
19 Numerical Simulation Methods in Friction 
Physics   

 

The contact and friction problems investigated in the previous chapters are based 
on simple model systems. Even when these models provide a general overview of 
complex tribological systems, a multitude of tribological problems, especially 
when they deal with the fine optimization of tribological systems, are not able to 
be calculated in analytical form. In these cases, researchers and engineers must fall 
back on numerical methods. At the same time, one must remember that the effi-
ciency of numerical methods is dependent largely on the quality of the preceding 
analytical preparations. 

In this chapter, we first present a short overview of the most important methods 
used in contact mechanics, describing them not in detail, but rather referring to ex-
isting literature. Only the fundamentals of one simulation method, the so-called 
“dimension reduction method,” will be described in detail. This method can be 
used to simulate macroscopic tribological systems and, above all, the frictional 
forces in such systems, taking into account their “multi-scale character.”  
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19.1 Simulation Methods for Contact and Frictional Problems: 
An Overview 

19.1.1 Many-Body Systems 

Computer simulations of many-body systems are indispensable for today’s indus-
trial development processes. With increasing demand on accuracy, the interest in 
reproducing contact and frictional phenomena as precise as possible is also in-
creasing. A considerable part of research in this field is concentrated on finding 
methods for the implementation of simple contact conditions and Coulomb’s law 
of friction. At the forefront, is the search for the most efficient algorithms possible 
(in terms of calculation time and implementation costs). Contact is typically seen 
as one-sided rigid constraint. For the laws of friction, there is assumed that there 
exists a maximum force of static friction and that the force of kinetic friction de-
pend on sliding velocity. Frequently, the force of kinetic friction is assumed to be 
constant and equal to the maximum force of static friction. 

The simplest method for integrating friction into many-body system programs 
is to approximate the law of friction using a continuous function of frictional 
force. The frictional force in treated as a given force for which the dependence on 
sliding velocity is known. Typically, a force in the following form is used 
(Fig. 19.1):  

 ( )2 ˆarctan /μ
π

=R NF F v v . (19.1) 

By using this form, one does not need to differentiate between static friction and 
kinetic friction. The characteristic velocity v̂  must be chosen so that it is signifi-
cantly smaller than the characteristic sliding velocity of the system to be simu-
lated. In this case, the relation (19.1) expresses the behavior of the forces in both 
the stick and sliding domains1.    

 

                                                           
1 In this case, “sticking” is simply sliding at a very low velocity; the frictional force sets itself 
“automatically” equal to the correct force of static friction between μ− NF  and μ+ NF . For many 
tribological applications, this “trick” corresponds even to the actual properties of the frictional 
force. 
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Fig. 19.1  Approximation of the law of friction by a continuous function of velocity. 

19.1.2 Finite Element Methods 

For many applications, the pressure distribution and the deformation of the contact 
interface are important. There are various simulation methods available for calcu-
lating elastic and plastic deformations, which give a principal possibility, to inves-
tigate adhesive contacts and frictional phenomena. Procedures based on discretiz-
ing the continuum equations are widely known, especially finite element methods 
(FEM) and boundary element methods.  

Contact formulations in the framework of FEM were developed in the 1970’s. 
Today, commercial FE-programs use the so-called node-to-surface formulation, 
which considers the nodes of the surface in relation to the elements of the other 
surface. 

In many practical applications (seals, metal-forming processes, penetration 
tests), large deformations, non-linear behavior of materials, and large relative mo-
tion between the participating contact partners occur. In these cases, contact prob-
lems can be considerably more robustly and accurately simulated with surface-to-
surface formulation (Mortar method)2. 

Rolling contact problems (wheel-rail, tire-street) are, likewise, investigated 
with the FE method. The Arbitrary Lagrangian Eulerian (ALE) method3 is an ef-
fective method for calculating such contact problems. The spatially stationary dis-
cretization allows the resolution of the mesh for the contact areas to be refined. 
This is especially elegant in solving problems of steady state rolling, because the 
solution is time-independent in this case. However, taking inelastic material be-
haviors into account is difficult, because the mesh is not bound to the points of the 
material. 

Advantages of a 3D-FE model are (1) the utilization of correct geometry (di-
mensions, surface topography, degrees of freedom) and (2) the ability to calculate 
                                                           
2 M.A: Puso und T. A. Laursen, A mortar segment-to-segment contact method for large deforma-
tion solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193:601-629, 
2004. 
3 U. Nackenhorst, The ALE-formulation of bodies in rolling contact: theoretical foundations and 
finite element approach. Computer Methods in Applied Mechanics and Engineering, 193:4299-
4322, 2004. 
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stresses and deformations in the entire body. Due to the very fine mesh, however, 
3D-FE models require high processing times for rough surfaces. This is an espe-
cially clear disadvantage when regarding extensive parameter studies and optimi-
zations. Thus, finite element methods are not practical for calculating frictional 
forces between rough surfaces. 

19.1.3 Boundary Element Method 

Boundary element method is especially suited for calculating contacts, because 
only the discretization of the surface is necessary. Because of the importance of 
this method in contact problems, we will discuss it in more detail. Here, we limit 
ourselves to normal contact problems between an elastic body and a rigid plane.  

The vertical displacement of a point on the surface of an elastic body being 
acted upon by a continuous pressure distribution is given by (5.7). We divide the 
parts of the domain to be investigated into ×N N  elements and assume the pres-
sure is constant in every individual element. The relation between pressure ijp  in 
a quadratic surface element and a vertical surface displacement iju  can be analyti-
cally calculated:4 

 ˆ̂ ˆ̂
ˆ ˆ1 1= =

= ∑∑
N N

ij ijij ij
i j

u K p , (19.2) 

with 
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and 

 

1 1ˆ ˆ  ,       ,
2 2
1 1ˆ ˆ  ,      .
2 2

= − + = − −

= − + = − −

a i i b i i

c j j d j j
 (19.4) 

                                                           
4 A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity. 4th edition., Cambridge, 
University Press. See also: K. L. Johnson, Contact mechanics. Cambridge University Press, 6th 
printing of the 1st edition, 2001, p. 54. 
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Δ  is the mesh spacing. Equation (19.2) can be written in matrix form as 

 u = Ap , (19.5) 

with a matrix A  with dimensions 2 2×N N . In contact problems, the size and lo-
cation of the contact area is initially unknown. Therefore, contact problems must 
be solved iteratively. In the contact area, the separation between the surfaces is 
zero (i.e. in this area, the displacement of the elastic surface is known). Outside of 
the contact area, the pressure is zero; the displacement, on the other hand, is gen-
erally not zero. To begin, a contact area is assumed. The variables are now parti-
tioned into the variables ip  and iu  inside of the contact area and ap  and au out-
side of the contact area. iu  and 0=ap  are known. After rearranging according to 
(19.5), we obtain 

 
⎡ ⎤ ⎧ ⎫⎧ ⎫

⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦ ⎩ ⎭

1 2 ii

3 4 a

A A up
=

A A u0
 (19.6) 

and finally, 

 1 i iA p = u , (19.7) 

 3 aiA p = u . (19.8) 

The solution to the system of equations in (19.7) yields a pressure in the contact 
area of ip . With these results, using (19.8), the displacement au in the domain 
outside of the contact can be calculated. The first iteration step generally yields a 
negative pressure (tensile stress) in the contact area and a negative separation dis-
tance outside of the contact area. The new contact area is now chosen so that all of 
the points in tensile stress are removed from the contact area and all of the points 
with a negative separation difference are brought into it. With this new approxi-
mation of the contact area, the previously described calculation is repeated. The it-
eration continues until no more tensile stresses or negative separation distances 
exist (to a reasonable approximation). 

19.1.4 Particle Methods 

Another approach to the simulation of contact and frictional problems is provided 
by particle methods, for which discrete particles are the focus of the calculations. 
These particles are not real (physical) objects, rather purely “units for calculation.” 
The interactions between the particles must be chosen so that the elastic and plas-
tic behavior of the material is correctly described. Thus, neither the macroscopic 
continuum equations nor the microscopic equations of molecular dynamics are 
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solved, rather the microscopic equations of a suitable substitution system. The size 
of the particles can be adjusted to fit the problem. For example, for the investiga-
tion of earthquakes, the particle size can be on the order of meters. 

The frictional force is determined by processes such as elastic and plastic de-
formation, fracture, and the dislodgement and reintegration of particles. These 
processes take place in micro-contacts. The movable cellular automata (MCA) 
method is a particle method with which the processes in micro-contacts are suc-
cessfully simulated5.  

19.2 Reduction of Contact Problems from Three Dimensions to 
One Dimension 

Now, we will discuss a simulation method that is especially well suited for simula-
tion of friction between rough surfaces. The laws of friction obtained using this 
method can subsequently be used in macroscopic system dynamics simulations. 
We limit ourselves to “typical tribological systems” which are characterized by 
the laws of dry friction being approximately met, especially, that the frictional 
force is approximately proportional to the normal force. This implies that the real 
contact area remains much smaller than the apparent contact area.  

For “typical tribological systems,” there is a series of properties that allow im-
mense simplification of the contact problem and in this way, allow quick calcula-
tion even in multi-scaled systems. The simplifying properties used in the reduction 
method are the following: 
(a) For velocities much smaller than the speed of sound6, deformations can be 
treated as quasi-static;  
(b) The potential energy, and therefore, the force-displacement relation, is a local  
property that depends only on the configuration of the micro-contacts and not the 
form or size of the body; 
(c) The kinetic energy, on the other hand, is a “global property” that depends only 
on the form and size of the body as a whole and not on the configuration of the 
micro-contacts; 
(d) Many significant properties in contact mechanics can be well approximated us-
ing one-dimensional systems, which allows for crucial reduction in calculation 
time.  

These four properties are found in many macroscopic tribological systems. The 
application area of the subsequent methods is, accordingly, very wide. One must 
not forget that when applying these methods, the above conditions must be met. In 
the following, we will discuss the aforementioned simplifying assumptions in de-
tail. 
                                                           
5 V.L. Popov, und S.G. Psakhie, Numerical simulation methods in tribology. Tribology Interna-
tional, 2007, v. 40(6), pp. 916-923. 
6 This condition is met rather well in most real tribological contacts. 
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19.3 Contact in a Macroscopic Tribological System 

(a) Quasi-steady state 
In most tribological systems, we are dealing with the movements of elements 
which have a relative velocity (30 m/s at the highest) that is much smaller than the 
speed of sound (a few thousand m/s). Under these conditions, one can consider the 
problem to be quasi-static. Even for unsteady processes, during which the entire 
system can no longer be considered to be in steady-state, the conditions for quasi-
steady state are still met very well for individual micro-contacts. In calculating 
contact deformations, in an overwhelming majority of real applications, we can 
apply equilibrium conditions in order to calculate deformations and, therefore, use 
all of the results from static contact mechanics from the previous chapters. 

(b) Elastic energy as a local property 
As we saw in Chapter 7, under typical operating conditions for tribological sys-
tems, contact partners come into contact with each other in many small micro-
areas, whose total surface area is much smaller than the apparent surface area. 
Under certain conditions, the individual contact points can be considered inde-
pendent from one another.  

We will investigate this property a little more in depth by calculating the poten-
tial energy of a deformed contact area. We consider a cylindrical indenter with the 
diameter D  which is pressed a distance d  into a body (Fig. 19.2).  

 
Fig. 19.2  Flat cylindrical indenter which is pressed a distance d  into an elastic half-space. 

The displacement in the elastic body at a point at large distance r  from the point 
of indentation is 

 ⋅D du
r

. (19.9) 

The deformation can be estimated as 2ε ⋅
−

du D d
dr r

 and the energy density as 

2 2
2

4

1 1
2 2

ε ⋅
E

D dG G
r

. The elastic energy is found through integrating 

 
2 2

2 2 2
4 2π π⋅

= ⋅∫ ∫
D d drU G r dr GD d

r r
. (19.10) 
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This integral converges at the upper limit. Since the asymptote (19.9) is only valid 
for >r D , the lower limit must be on the order of D  (the integral would diverge 
for the lower limit of 0). The elastic energy is, therefore, concentrated in a volume 
with linear dimensions on the order of D  – a result that we have already used in 
all of the estimations in the earlier chapters. In other words: 

The elastic energy is a local quantity that is only dependent on the configu-
ration and deformation in the area near the micro-contact. The size and form 
of the macroscopic body is unimportant for the contact mechanics of this 
problem. 

If the distance between the contact areas is much larger than their diameter, then 
they can be considered as being independent. 

(c) Kinetic energy as a global property 
The kinetic energy of a body behaves exactly the opposite. If a body impacts an 
indenter with the diameter D  at a velocity 0v  much smaller than the speed of 
sound (Fig. 19.3), leading to a penetration at the velocity 0v , then the velocity 
field in a reference frame moving at 0v  has an order of magnitude of 

 0( ) ⋅
= =

DvD dv r
r r

. (19.11) 

In the laboratory systems, the total kinetic energy of the body is calculated as 

 

2
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∫ ∫ ∫

∫
 (19.12) 

 
Fig. 19.3  A sketch for investigating the kinetic energy of a solid elastic body which impacts a 
rigid cylindrical indenter at a velocity 0v . 
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If the diameter of the contact area is much smaller than the size of the body, then 
the kinetic energy is equal to 2

0 / 2mv  by neglecting the first order terms of 
/D R . 

The kinetic energy is a “non-local” property that is independent from the 
contact configuration, in a first order approximation, and can be assumed to 
be equal to the energy of the “rigid movement” of the body as a whole. 

We have already implicitly used this property, for example, in the calculation of 
the time of impact between a sphere and a wall.  

We come to the conclusion that the inertial properties of a macroscopic system 
under “typical conditions” are correctly described in treating the body as a rigid 
mass m . Its elastic properties, on the other hand, are completely determined by 
the stiffness of its micro-contacts. This approach is schematically presented in 
Fig. 19.4. 

The inertial properties of three-dimensional systems are completely decoup-
led from contact properties under the majority of existing conditions. The 
former are completely macroscopic, while the latter are completely micro-
scopic. It is this decoupling that makes it possible for us to consider the fric-
tional forces as surface forces in macroscopic system dynamics.  

This property, by the way, is not self-evident and would not be valid in a two-
dimensional system for example. In the two-dimensional case, instead of having 
(19.10) we would have the integral /∫ dr r , which diverges logarithmically at 

both limits. In the two-dimensional case, the elastic contact energy is, therefore, 
dependent on the contact configuration as well as the size and form of the body. 
The same is also valid for the kinetic energy.  

m

 
Fig. 19.4  The inertial properties of a macroscopic system under “typical conditions” can be cor-
rectly described using a rigid mass m . Its elastic properties, on the other hand, are completely 
determined by the (non-linear) stiffness of its contacts. 

Now, we want to use the advantage that we live in a three-dimensional world 
and, according to this, assume the scale separation of the kinetic and potential en-
ergy for multi-contact problems. 
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(d) Dimension reduction of contact problems 
Another crucial property of contacts between three-dimensional bodies is the close 
similarity between these contacts and certain one-dimensional problems. The fun-
damental ideas of this analogy are presented in the following. If a round indenter 
is pressed into the surface of an elastic continuum, then the stiffness of the contact 
is proportional to its diameter D  (Equation 5.11): 

 *=c DE . (19.13) 

This property can be reproduced using a one-dimensional elastic foundation 
(Fig. 19.5 a). In order to fulfill Equation (19.13), the stiffness per unit length must 
be chosen as *E . Every individual spring must have the stiffness 

 *Δ = Δc E x . (19.14) 

If a “sphere” with the radius 1R  is brought into contact with the elastic founda-
tion (penetration depth d ), seen in Fig. 19.5, then the following contact quantities 
result: the contact radius is equal to 

 12=a R d  (19.15) 

and the normal force is  

 ( )
*

3
1

4 2
3

=N
EF d R d . (19.16) 

 

R1

a b  
Fig. 19.5  One-dimensional elastic foundation in contact with a “cylindrical” indenter and a 
“sphere.” 

If we choose a radius  

 1 / 2=R R , (19.17) 

then the Equations (19.15) and (19.16) coincide exactly with Hertzian theory. 

The contact of a rotationally symmetric three-dimensional rigid body with 
an elastic continuum can be represented by the contact of a corresponding 
one-dimensional cross-section having half the radius of curvature with an 
elastic foundation having the stiffness per unit length of *E . 



19.4 Reduction Method for a Multi-Contact Problem      311 

This rule is exactly correct for every cylindrical indenter and for every parabolic 
body with an arbitrary radius of curvature. 

Since a contact between an ellipsoid and a rigid plane can be approximated by 
a contact between a sphere and a plane (using the Gaussian radius (1) (2)R R , see 
(5.30)), the representation of a non-rotationally symmetric contacts in a one-
dimensional system is possible as well. Thereby, the Hertzian relation between 
normal force and contact area is still valid. The stiffness of indenters with non-
circular cross-sections (5.13) shows that one-dimensional representation also 
works for bodies with square or triangular cross-sections with an error of less than 
3%. The “one-dimensional diameter” of the contact, in this case, is calculated ac-
cording to the rule ( )1/24 /π=D A . 

The tangential stiffness of a three-dimensional contact is also proportional to 
the diameter of the contact: 

 4 2
2 ν⊥ ≈ ⋅
−
Gc a , (19.18) 

and thus, can be replicated using a one-dimensional elastic foundation for the 
same reasons. The tangential stiffness of individual springs in the elastic founda-
tion must be chosen according to 

 4
2 ν⊥Δ = Δ
−
Gc x . (19.19) 

The fact that the force-penetration depth and the force-contact area relation-
ships are independent of scaling for very different rotationally symmetric and non-
symmetric individual contacts allows us to draw the hypothesis that this would al-
so be the case with a randomly rough surface. 

19.4 Reduction Method for a Multi-Contact Problem 

In order to cross over to a contact between bodies with rough surfaces, a rule for 
the production of a one-dimensional profile, which is equivalent to the three-
dimensional body in a contact mechanical sense, must be formulated (Fig. 19.6). 
As the motivation for this replacement, we use a few ideas from the model of 
Greenwood and Williamson. The results and quality of the replacement system, 
however, prove to be much better than the Greenwood-Williamson model itself. 

In the model of Greenwood and Williamson, the individual contacts are con-
sidered to be independent from each other. Under these conditions, only the distri-
bution of the heights of the asperities and the radii of curvature play a role. So, 
our goal is first to generate a one-dimensional system, which has the necessary 
statistical distributions of heights and radii of curvature. 
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Fig. 19.6  Replacing two three-dimensional bodies with two equivalent one-dimensional “rough 
lines.” 

To simplify matters, we assume that the topography of the two-dimensional sur-
face (of a three-dimensional body) can be unambiguously characterized by its 
power spectrum ( )2DC q , which is defined according to 

 ( )
( )

( ) ( ) 2
2D 2

1 0
2π

− ⋅= ∫ iC q h x h e d xq x , (19.20) 

where ( )h x  is the height profile taken from the average so that 0=h ; .  
means averaging over the statistical ensemble. Furthermore, we assume that the 
surface topography is statistically homogeneous and isotropic. Under these condi-
tions, the power spectrum ( )2DC q  is only dependent on the magnitude q  of the 
wave vector q .  

Similarly, the power spectrum ( )1DC q  of a one-dimensional “surface” – a 
“rough line” is introduced: 

 ( ) ( ) ( )1D
1 0

2π
−= ∫ iqxC q h x h e dx . (19.21) 

The surface topography is calculated in the two-dimensional case with the help 
of the power spectrum according to 

 ( ) ( ) ( )( )( )2 exp φ= ⋅ +∑ Dh x B q i q x q
q

, (19.22) 

with 
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 ( ) ( ) ( )22 2
2π

= = −DD DB q C q qBL
 (19.23) 

and the phases ( ) ( )φ φ= − −q q , which are randomly distributed on the interval 

[ )0 2π, .   
In the one-dimensional case, we have  

 ( ) ( ) ( )( )( )1 exp φ= +∑ D
q

h x B q i qx q , (19.24) 

with  

 ( ) ( ) ( )11 1
2π

= = −DD DB q C q qBL
. (19.25) 

Quick numerical methods are based on the fast Fourier transform (FFT) in-
stead of direct calculation of the sums (19.22) or (19.24). 

Theoretical considerations and numerical studies lead to the following trans-
formation rules from a two-dimensional to a one-dimensional power spectrum: 

In order to produce a one-dimensional system with the same contact proper-
ties as the three-dimensional system, the one-dimensional power spectrum 
must be used according to the rule 
 ( ) ( )1D 2Dπ=C q qC q .     (19.26) 

Qualitative arguments for this rule are the following: the average of the squares of 
the heights for the two-dimensional and one-dimensional cases, respectively, are 

 ( )2
2D2D

0

2π
∞

= ∫h qC q dq , (19.27) 

 ( )2
1D1D

0

2
∞

= ∫h C q dq . (19.28) 

They are the same when ( ) ( )1D 2Dπ=C q qC q . The corresponding root mean 

squares of the curvature 2κ  also coincide in this case7. In the work8 it was 

shown that the lines generated in this way are actually equivalent to the three-
dimensional body regarding their contact mechanical properties. In particular, the 
height distribution of the one-dimensional “surfaces” with the power spectrum  in 

                                                           
7 For two-dimensional cases, we define 2 (1) (2)κ κ κ= , where (1)κ  and (2)κ  are the principal radii 
of curvature of the surface. 
8 T. Geike and V.L. Popov, Mapping of three-dimensional contact problems into one dimension. 
Phys. Rev. E., 2007, v. 76, 036710 (5 pp.). 
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(19.26) coincide with the height distribution of the two-dimensional surface, while 
the average radius of curvature of the peaks in the one-dimensional system is half 
as large as that of the three-dimensional system and this is exactly the ratio that is 
needed for the contact properties to perfectly coincide! Therefore, we have the 
correct force-displacement relationship as well as the force-contact area relation-
ship. 

As an example, a contact between two three-dimensional bodies with randomly 
generated rough surfaces was investigated. For the calculation, surfaces with 
64 64×  points were generated. The interrelation between the normal force and the 
real contact area was calculated with the boundary element method (Fig. 19.7).  
With the one-dimensional power spectrum calculated according to (19.26), the 
one-dimensional “rough line” was generated. This rough line was pressed into a 
rigid line and the lengths il  of the connected regions were determined. From this, 
the contact area was defined according to the rule 

 2
,1D 4

π
= ∑c j

j

A l . (19.29) 

 

 
Fig. 19.7  Two-dimensional surface topography (left) and the resulting micro-contacts for one 
value of normal force (right) – results of a numerical calculation using the boundary element me-
thod. 

All of the results were averaged over 450 random realizations of the surface. The 
dependence of the entire surface on the normal force is compared in Fig. 19.8 for a 
three-dimensional system and a one-dimensional system. The one and three-
dimensional results excellently coincide for rough surfaces as well.  
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Fig. 19.8   Relation between relative contact area ( cA  is real contact area, A  apparent contact 
area) and normal force F . Three-dimensional results (Error bars based on 450 surfaces and thin 
dashed line for linear approximation of mean values) are compared to one-dimensional results 
(thick dotted line). One-dimensional result and linear approximation of three-dimensional results 
are difficult to distinguish because they match very closely. 

From this, it follows that: 

Individual contacts for rotationally symmetric and non-rotationally symmet-
ric three-dimensional rigid bodies as well as for random rough surfaces with 
an elastic continuum can be presented using a contact of an appropriate one-
dimensional profile with an elastic foundation having a stiffness per unit 
length equal to *E . This is valid in terms of force-displacement relation-
ships, force-contact area relationships, as well as in terms of force-contact 
length relationships. 

Let it be noted that the elastic foundation was earlier used by many researchers “as 
a last resort.” The success of this model is based on the strong analogy described 
above between three-dimensional contacts and contacts with elastic foundations.  

19.5 Dimension Reduction and Viscoelastic Properties 

For viscoelastic bodies such as rubber, the contact can only be seen as quasi-static 
when the penetration velocity and the sliding velocity are smaller than the smallest 
speed of sound (which corresponds to the smallest modulus of elasticity). If this 
condition is met and an area of an elastomer is excited at a frequency ω , then 
there is a linear relation between the force and displacement with stiffness that is 
proportional to the contact radius. Hence, this system can also be presented using 
a one-dimensional system, where the stiffnesses of the individual springs must be 
chosen according to (19.14). Rubber can be considered as a incompressible me-
dium, so that 1/ 2ν =  and  
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 ( ) ( ) ( ) ( )*
2

2
4

11
ω ω

ω ω
νν

Δ ≈ Δ = Δ = Δ = Δ
−−

E G
c E x x x G x . (19.30) 

In the case of rubber, the stiffness of the individual “springs” of the elastic 
foundation is four times the shear modulus multiplied with the mesh spac-
ing. 

In the one-dimensional model, the stress-strain relation (15.2) must be replaced by 

 ( ) 4 ( ) ( )δ
−∞

′ ′ ′= Δ −∫
t

iF t x G t t t dt . (19.31) 

19.6 Representation of Stress in the Reduction Model 

As long as the bodies are only elastically or viscoelastically deformed, one needs 
no information about the resulting stresses in the contact area. However, if the 
bodies are plastically deformed or worn due to stress peaks, then information 
about the stress occurring in the contact is necessary for the simulation. In the one-
dimension model, only the spring forces are directly defined, not the stresses. In 
the following, it will be shown that in the 1D model, a stress can also be defined 
that coincides with Hertzian stress distribution in the case of elastic deformation.  

The force in a spring is 

 
2

* *

12
δ

⎛ ⎞
= Δ = Δ −⎜ ⎟

⎝ ⎠
i

i i
x

F xE xE d
R

, (19.32) 

where δ i  is the displacement of the spring i  and Δx  is the mesh spacing. Now, 
we define the stress as 

 
1

σ
δ

= i
i

i

F
b R

. (19.33) 

Here, b  is the constant still to be determined. The stress is dependent on the ra-
dius of curvature and is, therefore, a non-local quantity9. 

                                                           
9 The following arguments can be cited as motivation for this form of the stress: the contact ra-
dius for an individual contact is equal to 2δ=a R , where δ  is the penetration depth. We have 

an approximation for the average stress of 2

/
σ

δ
∝ ∝ ∝ iN N

FF F a
a a R

, where iF  is the average 

spring force in the contact area. This is exactly the form (19.33). The fact that using the coordi-
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From (19.33), (19.32), and (19.16) we get: 

 
2

2 2

3 2 1
4

σ Δ
= −N i

i
F xx

ba a
. (19.34) 

For a Hertzian spherical contact, the stress distribution is equal to 

 
2

2 2

3
1

2
σ

π
= −NF x

a a
. (19.35) 

These two stress distributions coincide when 

 2
2

π
= Δb x . (19.36) 

Thus, the stress is calculated from the local spring force iF  and the local deforma-
tion δ i  according to 

 
1

2
σ

π δ
=

Δ
i

i
i

F
x R

 .     (19.37) 

For the yield criterion, the non-local quantity σ i  according to Equation (19.37) 

should be used, rather than the local force iF . 

19.7 The Calculation Procedure in the Framework of the 
Reduction Method 

The calculation procedure for the reduction method consists of the following 
steps:  
1. The frictional surface is measured (e.g. using a white light interference micro-
scope or an atomic force microscope). 
2. The two-dimensional power spectrum of the surface is calculated with the fast 
Fourier transform. 
3. This is now transformed into the one-dimensional power spectrum according to 
the rule in (19.26).  
4. With this power spectrum, a one-dimensional “rough line” is generated which 
has the same contact properties as the original three-dimensional system.  
5. The elastic properties are chosen according to the rule in (19.14).  

                                                                                                                                     
nate-dependent penetration depth δ i  leads exactly to the Hertzian stress distribution can be con-
sidered an empirical discovery. 
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6. The bodies are pressed onto one another and moved relative to one another in 
the tangential direction.  The ratio of the average tangential force to the average 
normal force is the coefficient of friction. 
7. In addition to the coefficient of friction, the total real contact area, the total con-
tact length (simply the sum j

j
L l= ∑ ), as well as their distributions, the average 

stress, and the stress distribution in the contact can be calculated. 

19.8 Adhesion, Lubrication, Cavitation, and Plastic 
Deformations in the Framework of the Reduction Method 

The reduction method can be expanded in order to take adhesion, lubrication, and 
cavitation in lubricated contacts into account. Particulars to this method can be 
found in the literature recommended for this chapter (see the section entitled “Fur-
ther Reading”). 

Problems 

Problem 1: Formulate an algorithm for calculating the coefficient of friction be-
tween a rigid surface with a given surface topography and a smooth viscoelastic 
body that can be modeled using the rheological model consisting of a spring con-
nected in parallel to a velocity proportional damper. 

 
Solution:  
1. The profile of the rigid surface ( , )h x y  is the input data and must first be meas-
ured (Fig. 19.9) and saved in the form of a two-dimensional array. 
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Fig. 19.9  Example of a surface topography measurement. 

2. With the help of the FFT, the Fourier transform ( , )x yB q q  of the surface profile 
is calculated (Fig. 19.10) and afterwards, the power spectrum: 

2
2

2 2( , ) ( , )
2π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

D x y D x y
LC q q B q q . 

qy

qx

q

dq

 
Fig. 19.10  Power spectrum of the profile shown in Fig. 19.9. 

3. Now, the spectrum is averaged over a circle with the radius q  and the same 
discretization interval dq  (Fig. 19.10). The result is the angular-independent pow-
er spectrum 2 ( )DC q . 
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4. An equivalent one-dimensional power spectrum is calculated according to 
(19.26): ( ) ( )1D 2Dπ=C q qC q . 
5. With this power spectrum, a one-dimensional profile is generated using Equa-
tion (19.24) and taking Equation (19.25) into account. This profile represents the 
initial two-dimensional surface in the following calculations. 
6. To verify the correctness, the root mean square 2Δ Dh  of the original two-
dimensional surface and 1Δ Dh  of the generated one-dimensional surface are calcu-
lated. Their averaged values over several realizations must coincide. 
7. Now, we get to the dynamic simulation. We define the zero level of the rigid 
rough line as zero on the z-axis (Fig. 19.11). The rigid line is discretized at the be-
ginning with the mesh spacing Δx  with which it was produced. Its profile in the 
discretization points is given by ih . The level of the undisturbed surface of the 
viscoelastic material we denote as 0Z . The line representing the viscoelastic mate-
rial is discretized using the same mesh spacing Δx  with which the rigid rough line 
was generated.  
8. The roughness profile moves to the left with the velocity v : ( , ) ( )= +h x t h x vt . 
The values in the discrete points are: ( ) ( )= Δ + Δi nh t h i x vn t , where n  is the num-
ber of time steps. 
9. The interaction relation between the rough surface and the viscoelastic material 
is defined: (a) the rigid surface is impenetrable for the viscoelastic material; (b) if 
a point of the viscoelastic material were displaced by Δ iz  and its velocity equals 
Δ iz , then a force according to (19.30) would act on the point: 

4 4η= Δ Δ + Δ Δi i if G x z x z , 

where G  is the shear modulus of the (three-dimensional) viscoelastic material and 
η  is its viscosity; (c) this force cannot be negative (no adhesion). 

 
Fig. 19.11  One-dimensional substitute model for the contact between a viscoelastic material and 
a rough rigid surface. 
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10. The system is “initialized” by placing the viscoelastic material “near” the rigid 
line: that means at a distance of about 13Δ Dh  from the zero line. Thereby, those 
points of the body meeting the condition 0≥ih Z  come into contact with the rough 
substrate. We initially set the force acting on the system to be equal to 

( )04= −i if G h Z . The total force acting on the viscoelastic material is equal to 

( )0
points points
in in
contact contact

4i iF f G x h Z= = Δ −∑ ∑ . 

In the vertical direction, a normal force − NF  is applied. 
11. Choice of time step: In the time Δt , the upper body is always displaced by a 
discretized step of Δx . Thus, the time step is 

/Δ = Δt x v . 

12. Time loop: In the next state (displaced by Δx ), the condition 1( )+ ≥i n ih t z  is 
checked and in this way, the new points that have come into contact are deter-
mined. The force acting on these points is calculated using 

( ) ( )1 1 0 1( ) 4 ( ) 4 ( ) ( ) /η+ + += Δ − + Δ − Δi n i n i n i nf t G x h t Z x h t z t t . 

For the points that were in contact in the previous step, it is initially assumed that 
they remain on the surface: therefore, their coordinates change from ( ) ( )=i n i nz t h t  
to 1 1( ) ( )+ +=i n i nz t h t . The force is calculated using the same formula. If the force is 
positive, then the points remain in contact. If it is negative, then these points are 
said to have lost contact and force acting on them is set to zero.  

For all points that are not in contact, their new position is determined using the 
condition that 

( )( ) ( ) ( )1
0 0η + −

⋅ − + =
Δ

i n i n
i n

z t z t
G z t Z

t
. 

From this, it follows that 

( ) ( ) ( )( )1 0η+ = − ⋅Δ −i n i n i n
Gz t z t t z t Z . 

Thereby, the total force acting on the material would be equal to 

( ) ( )1 1 0 1( ) 4 ( ) 4 ( ) ( ) /η+ + += = Δ − + Δ − Δ∑ ∑i n i n i n i n
i i

F f t G x h t Z x h t z t t , 

which is summed over all of the points found to be in contact. 
Since, the normal force should remain constant, the state of the upper surface 

0Z  changes so that the total vertical force is NF . To achieve this, the body is dis-
placed by ΔZ . The force resulting from this movement is equal to 
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( ) ( )4 4 / 4 4 /η ηΔ = −Δ Δ + Δ Δ = −Δ Δ + Δ Δ∑
i

F Z G x x t ZN G x x t . 

Here, N  is the number of points in contact. Together with the force calculated in 
the previous step, it must result in exactly NF : 

( )4 4 /η−Δ Δ + Δ Δ + = NZN G x x t F F . 

From this, it follows that 

( )4 4 /η
−

Δ =
Δ + Δ Δ

NF F
Z

N G x x t
,  0 1 0( ) ( )+ = + Δn nZ t Z t Z . 

13. In order to calculate the tangential force, the normal force acting on the point 
i  is multiplied with the tangent of the inclination angle of the surface: 

1 1
, 2

+ −−
=

Δ
i i

x i i
h h

f f
x

 

and summed over all contacts: 

1 1

points
in
contact

2
i i

x i
h h

F f
x

+ −−
=

Δ∑ . 

14. The ratio /x NF F  is the instantaneous value of the coefficient of friction. Av-
eraged over the total time, it provides us the average coefficient of friction. 
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