
DROP: Detecting Return-Oriented Programming
Malicious Code

Ping Chen1, Hai Xiao1, Xiaobin Shen2, Xinchun Yin2, Bing Mao1, and Li Xie1

1 State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University, Nanjing 210093

{chenping,xiaohai}@sns.nju.edu.cn, {maobing,xieli}@nju.edu.cn
2 College of Information Engineering, Yangzhou University, Yangzhou Jiangsu 225009, China

xcyin@yzu.edu.cn

Abstract. Return-Oriented Programming (ROP) is a new technique that helps
the attacker construct malicious code mounted on x86/SPARC executables with-
out any function call at all. Such technique makes the ROP malicious code
contain no instruction, which is different from existing attacks. Moreover, it hides
the malicious code in benign code. Thus, it circumvents the approaches that pre-
vent control flow diversion outside legitimate regions (such as W ⊕X) and most
malicious code scanning techniques (such as anti-virus scanners). However, ROP
has its own intrinsic feature which is different from normal program design: (1)
uses short instruction sequence ending in “ret”, which is called gadget, and (2)
executes the gadgets contiguously in specific memory space, such as standard
GNU libc. Based on the features of the ROP malicious code, in this paper, we
present a tool DROP, which is focused on dynamically detecting ROP malicious
code. Preliminary experimental results show that DROP can efficiently detect
ROP malicious code, and have no false positives and negatives.

1 Introduction

Return-Oriented Programming (ROP) is a technique which chains together existing in-
struction streams ending in a “ret” instruction, and then it perform arbitrary, Turing-
complete computation without code injection. The instruction streams can be extracted
from existing library/binary (e.g., standard GNU libc). Now it is not only available on
the x86 platform [40], but also can be mounted on SPARC architecture [14].

ROP technique can be used to rewrite existing malicious code, and eventually be-
come serious threats when used to compromise the computer, which we called as ROP
attack. Similar to traditional attacks, such as remote code-injection attack, ROP attack
leverages the software vulnerability to launch an attack. However, there are signifi-
cant differences between ROP attack and traditional attack. ROP attack uses existing
library/binary, and ROP malicious code contains only immediate data words and ad-
dresses which are pointed to the short instruction sequences in libc, rather than the
instructions on which traditional attack relies. ROP malicious code breaks the assump-
tion that preventing the attacker from executing injected code is sufficient to protect a
computer, which is at the core of anti-virus software, and other defenses like Intel and
AMD’s W ⊕ X protections. In addition, although ROP attacks have common feature
with traditional return-into-libc attacks [23, 27, 29], it is more difficult to defend ROP

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 163–177, 2009.
© Springer-Verlag Berlin Heidelberg 2009

164 P. Chen et al.

attacks for the following reasons: traditional return-into-libc attack uses libc functions,
which can be wrapped or removed by the maintainers of libc. By contrast, ROP attack
uses short instruction sequences, and each sequence is typically just two to five instruc-
tions length. It is non-trivial to remove the short instruction sequences, which exist in
the libc or other library/binary widely.

Security tools have arm race with attack techniques. Attacks often use the software
vulnerabilities to achieve their goals. Based on this observation, vulnerability detect-
ing tools are leveraged to protect the vulnerability, such as buffer overflow and format
string. Although several tools [13,17,18,19,39] can effectively defend a lot of existing
vulnerabilities, none of them can assure that they have prevented all the software bugs.
Besides, zero-day attacks become more serious than before, and they can compromise
thousands of hosts in a few minutes. It is not sufficient that we only focus on detecting
vulnerabilities, because it is too late to defend zero-day attacks. And we need to dynam-
ically monitor the execution behavior of zero-day attacks. Based on the reasons men-
tioned above, there are a lot of defense tools which aim at detecting the malicious code
according to its characteristics. Take remote code-injection attack for example, early
works [22, 24, 34, 38, 42] aim at extracting the signature of the shellcode by pattern-
based analysis, and the signature is the single, contiguous code sequence. As attackers
are employing advanced evasion techniques such as polymorphism to circumvent the
defense tools. Some works [15, 25, 32, 43] are further specific to these polymorphic at-
tacks. For example, SigFree [43] is an attack blocker which audits whether the network
packet contains instruction sequence and can be leveraged to detect some polymorphic
shellcode. However, ROP attack will be resilient to all these defense tools mentioned
above, as it has significant difference from traditional attacks, which assumes that mali-
cious code contains instructions to achieve malicious purpose. Thus, these works will be
blind to ROP payloads. Other tools [35, 36, 41, 45] use network emulation to detect the
remote-injection code, and identify the execution behavior of polymorphic shellcode.
Currently, network emulation solutions depend on discovery of instruction sequence,
which does not exist in ROP malicious code, since ROP malicious code is totally com-
bined by constant value and instruction address in libc or other existing library/binary.
Thus it will be ineffective for ROP attacks. Moreover, based on the observation that
most remote-injection attack will execute the code which is injected into the memory
by the attacker, another detecting method W ⊕ X is used to detect shellcode. These
techniques are deployed by the PaX [1] project as a patch for Linux. However, ROP
attacks execute existing binary code in program, so it will not be detected by W ⊕ X .

Although ROP attacks may circumvent many existing defense tools, and hide their
malicious behavior in benign code. We find that ROP attack has its intrinsic feature. (1)
ROP attack uses gadget ending in “ret” instruction which is used to jump to the next gad-
get, and the number of the instructions in the gadget is often less than five. By contrast,
in benign program design, the pairs of “ret” instruction and “call” instruction represent
the prologue and epilogue of the function. (2) “ret” instructions contiguously executed
in ROP attacks and they pop up the addresses of the gadgets in existing library/binary.
Whereas in normal program, “ret” instructions pop up the addresses which are not con-
tiguously located in the same existing library/binary, that is to say, the distribution of
addresses are dispersed. Based on the two differences between ROP attack and normal

DROP: Detecting Return-Oriented Programming Malicious Code 165

programs, we develop a tool named DROP, which dynamically detects ROP attack by
checking whether the execution trace deviates from the normal execution route.

Our paper makes three major contributions:

– We select several gadgets from glibc-2.3.5 and leverage these gadgets to rewrite
130 x86 shellcode on milw0rm [28] by ROP technique.

– We statistically analyze a number of normal applications and ROP malicious code,
and we point out the factors which represent the feature of ROP malicious code.

– We develop an effective tool to detect the ROP attack, with the best of our knowl-
edge, our tool is the first one on detecting ROP attacks.

The rest of this paper is organized as follows: ROP attacks are described in section 2. In
section 3, we present an overview of DROP. The design and implementation of DROP
is illustrated at section 4. Section 5 provides the evaluation results of our tool. Section 6
examines its limitations, followed by a discussion of related work in section 7. Finally,
section 8 concludes our work.

2 ROP Attack

In this section, we first describe the design of ROP malicious code. In practice, we
extract several gadgets from glibc-2.3.5, and rewrite 130 x86 shellcode from milw0rm
[28] by using these gadgets. Based on the experience of writing ROP malicious code,
we point out the feature of ROP attacks.

2.1 Design of ROP Malicious Code

We extract 30 gadgets from glibc-2.3.5 based on the algorithm of finding useful in-
struction sequence [40]. All these gadgets contain no more than five instructions. We
ignore the following “boring instructions” [40]. (1)“pop ebp” and “leave”, these two
instructions ending in “ret” cannot be used in ROP shellcode. (2)“unconditional jump”,
we ignore the code sequence “jmp XXX; ret;”, instead, we use the gadget “pop %esp;
ret;” to perform the unconditional jump by changing the value of %esp.

Based on the gadgets we find in glibc-2.3.5, we rewrite 130 Linux x86 shellcode
from milw0rm [28]. Adopting the ROP techniques proposed by Hovav Shacham [40],
we also develop additional techniques to rewrite the ROP malicious code, and these
techniques can improve the design of ROP malicious code.

– Data Segment: We put the “unconditional jump” gadget after the padding
bytes(‘0x41’) in the shellcode, and define the data segment next to the “uncon-
ditional jump”. Then unconditionally jump to the next gadget which is close to the
data segment. Just like in C Programming, we declare variables and constants at the
beginning of the function, the data segment is used to store the temporary values or
constant arguments of the system call. This technique avoids complicated calcula-
tion of the memory address used in ROP shellcode, especially when there are a lot
of temporary values and constant arguments used by original shellcode.

166 P. Chen et al.

– Constant Value: There are often some immediate values in shellcode, such as the
system call number. In ROP shellcode, we cannot store them in memory directly,
because it will bring NULL bytes to the shellcode. Alternatively, we store its nega-
tive values in the memory. Take “11(0xb)” for example, we store its negative value
“-11(0xfffffff5)” in the memory, and use the gadget “pop %edx; ret;” to load -11
to %edx , then leverage the other two gadgets “xor %eax, %eax; ret;” and “sub
%edx, %eax; ret;” to get the original immediate value 11.

– Shortest Gadget Sequence: We try to use the shortest gadget sequence to rewrite the
original code. For example, if we want to load a value to memory, the gadget se-
quence mentioned by Hovav Shacham is “pop %eax; ret; mov %eax, 0x18(%edx);
ret” [40], it contains two gadgets. By contrast, we use following gadget instead to
achieve the same functionality. The difference is that we need to store the value
subtracted by 10 in shellcode, and then pop it to %ecx.

pop %ecx
add $0xa ,% ecx
mov %ecx ,(% edx)
r e t

Figure 1 shows one example of the 130 ROP shellcode we rewrite. Figure 1 (a) shows
the original shellcode, and Figure 1 (b) shows the ROP shellcode. These two kinds of
shellcode have the same function: obtaining a command shell from which the attacker
can control the compromised machine. In this example, glibc-2.3.5 is mapped at address
0x03000000, program stack is mapped at address 0x4fffff00, and in practice, we assume
these addresses have already been obtained by the attacker.

0x31 , 0xc0, 0x50 , /* xor %eax, %eax;
push %eax

*/
0x68, 0x2f, 0x2f, 0x73, 0x68, /* push$0x68732f2f;*/
0x68, 0x2f, 0x62, 0x69, 0x6e, /* push$0x6e69622f;*/
0x89, 0xe3, /* mov %esp, %ebx;*/
0x50, /* push %eax; */
0x53, /* push %ebx;*/
0x89, 0xe1, /* mov %esp ,%ecx;*/
0x31, 0xd2, /* xor %edx, %edx;*/
0xb0, 0x0b, /* mov $0xb, %al;*/
0xcd, 0x80; /* int 0x80;*/
0x00

 (a)

0x9e, 0x7a, 0x03, 0x03 , /* xor %eax, %eax; ret; */
0xe8, 0x7f, 0x02, 0x03, /* pop %edx; ret; */
0x0c, 0xff, 0xff, 0x4f,
0x10, 0x80, 0x02, 0x03, /*mov %eax, 0x18(%edx);ret;*/
0xe8, 0x7f, 0x02, 0x03, /* pop %edx; ret; */
0xf5, 0xff, 0xff, 0xff , /* -11 */
0x9b, 0xa0, 0x06, 0x03, /* sub %edx, %eax; ret; */
0x0d, 0xb1, 0x06, 0x03, /* pop %ebx; ret; */
0x38, 0xff, 0xff, 0x4f, /* address of "/bin//sh" */
0xe7, 0x7f, 0x02, 0x03, /* pop %ecx; pop %edx; ret;*/
0x20, 0xff, 0xff, 0x4f,
0x24, 0xff, 0xff, 0x4f,
0xf5, 0xda, 0x08, 0x03, /* int 0x80; ret;*/
0x38, 0xff, 0xff, 0x4f,
0x12, 0x34, 0x56, 0x78,
0x2f, 0x62, 0x69, 0x6e,
0x2f, 0x2f, 0x73, 0x68, 0x00
 (b)

Fig. 1. Example code: (a) original shellcode, and (b) the ROP shellcode

In Figure 1, we can see that except constant data “/bin//sh”, ROP malicious code
is in the different shape from original code. The original code contains instructions,
whereas ROP malicious code is consisted of the address of gadget and immediate data

DROP: Detecting Return-Oriented Programming Malicious Code 167

within libc. In addition, ROP malicious code leverages the gadgets ending in a “ret”
instruction which pops up the address of the next gadget.

2.2 Features of ROP Malicious Code

Return-oriented Programming malicious code relies on existing code (e.g., libc) and
contains no instructions. The organizational unit of a return-oriented attack is the gad-
get. Each gadget is an arrangement of words on the stack, and these words point to
instruction sequences and immediate data words. When the gadget is invoked, it ac-
complishes several well-defined task, such as a load or an arithmetic operation [37].

Based on the practical experience of writing ROP malicious code, we find the feature
of ROP malicious code as follows:

– ROP chains together gadgets (often contain no more than 5 instructions) which are
already existing in the memory space, and each of these gadgets ending in “ret”.

– ROP malicious code utilizes the contiguous gadget sequence.
– ROP technique hides the malicious code in benign code, as it only contains the

immediate data or address value.

Formula in Table 1 is used to represent ROP malicious code. In this Formula, we define:

Definition 1 (Candidate Gadget). Candidate Gadget refers to the instruction sequence
ending in “ret”. We defined the number of instructions in a Candidate Gadget as G size.
Candidate Gadget Set is briefly represented as G[1...n], G[i] represents the ith Candi-
date Gadget in G set.

Definition 2 (Contiguous Candidate Gadget Sequence). Contiguous candidate gad-
gets are defined as the gadgets occur one after the other and they pop up the address
within the same library/binary memory space. The Contiguous Candidate Gadget Se-
quence contains the contiguous candidate gadgets, and it is represented as S[1...k], S[i]
represents the ith Candidate Gadget in S set. The length of contiguous candidate gad-
get sequence is defined as S length, and Max(S length) represents the maximum value
of S length.

Table 1. Expressions represent the ROP malicious code

G size = sizeof(G[i]) If Min Addr <= G[i].Addr <= Max Addr&&G[i] ∈ G;

S = {S[i]|S[i].G size, S[i + 1].G size <= T0&&S[i]1, S[i + 1]1 ∈ G};
S length = {length|length = sizeof(S)};

ROP = Assert(Max(S length) >= T1);

1 S[i] and S[i+1] are contiguous gadgets.

In Table 1, Min Addr / Max Addr is the start/end address of existing library/binary,
where the gadgets are extracted from. G size and Max(S length) are the two factors
which represent the feature of ROP malicious code. T0 and T1 are the thresholds of
the G size and Max(S length), respectively. To detect ROP malicious code, we need
correctly choose the value of T0 and T1.

168 P. Chen et al.

3 Overview

Based on the differences between ROP malicious code and normal program, we imple-
ment a defense tool “DROP” to detect ROP malicious code. Based on the thresholds
of G size and Max(S length), DROP monitors the program dynamically, intercepts the
“ret” instruction, chooses the “ret” instruction which pops up the address in libc, and
then checks whether the maximum length of contiguous candidate gadget sequence is
more than T1 and each gadget has no more than T0 length. If so, DROP raises an alarm
that the process executed contains ROP malicious code.

Binary code
Ret instruction

recognition

Ret record

gardget

gardget

gardget

gardget

G_size & Max(S_length)

 Report

Fig. 2. Architecture of DROP

Figure 2 shows the architecture of our system. First, we recognize the “ret” instruc-
tion and determine whether it pops up the address within libc. If so, we record the
address poped up by “ret” instruction. Second, we record the size of each Candidate
Gadget (G size). And we also record the length of contiguous gadget sequences
(S length). By referencing the thresholds of G size and Max(S length), we check whether
ROP malicious code exists. Note that our system currently inspects the gadgets in the
libc, it can be extended to other existing library/binary such as Linux Kernel.

4 Implementation Details

Our system is implemented on dynamical binary instrumentation tool Valgrind-3.4.0
[30]. DROP dynamically instruments the binary code and does statistical analysis to de-
termine whether the execution route breaks the thresholds of G size and Max(S length),
which are two main factors to separate the ROP malicious code from normal program.

Figure 3 shows the flow chart of DROP. First, DROP leverages Valgrind Core to
translate the binary code into intermediate language VEX. Second, DROP recognizes
the “ret” instruction represented by VEX. Third, DROP records the address poped up
by “ret” instruction and checks whether the address is in libc. Then DROP counts the
length of candidate gadget, which equals to the number of instructions between two

DROP: Detecting Return-Oriented Programming Malicious Code 169

Recognize ret

Record the poped address

Within Libc?
No

Yes

Count the length of candidate

gadgest G_size

G_size<=T0

Record the candidate gadget

Max(S_length)>=T1

Count the maximum length of

contiguous candidate gadgets

Max(S_length)

No Yes

Yes

No

Report ROP Malicious Code Report Normal Execution

Fig. 3. Flow chart of DROP

“ret” instructions, and selects the candidate gadget whose length is no more than T0, that
is to say, G size<=T0. Finally DROP checks whether there are more than T1 contiguous
gadgets, in other words, Max(S length) >=T1. If the binary execution meets the feature
of ROP malicious code, DROP will report that there exists ROP malicious code.

There are two challenges to detect the ROP malicious code.

– Ret Instruction Recognition.
First we need to recognize the “ret” instruction and then record the address poped
up by it. Valgrind translates binary code into intermediate language VEX, and Table
2 shows “ret” instruction represented by VEX in 32 bits architecture. There are four

Table 2. Ret Instruction Represented in VEX

[1]PUT(60) =0x804838A:I32;
[2]t3 =LDle:I32(t4);
[3]t5=Add32(t4,0x4:I32);
[4]PUT(16) =t5;

VEX statements which represent the “ret” instruction. The first statement is used
to store the address of “ret” instruction in %eip(60), the second statement is used
to pop up the address from the top of stack, then the third and fourth statements
are used to regulate the value of %esp by adding 4 to it. In intermediate language
VEX, PUT is used to write the value to the register, and LDle is used to load the
value to the memory. We found the representation of “ret” instruction in VEX has
following feature: (1) Using LDle to read the value from the top of stack; (2) Using
the Add32 expression , whose first operand is the same as the operand of LDle and
second operand is 0x04; (3) The result of addition statement is the same as the

170 P. Chen et al.

right operand of PUT statement, and the register of PUT statement is %esp(16).
We instrument the second VEX statement, which pops up the address from the top
of stack, to record the address. When we identify the “ret” instruction, we check
whether the address popped up by the “ret” instruction is in libc.

– Contiguous candidate gadgets Recognition . DROP recognizes the contiguous can-
didate gadgets as the following steps. First, when we find that the address poped up
by “ret” instruction is in libc, DROP records the size of the candidate gadget ending
in the “ret” instruction just recognized, and initiates the variable G size as 0. Then
DROP increases the G size when executes one instruction, until encounters the next
“ret” instruction. We select the candidate gadgets with the size G size no more than
T0. And then among these gadgets, we record the length of contiguous candidate
gadget sequence and choose the maximum length of the contiguous candidate gad-
get sequence. If the maximum length is no less than T1, we raise an alarm that the
program contains ROP malicious code.

5 Evaluation

In this section, we choosed a large number of normal programs and ROP malicious
shellcode to determine the thresholds of the two factors which represent the feature of
ROP: G size and S length. Based on the two factors, we evaluated the false positives and
false negatives of DROP with hundreds of applications and several kinds of shellcode.
Finally we test the performance overhead of DROP. The evaluation is performed on
an Intel Pentium Dual E2180 2.00GHz machine with 2GB memory and Linux kernel
2.6.15. Tested programs are compiled by gcc-4.0.3 and linked with glibc-2.3.5.

5.1 Statistical Analysis of Normal Programs and Shellcode

We choose hundreds of applications to test the feature of normal programs’ execution,
and the sizes of these applications range from 10K to 100M. These tested programs
cover major categories of common programs such as Database, Media Player, Web
Server. Table 3 lists the statistical results of fifteen programs. Note that the rest of pro-
grams we analyzed also come up to the average statistical result listed in Table 3.

Table 3. Statistical result of normal program

Software LOC (K) Benchmark
The number of candidate gadget Max(S length)

<=4 1 <=5 <=6 <=7 <=8 <=9 <=10 <=4 1 <=5 <=6 <=7 <=8 <=9 <=10
slocate-2.7 89.2 Search patterns in 87K database 7 13 17 30 40 48 56 1 2 2 2 3 3 5
bzip2-1.0.5 236.6 Uncompress the 269K file 7 12 15 26 34 41 46 1 2 2 2 2 3 3
man-1.6c 248.5 Open the message catalog for ls 5 10 16 30 43 51 60 1 2 2 3 3 3 4
gzip-1.2.4 278.2 Uncompress the 55M file 1 4 8 19 25 31 34 1 2 2 2 2 3 3

bc-1.06 375.9 Finds primes between 2 and limits 5 9 11 21 27 33 39 1 2 2 2 2 2 4
ngircd-0.8.1 445.1 Validate and display configuration 8 15 19 30 38 44 53 1 2 2 2 2 2 4

zgv-5.8 479.5 View JPG file 8 17 25 49 64 78 88 1 2 2 3 3 3 3
gocr-0.46 823.6 Process JPG file 6 12 15 27 33 39 47 1 2 2 3 3 3 3
grep-2.5.1 904.1 Find pattern in 1.9 MB file 2 7 9 19 26 35 40 1 2 2 2 2 3 3

openssh-2.2.1 976.8 Login in using user name 11 21 25 30 42 43 52 1 2 2 2 2 3 5
tar-1.15.1 1149.0 Uncompress the 13.6M file 12 18 25 42 55 65 77 1 2 2 3 3 3 5
gcc-4.2.4 4060.4 Compile 1KB source code 5 10 12 23 33 41 46 1 2 2 2 3 3 5

httpd-2.2.0 9883.7 ab 19 31 91 118 144 163 174 2 2 2 2 3 4 5
python-2.5.2 13602.9 Process python file 12 18 25 41 56 65 72 1 2 2 2 2 4 5

php-5.2.5 24462.0 Process php file 13 21 28 53 73 93 108 1 2 3 3 4 4 6
Average 8 15 23 37 54 58 66 1 2 2 2 3 3 4

1 G size=4,5,6,7,8,9,10

DROP: Detecting Return-Oriented Programming Malicious Code 171

In Table 3, columns 4-10 represent the number of candidate gadgets and the length of
candidate gadget is G size, and columns 11-17 represent the maximum length of con-
tiguous gadget sequence Max(S length), and each gadget has the G size length. From
columns 4-10, we can see that the average number of candidate gadgets is 15 in normal
programs, and each candidate gadget contains no more than 5 instructions. This num-
ber is relatively small, by contrast, most of ROP malicious code contain more than 15
gadgets. To find the common number of instructions in shellcode, we statistically ana-
lyze 130 x86 shellcode from milw0rm [28]. Figure 4 shows the number of instructions
in the 130 shellcode. We can see 83 shellcode among 130 shellcode we study contain
more than 15 instructions, nearly 63.4%. We also rewrite these 130 shellcode by ROP
technique, and find that 87 ROP shellcode contain more than 15 gadgets, nearly 66.9%.

Fig. 4. The Number of Instructions in Shellcode

In addition, from columns 11-17, we can see that the larger the G size, the longer the
Max(S length). When G size is no more than 5, the Max(S length) is relatively stable
and less than 2. On the contrary, based on the analysis of ROP malicious code, we find
that the number of candidate gadgets is no less than 3. Malicious code uses system
call to achieve malicious system operation, and the system call will be replaced by
ROP technique with 3 gadgets at least. If these candidate gadgets are contiguous, the
maximum length of contiguous candidate gadget sequence is more than 3. Based on the
analysis of normal programs and ROP malicious code just mentioned above, we find
that the threshold of Max(S length) is about 3.

To further choose the thresholds of the two factors of ROP malicious code and make
DROP have both low false positives and false negatives, we test a large number of
normal programs and ROP malicious code which are monitored under DROP with

Table 4. The false positives and false negatives of DROP

���T1
T0 4 5 6 7 8 9 10

1 1.000/0.000 11.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
2 0.913/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
3 0.000/0.009 0.000/0.000 0.067/0.000 0.333/0.000 0.578/0.000 0.817/0.000 0.982/0.000
4 0.000/0.069 0.000/0.023 0.047/0.023 0.053/0.023 0.073/0.023 0.235/0.023 0.637/0.023
5 0.000/0.092 0.000/0.031 0.000/0.031 0.000/0.031 0.002/0.031 0.096/0.031 0.467/0.031
6 0.000/0.104 0.000/0.054 0.000/0.054 0.000/0.054 0.000/0.054 0.000/0.054 0.067/0.054

1 False positives and false negatives of DROP are represented in the form of x/y,
“x” represents the false positives, and “y” represents the false negatives.

172 P. Chen et al.

the different thresholds of G size and Max(S length). Table 4 shows the experimental
results. And the thresholds of G size and Max(S length) are represented as T0 and T1,
respectively. We can see that when the value of G size is increasing, it makes the false
positives of DROP increase and false negatives decrease, on the contrary, when the
value of Max(S length) is increasing, it makes the opposite result.

From Table 4, we can see that the optimal thresholds of Max(S length) and G size
are 3 and 5, respectively, because in this case, DROP has no false positives and false
negatives. Note that the thresholds of Max(S length) and G size can be chosen by the
user. In current implementation, we focus on x86 programs, and monitor the gadgets in
libc. Thus, we select the thresholds of Max(S length) and G size as 3 and 5, respectively.

5.2 Analysis of False Positives and False Negatives

We choose 130 Linux x86 shellcode from milw0rm [28], and all these types of shell-
code are rewritten by ROP to evaluate the effectiveness of DROP. Table 5 shows ten
representative cases among 130 shellcode we tested. In Table 5, column 4 represents
the number of instructions in original shellcode, and column 5 represents the number
of gadgets in ROP shellcode we rewrote. We can see that DROP has no false negatives.
Next we also measure the false positives of DROP. Note that DROP is based on the
two factors which represent the feature of ROP malicious code, and the two character
factors are determined by statistically analyzing hundreds of application mentioned in
Section 5.1. We select additional hundreds of applications to analyze the false positives
of DROP. Experimental result shows that DROP has no false positives. In addition, al-
though so far, in practice, we have not constructed x86 ROP malicious code by using
libc gadgets to circumvent DROP. In theory, however, DROP may have false negatives.

Table 5. ROP malicious code tested on DROP

Date of Shellcode Size Description Instructions Gadgets Detected by DROP
2009-06-16 34 bytes setreuid(),execve(“/bin/sh”,0,0) [11] 16 21 �
2009-02-20 30 bytes chmod(“/etc/shadow”,666) exit(0) [8] 11 8 �
2009-02-04 34 bytes killall5 shellcode [9] 13 15 �
2009-01-16 30 bytes PUSH reboot() [10] 12 8 �
2008-11-19 86 bytes edit /etc/sudoers for full access [7] 29 32 �
2007-03-09 40 bytes /sbin/iptables -F [6] 17 19 �
2006-11-17 45 bytes execve(rm -rf /) shellcode [3] 23 29 �
2006-07-04 84 bytes portbind (define your own port) [5] 47 84 �
2006-04-03 25 bytes execve(“/bin/sh”, [“/bin/sh”, NULL]) [2] 11 8 �
2006-01-21 5 bytes normal exit w/ random return value [4] 3 3 �

– Multi-stage ROP malicious code.
Multi-stage shellcode reads the second stage payload and executes it. At the end
of the first stage, it will subvert the control flow to the shellcode belonged to the
second stage. At this moment, if the first stage shellcode executes “ret” instruction
to jump to the second stage shellcode, it will pop up the address which is not in libc.
Therefore, it may break the assumption that ROP malicious code contains no less
than 3 contiguous address which are poped up by “ret” instructions within libc. In
addition, if the first stage payload is short (less than 3 gadgets), it may make DROP
ineffective. However, in practical analysis of shellcode, we have not found this kind
of shellcode, because there is almost no chance for attacker to construct the first stage
shellcode with less than 3 gadgets to read the second stage payload and jump to it.

DROP: Detecting Return-Oriented Programming Malicious Code 173

– Mutil-source ROP malcious code.
Currently, we only monitor the gadgets in libc, if the ROP malicious code uses
multi-source, such as the program text segment and Linux Kernel, and constructs
the gadgets in interval. DROP will be blind to this kind of malicious code. In prac-
tice, it is hard to construct multi-source ROP malicious code, because it is non-
trivial to simultaneously get the base address of the multi-source.

Although there are several methods which may be potentially circumventing DROP,
as demonstrated, we believe our technique can be used to defend against ROP attacks.
First, these attack techniques are not practical and hard to be implemented. Second,
DROP is built based on the case study of normal programs and ROP malicious code,
and our experimental results show that it has no false positives and negatives.

5.3 Performance Evaluation

We used the fifteen normal applications listed in Table 6 to measure the performance
of our tool DROP. For each program, we tested the performance overhead when the
program runs natively and under DROP.

Table 6. Performance Overhead of DROP

Prog. LOC (K) Benchmark Native Run Under DROP Performance Overhead
slocate-2.7 89.2 Search patterns in 87K database 0.096s 0.593s 6.2X
bzip2-1.0.5 236.6 Uncompress the 269K file 3.357s 51.860s 15.4X
man-1.6c 248.5 Open the message catalog for ls 0.188s 1.234s 6.6X
gzip-1.2.4 278.2 Uncompress the 55M file 2.457s 10.839s 4.4X

bc-1.06 375.9 Finds primes between 2 and limits 0.125s 2.628s 21.0X
ngircd-0.8.1 445.1 Validate and display configuration 0.141s 0.625s 4.4X

zgv-5.8 479.5 View JPG file 0.145s 0.703s 4.8X
gocr-0.46 823.6 Process JPG file 0.136s 1.868s 13.7X
grep-2.5.1 904.1 Find pattern in 1.9 MB file 0.958s 9.753s 10.2X

openssh-2.2.1 976.8 Login in using user name 4.626s 14.803s 3.2X
tar-1.15.1 1149.0 Uncompress the 13.6M file 8.158s 15.463s 1.9X
gcc-4.2.4 4060.4 Compile 1KB source code 0.078s 0.748s 9.6X

httpd-2.2.0 9883.7 ab 1.019s 5.208s 5.1X
python-2.5.2 13602.9 Process python file 0.725s 4.188s 5.8X

php-5.2.5 24462.0 Process php file 0.612s 2.349s 3.8X
Average 1.521s 8.191s 5.3X

From Table 6, we can see the average performance slow down factor of DROP is
nearly 5.3 times. With the best of our knowledge, the performance overhead of DROP
is the relatively low Valgrind overhead. The performance overhead of DROP is mainly
on the recognition of “ret” instruction and statistical analysis the length of contiguous
gadget sequences (S length). Note that we just propose the mechanism of detecting ROP
malicious code, and we believe our method can be adopted by other binary dynamic
instrumentation tools, such as PIN [26], and may get better performance.

6 Discussion

We implement DROP to detect ROP malicious code, and currently DROP is based on
dynamic binary instrumentation tool Valgrind [30]. Different from vulnerability-based
detection tools and malicious scanning tools, our tool aims at detecting ROP malicious
code. DROP has following limitations:

174 P. Chen et al.

– Portability Limitation. DROP only detect ROP malicious code written on x86 ar-
chitecture, however, malicious code can be rewritten on other architecture by ROP
technique. Thus it will be ineffective to detect ROP malicious code on other ar-
chitectures. We believe that our detecting mechanisms can be deployed to other
architectures, such as SPARC.

– Detection Limitation. There are two limitations. First, DROP detects ROP mali-
cious code with the assumption that it contains at least three contiguous gadgets.
However, some potential shellcode methods discussed in Section 5.2 may break this
assumption, and make DROP not effective. Second, currently, DROP only detects
the gadgets extracted from libc. However, some techniques may help attacker use
other existing library/binary, such as Linux Kernel [21], to construct ROP malicious
code. DROP will not be effective for this kind of ROP malicious code.

7 Related Work

7.1 Return-into-Libc Attack

ROP attack technique fits within the larger milieu of return-into-libc attack. However,
there are some critical differences between ROP attack and traditional return-into-libc
attacks. Traditional return-into-libc attack leverages libc functions, whereas ROP attack
uses gadgets. One gadget contains no more than five instructions and it can be easily au-
tomatically extracted from the existing library/binary. Some original defense techniques
against the traditional return-into-libc attack, such as Libsafe [13], will be ineffective
for the ROP attacks. Besides, ROP attack can use other existing library/binary such as
Linux Kernel, and makes it more challenging to detect ROP attack.

7.2 Defense Techniques Against Code Injection and Execution

W ⊕ X is a technique which ensures that no memory location in a process image is
marked both writable (“W”) and executable (“X”), typical defending tool is PAX [1].
It forbids memory pages both writable and executable. However, ROP attack does not
execute the injected code, and thus cannot be detected by W ⊕ X .

7.3 Malicious Code Scanners

Malicious Code Scanners [15,22,24,25,32,34,35,36,38,41,42,43,45] detect the context
of input, and check whether there are malicious codes. Currently, several Malicious
Code Scanners detect the malicious by using pattern matching. As ROP malicious code
contains the address of gadgets or data, the string in malicious code is randomized, thus
malicious code scanners will be ineffective for detecting ROP malicious code.

7.4 Integrity of Control Flow

Some existing tools can be deployed to prevent the control flow of program tampering.
These tools monitor the sensitive control-flow objects such as return address and func-
tion pointer. There are several typical tools [12,17,18,19], and these tools may block the
pre-condition of ROP attack : altering the control flow to the location ROP malicious
code exists. Our tool is an alternative approach to detect ROP malicious code based on
the assumption the control flow is tampered at least once.

DROP: Detecting Return-Oriented Programming Malicious Code 175

7.5 Memory Tainting Techniques

Memory tainting is used to defend the memory maliciously read and written. This de-
fense technique taints the memory location at bit/byte level, and detects whether the
sensitive object is corrupted by outside inputs. TaintCheck [33] is a tool which can ef-
fectively detect the control-flow hijacking. Xu et al [44] proposed a dynamic taint anal-
ysis technique to check security-sensitive operations. Several tools aim at automatically
detecting malicious behavior of malicious code from network using taint analysis,such
as DAKADO [20], Vigilante [16] and VSEF [31]. All these tools mentioned above are
effective for defending ROP attack, as they block the ROP malicious code to be injected
into memory. Our tool is an alternative approach to detect ROP malicious code based
on the assumption the malicious code can be successfully injected into memory.

8 Conclusion

In this paper, we have studied Return-Oriented Programming(ROP) and wrote several
ROP malicious code by using this technique. In addition, we statistically analyzed a
large number of normal programs and ROP malicious code, and investigated two factors
that represent the feature of ROP: G size and Max(S length). Based on the observation,
we found that there exist thresholds of the two factors, and can be leveraged to detect
ROP malicious code by separating the ROP malicious code from normal programs.
Our approach monitors program execution, and checks whether the execution comes up
to the feature of ROP malicious code. We have implemented our approach in a system
called DROP and applied it to analyze a number of normal programs and ROP malicious
code on x86 architecture. Preliminary experimental results show that our approach is
highly effective and practical, and has no false positives and negatives.

Acknowledgements

This work was supported in part by grants from the Chinese National Natu-
ral Science Foundation (60773171, 90818022, and 60721002), the Chinese Na-
tional 863 High-Tech Program (2007AA01Z448), the Chinese 973 Major State
Basic Program(2009CB320705), and the Natural Science Foundation of Jiangsu
Province(BK2007136).

References

1. The pax project (2004), http://pax.grsecurity.net/
2. linux/x86 execve(“/bin/sh”, [“/bin/sh”, null]). milw0rm (2006),

http://www.milw0rm.com/shellcode/1635
3. linux/x86 execve(rm -rf /) shellcode. milw0rm (2006),

http://www.milw0rm.com/shellcode/2801
4. linux/x86 normal exit w/ random (so to speak) return value. milw0rm (2006),

http://www.milw0rm.com/shellcode/1435
5. linux/x86 portbind (define your own port). milw0rm (2006),

http://www.milw0rm.com/shellcode/1979
6. linux/x86 /sbin/iptables -f. milw0rm (2007),

http://www.milw0rm.com/shellcode/3445

http://pax.grsecurity.net/
http://www.milw0rm.com/shellcode/1635
http://www.milw0rm.com/shellcode/2801
http://www.milw0rm.com/shellcode/1435
http://www.milw0rm.com/shellcode/1979
http://www.milw0rm.com/shellcode/3445

176 P. Chen et al.

7. linux/x86 edit /etc/sudoers for full access. milw0rm (2008),
http://www.milw0rm.com/shellcode/7161

8. linux/x86 chmod (“/etc/shadow”,666) & exit(0). milw0rm (2009),
http://www.milw0rm.com/shellcode/8081

9. linux/x86 killall5 shellcode. milw0rm (2009),
http://www.milw0rm.com/shellcode/8972

10. linux/x86 push reboot(). milw0rm (2009),
http://www.milw0rm.com/shellcode/7808

11. linux/x86 setreuid(geteuid(),geteuid()),execve(“/bin/sh”,0,0). milw0rm (2009),
http://www.milw0rm.com/shellcode/8972

12. Abadi, M., Budiu, M., Ligatti, J.: Control-flow integrity. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security(CCS), pp. 340–353. ACM Press,
New York (2005)

13. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack smashing at-
tacks. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference,
p. 21. USENIX Association, Berkeley (2000)

14. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go bad: gen-
eralizing return-oriented programming to risc. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security(CCS), pp. 27–38. ACM, New York (2008)

15. Cavallaro, L., Lanzi, A., Mayer, L., Monga, M.: Lisabeth: automated content-based signa-
ture generator for zero-day polymorphic worms. In: Proceedings of the 4th International
Workshop on Software Engineering for Secure Systems(SESS), pp. 41–48. ACM, New York
(2008)

16. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-
lante: End-to-end containment of internet worm epidemics. ACM Transactions on Computer
Systems (TOCS) 26(4), 1–68 (2008)

17. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang,
Q.: Stackguard: automatic adaptive detection and prevention of buffer-overflow attacks. In:
Proceedings of the 7th Conference on USENIX Security Symposium, p. 5. USENIX Asso-
ciation, Berkeley (1998)

18. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lokier, J.: Format-
guard: Automatic protection from printf format string vulnerabilities. In: Proceedings of the
10th conference on USENIX Security Symposium, p. 2003 (2000)

19. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguardtm: protecting pointers from buffer
overflow vulnerabilities. In: Proceedings of the 12th Conference on USENIX Security Sym-
posium, p. 7. USENIX Association, Berkeley (2003)

20. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities from zero-
day polymorphic and metamorphic worm exploits. In: Proceedings of the 12th ACM Con-
ference on Computer and Communications Security(CCS), pp. 235–248 (2005)

21. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code integrity
protection mechanisms. In: Proceedings of 18th USENIX Security Symposium (2009)

22. Kim, H.A., Karp, B.: Autograph: toward automated, distributed worm signature detection.
In: Proceedings of the 13th Conference on USENIX Security Symposium, p. 19. USENIX
Association, Berkeley (2004)

23. Krahmer, S.: X86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique. Phrack Magazine (2005), http://www.suse.de/krahmer/no-nx.pdf

24. Kreibich, C., Crowcroft, J.: Honeycomb: creating intrusion detection signatures using hon-
eypots. ACM SIGCOMM Computer Communication Review 34(1), 51–56 (2004)

25. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack resilience. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy, pp. 32–47 (2006)

http://www.milw0rm.com/shellcode/7161
http://www.milw0rm.com/shellcode/8081
http://www.milw0rm.com/shellcode/8972
http://www.milw0rm.com/shellcode/7808
http://www.milw0rm.com/shellcode/8972
http://www.suse.de/krahmer/no-nx.pdf

DROP: Detecting Return-Oriented Programming Malicious Code 177

26. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: building customized program analysis tools with dynamic instrumenta-
tion. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 190–200. ACM, New York (2005)

27. McDonald, J.: Defeating solaris/sparc non-executable stack protection. Bugtraq (1999)
28. milw0rm: http://www.milw0rm.com/shellcode/linux/x86
29. Nergal: The advanced return-into-lib(c) exploits (pax case study). Phrack Magazine (2001),

http://www.phrack.org/archives/58/p58-0x04
30. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instru-

mentation. In: Proceedings of the 2007 PLDI Conference, vol. 42(6), pp. 89–100 (2007)
31. Newsome, J., Brumley, D., Song, D.: Vulnerability-specific execution filtering for exploit

prevention on commodity software. In: Proceedings of the 13th Annual Network and Dis-
tributed System Security Symposium, NDSS (2006)

32. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures for poly-
morphic worms. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 226–
241 (2005)

33. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and signa-
ture generation of exploits on commodity software (2005)

34. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Proceedings of the
7th Conference on USENIX Security Symposium, Berkeley, CA, USA, p. 3 (1998)

35. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network-level polymorphic shell-
code detection using emulation. In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS,
vol. 4064, pp. 54–73. Springer, Heidelberg (2006)

36. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detection of non-
self-contained polymorphic shellcode. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

37. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming: Systems,
languages, and applications (2009) (in review)

38. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of the
13th USENIX Conference on System Administration, pp. 229–238. USENIX Association,
Berkeley (1999)

39. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proceedings of the
11th Annual Network and Distributed System Security Symposium (NDSS), pp. 159–169
(2004)

40. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 552–561. ACM, New York (2007)

41. Shimamura, M., Kono, K.: Yataglass: Network-level code emulation for analyzing memory-
scanning attacks. In: Proceedings of the 6th International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, pp. 68–87 (2009)

42. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: Proceed-
ings of the 6th Conference on Symposium on Opearting Systems Design & Implementa-
tion(OSDI), p. 4. USENIX Association, Berkeley (2004)

43. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow attack blocker.
IEEE Transactions on Dependable and Secure Computing 99(2) (2006)

44. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: a practical approach to
defeat a wide range of attacks. In: Proceedings of the 15th Conference on USENIX Security
Symposium (USENIX-SS 2006). USENIX Association, Berkeley (2006)

45. Zhang, Q., Reeves, D.S., Ning, P., Iyer, S.P.: Analyzing network traffic to detect self-
decrypting exploit code. In: Proceedings of the 2nd ACM Symposium on Information, Com-
puter and Communications Security, pp. 4–12. ACM, New York (2007)

http://www.milw0rm.com/shellcode/linux/x86
http://www.phrack.org/archives/58/p58-0x04

	DROP: Detecting Return-Oriented Programming Malicious Code
	Introduction
	ROP Attack
	Design of ROP Malicious Code
	Features of ROP Malicious Code

	Overview
	Implementation Details
	Evaluation
	Statistical Analysis of Normal Programs and Shellcode
	Analysis of False Positives and False Negatives
	Performance Evaluation

	Discussion
	Related Work
	Return-into-Libc Attack
	Defense Techniques Against Code Injection and Execution
	Malicious Code Scanners
	Integrity of Control Flow
	Memory Tainting Techniques

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

