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Abstract. Physical Unclonable Functions (PUF) are physical objects
that are unique and unclonable. PUFs were used in the past to con-
struct authentication protocols secure against physical attackers. How-
ever, in this paper we show that known constructions are not fully secure
if attackers have raw access to the PUF for a short period of time. We
therefore propose a new, stronger, and more realistic attacker model.
Subsequently, we suggest two constructions of authentication protocols,
which are secure against physical attackers in the new model and which
only need symmetric primitives.

1 Introduction

Classical authentication protocols, where one communication partner proves its
identity to another participant, are commonly based on cryptographic primi-
tives. Their security usually relies on a computationally hard problem. Most
constructions are based on the possession of a secret key, which is assumed not
to fall in the hands of an adversary. However, this assumption may be violated if
an adversary has physical access to the device that performs authentication for
a short time. In this period, the adversary may read the whole memory of the
device including all secret information, unless hardware security measures are
taken. With this information, the adversary can finally impersonate a person.
Such an attack is usually outside of the considered attacker model in classical
cryptography. However, in many practical authentication scenarios, this attack
is realistic. Consider for example a situation, where a waiter in a restaurant car-
ries a credit card away from the table for billing. During this short time the card
is not under full control of the owner and an adversary may read the data of
the card memory in order to extract the secret information. Moreover, the card
reader is potentially under full control of the adversary. Thus, data stored in the
memory of the reader is potentially at risk as well. Classical cryptography does
not provide a secure way of authentication in this attacker model.

Physical Unclonable Functions (PUF) were proposed as a building block for
authentication schemes that resist physical attacks. PUFs, as introduced by
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Pappu [1, 2], are physical objects which are unique and unclonable [3, 4, 1, 2, 5, 6].
Technically speaking, a PUF responds to a stimulus with a physical output
(which can be measured and encoded as a bit string) and has the following
properties: First, it is impossible to clone a PUF even with highly complex
equipment. Second, it is infeasible to predict the output for a chosen stimulus
without physically evaluating the PUF, and third, the output looks random.
These properties of a PUF, i.e., unclonability, unpredictability and the pseudo-
random output, inspired researchers to build authentication protocols relying
on PUF challenge-response-pairs (CRP) [6, 7, 8]. In these protocols, the server
issues a challenge in form of a stimulus, which the client has to answer by mea-
suring its PUF. If this PUF response matches a pre-recorded response held at
the server, the client is authenticated. If the number of CRPs of a PUF is large
and an adversary cannot measure all PUF responses, he will most likely not be
able to answer the challenge of the server even if he had physical access to the
PUF for a short time.

In this work we show that current PUF-based authentication protocols are
not fully secure in the above-mentioned attacker model where the attacker has
physical control of the PUF and the corresponding reader during a short time.
In particular, we revisit the authentication protocol of Tuyls et al., called TAP
in the sequel [7]. The authors proposed a PUF-based challenge-response authen-
tication protocol in a bank setting: A PUF is embedded in a personalized smart
card in a non-separable way. Since the PUF is unclonable and its response is
unpredictable, the owner can use it to authenticate itself against a server. More
precisely, the protocol consists of two phases, an enrollment phase and a veri-
fication phase. During the enrollment phase, the PUF is embedded inseparably
in the smart card. Then, the server challenges the PUF with several stimuli
and stores the resulting challenge-response pairs in its database. Afterwards the
smart card handed out to the owner to the person. During verification, the
holder of the card inserts it into the card reader. The server chooses a random
PUF challenge and sends it to the reader. The reader measures the PUF and
returns the response back to the server. If the measured PUF response matches
the recorded response in the server’s database, the server is convinced that the
reader has physical access to the PUF. Thus, the holder of the smart card is
authenticated. Furthermore, both parties can derive a session key from the PUF
output, which can subsequently be used to establish an encrypted communica-
tion channel between the server and the card reader.

While this protocol assures that an adversary cannot impersonate the client
once he has physical access to the card, the adversary gets enough information
to impersonate the server: Consider an adversary, who has access to the reader
as well as to the PUF for a short time period. In this time it can read the
whole memory of the PUF and the card reader including all secret information.
Moreover, the adversary can challenge the PUF with any stimuli at will in order
to collect a number of challenge-response-pairs. This information is enough to
impersonate the server: The adversary engages in the TAP protocol and chooses
a valid challenge of its collected CRPs and sends it to the card reader. The
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reader measures the output of the PUF for the given challenge and forwards
the corresponding response to the adversary. The reader will be unaware that it
has authenticated to (and established a key with) the adversary instead of the
server, as it cannot distinguish a challenge chosen by the server from one issued
by the attacker.

Contribution. We lay open a weakness in current PUF-based authentication pro-
tocols. In particular, we show that they are not fully secure when an adversary
has physical access to the PUF as well as the reader during a short time. We
propose a new, stronger and more realistic attack scenario and design two au-
thentication protocols which are secure in the new model. Both protocols use
only symmetric primitives and thus lend themselves well for implementation on
power-constrained devices. The main idea of both approaches is to enable the
reader to distinguish challenges issued by the server and the adversary in a se-
cure way. We suggest two solutions, which rely on Bloom filters [9, 10] and hash
trees [11]. Moreover, we will compare both approaches.

Organization. We first give in Section 2 an overview of PUFs, Bloom filters,
and hash trees. In Section 3 we recall the PUF-based authentication protocol
of Tuyls et al. and describe in Section 4 the weakness of the protocol as well
as the resulting attack scenario. Afterwards, in Section 5 and Section 6, we
introduce our solutions based on Bloom filters and hash trees, which prevent the
impersonation attack.

2 Preliminaries

2.1 Physical Unclonable Functions

Informally, a Physical Unclonable Function (PUF) is a physical object which
reacts with a response r to a stimulus c. Such a pair (c, r) of a stimulus and
response is called a challenge-response-pair (CRP). Furthermore, a PUF satisfies
the following properties: (1) It is impossible to build another PUF that has the
same response behavior. (2) It is hard to predict the output of a PUF for a
given input without performing and measurement. (3) The output looks random.
We can distinguish between strong and weak PUFs. Strong PUFs have a large
number of challenge-response-pairs such that an efficient adversary, measuring
only a few CRPs, cannot predict the response for a random challenge with high
probability. If the number of different CRPs is rather small, we speak of a weak
PUF. In the following we consider only strong PUFs [12, 1, 5] as building blocks
for our protocols.

2.2 Fuzzy Extractors and Helper Data

The responses of PUFs are noisy by nature. Therefore, the output of a PUF
cannot directly be used for the authentication process. When a PUF is measured
with a challenge ci, it produces a corresponding output ri, which is usually
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noisy and not uniformly distributed. However, for cryptographic applications,
a completely noisy-free output with a perfect uniform distribution is required.
Possible solutions to handle the noisy outputs are Fuzzy Extractors or Helper
Data Algorithms [13]. A Fuzzy Extractor consists of a pair of algorithms (G, W ).
During an enrollment phase the algorithm G takes as input a PUF response r
and generates as output a secret s together with helper data w. The algorithm
W takes as input a noisy response r′ and helper data w. It reconstructs the
secret s unless the noise level in r′ is too high. For further details we refer the
reader to [13, 8, 14, 7].

2.3 Bloom Filters

A Bloom filter B is a probabilistic data structure that encodes a set of elements
X into a � bit array B in order to allow fast set membership tests [9, 10, 15]. The
idea is to encode the elements by using several hash functions. More precisely,
the Bloom filter B consists of � bits B[0], . . . , B[� − 1], where all entries are
initially set to 0, and a set H of k independent collision-secure hash functions
hi : {0, 1}∗ → {0, . . . , � − 1}. In order to encode a set X = {x1, . . . , xm} into
the Bloom filter, the elements of X are added sequentially into the array B
according to the following rule: For each element x ∈ X , we set B[hi(x)] to one
for all 1 ≤ i ≤ k.

The algorithm Check(x′,B,H) verifies if a given element x′ belongs to the
Bloom filter B and works as follows: Check(·) evaluates all k hash functions on
x′ and outputs 1 iff B[hi(x′)] = 1 for all 1 ≤ i ≤ k. If one of the bits is set to
0, the algorithm outputs 0 since x′ is clearly not in B. Note that the length � of
the array B has to be chosen carefully (as well as the number of hash functions
k). In case that many bits in B are set to 1, the probability that an arbitrary
element x̂ is recognized as a member of X increases. We call the event that an
element x̂ �∈ X is falsely recognized as member of X by the Bloom filter, e.g.
Check(x̂,B,H) = 1, as a false positive. The parameters of the Bloom filter have
to be chosen in a way that makes this error very unlikely.

2.4 Hash Trees

A hash tree (or Merkle tree) T is a complete binary tree used to prove set mem-
bership [11, 16]. The hash tree consists of a root node υr, several internal nodes
υi, and leaf nodes υl. Each leaf node represents a data value di. Furthermore,
each internal node stores a hash value of the concatenation of the values stored
in its children. The hash values are computed with a collision-resistant hash
function h : {0, 1}∗ → {0, 1}n. Thus, if an internal node υi+1 has a left child
υi,0 storing the value xi,0 and a right child υi,1 storing the value xi,1, then υi+1

stores the value xi+1 ← h(xi,0||xi,1). It is well known that it is, given a tree T ,
infeasible to find another path that yields to the same root node υr.

The algorithm Check(xr, di, 〈τ1, . . . , τt〉) verifies if a given element di belongs
to the hash tree T . Instead of exposing all leaf nodes, the algorithm is passed an
authentication path, which consists of the hash values 〈τ1, . . . , τt〉 of the siblings
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of all nodes along the path from the leaf node υl storing di to the root node υr.
Let xi be the hash value of node υi along the authentication path. We set x1 ← υl

and compute the remaining hash values x2, . . . , xt as follows: Let i1, . . . , it be
the binary representation of tree index i. If ij = 0, we set xj+1 ← h(xj ||τj),
and otherwise, if ij = 1, we set xj+1 ← h(τj ||xj). The algorithm outputs 1 iff
xt+1 = xr , i.e., if the root hash matches, and 0 otherwise.

3 PUF-Based Authentication and Key Establishment

Tuyls et al. [7] proposed a token-based protocol to authenticate a credit card
against a central bank authority. In the following we refer to the bank as server
and the ATM as reader. Furthermore, for the sake of simplicity, we describe the
details of the protocol in the two party scenario where a single smart card is
authenticated to a central server.

In the enrollment phase, the server issues a smart card including a PUF to-
gether with a current identifier IDPUF. It generates a set of random challenges
C = {c′1, . . . , c′k} for the PUF and measures for each c′i the corresponding responses
r′i. Furthermore, for each challenge c′i a random secret s′i is chosen from a set of ran-
dom secrets S′ and a helper data w′

i ∈ W is computed by solving s′i = W (r′i, w
′
i).

The rewritable non-volatile memory on the card stores the identifier IDPUF, a us-
age counter n, indicating how many times the authentication protocol ran, and
the current hash value m = h(rd), where rd is a random string generated by the
server and h is a one-way hash function. The central server holds in its database
the card identifier IDPUF, both values n′ and m′ = rd, as well as a list of challenges
C with the particular corresponding secrets S′ and helper dataW . Once a card is
ready for use, it is initialized with n′ = n = 0, m′ = rd and m = h(rd).

The PUF-based authentication and session key establishment protocol, de-
picted in Figure 1, consists of the following steps: The user inserts its card into a
card reader. The reader sends an initialization message consisting of a nonce α,
the usage counter n, and the identifier IDPUF to the server. The server checks if
n ≥ n′. If this condition does not hold, then the server generates an error message
and aborts. Otherwise, the server computes M = hn−n′

(m′), where hn denotes
the n-th composition of h. Furthermore, the server computes a temporary key
K ′

1 = h(M ||IDPUF). It then generates a nonce β, selects randomly a challenge
c′i ∈ C and computes the value T = α||c′i||w′

i||β where w′
i is the helper data cor-

responding to c′i. The server authenticates the quadruple (α, c′i, w
′
i, β) by com-

puting a MAC with key K ′
1. It encrypts T ||MACK′

1
(T ) using K ′

1 and sends the
result to the reader. The reader derives the temporary key K1 = h(m||IDPUF),
decrypts EncK1 [T ||MACK1(T )] using K1, and validates the MAC by using K1.
If the MAC is invalid or if the decrypted nonce α is wrong, then the reader
aborts with an error message. Otherwise, the reader challenges the PUF with
c′i, which produces a corresponding response ri. The reader executes the helper
data algorithm G with input ri and helper data wi in order to obtain the secret
si. Now, the reader computes a session key K = h(K1||si) based on the tem-
porary key K1 and the secret si. Finally, the reader generates a MAC based on
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Server Reader+PUF
IDPUF, n′, m′ = rd, {C,W,S ′} IDPUF, n, m = hn(rd)

Check n ≥ n′ α, n, IDPUF←−−−−−−−−−−−−−− Generate nonce α

Compute M ′ = hn−n′
(m′) K1 = h(m||IDPUF)

K′
1 = h(M ′||IDPUF)

c′i ∈R C
Generate nonce β

T = α||c′i||w′
i||β

EncK′
1
[T ||MACK′

1
(T )]

−−−−−−−−−−−−−−→ Check MAC
ri ← PUF(ci)
si = G(ri, wi)

K′ = h(K′
1||s′i)

MACK(β)
←−−−−−−−−−−−−−− K = h(K1||si)

Check MAC

n′ → n + 1, m′ → h(m′) Use K←−−−−−−−−−−−−−− n→ n + 1, m→ h(m)
Remove c′i from database

Fig. 1. PUF-based authentication and key establishment protocol of [7]

the nonce β using K and sends the MAC to the server. The server computes
its session key K ′ = h(K ′

1||s′i) based on the temporary key K ′
1 as well as the

secret s′i corresponding to ci, which was generated in the enrollment phase and
is stored in the database. Furthermore, the server verifies that the MAC is a
valid tag on the nonce β (with respect to the secret derived from the response
and the helper data). If the MAC is invalid, then the server aborts with an error
message. Otherwise the server is convinced that the reader has physical access
to the PUF and the holder of the smart card is authenticated. Subsequently,
both parties use the symmetric key K ′ = K as a session key in order to set up
a secure channel.

4 How to Impersonate the Server

In the above protocol, an adversary who has access to the smart card and the
PUF for a short period of time can impersonate the server, unless the commu-
nication between the bank and the reader is authenticated. We assume that the
initial enrollment phase of the protocol is secure, ranging from the PUF fabrica-
tion up to the point where the user physically receives the smart card including
the PUF. We now turn to the description of the adversary.

Let A be an adversary who has once access to the smart card including the
PUF for a certain time. The algorithm A selects a small number of challenges C∗
and measures the corresponding responses R∗. Moreover, it reads the identifier
IDPUF, the usage counter n and the current hash value m stored on the card
memory. With this information, the adversary can impersonate the server in sub-
sequent runs of the authentication protocol as follows: The adversary computes
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the value M∗ = hn−n∗
(m), which is possible, because A obtained the usage

counter n and the hash value m = h(M) from the card memory. Now, A cal-
culates K∗

1 = h(M∗||IDPUF) and generates a random nonce β∗. The adversary
chooses a challenge c∗i ∈ C∗ and runs the algorithm W with input ri in order to
get helper data w∗

i ∈ W∗ as well as a secret s∗i ∈ S∗. Furthermore, A produces a
MAC on the quadruple (α, c∗i , w

∗
i , β∗) using the key K∗

1 , encrypts the MAC with
K∗

1 and sends the resulting value EncK∗
1
[(α||c∗i ||w∗

i ||β∗)||MACK∗
1
(α||c∗i ||w∗

i ||β∗)]
to the reader. The reader subsequently computes K1 = h(m||IDPUF), decrypts
EncK∗

1
[(α||c∗i ||w∗

i ||β∗)||MACK∗
1
(α||c∗i ||w∗

i ||β∗)] and checks whether the MAC is
valid. Since the MAC and the decrypted nonce α are valid, the protocol does
not abort with an error message. Consequently, the reader challenges the PUF
with c∗i , which produces a corresponding response r∗i . Running the algorithm G
with input r∗i as well as w∗

i , the reader extracts the secret s∗i from the output of
the PUF. At last, the reader computes a MAC on the nonce β∗ using the session
key K. Afterwards, it sends the MAC to the adversary A. Finally, A computes
its session key K∗ = h(K∗

1 ||s∗i ) by hashing the temporary key K∗
1 and the secret

s∗i . Thus, the attack succeeded and the adversary is able to impersonate the
server successfully. Moreover, the key K∗ (respectively K) is a symmetric key
established between the reader and the adversary.

5 PUF-Based AKE-Protocol Based on Bloom Filters

The main reason why the attack works is that the adversary gets physical access to
the smart card including the PUF at least once for a short period. During this time,
the adversarymeasures the PUF and uses the obtained challenge-response-pairs in
subsequent authentication runs. Due to the symmetric nature of the protocol, the
reader cannot decide whether a given challenge during a run of the protocol was
initially measured by the server or subsequently by the adversary. This weakness
can be solved – without requiring an authenticated link between the server and
reader – by storing a subset of “valid” challengesV initially measured by the server
in the read-only memory on the smart card. However, storing all challenges is too
expensive. Moreover, an adversary that reads the memory of the smart card would
learn the subset of legal challenges. Thus, the set V has to be stored on the card in
a compact form, which does not allow a computational bounded adversary to gain
information on legal challenges. In this case impersonation can be prevented, as the
adversary does not know the set of valid challenges and will most likely present an
invalid challenge, which will not be accepted by the reader (this requires a strong
PUF since the number of challenges must be large). We propose two solutions for
compactly storing legal PUF challenges, one relies on Bloom filters [9] and the
other one on hash trees [11].

5.1 AKE-Protocol Based on Bloom Filter

The modified protocol, based on Bloom filters, is depicted in Figure 2 and con-
tains the following modifications: During the secure enrollment phase, the server
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computes a subset of valid challenges V ⊆ C by choosing a certain number of
challenges ci ∈ C at random. Afterwards, the server stores the challenges ci of V
with the corresponding responses in its database. Furthermore, the server com-
putes a Bloom filter B of size � and stores all x challenges using k hash functions
in B. The rewritable non-volatile memory on the smart card stores the identifier
IDPUF, the usage counter n, the current hash value m, and the Bloom filter B.
If the reader receives a challenge ci, the reader verifies that it receives a chal-
lenge that was initially chosen by the server by checking whether ci ∈ B, e.g.,
whether all array locations B[hj(ci)] for 1 ≤ j ≤ k are set to 1. If any check
fails, then clearly ci is not a member of V and the reader aborts. Otherwise, the
reader follows the protocol steps as described in Section 3. This way, the reader
can be sure that the server initially selected the challenge, unless an adversary
succeeded in guessing a valid challenge.

Server Reader+PUF
IDPUF, n′, m′ = rd, {V,W,S ′} IDPUF, n, m = hn(rd),B

Check n ≥ n′ α, n, IDPUF←−−−−−−−−−−−−−− Generate nonce α

Compute M ′ = hn−n′
(m′) K1 = h(m||IDPUF)

K′
1 = h(M ′||IDPUF)

c′i ∈R V
Generate nonce β

T = α||c′i||w′
i||β

EncK′
1
[T ||MACK′

1
(T )]

−−−−−−−−−−−−−−→ Check MAC
Check(ci,B,H)
ri ← PUF(ci)
si = G(ri, wi)

K′ = h(K′
1||s′i)

MACK(β)
←−−−−−−−−−−−−−− K = h(K1||si)

Check MAC

n′ → n + 1, m′ → h(M ′) Use K←−−−−−−−−−−−−−− n→ n + 1, m→ h(m)
Remove c′i from database

Fig. 2. PUF-based authentication and key establishment based on Bloom filters

5.2 Security Trade Off between Space and False Positives

In this section we take a closer look at the parameters of the Bloom filter. Since
Bloom filters always have a false positive probability, which in our protocol
results in the fact that the card reader accepts invalid challenges, the goal is
to find a trade off between the space required to store the valid challenges on
the card, the number of hash functions, and the false positive probability of the
Bloom filter. Recall that a false positive occurs if an element is accepted to be
in the Bloom filter, although it is not in the set [9, 10, 15]. The probability of a
false positive f can be computed as
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f =

(
1−

(
1− 1

�

)kx
)k

≈ (1 − e−kx/�)k, (1)

where x is the number of challenges in V , � is the number of bits in the array of
the Bloom filter and k is the number of hash functions. We have to choose the
parameters of a Bloom filter appropriately in order to find a trade off between
the computation time (corresponds to the number k of hash functions), the
size (corresponds to the number � of bits in the Bloom filter array), and the
probability of error (corresponds to the false positive probability f), which we
will discuss in Section 6.3.

5.3 Analysis of the AKE-Protocol Based on Bloom Filters

We analyze in this section the extended PUF-based protocol depicted in Figure 2.
The main idea of the extension is to let both parties store a subset of valid
challenges V of the challenge space C. The reader then can check efficiently if a
received challenge c is a member of V . If c /∈ V , the reader aborts. Otherwise, if
c ∈ V , the reader follows the further protocol steps. Since only the server and the
smart card know the subset V , we prevent the impersonation of the server by an
adversary. As a consequence, we have a mutual authentication between the server
and the holder of the smart card. Furthermore, the protocol is resistant against
replay attacks because each PUF challenge is used only once. The protocol also
retains backwards-security of the original TAP protocol.

Now, let us consider the subset V of valid challenges in more detail. Since we
use a strong PUF we cannot draw conclusions about the elements of V . Moreover,
the subset V of valid challenges is encoded as a Bloom filter in the read-only
memory on the card. If an adversary obtains the �-bit Bloom filter and the k
hash functions, it cannot deduce the x elements of V . This follows from the fact
that the hash functions are chosen independently as well as that hash functions
are collision-resistant. However, there is still the probability that the adversary
guesses a valid challenge, i.e., the adversary manages to find a challenge such
that the testing algorithm of the Bloom filter outputs 1. The probability that the
adversary A guesses such an element (event win) can be upper bounded by the
probability that it guesses a challenge being in the set V and the probability that
an invalid challenge is accepted. This probability can be computed as follows:

Prob[Awin] ≤ |V||C| +
(

1−
(

1− 1
�

)kx
)k

. (2)

Finally, the protocol is very efficient because it only requires symmetric crypto-
graphic primitives.

6 The PUF-Based AKE-Protocol Based on Hash Trees

In this section we propose an alternative solution based on hash tress. The benefit
of this approach is that we only need to store a constant amount of data in the
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read-only memory of the smart card regardless of the number of elements of V .
Although this approach reduces storage, it induces an additional communication
overhead.

6.1 AKE-Protocol Based on Hash Trees

The extended PUF-based authentication and key establishment protocol based
on hash trees is depicted in Figure 3. During the secure enrollment phase, the
server computes a subset of valid challenges V ⊆ C by choosing uniformly a cer-
tain number of challenges of C. Furthermore, let h be an one-way hash function.
The server computes a hash tree T , based on the elements of V , as follows: Let us
assume that the number of challenges of the subset is a power of how: |V| = 2ν .
To authenticate the challenges c0, ..., c|V|, the server places each challenge at the
leaf nodes of a binary tree of depth V . Moreover, the root node and each inter-
nal node of the binary tree are computed as hashes of its two child nodes (see
Section 2.4). The root hash value xτ is stored in the memory of the smart card,
whereas the server stores the hash tree T . To authenticate a challenge ci, the
server discloses i, the corresponding path τ , between ci and the root node and all
necessary sibling nodes, and sends the additional information to the reader. The
reader now runs the algorithm Check(xτ , ci, τ) in order to verify the validity of
the received path with its stored root value xr . If the function returns 0, then
the verification is not successful and the reader aborts with an error message.
Otherwise, the reader knows that the challenge ci is a member of the set V of

Server Reader+PUF
IDPUF, n′, m′ = rd, {C,W,S ′}, T IDPUF, n, m = hn(rd), xτ

Check n ≥ n′ α, n, IDPUF←−−−−−−−−−−−−−− Generate nonce α

Compute M ′ = hn−n′
(m′) K1 = h(m||IDPUF)

K′
1 = h(M ′||IDPUF)

c′i ∈R C
Generate nonce β and
Compute τ = 〈τ1, ..., τd〉

T = α||c′i||w′
i||β||i||τ

EncK′
1
[T ||MACK′

1
(T )]

−−−−−−−−−−−−−−→ Check MAC
Check(xτ , ci, τ )
ri ← PUF(ci)
si = G(ri, wi)

K′ = h(K′
1||s′i)

MACK(β)
←−−−−−−−−−−−−−− K = h(K1||si)

Check MAC

n′ → n + 1, m′ → h(M ′) Use K←−−−−−−−−−−−−−− n→ n + 1, m→ h(m)
Remove c′i from database

Fig. 3. PUF-based authentication and key establishment protocol based on hash trees
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valid challenges. Subsequently, the reader follows the protocol steps as described
in Section 3.

6.2 Communication Overhead of Hash Trees

The benefit of hash trees is that we only have to store the root value of the hash
tree in the read-only memory of the smart card. Unfortunately, this solution
involves additional communication overhead. The server has to send additional
data besides the quadruple (α, ci, wi, β) in order to allow the reader to verify
validity of ci. Let us assume that the hash function h maps its input ci to an
λ-bit output υi. Now the server has to transmit for each level of the tree the
particular sibling node. Thus, the server has to send ν ·λ = log2 |V| ·λ additional
bits to the reader.

6.3 Analysis of the PUF-Based AKE-Protocol Based on Hash Trees

The security properties follow analogously to Section 5.3, except for the assump-
tions about the Bloom filter. Here, the subset of valid challenges V is encoded
as a hash tree. The security of hash trees relies on the one-way property and on
the collision-resistance of the hash function h. Moreover, it is well known, that
this data structure authenticates the elements in the hash tree, i.e., it is com-
putationally infeasible to find a valid path given only the root node υr. Finally,
since only hash values are transmitted, and because the adversary is unable to
invert the one-way hash function h, no information about the other challenges
in the set (authenticated through the same tree) is leaked.

Comparison of Bloom filters and hash trees. Both of our above-mentioned ap-
proaches can be implemented on a smart card. Table 1 summarizes the storage
and communication overhead of Bloom filters and hash trees. Recall that V is
the set of challenges, � the length of the Bloom filter, and λ the output length
of the hash function.

Our solution based on Bloom filter has the advantage that we do not need
any additional communication overhead. However, in order to reduce the false-
positives, the length � has to be chosen appropriately. On the other hand, if we
want to optimize the storage capacity on the smart card, then the solution based
on hash trees is the better choice because we only have to store the �-bit hash
value of the root node. Although this solution is very storage efficient, we get an
addition communication overhead of λ · log2 |V| bits.

Table 1. Comparison of the storage and communication overhead of Bloom filters and
hash trees

Storage on the Credit Card Communication Overhead

Bloom filter � 0
Hash tree λ λ · log2 |V|
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7 Conclusion

In this paper, we have described a weakness in current PUF-based authentication
protocols and have proposed a new, stronger and more realistic attacker model.
We have provided two constructions of mutual authentication protocols, which
are secure against physical attackers. Both approaches use space-efficient data
structures, which are used to encode valid PUF challenges. One is based on
Bloom filters and the other one on hash trees. Finally, we compared the storage
and the communication overhead of both approaches.
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