from Vb to Vc because we are handling
several crossings, but that does not matter for us. We only want to preserve the
conditions that the colors are easy to determine and that there are no negated
neighbors outside the parts reserved for vertices.

Now the color of any point can be determined by a finite number of compu-
tations of M (we can easily decide from the coordinates of any point whether
it belongs to a part reserved for a vertex, an edge, to a crossing or to to the
remaining part of the grid). If we find two negated neighbors, they must be in
a part reserved for a vertex that is a leaf in the original graph. This finishes the
reduction.

3 Remarks and Acknowledgment

The same argument works to solve 2D-SPERNER which slightly simplifies the
proof of [1].

An interesting question would be to determine the complexity of the so-called
octahedral Tucker’s lemma (here the dimension would be a part of the input in
unary), which might tell something about the complexity of necklace splitting
among two thieves with a lot of different kinds of beads. Since this theorem is
not so widely known and can be stated in a purely combinatorial way, we state
it here.

Lemma 8. (Octahedral Tucker’s lemma) If for any set-pair A, B ⊂ [n], A∩B =
∅, A∪B �= ∅ we have a λ(A, B) ∈ ±[n−1] color, such that λ(A, B) = −λ(B, A),
then there are two set-pairs, (A1, B1) and (A2, B2) such that A1 ⊂ A2, B1 ⊂ B2
and λ(A1, B1) = −λ(A2, B2).
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Abstract. We study the problem of matching bidders to items where
each bidder i has general, strictly monotonic utility functions ui,j(pj)
expressing her utility of being matched to item j at price pj . For this
setting we prove that a bidder optimal outcome always exists, even when
the utility functions are non-linear and non-continuous. Furthermore, we
give an algorithm to find such a solution. Although the running time of
this algorithm is exponential in the number of items, it is polynomial in
the number of bidders.

1 Introduction

In two-sided matching markets buyers are to be matched to items and the seller
receives a monetary compensation from the buyers. Such markets have been
studied for several decades [1,2]. They have seen a surge of interest with the
spread of sponsored search auctions [3,4], where advertisers (bidders) are com-
peting for the available advertising slots (items). Our research is also motivated
by sponsored search but our results are not specific to this setting in any way.

A solution is bidder optimal if it gives each bidder the highest possible utility.
For the case where each bidder i has a utility function ui,j(pj) for item j that
drops linearly in the price pj it has long been known how to find such solutions
[5,6]. Recently, an algorithm was presented that also copes with per-bidder-item
reserve prices (where a certain minimum price pj ≥ ri,j is required if bidder i
is matched to item j) and per-bidder-item maximum prices (where bidder i can
pay no more than mi,j for item j) [7]. This algorithm requires the input to be
in “general position”, which e.g. requires that all reserve and maximum prices
are different. Our results do not require this assumption.

In [8,9,10] the existence of bidder optimal solutions was shown for general,
strictly monotonic utility functions, as long as the utility functions are continu-
ous. However, no algorithm was given to find such a solution. For the special case
of piece-wise linear functions an algorithm was presented in [11,12], where the
arguments used to prove termination leads to a time bound exponential in the
number of items. The authors then argue that arbitrary continuous functions
can be uniformly approximated by such piece-wise linear functions. However,
� This work was conducted as part of a EURYI scheme award (see http://www.esf.

org/euryi/).
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neither the approximation accuracy nor the running time are analyzed and the
relationship between the two is unclear. Also, such a uniform approximation
does not exist for discontinuous utility functions.

Our main contributions are two-fold. First, we prove that even for general,
strictly monotonic discontinuous utility functions a bidder optimal outcome al-
ways exists. Second, we give an algorithm to find such an outcome. The running
time of this algorithm is polynomial in the number of bidders n but exponential
in the number of items k. However, for sponsored search k can be viewed as
constant or, at least, k ! n.

Our model includes per-bidder-item reserve prices ri,j and also per-bidder
reserve utilities oi, usually referred to as outside options. We can also model per-
bidder-item max prices mi,j with a discontinuous drop of ui,j(pj) at the price
pj = mi,j . Other settings that can be modeled are interest rates where, e.g.,
up to a certain point a bidder can still pay from her own pocket but for higher
prices she has to borrow money from a bank, leading to a faster drop in utility.
Similarly, settings where the bidder is “risk averse” and loses utility faster for
higher prices due to an associated higher variance can be modeled.

Note that both for our and related previous results the utility function is
a function of the price only. Other inter-item dependencies cannot be modeled.
Such dependencies include a drop in utility if some other bidder gets a particular
item or a positive utility only if a bidder gets a particular set of items. For a
survey concerning such combinatorial auctions we refer the reader to [13].

2 The Assignment Problem

The problem is defined as follows: We are given a set I of n bidders and a set
J of k items. We use letter i to denote a bidder and letter j to denote an item.
Each bidder i has a utility function ui,j(pj) for each item j expressing her utility
of being matched to item j at price pj . We assume that (i) the utility functions
ui,j(·) are strictly monotonically decreasing and (ii) for the outside options oi

(defined below) there exist threshold values p̄i,j s.t. ui,j(p̄i,j) ≤ oi. We do not
assume that ui,j(·) is (globally) continuous, but we do require that (iii) it is
locally right-continuous, i.e. that ∀x : limε→0+ui,j(x + ε) = ui,j(x).1

We want to compute a matching μ ⊆ I × J , where we require all bidders
to be matched. To ensure that this is possible, even if k < n, we introduce
symbolic dummy items. If bidder i is matched to a dummy item j then this
represents that i is actually not matched. In the proofs of existence of bidder
optimal solutions we will assume that there are n dummy items, one for each
bidder, in our algorithm we directly deal with the case of an unmatched bidder
as the running time would suffer significantly from an increase of the (small)
number of items k to n + k. To distinguish between a match to a dummy and
a real item we call the latter case properly matched. We use μ(i) to denote the

1 At the end of Section 3 we show that all three of these requirements are necessary
for a bidder optimal solution to exist.
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item that is matched to bidder i in μ and μ(j) to denote the bidder, if any, that
is matched to item j. Note that we do not require all items to be matched.

We say that a matching μ with prices p = (p1, . . . , pk) is feasible if (i) pj ≥ ri,j

for all (i, j) ∈ μ, where ri,j is a reserve price, and (ii) ui,μ(i)(pμ(i)) ≥ oi, where
oi is an outside option.2 As mentioned, we have one (conceptual) dummy item
j for each bidder i s.t. ui,j(x) = oi− x and ui′,j(x) = oi′ − 1− x for all i′ �= i, as
well as ri,j = 0 and ri′,j = oi′ for all i′ �= i.3 We say that the outcome (μ, p) is
stable if for all (i, j) ∈ I×J we have ui,j(pj) ≤ ui,μ(i)(pμ(i)), i.e. each bidder gets
an item which, at the prices of the outcome, is one of her first choices. We will
also refer to prices p as feasible and/or stable if a corresponding feasible and/or
stable matching μ exists. The triple (ui,j(·), ri,j , oi) along with the implicitly
assumed sets I and J constitute the input of the assignment problem. Note that
our definition of stability is slightly stronger than the definition in [7] in the
sense that our stability implies their stability, which also involves the ri,j .

Our goal is to find a bidder optimal solution. We say that (μ, p) is bidder
optimal if it is both feasible and stable and for every other feasible and stable
(μ′, p′) we have that ui,μ(i)(pμ(i)) ≥ u′

i,μ′(i)(p
′
μ′(i)) for all i.

Given the input (u′
i,j(·), ri,j , oi) let (μ′, p) be the outcome of a mechanism

and analogously for u′′
i,j(·). We say that the mechanism is truthful if for every

bidder i with utility functions ui,1(·), . . . , ui,k(·) and any two input matrices of
utility functions u′ and u′′ with u′

i,j(·) = ui,j(·) for all j and u′
k,j(·) = u′′

k,j(·)
for all k �= i and all j we have that ui,μ′(i)(p′μ′(i)) ≥ ui,μ′′(i)(p′′μ′′(i)) for all i.
Note that this definition only involves the utility functions and not ri,j or oi.
We assume that the ri,j , which are a property of the sellers, cannot be falsified
by the bidders. Furthermore, it is easy to see that misreporting the oi is not
beneficial to i. Overreporting can only lead to a missed chance of being assigned
an item and underreporting can lead to a utility below the true outside option.

3 Existence of a Bidder Optimal Solution

Theorem 1. For any input (ui,j(·), ri,j , oi) to the assignment problem there ex-
ists a bidder optimal outcome (μ∗, p∗).

So far this result was only known for continuous utility functions [8,9,10]. Our
proof consists of the following steps: Lemma 1, which can be proven by con-
tradiction, shows that lowest feasible and stable prices are sufficient for bidder
optimality. Lemma 2 shows that any two feasible and stable outcomes (μ, p) and
(μ′, p′) can be combined to give a new feasible and stable solution with prices
min(p, p′). Lemma 3 then asserts that the infimum p∗ over all feasible and stable
prices, if it exists, corresponds to a feasible and stable outcome (μ∗, p∗). Finally,

2 The second part of the feasibility definition is often referred to as individual ratio-
nality of the bidders. Similarly, the reserve price condition can be referred to as
individual rationality of the sellers with bidder-dependent payoffs.

3 The intuition is that in any feasible and stable outcome the price of item j can be
as low as zero and so bidder i will have a utility of at least oi.



578 P. Dütting, M. Henzinger, and I. Weber

Lemma 4 finishes the proof as it gives the existence of at least one feasible and
stable outcome, establishing the existence of an infimum by Lemma 2.

Lemma 1. If (μ∗, p∗) is feasible and stable and p∗j ≤ pj for all j and any (μ, p)
that is feasible and stable, then (μ∗, p∗) is bidder optimal.

Lemma 2. Any two outcomes (μ, p) and (μ′, p′) which are feasible and stable
for the input (ui,j(·), ri,j , oi) can be combined s.t. there exists a matching μ̂ which
together with the prices p̂ = min(p, p′) is feasible and stable for the same input.

Even though the setting in [10] is for continuous utility functions and for a
slightly weaker definition of stability involving both bidder and seller, their proof
of this particular lemma (their Lemma 2) goes through unchanged. Concretely,
it is shown that each bidder i gets item μ̂(i) at a price p̂μ̂(i) corresponding to
ui,μ̂(i)(p̂μ̂(i)) = max(ui,μ(i)(pμ(i)), ui,μ′(i)(p′μ′(i))). In other words, the two out-
comes are stitched together in the best possible way for all bidders.

Lemma 2 implies that if there are any feasible and stable prices then there are
unique infimum prices p∗ = inf{p : p are feasible and stable prices}. It remains
to show that (i) p∗ corresponds to a feasible and stable outcome (μ∗, p∗) (Lemma
3) and (ii) that there is at least one feasible and stable outcome (Lemma 4).

Lemma 3. If there exists a feasible and stable outcome (μ, p) matching all bid-
ders, then there exists a feasible and stable outcome (μ∗, p∗) matching all bidders
with lowest prices. I.e. no other feasible and stable outcome (μ′, p′) matching all
bidders can have p′j < p∗j for any j.

Our proof uses the following definitions: Let Fp ⊆ I×J be the first choice graph
at prices p which contains an edge from bidder i to item j if and only if j ∈
argmaxj′ ui,j′(pj′ ). Note that (μ, p) is stable if and only if μ ⊆ Fp. Let F̃p ⊆ Fp

denote the subset of feasible edges (i, j) where pj ≥ ri,j and ui,j(pj) ≥ oi.4 For
i ∈ I and j ∈ J we define Fp(i) = {j : ∃(i, j) ∈ Fp} and Fp(j) = {i : ∃(i, j) ∈
Fp}. For T ⊆ I and S ⊆ J we define Fp(T ) = ∪i∈T Fp(i) and Fp(S) = ∪j∈SFp(j).
We define F̃p(i), F̃p(j), F̃p(T ), and F̃p(S) analogously. We call a (possibly empty)
set S ⊆ J strictly overdemanded for prices p wrt T ⊆ I if (i) F̃p(T ) ⊆ S and (ii)
∀R ⊆ S, R �= ∅ : |F̃p(R)∩T | > |R|. Using Hall’s Theorem [14] one can show that
a feasible and stable matching exists for given prices p if and only if there is no
strictly overdemanded set of items S.

Proof. If we assume that there exists at least one feasible and stable outcome,
then Lemma 2 shows that there exist unique infimum prices p∗.

For a contradiction suppose that there is no matching μ∗ s.t. (μ∗, p∗) is feasible
and stable. Then, by Hall’s Theorem, there must be a set T of bidders s.t. F̃p∗(T )
is strictly overdemanded for prices p∗ wrt T .

In any feasible and stable outcome (μ̂, p̂) we have p̂j ≥ p∗j for all items j and,
thus, the overdemand for the items in F̃p∗(T ) can only be resolved if (i) at least
4 The second feasibility condition is redundant as if ui,j(pj) < oi then bidder i strictly

prefers her dummy item whose price can always be assumed to be 0 in any bidder
optimal solution. See Lemma 4.
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one of the bidders i ∈ T has a feasible first choice item j ∈ J \ Fp∗(T ) under
p̂ or (ii) for some item j ∈ Fp∗(T ) \ F̃p∗(T ) we have that p̂j ≥ ri,j . Case (i)
corresponds, for each pair (i, j) ∈ T × J \ Fp∗(T ), to a price increase relative to
p∗ of si

j = inf{x ≥ 0 : ui,j(p∗j + x) ≤ maxj′∈J\Fp∗ (T ) ui,j′(p∗j′ )}, which is > 0 and
contained in the set itself as ui,j(·) is right-continuos.5 Case (ii) corresponds,
for each pair (i, j) ∈ I × Fp∗(T ) \ F̃p∗(T ), to a price increase relative to p∗ of
f i

j = ri,j − p∗j , which is also > 0. Let δi
j = min(si

j , f
i
j) if j ∈ Fp∗(i) \ F̃p∗(i) and

let δi
j = si

j otherwise. Then Σδ = mini

∑
j δi

j is a lower bound on the sum of the
price increases for any feasible and stable outcome (μ̂, p̂).

Lemma 2, however, shows that for any ε > 0 there exist feasible and stable
prices p′ s.t. |p′j−p∗j | < ε for all items j. For ε = Σδ/|J | this gives a contradiction
to the fact that the price increases corresponding to Σδ were required by any
feasible and stable solution. We conclude that there exists at least one matching
μ∗ s.t. (μ∗, p∗) is feasible and stable. ��

Lemma 4. For the assignment problem there are unique lowest stable prices p∗

s.t. any other feasible and stable outcome (μ, p) has pj ≥ p∗j for all j ∈ J .

Proof. By Lemma 3 we know that we only have to show the existence of some
stable outcome (μ∗, p∗). Set p∗j = maxi(p̄i,j) for the non-dummy items j (where
the p̄i,j ’s are the threshold values defined above) to ensure that all bidders have
(at most) a utility of oi and then match all bidders to dummy items at a price
of 0. As no real item is matched and all utilities are oi this is feasible. It is also
stable as all real items have prices so high that no bidder strictly prefers them
over a dummy item. ��

Finally, we show that all three conditions on the utility functions (see Section 2)
are required to guarantee the existence of a bidder optimal solution:

Strict monotonicity: Consider a setting with three bidders and two items and
the following utility functions: u1,1(x) = u3,2(x) = 1−x, u1,2(x) = u3,1(x) = −x
and u2,1(x) = u2,2(x) = 2 if x ≤ 1 and u2,1(x) = u2,2(x) = 3 − x otherwise.
All ri,j = oi = 0. Then one feasible and stable outcome is μ = {(1, 1), (2, 2)},
p = (0, 1) whereas another is μ = {(2, 1), (3, 2)}, p = (1, 0). In neither of the two
settings can the price for the item with price 0 be lowered any further without
upsetting stability. The first outcome is strictly preferred by bidder 1, whereas
the second is strictly preferred by bidder 2.

Eventual drop in utility to oi: Consider two bidders who both have the utility
function ui,1(x) = 1/(1 + x) for a single item. Again, ri,1 = oi = 0. Then no
matter how large p1 is, both bidders will still strictly prefer the item over being
unmatched.

Right continuity: Consider two bidders who both have the following utility func-
tion for a single item: ui,1(x) = 2 − x if x ≤ 1 and ui,1(x) = −x otherwise.

5 This no longer holds without the requirement of right-continuity as discussed at the
end of this section.
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Then a price of p1 ≤ 1 will not be stable, as both bidders strictly prefer the
item over being unmatched. So any stable price needs to satisfy p1 > 1 and this
set no longer contains its infimum. If we change the first condition of the utility
function to x < 1, ensuring right-continuity, then the price p1 = 1 is stable, even
though the item cannot be assigned to either of the two bidders.

Truthfulness. If the reserve prices rj depend only on the items, then Theorem
2 in [10] shows that any mechanism that computes a bidder optimal outcome
is truthful. If the reserve prices ri,j also depend on the bidders, then this is
no longer true: Consider a setting with two bidders and two items and the
following utility functions, reserve prices, and outside options: u1,1(x) = 6 − x,
u1,2(x) = 5 − x, u2,1(x) = 6 − x, u2,2(x) = 6 − x, r1,1 = 2, r1,2 = 0, r2,1 = 1,
r2,2 = 2, and o1 = o2 = 0. The bidder optimal outcome is μ = {(1, 1), (2, 2)},
p = (2, 2). If Bidder 2 reports u2,2(x) = 0, then the bidder optimal outcome is
μ = {(1, 2), (2, 1)}, p = (1, 0). This gives Bidder 2 a strictly higher utility.

4 Algorithm for General Utilities

Here we present an algorithm which directly computes a bidder optimal outcome
for general utility functions, as opposed to settling for a piecewise-linear approx-
imation [11,12]. Our algorithm assumes that computations of the “inverse utility
function” u−1

i,j (x) = min{p : ui,j(p) ≤ x} take constant time. If ui,j(·) is contin-
uous then u−1

i,j (·) is indeed the inverse function. More generally, it is merely a
one-sided inverse function satisfying u−1

i,j (ui,j(p)) = p.

Description of the Algorithm. Try out all possible matchings in which all bid-
ders, but not necessarily all items, are matched. For a particular matching μ try
all possible ways of ordering the (up to) k properly matched bidders. For each or-
dering initialize lower bounds on the prices ∀j : bj = mini ri,j . Execute the follow-
ing steps for every properly matched bidder i according to the current ordering:
Fix the price of item μ(i) to be pμ(i) = max(bμ(i), ri,μ(i)) and update bμ(i) = pμ(i).
If ui,μ(i)(pμ(i)) < oi then abort the check of the particular ordering.6 If there ex-
ists a previously considered bidder i′ where ui,μ(i)(pμ(i) < ui,μ(i′)(bμ(i′)) then also
abort the check of the particular ordering.7 If neither of these two cases happens,
update the vector of price bounds by setting ∀j : bj = max(bj , u

−1
i,j (ui,μ(i)(bμ(i))).

Once all properly matched bidders have been considered, go through all bidders
matched to dummy items. If for such a bidder i there exists a matched item
j = μ(i′) where ui,j(pj) > oi then abort. Otherwise, set pj = max(pj , u

−1
i,j (oi))

for all items j.8 After considering all matchings and orderings, output any pair
(μ, p) corresponding to the lowest found prices p.

6 The price pμ(i) is now already too high to allow a feasible matching of i to μ(i).
7 We assumed that i′ got her item at the current price bound pμ(i′) = bμ(i′) but this

price would no longer be stable wrt to i.
8 Note that these price updates can only affect unmatched items. For all matched

items μ(i) the price was finalized when their bidder i was considered.
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Lemma 5. If the above algorithm terminates without aborting then the returned
output (μ,p) is feasible and stable.

Proof. When a particular matched bidder i is considered the price pμ(i) will not
rise anymore until abortion or until a new matching/ordering is tried. During
the consideration of i we update the prices of all other items to ensure that i’s
utility is highest for item μ(i). As the prices for the other items might increase
further this ensures that on termination we have ui,j(pj) ≤ ui,μ(i)(pμ(i)) for
all j. Prices are feasible as whenever we match a bidder i to an item j we set
pj = max(bj, ri,j). Utilities are feasible as when considering i we only continue
if i’s utility is non-negative and this does not change until termination. As for
unmatched bidders, we ensure that they have a utility of no more than oi for
any real item and so they are stable. ��

If one requires pj ≥ bj in addition to feasibility, then the bj can simply be
absorbed into the reserve price by setting r′i,j = max(ri,j , bj). So whenever the
algorithm updates the bounds bj while considering bidder i this is conceptually
a restart of the algorithm with a new input, where reserve prices are changed
and bidder i and item μ(i) have been removed.

Lemma 6. If we know that for the input (ui,j(·), ri,j , oi) a feasible and stable
outcome exists, then every bidder optimal outcome (μ, p) matches at least one
bidder i to an item j at price pμ(i) = ri,μ(i).

Proof. Theorem 1 in [10], whose proof does not require continuity, shows that
given a bidder optimal outcome there is no other feasible (but not necessarily
stable) solution where all bidders are strictly better off. But if all prices of
matched items j satisfied pj > rμ(j),j then by setting all prices for the matched
items to pj = rμ(j),j all bidders would benefit as we assume that utility functions
are strictly decreasing in the price and prices pj are still feasible. ��

Lemma 6 is the main ingredient to reconstruct the lowest stable prices for a
given matching. It lets us remove one bidder i at a time where at each step we
can ensure that pμ(i) is not affected by removals of bidders in future iterations.

Theorem 2. If for μ currently being tried by the algorithm there exist feasible
and stable prices then the algorithm will find the lowest stable prices p for μ.

Proof. By induction on the number of bidders n. If n = 1 then in the bidder opti-
mal outcome the (unique) bidder i gets item μ(i) ∈ argmaxj′ ui,j′(max(bj′ , ri,j′ ))
at price max(bμ(i), ri,μ(i)) = ri,μ(i) and the price of all items j′ �= μ(i) must be
at least u−1

i,j′(ui,μ(i)(pμ(i))) to guarantee stability for bidder i. These are also the
prices the algorithm will return if it does not abort. Now suppose the result holds
for all t ≤ n and we want to prove the claim for n + 1. By Lemma 6 we know
that at least one item j is sold for the price pj = max(bj , ri,j) to some bidder i,
where bj is the current lower bound. As we try out all possible orderings, this
bidder i will also be selected first in an ordering and hence obtain item j at
price pj. To ensure that bidder i does not prefer a different item we must have
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increased the price bounds of all items j′ �= j to bj′ = max(bj′ , u
−1
i,j′(ui,j(pj))) for

any stable solution in which bidder i gets item j at price pj. These are exactly
the lower price bounds the algorithm ensures. Given these lower price bounds
and the fact that prices only increase, bidder i is stable for the prices computed
for this ordering. Hence we can remove bidder i and are left with a new instance
with n bidders and one less item. By induction, we find the lowest feasible and
stable prices for this problem. As (i) we try out all possible orderings of bidders
and (ii) for the correct ordering we obtain the lowest feasible and stable prices
p respecting the initial lower bound bj = mini ri,j for all j, we obtain the theo-
rem. ��
Theorem 2 together with Lemma 1 shows that the algorithm outputs a bidder
optimal outcome.

Running Time. There are O(k!(n + k)k) different matchings of n bidders to
up to k items and there are O(k!) = O(kk) permutations of the up to k properly
matched bidders. Computing the price updates for a given matching-bidder pair
takes time O(nk). Hence the overall running time is O((n + k)k · k2k+1 · n).
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Abstract. Sponsored search auction is used by most search engines to
select ads to display on the web page of a search result, according to ad-
vertisers’ bidding prices. The income of this targeted advertising business
is a big part of the revenue of most search engines. The most widely used
approach to choose ads is the Generalized Second Price (GSP) auction,
choosing the i-th highest bidder to display at the i-th most favorable
position and charging the (i+1)-st highest bidding price. Most previous
works about GSP auction are based on the separation assumption: the
probability a user will click on an ad is composed of two independent
parts: a quality factor of the ad itself and a position factor of the slot of
the ad. The previous model does not include the externality an ad may
bring to the other ads. We study a GSP auction in a Markovian user
model where the externality is considered by modeling a user’s proba-
bility behavior when he reads ad list. In particular, we propose a new
ranking scheme for the bidders. We prove Nash equilibrium always exists
in the auction and study the efficiency of the auction by theoretical anal-
ysis and simulation. We compare our results with social optimum and
previous approaches. Comparison shows that our scheme approximates
the social optimum and improves previous approaches under various cir-
cumstances.

1 Introduction

Targeted advertising with search results is the major source of income for most
search engines. Here is a common scenario. A user submits a query to the search
engine. The search engine returns a web page of search results which is shown
in the user’s web browser. Besides the search results, several query-related ads
known as the sponsored links are displayed from top to bottom on the right side
of the web page. If a user clicks an ad, he will be navigated to the advertiser’s
site. The search engine will get paid by the advertiser for this click.
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For a particular query or keyword, many advertisers would want to have a slot
in the sponsored links. Most search engines use an auction to select the adver-
tisers that get slots and the positions of their ads. An approach known as Gen-
eralized Second Price (GSP) auction has been widely used by search engines like
Google, Yahoo!, MSN and has been studied extensively in the academia[1,2,3].
In a GSP auction, each bidder submits a bid representing the maximum amount
he is willing to pay for a click. The search engine ranks bidders in the decreasing
order of their bids, and the ads of the first k bidders in this ranking will be
displayed along the search results. The order of the ads from top to bottom is
the same as the decreasing order of the bids. It is known that Nash equilibrium
exists in the GSP auction [2,3].

Most previous works of sponsored search auction are based on the separation
assumption: the probability that an ad will get a click is composed of two separate
parts[1], a quality factor based on the advertiser itself, and a position factor based
on the position of the ad. This assumption does not model the impact an ad in
a higher slot might have on an ad in a lower slot. Recently a Markovian user
model is proposed[4,5] to capture the externality that one ad can bring to other
ads. Basically the idea is that when a user sees a particular ad, not only he will
click the ad based on the ad’s quality, but the ad will also impact the user’s
willingness to read the ads below. More formally, in this model, when a user sees
an ad i, he will click it with a probability ri. The user may also want to read
other ads below ad i. The model uses another parameter qi of ad i to model the
probability that a user will scan down. Based on this model, an auction selects
several winning advertisers, puts them on the ad slots, and charges them when
clicks occur.

Our Work. In this paper, we study a GSP-like auction under a Markovian user
model. In the spirit of GSP (ie. ranking bidders and selecting the first k ones), we
propose a particular ranking of advertisers based on their bids and parameters
(ri and qi) to approximate optimal efficiency. We prove that the auction always
has Nash equilibrium by an explicit characterization of one Nash equilibrium
in the auction. To show that the auction approximates optimal efficiency, we
show the efficiency of our equilibrium is no less than a factor of the optimal
efficiency. We also compare our auction to a previous one [6] and show that
the efficiency of our auction can be lower bounded by a factor of the efficiency
of one equilibrium in the previous one. We supplement our theoretical analysis
by simulation results, which show our auction approximates the optimum and
improves the previous one under various conditions.

Related Work. Aggarwal et.al[4], and Kempe and Mahdian[5] independently pro-
posed the sponsored search auction with Markovian users. Both of their works
mainly focused on how to compute the optimal solution with respect to the bid-
ders. Giotis and Karlin[6] showed that when advertisers are ordered decreasingly
by ribi, Nash equilibrium always exists in the GSP auction with Markovian users.
They also gave price of anarchy and price of stable analysis of the efficiency of
their GSP auction.
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2 Model

Let B = {1, 2, . . . , n} be a set of bidders (or advertisers). For each bidder i, we
use two parameters to model the behavior of a user when he read bidder i’s ad.
One is the “quality” factor ri, the probability that a user clicks the ad after
he sees it. The other is the “externality” factor qi, the probability that a user
will read the ads below no matter whether he clicks bidder i’s ad or not. A user
starts reading the ad at the top of the sponsored links and clicks bidder i’s ad
with probability ri. Then the user has probability qi to look the ads below the
current one, no matter he clicks the current ad or not. That also means the user
will leave the sponsored links area with probability 1− qi after finishing reading
bidder i’s ad. Each bidder i also has a private value vi: the expected value he
can get when a user enters his website through a click on his ad.

When an auction starts, each bidder submits a bid bi that is the maximum
amount he is willing to pay for one click. Given the bids and the parameters of the
bidders, the auction selects some of them to put on the ad slots of the web page.
Assume we have k slots in a web page. The auction computes an assignment, a
injective function π : {1, . . . , k} → B, such that bidders π(1), π(2), . . . , π(k) are
assigned ad slots from 1 to k (slots are numbered from top to bottom). According
to the model described above, the expected value of the bidder at slot j is(

j−1∏
i=1

qπ(i)

)
rπ(j)vπ(j).

We define the efficiency of an assignment π as

V (π) = rπ(1)vπ(1) + qπ(1)rπ(2)vπ(2) + · · ·+
(

k−1∏
i=1

qπ(i)

)
rπ(k)vπ(k) (1)

In the GSP auction, search engine ranks bidders by their biddings decreasingly
and assigns ad slots to the first k bidders[3,2]. In the weighted GSP auction[1]
bidders are ranked decreasingly by wibi, in which wi can be viewed as the “qual-
ity” of the bidder i. In this paper, we study a particular ranking scheme in the
Markovian user model. The search engine ranks bidders by ribi/(1− qi) decreas-
ingly and selected the first k bidders to put on the ad slots. Each bidder π(i)
displayed on the web page shall pay

pπ(i) =
rπ(i+1)bπ(i+1)(1− qπ(i))

(1− qπ(i+1))rπ(i)
(2)

for one click, which is the minimal value he must bid to keep his current position
in the assignment. Given the assignment π, the expected utility of bidder at slot
i is

uπ(i) =

(
k−1∏
i=1

qπ(i)

)
rπ(i)
(
vπ(i) − pπ(i)

)
(3)
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3 Nash Equilibrium

In order to simplify the notation, we write fi = rivi/(1−qi) as the adjusted value,
and gi = ribi/(1 − qi) as the adjusted bids. In this section, we number bidders
in the decreasing order of their adjust values. We find a Nash equilibrium that
always exists in the auction. The order of the bidders in the equilibrium is the
same as the decreasing order of their adjusted value.

Theorem 1. A Nash equilibrium exists in this auction where the adjusted bids
are

gi =

⎧⎪⎨⎪⎩
fi if i = 1
fi−1(1− qi) + gi+1qi if 1 < i ≤ k

fi i > k

(4)

Proof. The recursive definition of adjusted bids in Equation 4 is similar to the
ones found in [1,3], a convex combination of value and bid. Here value and bid
are adjusted by bidder’s parameter. In most cases, the bid of one agent depends
on the bid of the agent immediately below him and the value of the agent
immediately above him.

It can be verified that by the definition of Equation 4, adjusted bids are sorted
in the decreasing order and each bidder has non-negative utilities. In a Nash
equilibrium, any bidder who gets an ad slot does not want be placed in another
position by changing his bidding. To write it explicitly, the adjusted values and
adjusted bids should satisfy the following constraints where 1 ≤ s < t ≤ k.

fs − gs+1 ≥
(

t∏
i=s+1

qi

)
(fs − gt+1) ft − gs ≤

(
t−1∏
i=s

qi

)
(ft − gt+1)

The verification of these two inequalities are straightforward by following the
recursive definition of adjusted bids.

For any bidder t who does not get a slot in the equilibrium, to win a slot with
nonnegative utility, their adjusted values ft must be no less than any adjusted
winning bids gi. Recall the least among them is gk = (1− qk)fk−1 + qkfk+1 ≥ ft

for any t > k. Therefore bidders who are not assigned ad slots have no incentive
to raise their bids. ��

4 Efficiency Analysis

In this section, we will compare the efficiency of one equilibrium in our auction
to the optimal efficiency and the efficiency of one equilibrium in the auction
proposed previously in [6]. There might exist many equilibria in our auction
(so as in the auction in [6]), but here we only study the one proved to exsit in
Theorem 1. Let the assignment of this equilibrium be πa. We denote the optimal
assignment as π∗ and the assignment where bidders are ordered by rivi as πb.
Giotis and Karlin proved that assignment πb is an equilibrium [6] when bidders
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are ordered by ribi decreasingly and payment of a click on the ad at slot i is
ri+1bi+1/ri. In the following discussion, we sometimes treat an assignment π as
a sequence of bidders to simplify the discussion. We will use Oa as the set of
bidders that are assigned slots in assignment πa. Set O∗, Ob are defined similarly.
And we write φi =

∏i−1
j=1 qi. First we list two lemmas about the structure of the

optimal solution proved before.

Lemma 1. [4] In the optimal assignment π∗, the bidders are sorted by the de-
creasing order of rivi/(1− qi), but not necessarily the first k greatest ones.

Lemma 2. [4] For any bidder i that is assigned an ad slot in the optimal
solution, if some bidder j is not in the assignment, while rjvj ≥ rivi and
rjvj/(1 − qj) ≥ rivi/(1 − qi), then replacing bidder i by bidder j will get an
assignment whose efficiency is not worse.

The following lemma is implied in the proof of Lemma 1 in [4]. We will use this
property quite often in the following.

Lemma 3. [4] Let bidder i and j be two adjacent bidders in an assignment π,
where π(i) < π(j) and rivi/(1 − qi) ≤ rjvj/(1 − qj). Swapping the positions of
two bidders will not decrease the efficiency of the assignment.

Proposition 1

V (πa) ≥
∏

i∈Oa\O∗(1− qi)∏
j∈O∗\Oa

(1− qj)
V (π∗)

Proof. Let bidder i be the first one in πa but not in π∗. By Lemma 3, by swapping
the position of bidder i and the position of the bidder below him, we decrease
the efficiency of the assignment. We swap bidder i like this until it reaches at
the end of the sequence. The efficiency at this time is

V1 = r1v1 + · · ·+ φi−1ri−1vi−1 +
k∑

s=i+1

(φs/qi)rsvs + (φk+1/qi)rivi,

and V (πa) ≥ V1. Let bidder j be the first one in π∗ but not in πa, then rivi/(1−
qi) ≥ rjvj/(1− qj), and we have

V2 = r1v1 + · · ·+ φi−1ri−1vi−1 +
k∑

s=i+1

(φs/qi)rsvs + (φk+1/qi)rjvj
1− qi

1− qj
≤ V1.

Since bidder i is not in the optimum, we have rjvj ≥ rivi by Lemma 2. Therefore

V3 =
1− qi

1− qj

(
r1v1 + · · ·+ φi−1ri−1vi−1+

k∑
s=i+1

(φs/qi)rsvs+(φk+1/qi)rjvj

)
≤V2.

We now get a new assignment where all bidders below bidder i in assignment
πa move up one slot and bidder j is at the bottom slot. Since bidder j is not
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in Oa, rjvj/(1 − qj) is the smallest among k bidders in the new assignment.
Therefore in the new assignment these k bidders are again sorted decreasingly
by rivi/(1− qi). Starting from this new assignment, we again replace one bidder
i′ in Oa\O∗ by a bidder j′ in O∗\Oa in the same way, and get the assignment
whose efficiency is no greater than a (1− qi′ )/(1− qj′ )-factor of V3. In this way,
we will get the exactly optimal assignment at last. ��
We give two examples to show our bound is almost tight, even in the restricted
setting [6] where bidders never submit bids exceeding their true valuations.

Example 1. The auction has two bidders and one slot. Bidder 1 has parameters
r1v1 = 1, 1−q1 = ε < 1. Bidder 2 has parameters r2v2 = X > 1, 1−q2 = εX+δ <
1. Note that r1v1/(1− q1) ≥ r2v2/(1− q2). Therefore the Nash equilibrium will
have efficiency 1; while the efficiency of optimal solution is X .

Example 2. Bad efficiency can also happen in the restricted setting[6], where
bidders never submit bids exceeding their true valuations. Consider the auction
of two bidders and one slot in Example 1 in the restricted setting. If the adjusted
bid of bidder 1 is lower than the adjusted bid of bidder 2, bidder 1 always has
an incentive to bid higher to win the auction. Bidder 1 can ensure his winning
by making his adjusted bidding r1b1/(1 − q1) greater than r2v2/(1 − q2). This
again gives an equilibrium whose efficiency is 1 while the optimal is X .

Now we prove that the efficiency of assignment πa can also be lower bounded
by a factor of efficiency of assignment πb. The proof is similar to the proof of
Proposition 1, though a little modification is needed to deal with the order of
bidders in assignment πb.

Proposition 2

V (πa) ≥
∏

j∈Oa\Ob
(1− qj)∏

i∈Ob\Oa
(1− qi)

V (πb)

Proof. By Lemma 3, we know whenever there is a bidder i whose rivi/(1 −
qi) is smaller than the bidder below him, we can swap positions of these two
and increase the efficiency. Therefore, starting from assignment πb, we sort the
bidders in πb in the decreasing order of rivi/(1−qi). By then we get an assignment
π′

b with more efficiency. Then we use the approach in the proof of Proposition
1. Delete bidder i who is the first one in the new assignment π′

b but not in πa

and add bidder j who is the first one in πa but not in πb to the end of the
sequence. Here we need show that rjvj/(1− qj) is no less than rivi/(1− qi) and
(1− qi)/(1− qj) is no less than 1. First note that bidder i is in πb but bidder j
is not, therefore rivi ≥ rjvj . For assignment πa, since bidder i is not in Oa but
bidder j is, rivi/(1− qi) ≤ rjvj/(1− qj) and (1− qi)/(1− qj) ≥ 1.

The efficiency of the new assignment increases at least a factor of (1−qi)/(1−
qj) by a similar argument to the proof of Proposition 1. To maintain the non-
decreasing order of rivi/(1 − qi) of the assignment, we might need to move up
bidder j some slots, but it will not decrease the efficiency. Then we can do the
next round until no bidder can be swapped out. Each time, we increase the
efficiency by at least a factor of (1− qi)/(1− qj). ��
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Proposition 3. V (πa) ≤ kV (πb).

Proof. Let bidder y be the one with the greatest rivi in the assignment πa.
We have V (πa) = rπa(1)vπa(1) + · · · ≤ kryvy. Let bidder x be the one with the
greatest rivi among all bidders. By the definition of πb, bidder x is at the first
slot in its ranking. Therefore V (πa) ≤ kryvy ≤ krxvx ≤ kV (πb). ��

5 Simulations

In the previous section, we lower bounded the efficiency of an equilibrium that
exist in our auction by a factor of the optimal efficiency. We also lower bounded
the efficiency of that equilibrium by a factor of the efficiency of a similar equi-
librium in the auction proposed in [6]. In this section, we compare these efficien-
cies by simulation. By running simulated auctions, we first evaluate the ratio
V (πa)/V (π∗), then we evaluate the ratio V (πa)/V (πb).

5.1 Simulation Parameters

In every single simulation, we run an auction with 50 bidders and 8 slots. Each
bidder has three parameters, vi, ri, qi, which are drawn independently from a
normal distribution with mean 0.5. The deviation of the distribution is what we
want to study. As we saw in the examples in the previous section, if the qi in the
different assignments vary a lot, the lower bound can be very bad. Therefore we
run simulations with different deviations (but each time, all three parameters
have the same deviation). We want to see how the ratio changes under different
deviations. For each deviation, we run the simulation 200 times and take the
average as the ratio under this deviation. The range of the deviation is [0, 0.3]
and we take 100 deviations uniformly on this range.

5.2 Results

Efficiency of Assignment πa and Optimum. Figure (1a) plots V (πa)/V (π∗)
under different deviations. From the figure, we see that when the deviation is
small, the efficiency of assignment πa is nearly as good as the optimal assignment.
When the deviation becomes larger, the efficiency of assignment πa begins to
drop, but not significantly. At last when the deviation goes to 0.3, the efficiency
of assignment πa is still more than 90% of the optimal assignment.

Efficiency of Assignment πa and πb. Figure (1b) plots V (πa)/V (πb) un-
der different deviations. From the figure, we see that if the deviation is small,
assignment πa and assignment πb have basically the same efficiency. When the
deviation is large, V (πa) becomes greater than V (πb). When the deviation comes
to 0.3, V (πa) is greater than V (πb) for about 50% percent. The ratio does not
seem to converge when deviation becomes large. From Figure 1b, we also see that
V (πa) is greater than V (πb) on average under all deviations, although the lower
bound in Proposition 2 can be arbitrary small. The result suggests the new auc-
tion might have better efficiency than the auction in [6] on average under some
circumstances.
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Fig. 1. Simulation Results

6 Conclusion

In this paper, we proposed a new ranking of bidders in the GSP-like auction with
Markovian users. We proved GSP auction with this new ranking, where bidders
are ordered by rivi/(1 − qi), must have an equilibrium. We lower bounded the
efficiency of one equilibrium in our auction by a factor of the optimal efficiency
and a factor of the efficiency of an equilibrium of a GSP auction proposed in [6].
We did some simulations whose results suggested the new ranking approximates
social optimum and improves the previous scheme in various circumstances.
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Abstract. Mediators are third parties to whom the players in a game
can delegate the task of choosing a strategy; a mediator forms a medi-
ated equilibrium if delegating is a best response for all players. Mediated
equilibria have more power to achieve outcomes with high social welfare
than Nash or correlated equilibria, but less power than a fully centralized
authority. Here we begin the study of the power of mediation by using
the mediation analogue of the price of stability—the ratio of the social
cost of the best mediated equilibrium bme to that of the socially optimal
outcome opt. We focus on load-balancing games with social cost mea-
sured by weighted average latency. Even in this restricted class of games,
bme can range from as good as opt to no better than the best correlated
equilibrium. In unweighted games bme achieves opt; the weighted case is
more subtle. Our main results are (1) that the worst-case ratio bme/opt

is at least (1 +
√

2)/2 ≈ 1.2071 (and at most 1 + φ ≈ 2.618 [3]) for
linear-latency weighted load-balancing games, and that the lower bound
is tight when there are two players; and (2) tight bounds on the worst-
case bme/opt for general-latency weighted load-balancing games. We
also give similarly detailed results for other natural social-cost functions.

1 Introduction

The recent interest in algorithmic game theory by computer scientists is in large
part motivated by the recognition that the implicit assumptions of traditional
algorithm design are ill-suited to many real-world settings. Algorithms are typi-
cally designed to generate solutions that can be implemented by some centralized
authority. But often no such centralized authority exists; solutions arise through
the interactions of self-interested, independent agents. Thus researchers have
begun to use game theory to model these competitive, decentralized situations.

One classic example is the paper of Koutsoupias and Papadimitriou [16], who
consider the effect of decentralizing a standard load-balancing problem. In the
resulting game, each job is controlled by a distinct player who selects a machine
to serve her job so as to minimize delay. The authors compare the social cost
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(expected maximum delay) of the Nash equilibria of this game to that of a
centrally designed optimal solution. The maximum of these ratios is the price of
anarchy of the game, quantifying the worst-case cost of decentralized behavior.

One can imagine a continuum indexing the amount of power that a central-
ized authority has in implementing solutions to a given problem, from utter
impotence (leading to a potentially inefficient Nash equilibrium) to dictatorial
control (leading to the socially optimal outcome). For example, consider a weak
authority who can propose a solution simultaneously to all players, but who has
no power to enforce it. The players would agree to such a proposal only if it were
a Nash equilibrium—but the authority could propose the best Nash equilibrium.
The ratio of the cost of the best Nash equilibrium to the global optimum is the
price of stability, which may be much better than the price of anarchy.

A correlator is a more powerful authority, in that it is not required to broad-
cast the entire proposed solution; it signals each player individually with a sug-
gested action, chosen from some known joint probability distribution. The result-
ing stable outcomes are called correlated equilibria [2]. Any Nash equilibrium is a
correlated equilibrium, but often a correlator can induce much better outcomes.

A mediator [1,19,21,22,23,24,26] is an authority who offers to act on behalf
of the players; any player may delegate to the mediator the responsibility of
choosing a strategy. In a mediated equilibrium, all players prefer to delegate
than to play on their own behalf. The strategies that the mediator selects for
the delegating players may be correlated; moreover, the distribution from which
the mediator draws these strategies may depend on which players have opted
to delegate. A mediator can enforce an equilibrium by threatening to have the
delegating players “punish” any player departing from mediation. Any correlated
equilibrium can be represented as a mediated equilibrium, but the converse is
not true; mediators are more powerful than correlators.

The present work: mediated load-balancing games. In this paper, we begin to
quantify the powers and limitations of mediators. We consider the mediation
analogue of the price of stability: how much less efficient than the globally opti-
mal outcome opt is the best mediated equilibrium bme? (While one could ask
questions analogous to the price of anarchy instead, the spirit here is that of
a well-intentioned central authority who would aim for the best, not the worst,
outcome within its power.) We initiate this study in the context of load-balancing
games. Each player i controls a job that must be assigned to a machine. Each ma-
chine j has a nonnegative, nondecreasing latency function fj(x), and each player
incurs a cost of fj(�j) for choosing machine j, where �j is the total load of jobs
on machine j. We split load-balancing games into classes along two dimensions:

– unweighted vs. weighted : in weighted games, job i has weight wi and expe-
riences cost fj(

∑
i′ uses j wi′ ) on machine j; in unweighted games all wi = 1.

– linear vs. general latencies: in linear games, fj(x) = aj · x for aj ≥ 0; for
general latencies fj can be an arbitrary nonnegative, nondecreasing function.

The social cost is measured by the weighted average latency experienced by the
jobs; see Section 6 for results using other social cost functions.
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unweighted jobs weighted jobs

linear
latencies

bme = opt [19]
bce ≤ 4/3 · bme [tight]

(Lemma 1 [4])

bme ≤ 2.618 · opt, bce ≤ 2.618 · bme [3]
n = 2: bme ≤ 1.2071 · opt (Thm. 2)

bce ≤ 4/3 · bme (Thm. 2)
[both tight for n = 2]

general
latencies

bme = opt [19]
bce ≤ n · bme [tight]

(Lemma 1)

bme ≤ Δ · opt [tight] (Thm. 3)
bce ≤ Δ · bme [tight] (Thm. 3)

Fig. 1. Summary of our results for weighted-average-latency social cost. Here opt is
the socially optimal outcome, bme (bce) the best mediated (correlated) equilibrium, n
the number of jobs, and Δ the ratio of total job weight to smallest job weight.

Load-balancing games are appealing for this work for two reasons. First, they
include cases in which mediators can achieve opt and cases in which they can-
not even better the best Nash equilibrium bne. Second, the prices of anarchy
and stability, and corresponding measures of correlated equilibria, are well un-
derstood for these games and many of their variants [3,4,5,6,15,16,17,25]. Most
relevant for what follows are an upper bound of 1 + φ ≈ 2.618 on the price of
anarchy in weighted linear games [3] and a tight upper bound of 4/3 on the price
of stability in unweighted linear games [4].

We extend this line of work to mediated equilibria with the following results.
(Figure 1 summarizes those for the weighted-average-latency social cost.)

– In the unweighted case, the bme is optimal, regardless of the latency func-
tions’ form. This result follows from a recent theorem of Monderer and Ten-
nenholtz [19], which in fact holds for any symmetric game. See Section 3.

– In weighted linear-latency games with two players, we give tight bounds on
the best solution a mediator can guarantee: a factor of (1 +

√
2)/2 ≈ 1.2071

worse than opt but 4/3 better than the best correlated equilibrium bce.
Thus mediators lie strictly between dictators and correlators. See Section 4.

– In weighted nonlinear-latency games, mediated equilibria provide no worst-
case improvement over correlated or even Nash equilibria. See Section 5.

– We also analyze mediation under two other social cost functions that have
been considered in the literature: (i) the maximum latency of the jobs; and
(ii) the average latency, unweighted by the jobs’ weights. See Section 6.

Related work. Koutsoupias and Papadimitriou initiated the study of the price of
anarchy in load-balancing games, considering weighted players, linear latencies,
and the maximum (rather than average) social cost function [16]. A substan-
tial body of follow-up work has improved and generalized their initial results
[6,7,9,18]. See [12] and [27] for surveys. A second line of work takes social cost
to be the sum of players’ costs. Lücking et al. [11,17] measure the price of an-
archy of mixed equilibria in linear and convex routing games in this setting.
Awerbuch et al. [3] consider both the unweighted and weighted cases on general
networks. Suri et al. [15,25] examine the effects of asymmetry in these games.
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Caragiannis et al. [4] give improved bounds on the price of anarchy and stability.
Christodoulou and Koutsoupias [5,6] bound the best- and worst-case correlated
equilibria in addition to improving existing price of anarchy and stability results.

Other aspects of correlated equilibria have been explored recently, including
their existence [13] and computation [13,14,20]. Mediated equilibria have devel-
oped in the game theory literature over time; see Tennenholtz [26] for a summary.
Mediated equilibria have been studied for position auctions [1], for network rout-
ing games [23,24], and in the context of social choice and voting [21,22]. Strong
mediated equilibria have also been considered [19,24].

2 Notation and Background

An n-player, m-machine load-balancing game is defined by a nondecreasing la-
tency function fj : [0,∞) → [0,∞] for each machine j ∈ {1, . . . , m}; and a
weight wi > 0 for each player i ∈ {1, . . . , n}. We consider games in which every
job has access to every machine: a pure strategy profile s = 〈s1, . . . , sn〉 can
be any element of S := {1, . . . , m}n. The load �j on a machine j under s is∑

i:si=j wi, and the latency of machine j is fj(�j). The cost ci(s) to player i
under s is fsi(�si). Pure Nash equilibria exist in all load-balancing games [10,8].
A load-balancing game is linear if each fj is of the form fj(x) = aj · x for some
aj ≥ 0 and unweighted if each wi = 1. Machine j is dominated by machine j′ for
player i if, no matter what machines the other n− 1 players use, player i’s cost
is lower using machine j′ than using machine j.

A nonempty subset of the players is called a coalition. A mediator is a collec-
tion Ψ of probability distributions ψT for each coalition T , where the probability
distribution ψT is over pure strategy profiles for the players in T . The mediated
game MΨ

Γ is a new n-player game in which every player either participates in Γ
directly by choosing a machine in S := {1, . . . , m} or participates by delegating.
That is, the set of pure strategies in MΨ

Γ is Z = S∪{smed}. If the set of delegating
players is T , then the mediator plays the correlated strategy ψT on behalf of the
members of T . In other words, for a strategy profile z = 〈z1, z2, . . . , zn〉 where
T := {i : zi = smed} and T := {i : zi �= smed} = {i : zi ∈ S} = {1, . . . , n} − T ,
the mediator chooses a strategy profile sT according to the distribution ψT , and
plays si on behalf of every player i ∈ T ; meanwhile, each player i in T simply
plays zi. The expected cost to player i under the strategy profile z is then given
by ci(z) :=

∑
sT

ci(sT , zT ) · ψT (sT ). (The mediators described here are called
minimal mediators in [19], in contrast to a seemingly richer class that allow more
communication from players to the mediator.)

A mediated equilibrium for Γ is a mediator Ψ such that the strategy profile
〈smed, smed, . . . , smed〉 is a pure Nash equilibrium in MΨ

Γ . Every probability dis-
tribution ψ′ over the set of all pure strategy profiles for Γ naturally corresponds
to a mediator Ψ , where the probability distribution ψT for a coalition T is the
marginal distribution for T under ψ′—that is, ψT (sT ) =

∑
s′:s′T =sT

ψ′(s′). If ψ′

is a correlated equilibrium then this Ψ is a mediated equilibrium.
The social cost of a strategy profile s is the total (or, equivalently, average) cost

of the jobs under s, weighted by their sizes—that is,
∑

i wi · ci(s). (We discuss
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other social cost functions in Section 6.) We denote by opt the (cost of the)
profile s that minimizes the social cost. We denote the worst Nash equilibrium—
the one that maximizes social cost—by wne, and the best Nash (correlated,
mediated) equilibrium by bne (bce, bme). Note that opt ≤ bme ≤ bce ≤
bne ≤ wne because every Nash equilibrium is a correlated equilibrium, etc.
The price of anarchy is wne/opt, and the price of stability is bne/opt.

3 Unweighted Load-Balancing Games

Although the unweighted case turns out to have less interesting texture than the
weighted version, we start with it because it is simpler and allows us to develop
some intuition. We begin with an illustrative example:

Example 1. There are n unweighted jobs and two machines L and R with latency
functions fL(x) = 1 + ε for any load, and fR(x) = 1 for load x > n − 1 and
fR(x) = 0 otherwise.

For each player, R dominates L, so 〈R, R, . . . , R〉 is the unique correlated and
Nash equilibrium, with social cost n. Consider the following mediator Ψ . When
all n players delegate, the mediator picks uniformly at random from the n strat-
egy profiles in which exactly one player is assigned to L. When any other set of
players delegates, those players are deterministically assigned to R. If all players
delegate under Ψ , each player’s expected cost is (1+ ε)/n; if any player deviates,
then that player will incur cost at least 1. Thus Ψ is a mediated equilibrium. Its
cost is only 1 + ε, which is optimal, while bne = bce = n.

In fact, this “randomize among social optima” technique generalizes to all
unweighted load-balancing games—in any such game, bme = opt. This is a
special case of a general theorem of Monderer and Tennenholtz [19] about me-
diated equilibria robust to deviations by coalitions. (See also [24].)

Example 1 shows that with nonlinear latency functions bce may be much
worse than opt, even in the unweighted 2-machine case. But even linear un-
weighted load balancing has a gap between bce and opt, even in the 2-job,
2-machine case. The following example demonstrates the gap.
Example 2 (Caragiannis et al. [4]). There are two (unweighted) jobs and two
machines L and R with latency functions fL(x) = x and fR(x) = (2 + ε) · x.

Here bce = 4 and opt = 3 + ε. (Machine L dominates R; no player can be
induced to use R in any correlated equilibrium.) We can show that this example
is tight with respect to the gap between bme and bce, using a result on linear
unweighted load-balancing games of Caragiannis et al. [4] and the “randomize
among social optima” mediation technique. We can also show a tight bound for
unweighted nonlinear latency load-balancing games (details omitted for space).

Lemma 1. In n-player unweighted load-balancing games:

– for games with linear latency functions, bce ≤ 4/3·bme. This bound is tight.
– for not-necessarily-linear latency functions, bce ≤ n · bme. This is tight.

We now have a complete picture for unweighted load balancing: a tight bound
on the gap between bme and bce and the theorem that bme = opt.
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4 Weighted Linear Load-Balancing Games

We now turn to weighted load-balancing games, where we find a richer landscape
of results: among other things, cases in which bme falls strictly between bce and
opt. We begin with the linear-latency case. (All proofs are omitted due to space.)

Theorem 2. In any 2-machine, 2-job weighted game with linear latencies:

1. bce/bme ≤ 4/3. This bound is tight for an instance with weights {1, 1} and
with latency functions fL(x) = x and fR(x) = (2 + ε) · x.

2. bme/opt ≤ 1+
√

2
2 . This bound is tight for an instance with weights {1, 1 +√

2} and with latency functions fL(x) = x and fR(x) = (1 + 2
√

2) · x.

The worst case for bce/bme is actually unweighted—in fact, Example 2. This
result fully resolves the 2-player, 2-machine case with linear latency functions.
Included in this class of games are instances in which bce > bme > opt. One
concrete example is with weights {1, 1+

√
2}, fL(x) = x, and fR(x) = 3+3

√
2

2 ·x,
when bce/bme = 20+4

√
2

23 ≈ 1.1155 and bme/opt = 14
√

2−1
17 ≈ 1.1058.

Adding additional machines to a 2-player instance does not substantively
change the results (there is no point in either player using anything other than
the two “best” machines), but the setting with n ≥ 3 players requires further
analysis, and, it appears, new techniques. Recent results on the price of anarchy
in linear load-balancing games [3,4,6] imply an upper bound of 1+φ ≈ 2.618 on
bme/opt for any number of players n, where φ is the golden ratio. We believe
that the worst-case ratio of bme/opt does not decrease as n increases. (Consider
an n-player instance in which n − 2 players have jobs of negligible weight and
the remaining 2 players have jobs as in Theorem 2.) However, we do not have a
proof that bme/opt cannot worsen from 1+

√
2

2 ≈ 1.2071 as n grows; nor do we
have a 3-job example for which bme/opt is worse than 1+

√
2

2 . The major open
challenge emanating from our work is to close the gap between the upper bound
(bme/opt ≤ 2.618) and our bad example (bme/opt = 1.2071) for general n.

5 Weighted Nonlinear Load-Balancing Games

We now consider weighted load-balancing games with latency functions that are
not necessarily linear. We know from Lemma 1 that even in unweighted cases
the power of Nash and correlated equilibria is limited. The weighted setting is
even worse: the price of anarchy is unbounded, even if we restrict our attention
to pure equilibria. Consider two identical machines, with latencies f(x) = 0 for
x ≤ 5 and f(x) = 1 for x ≥ 6. There are four jobs, two of size 3 and two of
size 2. A solution with cost zero exists (each machine has one size-2 and one
size-3 job), but putting the two size-3 jobs on one machine and the two size-2
jobs on the other is a pure Nash equilibrium too. We can show that the price of
stability is better in this setting, but in general bme is no better than bne:

Theorem 3. In any n-player weighted load-balancing game with job weights
{w1, . . . , wn} (and not necessarily linear latency functions), bne ≤ Δ · opt,
where Δ :=

∑
i wi/ mini wi is the ratio of total job weight to smallest job weight.

Thus bme ≤ Δ · opt and bce ≤ Δ · bme. Both bounds are tight.
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6 Other Social-Cost Functions

Thus far we have discussed the social cost function scwavg(s) :=
∑

i wi · ci(s)
exclusively. Two other social cost functions have received attention in the lit-
erature: the maximum latency scmax (s) := maxi ci(s) and the unweighted av-
erage latency scuavg(s) :=

∑
i ci(s). Under scmax , in any load-balancing game

bme = opt = bne: starting from opt, run best-response dynamics (BRD) until
it converges; no BRD step increases the maximum load, so the resulting Nash
equilibrium is still opt. Thus mediation is uninteresting under scmax .

The behavior of scuavg turns out to be similar to that of scwavg . For nonlinear
latencies, an analogue to Theorem 3 states that bce ≤ n·bme and bme ≤ n·opt

(opt is at least the maximum cost x experienced by a job in opt; running BRD
from opt yields a Nash equilibrium where each job experiences cost at most x);
the examples from Theorem 3 and Example 1 both remain tight. The 2-job linear
case is also qualitatively similar; however, in contrast to the scwavg setting (where
there is a bound of bme/opt ≤ 2.618 for n-player games), even mediators cannot
enforce outcomes that are close to opt under scuavg as the number of players
grows, even in linear-latency games. (Our construction also demonstrates that
none of bce, bne, and wne can provide constant approximations to opt.)

Theorem 4. Under scuavg , in linear-latency weighted load-balancing games:

– for 2 jobs and 2 machines, bce/bme ≤ 4
3 (this is tight for Example 2) and

bme/opt ≤ 2+4
√

2
7 ≈ 1.0938 (this is tight for Theorem 2.2’s example).

– for n jobs and 2 machines, bme/opt is not bounded by any constant.

7 Future Directions

In this paper we have begun to analyze the power of mediators in the spirit of
price of stability, focusing on load-balancing games under the weighted average
latency social cost function. We have a complete story for unweighted games and
for weighted games with general latency functions. The biggest open question
is the gap between bme and opt in n-player weighted linear games. We know
that for all such games bme/opt ≤ 2.618 [3], and that there exist examples in
which bme/opt = 1.2071. What is the worst-case bme/opt for n ≥ 3 players?
In particular, it may be helpful to understand better the connection between
scuavg and scwavg : it was unexpected that the same instance is the worst case for
both functions in the 2-player case (Theorem 2 and Theorem 4).

The broader direction for future research, of course, is to characterize the
power of mediators in games beyond load balancing. For example, the upper
bound of bme/opt ≤ 2.618 in weighted linear load-balancing games comes from
an upper bound on the price of anarchy in congestion games, a more general class
of games. It is an interesting question as to how much better mediated equilibria
are than correlated equilibria in, say, linear-latency weighted congestion games.
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Abstract. Recent results regarding games with congestion-averse utilities (or,
congestion-averse games—CAGs) have shown they possess some very desirable
properties. Specifically, they have pure strategy Nash equilibria, which may be
found in polynomial time. However, these results were accompanied by a very
limiting assumption that each player is capable of using any subset of its avail-
able set of resources. This is often unrealistic—for example, resources may have
complementarities between them such that a minimal number of resources is re-
quired for any to be useful. To remove this restriction, in this paper we prove the
existence and tractability of a pure strategy equilibrium for a much more gen-
eral setting where each player is given a matroid over the set of resources, along
with the bounds on the size of a subset of resources to be selected, and its strat-
egy space consists of all elements of this matroid that fit in the given size range.
Moreover, we show that if a player strategy space in a given CAG does not satisfy
these matroid properties, then a pure strategy equilibrium need not exist, and in
fact the determination of whether or not a game has such an equilibrium is NP-
complete. We further prove analogous results for each of the congestion-averse
conditions on utility functions, thus showing that current assumptions on strategy
and utility structures in this model cannot be relaxed anymore.

1 Introduction

Congestion games—in which self-interested players strategically choose from a com-
mon set of resources and derive individual utilities that depend on the total congestion
on each resource—are fundamental to a wide range of applications. Examples include
resource and task allocation, firm competition for production processes, routing prob-
lems, network design, and other kinds of resource sharing scenarios in distributed sys-
tems [8,15,16]. Such games are important because Rosenthal [15] showed that they
always possess Nash equilibria in pure strategies. This follows by a potential function
argument [10], implying that such an equilibrium can be reached in a natural way when
players iteratively (and unilaterally) improve their strategies in response to the others’
choices. However, such a sequence of (even maximal, or, best) responses may take
an exponential number of iterations, as is shown in [4]. In fact, it is PLS-complete to
compute a pure strategy equilibrium for general congestion games. Motivated by this
fact, much recent effort in algorithmic game theory has gone into study of interesting
subclasses of congestion games that are computationally tractable. These, for example,
include singleton (or, resource selection) congestion games [5], in which each player

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 600–607, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is restricted to choosing a single resource, and a more general class of matroid con-
gestion games [1], in which players choose among the bases of a matroid over the set
of resources. Note, however, that in both cases only strategies (i.e., sets) of the same
cardinality are allowed (respectively, 1 or the rank of the matroid).

Congestion games have been extensively studied in a variety of contexts in computer
science and economics, giving rise to several extensions of the original model. In partic-
ular, the models for local-effect games [6], ID-congestion games [9], player-specific [7]
and weighted congestion games [7]—in which a player’s payoff is effected by the num-
ber, identities or weights of players choosing its selected or neighboring resources—
have been considered. However, such games have been constrained to use utility func-
tions that are linear sums with respect to resources, and assumed full reliability and
synchronicity of services. More recently, additional generalizations [11,12,13,14] dealt
with the possibility that resources may fail to execute their assigned tasks, or with the
actual order in which the tasks are executed, thus incorporating non-linear and non-
additive utility functions in the context of congestion games. These models, however,
assumed mutual independence among the resources and imposed particular structures
on the players’ strategy spaces.

Generalising beyond problem classes with desirable properties raises the important
question of developing meaningful criteria that have to be satisfied in order to guarantee
that these properties are still present in the generalised model. Given the fact that con-
gestion games have pure-strategy equilibria, we are interested in the question of how
far such a sufficient criterion for the existence of pure strategy Nash equilibria can go,
and which properties would ensure polynomial complexity of such equilibria.

To this end, Byde et al [2] provided a very general framework that, in particular,
includes the abovementioned models of congestion games with faulty or asynchronous
resources and player-specific congestion games in the superclass called games with
congestion-averse utilities (or, congestion-averse games—CAGs). In a CAG, the pay-
off of a player is determined by the vector of resource congestion (thus capturing the
possibility of mutual dependencies among the resources), via any real-valued function
that satisfies certain “congestion-averse” conditions—i.e., monotonicity, submodularity
and independence of irrelevant alternatives. The authors proved the existence of a pure
strategy Nash equilibrium in these games and provided a polynomial time algorithm for
its computation. This result was based on the single profitable move property (SPMP)
of these games, implying that a strategy profile is a Nash equilibrium if and only if it
is stable under adds, drops or switches with a single resource. The congestion-averse
assumptions have been shown to be minimal to guarantee the existence of this property.
However, the question of necessity of these assumptions for the existence of a pure
strategy Nash equilibrium remained open. Also, though the model of CAGs captures
a wide range of important scenarios, it assumes that a player is capable of using any
subset of its accessible set of resources, which is unrealistic in many real-life situations,
in which, for example, only certain sets of resources are useful in combination.

Our contribution. Given this motivation, we show that the analysis of Byde et al [2]
can be generalised even further, towards what we call Matroid Congestion-Averse
Games, or MCAGs, in which the set of strategies of each player consists of all the
sets within a certain size range from a matroid. This, in particular, includes (but is not
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restricted to) the possibilities of having a full power set over any subset of resources
(as in CAGs [2]), or any other matroid, or having a set of elements of a fixed size—for
instance, singletons (as in resource selection games [5]) or bases of a matroid (as in
matroid congestion games [1]). For this setting, we prove that all such games have the
SPMP and possess at least one equilibrium in pure strategies. We give an algorithm
which converges on an equilibrium, with time limits polynomial in the number of play-
ers and resources in the game. Essentially, we extend all the previous results on CAGs,
weakening the bounds on algorithm running time. We further complete these results
by showing that under various relaxations of the matroid or congestion-averse assump-
tions, these properties are no longer present, and in fact the determination of whether
or not a game has a pure strategy equilibrium is NP-complete. The proofs are omitted,
due to space limitations.

2 Notation and Background

Consider a congestion setting (or, domain) with a set N = {1, . . . , N} of players and
a set R = {r1, . . . , rR} of resources. A player i’s strategy is to choose a subset of
resources from R, and every N -tuple of strategies σ = (σi)i∈N corresponds to an
R-dimensional congestion vector h(σ) = (hr(σ))r∈R where hr(σ) is the number of
players who select resource r (we drop the profile to give hr when it’s clear which
profile is under consideration). For any player i ∈ N, its personalised vector of conges-
tion, hi(σ), is defined to be a vector in NR that coincides with h(σ) for all the resources
that have been selected by i and that has zero entries for all of its unselected resources:
hi

r(σ) = hr(σ) if r ∈ σi and hi
r(σ) = 0 otherwise. For h ∈ NR, its “support”,

S(h) ⊆ {1, . . . , R}, is defined as {j : hrj > 0}. The utility of player i in a congestion
setting is given by a function Ui : NR → R that assigns a real value to a (personalised)
vector of congestion.1

Games with congestion-averse utilities. A utility function is congestion-averse if it
(i) monotonically decreases with respect to increasing congestion, (ii) is submodular
in that the “better” collection of resources a player uses—the less incentive it has to
add new resources, and (iii) is independent of irrelevant alternatives (i.e., if a player
“prefers” one resource over another at their current congestion levels, then it still does
so no matter what other changes are made to any other resources). Formally, given a
profile σ and a set of elementary changes (or, single moves) defined on σ as follows:

- add Ai(r)—player i adds an unselected resource r: σ′
i = σi ∪ {r},

- drop Di(r)—player i drops a selected resource r: σ′
i = σi \ {r},

- switch Si(r+ ← r−)—player i switches resources by adding resource r+ and
dropping resource r− (note that Si(r+ ← r−) = Ai(r+)+ Di(r−)2), a utility function
U : NR → R is said to be congestion-averse if it satisfies:

1 Note that the player’s utility only depends on the numbers of players choosing each resource
but not on their identities—that is, we consider anonymous settings (see [3] for results on
approximating equilibria in anonymous games).

2 Here and in what follows, “+” should be understood to mean sequential execution, read left-
to-right. We also use this notation to indicate elementary changes applied to strategy profiles:
e.g., σ + D denotes a drop applied to profile σ.
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- monotonicity: If S(h) = S(h′) and ∀r, hr ≥ h′
r, then U(h) ≤ U(h′);

- submodularity: Improving a resource selection by either (i) profitable switches,
(ii) extending the set of utilised resources or (iii) reducing congestion on them does

not make new adds more profitable, or drops less profitable; likewise, unprofitable
switches, deleting the resources or increasing the congestion does not make drops
more profitable, or adds less profitable. Equivalently, for any h, h′ and h′′ such that
|S(h)| = 1 and S(h) � S(h′), S(h′′),

U(h + h′)− U(h′) ≤ U(h + h′′)− U(h′′),

if either (i) |S(h′) \ S(h′′)| = |S(h′′) \ S(h′)| = 1 and U(h′) ≥ U(h′′), (ii)
S(h′′) ⊆ S(h′) and hj

′′ = hj
′ ∀j ∈ S(h′′), or (iii) S(h′) = S(h′′) and h′ ≤ h′′;

- independence of irrelevant alternatives: If Si(r+ ← r−) is a profitable switch
for player i given profile σ, then it is profitable for i from any other profile σ′

satisfying r− ∈ σ′
i, r+ /∈ σ′

i, hr−(σ) = hr−(σ′) and hr+(σ) = hr+(σ′).

A congestion-averse game (CAG) is a game in the congestion domain with congestion-
averse utility functions, where each player i ∈ N has a subset Ri ⊆ R of Ri ∈ N
accessible resources, and its strategy space, Σi, is a power set of Ri.

3 Matroid Congestion-Averse Games

In this section, we extend the model of congestion-averse games to encompass more
general and complex player strategy spaces, which we loosely build on matroids. Before
we give a formal definition of such games, we briefly introduce matroids.3

Definition 1. A matroid, M , is a collection of subsets of some set of elements X , with
the property that if some Y ⊆ X is in M then all subsets of Y are in M . Further, if
V ∈ M is such that |V | < |Y | then there exists some a ∈ Y \V such that V ∪{a} ∈ M .

A matroid congestion-averse game (MCAG) is now defined as a game in the congestion
domain with congestion-averse utility functions, over strategy spaces where each player
i is given a matroid Mi and integers ni ≤ mi, and its strategy space consists of all the
subsets X ∈ Mi such that ni ≤ |X | ≤ mi. More precisely,

Definition 2. An MCAG Γ =
(
N,R, (Ui(·))i∈N

)
consists of a set N of N ∈ N play-

ers, a set R of R ∈ N resources, and for each player i a matroid Mi over R, integers
ni ≤ mi, and a congestion-averse utility function Ui : NR → R. The strategy space
for each player i ∈ N is the set of all the subsets X ∈ Mi satisfying ni ≤ |X | ≤ mi,
and its payoff from a strategy profile σ is ui(σ) = Ui(hi(σ)), where hi(σ) is i’s per-
sonalised vector of congestion as determined by σ.

Remark 1. Note that our strategy structures cover (but are not restricted to) the possi-
bilities of having a power set over any subset of resources (as in CAGs), or any other
matroid (full or incomplete), or having a set of elements of a fixed size—for example,
a set of singletons (as in resource selection games) or a set of bases of a matroid (as in
matroid congestion games).

3 For a detailed discussion of matroids, we refer the reader to [17].
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Interestingly, as we show below, the CAG technique based on particular “ladders” of
elementary changes, appears to be universal enough to capture the matroid case. Recall,
however, that this method builds heavily on several properties, including (i) the single
profitable move property, (ii) the existence of a strategy profile which is stable to both
switches and adds (and a method to find such), and (iii) the possibility to rank resources
by their attraction to a player, that easily follows from the fact that any elementary
change is available to any player at any profile. For MCAGs, however, the existence
of these properties is not at all obvious. We start with their proofs in the following
subsection.

3.1 Preliminary Results

The single profitable move property. We first show that the matroid congestion-averse
games have the SPMP—the single profitable move property, implying that a profile is
in equilibrium if and only if it does not admit profitable elementary changes. We begin
with a lemma.

Lemma 1. Given a strategy profile of an MCAG, a player’s strategy is a (strict) best
response within the subspace of strategies of the same size, if and only if no (strictly)
profitable switch from this strategy is available to the player. Indeed, given a profile σ,
suppose some player i has any alternative strategy σ′

i such that |σi| = |σ′
i| and player

i would (strictly) prefer σ′
i over σi. Then, there is some r+ ∈ σ′

i \ σi and r− ∈ σi \ σ′
i

such that the switch S(r+ ← r−) is (strictly) profitable for player i at σ.

We can now prove the single profitable move property for MCAGs.

Theorem 1. Given an MCAG, a strategy profile σ is a Nash equilibrium if and only if
there are no (maximal) strictly profitable switches, drops or adds.

A strategy profile σ is termed as A-stable (D-stable, S-stable) if it admits no maximally
profitable adds (drops, switches); likewise for AS-stable, DS-stable and so on. Thus,
the SPMP states that a profile is in equilibrium if and only if it is ADS-stable. The
SPMP has been used to develop techniques for finding pure strategy equilibria in CAGs
and several of their subclasses. These methods used particular dynamics of elementary
changes that initialised with a strategy profile which is either AS- or DS-stable. Indeed,
since in CAGs a player is allowed to use any subset from its set of accessible resource,
the existence of such a profile follows trivially—all the players just play the full or the
empty set. However, this strategy may not be available for a general MCAG. Never-
theless, as we shall show, every such a game possesses a strategy profile (or, a “state”)
which is stable under adds and switches.

Finding an AS-stable state. First, we prove the following theorem.

Theorem 2. Given an MCAG, consider P the set of pairs consisting of a single re-
source and a congestion level on that resource. For each player i, there exists a ranking
function Vi(·) on P such that for any congestion vector h and strategy σ, if there is a
switch S(rj ← rk) available to player i then Vi(rj , hj + 1) ≤ Vi(rk, hk) if and only if
the switch S(rj ← rk) is profitable.
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Corollary 1. Any best response dynamics within the reduced space where each player
is restricted to the maximal size strategies, will terminate in an AS-stable state within
N2R2 moves.

Remark 2. In games with fixed size strategies—like singleton or matroid congestion
games—drops are never available. So, any AS-stable strategy profile is also a Nash
equilibrium. For such games, the above corollary proves the existence of, and provides
a method for finding, a pure strategy Nash equilibrium.

Dynamics. Given the existence of an AS-stable state, we now explore the convergence
for matroids of the drop- and swap-dynamics, as defined in [2]. We start with a brief
definition of drop- and swap-ladders, and then proceed and describe their properties in
MCAGs.

Definition 3. A drop ladder is a sequence Di0(r0)+Si1 (r′1 ← r1)+ · · ·+Sim(r′m ←
rm), consisting of a maximally profitable drop followed by a sequence of m ≥ 0 max-
imally profitable switches, and a swap ladder is a drop-ladder followed by a maxi-
mally profitable add with its tail: Di0(r0) + Si1(r0 ← r1) + · · · + Sim(rm−1 ←
rm) + Aim+1(rm). The swap ladder is described as minimal if all intermediate strat-
egy profiles before the last add were A-stable (i.e., if the add is performed at the first
opportunity).

Note that the above definition of a swap ladder implies that a profitable add is made to
the tail of the corresponding drop ladder. This is well defined by the following lemma.

Lemma 2. Given a CAG, let σ be an AS-stable profile that possesses a drop ladder of
length m, and let σk denote the result of applying the drop and the first k switches to σ.
Suppose further that for each σk for 1 ≤ k < m there are no profitable adds. Then, for
all 1 ≤ k ≤ m, the only switches which are profitable at σk are those which “chain”
with the previous switch or the initial drop, i.e. those who switch in the resource which
was most recently dropped or switched out. Furthermore, if there is a profitable add
Ai(r+) for profile σm then r+ = rm.

Thus, the result of a swap ladder possesses the same congestion vector as the original
profile; as we shall see, this will imply that minimal swap ladders preserve AS-stability.
The result will follow from Lemma 3 below:

Lemma 3. Consider the sequence of adds, drops and switches that a single player
makes in a sequence of minimal swap ladders. For each player, we rank the resources
according to the ranking function defined in Theorem 2, using the fixed congestion
levels present between swap ladders. Then, (i) if the ranks of resources a player has
selected are put in decreasing order, then this set of values increases lexicographically
with every switch; (ii) every add must add a resource that is strictly higher ranked
than the resource most recently dropped; (iii) the ranks of dropped resources are non-
decreasing.

Corollary 2. There can be no more than NR(R+2) elementary changes in total in any
sequence of minimal swap ladders.
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3.2 Main Results

We are now ready to conclude the existence and tractability of a pure strategy Nash
equilibrium in MCAGs. The following proposition, coupled with Corollary 2, implies
our main result in Theorem 3.

Proposition 1. Applying a minimal swap ladder to an AS-stable state preserves AS-
stability.

Theorem 3. Every MCAG has a pure strategy Nash equilibrium.

4 Necessity of the MCAG Model Assumptions

In this section we complete our results on congestion-averse games, by demonstrating
that the strategy space and utility function assumptions in our model cannot be further
relaxed. Specifically, we will show that if any of the (ranged) matroid or the congestion-
averse properties is removed, a pure strategy equilibrium is not guaranteed to exist, and
in fact the determination of whether or not a game has such an equilibrium is NP-
complete.

4.1 Non-matroid Congestion-Averse Games

In an MCAG, each player has a strategy space which consists of all the sets within a
certain size range from a matroid. This can be expressed equivalently with the follow-
ing. Suppose a player has a strategy space S. Then, for all X �= Y in S, the following
two assumptions hold: (i) if |X | = |Y | then for each element x ∈ X there is an element
y ∈ Y such that (X \ {x})∪ {y} ∈ S; (ii) if |X | < |Y | then all |X | element subsets of
Y are in S. This is termed as the ranged matroid property. We will show that if we relax
any of these assumptions then a pure strategy equilibrium is no longer guaranteed and,
in fact, the determination of whether or not such an equilibrium exists is not tractable.
This follows by a reduction argument using the 3-SAT problem which is known to be
NP-complete.

Theorem 4. In an MCAG setting, violation of either of the ranged matroid assumptions
on strategy spaces may result in a game with no pure strategy equilibria. Moreover, it
is in general NP-complete to determine whether a game possesses such an equilibrium.

4.2 Non-congestion-Averse Utilities

Here we present similar results on the congestion-averseness assumptions on utility
functions. Specifically, we show that violation of any of these assumptions (or even
partial relaxation of submodularity) may result in a game with no pure strategy equi-
librium, and reduce from the 3-SAT to show NP-hardness of the equilibrium existence
decision problem.

Theorem 5. In an MCAG setting, if any one of the congestion-averse conditions on
utility functions is violated then a pure strategy Nash equilibrium is not guaranteed to
exist. Moreover, there are instances of games in which it is NP-complete to determine its
existence. This also applies to the case in which the submodularity assumption is only
partially violated, that is either parts (i) and (iii) or part (ii) of the assumption hold.
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5 Conclusions

We investigated the impact of the strategy space and payoff function structures on
games with congestion-averse utilities. We extended the previous positive results on
the existence and tractability of pure strategy equilibria to the case, in which the set of
strategies of each player consists of all the sets within a certain size range from a ma-
troid. This covers a wide range of settings, including those where the players’ strategies
are represented by singletons, bases of matroids, and power sets over a set of accessible
resources. Our result is tight in that the relaxation of the (ranged) matroid property or
each of the congestion-averseness conditions may lead to a game without a pure strat-
egy equilibrium, and it is in general NP-complete to determine the existence of such
an equilibrium. Thus, we conclude that the current assumptions on strategy and utility
structures in this model cannot be further relaxed.
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Abstract. This paper deals with two games defined upon well known
generalizations of max cut. We study the existence of a strong equi-
librium which is a refinement of the Nash equilibrium. Bounds on the
price of anarchy for Nash equilibria and strong equilibria are also given.
In particular, we show that the max cut game always admits a strong
equilibrium and the strong price of anarchy is 2/3.

1 Introduction

Suppose that n agents communicate via radio signals but only two distinct fre-
quencies are available. In this scenario we are given a symmetric n × n matrix
which indicates, for each pair of agents, the strength of the interference that
they experiment if they select the same frequency. We suppose that each agent
chooses her frequency in order to minimize the sum of interferences that she ex-
periments1, no matter what is the situation of the others. We use strategic game
theory as a formal framework to study the following question: What would be
the worst configuration that the selfish agents can reach compared to a solution
where a central entity assigns frequencies optimally? When Nash equilibria – a
situation where no agent can unilaterally deviate and benefit – are considered,
this ratio is better known as the price of anarchy (PoA) [10]. It captures the per-
formance of systems where selfish players interact without central coordination.
Intuitively, a PoA far from 1 indicates that the system requires regulation.

Nash equilibria are considered as stable configurations. However a Nash equi-
librium is not sustainable if the agents can realize that they all benefit if they
perform a simultaneous deviation whereas any unilateral move is inefficient. The
strong equilibrium introduced by Aumann [2] is a refinement of the Nash equi-
librium where for every deviation by a group of agents, at least one member of
the group does not benefit. The strong price of anarchy (SPoA) [1] is the PoA
reduced to strong equilibria.

So, what are the PoA and SPoA of the above mentionned interference game?
The game was already studied in [6,4,7]. It is defined upon the well known max

cut problem: Given a simple weighted graph, find a bipartition of the vertex
set such that the weight of the edges having an endpoint in both parts of the
partition, i.e. the cut, is maximum. In the max cut game, a player’s utility is
her contribution to cut, i.e. the weight of the edges of the cut which are incident
1 Or equivalently, maximize the sum of interferences that she does not experiment.

S. Leonardi (Ed.): WINE 2009, LNCS 5929, pp. 608–615, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to her. The game always possesses a pure Nash equilibrium since it admits a
potential function [15] (the weight of the cut). It is a kind of folklore that the
PoA is 1/2. Up to our knowledge, nothing is known about the existence of a
strong equilibrium and the SPoA of the max cut game.

In this paper, we study two generalizations of the max cut game which
are similarly defined upon two generalizations of max cut: nae sat and max

k−cut. An instance of the nae sat problem is a set of clauses, each of them
being satisfied if its literals are not all true (or not all false) and one asks a truth
assignment maximizing the weight of satisfied clauses. max cut is equivalent to
nae sat if each clause is made of two unnegated variables. In the nae sat game,
every player tries to maximize the weight of satisfied clauses where she appears.
A motivation of the nae sat game is given in the sequel. In the max k−cut

problem, one asks a k partition of the vertex set inducing a maximum weight
cut. Its associated game is the interference game with k frequencies instead of 2.

2 Definitions and Notations

A strategic game is a tuple 〈N, (Ai)i∈N , (ui)i∈N 〉 where N is the set of players (we
suppose that |N | = n), Ai is the set of strategies of player i and ui : ×iAi → R
is player i’s utility function. A pure state or pure strategy profile of the game is
an element of ×iAi. Although players may choose a probability distribution over
their strategy set, we only consider pure strategy profiles in this paper. Players
are supposed to be rational, i.e. each of them plays in order to maximize her
utility.

Given a state a, (a−i, bi) denotes the state where ai is replaced by bi in a
while the strategy of the other players remains unchanged. A state a is a Nash
equilibrium (NE) if there no player i ∈ N and a strategy bi ∈ Ai such that
ui

(
(a−i, bi)

)
> ui(a). Given two states a, a′ and a coalition C ⊆ N , (a−C , a′)

denotes the state where ai is replaced by a′
i in a for all i ∈ C. A state a is a

strong equilibrium (SE) if there is no non-empty coalition C ⊆ N and a profile
a′ ∈ A such that ui

(
(a−C , a′)

)
> ui(a) for all i ∈ C. A state a is an r-strong

equilibrium (r-SE) if there is no non-empty coalition C ⊆ N of size at most r
and a profile a′ ∈ A such that ui

(
(a−C , a′)

)
> ui(a) for all i ∈ C. Therefore a

SE is a NE, a NE is a 1-SE and a SE is n-SE (n is the number of players).
The price of anarchy (PoA) measures the performance of decentralized sys-

tems [10] via its Nash equilibria. More formally, let Γ be a family of strate-
gic games, let γ be an instance of Γ , let Aγ be the strategy space of γ, let
Q : Aγ → R+ be a social function, let E(γ) be the set of all pure Nash equilibria
of γ and let oγ be a social optimum for γ (i.e. oγ = argmaxa∈Aγ

Q(a)). The
pure price of anarchy of Γ is minγ∈Γ mina∈E(γ)Q(a)/Q(oγ). If SE(γ) denotes
the set of all strong equilibria of γ then the strong price of anarchy (SPoA) [1] is
minγ∈Γ mina∈SE(γ)Q(a)/Q(oγ). The r-SPoA is similarly defined when restrict-
ing ourselves to r-strong equilibria.
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3 Related Work and Contribution

The max cut game is a game of congestion [11]. Congestion games is a particular
subclass of potential games [15] which are known to always possess a pure strat-
egy NE. Any NE of the max cut game corresponds to a local optimum whose
computation is sometimes polynomial (cubic graphs [13], unweighted case) but
PLS-complete in general [16]. Rencently Christodoulou et al. [4] studied the
rate of convergence to an approximate NE in the max cut game and the social
welfare of states obtained after a polynomial number of best response steps.

The max cut game is close to the party affiliation game [6] and the consensus
game [3]. The max k−cut game is related to the model of migration studied by
Quint and Shubik [12]. A land where several animals live is partitioned into k
areas and each animal has to choose one. Two animals seeking the same resources
(e.g. food or living conditions) compete if they share the same area. We assume
that every kind of resource exists in each area. Then each animal migrates to
the area where competition is minimum.

In a broader study on clustering games [7], Hoefer proved that the PoA of the
unweighted max k−cut game is (k − 1)/k. However, nothing is known about
existence of a SE for this game and its SPoA. Up to our knowledge, nothing is
known about the PoA of the nae sat game, the existence of a SE and the SPoA.
However every game studied in this paper is a particular case of congestion
games. Congestion games possess a SE in many situations (some of them are
identified in [8,9,5,14]) but its existence is not always guaranteed.

In this paper we study the existence of a SE and the (S)PoA of the max

k−cut and nae sat games. Section 4 is devoted to the nae sat game. If each
clause has two literals then we prove that any optimal solution is a SE and the
SPoA is 2/3. With more literals per clause, we show that no 2-SE is guaranteed
while a pure NE, a 1-SE in fact, must exist. The PoA of the nae sat game
is in general 1/2 and q/(q + 1) if each clause if made of exactly q ≥ 3 literals.
Section 5 is devoted to the max k−cut game. Our positive result states that
any optimal solution is a 3-SE (when k = 2, an optimal cut is a SE by the result
given for the nae sat game). Our negative result states that for k ≥ 3, there
is an instance with two distinct optimal cuts: one is a SE while the other is not
a 4-SE. Before giving a conclusion, we show that the r-SPoA of the max cut

game is equal to 1/2 if r is bounded above by the square root of the number of
players.

Due to space limitations, proofs are sometimes sketched or skipped.

4 The nae sat Game

Given a set X of boolean variables and a set C of clauses, each of them being
composed of at least two literals defined over X and a weight function w : C →
R+, nae sat is to find a truth assignment τ : X → {true, false} such that
the weight of NAE-satisfied clauses is maximum. A clause is NAE-satisfied if its
literals are not all true or not all false (nae= not all equal). In the following
q-nae sat refers to the case where each clause has exactly q literals.
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In the nae sat game, each variable is controlled by a selfish player with
strategy true or false. A player’s utility is the weight of NAE-satisfied clauses
where she appears. The social function is the weight of NAE-satisfied clauses.

As an application, imagine a population of animals cut into two groups (or
gangs) denoted by T and F . Anyone can choose to live in T or F but not in
both. In addition every individual i carries a set γi of genes (his genotype) that
he wants to be ideally present in both groups. If i chooses T (resp. F ) then all
his genes are in T (resp. F ) and exactly |γi ∩

⋃
j∈F γj | (resp. |γi ∩

⋃
j∈T γj |) of

his genes are in F . Then, in order to maximize the presence of his genotype, i
prefers T if |γi ∩

⋃
j∈F\{i} γj | ≥ |γi ∩

⋃
j∈T\{i} γj |, otherwise i prefers F . One

can model the situation as a nae sat game: each animal i is a variable xi, each
gene g carried by at least two animals is a clause including a positive literal xi

iff g ∈ γi. Thus, i ∈ T (resp. i ∈ F ) means xi is true (resp. xi is false).
The nae sat game always has a pure Nash equilibrium since it can be defined

as a congestion game. Then it is consistent to study its pure PoA.

Theorem 1. The PoA of the nae sat game is

(i) q/(q + 1) if each clause has size exactly q with q ≥ 3
(ii) 1/2 otherwise

Now we turn our attention to strong equilibria. We first show that every instance
of the 2-nae sat game possesses a SE.

Theorem 2. Every optimum of the 2-nae sat game is a SE.

It follows that every optimum of the max cut game is a SE since max cut is
equivalent to 2-nae sat if all literals are positive. When q ≥ 3, the following
result states that some instances of the q-nae sat game do not have a (q−1)-SE
(the existence of a 1-SE, i.e. a NE, is guaranteed).

Theorem 3. For any q ≥ 3, the existence of a (q− 1)-SE is not guaranteed for
the q-nae sat game.

Then it is consistent to study the pure SPoA of the 2-nae sat game.

Theorem 4. The SPoA of the 2-nae sat game is 2/3.

Proof. Let I = (X, C) be an instance of 2-nae-sat where X is the set of variables
and C is the set of clauses weighted by w. Let σ (resp. σ∗) a strong equilibrium
(resp. an optimal truth assignment) of I. Without loss of generality, we assume
that σ(x) = true for all x ∈ X . Indeed if σ(x) = false then one can replace
every x (resp. x) by x (resp. x) and set σ(x) = true.

Let A = {x ∈ X : σ(x) = σ∗(x)} and B = X \ A. In particular, we have
σ∗(x) = true for every x ∈ A and σ∗(x) = false for every x ∈ B. Note that the
truth assignment where every variable of A is set to false and every variable of
B is set to true is also optimal. Indeed switching all variables of a clause does
not change its status, i.e. it remains NAE-satisfied or NAE-unsatisfied.
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Let us suppose that |A| = r and |B| = s. We rename the variables of A
and B as follows. From now on A = {a1, . . . , ar} and B = {b1, . . . , bs}. If Aj

denotes {aj , aj+1, . . . , ar} for j = 1, . . . , r (resp., Bj denotes {bj, bj+1, . . . , bs}
for j = 1, . . . , s) then we suppose that the player associated with aj (resp., bj)
does not benefit when every a ∈ Aj (resp., every b ∈ Bj) plays false while
the others play true. Notice that this renaming is well defined because σ is a
strong equilibrium. Actually, when players in Aj form a coalition, then at least
one player does not benefit because σ is a strong equilibrium.

We define some subsets of C as follows:

– A clause c ∈ C belongs to ζA
j (resp. ζB

j ) iff σ NAE-satisfies c, c contains a
literal defined upon aj (resp. bj) and c is not NAE-satisfied by the truth
assignment where the variables of {aj, aj+1, · · · , ar} (resp. {bj, bj+1, · · · , bs})
are false while any other variable is true. Let ζA =

⋃r
j=1 ζA

j and let ζB =⋃s
j=1 ζB

j .
– A clause c ∈ C belongs to χA

j (resp. χB
j ) iff σ NAE-satisfies c, c contains

a literal defined upon aj (resp. bj) and c /∈ ζA
j (resp. c /∈ ζB

j ). Let χA =⋃r
j=1 χA

j and let χB =
⋃s

j=1 χB
j .

– A clause c ∈ C belongs to αA
j (resp. αB

j ) iff σ does not NAE-satisfy c, c con-
tains a literal defined upon aj (resp. bj) and c is NAE-satisfied by the truth
assignment where the variables of {aj, aj+1, · · · , ar} (resp. {bj, bj+1, · · · , bs})
are false while any other variable is true. Let αA =

⋃r
j=1 αA

j and let
αB =

⋃s
j=1 αB

j .
– A clause c ∈ C belongs to βA

j (resp. βB
j ) iff σ does not NAE-satisfy c, c

contains a literal defined upon aj (resp. bj) and c /∈ αA
j (resp. c /∈ αB

j ). Let
βA =

⋃r
j=1 βA

j and let βB =
⋃s

j=1 βB
j .

In what follows, w(C) denotes the weight of a given set of clauses C. Let us give
some intermediate properties.

Property 1. ζA
j ∩ ζA

j′ = ∅ for all j, j′ such that 1 ≤ j < j′ ≤ r and ζB
j ∩ ζB

j′ = ∅
for all j, j′ such that 1 ≤ j < j′ ≤ s.

Property 2. σ∗ does not NAE-satisfy any clause c ∈ αAΔαB .

Property 3. σ∗ does not NAE-satisfy any clause c ∈ βA ∪ βB.

Property 4. σ∗ does not NAE-satisfy any clause c ∈ ζA ∩ ζB.

Using Properties (2), (3), (4) and C = αA ∪ αB ∪ βA ∪ βB ∪ ζA ∪ ζB ∪ χA ∪ χB

we can give the following bound on Q(σ∗):

Q(σ∗) ≤ w(αA ∪ αB) + w(βA ∪ βB) + w(ζA ∪ ζB) + w(χA ∪ χB)
−
(
w(αAΔαB) + w(βA ∪ βB) + w(ζA ∩ ζB)

)
= w(αA ∩ αB) + w(ζAΔζB) + w(χA ∪ χB) (1)

The value of Q(σ) is as follows:

Q(σ) = w(ζA ∪ ζB ∪ χA ∪ χB) = w(ζA ∪ ζB) + w(χA ∪ χB) (2)
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Take any variable aj ∈ A. The utility of the associated player in the SE σ
is w(ζA

j ) + w(χA
j ). This utility becomes w(αA

j ) + w(χA
j ) if each player in the

coalition {aj , · · · , ar} sets his variable to false. By construction aj does not
benefit. Therefore w(ζA

j ) + w(χA
j ) ≥ w(αA

j ) + w(χA
j ) which is equivalent to

w(ζA
j ) ≥ w(αA

j ). Summing up this inequality for j = 1 to r and using Property
1, we obtain:

w(ζA) =
r∑

j=1

w(ζA
j ) ≥

r∑
j=1

w(αA
j ) ≥ w(αA) ≥ w(αA ∩ αB) (3)

One can conduct the same analysis and obtain:

w(ζB) =
s∑

j=1

w(ζB
j ) ≥

s∑
j=1

w(αB
j ) ≥ w(αB) ≥ w(αA ∩ αB) (4)

Using inequalities (3) and (4), we get:

w(ζA) + w(ζB) ≥ 2w(αA ∩ αB)
w(ζA) + w(ζB) + 2w(ζAΔζB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB)

2w(ζA ∪ ζB) + w(ζAΔζB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB)
3w(ζA ∪ ζB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB)

3w(ζA ∪ ζB) + 2w(χA ∪ χB) ≥ 2w(αA ∩ αB) + 2w(ζAΔζB) + 2w(χA ∪ χB)
3Q(σ) ≥ 2Q(σ∗)

A tight example is composed of three clauses of weight one: x1 ∨x2, x3 ∨x4 and
x1 ∨ x3. If σ(x1) = σ(x2) = true and σ(x2) = σ(x4) = false then σ is a SE
NAE-satisfying the first two clauses. Indeed the utility of x2 and x4 is maximum
in this configuration (every clause where they appear is NAE-satisfied) so they
have no incentive to deviate. So when σ(x2) = σ(x4) = false, it is not difficult
to see that both x1 and x3 have the same utility as in σ, whatever they play. If
σ(x1) = σ(x4) = true and σ(x2) = σ(x3) = false then the three clauses are
NAE-satisfied. ��

It follows that the SPoA of the max cut game is 2/3 (the tight example is made
of positive literals so it can be represented as an instance of max cut). When
restricting ourselves to instances of the nae sat game which admit a SE, the
proof of Theorem 4 can be extended to prove that the SPoA is q/(q + 1) if each
clause has size exactly q and 2/3 otherwise (it suffices to give adjusted proofs of
Properties 1 to 4).

5 The max k−cut Game

Given a graph G = (V, E) and a weight function w : E → R+, max k−cut is to
partition V into k sets V1, V2 . . . Vk such that the sum of the weight of the edges
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having their endpoints not in the same part of the partition is maximum. The
max k−cut game is defined as follows. Each vertex is controlled by a player
with strategy set {1, 2, . . . , k}. A player’s utility is the total weight of the edges
incident to her and such that her neighbor has a different strategy. The social
function Q for a state a is

∑
{[i,j]∈E:ai �=aj} w([i, j]).

The max k−cut game always has a pure Nash equilibrium since it can be
easily defined as a congestion game but an alternative proof is to observe that
an optimal k-cut is a NE (it is known that an optimum is a NE for max cut).
In [7] it is shown that the PoA of the unweighted max k−cut game is k−1

k and
one can easily extend the result to the weighted case.

Now we investigate the existence of a SE for the max k-cut game. The max

cut game (k = 2) always admits a SE since an optimal cut must be a SE. It is
a corollary of Theorem 2. When k ≥ 3, our positive result is that an optimal cut
of the max k-cut game is a 3-SE (proof by contradiction).

Theorem 5. Every optimum of the max k-cut game is a 3-SE.

The following result states that we can not go beyond r = 3 to prove that any
optimal cut is an r-SE.

Proposition 1. An optimum of the max 3-cut game is not necessarily a 4-SE.

Hence an optimum of the max k−cut game is not necessarilly a SE but the
existence of a SE is not compromised because the instance we found to state
Proposition 1 admits two optima, one is not a 4-SE whereas the other is a SE.

To conclude this section, one can be interested in bounding the SPoA of the
max cut game if only coalitions of limited size are conceivable, i.e. the q-SPoA.
The following result shows that, even if q is large, the q-SPoA drops to 1/2.

Theorem 6. For any ε > 0 and q = O(|V |1/2−ε) where |V | is the number of
nodes, the q−SPoA of the max cut game is 1/2.

6 Concluding Remarks

We investigated two games which generalize max cut and the focus was on
strong equilibria, their existence and how far they are from socially optimal
configurations. Some questions are left open.

For the q-nae sat game where q ≥ 3, we presented an instance without any
(q − 1)-SE but can we guarantee that there is an r-SE for some 1 < r < q − 1?
For example, is there a 2-SE when q ≥ 4? Another interesting direction would
be to characterize instances which possess a SE.

For the max k− cut game, we showed that a 3-SE exists but can we go
further? Though any optimum is not guaranteed to be a 4-SE, it is possible that
only some optima are 4-SE. Actually we conjecture that the max k− cut game
always possesses a SE. If it is true then what would the SPoA?
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Abstract. In this paper we consider altruism, a phenomenon widely
observed in nature and practical applications, in the prominent model
of selfish load balancing with coordination mechanisms. Our model of
altruistic behavior follows recent work by assuming that agent incen-
tives are a trade-off between selfish and social objectives. In particular,
we assume agents optimize a linear combination of personal delay of a
strategy and the resulting social cost. Our results show that even in very
simple cases a variety of standard coordination mechanisms are not ro-
bust against altruistic behavior, as pure Nash equilibria are absent or
better response dynamics cycle. In contrast, we show that a recently in-
troduced Time-Sharing policy yields a potential game even for partially
altruistic agents. In addition, for this policy a Nash equilibrium can be
computed in polynomial time. In this way our work provides new insights
on the robustness of coordination mechanisms. On a more fundamental
level, our results highlight the limitations of stability and convergence
when altruistic agents are introduced into games with weighted and lex-
icographical potential functions.

1 Introduction

One of the most fundamental scenarios in algorithmic game theory are selfish
load balancing models [19]. Since the seminal paper by Koutsoupias and Pa-
padimitriou [16] they have attracted a large amount of interest. The reasons are
central applications in distributed processing, conceptual simplicity, and that
they contain in a nutshell many prominent challenges in designing distributed
systems for selfish participants. A fundamental assumption in the vast major-
ity of previous work is that all agents are selfish. Their goals are restricted
to optimizing their direct personal delay. However, this assumption has been
repeatedly questioned by economists and psychologists. In experiments it has
been observed that participants’ behavior can be quite complex and contradic-
tive to selfishness [17, 18]. Various explanations have been given for this phe-
nomenon, e.g. senses of fairness [8], reciprocity among agents [13], or spite and
altruism [6, 18].
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In this paper, we consider altruism in non-cooperative load balancing games.
It is natural to study the effects of an important phenomenon like altruism in
a core scenario of algorithmic game theory. Our model of altruism is similar to
the one used recently in [3, 14] and related to the study of coalitional stability
concepts [10, 11], although we do not require agent cooperation in our model.
Instead, each agent i is assumed to be partly selfish and partly altruistic. Her
incentive is to optimize a linear combination of personal cost and social cost,
given by the sum of cost values of all agents. The strength of altruism of each
agent i is captured by her altruism level βi ∈ [0, 1], where βi = 0 results in a
purely selfish and βi = 1 in a purely altruistic agent.

We consider altruistic agents in various types of scheduling games resulting
from coordination mechanisms [4]. In these games agents are tasks, and each
task chooses to allocate one out of several machines. For a machine the coordi-
nation mechanism is a local scheduling policy that determines the schedule of
the tasks which choose to allocate the machine. Quite a number of policies have
been proposed [1, 2, 4, 5, 15], mostly with the objective to minimize the price of
anarchy [16] for makespan social cost. In addition to modelling a natural phe-
nomenon, altruistic agents yield a measure of robustness for these mechanisms.
Our results provide an interesting distinction between the studied policies in
terms of stability and convergence properties. In addition, they also shed some
light on an interesting and more fundamental aspect. Previously, we studied al-
truists in atomic congestion games [14], which have an exact potential function.
For atomic games, there are a number of special cases, in which a potential
function argument guarantees existence of pure Nash equilibria and convergence
of better response dynamics even for games with altruists. These cases include
games with linear delay functions, or β-uniform agents that all have the same
altruism level β. In this paper we analyze altruism in arguably the most ba-
sic games with weighted and lexicographical potential functions, and we expect
our results to hold similarly e.g. for other coordination mechanisms based on
lexicographical improvement arguments [2]. After addition of altruists, poten-
tial functions are largely absent here, even for identical machines or β-uniform
agents. In contrast, the very positive results for the Time-Sharing policy rely
on the existence of an exact potential for the original game and the construc-
tion is very similar to [14]. It is an interesting open problem to see if there is a
connection between these cases, or if a general characterization of the existence
of potential functions under altruistic behavior can be derived.

1.1 Our Results

We study altruistic agents with four different coordination mechanisms. At first
in Section 3 we consider the classic Makespan policy [16], which is probably the
most widely studied policy and yields a weighted potential function. For altru-
istic agents we show that this favorable property breaks down. There are games
without pure Nash equilibria, and deciding this property for a game is NP-hard,
even on identical machines. In Section 4 we study simple ordering based policies
like Shortest-First and Longest-First that yield a lexicographic potential
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for non-atruistic users [15]. While for Shortest-First on identical machines
existence of a pure Nash equilibrium is guaranteed even for arbitrary altruism
levels, the resulting games are no potential games as better response dynamics
might cycle. For Longest-First we addionally show that there are games with-
out pure Nash equilibria. Finally, in Section 5 we consider the Time-Sharing

policy introduced in [5]. While the policy is somewhat similar to Makespan, the
results are completely different. For this policy we show the existence of a poten-
tial function, even for arbitrary altruism levels and unrelated machines. Thus,
existence of pure Nash equilibria and convergence of better response dynamics is
always guaranteed. In addition, we show how to compute a Nash equilibrium in
polynomial time. Due to lack of space most proofs are omitted in this extended
abstract.

2 Scheduling with Coordination Mechanisms

We consider scheduling games with coordination mechanisms [4]. A scheduling
game G consists if a set N of n agents and a set M of m machines. Each agent
i ∈ N is a task and picks as a strategy the machine it wants to be processed
on. In the case of identical machines, task i has processing time pi on every
machine. In case of related machines there is a speed factor sj for machine j,
and the processing time of i on j becomes pi/sj. For unrelated machines there
is a separate processing time pij for every task i and machine j.

The strategy choices of the tasks result in a schedule s : N → M , an as-
signment of every task to exactly one machine. On each machine there is a
coordination mechanism, i.e. a sequencing policy that sequences the tasks and
assigns starting and finishing time for each task. We assume here that machines
cannot preempt tasks, but depending on the mechanism a machine might pro-
cess one or more tasks simultaneously. For a given sequencing policy SP on
the machines, we define the social cost of a schedule as cSP (s) =

∑
j fj(s),

where fj(s) is finishing time of task j in schedule s. To model altruism we
use for each task i the altruism level βi [3, 14]. If βi > 0, we call task i an
altruist. If βi = 1 we call task i a pure altruist, if βi = 0 we call him an ego-
ist. The individual cost of a task i incorporates the effect on the social cost:
cSP
i (s) = βic

SP (s) + (1 − βi)fi(s) = fi(s) + βi

∑
j �=i fj(s). A pure Nash equi-

librium of the game is a schedule, in which no task can decrease his individual
cost with a unilateral strategy change. Clearly, if all tasks are pure altruists,
then every game on unrelated machines has a pure Nash equilibrium and every
sequential better reponse dynamics converges.

3 Makespan and Random Policies

The first and most widely studied policy is the Makespan policy [16], in which
all tasks on one machine are processed simultaneously and finish at the same
time. In the Random policy [15] tasks are ordered in a random order and
then processed consecutively in this order. Obviously, Random and Makespan
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are equivalent in terms of (expected) finishing times on identical and related
machines.

Makespan induces a weighted potential game. Let �j =
∑

i : si=j pij be the
load of tasks choosing machine j. For identical machines the weighted potential
is Φ(s) =

∑m
j=1 �2

j . For a task i we have cMS
i (s) − cMS

i (s′i, s−i) = 1
pi

(Φ(s) −
Φ(s′i, s−i)). This potential is easily extended to related machines [7]. For the
Makespan policy it is shown in [9] that for a population of only egoists best re-
sponse dynamics can take O(2

√
n) steps to converge to a pure Nash equilibrium.

For identical machines there is a scheduling of tasks to reach a Nash equilib-
rium with better response dynamics in polynomial time. In addition, there are
polynomial time algorithms to compute Nash equilibria on related machines and
instances with link restrictions [9, 12].

Including altruists provides a quite different set of results. We observe that
even if there is only one altruist, existence of a pure Nash equilibrium is not
guaranteed.

Proposition 1. There is a game on two identical machines with the Make-

span or Random policy, one altruist, and appropriately many egoists that has
no pure Nash equilibrium.

Proof. Consider a game with two machines, one pure altruist with p1 = 5, and
four egoists with p2 = 10, p3 = p4 = p5 = 1. Assume there is a pure Nash
equilibrium. In an equilibrium, task 2 chooses a different machine than task 1.
The tasks 3, 4, and 5 choose a different machine than task 2. However, task p1
would choose the machine with only task 2, which leads to a contradiction. For
an altruist with general β1 > 0, we add approximately 1/β1 many egoists with
pi = 1 and scale p1 and p2 accordingly in order to preserve the argument. ��

In addition, we can show that it is NP-hard to decide if a pure Nash equilibrium
exists. The reduction is from Partition.

Theorem 2. It is weakly NP-hard to decide if a game on three identical ma-
chines with Makespan and one pure altruist has a pure Nash equilibrium.

Proof. We reduce from Partition. An instance I is given as (a1, . . . , an) ∈
Nn and I ∈ Partition if and only if ∃I ⊂ {1, . . . , n} with

∑
i∈I ai =∑

j∈{1,...,n}\I aj . We first reduce a given instance I = (a1, . . . , an) to an instance
I ′ = (a1, . . . , an, an+1, . . . , an+8) with an+1 = . . . = an+8 =

∑
i∈{1,...,n} ai.

Clearly I ∈ Partition if and only if I′ ∈ Partition.
In a second step we construct a scheduling game GI′ that has a pure Nash

equilibrium if and only if I ′ ∈ Partition. The game consists of three machines
and n + 8 + 2 tasks. The processing time pi of task 1 ≤ i ≤ n + 8 is ai. Task
n + 9 has processing time pn+9 =

∑
1≤j≤n+8 aj and task n + 10 has processing

time pn+10 = 1
2

∑
1≤j≤n+8 aj . All tasks are pure egoists except for task n + 10

who is a pure altruist.
If I ∈ Partition, there is an I ⊂ {1, . . . , n + 8} with

∑
i∈I ai =

1
2

∑
1≤j≤n+8 aj . Scheduling all tasks i ∈ I on machine one, all tasks j ∈
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{1, . . . , n + 8} \ I on machine two, and the remaining tasks n + 9 and n + 10 on
machine three is a pure Nash equilibrium. If I /∈ Partition, one can show that
there is no pure Nash equilibrium. ��

4 Policies with Global Ordering

Probably the simplest policy with global ordering is the Shortest-First policy,
in which each machine orders tasks shortest-first depending on their processing
time and processes them consecutively in this order. There is a lexicographic
potential [4, 15], and every better response dynamics in a game of only ego-
ists converges to a pure Nash equilibrium. In addition, there is a scheduling
of better response moves such that a Nash equilibrium is reached in polyno-
mial time [15]. In addition, for identical machines this pure Nash equilibrium
is essentially unique and coincides with the social optimum. This implies that
for identical machines and Shortest-First there always exists a pure Nash
equlibrium for any altruistic population of tasks.

Proposition 3. For a game on identical machines with Shortest-First policy
there is always a pure Nash equilibrium for any altruistic population of tasks.

For a population of pure altruists suboptimal Nash equilibria can evolve. This
means that the presence of altruists actually deteriorates the social cost of stable
solutions.

Proposition 4. The price of anarchy in scheduling games with Shortest-

First and only pure altruists is at least 9/8.

Let us further examine convergence properties of best-response dynamics. We
use the above game to construct a cycling sequence even for uniform altruists,
for any β ∈ (0, 1).

Theorem 5. Best-reponse dynamics do not converge to a pure Nash equilib-
rium, even for two identical machines with Shortest-First, for (1) three ego-
ists and one pure altruist; or (2) four β-uniform altruists, for every β ∈ (0, 1).

In the remainder of this section we briefly discuss another simple ordering policy,
namely Longest-First. For entirely egoistic populations this policy yields a
potential game for identical and related machines. It has recently been shown
that for three unrelated machines Longest-First does not guarantee a pure
Nash equilibrium [5]. When it comes to heterogeneous populations, it is possible
to show that even on identical machines pure Nash equilibria can be absent.

Theorem 6. There are games that have no pure Nash equilibrium on two iden-
tical machines with Longest-First policy and (1) one altruist, and five egosits;
or (2) six β-uniform altruists, for any β ∈ (0, 1/3).
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5 Time-Sharing Policy

In contrast to the previous results, we show here that there is a policy closely
related to Makespan and Shortest-First, for which stabilization is robust
against arbitrary altruistic behavior. The Time-Sharing policy is inspired by
generalized processor sharing. It has recently been studied as a coordination
mechanism in [5]. All tasks are started simultaneously, and all tasks are processed
in equal shares by the machine. When the smallest task is finished, the machine
is shared in equal parts by the remaining tasks, and so on. For a population
of only egoists the policy yields an exact potential function, even on unrelated
machines. The potential function can be rewritten as the sum of completion
times cSF (s) for the same assignment and the Shortest-First policy. This
turns out to be the sum of completion times cTS(s) for Time-Sharing with a
correction term. Using straightforward calculation it is possible to show

Φ(s) = cSF (s) =
1
2

(
cTS(s) +

∑
i

pi,si

)
.

This allows us to derive the following result.

Theorem 7. For any population of tasks on unrelated machines with the Time-

Sharing policy, a pure Nash equilibrium always exists and any better response
dynamics converges.

Proof. We can construct a weighted potential using Φ and add a set of correction
terms. This is essentially the same approach as for the case of linear delays in [14].
In particular, we get

Φw(s) = Φ(s)−
∑

i

pi,si ·
βi

1 + βi
=

1
2

(
cTS(s) +

∑
i

pi,si ·
1− βi

1 + βi

)
.

Suppose task i switches from si to s′i. We denote the resulting states by s and
s′ = (s′i, s−i). Then,

cTS
i (s)− cTS

i (s′) = (1− βi)(fi(s)− fi(s′)) + βi(cTS(s)− cTS(s′))
= (1− βi)(Φ(s) − Φ(s′)) + βi(cTS(s)− cTS(s′))

=
1 + βi

2
· (cTS(s)− cTS(s′)) +

1− βi

2
· (pi,si − pi,s′

i
)

= (1 + βi) · (Φw(s)− Φw(s′)) . ��

This implies existence of pure Nash equilibria and convergence of every better
response dynamics. In addition, we show that computing a Nash equilibrium can
be done in polynomial time.

Theorem 8. For any population of tasks on unrelated machines with the Time-

Sharing policy, a pure Nash equilibrium can be computed in polynomial time.
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Abstract. We study the strategic behavior of risk-neutral non-myopic
agents in Dynamic Parimutuel Markets (DPM). In a DPM, agents buy or
sell shares of contracts, whose future payoff in a particular state depends
on aggregated trades of all agents. A forward-looking agent hence takes
into consideration of possible future trades of other agents when making
its trading decision. In this paper, we analyze non-myopic strategies in a
two-outcome DPM under a simple model of incomplete information and
examine whether an agent will truthfully reveal its information in the
market. Specifically, we first characterize a single agent’s optimal trading
strategy given the payoff uncertainty. Then, we use a two-player game
to examine whether an agent will truthfully reveal its information when
it only participates in the market once. We prove that truthful betting
is a Nash equilibrium of the two-stage game in our simple setting for
uniform initial market probabilities. However, we show that there exists
some initial market probabilities at which the first player has incentives
to mislead the other agent in the two-stage game. Finally, we briefly
discuss when an agent can participate more than once in the market
whether it will truthfully reveal its information at its first play in a
three-stage game. We find that in some occasions truthful betting is
not a Nash equilibrium of the three-stage game even for uniform initial
market probabilities.

1 Introduction

Prediction markets are used to aggregate dispersed information about uncertain
events of interest and have provided accurate forecasts of event outcomes, often
outperforming other forecasting methods, in many real-world domains [1,2,3,4,
5,6,7,8]. To achieve its information aggregation goal, a prediction market for an
uncertain event offers contracts whose future payoff is tied to the event outcome.
For example, a contract that pays off $1 per share if there are more than 6,000
H1N1 flu cases confirmed in U.S. by August 30, 2009 and $0 otherwise can be
traded to predict the likelihood of the specified activity level of H1N1 flu.

Most market mechanisms used by prediction markets, including continuous
double auctions (CDA) and market scoring rules (MSR) [9, 10], trade contracts
whose payoff in each state is fixed, as in the above example. Contracts in dynamic
parimutuel markets (DPM) [11,12], however, have variable payoff that depends

� Part of this work was done while Qianya Lin was visiting Harvard University.
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on the aggregated trades of all market participants. The payoff uncertainty makes
DPM a mechanism that admits more speculation and strategic play.

As the goal of prediction markets is to aggregate information, it is important
to understand whether and how participants reveal their information in the mar-
ket. In this paper, we study the strategic behavior of risk-neutrual non-myopic
agents in a two-outcome DPM under a simple setting of incomplete information,
with the intent to understand how forward-looking agents reveal their informa-
tion in DPM and whether they will reveal their information truthfully. We first
characterize a single agent’s optimal trading strategy given payoff uncertainty.
Then, we consider a two-player two-stage dynamic game where each player only
participates once in DPM, to examine whether the first player has incentives to
misreport its information to mislead the second player and obtain higher profit
even if it can only play once. We prove that truthful betting is a Nash equilib-
rium of the two-stage game for uniform initial market probabilities. We show
that there exists some initial market probabilities at which the first player has
incentives to mislead the other agent in the two-stage game. Finally, we discuss
a three-stage game in which an agent can participate more than once. we find
that the truthful betting is not a Nash equilibrium of the three-stage game in
some occasions even for uniform initial market probabilities.

Related Work. Chen et al. [13] provide a specific example of a two-player two-
stage game in DPM where the second player is perfectly informed and show that
the first player may sometimes choose not to trade. Our work does not assume
perfectly informed agents and we characterize non-myopic strategies in more
general settings. The example of Chen et al. is a special case of our results for
the two-player two-stage game. Nikolova and Sami [14] use a projection game
to study DPM. They show that a rational agent will never hold shares of both
outcomes in a two-outcome DPM when short sales are not allowed. This is
consistent with our characterization of a single agent’s optimal strategy given
payoff uncertainty. Bu et al. [15] study the strategies of a myopic agent who
believes that the contract payoff in the future is the same as the payoff if the
market closes right after the agent’s trade in a DPM. Our work focuses on
forward-looking agents who take into consideration of the payoff uncertainty
when making their trading decisions.

Some theoretical attempts have been made to characterize non-myopic strate-
gies in other markets, including logarithmic market scoring rule (LMSR) [13,16,
17], financial markets (i.e. CDA) [18, 19, 20], and parimutuel markets [21]. In
all these markets, agents may have incentives to misreport their information.
Ostrovsky [22] provides a separability condition that contracts need to satisfy
to guarantee market convergence to full information aggregation at a perfect
Bayesian equilibrium in LMSR and CDA.

2 Dynamic Parimutuel Markets

A dynamic parimutuel market (DPM) [11, 12] is a dynamic-cost variant of
a parimutuel market. Suppose an uncertain event of interest has n mutually



Gaming Dynamic Parimutuel Markets 625

exclusive outcomes. Let Ω denote the outcome space. A DPM offers n contracts,
each corresponding to an outcome. As in a parimutuel market, traders who wager
on the true outcome split the total pool of money at the end of the market. How-
ever, the price of a single share varies dynamically according to a price function,
hence incentivizing traders to reveal their information earlier.

DPM operates as a market maker. Let qω be the total number of shares of
contract ω that have been purchased by all traders. We use q to denote the
vector of outstanding shares for all contracts. The DPM market maker keeps a
cost function, C(q) =

√∑
ω∈Ω q2

ω , that captures total money wagered in the
market, and an instantaneous price function for contract ω, pω = qω√∑

ψ∈Ω q2
ψ

.

A trader who buys contracts and changes the outstanding shares from q to q̃
pays the market maker C(q̃) − C(q). The market probability on outcome ω

is πω = q2
ω∑

ψ∈Ω q2
ψ

. In DPM, market price of a contract does not represent the

market probability of the corresponding state. Instead, πω = p2
ω.

If outcome ω is realized, each share of contract ω gets an equal share of the

total market capitalization. Its payoff is oω =

√∑
ψ∈Ω (qf

ψ)2

qf
ω

, where qf
ω is the

outstanding shares of contract ω at the end of the market. All other contracts
have zero payoff. As the value of qf is not known before the market closes, oω

is not fixed while the market is open. The relation of the final market price,
final market probability, and the contract payoff when outcome ω is realized,
is oω = 1

pf
ω

= 1√
πf

ω

, where pf
ω and πf

ω denote the last market price and market

probability before the market closes.
As a market maker mechanism, DPM offers infinite liquidity. Because the price

function is not defined when q = 0, the market maker subsidizes the market by
starting the market with some positive shares. The subsidy turns DPM into a
positive-sum game and can circumvent the no-trade theorem [23] for zero-sum
games. Tech Buzz Game [12] used DPM as its market mechanism and market
probabilities in the game have been shown to offer informative forecasts for the
underlying events [24].

3 Our Setting

We consider a simple incomplete information setting for a DPM in this paper.
There is a single event whose outcome space contains two discrete mutually
exclusive states Ω = {Y, N}. The eventual event outcome is picked by Nature
with prior probability P(Y ) = P(N) = 1

2 . The DPM offers two contracts, each
corresponding to one outcome. There are two players in the market. Each player i
receives a piece of private signal ci ∈ {yi, ni}. The signal is independently drawn
by Nature conditional on the true state. In other words, signals are conditionally
independent, P(ci, cj |ω) = P(ci|ω)P(cj |ω). The prior probabilities and the signal
distributions are common knowledge to all players.

We further assume that player’s signals are symmetric such that P(yi|Y ) =
P(ni|N) for all i. With this, we define the signal quality of player i as θi =
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P(yi|Y ) = P(ni|N). The signal quality θi captures the likelihood for agent i
to receive a “correct” signal. Without loss of generality, we assume θi ∈ (1

2 , 1].
The above conditions, together with conditional independence of signals, imply
that for two players i and j we have P(Y |ci, yj) > P(Y |ci, nj), P(N |ci, nj) >
P(N |ci, yj), P(yi|yj) > P(ni|yj), and P(ni|nj) > P(yi|nj) for ci ∈ {yi, ni}.

Short sell is not allowed in the market. Agents are risk neutral and participate
in the market sequentially. We also assume that they do not possess any shares
at the beginning of the market and have unlimited wealth.

4 Optimal Trading Strategy of a Single Agent

We first consider a single agent’s optimal trading strategy given the payoff uncer-
tainty in DPM. We assume that the agent only trades once in DPM. Let P(ω, s)
be the agent’s subjective probability that the event outcome will be ω and the
set of information available to the last trader is s. The market probability at the
end of the market will reflect all available information. Hence the final price for
contract ω when s is available is πf

ω(s) = P(ω|s).
The agent compares the current price of a contract, pω, with its expected

future payoff. Note that the future payoff of contract ω in state ω only relates to
the final market probability πf

ω and does not relate to the process of reaching it.
The expected future payoff of contract ω is ϕω =

∑
s

P(ω,s)√
πf

ω(s)
=
∑

s
P(ω,s)√
P(ω|s)

=∑
s P(s)

√
P(ω|s). We have the following lemma.

Lemma 4.1.
∑

ω ϕ2
ω ≤ 1.

Suppose the agent purchases Δq and changes the outstanding shares from q
to q̃ = q + Δq. The market prices before and after the trade are p and p̃
respectively. Theorem 4.2 characterizes the agent’s optimal purchases when it
attempts to maximize its expected profit.

Theorem 4.2. In a two-outcome DPM, if a risk-neutral agent maximizes its
expected profit by purchasing Δq ≥ 0, the following conditions must satisfy:

1. For any contract ω, if pω < ϕω, then Δqω > 0 and p̃ω = ϕω.
2. For any contract ω, if pω > ϕω, then p̃ω ≥ ϕω and when the inequality is

strict, Δqω = 0.
3. For any contract ω, if pω > ϕω, p̃ω = ϕω, and Δqω > 0, there exists an

equivalent Δq′ ≥ 0 with Δq′ω = 0 that satisfies conditions 1 and 2 and have
the same expected profit as Δq.

4. If pY > ϕY and pN > ϕN , Δq = 0.

Theorem 4.2 means that, in a two-outcome DPM, when
∑

ω ϕ2
ω < 1, the optimal

strategy for an agent is to buy shares of the contract whose current price is lower
than its expected payoff and drive its price up to its expected payoff. When∑

ω ϕ2
ω = 1, it’s possible to achieve the desired market prices by purchasing both

contracts, but this is equivalent, in terms of expected profit, to the strategy that
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only purchases the contract whose current price is lower than its expected payoff.
Thus, the optimal strategy of an agent is to buy shares for the contract whose
current price is too low. We now give the optimal shares that an agent would
purchase and its optimal expected profit in the following theorem.

Theorem 4.3. In a two-outcome market, when qω√
q2

ω+q2
ω̄

< ϕω ≤ 1, a trader

with expected payoff ϕω for contract ω will purchase Δq∗ω = ϕω√
1−ϕ2

ω

qω̄ − qω

to maximize his expected profit, where qω is the current outstanding shares for
outcome ω in the market, and qω̄ is the outstanding shares for the other outcome.
His optimal expected profit is U(Δq∗ω) =

√
q2
ω + q2

ω̄ − qωϕω − qω̄

√
1− ϕ2

ω. When
qω√

q2
ω+q2

ω̄

> ϕω and qω̄√
q2

ω+q2
ω̄

> ϕω̄, the trader does not purchase any contract.

Because of the payoff uncertainty, an agent who only trades once in DPM will
not change the market price to its posterior probability as in CDA or MSR,
but will change the market price to (ϕY ,

√
1− ϕ2

Y ) if purchasing contract Y

and to (
√

1− ϕ2
N , ϕN ) if purchasing contract N . The corresponding market

probabilities are (ϕ2
Y , 1− ϕ2

Y ) and (1− ϕ2
N , ϕ2

N ) respectively. It is possible that
the agent’s optimal strategy is to not trade in the market. This happens when
the current price qω√

q2
ω+q2

ω̄

is greater than ϕω for all ω.

5 Two-Player Games

When analyzing a single agent’s optimal strategy in the previous section, we
do not consider the possibility that the agent’s behavior may affect the set of
information available to later traders. In DPM, as agents can infer information
of other agents from their trading decisions, an agent who plays earlier in the
market may mislead those who play later and affects the information sets of the
later traders. In this section, we use two-player games to study this issue.

5.1 Two-Player Two-Stage Game

We first consider a two-player two-stage game, the Alice-Bob game, to examine
whether an agent will try to affect the expected contract payoff by misreporting
its own information. In the Alice-Bob game, Alice and Bob are the only players
in the market. Each of them can trade only once. Alice plays first, followed by
Bob. We are interested in whether there exists an equilibrium at which Alice fully
reveals her information in the first stage if she trades and Bob infers Alice’s infor-
mation and acts based on both pieces of information in the second stage. In par-
ticular, at the equilibrium, when having signal cA ∈ {yA, nA}, Alice believes that
ϕω(cA) =

∑
cB

P(cB |cA)
√

P(ω|cA, cB) and plays her optimal strategy according
to Theorem 4.3. Bob with signal cB believes that ϕω(cA, cB) =

√
P(ω|cA, cB)

if Alice trades in the first stage and ϕω(cB) =
√

P(ω|cB, Alice doesn’t trade) if
Alice doesn’t trade, and plays his optimal strategy according to Theorem 4.3.
We call such an equilibrium a truthful betting equilibrium. Note that the truthful
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betting equilibrium does not guarantee full information aggregation at the end
of the game, because if Alice does not trade her information is not fully revealed.
Since we are interested in the strategic behavior of agents, we also assume that
ϕω(yA) �= ϕω(nA) to rule out degenerated cases.

In the rest of this section, we show that truthful betting equilibrium exists
when the initial market probability is uniform, but does not exist with some
other initial market probabilities.

Truthful Betting Equilibrium. We assume that the market starts with uni-
form initial market probability, i.e. πY = πN = 1

2 . This means that the initial
market prices are pY = pN = 1√

2
. As signals are symmetric, we have the follow-

ing lemma.

Lemma 5.1. Suppose all information is revealed after Bob’s play. Alice’s ex-
pected payoff for contract Y when she has signal yA equals her expected payoff for
contract N when she has signal nA. That is, ϕY (yA) = ϕN (nA), where ϕY (yA) =∑

cB
P(cB|yA)

√
P(Y |cB , yA) and ϕN (nA) =

∑
cB

P(cB|nA)
√

P(N |cB, nA).

We use ϕ to denote both ϕY (yA) and ϕN (nA). Theorem 5.2 characterizes the
truthful betting equilibrium for the game with uniform initial market probability.

Theorem 5.2. In a two-outcome DPM with uniform initial market probability,
truthful betting is a Bayesian Nash equilibrium for the Alice-Bob game. At the
equilibrium, Alice does not trade if ϕ ≤ 1√

2
. If ϕ > 1√

2
, Alice purchases contract

Y and changes the price for Y to ϕ if she has yA, and purchases contract N
and changes the price for N to ϕ if she has nA. If Alice trades, Bob infers her
signal and changes the market probability to the posterior probability conditional
on both signals. If Alice does not trade, Bob changes the market probability to
the posterior probability conditional on his own signal.

Fig. 1. Signal Qualities and
Alice’s Expected Payoff

Figure 1 plots the iso-value lines of ϕ as a
function of θA and θB. The leftmost curve is
ϕ(θA, θB) = 1√

2
. The value of ϕ increases as

the curve moves toward the right. As the initial
market price is 1√

2
for both outcomes, the curve

ϕ(θA, θB) = 1√
2

gives the boundary that at the
equilibrium Alice trades in the first stage. The
shaded area gives the range of signal qualities
that Alice is better off not trading at the equi-
librium. When θB = 1, that is Bob is perfectly
informed, Alice won’t trade if her signal quality
θA is less than 1√

2
. This is consistent with the

example given by Chen et al. [13].

Non-existence of the Truthful Betting Equilibrium. In Alice-Bob game,
truthful betting is not a Nash equilibrium for arbitrary initial market probability.
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Theorem 5.3. In a two-outcome DPM, there exists some initial market proba-
bilities where truthful betting is not a Nash equilibrium for the Alice-Bob game.

The intuition is that if the initial market price for one contract is very low that
Alice will purchase the the contract no matter which signal she gets, Alice may
pretend to have a different signal by purchasing less when she should buy more
if being truthful. If Bob is mislead, this increases the expected payoff per share
of the contract and hence can increase Alice’s expected total profit even if she
purchases less. This is very different from other market mechanisms. In both
CDA and MSR, if a player only plays once in the market, disregard of whether
there are other players behind it, the player will always play truthfully.

5.2 Two-Player Three-Stage Game

In the Alice-Bob game, Alice may not play truthfully in order to mislead Bob
and achieve a higher expected payoff per share, but she does not directly make
profits from Bob’s uninformed trades. Now we consider a three-stage game, the
Alice-Bob-Alice game, where Alice can play a second time after Bob’s play.
Truthful betting equilibrium in this game means that both players play their
truthful betting equilibrium strategies of the Alice-Bob game in the first two
stages and Alice does nothing in the third stage. Clearly, if Alice has incentives
to deviate from truthful betting in the Alice-Bob game, she will also deviate in
the Alice-Bob-Alice game, because playing a second time allows Alice to gain
more profit by capitalizing on Bob’s uninformed trades. Even for settings where
truthful betting is a Bayesian Nash equilibrium for the Alice-Bob game, a truth-
ful betting equilibrium may not exist for the Alice-Bob-Alice game. For example,
with uniform initial market probability, if θA = 0.6, θB = 0.8 and Alice has yA,
Alice is better off pretending to have nA given Bob believes that she plays truth-
fully. In contrast, in LMSR when agents have conditionally independent signals,
truthful betting is the unique perfect Bayesian equilibrium [13,17].

6 Conclusion

Using a simple setting of incomplete information, we show that DPM admits
more gaming than several other prediction market mechanisms due to its payoff
uncertainty. We show that even when a player only participates once in the
market, e.g. in an Alice-Bob game, it still has incentives to bluff and pretend to
have a different signal. The bluffing behavior exists more generally when traders
participate the market more than once.
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Abstract. We argue that users in social networks are strategic in how
they post and propagate information. We propose two models — greedy
and courteous — and study information propagation both analytically
and through simulations. For a suitable random graph model of a
social network, we prove that news propagation follows a threshold phe-
nomenon, hence, “high-quality” information provably spreads through-
out the network assuming users are “greedy”. Starting from a sample
of the Twitter graph, we show through simulations that the threshold
phenomenon is exhibited by both the greedy and courteous user models.

1 Introduction

Online social networks have become an increasingly popular medium for sharing
information such as links, news and multimedia among users. The average Face-
book user has 120 friends, and more than 30 million users update their status
at least once each day [2]. More than 5 billion minutes are spent on Facebook
each day (worldwide). As a direct consequence of these trends, social networks
are fast overtaking traditional web as the preferred source of information [1].

In the early days of social networks, users tended to post predominantly per-
sonal information. Such information typically did not spread more than one hop,
since only immediate friends were interested in it. Over time, online social net-
works have metamorphosed into a forum where people post information such as
news that they deem to be of common interest. For example, during the recent
Iran elections, traditional news media acknowledged the power and influence of
social networks such as Twitter [3, 4].

Prior work has studied various aspects of information sharing on social net-
works. Domingos and Richardson studied the question of how to determine the
set of nodes in a network that will most efficiently spread a piece of information
for marketing purposes [5, 6]. Kempe, Kleinberg and Tardos proposed a dis-
crete optimization formulation for this. Several recent studies focused on gather-
ing intuition about influence spread from real-world data [9]. In [13], Leskovec,
Singh and Kleinberg studied the patterns of cascading recommendations in social
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networks by looking at how individuals recommend the products they buy in an
online-retailer recommendation system. In [10], Leskovec, Backstorm and Klein-
berg developed a framework for the dynamics of news propagation across the
web. Morris studied games where each player interacts with a small set of neigh-
bors [16]. He proved conditions under which the behavior adopted by a small set
of users will spread to a large fraction of the network.

An aspect that has been overlooked so far is to understand why users post
information such as news or links on social networks. In this paper, we posit that
users in a social network have transitioned from being passive entities to strategic
users who weigh in various factors (such as how interested their friends will be
in the news) to decide whether to post. This trend leads to several interesting
questions, such as: What factors do users consider when deciding whether to
post an item? How does information diffuse over the social network based on
user strategies.

Our main result states that, assuming strategic users, the spread of news
over an online social network exhibits a threshold behavior : The news spreads
to a significant fraction of the network if its “quality” is larger than a certain
threshold that depends on how aggressive users are about posting news. If the
quality is smaller than this threshold, only a sub-linear number of nodes in the
the network post the news.

The key contributions of this paper are:

1. We initiate the study of information propagation in social networks assuming
strategic users.
2. We propose two models for strategic user behavior, greedy and courteous.
3. Assuming social networks can be modeled as certain random graphs, we prove
that there is a threshold behaviorwhen greedy users fully disseminate information.
4. We present a simulation study based on a real graph crawled from the Twitter
social network, and show that the threshold phenomenon holds in both strategic
models of user behavior.

In what follows, we provide a detailed description of our results. We start by
defining the user model.

2 Strategic User Model

We propose a simple game to model the behavior of users posting news on social
networks like Twitter and Facebook. For a particular user u in the network,
whenever u first sees a previously unseen news item, she has the option of either
posting it or not posting it. Her utility is 0 if she does not post it. If she does,
then her utility depends on (i) The set Iu = {Neighbors who are interested in
the news} and (ii) The set Su = {Neighbors who, u knows, have already seen the
news before}.1 Let Nu denote the set of u’s neighbors. We propose two particular
forms for her utility:
1 u might not know the true set of neighbors who have seen the news. She knows that

a friend has seen the news only if a mutual friend posted it. This also means that
we assume that every user knows which of her friends are themselves friends.
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Greedy Strategy: The utility is additive and for every neighbor who likes the
news (irrespective of whether the neighbor has seen it before or not), she gets
utility +a and for every neighbor who does not, she gets utility −b. In this case,
her decision to post only depends on a,b and fu = |Iu|

|Nu| . User u posts only if
her utility is positive, that is, the fraction f of users who like the news satisfies
a · fu − b(1 − fu) > 0 ⇐⇒ fu > b

a+b . Let us define t = b
a+b . In Section 4, we

analyze this behavior and show that it depends critically on t.

Courteous Strategy: The main difference from the greedy strategy is that the
user does not want to spam her friends. We model this by saying that if more
than a c fraction of her friends have already seen the news before, she gets a
large negative utility, when she posts the item. If a user does not post an item,
then her utility is 0. In case the fraction |Su|

|Nu| ≤ c, then her utility is the same
as in the greedy case. In particular, she gets utility +a for every neighbor who
likes the news and has not seen it before (the set Iu \Su), and she gets utility −b
for every neighbor who does not like it (the set Ic

u \ Su). Hence, her strategy in
this case is to post if the fraction of neighbors who have seen the news |Su|

|Nu| ≤ c

and if the fraction
(
fu = |Iu\Su|

|Nu\Su|

)
of neighbors in Sc

u who are interested in the
news is ≥ t. Note that, in this utility function, if a larger number of the user’s
neighbors have posted the news, she is less likely to post it. In section 5, we show
simulation results for this behavior on a small sample of the Twitter Graph.

3 Notation and Preliminaries

Given a real symmetric matrix P with 0 ≤ pi,j ≤ 1, denote by G(n, P ) a random
graph where edge (i, j) exists with probability pi,j . For notational convenience
we shall denote by WP = (V, EP ) the deterministic weighted graph with V as
the vertex set and P as its adjacency matrix. Note that pi,j gives the weight of
edge (i, j) in WP .

Leskovec et al show that social graphs, such as Autonomous Systems on the
Internet, the citation graph for high energy physics from arXiv, and U.S. Patent
citation database, can be modeled well using Stochastic Kronecker Graphs [11].
G(n, P ) is a generalization of Stochastic Kronecker Graphs [11, 14] as well as
the Erdõs and Rènyi model of Random Graphs G(n, p) [7], and the model of
random graphs with a given degree sequence [15]. In the following subsection,
we prove properties of the graph G(n, P ) that will be used in the next section
to analyze when a certain news spreads across the network.

3.1 Properties of G(n,P)

Definition 1 (Density of a cut). Given a graph G = (V, E), define the density
of the cut (S, V − S) as |E(S,V −S)|

|S||V −S| where E(S, V − S) denotes the set of edges
between S and V − S. The partition (S, V − S) that minimizes this density is
called the Sparsest Cut in the graph.



News Posting by Strategic Users in a Social Network 635

Definition 2 (α-balanced cut). Given a graph G = (V, E) and a cut (S, V −
S), the cut is α-balanced if and only if min{|S|, |V − S|} ≥ α|V |.

Hence, by a sparsest α-balanced cut we mean the cut with the minimum density
over all cuts that are α-balanced. We start with a lemma from Mahdian and
Xu [14] that proves when G is connected.

Lemma 3. If the size of the min-cut in WP is > c log n, then with high proba-
bility, the sampled graph G ∼ G(n, P ) is connected.2

Given U ⊆ V , we shall denote by G[U ] the subgraph induced by U . The induced
subgraph of WP is denoted by WP [U ]. The following lemma gives a sufficient
condition on the existence of a giant component in the graph G(n, P ).

Lemma 4. If there exists U ⊆ V , of size Θ (n), such that the sparsest α-balanced
cut of WP [U ] has density > c

|U| , then there is a giant connected component in
G[U ] of size Θ (n) with high probability.

4 Analysis of a Model for Strategic User Behavior

We analyze the greedy strategy defined in Section 2 when it is played over a
random graph G(n, P ) = (V, E). Our results also apply to Stochastic Kronecker
Graphs.3 According to this model, a user posts only if the fraction of interested
neighbors is > t. We assume that for a given news, each user in the network
likes it with probability q, which is independent of everything else. Probability
q could model the quality of the news item or the inherent interest the subject
generates.4 Throughout, we assume that q and t are constants that do not depend
on the number of nodes n.

We color nodes in G yellow if they are interested in the news and blue if they
are not. A yellow node is responsive if more than a t fraction of its neighbors
are interested in the news. Color responsive nodes red. We denote these sets by
Y, B and R, respectively. Note that R ⊆ Y . G[R] is the graph induced by the
red vertices. We are interested in the structure of the graph G[R]. We prove the
following results in the next two subsections :

Proposition 5. Suppose G(n, P ) is such that the min-cut in WP is of weight
≥ c logn and that log n random nodes in the network initially see the news. If
q > t, with high probability, almost all nodes interested in the news will post it.
On the other hand, if q < t then only a sub-linear number of the vertices will
post the news.

Next, we give a condition on the sparsity of G, which gives a weaker result on
the spread of the news.
2 Throughout this paper, with high probability means with probability 1 − o(1).
3 Due to space constraints, we leave the formal statement of the result and the proof

of this claim to the Technical Report [8].
4 It is an interesting question to relax this assumption, since in a typical social network

we might expect nodes with similar interests to be clustered together.
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Proposition 6. Suppose G(n, P ) is such that the sparsest α-balanced cut in
WP has density ≥ c/n and that log n random nodes in the network initially see
the news. If q > t then, with high probability, a constant fraction of the nodes
interested in it will post it.

4.1 The Connectedness of G[R]

We prove Proposition 5 in this subsection. Throughout this section, we shall
assume that G ∼ G(n, P ) where P is such that the min-cut of WP has weight
≥ c log n, for a large enough constant c. We start by looking at what happens
to the min-cut in the sampled graph.

Lemma 7. With high probability, the min-cut of the subgraph G[Y ] of G induced
by the yellow vertices has size > c′ log n for some constant c′.

Now, we shall prove the main theorem of this section. We prove that G[R] is
connected by using the fact that its min-cut is large.

Theorem 8. If q > t and G ∼ G(n, P ) where P is such that the min-cut of WP

has weight ≥ c log n, then, with high probability, every vertex in Y also belongs
to R and so G[R] is connected. When q < t, then, with high probability G[R]
only contains o(n) vertices.

Proof. Let Yq be a random variable that takes value 1 with probability q and 0
otherwise. For a node v, let d(v) denote its degree in G.

Case 1: q > t : Pr [v /∈ R] = Pr
[∑d(v)

i=1 Yq < qd(v)− (q − t)d(v)
]

≤ exp
(
− ((q−t)d(v))2

2·q·d(v)

)
≤ n− (q−t)2c

2·q . This follows from Chernoff Bounds and the
facts that Yq are independent, E[Yq] = q and d(v) ≥ c log n. We apply the union

bound to get that with probability ≥ 1−n1− (q−t)2c
2·q ≥ 1−1/n (when c > 2q

(q−t)2 )
all nodes in Y also belong to R and, from Lemmas 3 and 7, we get that G[R] is
connected.

Case 2: q < t : Pr [v ∈ R] = Pr
[∑d(v)

i=1 Yq ≥ qd(v) + (t− q)d(v)
]

≤ exp
(
− ((t−q)d(v))2

2(qd(v)+(t−q)/3)

)
≤ n− (t−q)2c

t . Hence, E[|R|] ≤ |Y | · n− (t−q)2c
t ≤ o(n).

So, R only contains a sub-linear number of nodes of G.

Proof (of Proposition 5). If q < t, then the proposition follows directly from
Theorem 8. When q > t, Theorem 8 tells us that G[R] is connected. If any
node in R receives the news, it will be propagated to all the nodes. However,
the probability that none of the nodes in R get the news is ≤ (1 − |R|

n )log n =
O(n−q) = o(1). Hence, with high probability, almost all the nodes interested in
the news post it.

In the next subsection, we shall identify conditions on the distribution from
which G is sampled, which are enough to show when a constant fraction of the
nodes who are interested in the news actually receive it.
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4.2 Existence of a Giant Component in G[R]

We now prove Proposition 6. In this section, we shall assume that G ∼ G(n, P ),
where P is such that the sparsest α-balanced cut of WP has density ≥ c/n. We
prove that the size of the sparsest-cut in G[Y ] is not small.

Lemma 9. Consider the subgraph G[Y ] induced by the yellow vertices. With
high probability, G[Y ] has a subgraph of size Θ (n) whose sparsest α-balanced cut
has density ≥ c′

|Y | ≥
c′
n , for some constant c′.

Theorem 10. Let G be a random graph sampled from the distribution G(n, P )
where the density of the sparsest α-balanced cut in the graph WP is greater than
c/n. If q > t, then every yellow node is red with probability > 1 − εc. Further,
the induced graph G[R] has a giant connected component of size Θ(n) with high
probability.

Proof. Let Yq be a random variable that takes value 1 with probability q and 0
otherwise. Let us denote the degree of node v by d(v). Since (v, V \ v) is a cut,

d(v)
1·(n−1) ≥

c
n =⇒ d(v) ≥ c.

For v ∈ Y, Pr [v /∈ R] = Pr
[∑d(v)

i=1 Yq < qd(v)− (q − t)d(v)
]

≤ exp
(
− ((q−t)d(v))2

2·q·d(v)

)
≤ e−

(q−t)2c
2·q = εc. Hence, a constant fraction f ≥ 1 − εc

of the vertices in Y belong to R. From this and from Lemmas 4 and 9, we can
prove that G[R] also has a giant connected component with high probability.

Proof (of Proposition 6). By Theorem 10, G[R] contains a giant component C
of size (1− εc)n. If any node in C receives the news, it will be propagated to all
the nodes in C. However, the probability that none of the nodes in C get the
news is ≤ (1− εc)log n = o(1). Hence, a constant fraction of the nodes interested
in the news actually receive it with high probability.

5 Simulation Results

In this section, we present results from the simulation of our two strategic user
models over a partial crawl of the Twitter social network.5

The dataset is obtained by means of a partial crawl of the Twitter social
network. Since we are interested in link postings by typical users, we remove
hubs (users with more than 500 friends) from our graph. The resulting graph
we use in our experiments consists of 5978 users with 110152 directed friendship
edges. Each simulation starts with a set of seed nodes (of size log n), and in
each round, nodes decide whether to post the link using one of the two models
described earlier in the paper.

We define coverage as the fraction of interested users who get to see the
news item. Figure 1 plots how the coverage varies for the greedy and courteous

5 All the data was obtained in accordance with Twitter’s terms of use.
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(a) Greedy strategy: The coverage ex-
hibits a step behavior when q = t.

(b) Courteous strategy. (q = 0.5). The
coverage decreases logarithmically as
the user is more courteous.

Fig. 1. Coverage of greedy and courteous strategies. q is the probability with which
each user likes the link. t and c are the thresholds for the greedy and the courteous
strategies, respectively.

strategies. For the courteous strategy, we fixed q = 0.5. Each simulation was
repeated 10 times, and the standard deviations are indicated in the form of
error bars.

Greedy Strategy: Figure 1(a) shows that, for all values of q, the coverage
exhibits a step behavior and the step happens around q = t, which is consistent
with Theorem 10. For different values of q, the percentage of coverage decreases
with q. This is true even when t = 0, which means that the size of the connected
components drops when we sample the graph. The Densification Power Law
(E α Nk) [12] that has been observed in other social networks would predict
this behavior.

Courteous Strategy: Figure 1(b) shows the effect of the courteous strategy
on the coverage. The parameter c indicates the threshold of neighbors that have
already seen the link. A courteous user posts the link only if less than c fraction
of neighbors have already seen the link. The figure shows that the coverage
decreases logarithmically as the user is more courteous. This means that even
when the users are courteous, if q > t then, news can still reach a reasonable
fraction of the graph.

6 Conclusion and Future Work

We proposed the model of strategic user behavior in online social networks for
news posting, defined two user models (greedy and courteous), presented formal
analysis of the greedy model and simulated both models on the data set we
collected from Twitter. We propose the following directions:

Mine the Twitter data set: Search for patterns in the way users post news links
in order to validate the model and provide further insights about user strategies
over social networks.
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Analyse the Courteous Strategy and Multiple Strategies: We leave open a formal
proof that the courteous strategy also exhibits threshold behavior. Further, we
want to test whether similar results hold in a social network in the presence of
multiple user strategies.

Design a framework for advertisement on online social networks of strategic
users: We believe that the strategic user model has applications in advertis-
ing and marketing. We plan to investigate incentive schemes for marketeers to
encourage strategic users to advertise products over social networks.
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Definition 10000 . We say a proper scoring rule provides incentive c if the agent
cannot guarantee within c of the optimal expected payment by giving some con-
stant dummy report r. (More precisely, ∀ dummy report r, ∃ distribution p under
which reporting truthfully instead of reporting the dummy value r pays off by at
least c: S̃(p, p) − S̃(r, p) ≥ c.) A one-round prediction mechanism guarantees
incentive c if for each agent j and each combination of others’ reports r−j, the
corresponding proper scoring rule provides incentive c.
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