
4 Capillary Forces 

 

In the interactions between solid surfaces and liquids or between solid bodies in 
the presence of small amounts of liquids, the so called capillary forces play an im-
portant role. Capillary forces are responsible for the wetting of solids by liquids or 
the “repelling” of liquids. The transportation of water in all organs of plants is 
caused by capillary forces. They are behind the unwanted “spreading” of lubricat-
ing oil and its transportation to friction sites in the for-life lubrication of systems. 
Capillary forces are among the most important causes of “sticktion” between the 
small components in micro-technology. They can considerably influence frictional 
forces, especially that of static friction. 

4.1 Surface Tension and Contact Angles 

The most important physical parameters that influence capillary forces in various 
situations are the surface tension and the contact angle. In order to clarify the con-
cept of surface tension of a liquid, we visualize a soap film stretched within a 
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square-shaped wire frame. If we pull on a movable side of the frame, the area of 
the film gets larger. Consequently, the surface energy rises. With a displacement 
of Δx  the energy rises by the amount 2γΔ = ΔE l x , where γ  is the surface energy 
density of the liquid, often referred to simply as “surface energy”; the factor of 2 
accounts for the fact that the film has two sides. According to the principle of vir-
tual work, this change in energy must be equal to the work performed by the ex-
ternal force 2γ= Δ = ΔW F x l x . Thus, 2γ=F l . That means that a uniform load of 

/ 2γ= =f F l  acts on the edge of the frame. Due to the fact that the film has two 
identical sides, both are acted on by a uniform load of γ , which is simply equal to 
the surface energy. Therefore, every free surface is in “tension”, from where the 
term “surface tension” for surface energy originates.  

F

 
Fig. 4.1  An experiment with a soap film, in order to explain the notion of surface tension. 

If a droplet of liquid is at rest on a solid surface, the surface of the liquid forms 
a specific angle θ  (Fig. 4.2), which, in equilibrium, only depends on the thermo-
dynamic properties of the system. This angle is called the contact angle and af-
fects most of the important properties dealing with the contact between solid bod-
ies and liquids.  
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Abb. 4.2  Drop of liquid on a solid surface. 

In the boundary line of the droplet, three interfaces meet each other (Fig. 4.3 a). In 
every interface, a corresponding surface tension acts. In equilibrium, 

 cosγ γ γ θ= +sv sl lv  (4.1) 

is valid, in which γ sv  is the relative surface energy of the interface between the so-
lid body and the vapor, γ sl  is the relative surface energy between the solid body 
and the liquid, and γ lv  is the relative surface energy between the liquid and the 
vapor. The angle θ  can assume any value between 0 and π  depending on the re-
lationships of the three relevant surface energies. If the contact angle is smaller 
than / 2π , it is said that the liquid wets the given surface. At contact angles larger 
than / 2π  we then talk about “repelling” surfaces. When dealing with water, sur-
faces with a contact angle smaller than / 2π  are called hydrophilic, while surfaces 
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with a contact angle larger than / 2π  are called hydrophobic. The meaning of the 
differentiating between contact angles larger and smaller than / 2π  is first clari-
fied through the investigation of capillary bridges. At a contact angle of zero it is 
said that complete wetting takes place. In this case, the droplet would completely 
disperse and form an infinitely thin film (as seen macroscopically). Complete wet-
ting exists when the condition 

 γ γ γ− =sv sl lv  (4.2) 

is met. For γ γ γ< −lv sv sl , the liquid spreads out until it forms a film with a thick-
ness of a few molecular diameters. The dispersion of thin liquid films is known as 
“creep.” The driving force for this process is given by the difference 

 creep sv sl lvγ γ γ γ= − − . (4.3) 
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Fig. 4.3  Calculating the equilibrium of the contact line: (a) between a liquid and a solid body, 
(b) between two liquids. 

In the equilibrium equation (4.1) we have accounted for only the force equilib-
rium in the horizontal direction. The surface tension component in the vertical di-
rection is in equilibrium with the reaction force from the rigid body. If we are 
dealing with the contact between two liquids (or between two solid bodies in 
thermodynamic equilibrium, for example, after an extended exposure to high tem-
peratures), then both components must be taken into account (Fig 4.3 b). Hence, 
two characteristic contact angles can be provided from the equations 

 12 13 1 23 2 13 1 23 2cos cos     and    sin sinγ γ θ γ θ γ θ γ θ= + = . (4.4) 

Whether or not a liquid completely wets a surface, is dependent on the three 
surface energies of the three interfaces. It has been empirically shown, however, 
that the wettability is already for the most part defined by the relationship between 
the surface energies of the solid body and the liquid. If the surfaces can only inter-
act through van der Waals forces, then the surface energies at the interfaces of 
both substances can be estimated as1    

                                                           
1 F.M. Fowkes, Dispersion Force Contributions to Surface and Interfacial Tensions, Contact An-
gles and Heats of Immersion. In Contact Angle, Wettability and Adhesion, American Chemical 
Society, 1964, pp.99-111. 
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 2γ γ γ γ γ≈ + −sl s l s l . (4.5) 

It can be noted that this estimation differs from the estimation of the surface en-
ergy of solid bodies (3.16), where the physical origins of the surface energy is dif-
ferent (for solids it is the force that is required to separate the bodies, while for 
liquids it is the force required to reconstruct them during stretching). The energy 
(4.5) vanishes in contact between identical liquids. 
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Fig. 4.4  Estimation of contact angles for known surface energies between a liquid and a solid 
body. 

From the force equilibrium of the boundary (see Fig. 4.4) observing (4.5) we 
get 

 2 cosγ γ γ γ γ γ θ= + − +s l s l s l . (4.6) 

From which we can then calculate the contact angle 

 cos 2 1
γ

θ
γ

= −s

l

. (4.7) 

The right side of this equation assumes the value 1 (contact angle 0θ = , complete 
wetting) at γ γ≈s l . The value 1−  (θ π= , complete repelling) is never reached. 
The contact angle is equal to / 2π  for 4γ γ≈l s . The driving force for creep (4.3) 

is given by ( )2 2 2γ γ γ γ γ γ γ γ γ γ= − − = − + = −K s ls l l l s l s l . It reaches a maxi-

mum at / 4γ γ≈l s . 
Oils with very small surface energies (e.g. silicon oil with 2 22,1 10  J/mlγ

−≈ ⋅ ) 
wet all solid surfaces (with the exception of Teflon, see Table 3.1). They can in-
conspicuously contaminate manufacturing plants. The spreading of lubricants can 
lead to disturbances in parts of machines and loss of function, because they can 
flow out of friction sites where lubrication is needed. This unwanted spreading can 
be impeded through the epilamization process. During epilamization, the surface 
tension of the machine part is reduced by the application of a film which makes 
the solid surface repellent.  
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4.2 Hysteresis of Contact Angles 

We have so far assumed that no forces other than the surface tension act on the 
line of contact. If the contact is between a liquid and a solid body, frictional forces 
can also appear in the line of contact. The equilibrium condition (4.1) then chan-
ges to  

 cosγ γ γ θ= + ±sv sl lv Rf , (4.8) 

where Rf  is the frictional force per unit length of the line of contact. The sign of 
the frictional force is dependent on the direction of the movement of the droplet. 
Therefore, the actual contact angle will depend on the direction of motion. This 
phenomenon is called the hysteresis of the contact angle. From the hysteresis, the 
frictional force can be defined. This force is responsible for droplets sticking on  
macroscopically smooth, sloped surfaces. It is of interest for many technical appli-
cations. 

The frictional force in the line of contact can be caused by the roughness of the 
solid surface, its heterogeneity, or the atomic structure of the solid body. These 
factors lead to the fact that the energy of a droplet is dependent on its position on 
the solid surface. Thus, static friction is made possible. 

4.3 Pressure and the Radius of Curvature 

If the surface of a droplet of liquid is curved, then there is a pressure difference 
between the “outside” and “inside” of the droplet. For a spherical droplet 
(Fig. 4.5 a), this pressure difference is easy to calculate. If a definite amount of 
liquid is “pumped” into the droplet, the radius would grow by an amount dR . 
Thereby, the surface changes by 8π=dA RdR . The work 

( ) ( ) 2
1 2 1 2 4π= − = −dW p p dV p p R dR , which is performed through the differ-

ence in pressure, must be equal to the change in the surface energy2 
8γ γ π=l ldA RdR . From which: 

 ( )1 2
2γ

Δ = − = lp p p
R

. (4.9) 

If the force of gravity is neglected, then the pressure is constant everywhere inside 
of the droplet. Therefore, the radius of curvature must also be constant: A droplet 
takes the form of a sphere. On flat solid surfaces, it is always a portion of a sphere 
(Fig. 4.2). 

                                                           
2 We denote the surface tension of the vapor-liquid interface, which is normally simply referred 
to as the surface tension of the liquid, as l lvγ γ= .  
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For non-spherical surfaces it is generally true that 

 
1 2

1 1γ
⎛ ⎞

Δ = +⎜ ⎟
⎝ ⎠

lp
R R

, (4.10) 

where 1R  and 2R  are the principal radii of curvature. Here, we would like to 
stress that in Equation (4.10), the radii of curvature can also be negative. The sign 
of the radius of curvature is defined by whether the center of the curve lies on the 
positive or negative side of the surface of the liquid. The radii of curvature have 
different signs for saddle-shaped surfaces (Fig. 4.5 c).  
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Fig. 4.5  Curved surfaces with different ratios of the principal radii of curvature. 

4.4 Capillary Bridges 

We observe a rigid cylinder near a solid surface with a small amount of liquid in 
between.  For the sake of simplicity, we assume that both of the “contact partners” 
are composed of the same material. 
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Fig. 4.6  Capillary bridges at a contact angle (a) smaller than / 2π , (b) larger than / 2π . 

In equilibrium, the liquid forms a capillary bridge, which has two radii of curva-
ture. The largest radius bR  is always positive. The sign of the smaller radius de-
pends on if the contact angle is larger or smaller than / 2π . For small contact an-
gles, in the case of wetting of the surface, aR  is negative. There is a reduced 
pressure in the liquid, which leads to a force that we call capillary force. In order 
to keep the system in equilibrium, an opposing reaction force must be applied. The 
capillary force is calculated by multiplying the pressure difference by the area of 
the capillary bridge:  
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 1 1 1
cap l l

b a a

F A A
R R R

γ γ
⎛ ⎞

= − ≈ −⎜ ⎟
⎝ ⎠

, (4.11) 

where a bR R  is assumed. However, if the surface is not wettable by a given 
liquid (contact angle larger than / 2π ), then the contact partners repel each other. 
This property explains the origin of the distinction between “wettable” and “repel-
ling” surfaces (or hydrophilic and hydrophobic surfaces in the case of water) de-
pending on if the contact angle is larger or smaller than / 2π . 

4.5 Capillary Force between a Rigid Plane and a Rigid Sphere 

We consider a capillary bridge between a rigid sphere and a rigid plane of the sa-
me material, for which the contact angle is zero (complete wetting), Fig. 4.7. Let 
the radius of the bridge be r and the radius of the sphere R. The height of the capil-
lary bridge is 2 / 2≈h r R  and the surface 2π=A r . The (small) radius of curva-
ture is clearly 0 / 2=r h . For 0 <<r r , the resulting pressure difference in the liq-
uid is 

 2
0

2 4γ γ γ
Δ = − = − = −l l l Rp

r h r
. (4.12) 

The capillary force is, therefore, 

 2
2

4
4l

cap l
R

F A p r R
r
γ

π πγ= Δ = − = − . (4.13) 

 
Fig. 4.7  A capillary bridge between a rigid plane and a rigid sphere. 
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It is proportional to the radius of curvature of the sphere and independent from the 
amount of liquid. The force, capF , which is required to pull the sphere from the 
surface has the same magnitude.  

4.6 Liquids on Rough Surfaces 

Up to now, we have assumed that the solid surface is ideally smooth and even. 
That is almost never the case in reality. Roughness leads to a macroscopically ob-
servable change in the contact angle. Depending on the type of roughness, a vari-
ety of situations can occur. If the level of roughness is small, then the liquid will 
remain in complete contact with the solid body over the entire area (in Fig. 4.8, to 
the right of the boundary of the droplet). If there is no pressure difference between 
the atmosphere and the liquid, then the sum of the radii of curvature for every 
point of the surface must be zero.  
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Fig. 4.8  Surface of a liquid in contact with an inclined solid surface. 

Because of this, the surface on average, is flat and at a small distance from the 
contact line inclined at an angle *θ from the horizontal (Fig. 4.8). The horizontal 
component of the uniform load in the contact is 

 *
0 0cos cos cosγ θ γ θ γ θ− −sv sl lv . (4.14) 

In order for the boundary line to remain in equilibrium, the average linear force 
must be zero: 

 ( ) *
0cos cos 0γ γ θ γ θ− − =sv sl lv . (4.15) 

Observing equation (4.1) it follows that 

 *
0cos cos cosθ θ θ= ⋅  (4.16) 

(R.N. Wenzel, 1936). Because 0cosθ  is always smaller than 1, the visible con-
tact angle for hydrophilic surfaces is always larger than the “real” contact angle, 
while for hydrophobic, it is always smaller. This equation can also be derived 
purely from thermodynamic reasoning.   

If the gradient of the roughness profile is large, then the liquid can remain on 
the peaks of the roughness (Fig. 4.9). If the surface has a form as is shown in 
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Fig. 4.9 a, then the liquid remains atop the peaks only if the contact angle is larger 
than maxπ θ− , where maxθ  is the maximum angle of elevation of the surface. If the 
liquid were then to be acted on by some additional pressure, its surface would 
curve and it would press deeper into the recesses of the roughness until it reaches 
an instability point and the entire surface is wet. This can, however, be hindered 
by air trapped in the recesses. If the surface roughness has the form as in 
Fig. 4.9 c, then fluids with a contact angle of less than / 2π  can remain hanging 
without coming into complete contact with the surface. 

� � �
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Fig. 4.9  Sheet of fluid on a rough surface. 

4.7 Capillary Forces and Tribology 

There are several situations in which the capillary forces promote the movement 
of liquids. If a droplet is at rest on a curved surface, then its energy grows with the 
curvature. Therefore, the droplet is repelled by areas of high curvature, especially 
at edges or sharp points (Fig. 4.10, see also Problem 2 in this chapter). If a liquid 
is in a capillary or crevice of varying width, then capillary forces cause it to move 
in the direction of the smaller crevice width or capillary diameter.  

 
Fig. 4.10  Droplet is repelled from a sharp point.  
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This effect can be used to keep lubricants in place. In narrow joints, these forces 
are so large that they allow for life-long lubrication without reapplication. Such 
examples can be found in clockwork, measurement instruments, electricity meters, 
etc. If oil is wanted to reach such an area, the described effect can be used in the 
design of the joint so that the oil moves in the direction of the narrowest point.  

Problems 

Problem 1: Determine the total surface energy of a drop of liquid resting on a 
solid surface. 
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Fig. 4.11  Droplet of liquid on a flat, solid surface. 

Solution: Using the notation defined in (Fig. 4.11), we obtain the following equa-
tions for A  as the surface area of the droplet, V  as its volume, θ  as the contact 
angle, and *r  as the “contact radius”: 

( )2
*2 23

2 ,    ,    cos ,    2
3

π
π θ

− −
= = = = −

h R h R hA Rh V r Rh h
R

. 

The surface energies are related through the equation 

cos
γ γ

θ
γ
−

= sv sl

lv

. 

For both geometric values R  and h , which are completely determined by the 
configuration of the droplet, we have 

( ) ( )
( )3

2

3 ,    1 cos
1 cos 2 cos

θ
π θ θ

= = −
− +

VR h R . 

Therefore, we obtain the following expression for the sum of all of the surface en-
ergies: 

( ) ( ) ( )( )1/32*2 23
9 1 cos 2 cos

γ
γ γ π γ γ π θ θ= − + = = − +lv

sl sv lv lv
V

E r A V
R

. 
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For a constant surface tension γ lv  of the liquid, it is a monotonically increasing 
function of the contact angle. For a heterogeneous surface, the droplet would be 
repelled from areas with larger contact angles. 

 
Problem 2: Determine the total surface energy of a drop of liquid resting on a 
slightly curved surface (radius of curvature 0R ). Let the contact angle be / 2π  
(Fig. 4.12). 
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Fig. 4.12  Droplet of liquid on a curved surface. The contact angle is equal to / 2π . 

Solution: The contact angle is / 2π  when γ γ=sv sl . In this special case, the sur-
face energy is reduced to γ= lvE A . Through geometric reasoning we obtain 

2 2
2 2

0 0 02 2 2 2
0 0

,      = + = + − +
+ +

R Rh R h R R R
R R R R

. 

The volume, ( ) ( )( )2 2
0 0 03 3

3
π

= − − −TV h R h h R h , and surface area of the droplet,  

2π=A Rh , are calculated using the terms up to the first-order of the curvature 
01/κ = R : 

3 4
2 32 3 ,      2 2

3 4T
R RV A R Rπ π κ π π κ= + = + . 

For a small change in the radius R  and the curvature κ  (from the value 0κ = ), 
the volume and surface change as follows: 

4
2 332 ,     4 2

4
ππ κ π π κ= + = +T

RdV R dR d dA RdR R d . 

If we maintain a constant volume, then 23
8

κ= −dR R d . The change in the surface 

is then 31
2
π κ=dA R d . The “extra energy,” which is related to the curvature, is 

therefore, 
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3

0 0

3
2 4

πγ γ
Δ ≈ =lv T lvR V

E
R R

. 

The surface energy increases with the curvature of the base surface. Hence, the 
droplet is repelled from areas with a larger curvature. 
 
Problem 3: Determine the capillary force between a curved surface with the 
Gaussian radii of curvature 1R  and 2R  and a plane. The surfaces of both bodies 
are assumed to be completely wettable. 
 
Solution: Because the pressure in the liquid is overall constant, the radius of cur-
vature and the height 02=h r  must also remain constant. The form of the contact 
area is determined by the constraint 

2 2

1 22 2
+ =

x y h
R R

. 

The semi-axes of this ellipse are equal to 12R h  and 22R h , and its area is 

1 22π=A h R R . Thus, the capillary force is calculated as 

1 2
0

4γ πγ= =F A R R
r

. 

Problem 4: Determine the capillary force between a sphere and a plane. The con-
tact angles are 1θ  and 2θ .  
 
Solution: ( )1 22 cos cosπ γ θ θ= +F R . 
 
Problem 5: Determine the overhead pressure that is necessary to force a liquid 
through a lattice of round, parallel rods (Fig. 4.13). Let the distance between the 
rods be L .  

 
Solution: If the overhead pressure on the liquid is Δp , then it forms a uniformly 
curved surface with a radius of curvature of R  (Fig. 4.13): 

1
γ
Δ

=
lv

p
R

. 

At the same time, the angle between the surfaces of the rod and the liquid must 
equal to the contact angle θ . If the pressure rises, then the liquid is pressed even 
farther between the rods, until a critical condition is met. For contact angles of 

/ 2θ π≤ , this critical condition is met when the contact points of the liquid come 
together from both sides of the rod (Fig. 4.14 a, b). For contact angles / 2θ π>  it 



Problems      53 

is met sooner. In the case of a completely repellant surface, contact angle θ π= , 
the critical condition is shown in Fig. 4.14 c. 

 
Fig. 4.13   Liquid on a lattice of straight rods. 
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Fig. 4.14  Critical configurations for (a) / 2θ π< , (b) / 2θ π≈ ,  (c) θ π≈ . 

For wettable surfaces ( / 2θ π< ) it follows, from Fig. 4.14 a, that in the critical 

condition 1 2 sinθ=
R L

. For the maximum possible overhead pressure, we obtain 

2 sinγ θΔ = lvp
L

. 

It reaches a maximum for rods with / 2θ π=  and is equal to  

max
2 γΔ = lvp
L

. 

 
Problem 6: A cylindrical pin (mass m , length L ) lays on the surface of water 
(Fig. 4.15). Determine the displacement of the pin beneath the undisturbed surface 
of the water and the maximum weight that the surface can hold, under the assump-
tion that inclination of the surface of the water is small at every point. 

 
Fig. 4.15  A pin floating on the surface of the water. 
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Solution: In the solution, we will use the diagram in Fig. 4.16. The pressure differ-
ence at point ( ),x z  on the surface can be calculated either by using (4.10), or by 
calculating the hydrostatic pressure difference at a depth of z : 

/γ γ ρ′′Δ = = =lv lvp R z gz . 

The solution of the differential equation with respect to ( )z x  with the boundary 
condition of 0→z  for →∞x  yields: 

1/ 2

exp ρ
γ

⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠lv

gz A x . 

The displaced water volume is equal to 
1/ 2

0

2 ( ) 2
γ
ρ

∞ ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫ lvV L z x dx AL

g
. 

In equilibrium, the weight is equal to the buoyancy force, according to Ar-
chimedes’ buoyancy principle, thus, ρ =V m . For the depth that the pin has sunk, 
it follows that 

1/ 2

(0)
2 ργ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠lv

m gz A
L

. 

The angle of inclination of the surface at 0=x is determined using  

tan
2

ϕ
γ

=
lv

mg
L

. 

It is easy to see, geometrically, that the contact angle θ  cannot be smaller than ϕ . 
The maximum weight that the surface can hold is, therefore, calculated as 

2 tanγ θ= lvmg L . 

z

x

 
Fig. 4.16  A cylindrical pin supported by the surface of the water. 
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