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Preface to the English Edition 
 
The English edition of “Contact Mechanics and Friction” lying before you is, for 
the most part, the text of the 1st German edition (Springer Publishing, 2009). The 
book was expanded by the addition of a chapter on frictional problems in earth-
quake research. Additionally, Chapter 15 was supplemented by a section on 
elasto-hydrodynamics. The problem sections of several chapters were enriched by 
the addition of new examples. 

This book would not have been possible without the active support of J. Gray, 
who translated it from the German edition. I would like to thank Prof. G. G. Ko-
charyan and Prof. S. Sobolev for discussions and critical comments on the chapter 
over earthquake dynamics. Dr. R. Heise made significant contributions to the de-
velopment and correction of new problems. I would like to convey my affection-
ate thanks to Dr. J. Starcevic for her complete support during the composition of 
this book. I want to thank Ms. Ch. Koll for her patience in creating figures and Dr. 
R. Heise, M. Popov, M. Heß, S. Kürscher, and B. Grzemba for their help in proof-
reading. 

 
Berlin, November 2009      V.L. Popov 
 



Preface to the German Edition 
 
He who wishes to better understand the subject of Contact Mechanics and the 
Physics of Friction would quickly discover that there is almost no other field that 
is so interdisciplinary, exciting, and fascinating. It combines knowledge from 
fields such as the theories of elasticity and plasticity, viscoelasticity, materials sci-
ence, fluid mechanics (including both Newtonian and non-Newtonian fluids), 
thermodynamics, electrodynamics, system dynamics, and many others. Contact 
Mechanics and the Physics of Friction have numerous applications ranging from 
measurement and system technologies on a nanoscale to the understanding of 
earthquakes and including the sheer overwhelming subject of industrial tribology. 
One who has studied and understands Contact Mechanics and the Physics of Fric-
tion will have acquired a complete overview of the different methods that are used 
in the engineering sciences. 

One goal of this book is to collect and clearly present, in one work, the most 
important aspects of this subject and how they relate to each other. Included in 
these aspects is, first, the entirety of traditional Contact Mechanics including ad-
hesion and capillarity, then the theory of friction on a macro scale, lubrication, the 
foundations of modern nanotribology, system dynamical aspects of machines with 
friction (friction induced vibrations), friction related to elastomers, and wear. The 
interplay between these aspects can be very complicated in particular cases. In 
practical problems, different aspects are always presented in new ways. There is 
no simple recipe to solve tribological problems. The only universal recipe is that 
one must first understand the system from a tribological point of view. A goal of 
this book is to convey this understanding. 

It is the solid belief of the author that the essential aspects of mechanical con-
tacts and friction are often much easier than they appear. If one limits oneself to 
qualitative estimations, it is then possible to achieve an extensive qualitative un-
derstanding of the countless facets of mechanical contacts and friction. Therefore, 
qualitative estimations are highly valued in this book. 

In analytical calculations, we limit ourselves to a few classical examples which 
we can then take as building blocks and apply them to understand and solve a 
wealth of problems with real applications. 

A large number of concrete tribological questions, especially if they deal with 
meticulous optimization of tribological systems, are not solvable in analytical 
form. This book also offers an overview of methods of Numerical Simulation for 
Contact Mechanics and Friction. One such method is then explained in detail, 
which permits a synthesis of several processes related to contact mechanics from 
different spatial ranges within a single model. 

Even though this book is primarily a textbook, it can also serve as a reference 
for the foundations of this field. Many special cases are presented alongside the 
theoretical fundamentals with this goal in mind. These cases are presented as ex-
ercises in their respective chapters. The solutions are provided for every exercise 
along with a short explanation and results. 



x      Preface to the German Edition 

The basis of this textbook originates and is drafted from lectures that the author 
has conducted over Contact Mechanics and the Physics of Friction at the Berlin 
University of Technology, so that the material can be completed in its entirety in 
one or two semesters depending on the depth in which it is visited. 

Thanks  
This book would not have been possible without the active support of my col-
leagues. Several in the department of “System Dynamics and Frictional Physics,” 
from the Institute for Mechanics, have contributed to the development of the prac-
tice exercises. For this, I thank Dr. M. Schargott, Dr. T. Geike, Mr. M. Hess, and 
Dr. J. Starcevic. I would like to express a heartfelt thanks to Dr. J. Starcevic for 
her complete support during the writing of this book as well as to Mr. M. Hess, 
who checked all of the equations and corrected the many errors. I thank Ms. Ch. 
Koll for her patience constructing figures as well as M. Popov and Dr. G. Putzar 
for their help with proofreading. I thank the Dean of Faculty V, Transportation 
and Machine Systems, for granting me a research semester, during which this 
book was completed. 

 
Berlin, October 2008     V.L. Popov 
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1 Introduction 
 

 

1.1 Contact and Friction Phenomena and their Applications 

Contact Mechanics and the Physics of Friction are fundamental disciplines of the 
engineering sciences, which are indispensable for the construction of safe and en-
ergy-saving designs. They are of interest for countless applications, for example 
clutches, brakes, tires, bush and ball bearings, combustion engines, hinges, gas-
kets, castings, machining, cold forming, ultrasonic welding, electrical contacts, 
and many others. These applications have tasks spanning from stress analysis of 
contact elements and joints, over the influence of lubrication and material design 
on friction and wear, to applications in micro and nanotechnology. Friction is a 
phenomenon that people have been interested in for over hundreds and even thou-
sands of years and still today remains in the middle of the development of new 
products and technologies. 

A classical example of contact is a rail-wheel contact, in which we are inter-
ested foremost in material strength and force transmission properties. Contacts can 
transfer mechanical force (screws), conduct electricity or heat, or prevent the flow 
of material (seals). The contact between the tip of an atomic force microscope and 
the underlying material or the contact between two tectonic plates are examples of 
frictional contacts as well. Contact and friction phenomena on different scales, 
from nanoscale phenomena to those on a mega-scale, have much in common and, 
thus, can be approached with similar methods. Contact mechanics and the physics 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_1, 
© Springer-Verlag Berlin Heidelberg 2010 
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of friction has proven to be an enormous field in modern research and technology, 
stretching from the movement of motor proteins and muscular contractions to 
earthquake dynamics as well as including the enormous field of industrial tribol-
ogy. 

Friction leads to energy dissipation and in micro-contacts, where extreme stress 
is present, to micro-fractures and surface wear. We often try to minimize friction 
during design in an attempt to save energy. There are, however, many situations in 
which friction is necessary. Without friction, we cannot enjoy violin music or even 
walk or drive. There are countless instances, in which friction should be maxi-
mized instead of minimized, for example between tires and the road during brak-
ing. Also, wear must not always be minimized. Fast and controllable abrasive 
techniques can actually form the basis for many technological processes, (e.g., 
grinding, polishing, and sandblasting.) 

Friction and wear are very closely connected with the phenomenon of adhe-
sion. For adhesion it is important to know if a close contact can be created be-
tween two bodies. While adhesion does not play a considerable role on a large-
scale in the contact between two “hard bodies” such as metal or wood, in instances 
in which one of the bodies in contact is soft, the role of adhesion becomes very 
noticeable and can be taken advantage of in many applications. One can also learn 
much from contact mechanics for the use of adhesives. In micro-technology, ad-
hesion gains even greater importance. Friction and adhesive forces on a micro-
scale present a real problem and have been termed “sticktion” (sticking and fric-
tion). 

Another phenomenon, which is similar to adhesion and will be discussed in this 
book, is capillary force, which appears in the presence of low quantities of fluid. 
In very precise mechanisms such as clocks, the moisture contained in the air can 
cause capillary forces, disturbing the exactness of such mechanisms. Capillary 
forces can also be used, however, to control the flow of a lubricant to an area of 
friction. 

In a book about contact and friction one cannot silently pass over the closely 
related sound-phenomena. Brakes, wheel-track contact, and bearings do not only 
dissipate energy and material. They often squeak and squeal unpleasantly or even 
with such intensity as to be damaging to one’s hearing. Noise caused by technical 
systems is a central problem today in many engineering solutions. Friction in-
duced vibrations are closely related to the properties of frictional forces and are 
likewise a subject of this book. 

If we had to measure the importance of a tribological field in terms of the 
amount of money that has been invested in it, lubrication technology would defi-
nitely take first place. Unfortunately, it is not possible to grant lubrication a corre-
spondingly large section in this book. The fundamentals of hydrodynamic and 
elasto-hydrodynamic lubrication, however, are of course included.  

The subject of contact mechanics and friction is ultimately about our ability to 
control friction, adhesion, and wear and to mould them to our wishes. For that, a 
detailed understanding of the dependency of contact, friction, and wear phenom-
ena on the materials and system properties is necessary. 
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1.2 History of Contact Mechanics and the Physics of Friction 

A first impression of tribological applications and their importance can be con-
veyed by its history. The term “Tribology” was suggested by Peter Jost in May of 
1966 as a name for the research and engineering subject which occupies itself with 
contact, friction, and wear. Except for the name, tribology itself is ancient. Its be-
ginning is lost in the far reaches of history. The creation of fire through frictional 
heating, the discovery of the wheel and simple bushings, and the use of fluids to 
reduce frictional forces and wear were all “tribological inventions” that were al-
ready known thousands of years before Christ. In our short overview of the history 
of tribology, we will jump to the developments that took place during the Renais-
sance and begin with the contributions of Leonardo da Vinci. 
 

In his Codex-Madrid I (1495), da Vinci describes the ball-bearing, which he 
invented, and the composition of a low-friction alloy as well his experimental ex-
amination of friction and wear phenomena. He was the first engineer who persis-
tently and quantitatively formulated the laws of friction. He arrived at the conclu-
sion that can be summarized in today’s language as two fundamental Laws of 
Friction: 

1. The frictional force is proportional to the normal force, or load. 
2. The frictional force is independent of the contact surface area. 
Da Vinci was, de facto, the first to introduce the term coefficient of friction and 

to experimentally determine its typical value of ¼. 
As so often happens in the history of science, these results were forgotten and 

around 200 years later, rediscovered by the French physicist Guillaume Amontons 
(1699). The proportionality of the frictional force to the normal force is, therefore, 
known as “Amontons’ Law.” 

Leonard Euler occupied himself with the mathematical point of view of friction 
as well as the experimental. He introduced the differentiation between static fric-
tional forces and kinetic frictional forces and solved the problem of rope friction, 
probably the first contact problem to be analytically solved in history (1750). He 
was the first to lay the foundations of the mathematical way of dealing with the 
law of dry friction and in this way promoted further development. We have him to 
thank for the symbol μ as the coefficient of friction. Euler worked with the idea 
that friction originates from the interlocking between small triangular irregularities 
and that the frictional coefficient is equal to the gradient of these irregularities. 
This understanding survived, in different variations, for a hundred years and is 
also used today as the “Tomlinson Model” in connection with friction on an 
atomic scale. 

An outstanding and still relevant contribution to the examination of dry friction 
was achieved by the French engineer Charles Augustin Coulomb. The law of dry 
friction deservingly carries his name. Coulomb confirmed Amontons’ results and 
established that sliding friction is independent of the sliding speed in a first order 
approximation. He undertook a very exact quantitative examination of dry friction 
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between solid bodies in relation to the pairing of materials, surface composition, 
lubrication, sliding speed, resting time for static friction, atmospheric humidity, 
and temperature. Only since the appearance of his book “Theory of Simple Ma-
chines,” (1781) could the differentiation between kinetic and static friction be 
quantitatively substantiated and established. Coulomb used the same idea of the 
origin of friction as Euler, but added another contribution to friction that we would 
now call the adhesion contribution. It was likewise Coulomb who established de-
viations from the known simple law of friction. He found out, for example, that 
the static force grows with the amount of time the object has remained stationary. 
For his examinations, Coulomb was well ahead of his time. His book contained 
practically everything that eventually became the original branches of tribology. 
Even the name of the measuring instrument, the tribometer, stems from Coulomb. 

Examinations of rolling friction have not played as a prominent role in history 
as sliding friction, probably because rolling friction is much smaller in magnitude 
than sliding friction and, therefore, less annoying. The first ideas of the nature of 
rolling friction for rolling on plastically deformable bodies, of which the most im-
portant elements are still considered correct, come from Robert Hooke (1685). A 
heated discussion between Morin and Dupuit that took place in 1841-42 over the 
form of the law of rolling friction showed that the nature of the friction was very 
dependent on the material and loading parameters. According to Morin the rolling 
friction should be inversely proportional to the radius of the rolling body, but ac-
cording to Dupuit it should be inversely proportional to the square root of the ra-
dius. From today’s point of view both statements are limitedly correct under dif-
fering conditions. 

Osborne Reynolds was the first to experimentally examine the details of the 
events happening in the contact area during rolling contact and established that on 
a driven wheel, there are always areas in which the two bodies are in no-slip con-
tact and areas where slipping takes place. It was the first attempt to put tribologi-
cal contact underneath a magnifying glass and at the same time the end of the 
strict differentiation between static friction and kinetic friction. Reynolds ac-
counted for the energy loss during rolling with the existence of partial sliding. A 
quantitative theory could later be achieved by Carter (1926) only after the founda-
tions of contact mechanics were laid by Hertz. 

Humans have lubricated mechanical contacts for hundreds of years in order to 
decrease friction, but it was rising industrial demands that coerced researchers ex-
perimentally and theoretically to grapple with lubrication. In 1883 N. Petrov per-
formed his experimental examinations of journal bearings and formulated the most 
important laws of hydrodynamic lubrication. In 1886 Reynolds published his the-
ory of hydrodynamic lubrication. The “Reynolds Equation,” which he developed, 
established the basis for calculations in hydrodynamically lubricated systems. Ac-
cording to the hydrodynamic lubrication theory, the coefficient of friction has an 
the order of magnitude of /h Lμ ≈ , where h  is the thickness of the lubricating 
film and L  is the length of the tribological contact. This holds true so long as the 
surfaces do not come so close to one another that the thickness of the lubrication 
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film becomes comparable to the roughness of the two surfaces. Such a system 
would then fall into the realm of mixed friction which was extensively examined 
by Stribeck (1902). The dependence of the frictional force on the sliding speed 
with a characteristic minimum is named the Stribeck-Curve.  

Other conditions can come into play with even greater loads or insufficient lu-
brication in which only a few molecular layers of lubricant remain between the 
bodies in contact. The properties of this boundary lubrication were investigated by 
Hardy (1919-22). He showed that only molecular layer of grease drastically influ-
enced the frictional forces and wear of the two bodies. Hardy measured the de-
pendence of frictional forces on the molecular weight of the lubricant and the sur-
faces of the metals and also recognized that the lubricant adheres to the metal 
surfaces. The decreased friction is owed to the interaction of the polymer-
molecules of the lubricant, which is today sometimes called a “grafted liquid.” 

A further advance in our understanding of contact mechanics, as well as dry 
friction, in the middle of the twentieth century is bound to two names: Bowden 
and Tabor. They were the first to advise the importance of the roughness of the 
surfaces of the bodies in contact. Because of this roughness, the real contact area 
between the two bodies is typically orders of magnitude smaller than the apparent 
contact area. This understanding abruptly changed the direction of many tribologi-
cal examinations and again brought about Coulomb’s old idea of adhesion being a 
possible mechanism of friction. In 1949, Bowden and Tabor proposed a concept 
which suggested that the origin of sliding friction between clean, metallic surfaces 
is explained through the formation and shearing of cold weld junctions. According 
to this understanding, the coefficient of friction is approximately equal to the ratio 
of critical shear stress to hardness and must be around 1/6 in isotropic, plastic ma-
terials. For many non-lubricated metallic pairings (e.g. steel with steel, steel with 
bronze, steel with iron, etc.), the coefficient of friction actually does have a value 
on the order of 0.16μ ∼ . 

The works of Bowden and Tabor triggered an entirely new line of theory of 
contact mechanics regarding rough surfaces. As pioneering work in this subject 
we must mention the works of Archard (1957), who concluded that the contact 
area between rough elastic surfaces is approximately proportional to the normal 
force. Further important contributions were made by Greenwood and Williamson 
(1966), Bush (1975), and Persson (2002). The main result of these examinations is 
that the real contact areas of rough surfaces are approximately proportional to the 
normal force, while the conditions in individual micro-contacts (pressure, size of 
micro-contact) depend only weakly on the normal force. 

With the development of the automobile industry, along with increasing speeds 
and power, rubber friction has gained a technical importance. The understanding 
of the frictional mechanisms of elastomers, and above all, the conclusion that the 
friction of elastomers is connected with the dissipation of energy through defor-
mation of the material and consequently with its rheology, a fact that is generally 
accepted today, can be owed to the classical works of Grosch (1962). 



6      1 Introduction 

Contact mechanics definitely forms the foundations for today’s understanding 
of frictional phenomena. In history, frictional phenomena were earlier and more 
fundamentally examined in comparison to pure contact mechanical aspects. The 
development of the railroad was most certainly a catalyst for interest in exact cal-
culations of stress values, because in wheel-rail contact the stresses can reach the 
maximum loading capacity for steel.  

Classical contact mechanics is associated with Heinrich Hertz above all others. 
In 1882, Hertz solved the problem of contact between two elastic bodies with 
curved surfaces. This classical result forms a basis for contact mechanics even to-
day. It took almost a century until Johnson, Kendall, and Roberts found a similar 
solution for adhesive contact (JKR-Theory). This may come from the general ob-
servation that solid bodies do not adhere to one another. Only after the develop-
ment of micro-technology, did engineers run into the problem of adhesion. Almost 
at the same time, Derjagin, Müller, and Toporov developed another theory of ad-
hesive contact. After an initially fervid discussion, Tabor realized that both theo-
ries are correct limiting cases for the general problem. 

It is astonishing that wear phenomena, despite their overt significance, were 
studied seemingly late. The reason for this delay may lie in the fact that the lead-
ing cause of wear is through the interactions of micro-contacts, which became an 
object of tribological research only after the work of Bowden and Tabor. The law 
of abrasive wear, which states that wear is proportional to load and sliding dis-
tance and inversely proportional to hardness of softer contact partners, was dis-
covered by M. Kruschov (1956) through experimental examination and later also 
confirmed by Archard (1966). The examinations of the law of adhesive wear, as 
with abrasive wear, are tied to Tabor and Rabinowicz. Despite these studies, wear 
mechanisms, especially under conditions in which very little wear takes place, are 
still today some of the least understood tribological phenomena.  

Since the last decade of the twentieth century, contact mechanics has experi-
enced a rebirth. The development of experimental methods for investigating fric-
tional processes on the atomic scale (atomic force microscope, friction force mi-
croscope, quartz-crystal microbalance, surface force apparatus) and numerical 
simulation methods have provoked a sudden growth during these years in the 
number of research activities in the field of friction between solid bodies. Also, 
the development of micro-technology essentially accounts for the largest pursuit in 
contact mechanics and the physics of friction. Experimentalists were offered the 
ability to examine well defined systems with stringently controlled conditions, for 
instance, the ability to control the thickness of a layer of lubrication or the relative 
displacement between two fixed surfaces with a resolution on the atomic level. 
There is, however, a gap between classical tribology and nanotribology that has 
yet to be closed. 
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1.3 Structure of the Book 

Contact and friction always go hand in hand and are interlaced in many ways in 
real systems. In our theoretical treatment, we must first separate them. We begin 
our investigation of contact and frictional phenomena with contact mechanics. 
This, in turn, begins with a qualitative analysis, which provides us with a simple, 
but comprehensive understanding of the respective phenomena. Afterwards, we 
will delve into the rigorous treatment of contact problems and subsequently move 
on to frictional phenomena, lubrication, and wear. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 Qualitative Treatment of Contact Problems – 
Normal Contact without Adhesion  

 

We begin our consideration of contact problems with the normal contact problem. 
A normal contact problem revolves around two bodies which are brought into con-
tact with one another by forces perpendicular to their surfaces. A prominent ex-
ample is the wheel of a train on a rail. The two most important relationships that 
the theory of normal contact should deliver are:  

(1) The relationship between the contact force and the normal displacement 
of the body, which determines the stiffness of the contact and therefore 
the dynamic properties of the system. 

(2) The relationships between forces and contact stresses and whether or not 
they exceed the critical values. 

Without actual geometric contact there can be no other contact phenomena, no 
friction, and no wear. In this sense, one can regard normal contact as a basic pre-
requisite for all tribological phenomena. It must also be noted that, in general, with 
normal contact there will still be relative motion in the tangential direction, be-
cause of the differences in the transverse contraction of the bodies in contact. 
Thereby, frictional forces in the surface layers come into play. If we consider that 
frictional forces are essentially due to the contact between micro-asperities of the 
surface, we see that the normal and tangential loadings and friction are entangled 
in even the simplest of contact problems. In a first order approximation, we would 
like to distance ourselves from these complications and investigate the pure nor-
mal contact problem, in which we assume that there are no frictional forces pre-

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_2, 
© Springer-Verlag Berlin Heidelberg 2010 
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sent in the contact area. Also, the always present attractive force, adhesion, will be 
neglected for the time being. 

An analytical or numerical analysis of contact problems is even in the simplest 
of cases very complicated. A qualitative understanding of contact problems, on the 
other hand, is obtainable with very simple resources. Therefore, we begin our dis-
cussion with methods of qualitative analysis of contact phenomena, which can 
also be used in many cases for dependable, quantitative estimations. A rigorous 
treatment of the most important classical contact problems continues in the fol-
lowing chapters. We will investigate a series of contact problems between bodies 
of different forms, which can often be used as building blocks for more compli-
cated contact problems. 

2.1 Material Properties 

This book assumes that the reader is acquainted with the fundamentals of elasticity 
theory. In this chapter, we will summarize only definitions from the most impor-
tant material parameters that have bearing on the qualitative investigation of con-
tact mechanical questions. This summary does not replace the general definitions 
and equations of elasticity theory and plasticity theory. 

 (a) Elastic Properties. In a uniaxial tensile test, a slender beam with a constant 
cross-sectional area A  and an initial length 0l  is stretched by Δl . The ratio of the 
tensile force to the cross-sectional area is the tensile stress 

 σ =
F
A

. (2.1) 

The ratio of the change in length to the initial length is the tensile strain or defor-
mation: 

 
0

ε Δ
=

l
l

. (2.2) 

A typical stress-strain diagram for many metals and non-metals is presented in 
Fig. 2.1. For small stresses, the stress is proportional to the deformation 

 σ ε= E . (2.3) 

The proportionality coefficient E  is the modulus of elasticity of the material. The 
elongation is related to the cross-sectional contraction, which is characterized by 
Poisson’s Ratio (or transverse contraction coefficient) ν . An incompressible ma-
terial has a Poisson’s ratio of 1/ 2ν = .  

Similarly, the shear modulus is defined as the proportionality coefficient be-
tween the shear stress and the resulting shear deformation. The shear modulus is 
related to the elasticity coefficient and Poisson’s ratio according to 
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2(1 )ν

=
+
EG . (2.4) 

The ratio of the stress to the change in volume from hydrostatic pressure is called 
the compressive modulus:  

 
3(1 2 )ν

=
−
EK . (2.5) 

In elastically deformed bodies, potential energy is stored, whose energy density E   
(energy per unit volume) can be calculated as follows: 

 
2

21 1
2 2 2

σεσ ε= = =E E
E

. (2.6) 

The following is valid for shear deformation:  

 
2

21
2 2

σε= =E G
G

. (2.7) 
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� 
Fig. 2.1  Schematic representation of a stress-strain diagram for many metals and non-metals. 

(b) Plastic Properties. After reaching the yield point, the stress-strain curve 
abruptly diverges from its original linear course and continues almost horizontally: 
the material experiences plastic deformation. Plastic deformation is characterized 
by the fact that after the material is unloaded some of the deformation remains. As 
a rule, the transition from elastic to plastic behavior is quick, but continuous, so 
that no distinct “yield point” can be defined. By convention, the yield point is ac-
cepted to be the stress σ c , at which the plastic deformation averages 0.2%.  

The yield point is dependent on the state of deformation of the material. For 
frictional phenomena the yield stress is taken from an intensively strain hardened 
state (the ultimate yield stress), which is normally found in the surface after tri-
bological loading. That means that in tribological applications, we use the limiting 
value of the yield strength of the intensively strain hardened state. According to 
this, no further essential hardening takes place during deformation and the mate-
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rial can be considered as if it were elastic perfectly-plastic in a first order ap-
proximation.  

A simple method for the determination of the yield point of an elastically per-
fectly-plastic material is the hardness test. It consists of the indenting of a rigid 
pyramid into the examined surface (Fig. 2.2). The ratio of the normal force to the 
area of the impression is the indentation hardness, or simply the hardness of the 
material1: 

 0 A
σ = NF

. (2.8) 

F

22°

F

D

A A

  
Fig. 2.2  Hardness test according to Vickers and to Brinell. 

Tabor showed both theoretically and experimentally that in most cases the hard-
ness is typically around three times the yield stress2: 

 0 3σ σ≈ c . (2.9) 

The hardness measurement plays a central role in the tribological characterization 
of materials, because the tribological processes are essentially defined through mi-
cro-asperities and such interactions are similar to the hardness test. The indenta-
tion hardness is only weakly dependent on the shape of the indenter. In a first or-
der approximation, this dependency can be neglected.  

Various material properties, which are of interest for contact mechanics and 
friction, such as the elasticity modulus, the hardness, the coefficient of thermal 
expansion, and the surface energy, exhibit strong correlation. Comprehensive ex-
                                                           
1 The hardness according to Vickers and Brinell agree with each other from the defined penetra-
tion hardness by a scalar coefficient: The hardness according to Vickers is about 0.1 of the de-
fined penetration hardness defined above. We will only use definition (2.8) in this book. 
2 D. Tabor, The Hardness of Metals, Oxford University Press, Oxford, 1951. 
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perimental data of these correlations can be found in the excellent book by Ernest 
Rabinowicz “Friction and Wear of Materials3.”  

2.2 Simple Contact Problems 

The simplest of contact problems are those in which the deformations are unambi-
guously determined by the geometry. This is the case in the four following exam-
ples. 

(1) Parallelepiped  

The simplest contact problem is the contact between an orthogonal parallelepiped 
and a smooth, frictionless, rigid plane (Fig. 2.3). When the body is pressed onto 
the plane, it is elastically deformed. We define the “penetration depth” as the dis-
tance that the parallelepiped would penetrate the plane if the plane was not rigid.  

l

A

d

 
Fig. 2.3   Contact between an elastic parallelepiped and a rigid plane. 

In reality, the body cannot penetrate beneath the level of the plane and is deformed 
a distance of d . If the length of the parallelepiped is much larger than its width, 
then a uniaxial stress condition is presented and the resulting force is 

 =
dF EA
l

, (2.10) 

where E  is the modulus of elasticity, A  is the cross-sectional surface area, and l  
is the length of the parallelepiped. In this case, the force is proportional to the 
penetration depth d .   

(2) Thin Sheets  

If the length of the parallelepiped is much smaller than the width (Fig. 2.4), then 
the medium cannot deform in the transverse direction and therefore uniaxial de-
formation occurs. In this case, according to the theory of elasticity, 

                                                           
3 E. Rabinowicz, Friction and wear of materials. Second Edition. John Wiley & Sons, inc., 1995. 
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 =
dF EA
l

, (2.11) 

with 

 (1 )
(1 )(1 2 )

ν
ν ν

−
=

+ −
EE . (2.12) 

for metals 1/ 3ν ≈ , so that 1.5E E≈ . For elastomers, which can be viewed as 
almost incompressible materials, 1 / 2ν ≈  and the modulus for one-sided com-
pression ≈E K  is much larger than E  (around 3 orders of magnitude): 

 ,        for elastomersE K E≈ . (2.13) 

d

 
Fig. 2.4  Contact between a thin elastic sheet and a rigid plane. 

(3) Spherical Cap 

Next, we investigate the contact between a thin, elastic, spherical cap, which is 
bound to a rigid plane, and a rigid plane (Fig. 2.5).  

r
a

z (r)

�l d

 
Fig. 2.5 Contact between an elastic, spherical protrusion and a rigid plane. 

Let the maximum thickness of the spherical cap be 0l  and the radius of curvature  
R . We will call the radius of the contact a . For the sake of simplicity, we will 
accept that in the area of interest, the displacement satisfies the following geomet-
ric conditions: 0<<d l , 0 <<l a . In this case, every discrete element of the spheri-

cal cap is uniaxially deformed.  For uniaxial deformation we use the modulus E  
(2.12).   

The form of a spherical cap with a radius of curvature of R, in the region near 
the minimum, can be presented as  

 
2

2 2

2
= − − +

rz R r R
R

. (2.14) 
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It can be easily seen in Fig. 2.5 that the relationship between the radius of the con-
tact area a  and penetration depth d  is given by the expression 2 / 2=d a R . From 
this, we can solve for the contact radius 

 2=a Rd . (2.15) 

The vertical displacement of the surface in terms of the coordinate r  is 
2 / 2Δ = −l d r R . The corresponding elastic deformation can be calculated using 

 
2

0 0

/ 2( )ε Δ −
= =

l d r Rr
l l

. (2.16) 

The equations of stress and total force in the contact area eventually yield: 

 ( ) ( )σ ε=r E r , 
2

2

0 00

/ 22 d ππ
⎛ ⎞−

= =⎜ ⎟
⎝ ⎠

∫
a d r RF E r r E Rd

l l
. (2.17) 

In this case, the contact force is proportional to the square of the penetration depth. 
The greatest stress (in the center of the contact area) is 

 
1/ 2

0 0

(0)σ
π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

d EFE
l l R

. (2.18) 

(4) Contact between a thin elastic sheet on a rigid, cylindrical base with a rigid 
plane. 

Another system that is interesting in many ways is a rigid cylinder of length L  
covered with an elastic sheet (thickness 0l ) (Fig. 2.6). Assuming that the penetra-
tion depth is much smaller and the contact radius is much larger than the sheet 
thickness, we again have uniaxial deformation. The displacement of the surface 
points can be calculated using 2 / 2= −zu d x R , which can then be applied to cal-
culate strain: 

 
2

0 0

/ 2( )ε −
= =zu d x Rx

l l
. (2.19) 

The total force can then be calculated using 

 
2 2 1/ 2

1/ 2 3/2

0 00

/ 2 42 d 2
3

⎛ ⎞−
= =⎜ ⎟

⎝ ⎠
∫
Rd d x R ELRF EL x d

l l
. (2.20) 

The maximum stress (in the middle of the contact area) is 
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1/32

2
0

9(0)
32

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

F E
L Rl

. (2.21) 

d

 
Fig. 2.6  Cylinder with an elastic sheet in contact with a rigid plane. 

2.3 Estimation Method for Contacts with a Three-Dimensional, 
Elastic Continuum 

(1) Contact between a rigid, cylindrical indenter and an elastic half-space  

Now, we will consider a rigid, cylindrical indenter in contact with an elastic half-
space (Fig. 2.7 a). With this example, we will explain the most important ideas 
used for qualitative estimations in contact mechanics.  

If the stress distribution acts over a finite area of the surface with a characteris-
tic length D  (Fig. 2.7 b), then the deformation of and the stress on the total vol-
ume are on the same order of magnitude in a volume with dimension D  in all 
three spatial dimensions. Beyond this “strongly deformed volume” the stress de-
creases according to 2−∝ r . That means that this volume 3∼ D  gives the largest 
contribution to energy and force relationships4. 

                                                           
4 The fact that the characteristic “penetration depth” of the stress and the deformation must have 
the same order of magnitude as the characterisitic size of the contact area comes from reasons of 
dimension. Actually, the equilibrium equation of the theory of elasticity does not contain any 
factor of the dimension length. The solution of an arbitrary equilibrium problem can, therefore, 
contain no length parameter other than the length that is given by the boundary conditions. 
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a
�

D

a b

D

 
Fig. 2.7  (a) Contact between a rigid cylindrical indenter and an elastic half-space. (b) Strongly 
deformed area of the elastic half-space. 

For a first order qualitative estimation, it is sufficient to suppose that the deforma-
tion is constant in the mentioned volume and that only this volume is deformed. 
Naturally, this is only a very rough estimate of real distributions of deformations 
and stresses in a continuum. It does, however, give correct results for the qualita-
tive relationships between contact force and the penetration depth as well as the 
contact radius, except for a scalar factor, which is on the order of 1 and can be de-
termined through analytical or numerical calculation.  

We apply this simple estimation rule to our example with a rigid indenter. 
When the diameter of the cylinder is equal 2a , then the volume measuring 2a  in 
all three directions is strongly deformed. If this volume is indented to a depth of 
d , we will estimate the deformation as / 2ε ≈ d a . For the stress, we obtain 

/ 2E Ed aσ ε≈ ≈  and for the force ( )22 2σ≈ ≈F a Eda : The contact force is 
proportional to the penetration depth and to the contact radius a . It is interesting 
to compare this estimation with the exact solution of the problem (Chapter 5). The 
exact result is 

 *2=F E da , (2.22) 

where *
21 ν

=
−
EE . For metallic materials ( 1/ 3ν ≈ ), the difference between the 

exact result and the estimation falls to within only 10%. This example impres-
sively shows that the described estimation method can be used not only for quali-
tative, but also for good quantitative estimations.  

Equation (2.22) indicates that the penetration depth is proportional to the nor-
mal force. The coefficient between the force F  and the displacement d  is called 
the stiffness of the contact:  

 *2=c E a . (2.23) 

We emphasize that the stiffness is, in this case, proportional to the radius (not the 
contact area!). 
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(2) Contact between a rigid sphere and an elastic half-space 

Now, we will consider the contact between a rigid sphere with the radius R  and 
an elastic half-space5. In this case, we also limit ourselves this time to a qualitative 
estimation. A rigorous treatment can be found in chapter 5.  

If there were no elastic interactions between the sphere and the surface, we 
would have a penetration depth d , a contact radius 2≈a Rd , and a contact area  

 2 2π π= ≈A a Rd . (2.24) 

R

z

r
d

 
Fig. 2.8  Hertz Contact Problem. 

According to the formulated estimation rules, the dimensions of the heavily de-
formed area are on the same order of magnitude as the contact diameter 2a . The 
order of magnitude of the elastic deformation in this area is / 2ε ≈ d a . Therefore, 

the magnitude of the stress is on the order of 
2

σ ≈
dE
a

. This yields the force of 

2 3/ 2 1/22
2 2 2

πσ π π= ≈ ≈ =
Ed EdF A a Rd Ed R

a
. Therefore, the force is propor-

tional to 3/ 2d . This is comparable to the exact result of6 

 * 1/2 3/24
3

=F E R d . (2.25) 

They differ only by a factor of approximately 1.5.  
If the half-space was plastically deformed, the ratio between the normal force 

and the contact area would be  

 0 A
σ = NF

. (2.26) 

                                                           
5 For normal contact, it does not matter if the contact is between an elastic sphere and a rigid 
plane or if it is between a rigid sphere and an elastic half-space. 
6 See chapter 5. 
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Using Equation (2.24) results in  

 02πσ=NF Rd . (2.27) 

In the plastic area, the force is proportional to the depth of the indentation. The 
average stress remains the same and is equal to the hardness of the material. 

(3) Contact between a rigid cylinder and an elastic half-space 

Next, we will investigate the contact between a rigid cylinder and an elastic half-
space (Fig. 2.9). The contact radius is estimated to be 2≈a Rd , as in the case of 
a sphere. The order of magnitude of the stress is / 2Ed a  and the contact area 
2La , in which L  is the length of the cylinder. This yields a force of 

2
2

≈ =
EdF La ELd

a
. The exact result is 

 *

4
π

=F E Ld . (2.28) 

In this case, the discrepancy between the simple estimation and the exact result is 
also minimal. The force is, in this case, linearly proportional to the indentation 
depth and is independent from the radius of the cylinder. Also, the contact stiff-
ness can be defined as the coefficient between the force and the vertical displace-
ment d : 

 *

4
π

=c E L . (2.29) 

L

 
Fig. 2.9  Contact between a rigid cylinder and an elastic half-space. 

In the plastic area we obtain 

 3/2 1/2 1/2
0 02 2σ σ≈ ≈NF aL LR d . (2.30) 

(4) Contact between a rigid cone and an elastic body 

The contact radius is, in this case, determined by the condition tanθ =a d  
(Fig. 2.10). The deformation is estimated as 1

2/ 2 tanε θ≈ =d a . The average 
stress is on the order of  
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 1
2 tanσ ε θ≈ ≈E E  (2.31) 

and is independent of the penetration depth. We obtain the estimation for the nor-
mal force using 

 
2

2 tan
π

θ
≈N

dF E . (2.32) 

The force is proportional to the square of the penetration depth. The exact re-
sult is7 

 
22

tanN
dF E

π θ
= . (2.33) 

If the stress (2.31) is smaller than the hardness of the material, it will be elasti-
cally deformed. Otherwise, we can assume that the deformation is essentially plas-
tic. In this case, the normal force is provided by the estimation 

 
2

0 2tan
πσ

θ
=N

dF . (2.34) 

z

d
�

r  
Fig. 2.10  Contact between a cone and a plane. 

Problems 

Problem 1: Determine the force-displacement dependence, the effective modulus 
of elasticity, and the shear stress distribution in a contact plane for a thin, round, 
elastomer sheet with a radius R  and a sheet thickness h , assuming that the mate-
rial is incompressible.  

 
Solution: We will consider two cases:  
(a) The sheet sticks to both bodies (Fig. 2.11).  

We will solve the problem in two steps: First, we will calculate the elastic po-
tential energy in the sheet as a function of the penetration depth d . The derivative 

                                                           
7 I.N. Sneddon, The Relation between Load and Penetration in the Axisymmetric Boussinesq 
Problem for a Punch of Arbitrary Profile. Int. J. Eng. Sci.,1965, v. 3, pp. 47–57. 
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of this energy with respect to d  will then provide the normal force. In order to 
calculate the potential energy, we use the following equation for the displacement 
field in the sheet: 

( )
2

2,
2r
h ru r z C z

R
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. 

This equation fulfills the no-slip condition 0=ru  for / 2= ±z h . The condition for 
incompressibility states 

/ 2
2 3

/ 2

12 ( , )d
3

π π π
−

⋅ = =∫
h

r
h

d R R u R z z RCh . 

This provides 3

3
=

RdC
h

 and  

2
2

3

3( , )
2

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
r

rd hu r z z
h

. 

The largest part of the potential energy, in this case, is associated with the shearing 
of the sheet. The shear deformation is 

3

6ε
∂

= = −
∂

r
rz

u d rz
z h

, 

the energy density is 
2 2 2

2
6

1 18
2

ε= =E rz
Gd r zG

h
 

and the total energy is 
/22 4

2 2 2
6 3

0 / 2

18 32 d d
4
ππ

−

= =∫ ∫
R h

h

Gd GRU r z r r z d
h h

. 

The force acting on the surface is 
4

3

3
2
π∂

= =
∂N
U GRF d
d h

. 
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Fig. 2.11  Contact between a thin, round, incompressible, elastomer sheet and two rigid planes, 
which cling to the elastomer. 

A comparison with (2.10) allows us to find the effective modulus of elasticity: 
4

2
3

3
2
π π= eff

GR dd E R
hh

. This gives us 

2 23 1
2 2

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

eff
R RE G E
h h

. 

This effective modulus is quadratically dependent on the ratio of the radius of the 
sheet to its thickness and can be much larger than the modulus of elasticity E . For 
the static stress at the contact surface, we have 

( ) 2 2

3( , / 2) , / 2σ ε= − = = − = =rz rz
d dr z h G r z h G r E r

h h
. 

It increases linearly from the center and reaches the maximum at the edge of the 
sheet: 

,max 2σ =rz
ERd
h

. 

In the presence of static friction with a coefficient of friction μs , slipping will not 
occur at any point in the contact area if 

2
,max ,max 2σ σ π

μ
σ

= = ≤rz rz
s

zz N

R h
F R

. 

 
(b) The sheet sticks to the upper surface and slides, without friction, on the lower 
surface (Fig. 2 12).  

 
Fig. 2.12  Contact between a thin, round, incompressible, elastomer sheet and a frictionless rigid 
plane. 
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In this case, we use the equation  

( )2 2
1( , ) = −r

ru r z C h z
R

, 

in which we have the no-slip condition of ( , ) 0=ru r h  on the upper surface and 

the free sliding condition of 
0

( , )
0

=

∂
=

∂
r

z

u r z
z

 on the lower surface. The incom-

pressibility requirement is 

2 3
1

0

42 ( , )d
3

π π π⋅ = =∫
h

rd R R u R z z Rh C . 

That means that 1 3

3
4

=
RdC
h

 and 

( )2 2
3

3( , )
4

= −r
du r z h z r
h

. 

This results in a shear deformation 
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ε
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. 

The energy density is 
2

2 2 2
6

1 9
2 8

ε= =E rz
dG G z r
h

 

and the total energy is 
2 2 4

2 2
6 3

0 0

9 32 d d
8 16

ππ= =∫ ∫
R hd Gd RU G r z r r z

h h
. 

The force acting on the surface is 
4

3

3
8
π∂

= =
∂N
U GRF d
d h

. 

This force is four times smaller than in the case of the stick condition on both sur-
faces. 
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3 Qualitative Treatment of Adhesive Contacts 

 

In the previous chapter, we examined contact problems with the assumption that 
the contacting surfaces did not “adhere.” In reality, there are relatively weak inter-
active forces between any two bodies, which decrease very quickly as the distance 
between the bodies increases. These forces lead, in most cases, to mutual attrac-
tion and are known as adhesive forces. Adhesive forces play an essential role in 
many technical applications. It is the adhesive forces that are responsible for the 
behavior of glue, for instance. Adhesive tape, self-adhesive envelopes, etc. are fur-
ther examples of adhesive forces. 

Adhesive forces play an important role in applications where one of the follow-
ing conditions is met: 

(i) The surface of the body is very smooth, (e.g. that of a magnetic disc of 
a hard drive). 

(ii) One of the contact partners is made of a soft material (e.g. rubber or 
biological structures) or 

(iii) We are dealing with a microscopic system, in which adhesive forces 
generally have a larger influence than body forces, because the body 
and surface forces are scaled differently (micro-mechanical devices, 
atomic force microscope, biological structures, etc.) 

Adhesion plays an essential role in rubber friction and is therefore an important 
phenomenon that must be accounted for in the development of materials for auto-
mobile tires. 
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In this chapter, we will explain the physical origins of adhesive forces and qua-
litatively discuss the fundamental ideas for calculations regarding adhesive con-
tacts. 

3.1 Physical Background 

Electrically neutral atoms or bodies at a distance equal to or greater than the size 
of the atoms are attracted according to dispersive or van der Waals forces.  

h

r

h

a b c  
Fig. 3.1  Interaction between two atoms (a), an atom and a half-space (b) and between two half-
spaces (c). 

The interaction between two neutral atoms at a distance r (Abb. 3.1 a) can be ap-

proximately described with the Lennard-Jones-Potential: 1
12 6= −

C CU
r r

. The equi-

librium distance 0r  calculates to ( )1/6
0 12 /=r C C . For the sake of simplicity, we 

will replace this potential in the following estimations with (Fig. 3.2):  

 06

0

,

,
−

⎧− ≥⎪= ⎨
⎪ ∞ <⎩

at at

C r r
rU

r r
 . (3.1) 

The simplification has only a slight influence on the most important interaction 
parameters, the equilibrium distance and the binding energy, but essentially facili-
tates calculations. 
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Lennard-Jones-
Potential

Simplified Model
Potential

U

r

r0

 
Fig. 3.2  Graph of the Lennard-Jones-potential and the simplified model potential (3.1). 

We calculate the interaction between two bodies with atomically smooth surfaces 
at a distance h in two steps. First, we calculate the interaction energy between an 
atom at a distance h from a three-dimensional body, which is composed of the 
same type of atoms with a concentration n (Fig. 3.3 a)1 :  

 
( )( )6 3 32 20 0

12
6
ππ

∞ ∞

− = − = − = −
+ +

∫ ∫ ∫at sol
CndV CnU Cn dz rdr

R hh z r
. (3.2) 

R

h

h

z z z z

dz

dV

dr

r

a b  
Fig. 3.3  Calculation of the interaction potential between an atom and a three-dimensional body 
(a) and two three-dimensional bodies at a distance h (b). 

In the second step, we calculate the interaction energy between two solid bodies 
with parallel surfaces and assume thereby that each of bodies is composed of the 

                                                           
1 In this calculation, we neglect the interactions between the atoms which make up the bodies. 
The calculation remains, nevertheless, correct up to a linear coefficient. Supplementary informa-
tion over van der Waals forces can be found in Section 3.6. 
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same type of atoms (Fig. 3.1 c and Fig. 3.3 b). This interaction energy is found 
through integration in the first body over the z-coordinate and multiplying it with 
the surface area A  of the body and the atom concentration n. The interaction 
energy per unit area is 

 
2 2

3 2 26 12
π π∞

− = − = − = −∫sol sol

h

U Cn Cn Qdz
A z h h

 , (3.3) 

where 2 /12π=Q Cn . If two bodies are moved together from a large distance to 

“direct contact,” (meaning to a distance of 0r ), the interaction forces perform 

work per unit area of  

 2
0

=W Q
A r

. (3.4) 

In order to pull the two bodies apart, the same work must be performed by exter-
nal forces. One can say that in order to create two surfaces, the work (3.4) per unit 
area is required. Half of this value (i.e. the energy that is required to create one 
surface) is called the surface energy density (also surface tension) γ  of the body2: 

 2
02

γ = Q
r

. (3.5) 

This quantity determines all of the essential contact properties that relate to adhe-
sion. Typical values for the surface energy of various solids and liquids are given 
in Table 3.1. 

Let us estimate the value of the van der Waals forces. We obtain the interaction 
force per unit area of two atomically smooth bodies at a distance h by differentiat-
ing the potential energy per unit area (3.3) with respect to h:   

 3

1 2σ −∂
= − = −

∂
sol solU Q

A h h
. (3.6) 

In “direct contact” (i.e. 0≈h r ) the van der Waals stress is 

 3 2
0 00 0

2 2 4γσ = = − = − = −F Q Q
A r rr r

. (3.7) 

 
 

                                                           
2 In using the term surface energy in contact mechanics, one must keep in mind that some au-
thors call the energy 2γ necessary to separate the bodies the “surface energy” (e.g. in the book 

by K. Johnson "Contact Mechanics"). 
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Table 3.1 Surface Energies of Solid and Liquid Materials 

Surface Energy of Molecular Crystals and Metals 

Material Surface Energy γ s  (
2 210 J/m− ) 

Nylon 4.64 

Polyvinyl chlorid (PVC) 3.9 

Polystyrene 3.30 

Polyethylene 3.0 

Paraffin 2.50 

PTFE (Teflon) 1.83 

NaCl 16 

Al2O3 64 

Si 128 

Al 112 

Ag 144 

Fe 240 

W 450 

 
Surface Energy of Liquids 

Liquid Surface Energy γ l  ( 2 210 J/m− ) 

Water 7.31 

Benzine 2.88 

n-Pentane 1.60 

n-Octane 2.16 

n-Dodecane 12 26( )C H  2.54 

n-Hexadecane 16 34( )C H  2.76 

n-Octadecane ( 18 38C H ) 2.80 

 
For a value 1 2γ ≈ ÷  J/m2, which is typical for many metals, and a value 

10
0 4 10 m−≈ ⋅r , we obtain a stress 10 210 N/mσ = . Thus, a contact surface of 1 cm2 

could hold a weight of 100 tons (much more than as shown in Fig. 3.4 a)! 
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Solid Beam
1 cm²

van der Waals
Interactions

Homogeneous
Separation

Crack

F

a

b

c  
Fig. 3.4  Van der Waals forces between atomically smooth surfaces are much stronger than can 
be guessed based on our everyday experiences (a); In real systems, they are strongly reduced in 
part by the roughness of the surfaces and in part by the fact that fractures propagate through ex-
isting flaws in the medium. 

Such strong adhesive forces are never observed in reality. This estimation explains 
Kendall’s statement in his book Molecular Adhesion and its Applications (Kluwer 
Academic, 2001): 

“solids are expected to adhere; the question is to explain why they do not, rather than why 
they do!”  

The solution to this adhesion paradox is explained by the fact that molecular bond 
fractures on a macroscopic scale are never homogeneous (Fig. 3.4 b), rather they 
are facilitated by propagating through existing flaws (Fig. 3.4 c), which drastically 
diminish the adhesive force. Also, the roughness of the surface can lead to a dras-
tic reduction of the adhesive force (see the discussion on the influence of rough-
ness on adhesion in 3.4). 

3.2 Calculation of the Adhesive Force between Curved Surfaces 

The first calculation of the adhesive force between solid bodies with curved sur-
faces stemmed from Bradley (1932)3. We consider a rigid sphere with a radius R 
at a distance h from a rigid plane of the same material. We calculate the interac-
tion energy between these bodies with an approximation, which we will also use 
later in most contact problems: We assume that the contact area is significantly 
smaller than the radius of the sphere, so that one can approximately assume that 
the surfaces of the two bodies are parallel, although the separation distance re-
mains dependent on the longitudinal coordinate (“Half-Space Approximation”). 

                                                           
3 R.S. Bradley, Phil. Mag 1932., v. 13, 853. 
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R

r

r²/2R

h h

z

 
Fig. 3.5  Diagram for calculating the adhesive forces between a rigid sphere with the radius R, 
and a rigid plane. 

The interactive potential per unit area at a distance of 2 / 2= +z h r R  (see 
Fig. 3.5) is given by (3.3). By integrating over the entire area, we obtain  

 
( )22

0

22
/ 2

plane sphere
Q RQU rdr

hh r R

ππ
∞

− = − = −
+

∫ . (3.8) 

By differentiating the potential energy with respect to h, we obtain the interactive 
force /= −∂ ∂F U h :  

 2

2π= − RQF
h

. (3.9) 

In the case of direct contact ( 0≈h r ):  

 2
0

2 4π πγ= − = −adh
RQF R

r
. (3.10) 

This result differs from the adhesive force between elastic, deformable bodies (see 
chapter 6) by only a factor of 4/3. 

3.3 Qualitative Estimation of the Adhesive Force between Elastic 
Bodies  

We begin with the simplest case of contact between a smooth, rigid plate and a 
smooth, elastic block (Fig. 3.6). Due to the adhesive forces, the block and the plate 
adhere to one another and a force must be applied in order to separate the block 
from the plate. Assume that we try to separate the two by applying a tensile stress 
σ  to the free end of the block. Due to this stress, the block is stretched a length d. 
The density of elastic potential energy of a stretched material is 

2 2/ 2 / 2ε σ=E E . The total potential energy is obtained by multiplying the ener-
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gy density by the volume of the block: 
2

02
σ=elU l A

E
, where A is the cross-

sectional area of the block.  

l 0 d  
Fig. 3.6  Adhesion of a rectangular block on a smooth wall. 

We now want to examine the conditions, under which the block can spontaneously 
separate from the rigid surface. If they were to separate, two new surfaces would 
be created. In order for this to take place the energy 2γ=adhU A  is required. A 

process in a closed physical system can only take place if the total potential energy 

in the system would decrease: 
2

02 0
2
σγ− = − <adh elU U A l A

E
. The critical stress, 

at which this process can take place, is 

 
0

4 γσ =cr
E
l

. (3.11) 

This “failure stress” increases with the modulus of elasticity E, and the surface 
energy γ , and decreases with the thickness of the elastic block. Hence, there is the 

well known rule for the application of most adhesives: The thinner the layer, the 
stronger the bond4. The application of this rule is, however, limited by the rough-
ness of the surfaces. 

As the second example, we consider the contact between a rigid sphere and a 
flat, elastic body.  The surfaces of both bodies are assumed to be absolutely 
smooth. For the penetration depth d the value of the contact area will be 

2≈a Rd  (see similar problem without adhesion, chapter 2). If the stress acts on 
a defined area of the surface of an elastic half-space with a linear 2a , then the ma-

jority of the potential energy is stored in the volume ( )32a . Therefore, one can as-

sume that, in most cases, only the volume highlighted in Fig. 2.7 b is significantly 
deformed. The magnitude of the elastic deformation is described as / 2ε ≈ d a , 
the energy density as 2 / 2εE , and the total elastic energy as 

                                                           
4 It should be noted that most adhesives (after solidifying) are elastic mediums with (relatively) 
small moduli of elasticity, so that in calculating the elastic energy, only the energy of the adhe-
sive layer must be taken into account. 
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( )32 1/ 2 1/ 2 5 / 22 2
2el
EU a E R dε =~ . The surface energy is 

22 4γπ πγ= − = −adhU a Rd . Therefore, the total energy of the system is  

 1/2 1/ 2 5/ 22 4πγ≈ −totU E R d Rd . (3.12) 

The force acting on the system is 1/2 3/ 25 2 4totUF E Rd R
d

πγ−∂
≈ ≈ −

∂
. The adhe-

sive force is the maximum negative force that acts on the body. It is found at 
0d = :  

 4πγ≈ −adhF R . (3.13) 

An exact calculation results in 3πγ= −adhF R , see chapter 6. Interestingly, the ad-

hesive force between two elastic bodies is of the same order of magnitude as that 
between two rigid bodies (3.10). 

3.4 Influence of Roughness on Adhesion 

That adhesive forces in the macroscopic world are very small and can often be 
neglected is attributed to the fact that practically all surfaces possess roughnesses 
of various scales. In order to qualitatively discuss the influence of roughness, we 
consider a smooth, elastic body in contact with a rough, rigid plane. 
 

h

l  
Fig. 3.7  An elastic medium in contact with a rough, rigid surface. 

Let the characteristic roughness wavelength be l and the characteristic height h. If 
the elastic body is deformed so that the “valleys” are completely filled, then the 

elastic energy 
2

2 3 3 21 1 1
2 2 2el

hU G l G l Glh
l

ε ⎛ ⎞≈ ≈ =⎜ ⎟
⎝ ⎠

 is stored5. At the same time, 

the surface energy is reduced by 22γ≈adhU l . If the adhesive energy is sufficiently 

large to generate such a deformation, then the body will spontaneously deform and 
adhere over the entire surface. That happens when <el adhU U , or when  

                                                           
5 A more exact calculation can be found in the first problem of this chapter. 
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 2 4 lh
G
γ< . (3.14) 

If the roughness is much smaller than the critical roughness, then the surface can 
be considered absolutely smooth. For larger roughnesses there is only contact at a 
few points and the adhesive force is significantly decreased. The critical roughness 
is, in addition to the surface energy γ , dependent on the elastic shear modulus G . 

Therefore, materials with very small elastic moduli can also adhere to very rough 
surfaces. An example of this is rubber, which has a typical shear modulus around 
1 MPa6, which is 5 orders of magnitude smaller than those of “stiff” solid bodies, 
such as metals. For stiff bodies the condition (3.14) is only fulfilled with very 
smooth, polished surfaces. For typical roughness parameters of 1μm≈h , 

100 μm≈l , and 80 GPa=G , the relationship is 
2

210 1
4
Gh

lγ
≈ . The adhesive 

force under these conditions is negligibly small. 

3.5 Adhesive Tape 

As a further example to the applications of the ideas about the physical nature of 
adhesion, we will discuss the conditions for the equilibrium of adhesive tape. We 
consider a flexible membrane of width L , which lays in part on a rigid, planar 
body (Fig. 3.8 a). The tape is pulled with a force F . We call the energy that is re-
quired to separate a unit area of the tape from the rigid body the “effective surface 
energy” and refer to it as γ ∗ . We calculate the angle at which the tape must be 

pulled (with a given force) so that the separation line is in equilibrium. To this 
aim, let us consider a section of tape of length 0l  between  and  (Fig. 3.8 b). 

F

y

O

A

B
s

�l

l0

l1

x

�

a b  
Fig. 3.8  Force diagram of a piece of tape acted on by an external force. 

According to the principle of virtual work in equilibrium, the sum of the work of 
all forces during an arbitrary infinitesimal displacement of the system must be 
equal to zero. We consider a displacement of the tape that corresponds to a separa-

                                                           
6 Pure, unfilled rubber. 
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tion of the tape from the body of length Δl . With this movement the surface ener-

gy is increased by γ ∗ ΔL l ; the adhesive forces perform thereby work equal to 

γ ∗− ΔL l . At the same time, the end of the tape on which the force acts (point B) is 

displaced in the direction of the force by a distance s. The work performed by F is 
equal to Fs. The equilibrium condition is γ ∗= ΔFs L l . It is easy to see that 

( )1 cosθ= Δ −s l  and, therefore, ( )0 1 cosθ γ ∗− =F L . For the critical “separation 

force,”  0F  we get 

 0 1 cos
γ

θ

∗

=
−

LF . (3.15) 

The critical separation force (per unit length) perpendicular to the plane is equal to 
the surface energy. By pulling in the direction π  (opposite to the direction of the 
tape) the critical force is half as large. 

3.6 Supplementary Information about van der Waals Forces and 
Surface Energies 

An extensive theory on van der Waals forces was developed by I.E. Dzyaloshins-
kii, E.M. Lifschitz, and L.P. Pitaevskii (1961)7. It says that the van der Waals 
forces depend significantly on the dielectric constant of the bodies and of the me-
dium between the two bodies. If the dielectric constant of the medium εm  is 

smaller as the dielectric constant of both bodies: 1 2,ε ε ε<m , the bodies attract. If 

it lies between ( 1 2ε ε ε< <m ), then the bodies repel! The latter effect is used in 

atomic force microscopy to prevent the adhesive forces and related instabilities. 
According to this theory, a rough first approximation of the van der Waals 

force between two bodies is proportional to the product 
( )( )

( )
1 2

1 2

m mε ε ε ε
ε ε

− −
+

. If the 

medium between the bodies is a vacuum ( 1ε =m ), then the force is always posi-

tive (the bodies attract) and is proportional to 
( )( )

( )
1 2

1 2

1 1ε ε
ε ε
− −

+
. One can give a 

rough empirical rule of calculation for relative surface energies in the approxima-
tion, in which the equilibrium distance 0r  (3.5), for various bodies is approximate-

ly the same and the main difference in the surface energies is caused by the differ-
ent polarizability and therefore the dielectric constant.  

                                                           
7 I.E. Dzyaloshinskii, E.M. Lifshitz und L.P. Pitaevskii, General Theory of van der Waals' 
Forces, Sov. Phys. Usp. 1961, v. 4 153-176. 
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We define the relative surface energy as the energy (per unit area) that is re-
quired to separate the bodies beginning from the equilibrium distance 0r . The 

relative surface energy for two identical bodies of material 1 is proportional to 

( )2
1

11 1
1

1
2

2
ε

γ γ
ε
−

= ∝ . Likewise, the relative surface energy for two identical bo-

dies of material 2 is proportional to 
( )2

2
22 2

2

1
2

2
ε

γ γ
ε
−

= ∝ . The relative surface 

energy for bodies 1 and 2 is 
( )( )

( )
1 2

12
1 2

1 1ε ε
γ

ε ε
− −

∝
+

, from which we obtain8 

 12 11 22 1 22γ γ γ γ γ≈ = . (3.16) 

The relative surface energy is roughly equal to the geometric average of the sur-
face energies of the two solids. In the case of two bodies, each composed of dif-
ferent materials, the γ  in Equations (3.11) and (3.13) should be replaced with 

12 / 2γ , half of the relative surface energy. 

Problems 

Problem 1: A smooth, elastic body (rubber) is in contact with a rigid, rough sur-
face which is characterized by a characteristic wave length l and a characteristic 

height ĥ  . The “width” of the medium L  is much larger than l. Under the as-

sumption that the roughness can be modeled as ( )ˆ cos 2 /π=z h x l , calculate the 

critical relationship ˆ /h l , at which the “valleys” will be completely filled. What is 
the maximum allowable characteristic roughness with 100 mμ=l  at which the 

rubber will still completely adhere to the rigid surface? Pure (unfilled) rubber has 
a shear modulus G  of about 1 MPa; the relative surface energy of a rigid contact 

partner to rubber is around 2 2
12 3 10 J/mγ −≈ ⋅ .  

 

                                                           
8 We have thereby replaced the geometric average 1 2ε ε  with the arithmetic average 

( )1 2 / 2ε ε+ . For the accuracy of the approximation, this assumption is acceptable. 
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z

x
2h

l

 
Fig. 3.9  Complete contact between a wavy, rigid surface and an elastic medium (rubber). 

Solution: For an isotropic, linearly elastic medium in equilibrium it holds true that 

div (1 2 ) 0ν∇ + − Δ =u u . 

The solution of this equation with the boundary conditions ˆ( , 0) cos= =zu x z h kx  

and ( ), 0 0σ = =zx x z  (frictionless in the horizontal direction) provides us with 

ˆ 1 cos
2(1 )ν

⎛ ⎞
= − ⋅⎜ ⎟−⎝ ⎠

kz
z

kzu h kx e  

and 

( ) ( )
1 2ˆ sin

2 1 2 1
ν
ν ν

⎛ ⎞−= + ⋅⎜ ⎟⎜ ⎟− −⎝ ⎠

kz
x

kzu h kx e , 

where 2 /π=k l . From the general equation for the stress tensor 

, ,(1 )(1 2 ) 1ik ll ik ik
l x y z

E Eu uνσ δ
ν ν ν=

= +
+ − +∑ , 

with ( )1
2 / /ik i j j iu u x u x= ∂ ∂ + ∂ ∂ , we get the normal stress on the surface: 

20

ˆ cos
2(1 )

σ
ν=

=
−zz z

Ehk kx . 

The elastic energy that is saved in the section of the medium with the length l in 
the x-direction can be calculated as  

2
1
2 2

0

ˆ
( ) ( )

4(1 )
πσ

ν
= =

−∫
l

el z zz
Eh LU u x x Ldx . 

The rubber will adhere to the entire surface if this energy is smaller than the sur-
face energy 12γ Ll : 

2

122

ˆ

4(1 )
π γ

ν
<

−
Eh L Ll . 
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The critical amplitude of the undulation is then 

2
2 12 124 (1 ) 2 (1 )ˆ γ ν γ ν

π π
− −

= =c
l lh

E G
. 

(Compare this result to that of the estimation in (3.14)!). From the given numerical 
values and 0.5ν ≈  the critical roughness is found to be 1 mch μ≈ . 

 

Problem 2: A rigid body with a wavy surface ( ˆ cos=h h kx ) is given. Estimate the 
maximum thickness ct  of a gold foil, which remains attached only because of ad-

hesive forces. Use the following values for your estimation: E  = 80GPa, 12γ = 2 

Jm-2 and 2 / 100 ml kπ μ= = , ˆ 1 mh μ= . There are two cases to investigate: The 

case in which the elastic energy is determined (a) exclusively by lengthening or 
(b) exclusively by bending. 

 
Solution:  
(a) Due to the deflection ( )w x  in the transverse direction, the length of the section 

of foil changes with the length l  by the amount  

2 2
2 2 2 21 1

2 2
0 0

ˆˆ( ) sin ( )
l l hl w x dx h k kx dx

l
π′≈ = =∫ ∫ . 

Thereby, the elastic energy  

4 4

2 3

ˆ1
2 1

π
ν

=
−el
E Lt hU

l
 

is saved. Here, L  is the width of the foil and ν  is Poisson’s Ratio. The foil ad-
heres completely if this energy is smaller than the adhesive energy 12γ Ll : 

4 2
12
4 4

2 1
ˆ

γ ν
π

−<
lt

Eh
. 

Based on the given values, 46 mμ<t . 

(b) The elastic energy of a section of a bent plate with the length l is 

3 3
2 4 2

2 2
0

ˆ
24(1 ) 48(1 )ν ν

′′= =
− −∫

l

el
Et EtU L w dx Lk h l . 

The plate adheres completely to the base if this energy is smaller than the adhesive 
energy 12γ Ll : 

42 2
3 12 12

4 2 4 2

48 3(1 ) (1 )
ˆ ˆ

γ γν ν
π

− −< =
lt

E Ek h h
. 
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Based on the given values, 4.1 mct μ≈ .  

A comparison of the cases (a) and (b) shows that the criteria for complete adhe-
sion at a given roughness value is mainly determined by the bending stiffness of 
the plate. The correct critical value of the plate thickness is, therefore, 4,1 mμ≈ct . 

 
Problem 3: Many insects possess mechanisms that allow them to adhere to 
smooth surfaces. In Fig. 3.10a, a simplified model is shown which takes the essen-
tial relationships of such an insect foot into account. Determine (a) the relationship 
between the penetration depth and the normal force; (b) the maximum contact ra-
dius in the case in which the external normal force approaches zero; (c) and the 
dependence of the separation force on the original compressive force. Given: 12γ , 

0A , 0 0/=k EA l , 0l  

a
r

F

l0

d

Springs

Fluid

Thin Membrane
Rigid Base

Air Pockets

Rz (r)

d

a

r

A

l

0

0

a b  
Fig. 3.10  (a) Structure of the “adhesive pad” of a grasshopper; (b) Explanation of notations for 
calculation of the adhesive forces. 

Solution: The length of the springs which are in contact with the rigid surface is 
calculated as 2

0( ) / 2= − +l r l d r R . In the phase in which the two surfaces in con-

tact are approaching each other, the springs at the edge of the contact area have 

the length 0l : 2
0 0/ 2− + =l d a R l . The radius of the contact area is 2=a dR , 

and the total compressive force is found by 

2 2 2

0 0 00

2 d
2

π ππ⎛ ⎞
= − − = =⎜ ⎟

⎝ ⎠
∫
a

N
k r kRd ERdF d r r
A R A l

. 

If the foot was originally strongly pressed onto the surface and then pulled away 
with a force F , then the contact area is defined by the condition that the springs at 
the boundary are in the critical state. The critical lengthening is calculated from 
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(3.11) as 12 02γ
Δ =

ll
E

 and the contact radius from the constraint 

2
max 12 0

max 0 0
2

( )
2

γ
= − + = +

a ll a l d l
R E

 as: 

2 12 0
max

2
2

γ⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠

la R d
E

. 

Therefore, the force acting on the foot is 

max 2
2 212 0 12 0
max

0 0 00

2 2
2 d

2 2
γ γπ ππ

⎛ ⎞⎛ ⎞ ⎛ ⎞= − − = − − = − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫

a

A
l lk r k EF d r r a d R d

A R A E l E
. 

The maximum negative value of this force we call the adhesive force. 

,max 122πγ=AF R . 

A detailed calculation of the arbitrary compressive force NF  provides the follow-

ing adhesive forces9 

( ) ,max ,max

,max ,max

                       ,

2      ,

≥⎧⎪= ⎨ − <⎪⎩

A N A
A N

A N N N A

F F F
F F

F F F F F
 . 

 
 

                                                           
9 M. Schargott, V.L. Popov, S. Gorb, Spring model of biological attachment pads. J. Theor. Bi-
ology., 2006, v. 243, pp. 48-53. 



4 Capillary Forces 

 

In the interactions between solid surfaces and liquids or between solid bodies in 
the presence of small amounts of liquids, the so called capillary forces play an im-
portant role. Capillary forces are responsible for the wetting of solids by liquids or 
the “repelling” of liquids. The transportation of water in all organs of plants is 
caused by capillary forces. They are behind the unwanted “spreading” of lubricat-
ing oil and its transportation to friction sites in the for-life lubrication of systems. 
Capillary forces are among the most important causes of “sticktion” between the 
small components in micro-technology. They can considerably influence frictional 
forces, especially that of static friction. 

4.1 Surface Tension and Contact Angles 

The most important physical parameters that influence capillary forces in various 
situations are the surface tension and the contact angle. In order to clarify the con-
cept of surface tension of a liquid, we visualize a soap film stretched within a 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_4, 
© Springer-Verlag Berlin Heidelberg 2010 
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square-shaped wire frame. If we pull on a movable side of the frame, the area of 
the film gets larger. Consequently, the surface energy rises. With a displacement 
of Δx  the energy rises by the amount 2γΔ = ΔE l x , where γ  is the surface energy 
density of the liquid, often referred to simply as “surface energy”; the factor of 2 
accounts for the fact that the film has two sides. According to the principle of vir-
tual work, this change in energy must be equal to the work performed by the ex-
ternal force 2γ= Δ = ΔW F x l x . Thus, 2γ=F l . That means that a uniform load of 

/ 2γ= =f F l  acts on the edge of the frame. Due to the fact that the film has two 
identical sides, both are acted on by a uniform load of γ , which is simply equal to 
the surface energy. Therefore, every free surface is in “tension”, from where the 
term “surface tension” for surface energy originates.  

F

 
Fig. 4.1  An experiment with a soap film, in order to explain the notion of surface tension. 

If a droplet of liquid is at rest on a solid surface, the surface of the liquid forms 
a specific angle θ  (Fig. 4.2), which, in equilibrium, only depends on the thermo-
dynamic properties of the system. This angle is called the contact angle and af-
fects most of the important properties dealing with the contact between solid bod-
ies and liquids.  

�

�

 
Abb. 4.2  Drop of liquid on a solid surface. 

In the boundary line of the droplet, three interfaces meet each other (Fig. 4.3 a). In 
every interface, a corresponding surface tension acts. In equilibrium, 

 cosγ γ γ θ= +sv sl lv  (4.1) 

is valid, in which γ sv  is the relative surface energy of the interface between the so-
lid body and the vapor, γ sl  is the relative surface energy between the solid body 
and the liquid, and γ lv  is the relative surface energy between the liquid and the 
vapor. The angle θ  can assume any value between 0 and π  depending on the re-
lationships of the three relevant surface energies. If the contact angle is smaller 
than / 2π , it is said that the liquid wets the given surface. At contact angles larger 
than / 2π  we then talk about “repelling” surfaces. When dealing with water, sur-
faces with a contact angle smaller than / 2π  are called hydrophilic, while surfaces 
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with a contact angle larger than / 2π  are called hydrophobic. The meaning of the 
differentiating between contact angles larger and smaller than / 2π  is first clari-
fied through the investigation of capillary bridges. At a contact angle of zero it is 
said that complete wetting takes place. In this case, the droplet would completely 
disperse and form an infinitely thin film (as seen macroscopically). Complete wet-
ting exists when the condition 

 γ γ γ− =sv sl lv  (4.2) 

is met. For γ γ γ< −lv sv sl , the liquid spreads out until it forms a film with a thick-
ness of a few molecular diameters. The dispersion of thin liquid films is known as 
“creep.” The driving force for this process is given by the difference 

 creep sv sl lvγ γ γ γ= − − . (4.3) 
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a b  
Fig. 4.3  Calculating the equilibrium of the contact line: (a) between a liquid and a solid body, 
(b) between two liquids. 

In the equilibrium equation (4.1) we have accounted for only the force equilib-
rium in the horizontal direction. The surface tension component in the vertical di-
rection is in equilibrium with the reaction force from the rigid body. If we are 
dealing with the contact between two liquids (or between two solid bodies in 
thermodynamic equilibrium, for example, after an extended exposure to high tem-
peratures), then both components must be taken into account (Fig 4.3 b). Hence, 
two characteristic contact angles can be provided from the equations 

 12 13 1 23 2 13 1 23 2cos cos     and    sin sinγ γ θ γ θ γ θ γ θ= + = . (4.4) 

Whether or not a liquid completely wets a surface, is dependent on the three 
surface energies of the three interfaces. It has been empirically shown, however, 
that the wettability is already for the most part defined by the relationship between 
the surface energies of the solid body and the liquid. If the surfaces can only inter-
act through van der Waals forces, then the surface energies at the interfaces of 
both substances can be estimated as1    

                                                           
1 F.M. Fowkes, Dispersion Force Contributions to Surface and Interfacial Tensions, Contact An-
gles and Heats of Immersion. In Contact Angle, Wettability and Adhesion, American Chemical 
Society, 1964, pp.99-111. 
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 2γ γ γ γ γ≈ + −sl s l s l . (4.5) 

It can be noted that this estimation differs from the estimation of the surface en-
ergy of solid bodies (3.16), where the physical origins of the surface energy is dif-
ferent (for solids it is the force that is required to separate the bodies, while for 
liquids it is the force required to reconstruct them during stretching). The energy 
(4.5) vanishes in contact between identical liquids. 
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Fig. 4.4  Estimation of contact angles for known surface energies between a liquid and a solid 
body. 

From the force equilibrium of the boundary (see Fig. 4.4) observing (4.5) we 
get 

 2 cosγ γ γ γ γ γ θ= + − +s l s l s l . (4.6) 

From which we can then calculate the contact angle 

 cos 2 1
γ

θ
γ

= −s

l

. (4.7) 

The right side of this equation assumes the value 1 (contact angle 0θ = , complete 
wetting) at γ γ≈s l . The value 1−  (θ π= , complete repelling) is never reached. 
The contact angle is equal to / 2π  for 4γ γ≈l s . The driving force for creep (4.3) 

is given by ( )2 2 2γ γ γ γ γ γ γ γ γ γ= − − = − + = −K s ls l l l s l s l . It reaches a maxi-

mum at / 4γ γ≈l s . 
Oils with very small surface energies (e.g. silicon oil with 2 22,1 10  J/mlγ

−≈ ⋅ ) 
wet all solid surfaces (with the exception of Teflon, see Table 3.1). They can in-
conspicuously contaminate manufacturing plants. The spreading of lubricants can 
lead to disturbances in parts of machines and loss of function, because they can 
flow out of friction sites where lubrication is needed. This unwanted spreading can 
be impeded through the epilamization process. During epilamization, the surface 
tension of the machine part is reduced by the application of a film which makes 
the solid surface repellent.  
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4.2 Hysteresis of Contact Angles 

We have so far assumed that no forces other than the surface tension act on the 
line of contact. If the contact is between a liquid and a solid body, frictional forces 
can also appear in the line of contact. The equilibrium condition (4.1) then chan-
ges to  

 cosγ γ γ θ= + ±sv sl lv Rf , (4.8) 

where Rf  is the frictional force per unit length of the line of contact. The sign of 
the frictional force is dependent on the direction of the movement of the droplet. 
Therefore, the actual contact angle will depend on the direction of motion. This 
phenomenon is called the hysteresis of the contact angle. From the hysteresis, the 
frictional force can be defined. This force is responsible for droplets sticking on  
macroscopically smooth, sloped surfaces. It is of interest for many technical appli-
cations. 

The frictional force in the line of contact can be caused by the roughness of the 
solid surface, its heterogeneity, or the atomic structure of the solid body. These 
factors lead to the fact that the energy of a droplet is dependent on its position on 
the solid surface. Thus, static friction is made possible. 

4.3 Pressure and the Radius of Curvature 

If the surface of a droplet of liquid is curved, then there is a pressure difference 
between the “outside” and “inside” of the droplet. For a spherical droplet 
(Fig. 4.5 a), this pressure difference is easy to calculate. If a definite amount of 
liquid is “pumped” into the droplet, the radius would grow by an amount dR . 
Thereby, the surface changes by 8π=dA RdR . The work 

( ) ( ) 2
1 2 1 2 4π= − = −dW p p dV p p R dR , which is performed through the differ-

ence in pressure, must be equal to the change in the surface energy2 
8γ γ π=l ldA RdR . From which: 

 ( )1 2
2γ

Δ = − = lp p p
R

. (4.9) 

If the force of gravity is neglected, then the pressure is constant everywhere inside 
of the droplet. Therefore, the radius of curvature must also be constant: A droplet 
takes the form of a sphere. On flat solid surfaces, it is always a portion of a sphere 
(Fig. 4.2). 

                                                           
2 We denote the surface tension of the vapor-liquid interface, which is normally simply referred 
to as the surface tension of the liquid, as l lvγ γ= .  
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For non-spherical surfaces it is generally true that 

 
1 2

1 1γ
⎛ ⎞

Δ = +⎜ ⎟
⎝ ⎠

lp
R R

, (4.10) 

where 1R  and 2R  are the principal radii of curvature. Here, we would like to 
stress that in Equation (4.10), the radii of curvature can also be negative. The sign 
of the radius of curvature is defined by whether the center of the curve lies on the 
positive or negative side of the surface of the liquid. The radii of curvature have 
different signs for saddle-shaped surfaces (Fig. 4.5 c).  

R
p

1

p
2
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R2
R1

-R2

a b c  
Fig. 4.5  Curved surfaces with different ratios of the principal radii of curvature. 

4.4 Capillary Bridges 

We observe a rigid cylinder near a solid surface with a small amount of liquid in 
between.  For the sake of simplicity, we assume that both of the “contact partners” 
are composed of the same material. 

-R R

R R

a a

b b

a b  
Fig. 4.6  Capillary bridges at a contact angle (a) smaller than / 2π , (b) larger than / 2π . 

In equilibrium, the liquid forms a capillary bridge, which has two radii of curva-
ture. The largest radius bR  is always positive. The sign of the smaller radius de-
pends on if the contact angle is larger or smaller than / 2π . For small contact an-
gles, in the case of wetting of the surface, aR  is negative. There is a reduced 
pressure in the liquid, which leads to a force that we call capillary force. In order 
to keep the system in equilibrium, an opposing reaction force must be applied. The 
capillary force is calculated by multiplying the pressure difference by the area of 
the capillary bridge:  
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 1 1 1
cap l l

b a a

F A A
R R R

γ γ
⎛ ⎞

= − ≈ −⎜ ⎟
⎝ ⎠

, (4.11) 

where a bR R  is assumed. However, if the surface is not wettable by a given 
liquid (contact angle larger than / 2π ), then the contact partners repel each other. 
This property explains the origin of the distinction between “wettable” and “repel-
ling” surfaces (or hydrophilic and hydrophobic surfaces in the case of water) de-
pending on if the contact angle is larger or smaller than / 2π . 

4.5 Capillary Force between a Rigid Plane and a Rigid Sphere 

We consider a capillary bridge between a rigid sphere and a rigid plane of the sa-
me material, for which the contact angle is zero (complete wetting), Fig. 4.7. Let 
the radius of the bridge be r and the radius of the sphere R. The height of the capil-
lary bridge is 2 / 2≈h r R  and the surface 2π=A r . The (small) radius of curva-
ture is clearly 0 / 2=r h . For 0 <<r r , the resulting pressure difference in the liq-
uid is 

 2
0

2 4γ γ γ
Δ = − = − = −l l l Rp

r h r
. (4.12) 

The capillary force is, therefore, 

 2
2

4
4l

cap l
R

F A p r R
r
γ

π πγ= Δ = − = − . (4.13) 

 
Fig. 4.7  A capillary bridge between a rigid plane and a rigid sphere. 
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It is proportional to the radius of curvature of the sphere and independent from the 
amount of liquid. The force, capF , which is required to pull the sphere from the 
surface has the same magnitude.  

4.6 Liquids on Rough Surfaces 

Up to now, we have assumed that the solid surface is ideally smooth and even. 
That is almost never the case in reality. Roughness leads to a macroscopically ob-
servable change in the contact angle. Depending on the type of roughness, a vari-
ety of situations can occur. If the level of roughness is small, then the liquid will 
remain in complete contact with the solid body over the entire area (in Fig. 4.8, to 
the right of the boundary of the droplet). If there is no pressure difference between 
the atmosphere and the liquid, then the sum of the radii of curvature for every 
point of the surface must be zero.  

�
�*

�0

 
Fig. 4.8  Surface of a liquid in contact with an inclined solid surface. 

Because of this, the surface on average, is flat and at a small distance from the 
contact line inclined at an angle *θ from the horizontal (Fig. 4.8). The horizontal 
component of the uniform load in the contact is 

 *
0 0cos cos cosγ θ γ θ γ θ− −sv sl lv . (4.14) 

In order for the boundary line to remain in equilibrium, the average linear force 
must be zero: 

 ( ) *
0cos cos 0γ γ θ γ θ− − =sv sl lv . (4.15) 

Observing equation (4.1) it follows that 

 *
0cos cos cosθ θ θ= ⋅  (4.16) 

(R.N. Wenzel, 1936). Because 0cosθ  is always smaller than 1, the visible con-
tact angle for hydrophilic surfaces is always larger than the “real” contact angle, 
while for hydrophobic, it is always smaller. This equation can also be derived 
purely from thermodynamic reasoning.   

If the gradient of the roughness profile is large, then the liquid can remain on 
the peaks of the roughness (Fig. 4.9). If the surface has a form as is shown in 
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Fig. 4.9 a, then the liquid remains atop the peaks only if the contact angle is larger 
than maxπ θ− , where maxθ  is the maximum angle of elevation of the surface. If the 
liquid were then to be acted on by some additional pressure, its surface would 
curve and it would press deeper into the recesses of the roughness until it reaches 
an instability point and the entire surface is wet. This can, however, be hindered 
by air trapped in the recesses. If the surface roughness has the form as in 
Fig. 4.9 c, then fluids with a contact angle of less than / 2π  can remain hanging 
without coming into complete contact with the surface. 

� � �

a b c  
Fig. 4.9  Sheet of fluid on a rough surface. 

4.7 Capillary Forces and Tribology 

There are several situations in which the capillary forces promote the movement 
of liquids. If a droplet is at rest on a curved surface, then its energy grows with the 
curvature. Therefore, the droplet is repelled by areas of high curvature, especially 
at edges or sharp points (Fig. 4.10, see also Problem 2 in this chapter). If a liquid 
is in a capillary or crevice of varying width, then capillary forces cause it to move 
in the direction of the smaller crevice width or capillary diameter.  

 
Fig. 4.10  Droplet is repelled from a sharp point.  
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This effect can be used to keep lubricants in place. In narrow joints, these forces 
are so large that they allow for life-long lubrication without reapplication. Such 
examples can be found in clockwork, measurement instruments, electricity meters, 
etc. If oil is wanted to reach such an area, the described effect can be used in the 
design of the joint so that the oil moves in the direction of the narrowest point.  

Problems 

Problem 1: Determine the total surface energy of a drop of liquid resting on a 
solid surface. 

h

R
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Fig. 4.11  Droplet of liquid on a flat, solid surface. 

Solution: Using the notation defined in (Fig. 4.11), we obtain the following equa-
tions for A  as the surface area of the droplet, V  as its volume, θ  as the contact 
angle, and *r  as the “contact radius”: 

( )2
*2 23

2 ,    ,    cos ,    2
3

π
π θ

− −
= = = = −

h R h R hA Rh V r Rh h
R

. 

The surface energies are related through the equation 

cos
γ γ

θ
γ
−

= sv sl

lv

. 

For both geometric values R  and h , which are completely determined by the 
configuration of the droplet, we have 

( ) ( )
( )3

2

3 ,    1 cos
1 cos 2 cos

θ
π θ θ

= = −
− +

VR h R . 

Therefore, we obtain the following expression for the sum of all of the surface en-
ergies: 

( ) ( ) ( )( )1/32*2 23
9 1 cos 2 cos

γ
γ γ π γ γ π θ θ= − + = = − +lv

sl sv lv lv
V

E r A V
R

. 
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For a constant surface tension γ lv  of the liquid, it is a monotonically increasing 
function of the contact angle. For a heterogeneous surface, the droplet would be 
repelled from areas with larger contact angles. 

 
Problem 2: Determine the total surface energy of a drop of liquid resting on a 
slightly curved surface (radius of curvature 0R ). Let the contact angle be / 2π  
(Fig. 4.12). 
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Fig. 4.12  Droplet of liquid on a curved surface. The contact angle is equal to / 2π . 

Solution: The contact angle is / 2π  when γ γ=sv sl . In this special case, the sur-
face energy is reduced to γ= lvE A . Through geometric reasoning we obtain 

2 2
2 2

0 0 02 2 2 2
0 0

,      = + = + − +
+ +

R Rh R h R R R
R R R R

. 

The volume, ( ) ( )( )2 2
0 0 03 3

3
π

= − − −TV h R h h R h , and surface area of the droplet,  

2π=A Rh , are calculated using the terms up to the first-order of the curvature 
01/κ = R : 

3 4
2 32 3 ,      2 2

3 4T
R RV A R Rπ π κ π π κ= + = + . 

For a small change in the radius R  and the curvature κ  (from the value 0κ = ), 
the volume and surface change as follows: 

4
2 332 ,     4 2

4
ππ κ π π κ= + = +T

RdV R dR d dA RdR R d . 

If we maintain a constant volume, then 23
8

κ= −dR R d . The change in the surface 

is then 31
2
π κ=dA R d . The “extra energy,” which is related to the curvature, is 

therefore, 
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3

0 0

3
2 4

πγ γ
Δ ≈ =lv T lvR V

E
R R

. 

The surface energy increases with the curvature of the base surface. Hence, the 
droplet is repelled from areas with a larger curvature. 
 
Problem 3: Determine the capillary force between a curved surface with the 
Gaussian radii of curvature 1R  and 2R  and a plane. The surfaces of both bodies 
are assumed to be completely wettable. 
 
Solution: Because the pressure in the liquid is overall constant, the radius of cur-
vature and the height 02=h r  must also remain constant. The form of the contact 
area is determined by the constraint 

2 2

1 22 2
+ =

x y h
R R

. 

The semi-axes of this ellipse are equal to 12R h  and 22R h , and its area is 

1 22π=A h R R . Thus, the capillary force is calculated as 

1 2
0

4γ πγ= =F A R R
r

. 

Problem 4: Determine the capillary force between a sphere and a plane. The con-
tact angles are 1θ  and 2θ .  
 
Solution: ( )1 22 cos cosπ γ θ θ= +F R . 
 
Problem 5: Determine the overhead pressure that is necessary to force a liquid 
through a lattice of round, parallel rods (Fig. 4.13). Let the distance between the 
rods be L .  

 
Solution: If the overhead pressure on the liquid is Δp , then it forms a uniformly 
curved surface with a radius of curvature of R  (Fig. 4.13): 

1
γ
Δ

=
lv

p
R

. 

At the same time, the angle between the surfaces of the rod and the liquid must 
equal to the contact angle θ . If the pressure rises, then the liquid is pressed even 
farther between the rods, until a critical condition is met. For contact angles of 

/ 2θ π≤ , this critical condition is met when the contact points of the liquid come 
together from both sides of the rod (Fig. 4.14 a, b). For contact angles / 2θ π>  it 
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is met sooner. In the case of a completely repellant surface, contact angle θ π= , 
the critical condition is shown in Fig. 4.14 c. 

 
Fig. 4.13   Liquid on a lattice of straight rods. 
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a b c  
Fig. 4.14  Critical configurations for (a) / 2θ π< , (b) / 2θ π≈ ,  (c) θ π≈ . 

For wettable surfaces ( / 2θ π< ) it follows, from Fig. 4.14 a, that in the critical 

condition 1 2 sinθ=
R L

. For the maximum possible overhead pressure, we obtain 

2 sinγ θΔ = lvp
L

. 

It reaches a maximum for rods with / 2θ π=  and is equal to  

max
2 γΔ = lvp
L

. 

 
Problem 6: A cylindrical pin (mass m , length L ) lays on the surface of water 
(Fig. 4.15). Determine the displacement of the pin beneath the undisturbed surface 
of the water and the maximum weight that the surface can hold, under the assump-
tion that inclination of the surface of the water is small at every point. 

 
Fig. 4.15  A pin floating on the surface of the water. 
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Solution: In the solution, we will use the diagram in Fig. 4.16. The pressure differ-
ence at point ( ),x z  on the surface can be calculated either by using (4.10), or by 
calculating the hydrostatic pressure difference at a depth of z : 

/γ γ ρ′′Δ = = =lv lvp R z gz . 

The solution of the differential equation with respect to ( )z x  with the boundary 
condition of 0→z  for →∞x  yields: 

1/ 2

exp ρ
γ

⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠lv

gz A x . 

The displaced water volume is equal to 
1/ 2

0

2 ( ) 2
γ
ρ

∞ ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫ lvV L z x dx AL

g
. 

In equilibrium, the weight is equal to the buoyancy force, according to Ar-
chimedes’ buoyancy principle, thus, ρ =V m . For the depth that the pin has sunk, 
it follows that 

1/ 2

(0)
2 ργ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠lv

m gz A
L

. 

The angle of inclination of the surface at 0=x is determined using  

tan
2

ϕ
γ

=
lv

mg
L

. 

It is easy to see, geometrically, that the contact angle θ  cannot be smaller than ϕ . 
The maximum weight that the surface can hold is, therefore, calculated as 

2 tanγ θ= lvmg L . 

z

x

 
Fig. 4.16  A cylindrical pin supported by the surface of the water. 

 
 
 



5 Rigorous Treatment of Contact Problems – 
Hertzian Contact 

 

In this chapter, a method is illustrated to find the exact solutions of contact prob-
lems in the framework of the “half-space approximation.” We examine, in detail, 
the classical contact problem of normal contact between a rigid sphere and an elas-
tic half-space, which is often used to analyze more complex models. 

As a preparatory step, we will summarize a few results of the theory of elasticity 
that have a direct application to contact mechanics. We consider the deformations 
in an elastic half-space, which are caused by a given stress acting upon its surface. 
The calculation of the deformation of an elastic body whose surface is  being acted 
upon by a force (“direct problem of the theory of elasticity”) is much easier than 
the solution of contact problems, because in the latter, neither the stress distribu-
tion, nor the contact area are known to begin with. The classic solutions from Hertz 
(non-adhesive contact) and Johnson, Kendall, and Roberts (adhesive contact) use 
the known solutions for “direct problems” as building blocks to the construction of 
a solution for a contact problem. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_5, 
© Springer-Verlag Berlin Heidelberg 2010 
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5.1 Deformation of an Elastic Half-Space being Acted upon by 
Surface Forces 

We consider an elastic medium that fills an infinitely large half-space (i.e. its only 
boundary is an infinite plane). Under the influence of the forces that act on the free 
surface, the medium is deformed. We place the xy-plane on the free surface of the 
medium; the filled area corresponds to the positive z-direction. The deformations in 
the complete half-space can be defined in analytical form and found in textbooks 
over the theory of elasticity1. Here, we will only mention the formula for the dis-
placement from a force acting at the origin in the positive z-direction. 

a b

F

x

z

y

 
Fig. 5.1  (a) A force acting on an elastic half-space; (b) a system of forces acting on a surface. 

The displacement caused by this force is calculated using the following equa-
tions:  

 
( )

3

1 21
2 ( )

νν
π

−⎡ ⎤+
= −⎢ ⎥+⎣ ⎦

x z

xxzu F
E r r zr

, (5.1) 

 
( )

3

1 21
2 ( )

νν
π

−⎡ ⎤+
= −⎢ ⎥+⎣ ⎦

y z

yyzu F
E r r zr

, (5.2) 

 
2

3

1 2(1 )
2

ν ν
π

⎡ ⎤+ −
= +⎢ ⎥

⎣ ⎦
z z
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with 2 2 2= + +r x y z . 
In particular, one obtains the following displacements of the free surface, which 

we have defined as 0=z : 

 
( )( )

2

1 1 2
2
ν ν
π

+ −
= −x z

xu F
E r

, (5.4) 

                                                           
1 L.D. Landau, E.M. Lifschitz, Theory of elasticity. (Theoretical Physics, Vol. 7), 3rd edition, 
1999, Butterworth-Heinemann, Oxford, §§ 8,9. 
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( )( )

2

1 1 2
2
ν ν
π

+ −
= −y z

yu F
E r

, (5.5) 

 
( )21 1ν

π

−
=z zu F

E r
, (5.6) 

with 2 2= +r x y . 
If several forces act simultaneously (Fig. 5.1 b), we will get a displacement as 

the sum of the respective solutions that result from every individual force.  
We will continue to work in approximation of the half-space, in which it is as-

sumed that the gradient of the surfaces in the area of contact and within relative 
proximity is much smaller than one, so that in a first order approximation, the sur-
faces are “even.”  Although the contact constraints for the two surfaces must con-
tinue to be met, the relation between the surface forces and the displacements can 
be seen, however, exactly as they appear with an elastic half-space. 

For contact problems without friction, only the z-component of the displacement 
(5.6) is of interest within the framework of the half-space approximation. Espe-
cially in the case of a continuous distribution of the normal pressure ( , )p x y , the 
displacement of the surface is calculated using 

 *

1 ( , )z
dx dyu p x y

rEπ
′ ′

′ ′= ∫∫ ,      ( ) ( )2 2′ ′= − + −r x x y y  (5.7) 

with 

 
( )

*
21 ν

=
−
EE . (5.8) 

Before we move on to actual contact problems, we want to solve two prepara-
tory problems. We assume that a pressure with a distribution of 

( )2 2
0 1 /= −

n
p p r a  is exerted on a circle-shaped area with the radius a  and search 

for the vertical displacement of the surface points within the area being acted upon 
by the pressure.  
 
a. Homogeneous Normal Displacement ( 1/ 2= −n ).  
The coordinate system used is shown in Fig. 5.1. The normal stress is distributed 
according to the equation 

 
1/ 22

0 21
−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

rp p
a

. (5.9) 
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The resulting vertical displacement is2: 

 0
*z

p a
u

E
π

= , ≤r a . (5.10) 

The vertical displacement is the same for all points in the contact area. From this 
result, it directly follows how we can produce the assumed pressure distribution: it 
is produced by the indentation of a rigid cylindrical rod into an elastic half-space. 
The total force acting on the area under pressure is equal to 

 2
0

0

( )2 d 2π π= =∫
a

F p r r r p a . (5.11) 

The stiffness of the contact is defined as the relationship between the force F  and 
the displacement zu : 

 *2c aE= . (5.12) 

If written in the form  

 *2 β
π

=
Ac E , (5.13) 

where A  is the contact area of the rigid indenter, Equation (5.12) is also valid for 
cross-sections that are not round. The constant β  always has an order of magni-
tude of 1: 

 
Round cross-section:               =1.000
Triangular cross-section:         =1.034
Rectangular cross-section:       =1.012

β
β
β

 (5.14) 

 
b. Hertzian Pressure Distribution ( 1/ 2=n ). 
For the pressure distribution of the form 

 
1/ 22

0 21
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

rp p
a

, (5.15) 

the resulting vertical displacement (Appendix A) is 

 ( )2 20
* 2

4z
p

u a r
E a
π

= − , ≤r a . (5.16) 

The total force follows as 

                                                           
2 A detailed derivation can be found in Appendix A. 
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 2
0

0

2( )2
3

π π= =∫
a

F p r rdr p a . (5.17) 

The displacement of the surface inside and outside of the area under pressure is 
shown in Fig. 5.2. 

0 1 2 3 4

0.2

0.4

0.6

0.8

1

r / a

uz

d

  
Fig. 5.2  Surface displacement zu  resulting from a pressure distribution (5.15); (0)zd u=  is the 
indentation depth. 

5.2 Hertzian Contact Theory 

In Fig. 5.3, a contact between a rigid sphere and an elastic half-space is shown 
schematically. The displacement of the points on the surface in the contact area be-
tween an originally even surface and a rigid sphere of radius R  is equal to  

 
2

2
= −z

ru d
R

. (5.18) 

We have seen in (5.16) that a quadratic distribution of the vertical displacement re-
sults from a pressure distribution of the form in (5.15).  

R

r

z

d

 
Fig. 5.3   A rigid sphere in contact with an elastic half-space. 
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We will try to find the parameters a  and 0p  that cause exactly the displacement in 
(5.18): 

 ( )
2

2 20
*

1 2
4 2
π

− = −
p ra r d
a RE

. (5.19) 

The variables a  and d  must, therefore, fulfill the following requirements: 

 0
*2

π
=

p R
a

E
,        0

*2
π

=
ap

d
E

. (5.20) 

It follows for the contact radius 

 2a Rd=       (5.21) 

and for the maximum pressure 

 
1/2

*
0

2
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

dp E
R

.     (5.22) 

Substituting from (5.21) and (5.22) into (5.17) we obtain a normal force of  

 * 1/ 2 3/24
3

=F E R d .     (5.23) 

With (5.22) and (5.23), the pressure in the center of the contact area can be calcu-
lated as well as the contact radius as a function of the normal force:  

 
1/3*2

0 3 2

6
π

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

FEp
R

,   
1/3

*

3
4

⎛ ⎞= ⎜ ⎟
⎝ ⎠

FRa
E

. (5.24) 

We can also determine the expression for the potential energy of the elastic defor-
mation U . Since /− = −∂ ∂F U d , we obtain the following expression for U : 

 * 1/2 5/ 28
15

=U E R d . (5.25) 

5.3 Contact between Two Elastic Bodies with Curved Surfaces 

The results from Hertzian theory (5.21), (5.22), and (5.23) can also be used with 
few modifications in the following cases. 
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(A) If both bodies are elastic, then the following expression for *E  must be used: 

 
2 2
1 2

*
1 2

1 11 ν ν− −
= +

E EE
.     (5.26) 

Here, 1E  and 2E  are the moduli of elasticity and 1ν  and 2ν  the Poisson’s ratios of 
both bodies. 

 
(B) If two spheres with the radii 1R  and 2R  are in contact (Fig. 5.4 a), then the 
equations  (5.21), (5.22), and (5.23) are valid using the equivalent radius R : 

 
1 2

1 1 1
= +

R R R
.      (5.27) 

This is also valid if one of the radii is negative (Fig. 5.4 b). The radius of curvature 
is negative if the center of curvature lies outside of the medium.  

R1

R2

R1

-R 2

a b  
Fig. 5.4  Contact between two bodies with curved surfaces. 

(C) In a contact between an elastic half-space and a rigid body with the principal 
radii of curvature of 1R  and 2R  (Fig. 5.5 a), an elliptical contact area results. The 
semi-axes are  

 1=a R d ,   2=b R d . (5.28) 

Consequently, the contact area is calculated as  

 π π= =A ab Rd , (5.29) 

where the effective Gaussian radius of curvature of the surface is 

 1 2=R R R .      (5.30) 

This radius can also be used in place of R  in other Hertzian relationships3.  
                                                           
3 This statement is not exact. The closer the ratio 1 2/R R  is to 1, the more precise the Hertzian re-
lationships hold. Even with a ratio of 1 2/ 10=R R , however, Equation (5.23) can be applied to el-
liptical contacts with a precision of 2.5%. 
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The pressure distribution is given by  

 
2 2

0 2 2( , ) 1= − −
x yp x y p
a b

. (5.31) 

R1 R2

b

a

a b  
Fig. 5.5  A body with a curved surface (principal radii of curvature 1R  and 2R ) in contact with an 
elastic half-space. 

(D) If two elastic cylinders are in contact and lie on perpendicular axes with radii 
1R  and 2R  (Fig. 5.6 a), then the distance between the surfaces of both bodies at the 

moment of the first contact (still without deformation) is given by 

 
2 2

1 2

( , )
2 2

= +
x yh x y
R R

. (5.32) 

This is exactly in accordance with case (C) for ellipsoids with radii of curvature 1R  
and 2R . Therefore, Hertzian relations are valid, if the effective radius 

 1 2=R R R  (5.33) 

is used. If both cylinders have the same radii, 1 2= =R R R , then the contact prob-
lem is equivalent to the contact problem between a sphere of radius R  and an elas-
tic half-space with an even surface. 

R1
R1

R2

R2

z

x

y L

a b  
Fig. 5.6  (a) Two crossed cylinders in contact; (b) Two cylinders in contact with parallel axes. 

(E) In the case of the contact between two cylinders with parallel axes (Fig. 5.6 b), 
the force is linearly proportional to the penetration depth (which we already saw in 
Chapter 2): 
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 *

4
π

=F E Ld .      (5.34) 

What is interesting is that the radius of curvature does not appear at all in this rela-
tionship. Half of the contact width is given through the equation 

 =a Rd ,   
1 2

1 1 1
= +

R R R
, (5.35) 

as in the contact between two spheres. The maximum pressure is equal to 

   (5.36) 

5.4 Contact between a Rigid Cone-Shaped Indenter and an 
Elastic Half-Space 

When indenting an elastic half-space with a rigid cone-shaped indenter (Fig. 5.7 a), 
the penetration depth and the contact radius are given through the relationship4 

 tan
2

d aπ θ= .      (5.37) 

The pressure distribution has the form 

 
( )

2

2
( ) ln 1

1
Ed a ap r

r raπ ν

⎛ ⎞⎛ ⎞⎜ ⎟= − + −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
.   (5.38) 

The stress has a logarithmic singularity (Fig. 5.7 b) at the point of the cone (at the 
center of the contact area). The total force is calculated as 

 
2

*2
tanN
dF E

π θ
= .      (5.39) 

                                                           
4 I.N. Sneddon, The Relation between Load and Penetration in the Axisymmetric Boussinesq 
Problem for a Punch of Arbitrary Profile. Int. J. Eng. Sci., 1965, v. 3, pp. 47–57. 

1/ 21/2* * *

0 2 2
E d E d E Fp

a R L Rπ
⎛ ⎞⎛ ⎞= = = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 
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Fig. 5.7  (a) Contact between a rigid cone-shaped indenter and an elastic half-space; (b) Pressure 
distribution in the normal contact between a rigid cone-shaped indenter and an elastic half-space. 

5.5 Internal Stresses in Hertzian Contacts 

The stresses under the influence of a single, vertical force, F , acting at the origin, 
are defined by5 

 ( ) ( )
( ) ( )

22 2 2

5 2 33

2
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5 H.G. Hahn, Elastizitätstheorie. Teubner, 1985. 
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The calculation of the stresses by an arbitrary normal pressure distribution p  on 
the surface is made possible through superposition. The normal stress in the z-
direction, σ zz , is exemplary 

 
( ) ( )( )

3

5/ 22 2 2( )

3 ( , )( , , )
2

σ
π

′ ′
′ ′= −

′ ′− + − +
∫∫zz
A

z p x yx y z dx dy
x x y y z

, (5.46) 

where 
( )
∫∫
A

means the integral over the area being acted upon by the pressure. 

For the Hertzian pressure distribution in (5.15), various results are discussed in 
the following. Fig. 5.8 shows the stresses at the z-axis for 0.33ν = . All of the 
shear stresses are 0; for all points along the z-axis, the principal axes coincide with 
the coordinate axes. The analytical solution for the components of the stress tensors 
provides us with6 
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0 21σ
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, (5.47) 
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Furthermore, the maximum shear stress, 1
1 2τ σ σ= −zz xx , is depicted in Fig. 5.8. 

One comes to the conclusion that the maximum shear stress lies in the interior, for 
0.33ν =  at 0.49z a≈ . Fig. 5.9 shows the equivalent stress according to the von 

Mises criterion in the x-y plane: 

 ( ) ( ) ( ) ( )
1/ 22 22 2 2 21 6

2
σ σ σ σ σ σ σ τ τ τ⎡ ⎤= − + − + − + + +⎢ ⎥⎣ ⎦V xx yy xx zz zz yy xy xz yz . (5.49) 

                                                           
6 K.L. Johnson, Contact mechanics. Cambridge University Press, Ninth printing 2003. 
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Fig. 5.8  Stresses along the z-axis ( 0= =x y ) for Hertzian pressure distribution. 

 
Fig. 5.9  Equivalent stress σV  according to (5.49) for Hertzian pressure distribution (x-z plane). 
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Problems 

Problem 1: Estimate the maximum pressure and the size of the contact area in a 
rail-wheel contact. The maximum load per wheel is around 510 N≈F  for cargo 
trains, the wheel radius is ca. 0.5 mR = . 

 
Solution: The rail-wheel contact can be regarded, in a first-order approximation, as 
the contact between two cylinders lying on axes perpendicular to each other with 
roughly the same radius R . Therefore, it is equivalent to the contact between an 
elastic sphere with the radius R  and an elastic half-space. The effective modulus 
of elasticity is * 2 11/ 2(1 ) 1.2 10 PaE E ν≈ − ≈ ⋅ . The pressure in the center of the 
contact area is found to be 0 1.0 GPap ≈  according to (5.24). The contact radius is 

6.8a mm≈ . 
 

Problem 2: Two cylinders of the same material and with the same R  are brought 
into contact so that their axes form an angle of / 4π  (Fig. 5.10). Determine the re-
lationship between force and penetration depth. 

y

x

 
Fig. 5.10  Contact between two identical cylinders which form an angle of / 4π  (when seen from 
above).  

Solution: We assume that the contact plane is horizontal. The distance between the 
surface of the first cylinder and this plane (at the first moment of contact) is equal 

to 
2

1 2
=

xz
R

, and the distance for the second cylinder is equal to 
( )2

2 4
−

= −
x y

z
R

. 

The distance between both surfaces is then  

( )22
2 21 3 1 1

2 4 4 2 4
x yxh x xy y

R R R
− ⎛ ⎞= + = − +⎜ ⎟

⎝ ⎠
. 
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The principal curvatures are calculated as the eigenvalues of this quadratic form, 
using the equation, 

2
2

3 1
14 4 0

1 1 8
4 4

κ κκ
κ

− −
= − + =

− −

R R
R R

R R

. 

to 1,2
1 1/ 2

2
κ ±

=
R

. The principal radii of curvature are accordingly 

1,2
2

1 1/ 2
=

±
RR . The resulting Gaussian radius of curvature is 

1 2 2 2= =R R R R . Because both cylinders are made from the same material, 

then according to (5.26) *
22(1 )ν

=
−
EE . In this case, the relationship between the 

force and the penetration depth from (5.23) is 
7/4

1/ 2 3/ 2
2

2
3 (1 )ν

=
−
EF R d . 

 
Problem 3:  Determine the contact time during an impact of an elastic sphere (Ra-
dius R) with a flat wall (Hertz, 1882). 

 
Solution: The displacement of the center of the sphere from the moment of initial 
contact we will call x . The potential energy of the system is given by (5.25) with 
=d x  and *E  according to (5.26). During the contact time, the energy is con-

served: 
2 2

* 1/2 5/2 08
2 15 2
⎛ ⎞ + =⎜ ⎟
⎝ ⎠

mvm dx E R x
dt

. 

The maximum displacement 0x  corresponds to the point in time at which the ve-
locity, /dx dt , is zero and is 

2/52
0

0 * 1/2

15
16
⎛ ⎞
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⎝ ⎠

mv
x

E R
. 

The contact time τ  (during which x  varies from 0 to 0x  and again back to 0) is 

( )

0 1
0 0

5/2 5/2
0 0 00 00

2 2,942

11 /

ξτ
ξ

= = =
−−

∫ ∫
x x xdx d

v v vx x
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Problem 4:  Determine the maximum contact pressure during an impact between a 
sphere and a wall.  
 
Solution: We calculated the maximum indentation depth 0x  in Problem 3. The 
maximum pressure 0p  is given by (5.22) and is equal to  

1/51/2 1/5*4 2
* *4 20 0

0 03

2 2 15 2 5
16 4

π ρ
π π π

⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

x E mv
p E E v

R R
, 

where ρ  is the density of the material.  
For example, by the impact of a steel sphere on a steel wall at 0 1 m/s=v , we 

have (assuming a purely elastic collision)  

( ) ( )
1/5

411 3 9
0

2 5 10 7.8 10 1 3.2 10  Pa
4

p π
π
⎛ ⎞≈ ⋅ ⋅ = ⋅⎜ ⎟
⎝ ⎠

. 

 
Problem 5:  Determine the differential contact stiffness /δ δNF d  for a contact be-
tween an elastic axially symmetric body and a rigid plane with a contact area 
A (Fig. 5.11).  

A

F
N

 
Fig. 5.11 Contact between an elastic, axially-symmetric body and a rigid plane. 

Solution: We consider a round contact area with a radius a . The change in the area 
of the contact due to the infinitesimally small increase of the penetration depth δ d  
can be though of as taking place in two steps: 

First, the existing contact area is rigidly displaced by δ d  (Fig. 5.12 b). 
Thereby, the normal force changes according to (5.12) by *2δ δ=NF aE d . In the 
second step, the remaining raised boundary area must then be displaced the same 
distance (Fig. 5.12 c). The increase in the given normal force is thereby propor-
tional to the area 2π δa a  and to the height of the remaining raised boundary area. 
Therefore, the infinitesimally small change in force for the second step is of a 
higher order and can be neglected. The differential stiffness, 

*2
δ
δ

= =NF
c aE

d
, 
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is, therefore, only dependent on the contact radius and not on the exact form of the 
axially-symmetric body. For non-axially symmetric bodies, equation (5.13) is valid 
for the differential stiffness. 

2a
2a 2a

�a

a b c  
Fig. 5.12  Calculating the differential stiffness. 

Problem 6: A constant distributed stress, 0p , acts on a circular contact area with a 
radius a . Determine the displacement at the center and the boundary of the circu-
lar area.  
 
Solution: With help from (5.7) we obtain the following for the displacement in the 
center of the circle: 

0
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The displacement at the boundary is  
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(See Fig. 5.13 for the definition of the integration variable r  in this case). The an-

gle ϕ  is calculated as 2 2arcsin
2

ϕ π ⎛ ⎞= − ⎜ ⎟
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r
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. Therefore, we obtain 
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Fig. 5.13  Calculation of the integral in Problem 6. 



6 Rigorous Treatment of Contact Problems – 
Adhesive Contact 

 

The problem of normal contact (without adhesion) between elastic bodies with 
slightly curved surfaces was solved in 1882 by Hertz. Bradley presented the solu-
tion 50 years later for adhesive normal contact between a rigid sphere and a rigid 
plane. The resulting adhesive force was found to be 4AF Rπγ= , where γ  is the 
surface energy. The solution for the adhesive contact between elastic bodies was 
presented in 1971 by Johnson, Kendall, and Roberts (JKR-Theory). They obtained 

3πγ=AF R  for the adhesive force. Derjaguin, Müller, and Toporov published an 
alternative adhesive theory in 1975, which is known as the DMT-Theory. After an 
intense discussion in 1976 Tabor came to the realization that the JKR-Theory and 
the DMT-Theory are both correct and are special cases of the general problem. 
For absolutely rigid bodies the theory from Bradley is valid; for small, rigid 
spheres DMT-Theory is valid; and for large, flexible spheres JKR-Theory. The 
difference between all of these cases, however, is very minor and the JKR-Theory 
describes adhesion relatively well, even in the scope of the DMT-Theory. Perhaps 
this is why JKR-Theory is used so prevalently to describe adhesive contacts. For 
this reason, we will also limit ourselves in this chapter to the presentation of the 
theory from Johnson, Kendall, and Roberts. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_6, 
© Springer-Verlag Berlin Heidelberg 2010 
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6.1 JKR-Theory 

The classical theory of adhesive contact was accomplished in 1971 by Johnson, 
Kendall, and Roberts and carries the name JKR-Theory. We consider an elastic 
sphere with the radius R  in contact with a rigid, planar surface. The always pre-
sent attractive force between two solid bodies (van der Waals forces) leads to the 
fact that an elastic sphere in contact with a smooth plane forms a characteristic 
“neck” (Fig. 6.1). 

a

F

d

R

a b  
Fig. 6.1.  During adhesive contact a “neck” is formed between the two contacting bodies. 

We define the radius of the contact area as a  and assume that , <<d a R , where 
−R d  is the distance between the center of the sphere and the rigid surface.  
In order for the sphere to take the form shown in Fig. 6.1 b, the points on the 

surface of the sphere must be displaced so that they lie on the rigid plane after de-
formation. 

 
Fig. 6.2  The contact geometry between an elastic sphere and a rigid, planar surface. 

It is apparent from Fig. 6.2, that the following equation is valid for the vertical 
displacement: 

 
2

2
= −z

ru d
R

. (6.1) 

From the results of the previous chapters, we know that a pressure distribution of 
the form 
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 ( ) 1/22 2
0 1 /

−
= −p p r a  (6.2) 

leads to a vertical displacement of 

 0*zu p a
E
π

= , (6.3) 

while a pressure distribution of the form 

 ( )1/22 2
0 1 /= −p p r a  (6.4) 

causes a displacement of 

 ( )2 2
0* 2

4zu p a r
E a
π

= − . (6.5) 

The application of both pressure distributions at the same time obviously leads to 
a quadratic distribution of the displacement in the contact area, which stands in 
accordance with the geometric specification in (6.1).  

Because of the reasons mentioned, we will use the following pressure distribu-
tion: 

 ( ) ( )1/ 2 1/22 2 2 2
0 11 / 1 /

−
= − + −p p r a p r a . (6.6) 

The corresponding displacement, obtained from the principle of superposition, is 

 
2

0 1 2

1 1
* 2 2z
a ru p p

E a
π ⎡ ⎤⎛ ⎞

= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (6.7) 

Equating (6.1) and (6.7) yields 

 1
0* 2

π ⎛ ⎞+ =⎜ ⎟
⎝ ⎠

pa p d
E

,     1 1
4 * 2
π

=
p

E a R
. (6.8) 

From this, it follows that 

 1
* 2

π
=

E ap
R

,      0
*

π
⎛ ⎞= −⎜ ⎟
⎝ ⎠

E d ap
a R

. (6.9) 

The two equations (6.9) contain three unknown quantities: 1p , 0p  and a  (for a 
given penetration depth d ). In order to be able to unambiguously determine the 
state of deformation and stress for a given penetration depth d , a further con-
straint is necessary. For this purpose, we use the requirement that the total energy 
of the system assumes a minimum at a constant d . 

The energy of the sphere is composed of an elastic contribution and an adhe-
sive contribution. The potential energy for the elastic deformation of the sphere 
can be calculated with the equation 
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 1 ( ) ( )
2el z

contact
area

U p u dxdy= ∫ x x , (6.10) 

which is valid for arbitrary linearly elastic systems. Substituting (6.6) and (6.1) in-
to (6.10) provides us with 

 ( ) ( )
21/ 2 1/ 22 2 2 2

0 1
0

1 / 1 / 1
2

π
− ⎛ ⎞⎡ ⎤= − + − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

∫
a

el
rU d r p r a p r a dr
dR

. (6.11) 

After the substitution of 2 21 /ξ = − r a , 22 /ξ = −d rdr a , we obtain 

 
2 2 2

0 1
2 2 22

2 3 3 15
π ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

el
da a aU p p

dR dR
 (6.12) 

and considering (6.9),  

 
3 5

2
2

2*
3 5

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
el

da aU E d a
R R

. (6.13) 

The total energy is1 

 
3 5

2 2
122

2*
3 5tot

da aU E d a a
R R

γ π
⎡ ⎤

= − + −⎢ ⎥
⎣ ⎦

. (6.14) 

We obtain the radius at equilibrium a  by requiring that the energy of the system 
assumes the minimum value: 

 
22 4 2

2
12 122* 2 2 * 2 0totU da a aE d a E d a

a R RR
γ π γ π

⎡ ⎤ ⎛ ⎞∂
= − + − = − − =⎜ ⎟⎢ ⎥∂ ⎣ ⎦ ⎝ ⎠

. (6.15) 

It follows that 

 
2

122
*

aad
R E

γ π
= ± . (6.16) 

Inserting this relationship into (6.14) provides the total energy as a function of the 
contact radius 

 
25 3

12 12
2

28 4*
15 * 3 *tot

a aa aU E
E R ER

γ π γ π⎡ ⎤
= + ±⎢ ⎥

⎢ ⎥⎣ ⎦
. (6.17) 

                                                           
1 Here is 12γ  the relative surface energy. 
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The equation with the minus sign corresponds to the state of lowest energy. We 
obtain the total force acting on the sphere in this state from the derivative of the 
energy with respect to the displacement d  of the center of the sphere: 

 
( ) ( ) ( )

∂ ∂
= − = − −

∂ ∂
tot tot totdU U U daF

d d d a d d
. (6.18) 

We must bear in mind that the value of a  corresponds to the minimum of totU  for 

a given d  and, therefore, 0
∂

=
∂

totU
a

. So, instead of (6.18) we come to a more 

simplified equation: 

 
32* 2

( ) 3
⎡ ⎤∂

= − = −⎢ ⎥∂ ⎣ ⎦
totU aF E da

d R
. (6.19) 

We insert (6.16) into this equation and obtain the force as a function of the contact 
radius 

 
1/232 3 3

12 122 82 4* 2 *
* 3 3 *

a aa a aF E a E
R E R R E

γ π γ π⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − − = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎣ ⎦

. (6.20) 

The maximum negative value of this force is reached when  

 
1/32

129
8 *crit

R
a a

E
γ π⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

     (6.21) 

and is equal to  

 12
3
2AF Rγ π= − .      (6.22) 

The absolute value of this force is called the adhesive force.  
For the dimensionless variables: /= AF F F , /= crita a a , (6.20) takes the 

form 

 3 3/22= −F a a . (6.23) 

This is graphically depicted in Fig. 6.3 a. 
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Fig. 6.3  (a) Dependence of the normalized force on the normalized contact radius; (b) Experi-
mental data from Johnson for gelatin spheres with various radii: 24.5 mm, 79 mm and 255 mm 
(K.L. Johnson, Contact mechanics. Cambridge University Press, Ninth printing 2003.). 

The penetration depth (Equation (6.16) with a minus sign) in the critical state 
(6.21) is equal to  

 
1/32 2

12
2

3
64 *crit

R
d

E
π γ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

.     (6.24) 

If we insert the dimensionless penetration depth /= critd d d , we can rewrite 
equation (6.16) in the dimensionless form, 

 2 1/ 23 4= −d a a . (6.25) 

Together with (6.23), it defines the parametric form of the dependence of the di-
mensionless normal force on the dimensionless penetration depth (Fig.6.4). 

 
Fig. 6.4  Dependence of the dimensionless normal force on the dimensionless penetration depth. 
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This dependence is presented in Fig. 6.4 (solid line). In the area of interest for 
many adhesion problems, if the penetration depth is of the same order of magni-
tude as critd , it can be approximated very well using the following relationship 
(dashed line in Fig. 6.4): 

 5/31 0,12 ( 1)≈ − + ⋅ +F d . (6.26) 

Lastly, we would like to quickly discuss the pressure distribution in the adhe-
sive contact. This distribution is given by equations (6.6) and (6.9). It can be noted 

that 1p  is always positive and 12
0

2 ** EE d ap
a R a

γ
π π

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 is always negative. 

The resulting pressure distribution is shown in Fig. 6.5. The significant difference 
between this and non-adhesive contact is the fact that at the edges of the contact 
area, the stress is not zero, rather it assumes an infinitely large negative value. 

p

a H a H

a a
r

( )r

p

d

 
Fig. 6.5  Form of the body in contact and the pressure distribution in an adhesive contact. 

Allowing the adhesive forces to act over a finite range removes this singularity. 
Nevertheless, the stresses at the edges of an adhesive contact area reach very large 
values (from the order of magnitude of the “theoretical strength” of the van der 
Waals contact), which can lead to increased wear (compare a similar situation for 
“tangential contact,” see chapter 8). 

Problems 

Problem 1: What is the longest length that the slender beam shown in Fig. 6.6 can 
have with which adhesive contact (as seen in the sketch) can be prevented? Let the 
relative surface energy between the beam and base be *γ . Let the width of the 
beam (perpendicular to the plane of the figure) be a  and the thickness t . 
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h
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l  
Fig. 6.6  The adhesive contact for a micromechanical model consisting of a slender, elastic beam 
and a base. 

Solution: The differential equation of a beam, in this case, is: 4 4/ 0=d w dx . Its 
solution, which fulfills the boundary conditions (0) 0=w , ( ) =w s h , (0) 0′ =w , 
and ( ) 0′ =w s , yields  

( )2 3
3( ) 3 2= −

hw x x s x
s

. 

The elastic energy of a bent beam is calculated using 
2

21
2 3

0

6 II ( )′′= =∫
s

el
E hU E w x dx
s

, 

where the geometrical moment of inertia is 
3

I
12

=
at . 

The total energy is equal to 

( )
2

*
3

6 IE hU l s a
s

γ= − − . 

It assumes a minimum at 
1/42 3

*

3
2γ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Eh ts . 

If the length of the beam is smaller than s , then it can not “remain stuck” to the 
base. 

 
Problem 2: A sheet with a thickness t  is separated from a body by external forces 
overcoming the surface tension (Fig. 6.7). Find the relationship between the sur-
face tension and the form of the separating sheet2. 

                                                           
2 J.W. Obreimoff (1930) examined this problem in conjunction with the method he developed for 
measuring the surface tension of mica; these measurements were the first to directly measure the 
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Fig. 6.7  A sheet is separated from an elastic body. 

Solution: We consider the separating sheet as a plate with width a  (perpendicular 
to the plane of the figure), which one edge (the separation line) is horizontally 
clamped. The solution of the differential equation of a plate, 4 4/ 0=d w dx , which 
satisfies the boundary conditions (0) =w h , ( ) 0=w s , (0) 0′′ =w , and ( ) 0′ =w s , 
yields 

( )3 2 3

3

3 2
( )

2

− +
=

h x xs s
w x

s
. 

The elastic energy is equal to 
2

21
2 3

0

3( )
2

′′= =∫
s

el
DahU Daw x dx

s
, 

with 
3

212(1 )ν
=

−
EtD . The total energy is 

2

3

3 2
2

γ= +
DahU sa

s
. 

It assumes a minimum at 

1/ 4 1/2 1/46
2

γ −=s D h . 

Taking into account the equation 3

3( )′′ =
hxw x
s

, it follows that 

2( )
4

γ ′′=
D w s . 

                                                                                                                                     
surface tension of solids. See: J.W. Obreimoff, The splitting strength of mica. Proc. Ro. Soc. of 
London, 1930, v. 125, pp. 290-297. 



7 Contact between Rough Surfaces  

 

The surface roughness has a large influence on many physical phenomena such as 
friction, wear, sealing, adhesion, and electrical as well as thermal contacts. Ini-
tially, if two bodies with rough surfaces are pressed together, the “real” contact 
area is much smaller than the “apparent” contact area. The size of the “real” con-
tact area determines, for example, the electrical and thermal resistance between 
the bodies. The size of the contact area and the maximum stress ultimately deter-
mines the size of the wear particles and therefore the rate of wear. The size of the 
real contact area is also a crucial factor in frictional processes. The cause of fric-
tional forces can be visualized as the fracturing of microscopic bonds between the 
contacting bodies. The fracture strength, and therefore the frictional force, should 
be, according to this viewpoint, approximately proportionally to the “real” contact 
area. In this chapter, we will investigate the dependence of the contact area, 
length, and overall configuration on the normal force. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_7, 
© Springer-Verlag Berlin Heidelberg 2010 
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7.1 Model from Greenwood and Williamson  

We begin with a discussion of rough surfaces in elastic contacts. For a simple 
model of a rough surface, one can visualize a regular series of roughnesses of the 
same form, having the same radius of curvature and the same height1 (Fig. 7.1).  

F

 
Fig. 7.1  Simple model of a rough surface. 

The treatment of a contact problem between such surfaces is simple: The total 
force is the sum of all of the equal “summit” forces, which can be calculated using 
Hertzian contact theory. The individual “micro” contact areas, and therefore, the 
total contact area, are in this case 2 3Δ ∼A F . This contradicts not only direct ex-
periments, but also Amontons’ law of friction, according to which the frictional 
force is approximately proportional to the normal force. Therefore, we expect a 
somewhat linear increase in the contact area with respect to normal force. 

The situation changes if we take into account that a real surface is, as a rule, 
stochastically rough. The simplest method of modeling an irregular surface was 
proposed in 1966 by J.A. Greenwood and J.B.P. Williamson. We refer to this 
model as the GW-Model after its authors. Greenwood and Williamson assumed 
that all roughness peaks (“asperities”) have the same radius of curvature and that 
the height of the peaks is stochastically distributed around an average value 
(Fig. 7.2). 

If the contacting peaks are far enough away from each other, then their defor-
mations can be considered independent of each other. Thus, the position of the 
peaks, and therefore the exact configuration of the surface, matters little in the 
contact problem (under the given assumptions). Only the height distribution of the 
peaks is of importance. We describe the probability density of an asperity to have 
the maximum height z  as ( )Φ z . That means that the probability that an asperity 
has the maximum height in the interval [ , d ]+z z z  is equal to ( )dΦ z z . If the total 
number of asperities is 0N , then the number of asperities in the interval [ , d ]+z z z  
is equal to 0 ( )dΦN z z .  

 

                                                           
1 Such regular surfaces are not actually defined as “rough”, rather as “profiled” or “textured”. 
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Fig. 7.2  Model of a stochastic surface according to Greenwood and Williamson. 

For many technical and natural surfaces, it can be assumed that the height of the 
peaks is normally distributed: 

 
2

2
1/2

2
2

1( )
2π

−⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

z
lz e

l
. (7.1) 

Here, the value l  is the root mean square of the height distribution: 

 2=l z , (7.2) 

which we call roughness.  
We consider a contact between an elastic body with the described statistical 

roughness and a rigid plane at a distance 0h  from the middle level, at which the 
value of zero for the z-axis is assumed (Fig. 7.2). Under the assumption that one 
can neglect the elastic interactions between the asperities, all of the asperities with 
a height 0>z h  are in contact with the rigid plane. The “penetration depth” of an 
asperity with the height z is 0= −d z h . For a single contact, we obtain 2 = ⋅a d R , 
according to Hertzian theory (Equation (5.21)). Therefore, the contact area of a 
single asperity is 

 ( )2
0π π πΔ = = ⋅ = −A a d R z h R  (7.3) 

and the single force,  

 ( )3/ 21/ 2 3/ 2 1/2
0

4 4* *
3 3

F E R d E R z hΔ = = − . (7.4) 

The total number of contacts, the total contact area, and the total normal force NF  
are found through integration over all of the asperities in contact. This means that 
the integration must be performed over all heights from 0=z h  to infinity: 

 
0

0 ( )
∞

= Φ∫
h

N N z dz , (7.5) 
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0

0 0( ) ( )π
∞

= Φ −∫
h

A N z R z h dz , (7.6) 

 
0

1/2 3/2
0 0

4( ) * ( )
3

∞

= Φ −∫N
h

F N z E R z h dz . (7.7) 

The total area, total force, and the number of contacts increase exponentially as 
the bodies are pressed closer together (decrease in 0h ), while the relationships be-
tween these values remain relatively unchanged. For the average contact area of 
an asperity, for example, we get 

 0

0

0 0

0

( ) ( )

( )

π
∞

∞

Φ ⋅ −

Δ = =
Φ

∫

∫

h

h

dzN z R z h
AA
N

dzN z
. (7.8) 

By inserting the dimensionless variable /ξ = z l  and defining 0 0 /ξ = h l  we ob-
tain 

 
( )

( )
0

0

2
0

2

exp / 2 ( )

exp / 2

ξ

ξ

ξ ξ ξ ξ

π
ξ ξ

∞

∞

⎡ ⎤
− ⋅ −⎢ ⎥

⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥−
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∫

∫

d
A Rl

d
. (7.9) 
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Fig. 7.3  Dependence of the contact area and the average contact area of a single micro-contact 
on the separation variable 0ξ . 

In Fig. 7.3, one can see that the contact area (7.6) changes by 7 orders of magni-
tude as the relative distance between two surfaces changes from 0 0ξ =  to 5, while 
the average contact area ΔA  is less than tripled. The value 0 0ξ =  corresponds 
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to a very strong compressive force at which the contact surface is about half of the 
apparent contact surface. The values of 0 4ξ >  are not realistic, because with such 
contacts only very few contact points can exist at most. The “typical” range of av-
erage normal forces which correspond to a real contact area of between 210−  and 

410−  of the apparent contact area is achieved for 0 2.5 to 3.5ξ = . The ratio 
/πΔA Rl  changes in this range only marginally around the value 0.3. A good 

approximation for the average area of an asperity is, therefore,  

 Δ ≈A Rl .      (7.10) 

The average value of a microscopic contact area remains practically constant (or 
changes very slowly) as the force changes by several orders of magnitude. 

Similarly, the ratio of the total contact area to the force changes slowly: 

( )

( )
0 0

0 0

2
0 0 01/ 2

1/ 2 3/2 2 3/2
0 0 0

( ) ( ) exp / 2 ( )
3

4 *4( ) * ( ) exp / 2 ( )
3

ξ

ξ

π ξ ξ ξ ξ
π

ξ ξ ξ ξ

∞ ∞

∞ ∞

Φ − − ⋅ −
⎛ ⎞= = ⎜ ⎟
⎝ ⎠Φ − − ⋅ −

∫ ∫

∫ ∫

h

N

h

N z R z h dz d
A R

F l E
N z E R z h dz d

. (7.11) 

In Fig. 7.4,  it can be seen that in the domain relevant to macroscopic frictional 

problems, namely from 0 2.5 to 3.5ξ = , the ratio 
1/2 3

4 *
π⎛ ⎞

⎜ ⎟
⎝ ⎠N

A R
F l E

 changes only 

marginally around the value 1.4. 
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Fig. 7.4  Dependence of the ratio of contact area and compressive force on the separation vari-
able 0ξ . 

A good approximation for the ratio of the real contact area to the compressive 
force is 
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1/2 3.3

*N

A R
F l E

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

.     (7.12) 

The contact area is proportional to the normal force by a factor that weakly de-
pends on NF . 

The average pressure is found from the same equation through inversion: 

 
1/2

*0.3NF lE
A R

σ ⎛ ⎞≈ ≈ ⋅ ⎜ ⎟
⎝ ⎠

.    (7.13) 

In modern literature over contact mechanics, one can often find another form of 
the ratio /NF A  for rough surfaces. One can qualitatively “deduce” this form as 
follows. The ratio /NF A  can be estimated as the average of the individual micro-
contacts /Δ ΔF A  (with a coefficient of order unity) and this, in turn, as 

( )2/Δ ΔF A  (again with a coefficient of order unity). Because the ratio /NF A  

is only weakly dependent on the compressive force (i.e. the convergence of the 

surfaces), we can estimate: ( )
2

2 4 */
3π

⎛ ⎞Δ Δ ⎜ ⎟
⎝ ⎠

∼ ∼NF E zF A
A R

 at 0 0=h . The 

radius of curvature for an asperity is calculated using 1/ ′′= −R z . Therefore, for 
the ratio /NF A , we get 

 24 * 4 *
3 3

NF E Ez z z
A π π

′′ ′− ⋅ =∼ . (7.14) 

For the last equation, we have taken into account that the average ′′− ⋅z z  is de-

fined as the integral 
0

1 ( ) ( )′′− ⋅∫
L

z x z x dx
L

 over a sufficiently large distance L . Par-

tial integration yields 
0

1 ( ) ( )′ ′⋅∫
L

z x z x dx
L

 and, thus, 2′z .  

This is obviously a very rough estimate. The result (7.14), however, has been 
verified through precise numerical calculations2. One can summarize Equation 
(7.14) by using the symbol 2z z′∇ =  for the root mean square of the gradient 

of the surface profile: 

                                                           
2 S. Hyun, L. Pei, J.-F. Molinari, and M. O. Robbins, Finite-element analysis of contact between 
elastic self-affine surfaces. Phys. Rev. E,  2004, v. 70,  026117  (12 pp). 
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 1 *κ −= ∇NF
E z

A
,      (7.15) 

where κ  is a coefficient that depends only slightly on the statistical properties of 
the surface and, as a rule, has an order of magnitude of 2. This equation was 
proven for various rough, and even fractal, surfaces through exact numerical solu-
tions3.  

According to this, the average pressure in the real contact area is approximated 
rather well by multiplying half of the effective modulus *E  with the average gra-
dient of the surface profile ∇z : 

 1 *
2

NF
E z

A
σ = ≈ ∇ .     (7.16) 

One can arrive at a similar conclusion through the following simple qualitative es-
timation: if we consider a body with the surface profile ˆ cos cos= ⋅ ⋅z h kx ky , then 

the maximum of the surface has a radius of curvature of 2ˆ1/ =R hk , the root mean 
square of z  is equal to ˆ / 2=l h , and the root mean square of the height gradient is 

ˆ 2∇ =z hk . Consequently,  

 
1/2

⎛ ⎞ = ∇⎜ ⎟
⎝ ⎠

l z
R

. (7.17) 

Insertion into (7.13) again leads to an equation of the form in (7.16). 
Lastly, we estimate the force 0F  at which the real contact area A  reaches a 

value half as large as the apparent contact area 0A : 

 0
0 *

4
≈ ∇

A
F E z . (7.18) 

The average pressure σ̂  that is necessary for such a state is equal to 

 1ˆ *
4

σ ≈ ∇E z . (7.19) 

                                                           
3 It is interesting to note that the same equation (7.15) with 2κ ≈  is also valid for sharp abra-
sive surfaces (see Problem 7 to this chapter).  
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7.2 Plastic Deformation of Asperities 

If the pressure (7.16) is larger than the hardness of the material 0σ  and hence, 

 
*

0

2
σ
∇

Ψ = >
E z , (7.20) 

then the micro-roughnesses are in a completely plastic state of deformation. The 
quantity Ψ  was introduced by Greenwood and Williamson and is called the plas-
ticity index. For 2 / 3Ψ < , the surface behaves elastically during contact. The fact 
of the matter is that whether the system behaves elastically or plastically is inde-
pendent of the normal force!  

As an example, we estimate the characteristic value of the critical gradient for a 
contact between two steel probes: with * 1110  ≈E Pa  and 9

0 10  Paσ ≈ , we find 
that two steel probes in contact deform purely elastically if 22 10z −∇ < ⋅ . For 
ground surfaces, the profile gradient is normally larger and almost every area of 
the real contact is in a plastic state of deformation. Conversely, highly polished 
surfaces with 22 10−∇ ⋅z  deform purely elastically. 

The gradient ∇z  is generally dependent on the resolution with which the sur-
face is measured – it is scale dependent! If the gradient is different on different 
scales, then the surface plastically deforms only on the scales at which the condi-
tion *

02 /σ∇ >z E  is met. 
As soon as the stress in the contact area becomes larger than the critical value, 

the theory is no longer valid. In a plastic state, we can estimate the size of the con-
tact area by noting that the material deforms until the compressive stress reaches 
the hardness of the material. For the purpose of estimation, we assume that the 
material has elastic-perfectly plastic characteristics with the indentation hardness 

0σ  and that the pressure in every asperity is approximately equal to the hardness. 
According to this, the contact area is proportional to the normal force in the 

plastic region as well: 

 0/σ≈ NA F .      (7.21) 

As a numerical example, we consider a ground steel cube, with an edge-length of 
10 cm, lying on a steel plate.  For the parameters 9

0 10  Paσ ≈  and 210  N≈NF , 
we obtain 2 9 2 210 /10  m 0.1 mmA = =  and 5

0/ 10−=A A . For a typical diameter 

of a contact, 10μm , the number of contacts is ( )27 510 / 10 1000− −≈ ≈N . 
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7.3 Electrical Contacts 

Until now, we have been interested in the area of the real contact between two 
rough surfaces. There are, however, other types of contact problems for which the 
total length of a contact is more important rather than the area. Electric and ther-
mal contacts belong to these. 

In an electrical contact, an electric current is carried from one conducting body 
to another which is in very close contact - as a rule, “atomically close” contact. At 
first glance, it would seem that the quality of a contact depends very strongly on 
the topography of the bodies in contact and, moreover, exhibits strong fluctua-
tions. In this section, we discuss why an electrical contact actually functions quite 
reliably in most cases and how one calculates the necessary contact force for pro-
ducing a desired contact. 

A passive conducting element can be characterized by its electrical resistance  
R . The quantity 1/Λ = R  is called the electrical conductivity. The electrical re-
sistance of a rod with the cross-sectional area A  and the length L  is calculated as 

/R L Aρ= , where ρ  is the specific resistance of the material. In electrical engi-
neering, it is known that in a series, the resistances are additive, and in parallel, the 
conductivities. 

2a  
Fig. 7.5  Contact between two conductive half-spaces. 

If two extensive bodies with a specific resistance ρ  are in ideal contact at a con-
striction spot of radius a  (Fig. 7.5), then the resistance is predominately deter-
mined by the size of the contact area. This quantity is called constriction resistance 

CR  and is calculated using4:  

 1 2

C

a
R ρ

= Λ = . (7.22) 

If there are many micro-contacts that are separated by a distance much greater 
than their diameters 2 ia , then the conductivity of all of contact areas are summed. 

                                                           
4 This result was already derived by J.C. Maxwell. J.C. Maxwell, A Treatise on Electricity and 
Magnetism. Oxford Press, 1891. 
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So, the total conductivity is calculated from the sum of the contact diameters of all 
of the micro-contacts: 

 
2 i

tot

a L
ρ ρ

Λ = =∑ . (7.23) 

The sum of the diameters we denote as L : 

 : 2= ∑ iL a . (7.24) 

For the sake of brevity, we call this quantity the contact length. In order to calcu-
late the contact length, we use the explanations at the beginning of this chapter 
and again consider the system shown in Fig. 7.2. The contact radius of a micro-
contact is calculated as  

 ( )0
Aa R z h
π
Δ

= = − . (7.25) 

Similarly to the contact area (7.6), we can calculate the contact length: 

 
0

0 02 2 ( ) ( )
∞

= = Φ −∑ ∫i
h

L a N z R z h dz . (7.26) 

The ratio of the contact length to the normal force is equal to 

 
( )

( )
0 0

0 0

1/ 2 2 1/2
0 0

3/2 2 3/ 2
0 0

( )( ) exp / 2 ( )
3 3

2 * 2 *
( )( ) exp / 2 ( )

ξ

ξ

ξ ξ ξ ξ

ξ ξ ξ ξ

∞ ∞

∞ ∞

⎡ ⎤
Φ − − ⋅ −⎢ ⎥

⎢ ⎥= = ⎢ ⎥
⎢ ⎥Φ − − ⋅ −
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

h

N

h

z z h dz d
L

F E E l
z z h dz d

. (7.27) 

The value 2 *
3

⋅
N

L E l
F

 is shown in Fig. 7.6 as a function of the variable 0ξ .  

In the relevant domain of “typical contact conditions,” 0 2.5 to 3.5ξ = , this rela-
tionship varies only slightly around the value 2.5 .  
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Fig. 7.6  Dependence of the quotient of the contact length and the normal force on the separation 
variable 0ξ . 

Therefore, a good approximation for the contact length is 

 3.7
*N

L
F E l

≈ .      (7.28) 

The contact length is proportional to the normal force by a weak logarithmic 
factor. 

According to (7.23), the electrical conductivity is 

 3.7
*tot NF

E lρ
Λ ≈ .      (7.29) 

As with frictional force, conductivity is proportional to the normal force and is in-
dependent of the (apparent) contact area. Neither the radius of curvature of the 
summits nor the profile gradient of the surface appears in this equation. Therefore, 
the conductivity is only dependent on the height distribution of the rough surface, 
not on the detailed surface topography. 

Until now, we have assumed that individual contacts are small and far enough 
away from each other so that they can be considered independent of each other. 
As soon as the contact length L  reaches the diameter D  of the bodies in contact, 
the conductivity no longer increases. It reaches its saturation value when the con-
tact length reaches the same order of magnitude as the linear dimension of the 
bodies: 

 3.7
* NL F D

E l
≈ ≈ . (7.30) 
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The necessary force for this is equal to  

 ,
*

3.7N c
DE lF ≈ . (7.31) 

One can compare this to the force in (7.18), which “squeezes” the surface rough-

nesses to half of the roughness height: 
2

0 *
4

≈ ∇
DF E z . Their ratio is 

 ,

0

4 *
3.7 *

N cF E l l
F DE z D z

≈ ≈
∇ ∇

. (7.32) 

For conductors with linear dimensions, /> ∇D l z , an ideal electrical contact is 
reached more quickly than an ideal “material contact.” This is the case for most 
contacts with dimensions larger than 0.1 mm . 

7.4 Thermal Contacts 

The thermal conductivity of a round contact and its mechanical stiffness are also 
proportional to the radius of the contact.  The theory of electrical contacts outlined 
above can be directly transferred to both of these quantities. 

The thermal resistance is the most important characteristic for the sizing of heat 
sinks for semiconductors or other elements in electrical circuits. It is defined as 

TR T Q= Δ , where ΔT is the temperature difference between the ends of the ele-

ment and Q   is the amount of heat flowing through the element per second. The 
thermal conductivity is defined as 1/T TRΛ = . The thermal resistance of a rod of 
length L  and cross-sectional area A  is equal to /TR L Aλ= , where λ  is the 
specific thermal conductivity. It is directly analogous to electrical contacts, mean-
ing only the specific resistance ρ  must be replaced with 1/ λ . Similarly to (7.29), 
we can  immediately write 

 3.7
*T NF

E l
λ

Λ ≈ .      (7.33) 

The thermal conductivity of a rough contact is directly proportional to the 
compressive force. 
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7.5 Mechanical Stiffness of Contacts 

If a round contact exists between an elastic and a rigid body with the radius a , 
then the stiffness for movements perpendicular to the surface is *2⊥ =c aE  and for 

movements parallel to the surface, 8
2 ν

=
−
Gac , where G  is the shear modulus (see 

next chapter). Both stiffnesses are proportional to the contact diameter. For several 
independent contact areas, the stiffnesses are additive: 

 * *
, tot 2 ic E a E L⊥ = =∑ , (7.34) 

 , tot
4 42

2 2i
G GLc a
ν ν

= =
− −∑ . (7.35) 

Using (7.28) we obtain for normal and transverse stiffnesses of a round contact  

 , tot 3.7 NF
c

l⊥ = ,      (7.36) 

 ( )
( ),  tot

2 1 3.7 3
2

N
N

F
c F

l l
ν
ν
−

= ≈
−

.    (7.37) 

7.6 Seals 

In engineering, a seal is an element or structure that has the task of minimizing or 
preventing unintentional mass transfer from one space into another. The largest 
group of seals is represented by contact seals, with which the sealing elements are 
pressed together (Fig. 7.7). 

Liquid Liquid
Rubber

p0

pa pb

 
Fig. 7.7  Schematic presentation of how a seal works. 

Due to the ever present roughness of the contacting surfaces, they must always be 
pressed together with a certain minimal pressure so that the contact “seals.” This is 
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illustrated in Fig. 7.8. For small compressive forces, the surfaces are only in real 
contact over small areas. Liquids or gases can leak around these areas.  

 
Fig. 7.8  Contact area at various compressive forces. The contact is sealed if the contact areas 
form a continuous cluster. 

By increasing the compressive force, the contacts areas become larger until, at a 
certain critical force, they form a continuous cluster. Thus, every possible path 
through the entire contact area is interrupted. 

As a rule, this percolation limit is reached when the surface roughnesses are 
approximately half “squeezed.” Therefore, a stress on the order of magnitude of 
(7.19) is necessary:  

 1 *
4sealed E zσ ≈ ∇ . (7.38) 

It should be noted that ∇z , and therefore the stress, is scale dependent. That 
means that a contact whose roughness is measured with low resolution can seem 
sealed, while by closer examination (with higher resolution), leakage paths can 
still exist. A more exact analysis of this situation leads to the realization that the 
speed of the leakage of a material through a seal does not vanish after reaching the 
“macroscopic” critical compressive force (7.38), rather it decreases exponentially 
with the compressive force (roughly a few orders of magnitude for the increase of 
one order of magnitude of the compressive force). 

7.7 Roughness and Adhesion 

Roughness can drastically lower adhesion. In the previous chapter, we introduced 

the “negative critical penetration depth” 
1/32 2

*2

3
16
π γ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

crit
Rd

E
. It is intuitively 
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clear that the adhesive behavior of rough surfaces is described by the relationship 
critd l . If critd l  : 

 
1/32 2

*2

3
16
π γ⎛ ⎞

⎜ ⎟
⎝ ⎠

R l
E

, (7.39) 

then the roughness no longer plays a role. By taking the approximation (7.17) into 
account, one can also present this equation in the form  

 
1/ 2

*

3
4
πγ

⋅∇l z
E

. (7.40) 

In the opposite case, the adhesive force practically vanishes completely.  Numeri-
cal simulations show that there is a critical value of the product ⋅∇l z  at which the 
macroscopic adhesive force approaches zero: 

 

 [ ] *

γ
⋅∇ = ϒ

crit
l z

E
,     (7.41) 

where ϒ  is a constant on the order of magnitude of 1. 

Problems 

Problem 1: Determine the compressive force that is needed to create an electrical 
contact with an electrical resistance of 0.1 R m= Ω  between two flat copper plates 
with the roughness 1 μ=l m .  
 
Solution: The modulus of elasticity of copper is around 1110  ≈E Pa , Poisson’s ra-
tio 0,33ν ≈ , and the specific resistance 81.8 10  ρ −≈ ⋅ Ω ⋅m . The effective elastic 
modulus *E  is calculated as  

( ) ( )
11

* 11
2

10  Pa 0.56 10  
2 1 0.12 1

EE Pa
ν

= ≈ ≈ ⋅
−−

. From equation (7.29), which we 

can rewrite in the form 1 3.7
* NF

R E lρ
= , it follows that  

 
* 11 8 6

3

0.56 10 1.8 10 10 2.7 
3.7 3.7 0.1 10N
E l Pa m mF N

R
ρ − −

−

⋅ ⋅ ⋅ Ω ⋅ ⋅
= ≈ ≈

⋅ ⋅ Ω
. 
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Problem 2:  Determine the compressive force that is necessary to create an ideal 
contact between an elastic body with a corrugated surface of the form 

( )ˆ cos=z h kx  and a rigid plane. 
 
Solution: If the surfaces were stuck together without any external stress, then the 
normal stress on the surface would be equal to 

*1
2

ˆ cosσ =zz E hk kx  

(see Problem 1 in Chapter 3). The application of a homogeneous normal stress 
0σ−  leads to the following normal stress in the interface due to linearity: 

*1
02

ˆ cosσ σ= −zz E hk kx . 

It can also be realized by pure compression without glue if everywhere 0σ <zz , 
meaning 

*1
0 2

ˆσ > E hk . 

We note that in this case, ˆ / 2∇ =z hk . So, one can also write this equation in the 
form *1

0 2
σ > ∇E z  (compare this stress to the stress in (7.38), which is necessary 

to create a sealed contact). 
  
Problem 3: Determine the compression force that is necessary to create an ideal 
contact between an elastic body with a corrugated surface of the form 

( ) ( )ˆ cos cos=z h kx ky  (Fig. 7.9) and a rigid plane.  

 
Fig. 7.9  Two-dimensional corrugated surface of an elastic body. 

Solution: In Problem 1 in Chapter 3, we found that a surface displacement of 
ˆ coszu h kx=  led to a normal stress distribution of *1

2
ˆ cosσ =zz E hk kx . This con-

clusion can also be presented in a coordinate-independent form: A cosine-shaped 
surface deformation ( )zu r  (where r  is a two-dimensional vector) leads to a stress 

distribution of *1
2 ( )σ =zz zE k u r . The wave form given in the problem statement 

can be presented as the sum of two cosine functions: 
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( ) ( ) ( ) ( )( )1
2

ˆ ˆcos cos cos cos= = + + −z h kx ky h k x y k x y . 

This deformation causes the normal stress  

( ) ( )* *2 2
2 2

ˆ( ) cos cosσ = =zz zE ku r E kh kx ky . 

Therefore, the stress necessary in order to create a complete contact is equal to 
*1

2
ˆσ̂ = E hk . 

The root mean square of the gradient is equal to ˆ / 2∇ =z hk . Thus, *σ̂ = ∇E z . 
 
Problem 4: Determine the compressive force that is necessary to create an ideal 
contact between a rigid plane and an elastic body with a corrugated surface of the 
form ( ) 1 1

ˆ ˆcos cos( )= +z h kx h k x , with 1k k  and 1̂
ˆh h  (Fig. 7.10).  

 
Fig. 7.10  A surface with corrugations on two scales. 

Solution: The corrugations of the short wavelength are completely “squeezed” if 
the pressure in the deepest areas of the larger corrugations is *1

0,1 1 12
ˆσ > E h k  (see 

previous problem). By using the expression for pressure from Problem 2, we ob-
tain the critical pressure through superposition: 

( )*1
1 12

ˆ ˆσ = +c E hk h k . 

Problem 5: The system sketched in Fig. 7.11 is composed of springs (total num-
ber 0N ) with the stiffness c , which can adhere if brought into contact. Their ad-
hesive properties are characterized by the length Δ critd , by which a spring can ex-
pand before it separates from the surface. Let the height distribution of the springs 

be 1( )
−

Φ =
z
lz e

l
. 

z

d

� 
Fig. 7.11  Spring model of a stochastic elastic surface. 
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A rigid plane is initially pressed onto the system with a force NF  and then pulled 
away to a distance of d . Determine the adhesive force as a function of the initial 
compressive force.  

 
Solution: For compression with the force NF , only those springs with a height of 

>z d  come in contact with the plane, where d  is found in the following equa-
tion:  

( )0
0

∞ −
−

= − =∫
z d
l l

N
d

N
F e c z d dz N ce l

l
. 

Now, if the rigid plane is brought to the height d , then all of the springs with 
heights in the non-deformed state larger than − Δ critd d  and larger than d  will 
remain in contact. The force acting on the plane is equal to  

( )

( ) ( )

0
0

0
0

  ( ),             for      

,       for     
crit

crit

z d
l l

crit
d

d dz
l l

crit crit
d d

N
e c z d dz N ce l d d d d d

l
F

N
e c z d dz N ce l d d d d

l

∞ −
−

Δ −∞
−

−Δ

⎧
− = + − − Δ <⎪

⎪= ⎨
⎪ − = − Δ − Δ >⎪
⎩

∫

∫
. 

For > Δ critl d , the force acting on the plane is always positive, meaning that there 
is no macroscopic adhesion. For < Δ critl d , the absolute value of the negative 

force reaches its maximum value for = + Δ critd d d . This value is the adhesive 
force: 

( )0

−
= Δ −

d
l

A critF N ce d l . 

In this model, the ratio of adhesive force to compressive force,  

Δ −
=A crit

N

F d l
F l

, 

is not dependent on the compressive force and is called the adhesion coefficient. 
For = Δ critl d , the adhesive force becomes zero. 
 
Problem 6: Determine the normal force similarly to Problem 5, but using the 
height distribution 

2

2
1/2

2
2

1( )
2π

−⎛ ⎞Φ = ⎜ ⎟
⎝ ⎠

z
lz e

l
. 

Solution: The force is calculated as 
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( )
2

2
1/ 2

2
0 2

1
2π

∞ −

−Δ

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫

crit

z
l

N
d d

F N e c z d dz
l

. 

The results from numerical integration are shown in Fig. 7.12 as plots of ( )NF d . 
For 0.3critd lΔ < , there is no distance at which NF  takes a negative value (no mac-
roscopic adhesion). 
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Fig. 7.12  Dependence of normal force on the normalized distance parameterized by critd
l

Δ . 

Problem 7.  Estimate the average pressure in the real contact area between an 
elastic half-space and a rough surface composed of cone-shaped asperities with 
the same inclination angle θ  (Fig. 7.13).   

Rigid Body

Elastic Body

�

 
Fig. 7.13  Contact between a rough surface composed of cone-shaped asperities and an elastic 
body. 

Solution: It follows from Equations (5.37) and (5.39) that a relationship exists be-
tween the normal force NF  and the contact radius a  for the indentation of one 
rigid cone into an elastic half-space: 

* 21 tan
2

π θ=NF E a . 

The average pressure in one micro-contact is, therefore,  
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* *
2

1 1tan
2 2

NF
E E z

a
σ θ

π
= = = ∇ , 

where tanθ∇ =z  is the gradient of the surface profile (in this case constant). This 
pressure is independent of the penetration depth and, therefore, is valid for the av-
erage pressure in the entirety of the contact area. Thus, we come to the same re-
sult, Equation (7.16), for both “abrasive” surfaces with sharp asperities as well as 
the contact between two stochastically rough surfaces. 
 
Problem 8: Estimate the coefficient of friction between two rough surfaces, as-
suming that the adhesive forces between the surfaces are the only cause of friction. 
Compare the adhesive contributions to the force of friction for pairings of steel on 
steel and rubber on rubber. 
 
Solution: We use a random distribution of asperities, each with the same radius of 
curvature R , as a model for the surfaces. They differ from the model in Fig. 7.2 
only in that both surfaces are rough. Let the height distributions of both surfaces 
be given by a Gaussian distribution with the standard deviation l . We assume that 
the surfaces are pressed together with the normal force NF  and, thereafter, moved 
relative to one another in the horizontal direction. The frictional force is due to the 
asymmetry of the processes occurring during the formation and destruction of ad-
hesive contacts: two approaching asperities first come into contact when their 
(non-deformed) geometric contours intersect (Fig. 7.14a); conversely, they first 
separate only after some larger distance between the two is achieved (Fig. 7.14b).  

A

dc

a b  
Fig. 7.14  The frictional force is caused by the asymmetry of the adhesive contact.  

The strength of the adhesion can be characterized by the critical distance cd , at 
which the separation of the surfaces occurs (Fig. 7.14b) (see Equation (6.24)): 

1/32 2 *
12

2

3
64 *
π γ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

c
Rd

E
, 

where * / 2=R R  and * 2 2
1 1 2 21/ (1 ) / (1 ) /ν ν= − + −E E E .  

The problem includes three parameters with a dimension of length: the radius 
of curvature R , the height distribution l , and the critical distance cd . As we have 
seen in Problems 6 and 7, for a sufficiently large cd  (with respect to l ), there ex-
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ists a finite adhesive force between the surfaces. Thereby, the coefficient of fric-
tion is infinitely large, because there is already a finite frictional force in the ab-
sence of normal force. Here, we want to investigate the non-adhering surface, 
meaning that the condition <cd l  is met5. Furthermore, we assume that the typi-
cally met conditions, / 1cd R  and  / 1l R , are valid, which justifies the use 
of half-space theory. 

First, we investigate a contact between two asperities and, thereafter, conduct 
an averaging over the statistical distribution. In Fig. 7.15, one asperity from each 
surface is shown and parameterized. 

R

R

z

z 1

0x0

z 2

x

�

a b  
Fig. 7.15  (a) Two asperities with the same radii of curvature; (b) Asperities in contact. 

The form of the asperities is described by the equation 

2

1 1( )
2

= −
xz x Z
R

,       
( )2

2 2
0( )

2
−

= +
x X

z x Z
R

. 

As long as the surfaces remain in contact, the penetration depth is given by 
2

1 2
0

4
 = − −

X
d Z Z

R
 

and the tangent of the contact angle θ  (see Fig. 7.15b) by 

( )0tan / 2θ θ≈ ≈ X R . 

The first and last contact take place when the conditions 0=d  or = − cd d  are 
met, respectively. From this, we obtain 

( )0, 1 22= − −minX R Z Z ,    ( )0, 1 22 −= +max cX R Z Z Rd . 

                                                           
5 As we will see later, even the condition 0.18cd l≤  must also be fulfilled. 
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If we denote the force of interaction between the asperities as F , then the z -
component of the force NF  and the x -component of the force RF , neglecting 
higher order terms of θ , are given by  

≈NF F ,  ( )0 2/−≈RF F X R . 

The coefficient of friction can then be calculated as 

/μ = R NF F , 

where the notation .. ..≡ > >x z  means an average over the asperity distribu-
tion in both the x -direction and the z -direction. The distribution in the x -
direction is assumed to be uniform and the distribution in the z -direction is de-
fined as 

2
1
22

1 1
1( ) e
2π

−
Φ =

Z
lZ

l
,    

( )22 0
22

2 2
1( ) e
2π

−
−

Φ =
Z Z

lZ
l

. 

Here, 0Z  has the sense of the macroscopic separation distance between the sur-
faces. We use the approximation (6.26) to calculate the adhesive force: 

5/3

0.12 1 1
⎛ ⎞⎛ ⎞
⎜ ⎟≈ + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

c
c

dF F
d

,         1 / 10− ≤ ≤cd d ,    

with 3
122πγ=cF R . 

Averaging the forces NF  and RF  in the x -direction over the macroscopic 
length L  yields  

0,max

0,min

0
0d  1

2 2
> = −< ≈∫

X

x
X

c c
R

X F
L

d
F X

R L
F ,   

( )
0,max

0,min

13/6
0 d 1.2 11 1> = ≈ ⎡ ⎤< + − − +⎣ ⎦∫

X

c
X

c
N x

Rd
F F X F

L L
ξξξ , 

with ( )1 2 /ξ = − cZ Z d . We will not conduct the averaging in the z -direction here 
and limit ourselves to a rough estimation. The order of magnitude of 1 2−Z Z  is 
∼ l  for an arbitrary rough surface. A comparison with a more exact calculation 
shows that the approximation provides the best results when the value 3

4 / cl d  is 
assumed for the representative value ξ . The normal force for a “typical asperity” 
can then be approximated using   

( )13/6 33
4

3
4 41.2 1 / / / 1⎡ ⎤< + − − +≈ ⎣> ⎦c

c
N x c c c

Rd
F d l dll dF

L
. 
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We obtain the following approximation for the coefficient of friction 

( )

1/ 2

13/63 3
4 4 4

3

1 
2

1.2 1 / / / 1

⎛ ⎞ ∇⎜ ⎟
⎝ ⎠≈

⎡ ⎤+ − − +⎣ ⎦

c

c c cl

d z
l

l d d l d
μ , 

where we have used the relation ( )1/2/ ≈ ∇l R z , equation (7.17). This equation is 
only valid in the domain where the numerator is positive, i.e. / 5.7>cl d . We see 
that the coefficient of friction is proportional to the root mean square of the sur-
face gradient ∇z  and, otherwise, depends only on the “adhesive parameter” 

/cd l . Near the critical value of this parameter, the coefficient of friction can as-
sume an infinitely large value. For small values of /cd l  it approaches zero ac-
cording to 

8/3

7.8⎛ ⎞≈ ∇⎜ ⎟
⎝ ⎠

cd
z

l
μ , 

or more explicitly 
8/92 2 *

12
2 3

3
7.8

64 *
⎛ ⎞

≈ ∇⎜ ⎟
⎝ ⎠

R
z

E l
π γ

μ . 

For steel with 2
12 5 J/mγ ≈ , * 1110  Pa≈E , 1 mμ=l , and * 100 mμ=R , we ob-

tain 50.5 10μ −⋅ ∇z : The adhesive contribution to friction in a pairing of steel-
steel is negligibly small. For rubber with 2 2

12 5 10  J/mγ −≈ ⋅ , * 610  Pa≈E , 
1 mμ=l , and * 100 mμ=R , we obtain 1.1μ ∇z : Adhesive forces can have a 

noticeable contribution to the frictional force between elastomers. 
 

 



8 Tangential Contact Problems 

 

In the contact problems up to now, we have assumed that the contacting bodies 
have absolutely smooth, frictionless surfaces. According to this, there exist no 
shear forces in the contact area. If the contact point is also loaded in the tangential 
direction, then static and kinetic frictional forces become of interest. In this chap-
ter, we investigate shear stresses in tangentially loaded contacts. 

It is worth mentioning that, in general, shear stress is generated even in normal 
contact if we take friction into account. If two bodies with different elastic proper-
ties are brought into contact, then there exists in the contact a relative displace-
ment in the tangential direction due to the transverse expansion of both bodies. 
Consequently, the frictional stresses come into play. The shear stresses play no 
role only in normal contact problems in which the two bodies have the same elas-
tic properties, because both bodies deform in the same way in the lateral direction. 
Under these conditions, shear stresses do not emerge even if one takes static fric-
tion into account. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_8, 
© Springer-Verlag Berlin Heidelberg 2010 
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In this chapter, we will initially consider a tangential contact problem for a case 
in which complete sticking exists in the contact area and then we will expand our 
considerations to include contacts in which partial or complete sliding takes place. 

8.1 Deformation of an Elastic Half-Space being Acted upon by 
Tangential Forces 

The contact under investigation is shown schematically in Fig. 8.1: Two elastic 
solid bodies are pressed together and subsequently moved in the tangential direc-
tion. In the first step, we assume that in tangential loading, there exists no sliding 
in the contact. This means either that the bodies are “glued together” or the coeffi-
cient of friction tends to infinity. 

Sticking
 

Fig. 8.1  Tangential contact between two elastic solid bodies. 

As with normal contact problems, we will work with the half-space approxima-
tion: The gradient of the surface of the contacting bodies should be small in the 
vicinity relevant to the contact problem. 

 
Fig. 8.2  Tangential unit force on the surface of a half-space. 

As a preparatory step, we consider the deformation of an elastic half-space being 
acted upon by a concentrated force at a point on the surface, which we will choose 
as the origin. The force has only one component in the x-direction. The displace-
ments of the surface 0=z  are given by the following equations1:   

                                                           
1 L.D. Landau, E.M. Lifschitz, Theory of elasticity (Theoretical Physics, Vol7), 3rd edition, 
1999, Butterworth-Heinemann, Oxford, §§ 8,9. 



 

( )

2

2

3

2

1 2 12(1 )   ,
4

1 2   ,
4

1 21    ,
4

x x

y x

z x

xu F
G rr

u F xy
G r

u F x
G r

νν
π

ν
π

ν
π

⎧ ⎫
= − +⎨ ⎬

⎩ ⎭

= ⋅

−
= ⋅

 (8.1) 

where G is the shear modulus. 

8.2 Deformation of an Elastic Half-Space being Acted upon by a 
Tangential Stress Distribution 

1. Now, we consider the displacement of the surface being acted upon by the 
following tangential force distribution (in the x-direction): 

 ( ) 1/22 2
0( , ) ( , ) 1 /σ τ τ

−
= = −zx x y x y r a , (8.2) 

with 2 2 2 2= + ≤r x y a . The tangential displacement in the x-direction is calcu-
lated as 

 
( )2

3

1 12 ( , )
4

ν ν τ
π

⎧ ⎫′−−⎪ ⎪ ′ ′ ′ ′= ⋅ +⎨ ⎬
⎪ ⎪⎩ ⎭

∫∫x
A

x x
u x y dx dy

G s s
, (8.3) 

with 

 ( ) ( )2 22 ′ ′= − + −s x x y y . (8.4) 

By integrating, we obtain the following displacement inside of the loaded area2 
( )≤r a :  

 0
(2 )
4xu a const
G

π ν τ−
= = . (8.5) 

Simple considerations of symmetry lead to the conclusion that  

 0=yu . (8.6) 

In contrast, zu  is non-zero and is an odd function of the coordinate x. For a con-
centrated force, it is calculated directly using (8.1). However, this property is also 

                                                           
2 Details can be found in K.L. Johnson, Contact mechanics. Cambridge University Press, Ninth 
printing 2003. 
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valid for every symmetric stress distribution. The total force acting on the contact 
area is calculated as 

 2
0

0

( )2 2τ π πτ= =∫
a

xF r rdr a . (8.7) 

2. Similarly, it can be shown that the stress distribution  

 ( )1/22 2
0( , ) 1 /τ τ= −x y r a  (8.8) 

leads to a displacement of the surface points inside of the loaded area ( )≤r a  of 

 ( ) ( ) ( )2 2 20 4 2 4 3 4
32
τ π

ν ν ν⎡ ⎤= − − − − −⎣ ⎦xu a x y
Ga

. (8.9) 

The total force, thereby, is 

 22
03 πτ=xF a . (8.10) 

3. If an elastic body is acted on by a shear stress of 

 ( )1/22 2
0( , ) 1 /τ τ= −x y x a  (8.11) 

in the x-direction within a strip with a width of 2a  (Fig. 8.3), then the displace-
ment of the surface points is given by 

 
2

0 *x
xu const

aE
τ= − . (8.12) 

x

a

 
Fig. 8.3  Strip of width 2a , which is loaded by the shear stress distribution in Equation (8.11). 

4. A special case of tangential loading is presented by torsion. If the tangential 
forces in a round contact area with radius a  are directed perpendicular to the re-
spective polar radius r  and the corresponding stresses are given by  

 ( )sinσ τ ϕ= −zx r ,  ( ) cosσ τ ϕ=zy r  (8.13) 

with  

 
1/ 22

0( ) 1τ τ
−

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

r rr
a a

, (8.14) 
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then the polar components of the displacement of the surface are equal to3 

 0

4ϕ
πτ

=
r

u
G

,    0=ru ,   0=zu . (8.15) 

Therefore, the total contact area rigidly turns by an angle of 0 / 4πτ G . Thus, this 
stress distribution is produced by the torsion of the rigid cylindrical indenter stick-
ing to the surface. The total torsional moment is 

 34
03π τ=zM a . (8.16) 

8.3 Tangential Contact Problems without Slip 

Now, we will move on to the discussion of tangential contact problems. We visu-
alize that we have two opposing bodies, and we generate a constant displacement  
of xu  in one of them and − xu  in the other, respectively. The corresponding stress 
distribution (8.2) must exist on one side and the same distribution, with a negative 
sign, on the other. If we were to now glue both stress areas together, then they re-
main in equilibrium due to Newton’s third law of motion (action-reaction). It is 
important that the “adhering” surfaces exactly match in the z-direction due to the 
asymmetry of the displacements in the z-direction with respect to x. These consid-
erations show that the relative movement of 2 xu  of two bodies with the same elas-
tic properties results in exactly the stress distribution (8.2): 

 ( ) 1/22 2
0( , ) 1 /τ τ

−
= −x y r a .    (8.17) 

It can be noticed that the shear stress in the boundary of a sticking area ap-
proaches infinity, while the normal stress approaches zero. That means that in 
most cases, the no-slip condition near the boundary is not met and relative sliding 
occurs. We will discuss this partial movement – slip – in the next section. 

We define the shear stiffness of a contact between two elastic bodies c  as the 
ratio of the tangential force to the relative tangential displacement of the two bod-
ies. From equations (8.5) and (8.7) the tangential stiffness is 

 
( )

*4 2
2 2 ν

= = =
−

x

x

F Gac G a
u

, (8.18) 

                                                           
3 K.L. Johnson, Contact mechanics. Cambridge University Press, Ninth printing 2003. 
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where we have inserted the effective shear modulus, 
( )

* 2
2 ν

=
−
GG . Just as with 

the normal stiffness, the shear stiffness (8.18) is proportional to the diameter of 
the contact.  

Note that the mentioned equations are not exact in the application to a contact 
between an elastic half-space and a rigid body, because in this case, the displace-
ments in the vertical direction vanish, which is not true in the case of the stress 
distribution in (8.2). However, they present a good approximation. For a contact 
between two elastic bodies with the elastic constants 1G , 2G , 1ν , and 2ν , the fol-
lowing good approximation is valid for the shear stiffness: 

 *2= ≈x

rel

F
c G a

u
      (8.19) 

with  

 1 2
*

1 2

2 21
4 4
ν ν− −

= +
G GG

.     (8.20) 

In (8.19), relu  is the relative displacement of the two bodies. Equation (8.5), in the 
case of two bodies with different elastic properties, takes the form 

 0
*

πτ
≈rel

a
u

G
.      (8.21) 

8.4 Tangential Contact Problems Accounting for Slip 

Now, we consider a combined contact problem characterized by tangential and 
normal forces acting simultaneously. We visualize, for example, that two spheres 
are pressed together with a normal force NF  and subsequently pulled in the tan-
gential direction with a force xF . It is assumed that between the two bodies, there 
exists dry friction according to Coulomb’s law of friction in its simplest form: the 
maximum static friction stress maxτ  is equal to the kinetic friction stress kτ  and 
this, in turn, is equal to the normal stress p  multiplied with a constant coefficient 
of friction μ : 

 maxτ μ= p ,     k pτ μ= . (8.22) 

The condition for sticking yields 
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 τ μ≤ p . (8.23) 

If we were to assume that the bodies completely adhere in the contact area, then 
we would get the following equations for the distributions of normal and tangen-
tial stresses: 

 ( )( )1/22
0 1 /= −p p r a ,     2

0
2
3

π=NF p a , (8.24) 

 ( )( ) 1/ 22
0 1 /τ τ

−
= − r a ,    2

02πτ=xF a .  (8.25) 

These distributions are shown in Fig. 8.4. Since the normal stress at the boundary 
of the area approaches zero and the tangential stress tends to infinity, the condition 
(8.23) is always invalid near the boundary of the contact area: at the boundary of 
the contact area there is always slip, even for small tangential loadings. Inside of 
the area, however, the condition (8.23) is met for sufficiently small tangential 
forces. In general, the total contact area is divided into an inner no-slip (sticking) 
domain and an outer sliding domain (Fig. 8.5). The radius c  of the boundary be-
tween the two domains is found using the condition τ μ= p . 

The distribution of the shear stress (8.25) in the contact is, needless to say, only 
valid under the assumption that there exists no sliding in the contact. We can 
prove with this distribution that the assumption is contradictory and, therefore, 
sliding at the boundary will always exist, but we cannot calculate the new stress 
distribution or the radius of the no-slip domain. 

p,�

p

x

�

 
Fig. 8.4  Normal and tangential stresses in a contact. 

Sticking
c

a Sliding

 
Fig. 8.5  Sticking and sliding domains in a round tangential contact. 
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However, as in many other “classical contact problems,” it is possible to construct 
a correct stress distribution as the combination of known distributions. In this case, 
it is possible to fulfill all of the contact boundary conditions through superposition 
of two “Hertzian” stress distributions (8.8). The stress distributions of the Hertzian 
type together with the stress distributions of the type in (8.25) prove to be univer-
sal “building blocks” of contact mechanics allowing all classical contact mechani-
cal problems to be solved. We look for a tangential stress distribution in the con-
tact of the form 

 (1) (2)τ τ τ= + , (8.26) 

with  

 ( )1/2(1) 2 2
1 1 /τ τ= − r a  (8.27) 

and  

 ( )1/ 2(2) 2 2
2 1 /τ τ= − − r c , (8.28) 

(see Fig. 8.6). The surface displacement caused by this stress, according to (8.9), 
is equal to  

 
( ) ( ) ( )

( ) ( ) ( )

2 2 21

2 2 22

4 2 4 3 4
32

4 2 4 3 4   .
32

τ π
ν ν ν

τ π
ν ν ν

⎡ ⎤= − − − − −⎣ ⎦

⎡ ⎤− − − − − −⎣ ⎦

xu a x y
Ga

c x y
Gc

 (8.29) 

The corresponding pressure distribution is given by the Hertzian equation (8.24).  

x

p,�

�

�

c
a

(2)

�
(1)

p

 
Fig. 8.6  Normal and tangential stress in a tangential contact. 

The sticking inside of the circle of radius c  means that in this domain, the dis-
placement is constant: 

 ( )    if  xu r const r c= < . (8.30) 

The sliding in the remaining domain means that there, Coulomb’s law of friction 
is met: 
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 ( ) ( ),   if  r p r c r aτ μ= < < . (8.31) 

The second condition leads to the claim that 

 1 0τ μ= p . (8.32) 

From the condition (8.30), it follows that 

 2 0τ μ= cp
a

. (8.33) 

The displacement in the sticking domain is, thereby, equal to 

 
( ) ( )0 2 22

8
ν πμ−

= −x

p
u a c

Ga
. (8.34) 

Before complete sliding starts ( 0=c ), the body can be displaced in the tangential 
direction by at the most  

 
( ) ( )02 3 2

8 16
ν πμ ν μ− −

= = N
x

p a F
u

G Ga
. (8.35) 

The total tangential force in the contact area is calculated using (8.26), (8.27)
and (8.28): 

 ( ) ( )2 2 3 3
1 2 0

2 2
3 3

ππ τ τ μ= − = −xF a c p a c
a

. (8.36) 

Taking into account the relationship 22
03 π=NF p a , this force can be written in the 

form 

 
3

1μ
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

x N
cF F
a

. (8.37) 

Therefore, we obtain a radius for the static area of 

 
1/3

1
μ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

x

N

Fc
a F

.     (8.38) 

The tangential force at which complete sliding is introduced is, as expected, 
μ=x NF F . We must emphasize, however, that the sliding domain already domi-

nates a large portion of the contact area before this force is reached. Upon reach-
ing the force μ=x NF F , there is no longer a transition from sticking to sliding, 
rather a transition from partial sliding to complete sliding. 

We have shown that by applying an arbitrarily small tangential force to a 
Hertzian contact generated by a normal force, we create a ring-shaped sliding do-
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main. By periodic loading, only the material in this domain would be worn. This 
phenomenon is known as fretting. 

8.5 Absence of Slip for a Rigid Cylindrical Indenter 

If a flat, rigid, cylindrical indenter presses into an elastic half-space, then the nor-
mal stress distribution is given by ( ) 1/22 2

0 1 /
−

= −p p r a . Upon subsequently ap-

plying a tangential force, a shear stress distribution of ( ) 1/22 2
0 1 /τ τ

−
= − r a  is 

produced. Therefore, the no-slip condition, τ μ< p , is either met or not met in the 
total contact area. In this case, there is no partial slip domain. 

Problems 

Problem 1: We consider two elastic bodies which respectively fill the half-spaces 
0>z  and 0<z  (Fig. 8.7). The upper body moves in the horizontal direction with 

a velocity of / =rel cdu dt v . The bodies form a circular, no-slip domain with a ra-
dius of 0 1( ) = +a t a v t  which increases with time; in the remaining areas, the tan-
gential stress is equal to zero4. Determine the tangential stress distribution in the 
contact area. 

a

vc

 
Fig. 8.7  Two elastic bodies in a contact in which the upper body moves with a constant velocity 

cv  relative to the lower body. 

Solution: From the equations / =rel cdu dt v  and 1/ =da dt v , we get  

1

= c
rel

v
du da

v
. 

                                                           
4 One such situation can exist if two bodies are separated by a sheet of liquid which solidifies. It 
is typical with solidification that the boundary between the solid and liquid phases spreads at a 
constant speed. 
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The change of the shear stress in the contact area, ( )<r a t , caused by a tangential 
movement of reldu  is, according to (8.17) and (8.5), calculated as 

1/2 1/22 2* *

1

( ) 1 1c
rel

vG r G rd r du da
a a a v a

τ
π π

− −
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

,    for r a< , 

where *G  is defined by (8.20). At the point in time at which the contact front 
expands from the initial radius 0a  to the radius 1a , the stress is calculated as 
follows: 

1

0

1

1/ 22*

0
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1/22*

0 1
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1 1 ,       for   ,     

1   1 ,       for   .
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Calculating the integrals provides 
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This dependence is shown in Fig. 8.8 for 0 1/ 0.1a a = . 
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r /a1  
Fig. 8.8  Tangential stress distribution in the contact area. 
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Problem 2: An elastic sphere is pressed into a rigid plane. The direction of the 
compression force always remains the same (Fig. 8.9). Determine the circum-
stances at which no-slip conditions exists for the entire contact area.  

F

�

 
Fig. 8.9  Elastic sphere that is pressed into a rigid plane at an inclined angle. 

Solution: We begin with the assumption that no sliding takes place in the contact 
area and verify afterwards the validity of this assumption. We can separate the 
continuous increase of the force into infinitesimally small steps, where in every 
step the normal force is increased by NdF  and the tangential force by xdF . There 
is a geometric relationship between the increments NdF  and xdF , namely, 

/ tanα=x NdF dF . An increase in the tangential force of xdF  , considering the no-
slip condition, causes an increase in the shear stress of 

1/ 2 1/ 22 2

2 2 2 2

tan
( ) 1 1 ,     

2 2
x NdF dFr rd r r a
a a a a

α
τ

π π

− −
⎛ ⎞ ⎛ ⎞

= − = − <⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

From the relationship between the normal force and the contact radius, 
* 34

3
=N

E aF
R

, we obtain 
* 2

4=N
E a dadF

R
. Thus, the shear stress increase can be 

written in the form 
1/2* 2

2

2( ) tan 1 ,     E rd r da r a
R a

τ α
π

−
⎛ ⎞

= − <⎜ ⎟
⎝ ⎠

. 

If the radius of the contact area increases from 0a  to 1a  due to the applied force, 
the tangential stress experiences a total increase of 

1

0

1

1/ 2* 2

02

1/2* 2

0 12
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∫
 

Calculation of the integral yields 
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( ) ( )

( )

* 1/ 2 1/22 2 2 2
1 0 0

* 1/ 22 2
1 0 1

2( ) tan ,         ,

2( ) tan ,                              .

Er a r a r r a
R

Er a r a r a
R

τ α
π

τ α
π

⎡ ⎤= ⋅ − − − <⎢ ⎥⎣ ⎦

= ⋅ − < <
 

The Hertzian pressure distribution is calculated as 

( ) ( ) ( )
*1/2 1/2 1/ 22 2 2 2 2 20

1 1 13
1 1

3 2( )
2 ππ

= − = − = −Np F Ep r a r a r a r
a Ra

. 

No sliding exists if the condition ( ) ( )τ μ≤r p r  is met over the entire contact area. 
This is the case when 

tanα μ≤ . 

If the angle at which the force acts is smaller than the critical angle, then there is 
no sliding in the contact. Note that the critical angle is equal to the friction angle 
(see Chapter 10), consequently, these results agree with the macroscopic results in 
that no sliding takes place at an application angle smaller than the friction angle 
(see Section 10.3). 



9 Rolling Contact 

 

Rolling contacts are found in innumerable technical applications. Wheel-rail or 
tire-street contacts, roll bearings, gears, and diverse feeding or transportation 
mechanisms (e.g. in a printer) are the most known examples.  

Reynolds investigated rolling contact mechanics early on1. He established 
through experimental investigations that in rolling contact both sliding and stick-
ing domains exist in the contact area. For increasing driving or braking moments, 
the sliding domain expands until finally the entire contact area is sliding. This slid-
ing leads to the translational speed of the wheel no longer being equal to the 
circumferential speed ΩR . The difference in the two speeds is called the creep 
speed and plays an important role in contact mechanics. 

Sliding in the contact area, however, is not the only cause for the difference be-
tween the translational and circumferential speeds. For small driving or braking 
moments there is almost no sliding in the contact area. The difference between the 
translational and rotational speeds exists, nevertheless, and is proportional to the 
moment. This relationship was first discovered by Carter in 1916 through his cal-
culations2. This small creep can be attributed to the elastic deformations in the 
wheel. 

                                                           
1 O. Reynolds, On rolling friction. Philosophical Transactions of the Royal Society of London, 
166 (I): 155-174, 1876. 
2 F.W. Carter, The electric locomotive. Proc. Inst. Civil Engn., 201, 221-252, 1916, Discussion 
pages 253-289. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_9, 
© Springer-Verlag Berlin Heidelberg 2010 
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Of special interest for technical applications is the partial sliding that takes pla-
ce in the contact area, because it leads to wear even though full sliding is not yet 
taking place.  

9.1 Qualitative Discussion of the Processes in a Rolling Contact 

The fact that in a driven or braking wheel, there must be both stick and slip do-
mains can already be derived from the analogy between rolling and tangential con-
tact. If we bring a wheel into contact with a rigid plane and apply a moment, then 
the contact area is loaded in the tangential direction. In the previous chapter, how-
ever, we saw that when a Hertzian contact is loaded in the tangential direction, a 
sliding domain is always produced. This is also valid for contacts involving driven 
rolling wheels. As with a tangential contact, a rolling contact initially forms a 
small sliding domain which grows with increasing moment until it encompasses 
the entire contact area. 

We will now qualitatively discuss the processes that transpire in a rolling 
wheel. In order to better understand these processes, we consider a simplified 
model of an elastic wheel composed of a rigid inner ring and a series of elements 
that are elastically coupled both to the ring and to one another, as shown in Fig. 
9.1. Between the elements and the base, there is friction characterized by the coef-
ficient of friction μ . If we initially press the wheel onto a rigid base (Fig. 9.1 b) 
and subsequently apply a moment (Fig. 9.1 c), then the springs to the right of the 
contact area are in compression and the springs to the left are in tension. Thus, the 
inner rigid ring rotates a specific angle, which is dependent on the number and 
stiffness of the springs. Now, let us allow the wheel to roll to the right (Fig. 9.1d). 
The elements which are under pressure, but have not yet contacted the rigid sur-
face, enter the contact area in the same equilibrium state as they were in before 
contact. The elements are “carried” through the contact area in the same equilib-
rium state. When they reach the trailing edge, where the normal force decreases, 
they are unloaded and relax. Therefore, as an element slips out of the contact area 
towards the rear, the wheel turns a bit further. 

For a braking wheel, the springs on the leading edge are in tension, and on the 
trailing edge in compression. The springs on the leading edge, however, are al-
ready in equilibrium before they reach the contact area and remain in this state un-
til they reach the trailing edge. From this, we come to the following realization:  

For a driven or braking wheel there is always a sticking domain that exists in 
the leading edge and a slip domain that exists in the trailing edge.  
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Fig. 9.1  Simplified model of a wheel in traction. 

For every rotation of an angle corresponding to an individual element, the wheel 
experiences an “elastic rotation” in addition to the “rigid rotation.” Therefore, the 
circumferential speed of the wheel is faster than the translational speed. For a 
braking wheel (traction moment and rolling direction in opposition), however, the 
circumferential speed is smaller than the translational speed. It is clear that the in-
cremental elastic rotation on transition from one element to another is always the 
same. For this reason, the difference in speeds, creepv v R= −Ω , will be propor-
tional to the translational speed v . Therefore, in order to characterize the creep, it 
is often sensible to adopt a dimensionless quantity  

 1−Ω Ω
= = −

v R Rs
v v

, (9.1) 

which we call the creep ratio. It is negative for a driven wheel and positive for a 
braking wheel. It is easy to see that the creep ratio is equal to the deformation ε xx  
in the sticking domain of the contact. One can establish this most easily by observ-
ing the mass transfer through the contact area. The density of the material in the 
sticking domain is ( )0 1ρ ε+ xx . The contact area moves with the translational 

speed v . The mass flow density in the contact area is ( )0 1ρ ε+ xxv . Otherwise, 
according to the definition, it is equal to 0ρ ΩR . Therefore, it follows that 
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( )1 ε

Ω =
+ xx

vR  (9.2) 

and the creep ratio is 

 
1
ε

ε
ε

= ≈
+

xx
xx

xx

s . (9.3) 

9.2 Stress Distribution in a Stationary Rolling Contact  

A. Preparatory Step 
In the following, we use the results from the theory of elasticity which are already 
known to us (see Section 8.2). If a tangential stress of 

 2 2
0( ) ( ) 1τ σ τ= = −zxr r r a  (9.4) 

is applied to a circular area (Fig. 9.2 a), then it leads to a displacement of 

 ( ) ( ) ( )2 2 20 4 2 4 3 4
32
πτ

ν ν ν⎡ ⎤= − − − − −⎣ ⎦xu a x y
Ga

 (9.5) 

in the tangential direction. A stress distribution of 

 2 2
0( ) 1τ σ τ= = −zx x x a  (9.6) 

on a strip with a width of 2a  (Fig. 9.2 b) causes a displacement of 

 
2

0 *x
xu const

aE
τ= − . (9.7) 

With these stress distributions, the stress distribution in a rolling wheel is able to 
be constructed. 

y

x

a

x

a

a b  
Fig. 9.2  Various contact areas loaded with tangential stresses: (a) circular, (b) strip. 
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B. Theory of Carter 
The two-dimensional rolling contact problem, meaning the rolling motion of a cyl-
inder on a plane was solved in 1926 by Carter. As in many other solutions of nor-
mal and tangential problems, his solution is based on the hypothesis that one can 
“construct” the stress distribution in a rolling contact from the superposition of 
two “Hertzian” stress distributions for which the analytical solutions of the dis-
placement fields on the surface of the continuum are known. Let us search for the 
stress distribution of a driven wheel in the form 

 ( ) ( )(1) (2)τ τ τ= +x x  (9.8) 

with 

 ( )
1

2 2
(1)

1 21τ τ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

xx
a

 (9.9) 

and 

 ( ) ( )
1

2 2
(2)

2 21τ τ
⎛ ⎞−
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

x d
x

c
, (9.10) 

where a  is half of the width of the total contact and c  is half the width of the 
sticking domain of the leading edge. The definition of value of d  can be taken 
from Fig. 9.3: = −d a c . The pressure distribution is given for the total contact by 
the Hertzian expression 

 ( )
1

2 2

0 21
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

xp x p
a

. (9.11) 

In order for the given stress distribution to be actually consistent with a rolling 
contact, certain kinematic and dynamic relationships must be met. First, we notice 
that the leading edge of the wheel is already in a deformed state before it enters 
the contact area. As soon as the elements come into contact with the base, they can 
no longer move relative to one another until they leave the sticking domain. 
Hence, it follows that:  

1. In the sticking domain, the deformation is constant.  (9.12) 

Under the assumption that Coulomb’s law of friction is valid in the sliding do-
main, it is true that 

2. In the complete sliding domain, the condition must be fulfilled that 

 ( ) ( )τ μ=x p x . (9.13) 
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These two conditions guarantee that we have a stationary rolling contact. Now, 
our task is to show that these two conditions can be met in assuming the stress dis-
tribution from (9.8). 

a d
c

x

�
���

( )x

�
���( )x

Sliding

Sticking

 
Fig. 9.3  Distribution of the tangential stresses in the contact area for the rolling contact of a 
driven elastic cylinder. 

The displacements caused by the stresses ( )(1)τ x  and ( )(2)τ x  are equal to 
2

(1) (1)
1 *τ= −x

xu C
aE

 and 
( )2

(2) (2)
2 *τ

−
= +x

x d
u C

cE
, respectively. The total displace-

ment is 

 
( )22

1 2* *x

x dxu const
aE cE

τ τ
−

= − +  (9.14) 

and the deformation is 

 
( )

1 2* *

22τ τ
−∂

= − +
∂

x x du x
x aE cE

. (9.15) 

For the condition (9.12) to be met, then the expression 

 2 1τ τ=
c
a

 (9.16)  

must be valid. From condition (9.13), it follows that  

 1 0τ μ= p . (9.17) 

The deformation is constant in the sticking domain and equal to  

 0
*

2μ∂
= −

∂
xu p d

x aE
. (9.18) 

The total lateral force in the contact area is calculated as 

 
2

0 0 2( ) 1
2 2
π πτ μ μ μ

−

⎛ ⎞⎛ ⎞= ⋅ = = − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
a

x N
a

c cF L x dx a p c p L F
a a

. (9.19) 

The radius of the sticking domain is 
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1/ 2

1 1
μ

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
x

N

Fc d
a a F

.     (9.20) 

According to (9.3) and (9.18), we obtain the following creep ratio: 

 
1/ 2

0
*

2
1 1

μ
μ

⎡ ⎤⎛ ⎞∂
⎢ ⎥= = − − −⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

x x

N

u p F
s

x FE
. (9.21) 

Taking into account the relationships 0

2
π

=N
ap

F L  and 
* 2

4
π

=N
E LaF

R
 (see Equa-

tion (5.34)), one can also present the equation for creep ratio in the following 
form: 

 1 1 x

N

Fas
R F
μ

μ
⎡ ⎤

= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

. (9.22) 

This relationship is illustrated in Fig. 9.4. It is called the traction-creep curve. 
For small tangential forces, the slip can be expanded as a Taylor series of  
μx NF F . In the first order,  

 for
2

x
x N

N

aF
s F F

RF
μ≈ − . (9.23) 

According to this, the slip is not dependent on the coefficient of friction μ  for 

small tangential forces. The linear dependence 
2

= x

N

aF
s

RF
 is shown in Fig. 9.4 

with the dotted line. The deviation of the actual slip from the dotted line shows the 
amount of “real sliding” in the contact area. The entire contact area slides when 

μ=x NF F . At this moment the creep is equal to μ
= −

as
R

. According to this, the 

maximum creep is equal to two times the “elastic creep” (9.23) at the same force. 
The difference between the two,  

 
2sliding

as
R
μ

= − , (9.24) 

gives the part of the creep which is caused by slip. The characteristic value of the 
sliding speed in the rolling contact for “critical traction” (immediately before the 
beginning of complete sliding) is, therefore,  

 
2sliding

av v
R
μ

≈ , (9.25) 
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where v  is the translational speed of the wheel. For small traction forces, the 
creep can be estimated from the difference between the complete creep (9.22) and 
the elastic part of the creep (9.23) as 

 
2

8
N

x
sliding

Fas
R F
μ

μ

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
. (9.26) 

 
Fig. 9.4  Traction-creep curve. 

C. Three-dimensional Rolling Contact Problem 
One can also determine the stress distribution in a rolling contact for a three-
dimensional case by a similar procedure as that of Carter, where one superimposes 
two stress distributions of the forms 

 
2 2

(1)
1 2( , ) 1τ τ +

= −
x yx y

a
 (9.27) 

and  

 
( )2 2

(2)
2 2( , ) 1τ τ

− +
= − −

x d y
x y

c
. (9.28) 

The stress distribution in Equation (9.28) is only defined in the sticking domain. 
The displacement of the surface caused by the superimposed stresses, according to 
(9.5), is  
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( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 21

22 22

4 2 4 3 4

32 4 2 4 3 4

τ
ν ν ν

π
τ

ν ν ν

⎧ ⎫⎡ ⎤− − − − −⎪ ⎪⎣ ⎦⎪ ⎪= ⎨ ⎬
⎪ ⎪⎡ ⎤− − − − − − −⎣ ⎦⎪ ⎪⎩ ⎭

x

a x y
au

G c x d y
c

. (9.29) 

The deformation component, /ε = ∂ ∂xx xu x , is equal to 

 
( ) 1 2 24 3
16

π ν τ τ τ−∂ ⎧ ⎫= − + −⎨ ⎬∂ ⎩ ⎭
xu

x x d
x G a c c

. (9.30) 

From the requirements (9.12) and (9.13), the same conditions follow as in the cy-
lindrical contact, (9.16) and (9.17). The deformation and, therefore, the creep ratio 
is equal to  

 
( )

0

4 3
16

π ν
μ

−∂
= −

∂
xu dp

x G a
. (9.31) 

The tangential force is 

 
3

2 2
1 2

2 2 1
3 3
π τ π τ μ

⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
x N

cF a c F
a

. (9.32) 

The radius of the sticking domain has the same form as in pure tangential contact: 

 
1/3

1
μ

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

x

N

Fc
a F

      (9.33) 

and the creep ratio3, 

 
( ) 1/3

2

3 4 3
1 1

32
ν μ

μ

⎡ ⎤− ⎛ ⎞∂
⎢ ⎥= = − − −⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

Nx x

N

Fu F
s

x FGa
.  (9.34) 

Taking the relationship 
3

*4
3

=N
aF E
R

 into account, the creep ratio can also be 

written in the form 

 
( ) 1/34 3

1 1
4(1 )

ν μ
ν μ

⎡ ⎤− ⎛ ⎞
⎢ ⎥= − − −⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

x

N

Fas
R F

.   (9.35) 

                                                           
3 This equation is valid for an elastic wheel on a rigid plane. For contact between the same mate-
rials, the slip is two times that of (9.34). 
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For small driving forces, we obtain the following for the first order approximation: 

 
( )

2

4 3
32

ν−
≈ − xF

s
Ga

. (9.36) 

Problems 

Problem 1: Estimate the sliding speed (a) in a locomotive wheel (b) in an auto-
mobile tire. 

 
Solution: (a) For a locomotive wheel, the creep is calculated according to (9.35): 

( ) 1/34 3
1 1

4(1 )
ν μ
ν μ

⎡ ⎤− ⎛ ⎞
⎢ ⎥= − − −⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

x

N

Fas
R F

. 

We obtain the creep at the critical traction by inserting μ=x NF F : 

( )4 3
4(1 )

ν μ
ν

−
=

−
as
R

. 

The sliding speed is calculated by multiplying the creep with the translational 
speed v . At 0.3μ ≈ , 7 mm≈a , 0.5 mR = , and 1/ 3ν = , the sliding speed is 

35 10slidingv v−≈ ⋅ . At a translational speed of 30 m/s (108 km/h), it has a character-
istic value of 0.14 m/sslidingv ≈ . 
(b) For an automobile tire in “critical traction” with 1μ ≈ , 5 cm≈a , 0.3 mR =  
and 1/ 2ν = , we obtain 0.2slidingv v≈  for the sliding speed. At a translational 
speed of 15 m/s (54 km/h), the sliding speed is around 3 m/s. At “normal operat-
ing conditions” (constant speed of 15 m/s), the sliding speed in a rolling contact 
between a rubber tire and the street is much smaller and, as a rule, around 1 cm/s. 

 
Problem 2: Estimate the energy loss in a driven or braking wheel.  

 
Solution: We obtain the following estimation for the frictional power W  in the 
contact by multiplying the tangential force acting on the contact with the average 
sliding speed: 

0≈ =xW s F v s W , 

where 0 = xW F v  is the  “power” of the frictional force. 
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Problem 3: If a force is applied to a rolling, elastic wheel perpendicular to the rol-
ling direction, then the wheel receives a velocity component in the direction of the 
force (transverse creep) due to elastic deformations and partial sliding. Find the 
transverse creep of a rolling elastic sphere. 

 
Solution: The axis of rotation of the sphere should be parallel to the x-axis; with-
out the transverse force, the sphere would roll exactly in the y-direction. The stick-
ing domain is always at the leading edge, independent of the type of loading 
(Fig. 9.5). 

Sticking

Sliding

2c

2a

y

x

Rolling Direction

Direction
of Force

 
Fig. 9.5  Stick and slip domains for a rolling, elastic wheel which is acted on by a force applied 
perpendicular to the rolling direction. 

We look for the stress in the form 

( )222 2

0 02 2( , ) 1 1τ μ μ
+ −+

= − − −
x y dx y cx y p p

aa c
. 

The corresponding displacement field, according to (9.5), is  
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π
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and the relevant component of the deformation tensor is 

( )0 4
16

πμ ν
ε

−∂
= = −
∂

x
xy

pu d
y G a

. 

This value specifies the angle at that the sphere will actually roll, relative to the di-
rection of ideal rolling. Similarly to how we did in the derivation of the Equations 
(9.32) - (9.35), we obtain a transverse creep of 

( ) ( )1/3 1/3

2

3 4 4
1 1 1 1

4(1 )32
μ ν ν μ

ε μ
μ ν μ⊥
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x x
xy N

N N

F Fas F
F R FGa
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Problem 4: Let us examine the belt transmission shown in Fig. 9.6. The right disk 
is powered with the moment M  so that it rotates with the constant angular veloc-
ity of 1ω . However, the driven disk (left) only turns at an angular velocity of 

2 1ω ω< . The sticking domain, in which the force in the belt 1F  is constant, as 
well as the sliding domain, in which the force decreases to 2F , are shown on the 
powered disk. A corresponding change from sticking to sliding is present in the 
left disk as well. Determine the creep s  and the loss of mechanical energy. 

 
Fig. 9.6  Elastic belt, which transfers a moment M  between two rotating disks. 

Solution: The force moment transferred by the belt transmission is equal to 

( )1 2= −M F F R . 

Because the extension of the belt in the sticking domain remains constant, the ten-
sion force in the entire sticking domain is constant and equal to 1F . In the sliding 
domain, the force decreases to the value 2F , for which the following equation is 
valid (see Chapter 10 Problem 4):  

1 2/ μϕ=F F e . 

The elastic deformation of the belt is equal to /ε = F EA , where E  is the module 
of elasticity and A  is the cross-sectional area. In the two sections between the 
disks (above and below), the following equations are valid: 

1
1ε =

F
EA

,    2
2ε =

F
EA

. 

The mass flow must remain constant at every point. From this, it follows that 

1 2

1 21 1ε ε
=

+ +
v v . 
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The creep ratio is 

1 2 1 2
1 2

1 2

2 ε ε
− −

= ≈ − = =
+

v v F F Ms
v v EA REA

. 

The dissipated power is 

( )1 2ω ω= −W M , 

with  

1
1ω =

v
R

,   2
2ω =

v
R

. 

For small differences in the angular velocities of the disks, it holds true that 
2ω

≈
MW
REA

. 

Here, ( )1
1 22ω ω ω= +  is the average angular velocity. 

 
Problem 5: A wheel rolls with the angular velocity ω  and, at the same time, is 
turned at an angular velocity Ω  about the vertical axis4 (for example, consider the 
steering of an automobile). Determine the torsional creep, which we define as the 
ratio /ω= Ωs , as a function of the torsional moment assuming an infinitely large 
coefficient of friction. 

 
Solution: The stress distributions 

( )1/ 22 2

8 (3 ) ( )
3 (3 2 )

ντ
π ν

− +
=

− −
x

G s a x y
R a r

, 

( )
( )

2 2 2

1/22 2

28 (1 )
3 (3 2 )

ντ
π ν

− − −−
=

− −
y

a x ax yG s
R a r

 

lead to a surface displacement which fulfills the sticking condition (constant de-
formation in the entire contact area)5. This results in a tangential force of zero 
( 0x yF F= = ), while the torsional moment is 

( ) 432 2
9(3 2 )z

aM Gs
R

ν
ν
−

=
−

. 

                                                           
4 The rotation about an axis perpendicular to the base is called spin. 
5 K.L. Johnson, The effect of spin upon the rolling motion of an elastic sphere on a plane. Tran-
sactions ASME, Journal of Applied mechanics, 1958, v. 25, p.332. 



132      9 Rolling Contact 

The resulting creep ratio is 

( ) 4

9(3 2 )
32 2

ν
ν

−
=

−
zMRs

Ga
. 



10 Coulomb’s Law of Friction  

 

10.1 Introduction 

In this chapter, we will only investigate the dry friction or Coulomb friction 
between two solid bodies. Friction between solid bodies is an extremely compli-
cated physical phenomenon. It encompasses elastic and plastic deformations of the 
surface layers of the contacting bodies, interactions with wear particles, micro-
fractures and the restoration of the continuity of materials, excitation of electrons 
and phonons, chemical reactions, and the transfer of particles from one body to the 
other. What is astonishing is the fact that it is possible to formulate a very simple 
law for dry friction. This first order approximation is sufficient for many engineer-
ing applications: The frictional force is proportional to the normal force and as 
good as independent from the speed. The astounding property of dry friction lies 
in the fact that in a first order approximation, it is dependent neither on contact 
area nor on roughness. This property allows us to use the notion of the coefficient 
of friction. The coefficient of friction, however, gives only a very rough first ap-
proximation of the quotient of frictional force to normal force. 

Leonardo da Vinci was the first to experimentally investigate the law of friction 
and formulate the most important principles (e.g. that the frictional resistance is 
proportional to the weight and independent from the contact area). He derived the 
latter with the help of the experiments shown in Fig. 10.1. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_10, 
© Springer-Verlag Berlin Heidelberg 2010 
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Fig. 10.1  Drawing from the notebooks of Leonardo da Vinci which illustrates the independence 
of the frictional force from the footprint. 

10.2 Static and Kinetic Friction 

Through detailed experimental investigations, Coulomb (1736-1806) determined 
that the frictional force RF  between two bodies which are pressed together with a 
normal force NF  (Fig. 10.2) exhibit the following simple properties in a rough ap-
proximation: 

A. Static Friction. In order to set in motion a body lying on an even surface in a 
state of rest, a critical force, the force of static friction sF , must be overcome. This 
force is roughly proportional to the normal force NF 1: 

 μ=s s NF F .      (10.1) 

The coefficient μs  is called the coefficient of static friction. It is dependent on the 
pairing of the contacting materials, however, shows almost no dependence on con-
tact area or roughness. 

B. Kinetic Friction RF  is the resisting force which acts on a body after the 
force of static friction has been overcome. Coulomb experimentally determined 
the following properties of kinetic friction: 

- Kinetic friction is proportional to the normal force NF : 

 μ=R k NF F .      (10.2) 

- It shows no considerable dependence on the contact area or roughness of the 
surface. 

- The coefficient of kinetic friction is approximately equal to the coefficient of 
static friction: 

 μ μ≈k s .      (10.3) 

                                                           
1 This proportionality is known as Amontons’ law. 
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- The kinetic friction is independent of, or rather very weakly dependent on, the 
sliding velocity. 

FN

F

FN

F

-FN

FR

 
Fig. 10.2  A block being acted upon by normal and tangential force on a plane; in the corre-
sponding free body diagram, the reaction force and the frictional force can be seen. 

This law gives only a rough outline of the properties of dry friction. A more de-
tailed analysis shows that static and kinetic frictional forces have the same origin 
and are not able to be considered separately in many mechanical problems. We 
have already seen that when a contact is tangentially loaded, as a rule, partial slid-
ing takes place, even when “macroscopic sliding” has not yet occurred.  Thus, the 
difference between the static and kinetic coefficients of friction prove to be rela-
tive: often the transition from static to sliding contact is continuous (as is the case 
in a driven wheel) or the “static friction” emerges as sliding friction at very low 
velocities (as is the case with rubber friction, e.g. a rubber tire on the street)2.  

10.3 Angle of Friction 

The simplest experimental method to determine the coefficient of friction, which 
is practically always feasible, is the measurement of the inclination angle at which 
a body lying on an inclined plane begins to slide. This angle is called the angle of 
friction. The forces acting on such a body are shown in Fig. 10.3 b. 

y

xFN
�

�

�

FR

mg
�

m

g

a b  
Fig. 10.3  A body on an inclined plane. 

                                                           
2 A unifying concept of „rate- and state-dependent friction“, which does not differentiate be-
tween „static friction“ and „kinetic friction“, is discussed in detail in section 20.3. 
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Upon reaching the angle of friction, the static force reaches its maximum value, 
μ=s s NF F . The equilibrium of the forces in this critical state yields (for the coor-

dinate system shown in Fig. 10.3 b): 

 
x:     sin 0

:    F cos 0  .
ϕ μ

ϕ
− =

− =
s N

N

mg F
y mg

 (10.4) 

Hence, it follows that 

 tanϕ μ= s .      (10.5) 

According to this, the tangent of the angle of friction is equal to the coefficient of 
static friction. 

10.4 Dependence of the Coefficient of Friction on the Contact 
Time3 

It was also Coulomb who discovered deviations from the simple law of friction. 
Among other things, he discovered that the static frictional force increases with 
the amount of time an object is at rest. The experimental data from Coulomb are 
provided in Table 10.1.  In Fig. 10.4, the frictional force is plotted logarithmically 
versus time. In this depiction, the plot is a straight line: the static frictional force 
increases logarithmically with time.  

Physical reasons for this time dependence can be very diverse. For metallic ma-
terials, the real contact area in the micro-contacts increases with time due to the 
always present creep processes. At higher temperatures, this increase is faster. 
When the contact area increases, this process slows, leading to a logarithmic de-
pendence of contact area and, thus, a logarithmic dependence of the static fric-
tional force. This increase begins at the instant of first contact on the atomic scale 
– in the subnanosecond domain – and does not stop even after very long time pe-
riods. For elastomers, this effect is tied to the increase in contact area due to the 
viscoelasticity of the material. Also, capillary forces attribute to frictional forces 
and lead to the approximate logarithmic time dependence of the static frictional 
force. 

It should be mentioned that the time dependence of the coefficient of “static” 
friction results in friction being a dynamic process. If the coefficient of friction is 
dependent on the contact time, then it would also apply to a rolling contact, be-
cause “rolling” can be considered a continuous reestablishment of new contacts on 
the underlying surface. For larger rolling speeds, the contact time is small and one 
can expect a smaller “static” frictional force in the contact. 
                                                           
3 See also section 20.3. 
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Table 10.1   Static frictional force for oak against oak smeared with tallow as a function of the 
resting time. 

,  mint  ,  arb. unitssF  

0 5.02 
2 7.90 
4 8.66 
9 9.25 
26 10.36 
60 11.86 
960 15.35 

14
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8

6

-2 0 2 4 6

F

ln (t +t0)  
Fig. 10.4  The data of Coulomb from Table 10.1: The static frictional force plotted as a logarith-
mic function of time: 0ln( )= + +F a b t t  with 7.28a = , 1.10b = , and 0 0.101t =  min. 

 
Also, during kinetic friction, micro-asperities come into contact and as the dura-
tion of the contact is dependent on the sliding speed, the force of kinetic friction is 
also dependent on the sliding speed. These examples show that the difference be-
tween the “static” and “kinetic” friction is relative and only provides us a very 
rough picture. In reality, kinetic and static friction are closely related to one an-
other and with contact dynamics. 

10.5 Dependence of the Coefficient of Friction on the Normal 
Force  

Also, the linear dependence of the frictional force on the normal force, (10.1) or 
(10.2),  is only met in a specific force domain – for not too large or too small of a 
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normal force. For metallic materials, this domain can contain several orders of 
magnitude, as Fig. 10.5 illustrates4.  
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Fig. 10.5  Coefficient of Friction for steel on electro-polished Aluminum. The coefficient of fric-
tion remains constant for loads from 10 mg to 10 kg, in other words, for a change in the load by a 
factor of 610 . 

This dependence is no longer valid when the real contact area is comparable to the 
apparent contact area. This limit is easily reached for soft metals such as indium or 
lead, but particularly easy for polymers and elastomers, which due to this reason, 
considerably deviate from Amontons’ law in behavior. In Fig. 10.6, the frictional 
force between steel and teflon is presented as a function of the normal force. As a 
good approximation, the frictional force is proportional to 0.85

NF . Therefore, the 
coefficient of friction decreases with the normal force.  

                                                           
4 F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids. Clarendon Press, Oxford, 2001. 
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Fig. 10.6  Dependence of the coefficient of friction on normal force between steel and teflon. 
Source: E. Rabinowicz, Friction and wear of materials.  Second Edition. John Wiley & Sons, 
inc., 1995. 

10.6 Dependence of the Coefficient of Friction on Sliding Speed5 

For the sake of simplicity, it is often assumed that the coefficient of kinetic fric-
tion is independent of sliding speed. Also, this is a good, but rough, approximation 
that is valid for not too high and not too low speeds. The exact dependence of the 
frictional force on sliding speed is important in many applications. If the frictional 
force decreases with the speed, then stationary sliding is unstable and, as a rule, 
leads to frictional instabilities6. 

10.7 Dependence of the Coefficient of Friction on the Surface 
Roughness 

Frequently, the origins of friction are explained through the roughness of the sur-
faces. In mechanics, one describes the surfaces for which friction exists as 
“rough,” while “smooth” surfaces are usually categorized as frictionless. Every tri-
bologist knows that these definitions are not valid: In a large domain of rough-

                                                           
5 See also section 20.3. 
6 Frictional instabilities are discussed in Chapter 12 in detail. 



140      10 Coulomb’s Law of Friction 

nesses, the frictional force is independent or only very slightly dependent on the 
roughness. Contrary to expectations, the coefficient of friction for especially 
smooth metal surfaces can be even larger than for rough surfaces. The influence of 
roughness on friction is dependent on many factors, for instance, the presence of 
impurities or liquid films in the tribological contact, among others. 

Experimentation dealing with the transfer of radioactive elements between two 
contact partners offers an impressive verification for the weak dependence of fric-
tion (and wear) on the surface roughness. In Fig. 10.7, the results of the experi-
ment are presented, in which a radioactive copper block is drug over a copper 
plate which has a roughness of 25 nm on one part and a roughness 20 times larger 
on the other (500 nm). The large difference in the roughness has almost no influ-
ence on the frictional force and the material transfer from one of the bodies to the 
other (which one can see by the subsequent radioactivity measurement). The 
roughness does not even have an impact on the size of contact areas. 

 

 
Fig. 10.7  Photograph and radiograph of a copper surface, of which one part has a roughness of 
25 nm and the other 20 times larger with 500 nm, after a friction experiment with a load of 40 N 
and a sliding speed of 0.01 cm/s. The frictional force as well as the wear are almost independent 
from the roughness7. 

10.8 Coulomb’s View on the Origin of the Law of Friction 

Coulomb proposed the first model for the physical origin of friction, which ex-
plained some of the important properties of dry friction in a simple way. Accord-
ing to his view, the interaction between micro-roughnesses of both contacting sur-

                                                           
7 E. Rabinowicz, Friction and wear of materials. Second Edition. John Wiley & Sons, inc., 1995. 
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faces is responsible for the force of friction, which is shown schematically in his 
sketch (Fig. 10.8). As aforementioned, the influence of the roughness of the sur-
faces on friction, in reality, is much more complicated. Nevertheless, even very 
detailed modern analysis continues to lead to the simplest view that was already 
suggested by Coulomb. We will, therefore, quickly discuss this view.  

 
Fig. 10.8  Interactions between roughnesses as the origin of frictional force (sketch from Cou-
lomb). 

Following Coulomb, we consider a body that is pressed onto a corrugated surface 
as a model for dry friction. In order to simplify the problem further, we reduced 
the body to a single point mass. The resulting model is presented in Fig. 10.9. 

FN
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a b  
Fig. 10.9  Coulomb’s simplified model for dry friction. 

Between the corrugated surface and the point mass, there should no longer be 
static friction stemming from even smaller scale. The equilibrium conditions are 
determined from the free-body diagram shown in Fig. 10.9 b: 

 cosθ = NR F ,    sinθ =R F . (10.6) 

It follows that 

 tanθ= NF F . (10.7) 

The force of static friction sF  is, by definition, equal to the maximum force F , at 
which equilibrium is still possible: 

 max maxtanθ= =s NF F F . (10.8) 

The coefficient of static friction is, therefore, equal to the maximum slope of the 
surface: 
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 maxtanμ θ=s . (10.9) 

This model provides, in a simple way, one of the most important properties of dry 
friction – its proportionality to normal force – and gives a simple geometric expla-
nation for the coefficient of friction. If this is applied to sufficiently large bodies 
with periodic “corrugations,” as in the sketch from Coulomb, then the model also 
explains the independence of the coefficient of friction from the contact area. It 
does not explain, however, the observable independence (or relatively weak de-
pendence) of the frictional force on the surface roughness. 

10.9 Theory of Bowden and Tabor 

There have been many investigations in order to explain the universality and sim-
plicity of Coulomb’s law of friction. It appears that the robustness of Coulomb’s 
law of friction has several contributing factors. One important reason for the pro-
portionality of the frictional force to the normal force lies in the contact properties 
of rough surfaces. We saw in Chapter 7 that contact properties such as the real 
contact area and the contact length increase approximately linearly with the nor-
mal force and are independent of the apparent contact area. In contrast, the slope 
of the surface in the micro-contact is independent of the normal force (or very 
weakly dependent). If we were to explain frictional force according to the belief of 
Coulomb with the gradient of the surfaces in the contact, then the coefficient of 
friction would be independent of normal force. The coefficient of friction would, 
however, be very different for ground and polished surfaces, which is usually not 
the case. 

In 1949, Bowden and Tabor proposed a simple theory, which explains the ori-
gin of kinetic friction between pure metallic surfaces through the formation of 
cold-weld junctions. If two bodies are pressed together, then in a few places, they 
come so close to one another that the atoms of one body come into contact with 
the atoms of the second body, while extensive regions exist in which the distance 
between the bodies is so large that any atomic interactions can be neglected. We 
call the contact areas bridges; the total area of all of the bridges is the real contact 
area A . The remaining area is usually much larger than the real contact area, but 
has almost no contribution to the frictional force. 

For metals, the real contact area can be fairly closely approximated in most 
practical cases, by assuming that all micro-contacts are plastically deformed and 
the stress is equal to the penetration hardness 0σ  of the material. This assumption 
provides a real contact area of  

 0/σ≈ NA F . (10.10) 
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If a tangential stress of τ c  is necessary to shear a cold-weld junction, then the 
maximum force of static friction is equal to 

 
0

τ
σ

= c
s NF F . (10.11) 

Because the shear strength for an isotropic plastic body is around 1/ 3  of the 
tensile strength and this, in turn, is around 1/3 of the penetration hardness, there 
should be, as a rule, a universal dependence, ( )1 1

6 5≈ ÷s NF F , leading to a coeffi-

cient of friction of 1 1
6 5

μ ≈ ÷ . For many non-lubricated metal pairings (e.g. steel 

on bronze, steel on brass, or steel on cast iron), the coefficient of friction is effec-
tively on the order of 0.16 0.2μ −∼ . For larger compressive forces, the coeffi-
cient of friction between pure metals can reach higher values, which is probably 
related to the larger plastic deformations and, therefore, the resulting considerable 
changes in surface topography.  

Coefficients of friction between different materials are dependent on many pa-
rameters. However, based on the ideas of Bowden and Tabor, it is possible to for-
mulate a rough classification. Initially, we notice that for strong adhesion in a tri-
bological contact there exist both contacts in compression and contacts in tension. 
The stress in the compressive areas is roughly equal to the hardness, 0 3σ σ≈ c . In 
the tensile areas, 0σ ζσ≈ c  is valid, where ζ  in generally smaller than 3. Thus, 
the normal force is equal to 

 ( )3N c comp tenF A Aσ ζ= − . (10.12) 
If all of the cold welds are sheared, then the static force of friction is 

 ( )s c comp tenF A Aτ≈ + . (10.13) 

The following approximation results for the coefficient of friction: 

 
( )
( )3
c comp ten

c comp ten

A A

A A

τ
μ

σ ζ

+
≈

−
. (10.14) 

Assuming / 3c cτ σ≈ , which is valid for plastic isotropic substances, we obtain 
the approximation 

 1
33

comp ten

comp ten

A A
A A

μ
ζ

⎛ ⎞+
≈ ⎜ ⎟⎜ ⎟−⎝ ⎠

. (10.15) 

We consider the following cases: 



144      10 Coulomb’s Law of Friction 

1. Pure metals in the presence of the smallest amount of lubrication, which has 
no lubricating effect, however, inhibits metallic adhesion. In this case, 0tenA =  
and the coefficient of friction has the aforementioned universal value on the order 
of  

 1 0.19
3 3

μ ≈ ≈ . (10.16) 

This coefficient of friction is characteristic for dry friction between metals under 
“normal conditions,” in which the surfaces are covered with oxides as well as 
other impurities in small amounts. 

2. Pure metals with surfaces free of lubricants, but where oxides are present. In 
this case, one can assume that the adhesion is strong and that the areas being 
stressed by compression and tension are about the same. The fact that the micro-
contacts bear the load is still true because of the difference between the plastic 
properties in tension and compression. The coefficient of friction is approximated 
as  

 1 2
33

μ
ζ

⎛ ⎞
≈ ⎜ ⎟−⎝ ⎠

.  (10.17) 

For 1 to 2ζ = , this equation yields coefficients of friction in the range of 
0.6 to 1.2μ ≈ . We have made this estimation for isotropic media. Pure metals 

with cubic crystal lattices (e.g. Fe, Al, Cu, Ni, Pb, Sn) have such coefficients of 
friction. For metals with hexagonal lattices (Mg, Ti, Zn, Cd), the coefficient of 
friction is around 0.6. 

3. Pure metals with a thin sheet of a soft metal (e.g. lead or tin on steel, copper, 
silver, …). As long as the sheet is thin enough (around 100 nanometers), Equation 
(10.11) is valid, where 0σ  is the hardness of the harder material and τ c  is the 
shear strength of the softer material. The coefficient of friction is, in this case, 
smaller than it is with pure metals and can be 0.1 or smaller. 

4. Multi-phase materials. Most materials that are used in tribological applica-
tions are not pure materials, rather multi-phase alloys, which, as a rule, consist of a 
harder matrix and softer inclusions. For example, tin bronze and lead bronze have 
this structure and are used as materials for bearings. One can assume that the func-
tion of these alloys is based on the extrusion of the softer metals which forms a 
thin layer on the sliding surface and reduces the friction according to the mecha-
nism described in Case 3.  

5. Surfaces that are only elastically deformed. In the case of diamond or a-
mourphous carbon coatings, Equation (10.11) is not applicable, because the sur-
face deforms purely elastically.  
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10.10 Dependence of the Coefficient of Friction on Temperature 

Because the relationship of shear strength to hardness is not dependent on tem-
perature, the coefficient of friction between pure metals is also independent from 
temperature. This is valid as long as the conditions do not change so that a transi-
tion takes place between the categories mentioned above. In the presence of a thin, 
soft sheet on a hard surface, the coefficient of friction increases quickly if the 
melting temperature of the sheet is reached. For metal sheets, this occurs abruptly 
upon reaching the melting temperature of the softer material. For grease or metal-
lic soaps formed on the sliding surfaces, it occurs at the softening temperature of 
the grease or metallic soap. 

Under “normal conditions,” which are described in “Case 1” in the previous 
section, the coefficient of friction is only weakly dependent on the temperature for 
many metal pairings. Between 200°C and 300°C, a sharp increase occurs. Here, 
the coefficient of friction can increase twofold or threefold. At higher tempera-
tures, it remains almost constant or increases at a slower rate. A typical tempera-
ture traverse is shown in Fig. 10.10. It is apparent that the reason for this is the 
softening or decomposition of the layers of impurities, typically small amounts of 
grease. 
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Fig. 10.10  Coefficient of static friction as a function of temperature for copper probes over alu-
minum, steel, and copper. Data from: Martin Köhler. Beitrag zur Bestimmung des Coulomb-
schen Haftreibungskoeffizienten zwischen zwei metallischen Festkörpern. Cuvillier Verlag Göt-
tingen, 2005. 

For low temperatures, the coefficient of friction is constant, relatively small, 
and only weakly dependent on material combination. Characteristic values are on 
the order of 0.16-0.22. It is characteristic in this domain that oxide layers or other 
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layers of impurities remain on the surface during the frictional process. The do-
main of higher coefficients of friction is characteristic for conditions in which 
metal contact occurs. 

Problems8 

Problem 1: Self-locking. An arm is attached to a bushing which can move verti-
cally on a pole. A movable weight is slid onto this arm (Fig. 10.11 a). As long as 
the weight is far enough away from the vertical pole, it is held up by the frictional 
forces that act on the corner points of the bushing (self-locking). Determine the 
necessary distance for this self-locking. 

S

d
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l
FN

FR

FN

FR

a b  
Fig. 10.11  Simple, self-locking system with the corresponding free-body diagram. 

Solution: From the equilibrium condition in the horizontal direction, it follows that 
both reaction forces NF  at the corner points have the same magnitude (as shown 
in Fig. 10.11 b). At the limit between sliding and self-locking, the frictional forces 
reach their maximum value, μ=s s NF F . From the force equilibrium in the vertical 
direction, we obtain 

2 0s NF Gμ − = . 

The moment equilibrium with respect to the center of the bushing is 

2 0
2

− =N
hGl F . 

Thus, it follows that the necessary distance is  

2μ
=c

s

hl . 

                                                           
8 In the problems in this chapter, Coulomb’s law of friction is used in its simplest forms (10.1) 
and (10.2). 
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Problem 2: Transverse Force. An automobile is accelerated or braked due to the 
frictional force between the tires and the street. This frictional force RF  should be 
smaller than the maximum force of static friction9: μ< =R s k NF F F . Determine the 
transverse force ⊥F  at which the automobile begins to skid to one side. 
 
Solution: Both the braking force and the transverse force are components of the 
frictional force in the rolling contact. Complete sliding occurs when 

2 2 2
⊥+ >R sF F F . Therefore, it follows that 

( )2 2μ⊥ > −k N RF F F . 

 
Fig. 10.12  Resulting forces in a rolling contact. 

Problem 3: During complete braking of an automobile, the tires lock and they 
slide along the street at a velocity of 0v . What transverse velocity would a small 
force ⊥F  acting in the transverse direction cause? 

 
Solution: The magnitude of the kinetic frictional force is not dependent on veloc-
ity, however, its direction is exactly opposite that of the velocity. From this, it fol-

lows that 
0 μ
⊥ ⊥≈

k N

v F
v F

 and  

0

μ⊥ ⊥

⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠k N

v
v F

F
. 

The transverse velocity is proportional to the transverse force. 
 
 

                                                           
9 For rolling contact, the maximum frictional force is determined using the coefficient of kinetic 
friction μ=S k NF F , because it deals with the transition from partial to complete sliding. 
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Fig. 10.13  Force and velocity components of a sliding wheel that is acted upon by a small trans-
verse force ⊥F . 

Problem 4: Belt/Cable Friction. A cable is slung around a pole (Fig. 10.14 a). 
The angle between the first and last contact points is 2 1α ϕ ϕ= − . The cable is 
pulled from one end with a force 2F . Determine the force 1F  that is necessary to 
keep the cable from moving.  

 
Solution: We consider an infinitely small element of the cable (Fig. 10.14 b). 
Equilibrium of forces on the element yields  

( ) ( ) 0ϕ ϕ ϕ+ − − =RF d F dF  

or 

0ϕ
ϕ

− =R
dF d dF
d

. 

In the perpendicular direction, we have 

0ϕ− =dN Fd . 

Here, dN  is the reaction force acting on the element and RdF  is the frictional 
force acting on the element. The cable does not slide only up to the point when the 
frictional force reaches its maximum value μ=RdF dN . From these three equa-
tions, we obtain 

μ
ϕ
=

dF F
d

. 

After separating the variables, / μ ϕ=dF F d , and integrating, we obtain 
2

1
2 1ln ( )μ ϕ ϕ μα= − =F

F
F . It then follows that 

2 1
μα=F F e  or 1 2

μα−=F F e . 

Numerical Example: For 0.4μ = , 2α π=  (a full loop), 2 112≈ ⋅F F . For two 
loops, we would have 2 1152≈ ⋅F F . 
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a b  
Fig. 10.14  A cable slung around a pole as well as the corresponding free-body diagram of an in-
finitesimal cable element. 

Problem 5:  A cylindrical tank (radius R) is filled with sand. Let the coefficient of 
friction of the sand on the wall be μ . Determine the pressure in the sand as a 
function of height.  

R
�

p =00

�Agdz

p(z+dz)A

p(z)A

dFR

 
Fig. 10.15  Infinitely thin slice from the sand column. 

Solution: If the coefficient of friction is not too large, then the pressure in the sand 
is “almost isotropic” (as it is for a liquid). In this approximation, we consider the 
force equilibrium of an infinitely thin slice of the sand column (Fig. 10.15): 

( )2 2( ) ( ) 0ρ π π+ − + − =Rg R dz p z p z dz R dF  

or 

2 2 0ρ π π− ⋅ − =R
dpg R dz dz R dF
dz

. 

According to Coulomb’s law, the frictional force is 2μ π=RdF p Rdz . From the 
two equations, one obtains 

2 0μρ − − =
dp pg
dz R

. 

Separating the variables, 
( )2 /ρ μ

=
−

dpdz
g p R

, and integrating yields  
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2

1
2

μρ
μ

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠

z
RgRp e . 

For large values of z, the pressure reaches the saturation value of / 2ρ μ∞ =p gR . 
 

Problem 6:  Wishbones, which are used to control the front wheels of automo-
biles, are manufactured using the following method. In the first step, a wishbone is 
stamped from sheet metal (Fig. 10.16 a). The rubber-metal bearing (Fig. 10.16 b) 
is pressed into the wishbone in the second step (Fig. 10.16 c). For quality control, 
the force required in order to once again remove the bearing must be at least 5.5 
kN. Calculate the force required to remove the bearing. Which factors influence 
this force? Use the following data: the height of the cylindrical eyelet 2 cm=L , 
the radius of the eyelet 1.6 cmR = ,  the thickness of the sheet metal 1.6 mmt = , 
the yield strength of the metal 300 MPaσ =c , and the coefficient of friction 

0.16μ = . 

 
Fig. 10.16  (a) Wishbone with sheet-metal eyelet; (b) Slotted rubber-metal bearing; (c) Finished 
wishbone with press-fitted bearing. 

Solution: The radial stress σ r  working on the eyelet leads to tensile stress in the 
sheet ϕσ  (Fig. 10.17). The interdependence of these stresses is given by the for-
mula for stress in a thin walled pressure vessel, /ϕσ σ= r R t . By pressing in the 
bearing, the sheet metal is plastically deformed: ϕσ σ= c .  

R

t

L

�r

�
�

a b c  
Fig. 10.17  (a) Thin-walled cylinder;  (b) Constant radial stress caused by the surface compres-
sions;  (c) Circumferential stress ϕσ  made visible with a suitable cut. 
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According to this, the radial stress is  

σ σ=r c
t
R

. 

The maximum static friction is calculated as the product of this stress with the sur-
face of the eyelet, 2πRL , and the coefficient of friction: 

2removal cF L tπ μσ= . 

For the parameters given in the problem statement, the required force to remove 
the bearing is 9.6 kNremovalF ≈ . 
 
Problem 7: Thermocyclic Creep. A plate of length L  lies on a surface with 
which there is a coefficient of friction of μ . A force F , which is smaller than the 
force of kinetic friction, acts in the horizontal direction. If the plate is heated, then 
it expands asymmetrically due to the applied force F  relative to the underlying 
surface. If the temperature is brought back down to its original value, then the 
plate again contracts. Determine the displacement of the plate after one full ther-
mal cycle (Fig. 10.18). 

T0

T + T0 D

T + T0 D

F=0

F

L

 
Fig. 10.18  Thermal creep process of a plate on a surface with which there is a coefficient of fric-
tion of μ . 

Solution: We assume that the plate is sufficiently rigid. If the plate is heated, then 
it expands symmetrically by the length αΔ = ΔL TL , its centroid remaining at the 
same point. If a force F  acts on the plate during the heating, then the plate would 
move asymmetrically. Now, instead of the centroid, the point at a distance Δl  to 
the left will remain stationary, because the part of the frictional force that acts to 
the right must be smaller than that which acts to the left in order for the resultants 
to be in equilibrium with the force F  (Fig. 10.19). 
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Fig. 10.19  Dynamics of the creep process. 

Because the frictional forces oppose the direction of motion, a larger portion of the 
frictional force must act towards the left than towards the right. So, the equilib-
rium condition during heating is 

/ 2 / 2 0μ μ+ Δ −Δ⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

L l L lF mg mg
L L

. 

From this, it follows that  

2μ
Δ =

F Ll
mg

.  

Therefore, during heating, the centroid is displaced by  

2
ε α

μ
= Δ = ΔS th

FLu l T
mg

.  

During cooling, the centroid moves the same distance in the same direction: The 
stationary point must now lie to the right of the centroid, because the expansion or 
contraction direction and the direction of the frictional forces are exactly opposite. 
The total displacement during the cycle is, therefore, equal to 

tot
FLu T
mg

α
μ

= Δ .  

The displacement is proportional to the force, even for very small forces. Similar 
processes at the interface between phases with different thermal expansion coeffi-
cients are the cause of the thermocyclic creep of multi-phase materials and com-
posites. 

 
Problem 8: Determine the coefficient of static friction of a corrugated surface 
with a maximum slope of 1 1tanμ θ=  (Fig. 10.20) in the presence of “micro-
scopic” friction which is characterized by a coefficient of friction of 0μ . 
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Fig. 10.20  Corrugated surface with coefficient of friction 0μ . 

Solution: We can form the following equilibrium equations (for the ′x  and ′z  di-
rections), based on the diagram shown in Fig. 10.21:  

1 1cos sinθ θ+ =NF F R , 

1 0 1sin cosθ μ θ+ =NF R F . 

From which, it follows that 

0 1

0 11
μ μ

μ
μ μ
+

= =
−N

F
F

. 

Notice that this “superposition law” has a simple geometric interpretation for coef-
ficients of friction on different scales, meaning that the friction angles on these 
scales are summed. Actually, when we write 1 1tanμ θ= , 0 0tanμ θ=  and 

tanμ θ=  with 1 2θ θ θ= + , we come to the same conclusion 

( )
( )

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

sin sin cos cos sin tan tan
tan

cos cos cos sin sin 1 tan tan 1
θ θ θ θ θ θ θ θ μ μ

μ θ
θ θ θ θ θ θ θ θ μ μ
+ + + +

= = = = =
+ − − ⋅ −

. 

Hence, we can formulate the following general rule to superimpose coefficients of 
friction on different scales: 

tan arctantot i
i

μ μ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ , 

where μi  are the coefficients of friction on various spatial scales. 
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Fig. 10.21  Free-body diagram of a body on a corrugated surface with friction. 
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Problem 9: Two disks with masses 1m  and 2m  and coefficients of kinetic friction 
of 1μ  and 2μ  are connected by a massless rigid rod of length l  (Fig. 10.22). De-
termine the conditions under which the sliding of the system in the direction of the 
rod is stable. 

Sliding Plane

m2, �2

m1, �1

S

�1, N1

�2, N2
f

v

 
Fig. 10.22  Two disks connected with a light, rigid rod. 

Solution: We assume that the orientation of the rod with respect to the sliding di-
rection is deflected by a small angle ϕ  and we calculate the component of the 
moment that attempts to turn the rod in the sliding plane. The movement is stable 
when the moment is negative so that the angle ϕ  decreases, while a positive mo-
ment leads to an increase in the angle. We will call the distances from the disks to 
the centroid 1a  and 2a : 

2 1
1 2

1 2 1 2

,       
m m

a l a l
m m m m

= =
+ +

. 

The normal forces 1N  and 2N  are defined as 

1 1 2 2,       N m g N m g= = . 

The total moment of the frictional forces with respect to the centroid S  is equal to 

( ) ( )( ) 1 2
1 1 1 2 2 2 1 2

1 2

sin sins m m
M N a N a gl

m m
μ μ ϕ μ μ ϕ= − + = − +

+
. 

The moment is negative and the movement is stable when 

1 2μ μ> . 

Therefore, the system is stable when the disk with the smaller coefficient of fric-
tion slides in front. Otherwise, the system is unstable: the rod turns and eventually 
slides with the disk with the smaller coefficient of friction at the front. 
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11.1 Introduction 

The development of experimental methods to investigate frictional processes on 
the atomic scale and numerical simulation methods has heralded in a drastic 
growth in the number of studies in the area of friction of solid bodies on the 
atomic scale. A simple model, known as the “Tomlinson model,” can be used as 
the basis for many investigations of frictional mechanisms on the atomic scale. It 
was suggested by Prandtl in 1928 to describe the plastic deformations in crystals1. 
The paper by Tomlinson2 that is often cited in this context did not contain the 
model today known as the “Tomlinson model” and suggests an adhesive contribu-
tion to friction. In the following, we will call this model the “Prandtl-Tomlinson 
                                                           
1 L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM, 1928, 
Vol. 8, p. 85-106. 
2 G.A. Tomlinson, A molecular theory of friction. The London, Edinburgh, and Dublin philoso-
phical magazine and journal of science, 1929, Vol. 7 (46 Supplement), p. 905.). 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_11, 
© Springer-Verlag Berlin Heidelberg 2010 
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model.” Prandtl considered the one dimensional movement of a point mass in a 
periodic potential with the wave number k  being acted upon by an external force 
and being damped proportional to velocity3 (Fig. 11.1): 

 sinη= − −mx F x N kx . (11.1) 

Here, x  is the coordinate of the body, m  its mass, F  the external force acting 
upon it, η  the damping coefficient, N  the amplitude of the periodic force, and k  
the wave number.  

F

 
Fig. 11.1  Prandtl-Tomlinson model: A point mass in a periodic potential. 

The model from Prandtl-Tomlinson describes many fundamental properties of 
dry friction. Actually, we must apply a minimum force to the body so that a mac-
roscopic movement can even begin. This minimum force is none other than the 
macroscopic force of static friction. If the body is in motion and the force reduced, 
then the body will generally continue to move, even with a smaller force than the 
force of static friction, because it already possesses a part of the necessary energy 
due to its inertia. Macroscopically, this means that the kinetic friction can be 
smaller than the static friction, which is a frequently recurring characteristic of dry 
friction. The force of static friction in the model in Fig. 11.1 is equal to N .  

The success of the model, variations and generalizations of which are investi-
gated in innumerable publications and are drawn on to interpret many tribological 
processes, is due to the fact that it is a simplistic model that accounts for two of 
the most important fundamental properties of an arbitrary frictional system. It de-
scribes a body being acted upon by a periodic conservative force with an average 
value of zero in combination with a dissipating force which is proportional to ve-
locity. Without the conservative force, no static friction can exist. Without damp-
ing, no macroscopic sliding frictional force can exist. These two essential proper-
ties are present in the Prandtl-Tomlinson model. In this sense, the Prandtl-
Tomlinson model is the simplest usable model of a tribological system. Essen-
tially, the Prandtl-Tomlinson model is a restatement and further simplification of 
the view of Coulomb about the “interlocking” of surfaces as the origin of friction. 

Obviously, the model cannot represent all of the subtleties of a real tribological 
system. For instance, there is no change of the surface potential caused by wear in 
this model. It should be noted, however, that it is fundamentally possible to ex-
pand the model to take plastic deformations into account. In this context, it should 
be mentioned once more that the model from L. Prandtl in 1928 was proposed 
precisely to describe plastic deformations in crystals. 

                                                           
3 In this way, for example, the movement of the tip of an atomic force microscope over a crystal-
line surface can be described. 
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In this chapter, we investigate the Prandtl-Tomlinson model as well as several 
applications and generalizations of it. 

11.2 Basic Properties of the Prandtl-Tomlinson Model 

If a body is at rest and a force F  is applied to it, then its equilibrium position 
moves to the point x , which satisfies the equation  

 sin=F N kx . (11.2) 

This equation has a solution only when F N≤ . So, the force of static friction, in 
this model, is equal to 

 =sF N . (11.3) 

For a larger force, no equilibrium is possible and the body enters into macroscopic 
motion4. In this model, every macroscopic movement of the body, from a micro-
scopic point of view, is a superposition of a constant speed and a periodic oscilla-
tion, as is shown in Fig. 11.2 a. In this figure, the results of the numerical integra-
tion of Equation (11.1) are presented. The tangential force changes slowly from 
zero to some maximum value larger than the force of static friction and then de-
creases afterwards. The curve shows the instantaneous speed as a function of the 
instantaneous force. After the critical force is reached, the body begins to move 
with a finite velocity. If the force is decreased, the body can continue to move 
when acted upon by forces smaller than the force of static friction. At a specific 
critical velocity, the macroscopic movement stops, the body oscillates about a po-
tential minimum, and then comes to a standstill.  

On the macroscopic scale, we do not perceive the microscopic oscillations. The 
movement described above is described from a macroscopic point of view as a 
quasi-stationary frictional process. The dependence of the average velocity on the 
applied force is perceived as the macroscopic law of friction to a macroscopic ob-
server (Fig. 11.2 b).  

                                                           
4 Here, we call “macroscopic” the movement of a body in a spatial domain much larger than the 
potential period. Conversely, we call the length scale smaller than, or comparable to, the wave-
length of the potential “microscopic.” 
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Fig. 11.2  (a) Dependence of instantaneous velocity on the force (increasing linearly with time) 
in the Prandtl-Tomlinson model.  (b) Macroscopic law of friction: dependence of the average ve-
locity on the force. 

Case of small damping 
If the damping is 0η =  and the body is put into motion, then it will continue to 
move indefinitely, even in the absence of an external force ( 0=F ). Thereby, con-
servation of energy is valid 

 
2

0 cos ,      for  0,    0
2

mv NE kx const F
k

η= − = = = . (11.4) 

In this case, the resulting velocity as a function of the x-coordinate is 

 0
2 cos ,      for  0,    0Nv E kx F
m k

η⎛ ⎞= + = =⎜ ⎟
⎝ ⎠

. (11.5) 

In the presence of a small damping, a small force must be applied in order to 
maintain periodic motion. The motion is periodic if the work performed by an ex-

ternal force F  over a period of 2 /π=a k  is equal to the energy loss, 2

0

( )η∫
T

v t dt :  

 2
0

0 0 0

2 2( ) ( ) cosπ η η η ⎛ ⎞= = = +⎜ ⎟
⎝ ⎠∫ ∫ ∫

T a aF Nv t dt v x dx E kx dx
k m k

. (11.6) 

The smallest force 1F  at which a macroscopic movement still exists is given by 
(11.6) with 0 /=E N k : 

 1 4 η
π

=
F
N mkN

. (11.7) 

The damping at which the force of kinetic friction would be equal to the force of 
static friction has the order of magnitude of 
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 1η
≈

mkN
 (11.8) 

and indicates the boundary between the considered case with little damping (un-
der-damped system) and the case with much damping (over-damped system). 
 
Case of large damping 
For large damping, one can neglect the inertia term in (11.1): 

 0 sinη= − −F x N kx . (11.9) 

This is known as over-damped motion. The equation of motion in this case is a fir-
st-order differential equation. It can be written in the form 

 sin
η η

= = −
dx F Nx kx
dt

. (11.10) 

One spatial period is traversed in the time  

 
2 / 2

2
0 0

2

sin sin 1

π πη η π

η η

= = =
⎛ ⎞− − −⎜ ⎟
⎝ ⎠

∫ ∫
k dx dzT

F N FkN kN Fkx z
N N

. (11.11) 

The average speed is, therefore,  

 
2 2

η
−

= =
a F Nv
T

. (11.12) 

The force, as a function of the average speed, is 

 ( )22 η= +F N v . (11.13) 

This dependence is presented in Fig. 11.3. 
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Fig. 11.3  The law of friction for the Prandtl-Tomlinson model in the over-damped case. 

The “phase diagram” for the Prandtl-Tomlinson model   
In order to investigate the properties of the Prandtl-Tomlinson model for arbitrary 
parameters, we will introduce the dimensionless variables into (11.1) 

 ξ=x x ,   τ=t t . (11.14) 

From this, the equation of motion assumes the form  

 2 sin( )ξ ηξ ξ
ττ

′′ ′
= − −

m x F x k x
N N N

, (11.15) 

where the prime indicates the derivative /∂ ∂t . We choose  

 1ξ =k ,   2 1τ
ξ
=

N
m

 (11.16) 

and write Equation (11.15) in the form 

 sinη′′ ′+ + =
Fx x x
NmkN

. (11.17) 

It now only contains two dimensionless parameters, 

 1
ηκ =

mkN
,    2κ =

F
N

. (11.18) 

In Fig. 11.4, the “phase portrait” of the system is presented. The nature of the mo-
tion in the dimensionless coordinates is dependent only on the region in which the 
system lies on the parameter plane ( )1 2,κ κ  in this figure. 
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Fig. 11.4  Two critical forces, 1F  and 2F , as a functions of the damping coefficient. 

For 1 1.193
mkN
ηκ = < , there are three force domains (shown in Fig. 11.4 as I, II 

and III), which are separated by the critical forces 1F  and 2F . For 2>F F , there is 
no equilibrium solution and the body moves unrestricted. If the force decreases, 
the body comes to a standstill when 1<F F . Between the domains in which only 
the static state ( 1<F F ) or only motion ( 2>F F ) exist, there is a domain of bista-
bility, in which the body can exist in a static state or a state of motion, depending 
on its initial condition. This domain of bistability does not exist if the damping is 
larger than a critical value: 

 1.193
mkN
η

> . (11.19) 

For small damping coefficients, the critical force 1F  is given by (11.7). 

11.3 Elastic Instability  

The simplest generalization of the Prandtl-Tomlinson model is presented in 
Fig. 11.5. Instead of being acted upon by a constant force, the body is connected 
to a spring (stiffness c ) which is fastened to a sliding sled that moves in the hori-
zontal direction. This model is more suited to describe the movement of the tip of 
an atomic force microscope than the original model from Prandtl-Tomlinson, be-
cause it takes into account the stiffness of the arm of the microscope in the sim-
plest manner. 
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Fig. 11.5  A body in a periodic potential pulled with a spring. 

In this case, the equation of motion is 

 0( )η ∂
+ + = −

∂
Umx x c x x
x

. (11.20) 

If the sled is pulled slowly with a constant velocity, then the body can be found at 
every point in time at an equilibrium position 0( )x x , where 0 0 ( )=x x t  is the co-
ordinate of the sled. The average value of the spring force is equal to the (macro-
scopic) force of friction. If there is only one equilibrium position 0( )x x  for every 

0x , then the average value of the force acting on the body is exactly zero. In order 
to show that, we investigate the total potential energy of the body: 

 ( )2
0 0

1( , ) ( )
2totU x x U x c x x= + − . (11.21) 

The equilibrium position is determined from the condition 

 ( )0 0( , ) ( ) 0totU x x U x c x x′ ′= + − = , (11.22) 

where the prime indicates the derivative /∂ ∂x . The average value of this force 
(over time, which in this case, is the same as over 0x ) is equal to 

 0
0

1 L

baseF U dx
L

′= − ∫ . (11.23) 

Here, L  is the spatial period of the potential. If we differentiate Equation (11.22), 
we obtain 

 ( ) 0( )′′ + =U x c dx cdx . (11.24) 

With this, one can replace the integration of (11.23) over 0dx  with integration 
over dx :  

 
2

0 0

1 1 ( )1 ( ) 0
2

LL

base
U U xF U dx U x

L c L c
′′ ′⎡ ⎤⎛ ⎞′= − + = − + =⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
∫ . (11.25) 
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The resulting average force is zero, because both ( )U x  and 
2
( )′U x  are periodic 

functions of x . From this, it follows that the force of friction under these condi-
tions is exactly zero. This is valid for arbitrarily defined periodic potentials. 

The situation changes considerably if the equilibrium coordinate x  is a non-
continuous function of 0x , so that in some points, Equation (11.24) is not satis-
fied. As an example, we will investigate the system shown in Fig. 11.5 with a po-
tential of the form 

 ( ) cos= −
NU x kx
k

. (11.26) 

The equilibrium condition (11.22) takes the form 

 ( )0sin− = −
ckx x x
N

. (11.27) 

The functions sin− kx  and ( )0−
c x x
N

 are shown in Fig. 11.6 for various 0x . 

Their intersection indicates the equilibrium coordinate of the body. If / 1>c Nk , 
then x  is a continuous function of the coordinate 0x of the sled, which is illus-
trated through example calculations in Fig. 11.6 b with / 1.5c Nk = . If, on the 
other hand, the stiffness of the spring is smaller than a critical value: 

 / 1<c Nk , (11.28) 

then the dependence of the equilibrium coordinate on 0x  has jump discontinuities 
(Fig. 11.6 d). In this case, the time-averaged force is not equal to zero. The de-
pendence of the spring force on the coordinate 0x  for the case of a weak spring 
( / 0.1c Nk = ) is presented in Fig. 11.7. 
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Fig. 11.6  The functions sin− kx  and the linear function ( )0
c x x
N

−  are plotted in (a) for 

/ 1.5c Nk =  and in (c) for / 0.5c Nk = . If 0x  increases, the linear function shifts to the right. 
The equilibrium coordinate is a continuous function of 0x , when / 1c Nk >  (b) and has jump 
discontinuities when / 1c Nk <  (d). 
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Fig. 11.7  Dependence of the force acting on the body in model (11.20) as a function of the coor-
dinate of the sliding sled 0x  for the case / 0.1c Nk = . Because of the emergence of elastic in-
stabilities, the average value of the force is not equal to zero. 

11.4 Superlubricity 

Experimental and theoretical investigations in recent years have led to the conclu-
sion that in an “atomically close” contact between two crystalline solid bodies, it 
is possible to have no friction, provided that the periods of the crystal lattices are 
incompatible (as shown in Fig. 11.8). An additional requirement is that no elastic 
instabilities may appear in the contact between both bodies. The cause for the ab-
sence of static friction is that the atoms of one of the crystal lattices are placed in 
all possible relative energy states in relation to the other lattice. Therefore, the 
movement of the body leads merely to another distribution of the atoms that sit in 
the positions of low and high energy, but it causes no change in the average (mac-
roscopic) energy of the body. Because of this, even an infinitesimally small force 
can put the body into motion.  

 

k1

k2

 
Fig. 11.8  Contact between two periodic surfaces (e.g. two crystals) with different lattice periods. 
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These considerations are, of course, independent of the scale. They are valid for 
the contact between two macroscopic structured surfaces, for example, between 
corrugated rubber base and a corrugated steel plate. As long as the periods of the 
structures of both surfaces are different and no elastic instabilities occur, the 
structures give no contribution to static friction.  

11.5 Nanomachines: Concepts for Micro and Nano-Actuators 

Because of the tendency to miniaturize mechanical devices, one must ask oneself 
the question of what the theoretical limit of miniaturization is. An important as-
pect thereby is whether or not it is possible to transfer thermal or chemical poten-
tial energy into the energy of directional movement even on the smallest, atomic 
scales. Many researchers have taken the motion of the so-called motor protein 
along periodically built microfibers as an example for many investigations on 
nano-machines. All motor proteins have a similar structure consisting of two 
“heads” and a connecting element. The length of the connection can be changed 
through the burning of “energy molecules.” By heating the protein molecule, it 
transforms from a globular state to that of a random coil, whereby the length of the 
bond increases. After cooling, the bond again takes its original length. 

Most of the methods to produce directed motion of microscopic or molecular 
objects which are discussed in literature are based on the interactions between a 
moving object and a heterogeneous, and in most cases periodic, substrate. The 
driven object can consist of one or more bodies whose separation distances are 
controllable. The underlying substrate can be symmetric as well as asymmetric. 
For non-symmetric bases, one uses the “ratchet-and-pawl” principle5. A direc-
tional movement, however, is also possible in symmetric potentials.  

 In this section, we will illustrate the idea behind nano-machines using the ex-
ample of a “three-body machine.” From a mathematical point of view, we are 
dealing with the movement of a multi-body system in a (spatially) periodic poten-
tial which is a simple generalization of the Prandtl-Tomlinson model. 

 Below, we show how controlling the length of the connections between the 
bodies in a periodic potential can lead to a directional movement of the system for 
which the movement direction as well as speed are arbitrarily controllable.  
 
Singular points and bifurcation sets of a three-body machine 
We consider a mass point in a periodic potential (Fig. 11.9) that is connected by 
two massless rods of lengths 1l  and 2l . The potential energy of the system is equal 
to  

 ( )0 1 2cos( ( )) cos( ) cos( ( ))= − + + +U U k x l kx k x l , (11.29) 

                                                           
5 These machines are often just called “ratchets.” 
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where 2 /π=k a  is the wave number and a  is the spatial period of the potential. 
The potential energy can be rewritten in the form  

 ( ) ( )2 2
0 1 2 1 2sin sin 1 cos cos cos( )ϕ= − + + + −U U kl kl kl kl kx , (11.30) 

where 

 1 2

1 2

sin sin
tan

1 cos cos
ϕ

−
=

+ +
kl kl

kl kl
. (11.31) 

l1
l2

 
Fig. 11.9  Three-body machine. 

The phase ϕ  is a continuous function of the parameters 1l  and 2l  over an arbitrary 
path on the parameter plane ( 1l , 2l ), as long as this path does not cross any singu-
lar points, in which the amplitude of the potential (11.30) approaches zero and the 
phase (11.31) is undefined. The position of these points is determined by the con-
ditions 

 1 2sin sin 0− =kl kl  (11.32) 

and  

 1 21 cos cos 0+ + =kl kl . (11.33) 

From this, it follows that 

 1 / 3 2π π π= ± +kl n ,     2 / 3 2π π π= ± +kl m , (11.34) 

where m  and n  are integers. The position of singular points on the ( 1l , 2l )-plane 
is shown in Fig. 11.10. All of these points can be obtained by periodically repeat-
ing the two points ( )1 2( , ) 2 / 3, 2 / 3π π=kl kl  and ( )1 2( , ) 4 / 3, 4 / 3π π=kl kl  as 
multiples of 2π .  
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Fig. 11.10  Positions of singular points of a “three-body machine.” 

Conditions for controlled directional motion 
Now, we assume that the lengths 1l  and 2l  are arbitrarily controllable. When they 
change so that one singular point in Fig. 11.10 is encircled by a closed path (path 
1), then the phase is decreased by 2π . By closing a loop about a second point 
(path 3), it is increased by 2π . We assign the first point the topological index -1 
and the second point the index +1. Generally, the phases of a closed-path on the 
( 1l , 2l )-plane change by 2π i , where i  is the sum of the indices of all of the points 
enclosed by the path. Path 2 in Fig. 11.10, for example, surrounds no singular 
point. Therefore, the phase does not change along the path. Path 4 surrounds two 
points with the index -1 and, therefore, the phase changes by − 4π  over the com-
plete path. A phase change of 2π  corresponds to the movement of the three-body 
machine over one spatial period. 

A periodic change in the rod lengths 1l  and 2l  on a path which encloses sin-
gular points with the non-zero sum of the topological indices leads to direc-
tional motion of the system. If a path in the ( 1l , 2l )-plane is traversed at an 
angular frequency of ω , then the system would move at the macroscopic 

(average) velocity ω
=

iv
k

.  

An interesting question is if this “machine” can move even when being op-
posed by an external force and, therefore, be used to carry loads. In order to an-
swer this question, we allow an external force of −F  to act on the system. This 
leads to an additional term Fx  in the potential energy so that the total potential 
energy assumes the form 
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 ( )0 1 2cos( ( )) cos( ) cos( ( ))totU U k x l kx k x l Fx= − + + + + . (11.35) 

We determine the bifurcation set (also called the “catastrophe set”) for this poten-
tial. The bifurcation set is understood to be the parameter set for which the number 
of equilibrium points of the potential changes and, therefore, the equilibrium posi-
tion is generally no longer a continuous function of the parameters 1l  and 2l . It is 
determined by two conditions: 

 0totU
x

∂
=

∂
 (11.36) 

and  

 
2

2 0totU
x

∂
=

∂
. (11.37) 

The first condition means that we are dealing with an equilibrium position. The 
second condition indicates that it is exactly the moment in which the equilibrium 
loses its stability. In our case, (11.36) yields 

 ( )0 1 2sin( ( )) sin( ) sin( ( )) 0totU
U k k x l kx k x l F

x
∂

= − − − − + + =
∂

 (11.38) 

and (11.37) 

 ( )
2

2
0 1 22 cos( ( )) cos( ) cos( ( )) 0totU

U k k x l kx k x l
x

∂
= − − − − + =

∂
. (11.39) 

By applying the addition theorems of trigonometry and subsequently summing the 
squares, this equation can be written in the form  

 ( ) ( )2 22
1 2 1 2 01 cos cos (sin sin ) /+ + + − =kl kl kl kl F U k . (11.40) 

The bifurcation set determined by this equation is shown in Fig. 11.11 for 4 differ-
ent values of the parameter 0/=f F U k . A translational movement is induced 
when the lengths 1l  and 2l  vary over a closed path that completely surrounds a 
closed bifurcation set so that the phase in every point remains a continuous func-
tion of 1l  and 2l . This is obviously only possible for 1<f . The maximum driving 
force is, therefore, equal to max 0=F U k .  

With certain special variations in time of the lengths of 1l  and 2l , the direc-
tional motion of the system can be especially clearly seen. By choosing 

 1 0(4 / 3) / cos( )π ω= +l k l t  and 2 0(4 / 3) / cos( )π ω ϕ= + +l k l t  (11.41) 

with  

 (2 / 3)ϕ π=  (11.42) 
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and 0 1/l k , the potential energy (11.29) takes the following form: 

 
[ ]
( )

0 0

0 0

sin( / 3)cos( 2 / 3) sin( / 3)cos

3 / 2 cos( / 3) .

U kl kx t kx t

U kl kx t

π ω π π ω

ω π

+ + − −

= + +
 (11.43) 

This is a periodic profile that propagates at a constant velocity /ω k  in the nega-
tive x -direction. The system moves together with the potential wave in one of its 
minima. 
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Abb. 11.11  Bifurcation sets of the potential (11.35) for various external forces 0/=f F U k . Di-
rectional motion is possible as long as the bifurcation sets form closed forms that can be sur-
rounded by a path without it intersecting them. 

The ideas discussed in this section are used actively in nano-tribology in order to 
describe, among others things, the molecular motors in cells, muscular contrac-
tion, and the design of nano-motors. 

Problems 

Problem 1: Investigate a somewhat modified Prandtl-Tomlinson model: a point 
mass m  moves under the applied force F  in a periodic potential that is formed by 
repeating the domain of a parabola shown below (Fig. 11.12):  
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21( )
2

=U x cx  for 
2 2

− ≤ ≤
a ax  

with  

( ) ( )+ =U x a U x . 

Furthermore, there is damping proportional to velocity with the damping coeffi-
cient η . Determine: (a) the force of static friction, (b) the minimum velocity at 
which macroscopic movement ceases, (c) the force of kinetic friction as a function 
of the average sliding velocity and damping, and (d) the “phase diagram” of a sys-
tem similar to the classical Prandtl-Tomlinson model. 

F

x

U(x)

a
2

a
2

3a
2

a
 

Fig. 11.12  Modified Prandtl-Tomlinson model with parabolic potential. 

Solution: The force of static friction is equal to the maximum slope of the poten-
tial, which is reached at the end of the period (e.g. at / 2=x a ): 

2
=s

caF . 

The equation of motion within the period of the potential is  

η+ + =mx x cx F . 

The minimum force at which macroscopic movement still exists obviously corre-
sponds to the situation at which the body starts moving (at / 2= −x a  with a ve-
locity 0=x ) and stops (at / 2=x a  with the velocity 0=x  again). This is exactly 
half of one damped oscillation period in a parabolic potential. The vibration fre-
quency of damped oscillations is generally known to be equal to 

* 2 2
0ω ω δ= −  

with 2
0 /ω = c m  and / 2δ η= m . According to this, a spatial period of the poten-

tial is repeated after the time  
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*

π
ω

=T . 

The smallest average velocity possible for a steady state unbounded movement is 
equal to 

2*

min 2
ω η
π π

⎛ ⎞= = = − ⎜ ⎟
⎝ ⎠

a a a cv
T m m

. 

The minimal force at which macroscopic movement is still possible can be estab-
lished most easily by using the following considerations. The total potential en-
ergy of the body, taking into account the external force F , is equal to 

2 22

2 2
⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

cx c F FU Fx x
c c

. 

The change in the potential energy between the point / 2= −x a  and the minimum 

potential energy is 
2

0 2 2
⎛ ⎞Δ = +⎜ ⎟
⎝ ⎠

c a FU
c

, and the change in the potential energy be-

tween the minimum and the point / 2=x a  is 
2

1 2 2
⎛ ⎞Δ = − −⎜ ⎟
⎝ ⎠

c a FU
c

. At the mini-

mum force, the body traverses exactly half of the damped oscillation period: from 
/ 2−a  to / 2a . It is known from vibration theory that the energy of a damped os-

cillation decreases exponentially according to 2δ− te . The ratio of the aforemen-
tioned energies is, therefore, 2δ− Te :  

2
22 /

2 /
δ−−⎛ ⎞ =⎜ ⎟+⎝ ⎠

Ta F c e
a F c

. 

From this, it follows that 

1 1
2 1 1

δ δ

δ δ

− −

− −

− −
= =

+ +

T T

sT T

ac e eF F
e e

 

with 

2

2
44 1

πη πδ
η

η

= =
− −

T
mcmc

. 

The dependence of the normalized force / sF F  on the dimensionless parameter 

4η mc  is shown in Fig. 11.13.  
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Fig. 11.13  Phase diagram of a modified Prandtl-Tomlinson model with parabolic sections with 
two critical forces 1F  and 2F . 

Problem 2: A point mass is coupled with a rigid slide, by means of springs which 
have a “vertical stiffness” ⊥c  and a “tangential stiffness” c 6. It is placed on a si-
nusoidal profile ( 0 cos=y h kx ) as shown in Fig. 11.14. Then, the slide moves to 
the right. Determine the conditions required for elastic instabilities to occur in this 
system. 

c

c

||

| |

 
Fig. 11.14  A body that is elastically coupled in the vertical and horizontal directions sliding on a 
corrugated surface. 

Solution: The potential energy of the system is equal to  

( ) ( )2 2
0 0 0 0( , , , )

2 2
⊥= − + −

cc
U x y x y y y x x . 

                                                           
6 This model can describe, for example, an element of the elastic profile of a rubber sole. 
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For the system described in the problem statement, the relationships 0 cos=y h kx  
and 0 0= −y h  are valid.  The potential energy assumes the form 

( ) ( )2 2
0 0 0 0( , ) cos

2 2
⊥= + + −

cc
U x x h kx h x x . 

The condition for an elastic instability to occur is  

[ ]
2

2 2
02 cos cos 2 0⊥

∂
= − + + =

∂
U c h k kx kx c
x

. 

This equation has solutions and, therefore, the system exhibits instabilities when  
2 2
02 ⊥<c c h k . 

 



12 Frictionally Induced Vibrations 

 

From a system dynamics point of view, technical systems with friction are non-
linear dissipative open systems. Even if it is possible for a system to be in a state 
of steady motion, it can only practically take place if it is stable relative to small 
disturbances. Otherwise, the perturbations intensify, resulting in a periodic or cha-
otic vibration. If the amplitude of the vibrations is large enough for the relative ve-
locity of the surfaces in friction to be occasionally zero, then the movement con-
sists of the alternating phases from rest (stick) to sliding (slip) and is called stick-
slip-movement. 

An instability in the uniform steady-state movement is not, however, the only 
mechanism for frictionally induced vibrations. Under certain conditions, it is pos-
sible for the steady movement of a tribological system to be completely non-
existent. In this case, only an oscillating movement is possible. An example is pre-
sented by the so-called sprag-slip movement. 

The frictional vibrations that occur in many technical frictional systems 
(brakes, bush bearings, wheel-rail contact, etc.) can on one side lead to higher 
wear and the formation of unwanted structures on the surface in friction (corruga-
tions on rails, formation of cracks, polygonization of locomotive wheels, 
washboarding), and on the other side, can lead to subjective uncomfortable sounds 
or vibrations of a varying nature (chattering, howling, whistling, or squealing). 
Today, there are still no solutions in many fields for the squealing of brakes or of 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_12, 
© Springer-Verlag Berlin Heidelberg 2010 
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wheels around curves that can be reliably and technically cost-worthily imple-
mented. Even in applications where squealing does not influence the function of a 
system, some technological processes cannot be used solely due to squeal and its 
associated comfort disturbances. For this reason, in many areas of bush bearing 
technology, bearings made from manganese steel, despite their excellent wear re-
sistance, are not used because they cause squealing. 

In this chapter, we investigate a few models of frictionally induced vibrations 
which allow a better understanding of the conditions that produce a stable or un-
stable movement and practical recommendations to reduce these vibrations. 

12.1 Frictional Instabilities at Decreasing Dependence of the 
Frictional Force on the Velocity 

First, we will consider the simplest model of a frictional pair, in which one of the 
partners is modeled as a rigid plane and the other as a rigid block of mass m . The 
total elasticity of the system is represented as a spring with the stiffness c . The 
block is dragged over a rigid surface with a velocity 0v  using a spring-damper 
combination. It is assumed that the frictional force in the contact area is a function 
defined for all sliding velocities ( )F x . The equation of motion for the block is 

 0 0( ) η η+ + + = +mx F x x cx cv t v , (12.1) 

where ( )F x  is the velocity dependent force of kinetic friction.  
The equation (12.1) has a steady-state solution 

 0 0= +x x v t  (12.2) 

with 

 0
0

( )
= −

F v
x

c
. (12.3) 

m
c

x

v0

�

 
Fig. 12.1  A block is pulled over a surface using a spring-damper combination. 

Whether or not the steady-state solution can be realized in an actual process is de-
pendent on the stability of this solution with respect to the existing disturbances. 



In order to investigate the stability, we assume that the steady-state solution (12.2) 
is weakly disturbed:  

 0 0 δ= + +x x v t x  (12.4) 

with 0δ x v . Substituting (12.4) into the equation of motion (12.1) and lineariz-
ing it with respect to δ x , we obtain the following equation for the disturbance: 

 
0

( ) 0δ η δ δ
=

⎛ ⎞
+ + + =⎜ ⎟⎜ ⎟
⎝ ⎠x v

dF xm x x c x
dx

. (12.5) 

This equation describes the oscillations of a body with a mass of m  and a spring 
with a stiffness of c  in the presence of damping that is proportional to velocity 
and having a damping coefficient of 

 
0

( )α η
=

= +
x v

dF x
dx

. (12.6) 

Even without formal stability analysis, it is clear that Equation (12.5) with positive 
damping,  

 
0

( ) 0,    (stable motion)
x v

dF x
dx

α η
=

= + >  (12.7) 

describes a damped oscillation: the steady-state movement is stable. In the oppo-
site case, 

 
0

( ) 0,    (unstable motion)
x v

dF x
dx

α η
=

= + <  (12.8) 

when we are dealing with a negative damping and a divergent oscillation: the 
steady-state solution is unstable.  

The frequency of the weakly damped oscillation is equal to 

 ( )2* 2
0 / 2ω ω α= − , (12.9) 

where 0 /ω = c m  is the undamped natural frequency of the body. For cases of 
weak damping, *

0ω ω≈ . 
From this, the following conclusions can be drawn: 
 

I. In a system without damping ( 0η = ), the stability criterion is dependent only 
on the relation of the frictional force to the velocity: 
- If the frictional force increases with the sliding velocity, then the sliding motion 
is stable. 
- If the frictional force decreases with velocity, then an instability develops. 

12.1 ecreasing Dependence   177 Frictional Instabilities at D
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If the frictional force decreases with velocity at low velocities and again in-
creases at higher velocities1, as is shown in Fig. 12.2, then the motion is unstable 
at low velocities min<v v  and stable at higher velocities.  

 
Fig. 12.2  In many tribological systems, the frictional force initially decreases as the velocity in-
creases and then again increases at higher velocities. 

II. The characteristic frequency, according to this mechanism of exciting vibra-
tions, is practically determined only by the natural frequency of the “resonator” 
(of the complete tribological system). This is verified in many tribological systems 
and machining processes experimentally. Thus, in many cases, all of the parame-
ters of a tribological system, such as its composition, the relative speed of the bod-
ies, and the roughness of the surfaces, influence the intensity of the acoustic emis-
sions with friction, but not their frequency spectrum. 
 
III. This type of instability can be suppressed when sufficiently large damping is 
introduced into the system: the stability criterion (12.7) is then met at sufficiently 
large damping even if the derivative /dF dx  has a negative value.   

12.2 Instability in a System with Distributed Elasticity 

The model of a sliding body as a rigid mass being pulled by a spring, which was 
investigated in the last section, is a strong simplification of reality. This poses the 
question of what influence distributed elasticity has on the condition of stability. It 
is especially of interest to verify if the introduction of damping to the system can 
prevent the development of instabilities even if it is introduced “far away” from 
the frictional surface. 

As an initial generalization, we will investigate a system composed of a rigid 
body and an elastic body2 (Fig. 12.3). The rigid body moves in the horizontal di-

                                                           
1Such a trend is typical, for example, for lubricated systems during the transition from mixed 
friction to hydrodynamic friction (Stribeck-Curve). 
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rection with a constant velocity. An elastic sheet is bound to a rigid base. For the 
sake of simplicity, we investigate only the shear vibrations in the elastic sheet, 
meaning that we assume that the displacement field only has an x-component and 
that this is only dependent on the z-coordinate. The equation of motion is 

 
2 2

2 2ρ
∂ ∂

=
∂ ∂

u G u
t z

 (12.10) 

with the boundary conditions  

 0 0
0

( )fric z
z

uG v u
z

σ
=

=

∂
= −

∂
 (12.11) 

and  

 ( ) 0= − =u z l . (12.12) 

( )fric vσ  is the frictional stress (frictional force per unit area), which is assumed to 
be dependent on the velocity. For weak velocity dependence of the frictional 
stress, we can expand it in the first order for u :  

 ( )
0

0 00
( ) ( ) 0fric

fric fricz
v v

d
v u v u z

dv
σ

σ σ
=

=

− = − = . (12.13) 

The boundary condition (12.11) then assumes the form 

 
0

0
0

( ) ( 0)Fric
Fric

z v v

duG v u z
z dv

σ
σ

= =

∂
= − =

∂
. (12.14) 

The solution of the wave equation (12.10) with the boundary conditions (12.12) 
and (12.14) can be written as the sum 

 (0) (1)( , ) ( , ) ( , )= +u z t u z t u z t , (12.15) 

where 

 ( )(0) 0( )
( , ) Fric v

u z t z l
G

σ
= +  (12.16) 

is the static solution of the equation of motion that meets the boundary conditions 

(0) ( ) 0− =u l  and 
(0)

0
0

( )fric
z

uG v
z

σ
=

∂
=

∂
 and (1) ( , )u z t  is the solution to the wave 

equation  

                                                                                                                                     
2 A generalization to the contact between two elastic bodies is easily possible; however, it would 
unnecessarily complicate our examinations.   
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2 (1) 2 (1)

2 2

u G u
t zρ

∂ ∂
=

∂ ∂
 (12.17) 

with the boundary conditions  

 ( )

0

(1)
1

0

(0)fric

z v v

duG u
z dv

σ

= =

∂
= −

∂
     and    (1) ( ) 0u l− = . (12.18) 

The sum (0) (1)( , ) ( , )u z t u z t+  fulfills the wave equation as well as the boundary 
conditions (12.12) and (12.14), and is, therefore, the solution to our problem.  

If the frictional stress were independent of the velocity ( / 0fricd dvσ = ), then 
(1)u  would be the solution to the wave equation for the free vibrations of a sheet 

fixed on one end and free to move on the other. In the presence of a weak velocity 
dependence with / 0fricd dvσ > , we would be dealing with free oscillations of the 
sheet which is weakly damped at the surface, proportional to velocity. Even with-
out a formal solution of the equation of motion, it is intuitively clear that, in this 
case, we are dealing with damped oscillations of a layer. Conversely, if the force 
decreases with the velocity, it means that a weak negative damping has been in-
troduced at the surface. In this case, we would be dealing with divergent oscilla-
tions. From these considerations, it follows that the stability criteria in the distrib-
uted system are the same as in the simple system with a mass and spring. 
Furthermore, it is clear that the instability can be mitigated by the introduction of 
damping at an arbitrary position in the system. It is only important that for a given 
form of oscillation, the energy increase due to negative damping (caused by the 
decreased dependence of the frictional forces on velocity) must be compensated 
for by positive damping. 

0

-l

z

Elastic Body

Rigid Body

x

 
Fig. 12.3  A tribological system consisting of a rigid body and an elastic body. The elastic body 
is rigidly embedded on the lower surface. The rigid body is dragged in the horizontal direction 
with a constant velocity 0v . 
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For weak velocity dependence in a first order approximation, we are dealing 
with oscillations at the natural frequency of the system, whose amplitude changes 
only slowly with time (it either increases or decreases depending on which damp-
ing – positive or negative – is prevalent in the system). One can consider these os-
cillations in “d’Alembert’s picture” of the natural oscillation as the propagation of 
an elastic wave, which is reflected multiple times from boundaries of the medium 
and in doing so loses (positive damping) or gains (negative damping) a certain 
part of its energy with every reflection. It is clear that the damping is determined 
by how large the energy loss is for every reflection of the wave on the boundary of 
the medium. 

12.3 Critical Damping and Optimal Suppression of Squeal 

Based on the view of d’Alembert of natural oscillations, we can argue that we 
have a case of “ideal damping” if a wave is absorbed in its entirety when it im-
pacts a boundary. We will investigate the conditions under which this is possible. 

We consider an elastic sheet whose bottom surface is connected to a rigid base 
by a damping layer (Fig. 12.4). The stress in this layer should be proportional to 
the relative velocities between the elastic body and the rigid base. From this, we 
obtain the boundary condition for the elastic sheet on the lower surface:  

 β
=− =−

∂ ∂
=

∂ ∂z l z l

u uG
z t

, (12.19) 

where β  is the damping coefficient. 
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Fig. 12.4  Elastic sheet, which is connected to a rigid base by a damping layer. 
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The requirement of complete absorption of the wave on the bottom surface 
means that the equation of motion (12.10) with the boundary condition (12.19) has 
a solution in the form of a propagating wave in the z-direction: 

 ( , ) ( )= +u z t f z ct , (12.20) 

where / ρ=c G  is the transverse velocity of the elastic wave. By inserting this 
special solution of the wave equation into the boundary condition (12.19), we ob-
tain 

 β ρ= G .      (12.21) 

For this damping there is no reflection of the wave coming from above: Therefore, 
we have perfect damping. Note that for either a smaller or larger damping coeffi-
cient, there is a reflection3. In the cases in which 0β →  and β → ∞ , we would 
actually be dealing with a dissipation free system. 

The effect of complete absorption has many applications in physics and 
technology, the most important of which are listed here: 
1. Suppression of squeal. 
2. The prevention of acoustic reflections: A so-called “anechoic chamber” 
should have exactly perfect critical damping on the walls. 
3. For molecular dynamics, as well as other numerical simulations, the criti-
cal damping at the boundary of the simulation domain must be established in 
order to suppress the non-physical reflections which are dependent on the 
size of the simulated domain.  
4. In high frequency technologies, the same idea is used to suppress the re-
flections in waveguides. 

We estimate the required parameters of the damping layer that are necessary to 
suppress squeal in a steel bearing. According to (12.21) for steel ( 78 GPa≈G , 

3 37.8 10  kg/mρ ≈ ⋅ ), complete damping is achieved with 72.5 10  Pa s/mβ ≈ ⋅ ⋅ . A 
1 cm thick polymer sheet with a viscosity somewhat close to that of thick honey, 
for example, has such a damping coefficient. Experimental investigations show 
that the installation of a properly dimensioned polymer sheet actually leads to 
practically complete suppression of squeal (Fig. 12.5). 

                                                           
3 See problem 2 of this chapter. 
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Fig. 12.5  Part of a bush bearing made of manganese steel for which the installation of a cor-
rectly dimensioned polymer lining has suppressed squeal. 

12.4 Active Suppression of Squeal 

Besides passive suppression of squeal by the introduction of damping into the tri-
bological system, it is possible to actively suppress the instabilities by the design 
of an appropriate control loop. We will explain the fundamental ideas behind ac-
tive suppression of instabilities by investigating the simple model in Fig. 12.6. 

m
c

x

v0

N

 
Fig. 12.6  Simple model to illustrate the fundamental ideas behind the active suppression of in-
stabilities. 

We assume that the normal force is a periodic function of time with the same fre-
quency as the natural frequency 0ω  of the system: 

 ( )0 1 0cos ω ϕ= + +N N N t  (12.22) 

with 1 0N N . For weak damping in a first order approximation, the body experi-
ences free, undamped oscillations with the velocity  
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 0 1 0cosω= +v v v t . (12.23) 

For a qualitative stability investigation, we calculate the change in energy of the 
moving body over one oscillation period. Thereby we assume that the frictional 
force can be presented as product of the normal force and the velocity dependent 
coefficient of friction: 

 ( )fricF N vμ= . (12.24) 

The change in the energy of oscillations is determined by the average power of the 
frictional force in the reference system that moves with the average velocity 0v : 

 ( ) ( )0 0 0fric
dP F v v N v v v
dv
μμ⎛ ⎞= − ⋅ − = − + ⋅ −⎜ ⎟

⎝ ⎠
. (12.25) 

Inserting (12.22) and (12.23) into (12.25) yields 

( )( ) ( )0 1 0 0 1 0 0 1 0 1 0

1 0 1 1 0 0

cos cos cos cos

1   cos
2

dP N N t v t v v t v t
dv

d dv N v N v
dv dv

μω ϕ μ ω ω ω

μ μμ ϕ

⎛ ⎞= − + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (12.26) 

or for weak damping 

 1 0 1 1 0
1 cos
2

dP v N v N
dv
μ μ ϕ⎛ ⎞≈ − +⎜ ⎟

⎝ ⎠
. (12.27) 

If there are no oscillations in the normal force, then the average power would be 

equal to 2
0 1

1
2

μ
−

dN v
dv

. We would then come to the already known result: for de-

creasing frictional force as a function of velocity ( )/ 0μ <d dv , the energy in-
creases and the process is unstable. By changing the normal force, however, the 
power can be made negative and, therefore, the oscillations damped. For this to 
occur, the following condition must be met: 

 0 1 1 0 cos 0μ μ ϕ+ >
dN v N
dv

. (12.28) 

This can only be met when cos 0ϕ > , ideally cos 1ϕ =  and therefore 0ϕ = . In 
other words, the normal force (12.22) should oscillate, as far as possible, in phase 
with the velocity (12.23). This can be realized using a control loop in which the 
velocity is measured and the normal force is varied proportionally to the measured 
velocity ( )0ξΔ = −N x v . In this case, the equation of motion is 

 ( )( )0 0 0 0( ) ξ μ η η+ + − + + = +mx N x v x x cx cv t v . (12.29) 
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The linearized equation for a small perturbation of the steady-state solution (12.2) 
is 

 0 0 + 0μδ μ ξ η δ δ⎛ ⎞+ + + =⎜ ⎟
⎝ ⎠

dm x N x c x
dv

. (12.30) 

In order for the steady state sliding to remain stable, the total damping in (12.30) 
must be positive: 

 0 0 + 0μ μ ξ η+ >
dN
dv

. (12.31) 

For decreasing frictional force as a function of velocity, this can be achieved either 
through sufficiently large damping η  or through a sufficiently strong coupling 

0μ ξ  between the velocity and the normal force. One can see from Equation 
(12.31)  that the control loop has the same effect as a damper. The advantage of 
active suppression lies in the simple controllability of a control loop compared to 
passive damping, whose parameters can only be adjusted by material choice and 
dimensioning. 

12.5 Strength Aspects during Squeal 

We want to estimate the stress introduced into a system experiencing squeal in or-
der to determine under what conditions the strength of the material can be com-
promised. We investigate the system shown in Fig. 12.3. For weak damping, we 
can find a first order approximation solution to the perturbation equation (12.17) 
with the boundary conditions 

 
(1)

0

0
=

∂
=

∂ z

uG
z

   and  (1) ( ) 0− =u l . (12.32) 

The solution for the eigenmode with the smallest natural frequency is  

 ( )( , ) sin sin
2 2
π π⎛ ⎞= + ⋅⎜ ⎟

⎝ ⎠

cu z t A z l t
l l

, (12.33) 

where / ρ=c G  is the velocity of the transverse elastic wave. The oscillation 

amplitude of the velocity u  is then 
2
π

=
cv A
l

, and that of the stress ∂
∂
uG
z

 is equal 

to 
2
πσ = AG
l

. According to this, the following relationship exists between the 

amplitude of the stress and the amplitude of the velocity: 
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 σ ρ= =
vG v G
c

. (12.34) 

As a rule, the oscillation amplitude of the velocity will have the same order of 
magnitude as the sliding velocity 0v  in the stationary cycle. The order of magni-
tude of the stresses in a squealing system can, thus, be estimated with  

 0
0σ ρ= =

v
G v G

c
. (12.35) 

This is a very general result which remains valid also for oscillations with 
higher natural frequencies: the stresses in a limit-cycle are essentially only de-
pendent on velocity! The critical velocity, at which the stress reaches the critical 
shear stress σ F  of the material, is given by 

 
σ
ρ

= F
cv

G
.      (12.36) 

For steel with 300 σ =F MPa  (which corresponds to a tensile strength of around 
500 MPa), we obtain the critical velocity of 0 12v  m/s. For larger sliding veloci-
ties, the squeal would lead to the failure of a part made of such a steel! 

12.6 Dependence of the Stability Criteria on the Stiffness 
of

 
the

 
System  

In the previous section, we considered the mechanisms for the development of in-
stabilities caused only by the decrease of frictional force with velocity. The stabil-
ity criteria are, in this case, independent of the stiffness of the system. In the ex-
ample shown in Fig. 12.2, the motion at an average velocity lower than the 
velocity minv  is always unstable. The stiffness of the system influences the fre-
quency of the frictionally induced oscillations, but not the stability criteria. In 
practice, however, it is seen that by changing the stiffness of a system, it can be 
stabilized. This property, which has been established in numerous experimental 
investigations means that the simple explanation of instabilities being caused by 
decreasing frictional force with the velocity may not always be correct. 

The reason for this, from the mathematical point of view, lies in the invalid as-
sumption that the frictional force is determined only by the instantaneous state of 
the frictional contact – essentially by the normal force and the sliding velocity. For 
the force of static friction, this assumption would mean that it always remains con-
stant. Since Coulomb, however, it is known that this is not completely correct. 
Even if the normal force does not change and the “sliding velocity” remains con-
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stant (equal to zero), the force of static friction changes over time. The change can 
have varying physical causes. In metallic substances, creep processes lead to a 
change in the real contact area and, thereby, account for the change in the fric-
tional force. In elastomers, it is the viscosity that is responsible for the delayed re-
action.  In lubricated systems, the film thickness changes with time even with no 
change in the normal force. Furthermore, the temperature of the contact partners 
changes, and with it that of the lubricating oil, which also has an impact on the 
frictional force. The contribution to the frictional force through the building of 
capillary bridges is also explicitly time dependent.  

All of these processes could be described in every individual case by the intro-
duction of additional appropriate variables, called “internal variables,” which suf-
ficiently characterize the state of the frictional layer and the intermediate material 
(also called third body).  The idea of internal variables was originally applied to 
earthquake dynamics by A. Ruina4. In some cases, these variables have clear 
physical meanings (e.g. temperature); in others, empirical experiences are summa-
rized in the internal variables. 

We will investigate the simplest phenomenological model that describes the 
typical dynamics of the “contact state5.” We once again consider the model shown 
in Fig. 12.1, which is described by the equation of motion  

 0 0( , ) θ η η+ + + = +mx F x x cx cv t v , (12.37) 

where the frictional force ( , )θF x  is now not only dependent on the velocity, but 
also on the internal state variable θ . For this dependence, we assume  

 ( )( , ) θ θ= + −k s kF x F F F . (12.38) 

Here, θ  is the internal variable that describes the state of the contact zone and 
changes from 0θ = , at the initial moment of contact, to 1θ =  after a long time at 
rest. Consequently, sF  is the force of static friction and kF , that of kinetic fricti-
on. For the variable of state θ , we assume the following simple kinetic equation 

 ( )1 11 ,      0 1θ θ θ
τ
⎛ ⎞= − − < <⎜ ⎟
⎝ ⎠

x
D

. (12.39) 

For vanishing velocity, 0=x , θ  increases with time until a saturation value, 
1θ = . If the body is put into motion, then the variable of state decreases faster at 

higher velocities. The physical meaning of τ  in (12.39) is the characteristic re-
laxation time of the parameter θ  when the system is at rest, while D  is the char-
acteristic “relaxation length” of this parameter at the initiation of motion. In a 
physical view of the contact between two rough surfaces, τ  can be understood to 

                                                           
4 A. Ruina, Slip Instability and State Variable Friction Laws. Journal of Geophysical Research, 
1983, v.88, N.B12, pp. 10359-10370. 
5 A more complicated and realistic rate- and state -dependent frictional law is discussed in Chap-
ter 20. 
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be the characteristic time of the creep process and D , as the average contact di-
ameter between two micro-contacts, however, other interpretations are also possi-
ble depending on the system. 

The system of equations formed by (12.37), (12.38), and (12.39) has a steady-
state solution with 

 0=x v , (12.40) 

 0 0
0

0

1 / ,     for ,
 0,                   for , 

c c

c

v v v
v

ν
θ θ

ν
− <⎧

= = ⎨ >⎩
 (12.41) 

 
( )( )0 0

0

1 / ,      for  ,
     

,                                        for  ,
k s k c c

k c

F F F v v
F

F
ν ν
ν ν

⎧ + − − <⎪= ⎨
>⎪⎩

 (12.42) 

where 

 /τ=cv D . (12.43) 

The dependence of the steady-state frictional force (12.42) on the velocity is pre-
sented in Fig. 12.7.  

Thus, the system of equations in (12.37)-(12.39) correctly qualitatively repro-
duces the known properties of friction. The most important of these are the de-
crease of the frictional force from the static value to the kinetic value within some 
velocity interval as well as the growth of the force of static friction with time after 
the body is at rest. 

F

v0vc

FS

Fk

 
Fig. 12.7  Steady-state frictional force as a function of the sliding velocity according to Equation 
(12.42). 

If we use the dependence of the frictional force on the sliding velocity (12.42) 
in a steady-state sliding process for a stability analysis, we would come to the 
conclusion that sliding at 0 < cv v  is unstable. In reality, this conclusion is only va-
lid if the oscillation time is much larger than the characteristic relaxation time τ ,  
because only under this premise can the dependence (12.42) be used for dynamic 
processes as well. From this, it follows that at sufficiently small stiffnesses, and the 
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correspondingly large oscillation periods, sliding is unstable in reality. Con-
versely, for large stiffnesses, and the correspondingly small oscillation periods, the 
parameter θ  has no time to change. The frictional force is then, according to 
(12.38), completely independent from the velocity, and instability does not occur. 
In order to investigate the stability of the steady-state solution (12.40)-(12.42) in 
the generalized case and to obtain the stability limit, dependent on the sliding ve-
locity and the stiffness of the system, we consider a small disturbance to the 
steady-state solution: 

 0 0 δ= + +x x v t x ,     0θ θ δθ= + . (12.44) 

The linearized equations are 

 ( ) 0δ ηδ δ δθ+ + + − =s km x x c x F F  (12.45) 

and  

1 1δθ δθ δ
τ

= − − x
D

. (12.46) 

We look for a solution to this system of equations in the exponential form 

 λδ = tx Ae ,      λδθ = tBe . (12.47) 

Insertion into (12.45) and (12.46), provides us 

 ( ) ( )2 0λ ηλ+ + + − =s km c A F F B  (12.48) 

and  

1 1 0λ λ
τ

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

A B
D

. (12.49) 

This linear system of equations has a non-trivial solution, when the determinant 
vanishes: 

 

( )2

0
1 1

ηλ λ

λ λ
τ

−⎛ ⎞+ +⎜ ⎟
⎝ ⎠ =

⎛ ⎞+⎜ ⎟
⎝ ⎠

s kF Fc
m m m

D

 (12.50) 

or 

 3 2 0λ λ λ+ + + =P Q R   (12.51) 

with  



190      12 Frictionally Induced Vibrations 

 1 η
τ
⎛ ⎞= +⎜ ⎟
⎝ ⎠

P
m

,    
( )η

τ
−⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

s kF FcQ
m m Dm

,   
τ

=
cR
m

. (12.52) 

On the limit of stability, the system experiences undamped oscillations. That 
means that two of the three solutions of the third order algebraic equation of λ  
are purely imaginary and complex conjugates and the third is real and negative: 

 1λ = −Λ ,  2λ ω= + ci ,  3λ ω= − ci . (12.53) 

In this case, the general solution is 

 * *
1 2 3 1 2 3cos sinω ωδ ω ω−−Λ −Λ= + + = + +c ci t i tt t

c cx x e x e x e x e x t x t , (12.54) 

which describes a periodic oscillation with a constant amplitude, given a suffi-
ciently long period of time. 

A third order algebraic equation with given roots has the following form: 

 ( )( )( ) 3 2 2 2 0λ λ ω λ ω λ λ λω ω+Λ − + = + Λ + + Λ =c c c ci i . (12.55) 

A comparison between (12.51) and (12.55) results in 

 = ΛP ,  2ω= cQ ,   2ω= Λ cR . (12.56) 

From this, it follows that on the limit of stability, the condition =R PQ  must be 
fulfilled or, taking (12.52) into consideration, 

 
( )1 η η

τ τ τ
−⎛ ⎞⎛ ⎞= + + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

s kF Fc c
m m m m Dm

. (12.57) 

Thus, the critical stiffness is defined as 

 
( )1 η η

η τ τ
−⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

s k
c

F Fmc
m D

. (12.58) 

For very small damping coefficients, this expression is simplified to 

 
( )

η τ
−

= s k
c

F F m
c

D
. (12.59) 
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Fig. 12.8  Stability diagram of a tribological system on the “velocity-stiffness” plane. 

For stiffnesses smaller than cc , the sliding is unstable and for stiffnesses larger 
than cc , stable. The movement is also stable for 0 > cv v . This can be seen in the 
stability diagram presented in Fig. 12.8. In this case, the movement can be stabi-
lized by increasing the velocity as well as increasing the stiffness. In reality, the 
stability diagram is never so rectangular. The qualitative conclusion about the ex-
istence of a domain of instability for small velocities and stiffnesses, however, is 
very general and is observed in systems with various mechanisms of friction.  

12.7 Sprag-Slip 

In all of the preceding models, only the movement of the system in the sliding di-
rection was investigated. In reality, movement in the direction perpendicular to the 
surface can also significantly influence the behavior of a tribological system. To 
illustrate this, we investigate the model shown in Fig. 12.9. 

If the force F  acting in the horizontal direction is larger than μs N , where N  
is the normal force on the base caused by the springs, then the system will slide. 
However, if the body is made to oscillate in the vertical direction, then the com-
pression force changes periodically. Every time that the value / μsF  is reached, 
the “foot” sticks. In the time interval in which the compressive force is less than 

/ μsF , the system slides: the movement consists of alternating phases of sticking 
and slipping. 

In the system shown in Fig. 12.9 a, the movements in the horizontal and verti-
cal directions are independent. After the oscillations are damped out in the vertical 
direction, the system remains in either a static or sliding state. The system in Fig. 
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12.9 b is different. Every time that the compressive force exceeds the value / μsF  
due to the oscillations, the foot of the system sticks, whereby the system is sud-
denly braked. Therefore, due to the inclination, the braking will induce oscillations 
of the body. 

F F

a b  
Fig. 12.9  Simple model for the explanation of the sprag-slip mechanism. 

The oscillations due to this mechanism and the associated stick-slip movement are 
referred to as sprag-slip. This term is always used when the system sticks due to 
changes in the compressive force. Examples are the chattering of a windshield 
wiper or the toy shown in Fig. 12.10. 

 
Fig. 12.10  At rest, this system is “self-braking.” If one swings the bird, the self-braking is inter-
mittently removed and the fastener slides down the rod. This alternating change between sticking 
and sliding is an example of a sprag-slip movement. 
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Problems 

Problem 1: Stick-slip. The difference between static and kinetic friction that was 
known to Coulomb is, as a matter of fact, only an extreme case of velocity de-
pendence of the frictional force: For very small velocities ( 0≈v ), the frictional 
force is equal to sF  and then falls almost instantly to the level of the force of ki-
netic friction kF  (Fig. 12.11). Determine the unstable movement in this case. As a 
model, we once again use a rigid block being pulled over a rigid surface by means 
of a spring. 

FS

Fk

F

v  
Fig. 12.11  Law of friction with a quick decrease in the frictional force from the static value sF  

to the kinetic value kF . 

Solution: If a body is initially at rest at 0=x  and the spring is pulled with a con-
stant velocity 0v , then the spring force increases according to the law 

0springF cv t=  

until it reaches the static force sF  at the time 

0 0/= st F cv . 

At this moment, the body begins to move and at the same time, the frictional force 
falls to the value kF . The equation of motion in the sliding phase is  

0+ = − kmx cx cv t F . 

The initial conditions are 

0( ) 0=x t ,   0( ) 0=x t . 

The general solution of the equation of motion is 

0

0

sin cos ,

cos sin .

ω ω

ω ω ω ω

= + + −

= − +

kF
x a t b t v t

c
x a t b t v
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Inserting the initial conditions yields the solution 

0 0

0 0
2 2 2

sin cos / sin( ) / ,
cos sin cos( ) ,

sin cos sin( ).

ω ω ω ϕ
ω ω ω ω ω ω ϕ

ω ω ω ω ω ω ϕ

= + + − = + + −
= − + = + +

= − − = − +

k kx a t b t v t F c A t v t F c
x a t b t v A t v

x a t b t A t

 

with 

0
0 0

1 cos sin
ω ω

ω
ω
⎛ ⎞−

= − −⎜ ⎟
⎝ ⎠

s s k sF F F F
a v

cv c cv
, 

0
0 0

1 sin cos
ω ω

ω
ω
⎛ ⎞−

= −⎜ ⎟
⎝ ⎠

s s k sF F F F
b v

cv c cv
 

and  

2
2
0

1 ω
ω

−⎛ ⎞= + ⎜ ⎟
⎝ ⎠

s kF F
A v

c
. 

The body once again comes to rest when 0cos( ) 0ω ω ϕ= + + =x A t v . From this, 
it follows that 0cos( ) /ω ϕ ω+ = −t v A . The associated acceleration is equal to  

( )2 2 2sin( ) 1 cos ( ) /ω ω ϕ ω ω ϕ= − + = − − + = − −s kx A t A t F F m , 

the force acting on the body is equal to ( )− −s kF F , and the force of the spring is 
equal to  

2spring s k sF F F F= − + < . 

Because this force is smaller than the force of static friction, the body sticks until 
the spring force once again reaches the value sF .  
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F

0

v

0

Slip Stick Slip Stick

t, arb. units

t, arb. units
6 8 10 12 14 16 18 20 22 24

 
Fig. 12.12  Spring force (above) and sliding speed (below) as functions of time for a stick-slip 
motion in the case of the frictional force shown in Fig. 12.11. The body does not move, and the 
spring force increases linearly with time (stick phase) until the spring force reaches the force of 
static friction. At this moment, the body begins to move and oscillate until the velocity is once 
again zero. Then, the next stick phase begins. 

Then, the slip phase repeats itself. The movement consists of alternating phases of 
rest (stick) and sliding (slip) and is termed stick-slip motion. The temporal de-
pendence of velocity and spring force for an example of stick-slip motion is pre-
sented in Fig. 12.12 with respect to time. The duration of a slip phase is given by 

0

2 arctan s k
slip

F F
t

v c
ω

ω
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

. 

In the limiting case 0 0ν → , this time approaches /π ω  (half of the oscillation 
period). The slip length for very small values of 0ν  is 

2 s k
slip

F F
x

c
−

Δ = . 

 
Problem 2: Determine the reflection coefficient for the damping sheet in the sys-
tem shown in Fig. 12.4 for an arbitrary damping coefficient. 

 
Solution: We are looking for the solution to the wave equation (12.10) with the 
boundary condition (12.19) as the superposition of an incident and a reflecting 
wave in complex form: 

( )0
−= +ikct ikz ikzu u e e Be . 

The amplitude of the incident wave we assume to be 1. The amplitude of the re-
flected wave is B . Insertion into the boundary condition (12.19) yields 
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2ikl G cB e
G c

β
β

− −
=

+
. 

We define the reflection coefficient as the ratio of the intensity of the incident 
wave to that of the reflected wave; it is, therefore, equal to 2B  : 

2
2 β

β
⎛ ⎞−

= ⎜ ⎟+⎝ ⎠

G cB
G c

. 

The reflection coefficient becomes zero for /G c Gβ ρ= = . For 0β →  and 
β → ∞ , it approaches 1.  

 
Problem 3: Determine the reflection coefficient between an elastic sheet and a 
liquid film with a dynamic viscosity6 η . 

 
Solution: The equations of motion to be solved are the wave equation 

2 2

2 2ρ
∂ ∂

=
∂ ∂

u G u
t z

 

in the elastic continuum and the Navier-Stokes equation for the liquid medium, 
which for purely transverse motion has the form 

2

2ρ η∂ ∂
=

∂ ∂
v v
t z

. 

We place the surface 0=z  at the boundary between the elastic medium and the 
liquid medium. Let the positive z-direction be defined in the direction of the elas-
tic layer. The boundary conditions at the interface are  

(0, ) (0, )=u t v t                   (no-slip condition)  

and  

0 0

η
= =

∂ ∂
=

∂ ∂z z

u vG
z z

             (equilibrium condition). 

We look for the solution to the wave equation, as we did in Problem 2, in the form 
of a superposition of an incident and a reflected wave 

ω ω
ω −⎛ ⎞

= +⎜ ⎟
⎝ ⎠

i z i zi t c cu e e Be . 

                                                           
6 The dynamic viscosity η  should not be confused with the damping coefficient η , which is 
used earlier in this chapter or in other chapters and has other units. 
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The solution to the Navier-Stokes equation with the frequency ω , which ap-
proaches zero at infinity, is 

1
2

ρω
η ω

+

=
i z

i tv Ce e . 

The application of the boundary conditions at the interface results in the following 
system of equations: 

( )1ω + =i B C , 

( ) 11
2

ω ρωη
η

+
− =

iiG B C
c

. 

The reflection coefficient is 

( )
( )

2 2
2

2 2

1

1

ζ ζ

ζ ζ

− +
=

+ +
B  

with 

2 2
ρωη ωηζ = =

c
G G

. 

The reflection coefficient reaches its minimum 2 0.17B ≈  for 1 / 2ζ = . We see 
that the oscillations can be damped very efficiently by liquid layers (or polymers 
with corresponding rheological properties), however, only in specific frequency 
domains. In both limiting cases, a viscosity of zero or infinity, the reflection coef-
ficient is equal to 1 as expected.  



13 Thermal Effects in Contacts  

 

On the contact interface between two bodies in frictional contact with one another, 
heat energy is released. Because the real contact area is, as a rule, only a fraction 
of the apparent contact area, the heat released in a tribological contact is very het-
erogeneous. The local temperature increases can be so high that they may influ-
ence the material properties and can even cause the material to melt. Furthermore, 
a local change in the temperature leads to a local heat expansion and, thus, a cor-
responding change in the contact conditions. This feedback reaction can, under 
certain conditions, lead to the development of thermo-mechanical instabilities in 
the contact. In this chapter, we investigate the various aspects of the frictionally 
caused heat release in tribological contacts. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_13, 
© Springer-Verlag Berlin Heidelberg 2010 
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13.1 Introduction 

The first systematic investigation of temperature distributions in frictional contacts 
was carried out in 1935 by F.P. Bowden and K. Riedler1. In the course of these in-
vestigations, they used the tribological contact as a natural thermocouple. This ap-
proach remains today one of the simplest and most dependable methods to ex-
perimentally determine the temperature distribution in a tribological contact. In 
further studies with Tabor, Bowden measured very high temperatures (around the 
same magnitude as the melting temperature) in parts of the contact. 

By investigating thermal effects in contacts, one can differentiate between three 
scales: (1) the tribological system as a whole, (2) the “macroscopic contact area,” 
and (3) the micro-contacts between the rough surfaces. While the temperature of 
the entire system changes slowly during the process, the temperature in a sliding 
contact (e.g. between two gears) can change very quickly and reach high values. 
This is referred to as the “flash temperature.” The theoretical investigation of flash 
temperatures in “macroscopic contact areas” is, above all, associated with the 
name H. Blok2. For these conditions, a large Péclet number is characteristic. The 
temperature dynamics for small Péclet numbers was investigated by J.K. Jaeger3. 
This theory, as a rule, is applicable to micro-contacts. It has been shown, however, 
that Jaeger’s theory for small Péclet numbers remains relatively accurate even in 
the area of validity of Blok’s theory. We limit ourselves in this chapter, therefore, 
to the case of small Péclet numbers.   

13.2 Flash Temperatures in Micro-Contacts 

We consider the contact between two rough surfaces in the scope of the model 
from Greenwood and Williamson (see Chapter 7). At the same time, we assume 
that there is friction between micro-asperities with the coefficient of friction μ . 
We calculate the temperature increase in a micro-contact by assuming that the 
characteristic propagation length of the heat, 2α≈D t , during the existence of a 
contact, /≈t a v , is much larger than the contact radius: 2αt a  or 

 1
2α
va . (13.1) 

                                                           
1 F.P. Bowden, K.E.W. Riedler, A note on the surface temperature of sliding metals. Proc. Cam-
bridge Philos. Soc., 1935, v. 31, Pt.3, p.431. 
2 H. Blok, The Dissipation of Frictional Heat. Applied Scientific Research, Section A, 1955, N. 
2-3, pp. 151-181. 
3 J.K. Jaeger, Moving Sources of Heat and the Temperature of Sliding Contacts. Journal and 
Proc. Royal Society, New South Walls, 1942, v. 76, Pt. III, pp. 203-224. 
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Here, α  is the thermal diffusivity, a  the contact radius, and v  the sliding speed. 
The ratio / 2αva  is known as the Péclet number. If the condition (13.1) is met, 
one can consider the heat propagation at every point in time as a stationary process 
with a given heat production on the surface. For metallic substances 
( 4 210  m /α −≈ s , 5 410 10  m− −≈ −a ), this means that the sliding speed may not be 
larger than 2 / 2 20 m/sα ≈ −a , which is true in most applications. For ceramics 
and polymers ( 7 6 2 510 10  m / ,  10  mα − − −≈ − ≈s a ), this approximation is valid for 
sliding speeds under 0.02 0.2 m/s− .  

A homogeneous temperature increase ΔT  in a round area with the radius a  on 
the surface of a half-space with the thermal conductivity λ  produces a heat flux 
W  that is associated with ΔT  by the thermal resistance wR : 

 Δ
=

w

TW
R

. (13.2) 

The thermal resistance for a round contact is equal to 

 1
2 λ

=wR
a

. (13.3) 

We can also use this with equation (13.2) in order to estimate the temperature in-
crease of the surface for a given heat flow:  

 
2 λ

Δ =
WT
a

. (13.4) 

Under the assumption that the total heat flows only into one body, we get for one 
single elastic micro-contact 

 
2
μ

λ
Δ

Δ = NF v
T

a
. (13.5) 

By inserting the Hertzian formula * 1/ 2 3/ 24
3

Δ =NF E R d  and taking into account that 

=a Rd , we obtain  

 
*2

3
μ
λ

Δ =
E dvT . (13.6) 

As we saw in Chapter 7, the average penetration depth d  is practically independ-
ent from the compressive force and is approximately equal to /πl .  
Therefore, we obtain an average temperature increase in the micro-contact of 

 
*

0.2 E lvT μ
λ

Δ ≈ .      (13.7) 
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For a contact between steel and sapphire ( * 140 GPa≈E , 0.15μ ≈ , 1 mμ≈l  and 

40 λ ≈
⋅

W
m K

) at a sliding speed of 1 m/s , the average temperature increase in the 

micro-contacts reaches 110 KΔ ≈T . For copper, with * 100 GPa≈E  and 

400 λ ≈
⋅

W
m K

, we would have an average temperature increase of  8 KΔ ≈T  

under the same assumptions. In applications where the flash temperature must be 
kept as low as possible4, it is advantageous to choose a pairing between a polymer 
and a ceramic. In this way, both the (small) modulus of elasticity *E  of the poly-
mer and, as a rule, the much larger thermal conductivity λ  of the ceramic con-
tribute to the minimization of the temperature increase. 

13.3 Thermo-Mechanical Instability 

If two planar bodies are pressed together and put into motion relative to one an-
other, an instability can come about through the interaction between the release of 
frictional energy and thermal expansion: areas with higher temperatures and, 
therefore, larger expansions are put under higher stress and, thus, heated even mo-
re (Fig. 13.1). We would like to investigate the conditions for the development of 
such an instability. 

high temperature here  
Fig. 13.1  The areas with increased temperatures bulge out due to thermal expansion. This leads 
to an increased frictional power and further heating of this area. This can lead to instability and 
the formation of a permanent pattern. 

First, we make a rough estimation. If an instability with a wave number k  devel-
ops on the surface, then stress and temperature distributions with the same wave 
number would develop on this area of the surface. The “characteristic decay 
depth” of these stress and temperature fluctuations and, therefore, the deformed 
zone of the surface has the order of magnitude of 1/ k . If the surface is heated (in 
the area of compression) by ΔT , then it leads to a thermal stress of 

                                                           
4 In artificial hips, the temperature may not exceed the temperature of the dissociation of protein.  
The allowable temperature increase is, therefore, limited to 2-4 K. 
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 *TEσ γΔ ≈ Δ , (13.8) 

where γ  is the volumetric thermal expansion coefficient and *E , the modulus of 
elasticity. The frictional power per unit area, μ σΔ v , must be the same as the heat 
flux into the trough of the material in steady state: 

 
1 /

μ σ λ Δ
Δ ≈

Tv
k

. (13.9) 

Taking Equation (13.8) into account, we calculate a wave vector for which the 
heat production and heat flux are in equilibrium, 

 
*

c
E vk μγ
λ

≈ . (13.10) 

Temperature disturbances with smaller wave numbers than the critical wave num-
ber are unstable.  

Thermo-mechanical instabilities can, among other things, be responsible for the 
phenomenon known as “washboard type” wear in the contact areas of compres-
sion rings of very highly loaded motors (see Fig. 13.2).  

 
Fig. 13.2  Photograph of a cylinder in a combustion engine with “washboarding.” 

Problems 

Problem 1: Determine the stability criterion for a thermo-mechanical instability in 
a contact between an elastic and a rigid body. 

 
Solution: This problem is treated the same as the estimation that we have already 
done above. We consider the system shown in Fig. 13.3. The upper body should 
be absolutely rigid and not thermally conductive. 
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At the boundary between a stable and an unstable state, the disturbances are 
stationary. To determine the instability criterion we thus use the equilibrium equa-
tion for the elastic body taking into account the thermal expansion: 

3 (1 2 ) 3 1 div
2 (1 ) 2 (1 )

ν γ
ν ν

−
Δ + ∇ = ∇

+ +
u u T  

and the steady-state equation for the thermal conduction 

0Δ =T . 

Here, u  is the displacement vector, ν  is the  Poisson’s ratio, T  is the variation of 

the temperature from its stationary value far from the surface, and 
2 2

2 2

∂ ∂
Δ = +

∂ ∂x z
 

is the Laplace operator. The stress tensor is calculated as 

2 (1 ) 2 (1 ) 2
3 (1 2 ) 3 (1 2 ) 3

ν νσ γ δ δ δ
ν ν

⎛ ⎞∂ ∂ ∂ ∂+ +
= − + + + −⎜ ⎟− − ∂ ∂ ∂ ∂⎝ ⎠

l i k l
ik ik ik ik

l k i l

u u u uG GT G
x x x x

, 

where G  is the shear modulus.  

v

x
2

1

z

 
Fig. 13.3  A rigid, non-conductive body 1 in contact with an elastic continuum 2. The bodies 
move relative to each other with a tangential velocity v . 

Because of the rigidity assumption of the upper body, the surface of the elastic 
body cannot experience any displacement in the vertical direction: 

( 0) 0= =zu z . 

For simplification, we assume that the coefficient of friction is very small and the 
normal stress component σ zz  dominates so that the tangential stress in the me-
chanical equilibrium condition may be assumed to be negligibly small: 

( 0) 0σ = =xz z . 
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The solution to the equations 3 (1 2 ) 3 1 div
2 (1 ) 2 (1 )

ν γ
ν ν

−
Δ + ∇ = ∇

+ +
u u T  and 0Δ =T  

that meets the conditions ( 0) 0= =zu z  and ( 0) 0σ = =xz z  is5 

( )0
0

(1 )
cos , ( 1 )sin , 0, cos

6(1 )
γ ν

ν
+

= ⋅ = − − + − ⋅
−

kz kzT
T T kx e u kz kx kz kx e

k
. 

In steady state, the heat that is released at the surface must be equal to the heat 
flux out of the surface (which, according to our assumption, goes only into the lo-
wer body): 

0

( 0)λ μ σ
=

∂
= − =

∂ zz
z

T v z
z

. 

λ  is the thermal conductivity coefficient. From this, it follows that the critical va-
lue of the wave number is 

( )
( )

1
3 1
μ γ ν
λ ν

+
=

−c

v G
k . 

For 1/ 3ν = , we have a wave number of 2
3

μ γ
λ

=c
v Gk . Temperature disturbances 

with smaller wave numbers than the critical wave number are unstable. 
 
 
 

 

                                                           
5 The choice of the dependence of cos kx  of the solution on the coordinate x means that we are 
investigating the development of a harmonic disturbance. An arbitrary disturbance can always be 
presented as the superposition of Fourier components with various wave numbers due to the line-
arity of the problem. 
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In order to reduce frictional forces and wear, lubrication has been used for thou-
sands of years. It inhibits direct contact between two bodies and, thereby, replaces 
dry friction with fluid friction. The presence of liquid between two bodies influ-
ences not only the tangential, but also the normal forces: two dry sheets of glass 
can effortlessly be taken apart from one another, while in order to take two wet 
sheets apart one needs a considerable force. This phenomenon can be attributed, 
on the one hand, to capillary forces, and on the other, to pure hydrodynamic na-
ture: a viscous liquid requires a given time in order to flow in the small space be-
tween two sheets. During dynamic loading, this phenomenon leads to an apparent 
“adhesion” between two lubricated bodies, which we describe as “viscous adhe-
sion.” 

In most cases in lubricated tribological systems, we deal with non-turbulent 
flows. Furthermore, the lubricant can be soundly approximated as incompressible. 
We begin our considerations of hydrodynamic lubrication and viscous adhesion 
with the investigation of a steady-state flow between two parallel plates, which 
forms the foundations of lubrication theory. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_14, 
© Springer-Verlag Berlin Heidelberg 2010 
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14.1 Flow between two parallel plates 

The dynamics of a linearly viscous (Newtonian) fluid is given by the Navier-
Stokes equation, which takes the following form for incompressible fluids: 

 ρ η= −∇ + Δ
dv p v
dt

, (14.1) 

where ρ  is the density, η  the dynamic viscosity of the fluid, and p  the pressure 
in the fluid. Moreover, an incompressible fluid satisfies the equation 

 div 0=v . (14.2) 

For quasi-static flows (so-called creeping flows), which we deal with in most lu-
brication problems, the inertial term can be neglected and the equation takes the 
form  

 ηΔ = ∇v p . (14.3) 

We consider two plates separated by a liquid film. In the general case, the plates 
can move relative to each other. Without restricting the generality, we can assume 
that the upper plate has a velocity of zero. We define the velocity of the lower 
plate as 0−v . 

z

x

-

h

v0  
Fig. 14.1  Flow between two parallel plates. 

We consider a steady-state flow in the x-direction. According to this, the velocity 
has only an x-component, which is dependent on the z-coordinate ( )( ),0=v v z . 
Equation (14.3) takes the following form: 

 
2 2 2

2 2 2η η
⎛ ⎞∂ ∂ ∂ ∂

= + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
x

p vv
x x z z

, (14.4) 

 
2 2

2 2 0η
⎛ ⎞∂ ∂ ∂

= + =⎜ ⎟∂ ∂ ∂⎝ ⎠
z

p v
z x z

. (14.5) 

From (14.5), it follows that the pressure is independent of the vertical coordinate 
z: ( )=p p x . Integrating (14.4) twice yields 

 
2

1 22
η ∂

= ⋅ + +
∂
p zv C z C
x

. (14.6) 
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Using the boundary conditions 0(0) = −v v  and ( ) 0=v h , we obtain 2 0η= −C v  and 

0
1 2

v p hC
h x

η ∂
= −

∂
. Therefore, the velocity distribution is given by  

 0( ) ( )
2

vp z z hv z h
x h

η
η ∂ −

= + −
∂

.    (14.7) 

14.2 Hydrodynamic Lubrication  

Now, we consider the two bodies sketched in Fig. 14.2. Let the surface of one be 
somewhat slanted relative to the other. We assume that the surfaces of both bodies 
are smooth and even. Furthermore, we assume that the lower body moves to the 
left at a velocity 0−v . For small angles of inclination, one can consider the flow at 
every point to be like the flow between two parallel plates and use the velocity 
distribution equation (14.7): 

 0( )' ( )
2

vz z hv p z h
hη

−
= + − . (14.8) 

Here, we have denoted the pressure gradient with 'p .  

FN

h0

z

L

h1
x 

Fig. 14.2  Two bodies sliding past one another separated by a lubricating film. 

Due to conservation of mass, it follows that the mass flow through every cross-
section per unit time must be constant: 

 
3

0 0

0 0

( )( ) ' ( ) '
2 12 2

h h v v hQ z z h hv z dz p z h dz p C
D hη η

⎛ ⎞−
= = + − = − − =⎜ ⎟

⎝ ⎠
∫ ∫ , (14.9) 

where D  is the width of the sliding body and C  is a constant. According to this, 
we obtain a pressure gradient of 

 0 2 3

16η ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

dp Cv
dx h h

. (14.10) 
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With a linear increase in height 0= +h h ax , (14.10) can be explicitly integrated, 
giving us a pressure of 

 0

0
0 2 3 2 3

0

0
2 2

0 0

61 16

3 1 1 1 1  = 2 .

x h

ext ext
h

ext

vC Cp p v dx p dh
ah h h h

v
p C

a h h h h

η
η

η

⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
+ − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫
 (14.11) 

When calculating the definite integral, we take into account that (0) = extp p . On 
the other side ( )=x L , the pressure is also the same as the external pressure extp , 

where it follows that ( )0 1 0 12 /= +C h h h h . Thus, we obtain a pressure distribution 
of 

 0 0 1
2 2

0 0 1 0

6 1 1 1 1η ⎛ ⎞⎛ ⎞⎛ ⎞
= + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠

ext
v h h

p p
a h h h h h h

. (14.12) 

The velocity field is given by 

 ( ) 0 1
0 2 3

0 1

1 1 23
⎡ ⎤⎛ ⎞

= − + − + ⋅⎢ ⎥⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

h h
v v z h z

h h hh h
. (14.13) 

This velocity profile and the pressure distribution for 0extp =  (14.12) are shown 
in Fig. 14.3. 

v

p

0  
Fig. 14.3  Velocity profile and pressure distribution between two hydrodynamically lubricated 
even sliding plates. 

As soon as the velocity and pressure distributions are known, one can easily calcu-
late the x- and z-components of the forces acting on the upper body. The vertical 
force component is calculated as follows:  
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 ( ) 0
2
0

η
α= − =∫N ext

ALv
F dxdy p p

h
 (14.14) 

with 
( )2

6 2( 1)ln
11

ξα ξ
ξξ

⎡ ⎤−
= −⎢ ⎥+− ⎣ ⎦

 and 1 0/ξ = h h ; =A LD  is the apparent “con-

tact area.” The horizontal force component is caused by the viscous stress 
/σ η= ∂ ∂xz v z  and is calculated as 

 0

00

η
η β

=

∂
= =

∂∫R
A z

AvvF dxdy
z h

, (14.15) 

with 1 6( 1)4ln
1 1

ξβ ξ
ξ ξ

⎡ ⎤−
= −⎢ ⎥− +⎣ ⎦

. We obtain a coefficient of friction of 

 0 βμ
α

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

R

N

hF
F L

. (14.16) 

The coefficient of friction is dependent on the average pressure acting on the con-
tact area. If we calculate the slot width 0h  from (14.14) and insert it into (14.16), 
we obtain 

 0 0η ηβ βμ
α α

= =
N

A v v
LF LP

. (14.17) 

Here, /= NP F A  is the average pressure in the contact area. The dependence of 

the parameter /β α , as well as /β α , on ξ  is shown in Fig. 14.4. In the rele-
vant domain of ξ -values, the ratio /β α  lies between 5 and 10. Thus, the follow-
ing rough estimation for the coefficient of friction is obtained: 

 010μ ⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

h
L

. (14.18) 

The coefficient of friction is around 10 times the ratio of the smallest width of the 
slot (i.e. the film thickness) to the length of the contact area. In the large domain 
of relevant film thickness ratios ξ , the ratio /β α  changes only slightly and is 
roughly equal to 2 (see Fig. 14.4). Hence, a good approximation of (14.17) is 

 02
η

μ ≈
v

LP
.      (14.19) 

For the same length of the contact area, the coefficient of friction is a function of 
the parameter combination 0 /ηv P . 
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Fig. 14.4 The parameters that influence the coefficient of friction, /β α  and /β α , as func-
tions of the slot width ratio ξ . 

The larger the pressure is, the smaller the coefficient of friction. One must take 
into consideration, however, that as the pressure increases, the slot width de-

creases: 0
0

η
α=

v
h L

P
. At a sufficiently small film thickness, the assumption that 

the surfaces are smooth is no longer valid; the influence of roughness becomes 
significant and the system transitions into the domain of mixed friction. Because 
of this, at even larger pressures the coefficient of friction increases once again. 
The dependence of the coefficient of friction on the parameter 0 /ηv P  is called 
the “Stribeck curve”. It describes the dependence of the coefficient of friction on 
all of the mentioned parameters. In particular, it describes the dependence of the 
frictional force on the speed in a lubricated system. For large values of 0 /ηv P , 
this dependence has a universal character. In the domain of mixed friction, on the 
other hand, the curve is dependent on the properties of the surfaces and the lubri-
cant. We enter the domain of mixed friction as the sliding velocity decreases. The 
higher the speed is, the larger the film thickness of the lubricant and the more sel-
dom the surfaces come into direct contact with asperities.  
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Lard
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�
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�v / P0 (Arbitrary Normalized Unit) 
Fig. 14.5  Stribeck curves for two different oils as lubricants. At high speeds, they converge. At 
small values of 0 /ηv P , however, the systems exhibit different behavior for the different lubri-
cants1. 

14.3 “Viscous Adhesion” 

If a liquid film exists between two bodies, then they can be neither quickly pressed 
together nor quickly separated. The last effect is often perceived as a type of “ad-
hesion.” During dynamic processes, it is often difficult to differentiate between 
“genuine” adhesion (which is caused by either surface forces between solid bodies 
or capillary bridges) and “viscous adhesion.” The convergence of two bodies sepa-
rated by a liquid film can only happen if the liquid is “squeezed out.” In order for 
the bodies to separate, the liquid must once again flow into the slot, except in the 
case that cavitation occurs (formation and growth of steam bubbles). However, 
both processes require a certain time. 

F

R

h

 
Fig. 14.6  The expulsion of a fluid film from between two round plates. 

Let us consider the convergence of two round plates with the radius R , be-
tween which a liquid film exists (Fig. 14.6). The fluid that is expelled by the verti-
cal convergence forms a radial flow. Due to symmetry, it is clear that the flow ve-
                                                           
1 A.E. Norton, Lubrication. McGraw-Hill, New York, 1942. 
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locity is radially symmetric. If the thickness of the film is much smaller than the 
radius of the plates, then the radial component of the velocity is much larger than 
the convergence speed of the plates and we are essentially dealing with a flow be-
ing acted upon by a pressure gradient, which we investigated in the first section. 
According to this, the velocity is equal to 

 ( )'
2η
−

=
z z hv p , (14.20) 

where ' /= ∂ ∂p p r . The volume flow through the cylindrical surface with the ra-
dius r is 

 
3

0 0

2 ( ) ' ( ) '
6

π ππ
η η

= = − = −∫ ∫
h hr rhQ rv z dz p z z h dz p . (14.21) 

This flow must be equal to the volume flow 2π= −Q r h , due to the vertical 
movement of the upper plate: 

 
3

2 '
6
ππ
η

− = −
rhr h p . (14.22) 

From this, the pressure gradient is  

 3

6' η
=

rhp
h

, (14.23) 

or, after one integration, 

 2
3 3

6 3η η
= = +∫

h hp rdr r C
h h

. (14.24) 

The constant of integration is determined using the boundary condition 
( ) extp r R p= =  (external pressure): 

 2
3

3
ext

hC p R
h
η

= − . (14.25) 

Therefore, in the end, the pressure distribution assumes the form: 

 ( )2 2
3

3
ext

hp r R p
h
η

= − + . (14.26) 

We calculate the normal force acting vertically on the plate as 

 ( ) ( )2 2 4
3 3

0 0

6 32 ( )
2

R R

ext
h hF r p r p dr r R rdr R

h h
ηπ ηππ= − = − = −∫ ∫ . (14.27) 
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For a given force, we can now calculate the time that is required for the plates to 
converge from a distance of 0h  to a distance of h : 

 
0

4 3
0

2
3ηπ

= −∫ ∫
t h

h

F dhdt
R h

, (14.28) 

 4 2 2
0

2 1 1 1
23ηπ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

F t
R h h

. (14.29) 

For large initial separation distances, this time is practically only dependent on the 
minimum separation distance, in this case the final separation distance: 

 
4

2

3
4
ηπ

=
Rt

Fh
. (14.30) 

If the force is dependent on the time, then the following is valid: 

 
4

2
0

3( )
4
ηπ

=∫
t RF t dt

h
. (14.31) 

This means that the minimum obtainable film thickness is only dependent on the 
impulse. 

In order to illustrate this idea, we consider a body covered with a viscous fluid 
which is thrown against a ceiling with a velocity v (Fig. 14.7). How long after-
wards will it remain hanging on the ceiling? Immediately before the impact, the 
momentum of the body is equal to Mv . During the impact, the momentum is 
brought to zero due to the impulse of the reaction force of the ceiling. Thus, the 
impulse is also equal to Mv . Because the impulse needed to bring the plates to-
gether to a distance of h is equal to the impulse needed to separate the plates from 
a distance of h , then the impulse from gravity, Mgt , must attain a value of Mv  
in order to “tear” the plate from the ceiling. From this, it follows that =t v g . 
This is only valid for Newtonian fluids.  

From (14.31) it follows that viscous adhesion with Newtonian fluids cannot be 
used to walk on the ceiling. The situation changes if the viscosity of the liquid is 
dependent on the velocity gradient. As one can see in Equation (14.31), the im-
pulse needed to bring the plates together to a film thickness of h (or to separate the 
plates to a distance of h) is proportional to viscosity. For non-linearly viscous liq-
uids, the viscosity is dependent on the velocity (as a rule, it is smaller at larger ve-
locities). If the plates are initially shoved very quickly together and then slowly 
taken apart, then the positive impulse during impact is smaller than the negative 
during separation. This difference can be used to hold a moving body in equilib-
rium on the ceiling. 
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v
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a b  
Fig. 14.7  A plate thrown against the “ceiling” that is covered with a liquid film will hang from it 
for a time.  

14.4 Rheology of Lubricants 

Until now, we have assumed that a lubricant is a linearly viscous (Newtonian) 
fluid. This means that the viscosity is a constant which is dependent on neither the 
velocity gradient nor the pressure. In practice, deviations from linearly viscous 
behavior are often desired and are brought about by the introduction of special ad-
ditives. In this section, we will qualitatively discuss the most important deviations 
from linearly viscous behavior. 

In the spatial scale of the diameters of a few atoms and the time scale of 10-13 to 
10-10 s, the liquid is presented as an amorphous body in which every molecule lies 
in the minimum created by its neighbors and moves from it only seldom due to 
thermal fluctuations. These very rare jumps from the microscopic point of view 
are, however, the physical cause for the fluidity of liquids being acted upon by 
shear stresses. If the shear stress in the medium is not equal to zero, then every 
molecule can jump in every direction with the same probability P , which is given 
by the Boltzmann factor 

 
0−

∝
U
kTP e , (14.32) 

where 0U  is the activation energy, T  is the absolute temperature, and k  is the 
Boltzmann constant. In the absence of macroscopic stresses, no macroscopic mo-
tion takes place in the liquid. If a stress τ  is applied to the medium, then the 
height of the potential barrier changes for the molecules to “jump to the right” 
( )0 0τ= −rU U V  and “to the left” ( )0 0τ= +lU U V . Here, 0V  is the so-called acti-
vation volume. In addition, the activation energy 0U  is dependent on the pressure 
p  acting on the fluid. As a rule, it increases with pressure: 0 0 1= +U E pV , where 

1V  is another constant with the same dimensions as volume. Thus, the activation 
energies for molecular motion in the opposing directions can be written as 

 0 1 0

0 1 0

 ,
 .

r

l

U E pV V
U E pV V

τ
τ

= + −

= + +
 (14.33) 
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Both activation volumes 0V  and 1V  have an order of magnitude of an atomic vol-
ume 3a , where a  is the atomic radius. The velocity of the macroscopic shear de-
formation is proportional to the difference between molecular flows in opposing 
directions: 

 
0 1 0 0 1 0 0 1

0sinh
E pV V E pV V E pV

x kT kT kTdv V
const e e Ce

dz kT

τ τ τ
γ

+ − + + +
− − −⎧ ⎫ ⎛ ⎞⎪ ⎪= = − =⎨ ⎬ ⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
. (14.34) 

This equation presents a compact form of the most important typical deviations of 
the rheology of real fluids from those of Newtonian fluids. The following limiting 
cases provide a more differentiated view of the properties which are described by 
Equation (14.34): 

I. If the stress is very small: 0 1
τV
kT

, then one can replace 0sinh
τ⎛ ⎞
⎜ ⎟
⎝ ⎠

V
kT

 with 0τV
kT

 

neglecting higher order terms. For the velocity of the shear deformation, we obtain  

 
0 1

0
E pV

x kTdv V
Ce

dz kT
τ

γ
+

−
= = . (14.35) 

This equation indicates that the shear deformation rate is proportional to the shear 
stress. The proportionality coefficient between τ  and γ  is none other than the 
dynamic viscosity of the medium: 

 
0 1

0

η
+

=
E pV

kTkT e
CV

.      (14.36) 

For the condition 0kT E , which is valid at room temperatures, the viscosity de-
creases exponentially as the temperature increases. A decrease in viscosity of 
about 50 percent is typical for a temperature increase of 30 K. Furthermore, vis-
cosity features an exponential pressure dependence. The coefficient 1 /α =V kT  in 
the pressure dependence relationship αη ∝ pe  is called the pressure viscosity coef-
ficient. At room temperature, the pressure viscosity coefficient is on the order of 
magnitude of 8 110α − −∼ Pa . 
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Fig. 14.8  Dependence of shear stress on the velocity of shear deformations (velocity gradients) 
according to (14.34) and the viscosity defined as /τ γ . The viscosity decreases with the defor-
mation velocity. 

II. In general, the dependence in (14.34) is non-linear. The deformation velocity 
increases with the shear stress faster than if it had a linear dependence. This means 
that at larger stresses or velocity gradients, the viscosity is smaller (see Fig. 14.8). 

14.5 Boundary Layer Lubrication  

If the thickness of the film is comparable to the roughness of the surface, then the 
system enters into the domain of mixed friction, where parts of the surface are 
separated by a liquid layer while in other parts, the micro-roughnesses come into 
close contact. At these points, the surfaces can be plastically deformed and come 
into an atomically close contact. Hardy (1919-1922) found experimentally that 
under these conditions the lubrication with greases protects the surfaces better 
than with more fluidic oils. He showed that even a single molecular layer of 
grease can dramatically reduce friction as well as wear. Hardy also recognized that 
the boundary layer adheres to the metal surface. Under conditions in which the 
surfaces are characterized by very thin, but strongly adhering, surface layers of lu-
brication, the friction is known as boundary layer friction. According to Hardy, 
the coefficient of friction as well as the wear decreases as the molecular weight of 
the grease increases. It is important for the effectiveness of the boundary layer that 
the fatty acids form a metal soap with the metal surfaces. The protection mecha-
nism of boundary layer lubrication is very similar to that of thin metal sheets (see 
Chapter 10), according to Bowden and Tabor. In particular, the film remains ef-
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fective only up to the melting temperature or the softening temperature of the 
metal soap that has formed on the surface.  

The most important difference between a lubricating grease and a lubricating 
oil consists of the fact that oil is a liquid, while greases and metal soaps are solid 
bodies with small, but finite, yield points. Thus, an oil can be completely pressed 
out of a contact point, but a plastic film cannot. So, between two round plates (ra-
dius R ) being pressed together and separated by a lubricating material with a 
yield point 0τ , a film remains with a thickness2  

 
3

02
3

Rh
F

τ π
= . (14.37) 

14.6 Elastohydrodynamics 

In highly stressed lubricated contacts such as rolling contact bearings, gears, or 
cam shafts, the surfaces of the contact partners are elastically deformed. The prob-
lem dealing with the dynamics of lubricants taking into account elastic deforma-
tions is known as elastohydrodynamics. In this section, we will discuss the most 
important aspects of elastohydrodynamic lubrication by means of a simplified 
model. 

Here, we will investigate only the limiting case of very high loading. Under 
these conditions, the pressure dependence of the viscosity (14.36) must be taken 
into account. Therefore, it is written in the form 

 0
peαη η= . (14.38) 

Let us consider two plates approaching one another, each with the radius a  (as in 
Fig. 14.6) and separated by a linearly viscous liquid with a pressure dependent 
viscosity (14.38). Because the pressure does not depend on the z -coordinate and 
we are dealing with a linearly viscous liquid, Equation (14.23) is valid. Taking 
(14.38) into account, it then follows that 

 0
3

6p rhpe
r h

α η− ∂
=

∂
. (14.39) 

Integrating once and using the boundary condition ( ) extp a p= , results in 

 ( ) ( ) ( )0 2 2
3

31
extp p

h
e e a r

h
α α

η

α
− −

−
− = − . (14.40) 

                                                           
2 See Problem 5 of this chapter. 
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The special feature of the squeezed flow in this case is that the convergence speed 
of the plates, even with an infinitely large pressure in the middle of the plates, 
cannot exceed a limiting value, which can be determined by substituting 0r =  
and p = ∞  into (14.40): 

 
3

0
0 2

03
extph

h e
a

α

η α
−− = . (14.41) 

Here, 0 (0)h h=  is the lubricating film thickness at the center of the contact area. 
The convergence speed is, therefore, independent of the normal force at very high 
loading. In the case of very low external pressure ( 1extpe α− ≈ ) 

 
3

0
0 2

03
h

h
aη α

− = . (14.42) 

Now, we consider an elastic sphere (radius R ) which is pressed onto a rigid 
plane with a velocity of v  normal to the plane (Fig. 14.9). We want to estimate the 
lubricating film thickness as a function of time.  

0

R

h

v

a  
Fig. 14.9. An elastic sphere (radius R ) which is pressed onto a rigid plane with a velocity of v  
normal to the plane. 

In a heavily loaded contact, the residual film thickness is negligibly small and the 
surface deformation and, consequently, the pressure distribution in the slot practi-
cally coincides with that of a dry contact3. For a constant convergence velocity v , 
the penetration depth is d vt=  and the contact radius is a Rd Rvt= = , where 
the time is counted from the first moment of “geometric contact.” Inserting this 
into (14.42) yields: 

                                                           
3 Ertel (1944) arrived first at this understanding. See: A. Mohrenstein-Ertel, “Die Berechnung der 
hydrodynamischen Schmierung gekrümmter Oberflächen unter hoher Belastung und Relativbe-
wegung”. VDI-Fortschrittsberichte, Row 1, Nr. 115, Düsseldorf, 1984. (German translation of 
Ertel’s Russian dissertation from 1944).  
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3 3

0 0
0 2

00 33
h h

h
Rvta η αη α

− = = . (14.43) 

Integration yields ( ) ( )2 2
0 0 01 / 1/ 2 / 3 ln /− =h h Rv t tαη , or in the case of 0h h , 

 ( )02
0

1 2 ln /
3

t t
Rvh αη

= . (14.44) 

Equation (14.42) is valid under the condition 0 1pα . Thus, for the lower inte-
gration limit 0t  in (14.44), we insert the time at which the condition 0 1pα ≈  is 
met, where 0p  is the Hertzian pressure at the center of the contact area: 

 
1/21/2

* * 02 2 1
vtdE E

R R
α α
π π

⎛ ⎞⎛ ⎞ = ≈⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. (14.45) 

From this, it follows that 

 
2

0 2 *24
Rt

v E
π
α

≈ . (14.46) 

The lubricating film thickness is 

 
1/2 1/ 2 1/ 2 1/ 2 1/ 2
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⎜ ⎟⎜ ⎟
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. (14.47) 

We use this result in order to estimate the film thickness in a lubricated, heavily 
loaded rolling contact between an elastic sphere (radius R) and an elastic planar 
body. One can qualitatively consider rolling as the repetitive “placement” of the 
sphere, where the characteristic “placement time” is given by 2 /t a v≈ ; v  is the 
rolling velocity and a  is the contact radius (5.24). Inserting the estimated time 
into Equation (14.47) yields 
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=
⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

.   (14.48) 

The thickness of the lubricating film is only slightly dependent (logarithmically) 
on the modulus of elasticity and the normal force. For the typical values 

8 12 10  Paα − −= ⋅ , 0 0.01 Pa sη = ⋅ , 1 kNF = , 0.025 mR = , * 100 GPaE = , and 
1 m/sv = , we obtain an estimation of 0.8 μm≈h .  
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Exact numerical solutions from Dowson and Hamrock show4 that the film 
thickness can be described by the following empirical equations: for a linear con-
tact ( l  is the length of the bearing contact), 

 ( ) 0.10.56 0.69 0.69 * 0.03 0.41
0 03.06 /h v E R F lα η −−= ⋅ .   (14.49) 

For an elliptical point contact, 

 ( )0.53 0.67 0.67 * 0.03 0.47 0.067 0.73
0 02.69 1 0.61h v E R F e χα η − − −= ⋅ − ⋅ , (14.50) 

where /a bχ = , a  and b  are the semi-axes of the contact ellipse perpendicular 
and parallel to the direction of motion, and R  is the radius of curvature in the 
plane of motion. 

14.7 Solid Lubricants 

Under certain conditions, liquid lubricants cannot be applied to reduce friction and 
wear. Space flight applications are one example where tribological systems must 
function reliably in either vacuum or in extremely high or low temperatures. In 
these cases, solid lubricants can be used.  

Precursors of today’s solid lubricants – lead, graphite, and molybdenite 
( 2MoS ) – have been known for ages. All three substances have similar colors 
(from grayish-blue to black) and are easily spread on a counter body. Until the 18th 
century, they were often mistaken for one another. Lead was replaced by graphite 
and graphite with molybdenite. The name “molybdenite” itself stems from the 
Greek Μόλυβδος, which means lead. In England, graphite was known as “plum-
bago,” which can also be traced back to lead. 

The extensive propagation of graphite and molybdenite as solid lubricants was 
only possible after methods to produce highly pure substances were developed. 
Both substances were applied at the end of the 19th century and during the 1930’s, 
respectively, in the form of suspensions. 

The most important properties of a solid lubricant are its strong adhesion to sur-
faces in friction and its easy deformability. Apart from the layered structure of 
graphite and molybdenite, other factors may be important. For example, graphite 
has good lubricating properties only in the presence of a small amount of water or 
oxygen, but loses its lubricating properties in a vacuum. In contrast, the lubricat-
ing properties of molybdenite improve under “water-free” conditions.  

As a rule, materials used in modern industry as solid lubricants have a layered 
structure similar to that of graphite and molybdenite. It is apparent that the mecha-
                                                           
4 B.J. Hamrock and D. Dowson, Ball Bearing Lubrication. Wiley, New York, 386 S, 1981. 
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nism of the lubricating action of solid lubricants is similar to that of boundary 
layer lubrication. 

Problems 

Problem 1: Calculate the force of friction between a corrugated surface with a pe-
riodic profile of cosa kx  and an even plane which are separated by a liquid film. 

 
Solution: We will define the separation distance between the two surfaces as 

( )=h h x . The gradient ′h  is assumed to be very small. Let the slot in between the 
surfaces be filled with a lubricant with a viscosity of η . The velocity profile of a 
creeping flow in a parallel slot has the form (14.7): 

0( )' ( )
2

vz z hv p z h
hη

−
= + −  

with a pressure gradient (14.10) 

0 2 3

16η ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

dp Cv
dx h h

. 

Integrating over a spatial period Λ  yields 

0 2 3
0

1( ) (0) 6 0
( ) ( )

η
Λ ⎛ ⎞

Λ − = − − =⎜ ⎟
⎝ ⎠
∫

Cp p v dx
h x h x

. 

Here, we set this integral equal to zero, because the pressure distribution is as-
sumed to be a periodic function with the same period Λ  as the profile of the cor-
rugated surface. From this, it follows that 

2
0

3
0

( )

( )

Λ

Λ=
∫

∫

dx
h x

C
dx

h x

. 

The shear stress acting in the liquid on the even (lower) surface is equal to 

0
0 2

0

4 3
2

η∂τ η η
∂ =

′ ⎛ ⎞= = − + = −⎜ ⎟
⎝ ⎠z

vv p h Cv
z h h h

. 

For the tangential stress averaged over the period, which we perceive as macro-
scopic friction τ R , we obtain 
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0
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0 0

1 4 3
( ) ( )

η
τ τ

Λ Λ ⎛ ⎞
= = −⎜ ⎟Λ Λ ⎝ ⎠

∫ ∫R
v Cdx dx

h x h x
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or after substituting C , 
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0
3 2

0 0 0
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( ) ( ) ( )

η
τ

−Λ Λ Λ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟Λ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫ ∫R

v dx dx dx
h x h x h x

. 

For a constant slot width, this equation becomes the elementary formula 
0 /τ η=R v h . Now, we assume that the corrugated surface is given through the 

equation 

( )0( ) 1 cos( )= + −h x h a kx  

so that the minimum slot width is 0h , the amplitude of the corrugations a , and the 
wave number 2 /π= Λk . In this case, it follows that 

2 2
0 0 0

2 23
0 0 0 20

2 31
21 2 /

η
τ

+ +
=

+ ++
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v h h a a
h h h a aa h

. 

In the limiting case 0h a , it is  

0

0

2
η

τ ≈R
v
ah

. 

Problem 2: Calculate the force that acts between a plane and a sphere (radius R )  
approaching this plane. The distance between the sphere and the plane should be 
much smaller than R . 

 
Solution: In this case, we are dealing purely with the squeezing of a fluid caused 
by a pressure gradient. The pressure gradient is calculated according to Equation 
(14.23): 

3

6' η
=

rhp
h

. 

In our case, the slot height is given by  
2

0 / 2≈ +h h r R . 

Integrating the pressure gradient, we obtain 

( ) ( )3 22 2
0 0

36
/ 2 / 2

ηη
∞
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rdr Rhp p h p
h r R h r R

. 
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(Because the integral converges on the upper boundary, we have replaced it with 
∞ ). The force acting on the sphere is, therefore, equal to 

( )
2

00

62 ( ) πηπ
∞

= − = −∫N ext
R hF r p r p dr

h
. 

 
Problem 3: Estimate the force that acts on a horizontally moving sphere which is 
separated from a plane by a distance 0h . 

 
Solution: The order of magnitude of the stress in the slot is 0 / ( )τ η∼ v h r . Thus, 
the order of magnitude of the force is 

0 0 02
000 0

2 2 2 ln 1
( ) 2/ 2

πη πη πη
⎛ ⎞

= = +⎜ ⎟+ ⎝ ⎠
∫ ∫∼
R R

R
rdr rdr RF v v Rv
h r hh r R

. 

 
Problem 4: A shaft of radius r  rotates in a cylindrical cavity with a constant an-
gular velocity ω  (Fig. 14.9), while the outer cylinder does not move and has a ra-
dius of = +R r a . Let the length of the cylinders be L . The space in between the 
cylinders is filled with a liquid of viscosity η . In general, the shaft lies eccentri-
cally in the cylindrical cavity, because it is loaded. Assuming that a r , calcu-
late the friction moment acting on the cam shaft and the coefficient of friction. 

R a

�

r

h

�

r
�

e

a b  
Fig. 14.10 Hydrodynamic bearing: (a) without load, (b) with load. 

Solution: Assuming that a r , the flow between the shaft and the cylinder can 
be seen as a parallel flow. The velocity, thereby, has only the circumferential 
component ϕv  and the pressure p  is only dependent on the angle. Equation (14.8) 
is valid for the flow profile, which in our case takes the following form: 

1 ( ( )) ( ( ) )
2 ( )

dp z z h rv h z
r d hϕ

ϕ ω ϕ
ϕ η ϕ

−
= + −  

with  
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( ) cosϕ ϕ≈ +h a e . 

The pressure distribution is given by 
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(see analogous equations in Problem 1). It is an odd function of the angle ϕ . The 

horizontal component of the force 
2

0

( ) cos
π

ϕ ϕ ϕ= ∫xF Lr p d  vanishes, because 

( )ϕp  is an odd function. The vertical component of the force is calculated as5 
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The tangential stress is calculated in exactly the same way as in Problem 1 and is 

2
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τ ηω
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The moment is  
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For the ratio /μ = zM rF , which plays the role of the coefficient of friction in this 
case, we obtain 

( )2 22

3
μ

+
=

a e

er
. 

For larger loads, when →e a , the coefficient of friction assumes the limiting 
value 

                                                           
5 In reality, the viscous stress also contributes to the vertical force. One can show, however, that 
this contribution is small under the assumed conditions and can be neglected. 
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μ =
a
r

. 

 
Problem 5: a) Calculate the velocity profile and pressure distribution in a squeez-
ing flow of a non-linearly viscous liquid between two round plates. We assume 
that the rheological law is  

0
0

n
τγ γ
τ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

where γ  is the shear deformation, 0γ  is the characteristic shear velocity, n  is an 
odd number, and 0τ  is the characteristic stress (in the limiting case of n →∞ , the 
yield stress). 
b) Calculate the remaining film thickness in the case of an ideally plastic material 
with the critical shear stress 0τ  ( n →∞ ). 
 
Solution: (a) We choose the coordinate axes so that the origin lies at the middle of 
the film and the z -axis is perpendicular to the film (Fig. 14.11). The pressure is 
independent of the z -coordinate.  

z

h/2

-h/2

0 r

 
Fig. 14.11   

Due to axial symmetry, it is sufficient to consider only the r -component of the 
equilibrium equation: 

0∂ ∂
− + =
∂ ∂
p
r z

τ . 

Integrating once with respect to z  yields 

1C p zτ ′= +  

and inserting this into the rheological law, we obtain the following flow profile 

1
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n
C p z

γ γ
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⎝ ⎠
. 
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The constant 1C  must vanish, because ( 0) 0zγ = =  must be fulfilled due to rea-
sons of symmetry. The equation can now be written in the form 

0
0

n
v p z
z

γ
τ

⎛ ⎞′∂
= ⎜ ⎟∂ ⎝ ⎠

Integration yields 
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Taking into account the no-slip condition ( ) ( )/ 2 / 2 0v h v h= − =  on the solid sur-
face, we ultimately come to the following flow profile in the slot: 
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The volume flow through a cylinder barrel with the radius r  is calculated as 
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From continuity, it follows that  
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For the pressure gradient we get 
1/
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. 

Integrating this equation with the boundary condition 0( )p R p= , we obtain the 
pressure distribution in the film: 
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The normal force acting on the plate is equal to   
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For 1n =  (linearly viscous fluid), we again call upon Equation (14.27).  

. 
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(b) In the limiting case of n →∞ , the equations for pressure distribution and 
force simplify to  

0 02 R rp p
h

τ −
− =  

and  
3

02
3

RF
h

τ π
= . 

In this case, we are dealing with an ideally plastic behavior with a yield point of 
0τ . From this equation, the thickness of the film, which remains in the slot and is 

not pressed out, can be calculated: 
3

02
3

Rh
F

τ π
= . 

 
 
 
 
 
  



15 Viscoelastic Properties of Elastomers 

 

15.1 Introduction 

Rubber and other elastomers play an important role in many tribological applica-
tions. They are used where large frictional forces are demanded. In particular, they 
find applications as materials for tires, feed rollers (e.g. in printers), sports shoes, 
seals, rubber bands, and materials in electronic devices (e.g. keyboard contacts), as 
well as adhesive fixtures. 

The two most important properties of elastomers are: (1) an extremely small 
modulus of elasticity (ca. 1 to 10 MPa, meaning 4 to 5 orders of magnitude 
smaller than normal “solid bodies”) and (2) extremely high deformability: elas-
tomers can often be stretched to multiple times their original length. 

The cause for these two fundamental properties of elastomers lies in their struc-
ture. Elastomers consist of polymer molecules which interact relatively weak with 
one another. In thermodynamic equilibrium, they are in a statistically favored 
coiled state. If a mechanical stress is applied to an elastomer, then the polymer 
molecules begin to untangle (Fig. 15.1). If the stress is then removed, then the 
polymer molecules relax once again to their coiled state. While for “normal solid 
bodies” the equilibrium state primarily corresponds to a minimum in potential en-

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_15, 
© Springer-Verlag Berlin Heidelberg 2010 
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ergy, for elastomers equilibrium is reached primarily when entropy reaches its 
maximum. This has become known as entropy elasticity1.  

In order to prevent the complete disentanglement of the chains under tensile 
loading, the rubber chains are connected to each other by sulfur bridges – this 
treatment is known as vulcanization2. By the addition of a large amount of sulfur 
during vulcanization, hard rubber is formed; by adding less sulfur we get softer 
rubber. In order to achieve an optimization between elasticity, wear resistance, and 
adhesive ability, rubber is mixed with soot during the manufacture of automobile 
tires. The composite material that results is known as “soot-filled rubber.” 

 
Fig. 15.1  Schematic representation of the changes that occur in the structure of an elastomer 
during tensile loading. 

It is generally accepted that the contact and frictional properties of elastomers 
are due primarily to their rheological properties. In other words, the tribological 
properties of elastomers are largely determined not by their surface properties, but 
rather by their volume properties. This is the reason why, in this chapter, we ini-
tially devote ourselves to the detailed analysis of the rheological properties of rub-
ber as well as methods to describe them. The terms and methods introduced in this 
chapter will be used in the next chapter in order to discuss the friction of elastom-
ers. Thereby, we treat elastomers as linearly viscoelastic materials. The treatment 
of non-linearities is beyond the scope of this book.  

15.2 Stress-Relaxation 

We consider a rubber block that is being acted upon by shear forces (Fig. 15.2). If 
it is quickly deformed, then the stress reaches a high level (0)σ  in the first mo-
ment and afterwards slowly relaxes to a much lower level ( )σ ∞  (Fig. 15.3), 
whereby with elastomers, ( )σ ∞  can be 3 to 4 orders of magnitude smaller than 

(0)σ . The physical cause for this behavior is clear: in the first moment, the poly-

                                                           
1 In this sense, the elasticity of rubber is similar to the “elasticity” of an ideal gas, where the in-
teractions between the molecules play no role and the elasticity is, likewise, of pure entropic na-
ture. 
2 Vulcanization was developed by Charles Goodyear in 1839. 
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mer molecules do not yet have the time to untangle and the rubber responds like a 
“normal solid material.” The respective shear modulus of 0(0) (0) /σ ε=G  has the 
same order of magnitude as the shear modulus of glass and is called the glass 
modulus. The ratio 0( ) ( ) /σ ε∞ = ∞G  describes the behavior of the material after a 
sufficiently long waiting time and is called the static shear modulus. Over time, 
the molecules twist apart and the internal stress in the material eases. The ratio  

 
0

( )( ) σ
ε

=
tG t  (15.1) 

is called the time-dependent shear modulus.  It is easy to see that this function 
completely describes the mechanical properties of a material, assuming that the 
material exhibits a linear behavior: 

We assume that the block is deformed according to an arbitrary strain function 
( )ε t . An arbitrary time-dependent function ( )ε t  can always be presented as the 

sum of chronological step functions, as is schematically shown in Fig. 15.4. In this 
diagram, an “elementary step function” at time ′t  has an amplitude of 

( ) ( )ε ε′ ′ ′=d t t dt . Its stress contribution is equal to ( ) ( )σ ε′ ′ ′= −d G t t t dt , and the 
total stress at every point in time is, therefore, calculated as 

 ( ) ( ) ( )σ ε
−∞

′ ′ ′= −∫
t

t G t t t dt .     (15.2) 

�

�
�

 
Fig. 15.2  Shear deformation of a rubber block. 
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Fig. 15.3  If a rubber block is quickly deformed by 0ε  at time 0t = , then the stress increases in-
itially to a high level and afterwards, relaxes with time to a much lower level. 
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Fig. 15.4  Presentation of a time-dependent function as the superposition of several chronological 
step functions. 

Equation (15.2) shows that the time-dependent shear modulus can be understood, 
in a mathematical sense, as a weighting function which describes how previous 
strain changes contribute to the stress at the current time. Because of this, ( )G t  is 
also sometimes called the memory function. 

15.3 Complex, Frequency-Dependent Shear Moduli 

If ( )ε t  changes according to the harmonic function  

 ( ) cos( )ε ε ω=t t , (15.3) 

then after the transient time, there will also be a periodic change in stress at the 
same frequency ω . The connection between the change in deformation and stress 
can be presented quite simply when the real function cos( )ωt  is presented as the 
sum of two complex exponentials: 

 ( )1cos( )
2

ω ωω −= +i t i tt e e . (15.4) 
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Due to the principal of superposition, one can initially calculate the stresses which 
result from the complex oscillations 

 ( ) ωε ε= i tt e  and  ( ) ωε ε −= i tt e  (15.5) 

and sum them afterwards.  If we insert ( ) ωε ε= i tt e  into (15.2), then we obtain a 
stress of 

 ( ) ( ) ωσ ωε ′

−∞

′ ′= −∫
t

i tt G t t i e dt . (15.6) 

By substituting ξ ′= −t t , we bring the integral into the following form: 

 
0

( ) ( ) ( )ω ω ωξσ ωε ωε ξ ξ
∞

′ −

−∞

′ ′= − =∫ ∫
t

i t i t it G t t i e dt i e G e d , (15.7) 

or, in other words, 

 ˆ ˆ( ) ( ) ( ) ( )ωσ ω ε ω ε= =i tt G e G t .    (15.8) 
For a harmonic excitation in the form of a complex exponential ωi te , the 
stress is proportional to deformation. The proportionality coefficient  

 
0

ˆ ( ) ( ) ωξω ω ξ ξ
∞

−= ∫ iG i G e d      (15.9) 

is generally a complex quantity and is called the complex shear modulus. Its 
real part, ˆ( ) Re ( )ω ω′ =G G , is called the storage modulus and its imaginary 

part, ˆ( ) Im ( )ω ω′′ =G G , the  loss modulus.  

The amplitude of the oscillations is given respectively by the magnitude of the 
complex stress or deformation: 

 ˆ ˆ( ) ( ) ( )ω ωσ ω ε ω ε= =i t i tt G e G e . (15.10) 

Because the magnitude is 1ω =i te , it follows that 

 ˆ( ) ( )σ ω ε=t G . (15.11) 

According to this, the oscillation amplitudes of the stress and deformation are con-
nected by the magnitude of the complex shear modulus. 

In order to illustrate the term complex modulus more clearly, we consider two 
simple examples:  
(a) For a linearly-elastic body, the shear deformation behaves according to Hoo-
ke’s law: σ ε= G . In this case, the complex modulus has only a real part and this 
is equal to G .  
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(b) For a linearly-viscous fluid in pure shear (Fig. 15.5) the following is valid: 

 σ η= dv
dz

. (15.12) 

Therefore, for a periodic movement 0ˆ( , ) ω= i tu l t u e  is 

 0ˆ( ) ˆˆ ( ) ( )ωσ η η η ω ωηε
=

= = = =i t

z l

udv v tt i e i t
dz l l

. (15.13) 

In this case, the complex modulus 

 ˆ ( )ω ωη=G i  (15.14) 

has only an imaginary part: ˆRe 0=G , ˆIm ωη=G . 

u( ,t)l

u( ,t)z

0

l

z

 
Fig. 15.5  Uniform shear flow of a linearly-viscous fluid. 

15.4 Properties of Complex Moduli 

According to definition (15.9), it follows that 

 *ˆ ˆ( ) ( ) ω ω− =G G . (15.15) 

Here, “*” means that the value is a complex conjugate. The real and imaginary 
parts of the modulus, therefore, have the following properties: 

 
( ) ( ),

  ( ) ( ).
G G
G G

ω ω
ω ω

′ ′− =
′′ ′′− = −

 (15.16) 

Real and imaginary parts of complex moduli are not independent from one an-
other, rather they must satisfy the so-called Kramers-Kronig relations: 
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( )

2

0 2 2
0

2 2
0

2 1 ( )( )  ,

2 ( )( )  .

ωω
π ω

ωω
π ω

∞

∞

′′
′ = +

−

′
′′ = −

−

∫

∫

G zG G dz
z z

G zG dz
z

 (15.17) 

The integrals in these equations are understood to be Cauchy principal values (i.e. 
one approaches the poles symmetrically so that the singularities can be canceled 
out). 

If the complex modulus is known in the entire frequency domain, then the 

time-dependent modulus can be calculated. By multiplying (15.9) with 1
2

ω

ω π
i te

i
, 

and subsequently integrating over ω  (from −∞  to ∞ ), we obtain 

 ( ) ( )

0

1 1 1ˆ ( )
2 2

ω ξωω ω ξ ω ξ
π ω π

∞ ∞ ∞
−

−∞ −∞

=∫ ∫ ∫ i ti tG e d G e d d
i

. (15.18) 

The step function shown in Fig. 15.3 a corresponds to 0( ) ( )ε ε δ=t t , where ( )δ t  
is the Dirac delta function. By using the identity 

 2 ( )ω ω πδ
∞

−∞

=∫ i te d t , (15.19) 

the right side of the equation (15.18) is simplified and only the time-dependent 
shear modulus remains. Therefore, taking (15.1) into account validates the follow-
ing relation 

( )

0

ˆ( ) 1 ( )( )
2

1 1                   ( ) sin ( ) cos  .
2

i tt GG t e d
i

G t G t d

ωσ ω ω
ε π ω

ω ω ω ω ω
π ω

∞

−∞

∞

−∞

= =

′ ′′= +

∫

∫
  (15.20) 

15.5 Energy Dissipation in a Viscoelastic Material 

The deformation of a material according to the relation 1 0
ωε ε= i te  leads to the 

stress 1 0
ˆ ( ) ωσ ε ω= i tG e , according to the definition of complex shear moduli. For a 

deformation 2 0
ωε ε −= i te , we only have to change the sign of the frequency: 

*
2 0 0

ˆ ˆ( ) ( )ω ωσ ε ω ε ω− −= − =i t i tG e G e . If the total deformation can be represented 
over the sum of 1ε  and 2ε  as 
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 ( )0
0 cos

2
ω ωε

ε ε ω −= = +i t i tt e e , (15.21) 

then, due to the linearity of the system, the stress is calculated as the sum 1σ  and 

2σ : 

 ( ) ( )*
0 0

1 ( ) ( ) ( ) cos ( )sin
2

ω ωσ ε ω ω ε ω ω ω ω− ′ ′′= + = −i t i tG e G e G t G t . (15.22) 

Now, we can calculate the power P  of this stress in a unit volume: 

 21
02( ) ( ) ( )σ ε ωε ω′′= =P t t G .    (15.23) 

The energy dissipation is directly determined by the imaginary part of the 
complex modulus. Associated with it, is the term “loss modulus” for the 
imaginary part of the modulus of elasticity.  

For a given stress, we take the property (15.11) into account and write 
22 2

0 0
ˆ ( )σ ω ε= G . With this, we can bring (15.23) into the form 

 2 21 1
0 02 22

ˆIm ( ) 1Im ˆˆ ( )( )

ωωσ ωσ
ωω

⎛ ⎞
= = − ⎜ ⎟⎜ ⎟

⎝ ⎠

GP
GG

 .  (15.24) 

15.6 Measuring Complex Moduli   

If a linearly viscoelastic material is deformed periodically at a frequency ω  ac-
cording to the relation (15.21) and the stress (15.22) is recorded in a steady oscil-
lating state, then one can determine the complex modulus, by determining the av-
erage values 

 ( ) ( )  and ( ) ( )E t t P t tσ ε σ ε= = . (15.25) 

We have already calculated the average power above and related it to the loss 
modulus. Now, the average value E  can be tied to the storage modulus, because 

 2
0

1
2

ε′=E G . (15.26) 

So, the real part of the modulus G  can be determined from 

 2
0

2ˆRe
ε

′= =
EG G , (15.27) 



15.7 Rheological Models      239 

while the imaginary part is calculated from (15.23): 

 2
0

2ˆIm
ωε

′′= =
PG G . (15.28) 
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Fig. 15.6  Stress-strain diagram for a viscoelastic material. 

The Equations (15.21) and (15.22) describe, in parameterized form, the dynamic 
stress-strain diagram, which has an elliptical form. The corresponding average slo-
pe of the diagram is equal to ′G . For 0ε = , we obtain 0σ ε ′′= ± G . Therefore, the 
imaginary part can be determined from the width of the hysteresis loop. 

15.7 Rheological Models 

For spatially homogeneous deformations, one can frequently work with stiffnesses 
instead of moduli. The two fundamental elements for this are linearly elastic 
springs and dampers. From these elements, complicated combinations can be 
composed which can represent practically arbitrary viscoelastic behavior. 

First, we consider the fundamental elements under periodic excitation. For a 
linearly elastic spring, without internal dissipation (Fig. 15.7 a), the relation gen-
erally known as Hooke’s law is valid: 

 =F cx . (15.29) 

We call the proportionality coefficient c  the spring constant or spring stiffness. 
Now, we consider a linear damper (Fig. 15.7 b): 
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 =F dx . (15.30) 

For a harmonic excitation in complex form, 0
ˆ ω= i tF F e , we look for the solution in 

the form 0ˆ i tx x e ω= . The result is ˆ ˆ( ) ( )ω=F t id x t , meaning the force is propor-
tional to the displacement at every point in time, as it is in a spring. The coeffi-
cient 

 ˆ ω=dc id , (15.31) 

which relates the force to the displacement, however, is now complex and is de-
pendent on the frequency. We call this the complex, frequency-dependent spring 
constant or stiffness.  

c
F

d
F

d c = dd i 	

a b c  
Fig. 15.7  (a) Linearly elastic spring, (b) velocity proportional damper, (c) complex stiffness of a 
damper. 

For a general linear mechanical system (meaning an arbitrarily complex system 
composed of linear spring and dampers), we have a linear relationship for an exci-
tation force 0

ωi tF e : 

 ˆ ˆ ˆ( ) ( ) ( )ω=F t c x t , (15.32) 

where ˆ( )ωc  is now the complex spring number of the system. This equation is 
valid, however, only for an excitation with the frequency ω . In explicit form, it 
reads 0 0ˆ( )i t i tF e c x eω ωω= .  

A parallel connection of two springs with the spring constants 1c  and 2c  is 
equivalent to a spring with the spring constant 1 2= +c c c . The relationship for a 

series connection is 1 2

1 2 1 2

1 1 1
= + ⇒ =

+
c c

c
c c c c c

. Similar connections can also be 

used for continua. Then, the stiffnesses must be replaced by moduli.  
The component of many rheological models that will be important to us in the 

following is the Maxwell element, which is composed of a spring connected in se-
ries with a damper. We will investigate the properties of this element and in doing 
so, we use the continuum version of the model from the beginning and utilize the 
moduli rather than stiffnesses. 
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Fig. 15.8  Maxwell element. 

The complex moduli of the spring and damper are G  and ηωi . Due to the series 
connection, the total modulus is  

 
( )

( )
( )

( )( )
( )

2

22
ˆ

Maxwell

G i GG iGi GiG
G i G i G i G

ηω ηωηωηω ηω
ηω ηω ηω ηω

+−
= = =

+ + − +
. (15.33) 

The storage modulus and loss moduli are 

 
( )
( ) ( )

2 2

2 22 2
,       .

ηω ηω
ηω ηω

′ ′′= =
+ +

Maxwell Maxwell

G GG G
G G

 (15.34) 

By introducing the quantity  

 /τ η= G , (15.35) 

we can also present the Equations (15.34) in the form 

 
( )
( ) ( )

2

2 2,       
1 1

ωτ ωτ
ωτ ωτ

′ ′′= =
+ +

Maxwell MaxwellG G G G .  (15.36) 

The parameter τ  has the dimension time. 
Now, we will investigate the stress relaxation in a medium which is character-

ized by a Maxwell element. For this, we will use the notation introduced in 
Fig. 15.8. The stress acting on the connection point between the spring and the 
damper is equal to 1 1( )ε ε ηε− − +G . Because the connection point is massless, the 
stress must cancel out: 1 1( ) 0ε ε ηε− − + =G . By dividing this equation by G  and 
substituting (15.35), we can write the equation as 

 1 1τε ε ε+ = . (15.37) 

Were the material to deform suddenly at 0=t  by 0ε , then for every point in time 
0>t , 

 1 1 0τε ε ε+ = , (15.38) 
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with the initial condition 1(0) 0ε = . The solution to this equation with this initial 
condition is 

 ( )/
1 0 1 τε ε −= − te . (15.39) 

The stress is  

 ( ) /
0 1 0

τσ ε ε ε −= − = tG G e . (15.40) 

The stress decays exponentially with the characteristic time τ , which is called the 
relaxation time.  

15.8 A Simple Rheological Model for Rubber (“Standard 
Model”) 

Now, we would like to construct a spring-damper model that has the most impor-
tant dynamic properties of rubber during periodic loading. These are: 
1. 0ω ≈ : For low frequencies, a small modulus (quasi-static deformation) is 
measured as well as almost no dissipation (i.e. the damping component is very 
small). 
2. ω →∞ : For very high frequencies, a very large modulus is measured (typically 
3 orders of magnitude larger than for quasi-static loading) and, likewise, no appre-
ciable dissipation. 
3. For frequencies in between, an intermediate modulus is measured and at the 
same time, strong dissipation. 

These properties result from the fact that the molecular chains can only coil and 
uncoil in a finite amount of time. 

G2




G1

 
Fig. 15.9  A simple rheological model for rubber. 

These properties of a rubber block should now be qualitatively described using 
the rheological model presented in Fig. 15.9. Because we are dealing with the par-
allel connection of a spring and a Maxwell element, we can immediately write 
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( )
( ) ( )

2

1 2 22 2,       
1 1

ωτ ωτ
ωτ ωτ

′ ′′= + =
+ +

G G G G G  (15.41) 

with 2/τ η= G .  The dependence of the moduli on frequency is presented loga-
rithmically for the case of  2 1/ 1000=G G  in Fig. 15.10.  

At low frequencies, 1 /ω η< G  (quasi-static loading), the modulus approaches 

1G . At very high frequencies, 2 /ω η> G , it approaches 2 1G G . This means 
that for very slow loading, rubber is soft. On the other hand, for very quick load-
ing, it is hard. Typical shear moduli of filled rubbers at low frequencies are around 
10 MPa, while at higher frequencies they are about 1000 times larger. In the area 
in between, the imaginary part is predominant: ( )ω ηω′′ ≈G , meaning that the rub-
ber behaves like a viscous fluid during periodic loading. 
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log ( )G

log ( )G

�  
Fig. 15.10  Real and imaginary parts of the frequency-dependent modulus for the rheological 
model shown in Fig. 15.9 with 2 1/ 1000=G G . 

Due to the fact that we are dealing with a parallel connection of a spring and a 
Maxwell element, we can once again immediately write 

 ( )/
0 1 2( ) τσ ε −= + tt G G e . (15.42) 

The normalized stress, which we have called the time-dependent modulus, can be 
obtained by dividing this equation by 0ε : 

 ( )/
0 1 2( ) / τσ ε −= = + tG t G G e . (15.43) 

It relaxes from the value 0 1 2 2= + ≈G G G G  for 0=t  to the value 1∞ =G G  for 
→∞t .  
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15.9 Influence of Temperature on Rheological Properties  

The physical reason for the finite time of the stress-relaxation is the kinetic proc-
ess of the “uncoiling” of the polymer molecules. This is a thermally activated 
process and, therefore, is strongly dependent on temperature. Because the relaxa-
tion time in the complex modulus (15.41) only appears as the combination 

( )ωτ T , and in the time-dependent modulus (15.43) only as the combination 
/ ( )τt T : 

 ( ) ( / ( ))τ=G t F t T ,    ˆ ( ) ( ( ))ω ωτ=G Q T , (15.44) 

then the time-dependent moduli for different temperatures, plotted as a function of 
the logarithm of time, are the same curves, only shifted by the value 

2 1log( ( ) / ( ))τ τT T  (Fig. 15.11). This is also valid for the frequency-dependent 
moduli plotted as a function of the logarithm of frequency. Because of these rea-
sons, log ( )τ T  is also called the shift-function. 

It is often assumed when describing the rheological properties of elastomers 
that the assumption made above (15.44) is valid even when the rheology is not de-
scribed using the simple model shown above. Williams, Landel, and Ferry pro-
posed an analytical approximation for the shift-function in 1955 which contains 
two constants 1C  and 2C  and is known as the WLF-function. The constants must 
be determined experimentally for every type of rubber: 

 
( )

1
1 1

2 2

( ) 1log ( ) 1
1

τ
−

⎛ ⎞−
⎜ ⎟= = −
⎜ ⎟+ − + −⎝ ⎠

g

g g

C T T
T C

C T T C T T
. (15.45) 

gT  is the so called glass transition temperature.  
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a b  
Fig. 15.11  Relaxation function (a) and frequency-dependent modulus (b) at two temperatures. 
The smaller relaxation time 1τ  corresponds to a higher temperature as that of the relaxation time 

2τ  (in this example around 100 times larger). 
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15.10 Master Curves 

The assumption (15.44) is used to experimentally reproduce the entire relaxation 
curve by use of measurements in a defined time interval. We consider, for exam-
ple, the stress-relaxation during a tensile test: the probe is quickly deformed by 

1%ε =  and the stress is subsequently measured as a function of time. The length 
of time of the experiments is limited by a realizable time domain. As an example, 
we will investigate the stress-relaxation in a time window from 3 to 600 seconds 
after the sudden deformation: shorter times are difficult to realize, while larger 
times lead to practically unacceptable duration of the experiment.   

Experimental results at various temperatures can be seen when they are pre-
sented logarithmically as in Fig. 15.12. From the hypothesis, we assume that at 
different temperatures, the measured curves are only shifted pieces of the same 
curve. Now, one attempts to shift the curves so that they form the entire curve 
(Fig. 15.13). 

This method has shown itself to be successful and leads to an “experimental” 
relaxation curve in a time interval which is inaccessible to direct experimental 
measurements (e.g. from the sub-millisecond domain to that of years). These 
curves are called “master curves.” The shifting of the individual curve segments 
for various temperature or time domains is not the same. This is due to the differ-
ent activation energies of the various scales. 

 
Fig. 15.12  Measurements of stress-relaxation for various temperatures in a given time window. 



246      15 Viscoelastic Properties of Elastomers 

 
Fig. 15.13  The sections of the stress-relaxation curves at various temperatures (shown logarith-
mically) are shifted so that they form a single master curve. 

15.11 Prony Series 

The experimental master curves obtained in this way differ significantly from the 
relaxation curves in the “standard model” of the spring and Maxwell element con-
nected in parallel. The transition from the large “glass modulus” at very small 
times to the small “rubber modulus” at very large times does not take place in real 
elastomers over a short time period τ , rather it extends over several orders of 
magnitude of time. Therefore, the model must be adjusted. 



15.11 Prony Series      247 

 
Fig. 15.14  Logarithmic presentation of the time-dependent shear modulus for the simple rheolo-
gical model (continuous curve) and a real elastomer. 

An adjustment can be made in which, instead of a Maxwell element with a re-
laxation time τ , one attaches a series of elements with various relaxation times in 
parallel (Fig. 15.15). By use of a sufficiently large number of Maxwell elements, 
every relaxation function is able to be represented. This model is called the Prony 
series.  
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Fig. 15.15  Prony series. 

In this model, the relaxation of the G -modulus is given by  

 /
0

1

( ) τ−

=

= + ⋅∑ i

N
t

i
i

G t G G e . (15.46) 

One can also generalize this equation using an integral form: 

 
2

1

/
0 1( ) ( )

τ
τ

τ

τ τ−= + ∫ tG t G G g e d . (15.47) 

The complex shear modulus is given by 
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 (15.48) 

or in the integral form 

 

( )

( )

2

1

2

1

2 2

0 1 2 2

1 2 2

( )  ,
1

( )  .
1

τ

τ

τ

τ

ω τ
ω τ τ

ω τ

ωτω τ τ
ω τ

′ = +
+

′′ =
+

∫

∫

G G G g d

G G g d

 (15.49) 

Instead of the exponential decay of stress in terms of time, which is characteristic 
for a Maxwell element, many elastomers are found to experience a decay in stress 
that can be described by a power function. In order to describe such a relaxation 
function, the weight function ( )τg  in Equations (15.47) and (15.49) must also be 
a power function: ( )τ τ −∝ sg . The relaxation function is then completely param-
eterized by choosing 0 1 1 2,  ,  ,  and G G s τ τ .  

To illustrate, we calculate the relaxation of the shear modulus in a model with 
the following parameters: 0 1=G , 1 1000=G , 2

1 10τ −= , 2
2 10τ = , 2

1( )τ τ τ −=g . 
Substituting these into (15.47) provides 

 2 11 1
0( ) τ ττ − −⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

t tG
G t G e e

t
. (15.50) 

The result is presented in Fig. 15.16. One can see that in the middle time domain 
1 2τ τt , the dependence of log ( )G t  on log t  is a linear function with the 

slope -1: The stress decreases in this domain according to the power function 
1−∝G t .  

The frequency dependence of the complex modulus is given by 

 
( ) ( )

2

1

2

0 1 1 0 1 1 2 12 2

2 2 2
2 11

1 12 2 2 2
1 2

arctan arctan  ,
1

1
( ) ln  ,

1

G G G d G G

G G

τ

τ

ωω τ τ ωτ ωτ ωτ
ω τ

τ ω τ
ω τ ω

τ ω τ

′ = + = + −
+

⎛ ⎞+′′ = ⎜ ⎟+⎝ ⎠

∫
 (15.51) 

see Fig. 15.17. 
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Fig. 15.16  Time-dependent shear modulus according to (15.50). 

In the middle frequency domain, 2 11/ 1/τ ω τ , the following equations ap-
ply: 

 
( )

( )
0 1 1

1 1 1

2
( ) ln 1/ .

πω τ ω

ω ωτ ωτ

′ = +

′′ =

G G G

G G
 (15.52) 
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Fig. 15.17  Real and imaginary parts of the frequency-dependent modulus according to Equation 
(15.51). 
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Problems 

Problem 1: Coefficient of restitution for a viscoelastic material. A block of 
viscoelastic material impacts a rigid wall with the velocity of 0v  and bounces back 
with the smaller velocity 1v . Determine the coefficient of restitution 1 0/=e v v . 
The block should be described as a simplified model of a rigid mass m  with a 
spring-damper combination (stiffness c , damping coefficient η ), as is shown in 
Fig. 15.18. 

m

v0

 
Fig. 15.18  Model of a viscoelastic block impacting a wall. 

Solution: From the point in time of the first contact, we are dealing with a damped 
oscillator. The equation of motion is 

0mx x cxη+ + =  

or 
2
02 0δ ω+ + =x x x  

with 2 /δ η= m  and 2
0 /ω = c m . The initial conditions are (0) 0=x  and 

0(0) =x v . The solution to the equation of motion with the given initial conditions 
is 

0( ) sinδ ω
ω

−= tv
x t e t ,    ( )0( ) sin cosδ δ ω ω ω

ω
−= − +tv

x t e t t  

with 2 2
0ω ω δ= − . The block remains in contact with the wall as long as the 

compressive force on the wall, η= +F x cx , remains positive. The last instant of 
contact *t  is determined by the equation 

( )* 2 * 2 2 * *0
0 02 ( ) ( ) 2 sin 2 cos 0δδ ω δ ω ω δω ω

ω
− ⎡ ⎤+ = − + + =⎣ ⎦

tv
x t x t e t t . 

From this, it follows that 

*
2 2
0

2tan
2
δωω

ω δ
−

=
−

t . 

The velocity at this point in time is equal to 
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( )** * *0( ) sin cosδ δ ω ω ω
ω

−= − +tv
x t e t t . 

The coefficient of restitution is, therefore, calculated as 

2 2
0 2 2*

0

2* H( 2 ) arctan
2* *

0

( ) 1 sin cos
δ δωπ ω δ
ω ω δδ δ ω ω ω

ω

⎛ ⎞
⎜ ⎟− − −⎜ ⎟−− ⎝ ⎠= = − + =t

x t
e e t t e

v
 

with 

1,   0
H( )

0,   0
ξ

ξ
ξ
>⎧

= ⎨ <⎩
. 

This dependence is shown in Fig. 15.19.  
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Fig. 15.19  Dependence of the coefficient of restitution on the damping ratio of the viscoelastic 
material. 

Problem 2: Measurement of the Complex G-modulus.  A simple method for 
determining the storage and loss moduli of elastomers is offered by the torsion 
pendulum (Fig. 15.19). It consists of a cylindrical probe with the radius R and the 
length l  which is immovably fixed on one end and connected to a mass with the 
rotational moment of inertia Θ  on the other end. The pendulum is moved from 
equilibrium at time 0=t  and let go. By measuring the oscillation frequency and 
damping, the storage and loss moduli can be determined. 
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Fig. 15.20  Setup for a torsion pendulum for measuring the complex G-modulus. 

Solution: The torsional moment of an elastic rod is 

= − pI
M G

l
ϕ , 

where pI  is the polar moment of inertia for the cross-section: 

4

2
=p

RI π . 

For a periodic excitation at the angular frequency ω , this equation is also valid 
for a rod made from an elastomer if Gϕ  is replaced by 

′′
′= +

GG Gϕ ϕ ϕ
ω

. 

One can see that this expression is correct, because for a complex excitation, 
0( ) = i tt e ωϕ ϕ , the expression is exactly the product of the complex modulus and 

the torsional deflection angle: ( ) ( )( )ˆ ′ ′′= +G G iGϕ ω ω ϕ . Thus, using the princi-

ple of angular momentum for the pendulum we obtain the equation 

0
′′

′Θ + + =p pI IG G
l l

ϕ ϕ ϕ
ω

. 

This equation describes a damped oscillation with the angular frequency 
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′
≈

Θ
pI G

l
ω  

and the logarithmic decrement 

2
′′

=
Θ

pI G
l

δ
ω

. 

The storage and loss moduli are 

( )
2Θ′ =

p

lG
I
ωω ,     ( ) 2 Θ′′ =

p

lG
I
ωδω . 

Different frequencies can be “sampled” using bodies with different moments of 
inertia Θ . 
 
 
 
 



16 Rubber Friction and Contact Mechanics of 
Rubber 

 

The nature of friction between rubber and a hard substrate is very important for 
many technical applications. Rubber friction is significantly different from friction 
between “hard” substances such as metals or ceramics. It was made evident, most 
notably through the works of Grosch (1962), that rubber friction is very closely re-
lated to internal friction. This is proven by the fact that the temperature depend-
ence of the coefficient of friction correlates with the temperature dependence of 
the complex shear modulus. This is a sign that rubber friction is a volume prop-
erty. 

16.1 Friction between an Elastomer and a Rigid Rough Surface 

One can determine the frictional force in two ways – either by direct calculation of 
the tangential force components and then averaging over time or by calculating the 
energy loss caused by material deformation. If an amount of energy is dissipated 
per second W  at a constant macroscopic sliding velocity v , then from a macro-
scopic point of view, the total energy loss can be considered as being dissipated 
only by the frictional forces and due to this, can be written as  

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_16, 
© Springer-Verlag Berlin Heidelberg 2010 
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 = RW F v . (16.1) 

The frictional force is determined from the ratio of the energy loss to the sliding 
velocity 

 =R
WF
v

. (16.2) 

In a contact between a rigid surface and an elastomer, the energy can only be dis-
sipated through the deformation of the elastomer. Because of this, the roughnesses 
of the rigid surface and the surface of the elastomer play completely different 
roles. This is illustrated in Fig. 16.1. If an elastomer slides over a smooth rigid 
plane (Fig. 16.1 a), then there is no time-dependent change of the deformation 
state of the elastomer and, therefore, no energy loss: the friction is equal to zero. 
On the other hand, if the elastomer slides over a rough surface (Fig. 16.1 b), then 
the local deformation state of every area of the elastomer is dependent on time and 
energy is dissipated. From this, it follows that during elastomeric friction, the 
roughness of the surface of the elastomer plays only a small role: the friction is 
primarily determined by the roughness of the rigid surface. Therefore, we consider 
the friction between a rough rigid surface and an elastomer, whose surface we as-
sume to be even.  

a b  
Fig. 16.1  (a) A rough rubber block on a smooth rigid plane and (b) a smooth rubber block on a 
rough rigid plane. 

We want to calculate the deformation and energy dissipation in the elastomer. 
Thereby, we use the results from the contact mechanics of rough surfaces (Chapter 
7). If the rough surface is characterized by the root mean square l  of the height 
distribution of the “peaks” and an average R  of the radius of curvature, then the 
average contact area of an asperity is 

 Δ ≈A Rl . (16.3) 

According to this, the characteristic diameter of a micro-contact is equal to 

 ≈ Δ ≈r A Rl . (16.4) 

At a sliding velocity v ,  an area with the characteristic dimension r  is “traversed” 
in the time  

 ≈ ≈
r Rlt
v v

. (16.5) 

The characteristic frequencies for this process have an order of magnitude of 
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 1 νω ≈ ≈
t r

. (16.6) 

The average pressure in the micro-contacts is 

 1 *σ κ −= = ∇NF
E z

A
 (16.7) 

with 2κ ≈  (see Chapter 7). We denote the root mean square of the gradient of the 
surface as  

 2′∇ =z z . (16.8) 

The effective modulus of elasticity for rubber is equal to1 

 *
2 2

2(1 ) 4
1 1

ν
ν ν

+
= = ≈

− −
E GE G . (16.9) 

Because the shear modulus is frequency dependent, the characteristic frequency 
(16.6) must be substituted into the expression for average pressure (16.7): 

 ( )1 ˆ4σ κ ω−= ∇G z . (16.10) 

Thereby, we insert the magnitude of the frequency-dependent modulus, because 
the amplitudes of the stress and deformation are connected by the complex shear 
modulus. We use the following equation from the previous chapter to calculate the 
energy dissipation in a unit volume of a micro-contact:  

 21
2 2

( )
ˆ ( )

ωω σ
ω

′′
=

GP
G

. (16.11) 

Multiplied with the depth of the significantly deformed volume ≈ r , it yields the 
energy loss per unit area and then, when divided by the normal stress, the coeffi-
cient of friction: 

 ( / )
ˆ ( / )

μ ξ
′′

= ∇
G v rz
G v r

.     (16.12) 

Here, ξ  is a dimensionless coefficient on the order of unity, which is established 
by more exact calculation. Numerical simulations show that 1ξ ≈ . 

                                                           
1 Rubber can be assumed to be a practically incompressible medium which has an approximate 
Poisson’s ratio of 1/ 2ν ≈ . 
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In the middle frequency domain, it is true for many types of rubber that 

′′ ′G G . From this, it follows that ( / ) 1
ˆ ( / )

′′
≈

G v r
G v r

. Then, the coefficient of friction 

is  

 μ ≈ ∇z . (16.13) 

Therefore, in the middle frequency domain, we obtain a very simple result: the co-
efficient of friction is equal to the root mean square of the gradient of the surface. 
This result has a simple physical reason, which is illustrated in Fig. 16.2: for a 
purely imaginary shear modulus, the medium can be quickly indented, but only 
slowly relaxes back to its original form so that the form shown qualitatively in 
Fig. 16.2 occurs. Because the rubber is in contact with the substrate on only one 
side of the asperities, it is evident that the coefficient of friction, which we define 
as the ratio of the horizontal force to the normal force, is approximately equal to 
the average gradient of the surface in the contact area. As numerical simulations 
show for stochastically rough surfaces, this average gradient of the surface in the 
contact area can be associated with the average gradient of the entire surface, 
whereby we obtain (16.13). 

v

 
Fig. 16.2  Viscoelastic material in contact with a rough surface. 

We will now investigate Equation (16.12) in detail. First, we note that ( / )
ˆ ( / )

′′G v r
G v r

 is 

always equal to or smaller than 1. The coefficient of friction can, therefore, never 
be larger than the average gradient of the surface2. The frequency-dependent 
modulus for the “standard model” of rubber composed of a spring and a Maxwell 
element is 

 1
2

2

ˆ ( )
ηω

ω
ηω

+
=

+
G i

G G
G i

, (16.14) 

taking into consideration that 1 2G G . With 2: / Gτ η= , we obtain a coefficient 
of friction of  

                                                           
2 This is valid when there is no adhesion in the considered contact. 
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( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

2 2 2
1 2

2 2 2
1 2

1 /

/   ,
1 / / /

ωτμ
ωτ ωτ

≈ ∇
+ +

= ∇
+ +

z
G G

v v z
v v G G v v

 (16.15) 

whereby, the characteristic velocity 

 
τ

=
rv  (16.16) 

is inserted. The dependence (16.15) is presented in Fig. 16.3. The coefficient of 
friction remains relatively constant and equal to ∇z  for velocities in the interval 
( )1 2/ < <v G G v v . Notice, however, that the stress acting on the micro-contacts 

according to (16.10) changes at the same time from 1
1 14σ κ −= ∇G z  for small ve-

locities to 1
2 24σ κ −= ∇G z  for large velocities. Therefore, at larger velocities, the 

material in the micro-contacts is more strongly loaded. 
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Fig. 16.3  Dependence of the coefficient of friction on the sliding velocity in the “standard mo-
del” with 4

2 1/ 10=G G . 

For the rheological model (15.50-15.51) with a continuous distribution of relaxa-
tion times, which was investigated in the previous chapter, we obtain 

 

( )
( )
( )

0 1 1 2 1

22
12

1 1 2 2
1 2

( ) arctan( ) arctan( )  ,

11( ) ln .
2 1

G G G

G G

ω τ ω ωτ ωτ

ωττ
ω τ ω

τ ωτ

′ = + −

⎛ ⎞+
′′ ⎜ ⎟=

⎜ ⎟+⎝ ⎠

 (16.17) 

The corresponding coefficient of friction is presented in Fig. 16.4 as a function of 
sliding velocity. Contrary to the “standard model,” the coefficient of friction in a 
real rubber can remain approximately constant over several orders of magnitude. 
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In this case as well, it is approximately equal to the average surface slope ∇z  in 
the “plateau area.” 

The temperature dependence of the coefficient of friction is also determined by 
the temperature dependence of the complex shear modulus: the curve μ , as a 
function of log( )v , shifts by changes in temperature in the same direction and by 
the same magnitude as the frequency-dependent shear modulus. This property is 
used for “measuring” the coefficients of friction by construction of master curves 
– the same way it is used for the “measurement” of the frequency-dependent 
modulus (see Chapter 15). Thereby, one can cover the velocity domains that are 
not directly accessible for measurement. For an increase in temperature, the curve 
shifts to the right (into the area of higher velocities). Therefore, a master curve 
constructed for a specific temperature together with the WLF-shift function de-
termines the coefficient of friction for arbitrary temperatures and velocities. Ex-
perimental data (master curves) for two elastomers are presented in Fig. 16.5. 
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Fig. 16.4  Coefficient of friction as a function of sliding velocity for the Prony series according 
to Fig. 15.15 using the parameters in the model from Chapter 15. 
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Fig. 16.5  Experimental data from Grosch for the dependence of the coefficient of friction from 
two types of rubber on various substrates (K. A. Grosch, The relation between the friction and 
viscoelastic properties of rubber. Proc. Roy. Soc., A2 74, (1963) 21). 
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16.2 Rolling Resistance  

Even for pure rolling without slip, there is energy dissipation in the case of elas-
tomers and with it an associated resistance. As a rule, it is desirable to minimize 
this resistance, while at the same time maximizing the sliding friction. This is pos-
sible, because the characteristic frequency domain for sliding, /sliding vω λ≈  
(where λ  is the characteristic wavelength of the roughness profile of the substrate 
and is on the order of 10 100 μ− m ), and the characteristic frequency for rolling, 

/rolling v aω ≈  (where a  is the contact radius on the order of 5 cm), differ by two 
or three orders of magnitude. For normal operation of a tire, it is desired that in the 
frequency domain slidingω , the loss modulus is larger than the storage modulus: 
′′ ′≥G G , while in the frequency domain rollingω , the opposite is desired: ′′ ′G G  

(Fig. 16.6). 
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Fig. 16.6  Frequency-dependent storage and loss moduli for a rheological model of an elastomer 
described in Chapter 15. For the rolling resistance to remain small and the sliding friction to re-
main large (and constant), we must choose the operating conditions so that the characteristic roll-
ing frequency lies in the frequency domain highlighted on the left and the characteristic sliding 
frequency lies in the frequency domain highlighted on the right. 

In the frequency domain in which the desired condition for rolling is fulfilled, 
namely ′′ ′G G , the storage modulus is practically independent from the fre-
quency and coincides with the static modulus ∞G . Therefore, as a first order ap-
proximation, we can assume that we are dealing with a purely elastic Hertzian 
contact. 

We can estimate the energy loss during rolling by considering rolling as the 
“continuous repetitive placement” of a wheel. The normal force NF  for a sphere 
with a radius R  rolling on a rigid plane as well as the contact radius a , are found 
using the following Hertzian relations: 
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 * 1/2 3/ 2 1/ 2 3/24 16
3 3 ∞≈ ≈NF E R d G R d , (16.18) 

 2 ≈a Rd ,  (16.19) 

where d  is the penetration depth. We estimate the characteristic frequency with 

 ω ≈
v
a

 (16.20) 

and the amplitude of the deformation with  

 0ε ≈
d
a

. (16.21) 

According to (15.23), we obtain a power loss per unit volume of 

 
2

2
0

1 1( )
2 2
ωε ω ⎛ ⎞ ⎛ ⎞′′ ′′= ≈ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

v d vP G G
a a a

 (16.22) 

and a power loss in the total volume ( )32a∼  of 

 24 vW vd G
a

⎛ ⎞′′≈ ⎜ ⎟
⎝ ⎠

. (16.23) 

By dividing the power loss by the velocity, we obtain the resistance force 

 24w
vF d G
a

⎛ ⎞′′≈ ⎜ ⎟
⎝ ⎠

. (16.24) 

At low frequencies, the loss module is always proportional to the frequency and 
can, therefore, be written in the form 

 ( )ω ηω′′ =G , (16.25) 

where η  is the dynamic viscosity at low frequencies. Then, the resistance force is 

 
22 3

24 4w
a v aF v
R a R

η η
⎛ ⎞ ⎛ ⎞≈ =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
. (16.26) 

With the Hertzian result (5.24), rewritten using the notation of this section, we get 
for the deformed volume  

 3 3
16 ∞

= NRF
a

G
. (16.27) 

For resistance force we obtain 
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 3 3
4 4w N N

v vF F F
G R R
η τ

∞

≈ =  (16.28) 

and for “coefficient of rolling friction”  

 3
4

W
rolling

N

F v
F R

τμ = ≈ , (16.29) 

where /τ η ∞= G  is the relaxation time of the elastomer. This equation is valid up 
to a dimensionless constant of magnitude 1. According to this, the rolling friction 
is proportional to the product of the rolling velocity and the (largest) relaxation 
time of the rubber and inversely proportional to the radius of curvature of the 
sphere. 

16.3 Adhesive Contact with Elastomers  

Until now, we have assumed that there are no adhesive forces between elastomeric 
and rigid surfaces. This is not the case for sufficiently smooth surfaces. Now, we 
consider an adhesive contact between a rigid sphere and an elastomer with an even 
surface (Fig. 16.7). The boundary of the contact can be viewed and treated as the 
tip of a crack3. In equilibrium, the elastomer can be assumed to be an elastic body 
with the static shear modulus ∞G  and an effective modulus of elasticity of 

 
( )

( )
*

2

2 1 2
4

11
G G

E G
ν

νν
∞ ∞

∞

+
= = =

−−
. (16.30) 

In equilibrium, the JKR equation (6.20) provides us with a relationship between 
the normal force NF  and the contact radius a :  

 
1/ 23 * 34 8*

3 *
γ π⎡ ⎤⎛ ⎞

⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

N
a aF E
R E

. (16.31) 

Here, *γ  is the effective surface energy (i.e. the required energy for producing a 
unit surface). We can present the condition (16.31) in a form in which it is con-
venient to treat the contact boundary as the tip of a crack. To this end, we first 
solve Equation (16.31) for *γ : 

 
2* 3

*
3 *

4 1
3 8N

E aF
R a E

γ
π

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

. (16.32) 

                                                           
3 The original theory of Johnson, Kendall, and Roberts is based on exactly this analogy. 



264      16 Rubber Friction and Contact Mechanics of Rubber 

Because the effective surface tension *γ  is equal to the force per unit length (line-
load) attempting to “close the crack” (i.e. enlarging the contact radius), we can 
consider Equation (16.32) as an equilibrium condition for the line-loads at the tip 
of the crack. On the left side, is the line-load which is caused by the van der Waals 
forces between the surfaces. On the right side, is the corresponding line load, 
which is caused by the elastic deformation of the continuum and acts in the oppo-
site direction.  By denoting the right side of Equation (16.32) with 

 
2* 3

3 *

4 1
3 8π

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

N
E aD F

R a E
, (16.33) 

we can write the equilibrium condition in the form 

 *γ = D . (16.34) 

R

a
Elastomer

Rigid Sphere

 
Fig. 16.7  Contact between a rigid sphere and an elastomer. The contact boundary can be viewed 
as a crack. 

The difference *γ−D  can be viewed as a “driving force” for the tip of the 
crack. In equilibrium, it vanishes. If the normal force changes, then the crack is no 
longer in equilibrium. In a purely elastic body, the tip of a crack being acted upon 
by a constant “force” *γ−D , would accelerate until the velocity reaches the order 
of magnitude of the surface waves in the elastic continuum (Rayleigh waves). In a 
viscoelastic body, it reaches a finite speed due to the intensive dissipation. For a 
slow movement, it appears that the largest part of the contact area can be consid-
ered as being purely elastic. The total energy losses, on the other hand, are due 
only to a relatively small “process zone” on the tip of the crack. Maugis and Bar-
quins proposed the following equation that associates the effective uniform load 

*γ−D  with the propagation speed v  of the crack: 

 ( )* * ( )γ γ τ− = ΦD T v , (16.35) 

where ( )τ T  is the Williams-Landel-Ferry function. The dimensionless function 

( )( )τΦ T v  is typically dependent on the velocity v  in the middle velocity domain 
according to a power function: 

 ( )( ) ( )τ αΦ = nT v T v . (16.36) 
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The exponent n  typically lies between 0.25 and 0.7. An example of the function 
Φ  is shown in Fig. 16.8 for a glass sphere on polyurethane. The Equations 
(16.35) and (16.36) allow us to investigate the kinetics of the adhesion process 
under various loadings (see, for example, Problem 3 in this chapter). 
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Fig. 16.8  “Dissipation function“ Φ  as a function of the crack propagation speed for a glass 
sphere on polyurethane for two radii or curvature and two temperatures. The same master curve 
can be obtained from peeling experiments with various indenters. From: M. Barquins, Adher-
ence, Friction and Wear of Rubber-Like Materials, Wear, v. 158 (1992) 87-117. The shown de-
pendence can be approximated with ( )0.6

010 /Φ ≈ ⋅ v v  with 0 1 /μ=v m s . 

Problems 

Problem 1: Let a rigid surface be the superposition of two random functions, one 
having the characteristic wave vector 1k  and the root mean square of the gradient 

1∇z , and the other having the characteristic wave vector 2 1k k  and the root 
mean square of the gradient 2∇z . Determine the coefficient of friction between 
this surface and an elastomer. 

 
Solution: In Chapter 10, we saw that the contributions of the coefficient of friction 
on different scales are additive – as long as the contribution of every individual 
scale is much smaller than 1 (practically smaller than 0.3).  

First, we investigate a rough surface with a characteristic wave vector 1k  and 
the standard deviation of the wave vector of the same order of magnitude. The 
roughness and standard deviation of height 1l  for a surface with such spectral 
properties have the same order of magnitude: 1 1≈l h . We can estimate the radius 
of curvature of the maxima by presenting the surface in the vicinity of each maxi-
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mum as ( )2 21
1 1 1 12cos 1= ≈ −z h k x h k x . The curvature of the maxima have an order 

of magnitude of 2
1 11 / (0)′′= ≈R z h k . The characteristic diameter of a micro-

contact is estimated using 

1
2

11 1

1
≈ ≈ =

h
r Rl

kh k
 

and, according to this, has the same order of magnitude as the characteristic length 
of the wave profile of the surface ( 1 / 2λ π≈ , where 1λ  is the characteristic wave 
length).  

If there is only one scale with the characteristic wave vector 1k , then Equation 
(16.12) can be used in order to calculate the coefficient of friction, which we write 
in the form 

1
1 1

1

( )
( )

G k v
z

G k v
μ

′′
≈ ∇ . 

If roughnesses on two scales are present, then the contributions to the coefficients 
of frictions (as long as these contributions are much smaller than 1) sum to 

1 2
1 2 1 2

1 2

( ) ( )
( ) ( )

G k v G k v
z z

G k v G k v
μ μ μ

′′ ′′
≈ + ≈ ∇ +∇ . 

 

Problem 2: Determine the coefficient of rolling resistance of a rigid wheel on an 
elastic sheet which is composed of a series of the identical viscoelastic elements 
(“Winkler foundation,” see Fig. 16.9). Let every element consist of a spring 
(spring constant cdx ) and a damper (damping constant δ dx ) connected in paral-
lel. 

v

the first point
of contaktthe last point

of contact

d

z

0
� z(x)

x

axx0

 
Fig. 16.9  A rigid wheel is regarded as stationary. A rigid plate mounted with an viscoelastic 
sheet, here modeled as a Winkler foundation, is moved to the left with a velocity v . The “pene-
tration depth” is constant and equal to d . 

Solution: We approximate the form of the wheel near the contact point with 
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2

2
= − +

xz d
R

, 

where d  is the penetration depth. The gradient in point x  is tan /θ ′= =z x R . A 
movement of the substrate in the negative direction with the velocity v  leads to a 
spring movement in the vertical direction with the velocity /′= − = −z vz vx R . 
The force with which an element is acting on the wheel, is equal to 

( ) ( )
2

2z
x xdF cz z dx cz vz dx c d v dx
R R

δ δ δ
⎛ ⎞⎛ ⎞

′= − − = − + = − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. 

The z -component of the total force is calculated as 

0

2

2

a

N
x

x xF c d v dx
R R

δ
⎛ ⎞⎛ ⎞

= − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  

and the x -component of the total force as 

0

2

2

a

w
x

x x xF c d v dx
R R R

δ
⎛ ⎞⎛ ⎞

= − − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ , 

where the coordinate of the first point of contact on the right is denoted with a  
and the last point of contact on the left with 0x . The coordinate a  is calculated 
using the condition 0=z  and 0x  using the condition 0=zdF . From this, it fol-
lows that 

2=a Rd ,   
2

0 2 δ δ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

v vx Rd
c c

. 

By substituting / 2ξ = x Rd , we bring the expressions for NF  and wF  into the 
following form 

( )
0

1
1/2 1/ 2 3/ 2 22 1

ξ

ξ κξ ξ= − +∫NF R d c d , 

( )
0

1
2 22 1

ξ

ξ κξ ξ ξ= − +∫wF d c d , 

having defined 
1/ 2

1/2 1/ 2

2 2v v
cacd R

δ δκ = =   

and  
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2

0 1
2 2
κ κξ ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

. 

The coefficient of rolling resistance is calculated as 

( )

( )
0

0

1
2

1/ 2

1
2

1
2

1

w

N

d
F d
F R

d

ξ

ξ

ξ κξ ξ ξ

μ
ξ κξ ξ

− +
⎛ ⎞= = ⎜ ⎟
⎝ ⎠ − +

∫

∫
. 

We consider two limiting cases: 
(a) 1κ : very low velocities. In this case, the approximations 

1/2 1/ 2 3/24 2
3

=NF R d c  and 24
3

κ=wF d c  are valid. The coefficient of rolling resis-

tance is, therefore, 
1/2

1/ 2 1/22
δ τμ κ= = =

d v v
cR RR

 

with /τ δ= c  (one can compare this result to that of the approximation (16.29)). 
(b) 1κ : very high velocities, or traversing a liquid sheet ( 0=c ). In this case, 

the approximations δ=NF vd  and 
3/ 2 3/ 2

1/2

2
3

δ ⋅
=w

d vF
R

 are valid. The coefficient of 

resistance is, therefore4, 
1/ 23/ 22

3
μ

δ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

NF
vR

. 

 
Problem 3: Determine the kinetics of the process of the separation of a sphere in 
contact with an elastomer if the sphere is unloaded before 0=t  and at time 0=t  

a force *3
2
γ π= − = −N AF F R ,  1.5N AF F= − ⋅ , or 2= − ⋅N AF F  is applied. Use the 

following values: 2 mm=R , * 10 MPa=E , * 20.05 J/mγ = , ( )0.5
010 /Φ ≈ ⋅ v v , 

0 1 /μ=v m s . 
 

Solution: The problem is solved with Equation (16.35), which we write in the fol-
lowing form: 
                                                           

4 For the transition to a three-dimensional system, δ  must be replaced by 4η : 
1/2

21
3

NF
vR

μ
η
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

For a more detailed explanation see Chapter 19. 
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( )0.5* *
010 /γ γ− =D v v . 

With the denotations for adhesive force and equilibrium radius as  

* 33 (in our case 0.47 10  N)
2AF Rπγ −= = ⋅  

and 
1/3* 2

5
0 9  (in our case 6.56 10  m)

2 *
Ra

E
γ π −⎛ ⎞

= = ⋅⎜ ⎟
⎝ ⎠

, 

respectively, the line load D  can be presented in the following form: 
23/23/2

* 0

0

1
4

γ
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

N

A

F a aD
F a a

. 

Before time 0=t  there is an equilibrium condition without loading and a contact 
radius of 0a . At any time after 0=t , the following equation is valid: 

23/ 2 0.53/ 2
* * *0

0 0

1 10
4

γ γ γ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥− − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

N

A

F a a v
F a a v

. 

For velocity, it follows that 
223/23/ 2

0 0

0

1 1
100 4

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞⎜ ⎟⎢ ⎥= − = − −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠

N

A

v F ada av
dt F a a

. 

Using the dimensionless variables 0/=a a a  and 0 0/100=t tv a , we obtain the 
equation 

22
3/ 2 3/ 21 1

4
−

⎛ ⎞⎡ ⎤
⎜ ⎟− = − −⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

N

A

Fda a a
dt F

 

with the initial condition 1=a  for 0=t . Results of a numerical integration of 
this equation for three different ratios of /N AF F  are presented in Fig. 16.10. 
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Fig. 16.10  Dependence of the contact radius on the time for various normal forces. 

For = −N AF F , the system approaches equilibrium as →∞t . The normal force 
1.5N AF F= − ⋅  corresponds to the over-critical separation force. The sphere sepa-

rates at time 3
0 01.4 100 / 9 10  sa v⋅ ≈ ⋅∼ .  

 



17 Wear 

 

17.1 Introduction 

Wear is one of the main causes for component damage and subsequent failure of 
machines and devices. Its mitigation by appropriate material choice, coating, sur-
face design, or lubrication is, therefore, of high economic importance.  

Even though friction and wear always appear together, in practice, they are 
qualitatively different phenomena. One can already see this in the fact that one can 
imagine friction without wear, at least in a model. For example, there is friction, 
but no wear in the Prandtl-Tomlinson model. Even wear without friction can be 
envisioned: wear can already be caused by a normal contact without tangential 
movement. 

The often different physical mechanisms for friction and wear make themselves 
visible in the fact that the wear rate for various friction pairs (at otherwise identi-
cal conditions) can vary by several orders of magnitude. At the same time, it can 
be noted that in specific situations, the processes that lead to friction also cause 
wear to occur at the same time, for example, the plastic deformation of micro-
contacts. In these cases, friction and wear can have a close correlation. 

In most cases, friction is considered an unwanted phenomenon. Wear can, 
however, also be the basis for various technological processes, such as grinding, 
polishing, or sandblasting. 

It is common to differentiate the following fundamental types of wear accord-
ing to their physical mechanisms: 

− Abrasive wear occurs, if two bodies with distinctively different hard-
nesses are in contact or the third-body contains hard particles. 

− Adhesive wear occurs even in contacts between bodies with the same or 
similar hardnesses. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_17, 
© Springer-Verlag Berlin Heidelberg 2010 
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− Corrosive wear is associated with chemical modifications of the surface 
and finally erosion of the surface layer. 

− Surface fatigue is caused by repeated loading of the surface either by 
sliding or rolling, where in every single loading cycle, no noticeable 
changes in the surface appear. 

17.2 Abrasive Wear  

During abrasive wear the asperities of the harder material penetrate and cut the 
softer material. The gouges that run in the sliding direction are, therefore, a sign of 
abrasive wear. In order to estimate the wear rate for abrasive wear, we consider a 
simple model in which all micro-contacts on the hard surface are cone-shaped. 
First, we look at a single micro-contact with the normal load Δ NF . 

�

2

h
Surface

dx

Eroded
Volume

Abrasive Cone

r

 
Fig. 17.1  Gouging of a material by a rigid cone. 

Under the influence of this normal force, the cone penetrates into the softer mate-
rial. According to the definition of hardness 0σ  (of the softer material) 

 2
0σ πΔ = ⋅NF r . (17.1) 

The area of the projection of the cone on the vertical plane is equal to rh . For a 
displacement of dx , the cone would cut out a volume dV , which is given by the 
following equation: 

 2

0

tan
tan

θ
θ

πσ
Δ ⋅

= ⋅ = ⋅ = NF dx
dV rh dx r dx . (17.2) 

As a rough estimate, we relate this volume to that of the volume of wear debris of 
the material. The wear rate – defined as the volume of wear debris divided by the 
sliding length – is, therefore, equal to  

 
0

tanθ
πσ

Δ
= NFdV

dx
. (17.3) 

The summation of all of the micro-roughnesses results in a volume of wear debris 
of 
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0

tanθ
πσ

= NF
V x , (17.4) 

where tanθ  is a weighted average of tanθ  of all of the micro-contacts. This 
equation is usually written as the Archard wear equation:  

 
0σ

= abr Nk F
V x .      (17.5) 

The volume of wear debris is proportional to the normal force, the sliding 
length, and inversely proportional to the hardness of the material. The wear 
coefficient abrk  represents the specific geometry of the abrasive surface. 

The wear between a soft material and an abrasive body in which hard particle are 
solidly embedded is called two-body wear.  A special form of abrasive wear is the 
wear of bodies between which hard, abrasive particles are present. This case is 
called three-body wear.  

As can be seen in Table 17.1, the wear coefficients for two-body wear lie be-
tween 26 10−⋅  and 36 10−⋅ , while for three body wear, they are approximately one 
order of magnitude smaller. 

Table 17.1  Abrasive Wear Coefficients. Source: E. Rabinowicz: Friction and wear of materials.  
Second  Edition. John Wiley & Sons, inc., 1995. 

Authors Wear Type Asperity Size 
(µ) 

Material ( )3x10k −  

Spurr et al. (1975) 2-Body  -- Many 60 
Spurr et al. (1975) 2-Body 110 Many 50 
Avient et al. (1960) 2-Body 40-150 Many 40 
Lopa (1956) 2-Body 260 Steel 27 
Kruschov and Babichev (1958) 2-Body 80 Many 8 
Samuels (1956) 2-Body 70 Brass 5 
Toporov (1958) 2-Body 150 Steel 2 
Rabinowicz et al. (1961a) 2-Body 80 Steel 1.7 
Rabinowicz et al. (1961a) 2-Body 40 Many 0.7 
 
From the wear equation in (17.5), it follows that the volume of wear debris is pro-
portional to the sliding length. This is only valid as long as the roughnesses of the 
harder material are not “filled” by the softer material. When this occurs, the wear 
rate decreases with time (Fig. 17.2). 
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Fig. 17.2  Change in the wear coefficient with time. Data from Mulhearn, T.O., and Samuels 
L.E., The abrasion of metals: A model of the process, Wear, 1962, v. 5, 478-498. 

As long as the surface properties of the partners are not changed (this can be 
achieved by regular cleaning the surfaces of debris particles), the volume of wear 
debris is proportional to the sliding path. Equation (17.5) indicates that the wear 
rate is inversely proportional to the hardness 0σ  of the softer material. The recip-
rocal value /dx dV∈ = , called the wear resistance, is proportional to its hardness. 
This dependence was confirmed in many experiments (Fig. 17.3). The hardness of 
the abrasive, on the other hand, influences the wear rate only marginally. 
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Fig. 17.3  The abrasive wear resistance of metallic materials is proportional to the hardness with 
a high accuracy. Experimental data from Хрущев М. М., Бабичев М. А., Исследования 
изнашивания металлов (Investigations on the wear of metals), Мoscow, 1960. 

By the choice of abrasive materials, not only must the hardness be taken into 
account, but also its ability to form sharp cutting edges. From this, it follows that 
brittle materials with higher hardnesses are preferred. 
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Equation (17.4) can also be interpreted in another way. Because the coefficient 
of friction μ  caused by the gouging process is equal to tanθ , (17.4) can also be 
presented in the following form 

 
0 0

μ
σ σ

= =NF x WV k k ,     (17.6) 

where W  is the frictional work. According to this, the volume of wear debris is 
proportional to the dissipated energy divided by the hardness of the material. The 
proportionality of the volume of wear debris to the energy contribution is also 
valid for adhesive wear (see next section) and erosive wear (see Problem 1 in this 
chapter) and is often applied as a general “law of wear” for even more types of 
wear. 

17.3 Adhesive Wear 

If the frictional partners have comparable hardnesses, then another type of wear 
begins to play a primary role: adhesive wear. Adhesive wear is the most important 
type of wear in tribological applications in which the wear should be minimized 
and, therefore, the conditions at which abrasive wear occurs should be avoided. 
The mechanism of adhesive wear can be imagined as the welding together of mi-
cro-roughnesses followed by the volume elements (wear particles) close to the 
surface being torn away. We investigate the conditions for the welding and tearing 
away of a particle according to this mechanism. 

The fundamental property of metallic materials is that they deform plastically 
after a critical stress is exceeded. If the material is, thereby, loaded in tension, then 
after some critical deformation, failure occurs. In contrast, if the elastic limit is ex-
ceeded under pressure, then the two partners are welded together. Even if this ef-
fect is not macroscopically noticeable (similar to the case of adhesion), it is valid 
for individual micro-contacts. 

Now, we consider an asperity, which comes into contact with another asperity 
during the relative movement between contact partners and forms a junction with 
diameter D  and afterwards breaks away (Fig. 17.4).  

D

 
Fig. 17.4  A “cold-weld” junction between two asperities. 
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In the typical strength hardened state for the surface layer, all three critical 
stresses, namely yield strength, ultimate strength, and “welding stress,” are of the 
same order of magnitude. The stress in the micro-contact reaches the order of 
magnitude of the penetration hardness 0σ  of the material as the asperities come 
together. Thereby, the asperities weld together. If they then separate, nearly the 
same stress 0σ  is again reached just before failure, only with a different sign. The 
elastic potential energy directly before failure has the order of magnitude 

2
30

2
σ

≈elU D
G

. It is only sufficient to dislodge a particle when it is larger than the 

adhesive energy, 2γ≈adh effU D , which is required in order to create two free sur-
faces. Here, γ eff  is the effective surface tension of the inner interface in the mate-
rial (also called the fracture toughness). The dislodging of a particle is, therefore, 
only possible if >el adhU U  and thus: 

 2
0

2 γ
σ

> effG
D . (17.7) 

For many simple crystals 0σ ∝ G . Then, (17.7) assumes the form 

 
0

γ
σ

= eff
cD const . (17.8) 

This equation gives the order of magnitude of the diameter of the wear particle as 
a function of the hardness and the effective surface energy. The experimental 
value for the constant in (17.8) is around 600001. 

Since the dislodging of a particle leads to the creation of a cavity of about the 
same depth as the diameter of the dislodged particle, it is safe to assume that the 
roughness created by wearing is on the same order of magnitude as (17.8).  

In many applications, it is required that the clearance between two moving 
parts is as small as possible. Experience shows, however, that the clearance should 
also not be too small. Otherwise, gradually increasing damage to the surface be-
gins to take place, which is called “galling.” It is obvious that the required mini-
mum clearance has the same order of magnitude as the characteristic diameter of 
the wear particle. An empirical equation for the minimum clearance minh  is  

 min
0

180,000 effh
γ
σ

= . (17.9) 

                                                           
1 For this, see the book by E. Rabinowicz, Friction and wear of materials. Second Edition, John 
Wiley & Sons, inc., 1995. 
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In order to estimate the wear rate for adhesive wear, we consider two rough 
surfaces in contact (Fig. 17.5). 

FN

FN

 
Fig. 17.5  Two rough surfaces in contact. 

The normal force NF  is related to the contact area and the hardness of the contact-
ing bodies: 

 0σ=NF A . (17.10) 

We denote the average diameter of a contact with D  and the number of micro-

contacts with n . It is then obvious that 
2

4
π

≈ ⋅
DA n . From this, it follows that 

 2 2
0

44
π π σ

= = NFAn
D D

. (17.11) 

The “existence length” of a micro-contact has the same order of magnitude as the 
diameter D  of the contact. This is the length over which a contact is formed and 
again destroyed. The total number of contacts which have been formed along the 
path x  is equal to 

 3
0

4
πσ

≈ ≈ NF xxN n
D D

. (17.12) 

If we assume that not every formation and destruction of a micro-contact leads to 
the dislodging of a wear particle, rather the wear particles form with a probability 

*k , then the total volume of generated wear particles is equal to 

 
3 3 *

* *
3

00

41 4
2 3 8 12 3

π π
σπσ

= ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅N NF x F xD D kV k N k
D

. (17.13) 

By defining * / 3k  as the coefficient adhk , we obtain the law for adhesive wear: 

 
0σ

= N
adh

F x
V k .      (17.14) 

Also for adhesive wear, the volume of wear debris is proportional to the nor-
mal force, the sliding length, and inversely proportional to hardness. This 
equation is often called the Holm-Archard Equation.  
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Due to the “probability of the generation of a wear particle,” which now comes 
into play and can be dependent, for example, on the contamination of the surface, 
the adhesive wear coefficients may vary by a few orders of magnitude. The typical 
value of the wear coefficient for a non-lubricated contact between two alloy-
forming metals is approximately 310−∼adhk , but can be three or four orders of 
magnitude smaller in the presence of a very good lubricant or for two non-
compatible metals. 

17.4 Conditions for Low-Wear Friction 

The conditions for low-wear sliding are dependent on many parameters and it is 
difficult to formulate simple rules to deal with it. Different situations present 
themselves in lubricated and non-lubricated systems. Roughnesses serve as a res-
ervoir for lubricants in lubricated systems and in this way, can minimize wear, 
while in dry operating systems, it is usually desired to create as smooth a surface 
as possible. If the yield stress of the material is not reached in the micro-contact, 
then only purely elastic deformation of the surfaces takes place – assuming that no 
chemical reactions occur between the two surfaces2. Since the average stress in the 
micro-roughnesses has the order of magnitude *1

2 ∇E z , according to (7.16), and 
the maximum stress that occurs in the individual micro-contacts can reach ap-
proximately *∇E z , the condition *

0σ∇ <E z  must be met, or 

 0
*

σ
∇ <z

E
. (17.15) 

For many metallic materials, the hardness correlates with the modulus of elasticity 
and the following is valid3: 

 0 0.01
E

σ
≈ . (17.16) 

In order for the frictional partners to deform only elastically, the surfaces must be 
extremely smooth: the average gradient of the surfaces cannot exceed the value 
0.01. Additionally, it is desirable to keep the wave length of the roughness as 
small as possible, so that the diameter of the micro-contacts remains below that 
found in (17.8) and the condition for adhesive wear is not fulfilled. If the average 
gradient is larger than that in (17.15), then the softer material in the contact area 

                                                           
2 A simple criterion for this is that the contacting materials form no alloys. 
3 For related statistical data, see: E. Rabinowicz, Friction and Wear of Materials. Second Edition, 
John Wiley & Sons, inc., 1995. 
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plastically deforms. The consequences that plastic deformation has on wear are 
significantly dependent on the properties of the uppermost surface layers. 

The description of adhesive wear in the previous section assumes that the for-
mation of cold-weld junctions and their subsequent destruction takes place at dif-
ferent places in the material. If the material forms a layer of oxides or is lubri-
cated, then it is possible that the destruction of the contacts occurs at the same 
interface as their formation. The relation between the strength of the surface inter-
face and the volume strength of the material, therefore, plays a very large role in 
adhesive wear, even if they are not explicitly represented in Equation (17.14). This 
motivated Kragelski4 to introduce the “principal of positive hardness gradient” as 
the essential principal for formulating conditions for low-wear friction. According 
to this principal, the strength of the uppermost surface layers of the material 
should increase with the depth. This can be achieved by lubrication, chemical 
modification of the surface layers, by material softening using local temperature 
increases, as well as by designing surface layers with low surface energies. For 
low-wear contacts, it is beneficial if the contacting materials do not form alloys, or 
at least an alloy for which the strength is smaller than that of both of the base ma-
terials. If the hardness gradient is negative for whatever reason, then the wear rate 
increases abruptly. Therefore, the processes of oxidation and interactions with mo-
lecular layers of the lubricating film are very relevant to wear, but until now, have 
not been able to be brought into the framework of a simple contact mechanical 
model.  

17.5 Wear as the Transportation of Material from the Friction 
Zone 

In order to analyze wear, it is not sufficient to establish the conditions for the dis-
lodgment of wear particles. As long as the wear particles remain in the friction 
zone, they continue to be exposed to intensive tribological loading and are repeat-
edly reintegrated into the surfaces of the frictional partners. The wear first be-
comes noticeable when the material has left the friction zone. Therefore, the wear 
is in a broader sense, not only a problem of strength, but also a problem of mate-
rial transport out of the friction zone. 

According to Kragelski, in order for a material to be wear resistant, it is benefi-
cial for the surface to have a lower yield strength than the inner material. We will 
investigate the wear resistance of a material with such a soft surface layer with a 
shear strength of τ c  and thickness h . Let the diameter of the friction zone be L . 

The wear rate can be estimated using the following qualitative considerations. 
Assuming that the layer exhibits ideal plastic behavior, the tangential stress in the 
layer remains constant, independent from the sliding velocity, and equal to τ c . 

                                                           
4 I.V. Kragelski, Friction and Wear. Butter Worth, London, 1965, 346 pp. 
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One can formally introduce an effective viscosity of the layer ηeff  so that the shear 
stress in the layer can be calculated using the same rule as with a viscous fluid: 

 τ η=c eff
v
h

. (17.17) 

From this, it follows that  

 
τ

η = c
eff

h
v

. (17.18) 

A surface layer that is already in a state of plastic yielding has no yield strength 
with respect to other stress components (e.g. normal stress) and behaves, in a first 
order approximation, like a liquid with the effective viscosity (17.18). Thus, it is 
squeezed with a velocity that can be estimated using Equation (14.27): 

 
3 2

4 4

2 2
3 3πη π τ

≈ ≈N N
eff c

h h vh F F
R R

. (17.19) 

The volume that is squeezed out of the friction zone (material that is worn away) 

divided by the sliding path is, therefore, equal to 
2 28

3 2

π

τ
⎛ ⎞= ≈ ⎜ ⎟
⎝ ⎠

N

c

h R FdV h
dx v R

. 

Numerical simulations confirm that this equation is accurate up to a proportional-
ity factor. Therefore, the wear equation can be written in the following form5: 

 
2

0σ
⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

NF hV x
L

.      (17.20) 

Here, we introduced the hardness of the material 0σ . This relationship has the 
same form as that of the wear equation (17.14), but with a geometric factor 
( )2/h L , which accounts for extremely low wear rates for small values of h  and 
large values of L . 

17.6 Wear of Elastomers 

The wear of elastomers is a very complicated process that is not completely un-
derstood even today. We can apply the wear equation (17.14) for a rough estimate 
of adhesive wear, where the hardness 0σ  must be replaced by the average stress 
(16.10) in the micro-contacts: 
                                                           
5 V.L. Popov, I.Yu. Smolin, A. Gervé and B. Kehrwald, Simulation of wear in combustion en-
gines. Computational Materials Science, 2000, v. 19, No.1-4, pp. 285-291. 
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ˆ4 ( )

N
adh

F x
V k

G vk z
κ

=
∇

 (17.21) 

with 2κ ≈  and k  being the characteristic wave number of the roughness.  
In order to characterize the wear of rubber, one often uses the so-called abrad-

ability γ  as the ratio of the volume of wear debris to the energy loss6. For this, we 
have the approximation 

 
2 ˆˆ 4 Im( ( ))4 ( )

κ κ
γ

μ μ
= = =

∇∇
adh adh

N

k kV
F x z G vkG vk z

. (17.22) 

The abradability is inversely proportional to the imaginary part of the complex 
modulus and exhibits a minimum in the middle velocity domain (Fig. 17.6). The 
abradability curve determined by experiments is presented in Fig. 17.7 as a func-
tion of velocity. 

In addition to viscoelastic properties, rubber also exhibits plastic properties. 
These properties can be characterized by defining a critical stress σ c , the “yield 
stress,” whereby, this critical stress is even more loosely defined as it is in metals. 
We assume that the penetration hardness of rubber is three times this value: 

0 3σ σ≈ c . According to (16.10), the characteristic stress in the micro-contacts has 
an order of magnitude of  

 ( )1 ˆ4σ κ −≈ ∇G vk z . (17.23) 

If this stress reaches the hardness of the material, then the rubber deforms plasti-
cally and the wear increases rapidly. The critical velocity at which this occurs is 
calculated using the condition 

 ( )0
ˆ2σ ≈ ∇cG v k z . (17.24) 

A more exact consideration of frictional and wear processes should also take 
into account changes in temperature in the micro-contacts, because the complex 
modulus is temperature dependent. 

For large coefficients of friction, an instability develops in the frictional contact 
for which a part of the contact surface is in a sticking state. Further movement of 
the body is then only possible by the propagation of detachment waves, the so-
called Schallamach waves. In this regime, another wear mechanism is characteris-
tic, the formation of rubber rolls. 

                                                           
6 Abradability γ  should not be confused for the surface tension, for which we use the same let-
ter. 
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Fig. 17.6  Velocity dependence of the coefficient of friction and the abradability, according to 
Equation (17.22), for the rheological model (15.51) with 0 1=G , 1 1000=G , 2
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Fig. 17.7  Experimental velocity dependence of the coefficient of friction μ  and the abradability 
γ  for a rubber. Data from: K.A. Grosch, The rolling resistance, wear and traction properties of 
tread compounds. Rubber Chemistry and Technology, 1996, v. 69, pp. 495-568. 
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Problems 

Problem 1:  Erosive wear at low velocities. A hard, round particle with the ra-
dius R  and a velocity 0v  impacts a surface (hardness 0σ ) perpendicularly. De-
termine the penetration depth, the diameter of the penetration, and the volume ex-
pelled by the impact. 

 
Solution: The time-dependent penetration depth ( )d t  is related with the time-

dependent contact radius ( )a t  according to ( ) 2 ( )≈a t Rd t . The contact surface 
is calculated as 

( ) 2 ( )π≈A t Rd t . 

Let the average stress in the contact area be constant at every point and equal to 
the hardness of the material. The contact force acting on the spherical particle is, 
therefore, equal to 0 2 ( )σ π− Rd t . The equation of motion yields 

2

02

( ) 2 ( )πσ∂
= −

∂
d tm Rd t
t

. 

Its solution with the initial conditions (0) 0=d , 0(0) =d v  is given by 

0( ) sinω
ω

=
v

d t t  

with 02πσ
ω =

R
m

. The maximum penetration depth is equal to 

0
max 0

02ω πσ
= =

v md v
R

. 

By expressing the mass of the particle using the density: 34
3

π ρ=m R , we obtain 

2
0

max
0

2
3

ρ
σ

=
v

d R . 

The “penetrated” volume ΔV  is equal to 
2 2 2

2 3 0 0 0
max

0 0 0

4
3 2 2 2

ρ ρ
π π

σ σ σ
Δ ≈ = = =

v v mv
V Rd R V . 

The penetrated volume for the impact of the particle is equal to the kinetic energy 
of the particle divided by the hardness of the material. 
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The wear volume is dependent not only on the penetrated volume, but also 
from the mechanism of the removal of the displaced material. As a rule, however, 
the wear volume is proportional to the penetrated volume. 



18 Friction Under the Influence of Ultrasonic 
Vibrations  

 

Vibrations of various frequencies and amplitudes are used in many technical fields 
to influence frictional forces. The most known low frequency applications are vi-
bration compactors and plates. High frequency oscillations are utilized to influ-
ence friction forces in metal working, assembly, wire drawing, and cutting. They 
are also used to combat contact instabilities in nanotribological instruments (e.g. 
in atomic force microscopy). There are several methods to induce directional mo-
tion based on exploiting the interactions between vibrations and friction. For ex-
ample, methods of transportation and separation of mixtures using vibration be-
long to this category. The principle of operation of traveling-wave motors, which 
are used in cameras and objectives, is based on ultrasonic oscillations. Oscillations 
usually lead to a decrease in frictional force. Under certain conditions, they can 
also give rise to an increase in friction or to the welding of the contact partners. 
Ultrasonic welding and ultrasonic bonding in microchip technology are based on 
this principle. Finally, oscillations can be used to explore the mechanisms of fric-
tion. 

 
 
 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_18, 
© Springer-Verlag Berlin Heidelberg 2010 
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18.1 Influence of Ultrasonic Vibrations on Friction from a 
Macroscopic Point of View 

I. Influence of vibration on static friction 
We investigate a body that is supported on a base at two points (Fig. 18.1). Let the 
coefficient of friction between the base and the specimen be μ . As a first order 
approximation, the specimen can be considered to be a rigid body whose length 
can be varied periodically by means of a built-in piezoelectric element. 

u(t)

Periodic Potential

Piezoelectric Element �

F

Static Friction Kinetic Friction FF

F

Stick Slip  
Fig. 18.1   (a) An oscillating specimen in the sliding direction. (b) The forces acting on the speci-
men in the horizontal direction. 

In the absence of vibrations, a critical force of = μs NF F  must be applied to the 
specimen in order to set it into motion, where NF  is the normal force and, in our 
case, is equal to the weight of the specimen. Contrarily, if the length of the speci-
men is changed so that a relative motion between the contact points and the base is 
generated, then the specimen is already set into motion by an arbitrary small force 
F . The free-body diagram of a specimen whose length increases with time is 
shown in Fig. 18.1 b. For slow length changes, the process is quasi-static and all 
forces must be in equilibrium at every point in time. Since the magnitude of the 
kinetic frictional force is constant in every point of contact: 

 1
2slip NF Fμ= , (18.1) 

the frictional forces can only remain in equilibrium with external forces if the one 
end of the specimen slides and the other sticks. In the phase where the specimen 
contracts, the rear contact slides and the forward contact sticks. In this way, the 
specimen exhibits a worm-like movement and moves with the period Δl , where 
Δl  is the amplitude of the change in length. This means, assuming that the Cou-
lomb’s law of friction is valid, that an arbitrarily small oscillation amplitude and 
an arbitrarily small external force are sufficient to set the specimen into macro-
scopic motion: the force of static friction vanishes. Experiments show, however, 
that this conclusion is only valid for large enough oscillation amplitudes (see the 
experimental measurements of the force of static friction as a function of oscilla-
tion amplitude below).  
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II. The influence of vibration on kinetic friction 
Next, we will investigate the influence of vibration on the force of kinetic friction. 
The oscillation frequency should be high enough so that the oscillations are not in-
fluenced by the steady movement of the specimen. This means that the movement 
of the specimen can be assumed to be the superposition of a movement with a 
constant velocity 0v  and an oscillating velocity.  

(1) Oscillation in the sliding direction 
If the specimen oscillates according to the harmonic relation 

 0 sinl l l tω= + Δ , (18.2) 

then the coordinates of the contact points can be defined as 

 1 1
1 0 02 2 sinx v t l l tω= + + Δ ,   1 1

2 0 02 2 sinx v t l l tω= − − Δ . (18.3) 

Their velocities relative to the base are 

 1
1 0 2 cosx v l tω ω= + Δ ,  1

2 0 2 cosx v l tω ω= − Δ  (18.4) 

or 

 1 0 ˆ cos= + ωx v v t ,   2 0 ˆ cos= − ωx v v t , (18.5) 

with 1
2v̂ lω= Δ . For simplification, we assume that the normal force is evenly dis-

tributed between both contact points, each with / 2NF  and it does not change with 
time. Under this assumption, we obtain a total frictional force acting on the speci-
men of 

 ( ) ( )0 0ˆ ˆsgn cos sgn cos
2

= + + −⎡ ⎤⎣ ⎦
μ

ω ωN
R

F
F v v t v v t . (18.6) 

We obtain the macroscopic frictional force by averaging this force over the oscil-
lation period: 

 ( ) ( )
2

0 0
0 0

1 1 ˆ ˆ( )d sgn cos sgn cos d
2 2

= = + + −⎡ ⎤⎣ ⎦∫ ∫
πμ

ξ ξ ξ
π

T
N

R R
F

F F t t v v v v
T

. (18.7) 

By averaging over the period, the contributions of both terms in the integral are 
the same so that it is sufficient to integrate one of them and then multiply by 2: 

 ( )
2

0
0

ˆsgn cos d
2

= −∫
πμ

ξ ξ
π

N
R

F
F v v . (18.8) 

We consider the two cases: 
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(a) 0 ˆ>v v .  In this case, the velocity always remains positive and the frictional 
force is constant in both magnitude and direction. The average frictional force is, 
in this case, equal to = μR NF F . 
(b) 0 ˆ<v v . Here, the velocity is positive in one part of the period and negative in 
the other (these time periods are shown in Fig. 18.2 and denoted with +1 and -1, 
respectively). The frictional force in the positive domain is μ NF  and −μ NF  in the 
negative domain. The instant of the change in the sign of the velocity is deter-
mined from the condition *

0 ˆ cos 0− =ξv v . From this, it follows that 

 ( )*
0 ˆarccos /=ξ v v . (18.9) 

With help from Fig. 18.2, it is easy to see that the integral (18.8) is calculated to 

 

( )( )* * * 02 2
2 2 2 arccos

ˆ2 2 2
⎛ ⎞⎛ ⎞⎛ ⎞= − − = − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

π πμ π ξ ξ μ ξ μ
π π π
N N N

R
F F F v

F
v

 

or   

 
0

0

0

2 ˆarcsin ,    for       
ˆ

ˆ,                       for    

N

R

N

F v
v v

F v
F v v

μ
π
μ

⎧ ⎛ ⎞ <⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ >⎩

. (18.10) 

This dependence is presented in Fig. 18.3 in comparison with experimental data. 

v
v0

-1 +1 -1

x

x
*

vcosx

� ��

 
Fig. 18.2  Explanation for the calculation of the integral in (18.8). 
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Fig. 18.3  Theoretically and experimentally obtained friction reduction using vibrations parallel 
to the direction of motion. Data from: Storck H., Littmann W., Wallaschek J., Mracek M.: The 
effect of friction reduction in presence of ultrasonic vibrations and its relevance to traveling 
wave ultrasonic motors. Ultrasonics, 2002, Vol. 40, p. 379-383. 

(2) Vibration perpendicular to sliding direction. 
In this case, the oscillation velocity  

 1 ˆ cos= ωv v t  (18.11) 

is always directed perpendicular to the sliding direction (Fig. 18.4 b). The instan-
taneous value of the frictional force can be calculated with the help of the force 
diagram (Fig. 18.4 c) as 

 cos= μ ϕR NF F . (18.12) 

Taking into account the relation 0ˆtan /v vϕ = , the frictional force is 

 
2

0

ˆ
1 cos

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

μ

ω

N
R

F
F

v t
v

. (18.13) 

The macroscopic frictional force, as the average of the microscopic horizontal 
force, is calculated as 

 
2

2
0

0

d
2 ˆ

1 cos

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

∫
πμ ξ

π
ξ

N
R

F
F

v
v

. (18.14) 

This dependence, together with experimental data for comparison, is presented in 
Fig. 18.5. Contrary to the case of vibrations parallel to the sliding direction, the 
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coefficient of friction always remains smaller than without ultrasonic vibrations in 
this case.  

F

Piezo-Electric
Element

F

v

v0

v1

�

�

FSliding

FSliding

 
Fig. 18.4  Oscillations perpendicular to the sliding direction (top view): (a) Schematic presenta-
tion of experiments, (b) Velocity diagram, (c) Force diagram. 

A significant difference between theoretical and experimental results is that the 
experimentally obtained coefficient of friction does not approach zero at very low 
sliding velocities as predicted by theory. This is a sign that the macroscopic law of 
friction by Coulomb is no longer valid for small oscillation amplitudes. 

 
Fig. 18.5  Theoretically and experimentally obtained reduction in frictional force by vibrations 
perpendicular to the direction of motion. Data from: Storck H., Littmann W., Wallaschek J., 
Mracek M.: The effect of friction reduction in presence of ultrasonic vibrations and its relevance 
to traveling wave ultrasonic motors. Ultrasonics, 2002, Vol. 40, p. 379-383. 
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18.2 Influence of Ultrasonic Vibrations on Friction from a 
Microscopic Point of View 

The macroscopic frictional force is nothing other than the time-averaged value of 
the tangential force acting between the body and the substrate. The term “macro-
scopic frictional force” can, therefore, only be used in relation with a specified 
time interval over which it is averaged. On sufficiently small spatial and time 
scales, the macroscopic law of friction breaks down. Therefore, it cannot be ap-
plied to the investigation of the influence of vibrations on friction for arbitrarily 
small oscillation amplitudes.  

We illustrate the fact that the macroscopic law of friction breaks down on small 
scales and must be modified, with the Prandtl-Tomlinson model (Chapter 11), 
which we adapt to the above two-contact system. We consider two point masses 
with a total mass m  whose distance changes according to the expression 

 0( ) sinl t l l tω= + Δ . (18.15) 

Both masses are found in a periodic potential. Equation (11.1) is modified to 

 ( ) ( )0 sin ( ) / 2 sin ( ) / 2
2

= − − − + +⎡ ⎤⎣ ⎦η
F

mx F x k x l t k x l t . (18.16) 

Without vibrations, the force 

 ( )1
,0 0 02cos=sF F kl  (18.17) 

must be applied to the system in order to set it in motion. Therefore, ,0sF  has the 
physical sense of the force of static friction without ultrasonic vibrations.  

Now, we let the length l  oscillate according to (18.15) and average Equation 
(18.16) over the period 2 /= π ωT ; we denote the average over this time with the 
angled parentheses: 

 ( ) ( )0 sin ( ) / 2 sin ( ) / 2
2

= − − − + +η
F

m x F x k x l t k x l t . (18.18) 

As long as there is no macroscopic motion of the system (i.e. it is macroscopically 
in a static state), the average values x  and x  are equal to zero and the force of 
static friction is 

( )( ) ( )( )
( )

( ) ( ) ( ) ( )( )

0
0 0 0 0

0 0 0

1 1 1 1
0 0 0 02 2 2 2

sin sin( ) / 2 sin sin( ) / 2
2
sin cos sin( ) / 2

sin cos cos sin sin sin sin  .

F
F k x l l t k x l l t

F kx k l l t

F kx kl k l t kl k l t

ω ω

ω

ω ω

= − + Δ + + + Δ

= ⋅ + Δ

= ⋅ Δ − Δ

 (18.19) 
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The average of the second term is equal to zero (because we are averaging an odd 
function). The average value of the first term can be calculated with help from the 
expansion1 

 ( ) ( ) ( ) ( )0 2
1

cos sin 2 cos 2
∞

=

= + ∑ζ ϕ ζ ζ ϕn
n

J J n , (18.20) 

where nJ  is a Bessel function of nth order. Therefore, the frictional force is 

 ( ) ( )1 1
0 0 0 02 2sin cos= ΔF F kx kl J k l . (18.21) 

This force is a function of the coordinate 0x . Its maximum possible value, 

 ( ) ( ) ( )1 1 1
0 0 0 ,0 02 2 2cos= Δ = Δs sF F kl J k l F J k l , (18.22) 

is the force of static friction. According to this, the force of static friction is de-
pendent on the oscillation amplitude. This dependence is presented in Fig. 18.6. 
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Fig. 18.6  Dependence of the force of static friction on the oscillation amplitude for a two body 
system in a spatially periodic potential. 

The frictional force decreases with the amplitude and vanishes for 
/ 2 2.4048Δ =k l  (i.e. when 0.77lΔ ≈ Λ ), where Λ  is the wavelength of the po-

tential. If the interaction potential contains several Fourier components, then the 
oscillations of the force of static friction become blurred and we obtain a continu-
ously decreasing function. In this example, we can recognize the gradual transition 
from static friction without ultrasonic vibrations to the macroscopic result in the 
presence of ultrasonic vibrations ( 0=sF ). We see that the oscillation amplitude at 
which we have a significant decrease in the force of static friction provides us in-

                                                           
1 O.J. Farrell, B. Ross, Solved Problems: Gamma and beta functions, Legendre Polynomials, 
Bessel functions. The Macmillan Company, 1963, 410 pp. 
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formation about the characteristic wavelength of the interaction potential. This 
fact is used in tribospectroscopy for the investigation of frictional mechanisms.  

18.3 Experimental Investigations of the Force of Static Friction 
as a Function of the Oscillation Amplitude 

The system shown in Fig. 18.1 was experimentally investigated and the force of 
static friction was measured as a function of oscillation amplitude2. Experiments 
were conducted at frequencies of about 60-70 kHz with oscillation amplitudes up 
to about 1 mμ . The oscillation amplitude was measured with a laser vibrometer. 
Results are presented in Fig. 18.7 for pairings of various materials with a steel 
specimen.  

For most pairings, the coefficient of friction decreases with the oscillation am-
plitude. The length at which the frictional force significantly decreases determines 
the characteristic spatial scale of the frictional process for the given friction pair-
ing under the given conditions. The characteristic spatial scale for frictional proc-
esses is different for various materials. In Table 18.1, the results are summarized 
for 9 different investigated materials. Thereby, we distinguish between the first 
experiment and experiments after the system has been run in. 

For most materials, the characteristic length scale after running-in is smaller 
than in the initial state. The exceptions are brass and glass. As can be seen in Ta-
ble 18.1, the characteristic scales lie between about 10 and 100 nm for all materi-
als investigated. For metals, it varies between 20 and 60 nm. The physical origin 
of this scale is not yet completely understood; possibly, it has something to do 
with the thickness of the boundary layer. At larger oscillation amplitudes, the 
specimen heats up and the boundary layer loses its effectiveness. Therefore, it is 
typical for the coefficient of friction to increase once again at large ultrasonic am-
plitudes. At even larger amplitudes, we would be dealing with strong metallic ad-
hesion and frictional welding. 

Rubber and aluminum exhibit a qualitatively different behavior (Fig. 18.8). 
With rubber, we are dealing with a case where the scale is principally not deter-
mined by interactions on the nanoscale. Aluminum is known for its differing tri-
bological behavior compared to other metals, which is possibly due to ease with 
which the oxidation layer is broken through and the frictional process leaves the 
domain of boundary layer friction. 

The coefficient of friction for teflon in Fig. 18.7 is not only small, but becomes 
negative with increasing oscillation amplitudes. This is possible when the surface 

                                                           
2 V.L. Popov, J. Starcevic, Tribospectroscopic Study of a Steel-Steel Friction Couple. Tech. 
Phys. Lett., 2005, v. 31, No. 4, pp. 309-311. 
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exhibits an asymmetric structure so that it forms a “ratchet3” and directional mo-
tion takes place even in the absence of external forces. 

Investigations using tribospectroscopy show that under the conditions for 
boundary layer friction, the macroscopic law of friction is already applicable from 
oscillation amplitudes of about 100 nanometers. A rapid decrease in the coeffi-
cient of friction takes place at very small amplitudes on an order of magnitude 20-
60 nanometers. Such amplitudes are sufficient to control the coefficient of friction. 
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Fig. 18.7  Dependence of the coefficient of static friction on the oscillation amplitude for an ar-
ray of materials on steel C45.  

                                                           
3 For a more detailed commentary to ratchets, see Section 11.5. 
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Fig. 18.8  Dependence of the coefficient of static friction on the oscillation amplitude for rubber 
and aluminum. 

Table. 18.1  The characteristic frictional scale 0l  of various materials calculated for the first ex-
periment and for the average of the experiments after running-in. 

Material of Frictional Plate 
0l  [nm] 

1st experiment 
0l  [nm] 

After running-in 
Mild Steel C 45 61 41 
Austermitic Mangenese Steel 
X120Mn12 

39 24 

Titanium TI01 34 27 
Titanium TI02 25 22 
Titanium TI03 50 -- 
Copper 42 37 
Brass 17 29 
Brake Pads 31 29 
Glass 104 111 

18.4 Experimental Investigations of Kinetic Friction as a 
Function of Oscillation Amplitude 

For many applications of active control of frictional force, it is important to know 
how the force of kinetic friction is dependent on the oscillation amplitude. In this 
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section, the typical experimental results are presented that were obtained using an 
ultrasonic pin-on-disc tribometer (schematically shown in Fig. 18.9 a).  

 
Fig. 18.9 (a) Schematic presentation of an ultrasonic pin-on-disc tribometer; (b) Geometry of 
sliding in an ultrasonic pin-on-disc tribometer. 

The dependence of kinetic friction on the sliding velocity for various oscillation 
amplitudes is presented in Fig. 18.10 for a pairing of steel on steel . 
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Fig. 18.10 Dependence of the coefficient of friction on the sliding velocity and the oscillation 
amplitude for a pairing of “steel on steel” for a frequency of 45 kHz, 31.5= °θ  and the follow-
ing oscillation amplitudes: (1) 0.023 μm , (2) 0.056 μm , (3) 0.095 μm , (4) 0.131 μm , (5) 
0.211 μm , (6) 0.319 μm . Source: V.L. Popov, J. Starcevic, A.E. Filippov. Influence of ultra-
sonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry friction. – 
Trib. Lett., 2009, DOI 10.1007/s11249-009-9531-6. 

Qualitatively similar dependences are also found for other tribological pairings. It 
is characteristic that the frictional force slightly decreases as velocity increases in 
the absence of vibration (Curve 1 in Fig. 18.10). This can lead to the development 
of an instability. If we excite the system using ultrasonic oscillations with an am-
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plitude of about 0.1 mμ , then the frictional force becomes a monotonically in-
creasing function of the sliding velocity (Curve 3 in Fig. 18.10). This effect can be 
used to suppress frictionally induced instabilities.  

Aluminum is an exception: In the pairing of steel on aluminum, the coefficient 
of friction is dependent on neither the sliding velocity nor the oscillation ampli-
tude and exhibits only strong fluctuations about a constant value 0.6 0.1≈ ±μ  
(Fig. 18.11).  
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Fig. 18.11  Dependence of the coefficient of friction on a pairing of aluminum/steel for an oscil-
lation frequency of 48 kHz and the following oscillation amplitudes: (1) 0.21 μm , (2) 0.081 
μm , (3) 0.31 μm , (4) 0.14 μm , (5) 0.41 μm , (6) 0.035 μm . The coefficient of friction exhib-
its strong fluctuations about a value of 0.6, but shows no systematic dependence on the sliding 
velocity or the oscillation amplitude. Source: V.L. Popov, J. Starcevic, A.E. Filippov. Influence 
of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry 
friction. – Trib. Lett., 2009, DOI 10.1007/s11249-009-9531-6. 

Problems 

Problem 1: Determine the dependence of the force of static friction on the oscilla-
tion amplitude in a “stochastic Prandtl-Tomlinson Model.” How does it depend on 
the oscillation amplitude in the limiting case of large amplitudes? 

 
Solution: We assume that the interaction force between a point mass and the base 
is not a periodic function in the Prandtl-Tomlinson model, rather a stochastic func-
tion that can be presented in the form of the Fourier integral: 

( ) ( ) ( )
0

sin
∞

= +∫ ϕkF x f k kx dk . 
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We assume that the phase ϕk  is δ -correlated : 

' 'sin sin cos cos ( ')= = Φ −ϕ ϕ ϕ ϕ δk k k k k k . 

Here, the angled parentheses mean the average over a statistical ensemble. ( )δ ξ  is 
the Dirac δ  function and Φ  is a constant that defines the root mean square of the 
stochastic force. The horizontal force acting on the total system by the base is 
equal to 

( ) ( )

( ) ( )( ) ( ) ( )( )

0 0

0 0
0 0

( ) / 2 ( ) / 2

sin ( ) / 2 sin ( ) / 2 .
∞ ∞

= − + +

= − + + + +∫ ∫ϕ ϕk k

F F x l t F x l t

f k k x l t dk f k k x l t dk
 

Its average over time is calculated exactly as was done in Equations (18.19)-
(18.21): 

( ) ( ) ( ) ( )1 1
0 0 0 02 2

0

2 ( )sin cos
∞

= + Δ∫ ϕkF x f k kx kl J k l dk . 

In order to calculate the maximum force of static friction for the oscillating pair of 
bodies, we note that the force is a stochastic function of the coordinate 0x . The 
distribution function for a force of static friction can be found numerically. On the 
other hand, it is easy to see that the average value of the force of static friction is 
on the same order of magnitude as the root mean square of the force4. The main 
peculiarities of the dependence of the force of static friction on the amplitude of 
the oscillation can, therefore, be determined by calculating the mean square of the 
force: 

( ) ( ) ( ) ( )( )'

' '2 ' ' '0 0
0 0

0 0

( ) 4 sin sin cos cos
2 2 2 2k k

kl k l k l k lF x f k f k kx k x J J dkdkϕ ϕ
∞ ∞ ⎛ ⎞Δ Δ⎛ ⎞= + + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫  

Here, a bar over a value means that the value is averaged over time. Taking into 
account the above mentioned correlation condition, we obtain 

( ) ( ) ( )'sin sin ' 'k kkx k x k kϕ ϕ δ+ + = Φ − . Integration of the δ  function yields  

( )' ' 1k k dkδ
∞

−∞

− =∫ . We obtain a mean square of the force of 

2 2 2 20
0

0

( ) 4 ( ) cos
2 2

∞ Δ⎛ ⎞= Φ ⎜ ⎟
⎝ ⎠∫

kl k lF x f k J dk . 

                                                           
4 The fact that the average frictional force and the root mean square of the force are almost pro-
portional to one another is confirmed by direct numerical calculation of the average force of 
static friction, see: O.K. Dudko, V.L. Popov, G. Putzar, Tribospectroscopy of Randomly Rough 
Surfaces. Tribology International, 2006, v.39, No. 5, pp.456-460. 
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If the length 0l  is “macroscopically large,” in the sense that it is much larger than 
an arbitrary characteristic scale of the interaction potential, then the function 

2 0cos
2

kl
 in the integral changes much faster than any other factor for arbitrary 

changes in 0l  and can be replaced by its average 1/ 2 : 

( ) ( )
2 2 2

0
0

2
2

∞ Δ⎛ ⎞= Φ ⎜ ⎟
⎝ ⎠∫

k lF x f k J dk . 

In this case, the frictional force is independent from the average connecting length 
and it depends only on the power spectrum ( )f k  and the oscillation amplitude 
Δl . 

For large oscillation amplitudes, the Bessel function can be replaced by its as-
ymptotic expression 

0
2( ) cos

4
J πζ ζ

πζ
⎛ ⎞≈ −⎜ ⎟
⎝ ⎠

. 

The mean square of the force is equal to 

( ) ( ) ( ) ( )( )
2 2

2 2

0 0

8 4cos 1 sin d
2 4

∞ ∞Φ Δ Φ⎛ ⎞= − = + Δ⎜ ⎟Δ Δ⎝ ⎠∫ ∫
π

π π
f k f kk lF x dk k l k

l k l k
. 

For large Δl , the second term of the integral can be neglected, because it is a rap-
idly oscillating function. According to this, the mean square of the force, 

( ) ( )2
2

0

4 ∞Φ
=

Δ ∫π
f k

F x dk
l k

, 

is inversely proportional to the oscillation amplitude and the force itself is in-
versely proportional to the square root of the amplitude: 

1
∝

Δ
sF

l
. 



19 Numerical Simulation Methods in Friction 
Physics   

 

The contact and friction problems investigated in the previous chapters are based 
on simple model systems. Even when these models provide a general overview of 
complex tribological systems, a multitude of tribological problems, especially 
when they deal with the fine optimization of tribological systems, are not able to 
be calculated in analytical form. In these cases, researchers and engineers must fall 
back on numerical methods. At the same time, one must remember that the effi-
ciency of numerical methods is dependent largely on the quality of the preceding 
analytical preparations. 

In this chapter, we first present a short overview of the most important methods 
used in contact mechanics, describing them not in detail, but rather referring to ex-
isting literature. Only the fundamentals of one simulation method, the so-called 
“dimension reduction method,” will be described in detail. This method can be 
used to simulate macroscopic tribological systems and, above all, the frictional 
forces in such systems, taking into account their “multi-scale character.”  

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_19, 
© Springer-Verlag Berlin Heidelberg 2010 
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19.1 Simulation Methods for Contact and Frictional Problems: 
An Overview 

19.1.1 Many-Body Systems 

Computer simulations of many-body systems are indispensable for today’s indus-
trial development processes. With increasing demand on accuracy, the interest in 
reproducing contact and frictional phenomena as precise as possible is also in-
creasing. A considerable part of research in this field is concentrated on finding 
methods for the implementation of simple contact conditions and Coulomb’s law 
of friction. At the forefront, is the search for the most efficient algorithms possible 
(in terms of calculation time and implementation costs). Contact is typically seen 
as one-sided rigid constraint. For the laws of friction, there is assumed that there 
exists a maximum force of static friction and that the force of kinetic friction de-
pend on sliding velocity. Frequently, the force of kinetic friction is assumed to be 
constant and equal to the maximum force of static friction. 

The simplest method for integrating friction into many-body system programs 
is to approximate the law of friction using a continuous function of frictional 
force. The frictional force in treated as a given force for which the dependence on 
sliding velocity is known. Typically, a force in the following form is used 
(Fig. 19.1):  

 ( )2 ˆarctan /μ
π

=R NF F v v . (19.1) 

By using this form, one does not need to differentiate between static friction and 
kinetic friction. The characteristic velocity v̂  must be chosen so that it is signifi-
cantly smaller than the characteristic sliding velocity of the system to be simu-
lated. In this case, the relation (19.1) expresses the behavior of the forces in both 
the stick and sliding domains1.    

 

                                                           
1 In this case, “sticking” is simply sliding at a very low velocity; the frictional force sets itself 
“automatically” equal to the correct force of static friction between μ− NF  and μ+ NF . For many 
tribological applications, this “trick” corresponds even to the actual properties of the frictional 
force. 
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Fig. 19.1  Approximation of the law of friction by a continuous function of velocity. 

19.1.2 Finite Element Methods 

For many applications, the pressure distribution and the deformation of the contact 
interface are important. There are various simulation methods available for calcu-
lating elastic and plastic deformations, which give a principal possibility, to inves-
tigate adhesive contacts and frictional phenomena. Procedures based on discretiz-
ing the continuum equations are widely known, especially finite element methods 
(FEM) and boundary element methods.  

Contact formulations in the framework of FEM were developed in the 1970’s. 
Today, commercial FE-programs use the so-called node-to-surface formulation, 
which considers the nodes of the surface in relation to the elements of the other 
surface. 

In many practical applications (seals, metal-forming processes, penetration 
tests), large deformations, non-linear behavior of materials, and large relative mo-
tion between the participating contact partners occur. In these cases, contact prob-
lems can be considerably more robustly and accurately simulated with surface-to-
surface formulation (Mortar method)2. 

Rolling contact problems (wheel-rail, tire-street) are, likewise, investigated 
with the FE method. The Arbitrary Lagrangian Eulerian (ALE) method3 is an ef-
fective method for calculating such contact problems. The spatially stationary dis-
cretization allows the resolution of the mesh for the contact areas to be refined. 
This is especially elegant in solving problems of steady state rolling, because the 
solution is time-independent in this case. However, taking inelastic material be-
haviors into account is difficult, because the mesh is not bound to the points of the 
material. 

Advantages of a 3D-FE model are (1) the utilization of correct geometry (di-
mensions, surface topography, degrees of freedom) and (2) the ability to calculate 
                                                           
2 M.A: Puso und T. A. Laursen, A mortar segment-to-segment contact method for large deforma-
tion solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193:601-629, 
2004. 
3 U. Nackenhorst, The ALE-formulation of bodies in rolling contact: theoretical foundations and 
finite element approach. Computer Methods in Applied Mechanics and Engineering, 193:4299-
4322, 2004. 
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stresses and deformations in the entire body. Due to the very fine mesh, however, 
3D-FE models require high processing times for rough surfaces. This is an espe-
cially clear disadvantage when regarding extensive parameter studies and optimi-
zations. Thus, finite element methods are not practical for calculating frictional 
forces between rough surfaces. 

19.1.3 Boundary Element Method 

Boundary element method is especially suited for calculating contacts, because 
only the discretization of the surface is necessary. Because of the importance of 
this method in contact problems, we will discuss it in more detail. Here, we limit 
ourselves to normal contact problems between an elastic body and a rigid plane.  

The vertical displacement of a point on the surface of an elastic body being 
acted upon by a continuous pressure distribution is given by (5.7). We divide the 
parts of the domain to be investigated into ×N N  elements and assume the pres-
sure is constant in every individual element. The relation between pressure ijp  in 
a quadratic surface element and a vertical surface displacement iju  can be analyti-
cally calculated:4 

 ˆ̂ ˆ̂
ˆ ˆ1 1= =

= ∑∑
N N

ij ijij ij
i j

u K p , (19.2) 

with 

 

2 2 2 2

ˆ̂ * 2 2 2 2

2 2 2 2

2 2 2 2
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        ln ln

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟= + +
⎜ ⎟ ⎜ ⎟⎢ ⎥+ + + +⎝ ⎠ ⎝ ⎠⎣ ⎦
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ijij

c a c d b dK a b
E d a b c b c

a a c b b dc d
b c b a a d

π
 (19.3) 

and 

 

1 1ˆ ˆ  ,       ,
2 2
1 1ˆ ˆ  ,      .
2 2

= − + = − −

= − + = − −

a i i b i i

c j j d j j
 (19.4) 

                                                           
4 A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity. 4th edition., Cambridge, 
University Press. See also: K. L. Johnson, Contact mechanics. Cambridge University Press, 6th 
printing of the 1st edition, 2001, p. 54. 
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Δ  is the mesh spacing. Equation (19.2) can be written in matrix form as 

 u = Ap , (19.5) 

with a matrix A  with dimensions 2 2×N N . In contact problems, the size and lo-
cation of the contact area is initially unknown. Therefore, contact problems must 
be solved iteratively. In the contact area, the separation between the surfaces is 
zero (i.e. in this area, the displacement of the elastic surface is known). Outside of 
the contact area, the pressure is zero; the displacement, on the other hand, is gen-
erally not zero. To begin, a contact area is assumed. The variables are now parti-
tioned into the variables ip  and iu  inside of the contact area and ap  and au out-
side of the contact area. iu  and 0=ap  are known. After rearranging according to 
(19.5), we obtain 

 
⎡ ⎤ ⎧ ⎫⎧ ⎫

⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦ ⎩ ⎭

1 2 ii

3 4 a

A A up
=

A A u0
 (19.6) 

and finally, 

 1 i iA p = u , (19.7) 

 3 aiA p = u . (19.8) 

The solution to the system of equations in (19.7) yields a pressure in the contact 
area of ip . With these results, using (19.8), the displacement au in the domain 
outside of the contact can be calculated. The first iteration step generally yields a 
negative pressure (tensile stress) in the contact area and a negative separation dis-
tance outside of the contact area. The new contact area is now chosen so that all of 
the points in tensile stress are removed from the contact area and all of the points 
with a negative separation difference are brought into it. With this new approxi-
mation of the contact area, the previously described calculation is repeated. The it-
eration continues until no more tensile stresses or negative separation distances 
exist (to a reasonable approximation). 

19.1.4 Particle Methods 

Another approach to the simulation of contact and frictional problems is provided 
by particle methods, for which discrete particles are the focus of the calculations. 
These particles are not real (physical) objects, rather purely “units for calculation.” 
The interactions between the particles must be chosen so that the elastic and plas-
tic behavior of the material is correctly described. Thus, neither the macroscopic 
continuum equations nor the microscopic equations of molecular dynamics are 
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solved, rather the microscopic equations of a suitable substitution system. The size 
of the particles can be adjusted to fit the problem. For example, for the investiga-
tion of earthquakes, the particle size can be on the order of meters. 

The frictional force is determined by processes such as elastic and plastic de-
formation, fracture, and the dislodgement and reintegration of particles. These 
processes take place in micro-contacts. The movable cellular automata (MCA) 
method is a particle method with which the processes in micro-contacts are suc-
cessfully simulated5.  

19.2 Reduction of Contact Problems from Three Dimensions to 
One Dimension 

Now, we will discuss a simulation method that is especially well suited for simula-
tion of friction between rough surfaces. The laws of friction obtained using this 
method can subsequently be used in macroscopic system dynamics simulations. 
We limit ourselves to “typical tribological systems” which are characterized by 
the laws of dry friction being approximately met, especially, that the frictional 
force is approximately proportional to the normal force. This implies that the real 
contact area remains much smaller than the apparent contact area.  

For “typical tribological systems,” there is a series of properties that allow im-
mense simplification of the contact problem and in this way, allow quick calcula-
tion even in multi-scaled systems. The simplifying properties used in the reduction 
method are the following: 
(a) For velocities much smaller than the speed of sound6, deformations can be 
treated as quasi-static;  
(b) The potential energy, and therefore, the force-displacement relation, is a local  
property that depends only on the configuration of the micro-contacts and not the 
form or size of the body; 
(c) The kinetic energy, on the other hand, is a “global property” that depends only 
on the form and size of the body as a whole and not on the configuration of the 
micro-contacts; 
(d) Many significant properties in contact mechanics can be well approximated us-
ing one-dimensional systems, which allows for crucial reduction in calculation 
time.  

These four properties are found in many macroscopic tribological systems. The 
application area of the subsequent methods is, accordingly, very wide. One must 
not forget that when applying these methods, the above conditions must be met. In 
the following, we will discuss the aforementioned simplifying assumptions in de-
tail. 
                                                           
5 V.L. Popov, und S.G. Psakhie, Numerical simulation methods in tribology. Tribology Interna-
tional, 2007, v. 40(6), pp. 916-923. 
6 This condition is met rather well in most real tribological contacts. 
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19.3 Contact in a Macroscopic Tribological System 

(a) Quasi-steady state 
In most tribological systems, we are dealing with the movements of elements 
which have a relative velocity (30 m/s at the highest) that is much smaller than the 
speed of sound (a few thousand m/s). Under these conditions, one can consider the 
problem to be quasi-static. Even for unsteady processes, during which the entire 
system can no longer be considered to be in steady-state, the conditions for quasi-
steady state are still met very well for individual micro-contacts. In calculating 
contact deformations, in an overwhelming majority of real applications, we can 
apply equilibrium conditions in order to calculate deformations and, therefore, use 
all of the results from static contact mechanics from the previous chapters. 

(b) Elastic energy as a local property 
As we saw in Chapter 7, under typical operating conditions for tribological sys-
tems, contact partners come into contact with each other in many small micro-
areas, whose total surface area is much smaller than the apparent surface area. 
Under certain conditions, the individual contact points can be considered inde-
pendent from one another.  

We will investigate this property a little more in depth by calculating the poten-
tial energy of a deformed contact area. We consider a cylindrical indenter with the 
diameter D  which is pressed a distance d  into a body (Fig. 19.2).  

 
Fig. 19.2  Flat cylindrical indenter which is pressed a distance d  into an elastic half-space. 

The displacement in the elastic body at a point at large distance r  from the point 
of indentation is 

 ⋅D du
r

. (19.9) 

The deformation can be estimated as 2ε ⋅
−

du D d
dr r

 and the energy density as 

2 2
2

4
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2 2

ε ⋅
E

D dG G
r

. The elastic energy is found through integrating 

 
2 2

2 2 2
4 2π π⋅

= ⋅∫ ∫
D d drU G r dr GD d

r r
. (19.10) 
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This integral converges at the upper limit. Since the asymptote (19.9) is only valid 
for >r D , the lower limit must be on the order of D  (the integral would diverge 
for the lower limit of 0). The elastic energy is, therefore, concentrated in a volume 
with linear dimensions on the order of D  – a result that we have already used in 
all of the estimations in the earlier chapters. In other words: 

The elastic energy is a local quantity that is only dependent on the configu-
ration and deformation in the area near the micro-contact. The size and form 
of the macroscopic body is unimportant for the contact mechanics of this 
problem. 

If the distance between the contact areas is much larger than their diameter, then 
they can be considered as being independent. 

(c) Kinetic energy as a global property 
The kinetic energy of a body behaves exactly the opposite. If a body impacts an 
indenter with the diameter D  at a velocity 0v  much smaller than the speed of 
sound (Fig. 19.3), leading to a penetration at the velocity 0v , then the velocity 
field in a reference frame moving at 0v  has an order of magnitude of 

 0( ) ⋅
= =

DvD dv r
r r

. (19.11) 

In the laboratory systems, the total kinetic energy of the body is calculated as 
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∫ ∫ ∫

∫
 (19.12) 

 
Fig. 19.3  A sketch for investigating the kinetic energy of a solid elastic body which impacts a 
rigid cylindrical indenter at a velocity 0v . 
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If the diameter of the contact area is much smaller than the size of the body, then 
the kinetic energy is equal to 2

0 / 2mv  by neglecting the first order terms of 
/D R . 

The kinetic energy is a “non-local” property that is independent from the 
contact configuration, in a first order approximation, and can be assumed to 
be equal to the energy of the “rigid movement” of the body as a whole. 

We have already implicitly used this property, for example, in the calculation of 
the time of impact between a sphere and a wall.  

We come to the conclusion that the inertial properties of a macroscopic system 
under “typical conditions” are correctly described in treating the body as a rigid 
mass m . Its elastic properties, on the other hand, are completely determined by 
the stiffness of its micro-contacts. This approach is schematically presented in 
Fig. 19.4. 

The inertial properties of three-dimensional systems are completely decoup-
led from contact properties under the majority of existing conditions. The 
former are completely macroscopic, while the latter are completely micro-
scopic. It is this decoupling that makes it possible for us to consider the fric-
tional forces as surface forces in macroscopic system dynamics.  

This property, by the way, is not self-evident and would not be valid in a two-
dimensional system for example. In the two-dimensional case, instead of having 
(19.10) we would have the integral /∫ dr r , which diverges logarithmically at 

both limits. In the two-dimensional case, the elastic contact energy is, therefore, 
dependent on the contact configuration as well as the size and form of the body. 
The same is also valid for the kinetic energy.  

m

 
Fig. 19.4  The inertial properties of a macroscopic system under “typical conditions” can be cor-
rectly described using a rigid mass m . Its elastic properties, on the other hand, are completely 
determined by the (non-linear) stiffness of its contacts. 

Now, we want to use the advantage that we live in a three-dimensional world 
and, according to this, assume the scale separation of the kinetic and potential en-
ergy for multi-contact problems. 
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(d) Dimension reduction of contact problems 
Another crucial property of contacts between three-dimensional bodies is the close 
similarity between these contacts and certain one-dimensional problems. The fun-
damental ideas of this analogy are presented in the following. If a round indenter 
is pressed into the surface of an elastic continuum, then the stiffness of the contact 
is proportional to its diameter D  (Equation 5.11): 

 *=c DE . (19.13) 

This property can be reproduced using a one-dimensional elastic foundation 
(Fig. 19.5 a). In order to fulfill Equation (19.13), the stiffness per unit length must 
be chosen as *E . Every individual spring must have the stiffness 

 *Δ = Δc E x . (19.14) 

If a “sphere” with the radius 1R  is brought into contact with the elastic founda-
tion (penetration depth d ), seen in Fig. 19.5, then the following contact quantities 
result: the contact radius is equal to 

 12=a R d  (19.15) 

and the normal force is  

 ( )
*

3
1

4 2
3

=N
EF d R d . (19.16) 

 

R1

a b  
Fig. 19.5  One-dimensional elastic foundation in contact with a “cylindrical” indenter and a 
“sphere.” 

If we choose a radius  

 1 / 2=R R , (19.17) 

then the Equations (19.15) and (19.16) coincide exactly with Hertzian theory. 

The contact of a rotationally symmetric three-dimensional rigid body with 
an elastic continuum can be represented by the contact of a corresponding 
one-dimensional cross-section having half the radius of curvature with an 
elastic foundation having the stiffness per unit length of *E . 
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This rule is exactly correct for every cylindrical indenter and for every parabolic 
body with an arbitrary radius of curvature. 

Since a contact between an ellipsoid and a rigid plane can be approximated by 
a contact between a sphere and a plane (using the Gaussian radius (1) (2)R R , see 
(5.30)), the representation of a non-rotationally symmetric contacts in a one-
dimensional system is possible as well. Thereby, the Hertzian relation between 
normal force and contact area is still valid. The stiffness of indenters with non-
circular cross-sections (5.13) shows that one-dimensional representation also 
works for bodies with square or triangular cross-sections with an error of less than 
3%. The “one-dimensional diameter” of the contact, in this case, is calculated ac-
cording to the rule ( )1/24 /π=D A . 

The tangential stiffness of a three-dimensional contact is also proportional to 
the diameter of the contact: 

 4 2
2 ν⊥ ≈ ⋅
−
Gc a , (19.18) 

and thus, can be replicated using a one-dimensional elastic foundation for the 
same reasons. The tangential stiffness of individual springs in the elastic founda-
tion must be chosen according to 

 4
2 ν⊥Δ = Δ
−
Gc x . (19.19) 

The fact that the force-penetration depth and the force-contact area relation-
ships are independent of scaling for very different rotationally symmetric and non-
symmetric individual contacts allows us to draw the hypothesis that this would al-
so be the case with a randomly rough surface. 

19.4 Reduction Method for a Multi-Contact Problem 

In order to cross over to a contact between bodies with rough surfaces, a rule for 
the production of a one-dimensional profile, which is equivalent to the three-
dimensional body in a contact mechanical sense, must be formulated (Fig. 19.6). 
As the motivation for this replacement, we use a few ideas from the model of 
Greenwood and Williamson. The results and quality of the replacement system, 
however, prove to be much better than the Greenwood-Williamson model itself. 

In the model of Greenwood and Williamson, the individual contacts are con-
sidered to be independent from each other. Under these conditions, only the distri-
bution of the heights of the asperities and the radii of curvature play a role. So, 
our goal is first to generate a one-dimensional system, which has the necessary 
statistical distributions of heights and radii of curvature. 
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Fig. 19.6  Replacing two three-dimensional bodies with two equivalent one-dimensional “rough 
lines.” 

To simplify matters, we assume that the topography of the two-dimensional sur-
face (of a three-dimensional body) can be unambiguously characterized by its 
power spectrum ( )2DC q , which is defined according to 

 ( )
( )

( ) ( ) 2
2D 2

1 0
2π

− ⋅= ∫ iC q h x h e d xq x , (19.20) 

where ( )h x  is the height profile taken from the average so that 0=h ; .  
means averaging over the statistical ensemble. Furthermore, we assume that the 
surface topography is statistically homogeneous and isotropic. Under these condi-
tions, the power spectrum ( )2DC q  is only dependent on the magnitude q  of the 
wave vector q .  

Similarly, the power spectrum ( )1DC q  of a one-dimensional “surface” – a 
“rough line” is introduced: 

 ( ) ( ) ( )1D
1 0

2π
−= ∫ iqxC q h x h e dx . (19.21) 

The surface topography is calculated in the two-dimensional case with the help 
of the power spectrum according to 

 ( ) ( ) ( )( )( )2 exp φ= ⋅ +∑ Dh x B q i q x q
q

, (19.22) 

with 
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 ( ) ( ) ( )22 2
2π

= = −DD DB q C q qBL
 (19.23) 

and the phases ( ) ( )φ φ= − −q q , which are randomly distributed on the interval 

[ )0 2π, .   
In the one-dimensional case, we have  

 ( ) ( ) ( )( )( )1 exp φ= +∑ D
q

h x B q i qx q , (19.24) 

with  

 ( ) ( ) ( )11 1
2π

= = −DD DB q C q qBL
. (19.25) 

Quick numerical methods are based on the fast Fourier transform (FFT) in-
stead of direct calculation of the sums (19.22) or (19.24). 

Theoretical considerations and numerical studies lead to the following trans-
formation rules from a two-dimensional to a one-dimensional power spectrum: 

In order to produce a one-dimensional system with the same contact proper-
ties as the three-dimensional system, the one-dimensional power spectrum 
must be used according to the rule 
 ( ) ( )1D 2Dπ=C q qC q .     (19.26) 

Qualitative arguments for this rule are the following: the average of the squares of 
the heights for the two-dimensional and one-dimensional cases, respectively, are 

 ( )2
2D2D

0

2π
∞

= ∫h qC q dq , (19.27) 

 ( )2
1D1D

0

2
∞

= ∫h C q dq . (19.28) 

They are the same when ( ) ( )1D 2Dπ=C q qC q . The corresponding root mean 

squares of the curvature 2κ  also coincide in this case7. In the work8 it was 

shown that the lines generated in this way are actually equivalent to the three-
dimensional body regarding their contact mechanical properties. In particular, the 
height distribution of the one-dimensional “surfaces” with the power spectrum  in 

                                                           
7 For two-dimensional cases, we define 2 (1) (2)κ κ κ= , where (1)κ  and (2)κ  are the principal radii 
of curvature of the surface. 
8 T. Geike and V.L. Popov, Mapping of three-dimensional contact problems into one dimension. 
Phys. Rev. E., 2007, v. 76, 036710 (5 pp.). 
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(19.26) coincide with the height distribution of the two-dimensional surface, while 
the average radius of curvature of the peaks in the one-dimensional system is half 
as large as that of the three-dimensional system and this is exactly the ratio that is 
needed for the contact properties to perfectly coincide! Therefore, we have the 
correct force-displacement relationship as well as the force-contact area relation-
ship. 

As an example, a contact between two three-dimensional bodies with randomly 
generated rough surfaces was investigated. For the calculation, surfaces with 
64 64×  points were generated. The interrelation between the normal force and the 
real contact area was calculated with the boundary element method (Fig. 19.7).  
With the one-dimensional power spectrum calculated according to (19.26), the 
one-dimensional “rough line” was generated. This rough line was pressed into a 
rigid line and the lengths il  of the connected regions were determined. From this, 
the contact area was defined according to the rule 

 2
,1D 4

π
= ∑c j

j

A l . (19.29) 

 

 
Fig. 19.7  Two-dimensional surface topography (left) and the resulting micro-contacts for one 
value of normal force (right) – results of a numerical calculation using the boundary element me-
thod. 

All of the results were averaged over 450 random realizations of the surface. The 
dependence of the entire surface on the normal force is compared in Fig. 19.8 for a 
three-dimensional system and a one-dimensional system. The one and three-
dimensional results excellently coincide for rough surfaces as well.  
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Fig. 19.8   Relation between relative contact area ( cA  is real contact area, A  apparent contact 
area) and normal force F . Three-dimensional results (Error bars based on 450 surfaces and thin 
dashed line for linear approximation of mean values) are compared to one-dimensional results 
(thick dotted line). One-dimensional result and linear approximation of three-dimensional results 
are difficult to distinguish because they match very closely. 

From this, it follows that: 

Individual contacts for rotationally symmetric and non-rotationally symmet-
ric three-dimensional rigid bodies as well as for random rough surfaces with 
an elastic continuum can be presented using a contact of an appropriate one-
dimensional profile with an elastic foundation having a stiffness per unit 
length equal to *E . This is valid in terms of force-displacement relation-
ships, force-contact area relationships, as well as in terms of force-contact 
length relationships. 

Let it be noted that the elastic foundation was earlier used by many researchers “as 
a last resort.” The success of this model is based on the strong analogy described 
above between three-dimensional contacts and contacts with elastic foundations.  

19.5 Dimension Reduction and Viscoelastic Properties 

For viscoelastic bodies such as rubber, the contact can only be seen as quasi-static 
when the penetration velocity and the sliding velocity are smaller than the smallest 
speed of sound (which corresponds to the smallest modulus of elasticity). If this 
condition is met and an area of an elastomer is excited at a frequency ω , then 
there is a linear relation between the force and displacement with stiffness that is 
proportional to the contact radius. Hence, this system can also be presented using 
a one-dimensional system, where the stiffnesses of the individual springs must be 
chosen according to (19.14). Rubber can be considered as a incompressible me-
dium, so that 1/ 2ν =  and  
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 ( ) ( ) ( ) ( )*
2

2
4

11
ω ω

ω ω
νν

Δ ≈ Δ = Δ = Δ = Δ
−−

E G
c E x x x G x . (19.30) 

In the case of rubber, the stiffness of the individual “springs” of the elastic 
foundation is four times the shear modulus multiplied with the mesh spac-
ing. 

In the one-dimensional model, the stress-strain relation (15.2) must be replaced by 

 ( ) 4 ( ) ( )δ
−∞

′ ′ ′= Δ −∫
t

iF t x G t t t dt . (19.31) 

19.6 Representation of Stress in the Reduction Model 

As long as the bodies are only elastically or viscoelastically deformed, one needs 
no information about the resulting stresses in the contact area. However, if the 
bodies are plastically deformed or worn due to stress peaks, then information 
about the stress occurring in the contact is necessary for the simulation. In the one-
dimension model, only the spring forces are directly defined, not the stresses. In 
the following, it will be shown that in the 1D model, a stress can also be defined 
that coincides with Hertzian stress distribution in the case of elastic deformation.  

The force in a spring is 

 
2

* *

12
δ

⎛ ⎞
= Δ = Δ −⎜ ⎟

⎝ ⎠
i

i i
x

F xE xE d
R

, (19.32) 

where δ i  is the displacement of the spring i  and Δx  is the mesh spacing. Now, 
we define the stress as 

 
1

σ
δ

= i
i

i

F
b R

. (19.33) 

Here, b  is the constant still to be determined. The stress is dependent on the ra-
dius of curvature and is, therefore, a non-local quantity9. 

                                                           
9 The following arguments can be cited as motivation for this form of the stress: the contact ra-
dius for an individual contact is equal to 2δ=a R , where δ  is the penetration depth. We have 

an approximation for the average stress of 2

/
σ

δ
∝ ∝ ∝ iN N

FF F a
a a R

, where iF  is the average 

spring force in the contact area. This is exactly the form (19.33). The fact that using the coordi-
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From (19.33), (19.32), and (19.16) we get: 

 
2

2 2

3 2 1
4

σ Δ
= −N i

i
F xx

ba a
. (19.34) 

For a Hertzian spherical contact, the stress distribution is equal to 

 
2

2 2

3
1

2
σ

π
= −NF x

a a
. (19.35) 

These two stress distributions coincide when 

 2
2

π
= Δb x . (19.36) 

Thus, the stress is calculated from the local spring force iF  and the local deforma-
tion δ i  according to 

 
1

2
σ

π δ
=

Δ
i

i
i

F
x R

 .     (19.37) 

For the yield criterion, the non-local quantity σ i  according to Equation (19.37) 

should be used, rather than the local force iF . 

19.7 The Calculation Procedure in the Framework of the 
Reduction Method 

The calculation procedure for the reduction method consists of the following 
steps:  
1. The frictional surface is measured (e.g. using a white light interference micro-
scope or an atomic force microscope). 
2. The two-dimensional power spectrum of the surface is calculated with the fast 
Fourier transform. 
3. This is now transformed into the one-dimensional power spectrum according to 
the rule in (19.26).  
4. With this power spectrum, a one-dimensional “rough line” is generated which 
has the same contact properties as the original three-dimensional system.  
5. The elastic properties are chosen according to the rule in (19.14).  

                                                                                                                                     
nate-dependent penetration depth δ i  leads exactly to the Hertzian stress distribution can be con-
sidered an empirical discovery. 
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6. The bodies are pressed onto one another and moved relative to one another in 
the tangential direction.  The ratio of the average tangential force to the average 
normal force is the coefficient of friction. 
7. In addition to the coefficient of friction, the total real contact area, the total con-
tact length (simply the sum j

j
L l= ∑ ), as well as their distributions, the average 

stress, and the stress distribution in the contact can be calculated. 

19.8 Adhesion, Lubrication, Cavitation, and Plastic 
Deformations in the Framework of the Reduction Method 

The reduction method can be expanded in order to take adhesion, lubrication, and 
cavitation in lubricated contacts into account. Particulars to this method can be 
found in the literature recommended for this chapter (see the section entitled “Fur-
ther Reading”). 

Problems 

Problem 1: Formulate an algorithm for calculating the coefficient of friction be-
tween a rigid surface with a given surface topography and a smooth viscoelastic 
body that can be modeled using the rheological model consisting of a spring con-
nected in parallel to a velocity proportional damper. 

 
Solution:  
1. The profile of the rigid surface ( , )h x y  is the input data and must first be meas-
ured (Fig. 19.9) and saved in the form of a two-dimensional array. 
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Fig. 19.9  Example of a surface topography measurement. 

2. With the help of the FFT, the Fourier transform ( , )x yB q q  of the surface profile 
is calculated (Fig. 19.10) and afterwards, the power spectrum: 

2
2

2 2( , ) ( , )
2π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

D x y D x y
LC q q B q q . 

qy

qx

q

dq

 
Fig. 19.10  Power spectrum of the profile shown in Fig. 19.9. 

3. Now, the spectrum is averaged over a circle with the radius q  and the same 
discretization interval dq  (Fig. 19.10). The result is the angular-independent pow-
er spectrum 2 ( )DC q . 
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4. An equivalent one-dimensional power spectrum is calculated according to 
(19.26): ( ) ( )1D 2Dπ=C q qC q . 
5. With this power spectrum, a one-dimensional profile is generated using Equa-
tion (19.24) and taking Equation (19.25) into account. This profile represents the 
initial two-dimensional surface in the following calculations. 
6. To verify the correctness, the root mean square 2Δ Dh  of the original two-
dimensional surface and 1Δ Dh  of the generated one-dimensional surface are calcu-
lated. Their averaged values over several realizations must coincide. 
7. Now, we get to the dynamic simulation. We define the zero level of the rigid 
rough line as zero on the z-axis (Fig. 19.11). The rigid line is discretized at the be-
ginning with the mesh spacing Δx  with which it was produced. Its profile in the 
discretization points is given by ih . The level of the undisturbed surface of the 
viscoelastic material we denote as 0Z . The line representing the viscoelastic mate-
rial is discretized using the same mesh spacing Δx  with which the rigid rough line 
was generated.  
8. The roughness profile moves to the left with the velocity v : ( , ) ( )= +h x t h x vt . 
The values in the discrete points are: ( ) ( )= Δ + Δi nh t h i x vn t , where n  is the num-
ber of time steps. 
9. The interaction relation between the rough surface and the viscoelastic material 
is defined: (a) the rigid surface is impenetrable for the viscoelastic material; (b) if 
a point of the viscoelastic material were displaced by Δ iz  and its velocity equals 
Δ iz , then a force according to (19.30) would act on the point: 

4 4η= Δ Δ + Δ Δi i if G x z x z , 

where G  is the shear modulus of the (three-dimensional) viscoelastic material and 
η  is its viscosity; (c) this force cannot be negative (no adhesion). 

 
Fig. 19.11  One-dimensional substitute model for the contact between a viscoelastic material and 
a rough rigid surface. 
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10. The system is “initialized” by placing the viscoelastic material “near” the rigid 
line: that means at a distance of about 13Δ Dh  from the zero line. Thereby, those 
points of the body meeting the condition 0≥ih Z  come into contact with the rough 
substrate. We initially set the force acting on the system to be equal to 

( )04= −i if G h Z . The total force acting on the viscoelastic material is equal to 

( )0
points points
in in
contact contact

4i iF f G x h Z= = Δ −∑ ∑ . 

In the vertical direction, a normal force − NF  is applied. 
11. Choice of time step: In the time Δt , the upper body is always displaced by a 
discretized step of Δx . Thus, the time step is 

/Δ = Δt x v . 

12. Time loop: In the next state (displaced by Δx ), the condition 1( )+ ≥i n ih t z  is 
checked and in this way, the new points that have come into contact are deter-
mined. The force acting on these points is calculated using 

( ) ( )1 1 0 1( ) 4 ( ) 4 ( ) ( ) /η+ + += Δ − + Δ − Δi n i n i n i nf t G x h t Z x h t z t t . 

For the points that were in contact in the previous step, it is initially assumed that 
they remain on the surface: therefore, their coordinates change from ( ) ( )=i n i nz t h t  
to 1 1( ) ( )+ +=i n i nz t h t . The force is calculated using the same formula. If the force is 
positive, then the points remain in contact. If it is negative, then these points are 
said to have lost contact and force acting on them is set to zero.  

For all points that are not in contact, their new position is determined using the 
condition that 

( )( ) ( ) ( )1
0 0η + −

⋅ − + =
Δ

i n i n
i n

z t z t
G z t Z

t
. 

From this, it follows that 

( ) ( ) ( )( )1 0η+ = − ⋅Δ −i n i n i n
Gz t z t t z t Z . 

Thereby, the total force acting on the material would be equal to 

( ) ( )1 1 0 1( ) 4 ( ) 4 ( ) ( ) /η+ + += = Δ − + Δ − Δ∑ ∑i n i n i n i n
i i

F f t G x h t Z x h t z t t , 

which is summed over all of the points found to be in contact. 
Since, the normal force should remain constant, the state of the upper surface 

0Z  changes so that the total vertical force is NF . To achieve this, the body is dis-
placed by ΔZ . The force resulting from this movement is equal to 
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( ) ( )4 4 / 4 4 /η ηΔ = −Δ Δ + Δ Δ = −Δ Δ + Δ Δ∑
i

F Z G x x t ZN G x x t . 

Here, N  is the number of points in contact. Together with the force calculated in 
the previous step, it must result in exactly NF : 

( )4 4 /η−Δ Δ + Δ Δ + = NZN G x x t F F . 

From this, it follows that 

( )4 4 /η
−

Δ =
Δ + Δ Δ

NF F
Z

N G x x t
,  0 1 0( ) ( )+ = + Δn nZ t Z t Z . 

13. In order to calculate the tangential force, the normal force acting on the point 
i  is multiplied with the tangent of the inclination angle of the surface: 

1 1
, 2

+ −−
=

Δ
i i

x i i
h h

f f
x

 

and summed over all contacts: 

1 1

points
in
contact

2
i i

x i
h h

F f
x

+ −−
=

Δ∑ . 

14. The ratio /x NF F  is the instantaneous value of the coefficient of friction. Av-
eraged over the total time, it provides us the average coefficient of friction. 



20 Earthquakes and Friction  

 

Tectonic plate dynamics can also be seen as a part of tribology. The Earth’s crust 
is composed of tectonic plates which slowly move relative to one another due to 
convection in the mantel. On a time scale of millions of years, these movements 
determine the structure of the Earth’s surface. On a small time scale, they are re-
sponsible for earthquakes. Frictional models have applications for describing the 
dynamics of individual faults as well as describing the Earth’s crust as a granular 
medium. Models for mechanisms of earthquakes are based on the fundamental ob-
servation that earthquakes do not arise as a result of a sudden formation and 
propagation of a new crack in the Earth’s crust, rather they take place as a result of 
a sudden sliding along an already existing faults. In addition to other evidence, 
this is confirmed by the fact that the decrease in stress resulting from an earth-
quake (a few MPa) is much smaller than the strength of rock. Therefore, earth-
quakes are more a phenomenon of frictional physics than of fracture mechanics. 
Since the work of Brace und Byerlee1, at the latest, earthquakes were understood 
to be a type of stick-slip instability2. 

                                                           
1 W.F. Brace and J.D. Byerlee, Stick slip as a mechanism for earthquakes. Science, 1966, v. 
153, pp. 990-992. 
2 This is valid only for earthquakes initiating in the upper part of the Earth’s crust. 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7_20, 
© Springer-Verlag Berlin Heidelberg 2010 
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20.1 Introduction 

Due to the slow movement of tectonic plates, stresses build up in friction areas in 
the faults, which lead to quick, jerky movements when some critical value is ex-
ceeded. We perceive these movements as earthquakes. Similar instabilities appear 
even in the simplest of tribological laboratory systems, for example, a body that is 
slowly pulled by means of a soft spring. A few general properties of earthquakes 
can already be illustrated by mean of such a simple model. In the simplest model 
of a stick-slip instability (Problem 1 in Chapter 12), it was assumed that sliding 
begins when the ratio of the shear stress to the normal stress in the contact area 
exceeds the coefficient of static friction sμ . If the body is put into motion, then 
the coefficient of friction falls to a smaller value kμ , which leads to a stick-slip 
type of frictional instability. In Chapter 12 (Problem 1), we saw that the displace-
ment u  during the stick-slip phase is given by 

 2 s kF F
u

c
−

= , (20.1) 

where c  is the spring stiffness, s s NF Fμ=  is the static friction force, k k NF Fμ=  
is the kinetic friction force and NF  the normal force. The energy dissipated during 
the slip phase is equal to 

 
( )

2 k s k
k

F F F
E F u

c
−

= = . (20.2) 

In a real fault, we have no individual masses and no discrete spring elements. In-
stead, the equations of elasticity theory must be solved taking into account the law 
of friction. Here, we limit ourselves to a simple estimation. We assume that a con-
tact area has a linear dimension L  smaller than the thickness D  of the brittle part 
of the Earth’s crust (schizosphere)3. A correlated movement in this contact area 
leads to significant displacements and deformations in a volume with dimensions 
L L L× × . The stiffness of a cube with such dimensions is on the order of magni-
tude c G L≈ ⋅ . From Equations (20.1) and (20.2), the following estimations for 
the displacement during a slip event and the dissipated energy result: 

 ( )2
2 s k N

N s k
L

u F
GL G

μ μ σ
μ μ

−
≈ ≈ − , (20.3) 

 
( )2 32 k s k

k N NE F u L
G

μ μ μ
μ σ

−
≈ ≈ , (20.4) 

where 2/N NF Lσ =  is the normal stress.  
                                                           
3 We call such earthquakes “weak earthquakes.” 
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For a strong earthquake (with a sliding length larger than the thickness D  of the 
schizosphere), the stiffness in the rupture zone with the length L  can be estimated 
as c GD≈ . The displacement during a slip event can be estimated identically and 
the dissipated energy as 

 
( )2 2k s k

NE DL
G

μ μ μ
σ

−
≈ . (20.5) 

Therefore, the dissipated energy is proportional to the sliding length cubed for 
weak earthquakes and to the sliding length squared for strong earthquakes.  

The duration of an earthquake can be estimated in this model as 

 4

sound

LT
c

≈ , (20.6) 

where soundc  is the velocity of the shear waves in the Earth’s crust. For large 
earthquakes with 100 kmL ≈ , it is about a minute.  

20.2 Quantification of Earthquakes 

The seismic moment, M , is used as a measurement for the strength of an earth-
quake: 

 M GAu= ,      (20.7) 

where G  is the shear modulus of rock (typically on the order 30 GPa ), A  is the 
area of the fracture, and u  is the average displacement along the fracture surface. 
The seismic moment is the foundation of the moment magnitude scale. The mo-
ment magnitude wM  is defined as 

 ( )10
2 log 9.1
3wM M= − .     (20.8) 

In the simple frictional model described above, we obtain the following estima-
tions for the seismic moment: 

 ( ) 32 ,  for weak earthquakes ( )N s kM L L Dσ μ μ≈ − <  (20.9) 

 ( ) 22 ,  for strong earthquakes ( )N s kM DL L Dσ μ μ≈ − >  (20.10) 
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The seismic moment is, therefore, proportional to the normal stress in the fault, as 
well as proportional to the length of the sliding zone cubed for weak earthquakes 
and the length of the sliding zone squared for strong earthquakes. 

20.2.1 Gutenberg-Richter Law 

We consider a frictional contact between two elastic bodies with the apparent con-
tact area A . The bodies are displaced relative to one another in the tangential di-
rection by the length L , which should be much larger than the slip length u  
(20.3) during an instability event. If only earthquakes with the characteristic 
length L  of the sliding zone were possible, then there would be a number 2/A L  
of sliding domains in the contact area. According to this, a number of earthquakes, 

 
( )2 32 N s k

A L GALN
uL Lσ μ μ

≈ ≈
−

, (20.11) 

must take place over the entire length L . Thus, the frequency of an earthquake 
with a given order of magnitude of the slip length is inversely proportional to the 
slip length cubed or, according to (20.9), inversely proportional to the seismic 
moment of the earthquake: 

 1N M −∝ . (20.12) 

Since the system has no characteristic length in reality, one can assume that dis-
placements of different lengths L  can take place with the same probability. In this 
case, (20.12) is also valid for the distribution of earthquakes. Then, using the de-
notation ( )Mφ  for the probability density of an earthquake, we can also write the 
estimation (20.12) in the form 

 1( )N M M Mφ −∝ ⋅ ∝ . (20.13) 

From this, it follows that 

 2( )M Mφ −∝ . (20.14) 

The probability ( )MΦ  of an earthquake with the seismic moment larger than M  
is equal to 

 2 1( ) ( )d d
M M

M M M M M Mφ
∞ ∞

− −Φ = ∝ =∫ ∫ .   (20.15) 
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This law was proposed in 1954 by Gutenberg and Richter based on empirical in-
vestigations and is called the Gutenberg-Richter law4. 

The scaling given by the Gutenberg-Richter law is valid for both weak and 
strong earthquakes. Fig. 1 illustrates the Gutenberg-Richter law using data taken 
from an earthquake catalog in California 1984-2000. 

 

Fig. 20.1  The number of earthquakes ( )N M m>  with a magnitude larger than m  per year (cir-
cles). The line represents the Gutenberg-Richter law, 10log ( )N M m bm> ∝ − , with 0.95b = . 
Data taken from an earthquake catalog in California 1984-2000 (335076 earthquakes, around 
150 earthquakes/day). Source: P. Bak et.al. Phys. Rev. Lett. (2002), v.88, No. 17, 178501 (4 pp). 

20.3 Laws of Friction for Rocks  

The assumed law of friction (Fig. 12.11) in the estimation (20.1) is overly simpli-
fied. After the work of Brace and Byerlee, the laws of friction for rocks were in-
tensively investigated, which led to a significant change in the “standard model” 
of dry friction. In particular, the differentiation between “static friction” and “ki-
netic friction” proved to be relative and was replaced with the concept of rate- and 
state-dependent friction5. The new concept for the generalized law of friction has 

                                                           
4 B. Gutenberg and C.F. Richter, Seismicity of the Earth and Associated Phenomena. 2nd ed., 
Princeton, N.J.: Princeton University Press, 1954, pages 17-19 ("Frequency and energy of earth-
quakes"). 
5 We have already discussed a simple example model for state-dependent friction in Section 12.6 
in connection with the investigation of frictionally induced vibrations. 
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turned out to be very successful at describing such aspects as seismogenesis, seis-
mic coupling, pre- and post-sliding, as well as the insensitivity to relatively high 
frequency stress oscillations (such as Earth tides). Therefore, we will extensively 
discuss the laws of friction for rock in the following. 

Coulomb already knew that the coefficient of static friction increases slowly 
with time and that the coefficient of kinetic friction is velocity dependent. Ex-
perimental investigations by Dieterich6, which were summarized in the theory of 
Ruina7 to a rate- and a state-dependent law of friction, have shown that there is a 
close relation between these effects. In the law of friction from Dieterich-Ruina, 
the coefficient of friction is dependent on the instantaneous velocity v  as well as 
the state variable θ : 

 
* *

0 ln 1 ln 1
c

v va b
v D

θμ μ
⎛ ⎞ ⎛ ⎞

= − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
   (20.16) 

where the following kinetic equation is valid for the state variable: 

 1
c

v
D
θ

θ
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

.      (20.17) 

The constants a  and b  in Equation (20.16) are both positive and have an order of 
magnitude from 210−  to 310− , cD  has an order of magnitude of 10 mμ  in labora-
tory conditions, its scaling for larger systems has not yet been clarified; typical 
values of *v  are on the order of 0.2 m/s . This law of friction proves to be very 
general and is applicable not only to rock, but also materials of various natures 
such as polymers, glass, paper, wood, and some metals. 

In the static case, tθ =  is valid. The state variable θ  can, therefore, be inter-
preted as the average age of the micro-contacts beginning from the moment they 
were formed. In the case of motion at a constant velocity v  and the initial condi-
tion 0(0)θ θ= , the solution to Equation (20.17) is  

 0( ) expc c

c

v tD D
t

v v D
θ θ

⎛ ⎞ ⎛ ⎞
= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (20.18) 

The state variable θ  relaxes to its new equilibrium value at the sliding length cD . 
According to this, the value cD  can be interpreted as the critical sliding length 
along which all of the existing micro-contacts are destroyed and replaced by new 

                                                           
6 J.H. Dieterich, Modelling of rock friction: 1. Experimental results and constitutive equations. 
1979, J. Geophys. Res., v. 84, pp. 2161-2168. 
7 A.I. Ruina, Slip instability and state variable friction laws. J. Geophys. Res., 1983, v. 88, 
10359-10370. 
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ones. After the transition process ( ) cD
v

θ ∞ =  is valid, which is also compatible 

with the interpretation of the state variable θ  as an age variable: in this case, the 
stationary value of θ  is equal to the average contact time of the micro-contacts. 

For steady sliding, the coefficient of friction is 

 ( )
*

0 ln 1va b
v

μ μ
⎛ ⎞

= − − +⎜ ⎟⎜ ⎟
⎝ ⎠

. (20.19) 

For small velocities, *v v , the law of friction (20.16) can be written in the form 

 
* *

0 ln ln
c

v va b
v D

θμ μ
⎛ ⎞ ⎛ ⎞

≈ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
. (20.20) 

We will quickly investigate its most important properties. The law of friction from 
Dieterich-Ruina describes not only the steady frictional processes well, but also 
unsteady transition processes. We consider a frictional process with the sliding ve-
locity 1v . Thereby, the steady coefficient of friction is, according to (20.19), equal 
to  

 ( )(1) 1
0 *ln

v
a b

v
μ μ ⎛ ⎞≈ + − ⎜ ⎟

⎝ ⎠
. (20.21) 

If the sliding velocity changes abruptly from 1v  to 2v , then only the second term 
in (20.20) changes in the first moment and the coefficient of friction increases by 

2
1

1

ln
v

a
v

μ
⎛ ⎞

Δ = ⎜ ⎟
⎝ ⎠

 to the value 

 (2) 2 1
0 * *ln ln

v v
a b

v v
μ μ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (20.22) 

After the transition, it assumes the value 

 ( )(3) 2
0 *ln

v
a b

v
μ μ ⎛ ⎞= + − ⎜ ⎟

⎝ ⎠
 (20.23) 

and, therefore, changes by 2
2

1

ln
v

b
v

μ
⎛ ⎞

Δ = − ⎜ ⎟
⎝ ⎠

. This behavior is illustrated in 

Fig. 20.2 using experimental data from C. Marone8. For the system shown in Fig. 

                                                           
8 C. Marone, Laboratory-derived friction laws and their application to seismic faulting. Ann. 
Rev. Earth Planet. Sci., 1998, v. 26, pp. 643-696. 
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20.2, 2 1/ 10v v = , 1 0.01μΔ ≈ , 2 0.014μΔ ≈ − . The constants a  and b  are 
0.004a ≈ , 0.006b ≈ . 
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Fig. 20.2  Variation of the coefficient of friction for a sudden change in the velocity: the fric-
tional force initially increases abruptly and afterwards relaxes to a new stationary value. From: 
Marone, C, 1998. Laboratory-derived friction laws and their application to seismic faulting. 
Annu. Rev. Earth Planet. Sci., v. 26, pp. 643-696. 

Until now, we have discussed the law of friction for constant normal stress. It is 
easy to understand that this formulation is not complete. By increasing the normal 
stress, new asperities come into contact; for them, the “contact time” begins at this 
point. A sudden increase in the normal stress, therefore, leads to the renewal of 
contacts and the decrease in average contact time, even without tangential motion. 
Since the real contact area between the rough surfaces is proportional to the nor-
mal stress NA σ∝ , in a first order approximation, a jump in the normal stress of 
d Nσ  leads to a jump in the contact area d d NA σ∝ . If we continue to interpret the 
state variable as the average contact time, then it changes as a result of the jump 
according to d / dA/A= d /N Nθ θ σ σ= − −  (because the age of the newly produced 
contact surface is zero). The kinetic equation (20.17) for θ  must, therefore, be 

amended by addition of the term N

N

θσ
σ

− . An amendment of this form is consistent 

with experimental data from Linker and Dieterich9, but with a phenomenological 
coefficientζ :  

 1 N
c N

v
D
θ θθ ζ σ

σ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

. (20.24) 

                                                           
9 M.F. Linker and J.H. Dieterich, Effects of variable normal stress on rock friction: observations 
and constitutive equations. J. Geophys. Res., 1992, v. 97, pp. 4923-4940. 
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20.4 Stability during Sliding with Rate- and State-Dependent 
Friction  

We consider again the model shown in Fig. 12.1, which is described by the equa-
tion of motion 

 0( , ) mx F x cx cv tθ+ + = , (20.25) 

where the frictional force, ( , ) ( , )NF x F xθ μ θ= , is now defined by the Equations 
(20.20) and (20.17). The steady-state solution is given by 

 0
0

( , )
 

F v
x v t

c
θ

= − ,   0
0

cD
v

θ = . (20.26) 

By considering the steady state solution with a small perturbation,  

 0 0x x v t xδ= + + ,       0θ θ δθ= + , (20.27) 

we obtain the linearized equation in the form 

 , , 0vm x F x c x Fθδ δ δ δθ+ + + = ,   0

0

1

c

v
x

v D
δθ δ δθ= − −  (20.28) 

with 

 
0 0

,v N
x v

F aF F
x v=

∂
= =
∂

,     
0

0, N
c

bvFF F
Dθ

θ θθ =

∂
= =
∂

. (20.29) 

Substituting 

 tx Aeλδ = ,     tBeλδθ =  (20.30) 

provides us with the characteristic equation 

 
( )3 2 0 0

0

0NN

c c c
RP Q

F a bF a v cvc
mv D m mD mD

λ λ λ
−⎛ ⎞⎛ ⎞

+ + + + + =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (20.31) 

The stability criterion demands that R PQ=  (See §12.7) or 

 
( )0 0

0

NN

c c c

F a bcv F a v c
mD mv D m mD

−⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (20.32) 

The critical stiffness follows as 

 
( ) 2

0
N

c c

b a mv
c F

D aD
− ⎛ ⎞

= +⎜ ⎟
⎝ ⎠

. (20.33) 



332      20 Earthquakes and Friction 

If a b> , then the sliding is always stable. In the opposite case, a b< , it is only 
stable for stiffnesses larger that the critical stiffness (20.33). For very small veloci-
ties, the stability criterion (20.33) simplifies to 

 
( )

N
c

b a
c F

D
−

> . (20.34) 

This result can also be interpreted another way: sliding is only stable when 

 c
N

cD
F

b a
<

−
, (20.35) 

i.e. for sufficiently small normal forces. For a continuum, we use the relation 

c GL≈ ; the sliding is only stable when c
N

GLD
F

b a
<

−
 or 

 c
N

GD
L

b a
σ <

−
, (20.36) 

where we have inserted the normal stress 2/N NF Lσ ≈ . According to this, suffi-
ciently small blocks will always exhibit stable sliding, while blocks with linear 
dimensions larger than 

 
( )

c
c

N

GD
L

b aσ
=

−
 (20.37) 

exhibit unstable sliding. 
The most important parameter that determines the stability criterion, ( )b a− , is 

dependent on the material, temperature, and pressure. For granite, the representa-
tive mineral of the Earth’s upper crust, it is positive at temperatures lower than 
300 C°  and becomes negative at higher temperatures (Fig. 20.3). This means that 
we can expect no earthquakes in the continental crust at depths in which the tem-
perature reaches more than 300 C° . 
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Fig. 20.3   Dependence of the parameter ( )a b−  on the temperature for granite. Source: C.H. 

Earthquakes and Friction Laws., Nature, 1998, v. 391, pp. 37-42. 

A more detailed, non-linear stability analysis shows that sliding using the law of 
friction in (20.20) for finite disturbances is described by a stability diagram which 
is qualitatively presented in Fig. 20.4.  

 

Fig. 20.4  Qualitative presentation of the stability diagram for a system (20.25) using the law of 
friction in (20.20), (20.17). Steady-state sliding is disturbed by a sudden change in the pulling 
velocity by vΔ . The motion is stable for small disturbances and a spring stiffness larger than the 
critical stiffness. Sufficiently large disturbances, however, lead to the development of instabili-
ties even for stiffnesses larger than the critical stiffness. For stiffnesses smaller than the critical 
stiffness, there is a domain in which the steady state sliding is stable, but the velocity is always 
finite and oscillates around a stationary value. In the domain of “unstable sliding” the sliding ve-
locity (without taking inertia into account) becomes infinite in a finite amount of time.  

The existence of three stability domains has the following implication for the dy-
namics of earthquakes: they can only nucleate in the areas of the crust in which 
the instability criterion is met. However, they can propagate into stable domains, 
as long as they produce a sufficiently large jump in velocity. Upon entering a sta-
ble domain, the propagation of the shearing is quickly braked. 
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20.5 Nucleation of Earthquakes and Post-Sliding   

Even though people perceive earthquakes as sudden tremors that, as a rule, have 
no noticeable warning signs, they are preceded by slowly developing processes, 
which can be called nucleation. In this stage, they can be treated as quasi-static: 
the equilibrium conditions must be fulfilled for every point in time. In the simple 
“block model” with the simplified law of friction (20.20) from Dieterich and un-
der the assumption that the spring is pulled with the constant velocity 0v , the equi-
librium condition has the following form: 

 ( )
* *

0 0 0 ln lnN
c

v vc x v t x F a b
v D

θμ
⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
. (20.38) 

This equation, together with the kinetic equation for the state variable, 

 1
c

x
D
θ

θ
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

, (20.39) 

can be numerically solved. Directly before the slip, however, there is an accelerat-
ing creep and the sliding velocity v x=  is then much larger that the velocity at 
steady creep: 0 0/cv D vθ>> = . Thereby, Equation (20.39) reduces to 

 d
d cx D
θ θ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,    /

0
cx Deθ θ −= . (20.40) 

Substitution into Equation (20.38) provides us 

 ( )
*

0
0 0 0 *ln ln

N c c

vc x bxx v t x a b
F D Dv

θ
μ
⎛ ⎞

+ − = + + −⎜ ⎟
⎝ ⎠

. (20.41) 

This equation can be explicitly integrated: 

 0

0 0

exp d exp d
t x

N

cv BxA t t x
aF a

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫ , (20.42) 

where 

 
*

* 0 0 0
0exp ln

c N

v cxbA v x
a a D aF
μ θ⎛ ⎞

= − − + =⎜ ⎟
⎝ ⎠

,         (20.43) 

is equal to the sliding velocity 0x  at time 0t =  and 

 
c N

b cB
D F

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

. (20.44) 
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Equation (20.42) has the following solution: 

 0 0

0

ln 1 exp 1N

N

x BF cvax t
B cv aF

⎡ ⎤⎛ ⎞⎛ ⎞
= − − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

. (20.45) 

A typical trend for creep, according to this equation, is shown in Fig. 20.5. The 
time until the appearance of the instability is calculated using the condition that 
the argument of the logarithm in (20.45) is zero: 

 0

0 0

ln 1N
c

N

aF cv
t

cv x BF
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

. (20.46) 

Near the instability, (20.45) can be approximated using the expression 

 ( )0 0

0

ln 1 c
N

x B cvax t t
B a x BF

⎡ ⎤⎛ ⎞
≈ − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
. (20.47) 

The sliding velocity increases according to the relation 

 ( ) 1
c

ax t t
B

−≈ − . (20.48) 

Accelerating creep before a slip event is also detected in simple tribological mod-
els in the laboratory (Fig. 20.6).  

 

 

Fig. 20.5  Accelerating creep before slip according to the Equation (20.45) with 0

0

1Nx BF
cv

= . 
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Fig. 20.6  (b) An experimental recording of the position of a sliding steel body on a steel sub-
strate as a function of time for the experiment shown schematically in (a). The position is meas-
ured with a resolution of 8 nm. In the subplot, one can see two jumps one after the other of about 
8 and 22 mm, respectively. The entire “stick” phase (circled in subplot) is shown in the main plot 
with a higher resolution. One can see that during the entire “stick” phase, there is a slow creeping 
motion which quickly accelerates near the “slip” phase. (Experiment: V.L. Popov and J. Starce-
vic, TU Berlin). 

Also after a slip, there is generally a certain “post-sliding” which can be described 
using the same law of friction. Immediately after the slip, the variable θ  becomes 
practically zero because of the large slip path (see Equation (20.40)). Thus, di-
rectly after the slip, it can be described by the equation  

 1θ ≈ ,     ct tθ ′≈ − , (20.49) 

where ct′  is the time at which the slip ends. For small velocities 0v , the “spring 
force” F  can be assumed to be constant. Equation (20.38) can then be written in 
the form 

 
( )*

0 *ln ln c

N c

v t tF xa b
F Dv

μ
′⎛ ⎞−

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

. (20.50) 

From this, it follows that 
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⎝ ⎠

′⎛ ⎞−
= ⋅⎜ ⎟

⎝ ⎠
. (20.51) 

The exponent /b a  always has an order of magnitude of 1. In the example shown 
in Fig. 20.2, it is equal to 1.5.  The intensity of the post-sliding is different than 
that of pre-sliding in that it is very sensitive to residual stress (proportional to 
( )0/ NF F μ′− ), which is dependent on the precise structure of a fracture site or the 
pairing of materials. 

 

Fig. 20.7  An experimental record of the position of a sliding steel body on a glass substrate as a 
function of time for an experiment schematically shown in Fig. 20.6 (a). In the subplot, one can 
see a slip of about 4 mm. In the main plot, the “stick” phase after the slip (circled in the subplot) 
is shown with a higher resolution. One sees that there is a slowing creep motion during the 
“stick” phase (Post-sliding). (Experiment: V.L. Popov and J. Starcevic, TU Berlin). 

20.6 Foreshocks and Aftershocks   

If the creeping described by Equation (20.48) takes place in the form of a series of 
discrete slips (foreshocks) of the same length l , then the following equation de-
scribes the frequency n  of the foreshocks: 

 ( ) 1
0foreshocks

an t t
Bl

−≈ − . (20.52) 

This is similarly valid for “post-sliding”: If the post-sliding described by Equation 
(20.51) take place in the form of a series of discrete slips (aftershocks) with the 
same length l , then the following equation describes the frequency n  of the after-
shocks: 
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. (20.53) 

The power functions in the forms of (20.52) and (20.53) for foreshocks and after-
shocks were empirically determined in 1894 by Fusakichi Omori and are known 
as the Omori laws. 

Foreshocks are a part of the nucleation of earthquakes. In a more detailed, con-
tinuous representation, they take place near the epicenter of the “main shock.” 
Conversely, the aftershocks provide a mechanism for the release of the stress that 
is produced by the main shock. As a rule, they are concentrated on the edge of sli-
ding domain of the main shock. 

20.7 Continuum Mechanics of Block Media and the Structure of 
Faults   

In general, geomedia are granular media composed of individual fragments. The 
shear strength of such a medium is essentially determined by the frictional forces 
between the individual blocks. We consider a granular, porous medium being 
acted upon by a stress tensor with the principle stresses 3 2 1σ σ σ< <  and the pore 
pressure p , which is shown schematically in Fig. 20.8a. In the presented two-
dimensional diagram, the middle stress 2σ  , which acts in the direction perpen-
dicular to the figure plane, plays no role. 
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Fig. 20.8  Porous, granular medium being acted upon by the principal stresses 1σ  and 3σ , and 
with the pore pressure p . 

The effective stress tensor, which determines the behavior of the material, is calcu-
lated by subtracting the hydrostatic pore pressure from the stress tensor: 
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 1 1 pσ σ= − ,  2 2 pσ σ= − ,  3 3 pσ σ= − . (20.54) 

Normal and tangential stresses in a cross-section, which form the angle θ  with the 
axis “1” (Fig. 20.8b), are calculated as  

 ( ) ( )1 3 1 3 cos 2
2 2N

σ σ σ σ
σ θ

+ −
= − , (20.55) 

 
( )1 3 sin 2

2
σ σ

τ θ
−

=  (20.56) 

or 

 
( ) ( )1 3 1 3 cos 2

2 2N p
σ σ σ σ

σ θ
+ −

= − − , (20.57) 

 ( )1 3 sin 2
2

σ σ
τ θ

−
= . (20.58) 

According to this, the pore pressure leads to a decrease in normal stress in an arbi-
trary cross section, but has no influence on the shear stress. 

Sliding begins in the cross-section only when the shear stress τ  reaches the va-
lue Nμσ : 

 Nτ μσ= , (20.59) 

or taking the adhesive contribution into account 

 0 Nτ τ μσ= + . (20.60) 

Here, μ  is the “internal coefficient of friction,” which can, in principle, be deter-
mined from independent experiments. Fig. 20.9 illustrates this criterion using ex-
perimental data from various types of rock. The typical experimental value of the 
coefficient of friction is between 0.6μ ≈  and 0.85μ =  for rock. 
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Fig. 20.9  “Frictional strength” for several types of rock as a function of the normal stress. 
Source: Byerlee, J.D. Friction of rocks. Pure. Appl. Geophys., 1978, v. 116, pp. 615-626. 

This criterion is called the Coulomb fracture criterion for granular media. This 
dependence is presented graphically with a straight line in Fig. 20.10. The entirety 
of all of the normal and tangential stresses, (20.55) and (20.56), in cross-sections 
with an arbitrary θ  form a circle on the plane ( ),Nσ τ , the so-called Mohr’s cir-
cle. If the total circle lies under the line (20.60), as is shown in Fig. 20.10 a, then 
the fracture condition is not met in any cross-section. By increasing the principal 
stress 1σ , decreasing 3σ , or shifting the total stress circle to the left (for example, 
by increasing the pore pressure according to (20.57)), Mohr’s circle would touch 
the line (20.60) (Fig. 20.10b). At this moment, the fracture criterion is met for the 
first time for a cross-section with the angle 

 
4 2
π ϕθ = − , (20.61) 

where ϕ  is the friction angle: 

 tanϕ μ= . (20.62) 

For a coefficient of friction of 0.6μ = , we obtain 0.52θ ≈  (or 30≈ ° ) and for 
0.85μ =  0.43θ ≈  (or 25≈ ° ). 
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Fig. 20.10  Mohr’s circle for plane stress and Coulomb’s fracture criterion.  

With the help of Fig. 20.10b, one can express the criterion (20.60) using the prin-
cipal stresses: 

 ( ) ( )2 2
1 3 01 1 2σ μ μ σ μ μ τ+ − − + + = . (20.63) 

Therefore, between the principal stresses in the fracture area, there exists a linear 
dependence. Stress measurements using deep drilling show that this condition is 
fulfilled at all depths. This means that the Earth’s crust is found to be near the 
critical state at all depths. If the primary stress 3σ  is negative (in tension), then, as 
a rule, the following criterion is applied to the fracture: 

 3 0σ σ= − . (20.64) 

Anderson10 was the first to recognize that the fundamental types of faults can 
be easily explained using the properties of granular media. His classification is ba-
sed on observations that the principal axes of the stress tensor in the upper crust 
often lie normal and parallel to the surface, respectively. There are three possibili-
ties for the orientation of the axis of the largest principal stress ( )1σ  and the axis 

of the smallest principal stress ( )3σ  with respect to the Earth’s surface, which are 
shown in Fig. 20.11a-c. The resulting fault types are normal faults (Fig. 20.11a), 
thrust (reverse) faults (Fig. 20.11b), and strike-slip faults (Fig. 20.11c). If the 
smallest primary stress is negative, then the surfaces separate in a plane perpen-
dicular to the axis of the negative stress (divergent faults, Fig. 20.11d). The type of 
slip during an earthquake influences, in addition to its magnitude, the resulting de-
struction. Strike-slip faulting (c) leads to maximum tangential acceleration and 
normal faulting, to strong tsunamis (in the case that the earthquake takes place un-
der the ocean). 

                                                           
10 E.M. Anderson, The dynamics of faulting. Edinburgh, Oliver & Boyd, 1951. 
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Fig. 20.11  Primary types of slips according to Anderson: (a) Normal fault, (b) Thrust (reverse) 
fault, (c) Strike-slip fault, (d) Divergent fault. 

20.8 Is it Possible to Predict Earthquakes?  

This question has been heavily discussed in the last decade. The two answers to 
this question each have their prominent supporters. Both points of view can be fol-
lowed using even the simple earthquake model described above. 

If an earthquake is considered a stick-slip instability and we use the simple law 
of friction with constant static and kinetic coefficients of friction, then there is no 
movement before the beginning of the slip event. Because of this, there would also 
be no indication of the approaching slip and, therefore, predicting the earthquake 
would be impossible. An extension of this to continuums does not fundamentally 
change anything regardless of how complicated the system becomes. A distributed 
system exhibits complicated behavior, which is mirrored by the known statistical 
properties of earthquakes (Gutenberg-Richter and Omori laws). These properties, 
however, have a purely statistical character. Therefore, they can serve as a poste-
riori analysis, but not as a prediction at a given place and time. 

This conclusion, however, is based on a concept that is not completely correct. 
Laboratory experiments (see Section 20.5) as well as seismic measurements show 
that an earthquake is always preceded by an accelerating creep, which is a warning 
sign for the fact that the local stresses are approaching the critical value. This fact 
is a reason for some optimism. At the same time, the experimental data presented 
in Section 20.5 show where the problem lies: to effectively observe creep proc-
esses, it is necessary to conduct measurements of displacements in the Earth’s 
crust with very high resolution. Since the frequency domain of up to date seismol-
ogical measurements still does not allow for high resolution measurements of very 
slow displacements, only the hope remains that better measurement methods and 
models in the future lead to a breakthrough in our ability to predict earthquakes11.  

                                                           
11 For a discussion on this theme based on experimental data from earthquakes in California see: 
C. Thurber and R. Sessions, Assessment of creep events as potential earthquake precursors: Ap-
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Problems 

Problem 1: We consider two elastic half-spaces. They are pressed together with 
the normal stress Nσ  and then acted upon by an increasing tangential stress τ  un-
til a stick-slip instability develops. Under the assumption that Coulomb’s law of 
friction is valid at the interface with a constant static and kinetic coefficients of 
friction ( sμ  and kμ , respectively), determine the relative sliding velocity and ac-
celeration of the fracture surfaces.  
 
Solution: Under the described conditions, only shear waves exist in the medium, 
which are described by the wave equation 

2 2
2

2 2sound
u uc

t z
∂ ∂

=
∂ ∂

 ,     with   2
sound

Gc
ρ

= . 

The same equation is also valid for all time and spatial derivatives of u  and ac-
cording to this, also for the stress G u zτ = ∂ ∂ : 

2 2
2

2 2soundc
t z
τ τ∂ ∂
=

∂ ∂
. 

The stress directly before the instability is equal to s s Nτ μ σ=  and after the begin-
ning of motion, to k k Nτ μ σ= . The solution of the wave equation with these 
boundary conditions is a step function with the height ( )N k sτ σ μ μΔ = − , which 

propagates in the depth of the material with the velocity /soundc G ρ= . For an 
arbitrary solution of the wave equation in the form of a wave propagating from the 
surface ( )soundu z c t− , the following expressions are valid: 

sound
sound

cu uv c
t z G

τ∂ ∂
= = − = −
∂ ∂

. Between the jump in the stress 

( )N k sτ σ μ μΔ = −  and the jump in the velocity vΔ , the following relation exists: 

( ) ( )N s ksound sound
N s k

c c
v

G G G
σ μ μ

τ σ μ μ
ρ
−

Δ = − Δ = − = . 

The accompanying acceleration is zero everywhere except on the wavefront, 
where it is infinity. 

 

                                                                                                                                     
plication to the creeping section of the San Andreas fault. California, Pure appl. Geophys., 
(1998), v. 152, pp. 685-705. 
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Problem 2: As in Problem 1, we consider two elastic half-spaces in contact. It is 
assumed that the coefficient of static friction sμ  linearly decreases to that of the 
coefficient of kinetic friction kμ  over a length cD  (sliding length). Determine the 
maximum acceleration of the fracture surfaces in this case. 

 
Solution: From the beginning of the relative sliding of the interface until a relative 
displacement of cD , the frictional stress in the contact interface is 

0,
0,

s k
N s z t

z t c

uG u
z D

μ μ
τ σ μ

=
=

⎛ ⎞−∂
= = −⎜ ⎟∂ ⎝ ⎠

. 

The general solution to the wave equation in the form of a propagating surface 

wave has the form 0 ( )soundu z f z c t
G
τ

= + − , where 0 s Nτ μ σ=  is the constant mac-

roscopic stress far away from the fracture point. Therefore, we obtain the follow-
ing equation for the displacement of the surface  

N sound s k

c

cu u
t G D

σ μ μ−∂
=

∂
. 

If the motion begins with a disturbance 0u , then the displacement of the surface is  

0 exp N sound s k

c

c
u u t

G D
σ μ μ⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

.  

The acceleration is equal to 
2

0 expN sound s k N sound s k

c c

c c
u u t

G D G D
σ μ μ σ μ μ⎛ ⎞ ⎛ ⎞− −

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  

Therefore, between the displacement and the acceleration, the following relation 

exists: 
2

N sound s k

c

c
u u

G D
σ μ μ⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

. At the moment when the displacement reaches 

cu D= , the acceleration vΔ reaches a maximum value of  

( )22

max
N s k

c

u
G D

σ μ μ
ρ
−

= . 

According to this, the maximum value of the acceleration is inversely proportional 
to the sliding length cD . The maximum value of the velocity is the same as in 
Problem 1. 
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Problem 3: As in Problem 1, we consider two elastic half-spaces in contact. It is 
now assumed that during a slip, the coefficient of friction exponentially decreases 
from its static value sμ  to its kinetic value kμ , with a characteristic time 0t  (re-
laxation time)12. Determine the maximum velocity and acceleration of the fracture 
surfaces in this case. 
 
Solution: From the beginning of the relative sliding of the interface, the frictional 
stress in the contact interface is 

( )( )0 0/ /

0,

1t t t t
N s k

z t

uG e e
z

τ σ μ μ− −

=

∂
= = + −

∂
. 

The general solution to the wave equation in the form of a propagating surface 

wave is 0 ( )soundu z f z c t
G
τ

= + − , where 0 s Nτ μ σ=  is the constant macroscopic 

stress far away from the fracture surface. Therefore, we obtain the following equa-
tion for the velocity of the surface  

( )( ) ( ) ( )0 0/ /1 1N s kt t t tN sound
s k

cu e e
t G G

σ μ μσ
μ μ

ρ
− −−∂

= − − = −
∂

. 

The acceleration is equal to 

( )
0

2
/

2
0

N s k t tu e
t G t

σ μ μ

ρ
−−∂

=
∂

. 

The velocity reaches its maximum value of 

( )
max

N s ku
G

σ μ μ
ρ
−

=  

at 0t t  and the acceleration vΔ reaches its maximum value of 

( )
max

0

N s ku
G t

σ μ μ

ρ

−
=  

at 0t = . 
 
 

                                                           
12 This assumption corresponds to a linear scaling of the sliding length cD  with velocity, which 

is typical for granular media. (See e.g. T. Hatano, Scaling of the critical slip distance in granular 
layers. Geophysical Research Letters, 2009, v. 36, L18304 doi: 10.1029/2009GL039665.) 



Appendix  
 
In this appendix, the displacements of the surface of an elastic half-space under 
several stress distributions are calculated, which are of interest in contact mechan-
ics. 

a. Normal stress in a circle with the radius a  according to the expression 

 
1/ 22

0 21
−

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

rp p
a

,  2 2 2= +r x y . (A.1) 

Here, we limit ourselves to the calculation of normal displacements of the surface. 
They are given by Equation (5.7), which we repeat here: 

 *

1 ( , )
π

′ ′
′ ′= ∫∫z z

dx dyu P x y
rE

,  ( ) ( )2 2′ ′= − + −r x x y y , (A.2) 

with  

 
( )

*
21 ν

=
−
EE . (A.3) 

The coordinate system used is shown in Fig. A.1.  

a t

S1

S

AO r
� �

B

x

y

 
Fig. A.1  A sketch for calculating the normal displacements inside of a circular area being acted 
upon by a normal stress. 

Due to rotational symmetry of the stress distribution, the normal displacement at a 
point is dependent only on the distance r from the origin. Therefore, it is sufficient 

V.L. Popov, Contact Mechanics and Friction, DOI 10.1007/978-3-642-10803-7, 
© Springer-Verlag Berlin Heidelberg 2010 
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to determine only the displacements of the points on the x -axis. In the following, 
we calculate the normal displacement at point A. For this, the displacement at 
point A, caused by the stress in the “varying” point B, must be determined and, fi-
nally, integrated for all possible positions of point B in the area being acted upon 
by the stress. The stress in point B is dependent only on the distance t  from the 
origin due to rotational symmetry. For this distance, we obtain 

2 2 2 2 cosϕ= + +t r s rs . Therefore, the pressure distribution is 
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where we have introduced 2 2 2α = −a r  and cosβ ϕ= r . 
For the z -component of the displacement, we obtain 
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Here, 1s  is the positive root of the equation 2 22 0α β− − =s s . The integral over 
ds  is calculated to 

 ( ) ( )
1 1/ 22 2
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2
πα β β α

−
− − = −∫

s

s s ds . (A.6) 

It is apparent that ( ) ( )arctan ( ) / arctan ( ) /β ϕ α β ϕ π α= − + . Therefore, by inte-
grating over ϕ , the term with “ arctan ” vanishes. Therefore, 
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It follows directly from the result how the assumed pressure distribution can be 
produced: it is generated by penetration with a hard cylindrical indenter. 

The force acting on the entire area is equal to 
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The stiffness of the contact is defined as the ratio of the force to the displacement: 

 *2=c aE . (A.9) 
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b. Hertzian Stress Distribution  
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We obtain a vertical displacement of 
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The integral over ds in this expression is calculated as 
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By integrating over ϕd , terms with αβ  and “ arctan ” vanish. The rest of the 
terms are 
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c. Uniform Stress Distribution in a Thin Circular Ring 

�

S

r

a

 
Fig. A.2  A sketch for the calculation of the vertical displacement at point r  for a uniform pres-
sure distribution in a thin circular ring. 

The displacement at point r  is calculated as  
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where NF  is the normal force and ( )κK  is the complete elliptic integral of the 
first kind: 
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This displacement is graphically presented in (Fig. A.3). For ≈r a , the displace-
ment has a logarithmic singularity: 
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Fig. A.3  Displacement of the surface by pressure in a thin circular ring. 
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Unfortunately the symbol “π” is missed in last part of the equation (5.36) on
page 63. The updated version of the equation (5.36) is given below:
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