

Lecture Notes in Computer Science 5905
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Atul Prakash Indranil Sen Gupta (Eds.)

Information
Systems
Security

5th International Conference, ICISS 2009
Kolkata, India, December 14-18, 2009
Proceedings

13

Volume Editors

Atul Prakash
University of Michigan
Electrical Engineering and Computer Science Department
Ann Arbor, MI, USA
E-mail: aprakash@eecs.umich.edu

Indranil Sen Gupta
Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering
Kharagpur, India
E-mail: isg@iitkgp.ac.in

Library of Congress Control Number: 2009939539

CR Subject Classification (1998): C.2, E.3, D.4.6, K.6.5, K.4.4, H.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-10771-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-10771-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12803835 06/3180 5 4 3 2 1 0

Message from the General Chairs

The International Conference on Information Systems Security (ICISS), which
was first held in 2005 at Jadavpur University, Kolkata, India, has been success-
fully organized every year in different parts of the country. The fifth conference
in this series, ICISS 2009, held during December 14-18, 2009, returned to its
city of birth in Kolkata. Even within a short span of its life, the conference has
left its mark in the field of information systems security and attracted a large
number of submissions (85) from across the globe. With painstaking effort, the
Program Committee selected 17 full papers and 4 short papers for presentation.

The program of the conference spanned over five days and included, in addi-
tion to a high-quality technical program, tutorials in the first two days delivered
by eminent researchers and practitioners in the field, giving young researchers
and students an excellent opportunity to learn about the latest trends in infor-
mation security.

The Program Chairs, Atul Prakash and Indranil Sengupta, along with the
Program Committee members did an excellent job in completing a rigorous
review process. We take this opportunity to record our appreciation to the Pro-
gram Committee members. We would also like to thank Marc Dacier, Venu
Govindaraju, Angelos Keromytis, and Nataraj Nagaratnam for accepting our
invitation to deliver keynote talks at the conference. The effort made by In-
drakshi Ray and Indranil Sengupta in selecting tutorial sessions on topics of
contemporary interest in this field deserves special mention. We would also like
to thank the Tutorial Speakers who kindly agreed to deliver their lectures.

The Organizing Committee, headed by Samiran Chattopadhyay, should be
commended for taking the necessary steps to ensure that the conference could be
successfully conducted at the Eastern Zonal Cultural Centre, Salt Lake, Kolkata.
We are indebted to the sponsors of this conference who contributed significantly
even in a period of economic slowdown. We would also like to thank Sudip Misra,
the Finance Chair of the conference, for a commendable job.

December 2009 Sushil Jajodia
Arun Kumar Majumdar

Message from the Technical Program Chairs

Welcome to the proceedings of the 5th International Conference on Information
Systems Security, ICISS 2009. This annual event started off in year 2005 as an
initiative to promote information security-related research in the country, and
has gradually matured into a reputed international conference.

This year we received 85 papers from 19 countries all over the world. Af-
ter a rigorous review process, the Program Committee selected 21 papers for
presentation, with 17 regular papers and 4 short papers. The Program Com-
mittee members carefully scrutinized the papers along with the reviews during
a two-week on-line discussion phase. We would like to thank the authors of all
the papers for submitting their quality research work to the conference. Special
thanks go to the Program Committee members and the external reviewers for
sparing their time in carrying out the review process meticulously. We would
also like to thank Springer for kindly permitting us to publish the proceedings
of the conference as an LNCS volume.

We were fortunate to have several eminent experts as keynote speakers. We
are thankful to them for participating in the conference. The main conference
program was preceded by two days of tutorial presentations and we would like to
thank the tutorial speakers. We would like to thank the Tutorial Chair, Indrakshi
Ray, for putting a lot of effort in building up a well-balanced tutorial program.

Finally, we would like to thank the General Chairs, Sushil Jajodia and Arun
Kumar Majumdar, members of the Steering Committee and the previous Pro-
gram Committee Chairs, R. Sekar and Patrick McDaniel, on whom we frequently
relied upon for advice throughout the year.

We hope that you find the ICISS 2009 proceedings rewarding.

December 2009 Atul Prakash
Indranil Sen Gupta

Conference Organization

Steering Committee

Aditya Bagchi Indian Statistical Institute, Kolkata, India
Sushil Jajodia George Mason University, USA
Somesh Jha University of Wisconsin, USA
Arun Kumar Majumdar Indian Institute of Technology, Kharagpur,

India
Chandan Mazumdar Jadavpur University, Kolkata, India
Gulshan Rai MCIT, Government of India
R. Sekar Stony Brook University, USA

General Chairs

Sushil Jajodia George Mason University, USA
Arun Kumar Majumdar Indian Institute of Technology, Kharagpur,

India

Program Chairs

Atul Prakash University of Michigan, USA
Indranil Sengupta Indian Institute of Technology, Kharagpur,

India

Tutorial Chairs

Indrakshi Ray Colorado State University, USA
A. K. Pujari LNM Institute of Technology, India

Organizing Chair

Samiran Chattopadhyay Jadavpur University, Kolkata, India

Government Liaison

A. K. Kaushik MCIT, Government of India

Publicity Chairs

Indrajit Ray Colorado State University, USA
Aditya Bagchi Indian Statistical Institute, Kolkata, India

X Organization

Poster Chair

Raja Datta Indian Institute of Technology, Kharagpur,
India

Program Committee

Vijay Atluri Rutgers University, USA
Aditya Bagchi Indian Statistical Institute, Kolkata, India
Bharat Bhargava Purdue University, USA
Kevin Borders Web Tap Security, USA
Bezawada Bruhadeshwar IIIT Hyderabad, India
David Brumley Carnegie Mellon University, USA
Sanjay Burman CAIR, Bangalore, India
Kevin Butler Penn State University, USA
Scott Coull Johns Hopkins University, USA
Vinod Ganapathy Rutgers University, USA
Sujata Garera Johns Hopkins University, USA
Soumya K. Ghosh Indian Institute of Technology, Kharagpur,

India
Trent Jaeger Penn State University, USA
Sushil Jajodia George Mason University, USA
Somesh Jha University of Wisconsin, USA
Sam King University of Illinois, USA
Kristen LeFevre University of Michigan, USA
Zhenkai Liang National University of Singapore, Singapore
Alex Liu Michigan State University, USA
Donggang Liu University of Texas, USA
Arun Kumar Majumdar Indian Institute of Technology, Kharagpur,

India
Anish Mathuria DA-IICT Gandhinagar, India
Chandan Mazumdar Jadavpur University, Kolkata, India
Patrick McDaniel Penn State University, USA
Sharad Mehrotra UC Irvine, USA
Sudip Misra Indian Institute of Technology, Kharagpur,

India
Shimon Modi Purdue University, USA
Rajat Moona Indian Institute of Technology, Kanpur, India
Debdeep Mukhopadhyay Indian Institute of Technology, Kharagpur,

India
Prasad Naldurg Microsoft Research Labs, Bangalore, India
Sukumar Nandi Indian Institute of Technology, Guwahati, India
Lukasz Opyrchal University of Miami, USA
J.R. Rao IBM T.J. Watson Research Center, USA
Pramod K. Saxena SAG, DRDO, India
R. Sekar Stony Brook University, USA

Organization XI

Jaideep Srivastava University of Minnesota, USA
Patrick Traynor Georgia Institute of Technology, USA
Mahesh V. Tripunitara University of Waterloo, Canada
Xin Zhao Google, USA

External Reviewers

Chaitrali Amrutkar
Mridul Sankar Barik
Rana Barua
S.S. Bedi
Ranjita Bhagwan
Yuanzhu Chen
John Criswell
Italo Dacosta
Raja Datta
Abhijit Das
Manik Lal Das
Mamadou Diallo
Davidson Drew
Daniel Fabbri
Tony Fang
Matt Fredrickson
Indivar Gupta
William Harris
Bijit Hore
R. Raghavendra
Saibal K. Pal
Meena Kumari

Louis Kruger
Daniel Luchaup
Subhamoy Maitra
Stephen McLaughlin
Thomas Moyer
Divya Muthukumaran
Beng Heng Ng
Machigar Ongtang
Frank Park
N. Rajesh Pillai
Matthew Pirretti
Devin Pohly
Venkatesh Prasad Ranganath
Bimal Roy
Sandra Rueda
Nitesh Saxena
Anirban Sengupta
Ahren Studer
Manachai Toahchoodee
Jeff Zarnett
Dazhi Zhang

Table of Contents

Keynote Talks

A Survey of Voice over IP Security Research . 1
Angelos D. Keromytis

Security for a Smarter Planet . 18
Nataraj Nagaratnam

The WOMBAT Attack Attribution Method: Some Results 19
Marc Dacier, Van-Hau Pham, and Olivier Thonnard

Biometrics and Security . 38
Venu Govindaraju

Authentication

Remote Electronic Voting with Revocable Anonymity 39
Matt Smart and Eike Ritter

On Secure Implementation of an IHE XUA-Based Protocol for
Authenticating Healthcare Professionals . 55

Massimiliano Masi, Rosario Pugliese, and Francesco Tiezzi

On the Untraceability of Anonymous RFID Authentication Protocol
with Constant Key-Lookup . 71

Bing Liang, Yingjiu Li, Changshe Ma, Tieyan Li, and Robert Deng

Verification

Biometric Identification over Encrypted Data Made Feasible 86
Michael Adjedj, Julien Bringer, Hervé Chabanne, and
Bruno Kindarji

Correcting and Improving the NP Proof for Cryptographic Protocol
Insecurity . 101

Zhiyao Liang and Rakesh M. Verma

Formal Verification of Security Policy Implementations in Enterprise
Networks . 117

P. Bera, S.K. Ghosh, and Pallab Dasgupta

XIV Table of Contents

Systems Security

Making Peer-Assisted Content Distribution Robust to Collusion Using
Bandwidth Puzzles . 132

Michael K. Reiter, Vyas Sekar, Chad Spensky, and Zhenghao Zhang

An E-Cash Based Implementation Model for Facilitating Anonymous
Purchasing of Information Products . 148

Zhen Zhang, K.H. (Kane) Kim, Myeong-Ho Kang, Tianran Zhou,
Byung-Ho Chung, Shin-Hyo Kim, and Seok-Joon Lee

DROP: Detecting Return-Oriented Programming Malicious Code 163
Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and
Li Xie

Behavior Analysis

A Framework for Behavior-Based Malware Analysis in the Cloud 178
Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi

BARTER: Behavior Profile Exchange for Behavior-Based Admission
and Access Control in MANETs . 193

Vanessa Frias-Martinez, Salvatore J. Stolfo, and
Angelos D. Keromytis

Automatic Identification of Critical Data Items in a Database to
Mitigate the Effects of Malicious Insiders . 208

Jonathan White and Brajendra Panda

Database Security

Database Relation Watermarking Resilient against Secondary
Watermarking Attacks . 222

Gaurav Gupta and Josef Pieprzyk

A Robust Damage Assessment Model for Corrupted Database
Systems . 237

Ge Fu, Hong Zhu, and Yingjiu Li

A Generic Distortion Free Watermarking Technique for Relational
Databases . 252

Sukriti Bhattacharya and Agostino Cortesi

Table of Contents XV

Cryptography

On Some Weaknesses in the Disk Encryption Schemes EME and
EME2 . 265

Cuauhtemoc Mancillas-López, Debrup Chakraborty, and
Francisco Rodŕıguez-Henŕıquez

TWIS – A Lightweight Block Cipher . 280
Shri Kant Ojha, Naveen Kumar, Kritika Jain, and Sangeeta

Short Papers

Quantitative Analysis of a Probabilistic Non-repudiation Protocol
through Model Checking . 292

Indranil Saha and Debapriyay Mukhopadhyay

Method-Specific Java Access Control via RMI Proxy Objects Using
Annotations . 301

Jeff Zarnett, Patrick Lam, and Mahesh Tripunitara

Let Only the Right One IN: Privacy Management Scheme for Social
Network . 310

Nagaraja Kaushik Gampa, Rohit Ashok Khot, and Kannan Srinathan

Detecting and Resolving Misconfigurations in Role-Based Access
Control . 318

Ravi Mukkamala, Vishnu Kamisetty, and Pawankumar Yedugani

Author Index . 327

A Survey of Voice over IP Security Research

Angelos D. Keromytis

Symantec Research Labs Europe, France

Abstract. We present a survey of Voice over IP security research. Our goal is
to provide a roadmap for researchers seeking to understand existing capabilities
and, and to identify gaps in addressing the numerous threats and vulnerabilities
present in VoIP systems. We also briefly discuss the implications of our findings
with respect to actual vulnerabilities reported in a variety VoIP products.

1 Introduction

Voice over IP technologies are being increasingly adopted by consumers, enterprises,
and telecoms operators due to their potential for higher flexibility, richer feature set,
and reduced costs relative to their Public Switched Telephony Network (PSTN) coun-
terparts. At their core, VoIP technologies enable the transmission of voice in any IP
network, including the Internet. Because of the need to seamlessly interoperate with
the existing telephony infrastructure, the new features, and the speed of development
and deployment, VoIP protocols and products have been repeatedly found to contain
numerous vulnerabilities [16] that have been exploited [19]. As a result, a fair amount
of research has been directed towards addressing some of these issues. However, the
effort is unbalanced, with little effort is spent on some highly deserving problem areas.

We have conducted a comprehensive survey of VoIP security research, complement-
ing our previous work that analyzed known vulnerabilities [16]. Our long-term goal is
four-fold. First, to create a roadmap of existing work in securing VoIP, towards reducing
the start-up effort required by other researchers to initiate research in this space. Sec-
ond, to identify gaps in existing research, and to help inform the security community of
challenges and opportunities for further work. Third, to provide an overall sanity check
on the overall VoIP security research ecosystem, using known vulnerabilities as a form
of ground truth. Finally, in the context of the VAMPIRE project1 (which supported this
work), to provide guidance as to what further work in needed to better understand and
analyze the activities of VoIP-system attackers. Naturally, such ambitious goals require
significantly more space than is available in a single conference paper.

In this paper, we provide a representative sample of the research works we surveyed.
We classify these works according to the class of threat they seek to address, using the
VoIP Security Alliance (VoIPSA) [54] threat taxonomy. Although we were forced to
omit a large number of related works (which we hope to present in a comprehensive
form in due time), this survey should be a good starting point for anyone interested in
conducting research on VoIP security. We also briefly discuss the implications of our
findings with respect to actual vulnerabilities reported in a variety VoIP products.

1 http://vampire.gforge.inria.fr/

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://vampire.gforge.inria.fr/

2 A.D. Keromytis

In the remainder of this paper, Section 2 gives a brief overview of SIP, one of the
most popular VoIP technologies. Section 3 summarizes the threat model defined by the
VoIP Security Alliance. We then present our survey of the research literature on VoIP
security in Section 4, and discuss some of the implications in Section 5.

2 SIP Overview

SIP [42] is an application-layer protocol standardized by the Internet Engineering Task
Force (IETF), and is designed to support the setup of bidirectional communication ses-
sions including, but not limited to, VoIP calls. It is somewhat similar to HTTP, in that
it is text-based, has a request-response structure, and uses a user authentication mech-
anism based on the HTTP Digest Authentication. However, it is an inherently state-
ful protocol that supports interaction with multiple network components (e.g., PSTN
bridges), and can operate over UDP, TCP, and SCTP.

The main SIP entities are endpoints (softphones or physical devices), a proxy server,
a registrar, a redirect server, and a location server. The registrar, proxy and redirect
servers may be combined, or they may be independent entities. Endpoints communi-
cate with a registrar to indicate their presence. This information is stored in the location
server. A user may be registered via multiple endpoints simultaneously. During call
setup, the endpoint communicates with the proxy, which uses the location server to de-
termine where the call should be routed to. This may be another endpoint in the same
network (e.g., in the same enterprise), or another proxy server in another network. Alter-
natively, endpoints may use a redirect server to directly determine where a call should
be directed to; redirect servers consult the location server in the same way that proxy
servers operate during call setup. Once an end-to-end channel has been established
(through one or more proxies) between the two endpoints, SIP negotiates the session
parameters (codecs, RTP ports, etc.) using the Session Description Protocol (SDP).

In a two-party call setup between Alice and Bob, Alice sends an INVITE message to
her proxy server, optionally containing session parameter information encoded within
SDP. The proxy forwards this message directly to Bob, if Alice and Bob are users of the
same domain. If Bob is registered in a different domain, the message will be relayed to
Bob’s proxy, and thence to Bob. The message may be forwarded to several endpoints,
if Bob is registered from multiple locations. While the call is being set up, Alice is sent
RINGING messages. Once the call has been accepted, an OK message is sent to Alice,
containing Bob’s preferred parameters encoded within SDP. Alice responds with an
ACK message. Alice’s session parameter preferences may be encoded in the INVITE
or the ACK message. Following this exchange, the two endpoints can begin transmitting
voice, video or other content using the agreed-upon media transport protocol, typically
RTP. While the signaling traffic may be relayed through a number of SIP proxies, the
media traffic is exchanged directly between the two endpoints. When bridging different
networks, e.g., PSTN and SIP, media gateways may disrupt the end-to-end nature of the
media transfer to translate content between the formats supported by these networks.

There are many other protocol interactions supported by SIP, that cover a number of
common (and uncommon) scenarios including call forwarding (manual or automatic),
conference calling, voicemail, etc. Typically, this is done by semantically overloading
SIP messages such that they can play various roles in different parts of the call.

A Survey of Voice over IP Security Research 3

SIP can use S/MIME to carry complex authentication payloads, including public key
certificates. When TCP is used as the transport protocol, TLS can be used to protect
the SIP messages. TLS is required for communication among proxies, registrars and
redirect servers, but only recommended between endpoints and proxies or registrars.
IPsec may also be used to protect all communications, regardless of transport protocol.

3 VoIP Threats

As a starting point, we use the taxonomy provided by the Voice over IP Security Al-
liance (VoIPSA) [54]. VoIPSA is a vendor-neutral, not for profit organization composed
of VoIP and security vendors, organizations and individuals with an interest in securing
VoIP protocols, products and installations. In addition, we place the surveyed vulnera-
bilities within the traditional threat space of confidentiality, integrity, availability (CIA).
Finally, we consider whether the vulnerabilities exploit bugs in the protocol, implemen-
tation or system configuration. In future work, we hope to expand the number of views
to the surveyed vulnerabilities and to provide more in-depth analysis.

The VoIPSA security threat taxonomy defines the security threats against VoIP de-
ployments, services, and end users. The key elements of this taxonomy are:

1. Social threats are aimed directly against humans. For example, misconfigurations,
bugs or bad protocol interactions in VoIP systems may enable or facilitate attacks
that misrepresent the identity of malicious parties to users. Such attacks may then
act as stepping stones to further attacks such as phishing, theft of service, or un-
wanted contact (spam).

2. Eavesdropping, interception, and modification threats cover situations where
an adversary can unlawfully and without authorization from the parties concerned
listen in on the signaling (call setup) or the content of a VoIP session, and possibly
modify aspects of that session while avoiding detection. Examples of such attacks
include call re-routing and interception of unencrypted RTP sessions.

3. Denial of service threats have the potential to deny users access to VoIP services.
This may be particularly problematic in the case of emergencies, or when a DoS at-
tack affects all of a user’s or organization’s communication capabilities (i.e., when
all VoIP and data communications are multiplexed over the same network which
can be targeted through a DoS attack). Such attacks may be VoIP-specific (exploit-
ing flaws in the call setup or the implementation of services), or VoIP-agnostic (e.g.,
generic traffic flooding attacks). They may also involve attacks with physical com-
ponents (e.g., physically disconnecting or severing a cable) or through computing
or other infrastructures (e.g., disabling the DNS server, or shutting down power).

4. Service abuse threats covers the improper use of VoIP services, especially (but not
exclusively) in situations where such services are offered in a commercial setting.
Examples of such threats include toll fraud and billing avoidance [51, 52].

5. Physical access threats refer to inappropriate/unauthorized physical access to VoIP
equipment, or to the physical layer of the network.

6. Interruption of services threats refer to non-intentional problems that may
nonetheless cause VoIP services to become unusable or inaccessible. Examples of
such threats include loss of power due to inclement weather, resource exhaustion
due to over-subscription, and performance issues that degrade call quality.

4 A.D. Keromytis

4 Survey of VoIP Security Research

In the this section, we classify various research papers across the first four elements of
the VoIPSA taxonomy (the last two relate to physical and non-security issues). We also
include a cross-cutting category, which includes work that covers multiple areas (e.g.,
proposing a security architecture), and an overviews category that includes works that
survey vulnerabilities, threats, and security mechanisms. We give an indication as to
how many total pieces of related work (including those described in the text) could be
classified in that category but were omitted due to space limitations. The works that are
discussed offer a representative view of the type of research activity in these problem
areas.

Overviews (36 items): Persky gives a very detailed description of several VoIP vulner-
abilities [32]. A long discussion of threats and security solutions is given by Thermos
and Takanen [53]. Cao and Malik [8] examine the vulnerabilities that arise from in-
troducing VoIP technologies into the communications systems in critical infrastructure
applications. They examine the usual threats and vulnerabilities, and discuss mitigation
techniques. They conclude by providing some recommendations and best practices to
operators of such systems.

Butcher et al. [7] overview security issues and mechanisms for VoIP systems, focus-
ing on security-oriented operational practices by VoIP providers and operators. Such
practices include the separation of VoIP and data traffic by using VLANs and similar
techniques, the use of integrity and authentication for configuration bootstrapping of
VoIP devices, authentication of signaling via TLS or IPsec, and the use of media en-
cryption. They briefly describe how two specific commercial systems implement such
practices, and propose some directions for future research.

Adelsbach et al. [2] provide a comprehensive description of SIP and H.323, a list
of threats across all networking layers, and various protection mechanisms. A simi-
lar analysis was published by the US National Institute of Standards and Technology
(NIST) [20]. Anwar et al. [3] identify some areas where the NIST report remains
incomplete: counter-intuitive results with respect to the relative performance of encryp-
tion and hash algorithms, the non-use of the standardized Mean Opinion Score to eval-
uate call quality, and the lack of anticipation of RTP-based denial of service. They then
propose the use of design patterns to address the problems of secure traversal of fire-
walls and NAT boxes, detecting and mitigating DoS attacks in VoIP, and securing VoIP
against eavesdropping.

Seedorf [45] overviews the security challenges in peer-to-peer (P2P) SIP. Threats
specific to P2P-SIP include subversion of the identity-mapping scheme (which is spe-
cific to the overlay network used as a substrate), attacks on the overlay network routing
scheme, bootstrapping communications in the presence of malicious first-contact nodes,
identity enforcement (Sybil attacks), traffic analysis and privacy violation by interme-
diate nodes, and free riding by nodes that refuse to route calls or otherwise participate
in the protocol other than to obtain service for themselves (selfish behavior).

Addressing social threats (49 items): Niccolini [29] discusses the difficulties in
protecting against IP telephony spam (SPIT) and overviews the various approaches
for blocking such calls, identifying the technical and operational problems with each.

A Survey of Voice over IP Security Research 5

Possible building blocks for SPIT prevention include black/whitelists combined with
strong identity verification to provide a reliable CallerID system, referral-based systems
among trusted SIP domains, pattern or anomaly detection techniques to discriminate
SPIT based on training data, multi-level grey-listing of calls based on caller behavior
(similar to throttling), computational puzzles and CAPTCHAs, explicit callee consent
(a form of capability, required to actually place a call), content filtering on voicemail
spam, callee feedback to indicate whether a call was SPIT or legitimate (typically com-
bined with white/blacklisting, and requiring strong identity), changing one’s SIP ad-
dress as soon as SPIT messages arrive, requiring a monetary fee for the first contact,
and legal action. Niccolini argues that none of these methods by itself is likely to suc-
ceed, promotes a modular and extensible approach to SPIT prevention, and presents a
high-level architecture that was designed for use in a commercial SIP router. Mathieu
et al. [27] describe SDRS, an anti-SPIT system that combines several of these detection
schemes and takes into consideration user and operator preferences.

The SPIDER project (SPam over Internet telephony Detection sERvice) released
a public project report [38] providing an overview of SPIT threats and the relevant
European legal framework (both on an EU and national basis). The second public
project report [25] focuses on SPIT detection and prevention, summarizing some of
the work done in this space and defining criteria for evaluating the efficiency of anti-
SPIT mechanisms. They then classify prior work according to fulfillment of these cri-
teria, expanding on the relative strengths and weaknesses of each approach. The third
public project report [37] builds on the previous two reports, describing an anti-SPIT
architectural framework. Elements of this architecture include improved authentica-
tion, white/blacklisting, behavior analysis, the use of computational puzzles for chal-
lenge/response, reputation management, and audio content analysis.

Pörschmann and Knospe [34] propose a SPIT detection mechanism based on apply-
ing spectral analysis to the audio data of VoIP calls to create acoustic fingerprints. SPIT
is identified by detecting several fingerprints across a large number of different calls.

Schlegel et al. [44] describe a framework for preventing SPIT. They argue for a mod-
ular approach to identifying SPIT, using hints from both signaling and media transfer.
The first stage of their system looks at information that is available prior to accept-
ing the call, while the second stage interacts with a caller (possibly prior to passing
on the call to the callee). The various components integrated in their system include
white/blacklists, call statistics, IP/domain correlation, and Turing tests. Their system
also allows for feedback from the callee to be integrated into the scoring mechanism,
for use in screening future calls. The evaluation focuses on scalability, by measuring
the response time to calls as call volumes increase.

Quittek et al. [35] propose the use of hidden Turing tests to identify SPIT callers.
As a concrete approach, they leverage the interaction model in human conversation
minimizes the amount of simultaneous (“double”) talk by the participants, and the fact
that there is a short pause at the beginning of an answered call, followed by a statement
by the callee that initiates the conversation. By looking for signs of violation of such
norms, it is possible to identify naı̈ve automated SPIT callers. The authors implement
their scheme and integrated it with a VoIP firewall.

6 A.D. Keromytis

Dantu and Kolan [17] describe the Voice Spam Detector (VSD), a multi-stage SPIT
filter based on trust, reputation, and feedback among the various filter stages. The pri-
mary filter stages are call pattern and volume analysis, black and white lists of callers,
per-caller behavior profile based on Bayesian classification and prior history, and repu-
tation information from the callee’s contacts and social network. They provide a formal
model for trust and reputation in a voice network, based on intuitive human behavior.
They evaluate their system in a laboratory experiment using a small number of real
users and injected SPIT calls.

Kolan et al. [18] use traces of voice calls in a university environment to validate a
mathematical model for computing the nuisance level of an incoming call, using feed-
back from the receivers. The model is intended to be used in predicting SPIT calls in
VoIP environments, and is based on the history of prior communications between the
two parties involved, which includes explicit feedback from the receiver indicating that
a call is unwanted (at a particular point in time).

Balasubramaniyan et al. [4] propose to use call duration and social network graphs
to establish a measure of reputation for callers. Their intuition is that users whose call
graph has a relatively small fan-out and whose call durations are relatively long are less
likely to be spammers. Conversely, users who place a lot of very short calls are likely
to be engaging in SPIT. Furthermore, spammers will receive few (if any) calls. Their
system works both when the parties in a call have a social network link between them,
and when such a link does not exist by assigning global reputation scores. Users that are
mistakenly categorized as spammers are redirected to a Turing test, allowing them to
complete the call if the answer correctly. In a simulation-based evaluation, the authors
determine that their system can achieve a false negative rate of 10% and a false positive
rate of 3%, even in the presence of large numbers of spammers.

Srivastava and Schulzrinne [49] describe DAPES, a system for blocking SPIT calls
and instant messages based on several factors, including the origin domain of the ini-
tiator (caller), the confidence level in the authentication performed (if any), whether the
call is coming through a known open proxy, and a reputation system for otherwise un-
known callers. They give an overview of other reputation-based systems and compare
them with DAPES.

Addressing eavesdropping, interception, and modification threats (34 items): Wang
et al. [55] evaluate the resilience of three commercial VoIP services (AT&T, Vonage
and Gizmo) against man-in-the-middle adversaries. They show that it is possible for
an attacker to divert and redirect calls in the first two services by modifying the RTP
endpoint information included in the SDP exchange (which is not protected by the SIP
Digest Authentication), and to manipulate a user’s call forwarding settings in the latter
two systems. These vulnerabilities permit for large-scale voice pharming, where unsus-
pecting users are directed to fake interactive voice response systems or human repre-
sentatives. The authors argue for the need for TLS or IPsec protection of the signaling.
Zhang et al. [62] show that, by exploiting DNS and VoIP implementation vulnerabili-
ties, it is possible for attackers to perform man-in-the-middle attacks even when they are
not on the direct communication path of the parties involved. They demonstrate their
attack against Vonage, requiring that the attacker only knows the phone number and the
IP address of the target phone. Such attacks can be used to eavesdrop and hijack the

A Survey of Voice over IP Security Research 7

victims’ VoIP calls. The authors recommend that users and operators use signaling and
media protection, conduct fuzzing and testing of VoIP implementations, and develop a
lightweight VoIP intrusion detection system to be deployed on the VoIP phone.

Salsano et al. [43] give an overview of the various SIP security mechanisms (as of
2002), focusing particularly on the authentication component. They conduct an eval-
uation of the processing costs of SIP calls that involve authentication, under different
transport, authentication and encryption scenarios. They show that a call using TLS
and authentication is 2.56 times more expensive than the simplest possible SIP config-
uration (UDP, no security). However, a fully-protected a call takes only 54% longer to
complete than a configuration that is more representative than the basic one but still
offers no security; the same fully-protected call and has the same processing cost if the
transport is TCP without any encryption (TLS). Of the overhead, approximately 70%
is attributed to message parsing and 30% to cryptographic processing. With the advent
of Datagram TLS (DTLS), it is possible that encryption and integrity for SIP can be
had for all configurations (UDP or TCP) at no additional cost. A similar conclusion
is reached by Bilien et al. [6], who study the overhead in SIP call setup latency when
using end-to-end and hop-by-hop security mechanisms. They consider protocols such
as MIKEY, S/MIME, SRTP, TLS, and IPsec, concluding that the overall penalty of us-
ing full-strength cryptography is low. Barbieri et al. [5] had found earlier that when
using VoIP over IPsec, performance can drop by up to 63%; however, it is questionable
whether these results still hold, given the use of hardware accelerators and the more
efficient AES algorithm in IPsec.

Rebahi et al. [39] analyze the performance of RSA as used in SIP for authentica-
tion and identity management (via public-key certificates and digital signatures), and
describe the use of Elliptic Curve DSA (ECDSA) within this context to improve perfor-
mance. Using ECDSA, their prototype can handle from 2 to 8 times as many call setup
requests per second, with the gap widening as key sizes increase.

Guo et al. [14] propose a new scheme for protecting voice content that provides
strong confidentiality guarantees while allowing for graceful voice degradation in the
presence of packet loss. They evaluate their scheme via simulation and micro-
benchmarks. However, Li et al. [23] show that the scheme is insecure. Kuntze et al. [21]
propose a mechanism for providing non-repudiation of voice content by using digital
signatures.

Seedorf [46] proposes the use of cryptographically generated SIP URIs to protect
the integrity of content in P2P SIP. Specifically, he uses self-certifying SIP URIs that
encode a public key (or, more compactly, the hash of a public key). The owner of the
corresponding private key can then post signed location binding information on the
peer-to-peer network (e.g., Chord) that is used by call initiators to perform call routing.

Petraschek et al. [33] examine the usability and security of ZRTP, a key agreement
protocol based on the Diffie Hellman key exchange, designed for use in VoIP environ-
ments that lack pre-established secret keys among users or a public key infrastructure
(PKI). ZRTP is intended to be used with SRTP, which performs the actual content en-
cryption and transfer. Because of the lack of a solid basis for authentication, which
makes active man-in-the-middle attacks easy to launch, ZRTP uses Short Authentica-
tion Strings (SAS) to allow two users to verbally confirm that they have established the

8 A.D. Keromytis

same secret key. The verbal communication serves as a weak form of authentication at
the human level. The authors identify a relay attack in ZRTP, wherein a man-in-the-
middle adversary can influence the SAS read by two legitimate users with who he has
established independent calls and ZRTP exchanges. The attacker can use one of the
legitimate users as an oracle to pronounce the desired SAS string through a number
of means, including social engineering. The authors point out that SAS does not offer
any security in some communication scenarios with high security requirements, e.g.,
a user calling (or being called by) their bank. The authors implement their attack and
demonstrate it in a lab environment.

Wright et al. [58] apply machine learning techniques to determine the language spo-
ken in a VoIP conversation, when a variable bit rate (VBR) voice codec is used based on
the length of the encrypted voice frame. As a countermeasure, they propose the use of
block ciphers for encrypting the voice. In follow-on work [57], they use profile Hidden
Markov Models to identify specific phrases in the encrypted voice stream with a 50%
average accuracy, rising to 90% for certain phrases.

Addressing denial of service threats (19 items): Rafique et al. [36] analyze the ro-
bustness and reliability of SIP servers under DoS attacks. They launch a number of
synthesized attacks against four well-known SIP proxy servers (OpenSER, PartySIP,
OpenSBC, and MjServer). Their results demonstrate the ease with which SIP servers
can be overloaded with call requests, causing such performance metrics as Call Com-
pletion Rate, Call Establishment Latency, Call Rejection Ration and Number of Re-
transmitted Requests to deteriorate rapidly as attack volume increases, sometimes with
as few as 1,000 packets/second. As an extreme case of such attacks large volumes of IN-
VITE messages can even cause certain implementations to crash. While documenting
the susceptibility to such attacks, this work proposes no defense strategies or directions.

Reynolds and Ghosal [40] describe a multi-layer protection scheme against flood-
based application- and transport-layer denial of service (DoS) attacks in VoIP. They use
a combination of sensors located across the enterprise network, continuously estimating
the deviation from the long-term average of the number of call setup requests and suc-
cessfully completed handshakes. Similar techniques have been used in detecting TCP
SYN flood attacks, with good results. The authors evaluate their scheme via simulation,
considering several different types of DoS attacks and recovery models.

Ormazabal et al. [31] describe the design and implementation of a SIP-aware, rule-
based application-layer firewall that can handle denial of service (and other) attacks in
the signaling and media protocols. They use hardware acceleration for the rule match-
ing component, allowing them to achieving filtering rates on the order of hundreds of
transactions per second. The SIP-specific rules, combined with state validation of the
endpoints, allow the firewall to open precisely the ports needed for only the local and
remote addresses involved in a specific session, by decomposing and analyzing the con-
tent and meaning of SIP signaling message headers. They experimentally evaluate and
validate the behavior of their prototype with a distributed testbed involving synthetic
benign and attack traffic generation.

Larson et al. [22] experimentally analyzed the impact of distributed denial of ser-
vice (DDoS) attacks on VoIP call quality. They also established the effectiveness of

A Survey of Voice over IP Security Research 9

low-rate denial of service attacks that target specific vulnerabilities and implementa-
tion artifacts to cause equipment crashes and reboots. They discuss some of the possi-
ble defenses against such attacks and describe Sprint’s approach, which uses regional
“cleaning centers” which divert suspected attack traffic to a centralized location with
numerous screening and mitigation mechanisms available. They recommend that crit-
ical VoIP traffic stay on private networks, the use of general DDoS mechanisms as
a front-line defense, VoIP-aware DDoS detection and mitigation mechanisms, traffic
policing and rate-limiting mechanisms, the use of TCP for VoIP signaling, extended
protocol compliance checking by VoIP network elements, and the use of authentication
mechanisms where possible.

Sengar et al. [47] describe vFDS, an anomaly detection system that seeks to identify
flooding denial of service attacks in VoIP. The approach taken is to measure abnormal
variations in the relationships between related packet streams using the Hellinger dis-
tance, a measure of the deviation between two probability measures. Using synthetic
attacks, they show that vFDS can detect flooding attacks that use SYN, SIP, or RTP
packets within approximately 1 second of the commencement of an attack, with small
impact on call setup latency and voice quality.

Conner and Nahrstedt [9] describe a semantic-level attack that causes resource ex-
haustion on stateful SIP proxies by calling parties that (legitimately or in collusion) do
not respond. This attack does not require network flooding or other high traffic volume
attacks, making it difficult to detect with simple, network-based heuristics used against
other types of denial of service attacks. They propose a simple algorithm, called Ran-
dom Early Termination (RET) for releasing reserved resources based on the current
state of the proxy (overloaded or not) and the duration of each call’s ringing. They im-
plement and evaluate their proposed scheme on a SIP proxy running in a local testbed,
showing that it reduces the number of benign call failures when under attack, without
incurring measurable overheads when no attack is underway.

Zhang et al. [61] describe a denial of service attack wherein adversaries flood SIP
servers with calls involving URIs with DNS names that do not exist. Servers attempting
to resolve them will then have to wait until the request times out (either locally or at their
DNS server), before they can continue processing the same or another call. This attack
works against servers that perform synchronous DNS resolution and only maintain a
limited number of execution threads. They experimentally show that as few as 1,000
messages per second can cause a well provisioned synchronous-resolution server to
exhibit very high call drops, while simple, single-threaded servers can be starved with
even 1 message per second. As a countermeasure, they propose the use of non-blocking
DNS caches, which they prototype and evaluate.

Luo et al. [24] experimentally evaluate the susceptibility of SIP to CPU-based de-
nial of service attacks. They use an open-source SIP server in four attack scenarios:
basic request flooding, spoofed-nonce flooding (wherein the target server is forced to
validate the authenticator in a received message), adaptive-nonce flooding (where the
nonce is refreshed periodically by obtaining a new one from the server), and adaptive-
nonce flooding with IP spoofing. Their measurements show that these attacks can have
a large impact on the quality of service provided by the servers. They propose several
countermeasures to mitigate against such attacks, indicating that authentication by itself

10 A.D. Keromytis

cannot solve the problem and that, in some circumstances, it can exacerbate its sever-
ity. These mitigation mechanisms include lightweight authentication and whitelisting,
proper choice of authentication parameters, and binding nonces to client IP addresses.

Addressing service abuse threats (8 items): Zhang et al. [63] present a number of
exploitable vulnerabilities in SIP that can manipulate billing records in a number of
ways, showing their applicability against real commercial VoIP providers. Their focus
is primarily on attacks that create billing inconsistencies, e.g., customers being charged
for service they did not receive, or over-charged for service received. Some of these
attacks require a man-in-the-middle capability, while others only require some prior
interaction with the target (e.g., receiving a call from the victim SIP phone device).

Abdelnur et al. [1] use AVISPA to identify a protocol-level vulnerability in the way
SIP handles authentication [50]. AVISPA is a model checker for validating security
protocols and applications using a high-level protocol specification and security-goals
language that gets compiler into an intermediate format that can be consumed by a
number of lower-level checkers. The attack is possible with the SIP Digest Authenti-
cation, whereby an adversary can reuse another party’s credentials to obtain unautho-
rized access to SIP or PSTN services (such as calling a premium or international phone
line). This attack is possible because authentication may be requested in response to an
INVITE message at any time during a call, and the responder may issue an INVITE
message during a call either automatically (because of timer expirations) or through a
user action (e.g., placing the caller on hold in order to do a call transfer). While the
solution is simple, it requires changes possibly to all end-device SIP implementations.
This work is part of a bigger effort to apply testing and fuzzing toward identifying vul-
nerabilities in SIP protocols, implementations, and deployed systems. It is worth noting
that this work has resulted in a number of vulnerability disclosures in the Common
Vulnerabilities and Exposures (CVE) database and elsewhere.

Cross-cutting efforts (51 items): Wieser et al. [56] extend the PROTOS testsuite with
a SIP-specific analysis fuzzing module. They then test their system against a number of
commercial SIP implementations, finding critical vulnerabilities in all of them.

Gupta and Shmatikov [15] formally analyze the security of the VoIP protocol stack,
including SIP, SDP, ZRTP, MIKEY, SDES, and SRTP. Their analysis uncovers a num-
ber of flaws, most of which derive from subtle inconsistencies in the assumptions made
in designing the different protocols. These include a replay attack in SDES that com-
pletely break content protection, a man-in-the-middle attack in ZRTP, and a (perhaps
theoretical) weakness in the key derivation process used in MIKEY. They also show
several minor weaknesses and vulnerabilities in all protocols that enable DoS attacks.

Dantu et al. [12] describe a comprehensive VoIP security architecture, composed of
components distributed across the media gateway controller, the proxy server(s), the
IP PBX, and end-user equipment. These components explicitly exchange information
toward better training of filters, and creating and maintaining white/blacklists. Implicit
feedback is also provided through statistical analysis of interactions (e.g., call frequency
and duration). The architecture also provisions for a recovery mechanism that incorpo-
rates explicit feedback and quarantining.

A Survey of Voice over IP Security Research 11

Wu et al. [59] design an intrusion detection system, called SCIDIVE, that is spe-
cific to VoIP environments. SCIDIVE aims to detect different classes of intrusions, can
operate with different viewpoints (on clients, proxies, or servers), and takes into consid-
eration both signaling (i.e., SIP) and media-transfer protocols (e.g., RTP). SCIDIVE’s
ability to correlate cross-protocol behavior, theoretically allows for detection of more
complex attacks. However, the system is rules-based, which limits its effectiveness
against new/unknown attacks. In follow-on work, Wu et al. [60] develop SPACEDIVE,
a VoIP-specific intrusion detection system that allows for correlation of events among
distributed rules-based detectors. They demonstrate the ability of SPACEDIVE to de-
tect certain classes of attacks using a simple SIP environment with two domains, and
compare it with SCIDIVE.

Niccolini et al. [30] design an intrusion detection/intrusion prevention system archi-
tecture for use with SIP. Their system uses both knowledge-based and behavior-based
detection, arranged as a series in that order. They develop a prototype implementation
using the open-source Snort IDS. They evaluate the effectiveness of their system in an
attack scenario by measuring the mean end-to-end delay of legitimate SIP traffic in the
presence of increasing volumes of malformed SIP INVITE messages.

Nassar et al. [28] advocate the use of SIP-specific honeypots to catch attacks target-
ing the Internet telephony systems, protocols and applications. They design and imple-
ment such a honeypot system, and explore the use of a statistical engine for identifying
attacks and other misbehavior, based on training on legitimate traces of SIP traffic. The
engine is based on their prior work that uses Bayesian-based inference. The resulting
SIP honeypot effort is largely exploratory, with performance and effectiveness evalua-
tions left for future work.

Rieck et al. [41] apply machine learning techniques to detecting anomalous SIP mes-
sages, incorporating a “self-learning” component by allowing for periodic re-training of
the anomaly detector using traffic that has been flagged as normal. The features used
for clustering are based on n-grams and on tokenization of the SIP protocol. To prevent
training attacks, wherein an adversary “trains” the anomaly detector to accept mali-
cious inputs are legitimate, they employ randomization (choosing random samples for
the training set), sanitization [10], and verification (by comparing the output of the new
and old training models). Their experimental prototype was shown to handle 70 Mbps
of SIP traffic, while providing a 99% detection rate with no false positives.

SNOCER, a project funded by the European Union, is “investigating approaches for
overcoming temporal network, hardware and software failures and ensuring the high
availability of the offered VoIP services based on low cost distributed concepts.” The
first public project report [48] provides an overview of VoIP infrastructure components
and the threats that must be addressed (staying primarily at the protocol and network
level, and avoiding implementation issues with the exception of SQL injection), along
with possible defense mechanisms. There is also discussion on scalable service provi-
sioning (replication, redundancy, backups etc.), toward providing reliability and fault
tolerance. The second public project report [11] describes an architecture for protecting
against malformed messages and related attacks using specification-based intrusion de-
tection, protocol message verification, and redundancy. They use ontologies to describe
SIP vulnerabilities, to allow for easy updating of the monitoring components (IDS) [13].

12 A.D. Keromytis

Marshall et al. [26] describe the AT&T VoIP security architecture. They divide VoIP
equipment into three classes: trusted, trusted-but-vulnerable, and untrusted. The latter
consists of the customer premises equipment, which is outside the control of the carrier.
The trusted domain includes all the servers necessary to provide VoIP service. Between
the two sit various border and security elements, that are responsible for protecting the
trusted devices while permitting legitimate communications to proceed. They describe
the interactions among the various components, and the security mechanisms used in
protecting these interactions.

5 Discussion

In our previous work [16], we surveyed over 200 vulnerabilities in SIP implementa-
tions that had been disclosed in the CVE database from 1999 to 2009. We classified
these vulnerabilities along several dimensions, including the VoIPSA threat taxonomy,
the traditional {Confidentiality, Integrity, Availability} concerns, and a {Protocol, Im-
plementation, Configuration} axis. We found that the various types of denial of service
attacks constitute the majority of disclosed vulnerabilities, over 90% of which were due
to implementation problems and 7% due to configuration.

Considering the research work we have surveyed (some of which was discussed in
this paper), we can see that out of a total of 197 publications, 18% concern themselves
with an overview of the problem space and of solutions — a figure we believe is rea-
sonable, considering the enormity of the problem space and the speed of change in the
protocols, standards, and implementations. We also see a considerable amount of effort
(roughly 25%) going toward addressing SPIT. While SPIT is not a major issue at this
point, our experience with email spam and telemarketing seems to provide sufficient
motivation for research in this area. Much of the work is focused on identifying SPIT
calls and callers based on behavioral traits, although a number of other approaches are
under exploration (e.g., real-time content analysis). One of the problems is the lack of
a good corpus of data for experimentation and validation of the proposed techniques.

We were also not surprised to see a sizable portion of research (17%) directed at
design, analysis (both security- and performance-oriented), and attacking of crypto-
graphic protocols as used in VoIP. The cryptographic research community appears to be
reasonably comfortable in proposing tweaks and minor improvements to the basic au-
thentication mechanisms, and the systems community appears content with analyzing
the performance of different protocol configurations (e.g., TLS vs. IPsec). With a few
notable exceptions, much of the work lacks “ambition.”

Most distressing, however, is the fact that comparatively little research (9.6%) is go-
ing toward addressing the problem of denial of service. Given the numerical dominance
of SIP-specific DoS vulnerabilities (as described earlier) and the ease of launching such
attacks, it is clear that significantly more work is needed here. What work is being done
seems to primarily focus on the server and infrastructure side, despite our finding that
half of DoS-related vulnerabilities are present on endpoints. Furthermore, much of the
existing work focuses on network-observable attacks (e.g., “obviously” malformed SIP
messages), whereas the majority of VoIP DoS vulnerabilities are the result of implemen-
tation failures. More generally, additional work is needed in strengthening implemen-
tations, rather than introducing middleboxes and network intrusion detection systems,

A Survey of Voice over IP Security Research 13

whose effectiveness has been shown to be limited in other domains; taking a black box
approach in securing VoIP systems is, in our opinion, not going to be sufficient.

Also disconcerting is the lack of research (4%) in addressing service abuse threats,
considering the high visibility of large fraud incidents [19,51,52]. In general, we found
little work that took a “big picture” view of the VoIP security problem. What cross-
cutting architectures have been proposed focus primarily on intrusion detection. Work
is desperately needed to address cross-implementation and cross-protocol problems,
above and beyond the few efforts along those lines in the intrusion detection space.

Finally, we note that none of the surveyed works addressed the problem of configu-
ration management. While such problems represent only 7% of known vulnerabilities,
configuration issues are easy to overlook and are likely under-represented in our previ-
ous analysis due to the nature of vulnerability reporting.

6 Conclusions

We have presented a survey of VoIP security research. While space restrictions pre-
vent us from discussing all surveyed works, we have discussed a representative subset
of these. We presented an initial classification using the VoIPSA threat taxonomy, and
juxtaposed this against our previous analysis on VoIP security vulnerabilities. We iden-
tified two specific areas (denial of service and service abuse) as being under-represented
in terms of research efforts directed at them (relative to their importance in the vulnera-
bility survey), and called for additional effort at securing implementations and configu-
rations, rather than taking a black-box approach of VoIP systems. We intend to expand
on this work and offer a more comprehensive analysis in the near future.

Acknowledgment. This work was supported by the French National Research Agency
(ANR) under Contract ANR-08-VERS-017.

References

1. Abdelnur, H., Avanesov, T., Rusinowitch, M., State, R.: Abusing SIP Authentication. In:
Proceedings of the 4th International Conference on Information Assurance and Security
(ISIAS), September 2008, pp. 237–242 (2008)

2. Adelsbach, A., Alkassar, A., Garbe, K.-H., Luzaic, M., Manulis, M., Scherer, E., Schwenk,
J., Siemens, E.: Voice over IP: Sichere Umstellung der Sprachkommunikation auf IP-
Technologie. Bundesanzeiger Verlag (2005)

3. Anwar, Z., Yurcik, W., Johnson, R.E., Hafiz, M., Campbell, R.H.: Multiple Design Patterns
for Voice over IP (VoIP) Security. In: Proceedings of the IEEE Workshop on Information
Assurance (WIA), held in conjunction with the 25th IEEE International Performance Com-
puting and Communications Conference (IPCCC) (April 2006)

4. Balasubramaniyan, V., Ahamad, M., Park, H.: CallRank: Combating SPIT Using Call Du-
ration, Social Networks and Global Reputation. In: Proceedings of the 4th Conference on
Email and Anti-Spam (CEAS) (August 2007)

14 A.D. Keromytis

5. Barbieri, R., Bruschi, D., Rosti, E.: Voice over IPsec: Analysis and Solutions. In: Proceedings
of the 18th Annual Computer Security Applications Conference (ACSAC), December 2002,
pp. 261–270 (2002)

6. Bilien, J., Eliasson, E., Orrblad, J., Vatn, J.-O.: Secure VoIP: Call Establishment and Media
Protection. In: Proceedings of the 2nd Workshop on Securing Voice over IP (June 2005)

7. Butcher, D., Li, X., Guo, J.: Security Challenge and Defense in VoIP Infrastructures. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6),
1152–1162 (2007)

8. Cao, F., Malik, S.: Vulnerability Analysis and Best Practices for Adopting IP Telephony in
Critical Infrastructure Sectors. IEEE Communications Magazine 44(4), 138–145 (2006)

9. Conner, W., Nahrstedt, K.: Protecting SIP Proxy Servers from Ringing-based Denial-of-
Service Attacks. In: Proceedings of the 10th IEEE International Symposium on Multimedia
(ISM), December 2008, pp. 340–347 (2008)

10. Cretu, G.F., Stavrou, A., Locasto, M.E., Stolfo, S.J., Keromytis, A.D.: Casting out Demons:
Sanitizing Training Data for Anomaly Sensors. In: Proceedings of the IEEE Security and
Privacy Symposium, May 2008, pp. 81–95 (2008)

11. Dagiuklas, T., Geneiatakis, D., Kambourakis, G., Sisalem, D., Ehlert, S., Fiedler, J., Markl,
J., Rokis, M., Botron, O., Rodriguez, J., Liu, J.: General Reliability and Security Frame-
work for VoIP Infrastructures. Technical Report Deliverable D2.2, SNOCER COOP-005892
(September 2005)

12. Dantu, R., Fahmy, S., Schulzrinne, H., Cangussu, J.: Issues and Challenges in Securing VoIP.
Computers & Security (to appear, 2009)

13. Geneiatakis, D., Lambrinoudakis, C.: An Ontology Description for SIP Security Flaws. Com-
puter Communications 30(6), 1367–1374 (2007)

14. Guo, J.-I., Yen, J.-C., Pai, H.-F.: New Voice over Internet Protocol Technique with Hier-
archical Data Security Protection. IEE Proceedings — Vision, Image and Signal Process-
ing 149(4), 237–243 (2002)

15. Gupta, P., Shmatikov, V.: Security Analysis of Voice-over-IP Protocols. In: Proceedings of
the 20th IEEE Computer Security Foundations Symposium (CSFW), July 2007, pp. 49–63
(2007)

16. Keromytis, A.D.: Voice over IP: Risks, Threats and Vulnerabilities. In: Proceedings of the
Cyber Infrastructure Protection (CIP) Conference (June 2009)

17. Kolan, P., Dantu, R.: Socio-technical Defense Against Voice Spamming. ACM Transactions
on Autonomous and Adaptive Systems (TAAS) 2(1) (March 2007)

18. Kolan, P., Dantu, R., Cangussu, J.W.: Nuisance of a Voice Call. ACM Transactions on Mul-
timedia Computing, Communications and Applications (TOMCCAP) 5(1), 6:1–6:22 (2008)

19. Krebs, B.: Security Fix: Default Passwords Led to $55 Million in Bogus Phone Charges
(June 2009)

20. Kuhn, D.R., Walsh, T.J., Fries, S.: Security Considerations for Voice Over IP Systems. US
National Institute of Standards and Technology (NIST) Special Publication SP 800-58 (Jan-
uary 2005)

21. Kuntze, N., Schmidt, A.U., Hett, C.: Non-Repudiation in Internet Telephony. In: Proceedings
of the IFIP International Information Security Conference, May 2007, pp. 361–372 (2007)

22. Larson, J., Dawson, T., Evans, M., Straley, J.C.: Defending VoIP Networks from DDoS At-
tacks. In: Proceedings of the 2nd Workshop on Securing Voice over IP (June 2005)

23. Li, C., Li, S., Zhang, D., Chen, G.: Cryptanalysis of a Data Security Protection Scheme for
VoIP. IEE Proceedings—Vision, Image and Signal Processing 153(1), 1–10 (2006)

24. Luo, M., Peng, T., Leckie, C.: CPU-based DoS Attacks Against SIP Servers. In: Proceed-
ings of the IEEE Network Operations and Management Symposium (NOMS), April 2008,
pp. 41–48 (2008)

A Survey of Voice over IP Security Research 15

25. Marias, G.F., Dritsas, S., Theoharidou, M., Mallios, J., Mitrou, L., Gritzalis, D., Dagiuklas,
T., Rebahi, Y., Ehlert, S., Pannier, B., Capsada, O., Juell, J.F.: SPIT Detection and Han-
dling Strategies for VoIP Infrastructures. Technical Report Deliverable WP2/D2.2, SPIDER
COOP-32720 (March 2007)

26. Marshall, W., Faryar, A.F., Kealy, K., de los Reyes, G., Rosencrantz, I., Rosencrantz, R.,
Spielman, C.: Carrier VoIP Security Architecture. In: Proceedings of the 12th International
Telecommunications Network Strategy and Planning Symposium, November 2006, pp. 1–6
(2006)

27. Mathieu, B., Niccolini, S., Sisalem, D.: SDRS: A Voice-over-IP Spam Detection and Reac-
tion System. IEEE Security & Privacy Magazine 6(6), 52–59 (2008)

28. Nassar, M., State, R., Festor, O.: VoIP Honeypot Architecture. In: Proceedings of the
10th IFIP/IEEE International Symposium on Integrated Network Management, May 2007,
pp. 109–118 (2007)

29. Niccolini, S.: SPIT Prevention: State of the Art and Research Challenges. In: Proceedings of
the 3rd Workshop on Securing Voice over IP (June 2006)

30. Niccolini, S., Garroppo, R.G., Giordano, S., Risi, G., Ventura, S.: SIP Intrusion Detection
and Prevention: Recommendations and Prototype Implementation. In: Proceedings of the
1st IEEE Workshop on VoIP Management and Security (VoIP MaSe), April 2006, pp. 47–52
(2006)

31. Ormazabal, G., Nagpal, S., Yardeni, E., Schulzrinne, H.: Secure SIP: A Scalable Prevention
Mechanism for DoS Attacks on SIP Based VoIP Systems. In: Proceedings of the 2nd In-
ternational Conference on Principles, Systems and Applications of IP Telecommunications
(IPTComm), July 2008, pp. 107–132 (2008)

32. Persky, D.: VoIP Security Vulnerabilities. White paper, SANS Institute (2007)
33. Petraschek, M., Hoeher, T., Jung, O., Hlavacs, H., Gansterer, W.N.: Security and Usabil-

ity Aspects of Man-in-the-Middle Attacks on ZRTP. Journal of Universal Computer Sci-
ence 14(5), 673–692 (2008)

34. Pörschmann, C., Knospe, H.: Analysis of Spectral Parameters of Audio Signals for the Iden-
tification of Spam Over IP Telephony. In: Proceedings of the 5th Conference on Email and
Anti-Spam (CEAS) (August 2008)

35. Quittek, J., Niccolini, S., Tartarelli, S., Stiemerling, M., Brunner, M., Ewald, T.: Detecting
SPIT Calls by Checking Human Communication Patterns. In: Proceedings of the IEEE In-
ternational Conference on Communications (ICC), June 2007, pp. 1979–1984 (2007)

36. Rafique, M.Z., Akbar, M.A., Farooq, M.: Evaluating DoS Attacks Against SIP-Based VoIP
Systems. In: Proceedings of the IEEE Global Telecommunications Conference (GLOBE-
COM), November/December (2009)

37. Rebahi, Y., Ehlert, S., Dritsas, S., Marias, G.F., Gritzalis, D., Pannier, B., Capsada, O., Gol-
ubenco, T., Juell, J.F., Hoffmann, M.: General Anti-Spam Security Framework for VoIP In-
frastructures. Technical Report Deliverable WP2/D2.3, SPIDER COOP-32720 (July 2007)

38. Rebahi, Y., Ehlert, S., Theoharidou, M., Mallios, J., Dritsas, S., Marias, G.F., Mitrou, L.,
Dagiuklas, T., Avgoustianakis, M., Gritzalis, D., Pannier, B., Capsada, O., Markl, J.: SPIT
Threat Analysis. Deliverable wp2/d2.1, SPIDER COOP-32720 (January 2007)

39. Rebahi, Y., Pallares, J.J., Kovacs, G., Minh, N.T., Ehlert, S., Sisalem, D.: Performance Anal-
ysis of Identity Management in the Session Initiation Protocol (SIP). In: Proceedings of
the IEEE/ACS International Conference on Computer Systems and Applications (AICCSA),
March/April 2008, pp. 711–717 (2008)

40. Reynolds, B., Ghosal, D.: Secure IP Telephony using Multi-layered Protection. In: Proceed-
ings of the ISOC Symposium on Network and Distributed Systems Security (NDSS) (Febru-
ary 2003)

16 A.D. Keromytis

41. Rieck, K., Wahl, S., Laskov, P., Domschitz, P., Müller, K.-R.: A Self-learning System for
Detection of Anomalous SIP Messages. In: Proceedings of the 2nd Internation Conference
on Principles, Systems and Applications of IP Telecommunications. Services and Security
for Next Generation Networks: Second International Conference (IPTComm), July 2008,
pp. 90–106 (2008)

42. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Hand-
ley, M., Schooler, E.: SIP: Session Initiation Protocol. RFC 3261 (Proposed Standard) (June
2002); Updated by RFCs 3265, 3853, 4320, 4916, 5393

43. Salsano, S., Veltri, L., Papalilo, D.: SIP Security Issues: The SIP Authentication Procedure
and its Processing Load. IEEE Network 16(6), 38–44 (2002)

44. Schlegel, R., Niccolini, S., Tartarelli, S., Brunner, M.: SPam over Internet Telephony (SPIT)
Prevention Framework. In: Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM), November/December 2006, pp. 1–6 (2006)

45. Seedorf, J.: Security challenges for peer-to-peer SIP. IEEE Network 20(5), 38–45 (2006)
46. Seedorf, J.: Using Cryptographically Generated SIP-URIs to Protect the Integrity of Content

in P2P-SIP. In: Proceedings of the 3rd Workshop on Securing Voice over IP (June 2006)
47. Sengar, H., Wang, H., Wijesekera, D., Jajodia, S.: Detecting VoIP Floods Using the Hellinger

Distance. IEEE Transactions on Parallel and Distributed Systems 19(6), 794–805 (2008)
48. Sisalem, D., Ehlert, S., Geneiatakis, D., Kambourakis, G., Dagiuklas, T., Markl, J., Rokos,

M., Botron, O., Rodriguez, J., Liu, J.: Towards a Secure and Reliable VoIP Infrastructure.
Technical Report Deliverable D2.1, SNOCER COOP-005892 (May 2005)

49. Srivastava, K., Schulzrinne, H.: Preventing Spam For SIP-based Instant Messages and Ses-
sions. Technical Report CUCS-042-04, Columbia University, Department of Computer Sci-
ence (2004)

50. State, R., Festor, O., Abdelanur, H., Pascual, V., Kuthan, J., Coeffic, R., Janak, J., Floroiu, J.:
SIP digest authentication relay attack. draft-state-sip-relay-attack-00 (March 2009)

51. The Register. Two charged with VoIP fraud (June 2006),
http://www.theregister.co.uk/2006/06/08/
voip fraudsters nabbed/

52. The Register. Fugitive VOIP hacker cuffed in Mexico (February 2009),
http://www.theregister.co.uk/2009/02/11/
fugitive voip hacker arrested/

53. Thermos, P., Takanen, A.: Securing VoIP Networks. Pearson Education, London (2008)
54. VoIP Security Alliance. VoIP Security and Privacy Threat Taxonomy, version 1.0 (October

2005), http://www.voipsa.org/Activities/taxonomy.php
55. Wang, X., Zhang, R., Yang, X., Jiang, X., Wijesekera, D.: Voice Pharming Attack and the

Trust of VoIP. In: Proceedings of the 4th International Conference on Security and Privacy
in Communication Networks (SecureComm), September 2008, pp. 1–11 (2008)

56. Wieser, C., Laakso, M., Schulzrinne, H.: Security Testing of SIP Implementations. Technical
Report CUCS-024-03, Columbia University, Department of Computer Science (2003)

57. Wright, C.V., Ballard, L., Coulls, S., Monrose, F.N., Masson, G.M.: Spot Me If You Can: Re-
covering Spoken Phrases in Encrypted VoIP Conversations. In: Proceedings of IEEE Sym-
posium on Security and Privacy, May 2008, pp. 35–49 (2008)

58. Wright, C.V., Ballard, L., Monrose, F.N., Masson, G.M.: Language Identification of En-
crypted VoIP Traffic: Alejandra y Roberto or Alice and Bob? In: Proceedings of 16th

USENIX Security Symposium, August 2007, pp. 1–12 (2007)
59. Wu, Y., Bagchi, S., Garg, S., Singh, N.: SCIDIVE: A Stateful and Cross Protocol Intrusion

Detection Architecture for Voice-over-IP Environments. In: Proceedings of the Conference
on Dependable Systems and Networks (DSN), June/July 2004, pp. 433–442 (2004)

60. Wu, Y.-S., Apte, V., Bagchi, S., Garg, S., Singh, N.: Intrusion Detection in Voice over IP
Environments. International Journal of Information Security 8(3), 153–172 (2009)

http://www.theregister.co.uk/2006/06/08/voip_fraudsters_nabbed/
http://www.theregister.co.uk/2006/06/08/voip_fraudsters_nabbed/
http://www.theregister.co.uk/2009/02/11/fugitive_voip_hacker_arrested/
http://www.theregister.co.uk/2009/02/11/fugitive_voip_hacker_arrested/
http://www.voipsa.org/Activities/taxonomy.php

A Survey of Voice over IP Security Research 17

61. Zhang, G., Ehlert, S., Magedanz, T., Sisalem, D.: Denial of Service Attack and Prevention on
SIP VoIP Infrastructures Using DNS Flooding. In: Proceedings of the 1st International Con-
ference on Principles, Systems and Applications of IP Telecommunications (IPTCOMM),
July 2007, pp. 57–66 (2007)

62. Zhang, R., Wang, X., Farley, R., Yang, X., Jiang, X.: On the Feasibility of Launching the
Man-In-The-Middle Attacks on VoIP from Remote Attackers. In: Proceedings of the 4th

International ACM Symposium on Information, Computer, and Communications Security
(ASIACCS), March 2009, pp. 61–69 (2009)

63. Zhang, R., Wang, X., Yang, X., Jiang, X.: Billing Attacks on SIP-based VoIP Systems. In:
Proceedings of the 1st USENIX workshop on Offensive Technologies, August 2007, pp. 1–8
(2007)

Security for a Smarter Planet

Nataraj Nagaratnam

Distinguished Engineer and CTO
IBM India Software Lab

New Delhi, India

Abstract. Bit by bit, our planet is getting smarter. By this, we mean
the systems that run, the way we live and work as a society. Three things
have brought this about - the world is becoming instrumented, intercon-
nected and intelligent. Given the planet is becoming instrumented and
interconnected, this opens up more risks that need to be managed. Es-
calating security and privacy concerns along with a renewed focus on
organizational oversight are driving governance, risk management and
compliance (GRC) to the forefront of the business. Compliance regula-
tions have increasingly played a larger role by attempting to establish
processes and controls that mitigate the internal and external risks or-
ganizations have today. To effectively meet the requirements of GRC,
companies must prove that they have strong and consistent controls over
who has access to critical applications and data.

Security has to be applied within a business context and fused into the
fabric of business and not as a widget to solve the next security threat.
This presentation will discuss challenges planet face, what companies,
societies, governments need to be doing to address these challenges, and
technical approach around a solution.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, p. 18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The WOMBAT Attack Attribution Method:

Some Results

Marc Dacier1, Van-Hau Pham2, and Olivier Thonnard3

1 Symantec Research, Sophia Antipolis, France
marc dacier@symantec.com

2 Institut Eurecom, 2229 Route des Crètes,
Sophia Antipolis, France
van-hau.pham@eurecom.fr

3 Royal Military Academy, Polytechnic Faculty
Brussels, Belgium

olivier.thonnard@rma.ac.be

Abstract. In this paper, we present a new attack attribution method
that has been developed within the WOMBAT1 project. We illustrate
the method with some real-world results obtained when applying it to
almost two years of attack traces collected by low interaction honeypots.
This analytical method aims at identifying large scale attack phenom-
ena composed of IP sources that are linked to the same root cause. All
malicious sources involved in a same phenomenon constitute what we
call a Misbehaving Cloud (MC). The paper offers an overview of the var-
ious steps the method goes through to identify these clouds, providing
pointers to external references for more detailed information. Four in-
stances of misbehaving clouds are then described in some more depth to
demonstrate the meaningfulness of the concept.

1 Introduction

There is no real consensus on the definition of “attack attribution” in the cyber
domain. Most previous work related to that field tend to use the term “attri-
bution” as a synonym for traceback, which consists in “determining the identity
or location of an attacker or an attacker’s intermediary” [25]. In the context of
a cyber-attack, the obtained identity can refer to a person’s name, an account,
an alias, or similar information associated with a person or an organisation. The
location may include physical (geographic) location, or any virtual address such
as an IP address or Ethernet address. The rationale for developing such attri-
bution techniques is mainly due to the untrusted nature of the IP protocol, in
which the source IP address is not authenticated and can thus be easily spoofed.
An extensive survey of attack attribution techniques used in the context of IP
traceback can be found in [25].

1 Worldwide Observatory of Malicious Behaviors and Threats
- http://www.wombat-project.eu

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 19–37, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

20 M. Dacier, V.-H. Pham, and O. Thonnard

In this paper, we refer to “attack attribution” as something quite different
from what is described here above. We are primarily concerned with larger scale
attacks. In this context, we aim at developing an analytical method to help
security analysts in determining their root causes and in deriving their modus
operandi. These phenomena can be observed through many different means (e.g.,
honeypots, IDS’s, sandboxes, web crawlers, malware collecting systems, etc). In
most cases, we believe that attack phenomena manifest themselves through so-
called “attack events”, which can be observed with distributed sensors that are
deployed in the Internet. Typical examples of attack phenomena that we want
to identify vary from worm or malware families that propagate through code
injection attacks [9], to established botnets controlled by the same people and
targeting machines in the IP space. All malicious sources involved in the same
root phenomenon constitute what we call a Misbehaving Cloud (MC).

The structure of the paper is as follows: Section 2 describes the experimental
environment used to validate the method presented. Section 3 offers a high level
overview of the attack attribution method defined within the WOMBAT project
and Section 4 gives some more information on the multi criteria fusion approach
used in the method. Section 5 discusses a couple of illustrative examples obtained
by applying the method on honeynet traces, and Section 6 concludes the paper.

2 Description of the Experimental Environment

This paper offers an empirical analysis of some attacks collected during two
years by a set of low interaction honeypots deployed all over the world by
the Leurré.com Project [10]. We refer the interested reader to [8,19] for an
in-depth presentation of the data collection infrastructure. From an analytical
viewpoint, our attack attribution method builds upon previous results, namely
[18,4,16,24,17]. For the sake of clarity, we start by introducing some important
terms that have been defined in these previous publications.

2.1 Terminology

1. Platform: A physical machine running three virtual honeypots, which em-
ulate three distinct machines thanks to honeyd [20]. A platform is connected
directly to the Internet and collects tcpdump traces that are gathered on a
daily basis in a centralized database [10].

2. Source: An IP address that has sent at least one packet to, at least, one
platform. An IP address remains associated to a given Source as long as no
more than 25 hours2 elapse between two packets sent by that IP. After such
a delay, the IP will be associated to a new source identifier if we observe it
again.

2 By grouping packets by originating sources instead of by IPs, we minimize the risk
of mixing together the activities of two distinct physical machines (as a side effect
of the dynamic address allocation implemented by ISP’s).

The WOMBAT Attack Attribution Method: Some Results 21

3. Attack: Refers to all packets exchanged between a malicious source and a
platform.

4. Cluster: All the sources that execute the same attack against any of the
platforms constitute an (attack) Cluster. In practice, such a cluster groups
all malicious sources that have left highly similar network traces on our
platforms. How to identify clusters and how those clusters look like are issues
that have been explained in other publications [18,8].

2.2 Honeynet Dataset

Machines used in the Leurré.com project are maintained by partners all over the
world, on a voluntary basis. Some of these platforms can thus become unavail-
able. In the context of this paper, we wanted to apply our analytical method
on a dataset that would be, as much as possible, unimpacted by these opera-
tional issues. Therefore, we have selected a subset of 40 stable platforms from
all platforms at our disposal. A total of 3,477,976 attacks have been observed
by those platforms. We represent the total number of attacks per day over the
whole analysis period (800 days, from Sep 2006 until November 2008), as a time
series denoted by TS. Similarly, we can represent, for each platform, the number
of attacks observed on it, on a daily basis. This leads to the definition of 40
distinct attack time series (each made of 800 points), denoted by TSX where X
represents a platform identifier.

We can go even further in splitting our time series in order to represent which
type of attack was observed on which platform. To do this, we split each TSX into
as many time series as there are attack clusters, as defined before. These newly
obtained time series are represented by Φ[0−800),ci,pj

∀ clusterci and ∀platformpj .
That is, the ith point of the time series Φ[0−800),X,Y represents the amount of
sources attacking, on day i, the platform Y by means of the attack defined by
the cluster identifier X . We represent by TS L2 the set of all these observed
cluster time series (in total, 395,712 time series).

In [17], it has been shown that a large fraction of these time series barely
vary in amplitude on a daily basis. This continuous, low-intensity activity is also
referred to as the Internet background radiation [13]. In this paper, we do not
consider those flat curves, and we instead focus on time series that show some
significant variations over time, indicating the existence of some ephemeral phe-
nomena. To automatically identify these time series of interest, we have applied
the method presented in [17], which finally gives a subset of time series denoted
by TS L2′. In our dataset, TS L2′ contains now only 2,127 distinct time se-
ries. However, they still comprise a total of 2,538,922 malicious sources. TS L2′

represents the set of time series we have used for this analysis.

3 Overview of WOMBAT Attribution Method

The WOMBAT attack attribution method is made of two distinct steps. In the
very first one, we identify periods of time where some of the time series from

22 M. Dacier, V.-H. Pham, and O. Thonnard

380 385 390 395 400 405 410
0

10

20

30

40

50

n
u
m
b
e
r

o
f

s
o
u
r
c
e
s

time(day)

Cluster 60232 attacks on 7 platforms 5,8,11,...,21

Fig. 1. An example of M-event, composed of seven μ-events (on seven different plat-
forms) that are correlated in the same time interval. Cluster 60332 corresponds to a
malicious activity on the VNC port (5900/TCP).

TS L2′ exhibit a pattern that indicate that a specific phenomenon worth of
interest is happening. We call a micro attack event such period of time for a
given time series from TS L2′. Moreover, we call macro attack event a group of
micro attack events that are correlated during the same period of time.

The second step of the method consists in characterizing each of these micro
attack events and in trying to establish connections between them. All micro
attack events that share enough features constitute what we call a Misbehaving
Cloud (MC). We hypothesize that all malicious sources involved in a Misbehav-
ing Cloud have a common root cause. By identifying them and studying their
global behavior, we hope to get a better insight into the modus operandi and
the strategies of those responsible for them.

We further detail the two steps of the method in the next subsections.

3.1 Step 1: Micro and Macro Attack Events Identification

Definition (μ-event): A micro attack event (or μ-event) is defined by a tuple
(T , Ci) where T represents a limited period of time (typically a few days) during
which a significant attack activity is observed, and Ci represents the time series
corresponding to cluster C observed on the platform i.

Definition (M-event): A set of micro attack events observed over the same
period of time, and during which the corresponding time series are strongly
correlated is defined as a macro attack event (or M-event).

Figure 1 illustrates this concept by representing a M-event composed of seven
μ-events that are correlated in the same time interval.

Identification of μ-events. The micro attack event identification relies mostly
on some well-known signal processing techniques. The goal is to segment the time
series into periods of interest. Such periods are characterized by some intense
period of activities isolated by periods of very stable or non existent activities.

The WOMBAT Attack Attribution Method: Some Results 23

Several techniques exist to detect abrupt changes in a signal [1]. In this paper,
the method we have used is the one that has been precisely presented in [15].

Identification of M-event. Once we have identified all μ-events of interest in
our dataset, we need to identify all those that are strongly correlated over the
same period of time, which form thus a M-event. The problem is not as trivial as
it may sound, because i) μ-events may have overlapping periods, and ii) within a
given period of time, several distinct phenomena may have taken place. Here too,
we have presented and compared various approaches and we refer the interested
reader to [17,15] for an in-depth explanation of the algorithms used.

3.2 Step 2: Multi Criteria Fusion of Attack Events Features

The purpose of this second step consists in deciding whether several distinct
μ-events are likely due to a same root phenomenon (i.e., the same Misbehaving
Cloud), on the basis of different characteristics derived from the network traffic
generated by malicious sources involved in such events.

Our approach is based on three components:

1. Attack Feature Selection: we determine which attack features we want to
include in the fusion process, and we thus characterize each μ-event according
to this set of features;

2. Graph-based Clustering: a graph of μ-events is created regarding each fea-
ture, based on an appropriate distance for measuring pairwise similarities.
Fully connected components can then be identified within each graph;

3. Multi criteria fusion: the different graphs are then combined using an agre-
gation function that models some dynamic behavior.

This approach is mostly unsupervised, i.e., it does not rely on a preliminary
training phase to attribute μ-events to larger scale phenomena. In the next
Section, we describe the three steps of this method.

4 On the Multi Criteria Fusion Approach

4.1 Attack Features Selection

In most clustering tasks, the very first step consists in selecting some key char-
acteristics from the dataset, i.e., salient features that may reveal meaningful
patterns [6]. In this analysis, we have selected some features that we consider
useful to analyze the behavior of global phenomena.

One of the key features used in this attribution technique is the spatial distri-
butions of malicious sources involved in μ-events, in terms of originating coun-
tries and IP blocks. Looking at these statistical characteristics may reveal attack
activities having a specific distribution of originating countries or IP networks,
which can help for instance to confirm the existence of “unclean networks” [3].
In practice, for each μ-event, we create a feature vector representing the distri-
bution of countries of sources (as a result of the IP to geolocation mapping), or

24 M. Dacier, V.-H. Pham, and O. Thonnard

a vector representing the distribution of IP addresses (grouped by their Class
A-prefix, to limit the vector’s size).

We have also selected an attack characteristic related to the targeted plat-
forms. Looking at which specific platform has observed a μ-event is certainly
a pertinent feature. At the same time, we combine this information with the
M-event identification, since (by definition) M-events are composed of μ-events
that are strongly correlated in time (which indicates a certain degree of coordi-
nation among them).

Besides the origins and the targets, the type of activity performed by the
attackers seems also relevant. In fact, worm or bot software is often crafted with
a certain number of available exploits targeting a given set of TCP or UDP
ports. So, it makes sense to take advantage of similarities between the sequences
of ports that have been probed or exploited by malicious sources.

Finally, we have decided to compute, for each pair of μ-events, the ratio of
common IP addresses. We are aware of the fact that, as time passes, some
machines of a given botnet (or misbehaving cloud) might be cured while others
may get infected (and thus join the cloud). Additionally, certain ISPs apply a
quite dynamic policy of IP allocation for residential users, which means that
infected machines can have different IP addresses when we observe them at
different moments. Nevertheless, considering the huge size of the IP space, it is
still reasonable to expect that two μ-events are probably related to the same
root phenomenon when they have a high percentage of IP addresses in common.

To summarize, and to provide a short-hand notation in the rest of this paper,
for each μ-event we define a set of features that we denote by:

F = {Fi} , i ∈ {geo, sub, targ, ps, cip}

where:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
geo = geolocation, as a result of mapping IP addresses to countries;
sub = distribution of sources IP addresses (grouped by Class A-subnet);
targ = targeted platforms + degree of coordination (M-event membership);
ps = port sequences probed or targeted by malicious sources;
cip = feature representing the ratio of common IP addresses among sources;

4.2 Graph-Based Clustering

The second component of our attribution method implements an unsupervised
clustering technique that aims at discovering groups of strongly connected μ-
events, when these are represented within a graph. In [22,23], we have given a
detailed description of this graph-based clustering technique. However, to make
this paper as self-contained as possible, we briefly describe the high-level prin-
ciples of this technique.

As defined by Jain and Dubes in [6], many typical clustering tasks involve the
following steps:

The WOMBAT Attack Attribution Method: Some Results 25

i) feature selection and/or extraction (as described in the previous Subsection);
ii) definition of an appropriate distance for measuring the similarities between

pairs of elements with respect to a given feature;
iii) application of a grouping algorithm, such as the classical hierarchical clus-

tering or K-means algorithm;
iv) data abstraction (if needed), to provide a compact representation of each

cluster;
v) optionally, the assessment of the clusters quality and coherence, e.g. by means

of validity indices.

Steps (iv) and (v), while important, lie outside the scope of this paper. Instead,
we will simply use four anecdotal examples to intuitively demonstrate the quality,
i.e., the meaningfulness, of the groups created by the method. Steps (ii) and (iii)
are described here after.

Choosing a distance function. How to measure pairwise similarities between
two feature vectors is obviously an important step, since it will have an impact
on the coherence and the quality of the resulting clusters.

When we have to deal with observations that are in the form of probability
distributions (or frequencies), like in the case of features Fgeo and Fsub, we need
to rely on statistical distances. One commonly used technique is the Kullback-
Leibler divergence [7]. Let p1 and p2 be for instance two probability distributions
over a discrete space X , then the K-L divergence of p2 from p1 is defined as:

DKL(p1||p2) =
∑

x

p1(x) log
p1(x)
p2(x)

(1)

which is also called the information divergence (or relative entropy). Because
DKL is not considered as a true metric, it is usually better to use instead the
Jensen-Shannon divergence (JSD) [11], defined as:

JS(p1, p2) =
DKL(p1||p̄) + DKL(p2||p̄)

2
(2)

where p̄ = (p1 + p2)/2. In other words, the Jensen-Shannon divergence is the
average of the KL-divergences to the average distribution.

Finally, to transform pairwise distances dij to similarity weights simij, we still
have to define a mapping function. Previous studies found that the similarity
between stimuli decay exponentially with some power of the perceptual measure
distance [21]. As customary, we can thus use the following functional form to do
this transformation:

sim(i, j) = exp(
−dij

2

σ2
) (3)

where σ is a positive real number that affects the decreasing rate of w.
Measuring pairwise similarities for the other considered features (Ftarg, Fps,

Fcip) is more straightforward. In those cases, we can use simpler distance func-
tions, such as the Jaccard similarity coefficient. Let s1 and s2 be two sample

26 M. Dacier, V.-H. Pham, and O. Thonnard

sets (for instance with Fps, s1 and s2 are sets of ports that have been probed by
sources of two μ-events), then the Jaccard coefficent is defined as the size of the
intersection divided by the size of the union of the sample sets, i.e.:

sim(i, j) =
|s1

⋂
s2|

|s1

⋃
s2|

The Jaccard similarity coefficient can also be used to compute the ratio of
common IP addresses between attack events (Fcip). Regarding Ftarg, a sim-
ple weighted means is used to combine two scores: i) one score in [0, 1] as given
by the simple comparison of the two targeted platforms, and ii) another score
(also in [0, 1]) indicating whether two μ-events belong to the same M-event
(indicating a time coordination).

Grouping algorithm. In this step, we formulate the problem of clustering
μ-events using a graph-based approach. The vertices (or nodes) of the graph
represent the patterns (or feature vectors) of the μ-events, and the edges (or
links) express the similarities between μ-events, as calculated with the distance
metrics described before. Then, we can extract so-called maximal cliques from
the graph, where a maximal clique is defined as an induced subgraph in which
the vertices are fully connected and it is not contained within any other clique.
To do this, we use the dominant sets approach of Pavan et al. [14], which proved
to be an effective method for finding maximal weighted cliques. This means that
the weight of every edge (i.e., the relative similarity value) is also considered
by the algorithm, as it seeks to discover maximal cliques whose total weight is
maximized.

By repeating this process, we can thus create an undirected edge-weighted
graph Gi for each attack feature Fi, in which the edges are similarity weights
∈ [0, 1] that can be seen as relatedness degrees between μ-events (where a zero
value indicates totally unrelated events). Then, the clique algorithm extracts one
set of cliques per feature, which reveals the cohesions among μ-events regarding
each Fi.

4.3 Multi-Criteria Aggregation

Definition (Aggregation function). An aggregation function is formally de-
fined as a function of n arguments (n > 1) that maps the (n-dimensional) unit
cube onto the unit interval: f : [0, 1]n −→ [0, 1], with the following properties [2]:

(i) f(0, 0, . . . , 0︸ ︷︷ ︸
n-times

) = 0 and f(1, 1, . . . , 1︸ ︷︷ ︸
n-times

) = 1

(ii) xi ≤ yi for all i ∈ {1, . . . , n} implies f(x1, . . . , xn) ≤ f(y1, . . . , yn)

Aggregation functions are used in many prototypical situations where we have
several criteria of concern, with respect to which we assess different options.
The objective consists in calculating a combined score for each option, and this

The WOMBAT Attack Attribution Method: Some Results 27

combined output forms then a basis from which decisions can be made. For
example, aggregation functions are largely used in problems of multi criteria
decision analysis (MCDA), in which an alternative has to be chosen based on
several, sometimes conflicting criteria. Usually, the alternatives are evaluated
from different attributes (or features) that are expressed with numerical values
representing a degree of preference, or a degree of membership.

In our application, we have n different attack features given by the Fi’s, and
thus a vector of criteria x ∈ [0, 1]n can be constructed from the similarity weights,
i.e., xi = Ai(j, k), with Ai being the similarity matrix of graph Gi corresponding
to attack feature Fi. Our approach consists in combining the n values of each
criteria vector x (which reflect the set of all relationships between a pair of μ-
events), in order to build an aggregated graph G′ =

∑
Gi from which we can

then extract the connected components. A straightforward but rather simplis-
tic approach would consist in combining the criteria using a simple arithmetic
mean, or by assigning different weights to each criteria (weighted mean). How-
ever, this does not allow us to model more complex behaviors, such as “most
of”, or “at least two” criteria to be satisfied in the overall decision function.
Yager has introduced in [26] a type of operator called Ordered Weighted Av-
eraging (OWA), which allows to include certain relationships between multiple
criteria in the aggregation process. An OWA aggregation operator differs from a
classical weighted means in that the weights are not associated with particular
inputs, but rather with their magnitude. As a result, OWA can emphasize the
largest, smallest or mid-range values. It has become very popular in the research
community working on fuzzy sets.

Definition (OWA). For a given weighting vector w, wi ≥ 0,
∑

wi = 1, the
OWA aggregation function is defined by:

OWAw(x) =
n∑

i=1

wix↘(i) =< w,x↘ > (4)

where we use the notation x↘ to represent the vector obtained from x by ar-
ranging its components in decreasing order: x(1) ≥ x(2) ≥ . . . ≥ x(n).

It is easy to see that for any weighting vector w, the result of OWA lies
between the classical and (=min) and or (=max) operators, which are in fact
the two extreme cases when w = (0, 0, . . . , 1) (then OWAw(x) = min(x)) or
when w = (1, 0, . . . , 0) (then OWAw(x) = max(x)). Another special case is
when all weights wi = 1

n , which results in obtaining the classical arithmetic
mean.

To define the weights wi to be used in OWA, Yager suggests two possible ap-
proaches: either to use some learning mechanism with sample data and a regression
model (i.e., fitting weights by using training data and minimizing the least-square
residual error), or to give some semantics to the wi’s by asking an expert to provide
directly those values, based on domain knowledge. We selected the latter approach
by defining the weighting vector as w = (0.1, 0.35, 0.35, 0.1, 0.1), which translates
our intuition about the dynamic behavior of large-scale attack phenomena. It can

28 M. Dacier, V.-H. Pham, and O. Thonnard

be interpreted as: at least three criteria must be satisfied, but the first criteria is
of less importance compared to the 2nd and 3rd ones (because only one correlated
feature between two μ-events might be due to chance only).

These weights must be carefully chosen in order to avoid an unfortunate link-
age between μ-events when, for example, two events involve IP sources origi-
nating from popular countries and targeting common (Windows) ports in the
same interval of time (but in reality, those events are not due to the same phe-
nomenon). By considering different worst-case scenarios, we verified that the
values of the weighting vector w work as expected, i.e., that it minimizes the
final output value in such undesirable cases. Moreover, these considerations en-
able us to fix our decision threshold to an empirical value of about 0.25, which
has been also validated by a sensibility analysis. In other words, all combined
values that are under this threshold will be set to zero, leading to the removal
of corresponding edges in the aggregated graph G′.

Finally, we can easily identify misbehaving clouds by extracting the connected
components (or subgraphs) from G′. As a result, for any subset of events of a
given MC, we will find a sufficient number of evidences that explain why those
events have been linked together by the multi criteria aggregation process.

5 Experimental Results

5.1 Overview

When applying the technique described in Section 3.1 to the dataset described
in Section 2.2, we obtain 690 M-events which consist of 2454 μ-events. We use
these μ-events as input for the multi-criteria fusion approach (Section 4), and
we consequently identify 83 Misbehaving Clouds (MCs), which correspond to
1607 μ-events, and 506,835 attacking sources. The phenomena involve almost all
common services such as NetBios (ports 139/TCP, 445/TCP), Windows DCOM
Service (port 135/TCP), Virtual Network Computing (port 5900/TCP), Mi-
crosoft SQL Server (port 1433/TCP), Windows Messenger Service (ports 1025-
1028/UDP), Symantec Agent (port 2967/TCP), and some others. Figure 2a
shows the distribution of μ-events per MC. As we can see, in most cases, the
MCs contain few μ-events. However, around 20% of MCs contain more than
15 μ-events, and some even contain up to 300 events. Figure 2b represent the
CDF of the MCs lifetime. Such lifetime is defined as the time interval, in days,
between the very first and the very last attack event of a given MC. As showed
in Figure 2b, 67% of MCs exist during less than 50 days but around 22% of
them last for more than 200 days.

Figure 2c represents the CDF of the number of platforms targeted by MC.
As showed in the Figure, in 94% of the cases, the MCs are seen on less than 10
platforms.

These various characteristics suggest that the root causes behind the existence
of these MCs are fairly stable, localised attack processes. In other words, dif-
ferent places of the world do observe different kind of attackers but their modus

The WOMBAT Attack Attribution Method: Some Results 29

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

number of micro attack events

F
(x

)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Time (day)

C
D

F

(a) (b)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

number of platforms

C
D

F

0 5 10 15
0

0.2

0.4

0.6

0.8

1

number of /8 networks

C
D

F

(c) (d)

Fig. 2. Some global characteristics of the obtained MCs

operandi remain stable over a long period of time. We are, apparently, not that
good at stopping them from misbehaving.

5.2 Case Studies

It is certainly not our intention to detail extensively the behavior and character-
istics of every MC that has been found in our 2-year data set. Instead, in this
Section, we detail only four MCs, which, although anecdotal, still reflect the
kind of findings that our method can provide automatically. Table 1 provides
some high-level characteristics of these four MCs phenomena under study. Each
MC is analyzed in some detail in the following pages.

MC2: Worm-behaving cloud. MC2 consists of 122 μ-attack events. These
μ-events exhibit a shape which is fairly similar to the one left by a typical worm:
its trace exists for several days, it has a small amplitude at the beginning but
grows quickly, exhibits important drops that can correspond to subnets being
cured or blacklisted, and it eventually dies slowly (see [15] for a more formal
description of this class of phenomena).

The interesting thing with MC2 is that it is made of a sequence of worm-like
shaped μ-events. The lifetime of this MC is 741 days! It is composed of μ-events

30 M. Dacier, V.-H. Pham, and O. Thonnard

Table 1. High-level characteristics of four MCs under study. The colon Root cause
refers to the presumed type of phenomenon, based on the results of the attack attri-
bution method.

MC Id Nr Events Nr Sources Duration Root cause Targeted ports

2 122 45,261 741 Worm-behaving 1433T (MSSQL), 1025T (RPC), 139T (Netbios),
cloud 5900T (VNC), 2967T (Symantec)

3 56 48,007 634 UDP spammers 1026U (Windows Messenger)
(botnet)

10 138 26,243 573 P2P Unusual ephemeral ports (TCP)
20 110 195,018 696 UDP spammers 1026U, 1027U, 1028U

(botnet)

that have targeted a number of distinct services, including 1025T, 139T, 1433T,
2967T and 5900T. The results of the multi-criteria fusion algorithm indicate that
those μ-events have been grouped together mainly because of the following three
features: geographical location, targeted platform, and ports sequence. Moreover,
a detailed analysis reveals that an important amount of IP addresses is shared
by many μ-events composing this MC.

To illustrate the kinds of μ-events found in this MC, Figures 3a and 3b
represent four μ-events time series. Figure 3a represents two of them, namely
e626 and e628, consisting of activities against Microsoft SQL Server (1433/TCP).
Whereas Figure 3b represents the other two, namely e250 and e251, consisting
of activities against a Symantec Service (2967/TCP). Figure 3c zooms on these
last two μ-events from day 100 to day 150. We can observe the slow increase of
the two curves that are typical of worm-related attacks [15,27].

The two μ-events on the left (resp. middle) share 528 (resp. 1754) common
IP addresses with each other. Given these elements, we are tempted to believe
that e626 and e628 (resp. e250 and e251) are generated by the same worm, called
WORM A (resp. called WORM B). Both worms, WORM A and WORM B, tar-
get the same two platforms: 25 and 64. Furthermore, we found that these four
μ-events share an important amount of common compromised machines. This
could indicate that both worms, before having contacted our honeypots, had
contaminated a relatively similar population of machines. A plausible explana-
tion could be that both had been launched from the same initial set of machines
and that they were using the same, or similar, code to choose their targets.

From the attack vector point of view, these two worms have nothing in com-
mon since they use very different types of exploits. Furthermore, they have been
active in different periods of time. However, the analysis reveals that they ex-
hibit a very similar pattern both in terms of propagation strategy and in terms
of success rates. Thus, even if the infection vector differs between the two, the
starting point of the infection as well as the code responsible for the propagation
are, as explained, quite likely very similar. This reasoning can be generalized
to all 122 μ-events, revealing the high probability that all these different attack
phenomena have some common root cause(s). This does not, per se, mean that
all these attacks are due to the very same person or organisation -even if this is
likely- but it indicates that the same core piece of code has probably been reused,
from a very similar starting point to launch a number of distinct attacks. This

The WOMBAT Attack Attribution Method: Some Results 31

160 180 200 220 240 260
0

20

40

60

80

100

120

140

Time(day)

N
u

m
b

er
 o

f
so

u
rc

es

100 150 200 250 300
0

20

40

60

80

100

120

140

Time(day)

N
u

m
b

er
 o

f
so

u
rc

es

100 110 120 130 140 150
0

20

40

60

80

100

120

140

Time(day)

N
u

m
b

er
 o

f
so

u
rc

es

(a) (b) (c)

Fig. 3. Attack time series (nr of sources by day) of some μ-events from MC2, targeting
(a) MS SQL Server (1433/TCP), (b) Symantec agent (2967/TCP). Fig. (c) is a zoom
on (b).

reveals some aspect of the modus operandi of those who have launched these
attacks and this is an important piece of information for those who are in charge
of identifying these misbehaving groups and their tactics.

MC3 and MC20: Windows Messenger Spammer. In this other case
study, we look at two distinct MCs: MC3 and MC20. Both are made of μ-
events that have exclusively tried to send spam to innocent victims thanks to
the Windows Messenger service, using UDP packets. Both MCs have been ob-
served over a large period of time, more than 600 days in both cases. Even if
they, conceptually, look similar, there are important differences between MC3
and MC20. First, the targeted ports are not identical: in MC3, UDP packets
are being sent to three different UDP ports, namely 1026, 1027 and 1028, while
in MC20 packets are sent exclusively to the 1026 UDP port. Then, as illus-
trated in Fig.4 where we can see the cumulative distribution (CDF) of sources
IP addresses (grouped by /8 blocks of addresses), we observe that MC3 is uni-
formly distributed in the IPv4 space. This result is absurde since large portions
of the IPv4 space can not be allocated to individual machines (multicast, bogons,
unassigned, etc.) and, in all these regions, it is impossible to find compromised
machines sending spams. If we find these IPs in packets hitting our honeypots,
it clearly means that these are spoofed IP addresses. Furthermore, the uniform
distribution of all the IP addresses in that MC leads us to believe that all other
IPs are also spoofed. On the other hand, MC20 has a constant distribution
pointing exclusively to a single /8 block owned by an ISP located in Canada3.
A likely explanation is that those spammers have also used spoofed addresses
to send UDP messages to the Windows Messenger service, and they have been
able to do so for 600 days without being disturbed!

To further validate these results, we also looked at the payloads of the UDP
packets by computing a hash for each packet payload. What we discovered is
quite surprising: all payloads sent by the sources have exactly the same mes-
sage template, but the template was different for the two clouds. Fig.5 and
3 Actually, a closer inspection of sources IP addresses reveals they were randomly

chosen from only two distinct /16 blocks from this same /8 IP subnet.

32 M. Dacier, V.-H. Pham, and O. Thonnard

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPv4 space (Class A−subnet)

C
D

F

MC2
MC3
MC5
MC10
MC17
MC20
MC25
MC30
MC46
MC58

Fig. 4. CDF’s of originating IP subnet distributions for the largest phenomena

SYSTEM ALERT - STOP! WINDOWS REQUIRES IMMEDIATE ATTENTION.

Windows has found CRITICAL SYSTEM ERRORS.

To fix the errors please do the following:

1. Download Registry Cleaner from: http://www.wfix32.com

2. Install Registry Cleaner

3. Run Registry Cleaner

4. Reboot your computer

FAILURE TO ACT NOW MAY LEAD TO DATA LOSS AND CORRUPTION!

Fig. 5. Spam template used in MC3

Fig.6 show the two different templates used by spammers of MC3 and MC20
respectively. Regarding MC3, we also observe many alternate URL’s, such as:
32sys.com, Fix64.com, Key32.com, Reg64.com, Regsys32.com, Scan32.com, etc,
whereas spammers in MC20 use apparently almost4 always the same URL
(www.registrycleanerxp.com).

This knowledge has been derived from the observation of the MCs automat-
ically built by our method. This illustrates the richness and meaningfulness of
the analyses that can be performed. At this point, there are still two questions
left unanswered when we look at those two UDP spam phenomena:

4 For MC20, only a few instances of spam messages were observed with a different
URL: nowfixpc.com

The WOMBAT Attack Attribution Method: Some Results 33

Local System User

CRITICAL ERROR MESSAGE! - REGISTRY DAMAGED AND CORRUPTED.

To FIX this problem:

Open Internet Explorer and type: www.registrycleanerxp.com

Once you load the web page, close this message window

After you install the cleaner program

you will not receive any more reminders or pop-ups like this.

VISIT www.registrycleanerxp.com IMMEDIATELY!

Fig. 6. Spam template used in MC20

i) Do all those UDP packets really use spoofed IP addresses, and how were
they sent (e.g., from a single machine in the Internet or from a very large
botnet)?

ii) Could it be that those two phenomena have in fact the same root cause, i.e.,
the same (group of) people running in parallel two different spam campaigns?

To answer the first question, we have extracted from the UDP packets the Time
To Live (TTL) value of their IP headers. We have computed the distributions
of these TTL values for both phenomena, grouped by targeted platform. The
results, illustrated in Fig.7, seems to confirm our intuition about spoofed UDP
packets, since these TTL distributions are too narrow to originate from a real
population of physical machines. In both cases (MC3 and MC20), we observe
that the TTL distributions have a width of about 5 hops, whereas TTL distribu-
tions for non-spoofed packets are normally much larger, certainly when sources
are largely distributed. As a sanity check, we retrieved the TTL distributions
for another phenomenon, which has been validated as a botnet of machines. As
one can see in Fig.8, the TTL distributions are much larger (around 20 hops)
than for spoofed UDP packets. Another finding visible in Fig.7 is the unusual
initial value used for TTL’s, which also indicates that those packets were proba-
bly forged using raw sockets, instead of using the TCP/IP protocol stack of the
operating system.

Finally, trying to answer the last question (same root cause or not), we looked
at one additional feature of the attacks. We generated a distribution of sources by
grouping them based on the day and hour of the week they have been observed
by our platforms (using the same universal time reference, which is GMT+1 in
this case). As one can see in Fig.9, the result is very intriguing: although there
is no privileged day or time interval in the week on which we observe a specific
pattern, the UDP traffic created by MC3 (in dashed) and MC20 (in green)
look apparently synchronized. Since both phenomena have lasted more than 600
days, it is quite unlikely that such correlation could be due to chance only. So,
while we have no true evidence to verify this, we can reasonably assume that
both phenomena have been orchestrated by the same people, or at least using
the same software tool and sets of compromised machines.

34 M. Dacier, V.-H. Pham, and O. Thonnard

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

IP Time To Live

N
r

of
 p

ac
ke

ts

platform 6 (213/8)
platform 9 (195/8)
platform 21 (193/8)
platform 25 (192/8)
platform 27 (193/8)
platform 57 (24/8)
platform 64 (192/8)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

IP Time To Live

N
r

of
 p

ac
ke

ts

platform 30 (129/8)
platform 56 (202)
platform 57 (24/8)
platform 64 (192/8)
platform 84 (195/8)
platform 89 (198/8)

(a) (b)

Fig. 7. TTL distribution of UDP packets for MC3 (a) and MC20 (b) (grouped by
targeted platform)

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

IP TTL

N
r

of
 p

ac
ke

ts

platform 14
platform 42
platform 47
platform 67
platform 72
platform 76
platform 81
platform 85

Fig. 8. TTL distribution of TCP packets for a phenomenon (MC28) attributed to a
botnet targeting ports 445T and 139T (grouped by targeted platform)

MC10: P2P aberrations. MC10 is a very interesting, yet intriguing, cloud.
Our technique has grouped together 138 μ-events that have been observed over
a period of 573 days. All these events share a number of common characteristics
that we have some difficulty to explain:

1. The vast majority of these μ-events target a single platform, located in
China. A very few μ-events have also hit another platform in Spain.

2. The vast majority of these μ-events originate from Italy and Spain only.
3. All these μ-events exist during a single day.
4. All these μ-events target a single high TCP port number, most of them

not being assigned to any particular protocol (e.g. 10589T, 15264T, 1755T,
18462T, 25618T, 29188T, 30491T, 38009T, 4152T, 46030T, 4662T, 50656T,
53842T, 6134T, 6211T, 64264T, 64783T, 6769T, 7690T)

5. these μ-events share a substantial amount of source addresses between them.
6. A number of high port numbers correspond to port numbers used by well

known P2P applications (e.g., 4662/TCP, used by eDonkey P2P network).

The WOMBAT Attack Attribution Method: Some Results 35

Sunday Monday Tuesday Wednesday Thursday Friday Saterday
0

0.2

0.4

0.6

0.8

1

V
ol

um
e

of
 s

ou
rc

es
(n

or
m

al
iz

ed
)

MC3
MC20
MC10

Fig. 9. Distribution of malicious sources grouped by weekdays. For each MC, a data
point represents the accumulated number of sources observed for a given day and hour
of the week.

This last remark leads us to hypothesize that this extremely weird type of at-
tack traces may have something to do with P2P traffic aberrations. It can be a
misconfiguration error or, possibly, the side effect of a deliberate attack against
these P2P networks, as explained in [12,5], in which authors argued that it is
possible to use P2P networks to generate DDoS attacks against any arbitrary
victim.

Also, Figure 9 highlights the fact that these 138 μ-events are not randomly
distributed over the hours of the week but that, instead, they seem to exist on
a limited number of recurrent moments.

All these elements tend to demonstrate the meaningfulness of grouping all
these, apparently different, attack events. Even if we are not able, at this stage,
to provide a convincing explanation related to their existence, our method has,
at least, the merit of having highlighted the existence of these, so far, unknown
phenomena.

It is our hope that other teams will build upon this fundational result to
help all of us to better understand these numerous threats our approach has
identified.

6 Conclusions

In this document, we have presented the WOMBAT attack attribution method.
We have explained its motivations, its principles, the various steps it was made
of, as well as some of the interesting results it had delivered so far. We have
applied that technique to 2 years of attack traces captured on 40 low interaction
honeypots located all over the world. It is worth noting that the method could
as easily be applied on completely different threats-related events. In fact, the
interim Symantec report published mid October 2009 on the analysis of rogue
AV web sites offers results of the application of this very same method to the
problem of understanding the modus operandi of malicious users setting up rogue
AV campaigns.

36 M. Dacier, V.-H. Pham, and O. Thonnard

It is our hope that people will be interested in trying to understand the
rationales behind the Misbehaving Clouds we have identified. We are eager to
share as much information as possible with such interested parties. Similarly, we
are looking forward in having other opportunities to apply this method to other
security datasets that future partners would be willing to share with us.

References

1. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes:Theory and Applica-
tion. Prentice Hall, Englewood Cliffs (1993)

2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practi-
tioners. Springer, Berlin (2007)

3. Collins, M.P., Shimeall, T.J., Faber, S., Janies, J., Weaver, R., De Shon, M.,
Kadane, J.: Using uncleanliness to predict future botnet addresses. In: IMC 2007:
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pp.
93–104. ACM, New York (2007)

4. Dacier, M., Pouget, F., Debar, H.: Attack processes found on the internet. In:
NATO Symposium IST-041/RSY-013, Toulouse, France (April 2004)

5. Defrawy, K.E., Gjoka, M., Markopoulou, A.: Bottorrent: misusing bittorrent to
launch ddos attacks. In: SRUTI 2007: Proceedings of the 3rd USENIX workshop
on Steps to reducing unwanted traffic on the internet, Berkeley, CA, USA, pp. 1–6.
USENIX Association (2007)

6. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall advanced
reference series (1988)

7. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical
Statistics 22, 79–86 (1951)

8. Leita, C., Pham, V.H., Thonnard, O., Ramirez Silva, E., Pouget, F., Kirda, E.,
Dacier, M.: The leurre.com project: collecting internet threats information using
a worldwide distributed honeynet. In: 1st WOMBAT workshop, April 21st-22nd,
Amsterdam, The Netherlands (April 2008)

9. Leita, C., Dacier, M.: Sgnet: a worldwide deployable framework to support the
analysis of malware threat models. In: Proceedings of the 7th European Dependable
Computing Conference (EDCC 2008) (May 2008)

10. Leurre.com, Eurecom Honeypot Project (September 2009),
http://www.leurrecom.org/

11. Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on
Information Theory 37(1), 145–151 (1991)

12. Naoumov, N., Ross, K.: Exploiting p2p systems for ddos attacks. In: InfoScale 2006:
Proceedings of the 1st international conference on Scalable information systems,
p. 47. ACM, New York (2006)

13. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics
of Internet Background Radiation. In: Proceedings of the 4th ACM SIGCOMM
conference on the Internet Measurement (2004)

14. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and seg-
mentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (2003)

15. Pham, V.-H.: Honeypot traces forensics by means of attack event identification.
PhD thesis, TELECOM ParisTech (2009)

http://www.leurrecom.org/

The WOMBAT Attack Attribution Method: Some Results 37

16. Pham, V.-H., Dacier, M.: Honeypot traces forensics: the observation view point
matters. In: NSS 2009, 3rd International Conference on Network and System Se-
curity, October 19-21, Gold Coast, Australia (December 2009)

17. Pham, V.-H., Dacier, M., Urvoy Keller, G., En Najjary, T.: The quest for multi-
headed worms. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 247–266.
Springer, Heidelberg (2008)

18. Pouget, F., Dacier, M., Debar, H.: Honeypot-based forensics. In: Proceedings of
AusCERT Asia Pacific Information Technology Security Conference 2004, Bris-
bane, Australia (May 2004)

19. Pouget, F., Dacier, M., Pham, V.H.: Leurre.com: on the advantages of deploying a
large scale distributed honeypot platform. In: ECCE 2005, E-Crime and Computer
Conference, Monaco, March 29-30 (2005)

20. Provos, N.: A virtual honeypot framework. In: Proceedings of the 12th USENIX
Security Symposium, August 2004, pp. 1–14 (2004)

21. Shepard, R.N.: Multidimensional scaling, tree fitting, and clustering. Science 210,
390–398 (1980)

22. Thonnard, O., Dacier, M.: A framework for attack patterns’ discovery in honeynet
data. In: DFRWS 2008, 8th Digital Forensics Research Conference, Baltimore,
USA, August 11- 13 (2008)

23. Thonnard, O., Dacier, M.: Actionable knowledge discovery for threats intelligence
support using a multi-dimensional data mining methodology. In: ICDM 2008, 8th
IEEE International Conference on Data Mining series, Pisa, Italy, December 15-19
(2008)

24. Thonnard, O., Mees, W., Dacier, M.: Addressing the attack attribution problem
using knowledge discovery and multi-criteria fuzzy decision-making. In: KDD 2009,
15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Work-
shop on CyberSecurity and Intelligence Informatics, Paris, France, June 28th - July
1st (2009)

25. Wheeler, D., Larsen, G.: Techniques for Cyber Attack Attribution. Institute for
Defense Analyses (October 2003)

26. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

27. Yegneswaran, V., Barford, P., Paxson, V.: Using honeynets for internet situational
awareness. In: Fourth ACM Sigcomm Workshop on Hot Topics in Networking,
Hotnets IV (2005)

Biometrics and Security

Venu Govindaraju

Professor, Computer Science and Engineering
Director, Center for Unified Biometrics and Sensors

University of Buffalo (SUNY Buffalo), USA

Abstract. The science of Biometrics is concerned with recognizing peo-
ple based on their physiological or behavioral characteristics. It has
emerged as a vibrant field of research in today’s security conscious so-
ciety. In this talk we will introduce the important research challenges
in Biometrics and specifically address the following topics: i) unobtru-
sive people tracking using a novel evolutionary recognition paradigm, ii)
efficient indexing and searching of large fingerprint databases, iii) cance-
lability of templates where the task is to ensure that enrolled biometric
templates can be revoked and new templates issued, and iv) fusion of
fingerprints with other biometric modalities such as face where we will
explore optimal trainable functions that operate on the scores returned
by individual matchers.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, p. 38, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Remote Electronic Voting with Revocable

Anonymity

Matt Smart and Eike Ritter

School of Computer Science
University of Birmingham, UK

{m.j.smart,e.ritter}@cs.bham.ac.uk

Abstract. We present a new remote, coercion-free electronic voting pro-
tocol which satisfies a number of properties previously considered con-
tradictory. We introduce (and justify) the idea of revocable anonymity
in electronic voting, on the grounds of it being a legal requirement in the
United Kingdom, and show a method of proving the validity of a bal-
lot to a verifier in zero knowledge, by extension of known two-candidate
proofs.

1 Introduction

It is undoubtedly a challenge to design electronic voting systems that satisfy
what is an ever-growing list of requirements that are difficult to achieve simulta-
neously. Many governments have begun to adopt electronic voting with a view
to improving voter turnout, with hardly any success. One of the driving factors
for electronic voting is remote voting—the requirement that a citizen can vote
from any location. This is unfortunately very difficult to achieve whilst minimis-
ing the potential for voter coercion. Further, how is it possible to satisfy voter
privacy (anonymity) whilst also allowing the voter to verify that her vote has
been counted? Can we assure ballot correctness for any number of candidates?

An especially important property in electronic voting is anonymity (privacy)—
the notion that no voter should be linkable to their ballot. In this work, we intro-
duce revocable anonymity to electronic voting — the notion that it should be pos-
sible to link one’s identity to one’s ballot, but only with the agreement of a Judge
and a quorum of mutually distrusting parties.

In the UK, it is a legal requirement that it should be possible for the election
authorities to link a ballot to its voter [2, p. 106]. To our knowledge, no work
has previously considered this notion (equivalent to revocable anonymity in elec-
tronic voting), but it seems important to do so (note that some other protocols
may be able to achieve this with modification [16,6], but give no detail as to
how to do so, and would seemingly not provide a sufficient solution—we dis-
cuss this later). One can envisage a situation in which, since voters are entirely
anonymous, an attacker can vote on behalf of people who should be unable to
vote, but, for whatever reason, are still on the electoral roll. In a 2005 postal
vote scandal in Birmingham, UK, “possibly well over 2,000 of the votes cast”

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 39–54, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

40 M. Smart and E. Ritter

were fraudulent and illegitimate for one ward alone [26]. We feel that permit-
ting anonymity revocation in extreme circumstances is fundamental to reducing
election fraud such as this.

1.1 Related Work

In our experience, there is no work which provides revocable anonymity in elec-
tronic voting, and little work which provides large-scale, coercion-resistant, re-
mote electronic voting ([6] is a good example, but does not seem scalable). We
here discuss how previous authors have satisfied some of the important properties
of e-voting without revocable anonymity, and our strategy to achieve them.

Many electronic voting protocols [24,10,16,9,28] rely on anonymous channels,
or anonymous and untappable channels [19], to satisfy some security properties.
When considering voting over the Internet (an inherently insecure medium), one
needs to think about how an anonymous channel could be implemented in the
first place.

Attempts have been made to achieve anonymous channels with mix networks
[4,22,18,24,3,13], which provide effective anonymity, but can often be slow, inef-
ficient, complex and subject to single points of failure (in the case of decryption
mixes). Indeed, it has been argued [27] that for an Internet-based voting proto-
col, there is no way to reliably implement an anonymous communication channel
over the Internet. Volkamer and Krimmer [27] suggest that IP address tracking
or trojan horse viruses alone mean that any attempt at an anonymous channel
would always suffer from some weakness.

Thankfully, in our work, we do not need to use anonymous or untappable
channels (which are, when from voter to talliers, a very strong assumption),
relying instead on various designated verifier proofs to satisfy voter verifiability
whilst maintaining coercion-resistance and privacy.

In our work, we follow the scheme of many previous protocols using homo-
morphic encryption to ensure universal verifiability and unlinkability of ballots
[1,7,8,11,28,16], which naturally lends itself to threshold cryptography, affording
us a greater level of assurance against corrupted talliers. These protocols, along
with some of those already mentioned, require, for remote voting, that the voter
is not observed at the “very moment of voting” [18]. Indeed, Benaloh and Tuin-
stra state that “physical separation of the voter from possible coercive agents is
fundamental to any uncoercible election protocol” [1, p. 550].

Lee et al. [18], amongst others, suggest the use of a tamper-resistant ran-
domiser—smart card—and non-voter-observation at the point of voting, to guar-
antee coercion-resistance. An alternative is to have every voter use a public
voting booth which either uses a smart card, as above, or a paper ballot which
is optically processed by machine [4,22,21,5,20].

We note that any protocol providing a list of voters’ identities with encrypted
ballots could provide revocable anonymity, given the collusion of all parties
needed to perform decryption. However, such a list clearly violates full coercion-
resistance, as the fact that a voter has voted successfully can be determined
by anyone. Juels et al. [16] and implementations thereof [6] involve talliers only

Remote Electronic Voting with Revocable Anonymity 41

keeping a list of votes at the end of the election (discarding the previous stage’s
encrypted credentials), thus severing the direct link between voter and vote. Re-
vocation of anonymity would require a highly inefficient Plaintext Equivalence
Test between the credential supplied with a vote and every credential on the
voter list, followed by a collusion with the registrar. Lee et al. [18] would allow
for revocation, but subject to collusion of the administrator, the entire mix and
n talliers. The nature of usage of the bulletin board in the protocol also suggests
that full coercion-resistance is not possible, as the fact that Alice has voted is
plainly visible. Prêt à Voter [22] and similar schemes do not offer revocation at
all, since Alice’s choice of ballot paper is random, and as any identifying infor-
mation is destroyed (by Alice), she cannot be linked to her ballot. In any case,
no other protocol discusses revocable anonymity at all, to our knowledge. We
note that revocable anonymity is a concept which has been considered at great
length in other fields, such as digital cash [14,15,17].

In digital cash, it is particularly important that it should be possible to link an
electronic coin to the person who spent it once the transaction has occurred (for
example, that coin may have been spent twice, or spent illegally). It is similarly
important to be able to link a person’s identity to all coins available to him (for
example, to protect against money laundering). One manner in which this can be
done is to encode an encrypted copy of the coin owner’s identity into every coin.
Requiring two or more parties to perform encryption, including a judge [15],
ensures that a user’s anonymity won’t be revoked unless there is sufficient legal
cause. In our work, we protect the voter’s identity using a similar mechanism.

1.2 Our Contribution

In this work, we introduce a remote electronic voting protocol which satisfies
several properties considered important in electronic voting, leading to several
contributions:

– A secure voting protocol allowing a quorum of authorities to link a ballot
to its voter (revocable anonymity), whilst achieving coercion-resistance and
legitimate voter privacy

– A novel method of allowing the voter to achieve coercion-resistance without
anonymous channels or tamper-resistant devices, through designated-verifier
signatures

– An extension of previous schemes to prove ballot validity for two-candidate
elections, to multiple-candidate elections

The protocol we present achieves the above properties, as well as the standard
electronic voting properties (completeness, uniqueness, coercion-resistance, fair-
ness, and legitimate-voter privacy), while having no need for anonymous or un-
tappable channels (or implementations thereof).

Protocol Schema. We present a two-phase protocol, where voters do not need
to synchronise between phases they are actively involved in. Our reasoning for

42 M. Smart and E. Ritter

Voters

BB1 BB2
Final Tally

T1 T2

Judge (External)

Fig. 1. A schematic for our protocol

splitting into two phases is to preserve the anonymity of the legitimate voter,
henceforth referred to as Alice. In the first phase, voters receive eligibility tokens
with designated verifier signatures, and form ElGamal encryptions of ballots,
submitting them to a bulletin board. A member of a semi-trusted tallier group
re-encrypts Alice’s vote.

In the second phase, Alice receives a designated verifier proof of re-encryption
(along with some other fake proofs), and her re-encrypted vote is posted to
another bulletin board with an encrypted version of her identity. Alice can then
check her vote has been included, or contact a Judge otherwise.

Once all votes are posted to the second bulletin board, a tally is calculated
and announced. A simple schematic diagram of the protocol is given in Figure 1.

1.3 Structure

In §2, we define a number of preliminaries, including the terminology used, and
a number of primitives which we make use of. In §3, we give the participants,
trust model and threat model for our work. We present our protocol in §4, and
the requirements we have satisfied in §5. Finally, we conclude.

2 Preliminaries

In this paper, we assume the availability of the following cryptographic primi-
tives. Note that we are working in the formal model, not in provable security.
Therefore we make the assumption that the cryptography in the primitives below
is perfect.

2.1 Threshold ElGamal Encryption Scheme

We use a standard ElGamal encryption scheme under a q-order multiplicative
subgroup Gq = 〈g〉 of Z

∗
p, generated by an element g ∈ Z

∗
p, where p and q are

suitably large primes, and q|(p−1). All agents a in the protocol have a private key
sa of which only they have knowledge. Each agent has a corresponding public
key ha = gsa where g is a known generator of the subgroup. Public keys are

Remote Electronic Voting with Revocable Anonymity 43

common knowledge to all users. For more information on the encryption scheme
we use, the reader is directed to the appropriate paper. We use a (t, n)-threshold
decryption scheme analogous to that of Cramer et al. [8]. For brevity we do not
discuss this here.

2.2 Strong Designated Verifier Signature Scheme

We adopt the designated verifier signature scheme of Saeednia et al. [23] due to
its efficient nature, but others would be acceptable. We use designated verifier
signatures to enable a prover (Bob, or any one of the first-round talliers in our
case) to prove a statement to a verifier (Alice) by proving the validity of a
signature. However, Alice is unable to prove the signature’s validity to anyone
else, on the grounds that she could have produced it herself [23, p. 43]. For brevity
we do not discuss the scheme here, but direct the reader to the appropriate paper
instead [23].

2.3 Proof of Equality of Discrete Logarithms

In order to prevent an attack in our voting scheme (voting for several candidates
or for one candidate multiple times with the same ballot), we require that the
voter demonstrates to a verifier that her vote is of the correct form (without
revealing what the vote is).

As we discuss later, a voter’s vote is of the form (x, y) = (gα, hα
T2

gMi−1
) where

α ∈R Zq, M is the maximum number of voters and i represents the position in
the list of candidates of the voter’s chosen candidate. Alice needs to prove, in
zero knowledge, that she is sending to the bulletin board some value for y where
the exponent of g is in {M0, . . . , ML−1} where L is the number of candidates.
If we did not have such a proof, any voter could spoil the election by adding
spurious coefficients to the exponent, thereby voting several times.

We extend the technique of Cramer et al. [8], who use a non-interactive proof
of equality of discrete logarithms to prove the validity of a ballot in a two-
candidate election. We extend the two-candidate scenario to L candidates, pro-
viding a proof for the relation given by

logg x = loghT2
(y/gM0

) ∨ . . . ∨ logg x = loghT2
(y/gML−1

)

In Figure 2, we give a generalised adaptation (G-PEQDL) of the above proof
of equality of discrete logarithms scheme where Alice votes for candidate k (1 ≤
k ≤ L) with (x, y) = (gα, hαgMk−1

). This is the only place where we extend one
of the primitives we use. We provide a more detailed explanation (and proof) of
the G-PEQDL in [25].

2.4 Designated Verifier Re-encryption Proofs

The properties of the ElGamal encryption scheme allow re-encryption (randomi-
sation) of ciphertexts. Given a ciphertext (x, y), another agent is able to generate
a re-encryption (xf , yf) = (xgβ , yhβ), where β ∈R Z

∗
q .

44 M. Smart and E. Ritter

Verifier

ai = gri xdi for i = 1, . . . , L

Check:

c← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

bi = hri (y

gMi−1)di for i = 1, . . . , L

c
?
=
∑

i

di

rk ← ω − αdk

dk ← c−
∑
i�=k

di

c← hash(hAlice, x, y, a1, b1, . . . , aL, bL)

bi ← hri (y

gMi−1)di

ai ← gri xdi

For 1 ≤ i ≤ L; i �= k :

bk ← hω

ak ← gω

y ← hαgMk−1
x← gα

(i = 1, ..., k − 1, k + 1, . . . , L) ∈R Zq

Select α, ω, ri, di

aL, bL, dL, rL〉
〈a1, b1, d1, r1, . . . ,

G-PEQDL =

Alice

Fig. 2. Our generalised non-interactive proof of ballot validity for a vote for
candidate k

In our protocol, we use an ElGamal re-encryption to preserve the voter’s
anonymity. However, the voter needs to have some conviction that her vote
has been counted (individual verifiability). We achieve this via a Designated
Verifier Re-encryption Proof (DVRP) based on Alice’s keypair: such a proof
convinces Alice that a given re-encrypted ciphertext is equivalent to that she
generated, whilst not convincing any third party1. We adopt the scheme used by
Lee et al. [18,12], such that the prover, P (the agent that does the re-encryption)
demonstrates to Alice that (xf , yf) is equivalent to (x, y) in such a manner that
the original message m (encrypted in (x, y)) is not revealed, and this proof cannot
convince any other entity. The reader is directed to the appropriate papers for
more details.

3 Protocol Model

3.1 Participants

Our protocol is modelled with 5 kinds of participants. A participant (agent)
is an interactive polynomial-time random computation. All agents are able to
communicate via a network, which is not secure or anonymous in any way.

The participants are as follows:

– Voters. The protocol allows M voters vi ∈ {v0, v1, ..., vM−1} to vote. Alice
is an honest voter who wishes to vote anonymously. She is able to vote many
times, but once unobserved. Eligible voters’ public keys are publicly known.

1 Note that in order to fully protect against Alice’s private key being stolen from
her, we could give her, during in-person registration, a new public/private keypair
(sAlice−v

, hAlice−v
), which acts as a session key for Alice’s vote. This pair could then

be used for the DVRP. However, such a modification is not strictly necessary.

Remote Electronic Voting with Revocable Anonymity 45

– First Round Bulletin Board/First Round Talliers. Our protocol uses
two separate bulletin boards. A standard bulletin board is a public broadcast
channel with memory. The first bulletin board we use is writable only by
voters. All voters send an encrypted vote and signed proof of validity to this
board, which we denote as BB1.

The first-round talliers T1 are a semi-trusted group of agents2, each
possessing an ElGamal secret key sT1 in its entirety, which any one of them
can use to remove the first layer of encryption on Alice’s vote3. We assume
that each instance would be busy enough, and that votes would be batched
before sending to BB2, so that timing attacks would be ineffective. Our
justification for having multiple members of T1 is to prevent a bottleneck
of computational power, but if this problem were ignored, we could equally
substitute the group for a single entity.

The first round talliers are responsible for ensuring that Alice’s vote is
valid according to the set of valid possible votes, not coerced, and not a
double-vote. They are unable to see Alice’s actual vote token. T1 also encrypts
Alice’s identity, should anonymity revocation be required. They issue Alice
with vote validity tokens during registration.

– Second Round Bulletin Board/Second Round Talliers. The second
bulletin board BB2 is viewable by all users of the protocol, and writable only
by T1. It lists only the re-encrypted (valid) votes in a random permutation.
The votes themselves, (x, y), are encrypted with the public key of the second
round talliers.

The second-round talliers are a group of agents (disjoint from T1) who
decrypt the ballots listed on the second round bulletin board using threshold
ElGamal with a shared key sT2 . The second round talliers will also publish
the final tally.

– Anonymity Teller Group. As well as each being separate groups T1, T2,
the tallier groups form part of a larger group which deals only with the voter’s
anonymity. This group contains an equal number of members of T1 and T2

and is simply denoted T. As such, it has a public key gsT and associated
private key sT, where the private key is distributed amongst all members as
before. In this case, to decrypt, a quorum of a size tid, greater than the size of
either T1 or T2, will need to collude to decrypt. Note that this decryption is
only ever needed when a voter’s identity needs to be traced, as our protocol
is optimistic. Further, a voter’s anonymity cannot be revoked without the
agreement of the quorum and the Judge.

– Judge. The Judge is an entity of the protocol that is rarely used. She has
two purposes:
1. If Alice cannot find her re-encrypted vote on the bulletin board, she asks

the Judge for verification.

2 We discuss our need for trusting T1 later in this Section.
3 The size of T1 would need to be determined empirically depending on the size of the

electorate. Since each member of the group has a copy of the same key, the size only
affects how much of a bottleneck (in terms of computational power) T1 is.

46 M. Smart and E. Ritter

2. The Judge also authorises anonymity revocation (having been presented
with appropriate evidence of the need for revocation) in order to de-
liberately link a ballot to a voter, by applying her private key for a
decryption.

Note that the Judge is only used in a minority of cases, i.e., where a voter’s
identity needs to be revealed, or Alice cannot find her vote on the bulletin
board. The Judge, understandably, is trusted. We note that she could equally
be formed from a coalition of mutually distrusting parties, disjoint from
T1/T2, and selected by the electoral authorities. However, we see the Judge
more in terms of a physical arbiter of justice in a court of law.

(Partially) Trusting T1. The purpose of the first-round talliers is to check
the eligibility of Alice to vote and to re-encrypt Alice’s vote before it is posted
to the second bulletin board. To achieve anonymity, we need to partially trust
T1. This means that we trust that T1:

– will not reveal the link between Alice’s ballot (x, y) and her re-encrypted
ballot (xf , yf), except by request of the Judge;

– will make valid encryptions of voter identities when forming id tags;
– will act honestly in communications with the Judge (no other honest com-

munications are required than those stated here);
– will only sign and post to BB2 ballots which are valid

Note therefore that T1 at no point has access to Alice’s unencrypted vote. We
further do not trust T1 to reliably send communications—if messages do not
arrive as expected, the voter can detect this.

We believe that the trust we have placed in T1 is the minimum assumption
necessary to assure the properties we wish to satisfy. We further discuss our
decision in [25].

3.2 Trust Model

We make the following assumptions in our protocol:

1. All parties trust that T1 will not reveal the link between a ballot (x, y) and
its re-encryption (xf , yf)

2. All parties trust that T1 will perform valid encryptions of each voter’s iden-
tity, to afford anonymity revocation

3. The Judge and T2 trust that T1 will only sign and post to BB2 ballots which
are valid

4. The Judge trusts that T1 will accurately and honestly send any data re-
quested by it, to the Judge

5. All participants trust that the Judge will only authorise revocation of
anonymity in appropriate circumstances

6. Alice trusts that she will receive one (and only one) valid voting token, along
with several invalid ones, from the first-round talliers during registration.

Remote Electronic Voting with Revocable Anonymity 47

7. Alice trusts the Judge to honestly state whether votes have been counted
8. All parties trust that voter identities will be stored correctly (and securely)

on the second-round bulletin board

Note that we have already assumed that: T1 will batch votes before sending to
BB2, to prevent timing attacks; Alice can vote once unobserved; and a t-sized
quorum of T2 will not collude to break fairness or decrypt ballots until voting is
over.

3.3 Threat Model

In this section, we consider the potential threats that could affect our protocol,
based on the attacker’s capabilities. We address how these threats are managed
in §4. As to the assumptions we make about the attacker’s strength based on
the strength of the cryptography we use, we assume perfect cryptography.

Note that in our protocol, the attacker can assume the role of any entity
(except the Judge). He is able to corrupt up to t − 1 talliers where collusion is
required to decrypt messages (and t is the threshold size for that quorum). All
channels are public, so the attacker can:

1. Read messages
2. Decrypt and read any message m, subject to having the correct decryption

key s for an encrypted message (gα, gαsm)
3. Intercept messages
4. Inject bad ballots in the first phase, and spurious messages generally
5. Temporarily block messages (although we assume resilient channels for live-

ness)

4 Protocol

Our voting protocol has four stages:

Stage 1: Ballot Validity Tokens
The protocol begins with Alice registering in person to vote (this would be
with T1). At this point, she receives a random number of values δi, which are
generated at the point of registration. Each has a designated verifier signature
DVSign

T1
(δi) paired with it, which has been generated by a member of T1.

However, only one of these signatures is valid (clearly, only the voter with the
correct private key can verify this fact). Alice hence receives a string

〈(δ0, DVSign
T1

(δ0)), (δ1, DVSign
T1

(δ1)), . . . , (δn−1, DVSign
T1

(δn−1))〉

The coercion-resistance Alice enjoys increases with |n| (i.e., the probability that
the attacker can guess the correct δ value decreases with |n|).

Note that Alice would be able to generate designated verifier signatures at her
liberty. Alice is able to calculate which of the signatures is valid for the value

48 M. Smart and E. Ritter

Check δ, G-PEQDL

id = (gφ, h
φ
T

h
φ
Judge

hAlice)

β ∈ Zq :

Any member of T1:

(xf , yf) ← (xgβ , yhβ)

(Semi-Trusted T1)
BB1

(xf , yf , id),

Tally

(T2)
BB2

Choose α ∈R Zq

SignJudge(x, y)

(δn−1, DVSignT1
(δn−1))〉

〈(δ0, DVSignT1
(δ0)), . . .

DVRP0, . . . ,DVRPl

(x, y), SignAlice(x, y)

BB2

Judge Alice

Query

δA, hAlice}T1

{(x, y),SignAlice(G-PEQDL),(x, y) ←
(gα, hα

T2
gMi−1

)

Look up 〈(x, y), β〉{β}Judge for (x, y)

DVSignJudge(hAlice)

Store (x, y, β)

SignT1i
(hash(xf , yf , id))

Fig. 3. Our protocol. Dashed lines indicate a non-compulsory part of the protocol
(complaints). Note that the first communication (T1 → Alice) is in-person.

paired with it, and the tallier stores, on a private electoral roll (accessible only
to T1) the valid δ value for Alice with her name. If Alice votes under coercion,
since she received a random number of δ values, an observer cannot force her to
use all values (she could conceal one or more, or arbitrarily insert values). Hence
she simply votes using invalid δ values.

If she later votes without coercion4, she sends the correct δ value with her
vote as a ‘proof’ of validity. Upon checking for eligibility, the talliers simply check
Alice’s submitted δ value against the correct one stored on the private electoral
roll . If she were to send a value for which the DV-Signature was incorrect when
sent to her, this would alert the first-round talliers that her vote was made under
coercion, which would alter their response to her. However, a coercer would not
be able to distinguish a valid δ value from an invalid one, as he has no way
of determining whether Alice herself made the designated verifier signature, or
indeed whether the signature is valid.

Stage 2: Encrypted Vote Posting
As with other voting protocols using homomorphic encryption, we choose the
form of the ballot in such a way that decryption of all ballots multiplied together
leads to a simple tally of votes. A vote for the ith candidate is given as gMi−1

,
where M is the maximum number of voters.

Voter Alice selects a value α ∈R Zq, and encrypts her vote for candidate i using
the public key of the second round talliers, to give (x, y) = (gα, hα

T2
gMi−1

). She
groups this with the correct δ value δA, and her public key hAlice. Finally, she
calculates the Generalised Proof of Equality of Discrete Logarithms (see §2.3) for

4 We assume that Alice is able to vote unobserved, but she only needs to do this once.

Remote Electronic Voting with Revocable Anonymity 49

her ballot (x, y) to prove that the vote is of correct form, and produces a standard
ElGamal signature on this. This tuple 〈(x, y), SignAlice(G-PEQDL), δA, hAlice〉
is encrypted with the public key of the first-round talliers, and posted to the first
round bulletin board, BB1.

Stage 3: Validity Checking
Once Stage 2 is complete, any member T1i of T1 removes the first layer of
encryption on each vote on the first-round bulletin board. That tallier then:

1. verifies that the vote is legitimate, by ensuring that the δ value given is the
one stored with Alice’s name on the private electoral roll5. Note that because
the votes themselves are encrypted for T2, the first-round talliers cannot see
how a voter votes — merely that a voter has attempted to vote.

2. verifies the G-PEQDL supplied with the ballot (x, y) to determine that Al-
ice’s vote is a single vote for a single valid candidate in the election

Once the validity of a ballot is assured, and any invalid ballots are disposed of,
T1i re-encrypts (x, y) with a random factor β to give (xf , yf). That member also
encrypts Alice’s public key by doing the following:

– Select a random φ ∈R Zq

– Using the joint public key for both sets of talliers hT, and the Judge’s public
key, form id = (gφ, hφ

T
hφ

Judge
hAlice).

The tallier then continues. He:

3. generates a signature on hash(xf , yf , id), and concatenates this with (xf , yf , id)
to form the final message string.

The tallier responsible for the re-encryption sends Alice a designated-verifier re-
encryption proof (DVRP) that her vote has been included on the public bulletin
board as (xf , yf), along with a number of other correct DVRPs, which are not
valid for Alice (only she will be able to determine this). Note that if Alice’s sent
δ value were invalid, the tallier would send Alice only invalid DVRPs, meaning
that an attacker could not determine whether her vote was invalid simply by
observing messages received by Alice. As before, Alice would be free to insert
seemingly valid DVRPs into the communication.

The tallier will then personally store the values 〈(x, y), β〉, and mark on the
private electoral roll that Alice has voted (for example, by adding a signature of
her public key). This information will never be released, except to the Judge as
proof that Alice’s vote was counted. The tuple 〈xf , yf , id, sign

T1
(hash(xf , yf , id))〉

is posted to the second-round talliers’ bulletin board. Alice is able to check the
second bulletin board to ensure her vote appears and the signature on it is
valid, but cannot convince anyone else of this fact (nor can she decrypt the re-
encrypted vote). Any entity can check that a vote on the bulletin board is valid
by verifying the signature for the hash of that vote.
5 We presume that the private electoral roll is made inaccessible (or unconvincing) to

coercers. We could accomplish this with designated verifier signatures.

50 M. Smart and E. Ritter

Stage 4: Tallying
Once all DVRPs have been sent to their respective voters, it is simple for the
second-round talliers T2 to decrypt votes. First, each 〈(xf , yf), id〉 is checked
against its signed hash. Those not matching are ignored in tallying. A quorum
of t talliers jointly decrypt a product

(X, Y) = (
l∏

j=1

xfj ,

l∏
j=1

yfj)

(without any single member having access to the private key, as discussed in
§2.1), and then post the product to a publicly viewable place. The quorum
threshold-decrypt the resulting tally, giving gr1M0+r2M1+...+rLML−1

, and r1, . . . ,
rL as the final tally. Note that any party can verify that any vote must have
been correct, by comparing each published hash to the values given with it.

Anonymity Revocation
We have built into our protocol the ability to recover a voter’s identity after the
voting process is complete, but only with the co-operation of the Judge and a
quorum of T, the anonymity group. When Alice’s vote is submitted to BB2, part
of it is a token id = (gφ, hφ

T
hφ

Judge
hAlice) If, in the tallying phase of the protocol,

any ballot is found to be illegal (or if, for any other reason, anonymity has to be
revoked), a quorum of members of the anonymity tallier group T need to collude
(note that the tid value for this threshold decryption should be higher than the
size of either T1 or T2).

hφ
T
hφ

Judge
hAlice

gφsT

= hφ

Judge
hAlice

The Judge must now be sent the token, with appropriate evidence justifying

anonymity revocation. The Judge can then divide by g
φsJudge to give the voter’s

identity.

Voter Complaints
A disadvantage of using designated-verifier re-encryption proofs is that Alice
cannot prove the validity of the proof she receives from the first-round talliers
that her vote has been re-encrypted as (xf , yf), which she may need to do if she
cannot find her re-encrypted vote on BB2.

A solution we might adopt would be for Alice to receive a 1-out-of-L re-
encryption proof [12], which is requested by Alice after all votes are posted to
the board. However, such a proof is quite laborious and would allow an attacker
to see that Alice’s vote was counted. Instead, Alice sends her original (x, y) to
the Judge. The Judge requests the stored β from the first-round talliers, and can
then use these to check that Alice’s vote was counted. If Alice’s vote is counted,
the Judge sends her a designated verifier signature for her public key, hAlice.
Otherwise, she makes the designated verifier signature invalid. Only Alice can

Remote Electronic Voting with Revocable Anonymity 51

determine this fact, and can again insert valid signatures arbitrarily. If Alice’s
vote is shown to have not been counted, we could also allow her to collude with
the Judge to submit a vote a second time—in this manner, if her vote is again
not counted, the Judge can take further action.

5 Properties of the Protocol

We now present the properties which our protocol satisfies. The explanations of
how we satisfy each property are beyond the scope this paper and are provided
in [25]. We use the Dolev-Yao model and hence assume that the cryptographic
operations presented in §2 are perfect; in other words the intruder is not able to
break any of the these cryptographic schemes but is able to intercept, change and
delete all messages. We assume resilient channels to obtain liveness properties.

1. Eligibility: Only eligible voters should be able to vote.
2. Uniqueness: Only one vote per voter should be counted
3. Receipt-Freeness: The voter should be given no information which can be

used to demonstrate to a coercer how or if they have voted, after voting
has occurred

4. Coercion-Resistance: It should not be possible for a voter to prove how
they voted or even if they are voting, even if they are able to interact with
the coercer during voting

5. Verifiability
(a) Individual Verifiability: A voter should be able to verify that their

vote has been counted correctly
(b) Universal Verifiability: Any observer should be able to verify that all

votes have been counted correctly
6. Fairness: No-one can gain any information about the result of the tally until

the end of the voting process and publication of votes
7. Vote Privacy: Neither the authorities nor any other participant should be

able to link any ballot to the voter having cast it, unless the protocol to
revoke anonymity has been invoked
(a) Revocable Anonymity: It should be possible for an authorised entity

(or collaboration of entities, for us) to reveal the identity of any single
voter by linking his vote to him.

8. Remote Voting: Voters should not be restricted by physical location

It should be noted that even in the event that T1 were not trusted and became
compromised, vote privacy, fairness, and individual verifiability (in so much that
Alice can ensure her vote is counted), are still satisfied—these are not dependent
on trusting T1. Receipt-freeness and coercion-resistance are satisfied in that Alice
still cannot show how she votes.

The assumptions we make on T1 make it unnecessary to require assump-
tions made in other approaches on remote electronic voting, e.g. anonymous,
often untappable channels [24,9,10,11,7], availability of a trusted Smart-Card or

52 M. Smart and E. Ritter

‘randomiser’ to perform re-encryptions and proofs thereof [18,11,9], or the as-
sumption that the voter cannot be observed at all during voting. It should be
noted that using a Smart-Card to re-encrypt instead of T1 would affect other
properties, such as eligibility and remote voting.

6 Conclusion

We have presented an election protocol providing what we believe to be the
first scheme for revocable anonymity, whilst also allowing the voter coercion-free
remote voting and verifiability, as well as legitimate-voter privacy. We require
no untappable channels, and achieve an efficient 1-out-of-L scheme, integrating
an extension of two-candidate discrete proofs of logarithm equality to L parties.

Our protocol also satisfies remote voting: as long as the voter is connected to
the Internet, they are able to vote from any location, under the assumption that
they can vote unobserved once, and register in person at any point before the
election. This, we argue, is a very natural assumption to make.

We envisage that, given the remote nature of our protocol, it could be im-
plemented across the Internet. Future work will concentrate on removing the
need to trust any single party (except the Judge) at all, and on enhancing
the remote-voting nature of the protocol—we might consider how to ensure that
the machine the voter votes from can be trusted by the voter. One option might
be to allow the user to vote only through a signed applet.

Acknowledgements

We would like to thank Mark Ryan and Tom Chothia for their helpful comments
on earlier versions of this paper.

References

1. Benaloh, J., Tuinstra, D.: Receipt-Free Secret-Ballot Elections (Extended Ab-
stract). In: Proceedings of the Twenty-Sixth Annual ACM Symposium on the
Theory of Computing, Montreal, pp. 544–553. ACM, New York (1994)

2. Blackburn, R.: The Electoral System in Britain. Macmillan, London (1995)
3. Boneh, D., Golle, P.: Almost Entirely Correct Mixing with Applications to Vot-

ing. In: Proceedings of the ACM Conference on Computer and Communications
Security, Washington DC, pp. 68–77. ACM, New York (2002)

4. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical, Voter-verifiable Election
Scheme. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

5. Chaum, D., van de Graaf, J., Ryan, P.Y.A., Vora, P.L.: High Integrity Elections.
Cryptology ePrint Archive, Report 2007/270 (2007), http://eprint.iacr.org/

6. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System.
In: Proceedings, 2008 IEEE Symposium on Security and Privacy, pp. 354–368.
IEEE, Los Alamitos (2008)

http://eprint.iacr.org/

Remote Electronic Voting with Revocable Anonymity 53

7. Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.: Multi-Authority Secret-
Ballot Elections with Linear Work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-Authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

9. Fan, C.-I., Sun, W.-Z.: An efficient multi-receipt mechanism for uncoercible anony-
mous electronic voting. Mathematical and Computer Modelling 48, 1611–1627
(2008)

10. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret voting Scheme for Large
Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 244–251. Springer, Heidelberg (1993)

11. Hirt, M.: Multi-Party Computation: Efficient Protocols, General Adversaries and
Voting. PhD thesis, ETH Zurich (2001)

12. Hirt, M., Sako, K.: Efficient Receipt-Free Voting Based on Homomorphic Encryp-
tion. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556.
Springer, Heidelberg (2000)

13. Jakobsson, M., Juels, A., Rivest, R.L.: Making Mix Nets Robust for Electronic
Voting by Randomised Partial Checking. In: Proceedings of the 11th USENIX
Security Symposium, Berkeley, pp. 339–353. USENIX Assoc. (2002)

14. Jakobsson, M., M’Raihi, D., Tsiounis, Y., Yung, M.: Electronic Payments: Where
Do We Go From Here? In: Baumgart, R. (ed.) CQRE 1999. LNCS, vol. 1740, pp.
43–63. Springer, Heidelberg (1999)

15. Jakobsson, M., Yung, M.: Revokable and Versatile Electronic Money (Extended
Abstract). In: CCS 1996: Proceedings of the 3rd ACM Conference on Computer
and Communications Security, pp. 76–87. ACM Press, New York (1996)

16. Juels, A., Catalano, D., Jakobsson, M.: Coercion-Resistant Electronic Elections. In:
WPES 2005: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic
Society, pp. 61–70. ACM, New York (2005)

17. Kügler, D., Vogt, H.: Off-line Payments with Auditable Tracing. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357. Springer, Heidelberg (2003)

18. Lee, B., Boyd, C., Kim, K., Yang, J., Yoo, S.: Providing receipt-freeness in
mixnet-based voting protocols. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS,
vol. 2971, pp. 245–258. Springer, Heidelberg (2004)

19. Okamoto, T.: Receipt-Free Electronic Voting Schemes for Large Scale Elections.
In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361,
pp. 25–35. Springer, Heidelberg (1998)

20. Rivest, R., Smith, W.: Three Voting Protocols: ThreeBallot, VAV, and Twin. In:
Proceedings of Electronic Voting Technology Workshop, 2007, Boston, MA, pp.
1–14 (2007)

21. Ryan, P.Y.A.: Prêt à Voter With a Human-Readable, Paper Audit Trail. Technical
Report CS-TR: 1038, Newcastle University (2007)

22. Ryan, P.Y.A., Schneider, S.A.: Prêt à Voter with re-encryption mixes. In: Goll-
mann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
313–326. Springer, Heidelberg (2006)

23. Saeednia, S., Kremer, S., Markowitch, O.: An Efficient Strong Designated Verifier
Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 40–54. Springer, Heidelberg (2004)

24. Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme: A practical solution
to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

54 M. Smart and E. Ritter

25. Smart, M., Ritter, E.: Remote Electronic Voting with Revocable Anonymity. Tech-
nical Report CSR-09-06, School of Computer Science, University of Birmingham
(2009), ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2009/CSR-09-06.pdf

26. Stewart, J.: A Banana Republic? The Investigation into Electoral Fraud by the
Birmingham Election Court. Parliamentary Affairs 59(4), 654–667 (2006)

27. Volkamer, M., Krimmer, R.: Secrecy forever? Analysis of Anonymity in Internet-
based Voting Protocols. In: Proceedings, First International Conference on Avail-
ability, Reliability and Security, ARES 2006, Vienna, pp. 340–347. IEEE, Los
Alamitos (2006)

28. Weber, S.G., Araújo, R., Buchmann, J.: On Coercion-Resistant Electronic Elec-
tions with Linear Work. In: Proceedings, 2007 2nd International Conference on
Availability, Reliability and Security, Vienna, pp. 908–916. IEEE, Los Alamitos
(2007)

ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2009/CSR-09-06.pdf

On Secure Implementation of an IHE XUA-Based
Protocol for Authenticating Healthcare Professionals�

Massimiliano Masi, Rosario Pugliese, and Francesco Tiezzi

Università degli Studi di Firenze, Viale Morgagni, 65 - 50134 Firenze, Italy
masi@math.unifi.it, {pugliese,tiezzi}@dsi.unifi.it

Abstract. The importance of the Electronic Health Record (EHR) has been ad-
dressed in recent years by governments and institutions. Many large scale projects
have been funded with the aim to allow healthcare professionals to consult pa-
tients data. Properties such as confidentiality, authentication and authorization
are the key for the success for these projects. The Integrating the Healthcare
Enterprise (IHE) initiative promotes the coordinated use of established standards
for authenticated and secure EHR exchanges among clinics and hospitals. In par-
ticular, the IHE integration profile named XUA permits to attest user identities
by relying on SAML assertions, i.e. XML documents containing authentication
statements. In this paper, we provide a formal model for the secure issuance of
such an assertion. We first specify the scenario using the process calculus COWS
and then analyse it using the model checker CMC. Our analysis reveals a potential
flaw in the XUA profile when using a SAML assertion in an unprotected network.
We then suggest a solution for this flaw, and model check and implement this so-
lution to show that it is secure and feasible.

1 Introduction

In recent years, the exchange of Electronic Health Records (EHRs) among clinics and
hospitals has become an interesting field of research and study for academia and the
industry. An EHR is a set of sensitive data containing all healthcare history of a patient
(e.g. medical exams or prescriptions).

Two important concepts in EHR management are security and interoperability: the
content of an EHR cannot be disclosed to unauthorized people without an explicit pa-
tient consent and has to be accessible by heterogeneous systems. These requirements
impose that any software participating in an EHR exchange must adhere to common
specifications.

Integrating the Healthcare Enterprise (IHE) [1] is a worldwide initiative founded for
promoting the coordinated use of established standards to improve information sharing
in an healthcare scenario. To achieve security and interoperability, many profiles for in-
tegrating different systems have been proposed by IHE. These profiles can be combined
for building healthcare applications by using a Service Oriented Computing (SOC) ap-
proach and OASIS standards such as SAML [2], ebXML [3], and WS-Trust [4].

� This work has been supported by the EU project Sensoria, IST-2005-016004.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 55–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

56 M. Masi, R. Pugliese, and F. Tiezzi

Document
Source

Document
Counsumer

Document
Registry

Document
Repository

Provide and Register
Document Set

Register
Document Set

Retrieve
Documents

Query
Documents

Fig. 1. The XDS model

IHE specifications are by now used to build nationwide projects with the aim of
sharing patient healthcare data, such as the French GIP-DMP [5] or the Austrian ARGE-
ELGA [6] EHR projects.

A typical EHR transmission is made by exploiting an ebXML registry/repository
model (called in IHE jargon Cross Enterprise Document Sharing, XDS), as depicted in
Figure 1. A document source (typically a medical device) provides and registers docu-
ments for a given patient to a repository that extrapolates metadata and feeds a registry.
A document consumer (a workstation used by an healthcare professional) queries the
registry for documents related to the patient. The registry searches in its metadata and
replies with a set of links. These links are used by the consumer for retrieving docu-
ments from the repository.

Confidentiality and auditing is achieved using Transport Layer Security (TLS)) [7]
and logging as defined in the Audit Trail and Node Authentication (ATNA) profile [1].
Any node participating in ATNA owns an host X.509 certificate for attesting machine’s
identity. Requisites of each profile can be merged (i.e. grouped) together for building a
complete infrastructure. For instance, XDS grouped with ATNA provides a secure and
audited data exchange through TLS channels using a registry/repository model.

Healthcare professionals authentication is one of the basic requirements for the ac-
cess of person related health data at regional, national and also multinational level. Au-
thentication is defined by IHE in the Cross Enterprise User Assertion (XUA) integration
profile. The XUA specification covers the use of a SAML authentication assertion is-
sued by an identity provider to be injected using WS-Security [8] during the documents
queries. Due to local government complexities where each nation / hospital / clinic
have its own authentication method, the assertion issuance process is leaved open. The
WS-Trust standard is only suggested, but not proposing a specific profile or a set of
messages to be exchanged potentially leads to weak implementations.

Because of the impact that the IHE specifications are having, formal models of proto-
cols and standards are needed. A large body of work has been already made on analyz-
ing WS-Trust protocols, see e.g. [9,10,11,12], where message-level authentication [13]
properties are verified. By relying on them, in this paper we aim at formalizing and
implementing a protocol combining WS-Trust and IHE profiles. More specifically, our
protocol is built on an XDS transaction grouped with ATNA and authenticated by an

On Secure Implementation of an IHE XUA-Based Protocol 57

<saml:Assertion><saml:Issuer> issuer-identity </saml:Issuer>
<ds:Signature> . . . </ds:Signature>
<saml:Subject><saml:NameID> username </saml:NameID>

<saml:SubjectConfirmation Method="#bearer">
<saml:SubjectConfirmationData> . . .</saml:SubjectConfirmationData>

</saml:SubjectConfirmation>
</saml:Subject>
<saml:Conditions NotBefore="ts1" NotOnOrAfter="ts2">

<saml:AudienceRestriction><saml:Audience> registry-address </saml:Audience>
</saml:AudienceRestriction>

</saml:Conditions>
<saml:AuthnStatement AuthnInstant="ts3"> . . .
</saml:AuthnStatement>
<saml:AttributeStatement> . . . </saml:AttributeStatement>

</saml:Assertion>

Fig. 2. Excerpt of a sample SAML token (using the bearer method)

XUA SAML assertion. To our best knowledge, this is the first tentative to formalize
protocols derived from IHE specifications.

The process for issuing a SAML token is a delicate task: if an assertion is stolen, a
malicious attacker can re-use it and have access to unauthorized healthcare data. One
could suggest to use TLS for authenticating channels during the issuance. In fact, IHE
supports TLS by means of ATNA for compatibility with legacy non-WS standards such
as Dicom [14] and Health Level 7 version 2 [15]. However, given the possibility by
XUA to choose any issuance process, the use of TLS should be discouraged in favor
of WS-Security. Moreover, as argued in [11], if a secure transport layer in web service
communications is used, intermediaries cannot manipulate the messages on their way;
this does not comply with the requirements of SOC. For these reasons, our proposal
does not rely on TLS.

It is worth noticing that in the IHE security model, applications should also avoid
heavy use of encryption, because the impact on performance of the current encryption
algorithms is excessive [1]. Indeed, IHE applications can even run on medical devices
with a reduced computational power.

The work presented in this paper consists of three main contributions. First, we fill
the gap leaved open by XUA by proposing a protocol (Section 2) for issuing the SAML
token according to the IHE and OASIS dictates. Second, we formally specify the proto-
col (Section 3) using the calculus COWS [16]. We then analyze (Section 4) the formal
model with the model checker CMC and show that a potentially severe security flaw
exists in the SAML assertion format specified by XUA. Third, we provide an imple-
mentation of the protocol with our revised assertion format (the implementation is only
sketched in Section 5, the interested reader is referred to [17]). We conclude by touch-
ing upon comparisons with related work and directions for future work (Section 5). A
list of all acronyms used in the paper is reported in Table 3 at page 68.

2 An XUA-Based Protocol

As previously discussed, XUA does not address the authentication mechanisms of the
local network. Instead, it leverages on the abstraction layer introduced by SAML. The
SAML OASIS standard is a set of specification documents defining assertions (or

58 M. Masi, R. Pugliese, and F. Tiezzi

tokens) and a protocol to exchange them. A SAML authentication assertion is an XML
document issued by a Security Token Service (STS)1 that contains statements about
an authentication procedure performed by an underlying authentication mechanism
(such as Kerberos) for a subject. An example is shown in Figure 2. The SAML to-
ken is then used by the service requester to interact with the services listed in the
AudienceRestriction element.

The contacted service provider uses the assertion for authenticating the requester by
verifying the digital signature of the trusted issuer. SAML subjects can be confirmed
with the method listed in the SubjectConfirmation element. Here, we are interested
in two methods named bearer [2] and holder-of-key (HoK) [18]. The bearer subject
confirmation method tells the service provider that the subject of the assertion is the
presenter (i.e. the bearer) of the assertion. In the holder-of-key method, STS binds an
identity for the subject (or for the requester) as X.509 data. By this means, we set the
subject of the assertion as the healthcare professional with confirmation data as the
ATNA certificate of the requesting machine. The service provider can compare such
data with the X.509 identity carried in the TLS transaction.

By means of the formal investigation presented in Section 4, we discovered a security
flaw due to the format of the SAML assertion. XUA explicitly says that the bearer
subject confirmation method shall be supported. However, in large scale networks it is
unrealistic to assume that each node is trusted. Compromised nodes may exist and if one
is able to obtain a SAML assertion issued for another, authorized node, with the bearer
method it can re-use the assertion to gain access to secret resources. In fact, the service
provider has no knowledge if the presenter of the assertion was the original requester.
With the holder-of-key method, requester identity is bound as subject confirmation data
and digitally signed by STS. The service provider can now detect if the bearer is the node
which the assertion was intended for by checking if the identity set by STS matches the
one presented in the communication channel by means of ATNA.

In [11], the feeling of the authors is that it looks like impossible to authenticate
correctly the request for a security token issue in a two step protocol as it is instead sug-
gested in the WS-Trust specification. Since our aim is to propose a secure and authen-
ticated holder-of-key assertion issuance, we designed a challenge-response WS-Trust
protocol in four message exchanges.

Our model involves an XDS transaction grouped with ATNA and XUA for retriev-
ing documents for a patient with id Susan. The protocol that we propose, written in a
notation commonly used for describing security protocols, is shown in Table 1 and is
graphically depicted in Figure 3.

Notation {M}dKey stands for the symmetric encryption of message M using the de-
rived key dKey, {M}K+STS

for the encryption of M using the public key of STS and {[M]}K−STS

for the signature of M using STS’s private key (where [M] is the hash code of M). ts,
ts′, ts1 and ts2 are timestamps.

The consumer C initiates the protocol by sending the message (1) for requesting a
token to STS. It sends its identity C, a unique message identifier msgId1, using WS-
Addressing [19], and the identity of the Security Token Service STS. Notation UT(user,

1 For the sake of simplicity, we assume an STS that is directly able to authenticate users, i.e. it
plays also the role of the identity provider.

On Secure Implementation of an IHE XUA-Based Protocol 59

Table 1. The proposed XUA protocol

C → STS : C,msgId1, STS,UT(user, salt, int), ts1,RST(REG) (1)

STS → C : STS,C,msgId2,msgId1,RSTR(ctx, {STS, n, ts, ctx}dKey) (2)

C → STS : msgId3,msgId2, STS, ts2,RSTR(ctx, {n + 1,C,msgId3,msgId2, ctx}K+STS
) (3)

STS → C : C, STS,msgId4,msgId3,RSTRC(RSTR({[STS, ts′, user,REG]}K−STS
)) (4)

C → REG : C,REG,msgId5, {[STS, ts′, user,REG]}K−STS
, ‘Susan’ (5)

REG→ C : REG,C,msgId6,msgId5, docLinks (6)

salt, int) stands for the WS-Security Username Token Profile 1.1 [20] and contains the
username, a random number which acts as a cryptographic salt, and an integer, respec-
tively. RST(REG) is the WS-Trust 1.3 Request Security Token where the registry address
REG is the ultimate recipient of the token.

Once received the message, STS unpacks the value of the username token, unpacks
the RST(REG) element (REG must be in the STS’s list of valid assertion targets) and
computes the derived key dKey. The key is computed by STS by concatenating the pass-
word of the user (which is given as input by the real human sitting in front of the work-
station and is known by STS by means of the underlying authentication mechanism)
with the salt and then hashed using the SHA-1 algorithm. The result of this operation

Consumer Intruder STS Registry

(1). RST (1). RST

(2). Challenge RSTR(2). Challenge RSTR

(3). Challenge RSTR (3). Challenge RSTR

(4). RSTR w/ SAML(4). RSTR w/ SAML

(5). XDS Query w/ SAML

(6). XDS Query Response

(6). XDS Query Response

(5). XDS Query w/ SAML

Fig. 3. The WS-Trust protocol for SAML token issuance. Messages (5) and (6) are over TLS
channels. An intruder can steal the SAML token in message (4) and, if the subject confirmation
method is bearer, can perform an unauthorized authenticated query.

60 M. Masi, R. Pugliese, and F. Tiezzi

is also hashed using SHA-1. This process is repeated until the total number of hash
operations equals the iteration count int. Then, STS encrypts the challenge composed
by its identity, a nonce n, a new timestamp ts and the WS-Trust context element ctx of
the challenge (i.e. an identifier defined by WS-Trust used for correlating the messages
involved in the token issuance). Indeed, STS challenges the requester in order to be
sure on its identity and attesting its availability. RSTR is the WS-Trust Request Security
Token Response element that contains the challenge data.

When message (2) is received by C, it computes dKey using the same algorithm as the
STS and decrypts the message (indeed, it is the only participant able to do it). C performs
the WS-Addressing checks: message (2) must contain the identifier msgId1 indicating
that (2) is in response to (1). It also checks if the request comes from a participants
whose identity is included in the RSTR, by means of TLS mutual authentication, for
instance. C now trusts that the challenge really comes from STS. Then, it adds 1 to the
nonce and encrypts it, together with the message identifiers and the context, using the
STS public key. The reply is in message (3).

After receiving the message, STS decrypts the content of the RSTR, checks if the
nonce is equal to the one that it sent (plus one) and if the context is the same. If it is
able to perform all these operations, then it can attest the identity of the user sitting in
front of C. Thus, it issues the SAML assertion (it is signed by STS according to the
SAML Signature profile, as enveloped signature) and sends it to C, via message (4).
The assertion is:

{[STS, ts′, user,REG]}K−STS

where the confirmation method is bearer. In fact, if we would have used the holder-of-
key method, the assertion would be as follows:

{[C, STS, ts′, user,REG]}K−STS

The assertion then contains the requester’s identity as ATNA X.509 certificate, here
simply represented by C, the issuer identity, a timestamp, the user name and the au-
dience restriction list. We omit for simplicity all the details introduced by the SAML
specification (e.g. the assertion time range validity).

Once C has obtained a security token, it can finally query the registry REG to retrieve
the links to the repositories containing the EHR data that it is looking for. The query is
message (5), which contains the SAML assertion.

Finally, once received message (5), REG validates the token. Using the STS’s public
key it verifies the signature and, if it is valid, delivers the requested resource (i.e. the
links docLinks) to C via message (6).

3 COWS Specification of the Protocol

In this section, first we report the syntax and the informal semantics of COWS2, then
we present the COWS specification of the XUA protocol in Section 2. Our specification

2 For the sake of simplicity, we present here a fragment of COWS without linguistic constructs
for dealing with forced termination, since such primitives have not been used in the protocol
specification. We refer the interested reader to [16,21] for the presentation of the full language
and for many examples illustrating COWS peculiarities and expressiveness.

On Secure Implementation of an IHE XUA-Based Protocol 61

Table 2. COWS syntax

s ::= (services)
nil | u . u! <u, . . . ,u> | p . o? <u, . . . ,u> . s (empty activity, invoke, receive)
| s1 + s2 | s1 | s2 | [n�] s | [X] s (choice, parallel, name & var. delim.)
| ∗ s | A(u, . . . ,u) | let A(u, . . . ,u) =s in s′ end (replication, call, let definition)

reflects many real-world implementation details. Algorithms, field names and message
flows are taken from OASIS standards.

3.1 COWS Syntax and Informal Semantics

COWS [16] is a formalism specifically devised for modelling (and analysing) service-
oriented applications; in fact, its design has been influenced by the principles underlying
the OASIS standard for orchestration of web services WS-BPEL [22]. The syntax of
COWS, written in the ‘machine readable’ format accepted by the interpreter and the
model checker CMC [23] that we use for the analysis, is presented in Table 2. It is
defined using the following notational conventions: variables (ranged over by X, Y, . . .)
start with capital letters; names (ranged over by n, m, . . . , p, p’, . . . , o, o’, . . .) start
with digits or lower case letters; identifiers (ranged over by u, u1, u2, . . . and used as
non-terminal symbol only) are either variables or names; service identifiers (ranged
over by A, A’, . . .) start with capital letters and each of them has a fixed non-negative
arity. Names are used to represent communicable values, partners and operations.

Invoke and receive are the basic communication activities provided by COWS. Be-
sides input and output parameters, both activities indicate an endpoint, i.e. a pair com-
posed of a partner name p and an operation name o, through which communication
should occur. An endpoint p.o can be interpreted as a specific implementation of opera-
tion o provided by the service identified by the logic namep. An invoke p.o! <u1, . . . , un>
can proceed as soon as all arguments u1, . . . , un are names (i.e. have been evaluated). A
receive p.o? <u1, . . . , un> .s offers an invocable operation o along a given partner name
p. Partner and operation names can be exchanged in communication (although dynam-
ically received names cannot form the endpoints used to receive further invocations).
This makes it easier to model many service interaction and reconfiguration patterns.

A choice can be used to pick out one receive activity among those leading its argu-
ments that are enabled for execution.

Execution of parallel terms is interleaved, except when a communication can be
performed. In this case, if more than one matching receives are ready to process a given
invoke, only one of the receives with greater priority (i.e. the receives that generate the
substitution with ‘smaller’ domain, see [16,21]) is allowed to progress.

The delimitation operators are the only binders of the calculus: [n�] s and [X] s bind
n and X, respectively, in the scope s. Name delimitation can be used to generate ‘fresh’
private names (like the restriction operator of π-calculus), while variable delimitation
can be used to regulate the range of application of the substitution generated by an
inter-service communication. This takes place when the arguments of a receive and of
a concurrent invoke along the same endpoint match and causes each variable argument

62 M. Masi, R. Pugliese, and F. Tiezzi

of the receive to be replaced by the corresponding name argument of the invoke within
the whole scope of variable’s declaration. In fact, to enable parallel terms to share the
state (or part of it), receive activities in COWS do not bind variables.

The replication operator ∗ s permits to spawn in parallel as many copies of s as nec-
essary. This, for example, is exploited to model persistent services, i.e. services which
can create multiple instances to serve several requests simultaneously.

Finally, the let construct permits to re-use the same ‘service code’, thus allowing to
define services in a modular style; let A(u, . . . ,u) =s in s′ end behaves like s′, where
calls to A can occur. A service call A(u′1, . . . ,u

′
n) occurring in the body s′ of a construct

let A(u1, . . . ,un) =s in s′ end behaves like the service obtained from s by replacing
the formal parameters u1, . . . ,un with the corresponding actual parameters u′1, . . . ,u

′
n.

3.2 Protocol Specification

Due to lack of space we only present the relevant part of the COWS specification of the
XUA-based protocol and refer the interested reader to [17] for the overall specification.

To effectively take part to the protocol, each participant has to be able to call some in-
ternal functions, defined in some basic libraries provided by the programming language
used to specify the service. These functions implement algorithms, such as SHA for
hashing, RSA for public-key cryptography and AES for symmetric key cryptography,
necessary to properly manage the data to be sent and received. An internal function can
be rendered in COWS as a term of the following form3:

*(p.req?<inputData1> . p.resp!<inputData1,outputData1>

+ p.req?<inputData2> . p.resp!<inputData2,outputData2>

+ . . . + p.req?<inputDatan> . p.resp!<inputDatan,outputDatan>)

where p indicates the partner name of the considered participant, while req and resp
indicate the operations used to call the function and to receive the result, respectively.
To guarantee that the result outputDatai is properly delivered to the caller, it is sent
back together with the correlated inputDatai. In this way, if the same function f (·) is
concurrently called, then the results will not be mixed up. Thus, in the example below

(p.req!<100> | [X] p.resp?<100,X> . s1) | (p.req!<250> | [Y] p.resp?<250,Y> . s2)

where we have two calls, the pattern-matching-based communication of COWS ensures
that, irrespective of the execution order, the occurrences of variable X in s1 will be
replaced by f (100), while the occurrences of Y in s2 will be replaced by f (250).

Each protocol participant P is rendered in COWS as a pair of service definitions of
the form A(. . .) = P within a let construct:

P(p,. . .) =
[hashReq�] [hashResp�] [encReq�] [encResp�] [decReq�] [decResp�] . . .
(sha1(p, hashReq, hashResp)

| rsa1_5_PublicKey(p,encReq,encResp,decReq,decResp)

| . . . other internal functions . . .
| P_behaviour(p,hashReq,hashResp,encReq,. . .))

P_behaviour(p,hashReq,hashResp,encReq,. . .) = sP

3 These COWS terms play a role similar to that of functions in the applied π-calculus [9,24].

On Secure Implementation of an IHE XUA-Based Protocol 63

where p is the participant partner name and sP is the COWS term modelling the par-
ticipant’s behaviour. Name delimitations are used here to make the functions sha1,
rsa1 5 PublicKey, . . . internal by declaring that hashReq, hashResp, encReq, . . .
are private operation names known to P behaviour and to the internal functions, and
only to them.

The term representing the consumer’s behaviour is4

sts.rst!<c,msgId1,sts,user,salt,1000,timestamp1,uri,rst_req>

| [MsgId2] [Challenge] [Y] (

c.rstr?<Y,c,MsgId2,msgId1,Challenge>. c.fault!<Y,differentFrom,sts>

+ c.rstr?<sts,c,MsgId2,msgId1,Challenge>.

(-- Calculate the aes128 key based on his password

c.hashReq!<pwd,salt,1000>

| [DKey] c.hashResp?<pwd,salt,1000,DKey>.

(-- Decrypt the Challenge

c.decReq!<DKey,Challenge>

| [Nonce] [Created] [Context] [X](

c.decResp?<DKey,Challenge,X,Nonce,Created,Context>.

c.fault!<X,differentFrom,sts,for,Context>

+ c.decResp?<DKey,Challenge,sts,Nonce,Created,Context>.

(-- Encode the response

c.encReq!<gen_key,Nonce,1,c,msgId3,MsgId2,Context>

| [EncData] c.encResp?<gen_key,Nonce,1,c,msgId3,MsgId2,Context,EncData>.

(-- Encode the generated key with sts public key

c.encReq!<stsPubKey,gen_key>

| [EncKey] c.encResp?<stsPubKey,gen_key,EncKey>.

(-- Send the response to sts

sts.rstrr!<msgId3,MsgId2,sts,timestamp2,EncKey,EncData>

| [MsgId4] [SAMLTimestamp] [Signature]

-- Receive token back

c.rstrc?<c,sts,msgId3,MsgId4,SAMLTimestamp,user,uri,Signature>.

(-- Query reg for the resource identified by uri

reg.storedQuery!<c,reg,sts,msgId5,SAMLTimestamp,user,uri,

Signature,"Susan">))))))))

As expected, the consumer starts by invoking STS, by executing the invoke activity
along the endpoint sts.rst and by sending the request security token data. This invo-
cation corresponds to message (1) in Table 1, where the iteration number int is 1000 and
the registry address specified in the RST is uri. Then, the consumer waits for message
(2), by means of the two receive activities along c.rstr. Notice that, in accordance with
the WS-Addressing standard and due to the pattern-matching mechanism regulating the
COWS communication, only messages that carry the name msgId1 can be accepted by
the consumer. Moreover, the identity of STS, i.e. sts, must be contained in the mes-
sage, otherwise a fault is raised (represented by the invoke activity along the endpoint
c.fault)5. Once message (2) is received, the consumer calculates the derived key by
exploiting its internal hashing function (using operation hashReq and hashResp) and,
similarly, decrypts the challenge (using operation decReq and decResp). Then, pattern-
matching and the choice operator are used again to check the presence of the STS’s
identity within the challenge. Now, the consumer can prepare the response for STS, by

4 The string -- indicates that the rest of the line is a comment (and is ignored by CMC).
5 Notice that if both receives along c.rstrmatch an incoming message, hence the first argument

is sts, due to the prioritized semantics of COWS only the second receive (which generates a
smaller substitution) can progress.

64 M. Masi, R. Pugliese, and F. Tiezzi

encrypting the challenge data, where the nonce has been incremented by 1 (this is rep-
resented by the couple Nonce, 1). Differently from the abstract description of message
(3) shown in Table 1, the COWS specification follows the concrete approach used in
the implementation (based on XML encryption): thus, the AES algorithm is used to
encrypt the data rather than RSA. The used symmetric key gen key, supposed to be
calculated by the consumer, is in its turn encrypted with RSA by using the STS’s public
key and attached to the message. Finally, when the message containing the token arrives
(receive along c.rstrc), the consumer invokes the storedQuery operation (the XDS
feature for querying Susan’s documents) provided by the registry.

The term representing the STS behaviour is

* [C] [MsgId1] [User] [Salt] [Iteration] [Timestamp1] [URI] [RST]

sts.rst?<C,MsgId1,sts,User,Salt,Iteration,Timestamp1,URI,RST>.

(-- Retrieve the User’s password

sts.getPwd!<User>| [Pwd] sts.getPwdResp?<User,Pwd>.

(-- Calculate the derived key

sts.hashReq!<Pwd,Salt,Iteration>

| [DKey] sts.hashResp?<Pwd,Salt,Iteration,DKey>.

(-- Create the challenge

sts.encReq!<DKey,sts,nonce1,created1,contextId>

| [Challenge] sts.encResp?<DKey,sts,nonce1,created1,contextId,Challenge>.

(-- Send the challenge to the consumer

C.rstr!<sts,C,msgId2,MsgId1,Challenge>

| -- Receive the challenge response

[MsgId3] [Timestamp2] [EncKey] [EncData]

sts.rstrr?<MsgId3,msgId2,sts,Timestamp2,EncKey,EncData>.

(-- Decrypt the encoded key

sts.decReq!<stsPrivateKey,EncKey>

| [Gen_key] sts.decResp?<stsPrivateKey,EncKey,Gen_key>.

(-- Decrypt the encoded data

sts.decReq!<Gen_key,EncData>

| [MsgId3] sts.decResp?<Gen_key,EncData,nonce1,1,C,MsgId3,

msgId2,contextId>.

-- Now, the consumer is authenticated

(-- Create a token SAML

sts.hashReq!<sts,samlTimestamp,User,URI>

| [SAMLhash] sts.hashResp?<sts,samlTimestamp,User,URI,SAMLhash>.

(-- Sign the hash code

sts.sign!<stsPrivateKey,SAMLhash>

| [Signature] sts.signResp?<SAMLhash,Signature>.

(-- Send the token

C.rstrc!<C,sts,MsgId3,msgId4,samlTimestamp,

User,URI,Signature>)))))))))

The replication operator ∗ at the beginning of the term specifies that STS is a persistent
service, i.e. it is capable of creating multiple instances to serve several requests simulta-
neously. Thus, when it receives a message along the endpoint sts.rst, corresponding
to message (1) of the protocol, it creates an instance initialized with the received data.
The instance, by means of operations getPwd and getPwdResp, retrieves the user’s
password from a private database. Using the password, it can derive a symmetric key to
encrypt the challenge, by exploiting again its internal functions. Invoke along C.rstr
and the subsequent receive along sts.rstrr permit sending and receiving message (2)
and (3), respectively. Now, by using stsPrivateKey, STS can decipher the symmetric
key generated by the consumer, which is then used to decrypt the challenge response.

On Secure Implementation of an IHE XUA-Based Protocol 65

Notice that, pattern-matching in the communication along sts.decResppermits check-
ing that the response contains the incremented nonce and the context; this guarantees
that the sender of the message is really the consumer acting on behalf of the authorized
user. Therefore, STS creates the token, by exploiting its internal functions, and sends it
to the consumer.

Finally, the term representing the registry’s behaviour is

* [Cust] [STS] [MsgId5] [TS] [User] [Uri] [Signature]

reg.storedQuery?<Cust,reg,STS,MsgId5,TS,User,Uri,Signature,"Susan">.

-- Validate the token

(-- Calculate the hash code of the token data

reg.hashReq!<STS,TS,User,Uri>

| [CalculatedHash] reg.hashResp?<STS,TS,User,Uri,CalculatedHash>.

(-- Retrieve the STS’s public key

reg.getKey!<STS>

| [PubKey] reg.getKeyResp?<STS,PubKey>.

(-- Check the signature by using PubKey

reg.check!<PubKey,Signature>

| [Hash] reg.checkResp?<Signature,Hash>.

[compare�]
(-- Compare the hash codes

reg.compare!<CalculatedHash>

| [X] (reg.compare?<X>. reg.attackDetected!<Cust>

+ reg.compare?<Hash>. reg.deliveringResource!<Cust>)))))

When the registry receives a consumer’s query, by means of the receive activity along the
endpoint reg.storedQuery, it validates the token within the message. To this purpose,
we assume that the registry has a private database storing the public keys of all trusted
STSs, and can interact with it by calling the operations getKey and getKeyResp. In-
stead, to check the validity of the signature, it calls function signChecker by means
of check and checkResp. After calling such function, the registry obtains the hash
code of the signature (and stores it in the variable Hash); by comparing it with the re-
calculated hash code (stored in the variable CalculatedHash) using the private opera-
tion compare, it can either detect that an attack has been performed (this is signaled by
the activity reg.deliveringResource! < Cust >) or state that the token is valid. In
this last case, the activity reg.deliveringResource! < Cust > is used to signal that
the registry is ready to deliver the resource to the consumer. In fact, we do not model here
message (6), since the flaw we are interested to capture concerns the previous message
exchanges.

4 Protocol Analysis

As shown in Figure 3 we have to deal with two types of communication channels:
TLS protected channels for communicating with the registry and untrusted channels
for communicating with the STS. We assume the intruder as any authorized user in the
network (i.e. it owns an ATNA host certificate). Therefore, it can start any mutual au-
thenticated TLS transaction with the registry and it can look in any message exchanged
bySTS. Basically, we consider the intruder model introduced by [25] for TLS channels
and the well-known Dolev-Yao model [26] as regards the communication with STS
along untrusted channels. We focus on an intruder that intercepts the message sent by

66 M. Masi, R. Pugliese, and F. Tiezzi

STS containing the SAML token issued for the consumer (message (4)) and re-uses the
token (without modifying it) for an its own query to the registry (message (5), sent by
the intruder). This is rendered in COWS as

Intruder(i, c, sts, user, uri, reg) =

[MsgId4] [TS] [Signature]

c.rstrc?<c,sts,msgId3,MsgId4,TS,user,uri,Signature> .

(i.underAttack!<>

| --Forwards the message to the consumer

c.rstrc!<c,sts,msgId3,MsgId4,TS,user,uri,Signature>

| --Performs the attack

reg.storedQuery!<i,reg,sts,msgId5,TS,user,uri,Signature,"Susan">)

Once the intruder has caught message (4) (receive activity along c.rstrc), besides
forwarding the message to the consumer and querying the registry, it enables the invoke
activity i.underAttack! <>. This activity is only used during the analysis to signal that
the system is under attack. Notably, the intruder’s query differs from the consumer’s one
for the first argument only, which is i instead of c.

The analysis of the protocol is carried out by exploiting CMC [23], a software tool
that permits model checking SocL formulae over COWS specifications. SocL [27] is an
action- and state-based, branching time, temporal logic specifically designed to express
properties of service-oriented systems. Here, we are interested to look for the presence
of security flaws in the protocol, which can be expressed in SocL as follows:

AG [request(samlToken,requestedBy,c)]

not EF (systemUnderAttack(i) and deliveringResource(to,i))

This formula means that it holds globally (operator AG) that if (operator [·]) a SAML
token has been requested by the consumer (action request(samlToken,requestedBy,
c)), then it does not (operator not) hold that eventually (operator EF) the system will be
under attack by intruder i (predicate systemUnderAttack(i)) and, at the same time,
the registry will deliver the resource to i (predicate deliveringResource(to, i)).

The previous formula is stated in terms of abstract actions and predicates, meaning
that, e.g., a token is requested or a resource is ready to be delivered, while the COWS
specification is stated in terms of concrete actions, i.e. communication of data tuples
along endpoints. To verify an abstract property over a concrete specification, CMC per-
mits to specify a set of transformation rules, such as

Action ∗.rst<$requestor,∗,∗,∗,∗,∗,∗,∗,∗>
−> request(samlToken,requestedBy,$requestor)

State $attacker.underAttack! −> systemUnderAttack($attacker)
State ∗.deliveringResource! <$X> −> deliveringResource(to, $X)

The first rule maps a concrete action involving the operation rst to the abstract action
request(samlToken, requestedBy, $requestor), where the (meta-)variable $requ−
estor will be replaced with the actual requestor during the on-the-fly model checking
process, while the symbol ∗ is a wildcard. Similarly, the second and third rules map
the actions involving operations underAttack and deliveringResource to the cor-
responding state predicates. We refer the interested reader to [27] for a complete account
of abstraction rules.

On Secure Implementation of an IHE XUA-Based Protocol 67

As already mentioned in the Introduction, CMC returns FALSE when checking the
above SocL formula over the abstracted COWS specification. In fact, the system can
perform the following sequence of (abstract) actions:

request(samlToken,requestedBy,c); internal actions; challenge(samlToken);
internal actions; challengeResp(samlToken); internal actions;
response(samlToken,requestedBy,c);

request(registryQuery,requestedBy,i); internal actions

and reach a state where both predicates systemUnderAttack(i) and delivering-
Resource(to, i) hold.

Now, let us modify the COWS specification to model the use of the holder-of-key
confirmation method rather than the bearer method. With respect to the specification
presented in Section 3, the main difference is that in the new STS specification the
invoke sts.hashReq! < sts, samlTimestamp, User, URI >, used to generate the hash
code of the SAML token data, is replaced with sts.hashReq! < sts, samlTimestamp,
User, C, URI >. This time the result returned by CMC when checking the previous for-
mula over the protocol specification is TRUE. In fact, the registry can detect that the
intruder’s query is fake by comparing the intruder’s identity with the identity contained
in the SAML token by means of ATNA credentials.

5 Concluding Remarks

We have presented our initial experience on the analysis of protocols for building health-
care applications. Our long term goal is to develop a general methodology based on
formal methods for studying such protocols and to show its feasibility for the analy-
sis of real-world scenarios, whereas an analysis without formal techniques is sometime
unfeasible due to the complexity of healthcare applications.

Specifically, we have considered a Web Service security protocol for obtaining an
XUA SAML authentication assertion, using the WS-Trust OASIS standard. To the best
of our knowledge, our work is the first tentative to provide a formal study for IHE
specifications. This kind of protocols are obtaining an ever increasing relevance since
they are used to exchange patients’ healthcare data and are widely adopted. We have
revealed a potential flaw in the specification and we have also proposed a solution. Af-
terwards, we have implemented the ‘revised’ protocol using WS-Trust 1.3, SAML 2.0,
WS-Security and the WS-Security Username Token Profile 1.1. We have also used the
Axis2 library (available at http://ws.apache.org/axis2) and the JBoss application
server (http://www.jboss.org). Our Java implementation consists of four services:
the Document Consumer and Document Registry, a Document Repository and a Security
Token Service. All the XDS services are given as a courtesy of the Tiani “Spirit” com-
pany located in Vienna, Austria (http://www.tiani-spirit.com). The modified
STS is available as Axis2 service at http://office.tiani-spirit.com:41081/
SpiritIdentityProvider/services/STS09. A more detailed account of the im-
plementation together with the COWS sources can be found in [17].

http://ws.apache.org/axis2
http://www.jboss.org
http://www.tiani-spirit.com
http://office.tiani-spirit.com:41081/SpiritIdentityProvider/services/STS09
http://office.tiani-spirit.com:41081/SpiritIdentityProvider/services/STS09

68 M. Masi, R. Pugliese, and F. Tiezzi

Table 3. List of acronyms

ATNA Audit Trail and Node Authentication
ebXML Electronic Business using eXtensible Markup Language
EHR Electronic Health Record
HoK holder-of-key
IHE Integrating the Healthcare Enterprise
RST Request Security Token
RSTR Request Security Token Response
SAML Security Assertion Markup Language
SOC Service Oriented Computing
STS Security Token Service
TLS Transport Layer Security
XACML eXtensible Access Control Markup Language
XDS Cross Enterprise Document Sharing
XUA Cross Enterprise User Assertion

Related Work. Web Services analysis with the use of formal methods is not a novel
research field. Microsoft Research proposes the TulaFale specification language [10,9]
for security analysis of web services. TulaFale uses CryptoVerif [28] as model checking
engine. The main focus is on SOAP Message Rewrite attacks that we do not consider
in our work since our signatures are defined by the SAML standard. In [10] the authors
analyze WS-Trust for a secure exchange of a Security Context Token while we consider
WS-Trust for issuing a SAML token.

The SAML 1.0 and 2.0 specifications have been studied e.g. in [12,29,30]. However,
they concentrate on the SAML Protocol and Profiles [31] to obtain SAML Authenti-
cation assertion, while we focus on WS-Trust. The work closest to ours is [12] where
the SAML-based Single Sign-On for Google Apps is analyzed with the tool AVISPA
[32]. A flaw in the Google implementation is found, where a fake Service Provider can
potentially access a Google resource without the password of the user. Similarly to our
scenario, the flaw discovered is in the format of the SAML assertion, that lacks the
Audience list. In XUA, the Audience list must be contained in the assertion and refer
to the registry, hence this kind of attack cannot occur.

Future Work. As the above mentioned works and ours witness, to simply adopt
WS-Security and WS-Trust does not guarantee absence of security flaws. Due to the
widespread diffusion of such standards, especially in EHR, it is then worthwhile pur-
suing this line of research. Therefore, in the near future we plan to continue our formal
methods-based investigation of the security issues that can arise in healthcare environ-
ments, such as XACML-based authorization processes, patient consent and confiden-
tiality, as specified in the IHE profiles6.

6 IHE profiles strictly follow international guidelines such as Health Insurance Portability and
Accountability Act (HIPAA) and EU commissions reports.

On Secure Implementation of an IHE XUA-Based Protocol 69

References

1. The IHE Initiative: IT Infrastructure Technical Framework (2009), http://www.ihe.net
2. OASIS Security Services TC: Assertions and protocols for the OASIS security assertion

markup language (SAML) v2.02 (2005)
3. OASIS/ebXML Registry Technical Committee: ebXML business process specification

schema technical specification v2.0.4 (2006), http://www.ebxml.org
4. OASIS Web Services Security TC: WS-Trust 1.3 specification (2007)
5. GIP DMP: Dossier Médical Personnel A French Project, http://www.d-m-p.org
6. ARGE-ELGA: Die Arbeitsgemeinschaft Elektronische Gesundheitsakte,
http://www.arge-elga.at

7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. Technical
Report RFC 5246, IETF (August 2008)

8. OASIS Web Services Security TC: Web service security: SOAP message security (2006)
9. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: TulaFale: A Security Tool for Web

Services. CoRR abs/cs/0412044 (2004)
10. Bhargavan, K., Corin, R., Fournet, C., Gordon, A.D.: Secure sessions for web services. In:

SWS, pp. 56–66. ACM, New York (2004)
11. Kleiner, E., Roscoe, A.W.: On the relationship between web services security and traditional

protocols. In: Mathematical Foundations of Programming Semantics, MFPS XXI (2005)
12. Armando, A., et al.: Formal Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking

the SAML-based Single Sign-On for Google Apps. In: FMSE. ACM, New York (2008)
13. Lowe, G.: A hierarchy of authentication specifications, pp. 31–43. IEEE, Los Alamitos

(1997)
14. ACR-NEMA: Digital imaging and communications in medicine, dicom (1995)
15. Health Level Seven organization: Hl7 standards (2009), http://www.hl7.org
16. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: De

Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)
17. Masi, M., Pugliese, R., Tiezzi, F.: On secure implementation of an IHE XUA-based protocol

for authenticating healthcare professionals (full version),
http://rap.dsi.unifi.it/cows/

18. OASIS Security Services TC: SAML v2.0 Holder-of-Key Assertion Profile (March 2009)
19. Gudgin, M., Hadley, M., Rogers, T.: Web Services Addressing 1.0 - Core. Technical report,

W3C, W3C Recommendation (May 2006)
20. OASIS Web Services Security TC: Username token profile v1.1 (2006)
21. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services (full

version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze (2008),
http://rap.dsi.unifi.it/cows

22. OASIS WSBPEL TC: Web Services Business Process Execution Language v2.0 (2007)
23. ter Beek, M.H., Gnesi, S., Mazzanti, F.: CMC-UMC: A framework for the verification of ab-

stract service-oriented properties. In: Shin, S.Y., Ossowski, S. (eds.) 2009 ACM Symposium
on Applied Computing (SAC), pp. 2111–2117. ACM, New York (2009)

24. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL,
pp. 104–115 (2001)

25. Broadfoot, P., Lowe, G.: On distributed security transactions that use secure transport pro-
tocols. In: 16th Computer Security Foundations Workshop, pp. 63–73. IEEE, Los Alamitos
(2003)

26. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on Informa-
tion Theory 29(2), 198–208 (1983)

http://www.ihe.net
http://www.ebxml.org
http://www.d-m-p.org
http://www.arge-elga.at
http://www.hl7.org
http://rap.dsi.unifi.it/cows/
http://rap.dsi.unifi.it/cows

70 M. Masi, R. Pugliese, and F. Tiezzi

27. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking
approach for verifying COWS specifications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE
2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)

28. Blanchet, B.: CryptoVerif: Computationally sound mechanized prover for cryptographic pro-
tocols. In: Dagstuhl seminar Formal Protocol Verification Applied (October 2007)

29. Groß, T.: Security analysis of the saml single sign-on browser/artifact profile. In: ACSAC,
pp. 298–307. IEEE, Los Alamitos (2003)

30. Hansen, S., Skriver, J., Nielson, H.: Using static analysis to validate the saml single sign-on
protocol. In: WITS, pp. 27–40. ACM, New York (2005)

31. OASIS Security Services TC: Profiles for the OASIS Security Assertion Markup Language
(SAML) v2.0 (2005)

32. Armando, A., et al.: The AVISPA Tool for the Automated Validation of Internet Security Pro-
tocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

On the Untraceability of Anonymous RFID
Authentication Protocol with Constant Key-Lookup

Bing Liang1, Yingjiu Li1, Changshe Ma1,3, Tieyan Li2, and Robert Deng1

1 School of Information Systems, Singapore Management University, 80 Stamford Road,
Singapore, 178902

2 Institute for Infocomm Research, A*STAR Singapore
3 School of Computer, South China normal University, Guangzhou, China, 510631

liangb02@gmail.com, {yjli,changshema}@smu.edu.sg,
litieyan@i2r.a-star.edu.sg, robertdeng@smu.edu.sg

Abstract. In ASIACCS’08, Burmester, Medeiros and Motta proposed an anony-
mous RFID authentication protocol (BMM protocol [2]) that preserves the secu-
rity and privacy properties, and achieves better scalability compared with other
contemporary approaches. We analyze BMM protocol and find that some of se-
curity properties (especial untraceability) are not fulfilled as originally claimed.
We consider a subtle attack, in which an adversary can manipulate the messages
transmitted between a tag and a reader for several continuous protocol runs, and
can successfully trace the tag after these interactions. Our attack works under a
weak adversary model, in which an adversary can eavesdrop, intercept and re-
play the protocol messages, while stronger assumptions such as physically com-
promising of the secret on a tag, are not necessary. Based on our attack, more
advanced attacking strategy can be designed on cracking a whole RFID-enabled
supply chain if BMM protocol is implemented. To counteract such flaw, we im-
prove the BMM protocol so that it maintains all the security and efficiency prop-
erties as claimed in [2].

Keywords: RFID, Anonymous, Authentication, Privacy.

1 Introduction

Radio Frequency Identification (RFID) technology has been applied in a range of indus-
tries such as libraries [12], automatic payment [15], animal tracking [15], supply chains
[8] and E-passport [16]. An RFID system generally incorporates three components: tag,
reader and back-end database. Typically, a reader can interrogate with a tag and send
the tag’s information to database for verification. There are two main kinds of tags:
active tags which are battery-powered [14] and passive tags without battery, which are
powered by the electromagnetic field established by the reader’s antenna. As the cost of
active tags is much higher than the passive ones, only passive tags are considered to be
suitable for large-scale applications such as supply chain management.

Privacy and scalability are two important perspectives in RFID protocols. On the
aspect of privacy, if the tag is not managed carefully, the privacy of its carrier will
be inferred by a malicious party. In some cases, the tags can release the information
about an individual’s medication record, banknote’s serial number, culture preference,

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 71–85, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

72 B. Liang et al.

location information, and etc.. In other cases, a company’s sensitive information such
as product price, and supply chain routine can be obtained by the company’s opponent,
which may lead to the financial loss of the company. In all, privacy is one of the most
essential security consideration in RFID system.

Besides the privacy concern, scalability is another important issue in designing an
RFID authentication protocol. RFID users usually have a high requirement of the pro-
ceeding time. In the survey of [4], more than half the people in the investigation consider
efficiency of the RFID authentication process quite important, far more important than
those people who consider security important. In [2], Burmester, Medeiros and Motta
(BMM) proposed an RFID authentication protocol with constant key-lookup to balance
the privacy requirement and scalability. To the best of our knowledge, this protocol is
one of the most scalable solutions that preserve privacy as claimed (please see Section
7 for more details about related works). In this paper, we identify the shortcoming in
BMM protocol [2] and propose an improved protocol accordingly. We argue that the
improved protocol provides stronger privacy than the BMM protocol, while the perfor-
mance of the improved protocol is the same as the BMM protocol. Our contributions in
this paper are summarized below:

1. We analyze the BMM-protocol and find a subtle flaw, by which we can break the
privacy property, namely untraceability. Exploiting this flaw, we design an easy-to-
launch attack under a weak adversary model. Under our attack, an adversary can
easily trace a tag in a supply chain party. Thus, one by one, we can trace such a tag
in a whole supply chain if the BMM protocol is implemented.

2. To improve the protocol, we propose an anonymous RFID authentication protocol
that can fulfill all privacy claims of [2], including defense against eavesdropping
attack, spoofing attack, replay attack, de-synchronization attack, tracing attack and
compromising attack.

The organization of this paper is as follows: In Section 2, we introduce the notation that
will be used in this paper. In Section 3, we review the BMM protocol. In Section 4, we
elaborate on our attack. In Section 5, an example on cracking the whole supply chain is
presented. Further, in Section 6, we propose the improved protocol and analyze its se-
curity properties. In Section 7, we introduce the related works on RFID authentication.
In Section 8, we conclude the paper.

2 Notation

If A(·, ·, ...) is a randomized algorithm, then y ← A(x1, x2, ...; cn) means that y is as-
signed the unique output of the algorithm A on inputs x1, x2, ... and coins cn. Let g be a
pseudorandom function (PRF) [7]. If S is a set, then s ∈R S indicates that s is chosen
uniformly at random from S . If x1, x2, ... are strings, then x1||x2|| · · · denotes the con-
catenation of them. If x is a string, then |x| denotes its bit length in binary code. Let ε
denote the empty string. If S is a set, then |S | denotes its cardinality (i.e. the number
of elements of S). If ctr is a counter which starts from n1 and ends with n�, then ctr(j)
denotes its jth value, i.e. ctr(j) = n j, where 1 � j � �. Let IV be an initial vector for
the PRF g.

On the Untraceability of Anonymous RFID Authentication Protocol 73

3 The BMM Protocol

In this section, we review the BMM protocol, (which is shown in Figure 1).
In the RFID system constructed by BMM protocol, there is a set-up procedure which

initializes the reader and every tag. Then, they will engage in a protocol to identify the
tag. The whole RFID system is described as follows.

Tag Reader
(k, r, q,mode, ctr) D = {k, ri, q, q1

i , · · · , q�i , i ∈ {old, cur},}
c

←−−−−−−−−−−−−−−−−−−−− c ∈R {0, 1}n

If mode = 0 then ps← r
Else

ps← g(k; q||IV ||ctr),
Update ctr
ν0||ν1||ν2 ← g(k; ps||c)

auth← ν1
ps||auth

−−−−−−−−−−−−−−−−−−−−→ If (k, ps) � D then REJECT

Else ν′0||ν
′
1||ν
′
2 ← g(k; ps||c)

If ν′1 � auth then REJECT
Else con f ← ν′2

con f
←−−−−−−−−−−−−−−−−−−−−

If con f = ν2 then If ps = rcur then rold ← rcur and rcur ← ν′0
If mode = 0 then r ← ν0 Else if ps = rold then rcur ← ν′0
Else Else if ps = q j

cur then q← ν′0 and
mode← 0 and q← ν0 {qi

old ← qi
cur}�i=1 and

Else mode← 1 {qi
cur ← g(k; q||IV ||ctr(i))}�i=1

Else if ps = q j
old then q← ν′0 and

{qi
cur ← g(k; q||IV ||ctr(i))}�i=1

Output ACCEPT

Fig. 1. BMM Protocol

Setup: When creating a new tag T , the system generates a secret key k, a pseudonym
seed q, a one-time pseudonym r, a counter ctr = 1, and a flag mode = 0. Then it
sets up the initial state information of the tag T as the tuple (k, q, r, ctr,mode). The
system also associates the tag T with its identity IDT in the reader’s database by
initiating a tuple (rold, rcur, q1

old, · · ·q
�
old, q

1
cur, · · ·q�cur, k, q, IDT), where rold = rcur =

r and q j
i = g(k; ||q||IV ||ctr(j), for i = {old, cur}, and j = 1, · · · �.

The BMM Protocol: It runs in three rounds:
Round 1. First, the reader starts the protocol by sending a challenge c to the tag.

Upon receiving c, the tag first checks its mode state: if mode = 0, it sets the
pseudonym ps = r; otherwise, it computes ps = g(k; q||IV ||ctr) and updates the
counter ctr = ctr + 1. Then, the tag calculates ν0||ν1||ν2 = g(k; ps||c). Here, ν0
is used to replace the pseudonym r; auth = ν1 is used to authenticate itself to
the reader, and ν2 is used to authenticate the reader.

74 B. Liang et al.

Round 2. The tag sends the message ps||auth to the reader. Upon receiving ps||auth,
the reader requests to its back-end database to look up the tuple (rold, rcur, q1

old, · · ·
q�old, q

1
cur, · · ·q�cur, k, q0, IDT) such that ri = ps or q j

i = ps, where i = {old, cur}
and j = 1, · · · �, through using ps as an index. If the tag is de-synchronized
within � times, we can find the tuple in constant time by 2� + 2 indexes. If the
tuple is found, the reader calculates ν′0||ν

′
1||ν
′
2 ← g(k; ps||c) and accepts the tag if

auth = ν′1. Otherwise, the tag is rejected. If a tag is accepted, the reader prepares
a confirmation message con f ← ν′2.

Round 3. The reader sends the confirmation message con f to the tag. The tag
authenticates the reader by checking whether con f = ν2. If the reader is suc-
cessfully authenticated, the tag then updates its pseudonym: if mode = 0, it
updates the pseudonym r = ν0; if mode = 1, it updates pseudonym seed q = ν0
and keep the pseudonym r unchanged. If the reader is not authenticated, the
tag sets mode = 1 and does nothing else. On the reader side, it updates the
tuple (rold, rcur, q1

old, · · · , q
�
old, q

1
cur, · · · q�cur, k, q0, IDT) associated with the tag as

follows. If ps = rcur , it updates rold = rcur and rcur = ν
′
0. If ps = rold, it only

updates rcur = ν
′
0. If ps = q j

old for some j between 1 and �, it updates q = ν′0
and q j

cur = g(k; ||q||IV ||ctr(j) for j = 1, · · · �. If ps = q j
cur for some j between 1

and �, it updates q = ν′0, q j
old = q j

cur and q j
cur = g(k; ||q||IV ||ctr(j) for j = 1, · · · �.

Burmester, Medeiros and Motta claimed that it can “support anonymity with con-
stant key-lookup cost; however, it suffers from entrapment attacks” [2]. To preserve the
privacy of a queried tag, an adversary that eavesdrops over the protocol should not be
able to figure out the identifier of the tag with higher likelihood than a pure random
guess. The same should also apply to an unauthorized reader that attempts to query the
tag. In other words, the protocol should ensure “tag anonymity”, in terms of session
unlinkability: an adversary should not be able to link together two or more protocol
sessions involving the same tag (regardless whether the identity of the tag is known
or not) to track the activities of the tag. To achieve this, any two protocol exchanges
involving the same tag must appear reasonably random such that the adversary cannot
differentiate it with non-negligible probability from two protocol exchanges involving
two different tags.

Unfortunately, there exist some flaws in the updating procedures in the design of
BMM protocol. The flaws can be subsequently exploited to launch a simple attack to
trace a tag in a series of protocol runs.

4 Attacking the BMM Protocol

In this section, we describe a three-run interleave attack and show how to use it to track
a tag. Our attack is easy to launch as it requires a weak adversary model as depicted
below.

4.1 The Adversary Model

In typical RFID security scenarios, adversaries with different levels of power are mod-
eled to analyze different RFID authentication protocols [10]. We consider adversaries
with three levels of power as follows:

On the Untraceability of Anonymous RFID Authentication Protocol 75

– Level-1 (Passive attack):
Able to perform passive eavesdropping and intercept messages over legitimate pro-
tocol sessions.

– Level-2 (Active attack with protocol participation & protocol disruption):
Able to communicate with a legitimate tag or reader by following the steps specified
under the protocol and to replay, corrupt, block or inject (replace)messages.

– Level-3 (Active attack with secret compromise):
Able to capture a legitimate tag and extract its secrets through physical layer attack
and side channel attacks.

It is reasonable to assume that a higher level adversary also possesses the abilities of all
levels preceding it, i.e. a level-3 adversary has the abilities of level-1 and level-2 adver-
saries, as well as the set of additional abilities of physical layer attacks and side channel
attacks. As we will be showing in next subsection, our attack requires a relatively weak
adversary model (w.r.t., a level-2 adversary), where an adversary has limited ability to
communicate with a legitimate tag following protocol steps.

Different kinds of attacks can achieve variable goals. Eavesdropping attacks can track
a tag successfully if the tag’s responses keep same. Attackers can communicate with
trusted readers and trusted tags through spoofing and replay attack. De-synchronization
attacks can interrupt regular communications between trusted readers and tags through
blocking, modifying and injecting messages. Denial of Service (DoS) attacks mean that
a legitimate reader is flooded with useless messages so that it cannot communicate with
legitimate tags normally.

4.2 Three-Run Interleave Attack

We first give the intuition behind our attack. We observe that the state information (in-
dex) ‘r’ in the tag always keeps unchanged in the protocol executions when mode = 1
and con f = ν2 (see Figure 1). It means that the tag will reply with the same response in
the next interrogation. Our attack follows this observation and uses a ‘three-run inter-
leave’ technique to push the tag into the state of mode = 1 and con f = ν2.

Tag Malicious Reader
(k, r, q,mode = 0, ctr) c ∈R {0, 1}n

c
←−−−−−−−

ps← r and Update ctr
ν0||ν1||ν2 ← g(k; ps||c)

auth← ν1
ps||auth
−−−−−−−→ Receive and Store

Send another Random
ν2 � c Number c

and mode← 1
c

←−−−−−−−

Fig. 2. First Run of The Attack

76 B. Liang et al.

As mentioned in Section 4.1, we assume a level-2 adversary as the malicious reader,
denoted by RM . We denote a legitimate tag by T and a trusted reader by RT . The attack
consists of three runs, during which T is interrogated by RM twice and by RT once. We
present the attack in detail as follows.

1. First Run: RM interrogates T
This first run of our attack is illustrated in Figure 2. During the first protocol run,
RM interrogates T with an incomplete protocol execution. We assume that RM can
launch attacks after several legitimate communications between RT s and T , so we
can consider the initial status of T as mode = 0. After sending a challenge c, RM

receives the reply message ps||auth = r||ν1 from T . As RM does not share any
secret with T , it cannot compose the correct confirmation message for T . Instead,
RM sends a random value c to T . At the tag’s side, c cannot be verified against
con f , so T changes its status into an attacked state with mode = 1. To this end, RM

stores the reply ‘r||ν1’ and continues to the next step.
Note that if RM sends queries to a tag continuously, he/she can only obtain the

unlinkable information ps||auth. Therefore, to get useful information, which can
link the same tag by comparing ‘r’, the adversary intentionally involves a trusted
reader RT in the second run.

2. Second Run: RT interrogates T
The second run of our attack is shown in Figure 3. During the second protocol run,
T is put forward and interrogated by a trusted reader RT with a complete protocol
execution, while RM does nothing. Note that in the first run of our attack, T toggles
its mode in T to ‘1’; therefore, after T receives the confirmation message from the
legitimate reader, its mode is changed into ‘0’. As now, T only updates q into ν0
but keeps r unchanged.

3. Third Run: RM interrogates T
During the third protocol run, RM interrogates with T again as in the first run for
tracing the same tag T that has been interrogated in the first run. To achieve this,
RM sends the same challenge c to the tag and expects a repeated reply by T . Recall
that in the second run, a successful protocol run between RT and T toggles T to a
secure status mode = 0. Following the protocol, T shall reply with ps||auth = r||ν1,
which is the same authentication information as that in the first run. It is thus easy
for the attacker to trace the tag T by comparing the ps||auth values.

4.3 Discussions

We stress that our attack is practical. There could be a number of ways to launch such
an attack.

Recall that in the first protocol run of our attack, a malicious reader interrogates with
a legitimate tag. We can further reduce this requirement if the adversary has minimum
eavesdropping and blocking capabilities: in the first run, the adversary eavesdrops the
first two protocol messages and blocks the third messages to make the protocol incom-
plete. Thereafter, the tag is triggered into an insecure state and the reader updates the
status for the record of this tag. The attack continues with a successful second run and
an incomplete third run (same as that of the first run). By comparing the eavesdropped

On the Untraceability of Anonymous RFID Authentication Protocol 77

Tag Legitimate Reader
(k, r, q,mode = 1, ctr) D = {k, ri, q, q1

i , · · · , q
�
i ,

i ∈ {old, cur}},
ps← g(k; q||IV ||ctr),

c′

←−−−−−−−−−− c′ ∈R {0, 1}n

Update ctr
ν0||ν1||ν2 ← g(k; ps||c′)

auth← ν1
ps||auth

−−−−−−−−−−→ If (k, ps) � D then REJECT

Else ν′0||ν
′
1||ν
′
2 ← (k; ps||c′)

If ν′1 � auth then REJECT
Else con f ← ν′2

con f
←−−−−−−−−−−

If con f = ν2 If ps = q j
cur then q← ν′0 and

mode← 0 and q← ν0 {qi
old ← qi

cur}�i=1 and
{qi

cur ← g(k; q||IV ||ctr(i))}�i=1
Else if ps = q j

old then q← ν′0 and
{qi

cur ← g(k; q||IV ||ctr(i))}�i=1
Output ACCEPT

Fig. 3. Step Two of The Attack

messages in the first run and the third run, the adversary can trace the tag. Such an
adversary is more stealthy as no active interrogation between a malicious reader and a
legitimate tag is needed1.

In summary, the attack can be extended, but not limited to the following forms:

� � RM � RT � RM �
� � RT

A � R
T � RT

A �
� � RM � RT � RT

A �
� � RT

A � R
T � RM �

Where RT
A denotes an adversary’s presence in an interrogation between a trusted reader

and a legitimate tag.

5 Cracking a Whole Supply Chain by Using the Basic Attack

Based on the basic three-run interleave attack, more advanced attacking strategies are
designed to crack an RFID-enabled supply chain that implements the BMM protocol.

1 Note that in the third run, a different challenge c′′ could be used by a trusted reader to challenge
the tag. As long as the r value is not updated in the second run, the ps value is still the same
as the one in the first run.

78 B. Liang et al.

5.1 Assumptions

We need to make several reasonable assumptions about an RFID-enabled supply chain
before we elaborate on our attacking strategies.

1. Trusted Zone:
We consider a geographically distributed supply chain, in which each party in the
supply chain may receive tagged articles, process these articles, and ship them out.
For simplicity, we consider the area as a trusted zone inside a supply chain party,
and public zone outside. An adversary is not able to interact with a legitimate tag
in a trusted zone, but can interrogate with a tag in the public zone.

2. One-time Authentication:
While tagged articles are being processed by a supply chain party, the authentica-
tion is performed only once (e.g., typically at the entry point of the trusted zone).
This is reasonable as authentication procedure is much more expensive and time-
consuming than identifier scanning procedure. As the area inside a supply chain
party is considered as a trusted domain, indeed no additional authentication is nec-
essary. While multiple scanning for identifying the tags is still allowed to facilitate
other operations (which are not security related). This is to guarantee that only one
successful session of authentication protocol is conducted in a trusted zone so that
once the articles are shipped out to the public zone, the adversary can launch the
tracing attack.

3. Sticky Adversary:
We assume that an adversary may possess multiple readers at multiple locations
or equivalently possess one reader at multiple instant locations. In other words, we
assume an ubiquitous adversary who is able to stick on the targeted articles in the
public zone along a supply chain.

Supply Chain
Party B

Trusted Zone

Malicious
reader

Trusted
reader

Malicious
reader

Trusted
reader

Malicious
reader

Supply Chain
Party A

Trusted Zone

Public Zone

Fig. 4. An Example for Cracking Supply Chain System

With these assumptions, we illustrate how to crack a supply chain system as in
Figure 4, where two supply chain parties are involved. In an attack, the adversary can
setup malicious readers in the public zones near each supply chain party. Furthermore,
two attacking strategies are given below.

On the Untraceability of Anonymous RFID Authentication Protocol 79

5.2 Attacking Strategies

Case 1: Tracing a Single Tag along Supply Chain
Suppose an adversary targets on a particular article with an RFID tag T . Before it
arrives at supply chain party A, a malicious reader can launch its attack by interrogating
with T and obtaining a ps value (ps = r) specific to this tag. Inside the domain of
party A, T is authenticated once and processed in some other ways. At last, the article
attached with T is shipped out. Once again, a malicious reader scans all outbound
articles and find this particular tag with the pseudonym ps. Following on, the adversary
repeats the attacks at various transportation locations visited by this article. Eventually,
a list of visited sites of the article, [� A⇒ B⇒ C ⇒ D⇒ E �], are recorded, which
enables the total visibility of this article (in the supply chain, which is serious breach of
its privacy). The tracing attack is illustrated in Figure 5.

Case 2: Tracing Multiple Tags and Constructing Supply Chain Map
Suppose an adversary, for the purpose of obtaining commercial secret, targets on a
manufacture who supplies its goods to various distributors, retailers, etc., via complex
supply chain paths. To construct such a map, he/she needs to trace all the goods attached
with tags along their supply chains. As such, the adversary first builds a database for
all the tags scanned immediately after the goods are shipped out. Suppose 100 tags are
being scanned and recorded in the database, as shown in Figure 6. For each record of
the database,

√
(or ×) represents whether the tag is scanned at certain locations or not.

‘ps’ denote the pseudonyms of a tag, for simplicity, |ps| = 32. As long as the adversary

Party A

Party E
Party D

Party C

Party B
ps

Tag

ps
ps ps

ps

ps

Fig. 5. Tracing A Single Tag along its Supply Chain

Tag ps Location 1 Location 2 Location 3 Location 4 Location 5 · · ·
Tag 1 09310A78

√ √
× ×

√
· · ·

Tag 2 38901D43 ×
√ √ √ √

· · ·
... ·

Tag 100 9A7B2811
√

×
√ √

× · · ·

Fig. 6. The Adversary’s Database

80 B. Liang et al.

has enough resources to monitor all potential locations via a number of supply chains,
it will finally draw a complete map for all delivery paths.

We assume that there are L possible locations for each tag, and the number of total
tags is N. An attacker only needs to set up a database with size of O(L×N). He/she can
efficiently query the information of a tag in polynomial time.

6 Improving the BMM Protocol

We observe that the main reason that the BMM protocol is vulnerable to our three-run
interleave attack is that the pseudonym ‘r’ shared between the legitimate tag and the
trusted reader is not properly updated. Intuitively, we solve the problem by updating the
pseudonym r at both side after the third protocol message is sent even if the mode is 1
for the tag.

6.1 Improved Protocol

Our improved protocol is shown Figure 7. In the first round, our protocol is the same as
the BMM protocol except that we separate the result g(k; ps||c) into four parts ν0, ν1, ν2
and ν3. The new part ν3 is used to update r when the tag’s mode = 1, and other parts are

Tag Reader
(k, r, q,mode, ctr) D = {k, ri, q, q1

i , · · · , q�i , i ∈ {old, cur},}
c

←−−−−−−−−−−−−−−−−−−−− c ∈R {0, 1}n

If mode = 0 then ps← r
Else

ps← g(k; q||IV ||ctr),
Update ctr

ν0||ν1||ν2||ν3 ← g(k; ps||c)

auth← ν1
ps||auth

−−−−−−−−−−−−−−−−−−−−→ If(k, ps) � D then REJECT

Else ν′0||ν
′
1||ν
′
2||ν
′
3 ← g(k; ps||c)

If ν′1 � auth then REJECT
Else con f ← ν′2

con f
←−−−−−−−−−−−−−−−−−−−−

If con f = ν2 then If ps = r then r ← ν′0
If mode = 0 then r ← ν0 Else if ps = q j

cur then q← ν′0
Else {qi

old ← qi
cur}�i=1 and r ← ν′3

mode← 0 and {qi
cur ← g(k; q||IV ||ctr(i))}�i=1

q← ν0 and r ← ν3 Else if ps = q j
old then q← ν′0 and r ← ν′3

Else mode← 1 {qi
cur ← g(k; q||IV ||ctr(i))}�i=1

Output ACCEPT

Fig. 7. Improved Protocol

On the Untraceability of Anonymous RFID Authentication Protocol 81

kept the same as those of the original BMM protocol. In the second round, the reader
also needs to divide the result of g(k; ps||c) into four parts ν′0, ν

′
1, ν
′
2 and ν′3. Here, ν′3 is

used to update the reader when the received ps = q j
i , i ∈ {old, cur}, j = 1, 2 · · · �, and

the reader keeps other operations the same as BMM protocol. In the third round, after
receiving the confirmation message in the protocol, we update the status of r at the tag’s
side with r ← ν3 when ‘mode = 1’ holds in the tag. In this round, we also update the
status as described in the boxed parts at the reader in Figure 7. Since the pseudonym ‘r’
is updated whenever the mode is 0 or 1, the response of the tag behaves randomly at
every interrogation. Therefore, our three-run interleave attack is no longer feasible.

6.2 Security Analysis

We analyze the improved protocol regarding some important security properties. The
essential objective of the protocol is to achieve mutual authentication between a reader
and a tag without disclosing the tag’s identity to a third party, and it is based on a classic
challenge-response mechanism. Without the shared secret, no polynomial probabilistic
time (PPT) adversary can generate the authentication messages transferred between the
two parties.

Our improved protocol’s main purpose is to protect the tags’ privacy, which means
to keep tags’ anonymity and untraceablity. Our improved protocol prevents tags from
tracing attack. The meaning of untraceability contains two aspects: 1) The outputs of a
tag in any two sessions are unlinkable, and 2) The outputs of readers are independent
from those of tags. First of all, we analyze the outputs of any two sessions of a tag. For
any two session i and j, i � j of a tag, let ps(i)||auth(i) and ps(j)||auth(j) denote the
output of the session i and j, respectively.

ps =

{
r, mode = 0
g(k; q||IV ||ctr), mode = 1

}

If mode = 0, then ps = r, and r is updated by a PRF g(·) in the tag after every
successful protocol; otherwise, ps = g(k; q||IV ||ctr), the output of PRF g(·). Therefore,
whether ps = r or ps = g(k; q||IV ||ctr), ps(i) and ps(j) are independent as the output of
a PRF are pairwise independent. The latter part of the tags’ output is auth = ν1 which is
a part of g(k; ps||c) (g(·) is a PRF). Therefore, auth(i) and auth(j) are independent and
unlinkable. As a result, ps(i)||auth(i) is independent from ps(j)||auth(j).

Second, we illustrate the output of the reader is independent from the output of a
tag. We consider the output of tag is ps||auth and the output of the reader is con f . ps
is the input of the PRF g(k; ps||c), and con f is the output of PRF g(·). As the input and
output of a PRF are independent, ps is independent from con f . The auth = ν1 is the
second part of the output g(k; ps||c), and con f = ν′2 is the third part of the output of
the PRF g(k; ps||c). Therefore, auth is independent from con f . In all, the output of tag
ps||auth is independent from the output of the reader con f . Thus, the independence of
outputs between different sessions of a tag and the independence of outputs between
a reader and a tag guarantee the privacy of tags, and attackers cannot trace a tag by
eavesdropping or active interrogations.

Based on challenge-and-respond technique, mutual authentication, PRF in both tag
and reader, and update processes, Level-2 attacks cannot be applied here, for instance,

82 B. Liang et al.

de-synchronization attack. Because the trusted reader keeps not only the newly updated
values, but also the old values corresponding to a former corrupted protocol run, if a tag
is pushed de-synchronized with the legitimate reader by a malicious adversary, it can
still be recognized by referring to the older record qi

old, i = 1, 2, · · · ,N in the database.
By successful mutual authentication, the reader and tag can be re-synchronized again.
As we argue in section 4.1, our improved protocol can prevent level-2 attack, so it
can possess the ability of counteracting weaker attacks. To counteract Level-1 attacks,
for example, eavesdropping attack, an adversary can only obtain the challenge c and
pseudonyms ps||auth and ν′2, which are generated by PRF, but nothing else. Level-1
adversaries cannot link the information together to trace a tag, either. To prevent Level-
2 attackers, the challenge-and-respond technique protects the reader from Denial-of-
Service (Dos) attack. In addition, since fresh random numbers are generated by both the
reader and the tag for mutual authentication and both the tag and the reader update their
states after a successful protocol run, simple spoofing and replay attacks have negligible
success rate. In addition, unlike some tree-based RFID protocol [11], if some tags are
compromised unfortunately, released information will not affect other tags’ secrecy due
to that tags do not share secrets in our protocol.

Nevertheless, the improved protocol does not incur any additional cost with respect
to storage and computation. Therefore, the lightweightness of the BMM protocol is
maintained. As stated in [2], the database stores limited numbers of q j

i , when these num-
bers are used up, the BMM protocol suffers from an “entrapment attack”. The “entrap-
ment attack” means “the tag is prevented from communicating with authorized readers
and can only be interrogated by the adversary” [2]. In conclusion, as mentioned in
Section 3, the security analysis we conducted is limited to level-1 to level-2 adver-
saries, while level-3 adversary is more powerful and may bring more harmful attacks to
the existing protocol.

7 Related Work

Numerous of papers addressing RFID security and privacy have been published recently
(please refer to [8] for a detailed literature survey). Our concern in this paper is on
RFID reader/tag (mutual) authentication, which has also been rigorously studied in the
literature [3] [5], [6], [9], [11], [13], [17].

A number of RFID authentication protocols based on secure one-way hash functions
have been proposed [18]. In one of the previous works, Ohkubo, Suzuki and Kinoshita
(OSK) proposed using of hash chain to update the internal states [13]. The scheme
needs to compute two different hash function values, one to update the tag’s secret and
the other one to compute the response that is transmitted to the reader during tag iden-
tification. This method incurs a large overhead at the reader’s side due to the exhaustive
search in the back-end database to identify the tag. To mitigate the high search cost,
Avoine and Oechslin proposed an optimization of the scheme using a time-memory
trade-off for the computation of OSK hash chains [1]. However, in the later works [5]
and [6], the authors pointed out that the optimized scheme is still vulnerable to tag im-
personation attack and suffers from low scalability in the presence of attacks. Dimitriou
in [5] proposed a challenge-response protocol for tag-reader authentication. However, it
is still possible for an adversary to de-synchronize tags , leading to a denial of service.

On the Untraceability of Anonymous RFID Authentication Protocol 83

Pseudonym Random Function (PRF) has been used in the design of RFID protocols.
In [17], Tsudik proposed YATRAP protocol for RFID authentication. It only needs a
single key and a single pseudorandom function (PRF) in a tag, but it is vulnerable to
de-synchronization and denial of service (DoS) attacks as the timestamps can be manip-
ulated in this protocol. Then, Chatmon, van Le and Burmester’s YATRAP+ and OTRAP
[3] were proposed to address the problem of YATRAP. Their schemes were essentially
designed mainly for privacy-preserving identification of tags without providing reader
authentication.

To reduce protocol overhead, people used tree-structure in RFID protocols. Dim-
itriou proposed a tree-based privacy-preserving RFID identification scheme [6]. In [11],
Molnar, Soppera, and Wagner proposed a tree based scheme with a high scalability of
identifying tags. Under these schemes, each tag stores a group of secret keys that lie
along the path of a key tree from root to leaf layer maintained by the back-end database.
During RFID identification, a tag responds a group of values computed using the group
of secret keys over a random challenge and the reader will use the group of responses to
identify a tag. However, it is difficult to implement key updating because some keys are
shared by different tags. Even worse, if one tag’s secret is compromised, it may affect
others and leak their secrets.

Next, we analyze the overhead of typical RFID protocols. Assume there are N tags
in an RFID system. The hash-lock protocol in [18] requires an exhaustive search in the
reader’s database to identify a tag, so the overhead of this protocol is O(N). In the OSK
protocol [13], the reader has to calculate hash values with O(N) complexity. Molnar and
Wagner’s method manages the keys of tags in [12] with a cost of O(log(N)). Although
the cost is already much better than the exhaustive search in other protocols, it is still
non-ignorable when the number of tags increases to unimaginable amount. At this time,
the scalability is a headache of the database’s administrator.

Therefore, we can see even if with the help of hash function, PRF, and tree structure,
it is still a difficult problem to balance the security and scalability. Our improved pro-
tocol not only guarantees nearly all the security properties such that it protects tags
from eavesdropping attacks, spoofing attacks, replay attacks, de-synchronization at-
tacks, tracing attacks and compromising attacks, but also possesses constant key-lookup
time in terms of exact match of an index in a database.

8 Conclusion

In this paper, we investigate the security and scalability of a newly proposed RFID au-
thentication protocol by Burmester, Medeiros and Motta [2]. We found a subtle flaw in
this protocol. Under a weak adversary model, an attacker can launch a three-run inter-
leave attack to trace and identify a tag. Further on, complex attacking strategies can be
constructed on cracking the whole supply chain using such an authentication protocol.
We improve this protocol by eliminating the flaw in BMM protocol. We provide a secu-
rity analysis on the improved protocol and claim that it meets its security requirements
and that it is as efficient as the original protocol in each invocation.

84 B. Liang et al.

Acknowledgment. This work is partly supported by A*Star SERC Grant No. 082 101
0022 in Singapore.

References

1. Avoine, G., Oechslin, P.: A scalable and provably secure hash-based RFID protocol. In: Third
IEEE International Conference on Pervasive Computing and Communications Workshops,
2005. PerCom 2005 Workshops, pp. 110–114 (2005)

2. Burmester, M., de Medeiros, B., Motta, R.: Robust, anonymous RFID authentication with
constant key-lookup. In: ASIACCS 2008: Proceedings of the 2008 ACM symposium on
Information, computer and communications security, pp. 283–291. ACM, New York (2008)

3. Chatmon, C., van Le, T., Burmester, M.: Secure anonymous RFID authentication protocols.
Technical Report TR-060112 (2006)

4. Czeskis, A., Koscher, K.: RFIDs and secret handshakes: defending against ghost-and-leech
attacks and unauthorized reads with context-aware communications. In: Conference on Com-
puter and Communications Security – ACM CCS, October 2008. ACM Press, New York
(2008)

5. Dimitriou, T.: A Lightweight RFID Protocol to protect against Traceability and Cloning at-
tacks. In: Conference on Security and Privacy for Emerging Areas in Communication Net-
works – SecureComm, Athens, Greece, September 2005. IEEE, Los Alamitos (2005)

6. Dimitriou, T.: A secure and efficient RFID protocol that could make big brother (partially)
obsolete. In: IEEE International Conference on Pervasive Computing and Communications,
pp. 269–275 (2006)

7. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4),
792–807 (1986)

8. Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal on Selected Areas
in Communications 24(2), 381–394 (2006)

9. Juels, A., Pappu, R., Parno, B.: Unidirectional Key Distribution Across Time and Space with
Applications to RFID Security. In: 17th USENIX Security Symposium, San Jose, CA, USA,
July 2008, pp. 75–90. USENIX (2008)

10. Lim, T.-L., Li, T., Gu, T.: Secure rfid identification and authentication with triggered hash
chain variants. In: ICPADS 2008: Proceedings of the 2008 14th IEEE International Con-
ference on Parallel and Distributed Systems, Washington, DC, USA, pp. 583–590. IEEE
Computer Society, Los Alamitos (2008)

11. Molnar, D., Soppera, A., Wagner, D.: A Scalable, Delegatable Pseudonym Protocol Enabling
Ownership Transfer of RFID Tags. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS,
vol. 3897, pp. 276–290. Springer, Heidelberg (2006)

12. Molnar, D., Wagner, D.: Privacy and Security in Library RFID: Issues, Practices, and Ar-
chitectures. In: Pfitzmann, B., Liu, P. (eds.) Conference on Computer and Communications
Security – ACM CCS, Washington, DC, USA, October 2004, pp. 210–219. ACM Press, New
York (2004)

13. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic Approach to “Privacy-Friendly” Tags.
In: RFID Privacy Workshop, November 2003. MIT, MA (2003)

14. Rieback, M., Crispo, B., Tanenbaum, A.: RFID Guardian: A Battery-Powered Mobile De-
vice for RFID Privacy Management. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 184–194. Springer, Heidelberg (2005)

On the Untraceability of Anonymous RFID Authentication Protocol 85

15. Rieback, M., Crispo, B., Tanenbaum, A.: The Evolution of RFID Security. IEEE Pervasive
Computing 5(1), 62–69 (2006)

16. Rotter, P.: A Framework for Assessing RFID System Security and Privacy Risks. IEEE Per-
vasive Computing 7(2), 70–77 (2008)

17. Tsudik, G.: YA-TRAP: Yet Another Trivial RFID Authentication Protocol. In: Interna-
tional Conference on Pervasive Computing and Communications – PerCom 2006, Pisa, Italy,
March 2006. IEEE Computer Society Press, Los Alamitos (2006)

18. Weis, S., Sarma, S., Rivest, R., Engels, D.: Security and Privacy Aspects of Low-Cost Ra-
dio Frequency Identification Systems. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M.
(eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 454–469. Springer, Heidelberg
(2004)

Biometric Identification over Encrypted Data

Made Feasible

Michael Adjedj1,2, Julien Bringer1, Hervé Chabanne1,3, and Bruno Kindarji1,3

1 Sagem Sécurité, Osny, France
2 Université Bordeaux I, UFR de Mathématiques, Bordeaux, France

3 Institut Telecom, Telecom ParisTech, Paris, France

Abstract. Realising a biometric identification scheme with the con-
straint of storing only encrypted data is an exciting challenge. Whereas
a recent cryptographic primitive described by Bringer et al. and named
Error-Tolerant Searchable Encryption achieves such a goal, the associ-
ated construction is not scalable to large databases. This paper shows
how to move away from the model of Bringer et al., and proposes to
use Symmetric Searchable Encryption (SSE) as the baseline for biomet-
ric identification. The use of symmetric cryptography enables to achieve
reasonable computational costs for each identification request.

This paper also provides a realistic security model for this problem,
which is stronger than the one for SSE. In particular, the construction
for biometric identification is resilient to statistical attacks, an aspect
yet to be considered in the previous constructions of SSE.

As a practical example, parameters for the realisation of our scheme
are provided in the case of iris recognition.

Keywords: Identification, Biometrics, Searchable Encryption.

1 Introduction

Biometric recognition systems are based on the unicity of some biological trait
every human being carries along. For instance, it is possible to verify if a given
individual is the one he claims to be (Authentication), or to find someone’s
identity using his biometrics (Identification).

In most cases, identification is done by comparing a new acquisition of the
biometric trait (a biometric template) with a database that is stored on a server.
The server can be outsourced, and we do not want it to learn more information
than it ought to. If the database is not encrypted, or if the server first decrypts
the data before comparing the traits, this leads to privacy leakage, as the server
then learns personal information on the people that use the biometric system.

One of the inherent problems of working with some biometric templates is
their fuzziness. Two captures by the same sensor, of the same biometric trait
of the same person, are in most cases significantly different. The standard way
to deal with this fuzziness is to use a matching function, which is able to tell
whether two templates come from the same biometric trait.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 86–100, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Biometric Identification over Encrypted Data Made Feasible 87

Using only traditional matching algorithms, the server has to execute O(N)
matching comparisons to find a match among N biometric samples. This is
infeasible in a satisfactory computation time for large databases. Unfortunately,
matching algorithms that compare encrypted templates are rare – and expensive.

Moreover, doing an identification implies to look for the template among a
collection that is the closest to the one presented at a sensor. Instead of doing
all the traditional operations in the encrypted domain, we choose to do both the
matching and the search at the same time. Combining encryption with search
capabilities is a cryptographic primitive called searchable encryption.

To the best of our knowledge, the only construction that achieves biometric
identification with encrypted biometric data is [5,6]. However the privacy of this
construction is based on the use of a Private Information Retrieval protocol [8]
and asymmetric cryptography; and such a protocol’s computational complexity
is always (at least) linear in the size of the database. To avoid this pitfall, we
focus in this paper on symmetric cryptography.

Recent works on Symmetric Searchable Encryption [2,3,7,9,12,17] provide
schemes with constant-time access to servers; the price to pay is a leakage of
the search pattern: the server can tell whether a word was queried twice and
can even recover links between documents and words. This enables to infer rela-
tions between requests and for instance to determine, after a statistical survey,
the queried word. We formalize this advantage in the adversarial model stated in
Section 4.2. In particular, Condition 3 is a barrier to statistical attacks. To cope
with this classical weakness, we introduce a way to protect the access pattern
on the server’s side.

This paper solves the issue of preserving privacy in a biometric identification
system. As opposed to previous work, the computational cost for this purpose
is quite low, making use of recent advances in the fields of similarity searching
and secure querying on a remote server. In the end, we perform biometric iden-
tification over a wholly encrypted database, in such a way that the server does
not have an advantage over the users’ privacy.

2 Basic Concepts

For a given biometric, let B be the set of all possible biometric features, i.e. data
captured by a biometric sensor. Consider a user U , his biometric trait is noted
β. From a measurement of β using a sensor, the so-called biometric template
is computed after feature extraction and is noted b (b ∈ B). A matching algo-
rithm is a function m : B × B → R, which computes a similarity score between
two templates. Let b and b′ be the results of two measurements from the same
biometric. Then, with a high probability, their matching score m(b, b′) is small.
We say that b and b′ constitute a matching pair. Otherwise, when they are
from different biometrics, with a high probability, their matching score is large.
In practice, some thresholds are chosen λmin, λmax and the score is considered
small (resp. large) if it is smaller (resp. greater) than λmin (resp. λmax). De-
pending on the values fixed for λmin and λmax, errors eventually occur: 1. The

88 M. Adjedj et al.

system declares two templates obtained from different users as a matching pair;
this is called a False Acceptance (FA). 2. The system states that two templates
extracted from the same user do not match; this is the False Reject case (FR).

At registration, a user chooses a pseudonym, also called an identity. A bio-
metric identification system recognizes a person among others. On input
bnew, the system returns a set of identities (corresponding to a templates set
{bref}), such that all matching scores between bnew and the bref ’s are small.
This means that bnew and bref possibly correspond to the same person.

We restrict ourselves to the case where biometric templates are in the Ham-
ming space B = {0, 1}n with the Hamming distance d (e.g. IrisCode [10]).
Two templates b, b′ of a same user U are with a high probability at distance
d(b, b′) < λmin. Similarly, when b and b′ comes from different users, they are
with a high probability at distance d(b, b′) > λmax. In this case, and in the rest
of the paper, the matching algorithm consists in evaluating a Hamming distance.

3 Useful Tools

3.1 Locality-Sensitive Hashing

For two different inputs with a small matching score, i.e. close in the sense
of the Hamming distance, Locality-Sensitive Hash families output, with a high
probability, the same value. We use them to decrease disparities between two
similar templates.

Definition 1 (Locality-Sensitive Hashing [14]). Let (B, dB) be a metric
space, U a set of smaller dimensionality. Let r1, r2 ∈ R, p1, p2 ∈ [0, 1] such that
p1 > p2.

A family H = {h1, . . . , hμ}, hi : B → U is (r1, r2, p1, p2)-LSH, if

∀h ∈ H, x, x′ ∈ B

{
Pr[h(x) = h(x′) | dB(x, x′) < r1] > p1

Pr[h(x) = h(x′) | dB(x, x′) > r2] < p2

Some examples of LSH families are given in [5,13,14]. Another example of prac-
tical use is given in Section 5.1.

Remark 1. With regard to Definition 1, LSH hash functions have no crypto-
graphic property. Per se, the security of our construction does not rely on the
use of LSH functions.

3.2 Symmetric Searchable Encryption – SSE

Searchable Encryption is described as follows.

– A client U has a collection of documents consisting of sequences of words.
– He encrypts the whole collection along with some indexing data.
– He stores the result on a (remote) server.

Biometric Identification over Encrypted Data Made Feasible 89

The server should be able to return all documents which contain a particular
keyword, without learning anything about the aforementioned keyword.

Let Δ = {ω1, · · · , ωd} be the set of d distinct words (typically a dictionnary).
A document D ∈ Δ∗ is a sequence of words of Δ. The identifier id(D) is a
bitstring that uniquely identifies the document D (e.g. its memory address). A
collection D = (D1, · · · , Dn) is a set of n documents. D(ω) denotes the lexico-
graphically ordered list of identifiers of documents which contains the word ω.

For efficiency reasons, we only focus on the symmetric searchable encryption
paradigm.

Definition 2 (Symmetric Searchable Encryption Scheme [9]). A Sym-
metric Searchable Encryption scheme is a collection of four polynomial-time al-
gorithms Keygen, BuildIndex, Trapdoor, Search such that:

Keygen (1�) is a probabilistic key generation algorithm, run by the client to setup
the scheme. It takes a security parameter � and returns a secret key K.

BuildIndex (K,D) is a (possibly probabilistic) algorithm run by the client to
compute the index ID of the collection D. It takes as entry a secret key K
and a collection of documents D. The index returned allows the server to
search for any keyword appearing in D.

Trapdoor (K, ω) is a deterministic algorithm which generates a trapdoor Tω for
a given word ω under the secret key K. It is perfomed by the client whenever
he wants to search securely for all the documents where ω occurs.

Search (ID, Tw) is run by the server to search in the entire collection D for all
the documents identifiers where the queried word ω appears. It returns D(ω).

These primitives give a functional aspect of what Symmetric Searchable En-
cryption provides. The associated security model is described in [9], and briefly
depicted in Appendix A.1. The goal is to achieve Adaptive Indistinguishability, a
security property stating that an adversary does not get information on the con-
tent of the registered documents. More precisely, if two different collections are
registered, with constraints on the number of words per document, an adversary
cannot distinguish between two sequences of search requests.

Remark 2. A noticeable construction of a scheme adaptively indistinguishable
was also provided in [9] (cf. Appendix A.2), and inspired our identification data
structure. Although this scheme is proved secure in their model, this does not
cover statistical attacks where an adversary tries to break the confidentiality of
the documents or the words based on statistics about the queried words and the
index (cf. Remark 5).

4 Fast and Secure Biometric Identification

Our construction does not simply mix a SSE scheme with a LSH family. Indeed,
we ensure the security of our biometric identification protocol against statistical
attacks, which is an improvement with respect to a direct combination of SSE
with LSH.

90 M. Adjedj et al.

4.1 Our Idea in a Nutshell

Our Biometric Identification process has two phases: a search phase which
carries out every request on the database DB and sends back to the sensor client
SC the search result, an identification phase which treats data extracted from
search results to proceed to the identification. The search phase is constructed
following the principle of the SSE scheme from [9]. The following entities interact:

• Human users Ui: a set of N users who register their biometrics.
• Sensor client SC: a device that captures the biometric data and extracts its

characteristics to output the biometric template. It also sends queries to the
server to identify a user.

• The server: replies to queries sent by SC by providing a set of search results
and owns a database DB to store the data related to the registered users.

Remark 3. We consider that SC is honest and trusted by all other components.
In particular, SC is the only entity which is in possession of the cryptographic
key material used in the protocol. To justify this assumption, we emphasize that
the object of this paper is to provide a solution to the secure storage of reference
templates, but not to provide an end-to-end architecture. See Remark 6 for
details on key management.

We provide the three following methods:

1. Initialize(1�): It produces the parameters K of the system, according to
a security parameter �. K must contain secret keys sk used to encrypt the
identities, and K used in the SSE scheme.

2. Enrolment(b1, . . . , bN , ID1, . . . , IDN ,K): It registers a set of users with their
biometric characteristics. For a user Ui, it needs a biometric sample bi and
his identity IDi. This returns an index I.

3. Identification(K, b): It takes as input a newly captured template b and it
returns a set of identities for which the associated templates are close to b.
See Conditions 1 and 2, Section 4.2.

Definition 3. In our proposal, keywords are evaluations of LSH functions on
templates, concatenated with the index of the considered function, i.e. hi(b)||i,
for i ∈ [1, μ] where b is the captured template of a user.

Identifiers are the encryptions of the identities of the registered users. We
have, id(Ui) = Esk(IDi) for i ∈ [1, N] where Esk is an encryption function
with the secret key sk, and IDi is the identity of the user Ui.

The interaction between the server and SC defines the identification view, re-
quired for the security experiments. It consists of the encrypted identities of the
registered users, and informations sent by SC when a user U is being identified.

Definition 4 (Identification View). The identification view under the secret
keys K and sk is defined as

IdVK,sk(b′) = (I, Th1(b′)||1, . . . , Thμ(b′)||μ, Esk(ID1), . . . , Esk(IDN))

where b’ is a freshly captured template from U .

Biometric Identification over Encrypted Data Made Feasible 91

4.2 Security Requirements

We assume that the Hamming space B = {0, 1}n is such that n ≥ �, where �
is the security parameter. A function f is said to be negligible if for all non-
constant polynomial P , and for all sufficiently large k, we have f(k) < 1

|P (k)| . In
the sequel, a probability is negligible if it is negligible in �.

First of all it is important that the scheme actually works, i.e. that the retrieval
of the identity of a registered user gives the correct result. This can be formalized
by the two following conditions.

Condition 1 (Completeness). The system is complete if for all b′ ∈ B, the
result of Identification(b′) contains the set of identities for which the asso-
ciated templates bi are close to b′ (ie. d(b′, bi) < λmin), except for a negligible
probability.

Condition 2 (Soundness). The system is sound if, for each template b′ such
that d(b′, bi) > λmax, Identification(b′) is the empty set ∅, except with negli-
gible probability.

To avoid statistical attacks, we do not want the database to infer relations be-
tween different identities. This is modeled by the following condition.

Condition 3 (Adaptive Confidentiality). An identification system achieves
adaptive confidentiality if the advantage AdvA = |Pr(b0 = b′0) − 1

|B| | of any
polynomial-time adaptive adversary is negligible in the next experiment, where
A = (A1,A2) is an opponent taking the place of the server, and C is a challenger
at SC’s side.

1. K R←− Initialize(1�) (C)
2. b1, . . . , bN ←− B (A)
3. I1 ←− Enrolment(b1, . . . , bN) (C)
4. b, IdVK,sk(b) ←− AIdentification

1 (I1) (A)
5. b0

R←− B (C)
such that ∀i ∈ [1, N], d(b0, bi) > λmax

6. I2 ←− Enrolment(b0, b1, . . . , bN)
6′. b, IdVK,sk(b) ←− AIdentification

1 (I1, I2) (A)
7. b′0 ←− A2(I1, I2, b, IdVK,sk(b), IdVK,sk(b0))

Enrolment(b1, . . . , bN) stands for Enrolment(b1, . . . , bN , ID1, . . . , IDN , K, sk).

In this game, the attacker is allowed to set a templates database b1, . . . , bN of its
choice (2.). Then the challenger creates the database by enrolling the whole col-
lection (3.), and the adversary can make a polynomial number of identifications
(using the method Identification) of the templates of his choice (4.). The
challenger then picks a random template b0 (5.) and it recreates the database I2

(6.). The attacker is allowed once again to make a polynomial number of iden-
tifications from the templates of its choice (6′.) and he is challenged to retrieve

92 M. Adjedj et al.

the initial template b0 (7.), given the knowledge of I1, I2, and the views of the
identifications.

This condition expresses the confidentiality of the enrolled templates, even if
the adversary has access to the index and to identification views, which may give
him the possibility to construct a statistical model on it.

Condition 4 (Non-adaptive Indistinguishability). We say that a biomet-
ric identification system achieves indistinguishability if the advantage AdvA =
|Pr(e = e′) − 1

2 | of any polynomial-time adversary A = (A1,A2) is negligible in
the following game:

1. b1, . . . , bN
R←− B (C)

2. b(0), b(1) ←− A1(C(IdVK,sk)) (A)
3. e

R←− {0, 1} (C)
4. e′ ←− A2(IdVK,sk(b(e))) (A)

where A1(C(IdVK,sk)) stands for the fact that the adversary accesses to the iden-
tification view produced when C executes a polynomial number of identification
requests, without knowing the input randomly chosen by the challenger.

This experiment is executed as follows: The challenger first creates a set of
templates b1, . . . , bN (1.), and executes a polynomial number of identification re-
quests. The adversary has access to all the identification views (2.). The attacker
then chooses two templates for which he believes he has an advantage (2.), and
the challenger picks at random one of them and executes its identification (3.).
The attacker is finally challenged to determine which template the challenger
chose (4.).

4.3 Our Identification Protocol

Initialize(1�):

– We choose an IND-CPA symmetric encryption scheme (G, E ,D).
– We use the Symmetric Searchable Encryption scheme from [9] (see Appendix

A.2 for the construction detail) out of which we pick the functions (Keygen,
Trapdoor, Search) and adapt them to our needs.

– We fix a threshold 0 < λ ≤ 1
2 .

– Let H = (h1, . . . , hμ) be a (λmin, λmax, p1, p2)- LSH family, μ ≥ �.
– Let K = KeyGen(1�), and sk = G(1�).
– Let πK be the pseudo-random permutation indexed by the key K used in

the SSE scheme.

Output K = (h1, . . . , hμ, K, sk, λ).

Enrolment(b1, . . . , bN , ID1, . . . , IDN ,K): Consider N users U1, . . . ,UN to be en-
rolled. Their template are denoted by bi, and their identity IDi, i ∈ [1, N].
We recall that in our construction, the words we consider are the hi(b)||i, i ∈

Biometric Identification over Encrypted Data Made Feasible 93

Enrolment(b1, . . . , bN , ID1, . . . , IDN ,K):

• Initialization:
- build Δ = {hi(bk)||i; i ∈ [1, μ], k ∈ [1, N]}
- for each ωik ∈ Δ, build D(ωik) the set of identifiers of users
Uk′ such that hi(bk′)||i = ωik

- compute max = maxω∈Δ(|D(ω)|) and m = max · |Δ|
• Build look-up table T:

- for each ωi ∈ Δ
for 1 ≤ j ≤ |D(ωi)|

set T [πK(ωi ‖ j)] = Esk(IDi,j)
- if m′ =

∑
ωi∈Δ |D(ωi)| < m ,then set the remaining (m − m′)

entries of T to random values.
• Output I = T

Fig. 1. Enrolment Procedure

[1, μ], b ∈ B, where hi is one of the chosen LSH functions, and b is a reference
template from a registered user.

We alter the BuildIndex algorithm of the SSE scheme into Enrolment to take
into account the need for identification (cf. Figure 1).

Remark 4. Our scheme stores identifiers encrypted by an IND-CPA scheme so
that no relation between the entries could be found by observing the index I.
This prevents inferring statistics from the DB content. Proposition 3 formalizes
this intuition.

Identification(K, b′):
Search phase: When a user U wants to be identified, SC captures his biometric
trait in a template b′. SC evaluates each LSH function on b′ to compute ωki =
hi(b′)||i, i ∈ [1, μ] and sends to the server the trapdoors:

Tωki
= Trapdoor(K, ωki) = (πK(ωki ||1), . . . , πK(ωki ||max))

The server executes the Search algorithm on the different trapdoors Tωki
– each

call to Search(t1, . . . , tmax) returns T[t1], . . . T[tmax] – and sends to SC the array
ID(b′) which corresponds to all the search results:

ID(b′) =

⎡⎢⎣ Esk(IDk1,1) · · · Esk(IDk1,max)
...

. . .
...

Esk(IDkμ,1) · · · Esk(IDkμ,max)

⎤⎥⎦
where each row is made of the output of Search(Tωki

). It may happen that
a virtual address πK

(
hi(b′)||i||j

)
is invalid, in this case the server sends NULL

instead of an identifier.

Identification phase: SC decrypts all received identifiers and determines the
number of occurrences of each identity to output the list of the ones that appear

94 M. Adjedj et al.

more than λμ times, i.e. the list of identities {ID(Ul)} that verify this inequality:∑μ
i=1

∑max
j=1 1lID(Ul)

(
IDki,j

)
> λμ, where 1l is the indicator function. If the result

is still ambiguous after that the identity that appeared the most was selected,
an empirical rule is applied.

4.4 Security Properties

We use Shannon’s entropy, H2(λ) = λ · log 1
λ + (1 − λ) · log 1

1−λ

Proposition 1 (Completeness). Provided that H is a (λmin, λmax, p1, p2)-
LSH family, for 1 − p1 ≤ 1

4H2(λ)+c , with c ≥ 1, our scheme is complete.

Proposition 2 (Soundness). Provided that H is a (λmin, λmax, p1, p2)-LSH
family, for p2 ≤ 1

2
1
λ

+c
, with c ≥ 1, our scheme is sound.

The proofs of Propositions 1 and 2 are given in Appendix B. The underlying
idea is that computing the μ LSH functions separates the close and the distant
template pairs.

Proposition 3 (Adaptive Confidentiality). Provided that the underlying
encryption scheme (G, E ,D) is a IND-CPA secure scheme, our construction en-
sures the templates confidentiality.

Sketch of Proof. The adversary A is allowed to execute some identification re-
quests. If A is able to reconstruct the template b0, then he can infer links between
the enrolled bi and the associated identification result ID(b0).

Due to the IND-CPA security of (G, E ,D), a simulator can simulate the array
ID(b) during the second enrolment phase in the following way: when it receives
for the first time a set of trapdoors {Th1(b||1), . . . , Thμ(b||μ)}, for a template b, it
picks up a random array of size μ · max and stores the correspondence between
the trapdoors and this array. When the adversary sends the same trapdoors,
the same result is sent back by the simulator. This way, an adversary who can
make links between informations contained in the array ID(b), can also infer
links between random identifiers, which is impossible. Thus the property. �

Proposition 4 (Non-Adaptive Indistinguishability). Provided that πK is
a pseudo-random permutation depending on a secret key K, and that (G, E ,D) is
semantically secure, our construction ensures the non-adaptive indistinguisha-
bility.

Sketch of Proof. This property is mainly a consequence of the semantic security
of the SSE scheme we consider. Indeed, for πK a pseudo-random permutation,
a simulator can simulate the trapdoors sent by the sensor client during an iden-
tification, and it can also simulate the server’s response because of the semantic
security of the symmetric encryption scheme used. �

Biometric Identification over Encrypted Data Made Feasible 95

Remark 5. We emphasize that the aforementioned properties define an adequate
description of what resistance against statistical attacks would be.

A scheme, that would be no more than a combination of the SSE scheme
described in [9] with the use of LSH functions, would not be resistant against
these methods. An adversary is, in that setting, able to retrieve – and compare
– the identifiers of the users enrolled, and thus infer knowledge on the identity
of a user that did not proceed to identification.

Similarly, if the identifiers are not encrypted, an attacker who observes the
views of identification can gather statistics on the identification of the different
users. This enables him to link the identity of users - as some are more likely
to be identified than others - with the response of the server. Moreover, he can
manage a very general statistical attack in that case: by learning the relation
between identities and keywords (i.e. LSH values of biometric data), he can even
reconstruct unknown templates.

Note that our technique to thwart statistical attacks is quite general and can be
reused in other contexts.

5 Practical Considerations

5.1 Choosing a LSH Family

To explain that our scheme meets the usual needs for a practical deployment
of a biometric identification system, let us consider the case of biometric iris
recognition as a practical example. A well-known method to represent iris is to
use Daugman’s IrisCode [10] algorithm. The outcome is a 4096-bit vector, where
half of them carry information held in the iris, and the other part is a “mask”
of the significant bits.

In [13], a method to increase the efficiency of iris identification is described.
By applying specific projection functions into {0, 1}10, the search among an iris
dataset can be accelerated. The projected values of an iriscode serve in a pre-
filtering step. Experiments successfully reported in [13] on a UAE database, con-
taining N = 632500 iris records, show that it decreases the number of necessary
matching to 41 instead of N to achieve identification. The authors determine a
biometric template b as a candidate for b′ if b and b′ give the same evaluations
with at least three functions; see [13] for more details. Their functions can be in
fact considered as a (λmin, λmax, (1− λmin

2048)10, (1− λmax

2048)10)-LSH family and we
can thus apply our construction without degrading their results. This shows the
actual practicality of our scheme.

The family is made by μ = 128 hash functions, which each extracts a 10-
bit vector. Our parameter λ can be set to λ = 3

128 . According to traditional
matching algorithms, we can choose λmin = 0.25 · 2048 = 512 and λmax = 0.35 ·
2048 = 716.8, which gives the probabilities p1 � 0.056 and p2 � 0.013 (with the
notations of Definition 1). The probability of Identification(b′) not returning
a template close to b′ is given by

∑�λμ�
i=0

(
μ
i

)
pi
1 (1 − p1)

μ−i � 0.066 and the other
probability to consider is, for b′ far from all the bi, Pr[Identification(b′) �=

96 M. Adjedj et al.

∅] =
∑μ

i=�λμ	
(
μ
i

)
pi
2(1 − p2)μ−i � 0.095. Note that those probabilities are small,

and not negligible, but they can be considered attractive for practical uses (as
asserted by the results from [13]).

5.2 Implementation

To check further the feasibility of our scheme, we implemented our scheme and
conduced a first empirical evaluation on the ICE 2005 database [15,16] which
contains 2953 images from 244 different eyes. The results are similar to those
deduced in the previous section from the results of [13]. For instance, the proba-
bility that the genuine identity is not in the outputted list of candidates is below
10%.

Remark 6. In addition to this performance consideration, it is important to no-
tice that the deployment of the scheme is quite simple as only the client needs to
know the secret keys. So management of the keys is reduced to a distribution to
the clients that are allowed to run identification requests onto the remote server.

For a similar reason, the scheme only uses classical cryptographic schemes;
therefore it does not suffer of the same weaknesses [1] as some other biometric
protection schemes.

5.3 Complexity

We here evaluate the computational complexity of an identification request on
the server’s side as well as on SC. We note κ(op) the cost of operation op.

◦ On the server’s side: assuming that we organize the look-up table in a FKS
dictionnary [11], a search is made in constant time and the server has μ
searches to achieve.

◦ On SC’s side:

κ(identification) = κ(trapdoors) + κ(count)
= μ.max. [κ(hash) + κ(encryption) + κ(decryption)]

κ(hash) is the computational complexity to evaluate a LSH function, and
κ(encryption) is the one to apply the pseudo-random permutation πK . The
final count needs to compute the number of occurences of each identity,
it can be made in computation time linear in the size of the final array,
hence the term μ.max.κ(decryption) (remember that before counting, SC
has to decrypt the search results). If the chosen hash functions map {0, 1}∗
to {0, 1}m (for m ∈ N

∗) and assuming that images of these functions are
equally distributed, the max value can be bounded by O(N

2m), where N

is the number of registered users. So the overall complexity is O
(
μ N

2m

)
·

[κ(hash) + κ(encryption) + κ(decryption)]. A traditional identification al-
gorithm would cost O(N) matching operations; with the parameters given
in Section 5.1, our solution is 8 times more efficient, with the additional
benefit of the encryption of the data.

Biometric Identification over Encrypted Data Made Feasible 97

Remark 7. The complexity of the construction initially proposed in [6] was glob-
ally the same at the client level (modulo the use of asymmetric cryptography
rather than symmetric schemes in our case). It consists in computing the LSH
images of the freshly acquired template, and in preparing μ PIR queries as-
sociated to the hashes. While this computation is costly, it is still doable in
reasonable time. However on the server side, S must compute the PIR replies,
and cannot do it in less than a linear time in the database’s size (2m). Indeed, no
matter what PIR scheme is used, S always needs to process the whole database
before sending its reply; here we enable secure biometric identification with only
μ constant-time operations at S’s side.

Acknowledgements

The authors thank the referees for their comments. This work is partially sup-
ported by funding under the Seventh Research Framework Programme of the
European Union, Project TURBINE (ICT-2007-216339).

References

1. Ballard, L., Kamara, S., Reiter, M.K.: The practical subtleties of biometric key
generation. In: van Oorschot, P.C. (ed.) [18], pp. 61–74

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

4. Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith III, W.E.: Public Key Encryption
That Allows PIR Queries. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 50–67. Springer, Heidelberg (2007)

5. Bringer, J., Chabanne, H., Kindarji, B.: Error-tolerant searchable encryption. In:
IEEE International Conference on Communications, 2009. ICC 2009, June 2009,
pp. 1–6 (2009)

6. Bringer, J., Chabanne, H., Kindarji, B.: Identification with encrypted biometric
data. CoRR abs/0901.1062 (2009) Full version of [5]

7. Chang, Y.C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

8. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private Information Retrieval.
J. ACM 45(6), 965–981 (1998)

9. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric Encryp-
tion: Improved Definitions and Efficient Constructions. In: CCS 2006: Proceedings
of the 13th ACM conference on Computer and communications security, pp. 79–88.
ACM, New York (2006)

10. Daugman, J.: High Confidence Visual Recognition of Persons by a Test of Sta-
tistical Independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161
(1993)

98 M. Adjedj et al.

11. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a Sparse Table with O(1) Worst
Case Access Time. ACM 31 (1984)

12. Goh, E.-J.: Secure Indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/2003/216/

13. Hao, F., Daugman, J., Zielinski, P.: A Fast Search Algorithm for a Large Fuzzy
Database. IEEE Transactions on Information Forensics and Security 3(2), 203–212
(2008)

14. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: Symposium on the Theory of Computing (1998)

15. Liu, X., Bowyer, K.W., Flynn, P.J.: Iris Recognition and Verification Experiments
with Improved Segmentation Method. In: Fourth IEEE Workshop on Automatic
Identification Advanced Technologies (AutoID), Buffalo, New York, October 17-18
(2005)

16. National Institute of Standards and Technology (NIST). Iris Challenge Evaluation
(2005), http://iris.nist.gov/ICE

17. Sedghi, S., van Liesdonk, P., Doumen, J.M., Hartel, P.H., Jonker, W.: Adaptively
Secure Computationally Efficient Searchable Symmetric Encryption. Technical Re-
port TR-CTIT-09-13 (April 2009)

18. van Oorschot, P.C. (ed.): Proceedings of the 17th USENIX Security Symposium,
San Jose, CA, USA, July 28-August 1. USENIX Association (2008)

A Security Model Associated to Symmetric Searchable
Encryption

The following model for Symmetric Searchable Encryption was proposed in [9].
We briefly state the requirements and provide the construction given by the
authors to comply with the model.

A.1 Security Model for Symmetric Searchable Encryption

A history Hq is an interaction between a client and a server over q queries,
consisting of a collection of documents D and q keywords ω1, · · · , ωq. Let D be a
collection of n documents (D1, · · · , Dn), and let Enc be an encryption function.
If the documents of D are stored encrypted by Enc, and Hq = (D, ω1, · · · , ωq)
is a history over q queries, an adversary’s view of Hq under the secret key K is
defined as

VK(Hq) = (id(D1), . . . , id(Dn), EncK(D1), . . . , EncK(Dn), ID, Tω1 , . . . , Tωq)

The History and the View of an interaction determine what did an adversary
obtain after a client executed the protocol; an estimation of the information
leaked is given by the Trace. Let Hq = (D, ω1, . . . , ωq) be a history over q queries.
The trace of Hq is the sequence

Tr(Hq) = (id(D1), . . . , id(Dn), |D1|, . . . , |Dn|,D(ω1), . . . ,D(ωq), Πq)

where Πq is a symmetric matrix representing the access pattern, i.e. Πq[i, j] = 1
if ωi = ωj , and Πq[i, j] = 0 otherwise.

For such a scheme, the security definition is the following.

http://eprint.iacr.org/2003/216/
http://iris.nist.gov/ICE

Biometric Identification over Encrypted Data Made Feasible 99

Definition 5 (Adaptive Indistinguishability Security for SSE [9]). A
SSE scheme is said to be adaptively indistinguishable if for all q ∈ N and for all
probabilistic polynomial-time adversaries A, for all traces Trq of length q, and
for all polynomially sampleable distributions

Hq = {Hq : Tr(Hq) = Trq}

(i.e. the set of all histories of trace Trq), the advantage AdvA =
∣∣Pr [b′ = b] − 1

2

∣∣
of the adversary is negligible.

ExpINDA

1. K ← Keygen(1k) (C)
2. (D0,D1) ← A (A)

3. b
R← {0, 1} (C)

4. (ω1,0, ω1,1) ← A(Ib) (A)
5. Tω1,b ← Trapdoor(K, ω1,b) (C)
6. (ωi+1,0, ωi+1,1) ← A(Ib, Tω1,b , . . . , Tωi,b) for i = 1, . . . , q − 1 (A)
7. Tωi+1,b ← Trapdoor(K, ωi+1,b) (C)
8. b′ ← A(VK(Hb)) (A)

In this experiment, the attacker begins by choosing two collections of documents
(2.), which each contains the same number of keywords; then the challenger
follows by flipping a coin b (3.), and the adversary receives the index of one of
the collections Db; he then submits two words (ω1,0, ω1,1) (4.) and receives the
trapdoor for ω1,b (5.). The process goes on until the adversary has submitted q
queries (6. and 7.) and he is challenged to output b (8.).

A.2 SSE Construction

The algorithms that implement the Symmetric Searchable Encryption in [9] are
depicted in Figure 2. The scheme is proven indistinguishable against adaptive
adversaries.

For this construction, a pseudo-random permutation noted πK is used, where
K is the secret key of the system. The security of this scheme rests on the
indistinguishability of this pseudo-random permutation which ensures the indis-
tinguishability of the sent data.

B Detailed Proofs

B.1 Proof of Proposition 1

Let U be a registered user to be identified, with reference template b and identity
ID(U). Let b′ be a freshly captured template such that d(b, b′) < λmin. The
scheme is complete if the probability for ID(U) not to be returned is negligible,
i.e. if ID(U) appears less than λμ times in ID(b′).

Let us consider the event Ei : “Esk(ID(U)) does not appear in row i of ID(b′)”.
Ei happens if and only if hi(b′)||i||j �= hi(b)||i||j, which happens with probabil-
ity 1 − p1. Then, the probability for the scheme not to be complete is given

100 M. Adjedj et al.

Keygen(1k): Generate a random key K
R← {0, 1}k

BuildIndex (K, D):

• Initialization:
- scan D and build Δ, the set of distinct words in D.
- for each ω ∈ Δ, build D(ω)
- compute max = maxω∈Δ(|D(ω)|) and m = max · |Δ|

• Build look-up table T :
- for each ωi ∈ Δ

for 1 ≤ j ≤ |D(ωi)|
set T [πK(ωi ‖ j)] = id(Di,j)

- if m′ =
∑

ωi∈Δ |D(ωi)| < m, then set the remaining (m − m′)
entries of T to identifiers of documents id(Dr), r ∈ {1, . . . , n}
such that the same identifier holds for the same number of
entries.

• Output ID = T

Trapdoor (K, ω): Output Tω = (πK(ω ‖ 1), . . . , πK(ω ‖ max))

Search (ID, Tω): For 1 ≤ i ≤ max: retrieve id = ID [Tω[i]]

Fig. 2. Adaptively secure SSE construction [9]

by: Pr [ID(U) appears in less than �λμ� positions] =
∑�λμ�

i=0

(
μ
i

)
pi
1(1 − p1)μ−i.

But, considering 1 − p1 ≤ 1
4H2(λ)+c , we have: (1 − p1)μ−i ≤ 1

4(H2(λ)+c)(μ−i) ≤
1

4(H2(λ)+c)(μ
2) = 1

2μ(H2(λ)+c) .
Thus,∑�λμ�
i=0

(
μ
i

)
pi
1 (1 − p1)

μ−i ≤
∑�λμ�

i=0

(
μ
i

)
(1 − p1)

μ−i ≤ (�λμ� + 1) . 2μH2(λ)

2μ(H2(λ)+c) ≤
(�λμ� + 1) . 1

2cμ which is negligible. This proves the result. �

B.2 Proof of Proposition 2

Let b′ be a freshly captured template such that d(b, b′) > λmax for any registered
template b. The system returns an identity if and only if one identity appears
in at least �λμ� entries. This implies that for at least �λμ� LSH functions h,
we have, h(b) = h(b′). Given a hash function, and regarding the definition of a
LSH family, this occurs with a probability p2. So, Pr[Identification(b′) �= ∅] =∑μ

i=�λμ	
(
μ
i

)
pi
2(1 − p2)μ−i ≤ 2μ · pλμ

2 . If p2 ≤ 1

2
1
λ

+c
, this probability is negligible

too. This gives the result. �

Correcting and Improving the NP Proof for

Cryptographic Protocol Insecurity�

Zhiyao Liang and Rakesh M. Verma

Computer Science Department, University of Houston,
Houston Texas 77204-3010, USA

zliang@cs.uh.edu, rmverma@cs.uh.edu

Abstract. We improve the NP proof for the insecurity problem, partly
motivated by an error in the NP proof of the influential paper “Pro-
tocol insecurity with a finite number of sessions and composed keys is
NP-complete” by Rusinowitch and Turuani [1]. We enhance several dif-
ferent aspects of the proofs with a complete presentation, and we prove
stronger results that fix the non-trivial error. Besides fixing the error,
our proof framework has reusable structure and proves several results
that are neither covered nor proved in [1] and its sequels, including the
important fact that the attacker does not need to generate nonces in an
attack, which the proof of [1] relies on. We show a sharper result that
the complexity of the derivation problem is in square time. Furthermore,
we extend the scope of the NP complexity to cover the scenarios where
a fixed number of role instances are assumed, and delayed decryption is
allowed. These are new results since the NP result of assuming a fixed
number of role instances does not seem to be obtainable by a reduction
from the NP result of assuming a fixed number of sessions, and [1] and
its sequels cannot handle delayed decryption.

Keywords: Cryptographic protocols, secrecy, insecurity, NP.

1 Introduction

The influential paper “Protocol insecurity with a finite number of sessions and
composed keys is NP-complete” [1], which can also be found at [2], proves that
the NP-completeness of checking secrecy when the number of sessions of a pro-
tocol run is bounded by fixed number.1 We believe this is among the most
important complexity results of checking cryptographic protocols. We are mo-
tivated to have a thorough understanding of the proof of [1], not only for the
interest in the complexity theory of checking cryptographic protocols, but also

� Research is done at the University of Houston, supported in part by NSF grants
CCF 0306475 and CNS 0755500. Current address of the first author: LDCSEE De-
partment, West Virginia University, Morgantown, WV 26506, USA.

1 The word “fixed” is more precise than “bounded” or “finite”, as discussed in [3], since
the bound n of the number of sessions in a run should not be a part of an input
instance in order to establish the non-deterministic polynomial (NP) time result.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 101–116, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

102 Z. Liang and R.M. Verma

because we may improve the design of deterministic algorithms. For instance, the
performance of deterministic protocol checker may not be better than guessing
a minimal attack on the protocol, which is a notion addressed in [1].

This paper is organized as follows: In the rest of Section 1 we present related
work and our contributions. Section 2 includes the modeling. In Section 3 we
present an error of [1]. We present a series of enhanced results that are generally
applicable in Section 4. In Section 5 we accomplish the improved NP proof and
discuss the differences between our approach and the approach of [4].

In this paper, for a definition, observation, lemma or theorem, if it is marked
with a *, then it is provided by this paper, not by [1] or its sequels; otherwise,
it is mentioned here with the same statement and number as in [1] or [4].

1.1 Related Work

In [5] an NP-procedure is claimed. We do not focus on the work of [5] for two
reasons: (1) In [5] encryption keys must be atomic, while in [1] encryption keys
are more generally allowed to be composite. Extending atomic keys to composite
keys is non-trivial for the following reasons: By assuming atomic keys, the at-
tacker’s computation to derive a message from a set of terms E can be organized
in two stages, to analyze terms in E as much as possible and then to construct
terms. But, if composite keys are allowed, this two-stage computation, which
some proofs rely on, is not valid. Further discussion of this issue can be found
in [6]. Also, a composite key could be any term, which can make the analysis
significantly more complex. (2) The proof in [5] of the NP result is sketchy. In [7]
there is an NP-complete result of checking secrecy with a bounded number of
role instances. The proof of [7] assumes atomic keys, and the size of each message
in a run is assumed to be less than a certain number K. Bounding the message
size could make the NP proof considerably simpler, and the Directed Acyclic
Graphs (DAGs) are not needed to represent terms, while the proofs of [1] rely
on DAGs. A detailed explanation of why DAGs are needed, including an exam-
ple, is in [8]. There is an NP-proof in [9], but that proof assumes only atomic
keys and does not have as many details as [1].

The approach of [1] is extended in the subsequent papers [10] [11] [12], written
by Chevalier, Küsters, Rusinowitch, and Turuani, to cover the NP complexity of
checking secrecy beyond free term algebra when XOR operator, Diffie-Hellman
exponentiation, and commuting public key encryption are allowed.

We noticed a non-trivial error of [1] in proving that in a normal attack (min-
imal attack) the size of the substitution for the variables can be polynomially
bounded. We presented this error with a counter-example in a technical re-
port [13]. We do not think this error is avoided or fixed in the subsequent pa-
pers [10], [11] and [12] after studying them. We also noticed that several aspects
of the modeling and proofs of [1] can be improved or clarified. Some of these as-
pects are improved in the sequels of [1], such as the definition of normal attack,
while some are not, such as the absence of the proof to show that the attacker
does not need to generate nonces.

Correcting and Improving the NP Proof for Protocol Insecurity 103

After this research was completed last year, we emailed our work to Rusinow-
itch and Turuani, the authors of [1], who reviewed our work and pointed us to
another recent paper [4], in which a different proof approach is given that can
avoid the error; however, in that paper the presentation, which emphasizes a set
of so called oracle rules mixed with standard attacker rules, is designed for con-
sidering commuting operators. This makes it significantly hard for us to verify
and interpret the NP proof just for the standard Dolev-Yao model assuming free
term algebra, and especially for our concerns including fixing the error.

More detailed proofs and discussions of this research can be found in [8].

1.2 Contributions of This Paper

We present a complete proof system and make the following contributions.

(1) We present the error in the proof of the main theorem in [1] stating that
the substitution size of a normal attack can be polynomially bounded. We prove
this result by proving several stronger lemmas based on Lemma 4 of [1].

(2) Our modeling and NP proof uniformly cover the two scenarios of assuming
a fixed bound on sessions or a fixed bound on role instances, while the second
scenario is not covered in [1] and its sequels. One helpful feature of our work is
that we improve the definition of a minimal attack.

(3) We allow delayed decryption in a protocol by introducing the concept of
“dynamic roles” in the modeling, which enables our NP proof to cover the sce-
nario where delayed decryption is allowed. Delayed decryption is not mentioned
in [1] and cannot be handled convincingly in the sequels of [1].

(4) We prove that the attacker does not need to generate nonces, an as-
sumption that the proofs of [1] and its sequels rely upon, and is mentioned as
obvious in the Summary of [1], but the proof is nontrivial. Understanding this
assumption is important, since there are situations where the attacker does need
to generate different nonces for an attack such as when disequality test of two
terms are allowed in a protocol and when message sizes are bounded, which has
been addressed in several papers [14] [7] [15].

(5) We prove several generally applicable results on term derivation and sub-
stitution that are not covered in [1] and its sequels. Based on these results, we
build a reusable proof structure for both an improved proof of Lemma 4 of [1]
and the proof of the fact that the attacker does not need to generate any nonce.

(6) We show that the derivation problem has a quadratic time complexity.

2 Modeling

We choose our modeling and notations to be as consistent as possible with those
of [1] and its sequels. In order to clarify and enhance the proof and to broaden
the scope of the NP complexity, we improve the definitions of protocol run and
normal attack. These improved notions capture the essential meaning of their
counterparts in [1] and its sequels. Using our model, the established results of [1]
are still valid without the need to change their statements, and the error can
also be exactly described.

104 Z. Liang and R.M. Verma

Atom is the set of atomic ground terms, i.e., constants (ground means vari-
able free). V ar is the set of variables. A term can have variables. A symmetric
encryption has the form {x}s

y where y can be any term. An asymmetric encryp-
tion has the form {x}p

k, where k belongs to Keys which is the set of asymmetric
keys (public keys and private keys). Each asymmetric key is atomic. Ka and K−

a

represent the public key and private key an agent a. A bijection .−1 on Keys
maps a public (private) key to its corresponding private (public) key. A symmet-
ric key is allowed to be a composite term. 〈., .〉 represents a pair. A list has the
form 〈x, y, z · · · 〉, which is the same as 〈x, 〈y, 〈z · · · 〉〉〉. When a list is encrypted
or is a message in a protocol, its enclosing brackets are removed. The following
grammar defines terms:

term ::= Atoms | V ars | 〈term, term〉 | termp
Keys | terms

term

We will indicate which terms are variables of a protocol in the proofs when
necessary, often a lower case symbol is used to represent a variable.

The set of subterms of a term t, denoted as Sub(t), is defined as follows:
Sub(t) = {t} if t is atomic; Sub(〈x, y〉) = Sub(x) ∪ Sub(y) ∪ {〈x, y〉};
Sub(xs

y) = Sub(x) ∪ Sub(y) ∪ {xs
y}; Sub(xp

y) = Sub(x) ∪ {y} ∪ {xp
y}.

The function Sub can obviously be extended to apply to a set of terms or other
definitions where terms are involved, such as a role or a protocols defined below.

The Directed Acyclic Graph (DAG) representation of a set E of terms is a
graph (V , E) with labeled vertexes and edges, where

– V = Sub(E), i.e. the vertices are labeled one-to-one with subterms of E;
– if a vertex v is labeled with {x}s/p

y , or a pair 〈x, y〉, then two edges v →left vl

and v →right vr are in E , where vl and v2 are labeled with x and y.

The DAG-representation of a term is unique. The number of edges in a DAG is
no more than two times the number of vertexes. The DAG size of a set of terms
E, which is denoted as |E|DAG, is the number of distinct subterms of E and is
also the number of vertexes in the DAG representation of E. It is straightforward
to extend the definition of DAG size to apply to structures based on terms, for
example, |P |DAG for a protocol (introduced later) P is the number of different
subterms appearing in P .

A Replacement δ is a set of single replacements {[t1 ← t′1), · · · [tn ← t′n]},
for some n ≥ 1. When δ is applied to a term G, δ(G) returns a term G′ where for
each subterm t of G, if [t ← t′] appears in δ, then every occurrence of t in G is
replaced by t′ in G′. A substitution is a special replacement that only replaces
variables by ground terms. For two replacement δ and γ, δγ(t) means δ(γ(t)). A
ground replacement only replaces ground terms by ground terms.

An act is either a send act that has the form “+Msg” for some term Msg,
or a receive act that has the form “−Msg” for some term Msg. A role is
a sequence of acts that are supposed to be executed by the same agent. The
variables appearing in a role are divided to self-chosen variables and others-
chosen variables, that should be clear from the context. In a role, the message

Correcting and Improving the NP Proof for Protocol Insecurity 105

where an others-chosen variable x first appears, must be a received message.
Note that variables in [1] correspond to others-chosen variables here.

A protocol is a set of roles, and a special set S0 of ground atomic terms,
which is the initial knowledge of the attacker.

Informally, a protocol is often described as a sequence of message exchanges
between agents, called the communication sequence (CS). A set of roles can
be parsed from the communication sequence. For example, Table 1 shows the
communication sequence between A and B, which is similar to the fixed version of
the public key Needham-Schroeder protocol [16]. The term k is initially known
to a but unknown to b. The nonces na and nb are (number generated once)
generated by a and b respectively. Tables 2 and 3 show a’s role and b’s role
respectively. In a’s role, the set of self-chosen variables is {a, na, k, b}, and the
set of others-chosen variables is {nb}. In b’s role, the set of self-chosen variables
is {b, nb}, and the set of others-chosen variables is {a, na, k}.

Table 1. A protocol’s CS

1. a ⇒ b : {a, {na}s
k}p

Kb

2. b ⇒ a : {b, nb, {na}s
k}p

Ka

3. a ⇒ b : {a, nb, k}p
Kb

4. b ⇒ a : {b, na}p
Ka

Table 2. a’s role

1. + {a, {na}s
k}p

Kb

2. − {b, nb, {na}s
k}p

Ka

3. + {a, nb, k}p
Kb

4. − {b, na}p
Ka

Table 3. b’s role

1. − {a, {na}s
k}p

Kb

2. + {b, nb, {na}s
k}p

Ka

3. − {a, nb, k}p
Kb

4. + {b, na}p
Ka

The following derivation rules can be applied to a set of terms, by replacing
the LHS terms with the RHS terms. These rules, called the attacker’s rules,
describe the attacker’s internal computation to analyze and construct terms.

Decomposition rules:
Ld(〈x, y〉) : 〈x, y〉 → x, y, 〈x, y〉;
Ld({x}p

k) : {x}p
k, k−1 → {x}p

k, k−1, x;
Ld({x}s

y) : {x}s
y, y → {x}s

y, y, x.

Composition rules:
Lc(〈x, y〉) : x, y → x, y, 〈x, y〉;
Lc({x}p

k) : x, k → x, k, {x}p
k;

Lc({x}s
y) : x, y → x, y, {x}s

y.

For a rewrite rule Ld(t) or Lc(t), t is called the principle term of the rule. The
relation between two sets of terms M and M ′, denoted as M → M ′ means there
exists a rule l → r such that l is a subset of M and M ′ is obtained by replacing
l by r in M . →∗ is the reflexive and transitive closure of →.

Let E be a set of terms and let t be a term such that there is E′ with
E →∗ E′ and t ∈ E′. Then we say that t is forged from E and it is denoted
as t ∈ forge(E). A derivation D is a sequence E0 →r1 E1 →r2 · · · →rn En,
where Ei for 0 ≤ i ≤ n is a set of terms, and ri is an application of a rewrite
rule described above; and if t ∈ En and t /∈ En−1 , with n > 0, then t is called
a goal of D. If ri, for 1 ≤ i ≤ n, has the form LHSi → RHSi, for two sets of
terms LHSi and RHSi, then LHSi ⊂ Ei−1 and Ei = Ei−1 ∪ RHSi. A shortest
derivation from E with goal t is denoted as Derivt(E).

For example, given a set of terms E0 = {Ka, {x}s
〈c,d〉, c, {d}

p

K−a
}, if the attacker

knows E0, then x ∈ forge(E0), since there is a derivation E0 →Ld({d}p

K
−
a

) E1 =

E0 ∪ {d} →Lc(〈c,d〉) E2 = E1 ∪ {〈c, d〉} →Ld({x}s
〈c,d〉)

E3 = E2 ∪ x.

106 Z. Liang and R.M. Verma

A run , of a protocol P , is defined by a tuple (P , π, σ), explained as follows:

– P is set of prefixes of copies of roles where each role copy has its indepen-
dent scope of variables, i.e. variables are (implicitly) renamed per role copy.
These role copies are executed by regular agents, not the attacker, while the
attacker’s behaviors are covered by the attacker’s rules.

– π is a function mapping each act of the role copies of P to a positive integer,
and if e1 and e2 are two acts in the same role copy and e1 appears before e2

in the role then π(e1) < π(e2).
– σ is a substitution replacing the variables in P to ground terms. Especially,

for each self-chosen variable x in a role, σ(x) is an atom.

For an integer i we define S<i = {t | t is the (message) term sent in an act e of a
role copy in P , and π(e) < i}. S≤i is defined similarly. Si (Ri) denotes the set of
terms sent (received) in some act e with π(e) = i. A condition must be satisfied:
For each act e in P where a message t is received, σ(t) ∈ forge(S0 ∪ σ(S<π(e))).
Each (prefix) role copy in P is called a role instance of the run, and the ground
instances of its messages are implied by σ.

An attack on a protocol P is a run (P , π, σ) where Secret ∈ forge(S0 ∪
σ(S≤end)) where end is the largest π(e) for some act e, and Secret is a special
atom. A minimal attack , or a normal attack , on a protocol P is an attack
(P , π, σ) such that among all of the attacks on P with the same P and π,
this attack has the smallest |σ|DAG. In [11] and [4], minimal attack is defined
based on |σ|DAG, which simplifies the corresponding definition in [1]. Note that
here we do not require a minimal attack to have the smallest |σ|DAG among all
possible attacks (with different P), like the corresponding definitions in [1] and
its sequel [11]. In [4] the minimal attack is defined similarly to be the one with
minimal size of σ among all attacks with the same π. However, our definition
seems to express more exactly our idea of the relaxation on the definition of
normal attack, which is important to prove the NP complexity of both cases of
bounding the number of sessions and bounding the number of role instances.

Given a term t, V ar(t) means the set of variables appearing in term t, and
Atoms(t) = {g | g ∈ Sub(t) and g is an atomic, ground term}. V ar() and
Atoms() can be easily extended to apply to a set of terms, or some structure
based on terms such as P or P . Given a protocol P , for a term t, SVP (t) and
OVP (t) are the set of self-chosen and others-chosen variables of P appearing
in t. SVP () and OVP () can also be similarly applied to a set of terms or some
term-based structure. Given a P , we define C = {σ(y)|y ∈ SVP (P)}.

2.1 Modeling Discussion

Our model emphasizes the notion of roles since we believe it is essential. A
protocol in [1] is described as a set of rules, where each rule receives a message
and then sends a message. These rules can be easily translated to or from roles.

Our model does not describe the common behavior of the attacker and regular
agents to generate fresh terms (nonces), which is the style of the modeling of [1]
and its sequels. In [1] it is mentioned that any term dynamically generated in

Correcting and Improving the NP Proof for Protocol Insecurity 107

a run by the attacker can be considered generated before a run and included in
the attacker’s initial knowledge S0. Since the attacker can generate unboundedly
many nonces in a run, and the DAG size of S0 is considered a part of the
problem’s input size, justifying this definition of S0 for the correctness of the
NP proof depends crucially on a fact that the attacker only needs to generate a
polynomially bounded number of nonces for an attack. The nonces generated by
regular agent in a run does not cause concern since these nonces are polynomially
bounded when the number of sessions or role instances is bounded.

The notion of session deserves special consideration. A protocol run has one
session means that in the run each role of the protocol cannot be executed more
than once, i.e., a role cannot have more than one role instance. This precise
interpretation of the notion of session is also mentioned in [9]. Similarly the
scenario where a protocol run is bounded by n sessions, for a fixed number n,
which is assumed by [1] and its sequels, means that each role cannot have more
than n role instances in a run. Suppose a protocol has m roles, then assuming a
bound of n sessions is a case of assuming a bound of n×m role instances. Also,
assuming less than n role instances is a case of assuming less than n sessions.
We do not see the NP complexity of assuming a fixed bound of role instances
can be reduced to the one of assuming a fixed bound of sessions, or the other
way, since the if and only if condition in the reduction cannot be established.

Intuitively the function π maps the acts of the role instances in a run to their
(relative) occurring time. Our model allow two acts (also called events in the
literature) of two role instances to occur at the same time in a run, which agrees
with the Strand Space model [17]. If we require that two different acts in a run
must occur at two different time points, then the acts in a run are interleaved
into a linear trace according to their occurring time, which is a feature of the
trace based models such as [18] and [6]. The model of [1] is also a trace based
model. While it is intuitive that the two kinds of models are equivalent in terms
checking cryptographic protocols, we think the style of Strand Space is naturally
closer to our understanding of a protocol run.

Sometimes in a role, an agent receives an encryption without knowing the
decryption key and does not know the enclosed plain text (such an encryption
is called a blind encryption); however, at some later act the agent obtains the
decryption key (or other needed information) and can decrypt an encryption
that is received earlier in the role and then know the plain text. We call this
behavior as delayed decryption . For example, for the protocol presented in
Table 1, after b receives the first message, b cannot decrypt {na}s

k and know na

since b cannot know k. After b receives the third message, b knows k and can
decrypt decrypt {na}s

k, a blind encryption received earlier, and then knows na.
In [11], the authors suggested that a protocol with delayed decryption is trans-

lated to another one without delayed decryption. However, there is no discussion
on the procedure of such a “translation”, and doing so will significantly modify
a protocol, and may violate the design meaning of the protocol, especially when
authentication security goals are of interest. In [19], the authors suggest repre-
senting each blind encryption in a message as a single variable in a role, and to

108 Z. Liang and R.M. Verma

Table 4. b’s role with
length 1

1. − {a, x}p
Kb

Table 5. b’s role with
length 2

1. − {a, x}p
Kb

2. + {b, nb, x}p
Ka

Table 6. b’s role with
length 3

1. − {a, {na}s
k}p

Kb

2. + {b, nb, {na}s
k}p

Ka

3. − {a, nb, k}p
Kb

attach an explicit equivalence test to a message where the blind encryption can
be decrypted. However, it is not clear that the proof system of [1] and its sequels
can handle explicit equality test.

We suggest each prefix of a role can be considered as an individual role where a
blind encryption is represented as a variable or as an explicit encryption depend-
ing on the length of the role prefix. We call the prefixes of roles thus described
as dynamic roles, which allows seamless handling of delayed decryption in our
proof system. For example, Tables 4, 5, and 6 represent b’s role with length 1,
2, and 3 respectively. b’s role with length 4 is shown in Table 3.

3 The Error

The error of [1] is in the proof of Theorem 1, as stated below. We first present
Definition 6 and Lemma 4 of [1], which are correct, for discussing Theorem 1.

Definition 6. For a protocol P , let t and t′ be two terms and θ a substitution.
Then t is a θ-match of t′ if t /∈ OVP (P) and θ(t) = t′. This is denoted by t �θ t′.

Lemma 4. Given a normal attack (P , π, σ) on a protocol P , for each x in
OVP (P), there exists a term t such that t ∈ Sub(P ∪ S0), and t �σ σ(x).

Theorem 1. If σ is the substitution in a normal attack (P , π, σ), then we have
for all x ∈ OVP (P), |σ(x)|DAG � |P ∪ S0|DAG.

Proof of Theorem 1 in [1]: Given a set of variables U , we shall write U =
{σ(x)|x ∈ U}. Let SP = Sub(P ∪ S0). For a certain variable x ∈ OVP (P), let
us build by induction a sequence of sets Ei ⊆ SP and a sequence of sets Vi of
others-chosen variables such that |σ(x)|DAG � |Ei, Vi|DAG, starting from i = 0.
Note that |Ei, Vi|DAG means |Ei ∪ Vi|DAG.

Basis: Let (E0, V0) be (∅, {x}). So, |σ(x)|DAG � |E0, V0|DAG and E0 ⊆ SP .

Induction step: Assume that we have built (Ei, Vi) such that |σ(x)|DAG �
|Ei, Vi|DAG and Ei ⊆ SP , let us define Ei+1 and Vi+1: If Vi �= ∅, we choose
any xi+1 ∈ Vi. Then there exists some ti+1 �σ σ(xi+1) such that ti+1 ∈ SP , ac-
cording to Lemma 4. Note that it is guaranteed that ti+1 /∈ OVP (P) and xi+1 /∈
V ar(ti+1). We define Ei+1 = Ei ∪ {ti+1} and Vi+1 = V ar(ti+1) ∪ Vi − {xi+1}.
Since ti+1 ∈ SP , Ei+1 ⊆ SP . Now the proof needs to show that

|σ(x)|DAG � |Ei+1, Vi+1|DAG (1)

Correcting and Improving the NP Proof for Protocol Insecurity 109

In order to prove (1), the proof reaches a result that

|Ei, Vi|DAG � |δ(Ei), Vi|DAG � |Ei+1, Vi+1|DAG (2)

where δ = {[y ← σ(y)] | y ∈ V ar(ti+1)}. Then by (2), and by the induction
assumption |σ(x)|DAG � |Ei, Vi|DAG, (1) is proved. This iteration process will
terminate since there are only finitely many variables. At the end, say at the eth

step, Ve = ∅, and Ee ⊆ SP . Then we have |σ(x)|DAG � |Ee|DAG � |P ∪S0|DAG.
Theorem 1 is proved.

The error: The first inequality of (2), |Ei, Vi|DAG � |Eiδ, Vi|DAG, cannot be
proved, which can be intuitively explained as follows: in general, for a term t
and a replacement δ, it is not always true that |t|DAG ≤ |δ(t)|DAG.

It is enough to show the problem of the proof of Theorem 1 in [1] by a coun-
terexample to the iteration process of the proof where (2) is violated, as follows:
Suppose in a protocol there are three others-chosen variables x1 x2 and x3, and
three constants (atoms) a b and c. Suppose in a normal attack, the three vari-
ables have the following instantiation:

– σ(x1) = {〈a, b〉}s
〈a,b〉; σ(x2) = 〈a, b〉; σ(x3) = b.

Suppose in the protocol we can find the following three terms:

– t1 = {〈a, x3〉}s
x2

; t2 = 〈a, x3〉; t3 = b.

Note that t1 �σ σ(x1) and t2 �σ σ(x2) and t3 �σ σ(x3).
Now let us start the process of updating Ei and Vi for the variable x = x1,

starting from E0 = ∅ and V0 = {x1}, as shown by the following table:

i xi ti Ei Vi Sub(Ei, Vi) |Ei, Vi|DAG

0 ∅ {x1} { {〈a, b〉}〈a,b〉, 〈a, b〉, a, b } 4
1 x1 t1 {t1} {x2, x3} { {〈a, x3〉}x2 , 〈a, x3〉, a, x3, x2, 〈a, b〉, b } 7
2 x2 t2 {t1, t2} {x3} { {〈a, x3〉}x2 , 〈a, x3〉, a, x3, x2, b } 6
3 x3 t3 {t1, t2, t3} ∅ { {〈a, x3〉}x2 , 〈a, x3〉, x2, x3, a, b } 6

Note that |E1, V1|DAG = 7 > 6 = |E2, V2|DAG, and (2) is violated.

4 Enhanced Results on Term Substitution and Derivation

The results presented in this section are generally applicable and we use them
to construct an improved proof of Lemma 4, and similarly to prove that the
attacker does not need to generate nonces for an attack.

The following observation captures our intuition that in a derivation no new
atoms are generated.
Observation* 1: For a set of terms E and a term t ∈ forge(E), Atoms(t) ⊆
Atoms(E).

Proof. Since each composition or decomposition rule does not introduce any new
atom (we do not model the attacker’s behavior of generating nonces), for any

110 Z. Liang and R.M. Verma

derivation E0 →r1 E1 →r2 · · ·Eh, it is obvious that Atoms(Ei) = Atoms(Ei+1),
for 0 ≤ i ≤ h. Since t ∈ forge(E), there is a derivation D = E →r1 E1 →r2

· · ·Eh, such that t ∈ Eh. So Atoms(t) ⊆ Atoms(Eh) = Atoms(E).

In a protocol run, a certain set of atoms is the source of all atoms appearing in
any message, as shown in the following observation.

Observation* 2: Given a protocol P , and a run (P , π, σ) of P , for each variable
x in OVP (P), Atoms(σ(x)) ⊆ Atoms(P ∪ S0 ∪ C). Recall that C = σ(SVP (P)).

Proof. Let G = Atoms(P ∪ S0 ∪ C). We prove by induction on i the fact that
Atoms(σ(Ri)) ⊆ G and Atoms(σ(Si)) ⊆ G, which implies this observation since
x must appear in some Si or Ri. By the definition of protocol, for each term
r in Ri, σ(r) ⊆ forge(S0 ∪ S<i). Then by Observation* 1, Atoms(σ(r)) ⊆ G.
Therefore, Atoms(σ(Ri)) ⊆ G. For each s in Si, since each self-chosen variable
is instantiated by an atom, Atoms(σ(SVP (s))) = σ(SVP (s)) ⊆ C. When i = 1,
OVP (s) = ∅. By a property of a protocol run, for each x in OVP (s), x must appear
in some term that is received earlier in the run. For the induction step, by the
induction assumption, Atoms(σ(OVP (s)) ⊆ G. So Atoms(σ(s)) = Atoms(s) ∪
Atoms(σ(SVP (s))) ∪ Atoms(σ(OVP (s))) ⊆ G. Atoms(σ(Si)) ⊆ G.

A way to describe a substitution, which is essential to define a protocol run, is
by composing a ground replacement with another substitution, as follows:

Observation* 3: Consider a term T , two substitutions σ and σ′, a ground
replacement δ = [t ← t′], such that the following conditions are satisfied:
1. There is no term g such that g ∈ Sub(T) and g is not a variable and σ(g) = t.
2. Let Vt = {x|x ∈ V ar(T) and t ∈ Sub(σ(x)). For a variable y, if y ∈ Vt, then

σ′(y) = δ(σ(y)); otherwise σ′(y) = σ(y).
Then, σ′(T) = δ(σ(T)) holds.

Proof. Condition 1 implies that if t ∈ Sub(σ(T)), i.e., t occurs in σ(T), then
t must occur as a subterm of σ(x), for some x ∈ V ar(T). When δ is applied
to σ(T), the only changes to σ(T) are made by replacing each occurrence of
σ(x) with δ(σ(x)), for x ∈ Vt. σ′(T) changes T in two aspects: Replacing the
occurrences of each variable x in Vt with δ(σ(x)), and replacing the occurrences
of each variable y, for y /∈ Vt, with σ(y). So σ′(T) = δ(σ(T)).

If t ∈ forge(E), it is not necessarily true that δ(t) ∈ forge(δ(E)), although
it is a convenient way to describe the relationship between two protocol runs.
Lemma* 1 shows that in certain scenario such a relationship can be established.
Lemma* 1: For a set of terms E, a term t, a replacement δ = [w ← w′] with two
terms w and w′. If (1) w is not an asymmetric key, and (2) there is a derivation
from E with a goal t without applying Ld(w), then δ(t) ∈ forge(δ(E) ∪ {w′}).

Proof. Since there is a derivation D = E0 →r1 E1 →r2 E2 · · · →rh
Eh, where

E0 = E, t ∈ Eh, and Ld(w) does not appear, we want to construct a derivation
D′ from E′

0 = δ(E) ∪ {w′} with a goal δ(t). D′ has the form D′ = E′
0 →r′1

Correcting and Improving the NP Proof for Protocol Insecurity 111

E′
1 →r′2 E′

2 · · · →r′
h

E′
h, and the ith derivation rule r′i in D′ is defined as follows:

– If ri is the rule Lc(w), then r′i = L∅ (doing nothing) and E′
i−1 = E′

i.
– Otherwise, let ri = Lc/d(Ti) for some term Ti, then r′i = δ(ri) = Lc/d(δ(Ti)).

We justify that D′ is a valid derivation by showing two facts: (i) Let r′i be of the
form LHS′

i → RHS′
i, then LHS′

i ⊆ E′
i−1. For (i), we prove a stronger fact that

E′
i = δ(Ei)∪{w′}. (ii) ri is applicable, i.e., with concerns like a rule of decrypting

an encryption cannot be applied to a pair, also only an asymmetric key can be
used to construct an asymmetric encryption. These two facts can be proved
together by induction on i in D′, checking each possible form of r′i, observing
that in D the corresponding facts are satisfied. Note that the conditions (1) and
(2) of this lemma are needed to ensure that L′

i is always applicable.

It follows that Lemma 1 is also valid when we require that δ = [Kg ← Kf ; K−
g ←

K−
f], for some asymmetric key pairs Kg K−

g , and Kf K−
f .

Now we can prove that the attacker does not need to generate nonces in a run,
by establishing the relationship between two runs, where one includes a nonce
of the attacker, but the other does not.

Theorem* 1: Consider a protocol P , and a nonce nI created by the attacker,
i.e. nI ∈ S0 and nI does not appear in the roles of P . Assume I is the attacker’s
name and I ∈ S0. If there an attack (P , π, σ) to P , then after nI is removed
from S0, there is also an attack (P , π, σ′), for some σ′

Proof. Let π map the acts in P from 1 to k. Let Secret be a secret term that
is leaked after the attack (P , π, σ), i.e. Secret ∈ forge(σ(S≤k) ∪ S0). Let VnI =
{y|y ∈ V ar(P) and nI ∈ Sub(σ(y))}. Let δ = [nI ← I], and S′

0 = δ(S0) = S0 −
nI . We define σ′ as follows: For a variable y ∈ V ar(P), if y /∈ VnI , then σ′(y) =
σ(y), otherwise σ′(y) = δ(σ(y)). We need to prove that for each r in Ri, σ′(r) ∈
forge(σ′(S′

≤i−1)∪ S′
0), for 1 ≤ i ≤ k, in order to justify that (P , π, σ′) is a valid

protocol run. Since r ∈ forge(σ(S′
≤i−1)∪S0), and nI is not an asymmetric key,

and nI ∈ S0 implies that nI can be trivially derived from σ(S≤i−1)∪S0 without
applying any derivation rule, by Lemma* 1, δ(σ(r)) ∈ forge(δ(σ(S≤i−1)∪S0)∪
{I}) = forge(δ(σ(S≤i−1))∪S′

0). So δ(σ(Ri)) ⊆ forge(δ(σ(S≤i−1))∪ S′
0); call it

fact 1. Since nI is an atom that is not a subterm in P , there is no g ∈ Sub(P)
such that σ(g) = nI and g /∈ V ar(P). Therefore, we can apply Observation* 3
to prove that σ′(Ri) = δ(σ(Ri)) and σ′(Si) = δ(σ(Si)); call it fact 2. Based
on fact 1 and fact 2, it follows that σ′(Ri) ⊆ forge(σ′(S≤i−1)) ∪ S′

0). Finally,
we have to prove that Secret ∈ forge(σ′(S′

≤k) ∪ S′
0). Note that Secret �= nI .

Since Secret ∈ forge(σ(S≤k) ∪ S0) and nI is not an asymmetric key and nI is
trivially derivable from S0, it follows from fact 2 and Lemma* 1 that Secret =
δ(Secret) ∈ forge(δ(σ(S≤k) ∪ S0) ∪ {I}) = forge(σ′(S≤k) ∪ S′

0).

Similarly, the attacker does not need to dynamically generate asymmetric keys in
a run, since its public key and private key are sufficient for an attack. Corollary* 1
straightforwardly follows from Theorem* 1 by a similar proof.

112 Z. Liang and R.M. Verma

Corollary* 1: If there is an attack on a protocol P , then there is also an attack
where the attacker does not generate nonces or asymmetric keys.

We are motivated to improve proof of Lemma 4 in [1], which is the key lemma to
prove the NP result, for better structure and clarity. Based on the observations
and lemmas developed in this section, we present in [8] an improved proof of
Lemma 4, using Lemma* 1 and Observation* 3, with a proof structure similar
to the proof of Theorem* 1.

In [11] and [4] it is shown that the derivation problem, can be solved in
deterministic polynomial time. We show a sharper result below.

Theorem* 2: Given a set of terms E and a term t, let m = |E, t|DAG, to decide
that t ∈ forge(E) (derivation problem) can be solved in O(m2) time.

Proof. t ∈ forge(E) if and only if there is a shortest derivation from E for
the goal t, denoted as Derivt(E). It is simple to prove, as in [1], that for each
derivation rule Lc/d(w) in Derivt(E), w ∈ Sub(E ∪ {t}). So there are at most
m derivation rules applied in Derivt(E). Assume Sub(E ∪{t}) has its enhanced
DAG representation, so that each subterm can directly reach its parent term and
its children terms (top level subterms), and a key can directly reach its inverse
key. We construct a process with at most m iterations, corresponding to the
length of Derivt(E). Initially all terms in G are marked with Y , and all other
terms are marked with N . In the ith iteration, for each term w ∈ Sub(E ∪ {t})
that is marked with N , we check if Lc(w) is applicable: If each child node of w is
marked with Y , then mark t as Y ′. Also, for each term marked with Y , we check
if Ld(w) applicable, i.e., w must be composite, and if w is an encryption the
decryption key is marked with Y . Then we check if Ld(w) is useful: If some child
term g of w is obtainable after applying Ld(w), and if g is marked with N , mark
g by Y ′. Finally in the iteration all terms labeled by Y ′ (temporary) change their
labels to Y . The process ends if i > m, or if t is marked with Y . t ∈ forge(E)
if and only if t is marked with Y in the end. Since the cost of each iteration is
O(m), and there are O(m) iterations, the total time cost is O(m2).

5 Fixing the Error and Improving the NP Proof

In this section we show that results stronger than Lemma 4 and Theorem 1 in [1]
can be proved based on Lemma 4 and an iterative process, which is in the spirit
of the proof of Theorem 1 in [1].

The following lemma captures our intuition that leads to the fix of the error.
It shows that in a run there must be a variable such that the size of its instance
is bounded by the size of the protocol.
Lemma* 2: Consider a normal attack (P , π, σ) on a protocol P . If OVP (P) �= ∅,
then there is a variable x such that x ∈ OVP (P) and σ(x) has a σ match t
(denoted as t �σ σ(x)), where t ∈ Sub(P ∪ S0), and OVP (t) = ∅.

Proof. By Lemma 4 σ(x) always has a σ match t in Sub(P ∪S0). Therefore, for
the sake of contradiction, we assume in a normal attack, for each others-chosen

Correcting and Improving the NP Proof for Protocol Insecurity 113

variable x, for each t such that t �σ σ(x), OVP (t) �= ∅. Now we go through an
iterative process to show it is impossible. At every step of the process, say the ith

step, 1 ≤ i, a variable xi and a term ti are considered. At the first step, step 1, x1

is chosen to be any variable in OVP (P), and t1 is any term such that t1 �σ σ(x1),
and t1 ∈ Sub(P ∪ S0). By lemma 4, such a t1 always exists. The i + 1th step,
for i ≥ 1, continues this process by choosing any variable xi+1 such that xi+1 ∈
OVP (ti), and then by choosing ti+1 to be any term such that ti+1 �σ σ(xi+1),
and OVP (ti+1) �= ∅. Such xi+1 and ti+1 exist by the contradictory assumption
and Lemma 4. Since ti /∈ OVP (P) and OVP (ti) �= ∅, ti must be a composite term
and xi+1 is a strict subterm of ti. So |σ(xi+1)|DAG < |σ(ti)|DAG. Since σ(xi) =
σ(ti), |σ(xi)|DAG = |σ(ti)|DAG follows; hence, |σ(xi)|DAG > |σ(xi+1)|DAG. It
means that |σ(xi)|DAG > |σ(xj)|DAG, for i < j. So xi and xj are two different
variables, for i �= j. Since OVP (P) is finite, the process cannot continue forever.
Let k be the last step of this process. Then OVP (tk) = ∅ (otherwise the process
continues to the k+1 step) which is a contradiction, and the lemma is proved.

It can be proved very similarly that the size of the instance of each others-chosen
variable can be bounded by the protocol size:

Corollary* 2: Given a normal attack (P , π, σ) to a protocol P , let G and G′ be
any two disjoint sets of others-chosen variables and G∪G′ = OVP (P), assuming
OVP (P) �= ∅, and G �= ∅, then there is a variable x in G such that σ(x) has a σ
match t, i.e. t �σ σ(x), such that t ∈ Sub(P ∪ S0) and OVP (t) ⊆ G′.

Based on the above two results, we can prove the following lemma, which is
stronger than Lemma 4 of [1].

Lemma* 3: In a normal attack (P , π, σ) on a protocol P , for every variable x
in OVP (P), and for every term y such that y ∈ Sub(σ(x)), there is a term t such
that t ∈ Sub(P ∪ S0) and t /∈ OVP (P), and y = σ(t).

Proof. We choose a sequence of variables xi, for 1 ≤ i, such that xi ∈ OVP (P),
and a sequence of sets of variables Vj , for 0 ≤ j, such that Vj ⊆ OVP (P),
V0 = OVP (P). xi, for 1 ≤ i, is chosen to satisfy the following condition: There is
a term ti, ti ∈ Sub(P∪S0), and ti /∈ OVP (P), and σ(ti) = σ(xi) (i.e, ti �σ σ(xi)),
and OVP (ti) ⊆ (OVP (P)−Vi−1). Then Vi = Vi−1−{xi}. This process ends when
Vi = ∅. By Corollary* 2, at the ith step, the corresponding ti always exists. We
prove by induction that for each xi, the fact stated in this lemma is true. Basis:
when i = 1, directly implied by Lemma* 2, which is a special case of Corollary* 2,
x1 can always be found to satisfy this lemma. For the induction step, we assume
the lemma holds for all xj that 1 ≤ j < i. Let Gi = {g|g ∈ Sub(ti), g /∈ OVP (ti)}.
Then Sub(σ(xi)) = Sub(σ(ti)) = σ(Gi)∪Sub(σ(OVP (ti))). For any term y such
that y ∈ σ(Gi), the lemma is satisfied since y ⊆σ σ(y). For any y such that y ∈
Sub(σ(OVP (ti))) the fact is also satisfied, because OVP (ti) ⊆ (OVP (P)− Vi−1),
and each variable in OVP (ti) is some xj for j < i that satisfies the lemma by
the induction assumption.

Now we prove Theorem* 3, which is stronger than (implies) Theorem 1.

114 Z. Liang and R.M. Verma

Theorem* 3: For a normal attack (P , π, σ) on a protocol P , |σ(P∪S0))|DAG ≤
|P ∪ S0|DAG.

Proof. Let G = S0 ∪ {g|g ∈ Sub(P), g /∈ OVP (P)}. It follows that Sub(σ(P ∪
S0)) = σ(G)∪Sub(σ(OVP (P))). For each term y in Sub(σ(OVP (P))), by Lemma*
3, there is a term t such that t ∈ G, and σ(t) = y. therefore, Sub(σ(OVP (P))) ⊆
σ(G). So, Sub(σ(P ∪ S0)) = σ(G). Now we can prove that |σ(P ∪ S0))|DAG =
|Sub(σ(P ∪S0))|card = |σ(G)|card ≤ |G|card ≤ |Sub(P ∪S0)|card = |P ∪S0|DAG.
Here |S|card means the cardinality of the set S.

Now we have a unified NP proof for fixed sessions and role instances.

Theorem* 4: Checking whether a cryptographic protocol has a secrecy failure
is in NP, for both scenarios in a run, assuming the number of sessions has a fixed
bound, and assuming the number of role instances has a fixed bound.

Proof. A non-deterministic algorithm can guess an attack (P , π, σ) on P such
that P satisfies the bound on sessions or role instances. Let |P |DAG = l. When
the number of sessions is bounded by n, for some constant n, then |P|DAG < l×n,
which is also true when the number role instances is bounded by n. Since in a run
we proved that the attacker’s initial knowledge S0 does not contain dynamically
generated nonces and keys, as justified by Theorem* 1, and (by convention) S0

contains only the names and public keys of the agents who participate in the
run, and some shared keys, and the attacker’s own public key and private key, it
follows that |S0|DAG is linear in |P|DAG. So, in both scenarios, |P ∪ S0|DAG =
O(l). Thanks to the way a normal attack is defined, by Theorem* 3, the algorithm
can always guess a σ such that |σ(P∪S0))|DAG ≤ |P∪S0|DAG = O(l). Note that
the requirement of a minimal attack is first handled by Lemma 4 in the proof. In
order to verify that the guessed attack is really a run, the algorithm verifies the
satisfiability of the condition that each received message in the attack is derivable
from the set of previously sent messages together with S0. There are at most
l × n acts of receiving messages in the attack, in both scenarios. To check the
condition for each received message has a polynomial time cost, or more exactly
O(l2) by Theorem* 2. Therefore, to check the condition for all received messages
can be computed in a polynomial time (n× l×O(l2) = O(l3)). So the algorithm
is non-deterministic polynomial w.r.t. l, which is |P |DAG.

Comparison with the Proof of [4]. In [4] there is a different approach that
can avoid the error of [1]. The difference between that approach and our approach
is the following: In [4], Lemma 4 of [1] is not addressed. Instead, Proposition 3.14,
which is stronger than Lemma 4, is proved by a proof very similar to the proof of
Lemma 4 in [1]. Proposition 3.14 in [4] basically corresponds to our Lemma* 3.
In comparison, we prove Lemma* 3 using Lemma 4. The approach of [4] appears
to be more direct to reach a result that is stronger than Lemma 4. Our approach
actually follows the proof direction of [1], that is, to obtain Lemma 4 first,
and then based on Lemma 4 to construct the NP proof using some iterative
processes. Since we are not fully satisfied with the proof of Lemma 4 in [1],

Correcting and Improving the NP Proof for Protocol Insecurity 115

which is similarly used in [4] to prove Proposition 3.14, our efforts to build
improved and reusable proof structure are not redundant. Besides, in our more
comprehensive treatment for building the proof system, we have proved some
new and generally applicable results that are not covered by the proof system
of [1] and its sequels, like Lemma* 2 and Corollary* 2. It is interesting to see
that we can follow the proof direction of [1] to reach the goal of fixing the error
and broaden the scope of the NP complexity. More detailed discussion of the
two different approaches are included in [8].

6 Summary

We improve the NP proof for the insecurity problem based on a influential paper
[1], and its sequels. Our work improves the research of proving the NP complexity
of the insecurity problem in scope, since the NP complexity can cover both
scenarios of bounding sessions and role instances and delayed decryption can be
handled; in proof structure, since we prove different results, such as proving the
NP complexity of bounding sessions and role instances, and proving Lemma 4
and that the attacker does not need to generate nonces; and in depth since we
build several enhanced results that are generally applicable, and we fix an error
of [1]. The error is in the proof of Theorem 1 of [1], which is seemingly due to an
incorrect reasoning step assuming that |E|DAG ≤ |Eσ|DAG, for a set of terms E
and a substitution σ.

Since this research significantly enhanced our understanding of NP proofs
of checking protocols, it has important implications for our current and future
research on cryptographic protocols and cybersecurity, which include designing
model checking and theorem proving algorithms.

Acknowledgment

We highly appreciate the discussion with Dr. Mathieu Turuani and Dr. Michael
Rusinowitch and thank them for their review and supportive comments on our
technical report [13], and the information on [4]. We thank Dr. Vitaly Shmatikov
very much for his comments on and encouragement for this research.

References

1. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is NP-complete. Theor. Comput. Sci. 1-3(299), 451–475 (2003)

2. Turuani, M.: Web page, http://www.loria.fr/~turuani/
3. Liang, Z., Verma, R.M.: Complexity of checking freshness of cryptographic proto-

cols. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 86–101.
Springer, Heidelberg (2008)

4. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Complexity results for
security protocols with Diffie-Hellman exponentiation and commuting public key
encryption. ACM Transactions on Computational Logic (TOCL) 9(4) (2008)

http://www.loria.fr/~turuani/

116 Z. Liang and R.M. Verma

5. Amadio, R.M., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci. 290(1), 695–740 (2003)

6. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: ACM Conference on Computer and Communications Secu-
rity, pp. 166–175 (2001)

7. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting and the complexity of
bounded security protocols. Journal of Computer Security 12(2), 247–311 (2004)

8. Liang, Z., Verma, R.M.: Correcting and Improving the NP Proof for Cryptographic
Protocol Insecurity. Technical Report UH-CS-09-10, Computer Science Depart-
ment, University of Houston (September 2009), http://www.cs.uh.edu/preprint

9. Tiplea, F.L., Enea, C., Birjoveanu, C.V.: Decidability and complexity results for
security protocols. In: Verification of Infinite-State Systems with Applications to
Security, pp. 185–211. IOS Press, Amsterdam (2006)

10. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security
of protocols with Diffie-Hellman exponentiation and products in exponents. In:
Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 124–
135. Springer, Heidelberg (2003)

11. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: An NP decision pro-
cedure for protocol insecurity with XOR. Theor. Comput. Sci. 338(1-3), 247–274
(2005)

12. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the security of
protocols with commuting public key encryption. Electronic Notes in Theoretical
Computer Science 125(1), 55–66 (2005)

13. Liang, Z., Verma, R.M.: A note on an NP-completeness proof for cryptographic pro-
tocol insecurity. Technical Report UH-CS-08-15, Computer Science Department,
University of Houston (October 2008), http://www.cs.uh.edu/preprint

14. Froschle, S.: The insecurity problem: Tackling unbounded data. In: IEEE Computer
Security Foundations Symposium 2007, pp. 370–384. IEEE Computer Society, Los
Alamitos (2007)

15. Liang, Z., Verma, R.M.: Secrecy checking of protocols: Solution of an open problem.
In: Automated Reasoning for Security Protocol Analysis (ARSPA 2007), July 2007,
pp. 95–112 (2007)

16. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

17. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. Journal of Computer Security 7(1) (1999)

18. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1-2), 85–128 (1998)

19. Corin, R., Etalle, S.: An improved constraint-based system for the verification of
security protocols. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, pp. 326–341. Springer, Heidelberg (2002)

http://www.cs.uh.edu/preprint
http://www.cs.uh.edu/preprint

Formal Verification of Security Policy

Implementations in Enterprise Networks

P. Bera1, S.K. Ghosh1, and Pallab Dasgupta2

1 School of Information Technology
2 Department of Computer Science & Engineering

Indian Institute of Technology, Kharagpur 721302, India
bera.padmalochan@gmail.com, skg@iitkgp.ac.in, pallab@cse.iitkgp.ernet.in

Abstract. In enterprise networks, the management of security policies
and their configurations becoming increasingly difficult due to complex
security constraints of the organizations. In such networks, the overall
organizational security policy (global policy) is defined as a collection
of rules for providing service accesses between various network zones.
Often, the specification of the global policy is incomplete; where all pos-
sible service access paths may not be covered explicitly by the “permit”
and “deny” rules. This policy is implemented in a distributed manner
through appropriate sets of access control rules (ACL rules) in the net-
work interfaces. However, the implementation must be complete i.e., all
service access paths across the network must be implemented as “per-
mit” and “deny” ACL rules. In that case, the unspecified access paths in
a given policy must be implemented as either “permit” or “deny” rules;
hence there may exist multiple ACL implementations corresponding to
that policy. Formally verifying that the ACL rules distributed across
the network interfaces guarantees proper enforcement of the global secu-
rity policy is an important requirement and a major technical challenge.
The complexity of the problem is compounded by the fact that some
combination of network services may lead to inconsistent hidden access
paths in the network. The ACL implementations ignoring these hidden
access paths may result in violation of one or more policy rules implic-
itly. This paper presents a formal verification framework for analyzing
security policy implementations in enterprise networks. It stems from
boolean modeling of the network topology, network services and security
policy where the unspecified access paths are modeled as “don’t-care”
rules. The framework formally models the hidden access rules and incor-
porates them in the distributed ACL implementations for extracting a
security implementation model, and finally formulates a QSAT (satisfi-
ability of quantified boolean formulae) based decision problem to verify
whether the ACL implementation conforms to the global policy both in
presence and absence of the hidden access paths.

Keywords: Network security, Security Policy, Access control list (ACL),
Formal Verification.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 117–131, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

118 P. Bera, S.K. Ghosh, and P. Dasgupta

1 Introduction

The management of services and operations in today’s organizations are be-
coming increasingly dependent on their enterprise local area network (enterprise
LAN). An enterprise LAN consists of a set of network zones (logical group of
network elements) corresponding to different departments or sections, connected
through various interface switches (typically, Layer-3 switches). The network
service accesses between these zones and also with the external network (e.g.,
Internet) are governed by a global network security policy of the organization.
This global policy is defined as a collection of service access rules across various
network zones where the services referred network applications conforming to
TCP/IP protocol. For example, some of the known network services are ssh, tel-
net, http etc. In reality, the security policy may be incompletely specified; which
explicitly states the “permit” and “deny” access rules between specific network
zones keeping remaining service access paths as unspecified.

The global security policy is realized in the network by configuring the net-
work interfaces with appropriate sets of access control rules (ACLs). One of the
major challenges in network security management is ensuring the conformation
of the distributed security implementations with the global security policy. The
distributed ACL implementation may not satisfy the global policy due to fol-
lowing reasons: (1) There may exist some unblocked hidden service access paths
in the network which are not explicitly stated in the global policy; as a result
the ACL implementation may lead the network to some state which violate one
or more policy rules implicitly; (2) The combination of the ACL rules do not
conform the global policy although there is no hidden access path in the network.

Fig. 1. A Typical Academic Network

Formal Verification of Security Policy Implementations 119

Ensuring this satisfiability manually is difficult due to the complex security
needs of present day networks (e.g. inclusion of temporal service access rules)
and the presence of hidden service access paths in the network. The objective
and the motivation behind the present work are presented with an example in
the following section.

1.1 Objective and Motivating Example

A typical Academic network has been shown in Fig 1, which is deployed as hier-
archical networking architecture consisting of Core, Distribution and Access lay-
ers. The network Access layer includes two network zones, namely, HALL(covers
the student halls of residence) and ACAD(covers the academic departments).
Moreover, the zones can be partitioned into sub-zones. For example, HALL is
partitioned into HALL 1, HALL 2 and so on. The Core includes three routers
(R1, R2 and R3) and the distribution network consists of two routers (R4 and
R5). The external access to Internet is realized through PROXY zone (consists
of web proxy servers). The global security policy for the network is stated as
follows:

1. Internet (http) access is NOT allowed from HALL
2. Internet (http) access is allowed from ACAD .

Now, let us consider the following implementation scenario: The ACL rule ¬http
(HALL,PROXY) is applied in the interface 172.16.0.1/30 of router R4 and
http(ACAD,PROXY) is applied in the interface 172.16.0.18/30 of router R5.
This blocks all incoming http requests from HALL at R4 and allows the same
from ACAD at R5. However, this does not strictly satisfy the intent (i.e., the
global policy); because, there exist a hidden http access path from HALL to
Internet (PROXY zone). One can access ssh/telnet from HALL to ACAD (which
may be allowed from HALL as it is not explicitly stated in the global policy) and
access Internet from there (which is allowed from ACAD). This hidden access
path may be formally represented as follows:

ssh(HALL,ACAD) ∧ http(ACAD,PROXY) ⇒ http(HALL,PROXY) (1)

telnet(HALL,ACAD) ∧ http(ACAD,PROXY) ⇒ http(HALL,PROXY) (2)

While verifying the security implementations (the distribution of ACL rules to
various switches), it is required to consider such hidden rules which capture
the relation between known services. Therefore, a correct ACL implementation
should restrict these hidden access paths consistently. The problem becomes
more complex if the policy rules incorporate temporal constraints, e.g. “http ac-
cess from HALL is not allowed in week-days during 0800-1700 hours”.
Therefore it is required to verify the correctness at the various windows of time.

The combination of network services that can create hidden access paths needs
to be known for verification. This constitutes a significant amount of domain

120 P. Bera, S.K. Ghosh, and P. Dasgupta

knowledge in our verification problem. In order to accommodate new combi-
nations of network services, our decision framework provides a formalism for
specifying hidden access rules.

In the absence of hidden access rules, the task of verifying that the distributed
ACL implementation conform the global security policies can be reduced to
boolean satisfiability (SAT). On the other hand, when hidden access rules are
considered, these rules can be applied transitively to discover the complex hidden
access paths in the network, and the verification framework must examine all
such paths. It will be shown that this verification problem can be modeled as
the problem of checking the truth of a Quantified Boolean Formula (QBF), and
can be solved in reasonable time using a QBF-SAT solver [15] [16].

The present work primarily focuses on the following issues:

– Specification of the global security policy using proposed security policy
specification language, SPSL; which defines the security policy model;

– Extraction of implementation model from the distributed ACL implementa-
tions of the global policy;

– Formal modeling of hidden access rules and refinement of the implementation
model by incorporating these rules;

– Boolean reduction of policy and implementation models and formulation of
a quantified boolean satisfiability checking (QSAT) problem;

– Solving the satisfiability of the problem using appropriate QBF SAT solver.

Security policy model functionally reduces the explicit “permit” and “deny”
service access rules into two boolean functions, PT (V:service, S:source, D:dest,
T:time) and PF(V,S,D,T) which state whether the service V is allowed/denied
between source S and destination D in time T respectively. The remaining access
paths are modeled as “don’t care” rules and also reduced into a boolean func-
tion don’t-care:PX (V,S,D,T),where, PX = ¬PT ∧ ¬PF . On the other hand,
security implementation model captures the device specific access control rules
[example:Cisco ACL standard] distributed across the interfaces of the network.
Intuitively the implementation model completely define the service access paths
across the network as either “permit” or “deny” ACL rules. Thus, the ACL im-
plementation model define a boolean function, AG(V:service, S:source, D:dest,
T:time), which states whether the service V , is allowed between the source S and
destination D, at time, T . The negation of AG trivially represents the blocked
service access paths. The set of ACL rules and the network topology defines this
function partially, but do not capture the hidden access paths between sources
and destinations which are induced by the hidden access rules. Therefore we
need to apply these rules to arrive at the correct definition of the function, AG,
which we refer as the final ACL implementation model, MI .

Given a policy model MP [represented by the boolean functions PT , PF
and PX] and a distributed ACL implementation model MI , our objective is
to check whether MI satisfies MP or not. In the present work, this model
checking problem is reduced into a boolean function F , say, F = ((PT ∨PX ⇒
MI) ∧ (PF ∨ PX ⇒ ¬MI)) and its satisfiability is checked.

Formal Verification of Security Policy Implementations 121

The rest of the paper is organized as follows. Section 2 presents the related
work in network security analysis. In Section 3, the modeling of security policies
using the proposed policy specification language, SPSL, has been described. The
extraction of the ACL implementation model with formal modeling of hidden
access rules has been presented in section 4. Section 5 presents QSAT based
verification procedure along with verification results.

2 Related Work

Existing literatures on network security analysis primarily concentrate on incon-
sistency and redundancy checks but most of the works are not formally verified.
Tools that allow user queries for the purpose of firewall analysis and manage-
ment include Firmato [1] and Lumeta [2]. These tools can specify an abstract
network access control policy and firewall rules that satisfy the policy but lacks
in incorporating temporal constraints and hidden rule analysis. Liu et al [6] have
given an algorithm specialized for finding redundancies. Uribe et al [3] focuses
on high level modeling of firewall and network configurations that satisfy a given
policy. But both of these tools can handle a specific set of problems and simple
set of policy constraints. The notion of hidden access paths and the complexity
it introduces into the analysis is not reported in any of these papers.

In order to arrive at a formal method for checking whether a set of ACL rules
guarantee a global policy specification, it is necessary to evolve a language for
specifying the policy requirements. Researchers have proposed different high level
security policy specification languages, namely, HLFL [7], Firmato [1], FLIP [8]
etc. FLIP [8], is one of the most recent conflict free firewall policy languages for
network traffic access control, to enforce security and ensure seamless configura-
tion management. In FLIP, security policies are defined as high level service ori-
ented goals, which can be translated automatically into access control rules to be
distributed to appropriate enforcement devices. FLIP guarantees that the rules
generated are conflict-free. But, it does not address temporal policy constraints
and hidden rule conflicts. We have proposed a high level language, namely, Se-
curity Policy Specification Language (SPSL) for specifying the global security
policies of an organizational LAN. The language allows specifying explicit “per-
mit” and “deny” service access rules and remaining service access paths are
treated as “don’t care” rules. The unique features of our language are easy-to-
use constructs and methods for specifying temporal policy rules.

Formal methods have been used to address some specific problems in the
area of network security. For example, the FIREMAN Toolkit [4] is capable of
detecting inconsistencies and redundancies in single firewalls and in a network
of firewalls. The set of all possible requests are formulated and model checking
is used to divide the set into those which are accepted, those which are rejected,
and those for which no rule applies. The tool can handle large sets of firewall rules
since it uses an efficient BDD representation. The Network Policy Enforcement
tool [11] is one of the recent tools in this line of work. Another recent work
is proposed by Matousek, Rysavy, Rab, and Sveda [12] on formal models for

122 P. Bera, S.K. Ghosh, and P. Dasgupta

network wide security analysis. They model the network topology with changing
link states and deploys SAT-based bounded model checking of network security
properties. Matsumoto and Bouhoula [5] proposes a SAT based approach for
verifying firewall configurations with respect to security policy requirements.
Again, the notion of hidden access paths and formalizing the verification problem
in their presence has not been considered earlier.

3 Security Policy Specification

The security policy of a network defines a set of functional rules on flow of
packets between different nodes in the network. Complexity of the policy depends
on the size of the network, controlling parameters and dependency amongst the
rules. The specification language must be expressive enough to represent complex
security constraints correctly. We have proposed a security policy specification
language, SPSL, for modeling the security policies. In the following section, the
various constructs of the proposed language has been described.

3.1 Security Policy Specification Language(SPSL)

The main constructs of the SPSL can be classified as: (a) network topology con-
structs and (b) network services and policy rule constructs. The SPSL allows
to specify explicit “permit” and “deny” service access rules across the network
zones, whereas the “don’t care” rules are derived from these rule sets during
boolean reduction of the policy model.

Network topology specification: The proposed SPSL has the following con-
structs to describe the network topology.

Zone: A zone is a logical unit consisting of workstations, servers or other sys-
tems in the network, usually refers to a particular section of an organization. It
is represented by IP address block(s) and it referred by the IP address block(s)
or by a symbolic name. Further, a zone can be partitioned into multiple disjoint
sub-zones.

Example 1: Zone Specification
Zone HALL_1 [10.0.0.0-10.0.255.255];
Zone HALL_2 [10.1.0.0-10.1.255.255];
Zone HALL [HALL_1, HALL_2];

Router: Routers are interconnection switches in the network. A router can be
connected to a network zone or another router. It consists of set of interfaces.

Interfaces : An interface is the connecting link between a zone and a router or
between multiple routers. Each interface is identified by an unique IP address.

Example 2: Router and Interface Specification
Interface int_R12 [172.16.0.13];
Interface int_R13 [172.16.0.5];
Interface int_R14 [172.16.0.2];
Router R1 [Int_R12, Int_R13, Int_R14];

Formal Verification of Security Policy Implementations 123

Network Service and Policy rule specification: The SPSL has the follow-
ing constructs to specify the network services and policy rules.

Service: Network service is defined by a network protocol and a predicate asso-
ciated with it. Each predicate defines the service port numbers or port ranges.

Example 3: Network Service Specification
service http = TCP [port = 80];
service ssh = TCP [port>20 AND port<23];

Policy Rule: A policy rule defines service access (“permit”/“deny”) path between
a source and a destination zone under some constraints (optional). The static
rules do not include temporal access constraints, whereas temporal rules include
such constraints. SPSL models only time dependent constraints which can be
combination of day and time range specifications. The source and destination
can be zone containing single node, multiple nodes, union of multiple zones or
a zone except a sub-zone. The rules on both incoming and outgoing packets
from/to a zone can be specified through appropriate combination of the source
and destination zone.

Example 4: Policy Rule Specification
deny ssh(HALL, ACAD);
permit telnet([HALL,DEPT_1], ACAD);
deny http(HALL,PROXY)[const=week_day(0800-1700)];

The specification generated from this phase defines the policy model, MP . In the
SAT reduction phase, this policy model is reduced into three boolean functions
PT , PF and “don’t-care”:PX which are described in section 5.

4 Security Implementation Model

Security policy of an enterprise LAN is implemented through a set of device
specific access control rules (ACL) applied to various interfaces of the access
switches (or routers) in a distributed manner. There are various device specific
standards for specifying access control rules e.g. Cisco standard ACL [9]. Most of
the standards are logically similar in the context of implementing basic security
policy of a network. Cisco standard ACL has the feature to represent temporal
constraints and is widely used in large scale networks. Here, the ACL file consists
of an ACL configuration block and a set of ACL rules. The ACL rules represent
the “permit” and “deny” service access paths between specified source and des-
tinations. Set of ACL rules are logically combined into an ACL-group. The ACL
configuration block holds the binding information of ACL-groups to router inter-
faces. The important property of this standard is that the ACL rules under each
ACL-group are top down order dependent. In our approach, a model is extracted
from the device specific ACL implementation corresponding to the global policy
of the network. This process involves following phases; (a) Resolving inter-rule
conflicts and topology dependency (b) Hidden access path analysis.

124 P. Bera, S.K. Ghosh, and P. Dasgupta

4.1 Resolving Inter-rule Conflicts and Topology Dependency

The proposed verification framework checks the statisfiability of the distributed
ACL implementation with the global security policy through reduction of the
rule bases into set of boolean formulas. So, it is required to represent the dis-
tributed ACL rule sets into a single ACL rule base which is inter-rule conflict-free
and network topology independent without changing the ACL rule semantics.
It firstly requires removal of inter-rule conflicts from the rule set associated to
each router interface, and then merging of the conflict-free rule sets in a single
rule base. The ACL inter-rule conflicts may occur due to rule component depen-
dencies which are described as follows.

Rule subsuming conflict: Consider a pair of ACL rules P1 and P2 in the same
ACL-group where P1 precedes P2;

P1 : permit TCP X1, Y1 eq ssh;
P2 : deny TCP X, Y eq ssh; such that (X1 ⊂ X) and (Y 1 ⊂ Y).

Here, source and destination of P1 are subsumed by the same of P2. The pair of
rules semantically means that ssh service accesses from any source in X to any
destination in Y is denied except those where source and destination are X1 and
Y1 respectively. To make these rules conflict-free, it is required to replace the
rule P2 with two new rules P

′
2 and P

′′
2 where,

P
′
2 : deny TCP (X-X1), Y eq ssh;

P
′′
2 : deny TCP X, (Y-Y1) eq ssh.

Similar type of conflict may occur between a pair of static and temporal service
access rules under the same ACL group with identical service component.

Rule Overriding conflict: Consider a pair of ACL rules P3 and P4 in the same
ACL-group where P3 precedes P4;

P3 : permit TCP X,Y eq http;
P4 : deny TCP X,Y eq http.

Here P3 overrides P4 because these rules contradict to each other. As the rule
order is top down, resolving this conflict requires deletion of order-minor rule P4

from the rule base.
On the other hand, consider a pair of rules P5 and P6,

P5 : permit TCP X1, Y1 eq ssh;
P6 : permit TCP X2, Y2 eq ssh;

such that, ((X1 ⊂ X2) and (Y 1 ⊂ Y 2)) or ((X2 ⊂ X1) and (Y 2 ⊂ Y 1)).
In such cases the order-major rule (P5) overrides the order-minor rule (P6).

Resolving these conflicts require deletion of P6 from the rule base.
The inter-rule conflict removal procedure resolves rule subsuming and rule

overriding conflicts through selective insertion/deletion of rules to/from the rule
sets associated to a each router interface. Once the conflicts from each rule set

Formal Verification of Security Policy Implementations 125

is resolved, the procedure removes the binding information (router and interface
bindings) and merges the rule sets into a single rule base which is conflict-free
and network topology independent. The hidden access path analysis procedure
is applied on this rule base which is described in the following section.

4.2 Hidden Access Path Analysis

The hidden access paths may exist in a network due to the transitive access
relationships between various known network services. In section 1.1, it has been
shown how hidden http access paths may appear in a network through conflicting
ssh and telnet services. The hidden access paths can be modeled through a set of
formulas in predicate logic. For example, the hidden http access paths from any
network zone X to any network zone Z can be formally represented as follows:

∀X∀Z, ((∃Y, ssh(X, Y) ∧ http(Y, Z)) ⇒ http(X, Z)) (3)

∀X∀Z, ((∃Y, telnet(X, Y) ∧ http(Y, Z)) ⇒ http(X, Z)) (4)

∀X∀Z, ((∃Y ∃T, ssh(X, Y)[T] ∧ http(Y, Z)[T]) ⇒ http(X, Z)[T]) (5)

∀X∀Z, ((∃Y ∃T, telnet(X, Y)[T] ∧ http(Y, Z)[T]) ⇒ http(X, Z)[T]) (6)

where, X, Y, Z ∈ All Zone represent network zones and T represents arbitrary
time-constraint. All Zone is a set, disjoint union of distinct network zones.

The equations 3 and 4 represent static hidden http access paths whereas, equa-
tions 5 and 6 represent the temporal hidden http access paths with some time
constraint T. The modelling and analysis of hidden http access paths in the ACL
implementation has been carried out in this paper to prove the efficacy of the
approach. Incidentally, Internet access through http is one of the major security
concern in any enterprise network. However, the hidden access paths under other
services can be formally modelled through similar approach.

For the proper assessment of the implementation with respect to the policy
model, all such hidden access paths must be incorporated in the implementation
model. In the present approach, the hidden access rules are reduced into quan-
tified boolean formulas (QBF) and incorporated in the conflict-free ACL rule
base to derive the refined implementation model MI . The boolean reduction of
the ACL implementation model is described in section 5.

5 QSAT Based Verification Procedure

In QSAT based approach, the verification problem is reduced into a quantified
boolean formula (QBF) and its satisfiability is checked. Although satisfiabil-
ity analysis is NP complete problem, still this technique is becoming popular
today due to tremendous time tradeoffs of modern SAT [10] and QBF-SAT
solvers [16] [17]. In the present work, the policy model is reduced into three
boolean functions, PT (V:service, S:source, D:dest, T:time), PF(V,S,D,T) and
don’t-care:PX (V,S,D,T); where, PX = ¬PT ∧¬PF . Whereas, the ACL imple-
mentation model must be complete and should not contain “don’t-care” rules.

126 P. Bera, S.K. Ghosh, and P. Dasgupta

So, the implementation model is reduced into a boolean function, AG(V:service,
S:source, D:dest, T:time) which represents the allowed service access paths be-
tween various network zones in specific time. The negation of AG trivially covers
the service access paths which are not allowed. Then, the hidden access rules are
incorporated in the model to reach the final implementation model, MI . Finally,
the satisfiability of the formula F = ((PT ∨PX ⇒ MI)∧ (PF ∨PX ⇒ ¬MI))
is checked using quaffle QBF-SAT solver [15].

5.1 Boolean Reduction of Models

In this phase, policy and implementation rule bases are functionally reduced into
boolean clauses. There may exists two types of rules in the models: (a) Generic
access control rules (“permit”/“deny”) which are common to both the models
(b) Hidden access rules which are specific to the implementation model. The
boolean reduction of the policy and implementation models are described in the
following subsections respectively.

Policy Model Reduction: The policy model consists of a set of generic service
access rules which represent the access paths to be allowed or blocked between
specific source and destinations. The unspecified access paths are modeled as
“don’t care” rules. The policy model reduction process starts with mapping of
the rule components into boolean variables. The rule components include ser-
vice (protocol, port number), source zone, destination zone, time-constraint and
action. A network zone can be specified as single IP address or range of IP ad-
dresses. So, the source and destination zones are mapped to 32 boolean variables.
A range of IP addresses can be translated using disjunction (∨) operator. Ad-
dress ranges with masks can be reduced by bit-wise anding the masks with the
base addresses. Similarly, protocol type and port numbers are mapped into ap-
propriate boolean variables. In both the models, time constraints are modeled as
disjunction of its valid periods. Each valid time period can contain day of week,
hours and minutes etc. The components of a valid time period are mapped
into a set of boolean variables. The functional mapping of rule components into
boolean variables is depicted in Table 1.

After rule component mapping, the policy model reduction algorithm reduces
thepolicy rules into twoboolean functionsPF(V:service,S:source,D:dest,T:time),
PG(V,S,D,T) based on the action component (“permit/1” or “deny/0”). If the
action is “permit”, then the rule is associated to PT as disjunction (∨); other-
wise, the rule is associated toPF as disjunction (∨). Then the algorithm computes
the boolean function don’t-care:PX (V,S,D,T) as PX = ¬PT ∧ ¬PF . The pol-
icy model reduction algorithm is presented in Table 1 [refer Algorithm1.] Here,
FP, FI, FS, FD and FT are boolean functions over the literals associated to the
booleanvariables corresponding to the rule components:protocol, serviceport num-
ber, source, destination and time-constraint respectively. Each literal can be a
boolean variable or the negation of the variable. The reduced policy model MP
is represented by the boolean formulas, PT N+1, PFN+1 and PX .

Formal Verification of Security Policy Implementations 127

Table 1. Boolean Reduction Of Policy Model

Functional mapping of policy rule components into boolean variables
Protocol(P):FP(p0 , p1)
PortNo(I):FI(i0 , i1, ..., i7)
Src_IP(SIP):FS(s0 , s1, ..., s31)
Dst_IP(DIP):FD(d0 , d1, ..., d31)
Time(T):FT(dt0, dt1, dt2, t0, .., t4)
Action(g):A(g)

Algorithm1 :: Reduce_Pol_Model()
Input: Policy Rule Base {PR1, PR2, .., PRN}
Output: Reduced Policy Model MP [PGN+1, PFN+1 and PX]
1. BEGIN
2. PT 1=1/TRUE, PF1 = 1/TRUE
3. FOR each policy rule PRi (i=1 to N)

4. Ri = Reduce_Gen_Rule(PRi)
5. IF Action(Ri) = “permit” THEN

6. PT i+1 ⇔ (PT i ∨ Ri)
7. PF i+1 ⇔ PF i

8. END IF

9. IF Action(Ri) = “deny” THEN

10. PF i+1 ⇔ (PF i ∨ Ri)
11. PT i+1 ⇔ PT i

12. END IF

13. END FOR

14. PX ⇔ ¬PT N+1 ∧ ¬PFN+1

15. END

Procedure:: Reduce_Gen_Rule()
Input: A generic access control rule, PRi or IRi

Output: Boolean Reduction of the rule, PRi or IRi

1. BEGIN

2. Pi ⇔ FPi(po, p1)∧
3. Ii ⇔ FIi(i0, i1, .., i7)∧
4. Servi ⇔ (Pi ∧ Ii)∧
5. SIPi ⇔ FSi(s0, s1, .., s31)∧
6. DIPi ⇔ FDi(d0, d1, .., d31)∧
7. Ti ⇔ FTi(dt0, dt1, dt2, t0, .., t4)∧
8. Ri ⇔ (Servi ∧ SIPi ∧ DIPi ∧ Ti)
9. Return Ri

10. END

Implementation Model Reduction: This phase reduces the conflict-free
generic ACL rule base into a boolean function, AG(V:service, S:source, D:dest,
T:time). The reduction algorithm starts with an initial model AG0 assigned to
“TRUE”. Then, it formulates boolean clause for each generic ACL rule [refer,
Reduce Gen Rule() in the Algorithm2] and updates AG0 by incorporating the
clause based on rule action. If the action is “permit”, the rule clause is asso-
ciated to the model as disjunction [∨]; whereas for “deny” rules, the negation

128 P. Bera, S.K. Ghosh, and P. Dasgupta

Table 2. Boolean Reduction of Implementation Model

Algorithm2 :: Reduce_Imp_Model()
Input: ACL Rule Base {IR1, IR2, .., IRN}
Output: Reduced Implementation Model MI
1. BEGIN
2. AG1=1/TRUE

3. FOR each generic ACL rule IRi (i=1 to N)

4. FRi = Reduce_Gen_Rule(IRi)
5. IF Action(FRi)=‘‘permit” THEN

6. AGi+1 ⇔ (AGi ∨ FRi)
7. ELSE

8. AGi+1 ⇔ (AGi ∧ ¬FRi)
9. END IF

10. END FOR

11. MI =Reduce_hidden_rule(AGN+1)
12. END

Procedure:: Reduce_hidden_rule()
Input: ACL Rule Model,AGN+1 and hidden rule set {HR1, HR2, .., HRN}
Output: Refined Implementation Model incorporating the hidden rules

1. BEGIN

2. M0 = AGN+1

3. FOR each hidden rule HRi (i=1 to N)

4. M i = Update_model_bool_hidden(M i−1 , HRi)
5. END FOR

6. MI =MN

7. END

Procedure:: Update_model_bool_hidden(M0 , HR1)
Input:Boolean model M0 and hidden rule HR1

[HR1 :: ∀X,∀Z,∃Y, ssh(X, Y) ∧ ssh(Y, Z) ⇒ ssh(X,Z)]
Output: Updated model M1 with reduction of hidden rule HR1

1. BEGIN
2. ∀X,∀Z,∃Y, IF ssh(X, Y) ∈ M0 ∧ ssh(Y, Z) ∈ M0 THEN
3. M1 ⇔ M0 ∨ ssh(X,Z)
4. Return M1

5. END IF

6. END
Reduced Boolean Clause:
∀X,∃Y,∀Z,∃Servssh, [Servssh∧ FS(X) ∧ FD(Y) ⇒ M0]∧
[Servssh ∧ FS(Y) ∧ FD(Z) ⇒ M0] ⇒ [M1 ⇔ M0 ∨ [Servssh ∧ FS(X) ∧ FD(Z)]]

of the clause is associated to the model as conjunction [∧]. In this way, the
procedure formulates the generic ACL rule model, represented as AGN+1 [refer
Algorithm2 in Table 2]. Here, the Reduce_Gen_Rule() procedure functionally
reduces the rule components into boolean as it does in policy model reduction.

After this step, the hidden rule reduction procedure models each hidden access
rule into a quantified boolean formula and incorporates it in the generic ACL rule
model, AGN+1. Initially, AGN+1 is assigned to a model M0, then it is updated

Formal Verification of Security Policy Implementations 129

by the hidden access rules to produce intermediate models, M1, M2 and so on.
Here, the Update_model_bool_hidden() procedure shows the reduction of one
hidden access rule. The final boolean implementation model is represented by
MI . The Implementation model reduction algorithm is presented in Table 2.

5.2 QBF SAT Solver and QSAT Query Formation

We have used quaffle QBF-SAT solver [15] [17] as the verification tool. It takes
QSAT query in standard conjunctive normal form (CNF) and checks its sat-
isfiability. The commonly used format for storing quantified CNF formulae (of
QSAT problems) in ASCII files is QDIMACS [14].

The QSAT query for our problem can be stated as: “Is the ACL implementa-
tion model (MI) satisfies the policy model (MP)”. So, it is sufficient to check
the satisfiability of the expression: F = ((PT ∨ PX ⇒ MI) ∧ (PF ∨ PX ⇒
¬MI)). Here, the formula F is translated into CNF using standard algorithm
for 3-CNF satisfiability [13]. The algorithm forms truth tables for every sub-
expression containing disjunctions of conjunctions and converts it into CNF
applying De-Morgan’s rules where each clause contains at most 3 literals. For
example, equivalent CNF corresponding to the formula F can be represented as
(¬PT ∨MI)∧ (¬PF ∨¬MI)∧ (¬PX ∨MI)∧ (¬PX ∨¬MI). The formula F
(in QDIMACS CNF format) is provided as input to quaffle. It checks the SAT
or UNSAT of the formula.

5.3 Implementations and Verification Results

The SAT reduction algorithms presented in this paper are implemented in C pro-
gramming language under Linux environment. Parsers have been developed for
parsing the policy specification in SPSL and the device specific ACL implemen-
tation in a network. The framework has been verified with various test cases of
implementations under defined policy specifications in an enterprise LAN. Some
of the experimental results under the academic network [refer Fig 1] are shown
in Table 3. It shows number of policy and ACL rules along with the variables
and clauses in the reduced QSAT query under each test case. The result also
shows SAT/UNSAT of the QSAT query along with the SAT reduction time and
quaffle execution time. Here the number of policy and ACL rules are indicated
by P and I respectively. The parameters V , Q and C indicate the number of
variables, quantified variables and CNF clauses in the QSAT query respectively.
TCR, TSAT and TE indicate the ACL conflict removal time (in seconds), SAT
reduction time(in seconds) and quaffle run time (in milliseconds) respectively.
The SAT result implies that the implementation satisfies the policy whereas the
UNSAT implies implementation does not satisfy the policy. The SAT reduction
time indicates the time required to represent the policy and ACL rule bases into
boolean models and to formulate the QSAT query. It is linearly dependent on
the number of policy, ACL rules and hidden rules. Normally, hidden rule reduc-
tion time remains constant as the number of hidden rules is fixed in the model.
On the other hand the ACL Conflict removal time is exponentially dependent
on the ACL rule count as the procedure incorporates linear search on the ACL

130 P. Bera, S.K. Ghosh, and P. Dasgupta

Table 3. Verification Results

Test Cases P I V Q C quaffle Output TCR TSAT TE

TC1 10 10 80 21 159 SAT 2.84 7.16 1.19

TC2 23 25 88 24 198 UNSAT 4.57 8.17 0.88

TC3 23 28 88 24 201 SAT 4.63 8.34 0.75

TC4 38 38 94 28 231 UNSAT 5.21 9.33 1.17

TC5 45 32 94 22 215 SAT 5.11 8.47 0.93

TC6 45 45 90 25 245 UNSAT 5.76 9.17 1.12

TC7 56 52 98 25 260 UNSAT 5.55 9.56 1.12

TC8 56 56 101 25 263 SAT 5.12 8.57 0.95

rule base for finding conflicts. Typically, for large enterprise network, the number
of policy and ACL rules lies within few hundreds. Further, the framework uses
an efficient QBF-SAT solver, quaffle, which can process millions of clauses in a
single run and produce the output in negligible time (usually, within a second).
So, the framework will scale considerably well for standard enterprise LANs.
The framework will help the network administrators in debugging the security
implementations and the policy designers in making their policy specification
correct and precise.

6 Conclusion

In today’s complex enterprise network, there is an increasing requirement of val-
idating the security implementation with the organizational security policy. This
paper presents a formal verification framework to verify the access control based
security implementations with respect to partially specified security policies for
an enterprise LAN. The major contribution of the work lies in the analysis of
the hidden service access paths, which plays a significant role in deriving correct
security implementations in a network. The efficacy of the framework has been
demonstrated through a case study. The proposed framework will facilitate in
debugging of network security implementations efficiently and designing conflict
free security policies in an enterprise network. Our future work is to address the
security issues incorporating policy based routing and role based access control
models in the implementation.

References

1. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A Novel Firewall Manage-
ment Toolkit. ACM Transaction on Computer Systems 22(4), 381–420 (2004)

2. Al-Shaer, E.S., Hamed, H.H.: Discovery of Policy Anomalies in Distributed Fire-
walls. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, China, March 2004,
pp. 2605–2626 (2004)

Formal Verification of Security Policy Implementations 131

3. Uribe, T.E., Cheung, S.: Automatic Analysis of Firewall and Network Intrusion De-
tection System Configurations. In: ACM Workshop on Formal Methods in Security
Engineering, Washington, DC, USA, October 2004, pp. 66–71 (2004)

4. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C., Mohapatra, P.: FIREMAN: A
Toolkit for Firewall Modeling and Analysis. In: 27th IEEE Symposium on Security
and Privacy, Oakland, CA, USA (May 2006)

5. Matsumoto, S., Bouhoula, A.: Automatic Verification of Firewall Configuration
with Respect to Security Policy Requirements. In: Proceedings of the International
Workshop on Computational Intelligence in Security for Information Systems (CI-
SIS 2008), Barcelona, Spain, October 2008, pp. 123–130 (2008)

6. Liu, A.X., Gouda, M.G.: Complete Redundancy Detection in Firewalls. In: Jajodia,
S., Wijesekera, D. (eds.) Data and Applications Security 2005. LNCS, vol. 3654,
pp. 193–206. Springer, Heidelberg (2005)

7. High Level Firewall Language, http://www.hlfl.org/ (Accessed on April 2009)
8. Zhang, B., Al-Shaer, E.S., Jagadeesan, R., Riely, J., Pitcher, C.: Specifications of

A High-level Conflict-Free Firewall Policy Language for Multi-domain Networks.
In: 12th ACM Symposium on Access control models and Technologies (SACMAT
2007), France, June 2007, pp. 185–194 (2007)

9. CISCO: Configuring IP access lists. CISCO white papers 23602 edition (July 2007)
10. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff 2004: An efficient SAT solver. In: Hoos,

H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer,
Heidelberg (2005)

11. Zhang, C.C., Winslet, M., Gunter, C.A.: On the Safety and Efficiency of Firewall
Policy Deployment. In: 28th IEEE Symposium on Security and Privacy, Oakland,
CA, USA, May 2007, pp. 33–50 (2007)

12. Matousek, P., Rab, J., Rysavy, O., Sveda, M.: A Formal model for Network-wide Se-
curity Analysis. In: Proceedings of 15th IEEE International Conference and Work-
shop on ECBS, Belfast, Ireland (2008)

13. Hofmeister, T., Schoning, U., Schuler, R., Watanabe, O.: A Probabilistic 3-SAT
Algorithm further improved. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS,
vol. 2285, pp. 192–202. Springer, Heidelberg (2002)

14. QDIMACS Standard Version 1.1., http://www.qbflib.org/qdimacs.html (Ac-
cessed on March 2009)

15. Yu, Y., Malik, S.: Yquaffle QBF solver,
http://www.princeton.edu/chaff/quaffle.html (Accessed on March 2009)

16. Giunchinglia, E., Narrizzano, M., Tacchella, A.: QUBE: A System for deciding
quantified boolean formulas satisfiability. In: International Joint Conference on
Automated Reasoning (IJCAR), pp. 364–369 (2001)

17. Zhang, L., Malik, S.: Towards Symmetric treatment of Conflicts and satisfaction
in quantified Boolean satisfiability. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

http://www.hlfl.org/
http://www.qbflib.org/qdimacs.html
http://www.princeton.edu/chaff/quaffle.html

Making Peer-Assisted Content Distribution

Robust to Collusion Using Bandwidth Puzzles

Michael K. Reiter1, Vyas Sekar2, Chad Spensky1, and Zhenghao Zhang3

1 University of North Carolina, Chapel Hill, NC, USA
2 Carnegie Mellon University, Pittsburgh, PA, USA

3 Florida State University, Tallahassee, FL, USA

Abstract. Many peer-assisted content-distribution systems reward a
peer based on the amount of data that this peer serves to others. How-
ever, validating that a peer did so is, to our knowledge, an open prob-
lem; e.g., a group of colluding attackers can earn rewards by claiming
to have served content to one another, when they have not. We propose
a puzzle mechanism to make contribution-aware peer-assisted content
distribution robust to such collusion. Our construction ties solving the
puzzle to possession of specific content and, by issuing puzzle challenges
simultaneously to all parties claiming to have that content, our mecha-
nism prevents one content-holder from solving many others’ puzzles. We
prove (in the random oracle model) the security of our scheme, describe
our integration of bandwidth puzzles into a media streaming system, and
demonstrate the resulting attack resilience via simulations.

1 Introduction

Many systems that distribute content with the help of peer-to-peer (P2P) over-
lays measure peer contribution and incentivize participation. Peers who con-
tribute more are rewarded with better performance via higher priority in the
distribution overlay (e.g., [1, 2, 3]) or priority service through server-assisted
downloads (e.g., [4]), or with other mechanisms (e.g., discount coupons [4]). We
refer to such systems as contribution-aware peer-assisted content distribution
systems.

Unfortunately, mechanisms for demonstrating how much data a peer has
served are vulnerable to a simple form of “shilling” [5,6], where colluding attack-
ers report receiving service from each other without actually transferring content
among themselves. In some systems, these attackers can degrade the system, e.g.,
by gaining a powerful position in the distribution overlay and then launching a
denial-of-service attack [1, 2]. In others, this enables them to get higher prior-
ity service while contributing only a limited amount of upload bandwidth. Such
attacks are not merely hypothetical, but occur frequently in widely used P2P
systems (e.g., [3,7,8,9]). Fundamentally, what makes the problem difficult is that
with today’s network infrastructure, it is impossible for a third party to verify
if a specific data transfer occurred between two colluding entities.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 132–147, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Making Peer-Assisted Content Distribution Robust to Collusion 133

We propose a bandwidth puzzle mechanism to make contribution-aware P2P
content distribution robust to collusion attacks. With this mechanism, a verifier
can confirm that claimed transfers of content actually occurred. For example, in
P2P media streaming from a distinguished server (e.g., [1, 10, 2, 11]), or in P2P
systems that have a distinguished node for tracking content-transfer transactions
(e.g., [3,4,12]), this distinguished node can naturally play the role of the verifier.

There are two key insights behind our design. First, to those peers (or “provers”)
claiming to have some specific content, the verifier presents puzzles for which the
solution depends on the content. That is, the solution is computationally simple for
a prover who has the content, but more difficult for a prover who does not. Second,
the verifier simultaneously presents these puzzles to all peers who currently claim
to have the content, so as to make it difficult for a few peers who have the content to
quickly solve both their own puzzles and puzzles for collaborators who do not. The
verifier checks the puzzle solutions and also notes the time taken by the provers to
report the solutions. Any peer whose solution is incorrect or whose solution time
is greater than a threshold θ is a suspect for engaging in fake transactions. The
verifier can either deny or revoke credits granted in these transactions.

Our design is lightweight and easy to implement in peer-assisted content dis-
tribution systems. Its security analysis, however, is more subtle than the design
might at first suggest. An analysis must account for any strategy by which ad-
versaries might allocate portions of each puzzle’s search space so as to optimally
utilize the time θ that each has to invest and, more importantly, the content
bits that each possesses. We provide (in the random oracle model) a bound on
the expected number of puzzles that a collection of adversaries can solve in θ
time (using any such strategy), as a function of the number of content bits each
possesses at the time the puzzles are issued and the numbers of hash compu-
tations and additional content bit retrievals that each adversary can perform
in θ time. For example, this bound implies that for content of size n bits, an
instance of our puzzle construction ensures that all adversaries claiming to have
the content must download Ω(n) content bits to solve their puzzles in expecta-
tion, even if they retrieve up to nε bits on average before the puzzles are issued,
for some constant ε < 1. Moreover, this puzzle construction is efficient: It en-
ables the verifier to construct each puzzle in n ln n

n−nβ + O(1) pseudorandom
function computations in expectation and two hash function computations, for
a configurable constant 0 < β < 1, and to verify each puzzle in one comparison
of hash function outputs. (Note that ln n

n−nβ = o(1), and so n ln n
n−nβ = o(n).)

An honest prover invests 1
2n1+α ln n

n−nβ + O(nα) time in expectation to solve
this puzzle, for a configurable constant α > 0 such that α + β > 1.

We demonstrate the viability of bandwidth puzzles by integrating them into
a functional multimedia streaming application. We find that a single verifier can
scale to challenging thousands of peers simultaneously with puzzles, even while
streaming content to other clients, and that puzzle distribution and solving intro-
duce minimal jitter into the stream. We also show the benefits of bandwidth puz-
zles against attacks in a simulated large-scale P2P streaming deployment, where
we show that puzzles improve the legitimate clients’ stream quality 40-300%

134 M.K. Reiter et al.

(depending on the number of attackers) and reduce the attackers’ quality by more
than 2×. Moreover, the puzzle scheme limits the impact of such attacks by pro-
viding legitimate clients with performance nearly identical to the scenario when
there are no attackers in the system.

To summarize, the contributions of this paper are: (i) the design of bandwidth
puzzles (§4), a practical defense against a documented form of attack on P2P
systems; (ii) analyses of our construction (in the random oracle model) that
bounds the success attainable by adversaries against it (§5); (iii) implementation
and evaluation of our construction in a functional streaming application (§6);
and (iv) a demonstration of the benefits of puzzles on a simulated large-scale
P2P streaming deployment (§7).

2 Related Work

Incentives in P2P systems: Several studies have demonstrated the limitations
of P2P protocols in the presence of selfish or malicious users [13, 7]. Rewarding
peer contributions can overcome these limitations (e.g., [1,13]), but such mecha-
nisms cannot prevent colluding attackers from freely granting each other credits
for fake transactions. Bilateral (tit-for-tat) mechanisms such as BitTorrent ap-
pear robust to collusion attacks. However, several studies (e.g, [13, 14, 15, 16])
point out the limitations of bilateral mechanisms, and make the case for global
mechanisms. By equating peers’ debit and credit amounts for receiving and pro-
viding service, respectively, collusion can be made to yield no net gain (e.g., [4]).
However, there are valid reasons to not equate the debit and credit amounts,
such as asymmetries in upload and download bandwidth, and social considera-
tions (e.g., [3]). Some global contribution-awareness schemes use pricing mecha-
nisms (e.g., [17]), some of which are theoretically collusion-resistant (e.g., [16]).
However, currency management presents practical challenges for these schemes.
These challenges include bootstrapping new users in a Sybil-proof manner and
ensuring rapid price convergence and sufficient liquidity in the presence of sys-
tem churn. Bandwidth puzzles are a lightweight alternative to provide collusion
resistance that avoids currency management challenges, by seeking instead to
directly detect when collusion (including with Sybils) occurs.

Failure to report transactions or solve puzzles: Clients are responsible for
reporting transactions and solving puzzles in order to grant uploaders credits
for the transaction. This raises the possibility of downloaders failing to report
transactions or solving the puzzles and thus not giving adequate credit to their
uploaders. This problem is orthogonal to the collusion attacks we consider and
can be addressed by using fair-exchange [4] or proof-of-service [18] mechanisms.

Client puzzles: Client puzzles (e.g., [19, 20, 21]) force clients to demonstrate
proofs-of-work to a server. This is used to throttle the number of requests that
a client can issue to defend against spam and denial-of-service attacks. Our
bandwidth puzzle scheme is an adaptation of this approach, in order to “throttle”
the reward that a client can receive for claimed content transfers, by tying puzzle
solving to the content transferred and issuing puzzle challenges simultaneously.

Making Peer-Assisted Content Distribution Robust to Collusion 135

Sybil attacks: Our adversary model – colluding attackers claiming to have con-
tributed more resources than they actually have – is similar to a Sybil attack.
Douceur [22] suggests that Sybils can be detected using simultaneous puzzle
challenges similar to our work. These puzzles validate that each claimed “iden-
tity” owns some amount of computation resources. Bandwidth puzzles instead
validate that each client has expended some amount of communication resources.

Proofs of data possession (PDP) and retrievability (POR): Our puzzle
mechanism ties the puzzle solution to some specific content. In this respect, our
construction is related to proofs of data possession (PDP) [23,24,25] and proofs
of retrievability (POR) [26, 27, 28], that enable a user to verify that a remote
store has not deleted or modified data the user had previously stored there.
There are several conceptual differences between PDP/POR schemes and our
puzzle scheme. First, PDP/POR focus only on the interaction between a single
prover and verifier, and do not deal with multiple colluding adversaries. Second,
PDP schemes minimize the communication between the prover and the verifier,
without requiring that there be an asymmetry in the computation effort they
expend. However, such an asymmetry and the ability to tune that asymmetry is
crucial for our scheme. In particular, the solving cost must be sufficiently high
— even with the claimed content — to prevent one prover with the content
from solving puzzles for many others, and at the same time puzzle generation
and verification must be very efficient since the verifier must do these simultane-
ously for many provers. Third, PDPs/PORs presume that the verifier no longer
possesses the file about which it is querying. However, many settings in which
we are interested (e.g., multimedia streaming of live events) lend themselves to
having a verifier with access to the content being transferred.

3 System Model and Goals

Our system model consists of a designated verifier and untrusted peers, also
called provers. Any node can be a verifier, if it can obtain the list of peers that
purport to possess certain content and it has access to that content. We assume
that peers report to the verifier the content they claim to have downloaded from
others. P2P-assisted CDNs (e.g., [12], www.pandonetworks.com/cdn-peering),
P2P assisted file-hosting (e.g., www.vipeers.com), and P2P streaming (e.g., [10,
1, 2, 29]) have a central node that can (or already does) serve this role.

Our goal is to enable the verifier to ensure that the claimed bandwidth ex-
penditures to transfer that content actually occurred. The verifier does this by
simultaneously presenting puzzles to the peers claiming to have certain content,
and then recording the duration required by each prover to report its solution.
We presume that the network latencies for sending puzzles and solutions between
the verifier and the provers are stable over the timescales involved in puzzle solv-
ing [30]. On the basis of solution correctness and the puzzle-solving time, which
it compares to a threshold θ, the verifier generates a list of peers suspected of
not having the claimed content. The verifier can then take action to ensure that
the uploaders in these suspicious transfers do not receive credits for them.

www.pandonetworks.com/cdn-peering
www.vipeers.com

136 M.K. Reiter et al.

These puzzles should have properties typical of puzzle schemes: (i) Provers
should be unable to precompute puzzle solutions, or use previous puzzle solutions
to generate new puzzle solutions. (ii) The verifier should incur low computational
costs to generate puzzles and check puzzle solutions, and should incur low band-
width costs to send the puzzles and receive the solutions. (iii) The verifier should
be able to adjust the difficulty of the puzzle, as appropriate.

Unlike previous puzzle constructions, however, bandwidth puzzles must also
ensure that for colluding provers to solve their puzzles within time θ, the con-
tent each receives in doing so, on average (possibly before receiving the puzzle
itself), is of size roughly proportional to the full content size. Were it not for the
simultaneity in issuing puzzles, this would be impossible to achieve: each chal-
lenged prover could forward its puzzle to a designated solving prover who had
the content, who could solve the puzzle and return it to the challenged prover.
By (ii) above, the puzzle and solution would be small, implying that the band-
width exchanged between the challenged prover and the solving prover would be
small. Simultaneous puzzle challenges preclude such a strategy, since the solving
prover is limited in the number of puzzles it can solve in time θ.

The above goal comes with three caveats. First, it is not possible for the
verifier to ascertain which (if any) of the colluders actually has the content, even
if it detects one or more of them as colluders via our scheme. For example, a
prover with the content could invest its time in solving another prover’s puzzle,
at the expense of solving its own. Second, the content must not be substantially
compressible. If it were, then provers could exchange the compressed version in
lieu of the original, and our goal could not be achieved. As such, in the rest of
this paper we treat the content as random, i.e., in which each bit is selected
uniformly at random.1 Third, due to churn, peers that previously downloaded
content might no longer be available for solving puzzles. These peers could,
however, aid collaborators that remain in the system by solving puzzles for them.
Our scheme is most effective if most content exchanges for which a peer should
be rewarded occur shortly after the initial distribution of the content, as would
be appropriate for, e.g., streaming video of a live event. In this way, any content
held by such “hidden” collaborators quickly becomes useless for solving puzzles.

4 The Construction

Let “ ← ” denote assignment; “x
R← X” denote selection of an element from set

X uniformly at random and its assignment to x; and “||” denote concatenation.

Security parameters: There are three security parameters that play a role in
our construction. We use κ to denote the length of hash function outputs and
keys to pseudorandom functions (see below). A reasonable value today might be
κ = 160. The other two security parameters are denoted k and L, and together
combine to dictate the difficulty of puzzle solving, and the costs that the verifier
and prover incur in generating and solving puzzles, respectively.
1 Note that this incompressibility requirement is already true for many of the popular

formats (e.g., MPEG, DivX) in use today for transferring multimedia content.

Making Peer-Assisted Content Distribution Robust to Collusion 137

Hash functions: We use two hash functions: hash : {0, 1}κ×{1 . . .L}×{0, 1}k →
{0, 1}κ and ans : {0, 1}k → {0, 1}κ. (Hash functions typically take a single string
as input; we can encode the three inputs to hash in an unambiguous fashion as a
single string input.) To prove security of our construction in §5, we model hash
as a random oracle, though collision-resistance of ans suffices.

Pseudorandom functions: A pseudorandom function family {fK} is a family
of functions parameterized by a secret key K ∈ {0, 1}κ. Informally, it is infeasible
to distinguish between an oracle for fK where K

R←{0, 1}κ, and an oracle for a
perfectly random function with the same domain and range; see [31] for a formal
definition. We use families {f1

K : {1 . . .L} → {0, 1}κ} and {f2
K : {1 . . . k} →

{1 . . . n}}. We require that each f2
K be injective, and thus that k ≤ n, where n is

the content size in bits. We will discuss efficient implementations for f2 below.
Pseudorandom functions and hash functions achieve their desired properties

— indistinguishability from a random function in the first case, and collision-
resistance in the second — with all but negligible probability as a function of
κ.2 For the rest of this paper, we assume that these properties hold, ignoring
events that occur with probability negligible in κ.

verifier prover

K1
R←{0, 1}κ

�̂
R←{1 . . . L}

K̂2 ← f1
K1(�̂)

ˆstr ← content(f2
K̂2

(1))|| . . .
. . . ||content(f2

K̂2
(k))

ĥ ← hash(K1, �̂, ˆstr)
â ← ans(ˆstr)

K1,ĥ
�

measure
this

duration
dur

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for � ∈ {1 . . . L}
K2 ← f1

K1(�)
str ← content(f2

K2(1))|| . . .
. . . ||content(f2

K2(k))

if (hash(K1, �, str) = ĥ)
a ← ans(str)
return a

a
�

if (a
= â ∨ dur > θ)
suspect prover

Fig. 1. One bandwidth puzzle

Construction: The puz-
zle verifier generates puzzles
to challenge a collection of
provers simultaneously. Gen-
erally, we assume that the
verifier generates one puz-
zle per prover, though there
is no obstacle to sending
multiple puzzles per prover.
Each puzzle consists of a
hash value ĥ output from
hash and, intuitively, a col-
lection of index-sets I1 . . . IL.
Each index-set is a set of k
random content indices, i.e.,
uniformly random samples
from {1 . . . n}, without re-
placement. The verifier com-
putes ĥ as the hash of the
content bits indexed by a
randomly chosen index-set,
appended together in an un-
ambiguous order. Solving the
puzzle means finding which of the L index-sets has this property and, more
specifically, the string that hashes to ĥ. This requires at most L computations

2 A function g(·) is negligible if for any positive polynomial p(·), there is a κ0 such
that g(κ) ≤ 1/p(κ) for all κ ≥ κ0.

138 M.K. Reiter et al.

of hash for a prover who possesses the content, but could require substantially
more for a prover who is missing some of the content indexed by the index-sets
in the puzzle.

This construction, as described, would be inefficient. First, sending L index-
sets of k indices each would require computation proportional to kL to generate
the sets and then communication costs proportional to kL log2 n to transmit
them. To reduce these costs, the verifier generates index-sets pseudorandomly;
see Fig. 1. First, it randomly selects a key K1 for the family f1 and an index
�̂

R←{1 . . . L} to denote the index-set from which the challenge ĥ will be gener-
ated. Second, it generates a key K̂2 ← f1

K1
(�̂) from which it generates index-set

I�̂ = {f2
K̂2

(1) . . . f2
K̂2

(k)}. Note that the verifier never needs to generate the other
L − 1 index-sets, reducing its costs proportional to k alone. Simply sending K1

and ĥ suffices to enable the prover to search for �̂, and incurs communication
costs proportional only to κ. Because f1 and f2 are pseudorandom, the prover is
unable to predict the index-sets better than random guessing prior to receiving
K1. Another way in which we reduce the communication costs is for the prover
to return ans(str) for the string str satisfying ĥ = hash(K1, �̂, str), rather than
str itself. As we will see, it is generally necessary for k (and hence str) to grow
as a function of n, whereas there is no such need for κ (the size of ans outputs).

Finally, a subtle but important implementation challenge arises for f2, because
our security analysis in §5 requires that f2 be injective. A natural approach
to implement f2, then, would be as a pseudorandom permutation (PRP) on
{1 . . . n}, but known constructions of PRPs for small domains from ones for larger
domains (e.g., AES) are relatively quite expensive (e.g., [32]). The approach we
use here exploits the fact that for any given key K, f2

K is evaluated in our
construction on all of 1 . . . k anyway. Specifically, for a pseudorandom function
family {f3

K : {1, 2, . . .} → {1 . . . n}}, we define f2
K(k′) to be the k′-th distinct

value in the sequence f3
K(1), f3

K(2), . . .; i.e., we “skip over” repeat outputs from
f3

K . For this implementation, we prove the following:

Theorem 1. The construction of Fig. 1 has (i) expected puzzle generation cost
of one hash computation, one ans computation, and n ln n

n−k + O(1) pseudoran-
dom function computations, and (ii) expected puzzle solution cost (by an honest
prover) of 1

2L hash computations, one ans computation, and 1
2Ln ln n

n−k + O(L)
pseudorandom function computations.

Proof. The result follows by a “coupon collector” analysis. When generating
f2

K2
(1) . . . f2

K2
(k) for the �-th index-set (i.e., K2 ← f1

K1
(�)), let Xi be a random

variable denoting the number of computations of f3
K2

while having collected ex-
actly i − 1 distinct outputs of f3

K2
. Then, Xi is geometrically distributed with

parameter pi = 1 − i−1
n , and E [Xi] = 1

pi
= n

n−i+1 . So, the expected num-

ber of computations of f3
K2

is E
[∑k

i=1 Xi

]
=
∑k

i=1 E [Xi] =
∑k

i=1
n

n−i+1 =

n
(∑n

i=1
1
i −

∑n−k
i=1

1
i

)
= n ln n

n−k + O(1) since the harmonic number H(n) =∑n
i=1

1
i satisfies H(n) = lnn + γ + O(1/n) for γ a constant. Given this, the puz-

zle generation cost can be calculated by counting up the other operations, and

Making Peer-Assisted Content Distribution Robust to Collusion 139

the puzzle solving cost follows because the prover must generate 1
2L index-sets

in expectation and invoke hash once per index-set to solve the puzzle.

Note that ln n
n−k = o(1) for any k = o(n), e.g., k = nβ for 0 < β < 1, as

discussed in §5. So, the cost of puzzle generation is sublinear in n.

5 Security

For proving the security of our construction, first recall that we assume that {f1
K}

and {f2
K} are pseudorandom function families [31], and that ans is a collision-

resistant hash function. The hash primitive is modeled as a random oracle in
our proof, which enables us to quantify the security of our scheme as a function
of the number of hash computations. That is, we cap the number qhash of hash
queries that any prover can complete in θ time, and then quantify the probability
with which the prover returns â as a function of qhash. Moreover, modeling hash
as a random oracle enables us to exploit the property in our proof that one
such computation provides no information about the computation of hash on
any other value.

Of course, the probability that an adversarial prover succeeds in returning
â within θ time (i.e., after making at most qhash queries to hash) also depends
on the number of content bits it receives before and during the puzzle-solving
process. We model a prover’s retrieval of content bits as calls to a random oracle
content : {1 . . . n} → {0, 1}. As discussed in §3, our construction requires that the
content being exchanged have sufficient empirical entropy to be incompressible,
as otherwise adversaries could “defeat” our verification by exchanging (in full)
the compressed content. Thus, we model the content as a random string of length
n, and track the number of bits that an adversary retrieves prior to returning a
puzzle solution by the number of queries it makes to its content oracle.

Theorem 2. Let hash and content be random oracles. Consider A collaborat-
ing adversaries, who are (i) collectively challenged to solve P puzzles; (ii) each
permitted qhash queries to hash; and (iii) collectively permitted Aqpre queries to
content before the distribution of the puzzles and Aqpost after. For any s and k̂

satisfying 1 ≤ s ≤ PL and log2(qhash +L)+2 ≤ k̂ ≤ k
(
1 − qpre

n

)
−1, the expected

number of puzzles that these adversaries can solve collectively is at most

AP

L

(
sqpost

k̂ − log2(qhash + L) − 1
+ 1

)
+ PnΨ

(
s, PL,

k

n

)
+ P 2LΨ

(
k − k̂, k,

Aqpre

n

)
where Ψ(x, m, p) = P [X ≥ x] for a binomially distributed r.v. X ∼ B(m, p).

The proof of this result is too lengthy to include here; the interested reader is
referred to our companion technical report [33]. Very briefly, the second term of
this sum accounts for the possibility that some i ∈ {1 . . . n} appears in s or more
index-sets, and the third term accounts for the possibility that the adversaries
queried k − k̂ or more indices in some index-set before the puzzles were issued.

140 M.K. Reiter et al.

The first term, then, bounds the number of puzzles the adversaries solve in
expectation when neither of these events occur.

To see a consequence of Theorem 2, consider a constant number A of adver-
saries (i.e., constant as a function of n) challenged with a constant number P of
puzzles (typically P = A) and that seek to each retrieve some qpre ≤ nε content
bits on average, where 0 ≤ ε < 1, before the puzzles are issued. Suppose that
qhash = L, and consider setting L = nα for some α > 0 and k = nβ for some
0 < β < 1 where α+β > 1. Consider setting k̂ = k−k(δ+ Aqpre

n) for any constant
0 < δ < 1, in which case log2(qhash + L)+ 2 ≤ k̂ ≤ k

(
1 − qpre

n

)
− 1 for sufficiently

large n and we can show that P 2LΨ
(
k − k̂, k,

Aqpre

n

)
→ 0 as n → ∞. Setting

s = (1 + δ′)PLk
n for δ′ > 0 implies PnΨ

(
s, PL, k

n

)
→ 0 as n → ∞. For this value

of s, Theorem 2 implies that qpost = Ω(n) for the adversaries to solve P (or any
constant number of) puzzles in expectation. This, in our opinion, is a strong
result: to solve the P puzzles in expectation, each adversary must retrieve, on
average, an amount of the content roughly proportional to its size, even if each
retrieves, on average, up to nε bits of the content before the puzzles are issued.

19 20 21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

A = 1
A = 5

A = 10

A = 20

A = 30

A = 40

A = 50

log
2
(n)

M
in

(P
,T

he
or

em
 2

 B
ou

nd
)

Fig. 2. An example of Theorem 2

Examples of Theorem 2 for dif-
ferent values of A and n are shown
in Fig. 2, which plots the minimum
of P and that bound for P = A,
L = 1

12n71/100, k = 1
4n3/10, qpre =

n3/10, qpost = n3/10, s = 21An1/100,
and k̂ chosen optimally in the range
log2(qhash +L)+2 ≤ k̂ ≤ k

(
1 − qpre

n

)
−

1. For these parameters, presenting
puzzles every n = 222 bits ≈ 520KB
suffices to detect half of five collabo-
rating adversaries in expectation, and
presenting puzzles for each n = 225 bits ≈ 4MB suffices to detect half of 50
collaborating adversaries in expectation. Moreover, our bound is loose in several
respects, and so the detection capability of this approach is even better than
shown in Fig. 2.

6 Evaluation in a Media Streaming System

We implemented and evaluated a contribution-aware peer-assisted content dis-
tribution system augmented with bandwidth puzzles. The system is designed for
streaming real-time media, e.g., a live broadcast of an event [10,1,2,29]. It uses
a real-time transport protocol (RTP [34], jlibrtp.org) to stream media to a
set of seed clients; these clients can then stream this to other clients over a P2P
overlay. The server also acts as the verifier. In this role, it maintains a persistent
TCP connection with each client (including the seeds) over which puzzle chal-
lenges and responses are communicated for each n bits of the media stream. Each
client solves puzzles using a separate thread from that which handles the stream.

jlibrtp.org

Making Peer-Assisted Content Distribution Robust to Collusion 141

Our puzzle implementation uses AES to implement f1 and f3 (and hence f2),
and SHA-256 to implement hash and ans.

We evaluate our system on Emulab [35] using five classes of machines: 600MHz
Pentium III with 256MB of memory (Class A); 850MHz Pentium III with 256MB
of memory (Class B); 2GHz Pentium 4 with 512MB of memory (Class C); 3GHz
64-bit Xeon with 2GB of memory (Class D); and 2.4GHz Pentium Core 2 Duo
with 2GB of memory (Class E). The server/verifier was a Class E machine. The
server sends a 768Kbps stream3 to 50 seed clients4 over a 100Mb/s network.
We also configured the network with wide-area parameters in certain tests, as
described below. In all our experiments, we fixed L = 1

12n71/100 and k = 1
4n3/10,

and so the security bounds in Fig. 2 are representative for our experiments.

21 22 23 24 25
0

5

10

15

20

25 A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

log
2
(n)

R
at

io

Fig. 3. Ratio of 95th percentile puzzle-
solving time for Class-X machine (X ∈ {A,
B, C, D, E}) to 50th percentile puzzle-
solving time for Class-E machine during live
streaming experiments

Client heterogeneity and choice
of n: We first examine the impact
of n on puzzle-solving time and the
advantage that faster computers have
over slower ones, since the threshold θ
must allow for slower computers to re-
liably solve their puzzles. Fig. 3 shows
the ratio of the 95th percentile time
for a Class-X machine (X ∈ {A, B,
C, D, E}) to the 50th percentile time
for a Class-E machine. If the slowest
clients that the server accommodates
are of Class X, and the fastest are of
Class E, then Fig. 3 shows the num-
ber of puzzles that the Class-E client
can solve in θ time, if θ is set so that the Class-X client can solve one puzzle
reliably.

Fig. 3 shows a large gap in puzzle-solving ability between the slowest and
fastest machines. That said, the slowest machines would presumably not meet
the minimum system requirements for viewing a live stream anyway; e.g., of
the classes we consider, only D and E meet ESPN360’s minimum requirements
(see espn.go.com/broadband/espn360/faq#21). So, we discard Classes A and
B (and conservatively include Class C) for the rest of our evaluation. Fig. 3 then
shows that an attacker with a Class-E machine can successfully impersonate
roughly seven Class-C machines, and so could inflate his claimed transfers by
7×. While not ideal, this provides a limit on the extent to which an adversary can
game the system. Designing memory-bound extensions of our scheme to reduce
the variability in solving time across different classes of machines [36, 21] is an
interesting avenue for future work.

3 For example, ESPN360 requires 400Kbps and recommends 768Kbps, see
espn.go.com/broadband/espn360/faq#21

4 As a point of comparison, the server in the popular P2P streaming system PPLive
supports 25 seed clients at 400Kbps [11].

espn.go.com/broadband/espn360/faq#21
espn.go.com/broadband/espn360/faq#21

142 M.K. Reiter et al.

Having chosen to focus on machine classes C, D, and E, we further narrow
our attention to puzzles for each n = 223 bits for the rest of our evaluation.

Application Impact: We now consider the impact on jitter of introducing
puzzle solving into media streaming. Jitter [34] is an estimate of the statistical
variance of the RTP (application layer) data packet interarrival time. Fig. 4
shows the distribution of jitter of the media stream at clients for a duration
including 100 puzzle challenges, for different machine classes. Fig. 4 is a box-and-
whiskers plot; each box shows the 25th percentile, median and 75th percentile
values, and the whiskers extend to the 1st and 99th percentile values. As this
figure shows, puzzles have little impact on jitter for any of Classes C–E.

C+P C D+P D E+P E
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Machine Class

Ji
tte

r

Fig. 4. Jitter per machine class. “+P” in-
dicates with puzzles.

Verifier Scalability: To test scala-
bility, we fixed the number of clients
to which a Class E server streams con-
tent at 50, but had it simultaneously
generate and send puzzles to a num-
ber of clients (in addition to these 50)
ranging from 0 to 10000. Due to lim-
its on the number of available Emulab
computers, we co-located the puzzle-
receiving clients on a few machines,
but still established an independent
TCP connection to each one. We sam-
pled the CPU and memory usage of the verifier (both user and system) during
the tests at half-second intervals using top. Fig. 5(a) shows the distribution of
CPU usage for the verifier in such a test. The verifier’s median and even 75th
percentile utilization is largely unchanged by challenging 10050 clients, and also
sending the stream to 50 of them. The 99th percentile does increase, though it
never reaches 100%. (Memory utilization exhibited moderate growth, and far
less variance. It topped out at less than 75% in the 10050-client case.) We also
confirmed the simultaneity of puzzle distribution in these tests: the time between
sending the first puzzle and receiving an application-level acknowledgement from
the last client to which a puzzle was sent (i.e., the 10050th) was at most 450ms.
It is clear that even a moderately well-provisioned verifier machine scales beyond
10000 clients, and a machine with more cores and memory should easily scale
far beyond that.

We also monitored one of the 50 clients receiving the media stream during
these tests, to see the impact on its jitter as the number of puzzle-solving clients
is increased. Fig. 5(b) shows that the median jitter at this client when the server
challenges 10050 (including this one) is within 50% of the median jitter when
this client is served in isolation. This suggests that increasing the number of
puzzle-solving clients has little impact on individual clients’ stream quality.

Wide-area effects: The primary concerns with streaming in a wide-area setting
are latency and packet loss. Uniformly increased latency simply means that
the verifier waits correspondingly longer to receive puzzle solutions. If there is

Making Peer-Assisted Content Distribution Robust to Collusion 143

50 2050 4050 6050 8050 10050
40

50

60

70

80

90

100

Number of Clients

%
C

P
U

 U
sa

ge

(a) CPU usage for Class-E verifier node

1 2050 4050 6050 8050 10050
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Clients

Ji
tte

r

(b) Jitter for one Class-E client

Fig. 5. Scalability tests in which 50 clients receive stream from verifier, and a variable
number of clients receive puzzle challenges from verifier

significant diversity across provers in the latencies to reach them, the verifier can
send puzzles to more distant provers first, to increase simultaneity of distribution.
(Geolocation by IP address can provide latency estimates that would be difficult
for a prover to mislead.) Also, more puzzles or more difficult puzzles (i.e., by
increasing n or L) can be used to minimize the effects of both latency variance
across provers and transient latency variations per prover.

0 1 2 3 4

0

200

400

600

800

%Packet Loss

S
ol

vi
ng

 T
im

e
(m

s)

Fig. 6. Puzzle-solving time for a Class-E
client as a function of packet loss

The more significant impact of
wide-area streaming is the risk of in-
creased packet loss. Distribution of
puzzles over TCP helps to deliver puz-
zles and their solutions reliably, but
the UDP-based RTP stream does not
guarantee reliable delivery of stream
packets. Consequently, during periods
of high packet loss, an honest prover
might be missing some of the content
bits indexed in an index-set; if so, it
searches through all possibilities for
them. The effect of this searching on puzzle-solving time is shown in Fig. 6,
where the network packet loss rate ranges from 0% to 4%. Even 2% repre-
sents an unusual packet loss rate that, e.g., justifies a “warning” indication at
a real-time monitoring site like www.internetpulse.net; a 4% packet loss rate
is “critical”. This figure shows that even at 2% loss, nearly 75% of the puzzle-
solving times experienced are within those observed with 0% loss, and the 99th
percentile is within twice those observed with 0% loss. So, doubling θ during
periods of 2% loss (as indicated at, e.g., www.internetpulse.net) should allow
adequate puzzle-solving time, or θ could be permanently doubled with the cost
of allowing adversaries more slack.

7 Benefits in a Peer-Assisted Streaming System

In this section, we show via simulation the benefits of using bandwidth puzzles
in a contribution-aware peer-assisted streaming application (e.g., [10, 1, 2]).

www.internetpulse.net
www.internetpulse.net

144 M.K. Reiter et al.

Streaming Model: We assume that the multimedia stream is divided into
discrete epochs of size 1000 units of simulation time where each unit corresponds
to 100ms of real time. The content within each epoch is divided into suitably
encoded stripes [10,1]. This encoding (e.g., [37]) has the property that a client can
access the original content as long as it is able to download at least one stripe
and it receives better performance (e.g., higher video quality) if it downloads
more stripes. Each stripe is broken into 1MB chunks and peers download the
chunks corresponding to each stripe using a suitable lookup mechanism.

Incentive Mechanism: We use an incentive scheme similar to Maze [3]. The
streaming server, to which peers authenticate and periodically report transac-
tions on a per-chunk basis, maintains a per-peer “points system”. Each peer
earns 1.5 points for every chunk uploaded and consumes 1 point per chunk
downloaded. New peers are given initial points to allow some free downloads
before they can contribute. Each peer queues incoming requests (i.e., asking it
to upload some content) in increasing order of rqsttime − 3 log ρ, where rqsttime
is the request arrival time and ρ is the current number of points the requester
has. (Intuitively, requests that arrived earlier and requests from peers with more
points are served earlier.) Free-riders, i.e., with zero points, are denied service.

Adding bandwidth puzzles: In traditional contribution-aware systems, the
server debits points from the downloader and credits points to the uploader on
receiving a transaction report. In a system with bandwidth puzzles, handling
transactions is slightly different. The server debits points from the downloader’s
account as before. However, it does not immediately credit the uploader for the
transaction. Rather, at the end of each epoch, the server issues simultaneous
puzzle challenges on a per-chunk basis in the role of the verifier; i.e., it iterates
through the chunks for this epoch one by one, and challenges the clients that
claimed to have received this chunk in the epoch. Upload credits are granted
when the corresponding downloaders correctly answer their puzzle challenges.5

Attack Model: We specify attacks as a collusion graph, where each vertex is a
malicious peer (actual or Sybil node). Each directed edge x → y represents an
fake uploader relationship: peer x reports “fake” transactions on behalf of peer
y, i.e., x requests the server to credit y for uploads even though y spends no
bandwidth for the transfer. Each such x periodically reports fake transactions
to the server in addition to its legitimate transactions (if any). We consider
a scenario where attackers create fake identities that pretend to receive the
stream. This helps attackers download more stripes (higher stream quality) and
receive content directly from the seeds (higher priority service). For example, in
a Star(200,19) graph, there are 200 nodes in the graph, organized in 10 “star”
graphs. Each star has 19 leaf nodes representing the fake (Sybil) identities and
the actual attacker is the center of the star. To model attackers’ responses to
puzzle challenges, we assume that a puzzle sent to a peer who does not have the

5 Detecting downloaders that habitually refuse to solve puzzles is a separate problem
that can be solved using fair-exchange or proof-of-service mechanisms; see §2.

Making Peer-Assisted Content Distribution Robust to Collusion 145

3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

Client quality index

F
ra

ct
io

n
of

 c
lie

nt
s

No puzzle
With puzzle
No attack

(a) Legitimate clients

1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Client quality index

F
ra

ct
io

n
of

 a
tta

ck
er

s

No puzzle
With puzzle

(b) Attackers

Fig. 7. Benefits in a P2P streaming system

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of attackers

A
ve

ra
ge

 c
lie

nt
 q

ua
lit

y

NoPuzzle
WithPuzzle

Fig. 8. Varying the number
of attackers

content or to a fake peer is solved with probability 0.1. In the Star(200,19) case,
this means that in expectation 19 × 0.1 = 1.9 fake transactions get validated.6

Simulation Framework: We implemented an event-driven simulator modeling
chunk exchanges, transaction reports, and puzzle challenges. We do not model
network congestion effects and assume that the only bandwidth bottleneck is
the upstream bandwidth bottleneck of the peers. The download requests at each
peer are queued based on the requester’s points as described above and served
one at a time without preemption. Each streaming session lasts 50 epochs with
all clients and attackers arriving at the start of the session. We assume that
there are 10 stripes, each of size 2MB. In each epoch, the server bootstraps 5
seed nodes in the system with the 10 stripes for the next epoch. Some clients
initially download stripes from these seed nodes and subsequently serve these to
others. All exchanges and transaction reports occur at a 1MB chunk granularity.

Performance Benefits: We define the user quality to be the average number
of stripes received by a client per epoch in the streaming session. Fig. 7(a) shows
the CDF of the client quality in a streaming system with 100 legitimate clients
under three scenarios: no attack, under a Star(200,19) attack without the puzzle
scheme, and under a Star(200,19) attack with the puzzle scheme in place. We
see that when the puzzle scheme is used the client quality with an attack is very
close to a system without attackers. In Fig. 7(b), there is more than 2× reduction
in the median attacker quality when bandwidth puzzles are used. Fig. 8 shows
the average legitimate client quality as a function of the attack size. Each attack
is of the form Star(X,19) where X is the number of attackers. As the number
of attackers grows, the decrease in quality is less severe when the puzzle scheme
is used. These results confirm that bandwidth puzzles can improve legitimate
client performance and deter attackers in P2P streaming systems.

6 Since 190 identities are fake, the attackers’ resources correspond to A = 10. If the
verifier issues puzzles per chunk (log2(n) ≈ 23), the value of the bound in Theorem 2
for A = 10, P = 200, and, e.g., L = 5

3
n71/100 and qpost = n1/10 (and otherwise

the same parameters used for Fig. 2) is consistent with setting the puzzle solving
probability to be 0.1.

146 M.K. Reiter et al.

8 Conclusions

Peer-assisted content distribution systems continue to be subject to adversaries
exploiting weaknesses in the underlying incentive mechanisms. In particular, a
group of colluding adversaries can implement a “shilling” attack, i.e., by re-
porting service from one another without spending any actual resources, to get
preferential service. Our work provides a simple, yet powerful primitive to thwart
such collusion attacks in peer-assisted content distribution systems. It is based
on simultaneously challenging peers with bandwidth puzzles to demonstrate that
the purported data transfers actually took place. We quantify the security of our
scheme in the random oracle model. We also showed via an implementation in
a functional streaming system that our puzzles cost little in terms of scalability
or perceived stream quality. Finally, we showed by simulation that bandwidth
puzzles prevent colluding attackers from gaining undue advantage via shilling
attacks and from impacting the performance of honest peers.

Acknowledgements. We are grateful to Katie Benedetto for useful discussions,
and to the anonymous reviewers for their comments. This work was supported in
part by NSF awards CT-0756998, CNS-0326472, and ANI-0331653, and Florida
State University CRC award PG-022684.

References

1. Sung, Y., Bishop, M., Rao, S.: Enabling Contribution Awareness in an Overlay
Broadcasting System. In: Proc. ACM SIGCOMM (2006)

2. Purandare, D., Guha, R.: BEAM: An Efficient Framework for Media Streaming.
In: Proc. IEEE LCN (2006)

3. Lian, Q., Zhang, Z., Yang, M., Zhao, B.Y., Dai, Y., Li, X.: An empirical study of
collusion behavior in the Maze P2P file-sharing system. In: Proc. ICDCS (2007)

4. Sirivianos, M., Park, J.H., Yang, X., Jarecki, S.: Dandelion: Cooperative Content
Distribution with Robust Incentives. In: Proc. USENIX ATC (2007)

5. Dellarocas, C.: Immunizing online reputation reporting systems against unfair rat-
ings and discriminatory behavior. In: Proc. ACM EC (2000)

6. Bhattacharjee, R., Goel, A.: Avoiding ballot stuffing in eBay-like reputation sys-
tems. In: Proc. ACM SIGCOMM P2P-ECON (2005)

7. Sirivianos, M., Park, J.H., Chen, R., Yang, X.: Free-riding in BitTorrent networks
with the large view exploit. In: Proc. IPTPS (2007)

8. Liogkas, N., Nelson, R., Kohler, E., Zhang, L.: Exploiting BitTorrent for fun (but
not profit). In: Proc. IPTPS (2006)

9. Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5 (2000)
10. Castro, M., et al.: SplitStream: High-bandwidth multicast in a cooperative envi-

ronment. In: Proc. ACM SOSP (2003)
11. Huang, G.: Keynote: Experiences with PPLive. In: Proc. ACM SIGCOMM P2P-

TV Workshop (2007)
12. Freedman, M.J., Freudenthal, E., Mazieres, D.: Democratizing content publication

with Coral. In: Proc. NSDI (2004)
13. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust Incentive Techniques for Peer-

to-Peer Networks. In: Proc. ACM EC (2004)

Making Peer-Assisted Content Distribution Robust to Collusion 147

14. Piatek, M., Isdal, T., Krishnamurthy, A., Anderson, T.: One hop reputations for
peer to peer file sharing workloads. In: Proc. NSDI (2008)

15. Lai, K., Feldman, M., Stoica, I., Chuang, J.: Incentives for cooperation in peer-to-
peer networks. In: Proc. P2P Econ (2004)

16. Aperjis, C., Freedman, M.J., Johari, R.: Peer-Assisted Content Distribution with
Prices. In: Proc. CoNeXT (2008)

17. Belenkiy, M., et al.: Making P2P accountable without losing privacy. In: Proc.
ACM WPES (2007)

18. Li, J., Kang, X.: Proof of service in a hybrid P2P environment. In: Proc. ISPA
Workshops (2005)

19. Dwork, C., Naor, M.: Pricing via processing, or, combatting junk mail. In: Proc.
CRYPTO (1993)

20. Juels, A., Brainard, J.: Client puzzles: A cryptographic defense against connection
depletion attacks. In: Proc. NDSS (1999)

21. Dwork, C., Goldberg, A., Naor, M.: On memory-bound functions for fighting spam.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 426–444. Springer, Hei-
delberg (2003)

22. Douceur, J.: The Sybil attack. In: Proc. IPTPS (2002)
23. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proc. ACM

CCS (2007)
24. Filho, D.L.G., Barreto, P.S.L.M.: Demonstrating data possession and uncheatable

data transfer (2006), http://eprint.iacr.org/2006/150.pdf
25. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and Efficient Prov-

able Data Possession (2008), http://eprint.iacr.org/2008/114.pdf
26. Juels, A., Kaliski Jr., B.S.: PORs: Proofs of retrievability for large files. In: Proc.

ACM CCS (2007)
27. Bowers, K., Juels, A., Oprea, A.: Proofs of Retrievability: Theory and Implemen-

tation (2008), http://eprint.iacr.org/2008/175.pdf
28. Shacham, H., Waters, B.: Compact Proofs of Retrievability (2008),

http://eprint.iacr.org/2008/073.pdf

29. Yin, H., et al.: Design and Deployment of a Hybrid CDN-P2P System for Live
Video Streaming: Experiences with LiveSky. In: Proc. ACM Multimedia (2009)

30. Zhang, Y., Duffield, N., Paxson, V., Shenker, S.: On the Constancy of Internet
Path Properties. In: Proc. IMW (2001)

31. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1984)

32. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

33. Reiter, M.K., Sekar, V., Spensky, C., Zhang, Z.: Making contribution-aware peer-
assisted content distribution robust to collusion using bandwidth puzzles. Technical
Report CMU-CS-09-136, Carnegie Mellon University (2009)

34. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol
for real-time applications. IETF RFC 3550 (July 2003)

35. White, B., et al.: An Integrated Experimental Environment for Distributed Systems
and Networks. In: Proc. OSDI (2002)

36. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM TOIT 5, 299–327 (2005)

37. Goyal, V.K.: Multiple description coding: Compression meets the network. IEEE
Signal Processing Magazine, 74–93 (September 2001)

http://eprint.iacr.org/2006/150.pdf
http://eprint.iacr.org/2008/114.pdf
http://eprint.iacr.org/2008/175.pdf
http://eprint.iacr.org/2008/073.pdf

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 148–162, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An E-Cash Based Implementation Model for Facilitating
Anonymous Purchasing of Information Products

Zhen Zhang1, K.H. (Kane) Kim1, Myeong-Ho Kang1, Tianran Zhou1,
Byung-Ho Chung2, Shin-Hyo Kim2, and Seok-Joon Lee2

1 DREAM Lab, EECS Dept. University of California Irvine, CA, USA
zhen@dream.eng.uci.edu, khkim@uci.edu

2 ETRI, Korea
shykim@etri.re.kr

Abstract. The rapid growing of online purchasing of information products
poses challenges of how to preserve the customer’s privacy during the online
transactions. The current widely used way of online shopping does not consider
the customer’s privacy protection. It exposes the customer’s sensitive informa-
tion unnecessarily. We propose a new five-party implementation model called
5PAPS that provides much enhanced protection of the customer’s privacy. The
model combines the advantages of the e-cash techniques, the mix technique, the
anonymous-honoring merchant model, and the anonymity-protecting payment
gateway model. It is aimed for protecting the customer‘s anonymity in all appli-
cable aspects. Security and anonymity issues of the model have been analyzed.
The results show that the model is robust against varieties of common attacks
and the customer’s anonymity can be protected even in the presence of some
collusion among the parties involved in the transactions. Experimental proto-
typing of the essential parts yields partial validation of the practical nature of
the 5PAPS model, and it has also produced reliable estimates of the storage and
messaging volume requirements present in sizable purchasing systems.

Keywords: Anonymous, purchasing, information product, encryption, e-cash,
payment gateway, mix.

1 Introduction

A rapidly growing variety of information products such as e-books, software, music,
and movies are becoming available for sale over the Internet in this century. The
increasing popularity of online purchasing of information products poses challenges
of how to preserve the customer’s privacy. In contrast to the traditional purchasing
mode involving cash payment, typical online purchasing systems require the customer
to provide more personal information to verify themselves in the card-not-present
situations. The examples of private information include credit card numbers, social
security numbers, names, and billing addresses. Yet the customers have no control
over the flow of their private information; nor do they have the rights to access and
manage their sensitive payment or purchase records, because the data is normally
stored in the servers operated by the merchant or the credit card company only.

 An E-Cash Based Implementation Model 149

Therefore, the customer’s privacy is unnecessarily exposed in the following ways.

Merchants know customer’s payment details: Although merchants often employ access
control and encryption mechanisms to protect the customer’s payment information
such as credit card numbers and customer’s names, the potential number of merchants
is quite large and thus the privacy risk here is quite high. Recent customer data breach
incidents [6] suggest that the system currently in wide use may not be adequate.

Merchants know customer’s Internet delivery addresses: Based on the current Internet
infrastructure, the customer’s Internet Protocol (IP) address is known to the informa-
tion product providers. For customers using static IP addresses, the information may
be used to trace to the real identity of the customer or at least reveal some personal
information such as the customer’s geographical location.

Banks / Credit card companies know the customer’s purchase history: since the mer-
chants send the customers' payment information to the banks / credit card companies
directly, the banks / credit card companies usually have a full record of the customer’s
purchasing history. If the records are leaked to some malicious persons, they may be
used against the customer. It therefore makes the e-commerce systems vulnerable
targets for fraud and privacy stealing.

In this paper, we propose a new five-party implementation model that provides
much enhanced protection of the customer’s privacy in all the aspects mentioned
above. The model is called here the five-party anonymous purchasing system
(5PAPS). The main goal is to keep the customer anonymous whenever applicable,
and let the customer reveal different parts of his/her sensitive information to different
parties such that one party or two parties in collusion cannot produce information of
which the leakage damages the customer's privacy. Our approach integrates the fol-
lowing three techniques in a new way to achieve the customer’s anonymity.

E-cash techniques [1, 2, 3, 9, 10, 11, 12]: The e-cash techniques are employed to keep
both merchants and banks / credit card companies from learning the real identities of
the information product purchasers during the payment process. The e-cash is un-
traceable and therefore, the customer exposes nothing but the e-cash to the merchant
and the banks / credit card companies know nothing about the customer’s choice of
products. In quite a few countries, traditional banks are not allowed to issue e-cash.
In our 5PAPS model, a separate cyber-money company dedicated to issuing and
clearing e-cash is employed.

The mix technique [5, 13]: The mix technique achieves the customer’s anonymity at
the networking level. It ensures that the customer’s IP address is hidden from any
communication peers. In addition, the mix technique preserves the customer’s IP
addresses during the downloading process.

The anonymity-honoring merchant: Here the merchant accepts inquiries and product
orders from the customers who are using untraceable fictitious IPs or temporary (e.g.,
one-shot use) IDs. The merchant sends an invoice to the customer and the latter
"sends" his/her payment instruction in an envelope on the face of which the invoice
from the merchant is "pasted". The merchant then forwards the payment to the cyber-
money company for clearing.

150 Z. Zhang et al.

The payment gateway based technique [4]: Payment gateways (PGs) such as Paypal
and Google Checkout serve the customers who wish to prevent their credit card and
bank account information from being spread among the numerous merchants and
instead keep such information in PG companies only. In the 5PAPS model, an en-
hanced version of PG, i.e., an anonymity-protecting PG, is employed. The PG based
technique is used to prevent the cyber-money company from learning the customer's
bank account information. When the customer wants to purchase e-cash by using
credit card, the cyber-money company blindly forwards the sealed envelope contain-
ing the credit card authorization information to the PG which in turn forwards it to the
bank/credit card company used by the customer.

After presenting the 5PAPS model, we discuss the security-enforcing properties of
the model and show that the model is robust against varieties of attacks. We then
analyze when the customer's anonymity can be compromised, especially under the
severe collusion of multiple parties in the 5PAPS model. Such vulnerabilities can be
easily tolerated in practice and thus the model is highly cost-effective.

Finally, as a partial validation of the practical nature of the 5PAPS model, a proto-
type implementation of a simple online purchasing and delivery system has been
obtained. From this, we have been able to derive reliable estimates of the storage and
messaging volume requirements present in sizable purchasing systems. Simple and
yet effective extensions to reduce the requirements are also shown.

The remainder of the paper is organized as follows. Section 2 provides a brief re-
view the related work. Section 3 then describes our 5PAPS model in detail. The
security and anonymity issues of the 5PAPS model are then described in Section 4
and Section 5, respectively. In Section 6, we discuss the experimental prototyping
and the storage and messaging volume requirements. Finally the paper is concluded
in section 7.

2 Related Work

The most notable efforts aimed for achieving the customer’s anonymity are the e-cash
(also called e-coin) techniques [1, 2, 3, 9, 10, 11, 12]. The e-cash techniques attempt
to emulate electronically the main features of the physical cash. E-cash systems were
usually with the assumption that the same bank is responsible for giving out electronic
coins and for accepting them later for deposit. The customer first uses a withdrawal
protocol to purchase e-cash from the bank. By taking the advantage of the blind sig-
nature [1, 2, 3] technique, the withdrawal protocol allows the bank to sign and issue e-
coins without knowing the content of the coins. Each coin shall represent a fixed
amount of money, say 10 cents. The customer later pays the merchant with e-coins
using a payment protocol. Since e-coins are untraceable, the merchant knows nothing
about the customer from the payment process. Merchants then use a deposit protocol
to clear the e-cash at the bank. Double-spending can be detected using online clearing
[1] which verifies e-coins during the payment transaction. Off-line techniques have
also been proposed to detect double-spending [2, 3, 11]. They ensure that if the cus-
tomer uses an e-coin only once, his/her privacy is protected unconditionally. But if the
customer reuses an e-coin, the bank can trace it to his/her account and prove that the
customer has used the e-coin twice. Other work extends the basic e-cash schemes,

 An E-Cash Based Implementation Model 151

considering issues such as divisibility [9, 10, 14] and efficiency [12]. One practical
concern that has not been addressed by the e-cash techniques is that, the bank may not
necessarily be the institution to issue and clear e-cash. It is preferable to separate the
functionality of issuing/clearing e-cash from the responsibilities of banks.

In [4] the authors proposed a payment gateway (PG) based approach for preserving
the customer’s privacy during e-payment processing. The basic idea is to separate the
customer’s payment information and the order information. The payment information
is encrypted by using the bank’s public key and can be accessed by the bank only;
while the order information is accessed by the merchant only. A PG is employed as a
proxy, sitting between the bank and the merchant. It results that the customer’s ac-
count details are kept secret from the merchant and his choices of goods are kept
secret from the bank. In the PG based approach, because the payment information is
sill traceable, the bank knows at least how frequently the customer purchases products
online and how much money the customer spends during each transaction.

Finally, the mix techniques [5, 13] have been proposed to hide the networking ad-
dress of the client when the client sends requests to the server. It also provides an
indirect returning address that can be used for the server to reply the client without
knowing the client’s real network address.

3 The Five-Party Implementation Model: 5PAPS

We propose an integrated five-party implementation model that protects the cus-
tomer’s anonymity in online purchasing of information products (shown in Fig. 1).
The model is called the five-party anonymous purchasing system (5PAPS). The
model contains the following five parties,

• Customer: who wants buy information products offered by online merchants.
• Anonymity-honoring Contents Shop/Merchant: who offers information products

such as e-books, software, games, mp3, movies, IP-TV, and reports online.
• Cyber-money Company (CC): who is responsible for issuing and clearing e-cash.
• Anonymity-protecting Payment Gateway (PG): who takes care of payment on be-

half of the customer.
• Bank: who manages the accounts of all the other parties including the customer, the

merchants, the cyber-money company, and the payment gateway. It takes care of
money transfer among these parties.

To purchase information products, the customer first contacts the cyber-money
company to purchase e-coins. The process involves the customer, the cyber-money
company, the payment gateway, and the bank. Payments are made using conven-
tional credit cards. After getting the e-cash, the customer then contacts the merchant
to order the information products. The process is carried inside the cyber-money
domain which includes the customer, the cyber-money company, and the merchant.
Payments are made by using the e-cash.

The 5PAPS model provides secure communication channels such that all messages
exchanged are encrypted and only the parties with the appropriate keys can decrypt
and see the messages. Double-spending is prevented using an online clearing
approach.

152 Z. Zhang et al.

Anonymity-honoring
Contents Shop (SP)
in a cyber-money domain

Anonymity-protecting
Payment

Gateway (PG)

Bank

Open-type Cyber Money
(gift vouchers, e-coupon)

-Credit Cards
-Account
-Virtual Account

Customer

Payment

Delivery

Contents: Avatar, game, mp3, movie, IPTV, Reports, etc.

Cyber-money
Company (CC)

Order

CD, A, VA

I/F
Mixes

Fig. 1. The proposed five-party implementation model: 5PAPS

3.1 Primitives and Notations

The 5PAPS model makes use of the following.

• Asymmetric encryption/decryption algorithm (such as RSA [7])
Pub-K: a public key
Pri-K: a private key
Pub-K(.): encrypt with the public key Pub-K
Pri-K(.): decrypt with the private key Pri-K

We use public/private key pairs of the mixes, the merchant, the payment gate-
way, the cyber-money company, and the bank. They are denoted as Pub-Kmix i
/Pri-Kmix i (for i=1..m), Pub-Kmr/Pri-Kmr, Pub-Kpg/Pri-Kpg, Pub-Kcc / Pri-Kcc and
Pub-Kb / Pri-Kb respectively.

• Symmetric encryption/decryption algorithm (such as AES [8])
K: a symmetric key
EK(.): encrypt with the symmetric key K
DK(.): decrypt with the symmetric key K

The customer generates a symmetric key for each session. Thus the symmetric
key is also called a session key. Session keys are denoted as Ki (for i = 1, 2, …).

• Blind signature [1, 2, 3]
s(.) and s’(.): s’(.) is a signing function and s(.) is the corresponding publicly
known inverse function such that s(s’(x)) = x, where x is a binary string.
blind(.) and unblind(.): blind(.) is a blinding function and unblind(.) is its inverse,
both known only to the customer, such that unblind(s’(blind(x))) = s’(x)

The blind signature roughly means the signing function, s’(.), is applied to a
blinded value x. If the un-blinding function is applied to the blind signature, the
outcome is exactly the same as directly applying the signing function, s’(.), on x.
The signature is blind in the sense that the signer knows nothing about the content
of the envelope it signs; yet everyone is able to verify the signature.

There are a number of blind signature techniques [1, 2, 3]. For the description of
our model, we are using the blind RSA signature [1, 2]. Other blind signature tech-
niques [3] can also be accommodated in our model easily.

 An E-Cash Based Implementation Model 153

• Mix [5]
Pub-Kmix i: the public key of Mix i
Ri (for i = 0, 1,..): random strings
Aclient, Aserver: the address of the client and the server respectively
K1: a session key

Fig. 2 shows how to use a mix to hide the client’s real address while enabling the
client to send a request to the server and get the response. The client first sends the
request to the mix together with its address encrypted by the mix’s public key. The
mix then forwards the request to the server, replacing the source address with its
own address. The server sees the mix address instead of the client’s address. For
response, the server sends the reply together with the encrypted client’s address
back to the mix. The mix then decrypts to find the address of the client and for-
wards the response to the client.

Fig. 2. Anonymous communication using a mix

If a single mix is employed, the mix is able to recognize and remember the fact
that there was a correspondence between the client and the server. To mitigate the
problem, a chain of mixes can be applied. Unless all the mixes collude, the secrecy
of the correspondence is preserved. For convenience, we use the following nota-
tions for using a chain of m mixes:

Pub-Kmix 1->m(M) = Pub-Kmix m(Rm, .. Pub-Kmix 1(R1,M)..), where M is a message
Retm->1(A) =Pub-Kmix 1(K1’, ..Pub-Kmix m(Km’, A)..), where A is an address
Replym->1(M) = EK1’(…EKm’(M)..)

For denoting the IP addresses of the customer, the cyber-money company, the
merchant, the payment gateway, and the bank, we use Ac, Acc, Amr, Apg, and Ab re-
spectively.

3.2 Protocol Details

The protocol has three phases described in the following.

3.2.1 E-Cash Purchasing Phase (Shown in Fig. 3)
Before the customer purchases any information product from a merchant, he/she shall
first purchase e-cash from the cyber-money company. The initial step is to obtain the
public keys of the respective parties to be involved in the purchasing of e-cash. The
public keys can be obtained by asking for the certificates of all parties. Each party

154 Z. Zhang et al.

has its own certificate signed by a trust authority and the customer has already veri-
fied the trust authority via some other source. A certificate usually includes the sub-
ject name, the public key, and the policy for using the public key. The cyber-money
company has its own certificate. It also collects the certificates of the payment gate-
ways. The customer gets from the cyber-money company the certificates of the cyber-
money company and the payment gateways. Of the payment gateways, the customer
chooses one that can work with the bank / credit card companies which he/she uses.
In case a chain of mixes are employed, the first mix shall also collect the certificates
of all the mixes that will be used and return them to the customer upon a connection
request. On completion of this step, the customer has the pubic keys from the cyber-
money company, the payment gateway, the bank, and all the mixes. The case where a
credit-card company is involved instead of a bank is not much different from the case
where a bank is involved and not discussed in detail.

The second step in this phase is to generate a session key shared between the cus-
tomer and the cyber-money company. Since the customer has already possessed all
the public keys, this step can be easily accomplished by using the mix(es) as an in-
termediary.

In the third step, the customer sends via mixes to the cyber-money company an e-
cash request which includes a transaction number, a description of the product to
purchase (i.e., the e-cash), and the price. The cyber-money company replies with the
invoice. The customer then sends to the cyber-money company a message containing
a payment part and an order part: i) the payment part is first encrypted by using the
public key of the bank and enclosed in an envelope addressed to the bank, and then
the envelope containing the encrypted payment part is encrypted by using the pubic
key of the payment gateway and enclosed within an envelope addressed to the pay-
ment gateway. The payment part contains the customer’s credit card number, the
payment amount, the hash code of the credit card information, the hash code of the
invoice, the timestamp generated right before the payment part is sent, and a valid
period after which the payment gets expired; ii) the order part contains the invoice,
the blinded strings to be signed, the timestamp generated right before the order part is
sent, and the valid period of the order. Note that only the bank can read the payment
information. After receiving this message, the cyber-money company checks the
invoice in the order part and forwards the payment part to the payment gateway to-
gether with the amount of the payment and a payment identifier. The payment gate-
way in turn forwards the payment part (after removing the envelope) to the bank
together with the amount of the payment and a payment identifier. Then bank then
decrypts and verifies the customer’s payment information. If the payment is valid, the
bank will pay the payment gateway by transferring money from the customer’s bank
account to the payment gateway’s account. In the ideal case, the bank will leave no
hint in the payment gateway’s account regarding the source account of the transferred
money and only the payment identifier that came from the payment gateway may be
indicated. In such a case, the payment process shall keep the customer anonymous to
the payment gateway, let alone to the cyber-money company. However, such anony-
mous money transfer from the customer’s bank account to the payment gateway’s
bank account requires modifications on the current bank practices. After the payment
gateway gets paid by the bank, it then pays or gives a promissory note (using the
payment identifier) to the cyber-money company. The payment process from the

 An E-Cash Based Implementation Model 155

Fig. 3. Sequence diagram of e-cash purchasing phase

payment gateway to the cyber-money company does not reveal any information about
the customer’s real identity or his/her bank account. Once the cyber-money company
gets paid or a promise by the payment gateway, it places on its web the signed e-coins
encrypted by the session key and sends the URL to the customer. Finally, the cus-
tomer can download via mixes the e-coins using the URL received from the cyber-
money company.

3.2.2 Product Ordering Phase (Shown in Fig. 4)
Similar to the first two steps in the e-cash purchasing phase, the customer first gets the
certificates of the merchant and all the mixes that will be used. Then the customer gen-
erates a session key to be shared with the merchant. In the third step, the customer sends
via the mixes to the merchant a price confirmation request that includes a transaction
number, a description of the products to purchase, and the published price. The mer-
chant replies with an invoice. The customer then places an order which includes the
invoice, n e-coins, where the value of n e-coins equals the price of the product, the time-
stamp generated right before the order is sent, and the valid period of the order. After
receiving the order, the merchant checks the invoice and contacts the cyber-money
company to verify the validity of the e-coins. If all e-coins are valid, the cyber-money
company pays the merchant. The merchant then places on its web the information prod-
uct encrypted with the session key and sends the URL to the customer.

3.2.3 Product Delivery Phase
In this phase, the customer downloads via the mixes the products from the merchant
using the URL received during the ordering phase.

156 Z. Zhang et al.

Fig. 4. Sequence diagram of product ordering phase

4 Security Analysis

• Theorem 1 (security of message content): Assume there is no efficient algorithm
to break RSA and AES, the contents of all the messages in the three phases are se-
cure in the sense that only the parties with the appropriate keys are able to know
the message contents.

Note that in our protocol, all messages containing sensitive information are en-
crypted either using an RSA public key or an AES key, so only the party that hold
the keys is able to read the messages.

Particularly, in the 5PAPS model, all messages from and to the customer are
transmitted via secure communication channels. Fig. 5 illustrates how to setup a se-
cure communication channel between a customer and a server (i.e. the cyber-money
company/merchant). The customer first requests the server’s public key. It then
generates randomly a session key tagged with a timestamp and a valid period. In the
third step, the customer encrypts the session key with the server’s public key and

Fig. 5. Setup a secure communication channel between client and server

 An E-Cash Based Implementation Model 157

sends it to the server. Finally the server decrypts the message and obtains the ses-
sion key. From then on, all the messages exchanged between the customer and the
server are encrypted with the session key until the key expires. Note that no one ex-
cept the server can decrypt the session key, so the communication is secure between
the client and the server as long as the session key remains secure. This also pre-
vents man-in-the-middle attacks as long as the server’s public key remains secure.

• Corollary 1 (confidentiality of payment): Assume there is no efficient algorithm to
break RSA, the customer’s payment information remains confidential to all parties
except the bank.

As the customer’s payment details are encrypted using the bank’s public key,
only the bank can decrypt it. Therefore, as long as the bank’s private key remains
secure, no eavesdropper in the communication network or any dishonest parties in-
volved in the transactions can obtain the customer’s payment information.

• Theorem 2 (verifiability, unforgeability, untraceability and unlinkability of e-
coin): all e-coins obtained in the purchasing phase are verifiable, unforgeable, un-
traceable and unlinkable [1].

Note that an e-coin takes the form of a pair of binary strings, e-coin={x, Pri-
Kcc(x)}. By checking whether Pub-Kcc(Pri-Kcc(x))=x, everyone can verify that the
e-coin is formed using the cyber-money company’s private key. Secondly, no one
can forge e-coins; i.e. even with e-coini={xi, Pri-Kcc(xi)} i=1,2…, it is impractical
for anyone except the cyber-money company to produce a new coin e-coin={y,
s’(y)} such that Pub-Kcc(s’(y))=y and y≠xi. Thirdly, each e-coin is untraceable, be-
cause the cyber-money company knows nothing about the correspondence between
the signed matter Pri-Kcc(x) and its blinded form Pri-Kcc(blind(x)). Finally, since
e-coins contain no customer information, there is no relationship between any two
coins from the same customer.

• Prevention of double-spending
The 5PAPS model prevents double-spending through online clearing. Duplications of
e-cash may happen under two different types of scenarios: i) a customer tries to spend
an e-coin twice. ii) a merchant attempts to cash the same e-coin twice. Online clearing
is a simple way to detect double-spending. The cyber-money company keeps a list of
all spent coins. Whenever the merchant receives e-coins from the customer, it imme-
diately contacts the cyber-money company to confirm that the coins have not been
previously spent. And if the coins are valid, the merchant immediately cashes the
coins and the cyber-money company updates the list accordingly. Using the online
approach, the two scenarios of double spending can be detected unambiguously. If the
customer tries to spend a previously spent e-coin again, the merchant rejects the pay-
ment immediately. On the other hand, if the merchant tries to deposit a copy of the e-
coin already deposited, the cyber-money company rejects the second deposit.

• Prevention of replay attacks
The 5PAPS model guarantees that no sensitive information can be reused. A time-
stamp and a valid period are attached to each message containing sensitive informa-
tion, and the messages become obsolete after the first use [4]. This prevents the
potential replay attacks.

158 Z. Zhang et al.

5 Anonymity Analysis

5.1 Customer’s Anonymity

During the product ordering phase, the customer’s anonymity is protected by taking
advantage of untraceable e-cash. The blind signature technique is used to ensure that
there is no linkage between the contents of the e-coins and the customer’s identity. In
fact, the cyber-money company knows nothing about the correspondence between the
e-coin={x, Pri-Kcc(x)} and the signed blinded content Pri-Kcc(blind(x)). Therefore,
neither the merchant nor the cyber-money company can derive the customer’s identity.

During the e-cash purchasing phase, the 5PAPS model separates the customer’s
payment details from the customer’s order information. The payment details are en-
crypted by the bank’s public key and thus accessible to the bank only, and the order
information is never propagated to the bank. A payment gateway is employed to pre-
vent the bank from learning anything about which merchants the customer deals with.

The IP address of the customer is protected by using a chain of mixes. The source
address of any message originating from the customer will be replaced by the address
of the first mix. In the opposite direction, every response message targeted for the
customer goes through the mix chain in the reverse order and contain an encrypted
return address Retm->1(Ac) = Pub-Kmix m->1(Ac), where Ac is the customer’s IP address.

5.2 Customer’s Anonymity in the Collusion-Free Scenario

Assuming there is no collusion, Table 1, 2, 3 show the customer’s anonymity with
regard to different parties involved in the three phases, respectively. In the tables, “0”
means the customer’s privacy information described in the row is anonymous to the
party shown in the column; while “1” means the information is known to the party.

Table 1. Customer’s anonymity in e-cash purchasing phase

 1st
mix

Other
mixes

CC PG Bank

Customer’s IP address (possibly reveals Customer’s
real identity)

1 0 0 0 0

Customer’s payment details (including the credit card#,
the name and the billing address)

0 0 0 0* 1

Customer’s e-cash acquisition records 0 0 0 0 1**
 * Assume the bank supports anonymous money transfer
 ** The bank doesn’t know which CC the customer uses, but it knows how frequent the

customer purchase e-cash and the amount of money the customer pays

Table 2. Customer’s anonymity in product ordering phase

 1st
mix

Other
mixes

CC Merchant

Customer’s IP address (possibly reveals Customer’s real
identity)

1 0 0 0

Customer’s payment details (including the credit card#,
the name and the billing address)

0 0 0 0

Customer’s order records 0 0 0 0

 An E-Cash Based Implementation Model 159

Table 3. Customer’s anonymity in product delivery phase

 1st mix Other mixes Merchant
Customer’s IP address (possibly reveals
Customer’s real identity)

1 0 0

Customer’s order records 0 0 0

The results show that if there is no collusion among the four business units and the

mixes, the customer’s privacy is preserved in the maximum manner. In fact, only the
bank knows the customer’s detailed payment information and only the first mix
knows the customer’s IP address, both of which are inevitable. The customer’s
detailed order records stay anonymous to all parties, because the merchant knows
nothing about the buyer’s identity.

5.3 Customer’s Anonymity in Collusion Scenarios

The threats on the customer’s anonymity imposed by collusion are now discussed.
Two kinds of collusion are considered. The first one is trivial collusion which means
that a party knows some private information about the customer and this party leaks
that information to some other parties. For example, if any party colludes with the first
mix, then it will know the customer’s IP address. Similarly, the bank also holds private
information about the customer. Naturally, both the bank and the primary mixes must
be strictly regulated and intensively audited by the government. The second kind is
called non-trivial collusion and in this case, the pieces of information held by different
parties in harmless manners are combined together and then some sensitive private
information about the customer comes out. For example, as mentioned in Section 3.1,
if all mixes collude, then the correspondence between the customer and the merchant is
revealed. This correspondence will reveal information about the customer’s purchasing
patterns such as how frequently the customer purchase products from a particular
merchant. In addition, traffic analysis techniques [15, 16] can be employed among
colluding parties to derive private information about the customer. For example, if the

Table 4. Customer’s anonymity under collusion in e-cash purchasing phase

 First+last
mixes

First mix+CC CC+PG+
Bank

Customer’s correspondence with the CC (possibly
reveals Customer’s purchase patterns)

1 1 1

Customer’s e-cash acquisition records 0 1 1

Table 5. Customer’s anonymity under collusion in product ordering & delivery phases

 First+last mixes First mix+Merchant
Customer’s correspondence with the merchant
(possibly reveals Customer’s purchase patterns)

1 1

Customer’s order records 0 1

160 Z. Zhang et al.

first mix and the merchant collude, using techniques in [15], the correspondence
between the customer and the merchant can also be revealed. In this section, we will
focus on the non-trivial collusion. And we assume that IP addresses can be used to
track down the real identity of the customer. Table 4, 5 show the customer’s anonymity
under non-trivial collusion in the three phases, respectively.

The results show that only in some extreme scenarios, for example, the mixes and
the cyber-money company / merchant collude together, or the cyber-money company,
the payment gateway, and the bank collude, there emerges new serious threats on the
customer’s anonymity. On the other hand, the results also implicitly show that the
5PAPS model can protect the customer’s anonymity even in the presence of some
collusion. For instance, in the product ordering phase, even if the merchant and the
cyber-money company collude, the customer’s payment information, order details and
IP address are not revealed to them.

6 Experimental Prototyping and Estimates of Storage and
Messaging Volume Requirements

We have built web-based e-store applications based on the Apache-Tomcat platform
to demonstrate and partially validate our five-party implementation model. Among all
the five parties, the customer, the cyber-money company and the merchant sites are
implemented; while the payment-gateway and the bank sites are only simulated. The
mix net has not been incorporated into the prototype yet. In the future work, we will
continue to complete our prototyping of the 5PAPS model.

In the prototype, the communications among different parties follow the protocols
presented in Section 3. The e-cash system is an online scheme based on RSA blind
signature [1]. RSA with a key size of 1024 bits is used for asymmetric encryption and
AES with a key size of 128 bits is used for symmetric encryption. For each coin, the
binary string to be signed is of size 1024 bits.

The storage and networking overhead incurred by e-coins is non-trivial, and it
affects the efficiency of the online shop. In fact, each e-coin represents a fixed amount
of money, say 10 cents only. To purchase a product worth 100 dollars requires
purchasing and paying 1000 e-coins. It means that we need to iterate the protocol for
purchasing and depositing one e-coin 1000 times. The situation is even more
significant, considering that the cyber-money company may deal with thousands of
customers concurrently. In addition, the cyber-money company needs to remember all
the coins that have been spent in order to detect double spending. We observe from
our experimental work that each coin takes a size of 288 bytes. Assuming that each
customer purchases products worth 1000 dollars in total every month, and there are
100,000 customers, the cyber-money company site may require an additional storage
size of 288G bytes every month. It also means that for the e-coin acquisition phase
and the product ordering phase, we will have an aggregated monthly network traffic
of 288G bytes and 576G bytes, respectively.

Future work of the 5PAPS implementation model should focus on reducing the
storage and message volumn requirements. On one hand, we can use divisible e-
cash [9] [10] [14] or e-cash with multiple denominations [1] [17] to reduce the
number of e-coins stored and transmitted by orders of magnitude. For example, to use

 An E-Cash Based Implementation Model 161

multi-denomination e-cash, we can assigning different signing keys to different
denominations. On the other hand, we can attach an expiration date to each e-coin
such that history records of expired e-coins can be safely removed from the database
of the cyber-money company. This can be achieved by updating the signing keys
periodically. When the cyber-money company issues an e-coin, it explicitly tells the
customer the coin’s expiration time. When the expiration time arrives, the cyber-
money company will use a new signing key and rejects any coins signed with the old
key. It is the customer’s responsibility to either spend or deposit the coins before they
expire. The 5PAPS implementation model can easily accommodate these extensions.

7 Conclusion

In this paper, we proposed an integrated five-party implementation model 5PAPS that
enables the customer to purchase information products anonymously. The model
combines the advantages of the e-cash techniques, the mix technique, the anonymous-
honoring merchant model, and the anonymity-protecting payment gateway model. It
is aimed for protecting the customer‘s anonymity in all applicable aspects. An
analysis of the security issues shows that our model is robust under varieties of
common attacks. An analysis on the anonymity issues shows that the customer’s
anonymity can be best preserved even in presence of some collusion. An experimental
prototyping work has produced hints on the significant storage and messaging vol-
ume requirements of the implementation model. We believe that the model is a good
starting-point in realizing a secure e-commerce environment attractive to the people
who want to preserve their privacy to a reasonable degree but much more research,
especially, experimental research is needed.

Acknowledgement

This work was supported in part by the IT R&D program of MKE/KEIT, [2008-F-
036-02, Development of Anonymity-based u-knowledge Security Technology] and in
part by the University of California, Irvine.

References

1. Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptology Pro-
ceedings of Crypto 1982, pp. 199–203. Plenum Press, New York (1982)

2. Chaum, D., Fiat, A., Naor, M.: Untraceable Electronic Cash. In: Goldwasser, S. (ed.)
CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

3. Brands, S.: Untraceable Off-line Cash in Wallet with Observers. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

4. Ashrafi, M.Z., Ng, S.K.: Enabling Privacy-Preserving e-Payment Processing. In: Haritsa,
J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 596–603.
Springer, Heidelberg (2008)

5. Chaum, D.: Untraceable Electronic Mail, Return Address, and Digital Pseudonyms. Com-
munications of the ACM 24, 84–90 (1981)

162 Z. Zhang et al.

6. The Boston Globe. Breach of data at TJX is called the biggest ever,
http://www.privacy.org/archives/2007_03.html

7. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Pub-
lic-Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Stan-
dard. Springer, Heidelberg (2002)

9. Okamoto, T., Ohta, K.: Universal Electronic Cash. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992)

10. Okamoto, T.: An efficient Divisible Electronic Cash Scheme. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg (1995)

11. Ferguson, N.: Single Term Off-line Coins. In: Helleseth, T. (ed.) EUROCRYPT 1993.
LNCS, vol. 765, pp. 318–328. Springer, Heidelberg (1994)

12. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

13. Danezis, G., Diaz, C.: A Survey of Anonymous Communication Channels. TechReport,
Microsoft Research,

 http://research.microsoft.com/apps/pubs/default.aspx?id=70553
14. Chan, A., Frankel, Y., Tsiounis, Y.: Easy Come - Easy Go Divisible Cash. In: Nyberg, K.

(ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)
15. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: Proceedings of the 2005

IEEE Symposium on Security and Privacy, May 2005. IEEE CS, Los Alamitos (2005)
16. Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D., Serjantov, A.

(eds.) PET 2004. LNCS, vol. 3424, pp. 35–50. Springer, Heidelberg (2005)
17. Frankel, Y., Patt-Shamir, B., Tsiounis, Y.: Exact analysis of exact change. In: Proceedings

of the 5th Israeli Symposium on the Thoery of Computing Systems (ISTCS), Ran-Gatan,
Israel, June 17-19 (1997)

DROP: Detecting Return-Oriented Programming
Malicious Code

Ping Chen1, Hai Xiao1, Xiaobin Shen2, Xinchun Yin2, Bing Mao1, and Li Xie1

1 State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University, Nanjing 210093

{chenping,xiaohai}@sns.nju.edu.cn, {maobing,xieli}@nju.edu.cn
2 College of Information Engineering, Yangzhou University, Yangzhou Jiangsu 225009, China

xcyin@yzu.edu.cn

Abstract. Return-Oriented Programming (ROP) is a new technique that helps
the attacker construct malicious code mounted on x86/SPARC executables with-
out any function call at all. Such technique makes the ROP malicious code
contain no instruction, which is different from existing attacks. Moreover, it hides
the malicious code in benign code. Thus, it circumvents the approaches that pre-
vent control flow diversion outside legitimate regions (such as W ⊕X) and most
malicious code scanning techniques (such as anti-virus scanners). However, ROP
has its own intrinsic feature which is different from normal program design: (1)
uses short instruction sequence ending in “ret”, which is called gadget, and (2)
executes the gadgets contiguously in specific memory space, such as standard
GNU libc. Based on the features of the ROP malicious code, in this paper, we
present a tool DROP, which is focused on dynamically detecting ROP malicious
code. Preliminary experimental results show that DROP can efficiently detect
ROP malicious code, and have no false positives and negatives.

1 Introduction

Return-Oriented Programming (ROP) is a technique which chains together existing in-
struction streams ending in a “ret” instruction, and then it perform arbitrary, Turing-
complete computation without code injection. The instruction streams can be extracted
from existing library/binary (e.g., standard GNU libc). Now it is not only available on
the x86 platform [40], but also can be mounted on SPARC architecture [14].

ROP technique can be used to rewrite existing malicious code, and eventually be-
come serious threats when used to compromise the computer, which we called as ROP
attack. Similar to traditional attacks, such as remote code-injection attack, ROP attack
leverages the software vulnerability to launch an attack. However, there are signifi-
cant differences between ROP attack and traditional attack. ROP attack uses existing
library/binary, and ROP malicious code contains only immediate data words and ad-
dresses which are pointed to the short instruction sequences in libc, rather than the
instructions on which traditional attack relies. ROP malicious code breaks the assump-
tion that preventing the attacker from executing injected code is sufficient to protect a
computer, which is at the core of anti-virus software, and other defenses like Intel and
AMD’s W ⊕ X protections. In addition, although ROP attacks have common feature
with traditional return-into-libc attacks [23, 27, 29], it is more difficult to defend ROP

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 163–177, 2009.
© Springer-Verlag Berlin Heidelberg 2009

164 P. Chen et al.

attacks for the following reasons: traditional return-into-libc attack uses libc functions,
which can be wrapped or removed by the maintainers of libc. By contrast, ROP attack
uses short instruction sequences, and each sequence is typically just two to five instruc-
tions length. It is non-trivial to remove the short instruction sequences, which exist in
the libc or other library/binary widely.

Security tools have arm race with attack techniques. Attacks often use the software
vulnerabilities to achieve their goals. Based on this observation, vulnerability detect-
ing tools are leveraged to protect the vulnerability, such as buffer overflow and format
string. Although several tools [13,17,18,19,39] can effectively defend a lot of existing
vulnerabilities, none of them can assure that they have prevented all the software bugs.
Besides, zero-day attacks become more serious than before, and they can compromise
thousands of hosts in a few minutes. It is not sufficient that we only focus on detecting
vulnerabilities, because it is too late to defend zero-day attacks. And we need to dynam-
ically monitor the execution behavior of zero-day attacks. Based on the reasons men-
tioned above, there are a lot of defense tools which aim at detecting the malicious code
according to its characteristics. Take remote code-injection attack for example, early
works [22, 24, 34, 38, 42] aim at extracting the signature of the shellcode by pattern-
based analysis, and the signature is the single, contiguous code sequence. As attackers
are employing advanced evasion techniques such as polymorphism to circumvent the
defense tools. Some works [15, 25, 32, 43] are further specific to these polymorphic at-
tacks. For example, SigFree [43] is an attack blocker which audits whether the network
packet contains instruction sequence and can be leveraged to detect some polymorphic
shellcode. However, ROP attack will be resilient to all these defense tools mentioned
above, as it has significant difference from traditional attacks, which assumes that mali-
cious code contains instructions to achieve malicious purpose. Thus, these works will be
blind to ROP payloads. Other tools [35, 36, 41, 45] use network emulation to detect the
remote-injection code, and identify the execution behavior of polymorphic shellcode.
Currently, network emulation solutions depend on discovery of instruction sequence,
which does not exist in ROP malicious code, since ROP malicious code is totally com-
bined by constant value and instruction address in libc or other existing library/binary.
Thus it will be ineffective for ROP attacks. Moreover, based on the observation that
most remote-injection attack will execute the code which is injected into the memory
by the attacker, another detecting method W ⊕ X is used to detect shellcode. These
techniques are deployed by the PaX [1] project as a patch for Linux. However, ROP
attacks execute existing binary code in program, so it will not be detected by W ⊕ X .

Although ROP attacks may circumvent many existing defense tools, and hide their
malicious behavior in benign code. We find that ROP attack has its intrinsic feature. (1)
ROP attack uses gadget ending in “ret” instruction which is used to jump to the next gad-
get, and the number of the instructions in the gadget is often less than five. By contrast,
in benign program design, the pairs of “ret” instruction and “call” instruction represent
the prologue and epilogue of the function. (2) “ret” instructions contiguously executed
in ROP attacks and they pop up the addresses of the gadgets in existing library/binary.
Whereas in normal program, “ret” instructions pop up the addresses which are not con-
tiguously located in the same existing library/binary, that is to say, the distribution of
addresses are dispersed. Based on the two differences between ROP attack and normal

DROP: Detecting Return-Oriented Programming Malicious Code 165

programs, we develop a tool named DROP, which dynamically detects ROP attack by
checking whether the execution trace deviates from the normal execution route.

Our paper makes three major contributions:

– We select several gadgets from glibc-2.3.5 and leverage these gadgets to rewrite
130 x86 shellcode on milw0rm [28] by ROP technique.

– We statistically analyze a number of normal applications and ROP malicious code,
and we point out the factors which represent the feature of ROP malicious code.

– We develop an effective tool to detect the ROP attack, with the best of our knowl-
edge, our tool is the first one on detecting ROP attacks.

The rest of this paper is organized as follows: ROP attacks are described in section 2. In
section 3, we present an overview of DROP. The design and implementation of DROP
is illustrated at section 4. Section 5 provides the evaluation results of our tool. Section 6
examines its limitations, followed by a discussion of related work in section 7. Finally,
section 8 concludes our work.

2 ROP Attack

In this section, we first describe the design of ROP malicious code. In practice, we
extract several gadgets from glibc-2.3.5, and rewrite 130 x86 shellcode from milw0rm
[28] by using these gadgets. Based on the experience of writing ROP malicious code,
we point out the feature of ROP attacks.

2.1 Design of ROP Malicious Code

We extract 30 gadgets from glibc-2.3.5 based on the algorithm of finding useful in-
struction sequence [40]. All these gadgets contain no more than five instructions. We
ignore the following “boring instructions” [40]. (1)“pop ebp” and “leave”, these two
instructions ending in “ret” cannot be used in ROP shellcode. (2)“unconditional jump”,
we ignore the code sequence “jmp XXX; ret;”, instead, we use the gadget “pop %esp;
ret;” to perform the unconditional jump by changing the value of %esp.

Based on the gadgets we find in glibc-2.3.5, we rewrite 130 Linux x86 shellcode
from milw0rm [28]. Adopting the ROP techniques proposed by Hovav Shacham [40],
we also develop additional techniques to rewrite the ROP malicious code, and these
techniques can improve the design of ROP malicious code.

– Data Segment: We put the “unconditional jump” gadget after the padding
bytes(‘0x41’) in the shellcode, and define the data segment next to the “uncon-
ditional jump”. Then unconditionally jump to the next gadget which is close to the
data segment. Just like in C Programming, we declare variables and constants at the
beginning of the function, the data segment is used to store the temporary values or
constant arguments of the system call. This technique avoids complicated calcula-
tion of the memory address used in ROP shellcode, especially when there are a lot
of temporary values and constant arguments used by original shellcode.

166 P. Chen et al.

– Constant Value: There are often some immediate values in shellcode, such as the
system call number. In ROP shellcode, we cannot store them in memory directly,
because it will bring NULL bytes to the shellcode. Alternatively, we store its nega-
tive values in the memory. Take “11(0xb)” for example, we store its negative value
“-11(0xfffffff5)” in the memory, and use the gadget “pop %edx; ret;” to load -11
to %edx , then leverage the other two gadgets “xor %eax, %eax; ret;” and “sub
%edx, %eax; ret;” to get the original immediate value 11.

– Shortest Gadget Sequence: We try to use the shortest gadget sequence to rewrite the
original code. For example, if we want to load a value to memory, the gadget se-
quence mentioned by Hovav Shacham is “pop %eax; ret; mov %eax, 0x18(%edx);
ret” [40], it contains two gadgets. By contrast, we use following gadget instead to
achieve the same functionality. The difference is that we need to store the value
subtracted by 10 in shellcode, and then pop it to %ecx.

pop %ecx
add $0xa ,% ecx
mov %ecx ,(% edx)
r e t

Figure 1 shows one example of the 130 ROP shellcode we rewrite. Figure 1 (a) shows
the original shellcode, and Figure 1 (b) shows the ROP shellcode. These two kinds of
shellcode have the same function: obtaining a command shell from which the attacker
can control the compromised machine. In this example, glibc-2.3.5 is mapped at address
0x03000000, program stack is mapped at address 0x4fffff00, and in practice, we assume
these addresses have already been obtained by the attacker.

0x31 , 0xc0, 0x50 , /* xor %eax, %eax;
push %eax

*/
0x68, 0x2f, 0x2f, 0x73, 0x68, /* push$0x68732f2f;*/
0x68, 0x2f, 0x62, 0x69, 0x6e, /* push$0x6e69622f;*/
0x89, 0xe3, /* mov %esp, %ebx;*/
0x50, /* push %eax; */
0x53, /* push %ebx;*/
0x89, 0xe1, /* mov %esp ,%ecx;*/
0x31, 0xd2, /* xor %edx, %edx;*/
0xb0, 0x0b, /* mov $0xb, %al;*/
0xcd, 0x80; /* int 0x80;*/
0x00

 (a)

0x9e, 0x7a, 0x03, 0x03 , /* xor %eax, %eax; ret; */
0xe8, 0x7f, 0x02, 0x03, /* pop %edx; ret; */
0x0c, 0xff, 0xff, 0x4f,
0x10, 0x80, 0x02, 0x03, /*mov %eax, 0x18(%edx);ret;*/
0xe8, 0x7f, 0x02, 0x03, /* pop %edx; ret; */
0xf5, 0xff, 0xff, 0xff , /* -11 */
0x9b, 0xa0, 0x06, 0x03, /* sub %edx, %eax; ret; */
0x0d, 0xb1, 0x06, 0x03, /* pop %ebx; ret; */
0x38, 0xff, 0xff, 0x4f, /* address of "/bin//sh" */
0xe7, 0x7f, 0x02, 0x03, /* pop %ecx; pop %edx; ret;*/
0x20, 0xff, 0xff, 0x4f,
0x24, 0xff, 0xff, 0x4f,
0xf5, 0xda, 0x08, 0x03, /* int 0x80; ret;*/
0x38, 0xff, 0xff, 0x4f,
0x12, 0x34, 0x56, 0x78,
0x2f, 0x62, 0x69, 0x6e,
0x2f, 0x2f, 0x73, 0x68, 0x00
 (b)

Fig. 1. Example code: (a) original shellcode, and (b) the ROP shellcode

In Figure 1, we can see that except constant data “/bin//sh”, ROP malicious code
is in the different shape from original code. The original code contains instructions,
whereas ROP malicious code is consisted of the address of gadget and immediate data

DROP: Detecting Return-Oriented Programming Malicious Code 167

within libc. In addition, ROP malicious code leverages the gadgets ending in a “ret”
instruction which pops up the address of the next gadget.

2.2 Features of ROP Malicious Code

Return-oriented Programming malicious code relies on existing code (e.g., libc) and
contains no instructions. The organizational unit of a return-oriented attack is the gad-
get. Each gadget is an arrangement of words on the stack, and these words point to
instruction sequences and immediate data words. When the gadget is invoked, it ac-
complishes several well-defined task, such as a load or an arithmetic operation [37].

Based on the practical experience of writing ROP malicious code, we find the feature
of ROP malicious code as follows:

– ROP chains together gadgets (often contain no more than 5 instructions) which are
already existing in the memory space, and each of these gadgets ending in “ret”.

– ROP malicious code utilizes the contiguous gadget sequence.
– ROP technique hides the malicious code in benign code, as it only contains the

immediate data or address value.

Formula in Table 1 is used to represent ROP malicious code. In this Formula, we define:

Definition 1 (Candidate Gadget). Candidate Gadget refers to the instruction sequence
ending in “ret”. We defined the number of instructions in a Candidate Gadget as G size.
Candidate Gadget Set is briefly represented as G[1...n], G[i] represents the ith Candi-
date Gadget in G set.

Definition 2 (Contiguous Candidate Gadget Sequence). Contiguous candidate gad-
gets are defined as the gadgets occur one after the other and they pop up the address
within the same library/binary memory space. The Contiguous Candidate Gadget Se-
quence contains the contiguous candidate gadgets, and it is represented as S[1...k], S[i]
represents the ith Candidate Gadget in S set. The length of contiguous candidate gad-
get sequence is defined as S length, and Max(S length) represents the maximum value
of S length.

Table 1. Expressions represent the ROP malicious code

G size = sizeof(G[i]) If Min Addr <= G[i].Addr <= Max Addr&&G[i] ∈ G;

S = {S[i]|S[i].G size, S[i + 1].G size <= T0&&S[i]1, S[i + 1]1 ∈ G};
S length = {length|length = sizeof(S)};

ROP = Assert(Max(S length) >= T1);

1 S[i] and S[i+1] are contiguous gadgets.

In Table 1, Min Addr / Max Addr is the start/end address of existing library/binary,
where the gadgets are extracted from. G size and Max(S length) are the two factors
which represent the feature of ROP malicious code. T0 and T1 are the thresholds of
the G size and Max(S length), respectively. To detect ROP malicious code, we need
correctly choose the value of T0 and T1.

168 P. Chen et al.

3 Overview

Based on the differences between ROP malicious code and normal program, we imple-
ment a defense tool “DROP” to detect ROP malicious code. Based on the thresholds
of G size and Max(S length), DROP monitors the program dynamically, intercepts the
“ret” instruction, chooses the “ret” instruction which pops up the address in libc, and
then checks whether the maximum length of contiguous candidate gadget sequence is
more than T1 and each gadget has no more than T0 length. If so, DROP raises an alarm
that the process executed contains ROP malicious code.

Binary code
Ret instruction

recognition

Ret record

gardget

gardget

gardget

gardget

G_size & Max(S_length)

 Report

Fig. 2. Architecture of DROP

Figure 2 shows the architecture of our system. First, we recognize the “ret” instruc-
tion and determine whether it pops up the address within libc. If so, we record the
address poped up by “ret” instruction. Second, we record the size of each Candidate
Gadget (G size). And we also record the length of contiguous gadget sequences
(S length). By referencing the thresholds of G size and Max(S length), we check whether
ROP malicious code exists. Note that our system currently inspects the gadgets in the
libc, it can be extended to other existing library/binary such as Linux Kernel.

4 Implementation Details

Our system is implemented on dynamical binary instrumentation tool Valgrind-3.4.0
[30]. DROP dynamically instruments the binary code and does statistical analysis to de-
termine whether the execution route breaks the thresholds of G size and Max(S length),
which are two main factors to separate the ROP malicious code from normal program.

Figure 3 shows the flow chart of DROP. First, DROP leverages Valgrind Core to
translate the binary code into intermediate language VEX. Second, DROP recognizes
the “ret” instruction represented by VEX. Third, DROP records the address poped up
by “ret” instruction and checks whether the address is in libc. Then DROP counts the
length of candidate gadget, which equals to the number of instructions between two

DROP: Detecting Return-Oriented Programming Malicious Code 169

Recognize ret

Record the poped address

Within Libc?
No

Yes

Count the length of candidate

gadgest G_size

G_size<=T0

Record the candidate gadget

Max(S_length)>=T1

Count the maximum length of

contiguous candidate gadgets

Max(S_length)

No Yes

Yes

No

Report ROP Malicious Code Report Normal Execution

Fig. 3. Flow chart of DROP

“ret” instructions, and selects the candidate gadget whose length is no more than T0, that
is to say, G size<=T0. Finally DROP checks whether there are more than T1 contiguous
gadgets, in other words, Max(S length) >=T1. If the binary execution meets the feature
of ROP malicious code, DROP will report that there exists ROP malicious code.

There are two challenges to detect the ROP malicious code.

– Ret Instruction Recognition.
First we need to recognize the “ret” instruction and then record the address poped
up by it. Valgrind translates binary code into intermediate language VEX, and Table
2 shows “ret” instruction represented by VEX in 32 bits architecture. There are four

Table 2. Ret Instruction Represented in VEX

[1]PUT(60) =0x804838A:I32;
[2]t3 =LDle:I32(t4);
[3]t5=Add32(t4,0x4:I32);
[4]PUT(16) =t5;

VEX statements which represent the “ret” instruction. The first statement is used
to store the address of “ret” instruction in %eip(60), the second statement is used
to pop up the address from the top of stack, then the third and fourth statements
are used to regulate the value of %esp by adding 4 to it. In intermediate language
VEX, PUT is used to write the value to the register, and LDle is used to load the
value to the memory. We found the representation of “ret” instruction in VEX has
following feature: (1) Using LDle to read the value from the top of stack; (2) Using
the Add32 expression , whose first operand is the same as the operand of LDle and
second operand is 0x04; (3) The result of addition statement is the same as the

170 P. Chen et al.

right operand of PUT statement, and the register of PUT statement is %esp(16).
We instrument the second VEX statement, which pops up the address from the top
of stack, to record the address. When we identify the “ret” instruction, we check
whether the address popped up by the “ret” instruction is in libc.

– Contiguous candidate gadgets Recognition . DROP recognizes the contiguous can-
didate gadgets as the following steps. First, when we find that the address poped up
by “ret” instruction is in libc, DROP records the size of the candidate gadget ending
in the “ret” instruction just recognized, and initiates the variable G size as 0. Then
DROP increases the G size when executes one instruction, until encounters the next
“ret” instruction. We select the candidate gadgets with the size G size no more than
T0. And then among these gadgets, we record the length of contiguous candidate
gadget sequence and choose the maximum length of the contiguous candidate gad-
get sequence. If the maximum length is no less than T1, we raise an alarm that the
program contains ROP malicious code.

5 Evaluation

In this section, we choosed a large number of normal programs and ROP malicious
shellcode to determine the thresholds of the two factors which represent the feature of
ROP: G size and S length. Based on the two factors, we evaluated the false positives and
false negatives of DROP with hundreds of applications and several kinds of shellcode.
Finally we test the performance overhead of DROP. The evaluation is performed on
an Intel Pentium Dual E2180 2.00GHz machine with 2GB memory and Linux kernel
2.6.15. Tested programs are compiled by gcc-4.0.3 and linked with glibc-2.3.5.

5.1 Statistical Analysis of Normal Programs and Shellcode

We choose hundreds of applications to test the feature of normal programs’ execution,
and the sizes of these applications range from 10K to 100M. These tested programs
cover major categories of common programs such as Database, Media Player, Web
Server. Table 3 lists the statistical results of fifteen programs. Note that the rest of pro-
grams we analyzed also come up to the average statistical result listed in Table 3.

Table 3. Statistical result of normal program

Software LOC (K) Benchmark
The number of candidate gadget Max(S length)

<=4 1 <=5 <=6 <=7 <=8 <=9 <=10 <=4 1 <=5 <=6 <=7 <=8 <=9 <=10
slocate-2.7 89.2 Search patterns in 87K database 7 13 17 30 40 48 56 1 2 2 2 3 3 5
bzip2-1.0.5 236.6 Uncompress the 269K file 7 12 15 26 34 41 46 1 2 2 2 2 3 3
man-1.6c 248.5 Open the message catalog for ls 5 10 16 30 43 51 60 1 2 2 3 3 3 4
gzip-1.2.4 278.2 Uncompress the 55M file 1 4 8 19 25 31 34 1 2 2 2 2 3 3

bc-1.06 375.9 Finds primes between 2 and limits 5 9 11 21 27 33 39 1 2 2 2 2 2 4
ngircd-0.8.1 445.1 Validate and display configuration 8 15 19 30 38 44 53 1 2 2 2 2 2 4

zgv-5.8 479.5 View JPG file 8 17 25 49 64 78 88 1 2 2 3 3 3 3
gocr-0.46 823.6 Process JPG file 6 12 15 27 33 39 47 1 2 2 3 3 3 3
grep-2.5.1 904.1 Find pattern in 1.9 MB file 2 7 9 19 26 35 40 1 2 2 2 2 3 3

openssh-2.2.1 976.8 Login in using user name 11 21 25 30 42 43 52 1 2 2 2 2 3 5
tar-1.15.1 1149.0 Uncompress the 13.6M file 12 18 25 42 55 65 77 1 2 2 3 3 3 5
gcc-4.2.4 4060.4 Compile 1KB source code 5 10 12 23 33 41 46 1 2 2 2 3 3 5

httpd-2.2.0 9883.7 ab 19 31 91 118 144 163 174 2 2 2 2 3 4 5
python-2.5.2 13602.9 Process python file 12 18 25 41 56 65 72 1 2 2 2 2 4 5

php-5.2.5 24462.0 Process php file 13 21 28 53 73 93 108 1 2 3 3 4 4 6
Average 8 15 23 37 54 58 66 1 2 2 2 3 3 4

1 G size=4,5,6,7,8,9,10

DROP: Detecting Return-Oriented Programming Malicious Code 171

In Table 3, columns 4-10 represent the number of candidate gadgets and the length of
candidate gadget is G size, and columns 11-17 represent the maximum length of con-
tiguous gadget sequence Max(S length), and each gadget has the G size length. From
columns 4-10, we can see that the average number of candidate gadgets is 15 in normal
programs, and each candidate gadget contains no more than 5 instructions. This num-
ber is relatively small, by contrast, most of ROP malicious code contain more than 15
gadgets. To find the common number of instructions in shellcode, we statistically ana-
lyze 130 x86 shellcode from milw0rm [28]. Figure 4 shows the number of instructions
in the 130 shellcode. We can see 83 shellcode among 130 shellcode we study contain
more than 15 instructions, nearly 63.4%. We also rewrite these 130 shellcode by ROP
technique, and find that 87 ROP shellcode contain more than 15 gadgets, nearly 66.9%.

Fig. 4. The Number of Instructions in Shellcode

In addition, from columns 11-17, we can see that the larger the G size, the longer the
Max(S length). When G size is no more than 5, the Max(S length) is relatively stable
and less than 2. On the contrary, based on the analysis of ROP malicious code, we find
that the number of candidate gadgets is no less than 3. Malicious code uses system
call to achieve malicious system operation, and the system call will be replaced by
ROP technique with 3 gadgets at least. If these candidate gadgets are contiguous, the
maximum length of contiguous candidate gadget sequence is more than 3. Based on the
analysis of normal programs and ROP malicious code just mentioned above, we find
that the threshold of Max(S length) is about 3.

To further choose the thresholds of the two factors of ROP malicious code and make
DROP have both low false positives and false negatives, we test a large number of
normal programs and ROP malicious code which are monitored under DROP with

Table 4. The false positives and false negatives of DROP

���T1
T0 4 5 6 7 8 9 10

1 1.000/0.000 11.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
2 0.913/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000 1.000/0.000
3 0.000/0.009 0.000/0.000 0.067/0.000 0.333/0.000 0.578/0.000 0.817/0.000 0.982/0.000
4 0.000/0.069 0.000/0.023 0.047/0.023 0.053/0.023 0.073/0.023 0.235/0.023 0.637/0.023
5 0.000/0.092 0.000/0.031 0.000/0.031 0.000/0.031 0.002/0.031 0.096/0.031 0.467/0.031
6 0.000/0.104 0.000/0.054 0.000/0.054 0.000/0.054 0.000/0.054 0.000/0.054 0.067/0.054

1 False positives and false negatives of DROP are represented in the form of x/y,
“x” represents the false positives, and “y” represents the false negatives.

172 P. Chen et al.

the different thresholds of G size and Max(S length). Table 4 shows the experimental
results. And the thresholds of G size and Max(S length) are represented as T0 and T1,
respectively. We can see that when the value of G size is increasing, it makes the false
positives of DROP increase and false negatives decrease, on the contrary, when the
value of Max(S length) is increasing, it makes the opposite result.

From Table 4, we can see that the optimal thresholds of Max(S length) and G size
are 3 and 5, respectively, because in this case, DROP has no false positives and false
negatives. Note that the thresholds of Max(S length) and G size can be chosen by the
user. In current implementation, we focus on x86 programs, and monitor the gadgets in
libc. Thus, we select the thresholds of Max(S length) and G size as 3 and 5, respectively.

5.2 Analysis of False Positives and False Negatives

We choose 130 Linux x86 shellcode from milw0rm [28], and all these types of shell-
code are rewritten by ROP to evaluate the effectiveness of DROP. Table 5 shows ten
representative cases among 130 shellcode we tested. In Table 5, column 4 represents
the number of instructions in original shellcode, and column 5 represents the number
of gadgets in ROP shellcode we rewrote. We can see that DROP has no false negatives.
Next we also measure the false positives of DROP. Note that DROP is based on the
two factors which represent the feature of ROP malicious code, and the two character
factors are determined by statistically analyzing hundreds of application mentioned in
Section 5.1. We select additional hundreds of applications to analyze the false positives
of DROP. Experimental result shows that DROP has no false positives. In addition, al-
though so far, in practice, we have not constructed x86 ROP malicious code by using
libc gadgets to circumvent DROP. In theory, however, DROP may have false negatives.

Table 5. ROP malicious code tested on DROP

Date of Shellcode Size Description Instructions Gadgets Detected by DROP
2009-06-16 34 bytes setreuid(),execve(“/bin/sh”,0,0) [11] 16 21 �
2009-02-20 30 bytes chmod(“/etc/shadow”,666) exit(0) [8] 11 8 �
2009-02-04 34 bytes killall5 shellcode [9] 13 15 �
2009-01-16 30 bytes PUSH reboot() [10] 12 8 �
2008-11-19 86 bytes edit /etc/sudoers for full access [7] 29 32 �
2007-03-09 40 bytes /sbin/iptables -F [6] 17 19 �
2006-11-17 45 bytes execve(rm -rf /) shellcode [3] 23 29 �
2006-07-04 84 bytes portbind (define your own port) [5] 47 84 �
2006-04-03 25 bytes execve(“/bin/sh”, [“/bin/sh”, NULL]) [2] 11 8 �
2006-01-21 5 bytes normal exit w/ random return value [4] 3 3 �

– Multi-stage ROP malicious code.
Multi-stage shellcode reads the second stage payload and executes it. At the end
of the first stage, it will subvert the control flow to the shellcode belonged to the
second stage. At this moment, if the first stage shellcode executes “ret” instruction
to jump to the second stage shellcode, it will pop up the address which is not in libc.
Therefore, it may break the assumption that ROP malicious code contains no less
than 3 contiguous address which are poped up by “ret” instructions within libc. In
addition, if the first stage payload is short (less than 3 gadgets), it may make DROP
ineffective. However, in practical analysis of shellcode, we have not found this kind
of shellcode, because there is almost no chance for attacker to construct the first stage
shellcode with less than 3 gadgets to read the second stage payload and jump to it.

DROP: Detecting Return-Oriented Programming Malicious Code 173

– Mutil-source ROP malcious code.
Currently, we only monitor the gadgets in libc, if the ROP malicious code uses
multi-source, such as the program text segment and Linux Kernel, and constructs
the gadgets in interval. DROP will be blind to this kind of malicious code. In prac-
tice, it is hard to construct multi-source ROP malicious code, because it is non-
trivial to simultaneously get the base address of the multi-source.

Although there are several methods which may be potentially circumventing DROP,
as demonstrated, we believe our technique can be used to defend against ROP attacks.
First, these attack techniques are not practical and hard to be implemented. Second,
DROP is built based on the case study of normal programs and ROP malicious code,
and our experimental results show that it has no false positives and negatives.

5.3 Performance Evaluation

We used the fifteen normal applications listed in Table 6 to measure the performance
of our tool DROP. For each program, we tested the performance overhead when the
program runs natively and under DROP.

Table 6. Performance Overhead of DROP

Prog. LOC (K) Benchmark Native Run Under DROP Performance Overhead
slocate-2.7 89.2 Search patterns in 87K database 0.096s 0.593s 6.2X
bzip2-1.0.5 236.6 Uncompress the 269K file 3.357s 51.860s 15.4X
man-1.6c 248.5 Open the message catalog for ls 0.188s 1.234s 6.6X
gzip-1.2.4 278.2 Uncompress the 55M file 2.457s 10.839s 4.4X

bc-1.06 375.9 Finds primes between 2 and limits 0.125s 2.628s 21.0X
ngircd-0.8.1 445.1 Validate and display configuration 0.141s 0.625s 4.4X

zgv-5.8 479.5 View JPG file 0.145s 0.703s 4.8X
gocr-0.46 823.6 Process JPG file 0.136s 1.868s 13.7X
grep-2.5.1 904.1 Find pattern in 1.9 MB file 0.958s 9.753s 10.2X

openssh-2.2.1 976.8 Login in using user name 4.626s 14.803s 3.2X
tar-1.15.1 1149.0 Uncompress the 13.6M file 8.158s 15.463s 1.9X
gcc-4.2.4 4060.4 Compile 1KB source code 0.078s 0.748s 9.6X

httpd-2.2.0 9883.7 ab 1.019s 5.208s 5.1X
python-2.5.2 13602.9 Process python file 0.725s 4.188s 5.8X

php-5.2.5 24462.0 Process php file 0.612s 2.349s 3.8X
Average 1.521s 8.191s 5.3X

From Table 6, we can see the average performance slow down factor of DROP is
nearly 5.3 times. With the best of our knowledge, the performance overhead of DROP
is the relatively low Valgrind overhead. The performance overhead of DROP is mainly
on the recognition of “ret” instruction and statistical analysis the length of contiguous
gadget sequences (S length). Note that we just propose the mechanism of detecting ROP
malicious code, and we believe our method can be adopted by other binary dynamic
instrumentation tools, such as PIN [26], and may get better performance.

6 Discussion

We implement DROP to detect ROP malicious code, and currently DROP is based on
dynamic binary instrumentation tool Valgrind [30]. Different from vulnerability-based
detection tools and malicious scanning tools, our tool aims at detecting ROP malicious
code. DROP has following limitations:

174 P. Chen et al.

– Portability Limitation. DROP only detect ROP malicious code written on x86 ar-
chitecture, however, malicious code can be rewritten on other architecture by ROP
technique. Thus it will be ineffective to detect ROP malicious code on other ar-
chitectures. We believe that our detecting mechanisms can be deployed to other
architectures, such as SPARC.

– Detection Limitation. There are two limitations. First, DROP detects ROP mali-
cious code with the assumption that it contains at least three contiguous gadgets.
However, some potential shellcode methods discussed in Section 5.2 may break this
assumption, and make DROP not effective. Second, currently, DROP only detects
the gadgets extracted from libc. However, some techniques may help attacker use
other existing library/binary, such as Linux Kernel [21], to construct ROP malicious
code. DROP will not be effective for this kind of ROP malicious code.

7 Related Work

7.1 Return-into-Libc Attack

ROP attack technique fits within the larger milieu of return-into-libc attack. However,
there are some critical differences between ROP attack and traditional return-into-libc
attacks. Traditional return-into-libc attack leverages libc functions, whereas ROP attack
uses gadgets. One gadget contains no more than five instructions and it can be easily au-
tomatically extracted from the existing library/binary. Some original defense techniques
against the traditional return-into-libc attack, such as Libsafe [13], will be ineffective
for the ROP attacks. Besides, ROP attack can use other existing library/binary such as
Linux Kernel, and makes it more challenging to detect ROP attack.

7.2 Defense Techniques Against Code Injection and Execution

W ⊕ X is a technique which ensures that no memory location in a process image is
marked both writable (“W”) and executable (“X”), typical defending tool is PAX [1].
It forbids memory pages both writable and executable. However, ROP attack does not
execute the injected code, and thus cannot be detected by W ⊕ X .

7.3 Malicious Code Scanners

Malicious Code Scanners [15,22,24,25,32,34,35,36,38,41,42,43,45] detect the context
of input, and check whether there are malicious codes. Currently, several Malicious
Code Scanners detect the malicious by using pattern matching. As ROP malicious code
contains the address of gadgets or data, the string in malicious code is randomized, thus
malicious code scanners will be ineffective for detecting ROP malicious code.

7.4 Integrity of Control Flow

Some existing tools can be deployed to prevent the control flow of program tampering.
These tools monitor the sensitive control-flow objects such as return address and func-
tion pointer. There are several typical tools [12,17,18,19], and these tools may block the
pre-condition of ROP attack : altering the control flow to the location ROP malicious
code exists. Our tool is an alternative approach to detect ROP malicious code based on
the assumption the control flow is tampered at least once.

DROP: Detecting Return-Oriented Programming Malicious Code 175

7.5 Memory Tainting Techniques

Memory tainting is used to defend the memory maliciously read and written. This de-
fense technique taints the memory location at bit/byte level, and detects whether the
sensitive object is corrupted by outside inputs. TaintCheck [33] is a tool which can ef-
fectively detect the control-flow hijacking. Xu et al [44] proposed a dynamic taint anal-
ysis technique to check security-sensitive operations. Several tools aim at automatically
detecting malicious behavior of malicious code from network using taint analysis,such
as DAKADO [20], Vigilante [16] and VSEF [31]. All these tools mentioned above are
effective for defending ROP attack, as they block the ROP malicious code to be injected
into memory. Our tool is an alternative approach to detect ROP malicious code based
on the assumption the malicious code can be successfully injected into memory.

8 Conclusion

In this paper, we have studied Return-Oriented Programming(ROP) and wrote several
ROP malicious code by using this technique. In addition, we statistically analyzed a
large number of normal programs and ROP malicious code, and investigated two factors
that represent the feature of ROP: G size and Max(S length). Based on the observation,
we found that there exist thresholds of the two factors, and can be leveraged to detect
ROP malicious code by separating the ROP malicious code from normal programs.
Our approach monitors program execution, and checks whether the execution comes up
to the feature of ROP malicious code. We have implemented our approach in a system
called DROP and applied it to analyze a number of normal programs and ROP malicious
code on x86 architecture. Preliminary experimental results show that our approach is
highly effective and practical, and has no false positives and negatives.

Acknowledgements

This work was supported in part by grants from the Chinese National Natu-
ral Science Foundation (60773171, 90818022, and 60721002), the Chinese Na-
tional 863 High-Tech Program (2007AA01Z448), the Chinese 973 Major State
Basic Program(2009CB320705), and the Natural Science Foundation of Jiangsu
Province(BK2007136).

References

1. The pax project (2004), http://pax.grsecurity.net/
2. linux/x86 execve(“/bin/sh”, [“/bin/sh”, null]). milw0rm (2006),

http://www.milw0rm.com/shellcode/1635
3. linux/x86 execve(rm -rf /) shellcode. milw0rm (2006),

http://www.milw0rm.com/shellcode/2801
4. linux/x86 normal exit w/ random (so to speak) return value. milw0rm (2006),

http://www.milw0rm.com/shellcode/1435
5. linux/x86 portbind (define your own port). milw0rm (2006),

http://www.milw0rm.com/shellcode/1979
6. linux/x86 /sbin/iptables -f. milw0rm (2007),

http://www.milw0rm.com/shellcode/3445

http://pax.grsecurity.net/
http://www.milw0rm.com/shellcode/1635
http://www.milw0rm.com/shellcode/2801
http://www.milw0rm.com/shellcode/1435
http://www.milw0rm.com/shellcode/1979
http://www.milw0rm.com/shellcode/3445

176 P. Chen et al.

7. linux/x86 edit /etc/sudoers for full access. milw0rm (2008),
http://www.milw0rm.com/shellcode/7161

8. linux/x86 chmod (“/etc/shadow”,666) & exit(0). milw0rm (2009),
http://www.milw0rm.com/shellcode/8081

9. linux/x86 killall5 shellcode. milw0rm (2009),
http://www.milw0rm.com/shellcode/8972

10. linux/x86 push reboot(). milw0rm (2009),
http://www.milw0rm.com/shellcode/7808

11. linux/x86 setreuid(geteuid(),geteuid()),execve(“/bin/sh”,0,0). milw0rm (2009),
http://www.milw0rm.com/shellcode/8972

12. Abadi, M., Budiu, M., Ligatti, J.: Control-flow integrity. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security(CCS), pp. 340–353. ACM Press,
New York (2005)

13. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack smashing at-
tacks. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference,
p. 21. USENIX Association, Berkeley (2000)

14. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go bad: gen-
eralizing return-oriented programming to risc. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security(CCS), pp. 27–38. ACM, New York (2008)

15. Cavallaro, L., Lanzi, A., Mayer, L., Monga, M.: Lisabeth: automated content-based signa-
ture generator for zero-day polymorphic worms. In: Proceedings of the 4th International
Workshop on Software Engineering for Secure Systems(SESS), pp. 41–48. ACM, New York
(2008)

16. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-
lante: End-to-end containment of internet worm epidemics. ACM Transactions on Computer
Systems (TOCS) 26(4), 1–68 (2008)

17. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang,
Q.: Stackguard: automatic adaptive detection and prevention of buffer-overflow attacks. In:
Proceedings of the 7th Conference on USENIX Security Symposium, p. 5. USENIX Asso-
ciation, Berkeley (1998)

18. Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lokier, J.: Format-
guard: Automatic protection from printf format string vulnerabilities. In: Proceedings of the
10th conference on USENIX Security Symposium, p. 2003 (2000)

19. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguardtm: protecting pointers from buffer
overflow vulnerabilities. In: Proceedings of the 12th Conference on USENIX Security Sym-
posium, p. 7. USENIX Association, Berkeley (2003)

20. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities from zero-
day polymorphic and metamorphic worm exploits. In: Proceedings of the 12th ACM Con-
ference on Computer and Communications Security(CCS), pp. 235–248 (2005)

21. Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: Bypassing kernel code integrity
protection mechanisms. In: Proceedings of 18th USENIX Security Symposium (2009)

22. Kim, H.A., Karp, B.: Autograph: toward automated, distributed worm signature detection.
In: Proceedings of the 13th Conference on USENIX Security Symposium, p. 19. USENIX
Association, Berkeley (2004)

23. Krahmer, S.: X86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique. Phrack Magazine (2005), http://www.suse.de/krahmer/no-nx.pdf

24. Kreibich, C., Crowcroft, J.: Honeycomb: creating intrusion detection signatures using hon-
eypots. ACM SIGCOMM Computer Communication Review 34(1), 51–56 (2004)

25. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack resilience. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy, pp. 32–47 (2006)

http://www.milw0rm.com/shellcode/7161
http://www.milw0rm.com/shellcode/8081
http://www.milw0rm.com/shellcode/8972
http://www.milw0rm.com/shellcode/7808
http://www.milw0rm.com/shellcode/8972
http://www.suse.de/krahmer/no-nx.pdf

DROP: Detecting Return-Oriented Programming Malicious Code 177

26. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,
Hazelwood, K.: Pin: building customized program analysis tools with dynamic instrumenta-
tion. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 190–200. ACM, New York (2005)

27. McDonald, J.: Defeating solaris/sparc non-executable stack protection. Bugtraq (1999)
28. milw0rm: http://www.milw0rm.com/shellcode/linux/x86
29. Nergal: The advanced return-into-lib(c) exploits (pax case study). Phrack Magazine (2001),

http://www.phrack.org/archives/58/p58-0x04
30. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instru-

mentation. In: Proceedings of the 2007 PLDI Conference, vol. 42(6), pp. 89–100 (2007)
31. Newsome, J., Brumley, D., Song, D.: Vulnerability-specific execution filtering for exploit

prevention on commodity software. In: Proceedings of the 13th Annual Network and Dis-
tributed System Security Symposium, NDSS (2006)

32. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures for poly-
morphic worms. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 226–
241 (2005)

33. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and signa-
ture generation of exploits on commodity software (2005)

34. Paxson, V.: Bro: a system for detecting network intruders in real-time. In: Proceedings of the
7th Conference on USENIX Security Symposium, Berkeley, CA, USA, p. 3 (1998)

35. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network-level polymorphic shell-
code detection using emulation. In: Büschkes, R., Laskov, P. (eds.) DIMVA 2006. LNCS,
vol. 4064, pp. 54–73. Springer, Heidelberg (2006)

36. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-based detection of non-
self-contained polymorphic shellcode. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

37. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming: Systems,
languages, and applications (2009) (in review)

38. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of the
13th USENIX Conference on System Administration, pp. 229–238. USENIX Association,
Berkeley (1999)

39. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proceedings of the
11th Annual Network and Distributed System Security Symposium (NDSS), pp. 159–169
(2004)

40. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 552–561. ACM, New York (2007)

41. Shimamura, M., Kono, K.: Yataglass: Network-level code emulation for analyzing memory-
scanning attacks. In: Proceedings of the 6th International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, pp. 68–87 (2009)

42. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: Proceed-
ings of the 6th Conference on Symposium on Opearting Systems Design & Implementa-
tion(OSDI), p. 4. USENIX Association, Berkeley (2004)

43. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow attack blocker.
IEEE Transactions on Dependable and Secure Computing 99(2) (2006)

44. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: a practical approach to
defeat a wide range of attacks. In: Proceedings of the 15th Conference on USENIX Security
Symposium (USENIX-SS 2006). USENIX Association, Berkeley (2006)

45. Zhang, Q., Reeves, D.S., Ning, P., Iyer, S.P.: Analyzing network traffic to detect self-
decrypting exploit code. In: Proceedings of the 2nd ACM Symposium on Information, Com-
puter and Communications Security, pp. 4–12. ACM, New York (2007)

http://www.milw0rm.com/shellcode/linux/x86
http://www.phrack.org/archives/58/p58-0x04

A Framework for Behavior-Based Malware
Analysis in the Cloud

Lorenzo Martignoni1, Roberto Paleari2, and Danilo Bruschi2

1 Dipartimento di Fisica,
Università degli Studi di Udine
lorenzo.martignoni@uniud.it

2 Dipartimento di Informatica e Comunicazione,
Università degli Studi di Milano

{roberto,bruschi}@security.dico.unimi.it

Abstract. To ease the analysis of potentially malicious programs,
dynamic behavior-based techniques have been proposed in the literature.
Unfortunately, these techniques often give incomplete results because the
execution environments in which they are performed are synthetic and
do not faithfully resemble the environments of end-users, the intended
targets of the malicious activities. In this paper, we present a new frame-
work for improving behavior-based analysis of suspicious programs. Our
framework allows an end-user to delegate security labs, the cloud, the
execution and the analysis of a program and to force the program to
behave as if it were executed directly in the environment of the former.
The evaluation demonstrated that the proposed framework allows se-
curity labs to improve the completeness of the analysis, by analyzing a
piece of malware on behalf of multiple end-users simultaneously, while
performing a fine-grained analysis of the behavior of the program with
no computational cost for end-users.

1 Introduction

With the development of the underground economy, malicious programs are
becoming very profitable products; they are used to spam, to perpetrate web
frauds, to steal personal information, and for many other nefarious tasks. An
important consequence of this lucrative motivation behind malware development
is that these programs are becoming increasingly specialized and difficult to
analyze: more and more often they attack very specific classes of users and
systems and their code is continuosly updated to introduce additional features
and specific modifications to thwart the analysis and eventually evade detection.

To counteract these new threats and to overcome the limitations of tradi-
tional malware analysis and detection techniques, security vendors and the re-
search community are moving towards dynamic behavior-based solutions. This
approach is becoming the primary method for security labs to automatically
understand the behaviors that characterize each new piece of malware and to
develop the appropriate countermeasures [1,2,3]. This technology is also used

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 178–192, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Framework for Behavior-Based Malware Analysis in the Cloud 179

on end-users’ hosts, to monitor the execution of suspicious programs and try to
detect and block malicious behaviors in real-time [4,5,6].

Dynamic behavior-based analysis has two major disadvantages: incomplete-
ness and non-negligible run-time overhead. Security labs analyze new malicious
programs automatically in special environments (e.g., virtual machines) which
allow very fine grained monitoring of the behavior of the programs. The auto-
matic behavioral analysis of specialized malware becomes more and more diffi-
cult because the malicious behaviors manifest only in very specific circumstances.
If the behavioral analysis is performed in inappropriate environments, like the
synthetic ones used in security labs, the results are very likely to be incomplete.
On the other hand, if the malicious program were analyzed directly on an end-
user’s machine, which is the intended target of the attack, the malicious behavior
would have more chances to be triggered and it would be caught as it manifests.
Unfortunately, the strict lightweight constraint required for end-users’ systems
does not allow a fine grained analysis of the behaviors of the programs [2,3].
Consequently, some malicious behaviors (e.g., the leakage of sensitive informa-
tion) cannot be detected on end-users’ machines. Current solutions address the
incompleteness of dynamic analysis by systematically exploring all environment-
dependent programs paths [7,8].

In this paper we propose a new framework for supporting dynamic behavior-
based malware analysis, based on cloud computing, that blends together the
computational power available in security labs (the cloud) with the heterogeneity
of end-users’ environments. The rationale of the framework are the two following
assumptions. First, the security lab has no limit on the computational resources
available and can exploit hardware features, in combination with recent advances
in research, to further improve its computational capabilities [9,10,11]. Second,
end-users’ environments are more realistic and heterogeneous than the synthetic
environments typically available in security labs and consequently are better
suited for analyzing potentially malicious software. The proposed framework
allows an end-user to delegate a security lab the execution and the analysis
of a potentially malicious program and to force the program to behave as if
it were executed directly in the environment of the former. The advantage is
twofold. It allows the security lab to monitor the execution of a potentially
malicious program in a realistic end-user’s environment and it allows end-users
to raise their level of protection by leveraging the computational resources of the
security lab for fine-grained analysis that would not be feasible otherwise. Since
each end-user’s environment differs from the others and since the behavior of a
program largely depends on the execution environment, through our framework,
the security lab can improve the completeness of the analysis by observing how a
program behaves in multiple realistic end-users’ environments. Such in the cloud
execution is made possible by a mechanism we have developed for forwarding
and executing (a subset of) the system calls invoked by the analyzed program
to a remote end-user’s environment and for receiving back the result of the
computation. As the execution path of a program entirely depends on the output
of the invoked system calls, the analyzed program running in the security lab
behaves as if it were executed directly in the environment of the user.

180 L. Martignoni, R. Paleari, and D. Bruschi

To evaluate the proposed approach, we have implemented a prototype for Mi-
crosoft Windows XP. Our evaluation witnessed that the distributed execution
of programs is possible and the computational impact on end-users is negligi-
ble. With respect to the traditional analysis in the security lab, the analysis of
malicious programs in multiple execution environments resulted in a significant
relative improvement of the code coverage: with just four additional distinct
end-users’ environments we achieved an improvement of ∼15%.

To summarize, the paper makes the following contributions: (i) a new frame-
work for dynamic behavior-based malware analysis in the cloud; (ii) a working
prototype of the above mentioned framework, that has also been integrated into
an existing behavior-based malware detector; (iii) an evaluation of the proposed
framework, demonstrating the feasibility and the efficacy of our idea.

2 Overview

Imagine a malicious program, like the one shown in Fig. 1, that resembles the
behavior of the Bancos malware [12]. To ease the presentation we use high-
level APIs of Microsoft Windows; nevertheless our approach works directly with
the system calls invoked by these functions. The program polls the foreground
window to check whether the user is visiting the website of a Brazilian bank. The
existence of such a window is the trigger condition of the malicious behavior. If
the bank website is visited, the program displays a fake authentication form to
tempt the user to type his login and password. Finally, the program forwards
the stolen credentials to a remote site.

The automatic analysis of such a piece of malware in a synthetic execution
environment, like those available in a security lab, is very likely to give incom-
plete results. Such an environment is generated artificially and consequently it
cannot satisfy all the possible trigger conditions of malicious programs. Further-
more, some malicious programs expect inputs from the user and then behave
accordingly. As the analysis is performed automatically, user inputs are also ar-
tificial and that can prevent the triggering of certain behaviors. On the other
hand, we have realistic execution environments, the systems of the end-users,
which are more suited for analyzing a piece of malware like Bancos, as they
are the intended victims of the malicious activity. Indeed, in the system of a cer-
tain class of users, the users of Brazilian banks, our sample malicious program
would manifest all its behaviors. Unfortunately, although such systems are more
suited for the analysis, it is not reasonable to expect to use all their resources
for detecting and stopping potentially malicious programs (fine grained analysis
can introduce a slowdown by a factor of 20 [3,13]). Consequently, host-based
detectors perform only very lightweight analysis and cannot detect certain mali-
cious behaviors (e.g., to detect that sensitive information are being leaked using
data-flow analysis).

2.1 Delegating the Analysis to the Cloud

In our framework the behavior-based analysis of a new suspicious program is
performed in the cloud: the user U does not run directly on his system the

A Framework for Behavior-Based Malware Analysis in the Cloud 181

VirtualAlloc();
...
VirtualFree();
while (true) {

hwnd1 = GetForegroundWindow();
title = GetWindowText(hwnd1);

if (title == "Banco do Brasil" ||
title == "Banco Itau" || ...) {

// Display a fake login screen for
// the site
hwnd2 = CreateWindow(...);
...
// Send credentials to a remote site
socket = WSAConnect();
WSASend(socket, ...);
...
break;

}

Sleep(500);
}

Fig. 1. Pseudo-code of a sample ma-
licious program that resembles the
Bancos trojan

Lab (L) User (U)

VirtualAlloc()

. . .

VirtualFree()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Baco du Brazil"

CreateWindow(...)

hwnd2

socket(...)

s1

s3

s4

s5

s6

Fig. 2. Diagram of the execution of the sample
malicious program in the security lab (L), by
forcing the program to behave as in the envi-
ronment of the end-user (U)

suspicious program, nor the malware detector, but he requests the security lab
L to analyze the program on his behalf; in turn the latter requests the help of the
former to mitigate the fact that its execution environment is synthetic. Our ap-
proach to overcome the limitations of the execution environment of L is based on
the following assumption: a program interacts with the environment by invoking
system calls, and the execution path taken by the program entirely depends on
the output of these calls [14]. In our particular context, this assumption means
that the triggering of a malicious behavior entirely depends on the output of the
system calls invoked. It follows that, to achieve our goal, it is sufficient to force
the system calls executed by the program in L to behave as they were executed
in U . To do that, the system calls, instead of being executed in L, are executed
in U , and L simulates their execution by using the output produced by U . It
is worth noting that only a small subset of all the system calls executed by the
program might actually affect the triggering of a malicious behavior. Examples
of such system calls are (i) those used to access user’s data (e.g., the file system
and the registry), (ii) those used to query particular system information (e.g.,
active processes, system configuration, open windows), and (iii) those used to
interact with the users (e.g., to process keyboard and mouse events). Therefore,
the collaboration of U is needed only for these system calls, while the remaining
ones can be executed directly in L.

Fig. 2 shows how our sample malicious program is executed and analyzed
leveraging our framework. The scenario of the analysis is the following. The
user U has received a copy of the program by email (or by another vector)
and he executes the program. With a conventional behavior-based detector the
program would be analyzed entirely on the host. With our framework instead,
the program is not executed locally but it is submitted to the security lab L,

182 L. Martignoni, R. Paleari, and D. Bruschi

that executes and analyzes the program with the cooperation of the user. The
new analysis environment thus becomes 〈L, U〉. All the system calls executed
by the program are intercepted. Our sample program initially executes some
system calls s1, . . . , s3 whose output does not depend on the environment (e.g.,
to allocate memory). These system calls are executed directly in L. Subsequently,
the program tries to detect whether the user is browsing a certain website: it
invokes s4 = GetForegroundWindow to get a reference to the window currently
active on the desktop of the user. As the output of this call highly depends on the
execution environment, L requests U to execute the call: L forwards s4 to U , U
executes s4 and sends back the output to L. The program does not notice what is
happening in the background and continues the execution. The next system call
is s5 = GetWindowText, which is used to get the title of the foreground window.
As one of its input arguments (hwnd1) is the output of a system call previously
executed in U , s5 is also executed in U . Supposing that the user in U is actually
visiting a website targeted by the program, the trigger condition is satisfied and
the program displays the fake login form to steal the user’s credentials. As this
activity involves an interaction with the user and such interaction is essential to
observe the complete behavior of the program, the system calls involved with
this activity are also forwarded to U , to get a realistic input. L can eventually
detect that there is an illegitimate information leakage.

The in the cloud execution of a potentially malicious program does not expose
the end-user to extra security risks. First, we confine the dangerous modifications
the program could make to the system in the environment of the security lab.
Second, more malicious behaviors can be detected and stopped, because the
analysis performed in the lab is more thorough. Third, the execution of the
program consumes less resources, as the user is in charge of executing a subset
of all the system calls of the program. Forth, annoying popups are still redirected
and shown to the user, but that would happen also if the program were executed
normally.

2.2 Exploiting Diversity of End-Users’ Environments

The proposed framework allows to monitor the execution of a potentially mali-
cious program in multiple execution environments. Given the fact that end-users’
environments are very heterogeneous (e.g., users use different software with dif-
ferent configurations, visit different web-sites), it is reasonable to expect that
the completeness of the analysis improves with the increase of the number of
different environments used.

To analyze a program in multiple execution environments, it is sufficient to run
multiple instances of the analyzer, L1, . . . , Ln, such that each instance cooperates
with a different environment U1, . . . , Un to execute the system calls that might
affect the triggering of the malicious behaviors (i.e., the environments used are
those of n of the potential victims of the malicious program, chosen according to
some criteria). The security lab can thus observe how each analysis environment
〈Li, Ui〉 affects the behavior of the program and can merge and correlate the
behaviors observed in each execution.

A Framework for Behavior-Based Malware Analysis in the Cloud 183

L

L1

L2

L3

L4

L5

L6

U1

U2

U3

U4

U5

U6

Fig. 3. Diagram of the execution of multiple instances of the analysis of a suspicious
program in multiple execution environments 〈L1, U1〉, . . . , 〈L6, U6〉. The central entity
L aggregates the results of each analysis.

Fig. 3 shows how the analysis of our sample program is performed simultane-
ously in multiple execution environments 〈L1, U1〉, . . . , 〈L6, U6〉. Each execution
is completely independent from the others but the results of the analysis are
collected and correlated centrally by L. As U1, . . . , U6 are distinct environments,
we expect the forwarded system calls to produce different output (e.g., to return
different window titles) and thus to cause the various instances of the analyzed
program to follow different paths. In the example, we have that the trigger con-
dition is satisfied only in U2 and U6, but the web sites being visited are different
(one user is visiting the web site of “Bancos do Brazil” and the other one the
web site of “Banco Itau”). Therefore, the correlation of the results reveals that
the program is effectively malicious and some of its trigger conditions.

3 Design and Implementation

The two parties participating to the in the cloud analysis of a program are
the security lab, L for short, and the end-user (the potential victim), U for
short. In this section we describe the components we have developed for these
two parties to make such distributed execution possible. The current prototype
implementation is specific for Microsoft Windows XP, but the support for other
versions of the OS can be added with minimal efforts. At the moment, our
prototype can successfully handle all the system calls involving the following
system resources: file, registry keys, system and processes information, and some
graphical resources.

3.1 Executing a Program in Multiple Environments

System calls hooking. To intercept the system calls executed by the ana-
lyzed program, we leverage a standard user-space hooking technique. We start
the process we want to monitor in a suspended state and then inject a DLL
into its virtual address space. The DLL hooks the functions KiIntSystemCall

and KiFastSystemCall, two small function stubs used by Microsoft Windows for

184 L. Martignoni, R. Paleari, and D. Bruschi

executing system calls [15,16]. This approach allowed to simplify the develop-
ment and facilitated the integration of the framework into an existing malware
detector.

Systemcalls proxying. A user-space application cannot directly access the data
structure representing a particular resource of the system (e.g., a file, a registrykey,
a mutex, a window) but it has to invoke the appropriate system calls to obtain an
opaque reference, a handle, to the resource and to manipulate it. We exploit this
characteristic of the operating system to guarantee a correct functioning of the an-
alyzed program, and to simulate the existence of resources with certain properties
that exists on a remote system, but do not in the system in which the program is
executed. When a system call is invoked, we analyze the type of the call and its
arguments to decide how to execute it: locally or remotely.

To differentiate between local and remote calls, we check if the system call
creates a handle or if it uses a handle. To create a handle means to open an
existing resource or creating a new one (e.g., to open a file), while to use a
handle means to manipulate the resource (e.g., to read data from a open file).
In the first case, we analyze the resource that is being opened and according to
some rules (details follow) we decide whether the manipulation of the resource
might influence the triggering of a malicious behavior. If not, we consider the
resource and the system call local and we execute the call in L. Otherwise, we
consider the resource and the system call remote and we forward and execute
the latter in U . When we intercept a system call that uses a handle, we check
whether the resource being manipulated (identified by the handle) is local or
remote and we execute the call in L or U accordingly.

Fig. 4 represents the various components we have developed (highlighted)
to intercept system calls and to execute them either locally or remotely. All
system calls executed by the analyzed program P are intercepted. Local system
calls are passed to the kernel as is, remote ones are forwarded to the system of
the end-user. To execute a remote syscall in U , L serializes the arguments of
the system call and sends them to U . The receiver deserializes the arguments,
prepares the program state for the execution (i.e., by setting up the stack and the
registers), and then executes the call. When the syscall returns, U serializes the
output arguments and sends them back to L. Finally, L deserializes the output
arguments, where the program expects them, and resumes the normal execution.
The program P cannot notice when a system call is executed elsewhere, because
it finds in memory the expected output.

On paper, the mechanism for serializing and proxying a system call looks
simple; however, its implementation is very challenging. The Microsoft Windows
system call interface, known as native API, is poorly documented. We put a lot
of reverse engineering efforts to understand how to properly serialize all system
calls and their arguments. After all, the Windows native API turned out to be
well suited for proxying and to simulate the existence of resources that physically
reside on a different system. No system call can operate concurrently on two
resources, resources can always be distinguished, and system calls manipulating
the same resource are always executed in the same environment.

A Framework for Behavior-Based Malware Analysis in the Cloud 185

OS Kernel

P

Syscall hooking

Syscall (de) seri-
alization

Syscall hooking

Syscall
(de)serialization

S
ec

u
ri

ty
la

b
(L

)

lo
c
a
l

sy
sc

a
ll

OS Kernel

Syscall execution

Syscall
(de)serialization

Syscall execution

Syscall
(de)serialization

E
n
d
-u

se
r

(U
)

remote syscall

return value & output arguments

Fig. 4. System calls interception and remote execution (P is the analyzed program)

Choosing remote system calls. Remote system calls are selected using a
whitelist. The whitelist contains a list of system calls names and a set of con-
ditions on the arguments. Examples of the system calls we consider remote
are: NtOpenKey, NtCreateKey (if the arguments indicate that the key is be-
ing opened for reading), NtOpenFile, NtCreateFile (if the arguments indicate
that the file is being opened for reading), NtQuerySystemInformation, and
NtQueryPerformanceCounter. The handles returned by these calls are flagged
as remote, by setting the most significant bits (which are unused). Thus, we
can identify subsequent system calls that access a remote resource and we have
the guarantee that no overlap between handles referencing local and remote
resources can occur.

GUI system calls. User’s inputs and GUI resources often represent trigger
conditions. For this reason it is important to let the analyzed program to in-
teract with realistic user’s inputs (i.e., GUI events) and resources. Although in
Microsoft Windows all the primitives of the graphical user interfaces are normal
system calls, to facilitate the proxying, we rely on Windows Terminal Services
subsystem to automatically forward the user interface of the monitored applica-
tion from the lab to the user’s machine. In particular, our prototype uses seamless
RDP (Remote Desktop Protocol) [17], that allows to export to a remote host the
graphical interface of a single application instead of the entire desktop session.
Therefore, if the analyzed program executed in the lab displays the user a fake
login form and blocks for inputs, the form is transparently displayed in U and
the received user’s events (keystrokes and mouse clicks) are sent back to the
program running in L.

The solution based on RDP allows only to forward a GUI to a remote system.
However, the session in which the application is run belongs to L. Thus, attempts
to query the execution environment would return the status of the environment
in L. As an example let us consider the system calls associated with the API
functions GetForegroundWindow and GetWindowText, used by our sample mal-
ware (Fig. 1) to check if the victim is visiting the website of a Brazilian bank.
Without any special handling these system calls would return the windows of the

186 L. Martignoni, R. Paleari, and D. Bruschi

session (on L). We want instead these calls to return information about the win-
dows found in the remote environment. To do that, we execute them remotely
as any other remote system call.

One-way isolation. One of the goal of our framework is to protect the system
of the end-user from damages that could be caused by the analyzed program,
without interfering with the execution of the program. The approach we adopt
to achieve this goal is based on one-way isolation [18]: “read” accesses to remote
system resources are allowed, but “write” accesses are not and are performed
locally. That is, if the program executes a system call to create or to modify a
resource we normally consider remote, we treat the resource as local and do not
proxy the call. To guarantee a consistent program state, we also execute locally
all subsequent system calls involving such resource.

In case the analyzed program turned out to be benign, system changes made in
the lab environment could be committed to end-user’s environment. Our proto-
type currently does not support this feature, nor does it support the correct isola-
tion of a program that accesses a resource that is concurrently accessed by another.

3.2 An in the Cloud Behavior-Based Malware Detector

In order to demonstrate how our framework can naturally complement behavior-
based malware detectors, we have integrated it in an existing detector [2], which
is based on virtual machine introspection and is capable of performing fine
grained information flow tracking and to identify data-flow dependencies between
system calls arguments. The malware detector is built on top of a customized
system emulator, which supports system calls interception and taint analysis
with multiple taint labels. As our framework works directly inside the guest, the
integration of the two components required only a trivial modification to allow
the detector to isolate the system calls executed by the suspicious program from
those executed by our prototype to proxy system calls and to ignore the latter.

To monitor the execution of a suspicious program in multiple end-users’ en-
vironments it is sufficient to run multiple instances of the enhanced malware
detector just described, where each instance collaborates with a different end-
user’s machine, and to merge the results. We have not yet addressed the problem
of correlating the results of multiple analyses.

4 Evaluation

This section presents the results of testing our prototype implementation of the
framework and presents a conceptual comparison of our approach with existing
solutions that try to systematically explore all program paths. We evaluated the
prototype with benign and malicious programs. The results of the evaluation
on benign programs witness that our approach does not interfere with normal
program execution and that it introduces a negligible overhead. Moreover, the
evaluation demonstrates that the analysis of a piece of malware in multiple
execution environments significantly improves the completeness of the results:
with the collaboration of just four different execution environments we observed
a ∼15% relative improvement of the code coverage.

A Framework for Behavior-Based Malware Analysis in the Cloud 187

Table 1. List of tested benign programs, actions over which each program was exer-
cised, and number of locally and remotely executed system calls (GUI system calls are
not counted)

Program Action Local Remote

ClamAV Scan (remote) files with (remote) signatures 166,539 1,238
Eudora Access and query (remote) address book 1,418,162 11,411
Gzip Compress (remote) files 19,715 93
MS IE Open a (remote) HTML document 1,263,385 10,260
MS Paint Browse, open, and edit (remote) pictures 1,177,818 9,708
Netcat Transfer (remote) files to another host 16,007 93
Notepad Browse, open, and edit (remote) text files 929,191 7,598
RegEdit Browse, view, and edit (remote) registry keys 1,573,995 13,697
Task Mgr. List (remote) running processes 33,339 241
WinRAR Decompress (remote) files 71,195 572

Experimental setup. The infrastructure used for the evaluation corresponds
to the one described in Section 3.2, with the difference that, instead of performing
behavior-based detection, we tracked the basic blocks executed in each run of
the experiments. To simulate the lab environment we used a vanilla installation
of Windows XP running inside the emulator, while as users’ environments we
used some other machines and we acted as the end-users.

Evaluation on benign programs. To verify that our framework did not inter-
fere with the correct execution of the programs, we executed through our proto-
type multiple benign applications. The tested programs included both command
line utilities and complex GUI applications. Table 1 reports the set of programs
tested, together with the actions over which each program was exercised and
with the number of local and remote system calls. We interacted with each pro-
gram to perform the operations reported in the table. As we ran the experiments
with the proxying of all supported system calls enabled, the numbers in the table
indicate the total number of remotely executed calls and not only those involved
with the described actions. For example, we used ClamAV to scan all the content
of a directory. Through our framework the anti-virus transparently scanned a
directory existing only in the simulated end-user’s system, using a database of
signatures which also existed only in the remote system.

We successfully executed all the actions reported in the table and verified that
the resources that were accessed effectively corresponded to those residing on the
system of the end-users. The number of system calls executed indicates that the
programs used for the evaluation are quite complex and thus that our results are
good representatives. We can conclude that: (i) system calls accessing remote
resources do not interfere with system calls accessing local resources, (ii) our
framework does not interfere with the correct execution of programs, and (iii)
system calls proxying allows to transparently access system resources residing
on remote hosts.

Performance overhead. We used a subset of the benign programs of Table 1
to evaluate the overhead introduced by our framework on the systems of the

188 L. Martignoni, R. Paleari, and D. Bruschi

user and of the security lab. We observed that the number of remotely executed
system calls depended on the type of applications and the actions exercised;
consequently the overhead depended on these factors. On the system of the
end-user, we measured a CPU, memory, and network usage that was roughly
proportional to the number of remotely executed system calls. Nevertheless,
in all cases, the resources consumed never exceeded the resources consumed
when the same programs were executed natively on the system: on average we
observed a 60% and 80% reduction of CPU and memory usage respectively. On
the other hand, we noticed a slight increase of the resource usage in the system
in the lab: on average we observed a 36% and 77% increase of CPU and memory
usage respectively. We also measured that, on average, 956 bytes have to be
transferred over the network to remotely execute a system call. For example, the
execution of RegEdit required in total to transfer 1030Kb of data. In conclusion,
our framework has negligible performance impact on the end-user and the impact
on the security lab, without considering the overhead introduced by the analysis
run on the framework, is sustainable and can be drastically reduced by improving
the implementation (e.g., by compressing data before transmission).

Evaluation on malicious programs. We evaluated our framework against
multiple malicious programs representing some of the most common and recent
malware families. The goal of the evaluation was to measure whether the anal-
ysis of multiple executions of the same piece of malware, in different end-users’
environments, gives more complete results then the analysis of a single execu-
tion of the program in an unrealistic environment (i.e., the vanilla installation
of Windows XP).

To quantify the completeness of the results we measured the increase of code
coverage. We initially executed batch each malicious program in the environ-
ment of the security lab and we recorded the set of unique basic blocks executed
(excluding library code). Subsequently, we ran each malicious program multi-
ple times through our prototype, each time in collaboration with a different
end-user’s environment, and again we recorded the set of unique basic blocks
executed. Therefore, if b0 represents the set of basic blocks executed in the en-
vironment of the security lab, and bi, i > 0, represents the set of basic blocks
executed with the collaboration of the ith end-user’s environment, the increase
of code coverage after the ith execution is measured as |bi \ (bi−1 ∪ ... ∪ b0)|.

Fig. 5 reports the relative increase of code coverage (using b0 as baseline)
measured during our evaluation, leveraging just four different end-users’ envi-
ronments and 27 different malware samples. The figure clearly shows that in the
majority of the cases we have a noticeable relative increase of the code cover-
age; the average increase is 14.53%, with a minimum of 0.24%, to a maximum
of 60.92%. It is worth noting that, although the observed improvements appear
minimal, most of the time small percentages correspond to the execution of hun-
dreds of new basic blocks. It is also important to note that certain environments
contributed to improve the results with certain malware but did not contribute
at all with others. Indeed, the four environments contribute respectively on av-
erage 25.35%, 30.86%, 18.14%, and 25.68% of the total increase observed. For
example, during the analysis of a variant of Satiloler, we noticed that the

A Framework for Behavior-Based Malware Analysis in the Cloud 189

 0

 10

 20

 30

 40

 50

 60

R
el

at
iv

e
in

cr
ea

se
 o

f
 c

od
e

co
ve

ra
ge

 (
%

)

Malware

Environment 1
Environment 2
Environment 3
Environment 4
Average

Fig. 5. Relative increase of code coverage obtained by analyzing the tested malware
samples in multiple execution environments

monitoring of web activities was triggered only in one of the four environments,
when we visited a particular website. Thus, in this environment we observed a
16.54% increase of the relative code coverage, corresponding to the execution of
about 140 new unique basic blocks; the observed increase in the other environ-
ments did not exceed 3%.

In conclusion, we believe the relative improvements observed during the eval-
uation testify the effectiveness of the proposed approach at enhancing the com-
pleteness of dynamic analysis.

Conceptual comparison with input oblivious analyzers. Input oblivi-
ous analyzers are tools capable of analyzing exhaustively a malicious program
by systematically forcing the execution of all program paths [7,8]. When an
input-dependent control flow decisions is encountered, both program branches
are explored. Such systematic exploration is achieved by manipulating the in-
puts and updating the state of the program accordingly, leveraging constraint
solvers, to force the execution of one path and then of the other.

The framework we propose in this paper addresses the same problem through
a completely different approach. Although our methodology might appear less
systematic, it has the advantage that, by leveraging real execution environments,
it can deal with complex trigger conditions that could exhaust the resources of in-
put oblivious analyzers. For example, trigger conditions dominated by a complex
program structure might easily generate an unmanageable number of paths to
explore and unsolvable constraints. Indeed, several situations are already known
to thwart these systems [19,20]. Examples of other situations that can easily
render input oblivious analyzers ineffective are malicious programs with payload
delivered on-demand (e.g., the Conficker malware [21]) and programs with hid-
den malicious functionality, like rouge anti-viruses, where the trigger conditions
consist in multiple complex asynchronous events. As we assume that sooner
or later the malicious program will start to reap victims, we can just sit and
watch what a program does in each victim’s system, without being affected by
the complexity of trigger conditions. At the first sign of malicious activity, we

190 L. Martignoni, R. Paleari, and D. Bruschi

consider the program as malicious; then we can notify all victims, but we could
also continue to analyze the program in some of the affected systems.

5 Discussion

Privacy and security issues. The framework we propose can clearly raise
privacy issues: by controlling the system calls executed on the systems of an
end-user, the security lab can access sensitive user’s data (e.g., files, registry
keys, GUI events). We are convinced that, considering the current trend, the
privacy issues introduced by our approach are comparable to already existing
issues. For example, commercial behavior-based detectors incorporate function-
ality, typically enabled by default, to submit to labs suspicious executables or
memory dumps of suspicious processes (which can contain sensitive user data).
Thus privacy of users is already compromised. Moreover, the security lab is just
a special provider of cloud services: users have to trust it like they trust other
providers (e.g., email providers and web storage services).

Detection and evasion. Our framework is sensitive to various forms of de-
tection and evasion. To prevent evasion attacks based on the identification of
emulated or analysis environments, it would be sufficient to build our frame-
work on top of undetectable systems for malware analysis [22]. The limitations
of our current implementation (e.g., lack of support for inter-process commu-
nication) can also offer opportunities for detection and evasion. We believe the
majority of the attacks will not be possible with a complete implementation.

6 Related Work

Malware analysis in the cloud. CloudAV is the first implementation of an
in the cloud malware detector through which end-users delegate to a central
authority the task of detecting if an unknown program is malicious or not [23].
A similar approach, called “collective intelligence”, has also been introduced in
a commercial malware detector [24]. Such centralized detection gives two major
benefits. First, the analysis no longer impacts on end-users’ systems, and being
centralized, it can be made more fine-grained. For example CloudAV analyzes
programs simultaneously, with multiple off-the-shelf detectors. Second, the re-
sults of the analysis can be cached to serve future requests of other users at no
cost. This paper further enhances these existing solutions by proposing a frame-
work that leverages the systems of potential victims for making the behavioral
analysis much more complete.

Behavior-based malware analysis. Our proposed solution is not a malware
detector, but is rather a framework that enhances the capabilities of existing
dynamic behavior-based detectors. Examples of malware detectors that could
integrate our approach are TTAnalyze [1], Panorama [3], CWSandbox [25], and
[2]. The problem of the incompleteness of dynamic approaches for malware anal-
ysis has been addressed by Moser et al. and Brumley et al. [7,8]. Both systems
allow the automatic exploration of multiple execution paths. A thorough com-
parison between these systems and ours is presented in Section 4.

A Framework for Behavior-Based Malware Analysis in the Cloud 191

Sandboxed programs execution. Sun et al. introduced a one-way isolation
technique to safely execute untrusted programs [18]. Their approach consists in
isolating the effects of an untrusted program from the rest of the system by
intercepting system calls that modify the file-system and redirecting them to a
cache, invisible to other processes. When the untrusted program terminates, the
user can choose to discard these modifications, or to commit them to the real
system. The approach we adopt to proxy the access to remote system resources
is similar to the one proposed by Sun et al.

Remote system call execution. Remote system call execution has been suc-
cessfully used to implement a high-throughput computation environment based
on Condor [26], where files stored on remote nodes of the environment are made
accessible locally and transparently by proxying the appropriate system calls.
Similarly, the V2 project [27] includes support for remote system call execution.
Our framework adopts the same strategy, but leverages system call proxying to
achieve a completely different goal.

7 Conclusion

In this paper, we presented a framework that enables sophisticated behavior-
based analysis of suspicious programs in multiple realistic and heterogeneous
environments. We achieve this goal by distributing the execution of the pro-
gram between the security lab (with unlimited computational resources) and
the environments of potential victims of the program (which are heterogeneous
by definition and might affect differently the behavior of the analyzed program),
by forwarding to the latter certain system calls. We have implemented an ex-
perimental prototype to validate our idea and integrated it into an existing
behavior-based malware detector. Our evaluation demonstrated the feasibility
of the proposed approach, that the overhead introduced is very small, and that
the analysis of multiple execution traces of the same malware sample in multiple
end-users’ environments can improve the results of the analysis.

References

1. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware. In:
Proceedings of the Annual Conference of the European Institute for Computer
Antivirus Research (2006)

2. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A Layered Ar-
chitecture for Detecting Malicious Behaviors. In: Proceedings of the International
Symposium on Recent Advances in Intrusion Detection (2008)

3. Yin, H., Song, D., Egele, M., Kirda, E., Kruegel, C.: Panorama: Capturing System-
wide Information Flow for Malware Detection and Analysis. In: Proceedings of the
Conference on Computer and Communications Security (2007)

4. NovaShield: http://www.novashield.com/
5. Panda Security: True Prevent,

http://research.pandasecurity.com/archive/

How-TruPrevent-Works- 2800 I 2900 .aspx

6. Sana Security: http://www.sanasecurity.com/

http://www.novashield.com/
http://research.pandasecurity.com/archive/How-TruPrevent-Works-_2800_I_2900_.aspx
http://research.pandasecurity.com/archive/How-TruPrevent-Works-_2800_I_2900_.aspx
http://www.sanasecurity.com/

192 L. Martignoni, R. Paleari, and D. Bruschi

7. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware
Analysis. In: Proceeding of the IEEE Symposium on Security and Privacy (2007)

8. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Towards
Automatically Identifying Trigger-based Behavior in Malware using Symbolic Ex-
ecution and Binary Analysis. Technical Report CMU-CS-07-105, Carnegie Mellon
University (2007)

9. Chabbi, M.: Efficient Taint Analysis Using Multicore Machines. Master’s thesis,
University of Arizona (2007)

10. Nightingale, E.B., Peek, D., Chen, P.M., Flinn, J.: Parallelizing security checks on
commodity hardware. In: Proceedings of the international Conference on Architec-
tural Support for Programming Languages and Operating Systems (2008)

11. Ho, A., Fetterman, M., Clark, C., Warfield, A., Hand, S.: Practical Taint-based
Protection Using Demand Emulation. In: Proceedings of the EuroSys Conference
(2006)

12. F-Secure: Trojan Information Pages: Bancos.VE,
http://www.f-secure.com/v-descs/bancos_ve.shtml

13. NoAH Consortium: Containment environment design. Technical report, European
Network of Affined Honeypots (2006)

14. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A Secure Environment for
Untrusted Helper Applications. In: Proceedings of the USENIX Security Sympo-
sium (1996)

15. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-
Wesley, Reading (2006)

16. Russinovich, M., Solomon, D.: Microsoft Windows Internals, 4th edn. Microsoft
Press, Redmond (2004)

17. Cendio: SeamlessRDP – Seamless Windows Support for rdesktop,
http://www.cendio.com/seamlessrdp/

18. Sun, W., Liang, Z., Sekar, R., Venkatakrishnan, V.N.: One-way Isolation: An Ef-
fective Approach for Realizing Safe Execution Environments. In: Proceedings of
the Symposium on Network and Distributed Systems Security (2005)

19. Cavallaro, L., Saxena, P., Sekar, R.: On the Limits of Information Flow Tech-
niques for Malware Analysis and Containment. In: Proceedings of the Conference
on Detection of Intrusions and Malware & Vulnerability Assessment (2008)

20. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Impeding Malware Analysis Using Condi-
tional Code Obfuscation. In: Proceedings of the Annual Network and Distributed
System Security Symposium (2008)

21. Porras, P., Saidi, H., Yegneswaran, V.: An Analysis of Conficker’s Logic and Ren-
dezvous Points. Technical report, SRI International (2009)

22. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware Analysis via Hardware
Virtualization Extensions. In: Proceedings of the Conference on Computer and
communications security (2008)

23. Oberheide, J., Cooke, E., Jahanian, F.: CloudAV: N-Version Antivirus in the Net-
work Cloud. In: Proceedings of the USENIX Security Symposium (2008)

24. Panda Security: From Traditional Antivirus to Collective Intelligence (2007)
25. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis

using CWSandbox. IEEE Security and Privacy (2007)
26. Livny, M., Basney, J., Raman, R., Tannenbaum, T.: Mechanisms for High Through-

put Computing. SPEEDUP Journal (1997)
27. VirtualSquare: Remote System Call,

http://wiki.virtualsquare.org/index.php/Remote_System_Call

http://www.f-secure.com/v-descs/bancos_ve.shtml
http://www.cendio.com/seamlessrdp/
http://wiki.virtualsquare.org/index.php/Remote_System_Call

BARTER: Behavior Profile Exchange for

Behavior-Based Admission and Access Control
in MANETs

Vanessa Frias-Martinez1,�, Salvatore J. Stolfo2, and Angelos D. Keromytis2

1 Telefónica Research, Madrid, Spain
2 Computer Science Department, Columbia University, New York, USA

vanessa@tid.es, {sal,angelos}@cs.columbia.edu

Abstract. Mobile Ad-hoc Networks (MANETs) are very dynamic net-
works with devices continuously entering and leaving the group. The
highly dynamic nature of MANETs renders the manual creation and
update of policies associated with the initial incorporation of devices
to the MANET (admission control) as well as with anomaly detection
during communications among members (access control) a very diffi-
cult task. In this paper, we present BARTER, a mechanism that auto-
matically creates and updates admission and access control policies for
MANETs based on behavior profiles. BARTER is an adaptation for fully
distributed environments of our previously introduced BB-NAC mech-
anism for NAC technologies. Rather than relying on a centralized NAC
enforcer, MANET members initially exchange their behavior profiles and
compute individual local definitions of normal network behavior. During
admission or access control, each member issues an individual decision
based on its definition of normalcy. Individual decisions are then ag-
gregated via a threshold cryptographic infrastructure that requires an
agreement among a fixed amount of MANET members to change the
status of the network. We present experimental results using content
and volumetric behavior profiles computed from the ENRON dataset. In
particular, we show that the mechanism achieves true rejection rates of
95% with false rejection rates of 9%.

1 Introduction

Mobile Ad-Hoc Networks (MANETs) are composed of devices that enter and
leave the network dynamically, quickly changing the network topology and ad-
ministrative domain membership. MANETs differ from wired/wireless networks
in that there is no central control, no base station, and no wireless switches.
As a result, any task in the network must be distributed and executed by all
its members. These tasks include manually creating and updating policies for
the admission as well as the access control of devices over time. Admission con-
trol refers to the decision process prior to the incorporation of devices to the

� Work performed while a PhD student at Columbia University.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 193–207, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

194 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

MANET. On the other hand, access control involves the membership update of
devices that are already part of the MANET. In general, admission and access
control policies are difficult to create manually unless one has a profound under-
standing of the resource that needs to be controlled. Additionally, the update of
policies is even more difficult given the highly dynamic nature of MANETs.

In our previous work, we introduced BB-NAC, a behavior-based network ad-
mission and access control mechanism for NAC technologies that centralized the
decision process on a unique NAC enforcer located at the edge of the network
[3] [4] [5]. Behavior was intended to represent the typical communications of
network devices i.e., the traffic payload observed or specific volumetric mea-
surements of the traffic such as average number of packets. In this paper, we
present BARTER, a behavior-based admission and access control mechanism for
MANETs. BARTER is an adaptation of BB-NAC for fully distributed networks.
As in the BB-NAC mechanism [5], a newcomer would present its behavior profile
to the MANET members during admission control. If an agreement is reached
among the members, the newcomer is admitted into the MANET. Analogously,
during access control, the traffic exchanged would be checked against the behav-
ior profiles of similar MANET members to perform anomaly detection.

Unlike BB-NAC, the admission and access control decisions in BARTER are
distributed among the MANET members rather than being centrally performed
by a NAC enforcer. The decision of each individual MANET member is based
on the accumulation of knowledge gathered from the behavior profiles of other
members. Ultimately, the final admission or access control decision is achieved
by building BARTER on top of a threshold cryptographic infrastructure that
guarantees not only distributed decision making but also secure communications
among MANET members. Due to the limited computational resources of many
MANET platforms (such as cellphones or PDAs), the calculation of clusters of
behavior profiles similar to the one implemented in the BB-NAC mechanism
would not be feasible. Instead, BARTER takes advantage of the restrictions
imposed by the threshold cryptographic infrastructure as a way to approximate
groups of similar behavior within the network.

Apart from the full description of the mechanism, we present an experimental
evaluation of BARTER based on content and volumetric behavior profiles com-
puted from the ENRON dataset [2]. Throughout the paper, we assume that there
exists a tamper resistance scheme [6] [11] running in the MANET that prevents
devices from having multiple identifications (each device has a unique, identi-
fiable IDi) and that detects manipulations in the packets exchanged between
MANET members.

The main contributions of the BARTER mechanism are the following:

– A mechanism that provides automatic and fully distributed creation of ad-
mission and access policies for MANETs. Individual decisions are made by
each MANET member based on the knowledge accumulated from previous
profile exchanges among members. The final admission or access control de-
cision is determined from the aggregation of individual decisions using a
threshold cryptographic layer that runs under the BARTER mechanism.

BARTER 195

– A mechanism that is robust against attacks from MANET members. The
mechanism adjusts over time in order to maintain its robustness even in the
presence of malicious devices within the MANET.

– An extensive evaluation of the mechanism using hundreds of content and
volumetric behavior profiles computed from the ENRON dataset.

The paper is organized as follows: in Section 2 we describe the foundations of
the BARTER mechanism. Section 3 discusses possible attacks to the mecha-
nism and analyzes the costs incurred by the threshold cryptographic infrastruc-
ture. Section 4 and Section 5 describe the experimental evaluation for content
and volumetric profiles respectively. Section 6 summarizes related work. Finally,
Section 7 presents conclusions and future work.

2 The BARTER Mechanism

We start with the assumption that each device in the MANET is running an
Anomaly Detection (AD) sensor that allows the device to compute a behavior
profile that models its typical behavior. BARTER consists of an initial setup
and two main phases: admission control and access control. Initially, MANET
members exchange their behavior profiles in order to build their own individual
definition of normal behavior which will later be used during admission and ac-
cess control. During admission or access control, each MANET member emits an
individual decision based on its definition of normal behavior. Individual deci-
sions are aggregated using a threshold cryptographic scheme (t,n) that requires
at least t out of the total n MANET members to change the status of the net-
work. Next, we describe each of the phases in detail as well as the interaction
with the cryptographic infrastructure that runs underneath the mechanism.

2.1 Initial Setup

The principal goal of the setup is for each MANET member to build their own
individual definition of normal behavior, which will be ultimately used during
admission control. MANET members are not clients or servers but rather peers
i.e., all members are considered equal and can execute client or server activities
simultaneously. As a result, MANET members can have both input and out-
put behavior profiles for the same service (port). Throughout, we assume that
the behavior profiles are computed from previous interactions of the device or
alternatively are provided as built-in profiles from the vendor. We further as-
sume that the profiles of the initial MANET members are clean and provide an
accurate representation of the typical behavior in the MANET.

During setup, all the initial members broadcast their output behavior profiles
to all the other MANET members. Each member proceeds to calculate the dis-
tance between its own input behavior profile and the output behavior profiles
received from the other devices. Given the distributed nature of the mechanism,
MANET members are only required to provide their output behavior profiles.

196 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

This step prevents any member from crafting attacks based on the knowledge
of the input profiles of the others. The distance between a member i and each
of the other MANET members j = 1, .., n is given by di,j = d(Pi,in, Pj,out),
where Pi,in is the input behavior profile for i and Pj,out is the output behav-
ior profile received from node j. Each pair (Pj,out, di,j) computed by member
i is then stored as an entry Qi[j] in its local table Qi. The entries are sorted
by member i according to their distance values such that the closest profiles to
Pi,in are placed at the top of the table. In general, distances can be interpreted
as a measure of confidence between a local device and the rest of the MANET
members. Specifically, profiles at shorter distances would be trusted more than
their more distant counterparts.

Armed with its sorted table, each MANET member proceeds to calculate its
local threshold τi that will determine acceptance or rejection of new devices
during admission control. The threshold τi is defined as the maximum distance
between its input profile Pi,in and its top t-1 most similar/trusted profiles. In
this context, t corresponds to the value from the (t,n) threshold cryptographic
scheme. Thus, τi = Qi[t− 1], where Qi[t− 1] represents the t− 1th entry at the
local table of member i.

Simultaneously, the members of the MANET are also responsible for setting
up the threshold cryptographic scheme (t,n). This scheme guarantees that all
communications among the n MANET members are encrypted using group keys,
which can only be reconstructed by any t members of the MANET. The thresh-
old cryptographic scheme also ensures that all decisions within the MANET
must meet the approval of at least t members.

The initial setup of the threshold cryptographic scheme is executed in a dis-
tributed fashion without a central authority (CA) following the approach pro-
posed by Narasimha et al. [9] using the cryptosystem theory without initial
trusted parties from Perdersen [12]. In the approach by Naramsimha et al., the
group of all MANET members (Mi, i=1..n) uses Shamir’s secret sharing [13] to
divide a group secret S into n shares. Specifically, the secret is represented as
a polynomial f(z) = f1(z) + ... + fn(z), where each fi(z) is generated by each
individual MANET member Mi. Each MANET member Mi computes its share
as follows. First, each Mi chooses a random polynomial fi(z) ∈ Zq (where q is
a prime number) of degree t-1 such that fi(0) = Si. Next, each Mi computes
Mj’s share as sj

i = fi(j) (for j=1..n) and securely transmits these values to each
j through a secure channel. Finally, Mj computes its share sj of the secret S

(partial signature) by summing all the shares received as sj =
∑n

i=1(s
j
i) and

computes its Group Membership Certificate (GMCi).
Under this scheme, any group of t members among the total n will be able

to jointly recover the secret S via Lagrange interpolation. Subsequently, this
threshold cryptographic scheme will play a principal role during the admission
and access control discussed in the following sections. It is important to note that
the merger between BARTER and the threshold cryptographic layer creates
a robust mechanism that guarantees distributed admission and access control
decisions as well as secure communications among the MANET members.

BARTER 197

Cross-Validation. The initial cross-validation seeks to find the ratio t/n that
yields the best results for the admission and access control mechanism. In par-
ticular, the performance of BARTER for each ratio t/n is measured in terms
of false rejection (FR) i.e., number of normal profiles wrongly rejected from
entering the MANET, true rejection (TR) i.e., number of anomalous profiles
detected as such, cryptographic costs (CC) and possibility of Distributed Denial
of Service (DDoS) attacks. The values of the ratios t/n are ranked according
to their performance r = (1 − FR) + TR + (1 − CC) + DDoS and the highest
ranked value is selected. Here, the cryptographic costs (CC) quantify the total
time involved during key (re)generation by the MANET members. For practical
purposes, the value of CC is normalized between 0 and 1. On the other hand,
DDoS evaluates the robustness against MANET members lying about their de-
cisions in order to manipulate the admission and access control. At the end of
the setup and cross-validation, each device will have a sorted local table Qi,
a local threshold τi as well as the best t/n ratio for the MANET. The actual
computation of the parameters used for the ranking is discussed in more detail
in Section 3. Experimental results are presented in Section 4 and Section 5.

2.2 Admission Control

Whenever a new device attempts to enter the MANET, it needs to broadcast its
own local output behavior profile to the current members. Initially, the members
will check whether the new device is blacklisted. If it passes this check, the mem-
bers proceed to compute the distance between their own input profile and the
output profile of the newcomer. If the distance is within its own local threshold
of normalcy, the member emits a favorable vote vi = 1. The final MANET vote
v can be expressed as:

v =
1
n

∑
i=0..n

vi

vi = 0 if d(Pi,in, Pnew,out) > τi

vi = 1 if d(Pi,in, Pnew,out) ≤ τi

where n is the number of members in the MANET, τi is the threshold of member
i, Pi,in is the input behavior profile of member i and Pnew,out is the output
behavior profile of the newcomer. If t or more members of the MANET emit a
favorable vote vi = 1, the newcomer is admitted. Otherwise, the newcomer is
rejected and added to a grey list that keeps track of the number of admission
attempts by the device. If a device exceeds a fixed number of attempts, it will
be added to a blacklist. In order to keep the latest updates, grey and blacklists
are exchanged among MANET members.

Upon acceptance of the newcomer, all the members of the MANET submit
their output behavior profiles to the new member. The new member stores the
profiles together with the distance measures between its own input profile and the
output profiles of the remaining members of the MANET in its local table. Then,
it proceeds to sort the values in its local table according to their distance. The

198 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

newP
4Q

1Q
5Q

6Q
3Q

2Q
t=4

(a) Step 1: New device presents
its profile to MANET mem-
bers.

?newP

?newP

?newP

?newP

?newP

?newP
1s

6s

2s

3s

(b) Step 2: Voting process
among MANET members and
partial signature distribution.

1Q
5Q

3Q

4Q

6Q

2Q t=4

7Q

(c) Step 3: New device is ac-
cepted and the status of all
MANET members is updated.

Fig. 1. Admission Control of a Newcomer new to the MANET

maximum distance value among its top t−1 profiles determines its local threshold
τPnew . The original members of the MANET store the output behavior profile
of the newcomer in their local tables and update their distance computations as
well as thresholds accordingly.

Whenever a new device enters or leaves the MANET (n increases or de-
creases), the ratio of t/n will also change. As a result, the mechanism must make
the proper adjustment to restore the ratio to its original value that yielded the
best performance for the admission control. In order to avoid recalculating t
every time that the value of n changes, we set an update window w such that
the value of t is changed only when the ratio exceeds the range t/n ± w. If we
consider t0 to be the initial value of t and n0 the initial number of MANET
members, t would be updated as t = �(t0/n0) ∗ n�, where n is the final size
of the MANET. Throughout, we assume the members can easily calculate or
approximate the total size of the MANET (n).

Every time a newcomer attempts to be admitted into the MANET, BARTER
combines with the threshold cryptographic admission control by Narasimha
et al. [9] as follows:

1. The newcomer Mnew broadcasts its public key certificate PKCnew and its
behavior profile Pnew,out to the MANET members.

BARTER 199

2. Members that deem the behavior profile of the newcomer normal (d(Pi,in,
Pnew,out) ≤ τi) reply with their Group Membership Certificates (GMCi).

3. Mnew forms a list of signers SLnew and sends it back to each of the members
Mj that replied initially.

4. Each Mj computes its partial signature sj and submits it to Mnew.
5. Mnew computes the complete signature s by summing t partial signatures sj

and obtains its own GMCnew as well as its partial share snew. In addition, it
updates its local table with the behavior profiles of the MANET members.

At the end of the process, if t or more members in the MANET agree on the
normal nature of the profile, the newcomer can compute its own GMC and start
communications with the MANET. Otherwise, the newcomer will not be able
to participate or even eavesdrop because the communications are encrypted.
Figure 1 depicts an example of the admission control in a MANET with six
initial members and a value of t=4.

2.3 Access Control

During access control, communications among the MANET members are contin-
uously screened to ensure that users do not deviate from their declared behavior
profiles. In practical terms, each MANET member continuously checks the in-
coming traffic from any device against its local input behavior profile as well
as against the output behavior profile of the sender that was originally saved
during the admission of the latter into the MANET. If a device considers some
traffic to be anomalous, it requires at least t members of the MANET in order
to act against the sender. Thus, the receiver of the anomalous traffic submits the
anomaly to its top t-1 most similar members drawn from its local table. If the
other t-1 members agree on the anomalous nature of the traffic, the sender is
expelled immediately from the MANET. This process relies on the assumption
that there exists an scheme that prevents data tampering within the MANET
and prevents users from falsifying alerts or replay attacks.

From a threshold cryptographic point of view, if a MANET member detects
an anomaly, it adds the anomalous member to its local Certificate Revocation
List (CRL) and proceeds to broadcast its own CRL to all the MANET mem-
bers. In order to ensure that the anomalous member no longer has a vote in the
distributed admission and access control, each member will generate new par-
tial signatures that will be submitted to each of the MANET members outside
the CRL via point-to-point communications (individual cryptographic channels).
This proactive key sharing [7] combines the approaches introduced by Ostrovsky
and Yung [10] and by Luo and Lu [8] as follows:

1. Each member Mi defines a polynomial fi(z) = f1z
1 + f2z

2 + ... + ft−1z
(t−1)

with fi(0) = Si, where f1..ft−1 ∈ Zq are randomly selected and q is a prime
number.

2. Mi secretly sends sj
i = fi(j)(mod q) to the MANET members Mj outside

the CRL. The members are assumed to have established point-to-point en-
crypted channels.

200 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

3. Mj would reply if and only if it has received t revocation lists (CRL) from
different MANET members.

4. Mi decrypts the si
j received from the other MANET members and computes

its new share si.

3 Attacks and Cryptographic Costs

Due to the fully distributed nature of the BARTER mechanism, the main source
of attacks derives from MANET members lying about their admission control
decisions either to admit members with malicious profiles or else to prevent
members with normal profiles from joining the MANET. Small values of the
t/n ratio would permit attackers to get a hold of the admission control by com-
promising only a few MANET members. In contrast, larger t/n ratios could be
attacked by compromising a few nodes that would prevent the other members
of the MANET from reaching a decision. We quantify the robustness against
DDoS attacks via a numerical factor DDoS in the ranking index formula such
that r = (1−FR)+TR+(1−CC)+DDoS. Our assumption is that a t/n = 0.5
represents the optimal value to minimize the risk of potential DDoS attacks. As
a result, we set DDoS = 0.5 for t/n = 0.5. We set DDoS = t/n for smaller
ratios (t/n < 0.5) and assume DDoS = 1 − (t/n) for larger ratios (t/n > 0.5).
While some t/n ratios may yield better FR or TR rates, the value of DDoS
serves as a counterweight to estimate the robustness against DDoS attacks for a
certain configuration.

The cryptographic costs (CC) involved in this process are quantified in terms
of the total time spent during key regeneration and enter in the evaluation of
the ranking index such that r = (1−FR)+TR+(1−CC)+DDoS. As written,
the ranking index penalizes high values of CC and favors more economic key
regenerations. During the initial cryptographic setup, each MANET member
exchanges shares with all the other members in order to compute its own GMC
as well as its partial signature. If we assume that all MANET members exchange
their shares in parallel, we can approximate the initial setup cost as CC =
K × (n0 − 1), where K represents the cost of a single exchange and n0 is the
number of initial members in the MANET. Every time a device enters or leaves
the MANET, the mechanism checks that the ratio t/n is within the window w.
If the value of t needs to be adjusted, the cost incurred in the key regeneration
can be approximated by,

CC = K ×
nfinal∑

n0

(update × n) − 1

update =

{
1 if t/n < (t0/n0 − w) or if t/n > (t0/n0 + w)
0 otherwise.

(1)

where nfinal is the final number of MANET members, n is the current number
of MANET members, and update is a boolean variable that determines whether

BARTER 201

an update in the value of t is required. Equation 1 describes the boolean variable
that is only true whenever the ratio t/n falls below the lower bound of the range
(t/n − w) or exceeds the upper bound (t/n + w).

4 Evaluation of BARTER with Content Profiles

In this section, we begin with a description of the AD sensor responsible for the
computation of the content behavior profiles and provide experimental results
of the BARTER mechanism using this type of profile.

4.1 Semi-supervised Content AD Sensor

We have implemented a content-based AD sensor that represents an adaptation
of Shanner’s ideas [14]. Shanner proposes an algorithm that incorporates only the
most heavily weighted grams to the behavior profile. These grams are the ones
that best discriminate between two or more classes of data. Although Shanner is
more expensive than other AD sensors, we chose it because it rapidly captures
the significant information of the traffic being exchanged.

In our sensor, we consider two classes of data (content): good samples (goodS)
and bad samples (badS). The content of the traffic exchanged is captured as 3-
grams. This choice is less computationally expensive than higher n-grams and
appropriately captures the specifics of email traffic (as it will be shown in Section
4.3). The weight (frequency) of each 3-gram observed during training is calcu-
lated using Shanner’s Formula (see Equation 2), where the frequency W of each
3-gram i (W(i)=F(i)×U(i)×A(i)) is expressed as,

W (i) = log(
xi

Ng
) × (

1

logNg
)

Ng∑
j=1

(pij(log(
1

pij
))) × (1 − (

1

logL
)

goodS,badS∑
j

(pij(log(
1

pij
))))

(2)

where F(i) measures the frequency of occurrence of each distinct 3-gram i over
all the good samples Ng; U(i) measures how uniformly distributed each unique
3-gram i is spread among the set of good samples Ng (pij represents the prob-
ability of seeing 3-gram i in good sample j); and A(i) measures how uniformly
distributed each unique 3-gram i is spread across all good and bad samples
types (L=2). Once all the weights have been calculated, a top percentage of
the 3-grams are selected to represent the content profile of the device. We assert
that this is a semi-supervised learning technique since the devices store an initial
collection of bad 3-grams drawn from known malware samples.

4.2 Behavior Profile Privacy

Due to the fact that the output behavior profiles are exchanged among devices,
it may be the case that certain users do not feel comfortable sharing the content
they exchange. In order to deal with this possibility, the BARTER mechanism

202 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

hashes the content behavior profile into Bloom Filters (BF) [1]. Input behavior
profiles, although not exchanged, are also converted into BFs so that the com-
parison with output profiles is fast and straight forward. The way the traffic is
mapped to a BF depends on the AD sensor used. The only requirement is that
all devices use the same sensor with the same type of mapping. Behavior profiles
in BARTER are then easily comparable, since boolean operators allow us to dis-
cern similarities or differences between profiles (BFs). For this type of content
profiles, the distance d(Pi,in, Pj,out) between two profiles is computed using an
exclusive OR (XOR) operator that quantifies the amount of entries that differ
between the two profiles: d(Pi,in, Pj,out) = |Pi,in⊕Pj,out|, where ⊕ represents the
XOR operator and || denotes the total number of entries with different values.

4.3 Evaluation Experiments

Having extensively described the foundations of the BARTER mechanism, we
proceeded to test the admission control of the mechanism with real content be-
havior profiles. We focus on the admission control because our main aim is to
prove the functionality of the mechanism together with the threshold crypto-
graphic layer. For that purpose, we used the publicly available ENRON dataset
[2] that contains 125,218 emails from 140 ENRON employees. The reason for
choosing email as a testing dataset is justified based on its use as a primary
application on handhelds. Moreover, email constitutes a good approximation
of other popular text messaging applications that could be used in MANETs.
For each of the 140 users, we computed input and output behavior profiles using
Shanner’s algorithm [14]. In particular, we first calculated the frequency for each
3-gram in the body of each user’s emails and selected the top 5000 most heavily
weighted grams. Our choice of 5000 worked well for our experiments, however,
other values might be more appropriate for different datasets. The bad samples
used to execute Shanner’s algorithm were drawn from the signature content of
the Snort rules (a total of 58) [15] and from 600 virus samples of vxheavens [17].
Finally, the top 5000 3-grams were hashed into Bloom filters in order to provide
privacy to the profiles.

For experimental purposes, we refer to the set of behavior profiles modeled
with the content of emails from the ENRON dataset as pool of normal users (140
users). The pool of normal users was considered to be clean, composed of normal
behavior profiles and ground truth. On the other hand, we refer to pool of bad
users as a set of 60 profiles that represent anomalous behavior (content) that
should be rejected from entering the MANET. In order to compute the bad pro-
files, we used content (3-grams) from 12000 executable files and code files (C or
Java). These type of files were chosen because their content is dramatically dif-
ferent from email. Each bad profile was computed with 200 executable/code files
with an average of 39 3-grams per file. Once again, behavior profiles were com-
puted using Shanner’s algorithm by selecting the top 5000 3-grams and hashing
them into Bloom filters.

We defined a group of 80 behavior profiles randomly selected from the pool of
normal users as our training set (initial MANET members). The remaining 60

BARTER 203

0.1 0.3 0.5 0.7 0.9
0.02

0.04

0.06

0.08

0.1

0.12

Ratio t/n

F
al

se
 R

ej
ec

tio
n

R
at

e

(a) False Rejection (FR)
Rates for different ratios t/n.

0.1 0.3 0.5 0.7 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ratio t/n

T
ru

e
R

ej
ec

tio
n

R
at

e

(b) True Rejection (TR)
Rates for different ratios t/n.

Fig. 2. FR and TR for different ratio values t/n

profiles were divided into a cross-validation set (30 profiles) and a testing set (30
profiles). The cross-validation set was used to calculate the best ratio t/n for our
dataset determined as the highest ranking index r = (1−FR)+TR+(1−CC)+
DDoS. One by one, each randomly selected profile in the cross-validation set was
presented to the MANET members as a newcomer attempting to be admitted
into the MANET. From these attempts, we measured the false rejection rate
(FR) as the percentage of normal profiles wrongly rejected as anomalous. Next,
30 randomly selected profiles from the pool of bad users were also presented as
new devices attempting to gain access into the MANET. The latter experiment
allowed us to measure the true rejection rate (TR) by determining the percentage
of profiles correctly rejected as anomalous by the MANET members. Finally,
we proceeded to determine the cryptographic costs (CC) incurred during the
generation of new signatures for the MANET members as well as the robustness
against DDoS attacks (DDoS).

The experiments were repeated 60 times for each value of t/n to cover all
different evolutions resulting from the random selection of the initial profiles. The
results presented here constitute an average over all runs. Five different values
of t/n were considered, namely 0.1, 0.3, 0.5, 0.7, and 0.9. These values represent
MANETs whereby 10%, 30%, 50%, 70% or 90% of the total members respectively
are needed in order to emit an admission control decision. For each ratio, the
initial value of t was calculated as t/n × 80 with a window w = 0.02. Here,
80 represents the number of total profiles in the training set (initial MANET
members). Alternative values of w would produce different numerical results but
would follow the same trends observed in our experiments.

Figures 2(a) and 2(b) show the FR and TR rates for different ratio values.
As can be seen, smaller ratio values produced larger FR and TR rates. This is
most likely related to the fact that smaller ratios reflect a larger number of small
sets of profiles. Consequently, the thresholds for the admission control become
very restrictive, which results in a larger rejection of normal profiles as well as a
larger detection of anomalous profiles. In contrast, larger ratios result in smaller
FR and TR rates possibly associated with fewer sets of profiles that define less
restrictive thresholds.

204 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

We also computed the ranking indices r = (1−FR)+TR+(1−CC)+DDoS for
different ratio values t/n for the ENRON dataset, and we found that the highest
ranked index corresponded to a ratio t/n = 0.1. Such result probably captures
the wide variety of content contained in the email exchanges among users. In
other words, small sets of normalcy provide a better characterization of the
behaviors shared by the users. Armed with the highest ranked index t/n = 0.1
obtained from cross-validation, we proceeded to simulate the admission control
with randomly selected profiles from the testing set acting as newcomers to the
MANET. In order to compute TR and FR, we used the remaining 30 normal
and bad profiles drawn from the pool of normal and bad users respectively. For
the performance of BARTER, we obtained a false rejection FR=13%, a true
rejection TR=100% and cryptographic costs CC=179× K.

5 Evaluation of BARTER with Volumetric Profiles

Rather than content, volumetric profiles capture the typical characteristics of
the communications such as number of emails exchanged, number of different
people contacted (clique), and frequency of usage. In this Section, we describe
the volumetric AD sensor used to compute the profiles. This is followed by an
actual evaluation of the BARTER mechanism using volumetric behavior profiles
computed from the ENRON dataset.

5.1 Histogram-Based Volumetric AD Sensor

In order to compute volumetric input and output behavior profiles, we used
the EMT tool (Email Mining Toolkit) [16]. The behavior profile of each user is
represented as a daily histogram that reflects the behavior of a user exchang-
ing emails. In order to be able to compute the initial behavior profiles of the
MANET members, we presume that members have an archive of stored emails
from previous interactions in other environments. Alternatively, one can always
provide the members with an initial set of training samples chosen according to
the type of user.

EMT computes two types of daily histograms: hourly histograms and grouped
histograms. Hourly histograms divide the day in 24 bins where each bin represents
the average number of emails (sent or received) per hour. Grouped histograms,
on the other hand, divide the day in 4 bins of 6 hours each, where each bin is
the average number of emails sent or received during a 6-hour period. Hereafter,
we will refer to the number of bins in which the day is divided as bin granularity
(bg). In particular, we shall use bg = 24 for hourly modeling and bg = 4 for
grouped modeling. Each profile Pi,d is a vector with bg entries, where d represents
the direction of the traffic i.e., either input (Pi,in) or output emails (Pi,out).
Each histogram entry represents a bin bj that contains the average value a
and standard deviation σ for the number of emails sent or received by user i
during a time frame j. The average and standard deviation values for each time
frame j are averaged throughout the duration of the training period. Hence,

BARTER 205

Pi,d = {b1, ..., bbg} and bj = {(a, σ)} where j ∈ [1..24] for hourly histograms or
j ∈ [1..4] for grouped histograms.

The grouped histograms are intended to save bandwidth usage by exchang-
ing smaller behavior profiles among MANET members. Nonetheless, it is only
through cross-validation tests that an appropriate bin granularity that both min-
imizes the behavior profile size while maximizing BARTER performance can be
properly selected.

5.2 Evaluation Experiments

Our evaluation of the BARTER mechanism for volumetric profiles is similar
to the one presented for content profiles. Again, we used the publicly available
ENRON dataset to compute the volumetric behavior profiles of 140 users. For
each user, we computed its input and output volumetric profiles in two formats:
hourly and grouped histograms. Behavior profiles were computed by calculating
the average number of emails sent or received by a user throughout the duration
of the training period. For experimental purposes, the set of 140 volumetric
profiles modeled with emails from the ENRON dataset is referred to as pool of
normal users and is considered ground truth. In order to compute a pool of bad
users, we produced volumetric behavior profiles one, two, and three standard
deviations away from the top t-1 entries in the local table of each MANET
member. Our assumption is that the t-1 top entries represent the most similar
counterpart to a particular profile. As a result, behavior profiles separated by one
or more standard deviations from this set constitute potential anomalous profiles.
We repeated this process for all the members of the MANET and obtained a
final pool of bad users for each ratio t/n.

As in the experiments with content profiles, we simulated an environment
where a number of profiles attempt to gain admission into an already formed
MANET. The pool of normal users (140 profiles) was divided into three sets: the
training set (80 randomly selected profiles), the cross-validation set (30 randomly
selected profiles), and the testing set (the remaining 30 profiles). Armed with
these sets, we measured the FR rate of the BARTER mechanism with volumetric
profiles. Next, we created additional cross-validation and testing sets with 30
profiles each randomly selected from the pool of bad users. The latter sets were
used to compute the TR rate of the mechanism.

The purpose of the cross-validation experiments is to determine the combi-
nation of t/n ratio and type of histogram that yields the highest ranking index
r. We experimented with five different values for the ratio t/n: 0.1, 0.3, 0.5, 0.7,
0.9 and two types of histograms: hourly and grouped. Simulations were repeated
60 times to account for the random draw of the initial profiles, and the results
were averaged among the 60 simulations. For each combination of parameters,
we computed the ranking index r and selected the highest ranked.

Figures 3(a) and 3(b) depict our TR and FR results for a wide variety of ratio
values as well as two types of histograms (hourly and grouped). As can be seen,
grouped histograms outperform hourly histograms in terms of FR an TR rates.
Our interpretation is that hourly histograms likely produce a too fine grained

206 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

0.1 0.3 0.5 0.7 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ratio t/n

F
al

se
 R

ej
ec

tio
n

R
at

e
Grouped Histogram
Hourly Histogram

(a) False Rejection (FR) Rates for
different ratios t/n.

0.1 0.3 0.5 0.7 0.9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ratio t/n

T
ru

e
R

ej
ec

tio
n

R
at

e

Grouped Histogram
Hourly Histogram

(b) True Rejection (TR) Rates for
different ratios t/n.

Fig. 3. FR and TR for different ratio values t/n

modeling for our dataset. In contrast, grouped histograms can identify behaviors
more effectively thus improving the performance of BARTER. In general, higher
t/n ratios translate into smaller FR and TR rates.

We note that the highest ranked index occurs for grouped histograms and a
ratio t/n = 0.5. Such ratio indicates that the best admission results take place
when 50% of the MANET members are needed to make a decision. We can
also interpret this result as an indication of few distinct behaviors within the
ENRON dataset. Taking the highest ranked index parameters (t/n = 0.5 and
grouped histograms), each randomly selected profile from the testing set was pre-
sented to the MANET members as a newcomer attempting to be admitted into
the MANET. From these admission control experiments, we measured FR=8%,
TR=90% and cryptographic costs CC=1571×K. These results demonstrate the
feasibility of BARTER using volumetric as well as content behavior profiles.

6 Related Work

There is a body of work about the use of threshold cryptography for admission
control in ad-hoc networks. Narasimha et al. [9] and Ostrovsky et al. [10] studied
possible adaptations of existing threshold cryptographic schemes to MANETs.
However, none of the previous works have discussed the implementation of the
decision process during admission control. BARTER enhances threshold crypto-
graphic approaches by automatizing the individual admission decision at each de-
vice. AD sensors have been widely used to implement access control in MANETs.
The main idea is that profiles computed from audit data can be used as a repre-
sentation of the normal behavior. As a result, any behavior that deviates from
the profile is considered anomalous [18]. However, the current literature does
not offer a satisfactory explanation on the interaction of ADs with secure cryp-
tographic platforms. BARTER provides an access control that uses AD sensors
at an application level rather than at the routing level. Additionally, our work
describes the interaction between the AD sensors and the cryptographic layer.

BARTER 207

7 Conclusions and Future Work

We have presented BARTER, a mechanism that automatically creates admission
and access control policies for MANETs. Individual decisions regarding admis-
sion and access control are issued based on a local definition of normal behavior
computed from the knowledge of the behavior profiles from other members. A
threshold cryptographic layer (t,n) that runs underneath the mechanism aggre-
gates the individual decisions by requiring at least t devices to participate in
the decision. We have discussed experimental results using both content and
volumetric behavior profiles computed from the ENRON dataset. Our results
show that the mechanism can successfully perform under both types of behav-
ior profiles with FR rates ranging from 9% to 12% and TR rates between 95%
and 100%. Future work will evaluate how to best determine the most defining
behavioral characteristics of a host using techniques such as bagging or boosting.

References

1. Bloom, B.H.: Space/Time tradeoffs in hash coding with allowable errors. Commu-
nications of the ACM 13(7) (1970)

2. ENRON Dataset (2004), www.cs.cmu.edu/~enron
3. Frias-Martinez, V., Stolfo, S.J., Keromytis, A.D.: Behavior-Based Network Access

Control: A Proof-of-Concept. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T.
(eds.) ISC 2008. LNCS, vol. 5222, pp. 175–190. Springer, Heidelberg (2008)

4. Frias-Martinez, V., Stolfo, S.J., Keromytis, A.D.: Behavior-Profile Clustering for
False Alert Reduction in Anomaly Detection Sensors. In: ACSAC (2008)

5. Frias-Martinez, V., et al.: A Network Access Control Mechanism Based on Behavior
Profiles. In: ACSAC (2009)

6. Hastad, J., et al.: Funkspiel Schemes: An Alternative to Conventional Tamper
Resistance. In: Proc. of the 7th ACM Conf. on Computer Commun. Security (2000)

7. Herzberg, A., et al.: Proactive Secret Sharing Or: How to Cope with the Perpetual
Leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352.
Springer, Heidelberg (1995)

8. Luo, H., Lu, S.: Ubiquitous and Robust Authentication Services for Ad Hoc Wire-
less Networks, Technical Report, UCLA (2000)

9. Narasimha, M., et al.: On the utility of Distributed Cryptography in P2P and
MANETs: the case of Membership Control. In: Proc. of the 11th ICNP (2003)

10. Ostrovsky, R., Yung, M.: How To Withstand Mobile Virus Attacks. In: Proc. of
the 10th ACM Symp. on the Principles of Distributed Computing (1991)

11. Papadimitratos, P., Haas, Z.J.: Secure Data Transmission in Mobile Ad Hoc Net-
works. In: Proceedings of the ACM Workshop on Wireless Security, WiSe (2003)

12. Pedersen, T.P.: A Threshold Cryptosystem without a Trusted Party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547. Springer, Heidelberg (1991)

13. Shamir, A.: How to share a secret. Communications ACM 22(11) (1979)
14. Shaner, R.A.: US Patent No. 5,991,714 (November 1999)
15. Snort Rulesets, http://www.snort.org/pub-in/downloads.cgi
16. Stolfo, S.J., et al.: Behavior-based Modeling and its Application to Email Analysis.

ACM Transactions on Internet Technology (TOIT) 6(2) (2006)
17. VXHeavens, vx.netlux.org
18. Zhang, Y., Lee, W., Huang, Y.: Intrusion Detection Techniques for Mobile Wireless

Networks. Mobile Networks and Applications 9(5) (2003)

www.cs.cmu.edu/~enron
http://www.snort.org/pub-in/downloads.cgi
vx.netlux.org

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 208–221, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Automatic Identification of Critical Data Items in a
Database to Mitigate the Effects of Malicious Insiders

Jonathan White and Brajendra Panda

Department of Computer Science and Computer Engineering, University of Arkansas,
Fayetteville, Arkansas, 72703, USA
{jlw09,bpanda}@uark.edu

Abstract. A major concern for computer system security is the threat from ma-
licious insiders who target and abuse critical data items in the system. In this
paper, we propose a solution to enable automatic identification of critical data
items in a database by way of data dependency relationships. This identification
of critical data items is necessary because insider threats often target mission
critical data in order to accomplish malicious tasks. Unfortunately, currently
available systems fail to address this problem in a comprehensive manner. It is
more difficult for non-experts to identify these critical data items because of
their lack of familiarity and due to the fact that data systems are constantly
changing. By identifying the critical data items automatically, security engi-
neers will be better prepared to protect what is critical to the mission of the
organization and also have the ability to focus their security efforts on these
critical data items. We have developed an algorithm that scans the database logs
and forms a directed graph showing which items influence a large number of
other items and at what frequency this influence occurs. This graph is traversed
to reveal the data items which have a large influence throughout the database
system by using a novel metric based formula. These items are critical to the
system because if they are maliciously altered or stolen, the malicious altera-
tions will spread throughout the system, delaying recovery and causing a much
more malignant effect. As these items have significant influence, they are
deemed to be critical and worthy of extra security measures. Our proposal is not
intended to replace existing intrusion detection systems, but rather is intended
to complement current and future technologies. Our proposal has never been
performed before, and our experimental results have shown that it is very effec-
tive in revealing critical data items automatically.

1 Introduction

Intrusion detection systems are important tools in the fight against malicious attackers
on computing systems. These tools monitor different system activities and report on
activities that can be construed as malicious. The system administrator or security
engineers look at this information, and based on experience to some extent, determine
which of these actions are indeed malicious. In this work, we propose a more quanti-
tative approach to help these system administrators make sound judgments about
where to focus their security efforts and to better identify data items that are critical to
the system. When these critical data items are automatically identified, the security
engineers can provide better and more thorough protection to these items.

 Automatic Identification of Critical Data Items in a Database 209

Existing intrusion detection systems suffer shortcomings in this regard. First, not
many of them do a good job in handling threats from malicious insiders [1]. These
attacks, which are often considered to cause the majority of major security breaches,
are a significant threat to all computing systems. The insider threat is of paramount
importance when designing security systems, and more work needs to be done on
classical intrusion detection systems to counteract the malicious insider [7].

A second concern with existing intrusion detection systems is that they do not typi-
cally allow system administrators the ability to focus on mission critical data [8]. It is
very hard, if not impossible, to protect all data on a system against all forms of mis-
use. Without guidance on what is and is not critical to the system, it is difficult to
focus preventative and detection measures on those assets that are deemed critical,
and without such focus the efforts at data collection and analysis are likely to over-
whelmed by the “noise” produced in classical intrusion detection systems. These
sources of noise produced by classical intrusion detection systems include lesser of-
fenses that will not cause extensive damage, mistakes made unintentionally by non-
malicious users, and the like.

As a corollary to this, modern information systems contain a constantly shifting
collection of gigabytes, if not terabytes, of data and information. It is unlikely that
static lists of critical files and processes will remain relevant over time as the system
changes. The identification of critical data in a system must be dynamic, and the in-
formation about what is critical in the system must be able to be altered as the system
changes [5].

Also, classical intrusion detection systems tend to rely on the fact that security en-
gineers are generally familiar with the data systems that they are charged to protect.
However, this assumption is a dangerous one as data systems continue to expand,
sometimes exponentially. A malicious insider may have intimate knowledge about
what files or databases are important to their part of the business, but this expert
knowledge does not necessarily transfer to other layers of the organization, even to
the group tasked with computer security. Security engineers, though insiders them-
selves, may not be familiar with what data items are critical as they might be outside
of their normal scope of knowledge.

These several factors lead us to propose a new method that can be used to auto-
matically identify data items that are critical. In our research, we have identified two
approaches to this process. One involves identifying critical data items by content
alone, and the second method involves examining the usage of the data system and
detecting which data items influence a large number of other data items and at what
frequency this influence occurs. As the identification of critical data items by content
typically requires expert knowledge, we have chosen not to focus on that at this time.
However, it is an area of future work, and we will be examining this method later.

The second proposal uses statistical data relationship oriented models. This method
attempts to locate critical data without necessarily being concerned about the content
of the data. Attributes that identify critical data items would include ownership, file
size, view count, time of last access, file location, and what data items were written to
after reading this data item (influence). These methods may identify data items that
are not necessarily the most popular in the computing system but nonetheless influ-
ence a large portion of the database. We are going to use this statistical approach in
our work as it does not require expert knowledge about the content of the data and is

210 J. White and B. Panda

applicable to all database systems. We will use the metrics of view count, time of ac-
cess, and influence.

Our approach is different from classical intrusion detection systems in that we will
enable the system administrator to automatically identify which data items are critical.
As listed in [6], establishing critical assets is one of the key strategies in order to
minimize the impacts of insider threats. In a database, a critical data item is one on
which many other data items in the system depend on. That is, if such a data item
gets maliciously updated or deleted, many other items will consequently be affected,
resulting in incorrect queries that will require repair procedures. Therefore, it is neces-
sary to enforce tighter access control and also monitor access to these items more
thoroughly. Next, we briefly define our technique for identifying these critical sets.

We detect these critical data items by considering data dependency relationships.
The database log is scanned, and one or more disjoint and directed graphs are formed
that show the can-influence relationships and the amount of times that the data items
were accessed over this period. The can-influence graph shows the sets of relation-
ships that occurred where two nodes connected by a directed edge indicates that the
data item pointed by the arrow was influenced by the other data item. That is, if the
latter is modified, there is a possibility that the former will be affected. Furthermore,
by analyzing the graph for sinks (nodes to which many arrows point), sets of critical
data items are identified by way of an algorithm that we have designed, tested, and
evaluated.

The advantage of our approach is that it is a flexible and resource efficient tech-
nique. It solves the problem of identifying critical data items, and it also avoids the
pitfalls of using static lists of critical data items. Also, as data systems change con-
stantly, the proposed algorithm can be invoked to process this dynamically changing
environment. By identifying the critical data items, system administrators can deploy
tighter and more focused access policies, more detailed monitoring systems, and other
focused insider detection tools, such as honeypots and honeynets.

The rest of the paper is organized as follows. In section 2 we briefly discuss why
insiders are a threat to critical data items and what work has been done previously in
detecting data items that can influence other data items, which is the starting point of
our work. Section 3 details our proposed approach, defines the necessary definitions
of our work, and shows an example of how our approach operates. Section 4 con-
cludes the paper with an evaluation of the results and future areas of improvements.

2 Background and Related Work

In the following section, we will identify why we are trying to mitigate the effects of
insider threats by identifying the data in the system that is critical. We define what a
malicious insider is, what their motives are, the opportunities that are unique to insid-
ers to cause damage using critical data, and the methods that insiders use that make
them hard to defend against. We also summarize past work on using graphs to track
certain data items in a database.

2.1 Insider Threats in Relation to Critical Data

CERT defines a malicious insider as a current or former employee, contractor, or busi-
ness partner who has or had authorized access to an organization’s network, system, or

 Automatic Identification of Critical Data Items in a Database 211

data and intentionally exceeded or misused that access in a manner that negatively af-
fected the confidentiality, integrity, or availability of the organization’s information or
information systems [4]. This definition of a malicious insider has a wide reaching
scope and is a good starting point for defining why insider threats are so hard to miti-
gate against. Insider threats are an ever increasing problem, with the recent E-Crime
Watch Survey conducted by the US Secret Service, CERT, Microsoft, and others re-
porting that in cases where respondents could identify the perpetrator of an electronic
crime, in 31% of those cases the crimes were committed by insiders. Also, 49% of the
respondents reported experiencing at least one malicious, deliberate attack by an in-
sider within the last calendar year. The impact of insider crime can truly be devastat-
ing; in one recent case an employee stole blueprints on a new and classified process
worth an estimated $100 million and sold them to a Taiwanese competitor with the
hope of obtaining future employment with that organization [4].

The motive for a malicious attack can be grouped into three main areas: IT sabo-
tage, theft/modification for financial gain, and theft/modification for a business ad-
vantage [4]. An example of IT sabotage occurs when a disgruntled employee who has
recently been fired causes intentional damage to a database they are charged to main-
tain, knowing that this will cause a lack of availability for the organization in the time
following their leaving the company. IT saboteurs target systems that are critical to
the business; otherwise their malicious actions would be easily repairable or ignored
and the sense of revenge over the precipitating event would not be fulfilled. Insiders
who steal data for financial gain would include individuals who secretly sell proprie-
tary data to an outsider with the hope of a monetary reward. Again, malicious insid-
ers whose motive is financial gain will not target non crucial data as it would not be as
valuable to an outsider. The final motive for insiders involves individuals who
steal/modify data in order to bring it with them to a new job or to start up their own
business. An example would be a salesman who copies the customer list from the
database and brings it with them to a new job. Again, typically only important data
will be taken [9]. So, the motivation for an insider to commit a crime involving criti-
cal data items is quite high [12], [13], [14].

Insiders have significant unique opportunities over others (including the system
administrators and security engineers) when it comes to committing an electronic
crime [10]. Insiders, by design, can bypass physical and technical security measures
designed to prevent unauthorized access; the data must be made available to them in
order for their business function to work properly. In terms of methods, insiders can
often use the same methods that they use everyday to access the data. As mentioned
before, most systems are tuned to detect threats from outside the system, not necessar-
ily internal threats. Insiders are also aware of the policies, procedures, technologies,
and the associated vulnerabilities that are linked with them. They are able to exploit
flaws in the system because of their expert knowledge; they work with these critical
data items everyday. This unique opportunity that is afforded to malicious insiders of
familiarity and their knowledge of the methods required in order to access the impor-
tant data is what makes identifying what is and is not critical in the data system such
an important task in order to mitigate this risk [16].

212 J. White and B. Panda

2.2 Previous Work

The idea of using graphs in insider threat detection has been used before, though not
in relation to automatic identification of critical data items. In [1] and [11], attack tree
graphs were used to identify malicious attacks from users who were performing seem-
ingly innocuous actions in the system. In [3], a graph was developed that showed
what data items could potentially influence other data items were an attack to occur.
Then, in the recovery process, only the items that were influenced by the malicious
action would need to go through the recovery process; those that were not in the scope
of influence could be ignored, saving time and resources. In [2], a scalable graph
based network vulnerability analysis was performed, identifying potential network
targets. Graphs and attack trees have been proven to be a good tool at identifying and
stopping potential insider threats. We have chosen to use some of these basic ideas in
identifying critical data items, and some of the theorems that were proven in the pre-
vious work will be applied to our graph based system.

Previous insider threat works have called for more effort on the identification of
critical data items [15]. In [5], it was pointed out that clear definitions are needed re-
garding what constitutes critical assets on a system in order to protect it from insider
misuse. Without such guidance, most protection measures are doomed to failure. In
[6] it was stated that it is important to focus R&D and operational measures on those
items within an information system that are critical. It posed the question about
whether procedures could be developed by which critical information within a system
could be automatically identified by using expert systems and/or rule-based ap-
proaches in order to expedite this process.

3 Automatic Identification System

Our automatic identification of critical data item system works briefly as follows. We
begin by developing a directed graph architectural model by scanning the database
log. The log is scanned for items which are typically read before some other data
item is written to or used for some business process. These data items are considered
to have “influenced” the latter item because information flow occurred; based on the
value of the previous item, the latter item was changed accordingly. The frequency
that this influence occurs is maintained, as well as the total number of instances that
the particular data item is used. Also, the average time between influences is calcu-
lated during this process. This results in several potentially disjoint graphs that will
then be traversed, starting at the leaf nodes, until no more internal nodes remain for
each tree. A function will be called for each item in order to determine this level of
criticality, taking into account the number of items that are influenced, the number of
times this item was used, and the rate at which this influence occurs. Ultimately, each
item in the database will be associated with a criticality value, and those items with a
relatively large critical value will be afforded greater protection. As we are focusing
on those items that are critical from a usage point of view as opposed to a content
based viewpoint, our algorithm may not find the items that are the most important
based on the confidentiality level of the data. Rather, our approach is content inde-
pendent, and will find those data items, which if damaged or altered, would cause the
most damage due to their highly influential status in the system.

 Automatic Identification of Critical Data Items in a Database 213

In the following sections we describe each component of our system in details. We
begin by describing how our process scans the database logs in order to form the criti-
cality graph.

3.1 Requisite Terminologies

Several intrusion detection systems scan the historical database logs in order to estab-
lish the normal operation of the data system. Most anomaly detection systems work
by comparing known good behavior to present behavior, and when deviations occur,
further security procedures are activated. We scan the database log, taking note of the
following, in order to identify potential critical data items: 1. Items in the read set of
the transactional sequence; 2. Items in the write set of the transactional sequence; 3.
Time stamp of the transaction.

For instance, suppose the following transaction is found in the database logs: r(x)
w(a,b) timestamp: 11:32 AM, July 14, 2009. We would then conclude that a and b
were influenced by x at that particular time. This scanning of the logs is performed
for each transaction that occurred over a representative time period. Also, if a trans-
action views a data item and does not write to another item, this is also maintained as
a field. For example, this type of operation would occur when a student executes a
query to view the classes that are offered for the next semester but does not register
because a class is currently closed. The following definitions help in understanding
these concepts.

Definition 1. A transactional sequence is an ordered list of read and/or write opera-
tions with an associated timestamp value. We denote a transactional sequence s by <
O1(da), O2(db), …On(dn) | Ts > where Oi ∈ {r,w}, dx is a unique data item with 1 ≤ x ≤
n, and Ts being the time s was committed to the database.

Definition 2. The read set of a transactional sequence s for a data item x is the or-
dered list with the format < r(da), r(db),… r(dn), w(x) | Ts > which represents that the
transaction s reads all data items da, db,…dn before the transaction updates data item x.
It must be noted that each data item may have several read sequences each having
different length. All these sequences together are called the transactional read set of
this data item.

The notation rs(x) is used to represent the transactional read set for transaction s on
data item x. For example, consider the following update statement in a transaction:
Update table1 set x = a+b+c where d > 100 .

In this statement, the values of a, b, c, and d must be read before the potential up-
dating of x. So, < r(a), r(b), r(c), r(d) w(x) | Ts > ∈ rs(x) and a, b, c, and d all poten-
tially influenced x. It should be noted that the database log only contains before and
after images of x instead of the exact mathematical operation used for calculating x.
The above example is only used for illustrating the concept of a read sequence. The
database log entry containing the above transaction may in fact look like:

< r(m), r(n), w(y), r(u), r(v), r(a), r(b), r(c), r(d), w(x), r(d), w(c), w(v) | Ts >

214 J. White and B. Panda

Table 1. Hypothetical Data obtained by log scanning

Item Infl. Freq. Δtavg.
A B 12 30
A C 13 45
A - 9 180
B D 12 480
B - 20 10
C G 19 10
C J 11 15
D E 50 16
D F 37 7
D J 25 10
E G 3 60
E - 2 120
F H 17 15
F E 25 23
G - 14 10
H I 10 15
H G 7 14
H - 3 5
I - 12 47
J - 17 5
W Y 5 15
W - 3 19
X Y 3 2
X Z 2 34
Y - 11 57
Z - 0 -
Z Z 67 18

Definition 3. The write set of a transactional sequence s is the list with the format <
r(d1), r(d1),… r(dn), w(da), w(db), … w(dk) | Ts > which represents that the transaction s
reads all data items d1, d2,…dn before the transaction updates data items da, db, … dk.
Therefore, data items da, db, … dk. were each influenced by data items d1, d2,…dn.

Definition 4. The maximum time between any two transactional sequences is called
Tmax. Tmax is calculated as Tend – Tstart, where Tend and Tstart ∈ < Tx, Ty, … Tz > and
min(< Tx, Ty, … Tz >) = Tend and max(< Tx, Ty, … Tz >) = Tstart.

The Tmax value will be used to define the maximum time period upon which the trans-
actions were recorded. If a transactional read/write sequence only occurs once in the
database logs, then it will have a length between influences of Tmax.

The table on the previous page shows a hypothetical scanning of the logs, detecting
the data items that influenced other data items, the rate at which this transactional
influence occurred, and also the number of times the data item was used without
influencing another item. All of this information is necessary for the algorithms that
will be presented in the sections that follow. The Δtavg. column in Table 1 shows
the average time between each event that occurred in the corresponding row. This is

 Automatic Identification of Critical Data Items in a Database 215

recalculated for each new access that occurs. For simplicity, in the following descrip-
tions, the time values used are measured in minutes, though this unit of time measure
is not required algorithmically.

3.2 Criticality Graphs

Then, from this tabular information, one or more directed graphs are formed to repre-
sent this information. From the above example, two disjoint graphs will be formed,
one with data item A as the root, and another disjoint graph with no roots. These
graphs are presented on the following page and will be used as examples to show sev-
eral important definitions and properties about this graphing process.

3.3 Formal Definition of Criticality Graph

The following definitions and properties formally define what the criticality graph is
and how it will be used to locate and identify critical data items in the database. The
first definition has been taken from [2] with slight modification.

Definition 5. Data item a “influences” data item b if data item a is read in order to
update or write to data item b in a single, atomic transaction s that is recorded in the
logs of the database with a discrete time stamp, Ts. This relationship is denoted as a
→ b in the graph structure. The following properties hold: 1. Reflexive: a → a; 2.
Non-commutative: a → b !⇒ b → a; 3. Transitive: a → b ∩ b → c ⇒ a → c.

Definition 6: A criticality graph is a rooted or rootless graph structure defined as CT
= (A, E, C), where

1. A is the set of nodes in the graph corresponding to the different data items that
are related by some sphere of influence. The set A can be partitioned into two
subsets, leaf_nodes and internal_nodes such that

a) leaf_nodes ∪ internal_nodes = A,
b) leaf_nodes ∩ internal_nodes = φ .

2. E ⊆ A x A constitutes the set of edges in the criticality graph. An edge (vi, vj)
∈ E represents the “influences” relationship transition from a parent node vi ∈
A to a child node vj ∈ A in the graph. The edge (vi, vj) is said to be “emergent
from” vi and “incident to” vj. Further if edges (vi, vj) and (vi, vk) exists in the set
of edges, then vj and vk represent the same transition.

3. C is a set of criticality labels. A label l ∈ C is associated with either a node or a
transitional edge as previously defined. If S ∈ A is a node then the criticality la-
bel lS is given by the tuple <f, t> where f ∈ integers and ≥0, and t ∈ reals and
φ ≤ t ≤ Tmax. The item f is termed the frequency of influence and item t is

termed the average time between influences.

For example, the criticality tree in Figure 1 consists of the nodes A,B,C,D,E,F,G,H,I,
and J. In node A, the internal criticality label is <9, 180> signifying that it was read 9
times without being used to influence other items with an avg. time between these
events being 180 min. The label <12, 30> from node A to node B represents the 12
times A was used to update B with an average time between these influences being 30
minutes.

216 J. White and B. Panda

B
<20,10>

A
<9,180>

D
<0, ->

C
<0, ->

E
<2, 120>

F
<0, ->

G
<14,10>

H
<3, 5>

I
<12, 47>

J
<17,5>

<11, 15>

<10, 15>

<17, 15>

<7, 14>

<3, 60>

<19, 10>

<13, 45>

<37, 7>
<25, 23>

<50, 16>

<12, 480>

<12, 30>

<25, 10>

Fig. 1. Simple Criticality Graph Corresponding to Hypothetical Data

Fig. 2. Second, Disjoint Criticality Graph Corresponding to Hypothetical Data

Definition 7. Given a node vi ∈ A in a criticality tree, then vi ∈ internal_nodes iff.
∃ some (vi, vj) ∈ E emergent from vi that is not incident to vi.

Definition 8. Given a node vk ∈ A in a criticality tree, then vk ∈ leaf_nodes iff. ! ∃
some (vk, vl) ∈ E emergent from vk that is not incident to vkand ∃ some (vk, vm) ∈ E
incident to vk.

X
<0, ->

W
<3,19>

Z
<0, ->

Y
<11, 57>

<2, 34> <3, 2>

<5, 15>

<67, 18>

 Automatic Identification of Critical Data Items in a Database 217

In Figure 2, node Z is actually a leaf node. It does have an edge that leaves the node,
but the edge returns to the same node. This models when a transaction reads a data
item and then writes back to the same item. This would occur, for example, when a
query reads the current salary, increases it by 5%, and then writes back to the salary
location.

3.4 Calculating Criticality

We now use the criticality graph to determine the criticality of each data item element
in the graph. The algorithm below shows all the steps in the process, but the process
is briefly explained in the following. The graph is traversed, starting at the leaf nodes,
and criticality is calculated for each node. As the leaf nodes influence no other items,
the criticality calculation is relatively straightforward. For the parent nodes, the criti-
cality algorithm takes into account the frequency/average time of use of that item
when it was not being used to influence other items to arrive at an internal criticality
value. Then, this value is summed with each data item that is influenced, taking into
account the child’s criticality, and also the frequency and average time that this influ-
ence occurred. During the traversal, the leaf nodes are removed, and ultimately criti-
cality values are calculated for each item. As we wish to find the items that influence
several other items at a high rate of time and frequency, frequency of use and influ-
encing several other influential items is considered to add to the criticality value. If
the average time between each event is relatively high, this means that the influence
takes a long time to spread, so this is a negative contributor to the criticality.

Starting with the leaf nodes of the graph, the criticality value for a generic leaf K,
called CK, is calculated as the number of uses (fK) times a scaling constant minus
a penalty value if the average time between uses (tK) is over a certain acceptable
threshold:

CK = KK PfK −*1 (1)

where K1 is a constant used to weight the criticality value towards or away from the
number of uses and PK is:

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤−
−

<

=

max1

maxminmin
minmax

1

min

|*

|)(*
*

|0

ttfK

ttttt
tt

fK
tt

P

KK

Kk
k

K

K (2)

where tmin is the bound on the time between use that is considered to happen so often
that no penalty is needed to be assessed to the criticality value because the event oc-
curs so often that its influence will spread quickly and tmax is the upper bound on the
time between usage that is considered to be so infrequent that it results in the data
item not being critical because security procedures are adequate enough to repair any
damage that might be caused by malicious uses of that item. When tk is between tmin
and tmax, the penalty is a linear progression from 0 to the maximum penalty of K1*fk.
For the following examples, we will use a K1 value of 1. Also, it is important to note
that:

218 J. White and B. Panda

KLK fKC *0 1≤≤ (3)

so the criticality can not be negative. As a future work, we may consider how having
negative criticality values would better enable us to rank low criticality value data
items. Therefore, the criticality of the leaf nodes will consist of the sum of the in-
stances when the item was read without influencing other data items and the instances
when the data item was used to influence itself, as this is the definition of what a leaf
node is.

Then, once the criticality is calculated for each leaf node, the leaf nodes are re-
moved, and the critical values are stored. This results in a new set of leaf nodes that
were once parents. The links that they once had to the children are still maintained in
order to calculate the next set of criticality values. The criticality for a node N with
edges vi…vk each associated with a frequency fi…fk, average time duration of ti…tk and
criticality of Ci…Ck, then the criticality for node N is:

CN = NNiNiN

ji

i
i PfKPfKC −+− →→

=

=
∑ *))*((1

0
2 (4)

where K2 is a constant to weigh the criticality value of a parent towards or away from
the criticality value of the link to the child. For the examples that follow, we assume
K2 to be 1. In the above equation, the fN→I and PN→I values are the frequency and av-
erage time between events for a particular edge I which is summed for each link. The
summation is also multiplied times the criticality of the child that the link points to.
Finally, the reflexive criticality for the node is added once to give the final critical
value for the node.

These operations are performed for each node until no more remain in the graph.
While one may assume that the criticality would increase as the graph is traversed
upwards, this is not always the case due to the penalty assessed by the average time
between influence events. The ultimate output of this process is a list of every data
item with an associated criticality value. This process is automatic and requires little
input from the system administrator.

3.5 Criticality Example

We will now show, by way of example, how our proposed algorithm operates. We
will use the criticality graph that was shown in Figure 1 along with all the frequency
and time averages associated with it. We will also assume that the tmin and tmax are 10
minutes and 60 minutes respectively. Again the constants K1, and K2 in the above
criticality equations are defined to be one.

First, the criticality for nodes G, I and J are calculated as they are leaf nodes:

CG: 14 – 0 = 14 CI:)1047(
1060

12
12 −

−
− = 3.12 CJ: 17 – 0 = 17

For the following nodes, the self-criticality is calculated first. Then the contributions
from the child nodes are calculated in the order given. The criticality for the parents
(C, H, and E) of nodes G, I, and J is calculated as follows:

 Automatic Identification of Critical Data Items in a Database 219

C is the parent of J and G; CC: 0+ ⎟
⎠
⎞

⎜
⎝
⎛ −

−
−)1015(

1060

11
1117 + 14(19–0) = 434.3

H is the parent of I and G;

CH: (3–0)+ ⎟
⎠
⎞

⎜
⎝
⎛ −

−
−)1015(

1060

10
1012.3 + ⎟

⎠
⎞

⎜
⎝
⎛ −

−
−)1014(

1060

7
714 = 121.24

E is the parent of G; CE: (2 – 2) + 14(3 – 3) = 0
Then C, H, and E are removed and the criticality for the next set of node(s) is:
F is the parent of E and H;

CF: 0+ ⎟
⎠
⎞

⎜
⎝
⎛ −

−
−)1023(

1060

25
250 + ⎟

⎠
⎞

⎜
⎝
⎛ −

−
−)1015(

1060

17
1724.121 = 1854.97

Then the criticality for node D is calculated:
D is the parent of J, E, and F;

CD: 0+17(25 – 0) + ⎟
⎠
⎞

⎜
⎝
⎛ −

−
−)1016(

1060

50
110 + 1854.97(37 – 0) = 69,058.9

Then node B:
B is the parent of D; CB: (20 – 0) + 69,058.9(12 – 12) = 20
Finally, the criticality of node A is calculated:
A is the parent of B and C;

CA: ⎟
⎠
⎞

⎜
⎝
⎛ −

−
−)1030(

1060

12
1220 + ⎟

⎠
⎞

⎜
⎝
⎛ −

−
−)1045(

1060

13
133.434 = 1837.77

So, node D is the most critical data item in the database based on its frequency of us-
age, time betweens uses, and the criticality and rate of the data items that it influences.
This is not something that is immediately obvious by looking at the logs, and our al-
gorithm was very capable of revealing the most critical data items automatically. The
most critical data items, in order of importance, are D, F, A, C, H, B, J, G, I, and then
E, in that order.

3.6 Bidirectional Criticality

There are cases where information flow or influence can go two ways. For example
in Figure 3 below data item A influenced data item B 89 times and data item B influ-
enced A 44 times. In the cases where the influence is bidirectional, the above critical-
ity calculation requires some minor adjustments. The original criticality graph is bro-
ken down into two sub graphs, and the bidirectional links are separated, one for each
direction. Then, the criticality of the affected data items are calculated separately,
resulting in the total criticality of the affected nodes.

220 J. White and B. Panda

Fig. 3. A criticality graph with a bidirectional edge is shown at left. It is decomposed into two
sub criticality graphs, which are shown in the center and right.

4 Conclusions and Future Work

In this paper, we propose a new and novel method to detect critical data items in a da-
tabase automatically. Our system is intended to complement existing intrusion detec-
tion systems to help fight the threat of malicious insiders abusing critical data items.
We develop a quantitative framework that applies very well to determining which data
items are critical in that they influence a significant amount of other data items that are
significant themselves. Also, our algorithm takes into account the number of uses and
the average time between uses in order to better model a realistic system. The advan-
tage of our approach is that it is a flexible and resource efficient technique that can be
applied to any system that maintains a log of the transactions that are operated on the
database. While our approach is aimed to be used by system administrators in a defen-
sive mode of operation, it is also applicable to individuals who wish to use it in an of-
fensive mode in order to efficient target the areas of the data system where malicious
actions will cause the most damage and disruption to the enemy.

We plan to further our work by extending the algorithm to the level of the user. A
criticality graph will be developed for each user, and if the monitoring system can be
tuned to be specific to particular users, better security can be achieved. As the criti-
cality of certain documents is very different to different users, extending our work to
that level will be a good and worthwhile improvement.

Acknowledgement

This work has been supported in part by US AFOSR under grant FA9550-08-1-0255.
We are thankful to Dr. Robert Herklotz for his support, which made this work possible.

References

1. Ray, I., Poolsappasit, N.: Using Attack Trees to Identify Malicious Attacks from Author-
ized Insiders. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS
2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005)

2. Hu, Y., Panda, B.: Identification of Malicious Transactions in Database Systems. In: 7th
Intl. Database Engineering and App. Symposium (IDEAS 2003), p. 329 (2003)

3. Zuo, Y., Panda, B.: A Service Oriented System Based Information Flow Model for Dam-
age Assessment. In: 6th IFIP WG 11.5 Working Conference on Integrity and Internal Con-
trol in Information Systems, Lausanne, Switzerland, November 13-14 (2003)

A
<7, 12>

B
<11, 6>

C
<2, 15>

<3, 2>

<5, 15>

<89, 17>

<44, 14> A
<7, 12>

B
<11, 6>

C
<2, 15>

<3, 2>

<89, 17>

<5, 15>

A
<7, 12>

B
<11, 6>

C
<2, 15>

<3, 2>

<5, 15>

<44, 14>

 Automatic Identification of Critical Data Items in a Database 221

4. Cappelli, D., Moore, A., Shimeall, T., Trzeciak, R.: Common Sense Guide to Prevention
and Detection of Insider Threats, Carnegie Mellon University (2008)

5. Insider Threat Integrated Process Team, Department of Defense (DoD-IPT), 2000. DoD
Insider Threat Mitigation, U.S. Department of Defense (2000)

6. Anderson, R., Bozek, T., Logstaff, T., Meitzler, W., Skroch, M., Wyk, K.V.: Research on
mitigating the insider threat to information sys., RAND Corporation Report CF-163 (2000)

7. Whitman, M.: Enemy at the Gate: Threats to Information Security. Communications of the
ACM 46(8) (2003)

8. Abbadi, I., Alawneh, M.: Preventing Insider Information Leakage for Enterprises. In: Pro-
ceedings of the 2008 Second International Conference on Emerging Security Information,
Systems and Technologies, pp. 99–106 (2008)

9. Anderson, R., Brackney, R.: Understanding the Insider Threat. In: Proceedings of a March
2004 Workshop, RAND National Defense Research Institute (2004)

10. Ha, D., Upadhyaya, S., Ngo, H., Pramanik, S., Chinchani, R., Mathew, S.: Insider Threat
Analysis Using Information Centric Modeling. In: Craiger, P., Shenoi, S. (eds.) Advances
in Digital Forensics III. Springer, Boston (2007)

11. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated Generation and
Analysis of Attack Graphs. In: Proc. IEEE Symposium on Sec. and Priv., Oakland (2002)

12. Cathey, R., Ma, L., Goharian, N., Grossman, D.: Misuse detection for information retrieval
systems. In: CIKM 2003: Proceedings of the twelfth international conference on Informa-
tion and knowledge management, New York, NY, USA, pp. 183–190 (2003)

13. White, J., Panda, B.: Implementing PII Honeytokens to Mitigate Against the Threat of Ma-
licious Insiders. In: Proc. of the IEEE International Conference on Intelligence and Secu-
rity Informatics (ISI 2009), Dallas, Texas, p. 233 (2009)

14. White, J., Panda, B., Yaseen, Q., Nguyen, K., Li, W.: Detecting Malicious Insider Threats
using a Null Affinity Temporal Three Dimensional Matrix Relation. In: Proc. of the 7th
Inl. Workshop on Security in Info. Sys (WOSIS 2009), Milan, pp. 93–102 (2009)

15. Meza, B., Burns, P., Eavenson, M., Palaniswami, D., Sheth, A.: An ontological approach
to the document access problem of insider threat. In: Kantor, P., Muresan, G., Roberts, F.,
Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp.
486–491. Springer, Heidelberg (2005)

16. Bradford, P., Brown, M., Perdue, J., Self, B.: Towards proactive computer-system foren-
sics. In: Proceedings of ITCC, pp. 648–652 (2004)

Database Relation Watermarking Resilient

against Secondary Watermarking Attacks

Gaurav Gupta1,2 and Josef Pieprzyk1

1 Centre for Advanced Computing - Algorithms and Cryptography,
Department of Computing, Macquarie University, Australia
2 Centre for Policing, Intelligence and Counter Terrorism,

Macquarie University, Australia
{ggupta,josef}@science.mq.edu.au

www.comp.mq.edu.au/~ggupta

Abstract. There has been tremendous interest in watermarking multi-
media content during the past two decades, mainly for proving ownership
and detecting tamper. Digital fingerprinting, that deals with identifying
malicious user(s), has also received significant attention. While extensive
work has been carried out in watermarking of images, other multimedia
objects still have enormous research potential. Watermarking database
relations is one of the several areas which demand research focus owing
to the commercial implications of database theft. Recently, there has
been little progress in database watermarking, with most of the water-
marking schemes modeled after the irreversible database watermarking
scheme proposed by Agrawal and Kiernan. Reversibility is the ability
to re-generate the original (unmarked) relation from the watermarked
relation using a secret key. As explained in our paper, reversible water-
marking schemes provide greater security against secondary watermark-
ing attacks, where an attacker watermarks an already marked relation
in an attempt to erase the original watermark. This paper proposes an
improvement over the reversible and blind watermarking scheme pre-
sented in [5], identifying and eliminating a critical problem with the pre-
vious model. Experiments showing that the average watermark detection
rate is around 91% even with attacker distorting half of the attributes.
The current scheme provides security against secondary watermarking
attacks.

1 Introduction

The world is rapidly becoming a smaller place with the advancements in high-
speed network and availability even in remote regions. Free file hosting services
such as RapidShare and peer-to-peer networks make data sharing very conve-
nient. However, this also poses a threat to the entertainment industry and also to
organizations dealing with sensitive information such as currency exchange rates
and stock prices. Digital watermarking is one of the solutions to the problem,
involving embedding of a digital watermark in a multimedia object such that it
satisfies the following properties:

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 222–236, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.comp.mq.edu.au/~ggupta

Database Relation Watermarking Resilient 223

– Detectable/ Extractable: The watermark should be recovered or detected
from the watermarked copy.

– Robust : The watermark should satisfy detectability property even after
distortions introduced by the attacker.

– Limited distortion : The watermark should cause minimal distortion (mea-
sured by statistical metrics, such as average) to the original data.

– Low false positives: The probability of detecting watermark in a docu-
ment, or its parts, that do not contain a watermark, should be negligible.

– Blindness: Watermark detection process should require only the suppos-
edly watermarked object and a secret key.

– Randomness: The watermark should be distributed across the object so
that localized attacks are ineffective.

– Capacity : The watermark-carrying capacity should be sufficient to embed
the desired watermark.

In this paper, we provide an improvement over the scheme presented in [5]. By
identifying and eliminating a critical error in the concerned scheme, we provide
a more secure watermarking model.

1.1 Scenario

The problem is described in the following scenario. Alice publishes a database
relation R (for example, forecasts of currency rates) and shares the watermarked
version Rw with Bob and Mallory. The watermark proves Alice’s ownership over
Rw and also introduces “small” changes in the data such that Bob and Mallory
can get a fair estimate of the document’s usefulness but still cannot afford to
risk using it directly (because it is an approximation of the accurate data). The
degree of changes can be adjusted by the owners to suit their requirements.

If Mallory inserts his own watermark in Rw and sells the re-watermarked
version Rw2 (this process is called secondary watermarking attack), then Alice
should be identified as the rightful owner of Rw2 . Bob and Mallory can purchase
a key and recover R from Rw.

If Mallory purchases the key and obtains the original relation from Alice, he
legally agrees to the fact that Alice is the owner of the relation. Hence, even if
Mallory later claims ownership over a watermarked copy of the relation, Alice
can produce the transaction details as the proof of ownership.

1.2 Organization of Paper and Notations Used

In Section 2, we provide an overview of existing watermarking schemes and
discuss watermarking scheme from [1]. Our algorithms are presented in Section 3,
with analysis in Section 4, and experimental results in Section 5. The paper is
concluded in Section 6 with a note on future research directions.

We use the following notations throughout the paper; R is a Relation, r repre-
sents a Tuple, r.P its Primary Key and r.Aj

i , the jth bit of its ith attribute. bin(x)
is used for the binary value of x, len(x) for its length (in bits). insert(x, pos, b)

224 G. Gupta and J. Pieprzyk

function inserts bit b at the posth LSB of x while replace(x, pos, b) function re-
places bit at the posth LSB of x by bit b. bit(x, pos) gives the bit at posth LSB in x
(Specifically, bit(x, 0) gives the least significant bit of x). int(x) is the integer part
of a real number x and frac(x)is the fraction part of real number x. Finally, cap
gives the number of bits allocated to store fraction part (we assume that cap = 16).

2 Related Work

There have been several numerical database watermarking schemes proposed
in the past decade in [2,1,4,8,7]. Here, we discuss the fundamental watermark-
ing algorithm proposed in [1] and difference expansion [9] applied for reversible
watermarking.

2.1 Agrawal-Kiernan Watermarking Scheme

One of the early works in database relation watermarking was carried out by
Agrawal and Kiernan and presented in [1]. Several schemes followed with modi-
fications to the original watermarking model and were described in [7,8].

The function F(r.P) = H(K‖H(K‖(r.P)), where H is a one-way hash func-
tion, K is a secret key and ‖ stands for the concatenation operation. The value
of this function depends on the primary key r.P of the tuple r and the secret
key K. The tuple, attribute, and bit carrying a watermark bit are calculated us-
ing F(r.P). The bit embedded is calculated as H(K‖r.P) (mod 2). Assuming
the primary key and the secret key are available during the detection process,
the exact watermark bit can easily be identified and compared with H(K‖r.P)
(mod 2) to determine if they match, in which case the watermark bit is suc-
cessfully recovered. There is a minimum threshold on the fraction of bits to be
correctly recovered in order to ascertain presence of a watermark. The threshold
is determined by parameter α in Algorithm 2. This controls the probability of
false positives. The watermark insertion and detection algorithms from [1] are
provided in Algorithm 1 and Algorithm 2, respectively.

Input : Relation R, secret key K, fraction 1
γ
, LSB usage ξ, Markable

attributes {A1, A2, . . . , Aυ}
Output: Watermarked relation Rw

forall tuples r ∈ R do
if F(r.P) (mod γ) = 0 then

Mark attribute i = F(r.P) (mod υ);
Mark bit j = F(r.P) (mod ξ);
r.Aj

i = H(K‖r.P) (mod 2);
end

end

Algorithm 1. Watermark insertion [2]

Database Relation Watermarking Resilient 225

While the scheme is secure against distortion attacks due to the pseudo-
random distribution of watermark based on keyed-hash function, and also against
sorting attacks due to independent watermarking of each tuple, the scheme does
not provide security against secondary watermark attacks. In the scenario de-
scribed in Section 1.1, Mallory will be identified as the owner for relation Rw2

instead of the rightful owner Alice.

Input : Relation R, secret key K, fraction 1
γ
, LSB usage ξ, threshold α

Output: Watermark Status ∈ {true, false}
matchcount = totalcount = 0;
forall tuples r ∈ R do

if F(r.P) (mod γ) = 0 then
Marked attribute i = F(r.P) (mod υ);
Marked bit j = F(r.P) (mod ξ);
if H(K‖r.P) (mod 2) = r.Aj

i then
matchcount = matchcount + 1;

end
totalcount = totalcount + 1;

end

end
τ = min(θ) : B(θ,totalcount,1/2) < α ;
if matchcount ≥ τ then

return true;
else

return false;
end

Algorithm 2. Watermark detection [2]

2.2 Reversible Watermarking Scheme

Difference expansion refers to a series of arithmetic operators on two integer
values and a bit that result into a pair of modified integers from which original
pair of integers and the bit can be re-generated [9,6]. Difference expansion has
previously been applied in image watermarking [3]. But application in database
watermarking introduces an additional constraint of limiting distortion.

An integer pair x, y (x ≥ y) can be encoded as a pair of it’s integral average
and difference between the integers using Equation 1. The values x, y can be
recovered from the derived from Equation 2. Proof 2.1 shows that the recovered
values are in fact the original values.

avg = � (x + y)
2

�, dif = x − y (1)

xrecover = avg + � (dif + 1))
2

�, yrecover = avg − �dif
2

� (2)

226 G. Gupta and J. Pieprzyk

Proof (2.1). xrecover = x, yrecover = y

if(x (mod 2)==y (mod 2)) (both even or both odd)
{

xrecover = avg + � (dif +1)
2 � = �x+y

2 � + �x−y+1
2 � = (x+y

2) + (x−y
2) = x

yrecover = avg − � (dif)
2 � = �x+y

2 � − �x−y
2 � = (x+y

2) − (x−y
2) = y

}
else
{

xrecover = avg + � (dif +1)
2 � = �x+y

2 � + �x−y+1
2 � = (x+y−1

2) + (x−y+1
2) = x

yrecover = avg − � (dif)
2 � = �x+y

2 � − �x−y
2 � = (x+y−1

2) − (x−y−1
2) = y

} �

Let x, y be the two attributes selected to carry a watermark bit b. The scheme
works as follows: The average avg and difference dif is computed using Equa-
tion 1. The integer dif is then expanded considering the bit to be inserted using
Equation 3. The expanded difference is odd for 1-bit and even for 0-bit. The new
watermarked values x′, y′ are computed from Equation 4.

dif ′ = 2 × dif + b (3)

x′ = avg + � (dif ′ + 1)
2

�, y′ = avg − �dif
′

2
� (4)

The average of the new pair remains the same as the average of the old pair.
This has been demonstrated in Proof 2.2.

During detection, the average avg’ and difference dif ’ are calculated. Equa-
tion 5 shows that the bit inserted is 0 if the difference is even, otherwise odd.
Then the difference is compressed to the original value using Equation 6. Av-
erage need not be changed, as shown in Proof 2.2. The original values and the
watermark values can be recovered at detection using Equation 7. The recovered
values are the original values, as proved in Proof 2.1.

Proof (2.2). avg ′ = avg

avg ′ = �x′+y′

2 �

= �avg+� dif ′+1
2 �+avg−� dif ′

2 �
2 � (From Equation 4)

= � 2×avg+� dif ′+1
2 �−� dif ′

2 �
2 �

=
{
� 2×avg+1

2 � if dif ’ is odd
� 2×avg

2 � if dif ’ is even

= avg �

b = dif ′ (mod 2) (5)

Database Relation Watermarking Resilient 227

difold = �dif
′

2
� (6)

xold = avg + � (dif + 1))
2

�, yold = avg − �dif
2

� (7)

It can also be proved that the values of x and y thus recovered are in fact the
original values. We have already proved that the average of the modified pair
x′, y′ is same as the average of the original pair x, y. The difference recovered
is also the same as the original difference, proved in Proof 2.3. Obtaining the
original average and difference directly implies recovery of correct original values.

Proof (2.3). difold = dif

difold = �dif ′

2 �
= �2∗dif +b

2 � (From Equation 3)
= dif �

The major drawback of this scheme is that it requires two attributes to embed a
single watermark bit and the amount of distortion introduced in the attributes
directly proportional to the numerical difference of the two attributes. A single
attribute carrying a watermark bit would be a far better option, and this is
precisely our objective in this research project.

We proposed a reversible watermarking scheme in [5]. In that scheme, the
empirical results were slightly lower than theoretical results in terms of security.
This was initially attributed to the quality of automated data generation but
we realized that when small distortions are made to items in the neighborhood
of powers of 2, they jump over from 2x − y to 2x + z and thereby the MSB of
these items change, which means that during detection, they are classified as
non-marked with a probability of γ−1

γ . While this is a small concern in terms
of security (only few items lie in this region), it has massive implications in
reversibility because even if a single bit is not recovered successfully, the whole
watermark is said to not have been recovered successfully. We have placed proper
checks on such boundary values and thus ensure that these jumps from one side of
powers of 2 to the other do not occur, thereby preserving MSBs during detection.

3 Proposed Scheme

This section describes the operations we use to build our watermarking scheme
and the following three algorithms used in the scheme:

1. Insert(R, K) → Rw: Relation R is watermarked using secret key K to get
relation Rw.

2. Detect(Rw, K) → (R, status): Detecting a watermark in relation Rw with
a secret key. Value status provides indication of whether watermark was
detected or not and also returns the original relation, R (if the watermark
is detected).

3. Owner(R, U): Identifies the rightful owner from a set of candidates U with
ui ∈ U claiming ownership of Ri ∈ R such that Ri ≈ Rj , i �= j.

228 G. Gupta and J. Pieprzyk

3.1 Mathematical Model

In this section, we provide the watermarking model representing inputs and
outputs of watermark insertion and detection and also constraints under which
watermarking should be performed. Given a value x ∈ �, bit b, and secret key
K, the objective of the watermarking scheme is to find x′ ∈ �, such that:

1. (x, b, K) → x′: We can obtain x′ from the knowledge of (x, b, K)
2. (x′, K) → (x, b): We can obtain (x, b) from the knowledge of (x′, K)
3. (1 − σ) ≤ x′

x ≤ (1 + σ) (σ ≈ 0.03): Distortion to individual attributes is
limited to approximately (100 × σ)%.

3.2 Attacks

The following four attacks should be considered in a secondary watermarking
scheme:

– Subtractive attack: Attacker deletes some tuples from the database.
– Distortive attack: Attacker introduces a random distortion in the relation.
– Sorting attack: Attacker rearranges the tuples based on one or more at-

tributes.
– Additive attack/Secondry watermarking: Attacker inserts watermark

in the relation already watermarked in an attempt to erase the old water-
mark.

3.3 Proposed Algorithms

Algorithm 3 describes the process of embedding one bit in an attribute. The
operation involves extracting bit oldBit from the integer portion of the attribute
before replacing it by the watermark bit and inserting it in the fraction portion of
the attribute. Thus, the watermark bit can be recovered during detection and the
attribute can be restored to it’s unmarked value by replacing the watermark bit
with the original bit extracted from the fraction part. The process of detecting
a single bit in an attribute and regenerating the original value is illustrated in
Algorithm 4.

As a working example, let A = 612.875 and b = 0. The value len(int(A)) =
10 contains the length of binary representation of 612 (=10 0110 0100) and
len(frac(A)) = 3 contains the length of binary representation of 0.875 (=.111).
Both integral and fraction bits have positions starting from 0, where position
0 is for the bit next to the decimal point. For example, in 6.5 (110.1), integer
bit at position 0 is 0, at position 1 is 1, and at position 2 is 1 while fraction
bit at position 0 is 1. Let pos1 = 2, pos2 = 3, The watermarking condition from
Algorithm 3 is satisfied. The bit at position 2 (=1) (the first LSB is at position
0) is replaced by the bit b = 0 to be embedded. Upon this change, the integer
portion becomes 608 (10 0110 0000). The bit removed from the integer part is 1
and is inserted in the fraction part at position 3, thereby changing it to 0.9375

Database Relation Watermarking Resilient 229

Input : Bit b, Attribute A, F(r.P)
Output: Watermarked attribute Aw

pos1 = F(r.P) (mod len(int(A)));
pos2 = F(r.P) (mod len(frac(A)));
if len(int(A)) > (pos1 + ε) and len(frac(A)) < cap then

oldBit = bit(int(A), pos1);
replace(int(A), pos1, b);
insert(frac(A), pos2, oldBit);

end

Algorithm 3. embed(b,A)

(.1111). The final watermarked value is 608.9375 from which the original value
can be extracted using Algorithm 4. During detection, given that the primary
key and the secret key remain the same, the same attribute is symmetrically
identified and the watermark bit is checked in it. The value of the watermarked
value is 608.9375, integer part being 608 (10 0110 0000) and fraction part being
.9375 (.1111). Again pos1 = 2, pos2 = 3 are calculated using the secret key and
primary key. We check the bit at position pos1 = 2 in the integer part (0) and
compare with H(K‖r.P) (mod 2). We then remove the bit at pos2 = 3 from
the fraction part (1) and put it at position pos1 of the integer part, thereby
regenerating the original attribute 612.875.

Input : Bit b, Attribute A, F(r.P)
Output: Watermark detection status
pos1 = F(r.P) (mod len(int(A)));
pos2 = F(r.P) (mod len(frac(A)));
if len(int(A)) > (pos1 + ε) then

if bit(int(A), pos1) == b and len(frac(A)) < cap then
match = true;
oldBit = bit(frac(A), pos2);
replace(int(A), pos2, oldBit);

else
match = false;

end

end
return match;

Algorithm 4. check(b, A)

The rationale behind placing the condition len(int(A)) > (pos1 + ε) to embed
a watermark bit is to ensure that the attribute value is at least 2ε times larger
than the modification, and therefore the distortion fraction to δ calculated using
Equation 8. We can decrease δ by by increasing the value of ε. This ensures that
the watermarked values are not in the neighbourhood of powers of two which
might cause MSB distortion with a high probability.

230 G. Gupta and J. Pieprzyk

δ =
2(�log2(A)�−ε)

A
(8)

The second condition that should be satisfied to insert a watermark bit is that
len(frac(A)) < cap. That is, the length of the bit representation of the at-
tribute’s fraction part should be at least one less than the total number of bits
available to contain the fraction part. If this is not true, the new bit inserted
in the fraction part will knock out the LSB of the fraction, thereby introducing
irreversible data loss.

F(r.P) = H(K‖H(K‖(r.P)) (9)

Input : relation R, secret key K, fraction 1
γ
, LSB usage ξ, Markable attributes

{A1, A2, . . . , Aυ}, primary key P
Output: Watermarked relation Rw

forall tuples r ∈ R do
if F(r.P) (mod γ) = 0 then

Mark attribute i = F(r.P) (mod υ);
Mark bit j = F(r.P) (mod ξ);
b = H(K‖r.P) (mod 2);
embed(r.Aj

i);
end

end

Algorithm 5. Watermark insertion

We use this simple insertion and detection process in conjunction with the
keyed tuple and attribute selection performed in [1] to accomplish a comprehen-
sive watermarking scheme. The insertion and detection algorithms are given in
Algorithm 5 and Algorithm 6, respectively. We use a confidence level θ (typically
between 0.60 and 0.75 since keeping θ too low will result in huge false positives
and keeping it too high would compromise security) to determine the presence of
the watermark. If less than (θ× 100)% bits are correctly identified, the presence
of the watermark cannot be ascertained.

To combat secondary watermarking attacks, we propose another algorithm
that identifies whether watermark of a party p1 is detected in a relation R
whose ownership is claimed by a party p2. Since false positive probability is
negligible (see Equation 12), R must have been watermarked by p1 before p2, thus
identifying the rightful owner. Party p2 can distort a relation before inserting
it’s own watermark but the distortions need to be limited to preserve relation
usability for the party p2. In our experiments, we test secondary watermarking
survival with 30% attributes distorted. (an attack that distorts x% attributes is
referred to as x% distortive attack).

Database Relation Watermarking Resilient 231

Input : relation R, private key K, primary key P , fraction 1
γ
, LSB usage ξ,

confidence level θ
Output: Watermark Status ∈ {true, false}
matchcount = totalcount = 0;
oldRelation = R;
forall tuples r ∈ R do

if F(r.P) (mod γ) = 0 then
Marked attribute i = F(r.P) (mod υ);
Marked bit j = F(r.P) (mod ξ);
b = H(K‖pk) (mod 2);
if check(b, r.Aj

i) == true then
matchcount = matchcount + 1;

end
totalcount = totalcount + 1;

end

end

fractionDetected = matchcount
totalcount

;
if fractiondetected ≥ θ then

return true;
else

R = oldRelation;
return false;

end

Algorithm 6. Watermark detection

4 Security Analysis

In this section, we describe the security of our schemes against reshuffling,
subtractive, distortive and additive (or secondary watermarking) attacks. We
present the experimental results obtained which confirm our claims about the
security of the scheme in Section 5.

Confidence level: In our scheme, we set confidence level θ such that the de-
tection algorithm must correctly identify at least θ fraction of watermark bits in
order to determine presence of the watermark beyond reasonable doubts. In our
experiments, we have kept the value θ between 0.60 and 0.75.

Subtractive attack: Subtractive attacks refer to the attacker deleting a certain
proportion of tuples in an attempt to destroy the watermark. Assuming that the
relation R is watermarked with γ fraction of tuples watermarked and the attacker
deletes k randomly chosen tuples out of the n tuples, the relation R′ with the
remaining n − k tuples is checked for watermark presence. Since each tuple is
independently watermarked, the number of watermarked tuples left are (n−k)/γ.
Each of these tuples successfully return presence of a watermark bit, and the
watermark presence is determined. Assuming that the attacker deletes the tuples
randomly, the probability of deleting all ω = n/γ watermarked tuples depends
on the number of tuples k chosen for deletion. The first condition evidently is

232 G. Gupta and J. Pieprzyk

Input: Potential owners U = {u1, u2, . . . , un}. Secret parameter list of each ui,
Iui = {Ki, γi, υi, ξi}, confidence level θ, Potential owners’ versions of the
watermarked relation {R1, R2, . . . , Rn}

Output: Owner O
forall ui ∈ U do

if detect(Ri, Iui) == {false, R′i} then
U = U \ ui;

end
if detect(Ri, Iui) == {true, Rrev

i } then
if {uj : detect(Rrev

i , ui) == {true, Rtemp},∀j
= i}
= null then
U = U \ ui;

end

end
return U ;

end

Algorithm 7. Rightful owner identification in presence of secondary watermarking

k ≥ ω. The probability of deleting ω tuples is given in Equation 10. If R contains
200 tuples, out of which 50 tuples are marked, and the attacker removes half of
the tuples, the probability of erasing the watermark is approximately 2−50, which
is negligible. Deleting more than half tuples in the relation marginally increases
the probability of erasing the watermark but at the same time, makes the data
less useful for the attacker.

P (d) =
k!

(k−ω)! × (n − ω)!

n!
=

ω−1∑
i=0

(
k − i

n − i

)
(10)

Sorting/ Shuffling attacks: Since each tuple is watermarked independently,
sorting and shuffling attacks are ineffective against the watermarking scheme.

Distortive attacks: We assume that attacker knows the value of ξ. The fraction
of attributes distorted by the attacker is λ, hence the total tuples modified are
ζ = n/λ. The attacker randomly chooses ζ tuples and distorts all ξ bits in these.
The objective of the attacker is to change at least τ = (1 − θ) × ω watermark
bits in order to render the watermark undetectable. Equation 11 [1] gives the
probability of success for such attacks. Experimental results show that for λ = 2,
the watermark scheme survival rate is close to 91%.

P(A) =
ω∑

i=τ

(
ω
i

)(
n − ω
ζ − i

)
(

n
ζ

) (11)

False Positives: The watermarking scheme has a false positive probability pro-
vided in Equation 12. We attempted to detect our watermark in 20,000 randomly
generated unmarked relations and we had zero detections, confirming that the

Database Relation Watermarking Resilient 233

probability of false positives is negligible. The average percentage of watermark
bits detected in the 20,000 relations were 50.049% which is understandable given
that each randomly chosen bit can have values 0 or 1 with equal probabilities.

P (
mc

tc
≥ θ) =

tc×(1−θ)∑
i=1

2−tc (12)

Additive attacks/Secondary watermarking: If parties {p1, . . . , pn} water-
mark different instances of the same relation and claim ownership of the water-
marked relation (Ri is the watermarked copy of pi), the aim is to identify the
rightful owner from these n candidates.

If the watermark of pi is detected in Rj (i �= j), it implies that pi owns a
relations from which Rj is eventually derived, thereby eliminating pj from the
contention. Thus, if only px’s watermark is detected for relation Rx, then px

is the rightful owner. Algorithm 7 identifies the correct owner from multiple
potential candidates. We used the watermarking scenario described in Figure 1
for testing our claims. We watermarked the relations with different keys for
different users after introducing 30% distortions in an attempt to destroy the
previous watermark. The results of the experiments are given in Table 1. We
assume that the candidates are {C, u2, u4, u7, u10, u12} and the other users are
not located.

The experiments show that watermark of only the watermark of C was de-
tected in relation R1 implying that C is the rightful owner. Watermark of at
least one other party was detected in relations claimed by parties other than C.
Watermark of C was not detected only in R12 since the concerned relation had
been distorted sequentially by four parties, thereby making effective distortion
to be 1 − 0.74 = 76%.

C

R1

R2 R3

R5R4 R6 R7

R10 R11

R12 R13

R

R8 R9

�

� �

�
�� �

��

�

� �

�

u2

u3

u4

u5
u6

u7

u8
u9

u10
u11

u12
u13

Fig. 1. Secondary watermarking scenario - identified users highlighted in red and their
relations in blue

234 G. Gupta and J. Pieprzyk

Table 1. Rightful owner identification results (�: detected, �: not detected)

C u2 u4 u7 u10 u12

R1 � � � � � �

R2 � � � � � �

R4 � � � � � �

R7 � � � � � �

R10 � � � � � �

R12 � � � � � �

If Alice publishes a relation R and the watermarked version Rw is given to
Mallory. Mallory likes the data and purchases the key to get the original relation,
in which case Alice and Mallory sign an agreement stating that the key to recover
R was purchased by Mallory from Alice. It is possible that Mallory now embeds
his own watermark and distributes the watermarked relation to make a profit.
In such a situation, Alice can always use the agreement between her and Mallory
as a proof that the relations being distributed belong to her.

5 Experimental Results

We generated 270 sets of random documents each containing 10 attributes and
200 to 2000 tuples to test our scheme for security against distortive attacks. We
carried out experiments with θ between 0.6 to 0.75 and distortive attacks ranging
from 10% to 50%. These experiments were carried out under mix and match
environment of distortive plus subtractive attacks. The overall average detection
rate for 20%-50% distortions and 60%-75% confidence levels was 94.125%. This is
significantly higher than the detection rate after attack of [1]. Figure 2 illustrates
the detection success rates with varying θ, λ for γ = 10.

Experiments were carried out to test the effect of varying the fraction of tuples
watermarked, γ. We set θ = 0.40 and the results indicate that having a smaller
fraction and thereby a higher number of watermark-carrying tuples is beneficial

0.55 0.6 0.65 0.7 0.75 0.8
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

θ

D
e
te

ct
io

n
 s

u
cc

e
ss

 r
a
te

 (
γ=

1
0
)

5
3
2.5
2

λ

Fig. 2. Changes in survival rate with varying confidence level θ and attack level λ
(watermarking fraction γ fixed at 10)

Database Relation Watermarking Resilient 235

0.55 0.6 0.65 0.7 0.75 0.8
0.8

0.85

0.9

0.95

1

θ

D
e

te
ct

io
n

 s
u

cc
e

ss
 r

a
te

 (
λ=

2
)

10
20

γ

Fig. 3. Changes in survival rate with varying watermarking fraction γ and confidence
level θ (attack level λ fixed at 2)

for detection of watermark. The most critical set of experiments were carried
out with θ = 0.50 and the results of the experiments are illustrated in Figure 3.
We can see that the detection success rate is around 91% for the values of γ
between 50 and 100.

6 Conclusion

In this paper, we have proposed an improvement over the reversible and blind
watermark scheme proposed in [5] that offers high security against subtractive,
distortive, shuffling, and additive (secondary watermarking) attacks. The scheme
does not suffer from the neighbourhood of powers of two problem described in
the paper. Our scheme has the following features which mark significant im-
provement over other models for watermarking database relations:

1. The scheme introduces less distortion in the data items, with an adjustable
upper bound, in order to maintain usability.

2. Experiments show that the scheme has an average successful detection rate
of 91% even if half the values in the relation distorted by the attacker, which
is a significant improvement over previous schemes proposed in [2,1].

3. The scheme has extremely low false positives confirmed with experimen-
tal results showing no accidental watermark detections in 20,000 randomly
generated unmarked relations.

4. Even if the attacker re-watermarks an already marked database relation, the
rightful owner can be identified by the virtue of reversibility.

The current assumption in database watermarking is that the attacker cannot
change the primary key. This enables us to symmetrically identify the tuples and
attributes carrying the watermark. Our future work is directed towards elimi-
nating this requirement and constructing a watermarking scheme that detects
watermarks under the presence of attacks, including primary key modifications.

236 G. Gupta and J. Pieprzyk

References

1. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: Proceedings of the
28th International Conference on Very Large Databases VLDB (2002)

2. Agrawal, R., Kiernan, J.: Watermarking relational data: framework, algorithms and
analysis. The VLDB Journal 12(2), 157–169 (2003)

3. Alattar, A.: Reversible watermark using the difference expansion of a generalized
integer transform. IEEE Transactions on Image Processing 13(8), 1147–1156 (2004)

4. Gross-Amblard, D.: Query-preserving watermarking of relational databases and xml
documents. In: Proceedings of the 20th ACM Symposium on Principles of Database
Systems, pp. 191–201 (June 2003)

5. Gupta, G., Pieprzyk, J.: Reversible and blind database watermarking using differ-
ence expansion. In: eForensics 2008: Proceedings of 1st International Conference
on Forensic applications and techniques in telecommunications, information, and
multimedia workshop, ICST, Brussels, Belgium, pp. 1–6 (2008); ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering)

6. Tsai, C.-S., Chu, Y.-P., Feng, J.-B., Lin, I.-C.: Reversible watermarking: Current
status and key issues. International Journal of Network Security 2(3), 161–171 (2006)

7. Li, Y., Deng, R.H.: Publicly verifiable ownership protection for relational databases.
In: Proceedings of the 2006 ACM Symposium on Information, computer and com-
munications security, ASIACCS 2006, pp. 78–89. ACM, New York (2006)

8. Sion, R., Atallah, M., Prabhakar, S.: On watermarking numeric sets. In: Petitcolas,
F.A.P., Kim, H.-J. (eds.) IWDW 2002. LNCS, vol. 2613, pp. 130–146. Springer,
Heidelberg (2003)

9. Tian, J.: Reversible data embedding using a difference expansion. IEEE Transactions
on Circuits and Systems for Video Technology 13(8), 890–896 (2003)

A Robust Damage Assessment Model for

Corrupted Database Systems

Ge Fu1,2, Hong Zhu1, and Yingjiu Li2

1Huazhong University of Science and Technology, 430074, Wuhan, P.R. China
2Singapore Management University, 80 Stamford Road, 178902, Singapore
fuge@smail.hust.edu.cn, yjli@smu.edu.sg, whzhuhong@gmail.com

Abstract. An intrusion tolerant database uses damage assessment tech-
niques to detect damage propagation scales in a corrupted database sys-
tem. Traditional damage assessment approaches in a intrusion tolerant
database system can only locate damages which are caused by reading
corrupted data. In fact, there are many other damage spreading patterns
that have not been considered in traditional damage assessment model.
In this paper, we systematically analyze inter-transaction dependency
relationships that have been neglected in the previous research and pro-
pose four different dependency relationships between transactions which
may cause damage propagation. We extend existing damage assessment
model based on the four novel dependency relationships. The essential
properties of our model is also discussed.

Keywords: Data integrity, database recovery, damage assessment.

1 Introduction

A database system being able to detect intrusions and recover compromised data
back to a consistent state is claimed to be an intrusion tolerant database system
(or attack resistant, or self healing system) [1][2][3][4][5]. As it is shown in Fig. 1,
most intrusion tolerant database systems consist of the following modules: Sys-
tem Log, Intrusion Detector, Damage Assessor, and Data Repairer. The clients
commit various transactions to execute the application logic, and these trans-
actions affect the integrity and consistency of a database system. The Intrusion
Detector tracks clients’ behaviors, and detects intrusion activities of malicious
clients based on the system log. For the data that is corrupted by malicious trans-
actions, the Damage Assessor detects the scale of damage propagation and the
Data Repairer generates compensation transactions to repair the compromised
data. An intrusion tolerant database is built based on a traditional relational
model. It can be considered as an extension to the relational database system
since the modules can be either built into the kernel of DBMS [3][4][5][6] or
developed on top of DBMS (serves as a middleware between DBMS and the
clients)[1][2].

The technologies of intrusion detection, transaction processing, and database
auditing can be used to develop an intrusion tolerant database system. Dam-
age Assessment is the most critical phase during the whole damage recovery

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 237–251, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

238 G. Fu, H. Zhu, and Y. Li

 User 1

 User 2

 User n

…
 ...

Database

System Log Intrusion
Detector

Damage
Assessor

Data
Repairer

 Intrusion tolerant database system

Fig. 1. Architecture of a fault tolerant database system

process[7]. The Damage assessor concerns the issues on how the damage appears
and in what way the damage can be detected and exposed. Nowadays, most
damage assessment algorithms rely on a model on how innocent data are af-
fected in a compromised database system (denoted damage spreading patterns).
The model evaluates damage spreading patterns by analyzing the dependencies
between transactions. A Read-Write Dependency is the most common damage
spreading pattern: in a transaction history H: T1, ..., T2.... Supposing transaction
T2 reads the results modified by transaction T1 (we claim that transaction T2 is
read-write dependent upon T1), and then writes data x to the database system,
then we say transaction T2 is affected by T1 and data x is corrupted. Existing
damage assessment models deal with this kind of damage spreading pattern,
and various algorithms and prototypes were developed based on it. However,
except for the Read-Write Dependency, do there exist any other dependency re-
lationships between transactions that cause damage spreading? To answer this
question, some deeper issues towards the inter-transaction dependencies should
be referred to. In essence, the dependency between transactions derives from
the issue of data sharing. The read or write operations in different transactions
towards the same data may generate a dependency relationship between the
transactions. For a data item x and transaction T1 and T2 (T2 is scheduled af-
ter T1), there are totally four data sharing modes that may connect T1 and T2

together: 1)∃ a read operation r1 in T1 and a read operation r2 in T2, r1 and r2

read x ; 2)∃ a read operation r1 in T1 and a write operation w2 in T2, r1 read x
and w2 write x ; 3)∃ a write operation w1 in T1 and a read operation r2 in T2,
w1 write x and r2 read x ; 4) ∃ a write operation w1 in T1 and a write operation
w2 in T2, both w1 and w2 write x. We denote above four situations Read-Read
mode, Write-Read mode, Read-Write mode, and Write-Write mode separately.
The Read-Read and Write-Read modes do not lead to a dependency relationship
from T2 to T1 because the read operation in transaction T2 can not cause a state
transition for database system (we claim that only write operations can change
the DB state). So we focus on the Read-Write and Write-Write modes, and

A Robust Damage Assessment Model for Corrupted Database Systems 239

extract dependency relationships between transactions due to the two categories
of data sharing modes.

In this paper, we systematically analyze the dependency relationships be-
tween transactions corresponding to the Read-Write and Write-Write data shar-
ing modes. We proposed four novel inter-transaction dependency relationships
which may lead to damage propagation, and illustrate how these dependencies
help the damages to spread to a larger scale. Based on that, we propose our dam-
age assessment model to detect affected transactions that are corrupted by the
malicious transactions due to the new proposed inter-transaction dependencies.
The model is an essential extension to existing read-write dependency model,
and makes the results of damage recovery more accurate.

The rest of the paper is organized as follows: section 2 is devoted to the review
of existing damage assessment methods and damage repair systems. In section 3
we analyze the dependency relationships between transactions according to the
Read-Write and Write-Write data sharing modes, and give the formal descrip-
tions of four inter-transaction dependencies which may cause damage propaga-
tion. In section 4, we propose an extended damage assessment model by taking
the new dependency relationships into account. Section 5 discusses the essential
features of our model.

2 Related Work

There are mainly two categories of damage assessment models. The first is Ap-
plication Level Damage Tracking [6][8]. In this model, an application-program-
analyzer module is constructed to capture the damage propagation in the
application layer. Supposing a variable x in a program is corrupted by a mali-
cious user, damage can be spread to the data whose producer references to the
variable x. Furthermore, in case that an IF-ELSE code fragment references to
the variable x, the control logic for the program can be changed and the dam-
age may be propagated due to the corrupted logic control caused by variable x.
Application level damage tracking is devoted to capture above damage spread-
ing patterns and record the related information so as to facilitate the recovery
activities (e.g. the before image of corrupted data). The second damage assess-
ment model is Inter-Transaction Dependency Tracking. This model assesses the
damage scale in the layer of database system. Transactions which have a de-
pendency relationship with the malicious transactions are identified as affected
and those data whose producer is affected are labeled corrupted. A Read-Write
Dependency is the most common damage spreading pattern investigated so far.
Yu et al. proposed another damage spreading pattern: Control Dependency [9].
Transaction T2 being control dependent on T1 indicates that the execution of
transaction T2 is determined by transaction T1. In database layer, the control
dependency is mainly caused by triggers. A control dependency on a malicious
transaction causes damage spreading to an incorrect execution path. Since trig-
gers can be considered as a fragment of code, so to some extent, the control
dependency is much similar to application level tracking.

240 G. Fu, H. Zhu, and Y. Li

Comparing the two models, the application level damage tracking is more ac-
curate and effective. In the application layer, the inherent program structure can
describe the read-write dependency relationship between data evidently, while
on the contrary, the SQL is not capable to express the complicated semantics
(the sequence, branch and cycle structure (IF-ELSE, WHILE etc.)) if stored pro-
cedure is not used. However, in database level, a log of transaction history can
be easily obtained from the inherent mechanisms in DBMS such as auditing and
trigger, so that the damage tracking becomes not so complicated based on the
transaction log. Due to the simplicity and efficiency of database level tracking,
the inter-transaction dependency tracking model draws much attention in recent
decades. Up to now, most self-healing systems still adopt the inter-transaction
dependency tracking model for the damage assessment [3][10][11][12].

Existing inter-transaction dependency tracking model is incomplete, and cer-
tain dependencies between transactions have not been concerned. Consequently,
the damage assessment algorithms causes a violation to Completeness Criteria
for damage recovery [9]. To address this problem, we systematically discuss the
inter-transaction dependencies that may cause damage spreading in this paper.

3 Inter-transaction Dependency Relationships Analysis

As it is described above, the damage propagation is mainly caused by the Read-
Write mode and Write-Write mode of data sharing. Extracting the Read-Write
Dependency relationship between transactions is the basic resolution in current
damage assessment model. This method mainly contributes to discover the dam-
age propagation caused by the Read-Write mode. In this section, we focus on
the Write-Write data sharing mode and analyze which kind of inter-transaction
dependency relationships related to this data sharing mode may cause damage
spreading. We discover four categories of inter-transaction dependency relation-
ships which may produce compromised data.

There is a special dependency relationship between transactions: In a trans-
action history H : T1...T2... where transaction T2 is not read-write dependent
on transaction T1. If we construct a new transaction history H ′ : ...T2... which
indicates that if transaction T1 doesn’t execute, then in transaction history H’,
transaction T2 should have read some data which were modified by transaction
T1 in history H. Furthermore, if T1 is malicious, T2 should be regarded as an
affected transaction and captured by the damage assessment. It seems that T1

and T2 are connected with some phantoms data which T2 should have read in
semantics (see an example in Fig.2). We refer to this kind of inter-transaction de-
pendency as Phantoms Dependency (note that the concept has been mentioned
in [6][13][14]). The Phantoms Dependency is an important damage propagation
pattern which has significant destructive power on database systems. Unfortu-
nately, the former inter-transaction dependency tracking model does not con-
sider the Phantoms Dependency, thus the damage assessment algorithms are
not completely effective.

A Robust Damage Assessment Model for Corrupted Database Systems 241

Application Logic:
An increase of commodity prices: we need the price of commodity whose price is
more than $500 increased by 10%.
Intrusion Activity:
Assume that before the price increase activity occurs, there is a malicious
transaction B1 modifies the product rice’s price
from $400 to $600. The correspondent transaction history is described as follows:
Correlated Database Layer SQL statements:
G0: UPDATE product SET price = 600 WHERE product name = ”rice”;
B1: UPDATE product SET price = 400 WHERE product name = ”rice”;
G1: UPDATE product SET price = 1.1 ∗ price WHERE price > 500;

– In the application above, we can see that transaction G1 did not read from B1, and
thus there was no read-write dependency from G1 to B1. So in traditional inter-
transaction damage tracking model, G1 would not been treated as an affected
transaction, and only malicious transaction B1 would be undone.

– Suppose we only undid malicious transaction B1, then the price of product rice was
written back to $400. But is that the correct recovery result? Obviously no, because
all products’ prices increased by 10%, except for the product rice! Therefore, we
conclude that the execution of transaction B1 did affect transaction G1, and G1

was no longer innocent.
– In a deeper sight, if B1 did not exist, G1 should have read the record ”rice” and

made modifications on its price. But in fact, the transaction B1 did exist, and the
undo transaction for B1 made the recovery result incomplete for the product rice’s
price did not increase. Some modifications requested by transaction G1 were lost.
In the common sense, It seemed that G1 was affected by B1 for G1 read a phantom
data ”rice”. We denote the dependency from G1 to B1 as Phantoms Dependency.
A novel damage assessment approach should be proposed to track this dependency
and identify G1 as an affected transaction.

Fig. 2. Phantoms Dependency between transactions

In a transaction history, some transactions’ execution is dependent on other
transactions so as to satisfy the inherent integrity constraints in DBMSs, such as
Entity Integrity, Domain Integrity, and Reference Integrity). On the point of se-
curity, the integrity constrains may also help to propagate damage in the context
of data sharing: Suppose that an innocent transaction’s execution is dependent
upon a malicious transaction so that the integrity constraints are bypassed for
the innocent transaction, it can be indicated that the innocent transaction is
not benign any more and it is probable to cause damage propagation. We sum-
marize three categories of inter-transaction dependencies related to the inherent
integrity constraints as follows:

Pseudo-Identity Dependency. In some cases, the execution of an innocent
transaction is dependent upon a malicious transaction so that it bypasses the
Entity Integrity Constraint. For the instance described in Fig.3, malicious trans-
action B deletes a record (product id=”P002”) in table product (subfigure (b)),
and then innocent transaction G inserts a new tuple with the same primary
key product id P002 (see subfigure (c)). In this transaction history, it is obvious

242 G. Fu, H. Zhu, and Y. Li

product id (PK) name price

P000 rice $400

P001 banana $230

P002 orange $120

P003 apple $100

P004 flour $460

(a) Initial state of table product

product id (PK) name price

P000 rice $400

P001 banana $230

P003 apple $100

P004 flour $460

(b) Malicious transaction B deletes
the record with product id=”P002”

product id (PK) name price

P000 rice $400

P001 banana $230

P003 apple $100

P004 flour $460

P002 grape $320

(c) innocent transaction G in-
serts a new record with prod-
uct id=”P002”

Fig. 3. Pseudo-Identity Dependency between transactions

that the execution of transaction G is dependent on B (if the product P002
was not deleted by transaction B, transaction G could not have been executed
successfully). In our intuitive feeling, transaction G creates a new entity with
a pseudo identity to substitute the historical object so as to satisfy the entity
integrity constraint. We denote this kind of dependency from G to B as Pseudo-
Identity Dependency. The transactions that have a pseudo-identity dependency
relationship with a malicious transaction should be considered as affected. Un-
fortunately, the Pseudo-Identity Dependency can not be captured by current
damage assessment algorithms.

Domain-Integrity Dependency. The execution of an innocent transaction
is dependent upon a malicious transaction so that it can satisfy the Domain
Integrity Constraint. There are mainly two categories of domain integrity con-
straints (namely CHECK constrains) in DBMSs: field integrity constraint (e.g.
CHECK (column1 < 50)) and row integrity constraint (e.g. CHECK (column1 <
colmn2)). The inherent row integrity constraints in DBMSs protect the secu-
rity of database systems; however, they are not capable to prevent all damage
spreading patterns. For the example in Fig.4, suppose that the application logic
requires the purchase price be lower than retail price and imposes a row integrity
constraint CHECK(p price < r price). The initial state for table product is
given in Subfigure (a). Now consider the following scenario: malicious trans-
action B modifies product P000 ’s p price to $350 (Subfigure (b)), and then,
innocent transaction G renews product P000 ’s r price to $360 (Subfigure (c)).
In this transaction history, there seems no CHECK constrains violation, but

A Robust Damage Assessment Model for Corrupted Database Systems 243

product id (PK) p price r price

P000 $400 $500

P001 $230 $246

P002 $460 $486

(a) Initial state of table product,
where a domain integrity constraint
CHECK(p price < r price) is im-
posed on table product

product id (PK) p price r price

P000 $350 $500

P001 $230 $246

P002 $460 $486

(b) Malicious transaction B updates
the record with product id=”P000”
and decreases purchase price to $350

product id(PK) p price r price

P000 $350 $360

P001 $230 $246

P002 $460 $486

(c) Innocent transaction G UPDATE
the record with product id=”P000”
and decreases retail price to $360

Fig. 4. Domain-Integrity Dependency between transactions

the damage spreading does occur: transaction G’s UPDATE operation is depen-
dent on B ; in other words, if B did not exist, G would not have been executed
successfully due to the CHECK constraint imposed on table product (if B did
not exist, G renewed r price to $360, then the function CHECK ($400<$360)
would return a value false). Therefore, the CHECK can not deal with this pat-
tern of damage propagation, and even worse, one can not recover the product
P000 ’s p price to the correct value (because when the recovery activity to undo
the product’s p price to $400 was launched, the function CHECK ($400<$360)
would return a value false). In our work, we denote the dependency relationship
from transaction G to B as Domain-Integrity Dependency, and incorporate it in
our damage assessment model.

Reference-Integrity Dependency. As we all know, the inherent Reference
Integrity Constraints in DBMSs provides the SET-NULL and CASCADE policy
to protect data consistency in data sharing [15]. However, these two policies also
help to propagate new damage if they are utilized by an intruder: A malicious
DELETE operation on the main table will impose a negative impact on the slave
table if a SET-NULL or CASCADE policy exists in the main and slave tables.
Fortunately, the trigger mechanism in DBMSs facilitates traditional damage as-
sessment models to recover the cascade deleted data in slave tables (the cascade
delete operations in the slave tables can be captured by triggers). However, there
is still a possibility that some innocent transactions depend upon a malicious
transaction and thus bypass the reference integrity Constraint and cause damage
propagation. For the instance in Fig.5, the main table product and the slave table
order with a foreign key constraint order (p id) referencing product(product id)
(see Subfigure (a) and (b)). Now assume that a malicious transaction B cre-
ates a product P002 (see Subfigure (c)) and that an innocent transaction G

244 G. Fu, H. Zhu, and Y. Li

product id (PK) p price r price

P000 $400 $500

P001 $230 $246

(a) Main table product

order id(PK) p id(FK) quantity

O001 P000 500

O002 P001 300

(b) Initial state of slave table or-
der, where a foreign key constraint
in which order(p id) references to
product(product id) without any CAS-
CADE policy

product id (PK) p price r price

P000 $400 $500

P001 $230 $246

P002 $460 $486

(c) Malicious transaction B inserts a
product with product id=”P002” into
main table product

order id(PK) p id(FK) quantity

O001 P000 500

O002 P001 300

O003 P002 260

(d) Innocent transaction G inserts a
new order that references to product
P002

Fig. 5. Reference-Integrity Dependency between transactions

generates a new order O003 referencing product P002. It is obvious that the
execution of transaction G is dependent on B. This dependency relationship
should be captured by damage assessment algorithms. We refer to this kind of
dependency from G to B as Reference-Integrity Dependency. Traditional dam-
age assessment models cannot discover the damage spreading patterns caused
by Reference-Integrity Dependency. Even worse, the corrupted data caused by
B could not be recovered in traditional models: the rollback transaction for B
would delete product P002 in the main table product. If a DO-NULL policy is
used for the reference integrity constraint, the DELETE operation will return
an error; otherwise, if a SET-NULL policy is imposed on the tables, the recov-
ery for transaction B is incomplete because the order O003 still existed with
the foreign key p id being set to null. Only the CASCADE policy will bring a
complete recovery.

4 Damage Assessment Model

In this section, we give the formal definitions for the Phantoms Dependency,
Pseudo-Identity Dependency, Domain-Integrity Dependency and Reference-
Integrity Dependency between transactions. Meanwhile, a detail on how these
inter-transaction dependencies cause damage spreading is explained. Finally, we
propose our extended damage assessment model which is devoted to discover the
new damage propagation patterns relative to the new defined inter-transaction
dependencies.

A Robust Damage Assessment Model for Corrupted Database Systems 245

4.1 Preliminaries

Before we propose the damage assessment model, we first introduce some basic
concepts. A transaction history to be repaired is a serializable history generated
under the two phase locking principle. We denote the committed malicious trans-
actions in a history by a set B={B1, B2 , ..., Bm}, and the committed benign
transactions in a history by a collection G={G1, G2, ..., Gn}. For a transaction
history H over B∪G, we define <H as the usual partial order on B∪G for his-
tory H, where Ti <H Tj indicates that the operations of Ti are scheduled before
the conflicting operations of Tj. Two operations conflict if they are on the same
data item and at least one is write operation. Two transactions conflict if they
have conflicting operations[1]. Even if transactions Ti and Tj are not conflict
transactions, we still use the notation Ti <H Tj to denote that Ti is scheduled
before Tj by DBMS.

As our best knowledge, in DBMS, a write-involved SQL statement t is exe-
cuted in the following process: 1) DBMS loads the data blocks requested by t
to the main memory; and 2) DBMS writes back the modified data from main
memory to DB files after t is executed. So on this point, we assume that when
a write-involved SQL statement executes a write operation requesting data set
x, implicitly, it has a read operation towards x firstly. For example, a write-
involved SQL statement could be UPDATE product SET price = 1.1 ∗ price
WHERE price > 500. In semantics, it is equivalent to the sequence: SELECT price
FROM product WHERE price > 500, and UPDATE product SET price = 1.1 ∗ price
WHERE price > 500. Therefore a write-involved SQL statement can be divided
into a read operation and a succeeding write operation (this method was used
in the damage assessment algorithms in [3][6]). In our work, when we mention
the read operation, it not only refers to the SELECT operation, but also the
read operations in the write-involved statements. Formally, a read operation on
a data item x for transaction T is denoted by [SELECT, x, img, T]1.

The UPDATE statement has the semantics that it modifies certain data to
new values. In a transaction history, it can be assumed that an UNDATE state-
ment is equivalent to a sequence of a DELETE operation and a succeeding
INSERT operation (for example, for a UPDATE involved statement UPDATE
product SET price = $100 WHERE product id = ”P001”, the statement first
deletes the product P001 ’s price and then inserts a new value $100 in the same
position). For simplicity, we use DELETE operations to denote the DELETE
statements and the DELETE semantics for UPDATE involved statements; simi-
larly, we refer to the INSERT statements and the INSERT semantics for
UPDATE involved statements as INSERT operations. Therefore, an UPDATE
statement can be substituted by the sequence of an DELETE operation and
a succeeding INSERT operation. Meanwhile, we claim that the write operation
consists of INSERT and DELETE operations (the objective is to omit UPDATE

1 In the label [SELECT, x, img, T], img represents the value of data item x. We denote
data item x with a three-tuple x(table,v pk,column) where v pk refers to the value
of the primary key of table, and it identifies the row number of data x.

246 G. Fu, H. Zhu, and Y. Li

operations for simplicity). Formally, a write operation is denoted as [OPTYPE,
item, b img, a img, tran id]2.

The existing models to detect the damage propagation are mainly based on
the Read-Write Dependency relationship between transactions. Previous works
[1][16] give the definition of Read-Write Dependency relationship, and we intro-
duce it to our work.

Definition 1 (Read-Write Dependency). Transaction Tj is Read-Write Depen-
dent upon transaction Ti in a transaction history if there exists a data item x
such that:

1) Tj reads x after Ti wrote x ;
2) Ti does not abort before Tj reads x ;
3) every transaction that writes x between the time when Ti writes x and the
time when Tj reads x is aborted.

In our work, we use the notation →W to denote the Read-Write Dependency.
Transaction Tj is Read-Write Dependent upon transaction Ti is denoted by Ti

→W Tj .

4.2 Phantoms Dependency

Section 3 describes the problem for phantoms dependency. Intuitively, transac-
tion T2 is dependent on T1 because T2 reads a phantoms data from T1. In other
words, if we change the transaction history and add an undo transaction UT1

behind T1, then in the new transaction history, T2 may read from T1. On this
point of view, we propose the formal definition for the phantoms dependency as
follows:

Definition 2 (Phantoms Dependency). Consider a transaction history H:..., T1,
..., T2,... that satisfies:

1) there exists a write operation op1 in T1 and an read operation op2 in T2;
2) T1<HT2;
3) T1→W T2 does not hold.

Let s1 be the set of data written by op1. Assume that transactions are executed
according to another transaction history H’:..., T2, ... (where transaction T1 is
removed from transaction history H). Let s2 be the set of data read by op2 in
transaction history H’. If s1∩s2 �=Ø , we say T2 is Phantoms Dependent upon
T1, and operations op1 and op2 are Phantoms Conflict operations.

We use the notation →P to denote the Phantoms Dependency. Transaction
Tj being phantoms dependent upon transaction Ti is denoted by Ti →P Tj.

2 Here [OPTYPE, item, b img, a img, tran id] means that the transaction tran id
writes the data item and modifies its value from b img to a img. OP-
TYPE∈{INSERT, DELETE}. For OPTYPE=DELETE, a img is null while for
OPTYPE=INSERT, b img=null.

A Robust Damage Assessment Model for Corrupted Database Systems 247

4.3 Pseudo-identity Dependency

As described in section 2, some transactions’ execution is dependent on some
other transactions so that the Entity Integrity Constraint may be bypassed.
This inter-transaction dependency may cause damage propagation if a malicious
transaction is dependent. This dependency should be considered in the damage
assessment model.

Definition 3 (Pseudo-Identity Dependency). Given a transaction history H:...,
T1,..., T2,... and two conflict transactions T1 and T2 that satisfy:

1) T1<HT1;
2) there exist a DELETE operation op1 [DELETE, x, b img, -, T1] in T1 and
an INSERT operation op2 [INSERT, x, -, a img, T2] in T2, where x.column is
the PRIMARY KEY or UNIQUE KEY of x.table.

Then we say transaction T2 is Pseudo-Identity Dependent upon T1, and opera-
tions op1 and op2 are Pseudo-Identity conflict operations.

We use the notation →I to denote the Pseudo-Identity Dependency. Trans-
action Tj being pseudo-identity dependent upon transaction Ti is denoted by Ti

→I Tj.

4.4 Domain-Integrity Dependency

The domain integrity dependency is derived from the row level domain integrity
constraint. It means that if two transactions each has a INSERT operation to-
wards the same row and if the data items that the INSERT operations write are
restricted by the CHECK constraint, then there is a domain integrity depen-
dency relationship between the two transactions.

Definition 4 (Domain-Integrity Dependency). Given a transaction history H:...,
T1, ..., T2,... and two transactions T1 and T2 (T1<HT2) in H that satisfy:

1) there exist INSERT operations op1 [INSERT, x, -, v1, T1] and op2 [INSERT,
y, -, v2, T2] satisfying that x.v pk = y.v pk, and x.table = y.table;
2) there exists a row-level domain integrity constraint CHECK[col1, col2, ...,
coln]3 (n≥2) on x.table and x.column, y.column ∈ {col1, col2, ..., coln}.
we say transaction T2 is Domain-Integrity Dependent upon T1, and operations
op1 and op2 are Domain-Integrity conflict operations.

We use the notation →D to denote the Domain-Integrity Dependency. Trans-
action Tj being domain-integrity dependent upon transaction Ti is denoted by
Ti →D Tj.

4.5 Reference-Integrity Dependency

The reference integrity constraints also lead to dependency relationships between
transactions: when a transaction with an INSERT operation which references to
3 Here col1, col2, ..., coln denote the constrained columns for the CHECK constraint.

248 G. Fu, H. Zhu, and Y. Li

another table, this dependency is formulated. We define this kind of dependency
as follows:

Definition 5 (Reference-Integrity Dependency). Consider a transaction history
H:..., T1, ..., T2,... and two transactions T1 and T2 (T1<HT2) in H that satisfy:

1) there exist INSERT operations op1 [INSERT, x, -, v1, T1] and op2 [INSERT,
y, -, v2, T2] and
2) there exists a reference integrity constraint from y.table (y.column) to x.table
(x.column) so that the insertion of v2 is referenced to the value of v1.

We say transaction T2 is Reference-Integrity Dependent upon T1, and operations
op1 and op2 are Reference-Integrity conflict operations.

We use the notation →R to denote the Reference-Integrity Dependency. Trans-
action Tj being reference-integrity dependent upon transaction Ti is denoted by
Ti →R Tj.

4.6 Damage Assessment Model

With a set of malicious transactions as input, the damage assessment algorithm
outputs the affected transactions as well as the corrupted data in a transaction
history so as to recovery the database to a consistent state. The assessment
process is based on a transaction dependency relation which is maintained in
the execution period of transactions. The transaction dependency relation keeps
track of phantoms dependency, pseudo-identity dependency, domain-integrity
dependency and reference-integrity dependency between transactions. The for-
mal definition of transaction dependency relation is given below:

Definition 6 (Transaction Dependency Relation for a Transaction History).
Given a transaction history H, and a binary relations D = {< Ti, Tj > |Ti →W

Tj, or Ti →P Tj,or Ti →I Tj , or Ti →D Tj, or Ti →R Tj} in H, the transaction
dependency relation DH in history H is defined to satisfy DH=t(D) (here t(D)
represents the transitive closure of relation D).

Notation ”→” is introduced to denote the transaction dependency between
two transactions. Let Ti→Tj denote < Ti, Tj >∈ DH .

In a transaction history H: B∪G, where B is the set of malicious transactions
and G=¬B. The damage assessment discovers the set of affected transactions A
according to following recursive definition:

1) if < Bk, Ti >∈ DH , where DH is the transaction dependency relation in H,
then Ti∈A;
2) if Ti ∈ A and < Ti, Tj >∈ DH , then Tj∈A.

5 Discussion

To explain the damage assessment model, we construct a transaction history H
based on tables product and order in Fig.6 as follows:

A Robust Damage Assessment Model for Corrupted Database Systems 249

p id (PK) name p price r price

P000 apple $400 $500

P001 orange $600 $700

P003 rice $100 $110

(a) Initial state of table product

o id(PK) p id(FK) quantity

O001 P000 500

O002 P001 300

(b) Initial state of table order.

– A foreign key constraint in which order(p id)references to product(product id), and
a domain integrity constraint CHECK(p price < r price) are imposed on table
product.

Fig. 6. A sample database to explain our damage assessment model

– T0: INSERT INTO product VALUES (”P004”,”flour”, 30, 50);
– T1: INSERT INTO product VALUES (”P002”,”grape”, 460, 486);
– T2: UPDATE product SET r price = ”650” WHERE p id = ”P001”;
– T3: SELECT p id FROM product WHERE name = ”grape”;

UPDATE shopping cart SET quatity = 1 WHERE p id = ”P002”;
– T4: UPDATE product SET r price = 1.1∗r price WHERE r price > 680;
– T5: UPDATE product SET p id = ”P008” WHERE name = ”apple”;
– T6: INSERT INTO product VALUES (”P000”,banana, 100, 120);
– T7: UPDATE product SET p price = 80 WHERE p id = ”P003”;
– T8: UPDATE product SET r price = 90 WHERE p id = ”P003”;
– T9: INSERT INTO order VALUES (”O003”,”P002”, 700);
– T10: UPDATE product SET r price = 150 WHERE p id = ”P004”;

According to our transaction dependency definitions, we can derive:
T1→W T3, T2→P T4, T5→IT6, T7→DT8, T1→RT9, T0→W T10. In transaction his-
tory H, the transaction dependency relation is DH = {< T1, T3 >, < T2, T4 >,
< T5, T6 >, < T7, T8 >, < T1, T9 >, < T0, T10 >}. If the malicious set of transac-
tions is B = {T1, T2, T5, T7}, then according to our damage assessment model,
the affected transactions set is A = {T3, T4, T6, T8, T9}. Traditional damage as-
sessment model only regards transaction T3 as affected transactions. In fact, T4,
T6, T8, and T9 are also affected by malicious transactions. Therefore, our model
captures a larger scale of damage propagation.

Finally, we discuss some essential features of the four novel transaction de-
pendencies. In essence, the four dependencies can be regarded as an extension
to the read-write dependency. For Phantoms Dependency, in above transaction
history H , we have T2→P T4, since transaction T4 should have read the record
whose p id = ”P001” (the UPDATE operation can be seen as a combination
operation of SELECT and UPDATE in semantics). The execution process of
T4, can be divided into two steps: 1) looking up all records and picking up the
records whose r price > 680; 2) updating the fields ”r price” for related records.
From step 1), it’s reasonable for us to consider that T4 has read all records in
table product including the record whose p id = ”P001”. Namely, transaction T4

implicitly reads from transaction T2. Therefore, on this point, we can say Phan-
toms Dependency is an extension of read-write dependency. For Pseudo-Identity

250 G. Fu, H. Zhu, and Y. Li

dependency in transaction history H , we have T5→IT6. The execution process of
T6 can be divided into the following steps: 1) Integrity constrain check: checking
whether there is a record in table product has the primary key p id = ”P000”; 2)
Inserting a new record. In step 1), the integrity constrain check can be considered
that transaction T6 implicitly reads the primary keys of all records, including the
records which have been deleted. Consequently, Pseudo-Identity dependency can
also be considered as an extension to the read-write dependency. For Domain
Integrity and Reference Integrity dependencies, we can consider that the affected
transaction implicitly read from another transaction in the period of constraint
checking. Therefore, in essence, the four dependencies can be seen as an extension
to the read-write dependency. Furthermore, from a technical point of view, it is a
complicated process to capture the four dependencies. For Phantoms and Pseudo
Identity dependencies, an additional table should be maintained to record the
before image of each update involved operations. This is because maintaining the
modification history is essential for damage assessment. For Domain Integrity
and Reference Integrity dependencies, the constraints check should be trans-
formed to a appropriate ”implicit read” action. These properties require a more
complicated technical resolution than handling read-write dependency. This also
proves the useability of our work.

6 Conclusion and Future Work

In this paper, we systematically analyze the inter-transaction dependencies which
may cause damage propagation. We propose to consider four new dependencies in
damage assessment. An extended damage assessment model is built according to
the dependencies. We also discuss some essential features of these dependencies.
Though these dependencies can be regarded as an extension to the read-write
dependency, they must be independently evaluated in damage assessment and
recovery. We are currently building a damage assessment and recovery prototype
based on our model by revamping the kernel of Dameng [17] database system.
The evaluation results will be reported in an extension work of this paper.

Acknowledgments

The work presented in this paper is partly supported by 863 hitech research and
development program of China (granted number: 2006A A01Z430).

References

1. Ammann, P., Jajodia, S., Liu, P.: Recovery from malicious transactions. IEEE
Trans. Knowl. Data Eng. 14(5), 1167–1185 (2002)

2. Luenam, P., Liu, P.: Odar: An on-the-fly damage assessment and repair system for
commercial database applications. In: Olivier, M.S., Spooner, D.L. (eds.) DBSec.
IFIP Conference Proceedings, vol. 215, pp. 239–252. Kluwer, Dordrecht (2001)

A Robust Damage Assessment Model for Corrupted Database Systems 251

3. Chiueh, T.-c., Pilania, D.: Design, implementation, and evaluation of a repairable
database management system. In: ICDE, pp. 1024–1035. IEEE Computer Society,
Los Alamitos (2005)

4. Bai, K., Yu, M., Liu, P.: Trace: Zero-down-time database damage tracking, quar-
antine, and cleansing with negligible run-time overhead. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 161–176. Springer, Heidelberg (2008)

5. Lomet, D., Vagena, Z., Barga, R.: Recovery from ”bad” user transactions. In:
SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD international conference
on Management of data, pp. 337–346. ACM, New York (2006)

6. cker Chiueh, T., Bajpai, S.: Accurate and efficient inter-transaction dependency
tracking. In: ICDE, pp. 1209–1218. IEEE, Los Alamitos (2008)

7. Gollmann, D., Meier, J., Sabelfeld, A. (eds.): ESORICS 2006. LNCS, vol. 4189.
Springer, Heidelberg (2006)

8. Panda, B., Haque, K.A.: Extended data dependency approach: a robust way of
rebuilding database. In: SAC, pp. 446–452. ACM, New York (2002)

9. Yu, M., Liu, P., Zang, W., Jajodia, S.: Trusted recovery. Secure Data Management
in Decentralized Systems 33, 59–94 (2007)

10. Luenam, P., Liu, P.: Odam: An on-the-fly damage assessment and repair system
for commercial database applications, pp. 446–452 (2003)

11. Yu, M., Zang, W., Liu, P.: Database isolation and filtering against data corruption
attacks. In: ACSAC, pp. 97–106. IEEE Computer Society, Los Alamitos (2007)

12. Yu, M., Liu, P., Zang, W.: The implementation and evaluation of a recovery system
for workflows. J. Network and Computer Applications 32(1), 158–183 (2009)

13. Zhu, H., Fu, G., Zhu, Y., Jin, R., Lü, K., Shi, J.: Dynamic data recovery for
database systems based on fine grained transaction log. In: IDEAS 2008: Proceed-
ings of the 2008 international symposium on Database engineering & applications,
pp. 249–253. ACM, New York (2008)

14. Xie, M., Zhu, H., Feng, Y., Hu, G.: Tracking and repairing damaged databases
using before image table. In: FCST 2008: Proceedings of the 2008 Japan-China
Joint Workshop on Frontier of Computer Science and Technology, Washington,
DC, USA, pp. 36–41. IEEE Computer Society, Los Alamitos (2008)

15. Garcia-Molina, H., Ullman, J.D., Widom, J.D.: Database Systems: the Complete
Book, 5th edn. Prentice Hall, Englewood Cliffs (2001)

16. Fayad, A., Jajodia, S., McCollum, C.D.: Application-level isolation using data
inconsistency detection. In: ACSAC, pp. 119–126. IEEE Computer Society, Los
Alamitos (1999)

17. Dameng: http://www.dameng.com/

http://www.dameng.com/

A Generic Distortion Free Watermarking

Technique for Relational Databases

Sukriti Bhattacharya and Agostino Cortesi

Dipartimento di Informatica
Universita Ca’ Foscari Venezia

Via Torino 155, 30170 Venezia, Italy
sukriti@dsi.unive.it, cortesi@unive.it

http://www.unive.it

Abstract. In this paper we introduce a distortion free watermarking
technique for relational databases based on the Abstract Interpretation
framework. The watermarking technique is partition based. The parti-
tioning can be seen as a virtual grouping, which does not change neither
the value of the table’s elements nor their physical positions. Instead of
inserting the watermark directly to the database partition, we treat it
as an abstract representation of that concrete partition, such that any
change in the concrete domain reflects in its abstract counterpart. The
main idea is to generate a binary image of the partition as a water-
mark of that partition, that serves as ownership proof as well as tamper
detection.

Keywords: Database Watermarking, HMAC, Galois Connection, Ab-
stract Interpretation.

1 Introduction

Watermarking is a widely used technique to embed additional but not visible in-
formation into the underlying data with the aim of supporting tamper detection,
localization, ownership proof, and/or traitor tracing purposes [1]. Watermarking
techniques apply to various types of host content. Here, we concentrate on re-
lational databases. Rights protection for such data is crucial in scenarios where
data are sensitive, valuable and nevertheless they need to be outsourced. Unlike
encryption and hash description, typical watermarking techniques modify the
ordinal data and inevitably cause permanent distortion to the original ones and
this is an issue when integrity requirement of data are required. Database wa-
termarking consists of two basic processes: watermark insertion and watermark
detection [1], as illustrated in Figure 1. For watermark insertion, a key is used to
embed watermark information into an original database so as to produce the wa-
termarked database for publication or distribution. Given appropriate key and
watermark information, a watermark detection process can be applied to any
suspicious database so as to determine whether or not a legitimate watermark
can be detected. A suspicious database can be any watermarked database or
innocent database, or a mixture of them under various database attacks.

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 252–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.unive.it

A Generic Distortion Free Watermarking Technique 253

Fig. 1. Basic watermarking process

Watermarking has been extensively studied in the context of multimedia data
for the purpose of ownership protection and authentication [11] [8]. The increas-
ing use of relational database systems in many real life applications created an
ever increasing need for watermarking database systems. As a result, watermark-
ing relational database systems is now merging as a research area that deals with
the legal issue of copyright protection of database systems.

The first well-known database watermarking scheme for relational databases
was proposed by Agrawal and Kiernan [1] for watermarking numerical values.
The fundamental assumption is that the watermarked database can tolerate a
small amount of errors. Since any bit change to a categorical value may render
the value meaningless, Agrawal and Kiernan’s scheme cannot be directly applied
to watermarking categorical data. To solve this problem, Sion [14] proposed to
watermark a categorical attribute by changing some of its values to other values
of the attribute (e.g., ’red’ is changed to ’green’) if such change is tolerable in
certain applications. There have been other schemes proposed for watermarking
relational data. In Sion et al.’s [15] scheme, an arbitrary bit is embedded into
a selected subset of numeric values by changing the distribution of the values.
The selection of the values is based on a secret sorting. In another work, Gross-
Amblard [9]designs a query preserving scheme which guarantees that special
queries (called local queries) can be answered up to an acceptable distortion.

All of the work cited so far ([1][9][2][14][15]) assume that minor distortions
caused to some attribute data can be tolerated to some specified precision grade.
However some applications in which relational data are involved cannot tolerate
any permanent distortions and data’s integrity needs to be authenticated. In
order to meet this requirement, we further strengthen this approach: we propose
a distortion free watermarking algorithm for relational databases, and we discuss
it in the abstract interpretation framework proposed by Patrick and Radhia
Cousot [5] [6] [7]. In [3], we presented a first proposal in this direction, focusing
on partitions based on categorical values present in the table and generating a
watermark as a permutations of the ordering of the tuples. Here we go one step
further, by removing the constraints on the presence of categorical values in the
table: we consider now any partitioning, and we generate out of it a binary image
which contains the same number of rows but one less number of columns of the
actual partition. The contribution of this paper is thus much more sophisticated
and completely orthogonal to [8]. The binary image serves the purpose of the

254 S. Bhattacharya and A. Cortesi

ownership proof and tamper detection of the associated partition. We prove that
this is an abstract representation of the actual partition by showing the existence
of a Galois connection between the concrete and the abstract partition (i.e. the
binary image). Therefore, any modification in the concrete partition will reflect
in the abstract counterpart. We state the soundness condition regarding this
alteration. The robustness of the proposed watermarking obviously depends on
the size of the individual groups, so it is specifically designed for large databases.
The resulting watermark is robust against various forms of malicious attacks and
updates to the data in the table.

The paper is organized as follows. In Section 2, we formalize the definition of
tables in relational database, and a formal definition of watermarking process of
a table in relational database is given. Section 3 illustrates how distortions and
watermarking are related. In Section 4, we show the data partitioning algorithm.
In Section 5, we present the watermark generation algorithm for a data partition,
and we explain why this watermark is considered as an abstract representation
of the concrete partition. In Section 6, we propose the watermark detection
algorithm. The robustness of the technique is discussed in Section 7. Finally, we
draw our conclusions in Section 8.

2 Preliminaries

This section contains an overview of Galois connection and some formal defini-
tions of tables in relational database and database watermarking [4] [10].

Definition 2.1 (Partial Orders)
A partial order on a set D is a relation �∈ ℘(D×D) with the following properties:

– ∀d ∈ D : d � d (reflexivity)
– ∀d, d′ ∈ D : (d � d′) ∧ (d′ � d) =⇒ (d = d′) (antisymmetry)
– ∀d, d′, d′′ ∈ D : (d � d′) ∧ (d′ � d′′) =⇒ (d � d′′) (transitivity)

A set with a partial order defined on it is called partially ordered set, poset.
Following are definitions of some commonly used terms with respect to Partial
order (L, �).

Definition 2.1.1 (Lower Bound)
X ⊆ L has l ∈ L as lower bound if ∀ l’ ∈ X : l � l’.

Definition 2.1.2 (Greatest Lower Bound)
X ⊆ L has l ∈ L as greatest lower bound l if l0 � l whenever l0 is another lower
bound of X.It is represented by the operator �. glb(X)= � X.

Definition 2.1.3 (Upper Bound)
X ⊆ L has l ∈ L as upper bound if ∀ l’ ∈ X : l’ � l.

Definition 2.1.4 (Least Upper Bound)
X ⊆ L has l ∈ L as least upper bound if l � l0 whenever l0 is another upper
bound of X. It is represented by the operator
. lub(X)=
 X.

A Generic Distortion Free Watermarking Technique 255

Definition 2.2 (Complete Lattice)
A complete lattice (L, �,
, �, #, ⊥) is a partial ordered set (L, �) such that
every subset of L has a least upper bound as well as a greatest lower bound.

– The greatest element # =
L
– The least element ⊥ = �L

For instance (L, �,
, �, #, ⊥) where L = {1, 2, 3, 4, 6, 9, 36}, the partial
order � is defined by n � m ⇔ (m mod n = 0), ⊥= 1 and # = 36 is a complete
lattice. It can be represented using Hasse diagram as shown below

Fig. 2. Complete Lattice

Definition 2.3 (Galois Connection)
Let C (concrete) and A (abstract) be two domains (or lattices). Let α : C→ A and
γ : A→C be an abstraction function and a concretization function, respectively.
The pair of functions (α,γ) form a Galois Connection if:

– both α and γ are monotone (order preserving).
– ∀ a ∈ A : α(γ(a)) � a
– ∀ c ∈ C : c � γ(α(c))

α and γ uniquely determine each other.

Definition 2.4 (Function)
Let Πi be the projection function which selects the i-th coordinate of a pair. F
is a function over the set A into set B ⇔ F ∈ ℘(A × B)

∧
(∀p1, p2 ∈ F : p1 �=

p2 ⇒ Π1(p1) �= Π1(p2))
∧
{Π1(p)|p ∈ F} = A.

Definition 2.5 (Set Function)
A set function is a function in which every range element is a set. Formally, let
F is a set function ⇔ F is a function and (∀c ∈ dom(F) : F (c) is a set).
For instance, we can express information about companies and their locations
by means of a set function over the domain {Company, Location}. Namely,
(Company;{’Natural Join’, ’Central Boekhuis’, ’Oracle’, ’Remmen & De Brock’})
(Location, {’New York’, ’Venice’, ’Paris’}).

256 S. Bhattacharya and A. Cortesi

Definition 2.6 (Table)
Given two sets H and K, a table over H and K is a set of functions T over the
same set H and into the same set K. i.e. ∀ t ∈ T: t is a function from H to K.
For instance consider a table containing data on employees:

Table 1. Employee

emp no emp name emp rank

100 John Manager

101 David programmer

103 Albert HR

The table is represented by the set of functions t1, t2, t3 where dom(ti) = emp no,
emp name, emp rank and for instance t1(emp name) = John.

There is a correspondence between tuples and functions. For instance, t1 cor-
responds to the following tuple: (emp no, 100), (emp name, John), (emp rank,
manager). The first coordinates of the ordered pairs in a tuple are referred to as
the attributes of that tuple.

Definition 2.7 (Watermarking)
A watermark W for a table T over H into K, is a predicate such that W(T) is
true and the probability of W (T ′) being true with T ′ ∈ ℘(H×K)\T is negligible.

3 Distortions by Watermarking

It is often hard to define the available bandwidth for inserting the watermark di-
rectly. Instead, allowable distortion bounds [14][15]for the input data can be de-
fined in terms of consumer metrics. If the watermarked data satisfies the metrics,
then the alterations induced by the insertion of the watermark are considered
to be acceptable. One such simple yet relevant example for numeric data, is the
case of maximum allowable mean squared error (MSE), in which the usability
metrics are defined in terms of mean squared error tolerances as

(Si − Vi)2 < ti, ∀i = 1...n and (1)

n∑
i

(Si − Vi)2 < tmax (2)

where
� = s1, ..., sn ⊂ � , is the data to be watermarked,
� = v1, ..., vn is the result,
� = t1, ..., tn ⊂ � and
tmax ∈ R define the guaranteed error bounds at data distribution time.

In other words � defines the allowable distortions for individual elements in
terms of MSE and tmax its overall permissible value.

A Generic Distortion Free Watermarking Technique 257

However, specifying only allowable change limits on individual values, and
possibly an overall limit, fails to capture important semantic features associated
with the data, especially if the data is structured. Consider for example, the
age data in an Indian context. While a small change to the age values may be
acceptable, it may be critical that individuals that are younger than 21 remain so
even after watermarking if the data will be used to determine behavior patterns
for under-age drinking. Similarly, if the same data were to be used for identifying
legal voters, the cut-off would be 18 years. In another scenario, if a relation
contains the start and end times of a web interaction, it is important that each
tuple satisfies the condition that the end time be later than the start time. For
some other application it may be important that the relative ages, in terms
of which one is younger, not change. Other examples of constraints include:
uniqueness, each value must be unique; scale, the ratio between any two number
before and after the change must remain the same; and classification, the objects
must remain in the same class (defined by a range of values) before and after
the watermarking. As is clear from the above examples, simple bounds on the
change of numerical values are often not sufficient to prevent side effects of a
watermarking operation.

4 Data Partitioning

In this section we present a data partitioning algorithm that partitions the data
set based on a secret key &. The data set D is a database relation with scheme
D(P,C0, ..., Cv−1), where P is the primary key attribute, C0, ..., Cv−1 are it’s v
attributes, and η is the number of tuples in D. The data set D is to be partitioned
into m non overlapping partitions, [S0], ..., [Sm−1], such that each partition [Si]
contains on average (η

m) tuples from the data set D. Partitions do not overlap,
i.e., for any two partitions [Si] and [Sj] such that i �= j we have [Si] ∩ [Sj] = ∅.
In order to generate the partitions, for each tuple r ∈ D, the data partitioning
algorithm computes a message authenticated code (MAC) using HMAC [12].

Using the property that secure hash functions generate uniformly distributed
message digests this partitioning technique places (η

m) tuples, on average, in
each partition. Furthermore, an attacker cannot predict the tuples-to-partition
assignment without the knowledge of the secret key & and the number of parti-
tions m which are kept secret. Keeping it secret makes it harder for the attacker
to regenerate the partitions. The partitioning algorithm is described below:

Algorithm 1. get partitions(D,&,m)

1: for each tuple r ∈ D do
2: partition ← HMAC(& | r.P) mod m
3: insert r into Spartition

4: end for
5: return (S0, ..., Sm−1)

258 S. Bhattacharya and A. Cortesi

Consider the lattice A = 〈�,
⋃
{⊥,#},�〉, where ⊥ � i � # and ∀ i, j ∈ �,

i �= j, i and j are uncomparable with �. The lattice is shown in Figure 3.

Fig. 3. Lattice of the abstract domain

Given a data set D ∈ (P × C0 × C1 × ... × Cv−1) and m partitions {[Si], 0 ≤
i ≤ (m − 1)}, for each set T ⊆ D, and given a set of natural number i ∈ �, we
can define a concretization map γ as follows:
γ(#) = D
γ(⊥) = ∅

γ(i) =
{

T ⊆ D if ∀t ∈ T : i = HMAC(&|t.P) mod m
∅ Otherwise (3)

The best representation of a set of tuples is captured by the corresponding
abstraction function α :

α(T) =

⎧⎨⎩
⊥ if S = ∅
i if ∀t ∈ T : HMAC(&|t.P) mod m = i
Otherwise

(4)

The two functions α and γ described above yield a Galois connection [6] between
D, i.e. the actual data set and the lattice depicted in figure 2.

5 Watermark Generation

We are interested in a watermark generation process starting from a partition
[Sk] 0 ≤ k ≤ m], in a relational database table. The partitioning can be seen
as a virtual grouping which does not change the physical position of the tuples.
Let the owner of the relation D possess a watermark key &, which will be used
in both watermark generation and detection. In addition, the key should be
long enough to thwart brute force guessing attacks to the key. A cryptographic
pseudo random sequence generator [13] G is seeded with the concatenation of
watermark key & and the primary key r.P for each tuple r ∈ Sk, generating a
sequence of numbers.The MSBs (most significant bits) of the selected values are
used for generating the watermark. Formally, the watermark Wk corresponding
to the kth partition [Sk] is generated as follows,

A Generic Distortion Free Watermarking Technique 259

Algorithm 2. genW(Sk,&)

1: for each tuple r ∈ Sk do
2: construct a row t in Wk

3: for (i=0; i< v; i=i+1) do
4: j= Gi(&, r.P) mod v
5: t.W i

k = MSB of the jth attribute in r
6: delete the jth attribute from r
7: end for
8: end for
9: return(Wk)

Let us illustrate the above algorithm for a single tuple in any hypothetical
partition of a table Employee = (emp id, emp name, salary, location, position),
where emp id is the primary key which is concatenated along with the private
key & as in line 2 in the above algorithm to select random attributes. Here
(1011) is the generated watermark for the tuple (Bob, 10000, London, Manager),
where MSBs 1, 1, 1 and 0 are associated to Bob, 10000, London and Manager
respectively.

Fig. 4. Watermark generation for a single tuple

So if there are n number of tuples in the partition [Sk], genW generates a
binary image Wn,v

k as a watermark for [Sk] partition. The whole process does not
introduce any distortion to the original data. The use of MSBs is for thwarting
potential attacks that modify the data. Namely, subset alteration attack where
the attacker alters the tuples of the database through operations such as linear
transformation. The attacker hopes by doing so to erase the watermark from the
database.

260 S. Bhattacharya and A. Cortesi

5.1 Functional Abstraction

Theorem 1 (Galois Connection)
Given a table D ⊆ C0 × C1 × C2 × ... Cv−1, let B

v is the set of all binary
sequences of length v. We can define abstraction and concretization function
between ℘ (C0 × C1 × C2 × ... Cv−1) and ℘(Bv) as follows

α(S) = {genW (S, &)(r) | r ∈ S }
γ(W) = {t ∈ S ⊆ D | genW (S, &)(t) ∈ W}. Then α and γ form a Galois con-
nection [6].

Proof:
α(S) ⊆ W
⇔ {genW (S, &)(r) | r ∈ S } ⊆ W
⇔ ∀ r ∈ S : genW (S, &)(r) ∈ W
⇔ S ⊆ { r | genW (S, &)(r) ∈ W}
⇔ S ⊆ γ(W).

The data set (table) D ⊆ ℘(C0×C1×...Cv−1) and the watermark W ⊆ ℘(Bv). By
Theorem 1 (D, W, α, γ) form a Galois Connection. The function genW : D → W
is the watermark generation function described above. ∀t ∈ D, falt : D → D and
∀t# ∈ W , f#

alt : W → W are the alteration functions that alter the tuples in both
concrete and abstract domain, respectively. Therefore the soundness condition
with respect to the alteration function can be stated as follows:

∀t ∈ D : α(falt(t)) � f#
alt(α(t))

Fig. 5. Soundness

This means that, the proposed watermark process is sound whenever the
diagram above commutes.

6 Watermark Detection

A very important problem in a watermarking scheme is synchronization, that
is, we must ensure, that the watermark extracted is in the same order as that

A Generic Distortion Free Watermarking Technique 261

generated. If synchronization is lost, even if no modifications have been made, the
embedded watermark cannot be correctly verified. In watermark detection, the
watermark key & and watermark Wk are needed to check a suspicious partition
S′

k of the suspicious database relation D′. It is assumed that the primary key
attribute has not been changed or else can be recovered.

Algorithm 3. detW(S′
k,&,Wk)

1: matchC=0
2: for each tuple r ∈ Sk do
3: get the rth row, t of Wk

4: for (i=0; i < v; i = i+1) do
5: j= Gi(&, r.P) mod v
6: if t.W i

k = MSB of the jth attribute in r then
7: matchC = matchC + 1
8: end if
9: delete the jth attribute from r

10: end for
11: end for
12: if matchC=ω then
13: // ω = number of rows × number of columns in Wk

14: return true
15: else
16: return false
17: end if

The variable matchC counts the total number of correct matches. We consider
the watermark W t,i

k , t= 1 to qk(number of tuples in Sk) and i= 1 to v (number of
attributes in relation). At the statement number 6 the authentication is checked
by comparing the generated watermark bitwise. And after each match matchC
is increased by 1. Finally at statement number 12, the total match is compared
to the number of bits in the watermark image Wk associated with partition Sk

to check the final authentication.

7 Robustness

We analyze the robustness of our scheme by Bernoulli trials and binomial prob-
ability as in [6]. Repeated independent trials in which there can be only two
outcomes are called Bernoulli trials in honor of James Bernoulli (1654-1705).The
probability that the outcome of an experiment that consists of n Bernoulli trials
has k successes and n - k failures is given by the binomial distribution

b(n, k, p) =
(

n

k

)
pk(1 − p)n−k

262 S. Bhattacharya and A. Cortesi(
n

k

)
=

n!
k!(n − k)!

0 ≤ k ≤ n

where the probability of success on an individual trial is given by p.
The probability of having at least k successes in n trials, the cumulative bi-

nomial probability, can be written as

B(n, k, p) =
k∑
i

b(n, i, p)

We will discuss our robustness condition based on two parameters false hit and
false miss.

7.1 False Hit

False hit is the probability of a valid watermark being detected from non-
watermarked data. The lower the false hit, the better the robustness. When
the watermark detection is applied to non-watermarked data, each MSB in data
has the same probability 1

2 to match or not to match the corresponding bit in
the watermark. Assume that the non-watermarked data partition Sq has the
same number q of tuples and has the same primary keys as the original data.
Let ω = vq is the size of the watermark. where v is the no of attributes be-
ing watermarked and r is the number of tuples in partition Sr. The false hit
is the probability that at least 1

T portion of ω can be detected from the non-
watermarked data by sheer chance. When T is the watermark detection param-
eter. It is used as a tradeoff between false hit and false miss. Increasing T will
make the robustness better in terms of false hit. Therefore, the false hit Fh can
be written as

Fh = B(ω, �ω

T
�, 1

2
).

7.2 False Miss

False miss is the probability of not detecting a valid watermark from water-
marked data that has been modified in typical attacks. The less the false miss,
the better the robustness. For tuple deletion and attribute deletion, the MSBs
in the deleted tuples or attributes will not be detected in watermark detection;
however, the MSBs in other tuples or attributes will not be affected. Therefore,
all detected MSBs will match their counterparts in the public watermark, and
the false miss is zero. Suppose an attacker inserts ς new tuples to replace ς
watermarked tuples with their primary key values unchanged. For watermark
detection to return a false answer, at least 1

T MSBS of those newly added tuples
(which consists of vς MSBs) must not match their counterparts in the watermark
(which consists of ω = vq bits, if the partition contains q tuples). also in this
case T is the watermark detection parameter, used as a tradeoff between false
hit and false miss. Increasing T will make the robustness worse in terms of false
miss. Therefore, the false miss Fm for inserting ς tuples can be written as

A Generic Distortion Free Watermarking Technique 263

Fm = B(vς, �vς

T
�, 1

2
)

The formulae Fh and Fm together, give us a measure of the robustness of the
watermark.

8 Conclusions

As a conclusion, let us stress the main features of the watermark technique
presented in this paper,

– it does not depend on any particular type of attributes (categorical, numer-
ical);

– it is partition based, we are able to detect and locate modifications as we
can trace the group which is possibly affected when a tuple tm is tampered;

– neither watermark generation nor detection depends on any correlation or
costly sorting among data items. Each tuple in a table is independently
processed; therefore, the scheme is particularly efficient for tuple oriented
database operations;

– it does not modify any database item; therefore it is distortion free.

Acknowledgements

Work partially supported by Italian MIUR COFIN ’07 project ”SOFT”.

References

1. Agrawal, R., Kiernan, J.: Watermarking relational databases. In: In 28th Int Con-
ference on Very Large Databases, Hong Kong, pp. 155–166 (2002)

2. Al-Haj, A., Odeh, A.: Robust and blind watermarking of relational database sys-
tems. Journal of Computer Science 4(12), 1024–1029 (2008)

3. Bhattacharya, S., Cortesi, A.: A distortion free watermarking framework for re-
lational databases. In: Proc. 4th International Conference on Software and Data
technology, ICSOFT 2009, Sofia, Bulgaria, pp. 229–234 (2009)

4. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation -
tools for software protection. IEEE Trans. Software Eng. 28, 735–746 (2000)

5. Cousot, P.: Abstract interpretation based formal methods and future challenges.
In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead. LNCS, vol. 2000,
pp. 138–156. Springer, Heidelberg (2001)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
1977: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pp. 238–252. ACM Press, New York (1977)

7. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2, 511–547 (1992)

8. Cox, I.: Digital Watermarking: Principles and Practice. Morgan Kaufman Publ.
Inc., San Francisco (2001)

264 S. Bhattacharya and A. Cortesi

9. Gross-Amblard, D.: Query-preserving watermarking of relational databases and
xml documents. In: Proc. of the Twenty-Second ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Diego, CA, USA, June 9-12,
pp. 191–201 (2003)

10. de Haan, L., Koppelaars, T.: Applied Mathematics for Database Professionals.
Apress, Berkely (2007)

11. Sushil, Z.J., Duric, J.N.F.: Information hiding: steganography and watermarking.
In: Attacks and countermeasures. Kluwer Academic Publishers, Dordrecht (2000)

12. Mineta, N.Y., Shavers, C.L., Kammer, R.G., Mehuron, W.: The keyed-hash mes-
sage authentication code (HMAC). Federal Information Process Standards Publi-
cation (2002)

13. Schneier, B.: Applied Cryptography. John Wiley & Sons, Chichester (1996)
14. Sion, R.: Proving ownership over categorical data, vol. 0, p. 584. IEEE Computer

Society, Los Alamitos (2004)
15. Sion, R., Atallah, M., Prabhakar, S.: Rights protection for relational data, vol. 16,

pp. 1509–1525. IEEE Computer Society, Los Alamitos (2004)

On Some Weaknesses in the Disk Encryption

Schemes EME and EME2

Cuauhtemoc Mancillas-López, Debrup Chakraborty,
and Francisco Rodŕıguez-Henŕıquez

Department of Computer Science, CINVESTAV-IPN, Av. IPN 2508, Col: San Pedro
Zacatenco, Mexico City 07360, Mexico

mancilla@computacion.cs.cinvestav.mx, debrup@cs.cinvestav.mx,

francisco@cs.cinvestav.mx

Abstract. Tweakable enciphering schemes are a certain type of block-
cipher mode of operation which provide security in the sense of a strong
pseudo-random permutation. It has been proposed that these types of
modes are suitable for in-place disk encryption. Currently there are many
proposals available for these schemes. EME is one of the efficient candi-
date of this category. EME2 is a derivative of EME which is currently one
of the candidates of a draft standard for wide block modes by the IEEE
working group on storage security. We show some weakness of these two
modes assuming that some side channel information is available.

Keywords: Tweakable Enciphering Schemes, Disc Encryption, Modes
of operation, EME.

1 Introduction

A mode of operation is a specific way to use a block-cipher to encrypt arbitrary
long messages. Several classes of modes have been proposed in the last few years
to provide different security services for various kind of scenarios. In particu-
lar, a Tweakable Enciphering Scheme (TES), is a length preserving enciphering
scheme that provides security in the sense of a strong pseudo-random permu-
tation. This means that an efficient adversary given access to the outputs of
the TES encryption and decryption algorithms, will not be able to distinguish
them from a random permutation and its inverse with non-negligible probabil-
ity. For length preserving encryption this is the highest form of security that can
be guaranteed. Some of the most important TES proposals published to date
can be found in [9,10,7,19,6,15,5,8,18]. In [9], it was suggested that TES is the
natural choice for the application of in place disk encryption.

TES can be used in low-level disk encryption by placing a hardware/software
realization of this scheme in the disk controller, where it will be in charge of
performing both, run-time encryption of the sectors to be written and run-time
decryption of the sectors to be read. Thus, the data contained in the disk sectors
remains at all times in encrypted form. Note that under this model, a TES has

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 265–279, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

266 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

no knowledge of the high level partitions of the disk, such as files and directo-
ries. Moreover, due to the nature of the application, a secure length preserving
encryption scheme (such as a TES) is required.

Since nowadays encrypting data recorded in bulk storage devices like hard-
disks and flash memory portable devices has become a strategic problem, the
design of secure TES has attracted considerable attention. Currently, there is also
an on-going standardization effort carried out by the IEEE security in storage
working group, that has produced a draft standard for wide-block encryption
making it available for public scrutiny at [1].

Among the different TES found in the literature EME [10] is one of the ef-
ficient candidates, whereas EME2 [1], a derivative of EME, is currently a can-
didate of the draft standard proposed by [1]. Both, EME and EME2 work on
n bit binary strings which are viewed as elements of the finite field GF(2n).
Hence, the n-bit strings can be treated as polynomials of degree less than n with
coefficients in GF(2). The addition of the elements of such a field is defined as
the regular polynomial addition and the multiplication is done as multiplication
of two polynomials modulo a fixed irreducible polynomial τ(x) of degree n. Let
L ∈ {0, 1}n. One operation of particular interest is the product xL, which means
multiplication of the polynomial L by the monomial x modulo the irreducible
polynomial representing the field. We shall further call this operation as xtimes.
If the irreducible polynomial τ(x) representing the field is primitive then the
monomial x would be a generator of the cyclic group formed by the non-zero el-
ements of GF (2n). This means that x, x2, x3, . . . , x2n−1 will all be distinct. This
property has found many cryptographic applications. In particular in the modes
EME and EME2 a sequence of the form xiL, 1 ≤ i < 2n−1, for some unknown
L is used to mask certain data streams. These masks can be efficiently gener-
ated by repeatedly applying xtimes on L. The operation xL can be performed
quite efficiently, but as we shall discuss in the rest of this paper, if not carefully
crafted, that operation may leak information regarding L.

Our Contribution. We analyze the mode of operations EME and EME2 and
point out certain weaknesses in the modes if side channel information is available.
We use a previously reported observation that xtimes leaks much information in
terms of timings and power utilization. Assuming the insecurity of the xtimes
operation we systematically develop attacks on EME and EME2. Specifically we
show that for both EME and EME2, given side channel information and access
to the encryption algorithm, an adversary can efficiently mount distinguishing
attacks. For EME we show a stronger attack, where an adversary can decrypt
any ciphertext C without querying the decryption algorithm at C with very
high probability. Also for EME, given access to the encryption algorithm the
adversary can produce ciphertext of any given plaintext P , without querying
the encryption algorithm at P .

The possible side channel weakness of EME and two of its derivatives EME+

and EME∗ were pointed out in an appendix of [16], but the true vulnerabilities
were not analyzed in details. We claim that our analysis is substantially different
from that in [16]. In [11], Antoine Joux presented a cryptanalysis of EME mode.

On Some Weaknesses in the Disk Encryption Schemes EME and EME2 267

Joux’s cryptanalysis operates on a flawed version of EME (this version can be
found in [17], which is significantly different from the final mode as reported
in [10]). Right after Joux attack, the EME mode was repaired and the attacks
by Joux are not applicable to the corrected version of EME which has been
reported in [10]. We note that, the attacks in [11] does not require any access to
side channel information and that our attacks are un-related to those reported
in [11].

2 Adversaries with Access to Side Channel Information

Modern security guarantees provided by security proofs, are based on complexity
theoretic arguments and assumptions on abstract notions of computations. For
security definitions, one models the adversary as a probabilistic polynomial time
algorithm with access to input/outputs of a protocol. The adversary knows the
algorithm which produces the outputs for his chosen inputs, but has no knowl-
edge of a secret quantity which is called the key. Moreover, as the computation
model is assumed to be an abstract one, hence the state of the algorithm is also
assumed to be invisible to an adversary, who cannot know the branches taken,
subroutines called, etc. by the algorithm during its execution.

However, this is not a realistic scenario, since computations must be done on
a physical device, and that device can leak various kinds of information. This
can motivate attacks from the adversary who by applying measurements on the
leaked information may be able to gain access to sensitive data related to the
computation being performed. In the past few years there have been numerous
studies which point out insecurity of many established cryptographic algorithms
if certain side channel information is available to the adversary.

Researchers have considered the possibilities of using different types of side
channel information for breaking crypto-systems. Some of the categories of side
channel attacks are timing attacks [13], power analysis attacks, differential power
analysis attacks [14], electromagnetic radiation attacks[2], fault attacks [3] etc.
These attacks utilize the leakages that are associated with any type of compu-
tation that takes place in a physical device.

3 Notations

In what follows we shall mean by msb(L) the most significant bit of a binary
string L. For two strings L and M , L||M will denote the concatenation of L and
M . By L << k we shall mean left-shift of L by k bits. takek(L) will mean the k
most significant bits of L. If b is a bit, then b̄ will mean the complement of b. We
shall treat n bit strings as polynomials with coefficients in GF (2). Thus, an n bit
string can be treated as an element in GF (2n). For two n bit strings X and Y ,
X⊕Y will denote the addition in the field, which can be realized by a bitwise xor
of the strings X and Y . Multiplication of two n bit strings would be represented
as XY which will mean the multiplication of the two corresponding (n − 1)
degree polynomials modulo an n degree irreducible polynomial τ(x). Particularly,

268 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

for X ∈ {0, 1}n, xX would mean the multiplication of the polynomials x and
X modulo τ(x). By an n-bit block cipher we shall mean a function E : K ×
{0, 1}n → {0, 1}n, where K �= ∅ is the key space and for any K ∈ K, E(K, .) is
a permutation. We shall often write EK(.) instead of E(K, .).

4 Side Channel Weakness in the xtimes Operation

The implementation of the xtimes operation is very efficient. Let τ(x) denote
the n degree irreducible polynomial representing the field GF (2n), let Q be the
n bit representation of the polynomial τ(x) ⊕ xn. Then xL can be realized by
the algorithm in Fig. 1.

Algorithm xtimes(L)
1. b ← msb(L)
2. L ← L << 1
3. if b = 1,
4. L ← L ⊕ Q
5. return L

Fig. 1. The algorithm xtimes

This is the most efficient (and the usual) way of implementing xtimes where
the basic operations involved are a left shift and a conditional xor. As it is obvi-
ous from the algorithm that line 4 gets executed only when the most significant
bit (MSB) of L is a one. The power utilization in this algorithm would be dif-
ferent in the cases where msb(L) = 0 and msb(L) = 1. This difference of power
consumption if measured can give information regarding the MSB of L.

Above described weakness of the xtimes operation is widely known. The xtimes
operation on an n bit string can also be implemented by linear feedback shift
registers (LFSR). The vulnerability of LFSRs to side channel attacks has been
extensively studied and also there are experimental evidences that such systems
leak a lot of information [12][4]. Thus with the support of the evidence as found
in the literature and without going into technical/experimental details of side
channel attacks in the rest of this paper we shall make the following assumption:

Assumption 1. If the operation xL is implemented according to the algorithm
xtimes as shown in Fig. 1 then the MSB of L can be obtained as a side channel
information.

Repeated application of xtimes on L can reveal much more information about
L. In particular, based on Assumption 1 we can state the following proposition.

Proposition 1. If xtimes is applied k (k ≤ n) times successively on L then the
k most significant bits of L can be recovered.

On Some Weaknesses in the Disk Encryption Schemes EME and EME2 269

Algorithm Recover(Q, k)
1. D ←< dn−1, dn−2, . . . , d0 >← 0n;
2. B ← Empty String;
3. for i = 1 to k,
4. b ← SC(L1 ← xL) ;(SC(L1 ← xL) gives the MSB of L)
5. if dn−1 = 0,
6. B ← B||b;
7. else,
8. B ← B||̄b
9. end if
10. D ← D << 1;
11. if b = 1,
12. D ← D ⊕ Q
13. end if
14. L ← L1

15. end for
16. return B

Fig. 2. The algorithm to recover k bits of L

In lieu of proof of the above proposition we present the procedure to recover the
k bits of L in the algorithm in Figure 2.

The algorithm Recover as shown in Fig. 2 takes in as input the number of bits
to be recovered k along with another n bit string Q which encodes the polynomial
xn ⊕ τ(x). The algorithm also have access to some side-channel information,
which gives it the information of the MSB of L, this is shown as SC(L1 ← xL)
in line 4. The algorithm, initializes an n bit string D with all zeros (di represents
the i-th bit of D in the algorithm) and initializes B by an empty string. The
output of the algorithm is a k bit string B whose bits would be the same as
the k most significant bits of L. It is not difficult to see the correctness of the
algorithm. Note that we simulate in D the same changes that takes place in L.
After executing the i-th iteration of the for loop we obtain in line 4 the most
significant bit of xi−1L. This bit would be equal to the i-th bit of L if the MSB
of D is zero, otherwise the i-th bit of L would be the complement of the most
significant bit of xi−1L.

5 Security of Tweakable Enciphering Schemes

In this section we shall review the security requirements of tweakable enciphering
schemes. The material in this section is based on [9,10].

A tweakable enciphering scheme is a function E : K × T ×M → M, where
K �= ∅ and T �= ∅ are the key space and the tweak space respectively. The message
and the cipher spaces are M. We shall write ET

K(.) instead of E(K, T, .). The
inverse of an enciphering scheme is D = E−1 where X = DT

K(Y) if and only if
ET

K(X) = Y .

270 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

Let PermT (M) denote the set of all functions πππ : T ×M → M where πππ(T , .)
is a length preserving permutation. Such a πππ ∈ PermT (M) is called a tweak
indexed permutation.

An adversary A is a probabilistic algorithm which has access to some oracles
and which outputs either 0 or 1. Oracles are written as superscripts. The notation
AO1,O2 ⇒ 1 denotes the event that the adversary A, interacts with the oracles
O1,O2, and finally outputs the bit 1. In what follows, the notation X

$← S, will
denote the event of choosing X uniformly at random from the finite set S.

For a tweakable enciphering scheme E : K × T × M → M, we define the
advantage an adversary A has in distinguishing E and its inverse from a random
tweak indexed permutation and its inverse in the following manner.

Adv±p̃rp
E (A) =

∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣ . (1)

Here, πππ
$← PermT (M) means that for each � such that {0, 1}
 ⊆ M and T ∈ T

we choose a tweakable random permutation πT from Perm(�) independently.

A TES is considered to be secure if Adv±p̃rp
E (A) is small for all efficient

adversaries. The definition of advantage of an adversary A above suggests the
task of the adversary is to distinguish the output of an algorithm from random
outputs. The adversary is given oracle access to both the encryption and de-
cryption algorithms, which means that the adversary is free to see ciphertexts
corresponding to the plaintexts of his choice and also decryptions of ciphertexts
of his choice. Such an adversary is called a chosen-ciphertext (CCA) adversary
Moreover, the adversary is at liberty to choose the tweaks.

The definition of advantage of an adversary A above does not take into ac-
count the information leaked by a physical implementation of the algorithm. It
is practical to consider CCA adversaries, but in real life an adversary may have
more information than only access to ciphertexts (plaintexts) of his/her chosen
plaintexts (ciphertexts). As discussed in Section 2 given access to a physical
implementation of a cryptographic algorithm, the adversary may perform other
kinds of measurements and thus obtain more information. In the attacks that
we construct we shall consider efficient adversaries with access to side channel
information. In what follows by an oracle access to an algorithm we would mean
that the adversary gets outputs of the algorithm along with certain side channel
information.

6 The EME Mode of Operation

ECB-Mask-ECB (EME)[10] is an efficient tweakable enciphering scheme. EME
consists of two electronic code-book layers with a masking layer in between. The
encryption and decryption algorithm are given in Fig. 3.

EME takes in an m block message along with a tweak T . The algorithm is
self explanatory, but an important feature to note is that in the masking layer,

On Some Weaknesses in the Disk Encryption Schemes EME and EME2 271

Algorithm EME.EncryptT
K(P)

1. Partition P into P1, P2, . . . , Pm

2. L ← xEK(0n)
3. for i ← 1 to m do
4. PPi ← xi−1L ⊕ Pi

5. PPPi ← EK(PPi)
6. end for
7. SP ← PPP2 ⊕ PPP3 ⊕ . . . PPPm

8. MP ← PPP1 ⊕ SP ⊕ T
9. MC ← EK(MP)
10. M ← MP ⊕ MC
11. for i ← 2 to m do
12. CCCi ← PPPi ⊕ xi−1M
13. end for
14. SC ← CCC2 ⊕ CCC3 ⊕ . . . CCCm

15. CCC1 ← MC ⊕ SC ⊕ T
16. for i ← 1 to m do
17. CCi ← EK(CCCi)
18. Ci ← xi−1L ⊕ CCi

19. end for
20. return C1, C2, . . . , Cm

Algorithm EME.DecryptT
K(C)

1. Partition C into C1, C2, . . . , Cm

2. L ← xEK(0n)
3. for i ← 1 to m do
4. CCi ← xi−1L ⊕ Ci

5. CCCi ← E−1
K (CCi)

6. end for
7. SC ← CCC2 ⊕ CCC3 ⊕ . . . ⊕ CCCm

8. MC ← CCC1 ⊕ SC ⊕ T
9. MP ← E−1

K (MC)
10. M ← MP ⊕ MC
11. for i ← 2 to m do
12. PPPi ← CCCi ⊕ xi−1M
13. end for
14. SP ← PPP2 ⊕ PPP3 ⊕ . . . PPPm

15. PPP1 ← MP ⊕ SP ⊕ T
16. for i ← 1 to m do
17. PPi ← E−1

K (PPPi)
18. Pi ← xi−1L ⊕ PPi

19. end for
20. return P1, P2, . . . , Pm

Fig. 3. Encryption and Decryption using EME

the mask M is dependent on all the plaintext blocks and the mask is distributed
to all the blocks suitably. This makes each block of ciphertext dependent on all
blocks of plain texts. This is a necessary criteria for any disk encryption mode.

EME has some message length restrictions. If the block length of the underly-
ing block cipher is n then EME cannot encrypt more than n blocks of messages.
Also the message length should always be a multiple of n. EME is proved to be
a secure tweakable enciphering scheme.

7 The Attack on EME

Note that EME uses three layers of xtimes operation. These operations can
leak information about the internal variables L and M . Utilizing this leaked
information one can attack the mode. We show two attacks. One attack is a
distinguishing attack, which shows that an adversary with oracle access to only
the encryption oracle of the mode and the side channel information can distin-
guish with probability 1 between the real oracle from the one which produces
only random strings. We also show a stronger attack, where the adversary can
successfully decrypt any given ciphertext C by querying the decryption oracle
with ciphertexts other than C. Similarly, without knowledge of the key an ad-
versary can produce a valid cipher text from a given plaintext P and tweak T
by querying the encryption oracle (but not at P).

272 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

The main observation that makes these attacks possible is Proposition 1. From
the algorithm in Fig. 3 it is clear that on encryption or decryption of m plaintext
or ciphertext blocks xtimes is applied m times on EK(0n) and m − 1 times on
M . This information would be crucial in mounting the attacks. For an m block
query the side channel information that we are interested in is the informa-
tion regarding M and EK(0n) further we shall say that the M-side-channel and
L-side-channel gives the side channel information regarding M and EK(0n). So
after an m block encryption or decryption query the M-side-channel and the L-
side-channel will give the (m − 1) significant bits of M and m significant bits of
EK(0n) respectively.

7.1 The Distinguishing Attack

First we note down the basic steps followed by the adversary:

1. Apply an arbitrary encryption query of n blocks with an arbitrary tweak.
– Obtain the n bits of EK(0n) from the L-side-channel .
– Compute L = xEK(0n).

2. Apply an encryption query with plaintext L and tweak x−1L. Let C be the
response of this query.

3. If C is equal to (1 ⊕ x)x−1L output EME otherwise output random.

It is easy to see why this attack works. When applying the query in step 1, the
adversary recovers the n bits of EK(0n). From line 2 of the algorithm in Fig. 3
we can see that L = xEK(0n), thus the adversary can compute L. Following the
algorithm in Fig. 3 we see that for the second query (in step 2) the value of PP1

would be 0n hence the value of PPP1 would be EK(0n). As the query consists
of only one block, so values of both SP and SC would be zero. So, MP would
be computed as PPP1 ⊕ T . Note that T = x−1L = EK(0n). So MP would be
0n and CCC1 would also be 0n. Thus, we would obtain the output as

C = EK(0n) ⊕ L = EK(0n) ⊕ xEK(0n)
= (1 ⊕ x)x−1(xEK(0n)) = (1 ⊕ x)x−1L

7.2 The Stronger Attack

Here we describe a stronger attack, in which assuming that the adversary has
access to the M-side-channel and L-side-channel can decrypt any given ciphertext
by querying the decryption oracle with ciphertexts other than the ciphertext in
question. Before we present the attack we note down an important but obvious
characteristics of EME in the proposition below:

Proposition 2. An oracle access to the blockcipher EK is enough to encrypt
any plaintext P1||P2|| . . . ||Pm with arbitrary tweak T using the EME mode of
operation which uses the key K. Similarly, with an oracle access to both E−1

K and
EK one can decrypt any arbitrary ciphertext C1, C2, . . . , Cm with an arbitrary
tweak T which has been produced by the EME mode of operation with key K.

On Some Weaknesses in the Disk Encryption Schemes EME and EME2 273

The truth of the above proposition can be easily verified from the algorithm
in Fig. 3. Following the algorithm in Fig. 3, if we write the dependence of the
ciphertext (resp. plaintext) with the plaintext (resp. ciphertext), then the only
unknown terms would be of the form EK(X), for some X , which can be obtained
by querying the oracle EK at X . Similar argument hold for the decryption oracle.

In the attack that follows we shall show that given access to the encryption al-
gorithm of EME along with the L-side-channel and M-side-channel, an adversary
can use it as an oracle for the blockcipher EK(). Similarly given an access to the
decryption algorithm of EME along with the M-side-channel and L-side-channel,
the adversary can use it as an oracle for E−1

K . So, by Proposition 2 the adversary
can compute ciphertext (plaintext) corresponding to any plaintext (ciphertext)
for EME. We describe the steps undertaken by the adversary to obtain EK(X)
given an oracle access to the encryption algorithm of EME in Fig. 4. We assume
that the procedure AdvSCAEMEK(.,.)(X) has an access to to the EME encryp-
tion algorithm, we also assume that n (the block length of the block cipher EK)
is even1.

AdvSCAEMEK(.,.)(X)

1. Apply an arbitrary encryption query of n blocks with
an arbitrary tweak.
– Obtain the n bits of L using the L-side-channel .

2. Apply an encryption query with tweak X and the
following plaintext:

Y ⊕ L, Y ⊕ xL, . . . , Y ⊕ xn−1L︸ ︷︷ ︸
n blocks

.

where Y ∈ {0, 1}n is chosen arbitrarily.
– Obtain (n − 1) significant bits of M using the

M-side-channel , call this as M1.
3. Output M1 ⊕ taken−1(X)

Fig. 4. The side channel adversary with access to EME encryption algorithm producing
n − 1 bits of EK(X) for arbitrary X ∈ {0, 1}n

Proposition 3. The procedure AdvSCAEMEK(.,.)(X) as shown in Fig. 4 out-
puts taken−1(EK(X)).

Proof. In step 1 the information regarding L is obtained. For the query in step
2 according to the algorithm (see Fig. 3), we obtain PPi = Y . Thus,

SP = PPP2 ⊕ PPP3 ⊕ · · · ⊕ PPPn

= EK(Y) ⊕ (EK(Y) ⊕ · · · ⊕ EK(Y)︸ ︷︷ ︸
n−2

) = EK(Y)

1 This assumption is not strong, as we do not know of any blockcipher whose block
length is odd.

274 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

AdvSCBEMEK(.,.)(X, taken−1(EK(X)))

1. Apply an arbitrary encryption query of n blocks with
an arbitrary tweak.
– Obtain the n bits of L using the L-side-channel .

2. Z ← taken−1(EK(X))
3. S ←AdvSCAEMEK(.,.)(Z||1 ⊕ x−1L)
4. Apply a query with tweak Z||1 and plaintext X ⊕ L

– Get the output as C
5. If taken−1(C ⊕ L) = S output Z||1

else output Z||0

Fig. 5. The side channel adversary with access to EME encryption algorithm producing
EK(X)

So we have,

MP = PPP1 ⊕ SP ⊕ X = EK(Y) ⊕ EK(Y) ⊕ X = X

Thus, MC = EK(X), and M = MP ⊕ MC = X ⊕ EK(X). Hence M ⊕ X =
EK(X). In step 2, only n− 1 bits of M would be obtained, hence the procedure
AdvSCAEMEK(.,.)(X) outputs n − 1 bits of EK(X). �

Now we design another adversary which on given access to the EME encryption
algorithm and X and taken−1(EK(X)) can produce EK(X) with high probabil-
ity. We call this procedure as AdvSCBEMEK(.,.)(X, taken−1(EK(X))), which is
shown in Fig. 5.

Proposition 4. Let the procedure AdvSCBEMEK(.,.)(X, taken−1(EK(X))) be
as described in Fig. 5, then

Pr[AdvSCBEMEK(.,.)(X, taken−1(EK(X)) = EK(X)] ≥ 1 − 1
2n−1

Proof. Let us first see what is done in the procedure described in Fig. 5. The
adversary knows X and the (n − 1) significant bits of EK(X). He wants to
predict the missing bit of EK(X). We call the (n − 1) bits of EK(X) as Z. He
guesses that the missing bit is 1 and tries to verify if his guess is correct. First
let us concentrate on the query made at step 4. The query is made with a tweak
Z||1 and a single block of plaintext X ⊕ L. If his guess regarding the last bit of
EK(X) is correct, then Z||1 would be EK(X), and in such a case the response
C obtained would be

C = L ⊕ EK(EK(X) ⊕ EK(0n)) = L ⊕ EK(EK(X) ⊕ x−1L). (2)

This can be easily verified from the algorithm in Fig. 3. In the third step of the
procedure, S is the output of AdvSCAEMEK(.,.) on Z||1 ⊕ x−1L. So according
to Proposition 3

S = taken−1(EK(Z||1 ⊕ x−1L)). (3)

On Some Weaknesses in the Disk Encryption Schemes EME and EME2 275

So if the guess is correct then from eq. (2) and eq. (3) we get that

taken−1(C ⊕ L) = S.

Thus, if the last bit of EK(X) is 1, then the procedure will always output the
correct value of EK(X). On the other hand if the guess is wrong, i.e., the last
bit of EK(X) is zero, then the response to the query in step 4 would be as

C = L ⊕ EK(EK(X) ⊕ EK(0n−11))

And in this case the check in step 5 will pass with a probability less than 1
2n−1 .

Thus, the probability with which a correct guess can be made is greater than
(1 − 1

2n−1). �

So using the procedures described in Fig 4 and Fig 5 the side channel adversary
can compute EK(X) for a X of his choice with very high probability. Using the
same technique the adversary can compute E−1

K (X) for any X given access to
the decryption algorithm of EME.

Thus, we can conclude that given access to the encryption and decryption
algorithms of EME and the relevant side channel information, an adversary
can compute the encryption of a plain-text P of his choice without querying
the encryption algorithm at P . Similarly, (s)he can decrypt any ciphertext C
without querying the decryption algorithm at C.

8 EME2 Mode of Operation

EME2 adds certain functionalities which are not present in EME, for example,
EME2 can handle arbitrary long messages (recall that EME cannot securely
encrypt messages larger than n blocks long). Additionally EME2 can handle
arbitrarily long tweaks (EME can only handle n bit tweaks, where n is the
block length of the block cipher). The description of EME2 is a bit different
from that of EME, the primary difference being that it encrypts the tweak. The
description of EME2 is given in Fig. 6. The description given in Fig 6 is not the
full description, if we assume that both the tweak length and the block length
are multiples of the block length of the block cipher and the number of blocks
are less less or equal to the block length of the block cipher, then the original
description of EME2 translates to the description given in Fig. 6. But the above
stated restrictions are not valid for the EME2 mode, the full description of the
mode can handle plaintexts which do not satisfy these restrictions. For the full
description of the mode see [1]. The main difference of the restricted description
of EME2 compared to EME is in the handling of the tweak, as it can handle
arbitrarily long tweaks and converts an arbitrary long tweak to a n bit value
which is used in the mode. Also, EME2 uses three n bit keys, for processing
the tweak it uses the key K3, and the value of L which is used to mask the
plain-texts and the ultimate outputs is first set to the value of K2 and the bulk
encryption is done by the key K1.

276 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

9 A Distinguishing Attack on EME2

As evident from the algorithm in Fig. 6 there are four layers of xtimes operations
performed in the algorithm. Thus, based on Assumption 1 and Proposition 1 one
can get information about K2, K3 and M from the algorithm. We will call them
as the K2-side-channel, K3-side-channel and M-side-channel respectively. Using
these side-channel information one can mount a distinguishing attack on EME2.
The adversary performs the following steps:

1. Apply an n block encryption query with no tweak.
– Obtain K2 using the K2-side-channel.

2. Apply an arbitrary encryption query with a n block tweak.
– Obtain K3 using the K3-side-channel.

3. Apply an encryption query with a one block tweak where T = 0n, and a
n − 1 block message P = P1||P2|| . . . ||Pn−1, where Pi = xi−1K2 ⊕ xK3

– Obtain (n − 2)-bits of M using the M-side-channel . Call this as M1.

Algorithm EME2.EncryptT
K1,K2,K3(P)

1. Partition P into P1, P2, . . . , Pm

2. if len(T)= 0 then T ∗ = EK1(K3)
3. else
4. Partition the tweak T to T1, T2, . . . , Tr

5. for i = 1 to r
6. K3 ← xK3

7. TTi ← EK1(K3 ⊕ Ti) ⊕ K3

8. T ∗ = TT1 ⊕ TT2 ⊕ · · · ⊕ TTr

9. end if
10. L ← K2

11. for i = 1 to m
12. PPPi ← EK1(L ⊕ Pi)
13. L ← xL
14. end for
15. MP ← PPP1 ⊕ PPP2 ⊕ · · · ⊕ PPPm ⊕ T ∗

16. MC ← EK1(MP)
17. M ← MP ⊕ MC
18. for i ← 2 to m
19. M ← xM
20. CCCi ← PPPi ⊕ M
21. end for
22. CCC1 ← MC ⊕ CCC2 ⊕ · · · ⊕ CCCm ⊕ T ∗

23 L ← K2

24. for i ← 1 to m
25. Ci ← EK1(CCCi) ⊕ L
26. L ← xL
27. end for
28. return C1, C2, . . . , Cm

Fig. 6. Encryption using EME2

On Some Weaknesses in the Disk Encryption Schemes EME and EME2 277

4. Apply an encryption query with a one block tweak T = 0n, and one block
of message P = P1 = xK3 ⊕ K2

– Obtain the corresponding ciphertext and call it C1.
5. If the first (n − 2) bits of C1 ⊕ xK3 ⊕ K2 are equal to M1 output “EME2”

otherwise “random”.

To see why this attack works, note that according to the algorithm in Fig. 6, for
query 3 we have the following:
Firstly, as there is a single block of tweak and the tweak is zero hence we get

T ∗ = EK1(xK3) ⊕ xK3 (4)

further, from line 12 of Fig. 6 we have, for all i = 1, . . . , n − 1,

PPPi = EK(xi−1K2 ⊕ Pi) = EK(xi−1K2 ⊕ xi−1K2 ⊕ xK3) = EK(xK3)

Now, according to line 15 of the algorithm in Fig. 6 we have

MP = PPP1 ⊕ PPP2 ⊕ . . . ⊕ PPPn−1 ⊕ T ∗ (5)
= EK(xK3) ⊕ T ∗ (6)
= EK(xK3) ⊕ EK1(xK3) ⊕ xK3 (7)
= xK3 (8)

Equation (6) follows from eq. (5) because the PPPis are all equal and we assume
that n is even. Equation (7) follows from eq. (6) by substituting the value of T ∗

in eq. (4). Thus, the value of M gets computed as

M = MP ⊕ EK1(MP) = xK3 ⊕ EK1(xK3) (9)

Thus the value M1 obtained in step 3 consists of the first (n − 1) bits of M as
in eq. (9).

In the query in step 4, the tweak is again a single block and its value is zero,
thus the value of T ∗ would be same as in eq. (4), and PPP1 = EK1(xK3).
Thus we would have M = xK3 ⊕ EK1(xK3), which is same as the value of
M obtained as side channel information from query 3 (eq. (9)). Continuing,
according to the algorithm in Fig. 6 we would have the cipher text C1 computed
as C1 = EK1(xK3) ⊕ K2. So, we have

C1 ⊕ xK3 ⊕ K2 = xK3 ⊕ EK1(xK3) (10)

So comparing eq. (10) and eq. (9), we obtain C1 ⊕ xK3 ⊕ K2 = M . The (n− 2)
significant bits of M has been obtained from the side channel information in
query 3. So if the check in step 5 is successful then with overwhelming probability
the adversary can say that he is communicating with EME2.

The strong attack discussed in Section 7.2 for EME cannot be applied in the
case of EME2. The strong attack for EME utilizes the fact that by obtaining
the value of M one can obtain the block-cipher encryption of the tweak. As in
EME the tweak can be freely chosen, hence one can get encryption of any string
by suitably choosing the tweak. In EME2, the tweak is encrypted, this prevents
one to apply the strong attack applicable to EME.

278 C. Mancillas-López, D. Chakraborty, and F. Rodŕıguez-Henŕıquez

10 Conclusion

We presented some attacks on EME and EME2 assuming that xtimes leaks
some information. These attacks does not contradict the claimed security of the
modes, as the security definition and the security proofs for these modes does
not assume any side-channel information being available to the adversary. Also
the consequences of these attacks shown are not immediate. But, it points out
that using xtimes indiscriminately may give rise to security weakness in true
implementations.

Acknowledgements. The second author acknowledges the support from the
CONACyT project 90775.

References

1. Draft standard architecture for wide-block encryption for shared storage media,
https://siswg.net/index2.php?option=com docman&task=doc view

&gid=84&Itemid=41

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

3. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Christianson, B., Crispo, B., Lomas, T.M.A., Roe, M. (eds.) Security Protocols
1997. LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998)

4. Burman, S., Mukhopadhyay, D., Veezhinathan, K.: LFSR based stream ciphers
are vulnerable to power attacks. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 384–392. Springer, Heidelberg (2007)

5. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

6. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using
the hash-counter-hash approach. IEEE Transactions on Information Theory 54(4),
1683–1699 (2008)

7. Halevi, S.: EME*: Extending eme to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

8. Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)

9. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

10. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

11. Joux, A.: Cryptanalysis of the EMD mode of operation. In: Biham, E. (ed.) EU-
ROCRYPT 2003. LNCS, vol. 2656, pp. 1–16. Springer, Heidelberg (2003)

12. Joux, A., Delaunay, P.: Galois LFSR, embedded devices and side channel weak-
nesses. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329,
pp. 436–451. Springer, Heidelberg (2006)

https://siswg.net/index2.php?option=com_docman\&task=doc_view\&gid=84\&Itemid=41
https://siswg.net/index2.php?option=com_docman\&task=doc_view\&gid=84\&Itemid=41

On Some Weaknesses in the Disk Encryption Schemes EME and EME2 279

13. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

15. McGrew, D.A., Fluhrer, S.R.: The security of the extended codebook (XCB) mode
of operation. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876,
pp. 311–327. Springer, Heidelberg (2007)

16. Phan, R.C.-W., Goi, B.-M.: On the security bounds of CMC, EME, EME+ and

EME* modes of operation. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS
2005. LNCS, vol. 3783, pp. 136–146. Springer, Heidelberg (2005)

17. Rogaway, P.: The EMD mode of operation (a tweaked, wide-blocksize, strong PRP).
Cryptology ePrint Archive, Report 2002/148 (2002), http://eprint.iacr.org/

18. Sarkar, P.: Improving upon the TET mode of operation. In: Nam, K.-H., Rhee, G.
(eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007)

19. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

http://eprint.iacr.org/

TWIS – A Lightweight Block Cipher

Shri Kant Ojha1, Naveen Kumar2, Kritika Jain2, and Sangeeta2

1 Joint Cipher Bureau, Department of Defence R & D, Metcalfe House,
Delhi-110054, India

2 Department of Computer Science, University of Delhi, Delhi-110007, India

Abstract. A new 128-bit block cipher, TWIS is proposed. It uses key size
of 128-bits. The design targets to software environment for resource con-
strained applications. It is inspired from existing block cipher, CLEFIA.
Although the proposed design uses less resources as compared to CLEFIA,
it compares favorably with CLEFIA in terms of security provided.

Keywords: Cipher, CLEFIA, lightweight cryptography, and S-Box.

1 Introduction

Cryptographic techniques are used to protect sensitive and valuable information
against any undesirable third party. In cryptography, we encrypt plaintext i.e.
original message to be sent, using a key, which produces ciphertext i.e encrypted
message. The encrypted message is decrypted by the receiver to get plaintext.
There are in general two types of cryptographic algorithms, secret key (or sym-
metric key) and public-key (or asymmetric key) algorithms. While symmetric key
algorithms use the same secret key to encrypt and decrypt a message, asymmet-
ric algorithms use different keys for encryption and decryption. The symmetric
key algorithms are further classified as block ciphers and stream ciphers whereas
asymmetric key algorithms work only as block ciphers.

While block ciphers encrypt a block of data at a time, stream ciphers produce
a series of data bits called keystream bits (a sequence of bits used as a key).
In case of stream ciphers, encryption is accomplished by xoring the plaintext
bits with key stream bits. Generation of keystream bits is independent of the
plaintext. Hence, the ciphertext produced by a stream cipher for the same unit of
plaintext may differ depending on where it appears. In contrast, the ciphertext
produced by a block cipher depends on plaintext and secret key only. Hence they
will always produce same output after encryption when provided with particular
pair of plaintext block and secret key. Some of the common examples of stream
cipher include Geffe, Grain, Trivium, Lex, Salsa20. DES, AES, RSA, are some
common examples of block ciphers. Whereas former two are symmetric block
ciphers, the latter is an asymmetric block cipher.

Conventional algorithms such as AES although quite secure, are not suitable
for the extremely resource constrained applications such as RFID tags and sen-
sor networks. The field of lightweight cryptography deals with designing ciphers
for such environments. It deals with refining existing cryptographic algorithms

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 280–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TWIS – A Lightweight Block Cipher 281

or discovering new algorithms for providing high security in constrained envi-
ronments [2],[1]. In lightweight cryptography there is trade-off between security,
cost, and performance; and it is highly difficult to optimize all the three [2]. One
also needs to carry out the trade off between - hardware level and software level
optimization. For example, bit permutations can be implemented in hardware
without any cost but can slow down performance in software, and large substi-
tution tables are good to implement in software but they are relatively difficult
to implement in hardware [2].

A number of symmetric lightweight block ciphers have been proposed in the
literature - for example DESL [5], PRESENT [1], HIGHT [3], CLEFIA [10],
LCASE [9], Cobra-H64 [6] and Cobra-H128 [6]. DESL [2],[5] is the modification
of well known cipher DES. It modifies DES by replacing 8-S boxes of DES by
one cryptographically stronger S-box [5]. This lightweight variant uses approx-
imately 20% smaller chip than DES and 1,850 gate equivalents(GEs) against
2,310 GEs used in DES. PRESENT [1] is a new lightweight block cipher based
on SPN with 32 rounds, a block size of 64 bits, and a key size of 80 or 128
bits. Design of PRESENT is very simple and it provides good performance in
both hardware and software. Its structure favors repetition and hence it can
be compactly implemented in hardware. As it requires only 1570 GEs its hard-
ware requirements are competitive with today’s leading stream ciphers. HIGHT
[3] uses 64-bit block lenght and 128-bit key length.It is a hardware oriented ci-
pher, based on 32-round iterative strucutre which is modification of Generalized
Fiestel structure. HIGHT uses vary simple operations such as XOR, addition
mod 28, and left bitwise rotation, and can be implmented with 3048 GE’s on
0.25μm technology. Hence it is suitable for low-cost, low-power, and ultra-light
implementation. CLEFIA [11] is another lightweight block cipher using variable
block length and variable key size of 128, 192 and 246 bits. It is based on 4-
branch compact but Generalized Feistel structure. Diffusion matrices and two
S-box system is used to provide high security. LCASE [9] exploits inherent par-
allelism of the cellular automata for designing a high speed cipher. It improves
over ICEBERG and AES significantly in terms of hardware complexity. Cobra-
H64 [6] and Cobra-H128 [6] are two new high speed ciphers that make use of
cryptographic primitives based on data-dependent permutations. They support
variable plaintext lengths of size 64-bit and 128-bit. The ciphers exploit switch-
able operations to prevent weak keys. The authors have shown through hardware
implementation of the ciphers that they are suitable for high-speed networks [6].

In this paper, we propose a new lightweight block cipher, TWIS. The pro-
posed cipher is inspired from CLEFIA [10,11]. TWIS is a 128-bit block cipher
which uses key of size 128 bit. It consists of two parts: Key scheduling part and
Data processing part. It employs a 2-branch Generalized Fiestel structure which
employs key whitening parts at the beginning and at the end of the cipher. The
number of rounds taken by TWIS before producing a ciphertext is 10. TWIS
also uses an S-Box and a diffusion matrix that enables good diffusion properties
[4] while generating keystream.

282 S.K. Ojha et al.

TWIS is designed to employ good balance between three fundamental fea-
tures: security, speed and cost of implementation. The salient features of TWIS
are as under:

1. G-function used is same for both encryption and decryption.
2. We have used only 11 round keys. Each round key is of 4 bytes, totaling only

44 bytes.
3. Each of the 10 rounds during encryption or decryption process uses two

round keys. G-function as defined in section 2.3 is called twice in one itera-
tion, each call to G-function uses a single round key.

The paper is organized as follows: section 2 gives the design criteria and discusses
the algorithm of the cipher. Section 3 describes the cryptanalysis of the cipher
and the complexity of the cipher is discussed in section 4. Finally we conclude
the paper in section 5.

2 Design Criteria

The design of the cipher is inspired from CLEFIA with an aim to make it lighter
without compromising the security. The security requirements correspond to
a computational complexity of 2128, equivalent to exhaustive key search. For
making the cipher lighter than CLEFIA, we have to take into account both time
and space taken by the cipher in software.

The proposed cipher has 10 rounds for encryption/decryption. The repeated
use of 64-bit G-function is to have a strong encryption algorithm, a single round
of encryption might constitute a weak algorithm [7]. Each round of encryp-
tion/decryption uses two rounds of Fiestel network to scramble all bits of text
block. The S-Box is used in the cipher to have good diffusion properties [4] while
generating a ciphertext. It uses diffusion matrix [11] while generating round keys.
The cipher also makes use of key whitening steps to increase the difficulty of key
search attacks against the remainder of the cipher.

An overview of the different blocks of cipher for encryption/ decryption is
shown in Fig.2 and Fig.3. The cipher uses a 2-branch Generalized Fiestel struc-
ture with additional key whitening of the input and output. It is divided into
two parts namely, key scheduling and data processing.

2.1 Key Scheduling

The key scheduling part of the cipher deals with generation of round keys used
in data processing part. Let K be the 128-bit initial key, which will produce 11
round keys, denoted by RKi (0 ≤ i ≤ 10), of 32-bit each. The key, K is divided
into 16 bytes, denoted by K[i] for (1 ≤ i ≤ 16).

The complete algorithm for Key scheduling is as under:

1. for round counter ← 1 to number rounds + 1 do the following:
(a) K = K <<< 3 � left rotate the key by 3 bits

TWIS – A Lightweight Block Cipher 283

(b) K[round counter] ← S(K[round counter].0x3f)
(c) K[15] ← S(K[15].0x3f)
(d) K[16] ← K[16]⊕ round counter
(e) (y0, y1, y2, y3) ← (K[13], K[14], K[15], K[16])
(f) RKt

round counter−1 ← M(y0, y1, y2, y3)
t

S is nonlinear 8-bit S-box, and M is 4 × 4 matrix defined later in subsequent
sections.

2.2 Data Processing

The data processing part of TWIS consists of an encryption part, ENCr and
a decryption part, DECr for decryption. ENCr and DECr are based on the
2-branch Generalized Feistal structure. Let P, C ∈ {0, 1}128 be a plaintext and
corresponding ciphertext respectively, and let Pi, Ci ∈ {0, 1}32 (0 ≤ i < 4) be
divided plaintext and ciphertext where P = P0|P1|P2|P3 and C = C0|C1|C2|C3,
and RKi ∈ {0, 1}32 (0 ≤ i ≤ 10) be round keys provided by the key scheduling
part. Then 10-round encryption function ENCr is defined as follows and is as
shown in figure 2:

ENCr :

1. T0|T1|T2|T3 ← (P0 ⊕ RK0)|P1|P2|(P3 ⊕ RK1)
2. for round counter ← 1 to 10, repeat steps (a) to (g)

(a) X0|X1 ← G − Function(RKround counter−1, T0, T1)
(b) T2 ← X0 ⊕ T2

T3 ← X1 ⊕ T3

(c) T1 ← T1 <<< 8
T3 ← T3 >>> 1

(d) T0|T1|T2|T3 ← T2|T3|T0|T1

(e) X0|X1 ← G − Function(RKround counter, T0, T3)
(f) T1 ← X0 ⊕ T1

T2 ← X1 ⊕ T2

(g) T2 ← T2 >>> 1
T3 ← T3 <<< 8

3. C0|C1|C2|C3 ← (T0 ⊕ RK2)|T1|T2|(T3 ⊕ RK3)

The 10-round decryption function is just reverse of encryption process and is
defined as follows and is shown in figure 3:

DECr :

1. T0|T1|T2|T3 ← (C0 ⊕ RK2)|C1|C2|(C3 ⊕ RK3)
2. for round counter ← 10 down to 1, repeat steps (a) to (g)

(a) T2 ← T2 <<< 1
T3 ← T3 >>> 8

284 S.K. Ojha et al.

(b) X0|X1 ← G − Function(RKround counter, T0, T3)
(c) T1 ← X0 ⊕ T1

T2 ← X1 ⊕ T2

(d) T0|T1|T2|T3 ← T2|T3|T0|T1

(e) T1 ← T1 >>> 8
T3 ← T3 <<< 1

(f) X0|X1 ← G − Function(RKround counter−1, T0, T1)
(g) T2 ← X0 ⊕ T2

T3 ← X1 ⊕ T3

3. P0|P1|P2|P3 ← (T0 ⊕ RK0)|T1|T2|(T3 ⊕ RK1)

2.3 TWIS Building Blocks

In this subsection we will describe the building blocks i.e. G-function, F-function,
S-box, and diffusion matrix ’M’ used in the cipher.

G-Function
It takes two inputs, 32 bit round key and 64 bit data. It calls F-function, that
takes input of 32-bit round key and 32-bit intermediate ciphertext or plaintext.
Mathematically, G-function can be written as in equation 1:

G − function =
{
{0, 1}32 × {0, 1}64 → {0, 1}64

(RK(32), X(64)) '→ Y(64)
(1)

The algorithm employed by G-function is as under:

1. T0|T1 ← X
2. T0 ← T1 ⊕ F (RK, T0)
3. Y0|Y1 ← T1|T0

F-Function
It takes two 32-bit inputs and produces 32-bit output. The input/output func-
tions are defined by equation 2 [10].

F =
{
{0, 1}32 × {0, 1}32 → {0, 1}32

(RK(32), x(32)) '→ y(32)
(2)

The F-function used takes 32-bit round key RK and 32-bit intermediate plain-
text or ciphertext, depending on encryption or decryption, denoted by X . The
32-bit output is returned in Y . The algorithm used by F-function is as under:

1. T0|T1|T2|T3 ← RK ⊕ X
2. T0 ← S(T0.0x3f)

T1 ← S(T1.0x3f)
T2 ← S(T2.0x3f)
T3 ← S(T3.0x3f)

3. Y0|Y1|Y2|Y3 ← T2|T3|T0|T1

TWIS – A Lightweight Block Cipher 285

Table 1. S-box - S used

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 90 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c
1. 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af
2. bf bf 19 65 f7 7a 32 20 16 ce e4 83 9d 5b 4c d8
3. ee 99 2e f8 d4 9b 0f 13 29 89 67 cd 71 dd b6 f4

S-box
The cipher employs an S-box with 6-bit input which yields 8-bit output. The
S-Box used by TWIS is shown in Table 1.

Diffusion Matrix
The diffusion matrix is employed at the round key generation step to ensure
diffusion at the key level making it difficult for the cryptanalyst to know exact
key. The diffusion matrix M [10] is defined as follows:

M =

⎛⎜⎜⎝
0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

⎞⎟⎟⎠
3 Cryptanalysis

In this section, we consider some general attacks that are possible on block ci-
phers and investigate to what extent TWIS is resistant to them. In ideal situation
there should be no attack faster than exhaustive key search having computational
complexity 2128.

3.1 Statistical Testing

NIST Statistical Test Suite, SP800-22 [12] is widely used testing software for
pseudo random sequence generator. It is provided with 16 tests which test the
random nature of bits generated by any cipher algorithm1. The results of statis-
tical test on TWIS are shown in Table 2.

We used 100 files each containing 107 bits sequence, using default parameters.
Table 2 indicates that when we convert the block cipher to stream cipher, the
bits produced are random in nature.

3.2 Avalanche Effect

Avalanche effect states that if there is single bit change in key or plaintext, then
there must be at least 50% change in number of ciphertext/ round key bits.

1 The details of the tests can be referred in [12] and test suite can be downloaded from
http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

286 S.K. Ojha et al.

Table 2. Statistical Results of TWIS

Statistical Tests P-value (TWIS)

Frequency 0.727003

Block Frequency (m = 128) 0.880692

Cumulative Sum - Forward 0.577018

Cumulative Sum - Backward 0.318680

Runs 0.711364

Long Runs of Ones (M = 10000) 0.753960

Rank 0.331621

Spectral DFT 0.654639

Non-overlapping Templates (m = 9 , B = 000000001) 0.970310

Overlapping Template 0.299256

Universal (L = 7, Q = 1280) 0.517380

Approximate Entropy (m = 10) 0.677380

Random Excursions (x = +1) 0.078587

Random Excursions Variant (x = -1) 0.732206

Linear Complexity (M = 500) 0.489456

Serial (m = 5, ∇ψ2
m) 0.130827

Effect on Round Keys on Changing Single Bit of Key
When a single bit of key is changed, there should be change in at least half of the
bits of the round keys generated from the initial key. When this test is applied
to TWIS, we found that there is at least 50% change of bits in round key on
single bit change of key.

The cipher produces 11 round keys, each of 32 bits. Thus, having 352 bits in
total. As we can see from the graph in figure 1, for 100 executions of the cipher
for different single bit change in key, there is approximately 50% change in bits
of round key. Thus, the avalanche effect requirement is satisfied by TWIS.

Fig. 1. Effect on round key

TWIS – A Lightweight Block Cipher 287

Effect on Ciphertext on Changing 1 bit of key keeping Plaintext Con-
stant
A set of 1000 keys were generated randomly. For each of 1000 128-bit random
key, 128-bit ciphertext is obtained keeping the plaintext fixed. We changed a
single bit of key, and again obtained corresponding ciphertext. We found the
number of bits changed in two ciphertexts by xoring them. We organized the
the number of bits changed in five classes; 0-58, 59-62, 63-65, 66-69, and 70-128
[8]. The observations are shown in Table 3.

Table 3. Key/Ciphertext Avalanche Effect keeping plaintext fixed

Class Frequency for Number of bits uncorrelated

0-58 156

59-62 231

63-65 211

66-69 235

70-128 167

From Table 3, it is concluded that in TWIS 61.3% times atleast half of the
bits of key/keystream are uncorrelated, satisfying avalanche effect.

Effect on Ciphertext on Changing 1 bit of Plaintext keeping Key Con-
stant
A set of 1000 random plaintexts are generated. For each of 1000 128-bit ran-
dom plaintexts, 128-bit ciphertext is obtained keeping key fixed. We changed a
single bit of plaintext, and again computed corresponding ciphertext. We find
the number of bits changed in two ciphertexts by xoring them. After finding
change in bits, we classified them into into 5 classes; 0-58, 59-62, 63-65, 66-69,
and 70-128 [8]. The observations are shown in Table 4.

Table 4. Plaintext/Ciphertext Avalanche Effect keeping key fixed

Class Frequency for Number of bits uncorrelated

0-58 156

59-62 217

63-65 234

66-69 230

70-128 163

From Table 4, it is concluded that 62.7% of times atleast half of the bits of
key/keystream are uncorrelated, satisfying avalanche effect.

4 Complexity

The major goal behind the design of the cipher is to make it lighter so that it can
be used in extremely resource-constrained environment like RFID tag and sensor

288 S.K. Ojha et al.

Fig. 2. The Encryption Process

TWIS – A Lightweight Block Cipher 289

Fig. 3. The Decryption Process

290 S.K. Ojha et al.

networks. For this, we have modified the cipher CLEFIA and compared the time
and memory it takes when implemented in software. By implementing both the
ciphers on gcc compiler in Linux platform, it was found that for generating 107

bits using counter mode, which converts a block cipher to stream cipher, TWIS
takes approximately 0.98 seconds against 1.98 seconds taken by CLEFIA. On
examining the space, CLEFIA takes 121 bytes of memory while TWIS takes
only 114 bytes of memory. However, both the ciphers take key length of 128
bits, having computational complexity of 2128.

5 Conclusion

A new 128-bit lightweight block cipher, TWIS has been developed. It is designed
with the motivation of building a highly secure cipher that can be used in devices
used in extremely resource-constrained environment like RFID tags and sensor
networks. As part of future work, we propose to study the cipher for linear and
differential cryptanalysis.

Acknowledgment

The authors would like to acknowledge the support from research grant of Uni-
versity of Delhi: Dean(R)/R&D/2008/230.

References

1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

2. Eisenbarth, T., Paar, C., Poschmann, A., Kumar, S., Uhsadel, L.: A Survey of
Lightweight Cryptography Implementations, Copublished by the IEEE CS and
the IEEE CASS, 0740-7475/07/. IEEE, Los Alamitos (2007)

3. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

4. Kim, K.: Construction of DES-like S-Box based on Boolean Functions satisfying
the SAC. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 59–72. Springer, Heidelberg (1993)

5. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

6. Sklavos, N., Moldovyan, N.A., Koufopavlou, O.: High Speed Networking Secu-
rity:Design and Implementation of Two New DDP-Based Ciphers. Mobile Networks
and Applications 10, pp. 219–231. Springer, Heidelberg (2005)

7. Scheiner, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: Twofish:
A 128-bit Block Cipher. In: Counterpane System, Berkeley, California (1998)

TWIS – A Lightweight Block Cipher 291

8. Soumez, M., Doganaksoy, T.A., Calik, C.: Detailed Statistical Analysis of Syn-
chronous Stream Ciphers. In: SASC 2006: Stream Cipher Revisited (2006)

9. Tripathy, S., Nandi, S.: LCASE: Lightweight Cellular Automata-based Symmetric-
key Encryption. International Journal of Network Security 8(2), 243–252 (2009)

10. The 128-bit Block Cipher CLEFIA: Algorithm Specification. On-line document,
2007. Sony Corporation (2007)

11. The 128-bit Block Cipher CLEFIA: Design Rationale. Revision 1.0, 2007. Sony
Corporation (2007)

12. NIST Special Publication 800-22. A Statistical Test for Random and Pseudo-
random Number Generators for Cryptographic Application [EB/OL].[2001-05-15]
(2001)

Quantitative Analysis of a Probabilistic

Non-repudiation Protocol through Model
Checking

(Short Paper)

Indranil Saha1 and Debapriyay Mukhopadhyay2

1 Computer Science Department
University of California, Los Angeles, CA 90095, USA

indranil@cs.ucla.edu
2 Rebaca Technologies Pvt. Ltd.

Block EP & GP, Sector V, Kolkata-91, India
debapriyaym@gmail.com

Abstract. In the probabilistic non-repudiation protocol without a
trusted third party as presented in [5], the recipient of a service can
cheat the originator of the service with some probability. This proba-
bility indicates the degree of fairness of the protocol and is referred as
ε-fairness. In this paper, we analyze the protocol quantitatively through
probabilistic model checking. The ε-fairness is quantitatively measured
by modeling the protocol in PRISM model checker and verifying appro-
priate property specified in PCTL. Moreover, our analysis gives proper
insight to choose proper values for different parameters associated with
the protocol in such a way that certain degree of fairness can be achieved
and therefore answers the reverse question, given the degree of fairness
ε, how should one choose the protocol parameters to ensure fairness.

1 Introduction

In an electronic world, requests for a service from a client and eventually its
getting the service from the service provider and then sending an acknowledg-
ment, considered as a proof of getting the service, to the service provider are all
implemented as network protocols. The service provider is called the originator
of the service and the client is called the recipient of the service. Repudiation is
defined as “denial by one of the entities involved in a communication of having
participated in all or part of the communication”. Solutions to these problems
offer non-repudiation services and the protocols implementing these solutions
are thus called non-repudiation protocols.

In this paper we consider the probabilistic non-repudiation protocol [5] that
offers non-repudiation service guaranteed with a certain probability. The pro-
tocol does not require to involve any trusted third party. Fairness property of
a non-repudiation protocol here is replaced by ε-fairness which ensures that at
each step of the protocol run, either both parties receive their expected items,

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 292–300, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Quantitative Analysis of a Probabilistic Non-repudiation Protocol 293

or the probability that the cheating party gains any valuable information, while
the other party gains nothing, is ≤ ε (with ε ∈ [0, 1]). ε is called the degree of
fairness. It is to note that lower the value of ε, the better the non-repudiation
protocol is in terms of fairness.

In this work we view the probabilistic non-repudiation protocol proposed in [5]
as a 2-player game [4] between the originator (O) of a service and the recipient(R)
of the service, wherein the originator cannot cheat the recipient, but the recipient
can cheat the originator. We use probabilistic model checking to quantitatively
analyze the game. This protocol has been previously modeled and analyzed to
estimate the fairness using process algebraic techniques by reducing it to an
equivalence problem between two appropriately defined systems [1,2]. In [6], the
protocol has been modeled as Probabilistic Timed System, which has then been
translated into PRISM specifications for relating degree of fairness of the protocol
with the other parameters of the protocol. Our work deviates significantly from
these prior works in the approach and the kind of results we present.In [6], the
originator and the recipient have been modeled such that infinite rounds of the
protocol is possible. We deviate from this thought as this assumption of infinite
number of rounds is not realistic. We introduce two new parameters in our
model - 1) the maximum number of rounds rmax originator may take to finish
the protocol; 2) for a particular run of a protocol originator chooses the number
of rounds it will take to send the message according to a geometric distribution
with success probability pgeo. In all the earlier works recipient has always sent
the acknowledgement with a fixed probability, but what is more natural from
a malicious recipient’s point of view is that it decreases the acknowledgement
probability as the protocol proceeds. This aspect has also been captured in our
analysis. We have carried out analysis considering all the parameters of the
protocol and have tried to figure out the impact of a particular parameter on
the degree of fairness. Actually, along with measuring the degree of fairness
quantitatively, we answer the reverse question: given the degree of fairness ε,
how the originator can choose the protocol parameters at its end to ensure
fairness. This is missing in all the earlier works including [6], wherein probability
of breaking fairness has been related only with the recipient’s probability for
sending an acknowledgement. Our main motivation is to help deployer of the
protocol to provide with a tool with which he can properly set the protocol
parameters to ensure the desired degree of fairness.

2 Probabilistic Non-repudiation Protocol

In this section, we briefly describe the probabilistic non-repudiation protocol
without a trusted third party [5]. Such a protocol should ensure fair exchange
of messages between the originator O who offers a service, and the recipient R
who is expected to confirm having received the service. During the protocol, in
addition to the message, a non-repudiation of origin (NRO) token and a non-
repudiation of receipt(NRR) token have to be transmitted as evidences usable
to resolve possible future disputes.

294 I. Saha and D. Mukhopadhyay

The protocol starts when the recipient R sends a request for a message to the
originator O of the message. Having received the request, O chooses a number
r, the number of rounds it will take to send the message, according to a geo-
metric distribution. Though using geometric distribution to choose the number
of rounds may lead to infinite steps, for practical purpose we assume that the
originator will fix a maximum number of rounds rmax. If the process of finding
out the number of rounds does not stop before the maximum number of rounds,
the originator would consider the value of maximum number of rounds to be
the number of rounds to send the message. The value of r is neither disclosed
to R nor it is possible for R to compute it. The originator O also computes r
functions f1, . . . , fr which are parts of a function composition. If the requested
message is M , then the functions fi’s are such that

fr(M) ◦ fr−1(M) ◦ . . . ◦ f1(M) = M

fi(M)’s are called message components.
In step i, O sends fr−i+1(M) to R. R sends an acknowledgement for receiving

every message component. As the messages are sent in reverse order, R has to
receive all these component messages to get the requested message. Moreover,
the composition function is chosen in such a way that it is not commutative.
So R cannot compute the part of the message before getting all the message
components. To cheat O, R needs to guess the last round and not to send
acknowledgement in that very round.

3 Modeling and Analysis of Probabilistic Non-repudiation
Protocol

We carry out our analysis of the non-repudiation protocol by probabilistic model
checker PRISM [3]. Non-repudiation protocol exhibits both non-deterministic
and probabilistic behavior and hence can be best modeled as a Markov Decision
Process (MDP). The originator chooses the number of rounds it will take to send
the message according to a geometric distribution with success probability pgeo

and the maximum number of rounds rmax it may take to finish the protocol. The
success of the originator depends on choosing these two parameters. On the other
hand, recipient’s success to cheat the originator depends on the probability of
sending the acknowledgement after getting each message component. We call this
probability the acknowledgement probability. The recipient may always send the
acknowledgement with a fixed probability, or it may decrease the probability by
a fixed amount d at each step. The acknowledgement probability and d forms the
trust profile of a recipient. The trust profile of a recipient is formally represented
as a tuple {pack, d}.

For a recipient with a particular trust profile, our objective is to enable an
originator to come up with specific strategy so that the fairness of the non-
repudiation protocol can be achieved. We show that probabilistic model checking
is a promising approach to achieve this goal. We use probabilistic model checker
PRISM to formally model the probabilistic behavior of the originator and the

Quantitative Analysis of a Probabilistic Non-repudiation Protocol 295

recipient and quantitatively measure the cheating probability in different setting
by specifying a suitable PCTL property. Finally we show how the originator
can precisely obtain the values of rmax and pgeo to defeat a recipient with a
particular trust profile.

3.1 MDP Models for Recipient and Originator

The MDP models for the recipient and the originator are shown in Figure 1(a)
and Figure 1(b) respectively . At the beginning, the recipient stays in state R0.
The recipient starts the protocol by sending a request message to the originator,
and moves to state R1. In the model, a boolean variable req initially set to 0
is changed to 1 during this transition. Another boolean variable ready recipient,
initially set to 0, is used to denote that the recipient is ready to receive message
from the originator. During the transition from state R0 to state R1, this boolean
variable is set to 1. In state R1, the recipient receives the message component
sent by the originator. Now, the recipient can send acknowledgement to the
originator for the message component with probability pack and move to state
R2, or it may not send the acknowledgement with probability 1 − pack and
move to state R3. During both the transitions, ready recipient is set to 0. If the
recipient moves to state R2 it sets a boolean flag ack to 1 to indicate that it
has sent the acknowledgement. Moreover, the recipient decreases the probability
pack by a specific value d which is a component of its trust profile. From state
R2, the recipient goes back to the state R1, and during this transition, it sets
the flag ack to 0, and the flag ready recipient to 1. If the protocol stops after fair
transactions, then the recipient stays in state R1 at the end of the protocol. If
the recipient reaches state R3, it may or may not be able to cheat the originator
based on whether it has moved to state R3 in the last round of the transaction.

The originator starts the protocol being in state O0. The originator model uses
three boolean flags: msg is used to indicate that the current message component

 If msg = 1
 p_ack
ack := 1, ready_recipient := 0,
 p_ack := p_ack - d,

 req := 1 ,
ready_recipient := 1

 R1

p_ack := p_ack_init ,
req := 0, ack := 0 ,
 ready_recipient := 0

 R3

 R2

 If msg = 1
 1 - p_ack
 ack : = 0 ,
 ready_recipient := 0

If ready_originator = 1
 ack:= 0,
ready_recipient := 1

 R0

 O0

 If req = 1
 round := k,
ready_originator := 1

 If step < round &
 ready_recipient = 1
 msg: = 1, step := step + 1,
 ready_originator := 0

 If ack = 1
 msg:= 0,
ready_originator := 1

If step = round &
 ready_recipient = 1
end := 1, step := 0,
 ready_originator := 0

 O1

 If ack = 0 &
 ready_recipient = 0
 end := 1, step:= 0,
 ready_originator := 0

step:= 0, msg := 0,
ready_originator := 0, end: =0

 O3

 O2

(a) (b)

Fig. 1. Probabilistic Model for (a) Recipient (b) Originator

296 I. Saha and D. Mukhopadhyay

has been sent, ready originator is used to denote that the originator is ready to
send the current message component, and end is used to denote the end of the
current transaction. Initially, all these flags are set to 0. Moreover, the originator
uses a variable round to indicate the number of steps it will take to send the
complete message, and another variable step to indicate in which step of the
transaction it is currently in. In state O0 the originator waits for a request for
a message from the recipient. When the flag req is 1, the originator starts its
preparation phase to send the message. In this phase the originator chooses the
value of round according to geometric distribution with success probability pgeo

and maximum value for round rmax (In Figure 1, the chosen value for round
has been shown as k). Choosing the success probability pgeo, and the maximum
value for round is the part of originator’s strategy to have a fair transaction done.
After choosing the value for round, the originator sets ready originator to 1 and
moves to state O1. In state O1, the originator checks if step is less than round.
If that is the case, it sends the current message component to the recipient and
moves to state O2. During this transition, boolean variable msg is set to 1, step is
incremented by 1 and the flag ready originator is set to 0. If step is equal to round
in step O1, then the required message components have been sent. In that case,
the originator sets the flag end to 1, variable step and flag ready originator to 0,
and moves to state O3. In state O2, the originator waits for the acknowledgement
from the recipient. While staying in state O2, if the originator finds ack to be
1, it sets msg to 0, sets the flag ready originator to 1, and moves to state O1.
But if ack does not become 1, but the flag ready recipient becomes 0 (which, in
fact, indicates that the recipient has moved to state R3), the originator decides
that the recipient has cheated. In that case it stops the protocol by setting the
flag end to 1, and moves to state O3. During this transition, the variable step
and the flag ready originator is set to 0.

3.2 Experimental Results

In this section we discuss the experiment we have carried out with the model
checker PRISM to analyze non-repudiation protocol quantitatively. We are
mainly interested to know with what probability the recipient would be able
to cheat the originator in different settings, and try to find out what should be
the originator’s strategy to make this probability as low as possible. We refer this
probability as cheating probability. To measure the cheating probability we use
the following PCTL property: Pmin =?[trueU((step = round) ∧ (r state = 3))]
where r state denotes the state of the recipient. (r state = 3) denotes that the
recipient is in state R3, i.e., the recipient does not send the acknowledgement
for the current message component. So,the PCTL property finds the minimum
probability that eventually the originator sends the last message component,
but the recipient ends up not sending the corresponding acknowledgement. We
consider calculating the minimum probability as we are interested in the lower
bound of the cheating probability.

While executing the protocol the originator can choose the values for the two
parameters: the maximum value for round rmax and the success probability pgeo

Quantitative Analysis of a Probabilistic Non-repudiation Protocol 297

for the geometric distribution with which the originator decides the number of
rounds for the current protocol run. Now for a message recipient with a particular
trust profile, the originator would like to ensure that the cheating probability
is below a threshold by properly choosing the values of rmax and pgeo. First we
consider that the recipient sends acknowledgement with a fixed probability pack

in each round, thus d = 0. Later, we shall introduce d > 0 in our experimental
results.

Figure 2(a) shows how cheating probability varies with success probability of
geometric distribution for maximum number of rounds equals to 6 and three
different values of acknowledgement probability. The figure shows that cheating
probability increases with the increase in the success probability for a fixed value
of the maximum number of rounds and for any pack. Also, with the increase in
the value of pack, the rate at which cheating probability increases decreases. That
means, though intuitive, higher is the value for pack lower will be the cheating
probability for a fixed value of pgeo and maximum number of rounds. Figure 2(b)
shows how cheating probability varies with maximum number of rounds for
success probability of geometric distribution equals to 0.5. The figure shows that
cheating probability slightly decreases with increase in the maximum number of
rounds, and asymptotically approaches to a constant value. This suggests that
for a fixed value of pack and pgeo, it is not possible for the originator to bring
the cheating probability below a certain limit only by increasing the maximum
number of rounds.

Maximum Number of Rounds = 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Success Probability of Geometric Distribution

C
h

ea
ti

n
g

 P
ro

b
ab

ili
ty

p_ack = 0.2 p_ack = 0.5 p_ack = 0.8

(a)

Success Probability of Geometric Distribution = 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6 7 8 9 10

Maximum Number of Rounds

C
h

ea
ti

n
g

 P
ro

b
ab

ili
ty

p_ack = 0.2 p_ack = 0.5 p_ack = 0.8

(b)

Fig. 2. Variation of cheating probability with (a) pgeo, (b) rmax for different pack

From our experiment, it is clear that to achieve a low value of degree of
fairness, the originator should choose lower success probability for geometric
distribution with which it chooses the number of rounds, and also it should
choose higher value for maximum number of rounds. Lower success probability
and higher value for maximum number of rounds cause lengthy transaction, thus
increasing the communication cost. So there is a clear trade-off between security
and cost of communication. If the message is costly, the originator should pay
more price in terms of communication cost.

298 I. Saha and D. Mukhopadhyay

Fig. 3. Variation of cheating probability with maximum number of rounds and success
probability of geometric distribution for acknowledgement probability equals to 0.5

Now given a degree of fairness ε, we shall show how the originator can perform
the protocol to ensure the fairness. Figure 3 shows how cheating probability
varies with maximum number of rounds and success probability of geometric
distribution for acknowledgement probability to be equal to 0.5. For a recipient
with pack = p′ack the originator first generates such a figure for acknowledgement
probability to be equal to p′ack. Then the originator chooses a value for maximum
number of round, and tries to find out the maximum possible value for pgeo, for
which the fairness condition is satisfied. It is to note that a fairness requirement
may not always be possible to be ensured for any small value of rmax. For
example, ε = 0.1 is achievable only for rmax ≥ 6 (considering that the minimum
value of pgeo under consideration is 0.1). So if for the chosen value rmax, the
fairness requirement is achievable, the originator finds the maximum value of
pgeo for which the fairness requirement is achievable. The originator would like
to go for maximum possible pgeo, as it would minimize the communication cost
by minimizing the number of rounds. To give an example, if ε equals to 0.3 for
a recipient with pack = 0.5 and the originator wants the maximum number of
rounds to be 6, then to achieve the fairness, the originator should select pgeo to
be equal to 0.4 (considering that the originator is interested to select pgeo to be
multiple of 0.1). This is also evident from Figure 2(a).

Now we shall show how decreasing the acknowledgement probability at each
round (i.e., d > 0 in the trust profile of the recipient) effects the cheating proba-
bility. Figure 4(a) shows how cheating probability varies with success probability
of geometric distribution for three different values of d (d = 0.001, d = 0.01 and
d = 0.1) when maximum number of rounds equals to 6 and the initial value
of acknowledgement probability equals to 0.8. Figure 4(b) shows how cheating
probability varies with maximum number of rounds for three different values
of d when success probability of geometric distribution equals to 0.5 and the
initial value of acknowledgement probability equals to 0.8. As expected, the
value of cheating probability increases with increase in the value of d, though
the increase in the value of cheating probability is not very prominent when d

Quantitative Analysis of a Probabilistic Non-repudiation Protocol 299

(a)

Success Probability of Geometric Distribution = 0.5
 p_ack_init = 0.8

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9

Maximum Number of Rounds

C
h

ea
ti

n
g

 P
ro

b
ab

ili
ty

d = 0.001 d = 0.01 d = 0.1

(b)

Maximum Number of Rounds = 6
p_ack_init = 0.8

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Success Probability of Geometric Distribution

C
h

ea
ti

n
g

 P
ro

b
ab

ili
ty

d = 0.001 d = 0.1 d = 0.1

Fig. 4. Variation of cheating probability with (a) pgeo, (b) rmax for different d’s

increases from 0.001 to 0.01. Now to ensure that a recipient with trust profile
{pack init = 0.8, d = 0.1} will not be able to cheat with probability more than
0.2, the originator needs to choose pgeo to be greater than 0.5 if maximum num-
ber of rounds is taken as 6 (From Figure 4(a)). Similarly, to take pgeo = 0.5 the
originator needs to choose maximum number of rounds to be at least 6 for the
same purpose(From Figure 4(b)). Now for such a trust profile, the originator can
summarize the effect of success probability of geometric distribution and maxi-
mum number of rounds on cheating probability in a 3D plot like Figure 3, which
can be used to choose the value of pgeo and rmax for any fairness requirement.

4 Conclusion

In this paper we quantitatively analyze a probabilistic non-repudiation protocol
without a trusted third party as presented in [5] by PRISM model checker. We
have shown through model checking how originator’s strategy of choosing pro-
tocol parameters influences its chance to ensure the fairness of the transaction.
The approach described in this paper would be helpful for an originator of a
service in the Internet domain to estimate the required parameters precisely to
achieve a successful(fair) transaction.

References

1. Aldini, A., Gorrieri, R.: Security analysis of a probabilistic non-repudiation protocol.
In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV 2002, and
PAPM 2002. LNCS, vol. 2399, pp. 17–36. Springer, Heidelberg (2002)

2. Aldini, A., Di Pierro, A.: On Quantitative Analysis of Probabilistic Protocols. In:
Proc. 2nd Workshop on Quantitative Aspects of Programming Languages (QAPL
2004). ENTCS, vol. 112, pp. 131–148 (2004)

3. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

300 I. Saha and D. Mukhopadhyay

4. Kremer, S., Raskin, J.-F.: A game-based verification of non-repudiation and fair
exchange protocols. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, p. 551. Springer, Heidelberg (2001)

5. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted third
party. In: Proceedings of the 2nd Conference on Security in Communication Net-
works (1999)

6. Lanotte, R., Maggiolo-schettini, A., Troina, A.: Automatic Analysis of a Non-
Repudiation Protocol. In: Proceedings of QAPL 2004. Elsevier ENTCS, pp. 113–129
(2004)

7. Zhou, J., Gollman, D.: Observations on non-repudiation. In: Kim, K.-c., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 133–144. Springer, Heidelberg
(1996)

Method-Specific Java Access Control via RMI

Proxy Objects Using Annotations

(Short Paper)

Jeff Zarnett, Patrick Lam, and Mahesh Tripunitara

University of Waterloo
Waterloo, Ontario, Canada

Abstract. We propose a novel approach for granting to remote clients
partial access on arbitrary objects at the granularity of methods. The
applications that we target use Remote Method Invocation (RMI). We
automatically build proxy objects, and give them to untrusted clients
instead of the originals. Proxy objects expose a subset of methods to
prevent potentially dangerous calls from clients. We present the system’s
semantics, implementation, and its evaluation. Creating a proxy takes an
order of magnitude less time than the corresponding RMI lookup.

1 Introduction

Access control is a key security feature that protects sensitive information. Type-
safe languages such as Java help prevent arbitrary accesses to memory and con-
tribute to the development of secure systems. Java’s built-in security features are
fairly coarse-grained. Existing approaches, such as stack inspection [1,2], provide
the ability to grant fine-grained partial access to an object’s methods. However,
they must consider all remote accesses to be untrusted, as the client’s call stack
is unavailable to the server.

We present a method for providing security through proxy objects. In our
technique, developers specify which methods to allow and deny; we use this
information to automatically construct proxy objects. As they expose only a
permitted subset of methods, proxies are safe by construction and may be passed
to untrusted clients. Our system works with Remote Method Invocation (RMI).

We have implemented our system and analyzed its performance. Our system
imposes minimal overhead (see Section 5); creation of a proxy object takes an
order of magnitude less time than the corresponding RMI lookup. Our contri-
butions include an approach to automatically generate RMI proxy objects for
security, an algorithm for deriving proxy interfaces, and an experimental evalu-
ation of the feasibility and performance of our system.

2 Motivating Example

Our technique handles cases where a heterogeneous software system needs
to share objects with subsystems that are not fully trusted. We are able to

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 301–309, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

302 J. Zarnett, P. Lam, and M. Tripunitara

expose only parts of an object’s functionality to a client. This is useful when it
is undesirable or dangerous to grant the client unrestricted access.

Consider a software-as-a-service case with three parties: a software developer
(the service provider), a store owner (service client), and store customers (who
buy from the online store). The developer creates a customizable application,
ShipItems, for online commerce. The clients (store owners) purchase an account
and customize their instance of ShipItems according to their needs. They use
the application to organize and track product shipments to their customers.
Customers place orders.

As the software developer cannot foresee all the business rules of store owners
(service clients), he can either guess at the rules the store owner wants and
provide rule templates for those cases, or give out full access to the Java objects.
If the store owner cannot implement her business logic using the given rules or
templates, then a human must verify every order before it goes out. This is costly
and error-prone. Alternately, the owner can access the Java objects directly.

Suppose ShipItems validates that the Postal/ZIP Code field is not empty. The
store owner will ship only within Canada. She tries to add a rule that the postal
code must conform to the Canadian format (e.g., A1B 2C3). If the developer did
not grant the owner the ability to define the formatting for this box, then the
owner must verify her rule manually. Alternatively, if given the address object,
the store owner might change the name of the object that represents Canada.
A modification to the Canada object affects every user. Likewise, by navigating
the object graph, the store owner could access other stores’ confidential data.

We could write a restrictive interface and provide this to the client, with
the data objects implementing the interface. Deriving this interface manually
is time-consuming and error-prone, and it must be kept up to date when the
original object changes. Our system supports the automatic generation of such
interfaces, based on light-weight annotations.

The developer writes the general system (ShipItems) and sells it to the store
owner, who applies her specific business rules to the system. We propose a way
to allow the store owner to programmatically apply her business rules, while
limiting her access to the Java objects.

3 Proxy Objects

Our solution enables servers to give out Java objects such that recipients cannot
adversely change the state of the system. We build custom proxy objects from
the original Java objects, and give those to clients in place of the originals. Proxy
objects are stand-ins generated from the originals that expose a subset of the
original’s methods. We require a pre-processing step between the Java Compiler
and the RMI Compiler (see Section 4).

Developers may specify policies at three levels: global, class and method. Our
system applies the policy closest to the method. If a method is annotated with
a policy, our system uses the declared method-level policy. Otherwise, if the
method’s defining class is annotated with a policy, then our system uses the

Method-Specific Java Access Control via RMI Proxy Objects 303

class-level policy for the method. If both the method and class lack annotations,
our system uses the global policy for the method. The developer must specify a
global policy, which can be seen as the default for the system.

We support two kinds of policies: permit and deny. A developer specifies that
a permit policy using a “safe” annotation, and a deny policy with an “unsafe”
annotation. If we infer that a method has an effective unsafe annotation, then
this method is invisible to and uncallable by untrusted clients.

An object can have one or more proxies. Each proxy represents an original
object residing at the server. Proxies forward method execution to originals.

A developer annotates a method or class by adding @Safe or @UnSafe above
it. These annotations impose no requirements upon the methods or classes they
accompany; they do not affect the method’s behaviour. Below is the @Safe an-
notation; @UnSafe is identical except “Safe” is replaced with “UnSafe”.

@Retention(RetentionPolicy.RUNTIME)

public @interface Safe { }

If a method is annotated safe, then untrusted clients can invoke that method
with their choice of arguments. Clients can invoke methods that are annotated
unsafe as well, but only via other methods. Clients then do not have direct
control over the arguments with which these unsafe methods are invoked. We
assume that it is safe to invoke these methods from other methods that are safe.

Consider the following example. A system has a global default permit policy
(configured at compile-time); all methods are visible unless marked as unsafe. A
class O carries a default-deny annotation, while its a() method is marked as safe
to invoke. Since precedence goes from most- to least-specific, all methods in the
program are visible, except for those in the class O, because O has a policy of
default deny. Also, the method-level annotation at a() overrides the class-level
policy, so that untrusted clients see only a().

// Global Policy: Default Permit

@UnSafe // Class O Policy: Default Deny

public class O {

@Safe // Method a() is safe

public int a() { ... } // Permitted method

// Unannotated method b() receives the annotation of its class

public void b(String s) { ... } // Denied method

}

This system has trusted clients (T) and untrusted clients (U). Figure 1 shows
the placement of the proxy object P in the system.

As a is safe, U can invoke a on the proxy, and the proxy invokes the corre-
sponding method on the original object O. Method b is unsafe, so b cannot be
invoked on the proxy object because it does not exist on the proxy. Conversely,
because trusted client T can access O directly, it is free to invoke b. However,
even if b is unsafe in general, it may be safe when invoked with specific param-
eters. In this scenario, it is meaningful and appropriate for a safe method to
invoke an unsafe one, under controlled circumstances.

304 J. Zarnett, P. Lam, and M. Tripunitara

Fig. 1. Proxy Object P Guards O from Untrusted Client U

We can create a proxy for any object. Any class C induces a derived interface,
defined by its declared and inherited methods. To enable callers to use proxy
objects in place of the corresponding real objects, a proxy object P implements
the derived interface of the original class C. Our interface builder (see Section 4)
creates an interface I based on C’s derived interface. Furthermore, a method
appears in I only if it is allowed by the policy.

Our solution is impervious to Java reflection attacks. Consider a proxy object
that is accessed remotely using RMI. Although the proxy object keeps a reference
to the original, the original remains inaccessible, because reflection cannot be
used on a remote object [3]. RMI hides all fields of the implementation class
from remote clients; fields do not appear on the client-side stub. We require that
arbitrary access to memory on the server side is not permitted. We do not make
assumptions about the client side virtual machine, as it is untrusted.

3.1 Semantics of Annotation

We use First Order Logic [4] to express the semantics of our approach precisely.
To express that a method m has annotation a in its definition in class c, we

adopt the predicate annotatedMethod (m, c, a). The counterpart corresponding
to annotatedMethod for a class is annotatedClass (c, a). To express the global
annotation, we adopt the constant globalAnnotation. To model the inheritance
and method-definition aspects of Java, we adopt the predicates inherits (c2, c1)
to express that class c2 directly inherits c1, and definedIn (c, m) to express that
method m is defined in the class c. Figure 2 presents our inference rules.

annotatedClass (c, a) ←− (globalAnnotation = a) ∧
(
a �= a′

)
∧ ¬annotatedClass

(
c, a′

)
(1)

annotatedMethod (m, c, a) ←−

definedIn (c, m) ∧ annotatedClass (c, a) ∧
(
a �= a′

)
∧ ¬annotatedMethod

(
m, c, a′

)
(2)

annotatedMethod (m, c2, a) ←−
¬definedIn (c2, m) ∧ annotatedMethod (m, c1, a) ∧ inherits (c2, c1) (3)

Fig. 2. Inference Rules for Determining Safe and Unsafe Annotations for Methods

For a semantics, we specify a model M and an environment l [4]. The set of
concrete values, A, that we associate with M is A = Ac ∪Am ∪Aa, where Ac is
the set of classes, Am is the set of methods and Aa = {safe, unsafe}. We associate
one of the values from Aa with the constant globalAnnotation. We consider
only environments in which our variables have the following mappings for our

Method-Specific Java Access Control via RMI Proxy Objects 305

five predicates annotatedMethod (m, c, a), annotatedClass (c, a), definedIn (c, m),
inherits (c2, c1), and a �= a′. The variables c, c1 and c2 map to elements of Ac, m
to an element of Am, and a and a′ to elements of Aa.

To compute M, we begin with a model M0, with A as its universe of concrete
values. In M0, we populate the relations that make our predicates concrete
with those values that we glean from the Java code. For example, inheritsM0

contains every pair 〈c2, c1〉 for which class c2 extends c1. Similarly, we instantiate
annotatedMethodM0 to those 〈m, c, a〉 tuples such that the method m has the
annotation a in its definition in class c. We point out that an annotation can
exist for a method in a class in the code only if the method is defined in that
class. Also, there is at most one annotation in the code for each method in a
class. There is also at most one annotation for a class. We define M to be the
least fixed point from applying the rules from Figure 2. There exists an algorithm
for computing M whose worst-case time is O

(
|Ac|2

)
.

To construct a proxy object for a particular class c, we can instead use a
“bottom-up” algorithm that is linear in |Ac|+ |Am|. We first identify all methods
that are defined in c by a breadth- or depth-first search of the inheritance graph
in reverse, starting at c. We can then identify the annotation of each method in
c in constant time.

M is sound and complete. Soundness means that a method has at most one
annotation in M. Completeness means that a method that is defined in a class
has at least one annotation in M.

3.2 Semantics of Invocation

To express that a method m in class c may be safely invoked, we adopt the
predicate canSafelyInvoke (m, c). We use the predicate invokes (m1, m2) to in-
dicate that method m1 invokes method m2. We introduce a constant, safe, to
indicate the safe annotation. Figure 3 presents our inference rules. Our semantics
are specified as in the previous section. In our model M, safeM = safe.

invokes (m1, m3) ←− invokes (m1, m2) ∧ invokes (m2, m3) (4)

canSafelyInvoke (m, c) ←− annotatedMethod (m, c, safe) (5)

canSafelyInvoke (m2, c) ←− canSafelyInvoke (m1, c) ∧ invokes (m1, m2) (6)

Fig. 3. Inference Rules associated with Invocation

4 Implementation

Bytecode generation and modification lie at the heart of our implementation.
We modify RMI-enabled classes and generate interface class files. We employ an
interface builder, which examines classes, and creates a modified derived interface
I. As the interface builder does not need to produce arbitrary executable code,
but rather only the limited subset of bytecode needed to define interfaces, we

306 J. Zarnett, P. Lam, and M. Tripunitara

can create our interfaces without a full-featured code generation library. Our
interface building routine is based on the code by McManus [5].

Although I contains only safe methods, we alter some method signatures.
We leave unmodified all methods that return a primitive type (e.g., int) or a
String. For all other methods, we replace the return type with a proxy type.

At run-time, we also employ a ProxyObject class, which we provide. This
class is registered as the invocation handler for all proxy objects. If the method
exists in the modified derived interface I, then the proxy passes the invocation on
to O; O executes the method as requested. If some parameters are proxy objects,
the invocation handler replaces those proxies with their corresponding originals
before forwarding the execution. The ProxyObject class also intercepts returns
of a non-proxy object and performs the appropriate substitution. If a method is
not permitted, it did not appear in I and hence is not available for invocation
on the proxy P . This ensures that only safe methods may be invoked.

The interface builder runs during a compile-time preparation step that takes
place between compiling the source files and running the RMI Compiler (rmic).
No modifications to the Java compiler or rmic are necessary. Figure 4 depicts
this process on a typical class Example.

Fig. 4. Proxy Object Compiler Processing Example.java

A developer has written the Example.java file, and compiled it into a class
file using javac. We identify Example as being a remote-accessible object (it
extends UnicastRemoteObject), and give it to the proxy object compiler (poc).
The poc examines Example and derives interface IExample, which contains only
safe methods. The poc modifies Example.class so it implements IExample.
Once our modifications are complete, we invoke rmic on the resultant class files,
and the RMI compiler produces Example Stub.class. All compile-time steps
are complete and the application may be started normally.

5 Performance Analysis

To examine our system’s performance, we use micro-benchmarks. Creating a
proxy of an object with no defined methods, save those inherited from Object,
takes 0.56 ms, on average. Thereafter, each method of the object adds a small
penalty. The time to create a proxy object is linear with the number of methods.

Method-Specific Java Access Control via RMI Proxy Objects 307

The first time a proxy object of a particular class is created, there is an ad-
ditional, one-time, server-side cost to derive the interface. After the interface is
created and loaded, it is cached, so thereafter the cost of creating the interface is
negligible. Furthermore, testing reveals that when the interface is created multi-
ple times, the virtual machine optimizes or caches the derivation of the interface
after the first time it is created. Hence, to get consistent results, we conducted
our analysis by restarting the Java virtual machine each time. Deriving the ob-
ject’s interface is linear in the number of methods in the object. Although the
initial interface creation may be costly, we reiterate that it is a one-time cost;
once derived, the interface is cached and is never re-created.

Table 1 summarizes the mean times (in ms) for both types of tests. Figure 5
presents a graph of the data, including standard deviations (which are small).

Table 1. Mean Object Creation & Interface Build Times (in ms)

Methods 0 25 50 75 100

Object Creation 0.563 1.856 3.207 4.487 5.834
Interface Build 21.51 30.43 34.67 38.85 42.15

0

1

2

3

4

5

6

7

0 25 50 75 100

Number of Methods

P
r
o

x
y
 O

b
je

c
t

C
r
e
a
ti

o
n

 T
im

e
 (

m
s
)

0

5

10

15

20

25

30

35

40

45

50

0 25 50 75 100

Number of Methods

I
n

te
r
fa

c
e
 D

e
r
iv

a
ti

o
n

 T
im

e
 (

m
s
)

Fig. 5. Proxy Creation (L) and Interface Derivation (R): Linear Performance with the
Number of Methods in the Object

Finally, our tests reveal that locally invoking a proxy in place of the original
has negligible overhead. Over 1 000 000 tests, invoking the proxy took, on aver-
age, 0.002 ms longer than invoking the original. This is below the noise threshold
for our test. Therefore, the overhead of invoking a proxy is negligible.

To provide perspective, we conducted a comparison to how long it takes to
do a Java RMI lookup of a simple example object (not a proxy). The server,
RMI registry, and client ran on the same machine and used the same network
interface. These tests reveal that over 1 000 tests, a lookup takes 89.2 ms on
average (with a standard deviation of 8.52 ms). Creation of a proxy object, even
one with 100 methods, takes an order of magnitude less than the RMI lookup.
Even deriving the interface is on the same order as the RMI lookup. Thus, our
system’s overhead is small in practice.

308 J. Zarnett, P. Lam, and M. Tripunitara

6 Related Work

While type safety obviates many security concerns, access control remains a
key issue. Pandey and Hashii [6] investigate bytecode editing to enforce access
controls, but do not discuss RMI. Wallach et al [1] enforce access controls using
Abadi, Burrows, Lampson, and Plotkin (ABLP) Logic, where authorization is
granted or denied on the basis of a statement from a principal allowing or denying
access. However, their approach does not work with RMI, and, as acknowledged
by the authors, does not handle a dynamic system with classloading well.

Stack inspection can provide effective access control, but the client call stack is
unavailable to the server, and even if it were available, it would be untrustworthy.
A stack inspection scheme would therefore have to consider all remote accesses
untrusted, while proxies can differentiate between trusted and untrusted RMI
calls. Furthermore, the time to perform a stack inspection increases linearly with
the depth of the stack [1], while the proxy object overhead is constant. Stack
inspection suffers from difficulties with results returned by untrusted code, inher-
itance, and side effects [2]. Proxy objects are more resistant to these difficulties,
because they do not trust any results from untrusted code, are designed with
inheritance in mind, and are intended as a tool to avoid harmful side effects.
Proxy objects and stack inspection have different principles of trust. In prox-
ies, a caller is trusted if it receives a reference to the original object. In stack
inspection, the callee verifies its caller and all transitive callers.

Interface derivation is already in use in practice. For instance, Bryce and
Razafimahefa [7] generate dynamic proxies to go between objects, and restrict
access to methods. These bridges do not restrict access to fields; our solution
allows only safe method invocations.

7 Conclusions

We presented a technique for method-level access control within the RMI appli-
cations using the Java programming language. Our technique computes whether
a method is safe or unsafe based on program annotations. To capture the se-
mantics of our system, we described them using First Order Logic.

Proxy objects have very little overhead in practice. We showed that creation
of a proxy object takes an order of magnitude less time than the RMI lookup.
Deriving the interface—a one-time cost—is on the same order as the RMI lookup.

References

1. Wallach, D., Appel, A., Felten, E.: SAFKASI: A Security Mechanism for Language-
based Systems. ACM Transactions on Software Engineering and Methodology
(TOSEM) 9, 341–378 (2000)

2. Fournet, C., Gordon, A.: Stack Inspection: Theory and Variants. ACM Transactions
on Programming Languages and Systems (TOPLAS) 25, 360–399 (2003)

3. Richmond, M., Noble, J.: Reflections on Remote Reflection. In: Proceedings of the
24th Australasian Conference on Computer Science, vol. 11, pp. 163–170 (2001)

Method-Specific Java Access Control via RMI Proxy Objects 309

4. Hugh, M., Ryan, M.: Logic in Computer Science, 2nd edn. Cambridge University
Press, Cambridge (2004)

5. McManus, E.: Build your own interface—dynamic code generation (2006),
http://weblogs.java.net/blog/emcmanus/archive/2006/10/

build your own.html (accessed, 2009-05-22)
6. Pandey, R., Hashii, B.: Providing Fine-Grained Access Control for Java Programs.

In: Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 449–473. Springer, Hei-
delberg (1999)

7. Bryce, C., Razafimahefa, C.: An Approach to Safe Object Sharing. In: Proceedings
of the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 367–381 (2000)

http://weblogs.java.net/blog/emcmanus/archive/2006/10/build_your_own.html
http://weblogs.java.net/blog/emcmanus/archive/2006/10/build_your_own.html

Let Only the Right One IN: Privacy

Management Scheme for Social Network

(Short Paper)

Nagaraja Kaushik Gampa, Rohit Ashok Khot, and Kannan Srinathan

Center for Security,Theory and Algorithmic Research (CSTAR),
International Institute of Information Technology, Hyderabad

{kaushik,rohit_a}@research.iiit.ac.in, srinathan@iiit.ac.in

Abstract. Current social networking sites protect user data by making
it available only to a restricted set of people, often friends. However, the
concept of ‘friend’ is illusory in social networks. Adding a person to the
friends list without verifying his/her identity can lead to many serious
consequences like identity theft, privacy loss, etc. We propose a novel
verification paradigm to ensure that a person (Bob) who sends a friend
request (to Alice) is actually her friend, and not someone who is faking
his identity. Our solution is based on what Bob might know and verify
about Alice. We work on the premise that a friend knows a person’s
preferences better than a stranger. To verify our premise, we conducted
a two stage user study. Results of the user study are encouraging. We
believe our solution makes a significant contribution, namely, the way it
leverages the benefits of preference based authentication and challenge
response schemes.

Keywords: Privacy over social networks, preference based authentica-
tion, friend verification, and challenge response schemes.

1 Introduction

Security experts often say that users are the weakest link in a security system.
Users misunderstand how to use security mechanisms and do not realize the need
for such a protection. They are happy to circumvent the security measures, if
security measures try to impede their primary tasks. Attackers exploit user’s lack
of understanding and their tendencies of not complying with security protocols
and policies by developing simple yet effective social engineering attacks. This
problem is inherent in social networks. Social networking sites are highly popular
among teenagers, which are having more than 150 million users each and a
growth rate of 3% per week [2]. This growth bounds to attract many malicious
people. Social networking sites are a rich source of sensitive private data about
millions of users. If such a data gets into the hands of malicious people, then
there could be serious side effects.

Current social networking sites protect user data by making it semi-public [2]
which is only restricted to a set of people often friends. However, the definition

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 310–317, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Let Only the Right One IN 311

of friend is rather illusory in a social networking environment. Each person can
have different kinds of friends. Most notable categories of friends are: Direct or
close friends, acquaintances and Internet friends. The third category of Internet
friends, is the most troublesome category. This category includes friends whom
they never met personally. Therefore, the only form of communication with these
friends is via Internet. There is no easier way to verify their true identity, so
they are no different than a stranger. Users never realize that many among them
could be potential attackers trying to steal their important data and impede
their social privacy. Therefore adding strangers as friends, without verifying is
not advisable. However, teens do not share the same risk perception. Most of
them think friendship as a loyal and harmless relation. Moreover, it is often
difficult to say ‘no’ to a friend request. Moreover, a common belief among teens
is more the number of friends they have, more the popular and cool they become
[3]. Thus, they blindly accepts most of the friend requests and grant a power to
the added person to view all the contents of their profile, without being aware
of when and what they view [5].

We propose a simple yet effective verification paradigm to ensure that the
person who sends you a friend request is actually your friend and not someone
who is faking his/her identity. Our solution is based on what a person might
know and can verify about the other person. We work on a premise that a friend
can tell about his/her friend’s preferences better than a stranger. To verify our
premise, we did a two stage user study. Results of the user study are encouraging.

2 Background and Related Work

Primary reason behind the success of social networking sites has been the range
of socially compelling services that they offer. Three most important of those
services [4] are: Identity, Relationships and Communities.

– Identity: Social networking sites allow user to create a public or semi-public
profile inside a bounded system. Biggest advantage of profile pages is that it
let users to say who they are and in a manner they want.

– Relationships: Social networking sites let user to make new friends, redis-
cover old friends and keep in touch with the current ones. A user is able to
traverse accepted friend’s connections and can meet new friends. In this way,
network of friends grows and is often measured in millions.

– Communities: Third compelling factor about social networking site is the
communities in social networks. Like minded people come together and start
communities on common subject of interest.

According to Maslow hierarchy of human needs [10], the urge to sociality is
highly motivating force. Above social compelling services often make users to
neglect the associated risks. By sharing the personal data to a stranger, is an
open invitation to attackers whose consequences can be: loss of privacy, identity
theft, Sexual and mental harassments, etc[11]. Therefore, users are often advised
not to reveal any sensitive and personal information on social network. However,

312 N.K. Gampa, R.A. Khot, and K. Srinathan

doing so defeats the purpose of social networks, which is an healthy exchange of
ideas across the connections.

2.1 Related Work

In recent times multiple techniques have been implemented to protect the data
over the Social Networking Sites. First solution is based on identifying the honest
nodes [14]. Honest nodes are the ones with good connectivity with the rest of
the social networks. Results show that users blindly accept the request from
forged identity that is already confirmed by their friends[11]. Lucas et.al [9] has
proposed an encryption scheme that presents the user data in an encrypted form.
However, their solution needs secure distribution of encryption keys which is an
overhead. A related solution to the privacy problem is using the shared knowledge
between the persons [12]. However, this solution requires active involvement from
both the parties. A CAPTCHA based technique is proposed in [13]. They ask
users to identity content (e.g. person’s name) of a shared image. However, user’s
appearances do change over time, therefore, it might be difficult even for a
legitimate user to identify the person in the image. As a result, most of the
proposed solutions are yet far from the perfection.

3 Motivation

Let us first look at how friends are formed in a social networks. We follow
Facebook model, where it involves three basic steps. For clarity, we name the
persons involved in interaction as Alice and Bob. The role of malicious user faking
Bob’s identity is done by Mallory. Bob first sends a friend request containing his
profile summary to Alice. Alice therefore, can see and verify Bob’s profile. Alice
can also communicate with Bob by sending messages to which Bob can reply.
Alice generally accepts the request if Bob and Alice share some mutual friends
[1]. However, Bob’s data can be easily available and forged from public records.
Thus, Alice can easily be tricked into accepting a request from a fake profile.
To mitigate such attacks, a possible way of sender verification is with challenge
response schemes.

Challenge response schemes are popular means of fallback authentication
scheme [8]. In the challenge response schemes, system verifies whether the user
remembers the answers to the questions mostly about their personal life e.g.
mother’s maiden name, date of birth, etc. It has been conceived that answers
to these questions are not available in public records and only the legitimate
person knows the correct answers. However, this assumption has recently been
proved faulty [11]. these schemes are found particularly vulnerable against in-
sider attacks, i.e. family members, friends, etc., who know answers of many such
questions. Therefore, why can’t we use these questions to authenticate them in-
stead of the user? We can thus verify the person sending the friend request by
Challenge Response schemes in following two ways:

Let Only the Right One IN 313

1. Ask the sender, the questions related to his/her own life.
2. Ask the sender, the questions related to the life of the person (receiver) to

whom the friend request has been sent.

Below we describe the approaches and argue why the second approach is better.

3.1 Naive Approach: Verify about the Sender

Alice can ask Bob to prove his identity by asking him questions related to his
life. Answers of which only Alice and Bob know. If Alice is satisfied with the
answers, she will accept Bob’s request else decline. However, this solution will
work only if the following two conditions are satisfied.

1. Question formed should be automated and require minimal effort from Alice.
2. Answers to these questions should not be publically available.

First, finding appropriate challenge questions automatically for every other user
is difficult. Alice must constantly be involved in the process of question forming
and verification. A perfect solution should expect most of the work from ma-
licious Bob (actually Mallory who is impersonating Bob) than Alice. Secondly,
since the identity of Bob is already forged, chances that Mallory might able to
correctly answer some of the questions from the mined data.

4 Our Approach: Verify about the Receiver

Instead we let Alice to ask Bob questions about her life. If Alice is satisfied
with the answers, she will accept Bob’s request else decline. Steps followed are
summarized in Fig.1.

Fig. 1. Better approach of verifying the receiver

There are two distinct advantages with this approach. It requires minimal
efforts from Alice’s side. Alice can prepare a set of challenge questions concerning
her and ask a subset of them for any friend request that comes. Thus there is no
need to separately prepare the questions for new friend request and verify them.
Secondly forming questions can be automated to a certain degree. However, we
desire answers to these questions should not be mined easily from public records.
User preferences are generally not publically available online, we utilize this fact
and design our scheme around user preferences.[6].

314 N.K. Gampa, R.A. Khot, and K. Srinathan

4.1 User Verification Using Preferences

Each person has unique set of likes and dislikes for range of items. We strongly
believe that a friend can tell about a friend’s preferences better than a stranger.
Our proposed scheme works in three simple steps:

1. Building preferences: Alice builds a list of preferences for different cate-
gories.We ask Alice about her preferences (likes and dislikes) for number of
different items belonging to each category and save these preferences in a
secure database.

2. Verification Test: When Bob sends a friend request to Alice, we pick a
random subset of items from the preferences database of Alice and ask Bob
to identify Alice preferences. Bob then tries to answer maximum of those
questions.

3. Result: The results of Bob performance test is shown to Alice along with
his Profile history. Thereafter it is up to Alice, to Accept or reject Bob’s
request.

We list below, the distinct advantages of the proposed design.

– User preferences are generally not available online [6]. Thereby the proposed
scheme probably safe against data mining of public records.

– The scheme gives minimal overhead to a person receiving the friend request.
– The scheme can be easily automated once the preference database is formed.
– The scheme is simple and easy to understand for users.

5 User Study

To test the viability of our approach we conducted a two phase user study. In
the first phase, a pilot study was conducted on a group of 75 student volunteers
of which 49 were male while 26 were female with their age in the range of 19 to
28. The questionnaire was prepared with eight categories namely: Sports, Video
Games, Music, Hobbies and interests, Food, Movies, TV shows and Academic
subjects of interest. Participants were asked to respond with their likes and
dislikes for each of the categories. The aim of the pilot study was to know two
things: 1. Commonly liked and disliked items and 2. Correlations among the
liked and disliked Items. The most liked items are cricket,books,rap music, etc.,
and the most disliked items are Swimming, Fashion designing, Heavy metal, etc.,
which are easily predicted by most of the users. We therefore, eliminated them
from the second stage questionnaire.

We next describe correlations among the items within each category. We
wanted to combine these items for the second phase study. Fig.2 shows the
results of the correlation study. The graph is split into two parts where left part
shows liking for each item in the sport category and right part shows the liking
for the items in the interest category. We can observe that, items like volley ball
and basket ball are liked equally by the participants. Similarly items like sleeping
and travelling got equal votes.

Let Only the Right One IN 315

Fig. 2. Liking for the items belonging to (a) Sports category (b) Interest category

At the first stage, we wanted to eliminate items that can be easily guessed.
As a result, 42 items were removed from the first stage questionnaire, leaving
behind 92 items. We then combined the items that have equal liking or disliking
responses. Our motivation behind doing it is to improve the usability as well as
the security. To clarify it better, let us take an example of items: chess and carom.
We found that 50.94% of participants liked chess while 48.16% participants loved
caroms. Now if we combine these two in a single question and ask user that which
one or both among them you liked the most, then user wont feel the burden of
answering two questions and security is also improved in a sense attackers can
not easily identify whether the legitimate user likes one or both or neither of
these two items (security is improved from 2 bit to 4 bit).

5.1 Second Phase User Study

At the end of first stage user study, we were left with 92 items that after com-
bining created 48 questions. We then introduced a new category ’Personality’,
loosely based on the Big Five personality factors [7] of a person into second
phase. This phase was conducted on a different set of volunteers which consisted
of 32 volunteers, comprising of 20 male and 12 female volunteers. These set of
32 volunteers has been chosen in such a way that for each and every participant
there would be a friend of the participant and a complete stranger to the par-
ticipant. We asked each user to fill three questionnaires one for themselves, one
for his/her friend and one for a stranger whom he/she does not know personally.
Participants were free to choose either or both items as likes. Items that are not
selected are considered as dislikes.

316 N.K. Gampa, R.A. Khot, and K. Srinathan

5.2 Our Results

We collected the forms from all the participants and cross checked the entries
written for the friend as well as the strangers with their original answers. The
analysis has been carried out in the following manner:

If the participant has guessed correctly either one or both the items are liked
or disliked by a stranger and a friend then we rewarded a point. But if the
participant is able to guess only one correct answer, i.e. if the friend or stranger
has liked both the items of single row or guessed both or them wrong then no
point was rewarded. Our results show that a participant is able to correctly guess
about her friend for 45.86% time whereas she can only able to guess for 30.69%
of a stranger. There exists a distinct gap of 15.17% that distinguishes between
a stranger and a friend. We can see the results in Table 1. After getting the
results of how much a person can distinguish between a friend and a stranger,
the next aim is to find out in which one of the categories there was much of the
differences in guesses for friend and stranger. The graph shows the percentage
difference between friends and strangers for each category.

As we can see from the graph, the personality and the interest categories
shows the maximum difference of 21.43% and 17.43% respectively between a
friend and a stranger. It is obvious that the personality and interests of a person
can be better known to their friends than to a stranger. In a similar manner, the
two categories where the guesses about friends and strangers closely match are
music and the movies categories. We thus can say these two categories are not
good estimates of differentiation among friends and strangers.

At the end, we can conclude that our theory of distinguishing friends from
the stranger using like and dislike preferences will work given that there exist a
distinct gap of 15% or more in the guesses for the friends and the strangers.

Table 1. Guesses of participants about their friends and strangers

Total no. of participants Guess about Friends Guess about Strangers

32(20 male + 12 female) 45.86% 30.69%

Fig. 3. Prediction difference by participants for friend and a stranger

Let Only the Right One IN 317

6 Conclusion and Future Work

In this paper we investigated a novel idea of verifying friends from strangers
using a challenge response schemes. In addition, we have used the big five per-
sonality traits to make a stranger more difficult to identify the user. We showed
the consequences of adding a stranger without verifying and possible applicable
countermeasures. Results of the user study show that our proposed approach
provides a viable option to privacy management in social networks. In future,
we wish to extend the work for differentiating friends.

References

1. Bilge, L., Strufe, T., Balzarotti, D., Kirda, E.: All your contacts are belong to us:
automated identity theft attacks on social networks. In: WWW 2009: Proceedings
of the 18th international conference on World wide web, pp. 551–560. ACM, New
York (2009)

2. Boyd, D., Ellison, N.: Social network sites: Definition, history, and scholarship.
Journal of Computer-Mediated Communication 13(1), 210–230 (2008)

3. Boyd, D.: Why Youth (Heart) Social Network Sites: The Role of Networked Publics
in Teenage Social Life, pp. 119–142. MIT Press, Cambridge (2007)

4. Grimmelmann, J.: Facebook and the social dynamics of privacy (August 2008)
5. Gross, R., Acquisti, A.: Information revelation and privacy in online social networks

(the Facebook case). In: Proceedings of the 2005 ACM workshop on Privacy in the
electronic society, pp. 71–80 (2005)

6. Jakobsson, M., Stolterman, E., Wetzel, S., Yang, L.: Love and authentication. In:
CHI 2008: Proceeding of the twenty-sixth annual SIGCHI conference on Human
factors in computing systems, pp. 197–200. ACM, New York (2008)

7. John, O.P., Srivastava, S.: The big five trait taxonomy: History, measurement, and
theoretical perspectives, pp. 102–138. Guilford Press, New York (1999)

8. Just, M.: Designing and evaluating challenge-question systems. IEEE Security and
Privacy 2(5), 32–39 (2004)

9. Lucas, M.M., Borisov, N.: Flybynight: mitigating the privacy risks of social net-
working. In: WPES 2008: Proceedings of the 7th ACM workshop on Privacy in the
electronic society, pp. 1–8. ACM, New York (2008)

10. Maslow, A.H.: A theory of human motivation. Psychological Review 50, 370–396
(1943)

11. Rabkin, A.: Personal knowledge questions for fallback authentication: security
questions in the era of facebook. In: SOUPS 2008: Proceedings of the 4th sym-
posium on Usable privacy and security, pp. 13–23. ACM, New York (2008)

12. Toomim, M., Zhang, X., Fogarty, J., Landay, J.A.: Access control by testing for
shared knowledge. In: CHI 2008: Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems, pp. 193–196. ACM, New York
(2008)

13. Yardi, S., Feamster, N., Bruckman, A.: Photo-based authentication using social
networks. In: WOSP 2008: Proceedings of the first workshop on Online social
networks, pp. 55–60. ACM, New York (2008)

14. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social
network defense against sybil attacks. In: SP 2008: Proceedings of the 2008 IEEE
Symposium on Security and Privacy, Washington, DC, USA, pp. 3–17. IEEE Com-
puter Society, Los Alamitos (2008)

A. Prakash and I. Sen Gupta (Eds.): ICISS 2009, LNCS 5905, pp. 318–325, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Detecting and Resolving Misconfigurations in Role-Based
Access Control

(Short Paper)

Ravi Mukkamala, Vishnu Kamisetty, and Pawankumar Yedugani

Old Dominion University, Department of Computer Science,
Norfolk, Virginia 23529-0162, USA

mukka@cs.odu.edu, {vishnuteja,pawan.y}@gmail.com

Abstract. In Role Based Access Control (RBAC) systems, formulating a cor-
rect set of roles, assigning appropriate privileges to roles, and assigning roles to
users are the fundamental design tasks. Whether these tasks are performed by a
human (e.g., system administrator) or by a machine (e.g., expert system), mis-
configurations are likely to occur. The misconfigurations could manifest as un-
der-privileges (fewer privileges assigned) or over-privileges (more privileges
than necessary). In this paper, we describe an approach based on role mining to
detect and correct such misconfigurations. Here, the overlap among the users
and privileges of different roles is used to identify possible misconfigurations.

Keywords: Access control, failed accesses, misconfigurations, role-based
access control, role mining.

1 Introduction

Due to its simplicity and flexibility, role-based access control (RBAC) has been popu-
lar among medium to large organizations in assigning and enforcing privileges [1].
Whenever organizations attempt to switch to RBAC, they face the challenge of de-
termining roles, role-privilege assignment, and user-role assignment [2], [3]. Two
approaches are in vogue to solve this problem---top-down approach and bottom-up
approach. In a top-down approach, based on the organizational structure and func-
tionalities (e.g., job descriptions), administrators arrive at role definitions and assign
privileges to roles, and users to roles. This approach is rather expensive and time-
consuming. In a bottom-up approach, on the other hand, the existing user-privileges
are examined to identify appropriate roles, based on observed commonalities. This is
referred to as role-mining problem in [4], [5], and [6].

In a typical solution to the role mining problem, attempt is made to minimize the
number of derived roles, yet maintaining the resulting user-privilege assignments as
an exact replica of the input [4],[6]. Their effort to retain the exact user-privilege
assignment throughout this process is similar to being “over-fit” in data mining
terminology [7].

The existence of misconfigurations and the importance of identifying them in the
context of access control has been underscored in the past [8]. In our approach, we

 Detecting and Resolving Misconfigurations in Role-Based Access Control 319

extend the role mining solutions to identify such potential misconfigurations (over-
and under-privileges), correct them if so identified, and arrive at a new set of roles.
While typically resulting in a reduced set of roles, correcting misconfigurations could
sometimes result in increased roles.

In this paper, we describe the details of the proposed technique and summarize the
results. The paper is organized as follows. In section 2, related work is summarized.
Section 3 describes our role-mining based approach to identifying misconfigurations.
Section 4 summarizes the results of experiments with our approach. In section 5, we
summarize our contributions and describe plans for the future.

2 Related Work

Role-based access control (RBAC) has been adopted by several commercial organiza-
tions primarily due to its simplicity and its close match with the security needs of the
organizations [1]. However, for organizations that are transitioning from non-RBAC to
RBAC, one of the challenges is to determine the roles. A trivial role assignment such as
creating a new role for each user with the existing privileges is not in line with the spirit
of RBAC. Instead, one needs to arrive at a minimal set of roles that satisfy the organiza-
tional needs. One approach towards this direction is a top-down approach that analyzes
each job description in the organization and arrives at a set of roles. This is often a tedi-
ous approach. Another approach is the bottom-up approach that takes the existing
user-privilege assignment and arrives at asset of roles, role-privilege assignment, and
role-user assignment. This is the approach taken by several researchers [2-6].

In [2], Vaidya et al discuss a method of migrating to RBAC with minimal perturba-
tion. The idea here is to discover an optimal set of roles form existing user permissions
that are similar to the currently deployed roles. They propose a heuristic solution based
on FastMiner algorithm [10]. This algorithm generates candidate roles by intersecting
all unique user pairs. The new heuristic defined some similarity measures for roles. In
[4], the same authors employ a tiling approach to discover the roles. This is the work
that we expanded on to identify misconfigurations.

In [5], the authors introduce a comprehensive framework to compare different role
mining algorithms. For the purpose of evaluation, they introduce two algorithms for
generating user-permissions with role hierarchies: tree-based data generator and en-
terprise RBAC data generators. They compare nine role mining algorithms including
the ones by Vaidya et al [2-4] that we have adopted for our work. They recommend
under-assignment of privileges rather than over-assignment to be in line with the
principle of least privilege [9]. However, in our work we deviate from this philoso-
phy since failed accesses are as unproductive as excess privileges.

In [6], the authors describe a bottom up approach for the RBAC problem. Once again,
the idea is to arrive at a solution with minimal set of roles. They propose a fast graph-
reduction technique to solve the problem that is very close to the optimal solution.

Bauer et al [8] propose a method to detecting misconfigurations in access control
by applying association rule mining to the history of accesses. Their idea is to predict
required changes to access control based on users’ intentions. Like our own system,
this system requires the feedback from the administrator for the final changes. Once

320 R. Mukkamala, V. Kamisetty, and P. Yedugani

again, primary idea is to reduce failed accesses. This is in line with our own objective
of identifying misconfigurations ahead of time.

3 Employing Role Mining for Identifying Misconfigurations

The basis of our work is the solution to role mining problem (RMP) suggested by
Vaidya et al [4]. Here, we start from the given user-privilege assignment (UPA) with
rows representing users and columns representing privileges. A “1” in UPA[i,j] means
that user “i” is assigned privilege “j”; “0” means that privilege “j” is not assigned to
user “i”. Rectangular areas in the matrix that contain contiguous 1s are referred to as
tiles. Each tile corresponds to a role, the rows of the tile represent the users to whom
the role has been assigned, and the columns of the tile represent the privileges as-
signed to that role. Identifying the minimum number of tiles that cover all 1s in the
UPA is the objective. This is achieved using two algorithms. Algorithm 1, called
RMP, finds the minimum tiling for the given user-privilege assignment (UPA). These
tiles are then converted to roles (ROLES), assignment of privileges to roles (PA), and
assign users to roles (UA). To identify the tiles, it uses LUTM function. Algorithm 2
implements the LUTM function.

Our work starts from these tiles produced by the above algorithms for a given
UPA. Once the initial tiles are identified by Algorithms 1 and 2, we find common sets
of users and common sets of privileges between each pair of tiles. The basis behind
this is as follows. Let USi and USj be the sets of users in tiles Ti and Tj. Similarly, let
PSi and PSj be the sets of privileges in the two tiles. Let CUij = USi … USj and CPij =
PSi … PSj, representing common users and privileges, respectively. Four cases arise
here.

Case i. CUij = f and CPij =f. This refers to disjoint sets of users with disjoint sets of
privileges. We can ignore this case since it neither indicates under privileges nor over
privileges.

Case ii. CUij ≠ f and CPij = f. This is a case where common users have some addi-
tional privileges which other peer(s) do not have. This refers to either under privileges
or over privileges. This is handled as follows: (i) Form a new matrix that contains
users USi » USj and privileges PSi » PSj. (ii) For each user in USi-USj, test if the
privileges in PSj be allocated (under-privilege misconfiguration) by determining the
percentage of users to whom each privilege in PSj has been allocated. If the percent-
age exceeds a threshold, then consider the 0s for this privilege as a misconfiguration.
(iii) For each user u in USi…USj, test if the privileges in PSj be removed (over-
privilege misconfiguration)–––find the number of total privileges that user u shares
with each of the other users in PSj, from the original UPA. If this is lower than the
minimum threshold, then consider that the privileges in PSj are over- privileges to u
and hence be recommended to be removed.

Case iii. CUij = f and CPij ≠ f. This is a case where some common privileges are
shared among a disjoint set of users. This too refers to either under privileges or over
privileges. This is handled as follows: (i) Form a new matrix Mij that contains USi »
USj as users and PSi » PSj as privileges. (ii) For each user u in USi, test if privileges

 Detecting and Resolving Misconfigurations in Role-Based Access Control 321

in (PSj- PSi) be allocated (under-privilege misconfiguration) by determining the per-
centage of users to whom each privilege in PSj has been allocated. If the percentage
exceeds a threshold, then consider the 0s for this privilege as a misconfiguration. (iii)
For each user u in USj, repeat test (ii) for privileges in (PSi- PSj).

Case iv. CUij ≠ f and CPij ≠ f. Since the tiles produced by Algorithms 1 and 2 are
non-overlapping, this case does not occur and may be ignored.

Let us look at cases (ii) and (iii) in more detail. How do we know whether we are
dealing with a case of under privileges or over privileges? While in reality the answer
depends on the decision of the administrator, as a general rule we can say that mis-
configurations should be in the minority and the correct classification is the majority
case. To be more specific, consider case ii. Suppose USi={U1,U2,U3,U4}, PSi={P1,P2},
USj={U1,U5,U6,U7}, and PSj={P3}. So CUij={U1} and CPij= f. So U1 has privilege P3
which not all other users in USi have. Two possibilities exist: (a) No other user in USi
has these privileges. So either U1 has an additional role which others don’t have or U1

should not be allotted this privilege (case of over privilege). (b) All users except U2,

Privileges Users
P1 P2 P3 P4 P5 P6

U1 0 1 1 1 1 1
U2 1 1 1 1 1 1
U3 1 0 1 1 1 1
U4 1 1 0 1 1 0
U5 1 1 1 1 1 1

(a)

(b)

Privileges Users
P1 P2 P3 P4 P5 P6

U1 1 1 1 1 1 1
U2 1 1 1 1 1 1
U3 1 1 1 1 1 1
U4 1 1 1 1 1 1
U5 1 1 1 1 1 1

(c)

Fig. 1. (a) Original UPA. (b). Resulting tiles. (c). Modified UPA.

Tile 1: <{U2, U3, U4, U5}, {P1, P4, P5}>
Tile 2: <{U1, U2, U5}, {P2,P3}>
Tile 3: <{U4}, {{P2}>
Tile 4: <{U1}, {P4}>
Tile 5: <{U3}, {P3}>

322 R. Mukkamala, V. Kamisetty, and P. Yedugani

for example, have this privilege. So it could be a case of under privilege and hence U2
should be granted this privilege. In general, there could be some ambiguous cases
and some clear cut cases. The decision of which is right may be resolved by the ad-
ministrator or an expert system.

We now illustrate our approach using UPA in Figure 1a. Using algorithms 1 and 2,
five tiles are identified as shown in Figure 1b. The five tiles correspond to five roles.
Our objective is to identify and correct any misconfigurations.

Table 1. %increase in 1s in UPA and %reduction in roles with 20 users

#of
users

%increase
in 1s in
UPA

%reduction
in #of roles

2 38.1 33.3
3 20.0 20.0
4 17.5 16.7
5 14.6 12.5
6 13.6 11.1
7 7.2 10.0
8 3.8 16.7
9 4.3 9.1
10 3.0 6.7
11 4.5 6.7
12 5.2 12.5
13 4.0 5.9
14 5.1 10.5
15 2.0 10.5

Table 2. Results of reverse engineering: Detected changes vs. injected changes

#of detected changes by the algorithm #of in-
jected

changes
4

users
6

users
8

users
10

users
12

users
15

users
1 1 1 0 1 1 1
2 2 2 2 2 1 2
3 3 3 2 3 3 3
4 4 3 4 4 4 2
5 4 4 4 4 4 4
6 4 5 5 5 5 6
7 5 7 6 6 5 5
8 7 8 6 6 6 6
9 5 9 6 8 6 5

10 5 6 8 8 8 9

 Detecting and Resolving Misconfigurations in Role-Based Access Control 323

Tiles 1 and 2 have no overlap, so is represents case (i) and we ignore it.
Tiles 1 and 3 have U1 common. It represents case (ii). We form a new privilege matrix

with users {U2,U3,U4,U5} and privileges {P1, P2,P4,P5}. From UPA, we get
DM13=1/20*100=5%. Definitely, this is a case for corrections. Carrying forward the re-
maining analysis, we can recommend that the under-privilege of P2 to U3 be corrected.

Now consider tiles 1 and 4. This represents case (iii). Here, we need to test if user
U1 be allocated the privileges {P4, P5} or remove the privilege P4 from U1. Here, N0
=1 and N1=14. So, DM=1/15*100=6.7%. In other words, there is a strong indication
that we should consider the possibility of misconfigurations. There are three privi-
leges to consider {P1, P4, P5}. P4 and P5 are assigned to all 5 users {U1-U5}. Hence,
there are no misconfigurations to consider. For P1, there is one 0 and four 1s. Thus,
n0/(n0+n1)*100=20%. This does suggest that missing (U1,P1) is a possible miscon-
figuration. The recommendation is that U1 should be assigned P1.

Tiles 1 and 5 correspond to case (ii). We form a new privilege matrix with users
{U2,U3,U4,U5} and privileges {P1,P3,P4,P5}. From UPA, we get
DM13=1/16*100=6.25%. Definitely, this is a case for corrections. Carrying forward
the remaining analysis, we can recommend that the under-privilege of P3 to U4 be
corrected.

Tiles 2 and 3 correspond to case (iii). Here, we need to test if user U4 be allocated
the privilege P3 or remove the privilege P2 from U4. Here, N0 =1 and N1=7. So,
DM=1/8*100=12.5%. In other words, there is an indication that we should consider
the possibility of misconfigurations. There are two privileges to consider {P2, P3}. P2

is assigned to all 4 users. For P3, there is one 0 and three 1s. Hence,
n0/(n0+n1)*100=25%. This does suggest that missing (U4,P3) is a possible miscon-
figuration. The recommendation is that U4 be assigned P3.

Tiles 2 and 4 have no overlap, so they correspond to case (i). Thus, we ignore it.
Tiles 2 and 5, correspond to case (ii). Further analysis shows that the missing

(U3,P2) is a possible misconfiguration.
Tiles 3 and 4, tiles 3 and 5, and tiles 4 and 5 also have no overlap, so they corre-

spond to case (i), and hence are ignored.
In summary, the suggestion is that the 4 missing privileges need to be assigned

(under privilege). There are no over privileges. The modified UPA after repeating
steps 2-4 is shown in Figure 1c. This is just one tile representing one role. Thus, by
detecting and correcting four misconfigurations we have reduced 5 roles to 1 role. Of
course, this is an exception, and in reality the results are not so drastic.

4 Results

In order to validate the algorithm, we have carried out two types of experiments: for-
ward engineering and reverse engineering.

Under forward engineering, we randomly generated UPA matrices for a given num-
ber of users and a number of privileges. Each UPA was then first subjected to Algo-
rithms 1 and 2 resulting in an initial set of tiles, corresponding to roles, privilege-role
assignment and user-role assignment. We have then applied our misconfigurations algo-
rithm and noted the modified role set and assignments. We varied the number of users
from 2 to 25 and the number of privileges also from 2 to 25. In the following results, we

324 R. Mukkamala, V. Kamisetty, and P. Yedugani

have focused our attention only on under privileges. Thus, the measurements include:
Number of changes made (i.e., number of under-privileges detected), number of roles
after resolving the under-privileges, percentage Reduction in number of roles, percent-
age reduction in total number of 1’s in the binary matrix, and maximum percentage
increase in privileges for the affected users.

The results from forward engineering are summarized in Table 1. The percentage
reduction in the number of roles is significant over the entire spectrum of number of
users of 2-15. In fact, when we consider specific UPAs instead of randomly generated
ones, we found the reduction in the roles to be much more. This observation is consis-
tent with other work that concluded that random test data results in conservative
estimate of the outcome [11].

In the above analysis, we have generated random UPAs, so we don’t know exactly
whether all potential changes were detected or not. In order to verify the correctness
and effectiveness of our algorithm, we have carried out what we refer to as reverse
engineering. Here, we start with a UPA representing certain roles and corresponding
assignments, and intentionally introduce certain misconfigurations. In this paper, for
brevity, we only present our results with introducing under privileges; i.e., some of
the 1s in the UPA are changed to 0s. We now check how many of these misconfigura-
tions were detected by our algorithm. The following metric was recorded: the number
of privileges introduced versus the number of privileges detected. The results are
summarized in Table 2.

It may be noticed that the proposed method is very effective in detecting the in-
jected changes. This is yet another illustration to show that the methods such as this
are more effective in specific systems rather than random data. Clearly, the proposed
method is able to identify almost all the injected changes. Other runs (results not
shown here) showed similar behavior.

In summary, we find the role-mining based method is quite effective in identifying
the misconfigurations. While the results we have shown primarily focused on
under-privileges, the same thing is true of over privileges also.

5 Conclusion and Future Work

In this paper, we addressed the aspects of identification and correcting the miscon-
figurations that exist in role-based access control systems. While the basic methodol-
ogy itself is also applicable to other access control systems, the fact that the roles are
much smaller than the number of users makes the system efficient and a practical tool
(in terms of computability).

First, we have discussed a means to identify misconfigurations by adopting role
mining techniques. In particular, we have used the tiling technique of Vaidya et al [4].
Here, roles are identified as a set of non-overlapping tiles that are minimal in number.
We have developed a methodology that analyzes the tiles and identifies possible mis-
configurations, both over-privileges and under-privileges, with the result that the
number of roles is typically smaller than the original set.

We are currently working on conducting more experiments to understand the behav-
ior of the above method and understand when and where this will be most effective.

 Detecting and Resolving Misconfigurations in Role-Based Access Control 325

Acknowledgements. We wish to thank Professor Vijay Atluri, Professor Jaideep
Vaidya, and Q. Guo of Rutgers University for their helpful discussions and for letting
us use the implementation code of Algorithms 1 and 2 presented in this paper.

References

1. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based Access Control Models.
IEEE Computer 29(2), 38–47 (1996)

2. Vaidya, J., Atluri, V., Guo, Q., Adam, N.: Migrating to Optimal RBAC with Minimal Per-
turbation. In: 13th ACM Symposium on Access Control Models and Technologies, pp. 11–
20. ACM Press, New York (2008)

3. Vaidya, J., Atluri, V., Warner, J., Guo, Q.: Role Engineering via Prioritized Subset Enu-
meration. In: IEEE Transactions on Dependable and Secure Computing, October 2008,
vol. 28. IEEE Computer Society Digital Library, IEEE Computer Society, Los Alamitos
(2008), http://doi.ieeecomputersociety.org/10.1109/TDSC.2008.61

4. Vaidya, J., Atluri, V., Guo, Q.: The Role-Mining Problem: Finding a Minimal Descriptive
Set of Roles. In: 12th ACM Symposium on Access Control Models and Technologies, pp.
175–184. ACM Press, New York (2007)

5. Molloy, I., Li, N., Li, T., Lobo, J.: Evaluating Role Mining Algorithms. In: 14th ACM
Symposium on Access Control Models and Technologies, pp. 21–30. ACM Press, New
York (2009)

6. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast Exact and
Heuristic Methods for Role Minimization Problems. In: 13th ACM Symposium on Access
Control Models and Technologies, pp. 21–30. ACM Press, New York (2008)

7. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning and Techniques, 2nd
edn. Morgan Kaufmann Publishers, San Francisco (2005)

8. Bauer, L., Garriss, S., Reiter, M.K.: Detecting and Resolving Policy Misconfigurations in
Access-Control Systems. In: 13th ACM Symposium on Access Control Models and Tech-
nologies, pp. 185–194. ACM Press, New York (2008)

9. Bishop, M.: Computer Security: Art and Science. Addison-Wesley Professional, Reading
(2002)

10. Vaidya, J., Atluri, V., Warner, J.: Roleminer: mining Roles Using Subset Enumeration. In:
13th ACM Conference on Computer and Communications Security, pp. 144–153. ACM
Press, New York (2006)

11. Mukkamala, R., Jajodia, S.: Effects of Distributed Database Modeling on Evaluation of
Transaction Rollbacks. In: 22nd Winter Simulation Conference, pp. 839–845. IEEE Press,
Los Alamitos (1990)

Author Index

Adjedj, Michael 86

Bera, P. 117
Bhattacharya, Sukriti 252
Bringer, Julien 86
Bruschi, Danilo 178

Chabanne, Hervé 86
Chakraborty, Debrup 265
Chen, Ping 163
Chung, Byung-Ho 148
Cortesi, Agostino 252

Dacier, Marc 19
Dasgupta, Pallab 117
Deng, Robert 71

Frias-Martinez, Vanessa 193
Fu, Ge 237

Gampa, Nagaraja Kaushik 310
Ghosh, S.K. 117
Govindaraju, Venu 38
Gupta, Gaurav 222

Jain, Kritika 280

Kamisetty, Vishnu 318
Kang, Myeong-Ho 148
Keromytis, Angelos D. 1, 193
Khot, Rohit Ashok 310
Kim, K.H. (Kane) 148
Kim, Shin-Hyo 148
Kindarji, Bruno 86
Kumar, Naveen 280

Lam, Patrick 301
Lee, Seok-Joon 148
Li, Tieyan 71
Li, Yingjiu 71, 237
Liang, Bing 71
Liang, Zhiyao 101

Ma, Changshe 71
Mancillas-López, Cuauhtemoc 265
Mao, Bing 163
Martignoni, Lorenzo 178

Masi, Massimiliano 55
Mukhopadhyay, Debapriyay 292
Mukkamala, Ravi 318

Nagaratnam, Nataraj 18

Ojha, Shri Kant 280

Paleari, Roberto 178
Panda, Brajendra 208
Pham, Van-Hau 19
Pieprzyk, Josef 222
Pugliese, Rosario 55

Reiter, Michael K. 132
Ritter, Eike 39
Rodŕıguez-Henŕıquez, Francisco 265

Saha, Indranil 292
Sangeeta 280
Sekar, Vyas 132
Shen, Xiaobin 163
Smart, Matt 39
Spensky, Chad 132
Srinathan, Kannan 310
Stolfo, Salvatore J. 193

Thonnard, Olivier 19
Tiezzi, Francesco 55
Tripunitara, Mahesh 301

Verma, Rakesh M. 101

White, Jonathan 208

Xiao, Hai 163
Xie, Li 163

Yedugani, Pawankumar 318
Yin, Xinchun 163

Zarnett, Jeff 301
Zhang, Zhen 148
Zhang, Zhenghao 132
Zhou, Tianran 148
Zhu, Hong 237

	Title Page
	Preface
	Organization
	Table of Contents
	Keynote Talks
	A Survey of Voice over IP Security Research
	Introduction
	SIP Overview
	VoIPThreats
	Survey of VoIP Security Research
	Discussion
	Conclusions
	References

	Security for a Smarter Planet
	The WOMBAT Attack Attribution Method: Some Results
	Introduction
	Description of the Experimental Environment
	Terminology
	Honeynet Dataset

	Overview of WOMBAT Attribution Method
	Step 1: Micro and Macro Attack Events Identification
	Step 2: Multi Criteria Fusion of Attack Events Features

	On the Multi Criteria Fusion Approach
	Attack Features Selection
	Graph-Based Clustering
	Multi-Criteria Aggregation

	Experimental Results
	Overview
	Case Studies

	Conclusions
	References

	Biometrics and Security

	Authentication
	Remote Electronic Voting with Revocable Anonymity
	Introduction
	Related Work
	Our Contribution
	Structure

	Preliminaries
	Threshold ElGamal Encryption Scheme
	Strong Designated Verifier Signature Scheme
	Proof of Equality of Discrete Logarithms
	Designated Verifier Re-encryption Proofs

	ProtocolModel
	Participants
	Trust Model
	Threat Model

	Protocol
	Properties of the Protocol
	Conclusion
	References

	On Secure Implementation of an IHE XUA-Based Protocol for Authenticating Healthcare Professionals
	Introduction
	An XUA-Based Protocol
	COWS Specification of the Protocol
	COWS Syntax and Informal Semantics

	Protocol Analysis
	Concluding Remarks
	References

	On the Untraceability of Anonymous RFID Authentication Protocol with Constant Key-Lookup
	Introduction
	Notation
	TheBMMProtocol
	Attacking the BMM Protocol
	The AdversaryModel
	Three-Run Interleave Attack
	Discussions

	Cracking aWhole Supply Chain by Using the Basic Attack
	Assumptions
	Attacking Strategies

	Improving the BMM Protocol
	Improved Protocol
	Security Analysis

	Related Work
	Conclusion
	References

	Verification
	Biometric Identification over Encrypted Data Made Feasible
	Introduction
	Basic Concepts
	UsefulTools
	Locality-Sensitive Hashing
	Symmetric Searchable Encryption – SSE

	Fast and Secure Biometric Identification
	Our Idea in a Nutshell
	Security Requirements
	Our Identification Protocol
	Security Properties

	Practical Considerations
	Choosing a LSH Family
	Implementation
	Complexity

	References

	Correcting and Improving the NP Proof for Cryptographic Protocol Insecurity
	Introduction
	Related Work
	Contributions of This Paper

	Modeling
	Modeling Discussion

	The Error
	Enhanced Results on Term Substitution and Derivation
	Fixing the Error and Improving the NP Proof
	Summary
	References

	Formal Verification of Security Policy Implementations in Enterprise Networks
	Introduction
	Objective and Motivating Example

	Related Work
	Security Policy Specification
	Security Policy Specification Language(SPSL)

	Security Implementation Model
	Resolving Inter-rule Conflicts and Topology Dependency
	Hidden Access Path Analysis

	QSAT Based Verification Procedure
	Boolean Reduction of Models
	QBF SAT Solver and QSAT Query Formation
	Implementations and Verification Results

	Conclusion
	References

	Systems Security
	Making Peer-Assisted Content Distribution Robust to Collusion Using Bandwidth Puzzles
	Introduction
	Related Work
	SystemModelandGoals
	The Construction
	Security
	Evaluation in a Media Streaming System
	Benefits in a Peer-Assisted Streaming System
	Conclusions
	References

	An E-Cash Based Implementation Model for Facilitating Anonymous Purchasing of Information Products
	Introduction
	Related Work
	The Five-Party Implementation Model: 5PAPS
	Primitives and Notations
	Protocol Details

	Security Analysis
	Anonymity Analysis
	Customer’s Anonymity
	Customer’s Anonymity in the Collusion-Free Scenario
	Customer’s Anonymity in Collusion Scenarios

	Experimental Prototyping and Estimates of Storage and Messaging Volume Requirements
	Conclusion
	References

	DROP: Detecting Return-Oriented Programming Malicious Code
	Introduction
	ROP Attack
	Design of ROP Malicious Code
	Features of ROP Malicious Code

	Overview
	Implementation Details
	Evaluation
	Statistical Analysis of Normal Programs and Shellcode
	Analysis of False Positives and False Negatives
	Performance Evaluation

	Discussion
	Related Work
	Return-into-Libc Attack
	Defense Techniques Against Code Injection and Execution
	Malicious Code Scanners
	Integrity of Control Flow
	Memory Tainting Techniques

	Conclusion
	References

	Behavior Analysis
	A Framework for Behavior-Based Malware Analysis in the Cloud
	Introduction
	Overview
	Delegating the Analysis to the Cloud
	Exploiting Diversity of End-Users’ Environments

	Design and Implementation
	Executing a Program in Multiple Environments
	An in the Cloud Behavior-Based Malware Detector

	Evaluation
	Discussion
	Related Work
	Conclusion
	References

	BARTER: Behavior Profile Exchange forBehavior-Based Admission and Access Control in MANETs
	Introduction
	TheBARTERMechanism
	Initial Setup
	Admission Control
	Access Control

	Attacks and Cryptographic Costs
	Evaluation of BARTER with Content Profiles
	Semi-supervised Content AD Sensor
	Behavior Profile Privacy
	Evaluation Experiments

	Evaluation of BARTER with Volumetric Profiles
	Histogram-Based Volumetric AD Sensor
	Evaluation Experiments

	Related Work
	Conclusions and Future Work
	References

	Automatic Identification of Critical Data Items in a Database to Mitigate the Effects of Malicious Insiders
	Introduction
	Background and Related Work
	Insider Threats in Relation to Critical Data
	Previous Work

	Automatic Identification System
	Requisite Terminologies
	Criticality Graphs
	Formal Definition of Criticality Graph
	Calculating Criticality
	Criticality Example
	Bidirectional Criticality

	Conclusions and Future Work
	References

	Database Security
	Database Relation Watermarking Resilient against Secondary Watermarking Attacks
	Introduction
	Scenario
	Organization of Paper and Notations Used

	Related Work
	Agrawal-Kiernan Watermarking Scheme
	Reversible Watermarking Scheme

	ProposedScheme
	Mathematical Model
	Attacks
	Proposed Algorithms

	Security Analysis
	Experimental Results
	Conclusion
	References

	A Robust Damage Assessment Model for Corrupted Database Systems
	Introduction
	Related Work
	Inter-transaction Dependency Relationships Analysis
	Damage Assessment Model
	Preliminaries
	Phantoms Dependency
	Pseudo-identity Dependency
	Domain-Integrity Dependency
	Reference-Integrity Dependency
	Damage Assessment Model

	Discussion
	Conclusion and Future Work
	References

	A Generic Distortion Free Watermarking Technique for Relational Databases
	Introduction
	Preliminaries
	Distortions by Watermarking
	Data Partitioning
	Watermark Generation
	Functional Abstraction

	WatermarkDetection
	Robustness
	False Hit
	False Miss

	Conclusions
	References

	Cryptography
	On Some Weaknesses in the Disk Encryption Schemes EME and EME2
	Introduction
	Adversaries with Access to Side Channel Information
	Notations
	Side Channel Weakness in the xtimes Operation
	Security of Tweakable Enciphering Schemes
	TheEMEModeofOperation
	The Attack on EME
	The Distinguishing Attack
	The Stronger Attack

	EME2ModeofOperation
	A Distinguishing Attack on EME2
	Conclusion
	References

	TWIS – A Lightweight Block Cipher
	Introduction
	Design Criteria
	Key Scheduling
	Data Processing
	TWIS Building Blocks

	Cryptanalysis
	Statistical Testing
	Avalanche Effect

	Complexity
	Conclusion
	References

	Short Papers
	Quantitative Analysis of a Probabilistic Non-repudiation Protocol through Model Checking
	Introduction
	Probabilistic Non-repudiation Protocol
	Modeling and Analysis of Probabilistic Non-repudiation Protocol
	MDP Models for Recipient and Originator
	Experimental Results

	Conclusion
	References

	Method-Specific Java Access Control via RMI Proxy Objects Using Annotations
	Introduction
	Motivating Example
	ProxyObjects
	Semantics of Annotation
	Semantics of Invocation

	Implementation
	Performance Analysis
	Related Work
	Conclusions
	References

	Let Only the Right One IN: Privacy Management Scheme for Social Network
	Introduction
	Background and Related Work
	Related Work

	Motivation
	Naive Approach: Verify about the Sender

	Our Approach: Verify about the Receiver
	User Verification Using Preferences

	User Study
	Second Phase User Study
	Our Results

	Conclusion and Future Work
	References

	Detecting and Resolving Misconfigurations in Role-Based Access Control
	Introduction
	Related Work
	Employing Role Mining for Identifying Misconfigurations
	Results
	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

