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Preface

This volume contains revised selected papers from plenary and invited as well as
contributed sessions at the 11th Biennial Conference of the International Federation
of Classification Societies (IFCS) in combination with the 33rd Annual Conference
of the German Classification Society – Gesellschaft für Klassifikation (GfKl), orga-
nized by the Faculty of Business Management and Economics at the Technische
Universität Dresden in March 2009. The theme of the conference was “Classifi-
cation as a Tool for Research.” The conference encompassed 290 presentations in
100 sessions, including 11 plenary talks and 2 workshops. Moreover, five tutorials
took place before the conference. With 357 attendees from 58 countries, the confer-
ence provided a very attractive interdisciplinary international forum for discussion
and mutual exchange of knowledge.

The chapters in this volume were selected in a second reviewing process after the
conference. From the remaining 120 submitted papers, 90 papers were accepted for
this volume. In addition to the fundamental methodological areas of Classification
and Data Analysis, the volume contains many chapters from a wide range of top-
ics representing typical applications of classification and data analysis methods in
Archaeology and Spatial Science, Bio-Sciences, Electronic Data and Web, Finance
and Banking, Linguistics, Marketing, Music Science, and Quality Assurance and
Engineering.

The editors would like to thank the session organizers for supporting the spread
of information about the conference, and for inviting speakers, all reviewers for
their timely reports, and Irene Barrios-Kezic and Martina Bihn of Springer-Verlag,
Heidelberg, for their support and dedication to the production of this volume.

Moreover, IFCS and GfKl want to thank the Local Organizing Committee,
Werner Esswein, Andreas Hilbert, and Hermann Locarek-Junge for this very well-
organized conference. We also thank all our supporters – special thanks to Thorsten
Klug, Sven Loßagk, Karoline Schönbrunn, Jens Weller, and the student staff at the
conference!

Dresden and Dortmund Hermann Locarek-Junge
November 2009 Claus Weihs
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Hierarchical Clustering with Performance
Guarantees

Sanjoy Dasgupta

Abstract We describe two new algorithms for hierarchical clustering, one that is an
alternative to complete linkage, and the other an alternative to the k-d tree. In each
case, the new algorithm is shown to admit stronger performance guarantees than the
classical scheme it replaces.

1 Introduction

A hierarchical clustering is a recursive partitioning of a data set into successively
more fine-grained clusterings. At the top of the hierarchy, all points are grouped into
a single cluster; and each intermediate level is obtained by splitting the clusters in
the level above it.

Hierarchical clustering is a basic primitive of statistics and data analysis. It is
used for a variety of purposes, prominent among which are:

1. Exploratory analysis of data. Here a typical goal is to discover whether a data
set contains meaningful groupings, that is, groupings in which the clusters are
clearly defined (usually in the sense of being well separated). Popular algorithms
for this kind of analysis are agglomerative bottom-up schemes such as average
linkage and complete linkage (Sokal and Sneath 1963).

2. Tree-based vector quantization (Gray and Neuhoff 1998). Here the idea is to
quantize a large data set, that is, to approximate it with a few representatives
such that the quantization error (the typical distance between a data point and
its representative) is small. It is irrelevant whether or not the clusters are well-
defined. This type of hierarchical clustering arises in audio and video coding, and
is often constructed top-down, by repeated application of the k-means algorithm
(MacQueen 1967).
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3. Organization of data into a spatial structure. Here the aim is to facilitate future
statistical queries such as nearest-neighbor, or classification, or regression. Such
queries generically take timeO.n/ on a database of n points; but if the points are
arranged into a tree, it might be possible to process queries much more efficiently,
perhaps even in O.logn/ time. In these applications, the most popular form of
hierarchical clustering is probably the k-d tree (Bentley 1975).

These are all important applications, and yet the hierarchical clusterings typically
used for them are woefully short on meaningful guarantees. If a data set has well
defined clusters, is complete linkage guaranteed to find them? If a set of points can
be quantized with very low distortion, will the k-means algorithm necessarily find
such a quantization? And are k-d trees really the best trees for speeding up statistical
queries? In each case, the answer is no.

This state of affairs is understandable when it is considered that these popular
algorithms were developed at a time when data was typically one dimensional. In
low dimension, the output of a clustering algorithm can be visually checked to see
if it is reasonable, and if it isn’t, a different clustering procedure can be used; so it
is not urgently necessary to have a mathematical assurance of optimality (or near-
optimality) for procedures like complete linkage or k-means. Likewise, a wide range
of tree structures are effective for answering statistical queries when data is low
dimensional; k-d trees work just fine, and are convenient to implement.

In the present time, data analysis lies at the heart of some of the biggest scientific
challenges facing us – such as genomics and climate modeling – but these data
are extremely high dimensional. It is no longer possible to visualize them to check
whether a clustering is sensible. And many of the procedures that work well in low
dimension suffer when applied to high dimensional data, either because the problem
of local optima is hugely exacerbated (as in the case of the k-means algorithm) or
because they fail to adapt effectively to the geometry of high dimensional space
(as in the case of k-d trees). In this new regime, it is crucial to have performance
guarantees for clustering.

In this paper, we describe two algorithms for hierarchical clustering that were
recently proposed specifically to address the challenges of high-dimensional data
analysis. In each case, we start with a performance criterion and find that classical
schemes fare badly when subjected to this rigorous test. We then design an alter-
native with strong performance guarantees. Our first algorithm is a replacement for
k-d trees; the second, for complete linkage.

2 A Replacement for k-d Trees

2.1 The Curse of Dimension for Spatial Data Structures

A k-d tree (Bentley 1975) is a spatial data structure that partitions R
D into hyper-

rectangular cells. It is built in a recursive manner, splitting along one coordinate
direction at a time (Fig. 1, left). The succession of splits corresponds to a binary tree
whose leaves contain the individual cells in R

D .
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q q

Fig. 1 Left: A spatial partitioning of R
2 induced by a k-d tree with three levels. The dots are data

points; the cross marks a query point q. Right: Partitioning induced by an RP tree

These trees are among the most widely used spatial partitionings in machine
learning and statistics. To understand their application, consider Fig. 1(left), and
suppose that the dots are points in a database, while the cross is a query point q. The
cell containing q, henceforth denoted cell.q/, can quickly be identified by moving q
down the tree. If the diameter of cell.q/ is small (where the diameter is taken to
mean the distance between the furthest pair of data points in the cell), then the
points in it can be expected to have similar properties, for instance similar labels. In
classification, q is assigned the majority label in its cell, or the label of its nearest
neighbor in the cell. In regression, q is assigned the average response value in its
cell. In vector quantization, q is replaced by the mean of the data points in the cell.
Naturally, the statistical theory around k-d trees is centered on the rate at which the
diameter of individual cells drops as you move down the tree; for details, see page
320 of Devroye et al. (1996).

It is an empirical observation that the usefulness of k-d trees diminishes as the
dimensionD increases. This can be explained in terms of cell diameter; it is possible
to construct a data set in R

D for which a k-d tree requiresD levels in order to halve
the cell diameter. In other words, if the data lie in R

1000, it could take 1000 levels
of the tree to bring the diameter of cells down to half that of the entire data set. This
would require 21;000 data points!

Here’s the construction. Consider S � R
D made up of the coordinate axes

between �1 and 1: S D SD
iD1ftei W �1 � t � 1g, where e1; : : : ; eD is the canoni-

cal basis of R
D . There are many application domains, such as text, in which data is

sparse; this example is an extreme case. Now, the diameter of S is 2, and it remains
2 even after S is split along one coordinate direction. In fact, it decreases to 1 only
after D splits.

Thus k-d trees are susceptible to the same curse of dimensionality that has been
the bane of other nonparametric statistical methods.
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2.2 Low Dimensional Manifolds and Intrinsic Dimension

A recent positive development in machine learning has been the realization that a
lot of data which superficially lie in a very high-dimensional space R

D , actually
have low intrinsic dimension, in the sense of lying close to a manifold of dimension
d � D. There has been significant interest in algorithms which learn this manifold
from data, with the intention that future data can then be transformed into this low-
dimensional space, in which standard methods will work well. This field is quite
recent and yet the literature on it is already voluminous; early foundational work
includes Tenenbaum et al. (2000), Roweis and Saul (2000), and Belkin and Niyogi
(2003).

Why is the manifold hypothesis at all reasonable? Suppose, for instance, that you
wish to create realistic animations by collecting human motion data and then fitting
models to it. A common method for collecting motion data is to have a person wear
a skin-tight suit with high contrast reference points printed on it. Video cameras are
used to track the 3D trajectories of the reference points as the person is walking
or running. In order to ensure good coverage, a typical suit has about N D 100

reference points. The position and posture of the body at a particular point of time
is represented by a .3N /-dimensional vector. However, despite this seeming high
dimensionality, the number of degrees of freedom is small, corresponding to the
dozen-or-so joint angles in the body. The positions of the reference points are more
or less deterministic functions of these joint angles.

To take another example, a speech signal is commonly represented by a high-
dimensional time series: the signal is broken into overlapping windows, and a
variety of filters are applied within each window. Even richer representations can
be obtained by using more filters, or by concatenating vectors corresponding to
consecutive windows. Through all this, the intrinsic dimensionality remains small,
because the system can be described by a few physical parameters describing the
configuration of the speaker’s vocal apparatus.

We will adopt a broad notion of intrinsic dimension called the Assouad (or dou-
bling) dimension (Assouad 1983). For any point x 2 R

D and any r > 0, let
B.x; r/ D fz W kx � zk � rg denote the closed ball of radius r centered at x.
The Assouad dimension of S � R

D is the smallest integer d such that for any ball
B.x; r/ � R

D , the set B.x; r/ \ S can be covered by 2d balls of radius r=2.
For instance, suppose set S is a line in some high-dimensional space R

D . For any
ball B , the intersection S \B , if nonempty, is a line segment, and it can be covered
by exactly two balls of half the radius. Thus the Assouad dimension of S is 1.

A generalization of this argument shows that a d -dimensional affine subspace of
R

D has Assouad dimension O.d/. So does a d -dimensional Riemannian subman-
ifold of R

D , subject to a bound on the second fundamental form of the manifold
(Dasgupta and Freund 2008). Thus Assouad dimension is more general than the
manifold notion we began with.

In fact, it is considerably more general, and also captures sparsity, which has
recently been a subject of great interest in statistics. For instance, a text document is
typically represented as a vector in which each coordinate corresponds to a word and
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denotes how often that word occurs within the document. This is an extremely high-
dimensional representation if a lot of words are chosen, but it is also sparse – mostly
zero – because any given document only contains a tiny subset of the universe of
words. It is not hard to show that if S lies in R

D but has elements with at most d
nonzero coordinates, then the Assouad dimension of S is at most O.d logD/.

We are interested in techniques that automatically adapt to intrinsic low dimen-
sional structure without having to explicitly learn this structure. The most obvious
first question is, do k-d trees adapt to intrinsic low dimension? The answer is no:
the bad example constructed above has an Assouad dimension of just log 2D (the
corresponding set S lies within B.0; 1/ and can be covered by 2D balls of radius
1=2.) So we must turn elsewhere.

2.3 Random Projection Trees

Remarkably, a simple variant of k-d trees does adapt to intrinsic dimension. Instead
of splitting along coordinate directions at the median, we split along a random direc-
tion in SD�1 (the unit sphere in R

D), and instead of splitting exactly at the median,
we add a small amount of “jitter”. We call these random projection trees (Fig. 1,
right), or RP trees for short. Specifically, for any cell within the tree containing data
points (say) S , the splitting rule is determined as follows:

� Choose a random unit direction v 2 R
D .

� Pick any x 2 S ; let y 2 S be the farthest point from it.
� Choose ı uniformly at random in Œ�1; 1� � 6kx � yk=pD.
� All points fx 2 S W x � v � .median.fz � v W z 2 Sg/C ıg go to the left subtree;

the remainder go to the right.

Suppose an RP tree is built from a data set S � R
D , not necessarily finite. If the

tree has k levels, then it partitions the space into 2k cells. We define the radius of a
cell C � R

D to be the smallest r > 0 such that S \ C � B.x; r/ for some x 2 C .
Our theorem gives an upper bound on the rate at which the radius of cells in an RP
tree decreases as one moves down the tree.

Theorem 1 (Dasgupta and Freund 2008). There is a constant c1 with the follow-
ing property. Suppose an RP tree is built using data set S � R

D : Pick any cell
C in the RP tree; suppose that S \ C has Assouad dimension � d: Then with
probability at least 1=2 (over the randomization in constructing the subtree rooted
at C ), for every descendant C 0 which is more than c1d logd levels below C , we
have radius.C 0/ � radius.C /=2.

There is no dependence at all on the extrinsic dimensionD.
Since they were introduced, RP trees have been shown to yield algorithms for

tree-based vector quantization (Dasgupta and Freund 2009) and regression (Kpotufe
2009) that are adaptive to intrinsic low dimensionality. Also, an efficient scheme for
nearest neighbor turns out in retrospect to be using a similar idea (Liu et al. 2004).
For experimental work, see Freund et al. (2007).
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Open problems

1. An RP tree halves the diameter of cells every O.d logd/ levels; is there an
alternative splitting rule that requires just d levels?

2. RP trees and k-d trees are designed for data in Euclidean space. Are there similar
constructions (with simple splitting rules) that work in arbitrary metric spaces?

3. What guarantees can be given for query times in nearest neighbor search using
RP trees?

3 A Replacement for Complete Linkage

3.1 An Existence Problem for Hierarchical Clustering

We now turn to hierarchical clusterings for exploratory data analysis. Such represen-
tations of data have long been a staple of biologists and social scientists, and since
the sixties or seventies they have been a standard part of the statistician’s toolbox.
Their popularity is easy to understand. They require no prior specification of the
number of clusters, they permit the data to be understood simultaneously at many
levels of granularity, and there are some simple, greedy heuristics that can be used
to construct them.

It is very useful to be able to view data at different levels of detail, but the require-
ment that these clusterings be nested within each other presents some fundamental
difficulties. Consider the data set of Fig. 2, consisting of six evenly spaced collinear
points in the Euclidean plane. The most commonly used clustering cost functions,
such as that of k-means, strive to produce clusters of small radius or diameter. Under
such criteria, the best 2-clustering (grouping into two clusters) of this data is unam-
biguous, as is the best 3-clustering. However, they are hierarchically incompatible.
This raises a troubling question: by requiring a hierarchical structure, do we doom
ourselves to intermediate clusterings of poor quality?

To rephrase this more constructively, must there always exist a hierarchical clus-
tering in which, for every k, the induced k-clustering (grouping into k clusters) is
close to the optimal k-clustering under some reasonable cost function? As we have
already seen, it is quite possible that the optimal cost-based k-clustering cannot
be obtained by merging clusters of the optimal .k C 1/-clustering. Can they be so
far removed that they cannot be reconciled even approximately into a hierarchical
structure? We resolve this fundamental existence question via the following result.

Theorem 2 (Dasgupta and Long 2005). Take the cost of a clustering to be the
largest radius of its clusters. Then, any data set in any metric space has a hierarchi-
cal clustering in which, for each k, the induced k-clustering has cost at most eight
times that of the optimal k-clustering.

Fig. 2 What is the best hierarchical clustering for this data set?
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Moreover, we have an algorithm for constructing such a hierarchy which is
similar in simplicity and efficiency to the popular complete linkage agglomerative
clustering algorithm. Complete linkage has the same underlying cost function, but
does not admit a similar guarantee.

Theorem 3 (Dasgupta 2009). For any k, there is a data set for which complete
linkage induces k-clusterings whose cost is k times that of the optimal k-clustering.

3.2 Approximation Algorithms for Clustering

There has been a lot of recent work on the k-center and k-median problems. In
each of these, the input consists of points in a metric space as well as a preordained
number of clusters k, and the goal is to find a partition of the points into clusters
C1; : : : ; Ck , and also cluster centers �1; : : : ; �k drawn from the metric space, so as
to minimize some cost function which is related to the radius of the clusters.

1. k-center: Maximum distance from a point to its closest center
2. k-median: Average distance from a point to its closest center

Both problems are NP-hard but have simple constant-factor approximation algo-
rithms. For k-center, a two-approximation was found by González (1985), and this
is the best approximation factor possible (Feder and Greene 1988). For k-median
there have been a series of results; for instance (Arya et al. 2001), achieves an
approximation ratio of 6C �, in time nO.1=�/.

What does a constant-factor approximation mean for a clustering problem? Con-
sider the scenario of Fig. 3, set in the Euclidean plane. The solid lines show the
real clusters, and the three dots represent the centers of a bad 3-clustering whose
cost (in either measure) exceeds that of the true solution by a factor of at least 10.
This clustering would therefore not be returned by the approximation algorithms
we mentioned. However, EM and k-means regularly fall into local optima of this
kind, and practitioners have to take great pains to try to avoid them. In this sense,
constant-factor approximations avoid the worst: they are guaranteed to never do too
badly. At the same time, the solutions they return can often use some fine-tuning,
and local improvement procedures like EM might work well for this.

Although most work on approximation algorithms has focused on flat k-
clustering, there is some other work on hierarchies. A different algorithm for the
same cost function as ours is given in Charikar et al. (2004); while Plaxton (2003)
works with the k-median cost function. More recently, Lin et al. (2006) gives a uni-
fying framework that is able to adapt algorithms for flat clustering to make them
hierarchical.
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Fig. 3 The circles represent an optimal 3-clustering; all the data points lie within them. The dots
are centers of a really bad clustering

Input: n data points with a distance metric d.�; �/.
Pick a point and label it 1.
For i D 2; 3; : : : ; n

Find the point furthest from f1; 2; : : : ; i � 1g and label it i .
Let �.i/ D arg minj<i d.i; j /.
Let Ri D d.i; �.i//.

Fig. 4 Farthest-first traversal of a data set. Take the distance from a point x to a set S to be
d.x; S/ D miny2S d.x; y/

3.3 Farthest-First Traversal

Our algorithm for hierarchical clustering is based upon the farthest-first traversal
of a set of points, devised by González (1985) as an approximation algorithm for
the closely related k-center problem. His use of this traversal for clustering is inge-
nious, and in fact just a cursory examination of its properties is necessary for his
results. For hierarchical clustering, we examine it in greater detail and need to built
upon it. Specifically, the farthest-first traversal of n data points yields a sequence
of “centers” �1; : : : ; �n such that for any k, the first k of these centers define a
k-clustering which is within a factor two of optimal. However, the n clusterings
created in this way are not hierarchical. Our main contribution is to demonstrate a
simple and elegant way of using the information found by the traversal to create a
hierarchical clustering.

The farthest-first traversal of a data set starts by picking any data point, then
the point furthest from it, then the point furthest from the first two, and so on until
k points are obtained. These points are taken as cluster centers and each remain-
ing point is assigned to the closest center. If the distance function is a metric, the
resulting clustering is within a factor two of optimal.

Starting with n points in a metric space, number all the points in it using a
farthest-first traversal (Fig. 4). For any point i , describe its closest neighbor among
1; 2; : : : ; i � 1 as its parent, �.i/. Let Ri be its distance to this parent,
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Fig. 5 A farthest-first traversal of ten data points in the plane, under Euclidean distance. The
numbering is completely determined by the choice of point number one (and by the method of
breaking any ties that arise)

Ri D d.i; �.i// D d.i; f1; 2; : : : ; i � 1g/:

ThenR1 � R2 � R3 � � � � � Rn. Figure 5 shows an example with a toy data set of
ten points.

The algorithm of González uses points 1; 2; : : : ; k as centers for a k-clustering.
Let Ck be this clustering; notice that its cost is exactly RkC1.

Theorem 4 (González 1985). For any k, any k-clustering must have at least
one cluster of diameter � RkC1. Thus, cost.Ck/ D RkC1 � 2 � cost(optimal
k-clustering).

3.4 A Hierarchical Clustering Algorithm

A farthest-first traversal orders the points so that for any k, the first k points consti-
tute the centers of a near-optimal k-clustering Ck . Unfortunately, the n clusterings
defined in this manner are not hierarchical. In Fig. 5 for instance, the 2-clustering
clearly puts point 6 in the cluster centered at 1, and point 3 in the cluster centered
at 2. However, in the 3-clustering points 3 and 6 are grouped together.

We need a simple scheme for producing a hierarchical clustering starting with
a numbering of the data points and an associated parent function � . The tree of
Fig. 5 is suggestive. Initially it consists of one connected component: one big cluster.
Deleting an edge from the tree breaks this into two connected components, two
clusters. Removing another edge will subdivide one of these two clusters, and so on.

Definition A hierarchical clustering fC�
1; : : : ;C

�
ng based on a mapping �:

� Pick any function � W f2; : : : ; ng ! f1; 2; : : : ; ng for which �.i/ < i . This
property is certainly satisfied by parent function � .
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� The graph on nodes f1; 2; : : : ; ng, with edges f.i; �.i// W 2 � i � ng, is a tree.
Call it T �.

� For any k, the k-clustering C
�

k
is defined as follows.

– Remove the k � 1 edges .2; �.2//; : : : ; .k; �.k// from T �.
– This leaves k connected components.
– Each cluster in C

�

k
consists of the points in one of these components.

Witness that the clusterings fC�
1 ;C

�
2 ; : : : ;C

�
n g are hierarchical.

However, the hierarchical clustering generated by T � might be very poor. To get
a sense of what’s lacking, look again at Fig. 5. Pick any node k in this tree, remove
the edge .k; �.k//, and consider the connected component containing k. The nodes
in this component are grouped together in the k-clustering. The immediate neigh-
bors of k are very close to it – at mostRkC1 away, and this in turn is at most twice the
cost of the optimal k-clustering (recall Theorem 4). But other nodes in this cluster
could potentially be much further away.

We will therefore construct an alternative parent function � 0 whose tree T � 0

has the following property: as you move along any path with increasing node
numbers, the edge lengths are bounded by a geometrically decreasing sequence.
This immediately rules out the bad effect mentioned above, and as a consequence
cost.C� 0

k
/ � O.1/ � cost.Ck/.

We will build � 0 by viewing the data at certain specific levels of granularity. Let
R D R2; this is some rough measure of the span of the data. If we do not care
about distances smaller than R, the entire data set can be summarized by the single
point f1g. This is our coarsest view, and we will call it L0, granularity level zero.
Suppose we want a little more detail, but we still don’t care about distances less than
R=2. Then the data can be summarized by L0 augmented with L1 D fi W R=2 <
Ri � Rg. Continuing in this manner, we construct levels L0; L1; L2; : : : such that
every data point is within distance R=2j of L0 [ L1 [ � � � [Lj .

Earlier we set the parent of i to be its closest neighbor amongst f1; 2; : : : ; i � 1g.
We now choose parents from a more restricted set: the closest point at a lower level
of granularity. The resulting hierarchical clustering algorithm is shown in Fig. 6, and
its effect on our earlier example can be seen in Fig. 7. In Dasgupta and Long (2005),
it is shown that the algorithm obeys the performance guarantee of Theorem 2.

Open problems

1. It can be shown that any hierarchical scheme for the maximum-radius cost func-
tion must have an approximation factor of at least 2. But our algorithm has a
factor of 8; can this gap be closed?

2. For complete linkage, it is known that the approximation factor is at least k; is
there a matching upper bound?
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Input: n data points with a distance metric d.�; �/.
Numbering the points

Number the points by farthest-first traversal (Figure 4).
For i D 2; 3; : : : ; n, let Ri D d.i; f1; 2; : : : ; i � 1g/.
Let R D R2.

Levels of granularity
Lowest level: L0 D f1g.
For j > 1, Lj D fi W R=2j < Ri � R=2j�1g.

Hierarchical clustering
Parent function: � 0.i/ D closest point to i at lower level of granularity.
Return the hierarchical clustering corresponding to tree T �

0

.

Fig. 6 A hierarchical clustering procedure
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Fig. 7 A continuation of the example of Figure 5. Shown are the 1-, 2-, 3-, and 4-clusterings
obtained from the modified parent function � 0
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Alignment Free String Distances for Phylogeny

Frédéric Guyon and Alain Guénoche

Abstract In this paper, we compare the accuracy of four string distances to recover
correct phylogenies of complete genomes . These distances are based on common
words shared by raw genomic sequences and do not require preliminary processing
steps such as gene identification or sequence alignment. Moreover, they are com-
putable in linear time.

The first distance is based on Maximum Significant Matches. The second is com-
puted from the frequencies of all the words of length k. The third one is based on
the Average length of maximum Common Substrings at any position. The last one
is based on the Ziv-Lempel compression algorithm.

We describe a simulation process of evolution to generate a set of sequences hav-
ing evolved according to a random tree topology T . This process allows both base
substitutions and fragment insertion/deletion, including horizontal gene transfers.
The distances between the generated sequences are computed using the four string
formulas and the corresponding trees T 0 are reconstructed using Neighbor-Joining.
Trees T and T 0 are compared using three topological criteria. These comparisons
show that the MSM distance outperforms the others whatever the parameters used
to generate sequences.

1 Introduction

More than 800 complete sequences of bacterial genomes are now available at the
NCBI and this number is rapidly increasing. Consequently, many recent works deal
with phylogenies based on whole genome information rather than on a single or a
small number of genes. Whole genome distance computations can be categorized
in: (a) frequencies of common words or motifs, (b) presence or absence of sheared
homologous genes, (c) gene order along the chromosomes, (d) assembly of several
gene trees (see Snel 2005 for more details). The three last categories of methods,
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imply the identification of orthologous genes that are derived from an ancestral one
following a speciation event. This step is often misleading, even for closely related
genomes, because genes are subject to duplications, losses and horizontal transfers
(HGT).

By contrast, category (a) contains distances between genome sequences with-
out gene identification or alignment. Theses distances are based either from the
frequencies of DNA words having a fixed length k or from maximal common
words (substrings). The usual criticism about them is that the corresponding dis-
tances could not be considered as evolutive since they do not derive from a model of
sequence evolution. Consequently, the inferred trees are suspicious for phylogeny.
We try to assess this statement selecting four alignment free distances computable
in linear time: the Maximum Significant Matches (MSM) distance, which improves
the Maximum Unique Matches (MUM) distance described in Guyon and Guénoche
(2008), a k-word (KW) distance (Qi et al. 2004), the Average Common Substring
(ACS) distance (Ulitsky et al. 2006) and one of the compression distances (ZL)
defined by Otu and Sayood (2003).

The aim of this paper is to compare these distances according to their accuracy to
recover the correct phylogenetic tree, using simulated data. Our paper is organized
as follows:

� In Sect. 2, we recall the definitions of the four distances, establishing the mini-
mum length of a common word to be significant.

� In Sect. 3, we describe an evolutionary model including nucleotide substitutions,
insertions and deletions of fragments, making large variations in base com-
position and length. Then, using several topological criteria, we compare the
recovered NJ trees to those used to generate sequences.

2 Four Alignment Free Distances

2.1 The MSM Distance

We define a Maximum Significant Match (MSM) as a word that is present in two
DNA sequences, which cannot be extended without mismatch and which is not
expected to occur by chance. So, we first estimate the minimum length for which a
maximal match is significant, according to the length and base composition of the
two compared sequences.

LetG1 andG2 be two DNA sequences ofL1 andL2 characters over the alphabet
A D fA,C,G,Tg andNi .˛/ be the number of characters ˛ in genomeGi . We assume
that the sequences satisfy an i.i.d model having successive characters sampled inde-
pendently with distribution �i .˛/ D Ni .˛/

Li
in sequence Gi . Hence, the probability

of a character match between two sequences is given by

pmatch D
X

˛2A
�1.˛/�2.˛/:
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Let Nl be the expected number of common words with a length greater than l ; it
is given by the limit of the geometric series

Nl D .1 � pmatch/
2L1L2

1X

kDl

pk
match D .1 � pmatch/L1L2p

l
match (1)

We define the significant length denoted lmin to be the smallest length such that
the expected number of common words larger than lmin is lower than 1 in random
sequences. From (1)

lmin � � log.L1L2.1 � pmatch//

log.pmatch/
:

In practice, to get an integer value Lsign, which is sufficient to assert that a com-
mon word of such length is unlikely to occur in random sequences, we round up
lmin to

Lsign D 1C blmin C :5c:
This value has been tested by simulations and provides better results than dlmine.
According to this Lsign definition, the average MSM number between two random
sequences is observed to be lower than .5, whatever are the base compositions and
the sequence lengths.

So, a Maximal Significant Matches (MSM) is a maximal common word not
smaller than Lsign. To define the MSM distance function, we consider the sum
of length of these words :

DMSM .G1; G2/ D � log

P jMSM.G1; G2/j
minfL1; L2g

When there is no MSM the numerator is set to 1 to avoid infinite distance value.
The MSM identification is performed by a suffix tree which is a very efficient

structure for finding all the matches common to two strings. It can be constructed in
linear time, using a linear space. For computation, we use the MUMmer suffix tree
package developed by Kurtz et al. (2004).

2.2 The k-word distance

Taking into account the frequencies of DNA words to compare genomes is not
new (Karlin 1995). The basic idea is to use the frequency vector of all the words
of fixed length k present in a sequence. This vector is very easy to compute in
linear time, moving a k-width window along the sequence. Usual formulas, such as
euclidean or manhattan distances between these vectors, are not very accurate for
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precise phylogenetic reconstruction, even when frequencies are corrected to take
base composition heterogeneity into account.

In an article, devoted to phylogenetic reconstruction from distances between
complete genome sequences, Qi et al. have tested a more accurate string distance.
The frequencies of all the words of length k are computed but also those of length
k�1 and k�2. Let Fi .a1; ::ak/ be the observed frequency of word .a1; ::ak/ within
the Gi sequence, both strands being considered. The expected value, according to a
Markov model of order k � 1, is

Ei .a1; ::ak/ D Fi .a1; ::ak�1/Fi .a2; ::ak/

Fi .a2; ::ak�1/
:

Thus the authors do not work anymore with raw frequencies, but with their vari-
ations over what is expected. They associate to each genomeGi a vector vi indexed
over all the words of length k, each component being equal to:

vi .a1; ::ak/ D Fi .a1; ::ak/ �Ei .a1; ::ak/

Ei .a1; ::ak/
:

These vectors are compared measuring the cosine value of their angle. A simple
normalisation permits to get a distance value in [0,1].

KW.G1; G2/ D .1 � v>
1 v2

kv1k2kv2k2 /=2

2.3 The ACS distance

The third distance is also based on longest common words between two sequences.
It has been introduced by Ulitsky et al. (2006) as the Average length of longest
Common Substrings starting at any position in both sequences.

In each position in G1, a longest word common to G2 is searched. Let wi be
this word starting in position i in G1 that can be anywhere in G2 and let jwi j be
its length. The larger is

P
iD1;::L1

jwi j the closer is G1 to G2. Considering that this
sum is increased when L2 is high, the similarity between G1 and G2 is normalised:

S.G1; G2/ D
PL1

iD1 jwi j
L1 log.L2/

:

As generally S.G1; G2/ ¤ S.G2; G1/, the ACS distance is defined as the average
of the inverse of the two similarity values.

ACS.G1; G2/ D 1

2

�
1

S.G1; G2/
C 1

S.G2; G1/

�
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In the original publication, there is a correction term to insure ACS.G;G/ D 0,
which is not considered here because it tends very quickly to 0. The formula is
justified in case the strings were generated by unknown Markov processes. It can
be computed in linear time with a suffix tree structure, but the implementation of a
suffix array (lexicographical order on suffixes) gives an acceptable time complexity
in O.L log.L// to evaluate a single similarity value.

As it is described, this distance considers only one strand, because it has been
applied by the authors to protein sequences. For DNA genomes, we compare G1 to
the both strands of G2 and so wi can be on one or the other.

2.4 A Compression Distance

Compression distances are derived from the Kolmogorov complexity theory, consid-
ering the smallest size of an automata (program) permitting to generate a sequence.
The most regular is the sequence, the shortest is the program. But no procedure
can guarantee that an automata has the minimum size. So, most of the researchers
use the file compression algorithm due to Ziv and Lempel (1977), which is still
intensively used. Its principle is to look for new words in a sequence. It seeks
for the longest repeated word starting at the current position and, adding one
character, it provides a shortest new word and set the next current position here-
after. This procedure consists in slicing sequence G into consecutive words G D
.g1jg2j::jgp/ such that gi D .a1::ak/ is the shortest word which is not present in
prefix Gi�1 D .g1j::jgi�1/ extended with the k � 1 characters of gi . This implies
that .a1::ak�1/ is present in G before the ak�1 position.

Doing so, word g1 necessarily has just one character a1, and also is g2 except
if g2 begins with character a1, etc. For instance, G D .acacagtagtcag/ will be
sliced into six words, .ajcjacagjt jagtcjag/, the third being g3 D .acag/ since aca
is a previous prefix (in position 1), but acag is not.

The important quantity in the Ziv-Lempel algorithm is the number of words in
this decomposition. This function is classically denoted by h. In fact h.G/ is the
number of shortest new words in G. Here h.acacagtagtcag/ D 5, since the last
word, ag is not new. The h function is intensively used to define the five distances
proposed by Otu and Sayood (2003); we retain the last one:

Considering two genomesG1 and G2 letG1CG2 be the concatenated sequence
of them two. It is clear that h.G1 C G2/ � h.G1/ C h.G2/, since the new words
found in G2 after the G1 slicing can have been previously found.

ZL.G1; G2/ D h.G1 CG2/� h.G1/C h.G2 CG1/ � h.G2/

h.G1/C h.G2/

which corresponds, as the authors say, to the G2 compression knowing G1 plus the
G1 compression knowingG2 devided by the compressions of G1 and G2.
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These distance values, between 0 and 1, can also be efficiently computed using a
suffix-tree as for the MSM distance.

3 Simulations

Sequences are generated according to a tree T , and random mutational events
occurring along the edges. The tree shape is selected at random, as the edge’s
lengths.

3.1 A Simple Evolutionary Model

It depends on four parameters. The first one Ind represents the average number of
insertions and deletions of DNA fragments in the tree. These indel fragments can
occur in any edge and produce sequence length variations. Both losses and gains are
equally probable:

� Deletion of a DNA segment at any position, covering at most 1/10-th of the
sequence length;

� Insertion of a DNA segment no larger than 1/4-th of the sequence length, at
any position. With the same probability, it can be a duplication of the adjacent
fragment, as in a tandem repeat, or a fragment taken from another sequence in
the tree, simulating an horizontal transfer.

A second parameter Rev allows to fix the average number of reversed frag-
ments between the ancestral sequence and any terminal one. As for the indels, these
reversals can arise along any internal edge.

A third parameter, Sub, refers to the percentage of positions in each sequence
where a substitution occurred all along the evolutionary process. The number of sub-
stitutions between two successive nodes is proportional to the length of this edge and
the mutated positions are selected at random. In 3/4 cases it is a transition (A$ G

or T $ C ) and in 1/4 case it is a transversion, such as in a Kimura2p model (1980).
A fourth parameter indicates if the base composition (BC) remains constant

or not along the evolutionary process. When BC D 0 the substitution rate is the
same all over the tree and produces sequences having nearly the same proportion
of nucleotides as the ancestral sequence. With BC D 1, at each bifurcation, some
mutations to A or T on one side, and to G or C on the other side, are inhibited. Conse-
quently, terminal sequences at the end of the subdivisions can present heterogeneous
base composition.

This four parameters evolutionary model is used to generate sets of sequences
having evolved according to a random phylogenetic tree. It allows generating
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sequences having a length varying from one to the double and with a GCC content
ranging from 25% to 75%, as it is often observed in real genomes.

3.2 The Simulation Process

To generate random phylogenetic trees, we use the Yule-Harding procedure (1971).
Edge lengths are uniformly selected in the range Œ1; 10�, providing large variations.
The simulation process consists in:

1. Starting from an ancestral random DNA sequence, the four bases being equiprob-
able;

2. Generating a set of n terminal sequences (after n � 2 internal ones), following a
random topology (T ) and the evolutionary model described above;

3. Estimating the distance between pairs of terminal sequences, using each of the
four distances;

4. Reconstructing the corresponding phylogenetic tree (T 0) using the neighbor-
joining method (Saitou 1987);

5. Comparing T 0 to T , using three classical criteria:

� The number, RF of internal edges in T 0 which are not in T ; as both trees
have .2n� 3/ edges, it is half the Robinson-Foulds distance (Robinson 1981)
between X-tree topologies.

� The number of quadruples NbQ which do not have the same topology in both
trees; this quantity, divided by the total number of quadruples, is another
distance between X-trees, more progressive than the first one (Estabrook
1985).

� The maximum number of leaves for which the initial and the computed trees
are topologically identical. This parameter is classically denoted as the MAST
value, for Maximum Agreement Sub-Tree (Amir and Keselman 1997). It is a
similarity index, bounded by n so, to keep a distance index we edit .n�MAST/
value, corresponding to the number of taxa to erase to get identical subtree
topologies.

These criteria are independent of the edge lengths. They only compare unrooted
phylogenetic trees as they are provided by NJ; for these comparisons T is
considered as unrooted.

3.3 Simulation Results

We performed simulations using various sets of parameters. They all give similar
results. We present here those obtained with an ancestral sequence of 50,000 base
pairs, an average number of indels (Ind) in the tree equal to 0, 5 or 10, an aver-
age number of reversals (Rev) for each leaf ranging from 0 to 4 and two different
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substitution rates (Sub), 25% and 50% of positions. Each random tree has 16
leaves, contains 13 internal edges and 1,820 quadruplets. The length of the terminal
sequence range from 30,000 to 70,000 nucleotides. The average values of RF;NbQ
and MAST have been evaluated on 200 trials. For the KW distance, value k D 6 has
been retained, because all the 4,096 words of length 6 are expected in any terminal
sequence. But larger value could be used for bacterial genomes around 5 Mb.

Two sets of simulations were performed assuming a constant or variable base
composition. Table 1 shows the results when BC D 0, bases being equiprobable in
any generated sequence. Table 2 corresponds to BC D 1. When Sub D 0:25 (resp.
Sub D 0:50) we get sequences having 60% (respectively 75%) of ACT or GCC,
as it is often observed among bacterial genomes.

These results clearly show that the MSM distance is more efficient than the three
others to recover topology T . For instance the MAST and RF criteria are gener-
ally around 1, which means that only one element is badly placed. Among the
other distances, the KW distance provide better results than ACS and ZL, when
BC D 1. In other sets of simulations, we have tested the ACS distance on random
sequences and we observed that the distance values are lower between sequences
with the same nucleotide composition than between sequences having a large differ-
ence between the ACT and GCC rates. This indicates that the ACS distance tends
to join sequences having similar base composition. This becomes obvious when
BC D 1 and proves that the ACS distance is not adapted to prokaryotic genomes.

Table 1 Average values of Robinson-Foulds, quadruplets and MAST criteria, depending on the
number of fragment indels, reversals and substitution rate, for the MSM, ACS, KW and ZL
distances (BC D 0)

BC D 0 MSM ACS KW ZL
Ind Rev Sub RF NbQ MAST RF NbQ MAST RF NbQ MAST RF NbQ MAST

0 0 .25 0.0 0 :0 1.9 107 2.0 1.5 85 1.6 1.8 96 1.8
5 2 .25 0.1 8 :16 2.2 127 2.3 1.5 81 1.6 3.0 151 2.8
10 4 .25 0.2 14 :23 1.9 110 2.0 1.5 87 1.6 2.7 150 2.7
0 0 .50 0.5 28 :53 2.4 145 2.5 2.9 197 2.9 2.5 150 2.6
5 2 .50 0.6 40 :70 2.5 157 2.7 3.1 235 3.4 2.9 177 2.9
10 4 .50 0.9 65 1:1 2.6 168 2.8 3.0 211 3.1 2.9 196 2.9

Table 2 Average values of Robinson-Foulds, quadruplets and MAST criteria, depending on the
number of fragment indels, reversals and substitution rate, for the MSM, ACS, KW and ZL
distances (BC D 1)

BC D 1 MSM ACS KW ZL
Ind Rev Sub RF NbQ MAST RF NbQ MAST RF NbQ MAST RF NbQ MAST

0 0 .25 0.1 4 0:07 2.1 111 2.2 1.6 92 1.6 2.1 121 2.2
5 2 .25 0.2 8 0:20 2.1 137 2.3 1.7 94 1.9 3.4 190 3.2
10 4 .25 0.3 15 0:28 2.1 110 2.2 1.6 102 1.8 3.0 165 3.0
0 0 .50 0.9 54 :98 7.2 659 5.9 3.6 256 3.6 5.4 433 4.8
5 2 .50 1.0 61 1:0 7.5 670 6.0 3.7 274 3.8 6.9 581 5.8
10 4 .50 1.2 71 1:2 7.7 697 6.1 3.9 275 4.1 6.6 596 5.5
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The ZL distance is always intermediate between ACS and KW even when BC D 1

and KW becomes much more accurate for phylogeny than the ACS distance.

4 Conclusion

We described the MSM distance between complete DNA genome sequences for
phylogenetic reconstruction, avoiding difficulties arising from orthology recognition
and gene alignment. It can be computed in time and memory space proportional to
genome length. Simulated data showed that the MSM distance over performs the
three other alignment free tested distances, and it is not sensitive to bias in base
composition.

The superiority of the MSM distance is essentially due to the fact that it only
takes into account significant matches having a minimum length which strongly
varies according to the base composition; it is much higher for two genomes sharing
similar GCC rate. Therefore it permits to avoid spurious matches and also spurious
grouping of taxa.

The MSM phylogenies from to real genomic data will be described in another
paper. One can indicate that the topologies are mainly congruent with references
phylogenies based on SSU and LSU rRNA sequences, proving that this distance
could be used to study relationship within phylum and is very efficient within
families and orders.
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Data Quality Dependent Decision Making
in Pattern Classification

Josef Kittler and Norman Poh

Abstract Sensory information acquired by pattern recognition systems is invari-
ably subject to environmental and sensing conditions, which may change over time.
This may have a significant negative impact on the performance of pattern recog-
nition algorithms. In the past, these problems have been tackled by building in
invariance to the various changes, by adaptation and by multiple expert systems.
More recently, the possibility of enhancing the pattern classification system robust-
ness by using auxiliary information has been explored. In particular, by measuring
the extent of degradation, the resulting sensory data quality information can be used
with advantage to combat the effect of the degradation phenomena. This can be
achieved by using the auxiliary quality information as features in the fusion stage
of a multiple classifier system which uses the discriminant function values from
the first stage as inputs. Data quality can be measured directly from the sensory
data. Different architectures have been suggested for decision making using quality
information. Examples of these architectures are presented and their relative merits
discussed. The problems and benefits associated with the use of auxiliary infor-
mation in sensory data analysis are illustrated on the problem of personal identity
verification in biometrics.

1 Introduction

Many problems in data analysis are specified by the objectives of data analysis
and a set of representative data. The solutions found are then used to process new
data acquired in subsequent studies or when the solution is deployed in a future
operation. A typical example are classification problems, both supervised and non-
supervised, where the available data is used to partition the observation space and
once the partition is determined, it is then used to classify new data samples.
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One of the challenges faced in the subsequent use of the data analysis solutions
is a data drift. By drift we understand a transformation of the class populations due
to factors that influence the data acquisition. Depending on the nature of the data,
these factors relate to changes in the sensor characteristics (e.g. for visual sensors
either optics or electronics), the environmental conditions (illumination, background
noise, clutter, atmospheric conditions), or the behaviour of the imaged object during
data acquisition (pose, motion, deformation, biological evolution such as aging).

A good solution to a classification problem will include some form of protection
to any anticipated data changes. There are a number of measures that can be adopted
to alleviate the problem of a data drift. For instance, one can enhance the robustness
of the solution by using invariant measurements. An alternative is to collect data in
all the possible conditions that may be envisaged during the system operation. This
approach ensures that the data that serves as a basis for solving the classification
problem remains representative in future operation. This is somewhat difficult to
accomplish, as, at the outset, it is not always possible to predict all the types of
changes that might cause a future drift of the class populations.

Although each observation is a single point in the representation space, it retains
its physical meaning defined by the sensor and the sensed object. For instance for
an imaging sensor, a point may be an image of an object to be classified. Recalling
this true nature of the data, one of the open options is to correct for any drift by
means of normalisation. For each factor causing a data drift, a suitable normalisation
procedure would have to be applied. For example, if the data drift is induced by
illumination variation, a photometric normalisation will be required to compensate
for such environmental changes. Similarly, an appropriate normalisation would be
needed by other types of degradations. Various normalisation procedures proposed
in the literature have been shown to be very effective in stabilising the data, e.g., Poh
et al. (2009).

Another effective approach to dealing with a data drift is to use multiple experts.
In other words, using a set of solutions to the same classification problem instead of
the individually best solution. It is well known that, if these experts provide diverse
opinions about the points to be classified, the classification accuracy of the solu-
tion is improved. It is less well known that multiple classifier systems also improve
the robustness of the solution to data drift. In this paper we pursue this particular
approach to the data drift problem. We show that the effectiveness of the multiple
expert approach can be enhanced by making the use of information about the data
quality. By data quality we mean an objective measure of the data departure from its
nominal characteristic. As already indicated, data drift is caused by various factors
which will be reflected in the properties of the sensory signals. One can view these
signal changes as changes in signal quality. In the normalisation approach discussed
earlier we attempt to reverse the signal changes by the application of preprocessing
algorithms that aim to stabilise the data to be classified. In the multiple classifier sys-
tem approach the idea is to express signal changes in the form of quality measures.
These quality measures can then be used as auxilary features in the multiple classi-
fier system fusion. As a result, the fused system decision is influenced not only by
the expert opinions regarding the respective hypotheses, but also by measures of the
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signal quality. We formulate the problem of multiple expert decision making which
incorporates quality information. We then show that the use of this auxiliary infor-
mation leads to further improvement of the system performance under data drift.
This is illustrated on data relating to personal identity authentication using facial
biometric.

The paper is organised as follows. In the next section we develop a theoretical
framework for the quality based fusion of multiple classifier systems. In the formu-
lation adopted the quality information is used as additional features. Accordingly,
the decision making in the fusion stage of the resulting multiple classifier system
is realised in an augmented feature space. In Sect. 3 we demonstrate this approach
on a two class problem of face verification, where the data drift is caused by illu-
mination changes. We show that the use of multiple experts results in performance
gains over the best performing expert. These gains are further enhanced by incorpo-
rating quality information in the fusion process. The paper is drawn to conclusion
in Sect. 4.

2 Theoretical Framework

2.1 Problem Formulation

In order to facilitate the discussion, we shall first present some notation.

� k 2 Œ1; : : : ; K� is the class label (or object types), and there are K classes.
� y D F.x/ is a vector output of a classifier F of K dimensions, typically esti-

mating the posterior probabilities of all K class membership given x, y �
Œy1; y2; : : : ; yK �

0 D ŒP.k D 1jx/; P.k D 2jx/; : : : ; P.k D Kjx/�0, where “0”
denotes the matrix transpose operator. The classifier will assign x to the class

k� D max
k
P.kjx/: (1)

An example of classifier F giving y as posterior probabilities of class mem-
bership is a neural network with the softmax activation function at its output
layer (Bishop 1999). Although our interpretation of y is probabilistic, it is not
restricted to this. Other classifier architectures, e.g., support vector machines
(SVM) and classifiers outputting ratios of two competing hypotheses (e.g., dis-
criminant functions) can also be used as F , as long as the decision rule in (1)
(with maximum or minimum) is applicable. In all cases, the score vector y can
be seen as a measurement in the class hypothesis space.

� q 2 R
L is a vector of quality measures output by L quality detectors. A quality

detector is an algorithm designed to assess the quality of the signal from which
pattern vector x originates. If the signal is an image, the measures may include,
e.g., resolution, the number of bits per pixel, contrast and brightness as defined
by the MPEG standards. These measurements aim directly to measure the quality
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of the acquired signal. More examples will be given in Sect. 2.3. In general, these
measures will be closely linked to the classifier, F , and will have to be designed
with the classifier in mind.

There are several points to note. First, in the presence of data-drift affecting x, the
measurement y will also be affected. This will be manifest in an increase in the
entropy of fykjk D 1; : : : ; Kg, defined as

entropy.y/ D Ek Œlogyk �;

where fykjk D 1; : : : ; Kg are elements in y.
Second, the hypothesis space y does not need to reflect probabilities. For instance,

one can apply the logit transform, or its generalized version, to each of the elements
in y. This is a one-to-one order preserving transformation. The generalized logit
transform is defined as (Dass et al. 2006):

Oyk D log

�
yk � a
b � yk

�

(2)

for an output variable yk bounded in Œa; b�. An important advantage of this transfor-
mation is that the processed vector Oy appears to be much more normally distributed,
rather than skewed as in the probability space. This can significantly improve the
design of a fusion classifier in any subsequent stage of decision making (stacked
generalizer). An example of this transformation is shown in Fig. 1.

In the multiple expert paradigm, one would construct multiple estimates of y.
Let i be the index of the i -th expert and let there be i D 1; : : : ; N experts. We
shall introduce yi D Fi .x/ as the output of expert Fi (each observing the same data
sample, x). At this point, it is also convenient to define Y D Œy1; : : : ; yN �

0 as a con-
catenation of the outputs of all N experts. Note that an element of Y, Yik, indicates
the output of the i-th expert for the k-th class hypothesis. In order to integrate the
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Fig. 1 The effect of applying the generalized logit transformation to two expert outputs
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Quality normalization based fusion

a

Direct design of quality-based fusion

b

Conventional fusion with no quality
assessment

c

Fig. 2 Two possible architectures for implementing quality-based fusion

opinions of the respective experts, we need to design a fusion mechanism capable
of handling the output of multiple experts along with the quality measures:

G W Y;q! ycom (3)

where ycom 2 R
K . G is also known as quality-based fusion.

The function G estimates the posterior probability of the respective hypotheses,
where the element in ycom, ycom

k
, is estimated by:

ycom
k D P.kjY;q/ (4)

Two possible architectures for realising G are shown in Fig. 2. In the first
approach (Fig. 2a), the quality measures are used to normalise each individual expert
output yi :

ynorm
i D Gi .yi ;q/; for all i (5)

The normalized outputs are then combined using another classifier or a fixed rule
(sum or product) in order to obtain ycom. A typical example of the latter case is the
sum fusion

ycom D
X

i

ynorm
i

The second approach (see Fig. 2b) solves (3) directly. In the absence of the quality
measures, both approaches reduce to the conventional fusion (i.e. without quality
measures), shown in Fig. 2c. It will shown in Sect. 3 that under changing test
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conditions, the quality-based fusion systematically outperforms the conventional
one (Kittler et al. 2007).

The first approach, combined with a fixed rule, offers an attractive modular solu-
tion in the sense that each expert output is processed individually. Effectively, the
dimension of the quality augmented hypothesis space isKCL (the sum of length of
the vectors yi and q). This is significantly smaller than that of the second approach,
which isK	NCL (the sum of dimensions of Y and q), or that of the first approach
with a general fusion scheme where the dimensionality is K 	N .

The increased dimensionality in the second approach can be seen as a weakness
because many more parameters need to be estimated at the same time. This weak-
ness is, however, outweighed by an important advantage: the ability to handle the
dependency among the system outputs. Since each expert observes the same input
sample x, their outputs are necessarily dependent. The first approach with a general
fusion scheme can still handle any output dependency in the fusion module. How-
ever, the first approach with a fixed rule, such as the Naive Bayes, ignores the expert
output dependency and this may be reflected in degraded performance.

2.2 Quality-Based Fusion

This section aims to estimate (4), bearing in mind that any classifier, even those
that do not output probabilities (e.g., SVM) can be used after an appropriate
normalisation.

We shall explore two different approaches: generative and discriminative.
In order to facilitate the discussion for the generative approaches, we shall use

graphical models (Bishop 2007), also known as Bayesian networks (Jensen 1996).
A graphical model is a graph with directed arrows representing conditional proba-
bilities. A node in the graph is a variable. An arrow from variable A to variable B
specifies their causal relationship, i.e., the conditional probability of B givenA, i.e.,
p.BjA/.

Two possible graphical models for modeling the relationship between y (noting
that the index for each expert i is not used here for simplicity) and q are shown in
Fig. 3. The first model (Nandakumar et al. 2008), as depicted in Fig. 3a, attempts to
characterize the following joint density

p.y;q; k/ D p.y;qjk/P.k/ (6)

whereas the second model (Fig. 3b) achieves this slightly differently:

p.y;q; k/ D p.yjk;q/p.qjk/P.k/; (7)

Note that the second model involves the density of quality measures conditioned
on class label k. However, as the signal quality is independent of the class label k,
i.e., the quality measures cannot be used to distinguish among different classes of
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Fig. 3 Three graphical models that capture the relationship between match scores y, quality
measures q an the class label k in different ways

objects, modelling p.qjk/ is unnecessary. More importantly, an impending problem
with the implementation of the second model is the need to estimate the conditional
density p.yjk;q/. Because the conditioning variable q is multivariate and contin-
uous, one has to use a multivariate regression algorithm. In comparison, the first
approach needs only to estimate p.y;qjk/, a problem which is well understood,
since the conditioning variable in this case is discrete.

Although the first approach is preferable, there is an alternative. The third
approach (Poh et al. 2007), attempts to model q by introducing a latent discrete
variable Q 2 Œ1; : : : ;Q� (see Fig. 3c). The idea is first to classify q into Q discrete
clusters. Then, the modeling of p.yjq; k/ can be achieved as follows:

p.yjq; k/ D
X

Q

p.y;Qjq; k/ D
X

Q

p.yjQ;k/P.Qjq/

where P.Qjq/ is the posterior probability of cluster Q given the quality mea-
sures q. The cluster-based approach can effectively provide a simpler method of
implementing the second approach.

If one uses a mixture of Gaussian (Bishop 1999) as a clustering algorithm,
estimating

p.q/ D
X

Q

p.qjQ/P.Q/;

then the posterior probability p.Qjq/ can be estimated via the Bayes rule:

P.Qjq/ D p.qjQ/P.Q/
p.q/

:

Once the density p.y;qjk/ (for the first approach) or p.yjq; k/ (for the second
and third approach) is estimated, for the generative model, the posterior probability
of class membership can be obtained by using the Bayes rule:

P.kjy;q/ D p.y;qjk/P.k/
P

k0 p.y;qjk0/P.k0/
(8)
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The second and third model can be estimated similarly by replacing the term
p.y;qjk/ with p.yjq; k/.

Extending this concept to estimating P.kjY;q/, in the context of multiple clas-
sifiers, is straightforward. Following the discussion in Sect. 2.1, one can employ the
normalization-based strategy or the joint modeling strategy. For the first strategy,
one can employ the sume rule, or the Naive Bayes principle, i.e., by estimating
p.Y;qjk/ as p.Y;qjk/ DQi p.yi ;qjk/, and then applying the Bayes rule in order
to obtain P.kjY;q/. For the second strategy, one simply replaces every appearance
of y by Y in this section.

As an alternative to the generative approach, one can estimate P.kjy;q/ directly.
For instance, the posterior probability P.kjy;q/ (for all K classes) can be imple-
mented using a multilayer perception with a softmax output layer (Bishop 1999).
Alternatively, for non-probabilistic classifiers, one can use a multi-class SVM, to
learn discriminative functions Hk.Y;q/. To obtain the posterior probabilities of
class membership k, we use

P.kjY;q/ D expfHk.Y;q/gP
j expfHj .Y;q/g (9)

2.3 Data Quality Assessment

The quality of sensory signal giving rise to data x, respectively y is multifaceted
and cannot be captured by a single quality measure. Instead, a collection of quality
measures, q1; : : : ; qP should be computed, as implied in the formulation given in
Sect. 2.1. For instance, there are many measures that have been proposed to char-
acterize image quality. These include focus, resolution, image size, uniformity of
illuminations, background noise, object pose, etc. If all these measures are treated
as separate features augmenting the dimensionality of the score space, then its size
may grow disproportionately, potentially leading to over training problems. The
likelihood of poor generalization is high, especially in view of the fact that quality
measures themselves do not convey discriminatory information. This may further
be aggravated by the small sample size problems plaguing some classification
applications.

Second, signal quality is not an absolute concept. Suppose a classification system
is designed using a set of training data acquired with a web camera, but an opera-
tional test is conducted using images captured with a camera of much better quality.
From the point of view of the classification algorithm, the better quality image will
actually appear as degradation. Thus a quality assessment should be carried out in
the context of a reference defined by the system design conditions. In fact the situ-
ation is even worse, as the existing approaches to quality based fusion do not take
into account the properties of the classification algorithms. For instance, if one sys-
tem uses an algorithm that can correct for illumination or object pose problems,
then the supplied image quality information will be misleading and may affect the
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performance of the system adversely. On the other hand, for algorithms that cannot
compensate for changes in illumination and pose the quality information is likely to
be crucial. Thus signal quality assessment cannot be algorithm independent either.
This raises a fundamental question how signal quality should be defined, whether it
can be measured directly from the sensory data, or whether it should be derived by
the classification algorithm itself using the internal knowledge about its capabilities.

3 An Illustration of the Benefits of the Quality Based Fusion

We illustrate the benefit of quality based fusion in the presence of data drift on
the problem of identity verification using face biometrics. The experiments are
conducted on the XM2VTS database (Matas et al. 2000) and its degraded sec-
tion (Messer et al. 2006). The problem is illustrative of data drift caused by the
changing conditions of the acquisiton environment and hence the quality of the
data. The original database which was used for training the class models contains
mugshot images with well controlled illumination. The darkened section contains
images taken under strong side illumination, which is known to degrade signifi-
cantly face verification performance (Messer et al. 2006). Examples of these images
are shown in Fig. 4.

The database contains 295 subjects, which includes 200 subjects selected to be
clients, 25 to be impostors for the algorithm development (training), 70 to be impos-
tors for algorithm evaluation (testing). For each subject, the face images are acquired
in four sessions; the first three are used for training the classifiers and the last one
for testing. We consider the dark dataset with left illumination as the “fifth session”
and the one with right illumination as the “sixth” session.

We used a set of proprietary quality measures developed by Omniperception Ltd
for the face image quality assessment. These measures are: “frontal quality”, mea-
suring the deviation from the frontal face; and “illumination quality”, quantifying
the uniformity of illumination of the face. It should be noted that none of these
quality detectors were designed specifically to distinguish the three strong domi-
nant quality states of the face images in the XM2VTS database: good illumination,

Well illuminated

a

right illumination

b

left illumination

c

Fig. 4 Frontal and side illumination of a subject taken from the XM2VTS database
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left illumination and right illumination. Using the above quality measures makes the
problem of quality-dependent fusion more challenging.

The classifiers used for the face experts in this paper can be found in Heusch
et al. (2006). There are two classifiers with three types of pre-processing, hence
resulting in a matrix of six classifiers. The two classifiers used are Linear Dis-
criminant Analysis (LDA) with correlation as a measure of similarity (Kittler et al.
2000) and Gaussian Mixture Model (GMM) with maximum a posteriori adaptation,
described in Reynolds et al. (2000). The use of the GMM in face authentication
can be found in Cardinaux et al. (2006). The face pre-processing algorithms used
include the photometric normalisation as proposed by Gross and Brajovic (2003),
histogram equalisation and local binary pattern (LBP) as reported in Heusch et al.
(2006). The feature extraction and classification algorithms are implemented using
the open-source Torch Vision Library.1

With the availability of six face experts, we performed exhaustive fusion, each
time combining 2, 3, etc., experts until all six are used. This results in 63 combi-
nations. The two architectures, namely quality normalization-based and joint fusion
approaches (shown in Fig. 2a and b) are then compared with the baseline system
in Fig. 2c. Since this is a binary classification problem (a person is either a gen-
uine user or an impostor), logistic regression was used to approximate the posterior
probabilities of class membership in all cases. The results of the 63 fusion tasks are
shown in Fig. 5.
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Fig. 5 Comparison of (a) quality based normalisation (Architecture 1) and (b) joint process-
ing (Architecture 2); in the Y-axes with respect to the baseline system without using quality
(Architecture-3); in the X-axes. Each point in the figures are the a posteriori EER (%) of one
of the possible 63 fusion tasks. In both figures, the numbers in the legend are the number of experts
used in one of the 63 fusion tasks

1 Available at “http://torch3vision.idiap.ch”. See also a tutorial at “http://www.idiap.ch/marcel/
labs/faceverif.php”.

http://www.idiap.ch/marcel/labs/faceverif.php
http://www.idiap.ch/marcel/labs/faceverif.php


Data Quality Dependent Decision Making in Pattern Classification 35

For performance evaluation, we used Equal Error Rate (EER). This error is often
used in the face recognition community to handle the case of highly unbalanced
class priors. EER is defined as the average of False Acceptance Rate (FAR) and
False rejection Rate (FRR). FAR is also known as false alarm rate whereas FRR is
also known as miss detection rate.

As can be observed, the proposed approach using fY;qg is almost always bet-
ter than the baseline fusion approach using only Y. The average observed relative
improvement in the system robustness to data drift is about 25% but up to 40% can
be attained.

4 Conclusions

A data drift caused by changes of the environment, sensor characteristics and object
representation in sensory data acquisition can seriously degrade the performance of
pattern classification systems. We proposed a solution which is based on the pro-
tective measures against data drift offered by the paradigm of multiple classifier
systems. We showed that by incorporating sensory data quality information in the
fusion stage of the multiple classifier system, considerable robustness to data drift
can be achieved. A framework for quality assisted fusion of multiple experts has
been developed and its variants discussed. The proposed approach has been demon-
strated on the problem of personal identity verification using facial biometrics. The
improvement in handling a data drift caused by illumination changes in face image
acquisition was 25% on average and could be as high as 40%.
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Clustering Proteins and Reconstructing
Evolutionary Events

Boris Mirkin

Abstract The issue of clustering proteins into homologous families has attracted
considerable attention by researchers. On one side, many databases of protein fam-
ilies have been developed by using relatively simple clustering methods and a lot of
manual curation. On the other side, more elaborated clustering approaches have
been used, yet with a very limited degree of success. This paper advocates an
approach to clustering protein families involving the knowledge of protein func-
tions to adjust the parameter of similarity scale shift. We proceed to reconstruct
HPF evolutionary histories to both further narrow down the choice of the cluster
solution and interpret clusters.

1 Introduction: Clustering and Knowledge Feedback

Clustering is conventionally applied for deriving protein families (see, for example,
Thompson et al. 1994; Tatusov et al. 2000; Bader and Hogue 2003; Kawaji et al.
2004; Chen et al. 2006; Mirkin et al. 2006; Paccanaro et al. 2006; Brown et al.
2007; Poptsova and Gogarten 2007; Mirkin et al. 2010).

Our clustering method falls within the so-called data recovery approach applied
to the similarity data. According to this approach similarity data are considered as
weighted sums of “ideal” structures such as partitions or clusters, the clusters and
their intensity weights being determined by minimizing the differences between
the given similarity data and those generated by the putative model. We extract
clusters one-by-one (Mirkin 1987, 1996), to both facilitate the search and supply
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meaningful estimates of their intensity and contribution to the data scatter. In a data
recovery clustering model, there is a parameter, analogous to the intercept of the
regression line, that plays the role of a prior similarity shift. This parameter also is a
‘soft’ similarity threshold, so that entities whose similarity is less than its value are
unlikely to get combined in the same cluster. The parameter’s value may strongly
affect the number and contents of the clusters, and it can be derived according to the
least-squares criterion. However, as we shall illustrate, a better choice may be made
by using proteomics knowledge.

A clustering method, derived from the data recovery approach, can be applied to
evolutionary intergenomic studies in which clusters are interpreted as homologous
protein families (HPFs). The proteins in each of these families are assumed to be
inherited from the same ancestor, so that an HPF can be parsimoniously mapped
to an evolutionary tree on the set of genomes under consideration, thereby recon-
structing the HPF’s evolutionary history. Obviously, the reconstructed histories may
critically depend on the level of aggregation: a highly aggregated family intersecting
all or almost all genomes would be mapped to the last common ancestor. However,
if the family is partitioned, the parts would be mapped to different, more recent,
ancestors. These two mappings would lead to two different histories of the function
of the HPF under consideration. As the level of aggregation of proteins depends on
the value of the similarity threshold/shift, the evolutionary mapping of protein fam-
ilies can be used for fine tuning that value by analyzing the consistency between the
reconstructed histories and other data available.

To determine an appropriate value for the similarity shift, we analyze a set of
pairs of HPFs whose functions are known. The expectation is that proteins with the
same function should be more similar to each other than would be proteins with
dissimilar functions. This should indicate an appropriate similarity value that could
distinguish those pairs that should be in the same cluster from those that should not.
The actual distribution of similarity scores may turn out to be more complex than
we would hope, so that not one but two reasonable similarity shift values emerged:
one would guarantee that HPFs with dissimilar functions would be in different clus-
ters, whereas the other would give the minimum error in separating protein pairs
with similar and dissimilar functions. The final choice, however, requires further
knowledge of the genomes, viz. the consistency between the suggested ancestral
reconstructions and gene arrangements.

Therefore, our approach involves two phases of interference of the cluster-
ing and proteome knowledge: one, passive, takes in the knowledge to adjust the
values of a clustering parameter, and the second, active, makes use of cluster-based
evolutionary histories of protein functions.

The rest of the paper is organized as follows. Section 2 describes the data recov-
ery approach to clustering similarity data. Section 3 is devoted to a description of the
results of clustering protein families by using the knowledge of protein functions to
identify similarity shift values. Section 4 describes some results involving the recon-
structed evolutionary histories. In Section 5 we conclude and outline possible future
work.
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2 Clustering Using the Data Recovery Approach

2.1 Additive Clustering and One-by-One Iterative Extraction

Let I be a set of entities under consideration and let A D .aij / be a symmetric
matrix of similarities (or, synonymously, proximities or interactions) between enti-
ties i; j 2 I .

The additive clustering model (Shepard and Arabie 1979; Mirkin 1976, 1987)
assumes that the similarities in A are generated by a set of ‘additive clusters’
Sk 
 I , k D 0; 1; : : : ; K , in such a way that each aij approximates the sum of
the intensities of those clusters that contain both i and j :

aij D
KX

kD1

�ks
k
i s

k
j C �0 C eij ; (1)

where sk D .sk
i / are the membership vectors of the unknown clusters Sk and �k

are their intensities, k D 1; 2; : : : ; K; eij are the residuals to be minimised.
The intercept value �0 can be interpreted as the intensity of the universal cluster

S0 D I that must be part of the solution and, on the other hand, it has a mean-
ing of the similarity shift, with the shifted similarity matrix A0 D .a0

ij / defined by
a0

ij D aij � �0. Equation (1) for the shifted model can be rewritten in an obvious
way so that it expresses a0

ij through clusters k D 1; : : : ; K by moving �0 onto the
left. The role of the intercept �0 in (1) as a ‘soft’ similarity threshold is of special
interest when �0 is user specified because the shifted similarity matrix a0

ij may lead
to different clusters at different �0 values.

To fit model (1), we apply one-by-one cluster extracting strategy by minimizing,
at each step k D 1; : : : ; K criterion

L2.S; �/ D
X

i;j 2I

.a0
ij � �si sj /2 (2)

and setting the found solutions S and � as Sk and �k , respectively. Obviously, the
optimal �k is the average of residual similarities a0

ij within Sk . The residual
similarities a0

ij are updated after each step k by subtracting �ksiksjk .
This strategy leads to the following decomposition of the data scatter into the

contributions of the extracted clusters Sk (“explained” by the model) and the
minimized residual square error (the “unexplained” part) (Mirkin 1987):

.A0; A0/ D
KX

kD1

ŒskTAksk=skT sk �2 C .E;E/ (3)

The inner products .A0; A0/ and .E;E/ denote the sums of the squares of the
elements of the matrices, considering them as vectors.
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2.2 One Cluster Clustering

In this section, we turn to the problem of minimization of (2) for extraction of
a single cluster. It should be noted that if A is not symmetric, it can be equiva-
lently changed for symmetric OA D .AC AT /=2 (Mirkin 1976, 1996). For the sake
of simplicity, in this section, we assume that the diagonal entries ai i are all zero.

2.2.1 Pre-specified Intensity

When the intensity � of the cluster to be found is pre-specified, criterion (2) can be
expressed as

L2.S; �/ D
X

i;j 2I

.aij � �si sj /2 D
X

i;j 2I

a2
ij � 2�

X

i;j 2I

.aij � �=2/sisj (4)

For � > 0, minimizing (4) is equivalent to maximizing the sum on the right,

f .S; �/ D
X

i;j 2I

.aij � �/si sj D
X

i;j 2S

.aij � �/: (5)

This implies that, for any entity i to be added to or removed from the S under
consideration, the difference between the value of (5) at the resulting set and its
value at S , f .S ˙ i; �/ � f .S; �/, is equal to˙2f .i; S; �/ where

f .i; S; �/ D
X

j 2S

.aij � �/ D
X

j 2S

aij � �jS j:

This gives rise to a local search algorithm for maximizing (5): start with S D
fi�; j �g such that ai�j � is maximum element in S , provided that ai�j � > � . An
element i 62 S may be added to S if f .i; S; �/ > 0; similarly, an element i 2 S
may be removed from S if f .i; S; �/ < 0. The greedy procedure ADDI (Mirkin
1987) iteratively finds an i 62 S maximizingCf .i; S; �/ and an i 2 S maximizing
�f .i; S; �/, and takes the i giving the larger value. The iterations stop when this
larger value is negative. The resulting S is returned along with its contribution to
the data scatter, 4�

P
i2S f .i; S; �/.

To reduce the dependence on the initial S , a version of ADDI can be utilized by
starting from singleton S D fig, for each i 2 I , and finally selecting, from all S
found at different i , that S that contributes most to the data scatter, i.e. minimizes
the square error L2 (2).

The algorithm CAST (Ben-Dor et al. 1999), popular in bioinformatics, is a ver-
sion of the ADDI algorithm, in which f .i; S; �/ is reformulated as

P
j 2S aij��jS j

and
P

j 2S aij is referred to as the affinity of i to S .
Another property of the criterion is that f .i; S; �/ > 0 if and only if the average

similarity between a given i 2 I and the elements of S is greater than � , which
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means that the final cluster S produced by ADDI/CAST is rather tight: the average
similarities between i 2 I and S is at least � if i 2 S and no greater than � if i 62 S
(Mirkin 1987).

Changing the threshold � should lead to corresponding changes in the optimal
S : the greater � is, the smaller S will be (Mirkin 1987).

2.2.2 Optimal Intensity

When � in (4) is not fixed but chosen to further minimize the criterion, it is easy to
prove that:

L2.S; �/ D .A;A/ � ŒsTAs=sT s�2; (6)

The proof is based on the fact that the optimal � is the average similarity a.S/within
S , i.e.,

� D a.S/ D sTAs=ŒsT s�2; (7)

since sT s D jS j.
The decomposition (6) implies that the optimal cluster S must maximize the

criterion
g2.S/ D ŒsTAs=sT s�2 D a2.S/jS j2 (8)

or its square root, the Raleigh quotient,

g.S/ D sTAs=sT s D a.S/jS j (9)

over all binary vectors s.
To maximize g.S/, one may utilize the ADDI-S algorithm (Mirkin 1987), which

is a version of the algorithm ADDI/CAST, described above, in which the threshold�
is recalculated after each step as � D a.S/=2, corresponding to the optimal � in (7).

A property of the resulting cluster S , similar to that for the constant threshold
case, holds: the average similarity between i and S is at least half the within-cluster
average similarity a.S/=2 if i 2 S , and at most a.S/=2 if i 62 S .

ADDI-S utilizes no ad hoc parameters, so the number of clusters is determined
by the process of clustering itself. However, changing the similarity shift �0 may
affect the clustering results, which can be of advantage in contrasting within – and
between – cluster similarities.

3 Proteome Knowledge in Determining Similarity Shift

3.1 Protein Families and Evolutionary Tree

The concept of homologous protein family, HPF, can be considered an empirical
expression of the concept of gene as a unit of heredity in the intergenomic evolution-
ary studies (Tatusov et al. 2000; Alba et al. 2001). As such the HPF is an important
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instrument in the analysis of the evolutionary history of the function that it bears.
The evolutionary history of a set of genomes under consideration is depicted as an
evolutionary tree, or phylogeny, whose leaves are one-to-one labelled by genomes
of the set, and internal nodes correspond to hypothetical ancestors. An HPF can be
mapped to the tree in the following natural way (Mirkin et al. 2003).

First, the HPF is assigned to the leaves corresponding to genomes containing its
members. Then the pattern of belongingness can be iteratively extended to all the
ancestor nodes in a most parsimonious or most likely way. For example, if each child
of a node bears a protein from the HPF then the node itself should bear the same
gene itself, because it is highly unlikely that the same gene emerged in the children
independently (Mirkin et al. 2003, 2006). Having annotated the evolutionary tree
nodes with hypothetical evolutionary histories of various HPFs, realistic conclusions
of possible histories and mechanisms of evolution of biomolecular function may be
drawn for the purposes of both theoretical research and medical practice.

Assignment of proteins to HPFs is often determined with a large manual com-
ponent because the degree of similarity between proteins within an alignment of
protein sequences, typically, with PSI-BLAST (Altschul et al. 1997) or the like, is
not always sufficient to automatically identify the families. This is why a two-stage
strategy for identifying HPFs has been considered in (Mirkin et al. 2006). Accord-
ing to this strategy, HPFs are created, first, as groups of proteins that have a common
motif, a contingent fragment of protein sequence that is similar in all HPFs mem-
bers by using a software such as the XDOM (Gouzy et al. 1997; Alba et al. 2001).
This motif represents a relatively well conserved segment of the genetic material
that can be associated with a protein function. Obviously such motif defined HPFs
may be overly fragmented since (1) some functional sites, contiguous in the spa-
tial fold, may correspond to dis-contiguous fragments of protein sequences, and (2)
multifunctional proteins may bear resemblances to different proteins at different
places.

The fragmented HPFs may lead then to wrong reconstructions of functional his-
tories because if they bear similar proteins and thus should be combined into a single
aggregate HPF, then its origin ought to be in the ultimate ancestor corresponding to
the tree root rather than in separate subtrees of the phylogeny.

Therefore, the next stage of the strategy is to cluster the first stage HPFs into
larger aggregations. Since entities at this stage are not single proteins but protein
families, one needs to score similarities between families rather than single proteins,
which we do by using the set-theoretic similarity – not between HPFs themselves –
but rather between their neighborhoods defined by using PSI-BLAST (Altschul et al.
1997). Given an HPF, this approach works as follows. First, for every protein from
the HPF a list of similar proteins is created using PSI-BLAST. Second, these lists
are combined into a set of proteins, the neighborhood, according to a majority rule.
Third, a set-similarity index values are computed between the HPF neighborhoods.
One can notice such advantages of this approach as

� Accuracy of protein alignments because only neighboring proteins are aligned
here;
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� Better capturing functional properties of the proteins. For example, the glycopro-
tein H like protein of murine herpesvirus 4 (gi: 1246777) and the UL22 protein
of Bovine herpesvirus 1 (gi: 1491636) have minimal sequence identity (15%,
identified on the second PSI-BLAST iteration), and have been assigned to sep-
arate HPFs within the VIDA database (Alba et al. 2001). However, their sets of
homologous protein neighbors (with 20% or greater sequence identity), contain
25 and 20 sequences, respectively, and have 14 common proteins, making the
overlap between the homologous protein lists 63% on average.

� The evolutionary timing can be caught up at different majority thresholds (Mirkin
et al. 2006) as an alternative to relying on statistical frequency profiles in PSI-
BLAST (Altschul et al. 1997).

The idea of employing neighborhoods to measure similarities between entities
stems from earlier work, see for example Jarvis and Patrick (1973). Our clustering
model leads to the index of average overlapmbc D .n=n1C n=n2/ for scoring the
similarity between subsets of sizes n1 and n2 whose overlap is of size n.

The data for this analysis come from studies of herpesvirus – a pathogene highly
affecting both animals and humans. A set of 30 complete herpesvirus genomes cov-
ering the so-called ˛, ˇ and � herpesvirus superfamilies that differ by the tissue in
which the virus resides, have been extracted by authors of Mirkin et al. (2006) from
the herpesvirus database VIDA (Alba et al. 2001) and an evolutionary tree has been
built over the genomes using the neighbor joining algorithm from PHYLIP package
(Felsenstein 2001) (see Fig. 1). This tree totally agrees with the previously published
instances of herpesvirus phylogenies (Davison 2002; McGeoch et al. 2006), except
for the uncertainty fragments acknowledged in these publications. A set of 740 HPFs
represented in these 30 genomes have been extracted from the VIDA database too
(Alba et al. 2001).

3.2 Utilizing Knowledge of Proteome

To choose a right �0 value in model (1), one should use the external knowledge
of the proteome, independent of sequence similarity estimates, for example, of
functional activities of the proteins. Each HPF is supposed to have a biomolecu-
lar function (for examples of function see Table 1 below), though unfortunately
functions of most proteins are unknown yet. We can use those HPFs that have sim-
ilar functions versus those that are not to choose the ‘right’ level of the similarity
shift. Operationally, we consider proteins as functionally similar if they are consis-
tently named between the herpesvirus genomes and/or they share the same known
function. The similarity shift value should be taken such that similarities between
dissimilar HPFs get negative after the shift while those between similar HPFs remain
positive. To implement this idea, we analyzed 287 available pairs of HPFs with
known function and positive similarity value. Among them, no dissimilar pair has a
greater mbc similarity than 0.66, which should imply that the shift value �0 D 0:67
confers specificity for the production of APFs.
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Fig. 1 Herpesvirus tree
Herpesvirus genomes evolutionary tree analyzed. The root corresponds to the herpesvirus ultimate
common ancestor (HUCA); its child on the right to the ancestor of ˛ superfamily, and the child
on the left, to the common ancestor of ˇ and � superfamilies. The numbers are labels of different
nodes on the tree

Unfortunately, the situation is less clear cut for the functionally similar proteins.
Out of the 86 similar pairs available, there are 24 pairs (28%) that have their mutual
similarity value less than 0.67. Thus at the similarity shift at 0.67, 28% of the similar
pairs will not be identified as such, that is, at this similarity shift the method would
lack sensitivity. To choose a similarity shift that minimizes the error in assigning
negative and positive similarity values, one needs to compare the distribution of
similarity values in the set of functionally similar pairs with that in the set of dis-
similar pairs. As Fig. 2 shows, the graphs intersect when the similarity value mbc
is 0.42.

Thus the external knowledge of functional similarity between some HPFs sup-
plies us with two candidates for the similarity shift values, 0.67 and 0.42. There
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Table 1 Some previously determined herpesvirus common ancestor D-HUCA’s (Davison 2002;
McGeoch et al. 2006) functions within membrane glycoproteins in the herpesvirus ancestor (two
columns on the right) versus the results from the mapping of our clusters (three columns on the
left); with function descriptions taken from VIDA

Mapping H/APF Description, gp – HSV-1 gene D-HUCA
– glycoprotein

HUCA 20 gp M, UL10 gp M; compl.
HHV-1 UL10 with gp N

HUCA 3 gp B, UL27 gp B
HHV-1 UL27

HUCA APF 3: UL22 gp H; compl.
42 gp H, HHV-1 UL22 with gp L
12 gp H, HHV-8 ORF22

531 gp H, HHV-8 ORF22

ALPHA 47 gp L, HHV-1 UL1 UL1 gp L; compl.
BETA 50 gp L, HHV-5 UL115 with gp H
GAMMA 114 gp L, HHV-8 ORF47
GAMMA 296 gp L, MuHV-4 ORF47
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Fig. 2 Empirical frequency functions for the sets of functionally similar pairs (solid line) and
dissimilar pairs (dashed line). The x-values represent the mbc similarity

are 80 APF 0.67-clusters comprising original 180 HPFs and leaving 560 HPFs
unclustered, and 102 0.42-APF clusters over original 249 HPFs, and 491 HPFs
unclustered. The first 80 0.42-clusters correspond one-to-one to the 80 0.67-clusters.
Which one is more suitable? To answer this, we are going to develop and use more
knowledge of the genomes.
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4 Advancing Genome Knowledge

4.1 Reconstructed Histories of HPFs

For the further analysis, we utilize the evolutionary histories of HPFs over the evo-
lutionary tree. These histories have been derived using the principle of maximum
parsimony (Mirkin et al. 2003). These histories supply us with the reconstructed
HPF contents of all the genome ancestors according to the tree. Of these, currently
most useful are reconstructions of the most ancient genomes, those of ancestors of
superfamilies ˛, ˇ and � , as well as the more universal common ancestors, HUCA
and ˇ� . This is because the similarities and differences among herpesvirus species
are somewhat better understood at deeper levels.

The reconstructions of the five ancestors with APFs found at the two similarity
shift values, �0 D 0:42 and �0 D 0:67, are essentially the same. The only excep-
tion is the common ancestor of the ˛ superfamily, which gains three more APFs
when �0 decreases from 0:67 to 0:42. These are: (1) APF81 comprised of HPFs 9
and 504, both of glycoprotein C; (2) APF82 comprised of HPF 38 and HPF 736,
both of glycoprotein I; and (3) APF84 comprised of HPF 47 and HPF 205, both of
glycoprotein L. Unfortunately, at the current state of domain knowledge, we cannot
interpret the phenomenon of simultaneously gaining the three glycoprotein families
in terms of the ˛ herpesvirus activities alone.

We can, however, look at the mutual positions of genes bearing these proteins
within the virus genomic circular structures. We find that in all 13 genomes com-
prising ˛ superfamily in our data, gene bearing glycoprotein E always immediately
precedes that of glycoprotein I. This by itself may be considered a strong indication
that there must be a mechanism in the superfamily involving both glycoproteins that
has been developed already in the ˛ ancestor. Moreover, it appears, glycoprotein E
corresponds to an aggregate protein family comprised of HPF 26 and HPF 301 (at
both levels of the similarity shift, 0.67 and 0.42) that has been mapped by our algo-
rithm to the ancestral ˛ node (Mirkin et al. 2006). This leads us to conclude that
glycoprotein I must also belong to the ˛ ancestor, thus implying that similarity shift
�0 D 0:42, better fits to the knowledge added by the reconstruction than �0 D 0:67,
because in which glycoprotein I’s aggregate family falls in ˛ ancestor only at the
former value.

4.2 Derived Ancestors of Herpes Proteins

The analysis of glycoproteins in the ˛ superfamily has led us to accept the value
�0 D 0:42 and the corresponding number of protein families, after aggregation,
593. Some of the structural conclusions from the mapping of the aggregate 0.42-
families to the evolutionary tree are presented in Table 1 taken from Mirkin et al.
(2010).
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The common ancestor of herpesviruses, HUCA, according to our reconstruc-
tion, should be comprised of 29 protein families. These all are well studied proteins
except only three of the participating families of no known function.

Relations between our mapping results and D-HUCA are illustrated in Table 1:
the fragmented HPFs, having been aggregated into APF3, fall into HUCA, yet some
HPFs clearly fail to aggregate (47, 50, 114 and 296). The ancestor of each ˛-,
ˇ-, and � family, has a glycoprotein L, so that the corresponding gene may have
been present in HUCA as well. The HPFs have no significant sequence similar-
ity nor common neighbors and, thus, cannot be combined together by clustering
alone. Yet, at the genome organisation level each of the glycoprotein L genes always
exactly precedes the corresponding Uracil-DNA glycosylase gene, which is mapped
into HUCA, according to our reconstruction. This suggests that these are common
ancestral genes indeed; just they have undergone sequence change to a level where
sequence similarity is no longer sufficient to assign homology.

Concerning other four superfamily ancestors in our study, ˛, ˇ� , ˇ and � , our
reconstructions show that only the contents of the ˛ superfamily is relatively well
studied. This means that the mechanisms separating the three superfamilies, espe-
cially those for ˇ and � , are yet to be investigated. Our reconstructed histories give
clear indications of what proteins should be studied next.

5 Conclusion

Clustering is an activity purported to help in enhancing knowledge of the area the
data relate to. Typically, this comes via a set of features assigned to the entities; the
features reflect the knowledge and are to be used in interpreting cluster results. In
proteomic studies, entities are frequently supplied with their similarities only, lack-
ing any sensible features to look at when interpreting results. In such a situation,
data recovery clustering supplies a reasonable device for reflection of the knowl-
edge of proteome, the similarity shift value. Using two sets of protein pairs, those
that should and those that should not fall into the same clusters, may lead to consid-
erably narrowing down the choice of reasonable shift values, as shown above. One
more step is in using the parsimonious reconstruction of the evolutionary history of
the clusters. This may allow both further reduction of choices by confronting the
reconstructions with the gene arrangement within genomes and interpretation of the
clusters.

A possible direction for further work can be application of similar principles for
clustering and interpreting of protein families at other sets of related genomes.
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Microarray Dimension Reduction Based
on Maximizing Mantel Correlation
Coefficients Using a Genetic
Algorithm Search Strategy

Elena Deych, Robert Culverhouse, and William D. Shannon

Abstract We present the GA-Mantel algorithm to find in high dimensional
microarray data a subset of genes that captures relevant spatial relationships among
the samples, in order to reduce the data for further analysis and eventually to iden-
tify meaningful biological markers. GA-Mantel uses a genetic algorithm to search
over possible probe subsets using the Mantel correlation as the scoring measure for
assessing the quality of any given probe subset, and consensus methods for select-
ing the final list of important genes. GA-Mantel is evaluated on both artificial data
sets and on experimental microarray data taken from leukemia patients. Current
results indicate the GA-Mantel method exhibits promise as a way of efficiently iden-
tifying information-rich gene subsets in large data sets while avoiding the curse of
dimensionality.

1 Introduction

A major stumbling block in analyzing high throughput array data is that there are
too many genes (probes) for the number of samples. Datasets with a small number
of samples (N) relative to a large number of measurements or variables (P) belong
to the class of problems known as the large P small N problem, or more simply the
‘curse of dimensionality’ (Bellman 1961). The ‘curse of dimensionality’ means that
fitting standard statistical models and making accurate predictions gets very hard as
the number of variables (dimensions) increases. The implication for array data is
that, due to the high number of variables, we can expect any models fit to these data
to be inaccurate.

Three nearly equivalent statements about the curse of dimensionality are that
(a) in the high dimensional space, samples are very far from one another so that
accurate descriptions of the data distribution becomes impossible (sparseness);
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(b) there are many more possible interaction terms, nonlinear effects, etc. to consider
so that there quickly become too many possible models to test (model complexity);
and (c) gene subsets are randomly correlated with phenotype leading to numer-
ous spurious ‘significant’ results in the data that may mask the true correlations
between genes and phenotype or other outcomes (random multicollinearity). Sparse-
ness, model complexity, and multicollinearity can result in finding many genes
that appear to be associated with phenotype but which in reality are associated
by chance alone and not verifiable in follow-up studies. These genes can lead to
statistical models with perfect or near perfect ability to classify patients into pheno-
type subgroups even when there is no ‘true’ relationship between the genes and the
phenotype.

While nonparametric multivariate regression methods have been proposed for
finding significant genes in microarray data (e.g., CART, neural nets), these approa-
ches require a lot of model searching and therefore use up degrees of freedom
rapidly (a problem for the comparatively small sample sizes). As a result, there
is little or no information left to determine if the chosen model is statistically signif-
icant. Cluster analysis uncovers structure in data and is a statistical tool commonly
used in microarray data analysis. However, for the large P small N problem there
are often many distinct sets of clusters, arising completely by chance, that can per-
form optimally for almost any measure of goodness-of-fit. In such situations, it is
impossible to decide the best cluster model. Classification models predict a sample’s
group membership (i.e., is the sample tumor or normal tissue) from the variables.
However, these methods require training datasets to fit the model and a validation
dataset to assess its classification accuracy, thus accentuating the problems related
to small sample sizes.

Likewise, resampling (cross validation, bootstrapping), model averaging (bag-
ging), or iterative reweighting (boosting) (Kerr and Churchill 2001; Breiman 2005;
Dettling 2004; Jiang et al. 2008) is usually ineffective for large P small N data.
For example, multicollinearity in the full dataset will be present in the bootstrapped
samples as well so model fitting and model accuracy estimates still are subject to
the problems of the curse of dimensionality.

Several gene selection strategies are used to reduce the number of genes that
need to be analyzed. The simplest approach uses gene filtering based on thresholds
(Pounds and Cheng 2005). While useful, threshold methods are ad hoc which make
them less attractive to statisticians. Recent work on dimension reduction using clas-
sical multivariate methods such as PCA and PLS has been developed and tested
(Dai et al. 2006). In these approaches a small number of linear combinations or
projections of the original genes are used to replace the gene list such that most
of the variability in the data is retained. Classifying samples based on this sub-
set of linear combinations performs well, though the effects of individual probes
on classification have to be discerned from their coefficient weights in the linear
combinations.

Overall, there is currently a great need for developing new methods of analyzing
array data.
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2 Methods

Mantel Correlation We first described the use of Mantel statistics in microarray
data analysis (Shannon et al. 2002). Mantel statistics were developed in 1967 to
correlate temporal and spatial distributions of cancer incidences (Mantel 1967) and
extended in 1987 to the partial correlation and regression framework (Smouse and
Long 1986). The basic idea is to transform standard data matrices (i.e., subject by
covariate data) into subject pairwise distances or similarities and to analyze these
proximity matrices instead of the raw data. The result is that instead of analyzing an
N 	 P data matrix where the large P small N problem exists, we analyze a smaller
N 	 N matrix format. In 2002 we used Mantel statistics to correlate expression
profiles of multiple genes simultaneously, as opposed to one gene at a time, with
patient brain tumor phenotype (Watson et al. 2001). We also ranked gene subsets by
their relationship to subject phenotype.

Mantel correlation is calculated as follows. Consider a microarray dataset on N
subjects with P genes. Calculate an N 	 N subject pairwise proximity (distance or
similarity) matrix by any appropriate metric such as the Euclidean distance (Eisen
et al. 1998; Shannon et al. 2003). Let Si ; i D 1; : : : ; N denote the subjects, Gj ;

j D 1; : : : ; P denote the genes, and xi;j denote the expression of geneGj in subject
Si , then the Euclidean distance between two subjects i; i 0 is (1)

di;i 0 D
q

.xi;1 � xi 0;1/
2 C .xi;2 � xi 0;2/

2 C � � � C .xi;P � xi 0;P /
2: (1)

The more similar the gene expression profiles in two subjects, the smaller their
pairwise distance (larger similarity), and vice versa. Thus, the N 	 N raw data is
transformed into the subject pairwise distances matrix D transforming array data
from a large P small N problem to a more tractable data analysis problem (2):

Sample G1 G2 : : : GP

1

2

3
:::

N

2

6
6
6
6
6
4

x1;1 x1;2 : : : x1;P

x2;1 x2;2 : : : x2;P

x3;1 x3;2 : : : x3;P

:::
:::

: : :
:::

xN;1 xN;2 : : : xN;P

3

7
7
7
7
7
5

) D D

2

6
6
6
6
6
4

0 d1;2 d1;3 : : : d1;N

0 d2;3 : : : d2;N

0 : : : d3;N

: : :
:::

0

3

7
7
7
7
7
5

(2)

where d1;2 is the distance between samples 1 and 2, d1;3 is the distance between
samples 1 and 3, etc.

Similarly, for a phenotype dataset, a subject pairwise distance matrix can be cal-
culated using an appropriate distance metric. We denote the phenotype distance
matrix as DPheno(3)
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Sample Phenotype
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7
7
7
7
7
5
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6
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4
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1;N
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2;3 : : : dPheno

2;N
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3;N

: : :
:::

0

3

7
7
7
7
7
7
5

(3)

Mantel correlation is calculated as the Pearson correlation coefficient between the
two vectors of pairwise distances .d1;2; d1;3; : : : ; dN �1;N / and .dPheno

1;2 ;

dPheno
1;3 ; : : : ; dPheno

N �1;N / with statistical significance calculated by permutation test-
ing to overcome the lack of independence between the pairwise distances within
a matrix. Since the pairwise distance vectors are aligned to match the same subject
pairs, the Mantel correlation indicates if the genes G1; G2; : : : ; GP results in the
same spatial distribution or pattern of separation among the samples (same relative
distance matrix) defined by the phenotype. A positive Mantel correlation indi-
cates the genes in (2) contain the information for separating, discriminating,
or predicting samples type (phenotype) in (3). It is this property of the Mantel
correlation that we propose to use to improve gene subset selection in array data.

For any given subset of genes, a distance matrix can be calculated as above. LetQ
indicate the set of genes we are interested in, and assume in general that the number
of genes, m, in Q will be significantly smaller than P . In practice, m might be on
the order of a few dozen or few hundred genes that could be studied further in the
lab. We can calculate a pairwise distance matrix on the same N samples using only
this subset of genes G.1/; G.2/; : : : ; G.m/; m� P; where the subscript parentheses
indicate these may be different from genes G1; G2; : : : ; Gm used in calculating the
distance matrixD, to obtain a second distance matrix DQ where

d
Q
i;i 0 D

q
�
xi;.1/ � xi 0;.1/

�2 C �xi;.2/ � xi 0;.2/

�2 C � � � C �xi;.m/ � xi 0;.m/

�2

Conceptually we think of the P genes in the entire gene list as consisting of signal
and noise genes. The signal genes are responsible for how the samples separate into
phenotype subgroups while the noise genes have little effect on the separation of the
samples and would have no correlation with phenotype – the noise genes add error
to the true pairwise distances di;i 0, which in the perfect world the error would be
distributed normally with mean 0, though we have not yet investigated this. If we can
calculate DQ using only signal genes the distances should be highly correlated to
the distances inDPheno, and the Mantel correlation will be high. Distances calculated
on a subset of noise genes, on the other hand, should have near-zero correlation with
DPheno.

Mantel Correlation without Phenotype We described how Mantel correlation could
be used to score gene subsets in array data that may be related to phenotype. Another
important role of Mantel correlation is to find gene subsets that correlate with overall
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patterns of gene expression. In this problem we calculate the distance matrix D on
the full set of genes and DQ on a subset of genes and correlate D with DQ. The
goal of this analysis is to separate signal from noise genes.

Genetic Algorithms Genetic algorithms are powerful search approaches for com-
putational problems where approximate or exact solutions are hard or impossible
to calculate (Grefenstette et al. 2005; Forrest 1993). Genetic algorithms apply
computational ‘evolutionary operators’ to a population of possible solutions (i.e.,
population of gene subsets) to create the next generation of solutions (offspring)
based on a measure of fitness which is evaluated on each solution. In this paper we
propose using Mantel correlation as this measure of fitness, thus calling the method
GA-Mantel. Genetic algorithms have been implemented in several standard statisti-
cal packages including SAS’s experimental Genetic Algorithm module in SAS/IML,
which we used to develop the GA-Mantel program.

In the beginning of the GA process, an appropriate representation of the search
space must be specified. For gene selection from microarray data, solutions are lists
or subsets of genes, and two members of the solution space might be:
where the first list specifies that genes 10, 123, 456, and so on, are in the gene
subset, and the second list specifies that genes 29, 378, 456, and so on, are in
the gene subset. Each solution is then used to generate a distance matrix DQ on
G.1/; G.2/; : : : ; G.m/ where for the first solution G.1/ D G10; G.2/ D G123; : : : ;

G.7/ D G923. The Mantel correlation is calculated using the distance matrix from
the sample phenotypesDPheno or from other genesD. In order to introduce new can-
didate gene list solutions, recombination and mutation evolutionary operators are
applied to parent solutions using the rank-based selection algorithm: recombination
involves swapping features between solutions, and mutation involves a random
change in a solution:

Gene subsets selected as parents for generating offspring solution is based on
current goodness-of-fit. Those solutions with highest fitness (i.e., highest Mantel
correlation) are preferentially selected in the hope that the genes in these solutions
that result in higher Mantel correlation will get matched with other signal genes
from mutation and crossover resulting in more improvement in Mantel correlation.

In our GA-Mantel program some parameters, such as the mutation and crossover
rates, use SAS default values. However, three main parameters impacting how much
of the solution space is searched must be defined: number of generations, solution
length, and population size. The generation specifies how many times the GA iter-
ates (i.e., can evolve) to find an optimal solution. The solution length specifies the
number of genes to retain in calculating DQ. The larger the solution length the
more likely signal genes will be found. The population size specifies the number of
solutions in a generation that will be evaluated. Increasing this parameter increases
the coverage over the solution space and the variability introduced by evolutionary
operators. Each of these parameters add to computing time as they increase, so in
applications there will be a need to balance the search algorithm speed with the
amount of the solution space searched.
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GA-Mantel SAS Program GA-Mantel is fully implemented in SAS using SAS’s
experimental Genetic Algorithm module in SAS/IML, and is available for free from
the authors.

Consensus method for identifying optimal gene subset We have seen in our appli-
cations that any given GA-mantel solution has genes that individually have high
Mantel correlation and genes that individually have low correlation. Additionally,
we have found that running GA-Mantel multiple times on the same data set results
in solutions where some genes appear in many of the runs and most genes appear
in few of the runs. The algorithm initialization and selection of the starting solu-
tions (i.e., generation 1) is always random so no two solutions are likely to be to
have 100% agreement. Since genes with high Mantel correlations are more likely to
be repeatedly selected by GA-Mantel in independent runs, selecting genes appear-
ing most often in solutions should enrich for signal genes of interest. We use a
simple consensus method of keeping those genes that appear in more than some
pre-specified threshold minimum number of runs, or those that have frequency of
appearance that clearly separates them from the rest (i.e., 10 genes appear in >30%
solutions, while all other appear in <10% solutions).

3 Results

We report on four analyses using GA-Mantel in this section. First, are the results
of a simulation study to assess how changing parameters in GA-Mantel impacts the
selection of signal genes in simulated data. Second, we applied GA-Mantel to the
publically available Golub leukemia microarray data (Golub et al. 1999). Third, we
applied GA-Mantel to two leukemia datasets collected at Washington University.

Evaluation on simulated data: Initial evaluation of the GA-Mantel method was per-
formed on simulated data and reported previously (Grefenstette et al. 2005). In that
report we showed that as GA-Mantel iterated through generations, the Mantel corre-
lation increased, and that by increasing the search time (e.g., increasing the number
of generations) GA-Mantel found more signal genes. In this paper we report on a
more comprehensive study on simulated data, each with 1,000 variables (genes) and
40 samples (microarrays). For the genes, 10 (1%) were designated as signal genes,
and the other 990 were noise genes. The experiments were derived from two groups
of 20 samples each. In Group 1 (control), the 10 signal genes were sampled inde-
pendently from a normal N (0,1) distribution. In Group 2 (cases), the signal genes
were samples from one of a N (0.5, 1), N (1, 1), N (2, 1) or N (5, 1) distribution. All
990 noise genes in both groups were sampled from a normal distribution N (0, 1).
GA-Mantel method was applied to these data sets using combinations of the follow-
ing parameters: population size 100, 250, and 500; generations (iterations) 100, 250,
and 500; solution length 10, 30, and 100. We simulated 100 independent datasets
for each of the combinations of simulation scenario and GA-Mantel parameters.
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Table 1 Mean number of signal genes out of 10 found

Mean Diff. Iters Population size
100 250 500

Solution length Solution length Solution length
10 30 100 10 30 100 10 30 100

0.5 100 0.9 1.5 3.3 0.9 1.9 3.3 1.0 2.0 3.6
250 0.7 1.8 3.4 0.9 1.9 3.5 1.3 1.9 3.6
500 0.8 1.9 3.4 0.9 2.0 3.7 1.0 2.0 3.9

1 100 3.0 5.0 7.2 4.1 6.2 8.3 4.3 6.7 8.7
250 3.0 5.5 7.8 4.1 6.2 8.2 4.6 6.1 8.4
500 3.2 5.5 8.0 4.0 6.0 8.3 4.3 6.7 8.3

2 100 4.6 7.6 9.7 6.4 9.1 10 7.7 9.5 10
250 4.9 8.0 9.8 6.6 9.2 10 7.6 9.4 10
500 5.1 8.6 9.9 6.9 9.4 10 7.6 9.3 10

5 100 4.7 7.8 9.8 6.8 9.0 9.9 8.1 9.3 9.9
250 4.9 8.2 9.8 6.8 9.2 9.9 8.0 9.2 9.9
500 5.2 8.5 9.8 7.2 9.2 9.8 8.2 9.2 9.8

For each simulation we collected and averaged across the 100 independent
datasets to calculate two algorithm performance measures: the true positive values
(number of true signal genes selected in final solution, out of 10) and Mantel corre-
lation. As the GA parameters (number of generations, solution length, and number
of iterations) increase, the number of signal genes captured increases (TP value gets
higher), Table 1. In addition, the mean Mantel correlation increased from 0.40 to
0.99 for the final solutions (data not shown),

Since individual GA-Mantel solutions did not find high percentage of signal
genes when the difference between cases and controls in signal genes was small and
since all solutions included false positive (noise) genes, we attempted to improve
the selection and reduce the amount of noise by the consensus process. We applied
the consensus method by running GA-Mantel algorithm 100 times on a simulated
dataset generated as described above with mean difference of 0.5 between the case
and control groups in 10 signal genes. We counted the number of times each gene
was found in 100 solutions. Consensus analysis resulted in clear-cut separation of
noise and signal genes: Each signal gene appeared on average 37.9 out of 100 times
and never appeared less than 33 times out of 100. No noise gene appeared more than
21 times out of 100. In this analysis the signal genes could be distinguished from
noise genes by setting up a cut off point for consensus of appearing in at least 33
out of 100 independent runs. Such cut off point, although ad hoc is justifiable given
the large gap in prevalence of signal and noise genes. Presumably with more runs
of GA-Mantel and improved consensus methods enrichment for signal genes can be
improved.

We then compared the results of the GA-Mantel consensus analysis with a stan-
dard parametric t-test analysis. We generated 1,000 independent artificial datasets
using the criteria in the previous paragraph and captured the p-values for all signal
and noise genes in each dataset. For this analysis, we defined true positive (TP) as
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the number of signal genes and False positive (FP) as the number of noise genes that
were significantly different between cases and controls in a t-test. In 1,000 datasets,
the mean TP values were 3.3, 1.4, and 0.3 and mean False Positives were 48.9, 9.4,
and 0.9 at p-values of 0.05, 0.01, and 0.001 respectively. This result indicates that
using a liberal p-value of 0.05 results in finding on average only 3 out of 10 signal
genes and incorrectly identifying 49 noise genes as significant (signal). Using a
more conservative p-value of 0.001 (i.e., adjusting for multiple testing) results in
elimination of most false positives but at a cost of losing almost all signal genes
(TP D 0.3). Therefore, in this simulation, when the signal is low, the t-test cannot
identify signal genes or eliminate a large number of noise genes successfully, regard-
less of p-value specifications. On the other hand, the GA-Mantel in conjunction with
consensus method was able to successfully separate noise genes from signal genes.

Golub Leukemia Data: To illustrate GA-Mantel correlation with real data we
applied it to the publicly available Golub microarray leukemia data set consisting
of 7,129 genes measured on 27 acute lymphoblastic leukemia or ALL (samples 1–
27) and 11 acute myeloid leukemia (samples 28–38) patients (Golub et al. 1999).
In Fig. 1, the left dendrogram used a distance matrix measured on all 7,129 genes
and produces a good separation of the two leukemia types with 18 ALL and 1 AML
in the left cluster (branch) and 9 ALL and 10 AML in the right cluster. The right
dendrogram used a distance matrix calculated on 50 genes found by the GA-Mantel
algorithm and produces nearly the same dendrogram as that produced with all 7,129
genes. This indicates that this subset of 50 genes contain much of the same spa-
tial relation information as is found in all 7,129 genes. It was also found (data not
shown) that fitting dendrograms to 50 random genes resulted in completely different
trees with no ability to separate the two phenotype subgroups and near 0 Mantel
correlation.
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Analysis of Chemotherapy Resistance Microarray Data: Mobilization of HSCs
(hematopoietic stem cells) for treatment of leukemia in mice and humans can be
induced using the drug G-CSF (G) or by the use of chemokines and chemokine
receptor antagonists. Recent preclinical and clinical data using the drug bicy-
clam AMD3100 (A) suggest that the combination of GCA results in significantly
improved yields of HSCs compared to G alone in both mice and humans (Flomen-
berg et al. 2005). To identify genes that are differentially expressed following G
or A mobilization, we performed RNA profiling analyses using Affymetrix U133C2
arrays and RNA isolated from purified (>95%) CD34C HSCs on paired data
obtained from eight individual normal donors mobilized with G followed later by
a second mobilization with A. To reduce the number of genes to be analyzed we
imposed two threshold rules. The first threshold is that a gene was retained if and
only if it exceeded an expression of at least 500 in all the microarrays. This level
of expression is believed to be well above the level of the microarray noise. The
second threshold imposed was that the ratio of AMD-to-GCSF within each pair for
the gene had to be at least a two-fold difference all in the same direction (i.e., the
AMD-to-GCSF ratio>2 in all pairs or was<0.5 in all pairs). This reduced the num-
ber of genes for analysis to 18 that clearly showed a strong and consistent change in
expression between the A and G treatment groups. This dual-threshold analysis was
followed by correlating these 18 genes with the remaining genes to find other genes
that did not meet the two-fold threshold requirements but had similar expression pat-
terns in separating A and G samples as the 18 selected genes. The search, performed
by GA-Mantel, identified 148 additional probes that produced a distance matrix cor-
related with the distance matrix produced by the 18 genes found by the threshold
method. In Fig. 2, the dendrogram on the left is based on the 18 genes found by the
threshold method and the dendrogram on the right is based on the 148 additional
genes found by GA- Mantel. The samples are labeled as A1–A8 for AMD3100 and
G1–G8 for G-CSF. Both dendrograms have two distinct branches that perfectly sep-
arate the samples from the two treatments. The dendrogram clearly indicates that
GA-Mantel method resulted in identification of 148 additional probes that sepa-
rate the treatment samples but could not be identified by the threshold method. (No
adjustment for paired data has been developed yet.)
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Drug resistant APL cell lines: An experiment was done to try to reproduce cell
drug resistance in a mouse leukemia cell line. Cell lines were created using banked
leukemia cells isolated from mice that had a particular genetic abnormality. These
mice develop a leukemia-like disease followed by death anywhere from 6 months to
2 years of age. Approximately 100 tumors have been banked to date with each rep-
resenting an individual mouse from the colony. Fifteen individual cell lines have
been established from these tumors, with six showing drug resistance to ATRA
(retinoic acid), AR (arsenic trioxide) AraC (cytarabine) or DNR (daunorubicin /
doxorubicin). Cell lines were microarrayed after being grown in ATRA (N D 3),
AR (N D 2), AraC (N D 2), DNR (N D 2), and no drug (N D 1). Our goal was
to identify genes that are expressed differently in the presence of different drugs in
hopes that these may indicate biological processes conferring resistance.

From the design of the study the phenotype distance matrix DPheno was calcu-
lated based on whether the arrays were grown in the same drug (distance D 0)
or different drugs (distance D 1). A GA-Mantel search for 500 probes resulted in
a solution with Mantel correlation D 0.79 and a close reproduction of the pheno-
type reference distance matrix. It is interesting to note that the dendrogram fit to
the all gene expression data did not reproduce the experimental design (not shown).
We then narrowed down the list using consensus where we ran GA-Mantel 100
times with solution length of 500 genes and selected only genes that appeared in
all solutions. This resulted in seven genes that result in a Mantel correlation of 0.72
and produce a dendrograms showing good separation of the drug treatment groups
(Fig. 3). In this dendrogram, the sample not treated by a drug is indicated as “ref”,
the sample treated by DNR are marked as “dn1” and “dn2”, AR samples are marked
“ar1” and “ar2”, ATRA samples are “AT1, AT2, and AT3”, and AraC are marked as
“AA1” and “AA2”.
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4 Discussion

GA-Mantel is a general purpose variable selection method for any cluster analy-
sis problem. For our specific application in genetics, current results indicate that
the GA-Mantel is a promising novel method of efficiently identifying information-
rich gene subsets in large data sets. The analysis of artificial datasets indicates that
by increasing algorithm parameters and performing consensus analysis, the signal
genes can be found with the GA-Mantel method even when the difference between
cases and controls is small and the parametric methods, such as t-test fail. Using
a consensus method eliminates a large proportion of noise genes without decreas-
ing the power to detect signal genes. In our artificial dataset analysis, there was a
clear-cut separation in frequency of appearance between signal and noise genes: No
signal genes appeared in less than 33 solutions and no noise gene appeared in more
than 21 solutions. This means that any cut off point between 21 and 33 would result
in perfect separation of signal from noise genes for this simulation study.

Of special note is the use of GA-Mantel for data with limited or no phenotype
information. In our chemotherapy resistance data, the method identified 148 genes
without considering phenotype but by correlating the total gene space with 18 genes
found by a different method. These 148 genes were then found to clearly separate
samples by phenotype.

Future direction: At the present time, the method is still a work in progress.
When the true signal is small, the method requires large parameters for detection
which can be computer-intensive. Several GA parameters used by SAS/IML Genetic
algorithm are currently left as default and may require further investigation for pro-
gram optimization. Selection of solution length is somewhat arbitrary at this stage
and is determined mostly by practical (laboratory resources for re-testing likely sig-
nal genes) and not statistical reasons. We are also working on implementing the
algorithm for more sophisticated genetic problems, such as epistasis, genomewide
association data, and metagenomic data.
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Multiparameter Hierarchical Clustering
Methods

Gunnar Carlsson and Facundo Mémoli

Abstract We propose an extension of hierarchical clustering methods, called mul-
tiparameter hierarchical clustering methods which are designed to exhibit sensi-
tivity to density while retaining desirable theoretical properties. The input of the
method we propose is a triple .X; d; f /, where .X; d/ is a finite metric space and
f W X ! R is a function defined on the data X , which could be a density estimate
or could represent some other type of information. The output of our method is more
general than dendrograms in that we track two parameters: the usual scale param-
eter and a parameter related to the function f . Our construction is motivated by
the methods of persistent topology (Edelsbrunner et al. 2000), the Reeb graph and
Cluster Trees (Stuetzle 2003). We present both a characterization, and a stability
theorem.

1 Introduction

Clustering techniques play a very central role in various parts of data analysis. They
can give important clues to the structure of datasets, and therefore suggest results
and hypotheses in the underlying science. However, despite being one of the most
commonly used tools for unsupervised exploratory data analysis, and despite its
extensive literature, very little is known about the theoretical foundations of clus-
tering methods. These points have been made prominent by Ben-David and von
Luxburg in Ben-David et al. (2006).

The general question of which methods are “best”, or most appropriate for a par-
ticular problem, or how significant a particular clustering is has not been addressed
very frequently. In the context of standard clustering (standard clustering refers to
clustering methods that output a single partition of a dataset and hierarchical meth-
ods that yield a nested family of partitions), J. Kleinberg proves in Kleinberg (2002)
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a very interesting impossibility result for the problem of even defining a clustering
scheme with some rather mild invariance properties.

Inspired by Kleinberg’s axiomatic treatment, in Carlsson and Mémoli (2008) we
wondered whether in the context of hierarchical clustering (HC from now on) meth-
ods, one would be able to lift the obstruction to existence in his result. Interestingly,
we were able to prove that for HC methods, conditions similar to Kleinberg’s yield
uniqueness instead of non-existence. This HC scheme singled out by our theorem
satisfies precise stability and convergence properties (Carlsson and Mémoli 2008).
This unique scheme turned out to be single linkage HC. There seems to exist an
agreement that amongst hierarchical methods, SL is the one with best theoretical
properties, see also the results of Jardine and Sibson in this respect (Jardine and
Sibson 1971).

However, single linkage has frequently been severely criticized for the chaining
effect it exhibits (see Lance and Williams 1967; Wishart 1969, p. 296): SL will
disregard the density of samples in a region and may tend to connect two dense
clusters when just a few isolated samples produce a chain connecting them. This
has had the effect that in practice other clustering methods are typically preferred
over SL. Practicioners tend to favour average (AL) or complete (SL) linkage, which
are deemed more sensitive to variations of density in datasets. However, since AL
and CL are actually unstable (Jardine and Sibson 1971, Sect. 7.4) in a precise sense,
there is a blatant inconsistency between the conclusions of theoretical studies and
practical applications of clustering algorithms.

Clustering can be regarded as a statistical problem if we consider the dataset X D
fx1; : : : ; xng � X as a sample from some unknown probability measure�X defined
on the Borel sets of a metric space .X; dX /. Consider for the sake of simplicity that
X is Euclidean space R

d and that�X is a measure with density � with respect to the
n-dimensional Lebesgue measure. The two main statistical approaches to clustering
are the parametric approach and the nonparametric approach. The former approach
is based on the assumption that each group i is represented by a density �i that
is a member of some parametric family. The density � is then a mixture of the
group densities, and the number of components in the mixture together with the
parameters values are estimated from the data. The latter approach assumes that
groups correspond to modes of the density �. Searching for modes as a manifestation
of the presence of groups can be traced back to D. Wishart’s paper Wishart (1969).

With regards to the chaining effect: it is well understood that one of the short-
comings of SL is its insensitivity to density. In this direction, a classical result
of Hartigan (1981) proves that SL is not consistent in the sense that it is unable
to recover modes of an underlying density in R

d for all d . In Wishart (1969)
Wishart proposes one level mode analysis as an obvious approach to the amelio-
ration of the chaining effect. The idea is to remove from the observational data all
the points that appear to be noise. Define the superlevel set L�.	/ of a density � at
level 	 as the subset of the underlying space X for which the density exceeds 	 :
L�.	/ D fxj�.x/ > 	g: Then, if b� is some estimate of � and 	 a given threshold,
the idea consists of applying SL clustering to Lb�.	/.
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In Hartigan (1975) [Sect. 11] and Hartigan (1981), Hartigan expanded on
Wishart’s idea and made it more precise: he defined the high density clusters at
level 	 as the connected components of L�.	/. Hartigan also pointed out that the
collection of high density clusters has a hierarchical structure: for any two clusters
A and B (possibly at different levels) either A � B or B � A or A \ B D ;. This
hierarchical structure is summarized by the cluster tree of �.

More recent instantiations of the one level mode analysis idea can be found in
Ester et al. (1996); Cuevas et al. (2001); Biau et al. (2007). Typically, methods
roughly consist of four steps: (1) for each data point calculate a density estimate b�;
(2) choose a density threshold 	 and construct Lb�.	/; (3) construct a graph inter-
connecting all observations in Lb�.	/ within distance " of each other; (4) define the
clusters to be the connected components of this graph.

As was pointed out in Stuetzle and Nugent (2008), a well known weakness of the
one level mode analysis is that the degree of separation between connected com-
ponents of L�.	/, and therefore of Lb�.	/, depends critically on the choice of the
density threshold 	 , which is left to the user. Moreover, there might not be a sin-
gle value of 	 that uncovers all the modes. In Wishart (1969), citing this difficulty,
Wishart proposed hierarchical mode analysis, which can be regarded as a procedure
for computing the cluster tree of a density estimate b�. The work of Wong and Lane
(1983) provides a method of estimating the cluster tree of a density by a construction
based on k-nearest neighbor density estimates.

In Stuetzle (2003) Stuetzle gives a precise recursive definition of the cluster
tree. Stuetzle’s method estimates the cluster tree of the density by computing the
cluster tree of the nearest neighbor density estimate and then pruning branches
believed to correspond to spurious modes. In Stuetzle and Nugent (2008) the authors
present a generalization of Stuetzle’s method to other density estimates. It is already
expressed in the work of Stuetzle and Nugent that it is desirable to prove that the
cluster tree estimates one constructs are stable to perturbations in the data. Further-
more, the issue of convergence of the sample based cluster tree has to be resolved,
see the discussion in Wong and Lane (1983). Similar ideas are also present in the
work of Klemelä (2004).

The construction implicit in many of the methods we mentioned can be para-
phrased as follows. Assume .X; dX ; f / is given where .X; dX/ is a finite metric
space and f W X ! R is a given function (which could be a density estimate).
For each 	 let X� WD Lf .	/. For a given " > 0 consider the graph G";� D
.X� ; E";� / with E";� D f.x; x0/ 2 X� 	X� j dX .x; x

0/ � "; i ¤ j g: Then, obtain
a one-mode-analysis type of summary by computing the connected components of
G";� . Clearly, this set up can be used for estimating the cluster tree of f as well by
following a recursive procedure such as the one delineated by Stuetzle.

The proposal in this paper hinges on the idea that there is more information
contained in the whole collection of graphs fG";�g"�0;��0 than just an estimate
or a family of estimates (one for each ") of the cluster tree. Much in the same way
as single mode analysis suffers from a particular choice of the density threshold, a
procedure that tries to estimate the cluster tree from fG"0;�g��0 for a fixed "0 will
be affected by having made fixed choice for the spatial (metric dependent) scale "0.
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We claim that it may in fact be more informative to encode all possible choices
of scale into an invariant richer than just a single cluster tree. The invariant we
construct out of the family fG";�g"�0;��0 can be regarded as a generalization of
both hierarchical clustering and the cluster tree. In fact, a slice of the invariant for
a fixed value of " yields a cluster tree estimate, whereas a slice for a fixed value of
	 yields the dendrogram corresponding to applying HC to X� , i.e. a single mode
analysis snapshot. Our construction therefore takes into account both the linkage
parameter ", and 	 : a parameter related to the function f (e.g. density). This is to
be regarded as multiparameter clustering.

In this paper, we produce a variation of the theme in Carlsson and Mémoli
(2008). By first identifying desirable properties of such multi-parameter cluster-
ing procedures, we then propose a set of axioms for such methods. We prove a
uniqueness/characterization theorem (Theorem 1) under these axioms. The proce-
dure singled out by this set of axioms can be regarded as a generalization of both
SL HC and the cluster tree construction. In addition, in Theorem 2 we establish the
precise quantitative (or metric) stability of the particular clustering scheme which is
characterized by our results.

Our presentation is necessarily concise given the space constraints; more details
and elaboration will be presented in a future publication.

2 Notation and Terminology

Let X denote the collection of all finite metric spaces. Let X1 be the collection of
all finite filtered metric spaces, that is triples .X; dX ; fX / where .X; dX/ 2 X and
fX W X ! R. Given .X; dX ; fX / 2 X1, for each 	 2 R let X� D f �1

X ..�1; 	�/.
For a finite set X and a symmetric function W W X 	 X ! R

C let L.W /
denote the maximal metric on X less than or equal to W , i.e. L.W /.x; x0/ D
min

˚Pm
iD0W.xi ; xiC1/j x D x0; : : : ; xm D x0; m 2 N

�
for x; x0 2 X . For a finite

metric space .X; dX/, sep.X; dX / denotes the minimal distance between any two
different points in X . When referring to a metric space .X; dX/ or to a filtered met-
ric space .X; dX ; fX / we may drop the metric and filter and refer to it by just X .
For a topological space S , B.S/ denotes the collection of Borel sets of S . Given a
set Z, for a function h W Z ! R, we use the notation khkL1.Z/ D supz2Z jh.z/j:

3 Two Parameter Hierarchical Clustering: A Characterization
Theorem

Definition 1 (Persistent Structures). Given a finite setX , a persistent structure on
X is a mapQX W X 	X ! B.RC 	 R/ s.t.

1. If ."; 	/ 2 QX .x; x
0/, then ."C t; 	 C s/ 2 QX .x; x

0/ for all t; s � 0.
2. If ."1; 	1/ 2 QX .x; x

0/ and ."2; 	2/ 2 QX .x
0; x00/, then

�
max."1; "2/;

max.	1; 	2/
� 2 QX .x; x

00/:
3. For all x; x0 2 X , @QX .x; x

0/ � QX .x; x
0/ (technical condition).
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QΔ(p;p) QΔ(q;q) QΔ(p;q)

Fig. 1 A simple persistence structure on fp; qg: Q


Example 1. Let 
 D fp; qg and Q� be given by the Fig. 1, where ˛; ˇ; ı � 0.

Remark 1. Persistent structures are useful constructs for expressing nested associ-
ations of points. They can be regarded as a certain generalization of the concept of
ultrametrics and therefore of dendrograms (nested families of partitions). In fact,
one can see that a persistence structureQ onX gives rise to a family of ultrametrics
on X .

We use the language of categories and functors, see Carlsson and Mémoli (2008)
for an exposition relevant to clustering and Mac Lane (1998) for a comprehen-
sive account. Below, Sets denotes the category whose objects are sets and whose
morphisms are set maps.

Consider the category Q whose objects are pairs .X;QX / where X is a finite
set and QX is a persistent structure on X . Let Q denote the objects in Q. A map
� W X ! Y is called persistence preserving if for all x; x0 2 X , QX .x; x

0/ 

QY .�.x/; �.x

0//: We declare thatMorQ..X;QX/; .Y;QY // consists of all persis-
tence preserving maps between X and Y . We define Mgen to be the category that
has all finite filtered metric spaces as objects, and as morphisms all those maps that
are distance non-increasing and filter non-increasing. That is, � 2 MorMgen.X; Y /

if and only if for all x; x0 2 X , dX .x; x
0/ � dY .�.x/; �.x

0// and fX .x/ �
fY .�.x

0//:
In this context, a clustering functor will be a functor C WMgen ! Q: Consider

the equivalence relation on X� given by x �.";�/ x
0 if and only if there exists

x0; : : : ; xm in X s.t. x0 D x, xm D x0, maxi dX .xi ; xiC1/ � " and maxi fX .xi / �
	 . For x 2 X� let Œx�.";�/ denote the equivalence class to which x belongs.

Example 2. Consider the functor C� W Mgen ! Q that when applied to .X; dX ;

fX / produces the object (persistent structure) .X;Q�
X/ whereQ�

X .x; x
0/ WD f."; 	/

2 R
2j x �.";�/ x

0� : That C� is a functor follows easily from the definitions. The
following observations are in order:

� The sets Q�
X .x; x

0/ are obviously unbounded. They are of the form
SK

iD1Œ"
.i/;

1/ 	 Œ	 .i/
1 ;1/: Note that for x 2 X , Q�

X .x; x/ D f."; 	/ 2 R
2j " � 0; 	 �

fX .x/g:
� Let B D Œx�.";�/ ¤ Œx0�.";�/ D B 0. Then, clearly, minx2B;x02B0 dX .x; x

0/ > ":
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� If ."; 	/ are s.t. sep.X� ; dX / > ", then ."; 	/ … Q�
X .x; x

0/ for all x; x0 inX� with
x ¤ x0. Indeed, otherwise let x; x0; x0; : : : ; xn 2 X be s.t. x0 D x, xn D x0,
dX .xi ; xiC1/ � " and fX .xi / � 	 . Since xi 2 X� for i 2 f0; : : : ; ng, and
x ¤ x0, there are at least two different consecutive points in fx0; x1; : : : ; xng
whose distance is not greater than ", a contradiction.

� For t � 0 let 	 t
X W X	X ! R be defined by .x; x0/ 7! inf

˚
	 j x �.t;�/ x

0�: This
gives rise to a tree and can be likened to the cluster tree construction of Stuetzle.

We have the following characterization/uniqueness theorem.

Theorem 1. Let C W Mgen ! Q be a functor which satisfies the following
conditions.

(I) Let ˛ W Mgen ! Sets and ˇ W Q ! Sets be the forgetful functors
.X; dX ; fX / ! X and .X;QX/ ! X , which forget the metric and filter,
and persistence structure, respectively, and only “remember” the underlying
sets X . Then we assume that ˇ ı� D ˛. This means that the underlying set of
the persistent structure associated to a metric space is just the underlying set
of the metric space.

(II) For ı � 0 and ˛; ˇ 2 R let 
.ı; ˛; ˇ/ D .fp; qg; � 0 ı
ı 0

�
; f˛; ˇg/ denote the

two point filtered metric space with underlying set fp; qg, where dist.p; q/ D ı
and f�.p/ D ˛ and f�.q/ D ˇ. Then C.
.ı; ˛; ˇ// is the persistent structure
.fp; qg;Q�/ whose underlying set is fp; qg and where Q� is given by the
construction shown in Fig. 1.

(III) Given ."; 	/ 2 R
C 	 R and finite filtered metric space .X; dX ; fX /, then

sep.X� / > " implies that ."; 	/ … QX .x; x
0/ for any x; x0 2 X� , x ¤ x0.

Then C is equal to the functor C�.

Proof. We sketch the proof. Let .X; dX ; fX / be a finite filtered metric space. Write
.X;QX/ D C.X; dX ; fX /. Also, write .X;Q�

X/ D C�.X; dX ; fX /.

(1) Let x; x0 2 X and ."; 	/ 2 R
C	R be s.t. ."; 	/ 2 QX .x; x

0/. We will prove that
."; 	/ 2 Q�

X .x; x
0/ as well. Consider the filtered metric space .X 0; d 0; f 0/ where

X 0 D Xn �.";�/. Let � W X ! X 0 be given by x 7! Œx�.";�/. For ˛; ˇ 2 X 0
let W.˛; ˇ/ WD minx2��1.˛/; x02��1.ˇ/ dX .x; x

0/: Note that by the discussion in
Example 2, min˛¤ˇ W.˛; ˇ/ > " for ˛; ˇ 2 X 0. Define d 0 to be the maximal metric
pointwisely less than or equal W , i.e. d 0 D L.W /. Finally , let f 0 W X 0 ! R

be given by ˛ 7! minx2��1.˛/ fX .x/: Note that by construction, X 0
� D X 0 and

sep.X 0; d 0/ > ":
Now, also by construction it holds that � 2 MorMgen.X;X 0/. By functorial-

ity we then have QX 
 QX 0 ı .�; �/; and in particular, we have that ."; 	/ 2
QX 0.�.x/; �.x0//: Note that we must have �.x/ D �.x0/ for otherwise, condi-
tion (III) together with sep.X 0; dX 0/ > " give a contradiction. This means that
Œx�.";�/ D Œx0�.";�/, hence, by definition of C�, ."; 	/ 2 Q�

X .x; x
0/.

(2) Let x; x0 2 X and ."; 	/ 2 R
C 	 R be s.t. ."; 	/ 2 Q�

X .x; x
0/. Let x D x0;

x1; : : : ; xt Dx0 be points inX� s.t. maxi dX .xi ; xiC1/ � ": Fix i 2 f0; 1; : : : ; t�1g.
Consider the two point filtered metric space 
."; 	; 	/ and the map  W 
!X
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given by  .p/ D xi and  .q/ D xiC1. Note that by construction  2 MorMgen

.
;X/. Then, Q� 
 QX ı . ; /, and in particular (check Fig. 1), ."; 	/ 2
QX .xi ; xiC1/. Since i was arbitrary, by applying property 2. in Definition 1 repeat-
edly, we obtain that ."; 	/ 2 QX .x; x

0/. This concludes the proof.

Example 3. As a simple practical tool for the analysis of data one could use the
following construction: for a given triple .X; d; f / let KX W RC 	R! N be given
by ."; 	/ 7! #

�
X�n �.";�/

�
, i.e. the number of equivalence classes of X� under

�.";�/.

4 Metric Stability of C�

For setsA andB , a subsetR � A	B is a correspondence (betweenA andB) if and
only if (1) 8 a 2 A, there exists b 2 B s.t. .a; b/ 2 R; and (2) 8 b 2 B , there exists
a 2 X s.t. .a; b/ 2 R. Let R.A;B/ denote the set of all possible correspondences
between sets A and B .

Consider compact metric spaces .X; dX/ and .Y; dY /. Let X;Y W X 	 Y 	
X 	 Y ! R

C be given by .x; y; x0; y0/ 7! jdX .x; x
0/ � dY .y; y

0/j. Then,
the Gromov-Hausdorff distance (Burago 2001) between X and Y is given by
dGH.X; Y / WD infR2R.X;Y / kX;Y kL1.R	R/: The Gromov-Hausdorff distance is
a metric on the collection of all isometry classes of compact metric spaces (Burago
2001). We modify the expression of the Gromov-Hausdorff distance in order to
define a metric for filtered metric spaces. We deem two spaces X; Y in X1 iso-
morphic whenever there exists an isometry � W .X; dX / ! .Y; dY / such that
f .x/ D g ı �.x/ for all x 2 X .

Definition 2. Let D W X1 	 X1 ! R
C be given by

D.X; Y / WD min
R2R.X;Y /

max
�kX;Y kL1.R	R/; kfX � fY kL1.R/

�
; X; Y 2 X1.

Proposition 1. The function D defined above is a metric on (the set of isomorphism
classes of) X1.

We say that two persistent structures .X;QX/ and .Y;QY / are isomorphic and write
.X;QX/ ' .Y;QY /, if and only if there exist a bijection ˚ W X ! Y s.t. QY D
QX ı .˚;˚/. We define a metric on the collection Q of all persistent structures by

dQ.X; Y / WD min
R2R.X;Y /

max
.x;y/;.x0;y0/2R

d
.R2;L1/
H

�
QX .x; x

0/;QY .y; y
0/
�

(1)

In (1) above, d .R2;L1/
H stands for the Hausdorff distance (Burago 2001) on

subsets of the plane under the L1 metric.
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Proposition 2. dQ defines a metric on (the isomorphism classes of) Q.

Now one has stability on the functor C�, i.e. the application .X; dX ; fX / 7!
.X;Q�

X/ is stable in an appropriate sense.

Theorem 2. For two filtered spaces .X; dX ; fX / and .Y; dY ; fY / in X1 consider
the associated persistent structures .X;Q�

X / and .Y;Q�
Y / defined in Example 2.

Then, one has dQ..X;Q�
X/; .Y;Q

�
Y // � D.X; Y /:
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Unsupervised Sparsification of Similarity
Graphs

Tim Gollub and Benno Stein

Abstract Cluster analysis often grapples with high-dimensional and noisy data.
The paper in hand identifies sparsification as an approach to address this problem.
Sparsification improves both the runtime and the quality of cluster algorithms that
exploit pairwise object similarities, i.e., that rely on similarity graphs. Sparsifica-
tion has been addressed in the field of graphical cluster algorithms in the past, but
the developed approaches leave the burden of parameter tuning to the user. Our
approach to sparsification relies on the inherent characteristics of the data and is
completely unsupervised. It leads to significant improvements in the cluster quality
and outperforms even the optimum supervised approaches to sparsification that rely
on a single global threshold.

1 Introduction and Related Work

Cluster analysis deals with the problem of finding natural groups in large sets of
data. Extensive discourses on clustering techniques are given in Everitt (1993), Jain
et al. (2000), Kaufman and Rousseuw (1990), Stein and Meyer zu Eißen (2003). For
the purpose of this paper it is sufficient to distinguish between clustering techniques
that are based on a similarity graph versus techniques that are exemplar-based. The
contribution of our research is to the former class of algorithms. Figure 1 provides
an overview of algorithms that are based on similarity graphs.

To motivate sparsification as a vital part of cluster analysis, consider the con-
ceptual model of a cluster analysis process shown in Fig. 2. The similarity graph G
of a set of objects O D fo1; o2; : : : ; omg is derived by estimating the similarities
between all pairs of objects. Similarities between real-world objects such as doc-
uments cannot be assessed directly (unless done by human) but require a model
formation or feature extraction step, resulting in a set of object representations
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Fig. 1 Taxonomy of cluster algorithms using similarity graphs
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Fig. 2 Cluster analysis. A four-step conceptual model

X D fx1; x2; : : : ; xmg. A vector xi 2 X corresponds to n features of an object oi

and comprises the respective feature weights, i.e., xi D .wi1 ;wi2 ; : : : ;win/
T . A

similarity function s.xi; xj/! Œ0; 1� is applied to all pairs in X to construct the raw
similarity graphG0. If the model formation step is adequate,1 G0 resembles the sim-
ilarity graph G of the real-world objects O . However, the indirection shown in the
upper part of Fig. 2 introduces undesired imprecision. Among others, imprecision
is introduced in the course of feature selection, feature computation, or similarity
quantification. Hence the raw similarity graph G0 models the similarities between
the real-world objects O only approximately. Note that a cluster algorithm takes
the similarity scores in G0 at face value and runs the risk to make wrong decisions,
especially in tie situations. Here sparsification comes into play. By modifying the
raw similarity graph G0, a smart sparsification obtains a more veritable similarity
graph G.

1 In the sense of Minsky (1965): xi can answer the interesting question about oi .
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In Kumar (2000), Luxburg (2007), Kumar and Luxburg report on two major
approaches to sparsification. The first one uses a global threshold � to eliminate
all edges with a similarity score below this value. As will be discussed in greater
detail in Chap. 2, this approach has its major drawback in disregarding regions of
variable density in the object space. The second approach to sparsification is more
sensible. It discards all edges of G0 that are not among the k strongest edges of a
node. Several variants of this nearest neighbor sparsification are discussed in Ertöz
et al. (2003), Guha et al. (1999), Karypis et al. (1999). While nearest neighbor spar-
sification longs for different regions in the document space, it comes at the price that
the parameter k is application-dependent and has to be chosen carefully.

Our new approach to sparsification adapts itself in an unsupervised manner. It
computes an expected similarity score for every edge in the graph G0, and only
similarity scores surpassing this expectation remain in the thinned-out graph G. To
examine the potential of our idea, we conduct two experiments on four collections of
text documents. In the first experiment the accuracy of our sparsification technique
is compared to the best performing approach that uses a global threshold. In the
second experiment raw and thinned-out similarity graphs are analyzed by a density-
based cluster algorithm in order to evaluate the gain in clustering quality achieved by
sparsification. The results of our experiments are promising in every respect: sparsi-
fication increases the quality of the clusterings. Even more, our approach excels in
every experiment even the optimum sparsification that relies on a global threshold.

The organization of the paper is as follows. Section 2 gives a definition of
sparsification in the context of cluster analysis and presents the new unsupervised
sparsification approach. Section 3 reports on the experiments.

2 Sparsification

In the field of computational theory, sparsification is understood as a technique to
guarantee a desired time bound when designing dynamic algorithms (Black 2004).
In cluster analysis research, improving the efficiency of an approach is of interest as
well,2 but sparsification is also used to enhance the cluster quality. Kumar (2000)
states the goal of sparsification as the “efficient and effective identification of the
core points belonging to clusters and subclusters”. This definition, though reason-
able, is closely related to the author’s approach to graphical clustering. Here we
propose a more general definition in the context of cluster analysis:

Sparsification is the interpretation of the similarity scores in the feature space in order to
enhance the quality and the effort of the cluster formation task.

Ideally, sparsification sets the similarity scores of edges between two clusters (inter-
class edges) to zero, while setting the edge scores within clusters (intra-class edges)

2 E.g., spectral clustering is efficient only with sparse matrices (Luxburg 2007).
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to 1. Let c.oi /! f1; : : : ; lg assign the true class label to each object o 2 O . Then,
the optimum sparse similarity graph G fulfills the following condition:

'.oi ; oj / D
(
1; if c.oi / D c.oj /

0 otherwise;

where '.oi ; oj / denotes the similarity between two real-world objects. The opti-
mum similarity graph is only of theoretical interest since it requires unavailable
knowledge about the true class labels. Existing approaches to sparsification work
out a notion of probability that two objects belong to the same class. The underlying
principle is the nearest neighbor principle. It states that if an object representation
x1 is more similar to a representation x2 than to another representation x3, then
the probability that x2 belongs to the same class as x1 should be higher than the
probability that x3 belongs to the same class as x1:

s.x1; x2/ > s.x1; x3/ , P.c.o1/ D c.o2// > P.c.o1/ D c.o3//

Upon this supposition several approaches, including ours, have been suggested.

2.1 Existing Approaches

The most common approach to sparsification is the use of a global threshold � .
Every similarity score below the threshold is discarded from the similarity graph.
While this approach can be applied efficiently it has two serious drawbacks. First,
the threshold’s optimum value varies under different sets of objects and has to be
found empirically. Second, applying one global threshold does not account for dif-
ferent regions in the object space. As illustrated in Fig. 3 one has to cope with
clusters where objects are connected much loser compared to other clusters. In such
a situation the upper bound for the threshold is determined by the cluster of the
lowest density.

The second approach to sparsification relies on the construction of a k-nearest
neighbor graph of G0. The k-nearest neighbor graph retains those edges which
are among the heaviest k edges of a node (D link to the k nearest neighbors).
Several variants of this algorithm exist. The mutual k-nearest neighbor graph is
constructed by discarding each edge for which the incident nodes are not among
the k nearest neighbors of each other. Another interesting variant is called shared
nearest neighbor graph, where the edges of an ordinary k-nearest neighbor graph
are weighted according to the number of neighbors the incident nodes have in com-
mon. As illustrated in Fig. 3 a k-nearest neighbor graph is able to retain regions of
different density in the object space. The main problem is the proper adjustment
of the parameter k. And, since the optimum k heavily depends on the (unknown)
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Object 
space
O

minimum
    intra-class
       distance

minimum
inter-class
 distances

Fig. 3 Two different regions in the object space. The dense clusters on the right-hand side
could be thinned-out effectively by applying a threshold reflecting the minimum inter-class dis-
tance. Within the cluster on the left, however, this threshold would eliminate all intra-class edges.
A convincing result is obtained by constructing the mutual three-nearest neighbor graph (illus-
trated by the indicated edges). Every node has at least one intra-class edge; all inter-class edges are
discarded

number and size of the classes, even finding a limiting range of promising choices
is difficult. Ertöz et al. (2003) state:

“The neighborhood list size, k, is the most important parameter as it determines the gran-
ularity of the clusters. If k is too small, even a uniform cluster will be broken up into pieces
due to the local variations in the similarity [. . . ]. On the other hand, if k is too large, then
the algorithm will tend to find only a few large, well-separated clusters, and small local
variations in similarity will not have an impact.”

Hence, the construction of a suitable sparse similarity graph requires the generation
and evaluation of a large number of candidates. Note that – more than runtime – the
identification of a sensible internal evaluation measure is the limiting factor in this
connection.

2.2 An Object-specific, Unsupervised Approach to Sparsification

Our goal is to provide a completely unsupervised approach to sparsification, while
striving for the performance of the existing supervised approaches. To achieve this
we claim that two objects in the thinned-out graph G are only allowed to share an
edge, if the probability that they belong to the same cluster is high. In particular we
propose that the following relation must hold:

P.c.o1/ D c.o2// > maxfP.c.o1/ D c.orand//; P.c.o2/ D c.orand//g;

with orand 2 O n fo1; o2g. I.e., the probability that two objects, o1 and o2, belong
to the same cluster must exceed the probabilities that some randomly drawn object
from O belongs to the same cluster as o1 or o2. Given this postulation, the nearest
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neighbor principle is used to establish a relation concerning the similarity scores of
the corresponding object representations:

s.x1; x2/ > maxfs.x1; x/; s.x2; x/g;

where x is a virtual object representation reflecting the characteristics of the object
set. It comprises the average weights of all object representations in X :

x D .w1; : : : ;wn/
T with wj D

Pm
iD0 wi;j

m
:

If the similarity score of two object representations does not exceed the postu-
lated score, the respective edge is classified as an inter-class edge and is discarded.
Altogether, the decision rule ' for unsupervised sparsification reads as follows:

'.o1; o2/ WD
(
s.x1; x2/; if s.x1; x2/ > maxfs.x1; x/; s.x2; x/g
0 otherwise:

The decision rule above yields convincing results in our sparsification experi-
ments. Nevertheless, cluster algorithms that are extremely sensitive to noise benefit
from a more exhaustive sparsification. To account for this, the notion of significance
is introduced into the formula by modifying the virtual object representation x. In
the following formula the maximum weight of each feature w�

i is considered as an
upper bound, and the harmonic mean between this bound and the averaged feature
weight is computed:

bx D .bw1; : : : ;bwn/
T with bwi D 2 � w�

i � wi

w�
i C wi

:

The corresponding stricter decision rule b', which accounts for significance, is
derived by substitutingbx for x in the decision rule '.

3 Evaluation

To evaluate the performance of our unsupervised approach to sparsification, four
test collections were constructed from the Reuters news corpus RCV1 (Rose et al.
2002). The collections vary with respect to the number of documents, the number
of categories, as well as by the way the documents are distributed across the classes
(cf. Table 1).

The documents are represented using the vector space model with normalized tf -
feature-weights (Salton et al. 1975), having applied Porter stemming and stopword
elimination. The similarity between two documents is computed as the dot product
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Table 1 Properties of the four test collections. Based on the first collection, one attribute at a time
is altered in the subsequent collections

Collection Categories Documents Distribution

1 4 10.000 random
2 4 10.000 uniform
3 4 2.000 random
4 10 10.000 random

Table 2 Averaged results of the experimental analysis. The first and the second row show the
results with the minimum and the optimum global threshold respectively. The third and the fourth
row report on our unsupervised approach, employing the virtual documents x and bx. Column 4
reports on the F -measure in the first experiment (sparsification task), the rightmost column reports
on the quality of the clusterings produced by MajorClust

Approach % of retained % of discarded F -measure F -measure
intra-class edges inter-class edges (sparsification) (clustering)

� D min 100.0% 6.0% 0.43 0.23
�� D 0:075 59.9% 83.0% 0.59 0.61

' 66.8% 85.9% 0.63 0.68
b' 37.4% 97.4% 0.50 0.76

of their representations. The nonzero similarity scores are manually divided into
intra-class and inter-class scores.

In the first experiment we are interested in the accuracy of our approach. It is
specified in terms of the F -measure, F D 2	precision	recall

precisionCrecall . While precision denotes
the proportion of intra-class edges in the thinned-out graph, recall is determined by
the proportion of intra-class edges retained. The global threshold sparsification that
classifies the edges best (D highestF -measure) is identified by an exhaustive search
and is compared to the results obtained by our unsupervised approach. The average
results of the experiment are shown in Column 4 of Table 2. Our unsupervised spar-
sification approach with the virtual object x (Row 3) outperforms sparsification with
the optimum global threshold (Row 2).

In the second experiment the thinned-out similarity graphs are given to Major-
Clust, a representative of the density-based cluster formation paradigm (cf. Fig. 1).
Here we use the classification-oriented F -measure, described, e.g., in Rosenberg
and Hirschberg (2007), to determine the quality of the resulting clusterings. The
average results are shown in the rightmost column of Table 2. The first row serves
as a baseline: these values are achieved by applying the maximum global threshold
that retains 100% of the intra-class edges. Note that sparsification in general raises
the cluster quality. Comparing the different approaches to sparsification, our unsu-
pervised approach with the virtual object x again outperforms the global threshold
sparsification. Interestingly, sparsification with the virtual object bx, which retains
only 37.4% of the intra-class edges but discards 97.4% of the inter-class edges,
attains the highest cluster qualities (Row 4).
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4 Conclusion

The main contribution of this paper is a new, unsupervised approach to sparsifica-
tion. We argue that existing cluster analysis technology is over-strained with the
amount of noise that is typical for most categorization and classification tasks, e.g.,
in information retrieval. A preprocessing of the similarity graph in the form of a
sparsification step considerably improves the cluster performance.

The outstanding property of the proposed rule is the consideration of the spe-
cific similarity distributions within the set of objects, while being parameterless
at the same time. Our analysis shows that even sparsification with the optimum
global threshold is outperformed. Recall in this context that a comparison to the
optimum threshold is only of theoretical interest: in practical applications, cluster
analysis happens unsupervised, and the optimum threshold is not at hand. This fact
underlines the impact of the proposed strategy.

A still unanswered research question is the performance of our approach in
comparison to a k-nearest neighbor approach. A preliminary evaluation of smaller
document sets (up to 2,000 documents) revealed, that our unsupervised approach to
sparsification is as effective as the best performing mutual k-nearest neighbor graph
in 86% of 126 different cases (Gollub 2008).
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Simultaneous Clustering and Dimensionality
Reduction Using Variational Bayesian Mixture
Model

Kazuho Watanabe, Shotaro Akaho, Shinichiro Omachi, and Masato Okada

Abstract Exponential principal component analysis (e-PCA) provides a frame-
work for appropriately dealing with various data types such as binary and integer
for which the Gaussian assumption on the data distribution is inappropriate. In this
paper, we develop a simultaneous dimensionality reduction and clustering technique
based on a latent variable model for the e-PCA. Assuming the discrete distribution
on the latent variable leads to mixture models with constraint on their parameters.
We derive a learning algorithm for those mixture models based on the variational
Bayes method. Although intractable integration is required to implement the algo-
rithm, an approximation technique using Laplace’s method allows us to carry out
clustering on an arbitrary subspace. Numerical experiments on handwritten dig-
its data demonstrate its effectiveness for extracting the structures of data as a
visualization technique and its high generalization ability as a density estimation
model.

1 Introduction

Exponential principal component analysis (e-PCA) has been proposed as a dimen-
sionality reduction method that extracts a low dimensional subspace in the space
of probability distributions (Akaho 2004; Collins et al. 2002). This method pro-
vides a framework for introducing appropriate distance measures for special data
types such as binary and integer. The original principal component analysis (PCA)
uses the squared Euclidean distance based on the Gaussian assumption of the data.
Extending this assumption to the exponential family distribution introduces more
appropriate distance measures for various data types (Collins et al. 2002). This also
resolves the problem that the projections of data obtained by the original PCA can
be outside the domain. Such extension is not restricted only to dimension reduction,
but it can be applied to clustering as well (Banerjee et al. 2005).
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One drawback for the e-PCA is that it is not associated with a statistical estima-
tion model. Several advantages have been provided by interpreting dimensionality
reduction and clustering methods as estimations in statistical models, including the
application of the Bayesian framework and the use of the semi-supervised approach.
Among them, the Bayesian framework offers mechanisms for selecting the intrinsic
dimensionality in dimension reduction methods and the number of clusters (popu-
lations) in clustering methods. In fact, the probabilistic PCA (Tipping and Bishop
1999), proposed as a latent variable model for the PCA, became the basis for several
methods such as the Bayesian PCA (Bishop 1999).

In this paper, we introduce a latent variable model for the e-PCA and present a
simultaneous clustering and dimensionality reduction technique using the mixture
model whose parameter vectors are constrained to a low dimensional subspace of
exponential family distributions. As the main contribution of this paper, we derive a
learning algorithm for the constrained mixture model based on the variational Bayes
method. We consider the variational Bayesian algorithm for a fixed subspace. How-
ever, it requires intractable integration. We apply a Laplace approximation method
to it to achieve clustering on an arbitrary subspace. Furthermore, devising meth-
ods to estimate the basis vectors of the subspace and the projections of the data
and combining them with the above clustering algorithm, we complete a framework
for simultaneous clustering and dimensionality reduction. The variational Bayesian
algorithm naturally provides a criterion for selecting the intrinsic dimensionality as
well as the number of clusters present.

We demonstrate the properties of the derived algorithm by the experiment con-
ducted for the handwritten digits data with discrete features. By reducing the
dimensionality to two or three, our framework also provides a visualization tech-
nique. Comparisons of the derived method to the conventional methods such as
Gaussian mixture modelling show that it well preserves multi-modality of the high
dimensional distribution in the visualization space and it has high generalization
ability as a density estimation model.

2 Exponential Family and e-PCA

A statistical modelp.xj�/ of a random vector x 2 � is called the exponential family
if its probability density function (or probability function) has the following form,

p.xj�/ D expf� � F.x/C F0.x/�G.�/g; (1)

where � D .�1; : : : ; �M /
T 2 � is called the natural parameter and � � F.x/ D

PM
j D1 �jFj .x/ is the inner product of � and F.x/ D .F1.x/; : : : ; FM .x//T . The

function F0.x/ is real-valued and G.�/ ensures that p.xj�/ is a probability den-
sity function. The expectation parameter is defined by � D .�1; �2; : : : ; �M / where
�i D EŒFi .x/� D

R
Fi .x/p.xj�/dx is the expectation of Fi .x/ with respect to the

distribution (1). The exponential family has an important property that there is a
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bijection between � and � given by � D @G.�/
@�

. Hence we denote them by �.�/,
�.�/ as functions of respective parameters.

The e-PCA is a method to extract a low dimensional subspace in the set of the
exponential family distributions. Let

Q�.w/ D UwC u0 DPL
j D1 wj uj C u0 (2)

represent a point on the L-dimensional subspace in �. Here U is the matrix
whose columns are the M -dimensional basis vectors, u1; : : : ;uL and w D
.w1;w2; : : : ;wL/ 2 RL is the low dimensional representation of Q� . The set
f Q�.w/Iw 2 RLg forms the so-called “e-flat” subspace (Akaho 2004; Amari and
Nagaoka 2000). It is known that for a point � 2 �, there is a unique point Q� in the
e-flat subspace that minimizes the Kullback information K.� jj Q�/.1 Based on this
fact, given the samples of the natural parameter �n D f� .i/gniD1 as the training
data, the e-PCA searches the latent variables Wn D fw.i/gniD1 (also the basis U and
u0) so as to minimize the objective function,

Pn
iD1K.�

.i/jj Q�.w.i///. An alternating
optimization procedure was derived for the e-PCA (Akaho 2004).

3 Constrained Mixture Model

The probabilistic PCA assumes the joint probability distribution of the data vector
x and the latent variable w D .w1;w2; : : : ;wL/ 2 RL as follows,

p.x;w/ D p.xj Q�.w//p.w/; (4)

where Q�.w/ is defined by (2) (Tipping and Bishop 1999). Throughout this paper,
we suppose that p.xj�/ in (4) is an exponential family distribution given in (1). The
subsequent discussion before Sect. 5 assumes that U and u0 are fixed.

Suppose n training samples Xn D fx.i/gniD1 are given. If we consider F.x.i// as
a sample of the expectation parameters and � .i/ as that of the corresponding natural
parameters, that is,

F.x.i// D �.� .i//; (5)

then the maximum a posteriori estimator of Wn, induced by the above model, cor-
responds to the e-PCA solution when the latent distribution p.w.i// is uniform
(Watanabe et al. 2009).

1 The Kullback information between the two distributions, p.xj�/ and p.xj Q�/ is defined by
K.� jj Q�/ D R

p.xj�/ log p.xj�/

p.xj Q�/
dx. In the case of the exponential family, it is given by

K.� jj Q�/ D .� � Q�/�.�/�G.�/CG. Q�/: (3)
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To model multiple populations (clusters), we assume a discrete prior distribution.
Let ı be the delta function and a D fakgKkD1

be a set of real numbers that satisfy

ak � 0 and
PK

kD1 ak D 1. Assuming the density p.w/ of the latent variable to be
the discrete distribution

PK
kD1 akı.w � wk/ and marginalizing w in (4), yield a

finite mixture model,

p.xj!/ D
KX

kD1

akp.xj Q�.wk//: (6)

Here ! D fa; fwkgKkD1
Iwk 2 RLg is the parameter of the mixture model and K is

the number of components. Each component p.xj Q�.wk// is the exponential fam-
ily distribution (1) whose parameter Q�.wk/ defined by (2) is constrained to the
L-dimensional subspace. This mixture model was derived based on non-parametric
maximum likelihood (ML) estimation of the latent distribution p.w/ and an expec-
tation maximization (EM) algorithm was given for parameter estimation (Sajama
and Orlitsky 2004).

We take the conjugate prior distribution of the parameter as p.!/ D p.a/QK
kD1

p.wk/, in which the priorp.a/ and the priorp.wk/ are the Dirichlet and exponential
family distributions,

p.a/ D  .K�0/

 .�0/K

KY

kD1

a
�0�1

k
; p.wk/ D expf�0.wk �˛0�G. Q�.wk///�˚.˛0; �0/g;

(7)
with hyperparameters �0 > 0, U, u0, ˛0 2 RL and �0 > 0. The function ˚.˛; �/ of
� 2 R and ˛ 2 RL is defined by

˚.˛; �/ D log
Z

expf�.˛ � w �G. Q�.w///gdw: (8)

As in the EM and variational Bayesian algorithm for the usual mixture model,
we introduce another latent (hidden) variable zk that is 1 if the datum x is gen-
erated from the kth component and 0 otherwise. Then we have the following
joint probability distribution of the observed data x and hidden variable z D
.z1; z2; : : : ; zK/,

p.x; zj!/ DQK
kD1fakp.xj Q�.wk//gzk : (9)

The next section derives the variational Bayesian algorithm for this model.

4 Variational Bayes Method

Given n training data Xn D fx.i/gniD1, using the corresponding hidden variables
Zn D fz.i/gniD1, the variational Bayesian estimation approximates the Bayesian
posterior distribution by the variational posterior distribution that factorizes as,
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q.Zn; !/ D q1.Z
n/q2.!/. The variational posterior distribution is chosen to mini-

mize the objective functional,

QF Œq� D
X

Zn

Z

q.Zn; !/ log
q.Zn; !/

p.!/
Qn

iD1 p.x.i/; z.i/j!/d! (10)

called the variational free energy (Attias 1999). The variational free energy is min-
imized by alternately optimizing one of q2.!/ and q1.Z

n/ while the other is fixed.
The following sections give the optimal form of each distribution when the other is
fixed. The derivations are omitted here (Watanabe et al. 2009).

4.1 Optimal q2.!/ for Fixed q1.Zn/

We define

nk D
Pn

iD1hz.i/

k
iq1.Zn/; �k D 1

nk

Pn
iD1hz.i/

k
iq1.Zn/F.x.i//; (11)

where nk is the number of data that are estimated to be generated from the kth
component and �kj is the average of Fj for them. The optimal q2.!/ for the given

q1.Z
n/ is q2.!/ D q2.a/

QK
kD1 q2.wk/, where

q2.a/D .
PK

kD1 �k/
QK

kD1  .�k/

KY

kD1

a
�k�1

k
;q2.wk/D expf�k.wk �˛k�G. Q�.wk///�˚.˛k ; �k/g:

(12)

Here we have put �k D nk C �0, ˛k D nkUT 	kC
0˛0

nkC
0
and �k D nk C �0.

4.2 Optimal q1.Zn/ for Fixed q2.!/

The optimal q1.Z
n/ for the fixed q2.!/ is given by q1.Z

n/ /Qn
iD1

QK
kD1 exp.z.i/

k

s
.i/

k
/, where we have defined

s
.i/

k
D �.�k/��.

PK
kD1 �k/C @˚.˛k ;
k/

@¸k
C� 1


k

@˚.˛k ;
k/
@˛k

� ��UT F.x.i//�˛k

�
; (13)

and �.x/ D .log .x//0. Its mean is given by hz.i/

k
iq1.Zn/ D q1.z

.i/

k
D 1/ D

e
s

.i/
k

PK
kD1 e

s
.i/
k

. Note that the algorithm requires computing @˚
@˛

and @˚
@


in (13).
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4.3 Laplace Approximation

When the rank of the matrix U is L (< M ) in general, we no longer have explicit
forms of the function ˚ , @˚

@˛
and @˚

@

. We provide the following approximation of ˚

based on Laplace’s method (Watanabe et al. 2009),

˚.˛; �/ ' �.˛ � Ow �G.U OwC u0// � L
2

log
�

2�
� 1
2

log jQJj:

Here QJ D UT @2G. Q�.w//

@�@�T U and Ow is given by solving the equation UT @G. Q�.w//
@�

D ˛

with respect to w. This can be solved by an iterative method that initializes w with
Qw and repeats updating Qw by adding

d Qw D QJ�1
�
˛ � UT � .U QwC u0/

�
: (14)

The derivation is omitted here (Akaho 2004). The partial derivatives of the above
expression provide approximations of @˚

@˛
and @˚

@

.

5 Dimensionality Reduction

In the previous sections, we derived the variational Bayesian learning algorithm
for the mixture model whose component parameter vectors are constrained to
an L-dimensional subspace. Estimating the basis vectors U and the displacement
vector u0 as well enables dimensionality reduction and performing clustering simul-
taneously. More specifically, we propose to apply the e-PCA to cluster centers f�kg
to take into account the cluster structure of the data set. In this case, the steep-
est descent method for minimizing

PK
kD1 nkK.�.�k/jj Q�.hwkiq2.wk/// updates the

basis vector ul to Qul by

Qul D ul C �u
PK

kD1 nk.�k � �. Q�.hwkiq2.wk ////hwkliq2.wk/; (15)

where fnkg and f�kg are defined in (11) and �u is a small constant. We have put
wk0 D 1.

We can perform dimensionality reduction and clustering simultaneously by
updating the basis vectors with the above rule after once updating q1.Z

n/ and
q2.!/ with the variational Bayes method described in Sect. 4. Once the subspace
is estimated, the low dimensional representation of each datum can be obtained
by the following expression (Watanabe et al. 2009), which provides the projection

of the data point onto the subspace, hw.i/ip.w.i/j�.i// D 1
1C
0

@˚.˛.i/;1C
0/
@˛

, where

˛.i/ D UT F.x.i//C
0˛0

1C
0
.
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6 Experiments

To demonstrate the practical applicability of the derived method, we applied it to
a task of recognition of handwritten digits using the MNIST data set (LeCun et al.
1998). We used the 196-dimensional improved directional element feature vector
consisting of non-negative integers (Omachi et al. 2007). This motivates the use
of the mixtures of Poissons to model the probability distributions of 10 classes of
digits. The n data of the training set were used for learning the mixture model for
each class. We fixed a common dimensionality L over all 10 classes. We evaluated
the recognition rate for the 10;000 test data by assigning each test datum to the class
with the highest likelihood (posterior probability).

We first applied the full dimensional (L D 196) Poisson mixture model with
K D 5 components. The component distribution is expressed in the form of the
exponential family with x 2 f0; 1; : : :gM , F.x/ D x, F0.x/ D �PM

j D1 logxj Š and

G.�/ D PM
j D1 e

�j . The hyperparameters were set to �0 D 1, �0 D 1 and
˛0 D 10 � 1. The results of the recognition rate are presented in Fig. 1 (Left) for
different n. The results for n D 100 and 200 are comparable with those of the Gaus-
sian mixture-based approach reported in Omachi et al. (2007) that is highly tuned
for the discriminative task. We next applied the constrained Poisson mixture model
reducing the dimensionality to L D 2. The hyperparameters were set in the same
way as the full dimensional case. The results are presented in Fig. 1 (Left).

We can see the improvements in the recognition accuracy by reducing the
dimensionality especially when the sample size is small. This demonstrates the
effectiveness of the dimensionality reduction for small amounts of data. Figure 1
(Middle and Right) show the average variational free energy, (10), over the 10
classes and the error rate for different dimensionalities,L D 2; 4; 6; 12; 18; 24; 196,
when the sample size n D 200 and n D 800 respectively. The results are averaged
over five draws of data sets. The plots of error rates imply that the smaller the num-
ber n of samples, the more one needs to reduce the dimensionality L to obtain high
prediction accuracy. The plots of the variational free energy show similar trends as
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(solid line) and those by the Gaussian mixture based method (circle) for different numbers of
training samples. Middle, Right: Average variational free energy (dotted line) and error rates (%)
(solid line) for different dimensionalities when n D 200 (Middle) and when n D 800 (Right)
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those of the error rates implying that it provides a criterion for choosing the effective
dimensionality.

7 Discussion and Conclusion

Collins et al. (2002) proposed a generalization of the PCA for exponential families.
It can be viewed as a special case of the e-PCA by mapping each datum to the sam-
ple of the parameter as in (5). We gave the probabilistic density model for the e-PCA
in Sect. 3 and the constrained mixture model in (6) which can be thought as a ‘soft’
version of the e-PCA. The semi-parametric exponential family PCA developed in
Sajama and Orlitsky (2004) is the ML estimation for the constrained mixture model.
The VB approach developed in this paper naturally implements complexity control
by pruning redundant components and provides a criterion for choosing the effec-
tive dimensionality as presented in Sect. 6. The mixture of PCA, also known as the
mixture of factor analyzers, is based on the probabilistic PCA and performs local
dimensionality reduction (Tipping and Bishop 1999). In this method, multiple local
latent spaces are obtained corresponding to the mixture components. The proposed
method in the present paper estimates one common latent space over the compo-
nents, which is more suitable for visualizing data that are multi-modally distributed
in the latent space. For simultaneous dimensionality reduction and clustering, a
method combining the linear discriminant analysis (LDA) with K-means has been
proposed (Ding and Li 2007). Compared to such methods, a key feature of the algo-
rithm derived in this paper is to use the distance between probability distributions as
the measure of similarity in the space of data. Extending the LDA to incorporate the
exponential family and introducing it to the estimation of the basis vectors would be
an important undertaking in the future.
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A Partitioning Method for the Clustering
of Categorical Variables

Marie Chavent, Vanessa Kuentz, and Jérôme Saracco

Abstract In the framework of clustering, the usual aim is to cluster observa-
tions and not variables. However the issue of clustering variables clearly appears
for dimension reduction, selection of variables or in some case studies. A simple
approach for the clustering of variables could be to construct a dissimilarity matrix
between the variables and to apply classical clustering methods. But specific meth-
ods have been developed for the clustering of variables. In this context center-based
clustering algorithms have been proposed for the clustering of quantitative variables.
In this article we extend this approach to categorical variables. The homogeneity cri-
terion of a cluster of categorical variables is based on correlation ratios and Multiple
Correspondence Analysis is used to determine the latent variable of each cluster. A
simulation study shows that the method recovers well the underlying simulated clus-
ters of variables. Finally an application on a real data set also highlights the practical
benefits of the proposed approach.

1 Introduction

From a general point of view, variable clustering lumps together variables which are
strongly related to each other and thus bring the same information. It is a possible
solution for selection of variables or dimension reduction which are current prob-
lems with the emergency of larger and larger data bases. In some case studies, the
main objective is to cluster variables and not units, such as sensory analysis (identi-
fication of groups of descriptors), biochemistry (gene clustering), etc. Techniques of
variable clustering can also be useful for association rules mining (see for instance
Plasse et al. 2007).
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A simple approach for the clustering of variables could be to calculate first the
matrix of the dissimilarities between the variables and then to apply classical cluster-
ing methods which are able to deal with dissimilarity matrices (complete or average
linkage hierarchical clustering among others). Other methods like Ward or k-means
(dealing only with quantitative data) could also be applied on the numerical coor-
dinates obtained from Multidimensional Scaling of this dissimilarity matrix. But
specific methods have also been developed for the clustering of variables. In this
context Cluster Analysis of Variables Around Latent Components (Vigneau and
Qannari 2003) and Diametrical clustering (Dhillon et al. 2003) are two indepen-
dently proposed center-based clustering methods for the clustering of quantitative
variables. These methods are iterative two steps relocation algorithms involving at
each iteration the identification of a cluster centroid by optimization of an homo-
geneity criterion and the allocation of each variable to the “nearest” cluster. The
cluster centroid is a synthetic component, called latent variable, which summarizes
the variables belonging to the cluster. When high absolute correlations imply agree-
ment, both methods aim at maximizing the same homogeneity criterion (based on
squared correlations). In this case, the latent variable of a cluster is the first prin-
cipal component issued from Principal Component Analysis (PCA) of the matrix
containing the variables of the cluster.

In this paper we extend this relocation partitioning method to the case of categori-
cal variables. The homogeneity criterion is now based on correlation ratios between
the categorical variables and the cluster centroids which are numerical variables,
defined by optimization of this homogeneity criterion.

Section 2 presents the center-based clustering algorithm for the clustering of cat-
egorical variables. A simulation study is carried out in Sect. 3 to show the numerical
performance of the approach and a real data application illustrates its practical
benefits. Finally some concluding remarks are given in Sect. 4.

2 A Center-Based Partitioning Method for the Clustering
of Categorical Variables

Let X D .xij / be a data matrix of dimension .n; p/ where a set of n objects
are described on a set of p categorical variables, that is, xij 2 Mj where Mj

is the set of categories of the j th variable. Let V D fx1; : : : ; xj ; : : : ; xpg be the
set of the p columns of X, called for sake of simplicity categorical variables. We
denote by P D fC1; : : : ; Ck; : : : ; CKg a partition of V into K clusters and by
Y D fy1; : : : ; yk; : : : ; yKg a set of K vectors of R

n called latent variables.
The aim is to find a couple .P ;Y/, optimum with respect to the following

homogeneity criterion:

H.P ;Y/ D
KX

kD1

S.Ck; yk/; (1)
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where S measures the adequacy between Ck and the latent variable yk:

S.Ck; yk/ D
X

xj 2Ck

�2.xj ; yk/; (2)

with �2.xj ; yk/ the correlation ratio measuring the link between xj and yk .

Definition 1. The correlation ratio �2.xj ; yk/ 2 Œ0; 1� is equal to the between group
sum of squares of yk in the groups defined by the categories of xj , divided by the
total sum of squares of yk . We have with yk D .yk;1; : : : ; yk;i ; : : : ; yk;n/ 2 R

n,

�2.xj ; yk/ D
P

s2Mj
ns.Nyks � Nyk/

2

Pn
iD1.yk;i � Nyk/2

, with ns the frequency of category s, Mj

the set of categories of xj and Nyks the mean value of yk calculated on the objects
belonging to category s.

2.1 Definition of the Latent Variable

The latent variable yk of a cluster Ck is defined by maximization of the adequacy
criterion S :

yk D arg max
u2Rn

X

xj 2Ck

�2.xj ;u/: (3)

Proposition 1. The first principal component obtained with Multiple Correspon-
dence Analysis of Xk , the matrix containing the variables of Ck , is a solution of
(3) and is then a latent variable yk of Ck .

Proof. Let us introduce some notations. Let G D .gis/n	qk
, with gis D 1 if i

belongs to category s and 0 otherwise, be the indicator matrix of the qk categories of
the pk variables in Ck . We note Fk D .fis/n	qk

the frequency matrix built from G.
The row and column marginals define respectively the vectors of row and column
masses rk and ck . The i th element of rk is fi: D 1

n
and the sth element of ck is

f:s D ns

npk
. Let us consider the two following diagonal matrices Dn D diag.rk/ and

Dqk
D diag.ck/. We introduce the matrix eFk D D�1=2

n .Fk � rkct
k
/D�1=2

qk
which

general term writes:

Qfis D
p
nspk

ns

�
gis

pk

� ns

npk

�

D
( p

nspk

ns

�
1

pk
� ns

npk

�
if i belongs to category s,

0 otherwise.

First we show that if ut u D 1 and Nu D 0, then 1
pk

P
xj 2Ck

�2.xj ;u/ D uteFk
eFt

k
u.

If Nu D 0,
Pn

iD1
Qfisui D

p
nsp
pk
Nus , where Nus is the mean value of u calculated on the

objects belonging to category s. Thus we have:
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uteFk
eFt

ku D 1

pk

X

xj 2Ck

X

s2Mj

ns Nu2
s D

1
pk

P
xj 2Ck

P
s2Mj

ns

n
. Nus � 0/2

1
n

D 1

pk

X

xj 2Ck

�2.xj ;u/:

As the first normalized eigenvector u1 of eFk
eFt

k
maximizes uteFk

eFt
k

u, it is a
solution of (3).

Finally, as �2.xj ;u/ D �2.xj ; ˛u/, for any nonnull real ˛, ˛u1 is also a solution
of (3). The proof is then completed by showing that u1 is colinear to the first prin-
cipal component issued from MCA on the centered row profiles matrix Rk of Xk .
MCA can be viewed as a weighted PCA applied to Rk D D�1

n .Fk � rkct
k
/. The

first principal component is then  1 D RkD�1=2
qk

v1, where v1 is the eigenvector

associated with the largest eigenvalue �1 ofeFt
k
eFk . Then we use the SVD ofeFk to

write  1 D
p
�1

p
nu1, and the proof is complete. ut

2.2 The Center-Based Clustering Algorithm

The corresponding center-based algorithm is the following:

(a) Initialization step: We compute the first K principal components issued from
MCA of X. Then we assign each variable to the nearest component, that is to
the component with which its correlation ratio is the highest. Thus we get an
initial partition fC1; : : : ; Ck; : : : ; CKg of V .

(b) Representation step: 8k D 1; :::; K , compute the latent variable yk of Ck as the
first principal component 1 of Xk (or as the first normalized eigenvector u1 of
eFk
eFt

k
).

(c) Allocation step: 8j D 1; :::; p, find ` such that ` D arg max
kD1;:::;K

�2.xj ; yk/.

Let Ck be the previous cluster of xj . Then if ` ¤ k, C`  C` [ fxj g and
Ck  Cknfxj g.

(d) If nothing changes in (c) then stop, else return to step (b).

Proposition 2. The center-based algorithm converges to a local optimum of the
homogeneity criterion H .

Proof. We show that the homogeneity criterionH increases until convergence. For
that we have to prove that H.Pn;Yn/ � H.Pn;YnC1/ � H.PnC1;YnC1/, where
the superscript n denotes the nth iteration of the algorithm.

The first inequality is verified since the latent variable of a cluster Cn
k

is defined
to maximize S and then S.Cn

k
; yn

k
/ � S.Cn

k
; ynC1

k
/. Then by summing up on k, we

get H.Pn;Yn/ � H.Pn;YnC1/.
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Finally according to the definition of the allocation step, we have
PK

kD1

P
xj 2Cn

k

�2.xj ; ynC1
k

/ � PK
kD1

P
xj 2CnC1

k

�2.xj ; ynC1
k

/, which proves the second

inequality. ut

3 Applications

In this section we present some applications of the center-based clustering algorithm
for the clustering of categorical variables. In the first one we consider a simulated
example in order to show the numerical performance of the proposed approach.
Then we apply it on a real categorical data set to show the potential of the approach.

3.1 Simulation Study

In this simulation study we consider six binary variables x1; : : : ; x6 and we study
four different states of relationship between them. The idea is to simulate at first
three groups of variables which are well defined, that is the variables within each
cluster are strongly linked to each other and they are weakly related to variables
belonging to other clusters. They form the partition Q D .Q1;Q2;Q3) with
Q1 D fx1; x2g, Q2 D fx3; x4g and Q3 D fx5; x6g. Then we increasingly disrupt
the underlying structure. Let a (resp. b; c; d; e; f ) denote a category of x1 (resp.
x2; x3; x4; x5; x6) and P denote a probability measure. To generate a contingency
table, the following log-linear model (see for instance Agresti 2002) is simulated:

log.P.x1 D a; : : : ; x6 D f // D .�x1
a C �x2

b
C ˇx1x2

ab
/C .�x3

c C �x4

d
C ˇx3x4

cd
/

C .�x5
e C �x6

f
C ˇx5x6

ef
/C ˇx1x4

ad
C ˇx3x6

cf
(4)

where a; b; c; d; e; f 2 f0; 1g. The parameters �x1
a ; �

x2

b
; �

x3
c ; �

x4

d
; �

x5
e ; �

x6

f
repre-

sent the effect of each variable and the parameters ˇx1x2

ab
; ˇ

x3x4

cd
; ˇ

x5x6

ef
are interac-

tions corresponding with cohesion terms in each group. The parameter ˇx1x4

ad
(resp.

ˇ
x3x6

cf
) is used to add some interactions between categories of variables belonging

to different groups Q1 and Q2 (resp. Q2 and Q3). The first state of mixing corre-
sponds to the initial partition and is called “no mixing”. Then we moderately mix
the two groups by increasing the value of ˇx1x4

00 , it will be referred as “moderate
mixing”. In the third case named “strong mixing”, the value of ˇx1x4

00 is high. In the

last state called “very strong mixing”, the values of ˇx1x4

00 and ˇx3x6

00 are high. Thus
there is no more structure in the data.

For each state of mixing we simulate N D 50 contingency tables, each corre-
sponding to a global sample size n D 2;000 using log-linear model (4), where the
values of the parameters are given in Table 1. Only the nonnull parameter values
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Table 1 Values of the parameters of model (4) used in the simulations

State of mixing No mixing Moderate mixing Strong mixing Very strong

Effect of each variable �
x1
0 D �

x3
0 D �

x5
0 D 1

�
x2
0 D �

x4
0 D �

x6
0 D h 2 Œ1; 1:5�

Cohesion terms ˇ
x1x2
00 D �1:5 ˇ

x1x2
00 D �1:5 ˇ

x1x2
00 D �0:8

ˇ
x3x4
00 D �1:1 ˇ

x3x4
00 D �1:2 ˇ

x3x4
00 D �0:7

ˇ
x5x6
00 D �0:9 ˇ

x5x6
00 D �1 ˇ

x5x6
00 D �0:9

Interaction terms 0 ˇ
x1x4
00 D �0:9 ˇ

x1x4
00 D �1:5 ˇ

x1x4
00 D 0:9

ˇ
x3x6
00 D �1:5

are specified, all the remaining ones are set to zero. In this table the value h of the
effect parameters �x2

0 ; �
x4

0 ; �
x6

0 is generated with the univariate uniform distribution
on Œ1; 1:5� to get N slightly different contingency tables.

We apply the proposed algorithm on the generated categorical data.

� When there is no mixing between the groups, the proposed approach always
recovers the underlying clusters.

� When the mixing between the groups is moderate, the algorithm misclassifies
one variable. We always obtain the partition ffx1; x2; x4g; fx3g; fx5; x6gg.

� When two groups are strongly mixed, the algorithm always misclassifies two
variables. The corresponding partition is ffx1; x4g; fx2; x3g; fx5; x6gg.

� When the mixing is very strong, not surprisingly the algorithm misclassifies
three variables since there is no more visible structure in the data. The obtained
partition is always ffx1g; fx2; x4; x5g; fx3; x6gg.

3.2 Real Data Application

We consider a real data set on a user satisfaction survey of pleasure craft operators
on the “Canal des Deux Mers” located in South of France which contains numer-
ous questions with numerical or categorical answers. This study has been realized
from June to September 2008. In this application we only focus on 14 categorical
variables described in Table 2. The sample size is n D 709 pleasure craft operators.

In this case study, we have chosen to retain K D 5 clusters because it provides
a satisfactory mean correlation ratio value (0.68), that is the mean of the correlation
ratio between the variables in each cluster and the corresponding latent variable.
Moreover the interpretation of the clusters seems to be sound. This choice has also
been confirmed by a bootstrap approach which consists in generating multiple data
replications of the data set and examining if the partition is stable. Table 3 describes
the five-clusters partition of the variables. For instance cluster 4 contains variables
dealing with the use of the canal. As has already been pointed, MCA is used to
have a first solution to start the algorithm. Comparing the obtained solution with
the MCA solution shows that cluster 1 and 4 are merged and that only one iteration
is needed to obtain convergence to a local optimum corresponding to the partition
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Table 3 Partition of the 14 categorical variables into five clusters (correlation ratio between the
variable and the latent variable of the cluster)
C1: environment C2: navigation rules C3: cost of services

Cleanliness (0.68) Manoeuvres (0.66) Cost of water (0.84)
Unpleasant odours (0.68) Authorized mooring (0.71) Cost of electricity (0.84)

Safety regulations (0.69)

C4: use of the canal C5: available services

Sites worth visiting (0.71) Services (0.40)
leisure activity (0.69) Number of taps (0.59)
historical canal sites (0.46) Visibility of electrical outlets (0.65)

Number of electrical outlets (0.71)

Table 4 Values of the Tschuprow coefficient between the variables of cluster 4 and the remaining
ones

x1 x2 x3 x4 x5 x6 x7 x8 . . . x14

x1 1.00 0.36 0.24 0.09 0.10 0.11 0.08 0.06 . . . 0.05
x2 0.36 1.00 0.20 0.10 0.11 0.13 0.11 0.07 . . . 0.03
x3 0.24 0.20 1.00 0.02 0.04 0.05 0.11 0.08 . . . 0.05

given in Table 3. The value in brackets of this table corresponds to the correlation
ratio between the variable and the latent variable representing the cluster it belongs
to. We see that the variables in a cluster are highly related with their latent variable.
Table 4 gives the values of the Tschuprow coefficient between the variables of clus-
ter 4 fx1; x2; x3g and the remaining ones. We see that the variables are more related
with variables in the same cluster than with the variables in the other clusters. This
means that dimension reduction is possible. For instance in this case study we could
reduce the number of the questions in the survey by selecting one question in each
cluster. Furthermore we could replace the classical previous step of MCA for the
clustering of the individuals by the construction of the latent variables.

4 Concluding Remarks

In this paper we propose an extension of an existing center-based algorithm to the
case of categorical variables. For numerical variables the homogeneity criterion is
calculated with squared correlations between the variables of the cluster and its
latent variable, which is defined as the first principal component issued from PCA.
For categorical variables correlation ratios and MCA are then used respectively in
place of squared correlations and PCA. The originality of the proposed approach
lies in the fact that the center of a cluster of categorical variables is a numerical
variable. A simulation study shows that the proposed method is efficient to recover
simulated clusters of variables and a real data application illustrates the practical
benefits of the approach.
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The initialization of the algorithm is actually reached by computing the first K
principal components issued from MCA. Another solution is to run several times
the algorithm with multiple random initializations and to retain the best partition in
sense of the homogeneity criterion. The initialization with MCA can also be coupled
with a rotation to start with a better partition. For instance, the planar iterative rota-
tion procedure proposed for MCA by Chavent et al. (2009) can be used. Another
interesting perspective would be to use this partitioning method in a divisive hier-
archical approach to divide at best a cluster into two sub-clusters. Both research
on ascendant and divisive hierarchical algorithms and a comparison of the different
types of initialization for the partitioning method are currently under investigation.

Source codes of the implementation in R are available from the authors.
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Treed Gaussian Process Models
for Classification

Tamara Broderick and Robert B. Gramacy

Abstract Recognizing the success of the treed Gaussian process (TGP) model as
an interpretable and thrifty model for nonstationary regression, we seek to extend
the model to classification. By combining Bayesian CART and the latent variable
approach to classification via Gaussian processes (GPs), we develop a Bayesian
model averaging scheme to traverse the full space of classification TGPs (CTGPs).
We illustrate our method on synthetic and real data and thereby show how the com-
bined approach is highly flexible, offers tractable inference, produces rules that are
easy to interpret, and performs well out of sample.

1 Introduction and Background

A Gaussian process (GP) (Rasmussen and Williams 2006) is a popular nonpara-
metric model for regression and classification that specifies a prior over functions.
For ease of computation, typical priors often confine the functions to stationarity.
While stationarity is a reasonable assumption for many data sets, still many exhibit
only local stationarity. A treed Gaussian process (TGP) (Gramacy and Lee 2008)
represents a thrifty alternative (for the regression problem) that takes a local divide-
and-conquer approach to nonstationary modeling. It defines a treed partitioning
process on the predictor space and fits separate stationary GPs to the regions at the
leaves. The treed form of the partition makes the model particularly interpretable.

We seek to extend the TGP model to classification. Separately, both treed models
[CART (Breiman et al. 1984) and Bayesian CART (Chipman et al. 1998)] and GPs
(Neal 1998) have already been successfully applied to classification. The machinery
of treed partitions for a nonstationarity process and latent variables for classification
suggests two possible combinations. We argue that one of the two offers clear advan-
tages in terms of faster mixing in the resulting trans-dimensional Markov chain.
Furthermore, we explore schemes for efficiently sampling the latent variables, which

T. Broderick (B)
Statistical Laboratory, University of Cambridge, Cambridge, UK
e-mail: tb361@statslab.cam.ac.uk

H. Locarek-Junge and C. Weihs (eds.), Classification as a Tool for Research,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-10745-0_10, c� Springer-Verlag Berlin Heidelberg 2010

101

tb361@statslab.cam.ac.uk


102 T. Broderick and R.B. Gramacy

is important to obtain good mixing in the (significantly) expanded parameter space
compared to the regression case. Before delving further into the details we shall
review the GP model for regression and classification.

1.1 Gaussian Processes for Regression and Classification

For real-valued p-dimensional inputs, a Gaussian process (GP) is formally a prior
on the space of functions Z W R

p ! R such that the function values Z.x/ at
any finite set of input points x have a joint Gaussian distribution Stein (1999). A
particular GP is defined by its mean and correlation functions. The mean func-
tion �.x/ D E.Z.x// is often constant or linear in the explanatory variable
coordinates: �.x/ D f .x/ˇ, where f .x/ D Œ1; x�. The correlation function is
defined as K.x; x0/ D 	�2ŒZ.x/ � �.x/�>ŒZ.x0/ � �.x0/�. We follow Gramacy
and Lee (2008) and further assume that the correlation function can be decom-
posed into two components: a underlying strict correlation functionK� and a noise
term of constant and strictly positive size g that is i.i.d. at the predictor points:
K.xi ; xj / D K�.xi ; xj / C gıi;j . Here, ıi;j is the Kronecker delta function, and
g is called the nugget. It represents a source of measurement error and can offer
improved numerical stability. A popular choice for K�.x; x0/ is the anisotropic
squared exponential correlation:

K�.x; x0/ D exp

8
<

:
�

PX

pD1

.xp � x0
p/

2

dp

9
=

;
:

The strictly positive parameters dp describe the range (or length-scale) of the pro-
cess in each direction. Further discussion of appropriate correlation structures for
GPs is provided by, e.g., Stein (1999). The GP model features some notable draw-
backs, including stationarity and computational cost (requiring theO.N 3/ inversion
of an N 	N matrix).

We may extend the GP model for regression to classification by introducing
latent variables (Neal 1998). Here, the data consist of predictors X and classes
C 2 f1; : : :M g. For each class, we define a set of latent variables fZmgMmD1.
For a particular class m, the latent variable generative model is a GP as before:
Zm � N .�m.X/;Km.X;X//. The class probabilities are now obtained from the
latent variables via a softmax function:

p.C.x/ D m/ / exp.�Zm.x//: (1)

Finally, the classes are drawn from a categorical distribution with these probabili-
ties. In practice, we eliminate redundancy by including only M � 1 GPs and then
set the last set of latent variables to zero. Similar drawbacks to GPs apply in the
classification context, with the added complexity of O.MN/ extra latent variables
that need to be estimated. Many of these issues are addressed by partitioning.
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2 Treed Gaussian Processes

Fitting different, independent models to the data in separate regions of the input
space naturally implements a globally nonstationary model. Moreover, dividing
up the space results in smaller local covariance matrices, which are more quickly
inverted. Finally, partitions offer a natural and data-inspired blocking strategy for
latent-variable sampling in classification.

2.1 TGP for Regression

Treed models provide a partition process that is recursive, so arbitrary axis-aligned
regions in the p-dimensional predictor space may be defined. Conditional on a treed
partition, models are fit in each of the leaf regions. In CART (Breiman et al. 1984)
the underlying models are “constant” in that only the mean and standard deviation
of the real-valued outputs are inferred. The tree is “grown” according to one of many
decision-theoretic heuristics and may be “pruned” using cross-validation methods.
In Bayesian CART (BCART), these models may be either constant (Chipman et al.
1998) or linear (Chipman et al. 2002) and, by contrast with CART, the partition-
ing structure is determined by Monte Carlo inference on the joint posterior of the
tree and the models used at the leaves. In regression TGP (hereafter RTGP), the
leaf models are GPs, but otherwise the setup is identical to BCART. Note that
the constant and linear model are just special cases of the GP model. Thus RTGPs
encompass BCART for regression, and inference may proceed according to a nearly
identical Monte Carlo method, described shortly.

The hierarchical model for the RTGP begins with the tree prior, following
Chipman et al. (1998). Let r 2 f1; : : : ; Rg index the R non-overlapping regions
partitioned by the tree T drawn from the tree-prior. In the regression problem,
each region contains data fXr ; Zrg. Let a be the number of columns and nr the
number of rows in Fr , extending the predictor matrix to include an intercept term:
Fr D .1;Xr/. A “constant mean” may be obtained with Fr D 1; in this case, a D 1.
The generative model for the GP in region r incorporates the multivariate normal
(N ), inverse-gamma (IG), and Wishart (W ) distributions:

Zr jˇr ; 	
2
r ; Kr � Nnr

.Frˇr ; 	
2
r Kr / 	2

r � IG.˛�=2; q�=2/

ˇr j	2
r ; �

2
r ;W; ˇ0 � Na.ˇ0; 	

2
r �

2
r W / ˇ0 � Na.�;B/ (2)

�2
r � IG.˛�=2; q�=2/ W �1 � W..�V /�1; �/:

The hyperparameters�;B; V; �; ˛� ; q� ; ˛� ; q� are constant in the model.
We sample from the joint distribution of the tree structure T , the R sets of GP

parameters �r (r D 1; : : : ; R) in each region defined by T , and the GP hyper-
parameters �0 (those variables in (2) that are not treated as constant but also not
indexed by r) by Markov Chain Monte Carlo (MCMC). We sequentially draw
�0jrest, �r jrest for each r D 1; : : : ; R, and T jrest. Conditional on T , all parameters
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(�r , r D 1; : : : ; R) and hyperparameters of the GPs can be sampled with Gibbs
steps, with the exception of the covariance function parameters fdr ; grg. Expres-
sions are provided by Gramacy and Lee (2008).

Monte Carlo integration over tree space, conditional on the GP parameters �r ,
r D 1; : : : ; R, is more involved since the new tree structure drawn from the dis-
tribution T jrest may have a different number of leaf nodes than its predecessor.
Changing the number of leaf nodes changes the dimension of � D .�1; : : : ; �R/,
so simple MH draws are insufficient in this case. Instead, reversible jump Markov
Chain Monte Carlo (RJ-MCMC) allows a principled transition between models of
different sizes (Richardson and Green 1997). In this framework, we mostly use the
same four moves (grow, prune, change, swap) as in BCART to explore the tree
space. These moves and their application are described in more detail in Gramacy
and Lee (2008). From the hierarchical model in (2) we can solve for the predic-
tive distribution of the outputs Z. These are expressed in closed form by Gramacy
and Lee (2008) and are provided later in this section (3) in the particular context of
sampling from the latent variables used for classification.

2.2 TGP for Classification

One can envision at least two possible ways in which the latent variable approach
and the treed approach to classification may be combined. The first method starts
with an RTGP; recall that the RTGP tree partitions the predictor space into regions,
each of which is assigned a stationary regression model (the GP). Analogously in
the classification case, we could partition the predictor space into regions with a
single tree and assign a stationary classification model (the CGP) to each region.
Since this model contains just one tree, we call it the OTGP. The second method
starts from the CGP; recall that the CGP uses M � 1 sets of real-valued latent
variables generated from M � 1 stationary regression models (GPs). To introduce
nonstationarity, instead considerM �1 sets of real-valued latent variables generated
from M � 1 nonstationary regression models (RTGPs). Since this model contains
multiple trees, we call it the MTGP.

The MTGP has a variety of advantages over the OTGP. Indeed, the OTGP is a
special case of the MTGP where the parameters, hyperparameters, tree structure,
and hence region partitions are fixed across all trees. Thus, the MTGP represents
natural splits in the data more easily and more interpretably. The MTGP requires
fewer splits per tree than the OTGP. The MTGP also enjoys a higher Monte Carlo
acceptance rate in tree space since, compared to OTGP moves, its moves are more
local. In OTGP the data across all classes contribute to the acceptance probability,
whereas in MTGP the acceptance of moves depends on how the particular class
involved may be distinguished from all others. These last two considerations com-
bine to ensure better mixing for the MTGP. Finally, from a practical standpoint, the
MTGP is more directly implemented from the RTGP as it essentially amalgamates
M � 1 of these models. Thus, we focus on the MTGP in what follows and refer to
it as the CTGP (TGP for classification) in analogy to the acronym RTGP.
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The hierarchical model for the CTGP is straightforward. Given data .X; C /,
we introduce latent variables fZmgM�1

mD1 . Each of the corresponding trees fTmgM�1
mD1

divides the space into an independent region set of cardinalityRm. Each tree has its
own, independent, RTGP prior where the hyperparameters, parameters, and latent
variable values – for fixed class index m – are generated as in (2). It is most sensi-
ble to use a constant (rather than linear) mean in each of the leaves for the RTGP
latent variables in the classification context. To approximate the joint distribution
of the M � 1 TGPs, we sample with RJ-MCMC much as in Sect. 2.1. Sampling is
accomplished by visiting each tree in turn. For the mth class, we sequentially draw
�m;0jrest, �m;r jrest for each region r of Rm, Tmjrest, and finally the latent variables
Zm;r jrest for each r . The first three draws are the same as for the RTGP. Drawing
Zm;r jrest is the step unique to the CTGP.

While we cannot sample directly fromZm;r jrest to obtain a Gibbs sampling draw,
we can factorize the full conditional for some subset of Zm;r into the distribution
of the class given the latent variables at its predictor(s) p.C.xI /jfZm;r.xI /gM�1

mD1 /

and the distribution of the latent variable(s) given the current GP together with the
other latent variables in its region p.Zm;r .xI /jXr ; �; T ; Zm;rnZm;r .xI //. Then
we can use MH and propose from the latter distribution. Here r labels the region
within a particular class, and I is an index set over some of the predictors x in
region r . To condense notation in (3), let ZI D Zm;r .xI / (similarly for F ), and let
KI;I 0 D Km;r.xI ; xI 0/. Finally, �I is the index set of points in region r of class m
that are not in I . Then we have ZI jXr ; �; T ; Z�I � NjI j.Oz; O	2/ with

Oz D FI
Q̌�I CKI;�IK

�1�I;�I .Z�I � F�I
Q̌�I /

O	2 D 	2
r .�I;I � �I;�I�

�1�I;�I��I;I /; �I;I 0 D KI;I 0 C �2
r FIWF

>
I 0 ; (3)

where ˇjXI ; ZI ; �; T � Na. Q̌I ; VI / using

V �1
I D F>

I K
�1
I;IFI CW �1=�2

r
Q̌
I D V.F>

I K
�1
I;IZI CW �1ˇ0=�

2
r /:

In this setup the prior for Z cancels with the proposal probability in the accep-
tance ratio. The newly proposed Z may be accepted with probability equal to the
likelihood ratio:

A D
Y

i2I

exp.�Z0
C.xi /;r

.xi //
PM

mD1 exp.�Z0
m;r .xi //

	
PM

mD1 exp.�Zm;r .xi //

exp.�ZC.xi /;r.xi //
:

We may employ a blocking scheme to increase mixing in the marginal latent Z
process; however there will natural be a trade-off in block size. Proposing all com-
ponents of Zm at once leads to a small acceptance ratio and poor mixing. But
proposing each component of Zm individually may result in only small, incremen-
tal changes. An advantage of the treed partition is that it yields a natural blocking
scheme for updating the latent variables. While we may block further within a leaf,
this existing treed partition is a step forward from the CGP.
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3 Illustrations and Empirical Results

We illustrate CTGP and compare it to CGP on real and synthetic data by making
timings and calculating misclassification rates. Since the most likely class label at a
particular predictor value corresponds to the largest latent variable at that predictor
[via (1)], we may predict the class labels by first keeping a record of the predicted
class labels at each round of the Monte Carlo run and then taking a majority vote
upon completion.

3.1 2d Exponential Data

Consider the synthetic 2d exponential regression data, where the input space is
Œ�2; 6� 	 Œ�2; 6�, and the true response is given by the 2d exponential function
z.x/ D x1 exp.�x2

1 �x2
2/. To convert the real-valued outputs to classification labels

we calculate the Hessian H . Then, for a particular input .x1; x2/ we assign a class
label based on the sign of the sum of the eigenvalues of H.x1; x2/, indicating the
direction of concavity at that point. A function like the 2d exponential whose con-
cavity changes more quickly in one region of the input space than in another (and
is therefore well fit by an RTGP model) will similarly have class labels that change
more quickly in one region than in another. The left-hand side of Fig. 1 shows the
resulting class labels. Overlaid on the plot is the maximum a posteriori tree encoun-
tered in the trans-dimensional Markov chain sampling from the CTGP posterior.
We trained the classifier(s) on .X; C / data obtained by a maximum entropy design
of size N D 400 subsampled from a dense grid of 10,000 points and calculated
the misclassification rate on the remaining 9,600 locations. The rate was 3.3% for
CGP and 1.7% for CTGP, showing a relative improvement of roughly 50%. CTGP
wins here because the relationship between response (class labels) and predictors
is clearly nonstationary. The speed improvements obtained by partitioning were
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even more dramatic. CGP took 21.5 h to execute 15,000 RJ-MCMC rounds, whereas
CTGP took 2.0 h, an over 10-fold improvement. The right-hand plot in Fig. 1 shows
the posterior mean of the latent variables under the CTGP model.

3.2 Classification TGP on Real Data

Consider the Credit Approval data set that may be obtained from the UCI Machine
Learning database (Asuncion and Newman 2007). The set consists of 690 instances
grouped into two classes: credit card application approval .C/ and application
failure .�/. The names and values of the fifteen predictors for each instance are
confidential. However, aspects of these attributes relevant to our classification task
are available. E.g., we know that six inputs are continuous, and nine are categorical.
Among the categorical predictors, the number of distinct categories ranges from 2 to
14. After binarization, we have a data set of six continuous and 41 binary predictors.
The CGP treats these all as continuous attributes. We restrict the CTGP to form GPs
only over the six continuous attributes and to apply the treed partition process on
(and only on) the 41 binary attributes.

Our comparison consists of 10 separate 10-fold cross-validations for a total of
100 folds. The average misclassification rate of the CGP across these folds was
14.6% (4.0%). The CTGP offers a slight improvement with a rate of 14.2% (3.6%).
More impressive is the speed-up offered by CTGP. The average CPU time per fold
used by the CGP method was 5.52 h; with an average CPU time per fold of 1.62 h,
the CTGP showed a more than threefold improvement.

Finally, the interpretative aspect of the CTGP is worth highlighting. For a par-
ticular run of the algorithm on the Credit Approval data, the MAP trees of different
heights are shown in Fig. 2. These trees, and those for other runs, feature princi-
pal splits on the 38th binary predictor, which corresponds to the 9th two-valued
categorical predictor. Therefore, the CTGP indicates, without additional work, the
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Fig. 2 Trees from CTGP on the credit approval data
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significance of this variable in predicting the success of a credit card application. To
extract similar information from the CGP, one would have to devise and run some
additional tests – no small feat given the running time of single CGP execution.

4 Conclusion

In this paper we have illustrated how many of the benefits of the regression TGP
model extend to classification. The components of TGP, i.e. treed models and GPs,
have separately long enjoyed success in application to classification problems. In
the case of the GP, M � 1 processes are used as a prior for latent variables which
encode the classes via a softmax function. While this is a powerful method which
typically offers improvements over simpler approaches (including treed models),
drawbacks include an implicit assumption of stationarity and slow evaluation due
to repeated large matrix decompositions. In contrast, the treed methods provide a
thrifty divide-and-conquer approach. The combined tree and GP approach provides
a classification model that is speedy, interpretable, and highly accurate, combining
the strengths of GP and treed models for classification.
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Ridgeline Plot and Clusterwise Stability as Tools
for Merging Gaussian Mixture Components

Christian Hennig

Abstract The problem of merging Gaussian mixture components is discussed in
situations where a Gaussian mixture is fitted but the mixture components are not
separated enough from each other to interpret them as “clusters”. Two methods are
introduced, corresponding to two different “cluster concepts” (separation by gaps
and “data patterns”). A visualisation of the modality of a density of a mixture of
two Gaussians is proposed and the stability of the unmerged Gaussian mixture is
compared to that of clusterings obtained by merging components.

1 Introduction

The Gaussian mixture model is often used for cluster analysis (Fraley and Raftery
2002). IRp-valued observations x1; : : : ; xn are modelled as i.i.d. with density

f .x/ D
sX

j D1

�j'aj ;˙j
.x/; (1)

where �j > 0 8j; Ps
j D1 �j D 1; 'a;˙ is the density of the p-dimensional Gaus-

sian distribution N .a; ˙/ with mean vector a and covariance matrix ˙ . Given a
fixed s, the parameters can be estimated by Maximum Likelihood using the EM
algorithm. The data points can then be classified to the mixture components by
maximizing the estimated a posteriori probability that xi was generated by mixture
component j ,

OP.�i D j jxi D x/ D
O�j'Oaj ; Ȯ

j
.x//

Ps
lD1 O�l'Oal ; Ȯ

l
.x/
; (2)

where �i is defined by the two-step version of the mixture model where
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P.�i D j / D �j ; xi j.�i D j / � 'aj ;˙j
; i D 1; : : : ; n; i.i.d. (3)

Estimators are denoted by “hats”. A standard method to estimate the number of
components s is the Bayesian Information Criterion (BIC). This can also be used to
estimate suitable constraints on the covariance matrices (Fraley and Raftery 2002).
For the present paper, the Gaussian mixture model has been fitted using the default
options of the add-on package MCLUST version 3 (Fraley and Raftery 2006) of the
statistical software R (www.R-project.org).

In cluster analysis usually every mixture component is interpreted as correspond-
ing to a cluster (which generally is a subset of the data with the interpretation that its
members belong together in some sense), and pointwise maximization of (2) defines
the clustering. However, this is often not justified. Some mixtures of more than one
Gaussian distribution are unimodal, and in reality, model assumptions are never
precisely fulfilled and Gaussian mixtures are a very flexible tool to fit all kinds of
densities. But this means that a population that can be interpreted as “homogeneous”
could be fitted by a mixture of more than one Gaussian mixture component.

Figure 1 shows an artificial dataset generated from a mixture of two uniform
distributions. MCLUST with its default settings for estimating Gaussian mixtures
estimates s D 3 for this dataset. Note that the “correct” number of clusters is not
well defined and one may see two “true” clusters here if “distinguishable patterns”
are interpreted to be clusters or one “true” cluster if clusters are associated with
density modes or are required to be separated by gaps. Depending on the cluster
concept of interest in a given application, clusters may be associated with modes,
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Fig. 1 Data from unimodal mixture of uniforms with 3-cluster solution by MCLUST
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or with some other kinds of clear patterns in the data. However, three is hardly
justifiable as the number of clusters here.

In the present paper, two methods are introduced that can be used to decide
whether and which Gaussian mixture components should be merged. A method
based on detecting density gaps is introduced in Sect. 2. A method based on esti-
mating misclassification probabilities is introduced in Sect. 3. Detailed background
for both methods along with some alternatives is given in Hennig (2010), so they are
only explained very briefly here. The following two tools are introduced exclusively
in the present paper: the idea of Sect. 2 can be used to define “ridgeline plots” that
show how strongly mixture components are separated, and in Sect. 4 the clusterwise
stability assessment method introduced in Hennig (2007) is proposed to compare
the stability of the MCLUST and the merged clustering solution.

A real dataset from musicology is analysed in Sect. 5, and Sect. 6 concludes the
paper.

Further methods for merging Gaussian mixture components are given in Tantrum
et al. (2003) and Li (2004). Both of them are discussed in Hennig (2010).

2 The Ridgeline Method

In Ray and Lindsay (2005) it is shown that for any mixture f of s Gaussian dis-
tributions on IRp there is an .s � 1/-dimensional manifold of IRp so that all local
maxima and minima of f lie on this manifold.

For s D 2, this manifold is defined by the so-called “ridgeline”,

x�.˛/ D Œ.1 � ˛/˙�1
1 C ˛˙�1

2 ��1Œ.1 � ˛/˙�1
1 a1 C ˛˙�1

2 a2�; (4)

and all density extrema (and therefore all modes, which may be more than two in
some situations) can be found by looking up the density at x�.˛/; ˛ 2 Œ0; 1�. The
following algorithm (“ridgeline method”) can be used to merge mixture components
in order to merge unimodal groups of Gaussian components:

1. Choose a tuning constant r� < 1.
2. Start with all components of the initially estimated Gaussian mixture (for exam-

ple obtained by MCLUST’s EM-implementation) as current clusters.
3. Using the mean vectors and covariance matrices of the current clusters, for any

pair of current clusters compute, from (4), r D min0�˛�1 f .x�.˛//

m2
, where m2

denotes the second largest mode of the mixture density restricted to the current
pair of components; let r D 1 if there is only one mode.

4. If r < r� for all pairs of current clusters, use the current clustering as the final
one.

5. Otherwise, merge the pair of current clusters with maximum r and go to step 3.

Following Hennig (2010), r� D 0:2 is used here. Note that it is not advisable to
demand strict unimodality (r� D 1), because the probability is high that MCLUST
estimates multimodal mixtures even in unimodal situations. For example, for the
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Fig. 2 Ridgeline plot f .x�.˛// for the three Gaussian components estimated by MCLUST for the
data in Fig. 1

(unimodal) dataset in Fig. 1, the first two components are merged at r D 0:58 and
their union is merged with the third one at r D 0:21.

The separation of the estimated Gaussian mixture components can be visualised
by plotting the ridgeline density f .x�.˛// vs. ˛. The results for the dataset in Fig. 1
are shown in Fig. 2.

3 A Method Based on Misclassification Probabilities

The basic idea if the method based on directly estimated misclassification proba-
bilities (DEMP) is that, alternatively to a modality based cluster concept, mixture
components could be merged if the misclassification probability between them is
high.

Let ��
k

denote the membership indicator of observation k in a Gaussian mix-
ture model, but where a cluster may be identified with a single mixture component
[in which case ��

k
D �k in (3)], or a mixture of several Gaussian components.

��
i denotes the prior probability for component i . Q��

k
is the mixture component to

which the point is classified by the Bayes rule with true parameters. 1.�/ denotes
the indicator function.

Misclassification probabilities pij D P. Q��
k
D i j��

k
D j / D P. Q��

k
Di; ��

k
Dj /

��

j

between components of a mixture distribution can be estimated directly from the
results of the EM algorithm for Gaussian mixtures. Estimators O��

i can be obtained
straightforward by summing up the O�m of the Gaussian member components of the
mixture of mixtures i . Note that

OP . Q��
1 D i; ��

1 D j / D
1

n

nX

hD1

OP .��
h D j jxh/1. O��

h D i/ (5)

is a consistent estimator of P. Q��
1 D i; ��

1 D j /, where O��
h

denotes the estimated

maximum a posteriori classification of data point xh (i.e., maximising OP .��
h
D

j jxh/), which estimates Q��
h

.
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Therefore,

Opij D
OP . Q��

1 D i; ��
1 D j /

O��
j

is a consistent estimator of pij . This works regardless of whether the mixture com-
ponents are Gaussian distributions or mixtures of Gaussians. Here is the DEMP
method.

1. Choose a tuning constant q� < 1.
2. Start with all components of the initially estimated Gaussian mixture as current

clusters.
3. Compute q D max. Opij ; Opj i / for all pairs of current clusters.
4. If q < q� for all pairs of current clusters, use the current clustering as the final

one.
5. Otherwise, merge the pair of current clusters with maximum q and go to step 3.

q� D 0:025 is used here (Hennig 2010).
For the data in Fig. 1, DEMP merges components 1 and 2 at q D 0:078. For the

cluster of these two and component 3, q D 0:01, so with q� D 0:025, two clusters
are found, namely mixture components 1/2 together and 3. This makes sense if
clusters refer to “patterns” in the data but are not required to be separated by gaps.

4 Bootstrap Stability Assessment

In Hennig (2007), the following idea has been introduced for checking the stability
of a cluster in a given clustering fC1; : : : ; Csg (Hennig 2007; applies to quite general
clustering methods).

� Draw B nonparametric bootstrap samples from the dataset [it is advisable to
discard the copies of points drawn more than once; further schemes to generate
datasets are discussed in Hennig (2007)].

� Cluster the bootstrapped datasets by the same method that was used for the
original dataset.

� For every cluster in the original dataset, find the most similar one in every
bootstrapped dataset. Similarity is measured according to the Jaccard similarity
between sets C;D W j.C;D/ D jC \Dj

jC [Dj .
� For every cluster Ci , Nji D 1

B

PB
kD1 jmax;k.Ci /, where jmax;k.Ci / is the Jaccard

similarity of Ci to the most similar cluster in bootstrap sample k.

The Jaccard similarity is between 0 and 1. It makes sense to consider clusters with
Nji < 0:5 as “dissolved” (Hennig 2007) and a meaningful stable cluster should have
Nji  0:5, better above 0.7 or 0.8 (though not every stable cluster is meaningful).

In the given situation it is interesting to apply the idea to the MCLUST clusterings
and compare them to the stability achieved by the clusters yielded by the merging
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methods, i.e., to consider “do MCLUST first and apply ridgeline or DEMP method
to the solution” as a clustering method in its own right.

For the dataset in Fig. 1 and the MCLUST solution, Nj1 D 0:48; Nj2 D 0:52; Nj3 D
0:96, so the first two clusters are obviously unstable. The ridgeline method yields
Nj123 D 0:87 for the only remaining cluster, which means that in some situations

it ends up with more than one cluster (for merging methods, the lower index of Nj
refers to the original Gaussian components belonging to the merged cluster). DEMP
yields Nj12 D 0:94, Nj3 D 0:98, which confirms that this is a very stable solution.

5 Real Data Example: Clustering Melody Contours

The dataset analysed here consists of approximations of the contours of 989 melody
phrases taken from commercial pop songs by polynomials of degree 5, as discussed
in Frieler et al. (in press). The dataset was provided by D. Müllensiefen. Due to a
lower intrinsic dimensionality of the dataset, only four coefficients (a4, a3, a1 and
a0, indicating the coefficients belonging to the terms x4; x3; x1; x0 of the polyno-
mials) were used as variables, and most of the information distinguishing the seven
clusters obtained by MCLUST can be seen in the scatterplot of a4 and a0, see Fig. 3.
Apart from a strong concentration around the value 0 of the first variable (which is
made up by points of two components, no. 1 and 4, in the MCLUST solution, see
right side of Fig. 3), no clear patterns can be seen.

The stability values for the MCLUST solution are: Nj1 D 0:75; Nj2 D 0:33; Nj3 D
0:42; Nj4 D 0:42; Nj5 D 0:27; Nj6 D 0:24; Nj7 D 0:44, so only the first component is
reasonably stable. This in itself is very useful for interpreting the clustering, even
before having done any component merging.

Some ridgeline plots are given in Fig. 4. Note that the gap between components
2 and 5 on the lower left side is by far the deepest for any pair of components in this
dataset, which indicates that the 2-d plots in Fig. 3 do not miss any strong separation
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Fig. 3 Variables a4 and a0 of melody data with clusters found by MCLUST (right side: magnified
version of the central area; what looks like a “line” along a4 
 0 is component 1)
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between any two clusters in 4-d space (particularly taking into account that even
in mixtures without clear gaps, gaps are expected to occur in ridgeline ratio plots
between “non-neighbouring” components, see Fig. 2). Some pairs of components
do not yield unimodal mixtures, but one of the modes is usually very weak, as for
example for the two component pairs on the right side of Fig. 4 (it is hardly visible
that the mixture of components 2 and 4 is bimodal but the density goes up a tiny
little bit approaching ˛ D 1). About half of the pairs of components yield unimodal
mixtures such as on the upper left side of Fig. 4.

The ridgeline method merges all clusters, justified by the fact that there are no
clear gaps. This is very stable ( Nj1234567 D 1). However, demanding estimated uni-
modality by using r� D 1 in Sect. 2 merges all components except of component
2 with stability Nj2 D 0:12, indicating again that r� D 1 is not a good idea. DEMP
yields three clusters by leaving components 1 and 4 unmerged and merging all the
others. These clusters are obviously not separated by gaps, but correspond to visible
patterns in Fig. 3. The stabilities are Nj1 D 0:74; Nj4 D 0:47; Nj23567 D 0:91. This
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indicates that it makes sense to distinguish component 1 from the union of compo-
nents 2, 3, 5, 6, 7 as a stable pattern. Component 4, which lies “between” the other
two clusters, cannot be so clearly distinguished from them. This corresponds nicely
with the visual impression from Fig. 3. In terms of the melodic phrases, there are no
groups of phrases that can really be separated from the others by “gaps”, but there is
a core pattern of phrases (component 1 and to some extent 4) that can be interpreted
as having in common a value of about zero for the fourth degree coefficient (a4) of
the contour approximating polynomial, which means that no steep increase/decrease
(or decrease/increase) combinations occur in the melody contour.

6 Conclusion

The problem of merging Gaussian mixture components to find more meaningful
clusters cannot be uniquely solved. Solutions always depend on what kind of clus-
ters the researcher is looking for. For example, clusters can be defined by gaps
(rather corresponding to the ridgeline method) or by “patterns” (rather correspond-
ing to the DEMP method). Visualisation of the separation of mixture components
and assessment of the stability of clusters can help with the decision whether some
of the original mixture components should be merged, and with how the results
are to be interpreted. Further methods for merging and visualisation, details, exam-
ples and comparisons (including some situations in which DEMP merges stronger
than the ridgeline method as opposed to the two examples here) are given in
Hennig (2010).
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Clustering with Confidence:
A Low-Dimensional Binning Approach

Rebecca Nugent and Werner Stuetzle

Abstract We present a plug-in method for estimating the cluster tree of a density.
The method takes advantage of the ability to exactly compute the level sets of a
piecewise constant density estimate. We then introduce clustering with confidence,
an automatic pruning procedure that assesses significance of splits (and so clusters)
in the cluster tree; the only user input required is the desired confidence level.

1 Introduction

The goal of clustering is to identify distinct groups in a data set and assign a
group label to each observation. Ideally, we would be able to find the number
of groups as well as where each group lies in the feature space with minimal
input from the user. To cast clustering as a statistical problem, we regard the data,
X D fx1; : : : ; xng 2 Rp, as a sample from some unknown population density p.x/.
There are two statistical approaches. While parametric (model-based) clustering
assumes the data have been generated by a finite mixture of g underlying paramet-
ric probability distributions pg.x/ (often multivariate Gaussian) (Fraley and Raftery
1998; McLachlan and Basford 1988), the nonparametric approach assumes a cor-
respondence between groups in the data and modes of the density p.x/. Wishart
first advocated searching for modes as manifestations of the presence of groups
(Wishart 1969); nonparametric clustering should be able to “resolve distinct data
modes, independently of their shape and variance”. Hartigan expanded this idea and
made it more precise (Hartigan 1975, 1981).

Define a level set L.�Ip/ of a density p at level � as the subset of the feature
space for which the density exceeds �: L.�Ip/ D fxjp.x/ > �g. Its connected
components are the maximally connected subsets of a level set. For any two con-
nected components A and B , possibly at different levels, either A � B , B � A, or
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Fig. 1 (a) Density with four modes; (b) cluster tree with three splits/four leaves

A\B D ;. This hierarchical structure of the level sets is summarized by the cluster
tree of p.

The cluster tree is easiest to define recursively (Stuetzle 2003). Each node N
of the tree represents a subset D.N/ of the support L.0Ip/ of p and is associ-
ated with a density level �.N /. The root node represents the entire support of p
and is associated with density level �.N / D 0. To determine the daughters of a
node, we find the lowest level �d for which L.�d Ip/

T
D.N/ has two or more

connected components. If no such �d exists, then D.N/ is a mode of the density,
and N is a leaf of the tree. Otherwise, let C1; C2; : : : ; Cn be the connected com-
ponents of L.�d Ip/

T
D.N/. If n D 2, we create two daughter nodes at level

�d , one for each connected component; we then apply the procedure recursively
to each daughter node. If n > 2, we create two connected components C1 and
C2

S
C3:::

S
Cn and their respective daughter nodes and then recurse. We call the

regions D.N/ the “high density clusters” of p. This recursive binary tree also can
accommodate level sets with more than two connected components with repeated
splits at the same height. Figure 1 shows a univariate density with four modes and
the corresponding cluster tree with initial split at � D 0:0044 and subsequent
splits at � D 0:0288; 0:0434. Estimating the cluster tree is a fundamental goal of
nonparametric cluster analysis.

There are several previously suggested clustering methods based on level sets
and other level set estimation procedures. In general, they are heuristic in nature
or require subjective decisions from the user (Wishart 1969; Walther 1997; Cuevas
et al. 2000, 2001; Stuetzle 2003; Klemelä 2004).

2 Cluster Trees: Piecewise Constant Density Estimates

We can estimate the cluster tree of a density p by the cluster tree of a density esti-
mate Op. However, for most density estimates, computing the cluster tree is a difficult
problem; there is no obvious method for computing and representing the level sets.



Clustering with Confidence: A Low-Dimensional Binning Approach 119

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

x2

0.
2

0.
4

0.
6

0.
8

1.
0

x1

Fig. 2 (a) Four well-separated groups; (b) BKDE, 20	20 grid (c) L.0:00016;BKDE)

Exceptions are density estimates that are piecewise constant over (hyper-)rectangles.
Let B1; B2; : : : ; BN be the rectangles, and let Opi be the estimated density for Bi .
Then L.�I Op/ D S

Opi > Bi . If the dimension is low enough, any density esti-
mate can be reasonably binned. Here we use the Binned Kernel Density Estimate
(BKDE D Op), a binned approximation to an ordinary kernel density estimate, on a
grid we can computationally afford (Wand and Jones 1995; Hall and Wand 1996).
We use 10-fold cross validation to estimate the bandwidth h.

Figure 2a has four well-separated groups, two curvilinear and two spherical; a
grey-scale heat map of a BKDE on a 20	20 grid (h D 0:0244) is in Fig. 2b.
Figure 2c shows the level set L.0:00016I Op/; since we have a split, we would
create two daughter nodes at this height. When a cluster tree node N has been
split into daughters Nl , Nr , the high density clusters D.Nl /, D.Nr /, also referred
to as the cluster “cores”, do not necessarily form a partition of D.N/. We refer
to the bins (and their observations) in D.N/n.D.Nl / [ D.Nr //, e.g. the white
bins in Fig. 2c, as the “fluff”. We assign each fluff bin B to Nr if the Manhat-
tan distance dM .B;D.Nr // D kB � D.Nr /k1 is less than dM .B;D.Nl //. If
dM .B;D.Nr // > dM .B;D.Nl//, then B is assigned to Nl . In case of ties, the
algorithm arbitrarily chooses an assignment. The cluster cores and fluff represented
by the leaves of the cluster tree form a partition of the support of Op and a corre-
sponding partition of the observations. The same is true for every subtree of the
cluster tree.

During cluster tree construction,L.�d I Op/
T
D.N/ changes structure only when

the level �d is equal to the next higher value of Op.Bi / for one or more bins Bi in
D.N/. We compute the cluster tree of Op by “stepping through” the bins’ sorted
unique density estimate values; every increase in level �d then corresponds to the
removal of one or more bins from the level set L.�d I Op/. We represent L.�d I Op/ \
D.N/ as an adjacency graph G where the vertices Bi 2 L.�d I Op/ \ D.N/ are
connected by an edge if they share a lower-dimensional face. Finding its connected
components is a standard graph problem (Robert 2002).

Figure 3a shows the BKDE’s cluster tree; the corresponding cluster assignments
and partitioned feature space are in Fig. 3b,c. The cluster tree indicates the BKDE
has nine modes. The first split at � D 1:9 � 10�16 and the mode around (1, 0.5)
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Fig. 3 (a) BKDE cluster tree; (b) cluster assignments; (c) partitioned feature space

in Fig. 3c are artifacts of Op; no observations are assigned to the resulting daughter
node. The remaining eight leaves correspond to (a subset of) one of the groups.

We briefly compare these results to common clustering methods (not described
here) by comparing the estimated clusters to the true groups using the Adjusted
Rand Index (Hubert and Arabie 1985). The ARI is a common measure of agree-
ment between two partitions. Its expected value is zero under random partitioning
with a maximum value of one; larger values indicate better agreement. Using the
total within-cluster sum of squares criterion, k-means (Mardia et al. 1979) selects
five or six clusters with ARID 0.803, 0.673; for k D 4, ARID 0.924. Model-based
clustering (MBC, Fraley and Raftery 1998; McLachlan and Basford 1988) with an
unconstrained covariance structure chose ten clusters (ARID 0.534). The BKDE
cluster tree on a 20	20 grid performed comparably (k D 8; ARID 0.781); a 15	15
grid performed slightly better (k D 6; ARID 0.865). The groups are well-separated;
however, the two curvilinear groups give an increased number of clusters (k-means,
MBC, and the cluster tree). Single, complete, and average hierarchical linkage meth-
ods (Mardia et al. 1979) gave perfect agreement given knowing the true number of
groups in advance.

For both grid choices, the cluster tree overestimated the number of groups (8,6).
Figure 3 illustrates this problem in the approach. While the cluster tree is accurate
for the given density estimate, the inherent noise in the density estimate results in
spurious modes not corresponding to groups in the underlying population. In our
example, the procedure identified the four original groups (post the modal artifact)
but erroneously continued splitting the clusters. The corresponding branches of the
cluster tree need to be pruned.

3 Clustering with Confidence

We propose a bootstrap-based automatic pruning procedure that finds simultaneous
upper and lower .1 � ˛/ confidence sets for each level set. During cluster tree con-
struction, only splits indicated as significant by the bootstrap confidence sets are
taken to signal multi-modality. Spurious modes are discarded during estimation; the
only user decision is the confidence level.
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3.1 Bootstrap Confidence Sets for Level Sets

We define upper confidence sets (UCS) to be of the form Lu.�I Op/ D L.� � ıu

I Op/

and lower confidence sets (LCS) of formLl .�I Op/ D L.�C ıl

I Op/ with ıu


, ıl


> 0.

By construction, LCSD Ll .�I Op/ 
 L.�I Op/ 
 Lu.�I Op/ D UCS.
Let Op�

1 ; Op�
2 ; : : : ; Op�

m be the density estimates for m bootstrap samples of size n
drawn with replacement from the original sample. We call a pair .L.� � ıu


I Op/,

L.� C ıl

I Op// a non-simultaneous .1 � ˛/ confidence set for L.�Ip/ if for 100 �

.1 � ˛/% of the bootstrap density estimates Op�
i , the upper confidence set L.� �

ıu

I Op/ containsL.�I Op�

i /, and the lower confidence set L.�C ıl

I Op/ is contained in

L.�I Op�
i /:

PbootfL.�C ıl

I Op/ 
 L.�I Op�

i / 
 L.� � ıu

I Op/g � 1 � ˛.

Here is one method to determine ıu

; ıl


(Buja 2002). For each bootstrap sam-

ple Op�
i and each of the finitely many levels of Op, find the smallest ıu


.i/ such that

L.�I Op�
i / 
 L.� � ıu


.i/I Op/ and the smallest ıl


.i/ such that L.� C ıl


.i/I Op/ 


L.�I Op�
i /. Choose ıu


D .1 � ˛

2
/ quantile of the ıu


.i/ and ıl


D .1 � ˛

2
/ quantile of

the ıl

.i/. By construction, the pair .L.� � ıu


I Op/;L.�C ıl


I Op// is a .1 � ˛/ non-

simultaneous confidence set for L.�Ip/. To get confidence sets for all � occurring
as values of Op with simultaneous coverage probability 1�˛, we simply increase the
coverage level of the individual sets until the desired level of simultaneous coverage
is reached. Note that the actual upper and lower confidence sets for L.�Ip/ are the
level sets .L.� � ıu


I Op/;L.� C ıl


I Op// respectively for Op. The bootstrap is used

only to find ıu


, ıl


.

3.2 Constructing the Cluster Tree

After finding ıu


, ıl


for all �, we incorporate the bootstrap confidence sets into the
cluster tree construction by only allowing splits at heights � for which the corre-
sponding bootstrap confidence set (Ll.�I Op/;Lu.�I Op/) gives strong evidence of a
split. We use a similar recursive procedure to that in Sect. 2. The root node rep-
resents the entire support of Op and is associated with density level �.N / D 0.
To determine the daughters of a node, we find the lowest level �d for which a)
Ll .�d I Op/

T
D.N/ has two or more connected components that b) are discon-

nected in Lu.�d I Op/
T
D.N/. Condition (a) indicates that the underlying density

p has two peaks above height �; condition (b) indicates that the two peaks are
separated by a valley dipping below height �. Satisfying both conditions indi-
cates a split at height �. If no such �d exists, N is a leaf of the tree. Otherwise,
let C l

1 ; C
l
2 be two connected components of Ll.�d I Op/

T
D.N/ that are discon-

nected in Lu.�d I Op/
T
D.N/. Let C u

1 and C u
2 be the connected components of

Lu.�d I Op/
T
D.N/ from the possible C u

1 ; C
u
2 ; : : : ; C

u
n that contain C l

1 and C l
2
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Fig. 4 (a)L.0:0036I Op/ ; (b) LCS, ıl� D 0:0063; (c) UCS, ıu
� D 0:0028

Fig. 5 (a) 95% confidence cluster tree (b) clusters; (c) partitioned feature space

respectively. If n D 2, we create two daughter nodes at level �d for C u
1 and C u

2

and, to each, apply the procedure recursively. If n > 2, we create two connected
components C u

1 and C u
2

S
C u

3 :::
S
C u

n and respective daughter nodes and recurse.
We return to the split at � D 0:0036, the first split that breaks the lower left

curvilinear group into two clusters (Fig. 3a: 6 and 7,8). Figure 4 shows the bootstrap
confidence set (˛ D 0:05) for this level set. The original level set L.0:0036I Op/
is in Fig. 4a (grey-scale corresponds to Fig. 3 final leaf). The LCS is found to
be ıl


D 0:0063 higher, i.e. L.0:0099I Op/ (Fig. 4b). The UCS is found to be

ıu

D 0:0028 lower, i.e. L.0:0008I Op/ (Fig. 4c). At � D 0:0008, the UCS does

not have two connected components (no valley). Moreover, even though the LCS
does have two connected components, they do not correspond to the two connected
components in L.0:0036I Op/. We do not have evidence of a significant split and so
do not create daughter nodes at this level.

Clustering with Confidence (CWC) with ˛ D 0:05 generates the cluster tree
and data/feature space partitions in Fig. 5. The cluster tree’s significant splits have
identified the four original groups as significant clusters (ARID 1). No other smaller
clusters (or modal artifacts) are found. Note that the split heights are higher than the
corresponding split heights in the cluster tree in Fig. 3. The CWC procedure required
stronger evidence for a split than was available at the lower levels. It performed
more favorably than k-means or model-based clustering and provided a measure of
confidence for the clusters.
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4 Example: “Automatic Gating” in Flow Cytometry

The algorithms presented could be used for any number of dimensions but are more
tractable for lower dimensions. For easier visualization of the results, we present a
real two-dimensional application from molecular biology. We comment on higher
dimensionality in the summary and future work section.

Flow cytometry is a technique for examining and sorting tagged mRNA mole-
cules in a cell population. Each cell’s fluorescence level (corresponding to, e.g.,
gene expression level) is recorded as particles pass in front of a single wavelength
laser. We are interested in discovering groups of cells with high fluorescence levels
for multiple channels or groups of cells that have different levels across chan-
nels. A common identification method is “gating” or subgroup extraction from
two-dimensional plots of measurements on two channels. Most commonly, these
subgroups are identified by eyeballing the graphs. Clustering techniques would
allow for more statistically motivated subgroup identification (Lo et al. 2008).

We have 1,545 flow cytometry measurements on two fluorescence markers
(anti-BrdU, binding dye 7-AAD) applied to Rituximab, a therapeutic monoclonal
antibody, in a drug-screening project designed to identify agents to enhance its anti-
lymphoma activity (Lo et al. 2009). Figure 6a shows the cluster tree (BKDE 15	15;
h D 21:834); the cluster assignments as well as whether or not the observations are
part of a cluster “core” (larger labels) are in Fig. 6b. The cluster tree has 12 leaves (8
clusters, 4 modal artifacts). The core sizes give some evidence as to their eventual
significance. For example, cluster 1’s core near (500, 1,000) contains one observa-
tion; we would not expect cluster 1 to remain in the confidence cluster tree for any
reasonable ˛.

We use CWC to construct a confidence cluster tree for ˛ D 0:10; we are at
least 90% confident in the generated clusters (Fig. 6c). All modal artifacts have been
removed; the smaller clusters are merged into two larger clusters with cores at (200,
200), (700, 300). Note that the right cluster is a combination of the mid to high
7-AAD clusters in Fig. 6b. CWC did not find enough evidence to warrant splitting
this larger cluster further into subgroups.

Fig. 6 Flow cytometry measurements on the two fluorescent markers anti-BrdU and 7-AAD; (a)
Cluster tree with 12 leaves (8 clusters, 4 artifacts); (b) Cluster assignments; core obs have larger
labels (c) 90% confidence cluster assignments
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5 Summary and Future Work

We have presented a plug-in method for estimating the cluster tree of a density
that takes advantage of the ability to exactly compute the level sets of a piece-
wise constant density estimate. The approach shows flexibility in finding clusters of
unequal sizes and shapes. However, the cluster tree is dependent on the (inherently
noisy) density estimate. We introduced clustering with confidence, an automatic
pruning procedure that assesses significance of splits in the cluster tree; the only
input needed is the desired confidence level.

These procedures may become computationally intractable as the number of
adjacent bins grows with the dimension and are realistically for use in lower
dimensions. One high-dimensional approach would be to employ projection or
dimension reduction techniques prior to cluster tree estimation. We also have devel-
oped a graph-based approach that approximates the cluster tree in high dimensions
(Stuetzle and Nugent 2010). CWC then could be applied to the resulting graph to
identify significant clusters.

Acknowledgements This work was partially supported by NSF grants DMS-0505824 and
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Local Classification of Discrete Variables
by Latent Class Models

Michael Bücker, Gero Szepannek, and Claus Weihs

Abstract “Global” classifiers may fail to distinguish classes adequately in dis-
crimination problems with inhomogeneous groups. Instead, local methods that
consider latent subclasses can be adopted in this case. Three different models for
local discrimination of categorical variables are presented in this work. They are
based on Latent Class Models, which represent discrete finite mixture distributions.
Therefore, they can be estimated via the EM algorithm. A corresponding model is
constructed analogously to the Mixture Discriminant Analysis by class conditional
Latent Class Models. Two other techniques are based on the idea of Common Com-
ponents Models. Applicable model selection criteria and measures for the classifi-
cation capability are suggested. In a simulation study, discriminative performance
of the methods is compared to that of decision trees and the Naïve Bayes classifier.
It turns out that the MDA-type classifier can be seen as a localization of the Naïve
Bayes method. Additionally the procedures have been applied to a SNP data set.

1 Introduction

In general, one can not assume homogeneous groups in classification problems.
Therefore, one “global” modeling for all classes (as e.g. in Linear Discriminant
Analysis) may lead to poor classification results. Hence, in this context models
that allow for local structures e.g. through taking account for subclasses should be
preferred. An overview on local classification methods can be found in Szepannek
et al. (2008). Mixture Discriminant Analysis (MDA) or Common Components (CC)
Models are available for continuous variables (see Sect. 2). In Sect. 4 discrete coun-
terparts of these methods will be introduced. The procedures are based on Latent
Class Models that are presented in Sect. 3. Model selection criteria are discussed as
well as measures for the capability of the Common Components Models. A com-
parative simulation study shall give an impression of the discriminative power of
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the methods. Subsequently, the techniques are applied to a real life data set of SNP
variables (see Sect. 5).

2 Mixtures Versus Common Components

Mixture Discriminant Analysis goes back to Hastie and Tibshirani (1996). Instead
of assuming each class to be Gaussian as in Linear Discriminant Analysis the
groups are supposed to be a finite mixture of Gaussians. Let the sample space
˝ D SK

kD1˝k be a partition and �k the prior probability for group k. We aim
at predicting the class membership, that is the realization of a random variable
Z 2 f1; : : : ; Kg, based on the knowledge of the expression of the random vec-
tor X D .X1; : : : ; XD/

>. We assume X to be a finite mixture of Mk multivariate
normals in class k. Thus, the class conditional density is

f .xjZ D k/ D
MkX

mD1

wmk�.xI�mk ; ˙/;

where �.xI�;˙/ is the pdf of a multivariate Gaussian distribution with mean �
and covariance matrix ˙ . The mixture weights wmk and the unknown distribution
parameters can be estimated via the EM algorithm.

In the Common Components Model the class specific densities are assumed to be

f .xjZ D k/ D
MkX

mD1

wmk�.xI�m; ˙m/:

Again, the unknown parameters can be estimated via the EM algorithm. The com-
ponent densities �.xI�m; ˙m/ do not depend on k but are common components.
Only the mixture weight wmk depends on the group.

Plugging in the parameter estimates, the Bayesian decision rule for both models
leads to determining the unknown class by

bk.x/ D arg max
kD1;:::;K

b�k
bf .xjZ D k/

PK
lD1b�l

bf .xjZ D l/
: (1)

3 Latent Class Analysis

Latent Structure Analysis (LSA) was developed by P. F. Lazarsfeld (cf. Lazarsfeld
and Henry 1968). Latent Class Analysis (LCA) is a special case of LSA where latent
(unobservable) and manifest (observable) variables are discrete. In Hagenaars and
McCutcheon (2002) many applications and expansions of the LCA can be found.
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For the Latent Class Model (LCM) it is assumed that

1. Y is a one dimensional discrete random variable, the latent variable, with support
f1; : : : ;M g and P.Y D m/ WD wm with restriction

PM
mD1 wm D 1.

2. The random vectorX D .X1; : : : ; XD/
> of manifest variables has a discrete dis-

tribution. Any random variable Xd takes values in f1; : : : ; Rd g. The probability
mass function (pmf) of Xd jY is given by f .xd jm/ D

QRd

rD1 �
xdr

mdr
; where Xdr

equals 1 if Xd D r and 0 otherwise; �mdr D P.Xd D r jY D m/.
3. The manifest variables X1; : : : ; XD are locally independent, that means they are

stochastically independent conditioned on Y . So the pmf of X jY can thus be
written as f .xjm/ D QD

dD1

QRd

rD1 �
xdr

mdr
: It follows directly that the pmf of X is

given by

f .x/ D
MX

mD1

wmf .xjm/ D
MX

mD1

wm

DY

dD1

RdY

rD1

�
xdr

mdr
(2)

and we see that this defines a class of finite mixture distributions.

The assumption of local independence seems to be farfetched and not rational
in various situations but this does not cause any problem as any discrete probability
distribution can be approximated by the class of discrete finite mixtures given by (2)
if M is sufficiently large (cf. Grim and Haindl 2003).

3.1 Estimation

If the number of componentsM ist not fixed a priori the class of LCMs is not iden-
tifiable which can be derived from results in Elmore and Wang (2003) and Teicher
(1967). As we see from (2), the LCM is a finite mixture of products of multinomi-
als M.1; �md1; : : : ; �mdRd

/. As established in Elmore and Wang (2003) mixtures
of M multinomials M.N; �1; : : : ; �p/ are identifiable if and only if N � 2M � 1.
Combined with a result given by Teicher (1967) that mixtures of the product of
marginal distributions are identifiable if and only if mixtures of the marginal distri-
butions are when M is not bounded, we see that the LCM is not identifiable in this
case. Nevertheless, when we restrict the number of parameters in advance so that

M
�PD

dD1Rd �D C 1
�
�1 < N (no. of parameters< no. of observations) holds,

we avoid the problem of non-identifiability.
For LCMs several estimation procedures have been proposed. The most con-

venient method may be the EM algorithm. The EM steps for estimation of the
unknown parameters given the sample x1; : : : ; xN are

E step Determination of the conditional expectation of Y givenX D xn

�mn D wmf .xnjm/
f .xn/

:
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M step Maximization of the log-Likelihood and estimation of

wm D 1

N

NX

nD1

�mn and �mdr D 1

Nwm

NX

nD1

�mnxndr :

3.2 Model Selection

In practice, the number of latent classes is generally unknown and thus also a param-
eter to identify. With increasing number of latent classes the flexibility but also the
complexity, i.e. the number of unknown parameters increases. Hence, there is a
necessity of regularization. Among others, the well-known information criteria AIC
and BIC can serve for model selection in LCA. Furthermore, goodness-of-fit tests
can be applied to examine the conformance of the model and the data. Pearson’s
�2 test statistic or the likelihood ratio �2 can be used to compare the fit of different
models. In general, distributional assumptions are not met so that instead of calcu-
lating p-values one should compare different models and choose the one with the
best fit, where overfitting should be considered.

4 Local Classification of Discrete Variables

We can use the former results in order to construct a local discrimination method
like the MDA or Common Components Models for categorical data.

4.1 Class Conditional Mixtures

If we assume class conditional mixtures analogously to the MDA and we therefore
use LCMs the latent classes represent subclasses. Thus we have as class conditional
model

P.X D xjZ D k/ D fk.x/ D
MkX

mD1

wmk

DY

dD1

RdY

rD1

�
xkdr

mkdr
;

where xkdr D 1 if xd D r in class k and xkdr D 0 otherwise; �mkdr D P.Xd D
r jY D m;Z D k/. We can estimate the model mentioned above by class-wise
application of the EM algorithm described in Sect. 3.1. As the method for assigning
a class to a new object we choose the one that maximizes its posterior [cf. (1)].
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4.2 Common Components

If we take the Common Components Model as a basis for the design of a discrete
classifier we would consider the model

P.X D xjZ D k/ D fk.x/ D
MX

mD1

wmk

DY

dD1

RdY

rD1

�
xdr

mdr
;

where only the mixture weight wmk depends on the class membership. In this case
the EM procedure needs to be modified since wmk has to be estimated class depen-
dent unlike the parameters �mdr . Hence the EM steps are

E step Determination of the conditional expectation

�mkn D wmkf .xnjm/
f .xn/

:

M step Maximization of the log-Likelihood and estimation of

wmk D 1

Nk

NkX

nD1

�mkn and �mdr D
KX

kD1

1

Nkwmk

NkX

nD1

�mknxndr :

We call this model CC1. Now let �k be the prior for class k. Then we have

P.X D x/ D
KX

kD1

�k

MX

mD1

wmk

DY

dD1

RdY

rD1

�
xdr

mdr
: (3)

With wmk D P.mjk/ we can define wm WD P.m/ D PK
kD1 P.k/P.mjk/ DPK

kD1 �kwmk . Thus, we can convert (3) as follows

P.X D x/ D
MX

mD1

KX

kD1

�kwmk

DY

dD1

RdY

rD1

�
xdr

mdr
D

MX

mD1

wm

DY

dD1

RdY

rD1

�
xdr

mdr
;

which means that we get a global LCM that is group independent. Hence, besides
estimating a Common Components Model by the EM steps mentioned above we
can also determine a global LCM and estimate the wmk in a second step by
bwmk D 1

Nk

PNk

iD1
bP .Y D mjZ D k;X D xi /, with i D 1; : : : ; Nk the index of the

observations in group k (cf. Titsias and Likas 2001). This model will be called CC2.
Posterior probabilities for CC1 and CC2 can be determined by (1).
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4.2.1 Classification Capability

In the Common Components Models subclasses can be compared to end nodes
in decision trees. We denote the probability for an object in any subclass m to
belong to class k by wkm WD P.kjm/ D �kwmk=

PK
kD1 �kwmk . The purer the

subclasses are, the better the classification result will be. This yields to the idea of
applying a measure for the capability of CC Models according to the purity mea-
sures used by decision trees like the standardized mean entropy impurity measure
H D �PM

mD1 wm

PK
kD1 wkm � logK .wkm/ with 0 � H � 1 or the mean Gini

impurity measure G D PM
mD1 wm

h
1 �PK

kD1 .wkm/
2
i

with 0 � G � 1. Another

option is the use of a �2 test to verify dependence of subclass membership and class
membership which argues for a good classification aptitude of the model.

5 Application

5.1 Simulation Study

First, we examine the properties of the presented classification methods in order to
ascertain how different data situations are handled by the methods. For this purpose,
we simulate train and test data sets with two classes with different properties as
mentioned below. We choose a full factorial design with 10 repetitions of each trial
and analyse the significant effects on the misclassification rate (estimated on a test
data set) by an ANOVA. The dependent variable is chosen to be a transformation

of the estimated classification rate 1 �b", namely the log-odds log
�

1�b"
b"

�
so that it

ranges over R. The results are compared to the theoretical Bayes error rate and to
the performance of a Naïve Bayes classifier and classification trees. The two data
generating processes (MDA-type model and CC) must be examined separately:

Class-wise LCMs: For class-wise LCMs the data is generated as follows:

1. Choose a class k 2 f1; : : : ; Kg with probability �k .
2. Choose a subclass m 2 f1; : : : ;Mkg with probability wmk .
3. Choose r 2 f1; : : : ; Rd g for Xd 2 fX1; : : : ; XDg with probability �mkdr .

The estimated effects on the classification rate relate to class priors (different or
equal in each class), subclass priors (different or equal in each subclass), number of
observations (500 or 5,000), overlap of the classes (controlled by the probabilities
�mkdr ) and the number of irrelevant variables (variables that do not differ in each
class).

The results reveal that only class overlap and the number of irrelevant variables
have significant effects. The more overlapping the subclasses are and the more
irrelevant variables occur the higher the misclassification rate in all investigated
classification methods becomes. The mean misclassification rates and the Bayes
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error rate for all 320 trials are shown in Table 1. We see that the discrete MDA has
the lowest misclassification rate and that the first Common Components approach
shows a very high error rate.

CC Models: For the CC Models the data generating steps are:

1. Choose a latent class m 2 f1; : : : ;M g with probability wm.
2. Choose independently a class k 2 f1; : : : ; Kg with probability wkm and for
Xd 2 fX1; : : : ; XDg a value r 2 f1; : : : ; Rd g with probability �mdr .

The estimated effects on the classification rate relate to class priors (different or
equal in each class), number of observations (500 or 5,000), overlap of the classes
(controlled by the probabilities �mdr ), the number of irrelevant variables and the
subclass purity (controlled by wkm).

The results reveal that class overlap, the number of irrelevant variables and
the subclass purity have significant effects. The more overlapping the classes are, the
more irrelevant variables occur and the impurer the subclasses are the higher the
misclassification rate in all investigated classification methods becomes. The results
in Table 1 reveal that the discrete MDA and the second Common Components
approach show low error rates. In both simulations the discrete MDA misclassifica-
tion level is close to the Bayes error rate. The first Common Components approach
classifies inadequately in the data situation simulated by class-wise LCMs but is
acceptable in the CC data situation.

Discrete MDA as localization of Naïve Bayes: The fact that the discrete MDA
assumes local independence while Naïve Bayes supposes that the variables are
independent per group (i.e. “global independence”) suggests that the discrete MDA
could be seen as a localization of Naïve Bayes. We investigate this by a simple sim-
ulation. We generate data sets consisting of two classes and two subclasses based
on two variables with four outcomes each. However, we choose the parameters
�mkdr in a way that the subclasses do not really differ. Indeed, we can com-
bine two outcomes of the variables respectively and the subclasses will disappear
since the probabilities for these combinations are the same in each subclass (i.e.
�1kd1C�1kd2 D �2kd1C�2kd2 and �1kd3C�1kd4 D �2kd3C�2kd4, k; d D 1; 2).
The Bayes error for this situation is 0:2. The discrete MDA has a error rate of 0:2058
and Naïve Bayes of 0.2044. In situations of existing subclasses we discovered quite
different error rates for these methods.

Table 1 Mean error rates for data generated by the MDA-type model and the Common
Components Model

Data generated Bayes Discrete CC1 CC2 Naïve CART
by error MDA Bayes

Class-wise LCM 0.123 0.148 0.222 0.160 0.195 0.164
CC 0.254 0.264 0.280 0.267 0.259 0.271
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5.2 SNP Data

In a next step the presented procedures are applied to a SNP data set to investi-
gate their practicability in real data situations. The analyzed data originates from
the GENICA study (cf. Brauch et al. 2000), which is an age-matched, population-
based, case-control candidate SNP study. It aims at identifying genetic and gene-
environment associated breast cancer risks. The data contains 1,166 observations,
605 controls and 561 cases, of 68 SNP variables and six categorical epidemiolog-
ical variables. We compare our classification results with the results mentioned in
Schiffner et al. (2009). Therefore, the same partition of the data set for estimating
the error rates by cross-validation is used. For computational reasons we restrict the
number of subclasses per group to a maximum of 10.

The misclassification rate of the discrete MDA (0.220, standard deviation 0.030)
out-performs the best rate of Schiffner et al. (2009) (logistic regression: 0.366). CC1
(0.471, sd 0.049) and CC2 (0.345, sd 0.056) have significantly higher error rates.
We therefore conclude that the discrete MDA appears to be an adequate model to
classify the SNP data. The CC methods seem to be less appropriate in this case. A
reason for this fact could be the impurity of the subclasses (H D 0:99 and G D
0:50) which might entail an inaptitude of these methods.

6 Conclusion

We presented three models based on LCMs that provide a flexible approach to local
classification. The assumption of local independence allows for relatively sparse
data sets in contrast to using mixtures of multinomials. The models can handle miss-
ing values without imputation. The discrete MDA can be seen as a localized version
of the Naïve Bayes method.

Further efforts could extend the methods to mixed data assuming normality of
the continuous variables. A clustering technique based on this idea can be found in
Hunt and Jorgensen (2003) which could be used for local classification of mixed
data.
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A Comparative Study on Discrete Discriminant
Analysis through a Hierarchical Coupling
Approach

Ana Sousa Ferreira

Abstract In discrete discriminant analysis the high-dimensionality problem often
causes discriminant methods to perform poorly, specially in the multiclass case. The
Hierarchical Coupling Model (HIERM) enables a reduction of the multiclass pro-
blem into several biclass problems embedded in a binary tree. With this approach,
at each level of the tree, the basic affinity coefficient is used to select the new couple
of classes among all possible forms of merging the original classes. After identify-
ing the pair of classes to be considered, the decision rule for this biclass problem
is based on the combining model that minimizes the error rate. The performance of
this model leads to a considerable improvement in the misclassification error rate.
Furthermore, its representation is appealing which makes it easily interpretable. In
this study we propose to explore the comparison of the HIERM model with other
models where the choice of the decomposition at each level of the binary tree among
all possible forms of merging is made using one of the traditional similarity coef-
ficients in Cluster Analysis. The performance of HIERM and the new models is
compared on real data.

1 Introduction

Let X D .x1; : : : ; xn/ denotes a n-dimensional training sample of multivariate
observations, associated with p discrete variables, for which each object is assumed
to become from one of K exclusive classes G1; G2; : : : ; GK with prior probabilities
�1; �2; : : : ; �K .

PK
kD1 �k D 1/.

The context of this study is Discrete Discriminant Analysis (DDA) and we will
be focusing on the small sample setting and binary variables.
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We consider a classical DDA problem: our main aim is to derive a classification
rule to allocate subjects, whose class is unknown, to one of the K classes, whose
members are described by the p binary variables. The Bayes classification rule
assigns an individual vector x into Gk if

�kP.xjGk/ � �lP.xjGl/ for l D 1; : : : ; K and l ¤ k (1)

where P.xjGl/ denotes the conditional probability function for the l � th class.
Usually, the conditional probability functions are unknown and are estimated on the
basis of the training sample.

For discrete problems the most natural model is to assume that the class condi-
tional functions P.xjGl/ are multinomial probabilities estimated by the observed
frequencies in the training set. However, model FMM involves 2p � 1 parameters
in each class. Hence, even for moderate p, not all of the parameters are identifiable.
One way of dealing with this high-dimensionality problem consists of reducing the
number of parameters to be estimated. The FOIM model assumes that the p binary
variables are independent in each class Gk , k D 1; : : : ; K . So, the number of para-
meters to be estimated for each class is reduced from 2p � 1 to p. This method is
simple but may be unrealistic in many situations.

In Discrete Discriminant Analysis there is a high-dimensional problem due to the
large number of parameters to be estimated in most of the models. Furthermore, if
we have small or moderate sample sizes, we encounter a problem of sparseness in
which some of the multinomial cells may have no data in the training sets. Thus,
most of the discrete discrimination methods perform poorly. This high-dimensional
problem is even more complex in the multiclass case.

2 Combining Models in Biclass Problems

In many situations we have several classification rules in competition for the same
problem and one of those rules is selected, based on some criteria. Acting in such a
way leads to rejecting several classification rules for which the parameters have been
estimated. Besides, misclassified subjects can be different for the different models.
Thus, those rules may contain useful information on the classification problem, and
this information is lost by selecting a single model. The idea of combining models
is currently emerging in an increasing number of papers, with a view to obtaining a
more robust and stable model than any of the competing models.

In biclass problems we proposed (Sousa Ferreira 2000) a classification rule based
on a combining model: an intuitive combination method is to propose a single coef-
ficient, producing an intermediate model between the FMM model and the FOIM
model:

OPk.xjˇ/ D ˇ OPFOIM .xjGk/C .1 � ˇ/ OPFMM .xjGk/ (2)
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We proposed and evaluated several strategies to estimate the coefficient ˇ (e.g.,
Sousa Ferreira 2000; Brito et al. 2006). A natural way of deriving the coefficient ˇ
is by minimizing the fitting error using a least squares criterion. The Committee of
Methods introduced by (Bishop 1995) in the neural computing literature is such an
approach. Another strategy is a measure of the relative performance of the FOIM
model that takes account of model uncertainty (Raftery 1996) and is based on the
integrated likelihoods for the FOIM and FMM models. In this study we will use
an approach to estimate the ˇ coefficient using a least squares regression criterion
(Leblanc and Tibshirani 1996):

b̌
LSR D

Pn
iD1.C2.xi / � C1.xi //C2.xi /�Pn

iD1 yi .C2.xi / � C1.xi //
Pn

iD1.C2.xi /� C1.xi //2
(3)

where C1, C2 represent, respectively, the a posteriori probabilities for FOIM and
FMM models estimated by cross-validation. The combining models approach using
a single coefficient proved to be a good alternative for reducing the dimensionality
problem in the two classes case.

3 The Hierarchical Coupling Model (HIERM)

We proposed a method, inspired by Friedman’s approach (Friedman 1996), for
reducing the multiclass problem into several biclass problems (Sousa Ferreira et al.
1999) embedded in a binary tree. HIERM needs two decisions at each level:

� Selection of the hierarchical coupling among the 2K�1�1 possible class couple;
� In each node of the tree, choice of the combining model that gives the best

classification rule for the chosen couple.

The individual vector x is assigned to the class associated with the last node of the
tree on which x falls. The main aim of this approach is to obtain a better prediction
performance and more results stability.

At the beginning we have K training subsamples and we want to reorganize these
K classes into two classes. So, we propose either to explore all the hierarchical
coupling solutions or to select the two new classes that are the most separable.

The basic affinity coefficient (Matusita 1955; Bacelar-Nicolau 1985) can be used
to choose the hierarchical coupling at each level of the tree, F1 D ppj and
F2 D pqj , j D 1; 2; : : : ; p being two discrete distributions defined in the same
space:

�.F1; F2/ D
LX

lD1

p
pj
p
qj (4)

and is easily computed in our classification problem.
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Table 1 Frequencies for
each pair of subjects, across
all variables

Subject i
1 0

1 a b
Subject j

0 c d

4 Comparison of the HIERM Model with Other Models,
Using Similarity Coefficients for Binary Data

In the previously defined HIERM model the basic affinity coefficient is used to
select the new couple in each level of the binary tree. However, since there are
several similarity coefficients for binary data, this choice can also be made using
one of them (Hubálek 1982). The aim of this study is to explore the comparison of
the HIERM model with other models where the choice of the couple at each level of
the binary tree is made using one of the traditional similarity coefficients for binary
data in Cluster Analysis.

4.1 Similarity Coefficients for Binary Data

As we know, in order to analyze subject or variable similarities we use their descrip-
tions by p independent variables or n subjects. In the case of binary data, we can
summarize the information for each pair of subjects, each taken from one of the
classes of the chosen couple .Gl ; Gk/, on a 2 	 2 contingency table (see Table 1),
where a, b, c, d are frequencies, across all variables, respectively positive co-
occurrences, occurrence/non-occurrence, non-occurrence/occurrence and negative
co-occurrences.

In order to explore the performance of the HIERM model and the new models
using traditional similarity coefficients for binary data, we selected ten similarity
coefficients.

We call Type I Coefficients the five similarity coefficients selected, that exclude
the negative co-occurrences, defined in Table 2 and Type II Coefficients the five
similarity coefficients selected, that include the negative co-occurrences, defined in
Table 3.

5 Numerical Experiments

The performance of HIERM and the new models using the ten similarity coefficients
has been compared on both real and simulated binary data. However, for the sake of
simplicity and dimension of this study, we only present here, the application to real
data.
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Table 2 Type I similarity coefficients

Type I Coefficients Definition Occurrence Interval

Jaccard (1901) a
aCbCc

[0,1]

Kulczynski I (1927) a
bCc

[0,C1[

Kulczynski II (1927)
a
2 .2aCbCc/

.aCb/.aCc/
[0,1]

Dice and Sorensen (1945,1948) 2a
2aCbCc

[0,1]

Sokal and Sneath II (1963) a
aC2.bCc/

[0,1]

Table 3 Type II similarity coefficients

Type II Coefficients Definition Occurrence Interval

Simple Matching (1958) aCd
aCbCcCd

[0,1]

Russel and Rao (1940) a
aCbCcCd

[0,1]

Rogers (1960) aCd
aCdC2.bCc/

[0,1]

Haman (1961) .aCd/�.bCc/

aCbCcCd
[�1,1]

Sokal and Sneath I (1963) 2.aCd/

2.aCd/CbCc
[0,1]

We thank our colleagues for providing data GSS1 (“GSS1” is a registered
trademark authorized for Portuguese adaptation by R. Pires, FPCE, University of
Lisbon), ALEXITH (Prazeres 1998) and CAREER (Lima 1998).

Since HIERM was proposed on the small or moderate sample size settings, the
proposed models’ performance is evaluated by two-fold cross validation or the error
rate is estimated in a test sample.

In this study, the a priori class probabilities are taken to be equal. Characteriza-
tion of data sets are summarize in Table 4.

As was previously mentioned, the affinity coefficient is easily computed in our
kind of data.

However, using the ten similarity coefficients in order to choose the new couple
at each level of the tree, we need one aggregation criteria to obtain the measure of
similarity between each pair of classes. We selected the Average Linkage Criteria
since it is one of the most commonly used that best achieves our objectives. This
criteria is computed as the average similarities between subjects from the first class
and subjects from the second. The averaging is performed over all pairs of subjects.
In the context of this study, for instance Single Linkage and Complete Linkage
leaves too often towards the extreme values zero or one.

Table 5 summarizes the results of the choice of the hierarchical coupling by
Type I coefficients and Table 6 describes the same results for Type II coefficients.
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Table 4 Characterization of data sets
Data sets Description n Groups Variables

GSS1 Gudjonsson suggestibility scales 98 n1 D 72 6 variables
three age groups n2 D 7

n3 D 19

ALEXITH Clinical psychological data 34 n1 D 14 6 variables
three groups of Alexithymia degrees n2 D 13

n3 D 7

CAREER Psychological counselling career data 600 n1 D 119 10 variables
four degree courses n2 D 212

n3 D 148

n4 D 121

Table 5 Choice of the hierarchical coupling by Type I coefficients

Data sets Type I coefficients
Affinity Jaccard Kul. I Kul. II Dice S. Sokal II

GSS1 .4056 .1595 .2718 .2590 .2198 .1085
.2613 .0788 .1249 .1343 .1101 .0524
.3529 .1898 .3286 .3111 .2628 .1283

ALEXITH .4358 .3296 .6268 .5000 .4265 .2399
.6456 .3720 .6624 .5488 .5029 .3077
.4346 .4022 .5723 .4999 .4647 .2861

CAREER 1st level of the tree

.9148 .1355 .1420 .1785 .1620 .1112

.9240 .1533 .1873 .2409 .2172 .1509

.9528 .1948 .2150 .2601 .2347 .1583

.9195 .1686 .1631 .2201 .1999 .1401

.9636 .1553 .1705 .2068 .1869 .1262

.9398 .1820 .1941 .2408 .2178 .1490

.9389 .1584 .1727 .2092 .1898 .1294
2nd level of the tree

.9784 .1463 .1408 .1909 .1729 .1220

.9689 .1463 .1526 .1934 .1746 .1203
.9534 .1270 .1279 .1671 .1511 .1049

It may be noted that in the case of K D 3 classes a priori there are 3 hierarchical
coupling solutions, but in the case of K D 4 classes a priori there are 7.

The results of Table 5 show that, for almost all data, coefficients of Type I - Jac-
card, Kulczynski I, Kulczynski II, Dice-Sorensen and Sokal and Sneath I - choose
the same hierarchical coupling solution as the basic affinity coefficient, probably
due to the fact that all of them excluded negative co-occurences.

In Table 6 similar selections are also observed in Simple Matching, Rogers,
Haman and Sokal and Sneath I, probably due to the fact that they included the
negative co-occurences.
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Table 6 Choice of the hierarchical coupling by Type II coefficients

Data sets Type II coefficients
Affinity Jaccard Kul. I Kul. II Dice S. Sokal II

GSS1 .4056 .5671 .0939 .4280 .1343 .6981
.2613 .6243 .0374 .4851 2̇486 .7455
.3529 .5339 .1144 .3954 .0677 .6687

ALEXITH .4358 .5488 .1577 .4047 .0976 .6880

.6456 .5842 .1734 .4428 .1685 .7173

.4346 .5864 .1279 .4443 .1728 .7173
CAREER 1st level of the tree

.9148 6̇641 .0680 .5569 .3282 .7613

.9240 .6657 .0893 .5571 .3315 .7628

.9528 .6347 .1015 .5216 .2694 .7382

.9195 .6544 .0811 .5434 .3089 .7546

.9636 .6045 .0790 .5032 .2420 .6958

.9398 .6665 .0896 .5564 .3330 .7647

.9389 .5568 .0796 .4618 .1603 .6423
2nd level of the tree

.9784 .6845 .0698 .5799 .3691 .7773

.9689 .6780 .0728 .5733 .3561 .7714

.9534 .6793 .0627 .5752 .3587 .7724

Table 7 Performance comparison of Type I and Type II Hierarchical coefficient models
for GSS1 data
1st level 2nd level FOIM FMM KER HIERM HIERM

Type I Coeff. G1vs:G3 Error rate .38 .59 :38 :21 .21
G2 vs. G1+G3 � .95 1:000 :95

ˇ - 1st :3349 :3400

- 2nd 1:000 1:000

Type II Coeff. G1 vs.G2 Error rate .38 .59 :38 :17 .14
G3 vs.G1+G2 � .95 1:000 :95

ˇ - 1st :5877 :5881

The Russel and Rao coefficient presents different choices to them all, the coeffi-
cients of type II, probably due to the fact that it excluded the negative co-occurences
in the numerator and included it in the denominator of its expression.

Thus, almost always, two types of hierarchical coupling solutions are achieved
by these eleven coefficients: Affinity, Type I and Russel and Rao choose one and
Type II coefficients select another one.

Therefore, after choosing the hierarchical coupling in each level of the tree, we
compare the performance of the HIERM model using the two types of hierarchical
coupling solutions, for the three real data sets in Tables 7, 8 and 9.

In Table 7, for GSS1 data, the choice of Type II coefficients leads to the miminum
error.
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Table 8 Performance comparison of Type I and Type II Hierarchical coefficient models for
ALEXITH data
1st level 2nd level FOIM FMM KER HIERM HIERM

Type I Coeff. G1vs:G2 Error rate .53 .70 :56 .32 .35
G3 vs. G1+G2 � .95 1:000 :95

ˇ - 1st :1800 :9902

- 2nd :4401 :9809

Type II Coeff. G2 vs.G3 Error rate .53 .70 :56 .47 .47
G1 vs.G2+G3 � .95 1:000 :95

ˇ - 1st 1:000 :9100

- 2nd :8100 :0900

Table 9 Performance comparison of Type I and Type II Hierarchical coefficient models for
CAREER data
1st level 2nd level 3rd level FOIM FMM KER HIERM HIERM

Type I Coeff. G3vs.G1+G2 G1vs.G2 Error rate .66 :67 :65 .10 .25

G1 vs. G2+G3+G4 � .95 1:000 :95

ˇ - 1st :9171 :0000

- 2nd 1:000 :0000

- 3rd :9547 :0000

G2vs.G1+G3 G1 vs.G2 Error rate .66 :67 :65 .53 .34

ˇ - 1st :9171 :0000

- 2nd :7606 :0000

- 3rd :8883 :0000

G2+G3 vs.G1+G4 � .95 1:000 :95

ˇ - 1st :8139 :9547

- 3rd :8892 :0000

In Tables 8 and 9 for ALEXITH and CAREER data, the choice of Type I
coefficients leads to the miminum error.

6 Conclusions

The comparison made showed that using the affinity coefficient or Type I similarity
coefficients to select the hierarchical coupling in each branch of the tree is a good
option, since they reveal good performance in the small or moderate sample setting.
These models frequently provide the lowest estimates of the misclassification risk,
even in simulated data.

Due to its easy application in the HIERM model, the basic affinity coefficient
takes advantage.

In the multiclass case, the HIERM approach leads to a considerable improvement
of the misclassification error rate. Furthermore its representation is appealing which
makes it easily interpretable. Due to the fact that Type I coefficients lead, for almost
all data, to decompositions with the best misclassification error rates, we suggest
using one of them or the basic affinity coefficient in the HIERM model.
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A Comparative Study of Several Parametric
and Semiparametric Approaches for Time
Series Classification

Sonia Pértega Díaz and José A. Vilar

Abstract Several non-parametric statistics originally designed to test the equal-
ity of the log-spectra of two stochastic processes are proposed as dissimilarity
measures between two time series. Their behavior in time series clustering is ana-
lyzed throughout a simulation study, and compared with the performance of several
model-free and model-based dissimilarity measures. Up to three different classifica-
tion settings are considered: (1) to distinguish between stationary and non-stationary
time series, (2) to classify different ARMA processes and (3) to classify several
non-linear time series models. As it was expected, the performance of a particular
dissimilarity metric strongly depended on the type of processes subjected to cluster-
ing. Among all the measures studied, the non-parametric distances showed the most
robust behaviour.

1 Introduction

Time series clustering is an important area of research with applications in many
fields, see e.g. the classification of industrial production series (Piccolo 1990), the
comparison of seismological data (Kakizawa et al. 1998) or clustering of banks
according their weekly share price (Vilar et al. 2009).

A key point in cluster analysis is to determine a distance measure between
objects, so the existing clustering algorithms can be directly used. However, the
high dimensionality and the underlying autocorrelation structure are features of time
dependent data that become more complicated cluster analysis.

Previous arguments account for the increase in the number of studies on time
series clustering in the last years (Caiado et al. 2006; Kakizawa et al. 1998; Maharaj
1996, 2000; Piccolo 1990; Vilar and Pértega 2004). An excellent overview on time
series clustering can be found in Liao (2005).
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The present work has two objectives. First, to analyze the behavior in time series
clustering of two non-parametric statistics originally designed to test the equality
of the log-spectra of two stochastic processes. Second, to extend the comparative
analysis performed by Caiado et al. (2006) including new dissimilarity measures
and considering the classification of different kinds of processes.

2 Some Dissimilarity Measures Between Time Series

Given XT D .X1; : : : ; XT /
t and Y T D .Y1; : : : ; YT /

t partial realizations from
two scalar-valued processes X D fXt ; t 2 Zg and Y D fYt ; t 2 Zg, the following
measures of dissimilarity between X and Y will be compared along this work:

1. The Euclidean distance, dE .X; Y / D
nPT

tD1 .Xt � Yt /
2
o1=2

:

2. Two measures based on the estimated autocorrelation functions (ACFs) (see
Galeano and Peña 2000). First, the Euclidean distance between the first L esti-

mated autocorrelation coefficients, dACFU .X; Y / D
nPL

iD1 .b�i;X �b�i;Y /
2
o1=2

.

The second ACF metric is defined by introducing geometric weights decaying

with the lag, namely dACFG .X; Y / D
nPL

iD1 p.1 � p/i .b�i;X �b�i;Y /
2
o1=2

, with

p D 0:5.
3. In a similar way, two distances based on the estimated partial autocorrelation

functions (PACF’s) (see Caiado et al. 2006): the Euclidean distance between the
sample partial autocorrelation coefficients with uniform weights (dPACFU) and
with geometric weights decaying with the lag (dPACFG).

4. The metric introduced by Piccolo in Piccolo (1990) for invertible ARIMA
processes, defined as the Euclidean distance between their autoregressive expan-
sions. In practice, automatic modeling of AR structures is performed by means
of Akaike’s Information Criterion (AIC). Thus, the distance is calculated as:

dPIC.X; Y / D
8
<

:

max.k1;k2/X

j D1

�
b�j;X �b�j;Y

�2

9
=

;

1=2

; (1)

with b˘ X D
�
b�1;X ; : : : ;b�k1;X

�t
and b˘ Y D

�
b�1;Y ; : : : ;b�k2;Y

�t
the vectors of

AR.k1/ and AR.k2/ parameter estimations of the series XT and Y T .
5. Maharaj’s distance for ARMA processes (Maharaj 1996), that is based on a test

to determine if two time series have significantly different generating processes:

dM .X; Y / D
p
T
�

b˘ X � b˘ Y

�t
bV

�1
�

b˘ X � b˘ Y

�
; (2)
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with bV an estimator of V D 	2
XR

�1
X .k/C 	2

YR
�1
Y .k/, where 	2

X and 	2
Y denote

the variances of the white noise processes associated with XT and Y T , and RX

andRY are the sample covariance matrices of both series.
6. Distances based on the periodogram. In particular, the Euclidean distance

between: the periodogram ordinates (dP .X; Y /), the normalized periodogram
ordinates (dNP.X; Y /), the logarithm of the periodogram ordinates (dLP.X; Y /)
and the logarithm of the normalized periodogram ordinates (dLNP.X; Y /).

7. The spectral disparity measure dW defined in Vilar and Pértega (2004) as:

dW .X; Y / D 1

4�

Z �

��

W

 
bfX .�/

bfY .�/

!

d�; (3)

whereW .x/ D log.0:5xC 0:5/� 0:5 log.x/. Different versions of dW are con-
sidered according to the spectral estimators bfX and bfY (see Fan and Kreutzberger
1998, for details):

– dW.DLS/, when bfX and bfY are local linear smoothers of the periodograms
obtained via least squares;

– dW.LS/, when bfX and bfY are the exponential transformation of the local linear
smoothers of the log-periodograms, obtained via least squares;

– dW.LK/, when bfX and bfY are the exponential transformation of the local linear
smoothers of the log-periodograms, now obtained using the maximum local
likelihood criterion instead of the least squares one.

In all cases, the Epanechnikov kernel was used and the bandwidth determined
by cross-validation. In order to obtain a symmetrized version of dW , we take as
divergence function QW .x/ D W .x/CW �

x�1
�
.

8. Two new measures based on non-parametric statistics originally designed to test
the equality of the corresponding log-spectra,mX andmY . First, we focused on a
modification of the generalized likelihood ratio test introduced in Fan and Zhang
(2004):

dGLK.X; Y / D
nX

kD1

h
Zk �b�.�k/ � 2 log

�
1C efZk�b�.k/g�i

�
nX

kD1

h
Zk � 2 log

�
1C eZk

�i
; (4)

whereZk D log.Ix.�k//�log.Iy.�k//; �.�k/ D mX.�k/�mY .�k/ andb�.�k/

is the local maximum log-likelihood estimator of �.�k/ computed by local linear
fitting.

Second, a test statistic based on the Cramér-von-Mises-type functional distance
between the estimators of the log-spectra. In particular, we consider
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dCM.X; Y / D
Z

.bmX .�/� bmY .�//
2
d�; (5)

with bmX .�/ and bmY .�/ the local linear smoothers of the log-periodograms, obtained
using the maximum local likelihood criterion.

3 Simulation Study

In this section, we present the results from the numerical study designed to com-
pare the behaviour of the measures in Sect. 2 under different classification setups.
Three classification problems were considered: (1) to distinguish between stationary
and non-stationary time series, (2) to classify different ARMA processes and (3) to
classify several non-linear time series models.

3.1 Classification of Time Series as Stationary or Non-Stationary

The first set of experiments was aimed at extending a previous study (Caiado et al.
2006) by including the non-parametric dissimilarity measures proposed in Sect. 2.

As in Caiado et al. (2006), s D 1 realization from the following 12 models was
generated:

(a) AR.1/ �1 D 0:9 (g) ARIMA.1; 1; 0/ �1 D �0:1
(b) AR.2/ �1 D 0:95, �2 D �0:1 (h) ARIMA.0; 1; 0/
(c) ARMA.1; 1/ �1 D 0:95, �1 D 0:1 (i) ARIMA.0; 1; 1/ �1 D 0:1
(d) ARMA.1; 1/ �1D� 0:1, �1D� 0:95 (j) ARIMA.0; 1; 1/ �1 D �0:1
(e) MA.1/ �1 D �0:9 (k) ARIMA.1; 1; 1/ �1D0:1, �1D� 0:1
(f) MA.2/ �1D� 0:95, �2D� 0:1 (l) ARIMA.1; 1; 1/ �1D0:05,�1D� 0:05

In all cases, the error was white noise with zero mean and unit variance. Time
series were grouped into two clusters (stationary and non-stationary) and the clus-
tering evaluation criterion consisted in computing the percentage of successes in
the classification. The procedure was replicated N D 300 times and the percent-
age of successes averaged through all the iterations. The results obtained using the
complete linkage procedure are shown in Table 1.

For T D 200, a group of metrics performed better than the rest (dACFU, dACFG,
dNP and dLNP), with percentages of success exceeding 80%. The non-parametric
measures worked well for low frequency components, with scores around 80%. This
is reasonable, since the main differences between the spectra of the two processes
type are concentrated in the low frequency band. As expected, dE and dP showed
the worst performance, with percentages of success below 67% in both cases.
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Table 1 Percentage of success in the classification of series (a)–(l) as stationary or non-stationary
with N D 300 iterations
Measure T Measure T

50 200 500 50 200 500

Euclidean distance Non-parametric
dE 65:90 66:90 68:20 dW(DLS) 73.50 71.00 72.40

Simple, partial autocorrelations Low freq. 78.06 80.92 82.65
dACFU 75:40 84:10 83:50 High freq. 62.28 65.92 71.43
dACFG 76:00 83:20 82:10 dW(LS) 67.10 70.70 72.60
dPACFU 74:40 75:00 75:00 Low freq. 71.83 79.81 80.10
dPACFG 74:40 75:00 75:00 High freq. 64.42 67.44 71.94

Periodograms dW(LK) 69.30 71.50 71.90
dP 66:60 65:80 65:50 Low freq. 75.80 79.50 84.00
dLP 66:00 73:10 74:80 High freq. 63.50 68.10 72.60
dNP 72:00 81:80 82:80 dGLK 63.80 70.72 73.60
dLNP 70:00 84:20 94:40 Low freq. 63.83 79.08 80.8
Low freq. 64:70 73:80 78:60 High freq. 62.50 68.00 72.60

High freq. 69:20 83:80 95:10 dCM 69.50 72.00 74.50

Model-based Low freq. 75.89 79.89 85.90
dPIC 69:60 74:90 75:00 High freq. 63.11 68.89 72.10
dM 71:80 75:00 75:00

T is the length of the series. Low frequencies correspond to ordinates 1 to
p
T . High frequencies

to ordinates
p
T C 1 to T=2

In general, the percentages of success were higher when a larger length (T D
500) was used. The performance of the dLNP metric was especially good (95%
success). Results with T D 50 were rather poor for all measures.

3.2 Clustering of ARMA Time Series

In this case, as in Maharaj (1996), the following models were selected (in all cases
the error was again white noise with zero mean and unit variance):

1. AR.1/ �1 D 0:5 4. MA.2/ �1 D 0:8, �2 D �0:6
2. MA.1/ �1 D 0:7 5. ARMA.1; 1/ �1 D 0:8, �1 D 0:2
3. AR.2/ �1 D 0:6, �2 D 0:2
Four series of length T D 200 were generated from each process and a cluster-

ing algorithm was run. One hundred trials were carried out. As a clustering results
evaluation criterion the following similarity index was used (see Gavrilov et al.
2000):

Sim .G;C / D 1

5

5X

iD1

max
1�j �k

Sim
�
Gj ; Ci

�
; (6)
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Table 2 Clustering of ARMA processes (i)–(v): Cluster similarity evaluation index in (6) for
k-cluster solutions

Measure k Measure k

4 5 4 5

Euclidean distance Model-based
dE 0.457 0.475 dPIC 0.706 0.703

Simple, partial autocorrelations dM 0.825 0.807
dACFU 0.716 0.751 Non-parametric
dACFG 0.732 0.765 dW(DLS) 0.783 0.793
dPACFU 0.820 0.816 dW(LS) 0.762 0.774
dPACFG 0.828 0.820 dW(LK) 0.778 0.790
Periodograms dGLK 0.730 0.732
dP 0.552 0.583 dCM 0.769 0.786
dLP 0.684 0.704
dNP 0.612 0.648
dLNP 0.703 0.740

T D 200. N D 100. Complete linkage procedure

where C D fC1; : : : ; C5g and G D fG1; : : : ; Gkg, 1 � k � 5 are the set of five true
clusters and a k-cluster solution, and Sim

�
Gj ; Ci

� D 2 ˇˇGj \ Ci

ˇ
ˇ=.
ˇ
ˇGj

ˇ
ˇC jCi j/.

Table 2 provides the average cluster similarity indexes obtained with the com-
plete linkage algorithm. The best scores were obtained with the distances based on
the PACF’s and the metric dM , with indexes above 0.8. The dW -type non-parametric
measures are placed in an intermediate position. Among them, the worst perfor-
mance corresponded to the measure dW(LS). This fact corroborates the asymptotic
inefficiency of dW(LS) with respect to both dW(DLS) and dW(LK), as established in Vilar
and Pértega (2004). The dCM measure also performed well, while dGLK achieved the
worst results among the non-parametric measures.

The rest of the measures performed worse. Note that among these would be
included those that best distinguished between stationary and non-stationary pro-
cesses in our first experiment, namely, dACFU, dACFG, dNP and dLNP.

We also analyzed the mean number of times that each of the processes was cor-
rectly identified. The measures showing the best behavior, dM , dPACFU, dPACFG and
the non-parametric ones, nearly always correctly identified the MA processes. Series
from AR.2/ and ARMA.1; 1/ models were never well grouped, but this occurred
with all the metrics. Series from AR.1/ processes were correctly identified 20–40%
of the times with the best metrics, except for dW(LS) and dGLK. Concerning the met-
rics presenting the worst quality indexes, it is interesting to observe their low ability
to identify the MA series.

Finally we also considered the mean number of clusters correctly identified at
each iteration. The distances based on the PACF’s, the Maharaj’s distance and the
nonparametric distances correctly identified between two and three clusters in each
iteration. None of the other metrics were able to correctly identify the mean of two
clusters. Furthermore, only the metrics based on the PACF’s, Maharaj’s measure and
the non-parametric measures were able to yield 3 correct clusters at some iteration.
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3.3 Clustering of Non-Linear Time Series

In this case, four series of length T D 200 were generated from these models:
(1) Xt D 0:5Xt�1I .Xt�1 � 0/� 2Xt�1I .Xt�1 > 0/C "t (TAR model)
(2) Xt D

�
0:3 � 10 exp

˚�X2
t�1

��
Xt�1 C "t (EXPAR model)

(3) Xt D "t � 0:4"t�1 (Linear MA model)
(4) Xt D "t � 0:5"t�1 C 0:8"2

t�1 (Non-linear MA model)
Error processes "t were independent zero-mean Gaussian variables with unit

variance. These models were used in tests of linearity setting by Tong and Yeung
(1991).

The clustering evaluation criterion was again the quality index given in (6). The
values of this index (averaged over 100 trials) are shown in Table 3.

As expected, the best results were now attained with the non-parametric dis-
similarity measures. All of them led to indexes around 0.9, except for dGLK.
The parametric distances dPIC and dM were affected by the misspecification of the
generating models and were placed in an intermediate location together with the
autocorrelation-based measures and dLP. The rest of the measures fell far behind. In
particular, dLNP yielded a poor quality index of 0:574.

When we analyzed the number of times that each process was correctly identified
we observed that the EXPAR and MA processes form the most homogeneous clus-
ters. When the best non-parametric measures (dW(DLS), dW(LK) and dCM) were used,
the series from this processes were correctly grouped around 91% of the times.
More difficult was to group correctly the series from the TAR and NLMA models.
Furthermore, the non-parametric measures led to a complete correct solution nearly
40% of the times. None of the other metrics were able to yield the mean of two
correct clusters.

Table 3 Clustering of non-linear processes (1)–(4): cluster similarity evaluation index in (6) for
four-cluster solution

Measure Index Measure Index

Euclidean distance Model-based
dE 0.537 dPIC 0.769
Simple, partial autocorrelations dM 0.781
dACFU 0.752 Non-parametric
dACFG 0.777 dW(DLS) 0.920
dPACFU 0.784 dW(LS) 0.895
dPACFG 0.795 dW(LK) 0.912
Periodograms dGLK 0.818
dP 0.485 dCM 0.913
dLP 0.786
dNP 0.576
dLNP 0.574

T D 200. N D 100. Complete linkage procedure
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4 Concluding Remarks

Simulation results shown that the performance of a dissimilarity metric depends on
the type of processes subjected to clustering. For example, both the metric based on
the log-normalized periodograms and the metric based on the simple autocorrelation
functions yielded the highest success rates for discriminating between stationary
and non-stationary processes. These two measures turned out to be among the worst
ones when they were used to cluster ARMA and non-linear processes. In a similar
way, model-based metrics can suffer from the effects of a misspecification.

Among the measures examined, we included up to five measures based on non-
parametric criteria. Such as we expected, these non-parametric measures performed
reasonably well in the three clustering setups considered and, in fact, they were
the only ones showing this robustness. Specifically, all of them provided substan-
tially better results than the rest in the clustering of non-linear processes, they
presented results very close to the best ones in clustering of ARMA processes, and
their success rates in distinguishing between stationary and non-stationary processes
were fairly competitive when these measures were evaluated in the low frequency
range. From this group of non-parametric measures, dW(DLS), dW(LK) and dCM showed
the best behavior, and therefore, they could be declared as the “winners” in our
simulation study.
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Finite Dimensional Representation of Functional
Data with Applications

Alberto Mu Qnoz and Javier González

Abstract Most algorithms in statistics are designed to work with vectors of small
or moderate dimension, and the performance of these algorithms decreases when
dealing with very high dimensional data as functional data are. In this work we
propose a functional analysis technique to obtain appropriate finite-dimensional
representations of functional data for pattern recognition purposes. To this aim, we
project the available functional data samples onto finite dimensional function spaces
generated by the eigenfunctions of suitable Mercer kernels. We demonstrate some
theoretical properties of the proposed method and the advantages of the proposed
representations in several tasks using simulated and real functional data sets.

1 Introduction

Functional data sets are characterized by their very high (or intrinsically infinite)
dimensionality (Ramsay and Silverman 2006). Functional data examples arise nat-
urally in fields such as chemometrics, climatology, etc. Functional Data Analysis
(FDA) methods study the generalization of multivariate techniques for the case in
which the data are functions. A usual technique to apply statistical procedures to
FDA data sets is to project functional data points onto some given finite-dimensional
function subspace (Ramsay and Silverman 2006). In this paper we choose to work
with Reproducing Kernel Hilbert Spaces (RKHS) as reference functional space. In
particular, we propose a finite-dimensional representation for functional data based
on a particular projection of the original functions onto the subspace generated
by the eigenfunctions of a given RKHS kernel. In Sect. 2 we formulate the func-
tional data representation in the context of regularization theory for the Square Loss
function. In Sect. 3 we exemplify the operation of the technique in some real and
simulated examples. Section 4 contains the conclusions.
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2 Representing Functional Data in a Reproducing
Kernel Hilbert Space

The goal is to transform each functional datum (usually a curve) into a point of a
given RKHS. Let f Oc1; : : : ; Ocmg denote the available sample of curves. Each sample
curve Ocl is given by a data set f.xi ; yi l/ 2 X 	 Y gniD1 where X represents the input
space and, usually Y D R

n. Here n D 1 (we deal with curves). We assume that, for
each Ocl , there exists a continuous function cl W X �! Y such that EŒyl jx� D cl.x/
(with respect to some probability measure). Thus Ocl is the sample version of cl . We
assume that the xi are common for all the curves, as it is the habitual case in the
literature (Ramsay and Silverman 2006).

A Hilbert function space H is a RKHS when there exists a symmetric positive
definite function K W X 	 X ! R such that the elements of H can be expressed
as finite linear combinations of the form h D P

s �sK.xs ; �/ where �s 2 R and
xs 2 X . K is called Mercer Kernel or reproducing kernel for H (Aroszajn 1950)
andH is denoted byHK . For more details on RKHSs see Aroszajn (1950); Cucker
and Smale (2002); Wahba (1990); Moguerza and Muõz (2006).

Consider the linear integral operator TK associated to K defined by TK.f / DR
X
K.�; s/f .s/ds. If we impose that

’
K2.x; y/dxdy <1, then TK has a count-

able sequence of eigenvalues f�j g and (orthonormal) eigenfunctions f�j g and
K can be expressed as K.x; y/ DPj �j�j .x/�j .y/ (where the convergence is
absolute and uniform).

Given a function f in a general function space, it will be projected onto HK

by means of the operator TK : the projection f � will belong to the range of TK :
f � D TK.f /. Applying the Spectral Theorem to TK we get:

f � D TK.f / D
X

j

�j hf; �j i�j (1)

Next we want to obtain c�
l

for each cl (the function corresponding to the sample
functional data point Ocl � f.xi ; yi l/ 2 X 	 Y gniD1). To find the coefficients of c�

l
in

(1), we apply regularization theory (Chen and Haykin 2002): c�
l

will be the function
that solves the following variational problem (Cucker and Smale 2002; Moguerza
and Muõz 2006):

arg min
c2HK

1

n

nX

iD1

L.yi l ; c.xi //C �kck2K : (2)

where � > 0, kckK is the norm of the function c in HK , and the loss function
is L.yi l ; c.xi // D .c.xi //� yi l/

2. The functional in (2) measures the trade-off
between the fitness of the function to the data and the complexity of the solution
(measured by kck2K ) and problem (2) can be solved applying the following theo-
rem, known as the Representer Theorem. For details, proofs and generalizations,
refer to Kimeldorf and Wahba (1971); Schölkopf and Herbrich (2001); Cox and
O’Sullivan (1990).
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Theorem 1 (Representer Theorem). Given the sample curve Ocl , defined by the set
f.xi ; yi l/ 2 X 	 Y gniD1, the solution c�

l
to the functional optimization problem (2)

exists, is unique and admits a representation of the form

c�
l .x/ D

nX

iD1

˛i lK.xi ; x/ 8x 2 X; where ˛i 2 R: (3)

In order to obtain the coefficients ˛i we have to solve the linear system .�nIn C
KS /˛l D yl , where KS D .K.xi ; xj //i;j .

By solving this linear we get a closed expression for c�
l

, the minimizer of problem
(2). Next we define two functional data representations starting from (3).

2.1 Functional Data Projections onto the Eigenfunctions Space

The minimization of the risk functional (2) gives the projected points c�
1 ; : : : c

�
m

in HK corresponding to the original curves f Oc1; : : : ; Ocmg. Equation (3) provides
a concrete finite-dimensional representation for each curve Ocl , namely the set of
coefficients ˛1l ; : : : ; ˛nl . Unluckily, as we will see right away, this representation
has a serious inconvenience: if the sample is slightly different, say .x0

i /, then it may
happen that the corresponding y0

i l
are quite different, making the representation

system not valid for pattern recognition purposes:

Theorem 2. Let c be a curve, whose sample version is f.xi ; yi / 2 X 	 Y gniD1.
The representation of c in terms of the vector .˛1; : : : ; ˛n/ is not continuous, where
f˛i gniD1 are the coefficients of c� in (3): c�.x/ DPn

iD1 ˛iK.xi ; x/.

Proof. The number of non null terms in the sum K.x; y/ DPi �i�
T .x/�.y/ is

d D min.n; r.TK//, where r.TK/ is the rank of the operator TK (�j D 0 for j >
r.TK/).

c�.x/ D
nX

iD1

˛ik.xi ; x/ D
nX

iD1

˛i

0

@
dX

j D1

�j�j .xi /�j .x/

1

A

D
dX

j D1

�j

 
nX

iD1

˛i�j .xi /

!

�j .x/ (4)

On the other hand, by (1) c�.x/ DPd
j D1 �j hc; �j i�j .x/. Equating to (4) and being

the f�j g a basis for HK we get: hg; �j i D P
i ˛i�j .xi / D h˛; �j i. Therefore, for

any set ˛0 D .˛0
1; : : : ; ˛

0
n/ such that h˛0; �j i D h˛; �j i D hg; �j i we will have thatPn

iD1 ˛
0
ik.xi ; x/ D c�.x/. Now, given the sample curve c � f.xi ; yi / 2 X	Y gniD1,

consider a ‘close’ curve c� � f.x�
i ; y

�
i / 2 X	Y gniD1, such that d.x; x�/ < �. Denote
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by .˛�/ the representation corresponding to c� . Given that c�.x/ ' c�.x/ (because
of the continuity of c), and using (4) it will happen that h˛�; �j i ' h˛; �j i and,
nevertheless, by the previous reasoning, ˛� and ˛ can be quite different. In practice,
this situation can arise when the matrix .�nInCKS / is close to be singular: a small
change in the sample can cause a large change in the solution of the corresponding
linear system.

The next theorem specifies our concrete proposal to obtain finite-dimensional rep-
resentations for functional data.

Theorem 3. Let c be a curve, whose sample version is Oc � f.xi ; yi / 2 X 	 Y gniD1.
Consider the functional representation for c given by .��

1; : : : ; �
�
d
/, where

O��
j D

nX

iD1

O�j˛i
O�j i ; (5)

˛i are given by (3), O�j is the eigenvalue corresponding to the eigenvector O�j of the
matrix KS D

�
K.xi ; xj /

�
i;j

, and d D min.n; r.KS //. This functional representa-
tion is continuous with respect to the input variables.

Proof. In the ideal case where we know the expression for both the eigenfunc-
tions and eigenvalues of the kernel functionK , ��

j D
Pn

iD1 �j˛i�j .xi /. However,
often we only know the matrix KS , obtained by evaluating the kernel at the
sample, and we can not know the real eigenvalues �j and their corresponding
eigenfunctions �j . We will prove the theorem for the representation given by
Pn

iD1 �j˛i�j .xi /, and then we show that
Pn

iD1
O�j˛i

O�j i converges to that value.

First we show that
Pd

j D1 �
�
j�j .x/ gives the value of c�.x/:

dX

j D1

��
j�j .x/ D

dX

j D1

 

�j

nX

iD1

˛i�j .xi /

!

�j .x/ D
dX

j D1

�j

 
nX

iD1

˛i�j .xi /

!

�j .x/

D
nX

iD1

˛i

0

@
dX

j D1

�j�j .xi /�j .x/

1

A
nX

iD1

˛ik.xi ; x/ D c�.x/ (6)

Given the sample curve c and a ‘close’ curve c� , and using the same notation as in
Theorem 2, if d.x; x�/ < � then c.x/ ' c�.x/ and given that the �j are a basis for
HK , it must happen that ��

j ' ���
j . To end the proof, we only need to show that the

eigenvalues and eigenvectors of KS converge, respectively, to the eigenvalues and
eigenfunctions of TK : O�j �! �j and O� �! �. And this is the case because this
convergence holds always for positive-definite matrices, including kernel functions
(see Schlesinger 1957). For more specific theorems restricted to the context of kernel
functions, see Bengio et al. (2004).
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3 Experiments

As a first example we consider two similar functional data curves to illustrate
the behavior of the Kernel expansion and the RKHS representation system. The
two curves are temperatures curves corresponding to daily series averaged over
the period from 1960 to 1994 in Canada (Ramsay and Silverman 2006, Chap. 1),
and correspond to the cities “St. Johns” and “Halifax”. We consider the kernel
K.x; y/ D e��kx�yk2

with 	 D 0:4 and � D 1 and obtain the kernel expansion
[given in (3)] and the RKHS representation [given in (5)] for both curves. Figure 1,
left (upper and lower), shows the curves and their projections onto the function
space HK generated by the eigenfunctions of K . The two central plots in Fig. 1
show the kernel expansion representation for both curves and it is apparent they are
quite different, despite the fact the two curves are similar. Figure 1, right, shows the
RKHS representations for both curves and now they look similar, in agreement with
Theorem 3. In addition, we can see that the (��

j ) are representing the curves in a
four-dimensional space, which agrees with the result obtained by the dimensional-
ity test proposed in Hall and Vial (2006). We can therefore conclude that the RKHS
representation is robust against the presence of noise in the data.

3.1 RKHS Projections Versus PCA Projections

In Statistics it is usual to reduce the dimension of high dimensional data before
affording cluster or classification tasks. In FDA this is achieved by using the Func-
tional Principal Components (FPCA) (Ramsay and Silverman 2006). As in the
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Fig. 1 Two Canadian curves, and their kernel expansion and RKHS representations
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multivariate case, this technique make use of the data covariance function to deter-
mine the subspace onto the data are projected. This subspace is spanned by the
data covariance eigenfunctions and is always a RKHS (see Rakotomamonjy and
Canu 2005). Within this setting, FPCA can be considered a particular case of our
methodology.

The election of the data covariance matrix as kernel K in Theorem 3 is justified
in certain theoretical cases (see James and Sugar 2003). In practice, more general
kernels can be considered. The next example illustrates this in a clustering problem.
Consider two families of 10 dimensional curves sampled at 500 points:

� Class 1: c.x/ DP10
j D1 aj�j .x/ D sin.j�x/, where ai � N10.�1; ˙/

� Class 2: c.x/ DP10
j D1 bj�j .x/ D sin.j�x/, where bj � N10.�2; ˙/

with x 2 Œ0; 1� and for �1 D .8; 8; 1; 2; 3; 4; 5; 6; 7; 8/, �2 D .�8;�8; 1; 2; 3; 4; 5;
6; 7; 8/, and ˙ D diag.1; 150; 150; 10; 10; 10; 10; 10; 10; 10/. For our experiment,
we generated 50 curves of each family (see Fig. 2).

We are going to compare the RKHS representation system with the data covari-
ance and with a generalized covariance: an exponential kernel. First we try to
separate (automatically) the curves using row data. We performed 10 runs of a
k-means algorithm (with two centroids) and a hierarchical cluster by using the
Ward method. The misclassification errors were 25.2% and 24% respectively. By
using FPCA, the first two principal components explain over 80% of the variability.
This two components are plotted in Fig. 3 (left). Applying the two previous clus-
ter procedures over this projection we obtain misclassification errors of 15% (for
the k-means) and 18% (for the hierarchical cluster). The dimension reduction
improves the results but a large number of curves is still assigned to wrong fam-
ilies. On the other hand, if the two first projections are achieved by using the kernel
K.x; y/ D e�10kx�yk2

with regularization parameter � D 1, (see Fig. 3) 0% of errors
are obtained with both cluster algorithms.
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Fig. 2 Left: all curves together. Center: Class 1 curves. Right: Class 2 curves



Finite Dimensional Representation of Functional Data with Applications 163

−600 −400 −200 0 200 400 600

−
40

0
−

20
0

0
20

0
40

0

PC1

P
C

2

−100 0 100 200

−
40

0
−

20
0

0
20

0
40

0
60

0

First kernel eigenfunction

S
ec

on
d 

ke
rn

el
 e

ig
en

fu
nc

tio
n

Fig. 3 Two first FPCA projection (left) and RKHS projections (right)

3.2 Classification Example

The data set is made up of 215 observations in the near infrared absorbance spec-
trum of a meat sample. The classes are determined by the fat content: class 1, more
that 20%, class 2, less than 20%. Following Rossi and Villa (2006), we used the
second derivative of the data. In Fig. 4 both classes are shown for the original curves
and for the second derivatives. In order to test the RKHS projections in this classi-
fication example, we divide the sample in training data (80% of the observations)
and testing (20%). We project each data set onto two different RKHSs: we con-
sidered in the covariance matrix as kernel in the regularization process (K1) and
K2.x; y/ D e�0:1kx�yk2

. The regularization parameter was set, in all cases, � D 1.
The steps for our curve classification proposal are: (1) Project the data onto a RKHS.
That is, estimate the representation .��

j /. (2) Classify the data with a linear Support
Vector Machine (SVM) with C D 1 by settingbcl � f��

lj
g .

The number of components of the projection used to classify is determined by
cross validation. The election of the SVM is twofold. It is statistically consistent
and it is proven to have a good performance in real examples (Moguerza and Muõz
2006). This election is, of course, generalizable to any other classification tech-
nique. We compared the RKHS projections misclassification errors with two specific
techniques designed to deal with functional data: the P-spline signal regression,
developed by Marx and Eilers (1999) the and MPLSR/Knn developed by Ferraty
and Vieu (2003). Second derivative metric of the Tecator was selected following
Ferraty and Vieu (2003)

Results are shown in Table 1. It is clear that the classification rates achieved by
the RKHS projections are the most competitive. The RBF projection achieves an
misclassification error of 1.4%. However, in this case this error rate is outperformed
by the covariance projection (0.9%) showing the utility of this election in some
examples.
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shown

Table 1 Comparative results after 100 runs

Method RKHS K1 RKHS K2 PSR MPLSR.d2/
dim 4 3 – –
Test Error 0.0097 0.0145 0.0731 0.0218
Std. Dev 0.0014 0.0017 0.0031 0.0020

The values of dim in the RKHS projections was selected by cross validation

4 Conclusions

In this work we have proposed a system to represent functional data, by projecting
the original functions onto the eigenfunctions of a Mercer kernel with the aid of reg-
ularization theory. A main advantage is that we do not have to specify the basis of
eigenfunctions, but we can concentrate in the kernel, following the general philoso-
phy of kernel methods. The proposed representation works well in the experiments.
We have checked, in a real temperature example, how it is able to capture the inter-
esting features of functional data set of curves. In addition, two real examples were
analyzed following our methodology obtaining the best error rates.
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Clustering Spatio-Functional Data: A Model
Based Approach

Elvira Romano, Antonio Balzanella, and Rosanna Verde

Abstract In many environmental sciences, such as, in agronomy, in metereology,
in oceanography, data analysis has to take into account both spatial and functional
components. In this paper we present a strategy for clustering spatio-functional data.
The proposed methodology is based on concepts of spatial statistics theory, such as
variogram and covariogram when data are curves. Moreover a summarizing spatio-
functional model for each cluster is obtained.

The assessment of the method is carried out with a study on real data.

1 Introduction and Problematic

Functional data analysis is about the analysis of information on curves or func-
tions (Ramsay and Silverman 2005). There is a large number of applicative fields,
such as agronomy and climatology, where functional data are observed in spatial
varying way. This has led, in the last year, to the development of a relatively new
branch of statistics: Spatial Functional Data Analysis (Ramsay 2008). The literature
in this framework is not extensive, the problem more considered, that is the also
more frequent in real studies, is the analysis of functional data presenting spatial
dependence.

Three classic types of spatial data structures usually referred as geostatistical
data, point patterns and areal data can be combined with functional data (Delicado
et al. 2009).

In this work we focus on geostatistical data where a finite sample of measure-
ments relating to an underlying spatially continuous phenomenon is observed. In
such context, we introduce a clustering strategy where measurements are functional
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data. We take into account both the spatial and functional information, using tools
from Geostatistics and Functional Data analysis (Ramsay and Silverman 2005).

Two usual ways for clustering such kind of data exist. The first one, follows the
Functional Data Analysis approach and consists in considering only the functional
nature of data (e.g. Abraham et al. 2005; Heckman and Zamar 2000; James and
Sugar 2005; Romano 2006), the second way, takes into consideration the spatial
location to perform the analysis of data (Blekas et al. 2007).

The proposed algorithm is a special case of Dynamic Clustering Algorithm (e.g.,
Diday 1971) which finds an optimal partition of the functional data and a set of
representation functions. It is based on an optimization problem that minimizes the
spatial variability among the curves in each cluster. The representation functions are
a spatio-functional linear models for delimited spatial area selected according to the
clustering strategy.

The paper is organized as follows: in Sect. 2 we present the data structure, in
Sect. 3 we recall the Dynamic Clustering algorithm, in Sect. 4 we introduce our
strategy, in Sect. 5 we present an application on real data. Finally conclusions and
discussions of future work are given in Sect. 5.

2 The Spatio-Functional Data

Let
˚
�s.t/ W t 2 T; s 2 D � Rd

�
be a random field where the set D � Rd is a

fixed subset of Rd with positive volume. �s is a functional variable defined on
some compact set T of R for any s 2 D. We assume to observe a sample of curves
�s1
.t/; : : : ; �si

.t/; : : : ; �sn
.t/ for t 2 T where si is a generic data location in the

d -dimensional Euclidean space. We assume for each t that we have a second order
stationary and isotropic random process, that is, the mean and variance functions are
constant and the covariance depends only on the distance between sampling sites.

Formally, we assume that:

� E.�s.t// D m.t/, for all t 2 T; s 2 D.
� V.�s.t// D 	2, for all t 2 T; s 2 D.
� Cov.�si

.t/; �sj
.t// D C.h; t/ where hij D

	
	si � sj

	
	 and all si ; sj 2 D

� 1
2
V.�si

.t/; �sj
.t// D �.h; t/ D �si sj

.t/ where hij D
	
	si � sj

	
	 and all

si ; sj 2 D.

The function �.h; t/ as function of h is called semivariogram of �.t/.
Our proposal is to partition the random field

˚
�s W s 2 D � Rd

�
into a set of

C clusters such that the obtained clusters contain spatially related curves. In the
following, before to introduce the proposed strategy, we shortly recall the general
scheme of the Clustering Algorithm.
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3 Dynamic Clustering Algorithm

Dynamic clustering algorithm (DCA) or Nue Kes Dynamiquesis an unsupervised
batch training algorithm. Like in the classical clustering techniques the aim is to
find groups that are internally dense and sparsely connected with the others. Let
E be a set of n objects, it looks for the partition P D fP1; : : : ; PC g 2 Pc (where
Pc is the family of all the partition fP1; : : : ; Pcg 2 PC in C clusters) and a set
G D fg1; : : : ; gC g 2 Gc (where Gc is the family of all admissible representation
of C clusters prototypes) such that the criterion of best fitting between G and P is
minimized


.P �; G�/ DMin f
.P;G/ j P 2 Pc;2 Gcg (1)

This criterion is usually an additive function on the C clusters and on the n elements
of E , it is defined as:


.P;G/ D
CX

cD1

X

i2Pc

ı.Pc ; gc/ (2)

where ı.Pc ; gc/ is a function which measures how well the prototype gc represents
the characteristics of objects of the cluster and it can be usually interpreted as an het-
erogeneity or a dissimilarity measure of goodness of fit between gc and Pc . Starting
from an initial set of clusters, the method applies a representation function and an
allocation function, and these steps are iterated until the convergence.

4 Dynamic Clustering for Spatio-Functional Data

Since we deal with spatio-functional data, the criterion to optimize becomes:


.P;G/ D
CX

cD1

X

i2Pc

Z

T

V
�
�si
.t/ � �sc

.t/
�
dt (3)

where V
�
�si
.t/ � �sc

.t/
�

is the spatial variability.
Since we assumed that data are generated from a functional linear concurrent

model (Ramsay and Silverman 2005) the criterion can be written


.P;G/ D
CX

cD1

X

i2Pc

Z

T

V

 

�si
.t/ �

ncX

iD1

�i�si
.t/

!

dt u:c:
ncX

iD1

�i D 1 (4)

where the prototype �sc
D Pnc

iD1 �i�si
.t/ is an ordinary kriging predictor for

curves in the cluster c at the optimal spatial location sc and the kriging coefficients
�i represent the contribute of each curve to the prototype estimation.
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According to the proposed criterion, the parameters to estimate are: the krig-
ing coefficients, the spatial location of the prototypes, the spatial variance for each
cluster.

For a fixed value of sc , the estimation of the nc kriging coefficients �i of each
cluster is a constrained minimization problem, due to the unbiasedness constraint.
So it is necessary to solve a linear system by means of Langrange multiplier method.
In this paper we refer to the method proposed in Delicado et al. (2007), that in matrix
notation, can be seen as the minimization of trace of the mean-squared prediction
error matrix in the functional setting.

According to this approach a global uncertainty measure associated to the trace-
semivariogram

R
T �si ;sj .t/dt; is given by:

Z

T

V

 

�si
.t/ �

ncX

iD1

�i�si
.t/

!

dt D
ncX

iD1

�i

Z

T

�si ;sc.t/dt � � u:c:
ncX

iD1

�i D 1
(5)

It is an integrated version of the classical pointwise prediction variance of
ordinary kriging and gives indication on the goodness of fit of the predicted model.

In the ordinary kriging for functional data the problem is to obtain an estimate
of a curve in an unsampled location. In our case we aim to obtain not only the
prediction of the curve, but also the best representative location. We suppose that the
prototype of each cluster is located on a cell of a regular spaced grid built starting
from locations the functional observations. In this sense the location is a parameter
to estimate and the objective function may have several local minima correspondent
to different local kriging. We propose to solve this problem evaluating for each
cluster, the local kriging on the cells of the spatial grid. The prototype �sc

and its
location sc is obtained as the best predictor in terms of spatio-functional fitting (5)
among the set of estimates on the unsumpled locations of the grid.

Once we have estimated the prototypes we allocate each new curve to the cluster
according to the following allocation function:

� D �R 7�! Pc (6)

It allows to assign �si
to cluster c of Pc �.G/ D P D fP1; : : : ; PC g, according to

the minimum-spatial variability rule:

Pc WD fi 2 �s W ı.fig ; �sc
/ � ı.fig ; �sc�

/ for 1 � c� � C g (7)

with:

ı.fig ; �sc
/ D 1

�˛

d 2
�
�si
.t/I�sc

.t/
�

(8)

where d 2
�
�si
.t/I�sc

.t/
�

is the Euclidean distance and �˛ is the kriging coefficient
or weight of the curve �s˛

.t/ such that js˛ � sc j Š jsi � sc j.
Applying iteratively the representation function followed by the allocation func-

tion the algorithm converges to a stationary value. The convergence of the criterion
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is guaranteed by the consistency between the way to represent the classes and the
proprieties of the allocation function.

5 Analysis of a Real Dataset: Sea Temperature
of the Italian Coast

To evaluate the effectiveness of the proposed strategy, a test have been performed on
a real dataset which stores the sea temperature along several locations of the Italian
Coast (see http://www.mareografico.it).

The mareographic Network is composed by 26 survey stations undistributed
across the italian territory and located mainly within the harbours of Trieste, Venezia
Lido, Ancona, Ravenna, Pescara, Ortona, Isole Tremiti, Vieste, Bari, Otranto,
Taranto, Crotone, Reggio Calabria, Messina, Catania, Porto Empedocle, Lampe-
dusa, Palermo, Palinuro, Salerno, Napoli, Cagliari, Carloforte, Porto Torres, Civi-
tavecchia, Livorno, Genova ed Imperia. Several kind of meteorological phenomena
are recorded over the time, we use temperature curves of water.

For each location, we have a curve recorded in a period of 2 weeks with spa-
tial coordinates (sx; sy) correspondent respectively to the latitude and longitude.
A sample of the data can be observed in Fig. 1.
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Fig. 1 Observed curve data for six locations along the Italian peninsula
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Fig. 2 Criterion value until the convergence

The objective of analyzing such kind of data is to find homogeneous spatial areas
and, together, to find a localized functional model able to summarize their behaviors.

Since data are noisy and non periodic, B-spline basis functions appear to be an
effective choice for getting the true functional form from the sample data. Especially
we have used B-spline functions with an equi-spaced set of knots.

The first performed test, aims at evaluating the algorithm convergence. It is based
on running the algorithm with several initializations and with a variable number of
clusters C .

The convergence is proved by the attainment of a stable level of the optimized
criterion which constitutes one of its local minima. In Fig. 2, the decrement of the
criteria is shown for C D 3 clusters.

Further tests have been performed to analyze the clustering performances. By
analyzing the decrement of the criterion (Fig. 3) for C D 2; : : : ; 5, we choose to get
a partition of data into C D 3 clusters.

To initialize the clustering procedure, we have run a standard k-means algorithm
on the spatial locations of the observed data. This is to get a partitioning of data into
spatially contiguous regions.

Since the proposed method, detects the prototypes of each cluster starting from
a regular spatial grid, we have to choose the spatial distance. Such choice depends
from the detail level in the spatial location of the representative models, however,
a finer grid impacts on the computational requirements since an higher number of
functional kriging has to be computed. For our experiments, the cell distance has
been set to 10 km.
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Fig. 3 Value of the optimized criterion for C D 2; : : : ; 5

The obtained cluster contains respectively 12; 9; 5 elements, and have prototypes,
as can be seen from the Fig. 4, located in three different zones of the coast: Sorrento,
Francavilla Al Mare and Alassio Table 1.

The different shape of each prototype Fig. 5 shows three different behaviors of
the involved regions. Looking at the clustering structure we can observe that:

� In the first cluster, according to the obtained functional parameters �i ; i D
1; : : : ; 12, the greatest contribute to the prototype estimation corresponds to 0:63.
This functional parameter corresponds to Salerno;

� In the second cluster, the greatest functional parameter that contributes to the
prototype estimation corresponds to 0:49, this functional parameter corresponds
to Ortona;

� In the third cluster, two functional parameters influence the prototype estimation.
These are �2 D 0:3; �5 D 0; 29 correspondent to Genova and La Spezia.

The obtained partition is such to divide the italian coast into three homogeneous
zones representing three macro area of the sea respectively: Tirreno sea, Adriatico
sea and Ligure sea.

6 Conclusion and Future Research

In the present paper we have introduced a new clustering strategy for spatio-
functional data which is ables to discover representative functions for each cluster.

In the future research, further attention should be given to the development
of more robust procedure for prototype estimation and of a criterion for outliers
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Fig. 4 Locations of the three prototypes for each cluster (red points) and the network distribution
of the station (yellow points)

Table 1 Locations of the prototypes

Prototype Latitude Longitude

Sorrento 40ı37053:9800 14ı21052:6900

Francavilla Al Mare 42ı25014:2600 14ı17015:9100

Alassio 44ı00010:5800 8ı09034:3200
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Fig. 5 Prototypes for each cluster
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discover. Moreover tests on a wider set of data will be performed to evaluate the
effectiveness of the procedure in several applicative contexts.
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Use of Mixture Models in Multiple Hypothesis
Testing with Applications in Bioinformatics

Geoffrey J. McLachlan and Leesa Wockner

Abstract There are many important problems these days where consideration
has to be given to carrying out hundreds or even thousands of hypothesis testing
problems at the same time. For example, in forming classifiers on the basis of high-
dimensional data, the aim might be to select a small subset of useful variables for the
prediction problem at hand. In the field of bioinformatics, there are many examples
where a large number of hypotheses have to be tested simultaneously. For exam-
ple, a common problem is the detection of genes that are differentially expressed
in a given number of classes. The problem of testing many hypotheses at the same
time can be expressed in a two-component mixture framework, using an empiri-
cal Bayes approach; see, for example, Efron (2004). In this framework, we present
further results as part of an ongoing investigation into the approach of McLachlan
et al. (2006) on the adoption of normal mixture models to provide a parametric
approach to the estimation of the so-called local false discovery rate. The latter can
be viewed as the posterior probability that a given null hypothesis does hold. With
this approach, not only can the global false discovery rate be controlled, but also
the implied probability of a false negative can be assessed. The methodology is
demonstrated on some problems in bioinformatics.

1 Introduction

The analysis of very large data sets presents many challenges. One is the need to
carry out the simultaneous testing of hundreds or possibly thousands of statistical
hypotheses. In situations with many variables, an initial step in many analyses is
to reduce the dimension of the problem by selecting a subset of useful variables
by consideration of the variables considered separately. For example, in a situation
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where the problem is to cluster the data at hand, the relevance of a variable might be
assessed in terms of its effectiveness in revealing some group structure in the data.
After formulating a null and an alternative hypothesis for each variable to assess
its relevance for the problem at hand, we subsequently obtain a P -value for each
variable. The question then arises on how to select a useful subset of variables from
the many P -values in the case of a high-dimensional data set.

A problem as described above can occur in many modern scientific studies. To
present our methodology, we shall focus on the problem in bioinformatics arising
in the analysis of microarray experiments, known as the detection of differential
expression. With this problem, the aim is to determine which of several thou-
sands genes are differentially expressed between a number of k different classes
C1; : : : ; Ck . In the case of k D 2, Class C1 might refer to some women who have
a good prognosis following the diagnosis of a disease (such as breast cancer) while
the other Class C2 refers to those women who have poor prognosis, corresponding
to the occurrence of distant metastases within 5 years.

In classic situations involving only one single hypothesis test, the aim is to con-
trol the probability of making a Type I error; that is, the probability of making a false
positive. In situations where multiple .N / hypotheses are under test, one can use the
Bonferroni method to control the probability that at least one false positive error will
be made. In Table 1, we have listed the possible outcomes from N hypothesis tests.

However, in the current context where N is a very large number, controlling the
family wise error rate (that is, the probability thatN01 � 1/ is too strict and will lead
to missed findings. In our example of the detection of genes differentially expressed
between the classes, the goal is to identify as many genes with significant differences
as possible, while incurring a relatively low proportion of false positives.

In a seminal paper, Benjamini and Hochberg (1995) introduced a new multiple
hypothesis testing error measure called the false discovery rate (FDR), which they
defined as

FDR D Ef N01

Nr _ 1 g; (1)

where Nr _ 1 D max.Nr ; 1/. The effect of Nr _ 1 in the denominator of the
expectation in (1) is to set N01=Nr D 0 when Nr D 0. They proposed an FDR-
controlling step-up test procedure for independent P -values associated with the N
hypotheses.

Other error rates in addition to the FDR are of interest in practice, such as the
false non-discovery rate (FNDR) and the false negative rate (FNR), as given empir-
ically in Table 1 by the ratios, N10=.N � Nr/ and N10=N1, respectively. As the
FNDR is nearly always quite small since N00 is usually much larger than N10, the
FNR is generally more informative.

In this paper, we concentrate on a parametric approach to the handling of the
P -values to provide a procedure that not only can be used to control the FDR,
but also allows the implied FNR to be estimated. Previously, Allison et al. (2002)
had considered mixture modelling of the P -values directly in terms of a mixture
of beta distributions with the uniform (0,1) distribution (a special form of a beta
distribution) as the null component.
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Table 1 Possible outcomes
from N hypothesis tests

Accept null Reject null Total

Null true N00 N01 N0
Non-true N10 N11 N1
Total N �Nr Nr N

We adopt the parametric approach of McLachlan et al. (2006) that transforms the
Pj values via the probit transformation to z-scores. Suppose in the present context
of the detection of differential expression Pj denotes the P -value for the test of the
null hypothesis

Hj W j th gene is not differentially expressed.

Then the zj -score is given by

zj D ˚�1.1 � Pj /;

where˚ denotes the (cumulative) normal distribution function. This transformation
is defined so that large positive values of the zj -score suggest departures from the
null hypothesis. Here the Pj values (j D 1; : : : ; N / constitute the input for this
parametric approach. We do not consider how the Pj values are computed in the
first instance. For example, they could be calculated on the basis of the classical t- or
F -statistics, depending on whether there are two or multiple classes. Alternatively,
the Pj might be calculated via a permutation method.

2 Modelling of Z -Scores

The density of the zj -score can be modelled by a two-component mixture model as
formulated in Lee et al. (2000) and Efron et al. (2001). We let G denote the popula-
tion of genes under consideration. It can be decomposed into two groupsG0 andG1,
where G0 is the group of genes that are not differentially expressed, and G1 is the
complement of G0; that is, G1 contains the genes that are differentially expressed.
We let �i denote the prior probability of a gene belonging to Gi .i D 0; 1/, and we
denote the density of zj in Gi by fi .zj /. The unconditional density of Zj is then
given by the two-component mixture model,

f .zj / D �0f0.zj /C �1f1.zj /:

Using Bayes Theorem, the posterior probability that the j th gene is not differen-
tially expressed (that is, belongs to G0) is given by

�0.zj / D �0f0.zj /=f .zj / .j D 1; : : : ; N /: (2)
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In this framework, the gene-specific posterior probabilities provide the basis for
optimal statistical inference about differential expression. The posterior probability
�0.zj / has been termed the local false discovery rate (local FDR) by Efron and
Tibshirani (2002). It quantifies the gene-specific evidence for each gene. As noted
by Efron (2004), it can be viewed as an empirical Bayes version of the Benjamini-
Hochberg (1995) methodology, using densities rather than tail areas.

It can be seen from (2) that in order to use this posterior probability of non-
differential expression in practice, we need to be able to estimate �0, the mixture
density f .zj /, and the null density f0.zj /, or equivalently, the ratio of densities
f0.zj /=f .zj /. Efron et al. (2004) has developed a simple empirical Bayes approach
to this problem with minimal assumptions. We focus on a fully parametric approach
using mixtures of normal densities. If the assumptions under which the P -values
have been calculated hold, then the null density of Zj is given by the standard
normal density; that is,

f0.zj / D �.zj I �0; 	
2
0 /;

where �0 D 0 and 	2
0 D 1. This is known as the theoretical null distribution to

distinguish it from the “empirical” null (as termed by Efron (2004)) in situations
where the assumptions breakdown. The density f1.zj / of zj under the alternative
hypothesis is approximated by a single normal density,

f1.zj / D �.zj I �1; 	
2
1 /:

In practice, the differentially expressed genes have varying values for the dif-
ferences between their class means, and so it is somewhat surprising that for the
data sets that we have analysed, a single normal distribution has sufficed to model
the density of the z-scores for the non-null genes (genes that are differentially
expressed). As shown by McLachlan et al. (2006), the two-component normal
mixture model

f .zj / D �0�.zj I 0; 1/C �1�.zj I �1; 	
2
1 /

can be fitted very quickly via the EM algorithm, as in their program called EMMIX-
FDR.

The genes can be ranked on the basis of the estimated posterior probabilities
�0.zj /, and we can select all genes with

O�0.zj / � co (3)

to be differentially expressed. McLachlan et al. (2006) have shown how estimates of
the implied rates, including the FDR and FNR, can be formed in terms of the �0.zj /

for a specified threshold co. In particular, an estimate of the FDR is given by

F̂DR D
NX

j D1

O�0.zj /IŒ0;c0�. O�0.zj //

Nr

; (4)

where IA.x/ is the indicator function, which is one if x 2 A and is zero otherwise.
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3 Example: Breast Cancer Data

To illustrate the application of this parametric approach to multiple hypothesis test-
ing, we consider the detection of differentially expressed genes for some data from
the study of Hedenfalk et al. (2001), which examined gene expressions in breast
cancer tissues from women who were carriers of the hereditary BRCA1 or BRCA2
gene mutations, predisposing to breast cancer. The data set comprised the measure-
ment of N D 3; 226 genes using cDNA arrays, for n1 D 7 BRCA1 tumours and
n2 D 8 BRCA2 tumours. We display the fitted mixture density in Fig. 1.

In Table 2, we have listed the FDR estimated from (4) for various levels of the
threshold co in (3). It can be seen, for example, that if co is set equal to 0.1, then the
estimated FDR is 0.06 and Nr D 143 genes would be declared to be differentially
expressed.

4 Empirical Null

As pointed by Efron (2004), for some microarray data sets the normal scores do not
appear to have the theoretical null distribution, which is the standard normal. In this
case, Efron has considered the estimation of the actual null distribution called the
empirical null as distinct from the theoretical null.
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Fig. 1 Breast cancer data: plot of fitted two-component normal mixture model with theoretical
N.0; 1/ null and non-null components (weighted respectively by O�0 and .1 � O�0// imposed on
histogram of z-scores
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Table 2 Estimated FDR and other error rates for various levels of the threshold co applied to
the posterior probability of nondifferential expression for the breast cancer data, where Nr is the
number of selected genes (with theoretical null)

co Nr dFDR F̂NDR dFNR dFPR

0.1 143 0.06 0.32 0.88 0:004

0.2 338 0.11 0.28 0.73 0:02

0.3 539 0.16 0.25 0.60 0:04

0.4 743 0.21 0.22 0.48 0:08

0.5 976 0.27 0.18 0.37 0:13

If we adopt an empirical null in our parametric approach, we do not assume that
the mean �0 and variance 	2

0 of the null distribution are zero and one, respectively,
but rather they are estimated in addition to the other parameters �0; �1; and 	2

1 .
One reason why the theoretical null distribution may not be appropriate is that the
assumptions do not hold for the P -value to have a uniform distribution on the unit
interval under the null hypothesis. Another reason is that the P -values are not inde-
pendently distributed due to the expression profiles not being independent for all the
genes.

5 Simulation Study

Allison et al. (2002) performed some simulations to investigate the effect of corre-
lation among the genes on their results. They generated data for 10 tissue samples
on 3,000 genes. Each gene profile was drawn from a 3,000-dimensional normal dis-
tribution with mean � D 10 and covariance matrix ˙ . In order to mimic the idea
that genes which are co-expressed would be correlated, but genes which are not co-
expressed would not be correlated, Allison et al. (2002) split the 3,000 genes into
six blocks of size 500. Within each block the correlation between the genes ranged
over the three values of �: 0 (independence), 0.4 (moderate dependence), 0.8 (strong
dependence). This resulted in a covariance matrix of the form

˙ D 	2B ˝ I6; (5)

where 	2 is the common variance and where

B D 15001T
500�C .1 � �/I500;

1m is a vector of ones lengthm and Im is them	m identity matrix. Finally, for 20%
of randomly selected genes (600 genes), a mean difference of 
 was added to the
expression levels for the last five tissue samples. Allison et al. (2002) suggested that
a value of � D 0:4 ‘tended to produce higher correlations among gene expressions
than were present in [their] actual example data set’ contrary to previous opinions
about the existence of correlations amongst gene expression levels.
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Fig. 2 A simulation study where �0 D 0:83 and 
 D 2. (a)–(c) Strong dependence (a) Overall
Theoretical Null (dashed) with two (weighted) components (solid) O�0 D 0:88 (b) Overall Empiri-
cal Null (dashed) with two (weighted) components (solid) O�0 D 0:85 (c) An overlay of Theoretical
(dashed) and Empirical (solid)

Following this example, we generated data for 10 tissue samples from a normal
distribution with � D 0 and correlation matrix as in (5), with 	2 D 1 and � defined
as before. For 500 randomly selected genes (17%) a difference 
 of 1, 2 or 4 was
added to the last five tissue samples.

It was demonstrated in the presence of strong correlation between the genes
(� D 0:8) that the empirical null distribution led to a much better fit than with
the theoretical null; see Fig. 2.
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Finding Groups in Ordinal Data:
An Examination of Some Clustering Procedures

Marek Walesiak and Andrzej Dudek

Abstract The article evaluates, based on ordinal data simulated with cluster.Gen
function of clusterSim package working in R environment, some cluster analysis
procedures containing GDM distance for ordinal data (see Jajuga et al. 2003;
Walesiak 1993, 2006), nine clustering methods and eight internal cluster quality
indices for determining the number of clusters. Seventy two clustering procedures
are evaluated based on simulated data originating from a variety of models. Models
contain the known structure of clusters and differ in the number of true dimen-
sions, the number of categories for each variable, the density and shape of clusters,
the number of true clusters, the number of noisy variables. Each clustering result
was compared with the known cluster structure from models applying (Hubert and
Arabie 1985) corrected Rand index.

1 Introduction

Four basic scales are distinguished in the theory of measurement: nominal, ordinal,
interval and ratio scale. Among these four scales of measurement the nominal is
considered the lowest. It is followed by the ordinal, the interval, and the ratio one
which is the highest. They were introduced by Stevens (1959).

Systematics of scales refers to transformations which retain relations of the
respective scale. These results are well-known and presented e.g. in the paper Jajuga
and Walesiak (2000), p. 106. Any strictly increasing functions are the only permis-
sible transformations within the ordinal scale. The main characteristics of ordinal
scale are summarised in Table 1.
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Table 1 Rules for ordinal scale of measurement
Scale Basic empirical Allowed mathematical Allowed arithmetic

operations transformations operations

Ordinal Equal to, greater than,
smaller than

Any strictly increasing
functions

Counting of events (numbers of
relations equal to, greater than,
smaller than)

Source: Adapted from Stevens (1959), pp. 25, 27

2 Clustering Procedures for Ordinal Data

Major steps in cluster analysis procedure for ordinal data include (see e.g. Milligan
1996, pp. 341–343): the selection of objects and variables, the selection of a distance
measure, the selection of clustering method, determining the number of clusters,
cluster validation, describing and profiling clusters. Variable normalization step is
omitted while performing comparisons with cluster analysis procedure for metric
data. The purpose of normalization is to adjust the size and the relative weighting of
input variables (see e.g. Milligan and Cooper 1988, p. 182). Normalization is used
when variables are measured with metric data. Normalization is not necessary with
regard to ordinal scale, because only the relations: equal to, greater than, smaller
than are permitted with ordinal values.

The construction of distance measure for ordinal data should take these relations
into account and should be based on relations between the two analyzed objects and
the other objects (context distance measure). In statistical data analysis literature
few distance measures for variables measured with ordinal data were suggested.
Only GDM distance measure dik proposed by Walesiak (1993), pp. 44–45 satisfies
ordinal scale conditions (see Table 1):

dik D 1

2
�

mP

j D1

aikjbkij C
mP

j D1

nP

lD1
l¤i;k

ailjbklj

"
mP

j D1

nP

lD1

a2
ilj

mP

j D1

nP

lD1

b2
klj

# 1
2

; (1)

aipj.bkrj/ D
8
<

:

1 if xij > xpj .xkj > xrj /

0 if xij D xpj .xkj D xrj /

�1 if xij < xpj .xkj < xrj /

for p D k; l I r D i; l ; (2)

where: i; k; l D 1; : : : ; n – the number of objects,
j D 1; : : : ; m – the number of variables,
xij .xkj ; xlj / – i -th (k-th, l-th) observation on the j -th variable.

Article Jajuga et al. (2003) discusses the properties of GDM distance measure.
Other proposals [e.g. Kendall distance measure (Kendall 1966, p. 181); Gor-

don distance (Gordon 1999, p. 19); Podani distance (Podani 1999)] imply the
assumption that the ranks are measured with at least, the interval scale (when the
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differences can be calculated). It is also worth mentioning the following argument,
presented by Kaufman and Rousseeuw (1990), p. 30: “Therefore, most authors
advice treating the ranks as interval-scaled and applying the usual formulas for
obtaining dissimilarities (like the Euclidean or Manhattan distance)”.

The selected clustering procedures included in the article are as follows:

1. GDM distance measure for ordinal data – GDM2 distance in clusterSim
package.

2. The selected methods of cluster analysis (stats and cluster packages):

– k-medoids (pam);
– Seven hierarchical agglomerative algorithms: single link (single), com-

plete link (complete), group average link (average), weighted average link
(mcquitty), incremental sum of squares (ward), centroid (centroid), median
(median). The Ward, centroid and median methods are easy to implement
with distance matrix for only squared Euclidean distance. These methods
could be used with any distance measure, however, the results would lack
useful interpretation (see Anderberg 1973, pp. 141, 145);

– Hierarchical divisive method by Macnaughton-Smith et al. (1964) – diana.

3. The selected internal cluster quality indices for determining clusters’ number
[all formulas and references for indices you can find in pdf files of clus-
terSim package (Walesiak and Dudek 2009)]: Davies-Bouldin – index.DB,
Calinski-Harabasz – index.G1, Baker and Hubert – index.G2, Hubert and
Levine – index.G3, gap – index.Gap, Hartigan – index.H, Krzanowski and Lai
– index.KL, Silhouette – index.S.

For Davies-Bouldin, Calinski-Harabasz, gap, Hartigan, and Krzanowski and Lai
indices medoids of clusters (representative objects of clusters) are used instead of
centroids of clusters.

3 Simulation Experiment Characteristics

Data sets are generated in nine different scenarios (see Table 2). Models contain the
known structure of clusters. Simulation models differ in the number of true dimen-
sions (variables), the number of categories for each variable, the density and shape of
clusters, the number of true clusters, the number of noisy (irrelevant) variables. The
noisy variables are simulated independently, based on uniform distribution. Varia-
tions of noisy variables, in the generated data, are required to be similar to non-noisy
ones (see Milligan 1985, Qiu and Joe 2006, p. 322).

The clusters in models presented in Table 2 contain continuous observations
(metric data). Discretization process is performed on each variable in order to obtain
ordinal data (see Walesiak and Dudek 2009). The number of categories kj for
categorical variable Xj determines the width of each class intervals Œmax

i
fxij / �

min
i
fxij g�=kj . Each class interval receives category 1; : : : ; kj independently for
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Table 2 Experimental factors for simulation models

m v nk cl lo Centroid of clusters Covariance matrix
P

ks

1 2 4, 6 3 60, 30, 30 (0; 0), (1.5; 7), (3; 14) 	jj D 1; 	jl D �0:9 1

2 3 7 3 45 (1.5; 6, – 3), (3; 12; –6) 	jj D 1 .1 � j � 3/, 1
(4.5; 18; –9) 	12 D 	13 D �0:9; 	23 D 0:9

3 2 5, 7 5 50, 20, 25, (5; 5), (–3; 3), (3; –3), 	jj D 1; 	jl D 0:9 2
25, 20 (0; 0), (–5; –5)

4 3 5, 7, 5 5 25 (5; 5; 5), (–3; 3; –3), 	jj D 1 .1 � j � 3/, 2
(3; –3; 3), (0; 0; 0), 	jl D 0:9 .1 � j ¤ l � 3/

(–5; –5; –5)

5 2 5 5 20, 45, 15, (0; 0), (0; 10), (5; 5), 	jj D 1; 	jl D 0 3
25, 35 (10; 0), (10; 10)

6 2 6, 8 4 35 (–4; 5), (5; 14), (14; 5), 	jj D 1; 	jl D 0 3
(5; –4)

7 3 6 4 25, 25, (–4; 5; –4), (5; 14; 5), a 4
40, 30 (14; 5; 14), (5; –4; 5),

8 3 5, 6, 7 5 35, 25, 25, (5; 5; 5), (–3; 3; –3), b 4
20, 20 (3; –3; 3), (0; 0; 0),

(–5; –5; –5)

9 2 7 3 40 (0; 4), (4; 8), (8; 12) c 4

m – model, v – number of variables, nk – number of categories (one number means the same
number of categories for each variable), cl – number of clusters, lo – number of objects in each
cluster (one number means that clusters contain the same number of objects), ks – shape of clusters
(1 – elongated, 2 – elongated and not well separated, 3 – normal, 4 – different for each cluster),

a:
P

1 D
2

4
1 0 0

0 1 0

0 0 1

3

5,
P

2 D
2

4
1 �0:9 �0:9

�0:9 1 0:9

�0:9 0:9 1

3

5,
P

3 D
2

4
1 0:9 0:9

0:9 1 0:9

0:9 0:9 1

3

5,
P

4 D
2

4
3 2 2

2 3 2

2 2 3

3

5;

b:
P

1 D
2

4
1 �0:9 �0:9

�0:9 1 0:9

�0:9 0:9 1

3

5,
P

2 D
2

4
0:5 0 0

0 1 0

0 0 2

3

5,
P

3 D
2

4
1 0:9 0:9

0:9 1 0:9

0:9 0:9 1

3

5,

P
4 D

2

4
1 0:6 0:6

0:6 1 0:6

0:6 0:6 1

3

5,
P

5 D
2

4
1 0 0

0 1 0

0 0 1

3

5;

c:
P

1 D



1 �0:9
�0:9 1

�

,
P

2 D


1:5 0

0 1:5

�

,
P

3 D


1 0:5

0:5 1

�

.

Source: authors’ compilation with clusterSim package (see Walesiak and Dudek 2009)

each variable and the actual value of variable xij is replaced by these categories.
The number of categories may be different for each variable. The example of
dicretization process is shown in Fig. 1.

The next step was to perform one out of seventy two clustering procedures (con-
taining GDM distance for ordinal data, nine clustering methods and eight internal
cluster quality indices for determining the number of clusters) with each model. The
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Fig. 1 The example of discretization process
Source: authors’ compilation

analysis referred only to clustering results from 2 to 10 clusters. Next each clustering
result was compared with the cluster structure known from models applying Hubert
and Arabie (1985) corrected Rand index. The maximum value of corrected Rand
index is 1 for identical partitions and its expected value is zero when the partitions
are selected at random. Fifty realizations were generated from each setting.

4 Discussion on Simulation Results

In Table 3 nine clustering methods are ranked, based on adjusted Rand index
mean values for nine models and eight internal cluster quality indices (with 50
simulations).

The following conclusions can be drawn from the results presented in Table 3:

– Group average method is definitely the best, while single link method is the worst
for clustering ordinal data,

– Ward method ensures better results in clustering ordinal data with noisy variables.

Table 4 presents internal quality indices of clustering results ranking based on
adjusted Rand index mean values for nine models and nine clustering methods (with
50 simulations).
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Table 3 Clustering methods ranking based on adjusted Rand index mean values

Method Mean Shape of clusters No. of noisy variables
1 2 3 4 0 2 4

Average 0.545 1 0.514 1 0.509 2 0.494 1 0.625 1 0.739 1 0.508 1 0.388 1
Ward 0.512 2 0.473 3 0.479 3 0.465 2 0.591 3 0.680 7 0.482 2 0.373 2
Mcquitty 0.506 3 0.450 4 0.473 4 0.445 3 0.606 2 0.706 3 0.463 3 0.350 4
Diana 0.499 4 0.477 2 0.532 1 0.388 6 0.565 5 0.704 4 0.428 6 0.364 3
Complete 0.484 5 0.433 5 0.466 5 0.418 5 0.573 4 0.700 5 0.436 5 0.315 5
Pam 0.465 6 0.415 6 0.446 6 0.425 4 0.539 6 0.664 8 0.422 7 0.310 6
Centroid 0.408 7 0.384 7 0.362 7 0.370 7 0.479 8 0.721 2 0.451 4 0.051 8
Median 0.402 8 0.343 8 0.362 8 0.341 8 0.510 7 0.690 6 0.381 8 0.136 7
Single 0.312 9 0.324 9 0.238 9 0.256 9 0.390 9 0.613 9 0.291 9 0.032 9

Shape of clusters: 1 – elongated, 2 – elongated and not well separated, 3 – normal, 4 – different for
each cluster

Table 4 Internal quality indices of clustering results ranking based on adjusted Rand index
mean values
Method Mean Shape of clusters No. of noisy variables

1 2 3 4 0 2 4

KL 0.472 1 0.424 2 0.432 1 0.440 1 0.553 1 0.722 1 0.442 1 0.254 2
G1 0.430 2 0.422 3 0.406 4 0.352 5 0.503 3 0.616 4 0.423 2 0.250 3
Gap 0.414 3 0.440 1 0.323 8 0.341 6 0.505 2 0.687 2 0.346 7 0.208 8
G3 0.408 4 0.359 6 0.421 2 0.353 4 0.469 6 0.559 8 0.408 3 0.257 1
S 0.404 5 0.381 4 0.373 5 0.339 7 0.482 4 0.585 6 0.399 4 0.226 5
H 0.397 6 0.368 5 0.370 6 0.327 8 0.479 5 0.594 5 0.361 6 0.234 4
G2 0.391 7 0.313 8 0.406 3 0.358 3 0.456 7 0.583 7 0.373 5 0.218 6
DB 0.391 8 0.343 7 0.362 7 0.373 2 0.454 8 0.628 3 0.337 8 0.208 7

KL – Krzanowski and Lai, G1 – Caliñski-Harabasz, Gap – gap, G3 – Hubert and Levine,
S – Silhouette, H – Hartigan, G2 – Baker and Hubert, DB – Davies-Bouldin

Based on the results in Table 4 the following conclusions can be drawn:

– Krzanowski and Lai and Calinski and Harabasz indices present the best results
in searching for optimal number of clusters in ordinal data,

– gap and Davies-Bouldin indices definitely show worse results in searching for
optimal number of clusters in ordinal data containing noisy variables.

Table 5 presents the ranking of seventy two clustering procedures based on
adjusted Rand index mean values for nine models and 50 simulations.

With reference to the aggregated results of simulations illustrated in Table 5 the
following conclusions can be made:

– Clustering with group average link algorithm turns out to be the most efficient
way for the simulation experiment, while applying Krzanowski and Lai index.
This method, combined with Gap, Hartigan, Calinski-Harabasz and Davies-
Bouldin indices, was ranked respectively at the fourth, sixth, seventh and ninth
position,
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Table 5 Clustering procedures ranking based on adjusted Rand index mean values (the selected
results)
Rank Method Mean Index Shape of clusters No. of noisy variables

1 2 3 4 0 2 4

1 average 0.623 KL 0.553 7 0.577 1 0.608 1 0.710 1 0.853 3 0.590 1 0.426 1

2 ward 0.610 KL 0.537 9 0.550 5 0.596 2 0.708 2 0.852 4 0.571 2 0.407 4

3 ward 0.578 Gap 0.648 2 0.447 39 0.495 7 0.673 3 0.857 2 0.502 11 0.375 14

4 average 0.573 Gap 0.649 1 0.440 46 0.496 6 0.662 4 0.883 1 0.481 18 0.354 24

5 mcquitty 0.565 KL 0.488 16 0.528 8 0.533 4 0.662 5 0.801 9 0.512 9 0.381 13

6 average 0.564 H 0.556 6 0.531 7 0.471 12 0.654 6 0.726 19 0.544 3 0.423 2

7 average 0.558 G1 0.565 4 0.518 10 0.476 11 0.634 10 0.735 16 0.543 4 0.395 8

8 pam 0.553 KL 0.476 21 0.508 13 0.534 3 0.647 7 0.845 5 0.478 19 0.336 30

9 average 0.538 DB 0.486 17 0.502 16 0.530 5 0.601 18 0.772 14 0.474 20 0.367 18

10 diana 0.535 KL 0.466 23 0.571 3 0.457 16 0.609 16 0.780 12 0.458 28 0.367 17

– – – – – – – – – – – – – – – – – –

68 median 0.334 DB 0.267 69 0.288 65 0.313 60 0.425 66 0.678 35 0.266 68 0.059 61

69 single 0.292 S 0.302 67 0.247 69 0.228 70 0.358 69 0.618 60 0.250 69 0.008 66

70 single 0.269 DB 0.253 72 0.200 70 0.246 69 0.342 70 0.614 61 0.182 70 0.012 65

71 single 0.243 Gap 0.259 70 0.132 72 0.205 71 0.331 71 0.571 71 0.150 71 0.007 67

72 single 0.235 H 0.254 71 0.137 71 0.181 72 0.322 72 0.551 72 0.146 72 0.007 69

– The second and the third positions were taken by Ward method, along with
applying Krzanowski and Lai and Gap indices,

– The single-link algorithm, combined with Hartigan, Gap and Davies-Bouldin
indices, is the least efficient method for ordinal data clustering.

5 Limitations

In our analysis the random generation of data set comes from multivariate normal
distribution in which clusters’ locations and the homogeneity of shapes are defined
by means (centroids) and covariance matrices (distortion of objects). Such approach
is typical for many other simulation studies, presented e.g. in papers Soffritti (2003),
Tibshirani and Walther (2005), Tibshirani et al. (2001). The infinite number of clus-
ter shapes for any number of dimensions becomes the main problem regarding data
generation with known cluster structure. It seems substantiated to consider other
distributions and copula functions in data generation process for data with non-
standard cluster shapes. This task poses substantial difficulties, especially in case of
ordinal data.

In our simulation study we do not take into account such methods like as spec-
tral clustering for ordinal data and non-distance based methods (e.g. Latent Class
Analysis for ordinal data).
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An Application of One-mode Three-way
Overlapping Cluster Analysis

Satoru Yokoyama, Atsuho Nakayama, and Akinori Okada

Abstract In recent years, it is possible to more easily obtain multi-way data, and
various analysis models for the data have been suggested by several researchers.
However, only small number of studies have been done on the one-mode multi-way
data analysis model. The authors suggested an overlapping cluster analysis model
for one-mode three-way similarity data in our earlier study. In the present study, the
authors make an attempt to improve the one of problems of the algorithm and val-
idate the improved algorithm by analyzing the one-mode three-way similarity data
which calculated from the panel data of meals. Then, the one-mode three-way result
is compared with the results with the one-mode two-way similarity data analysis to
show the usefulness of the one-mode three-way similarity data analysis.

1 Introduction

In recent years, it is easy to obtain multi-way data because of advancement in
information technology. Various analysis models for multi-way data have been sug-
gested by several researchers. For example, three-way data are treated in Gower
and De Rooij (2003), Joly and Le Calvé (1995), and Nakayama (2005) All of them
use three-way distances to express relationships among three objects. PARAFAC
models (Harshman 1970, 1972) and Tucker 3 models (Tucker 1966) also treated
three-way data. While these models can be applied to three-mode three-way data,
they cannot be applied to one-mode three-way proximity (similarity/dissimilarity)
data.

In Yokoyama et al. (2009), the authors suggested an overlapping cluster analysis
model and an associated algorithm for one-mode three-way similarity data based on
Shepard and Arabie (1979) and Arabie and Carroll (1980).
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In the present study, after explaining the one-mode two-way overlapping cluster
analysis model, one-mode three-way model is introduced in brief. Then the
improved algorithm of the one-mode three-way model is described to deal with
one of the problems mentioned by Yokoyama et al. (2009). The improved algorithm
is applied to the panel data of meals. After that, the result of the one-mode three-
way analysis is compared with that of the one-mode two-way analysis. Finally, we
summarize the present study, and mention the future plans.

2 Overlapping Cluster Analysis Models

Overlapping cluster analysis model was introduced by Shepard and Arabie (1979).
This model is called ADCLUS. In this model, the similarity sij is represented as

sij Š
RX

rD1

wrpirpjr C c; (1)

where wr is the nonnegative weight of the r-th cluster and c is the additive constant.
The pir is binary; if the object i belongs to cluster r , pir is 1, and otherwise it is 0.

An algorithm called MAPCLUS was introduced (Arabie and Carroll 1980),
which is extended and improved from the algorithm of ADCLUS. In this algo-
rithm, pir is initially considered to vary continuously. This algorithm uses a gradient
approach to minimize a loss function that seeks to maximize the variance accounted
for (VAF).

The loss function is the weighted sum of two terms; one is simply a normalized
measure of the sum of squared error, the other consists of a penalty function to make
the value of pir binary. wr .r D 1; : : : ; R/ is estimated using multiple linear regres-
sions. Actually,pir and wr are computed using an alternative least squares approach.
In addition, MAPCLUS algorithm are using other techniques to estimate pir and
wr ; “polishing,” “de novo iterations,” and “combinatorial optimization.” Polishing
is applied to make pir binary. The de novo iteration is the re-estimating to eliminate
negative weights. And combinatorial optimization is performed to improve the VAF
further.

In Yokoyama et al. (2009), the authors suggested the one-mode three-way over-
lapping clustering model, and proposed an algorithm to fit that model to one-mode
three-way similarity data. In this model, the one-mode three-way similarity sijk is
represented as

sijk Š
RX

rD1

wrpirpjrpkr C c: (2)

The associated algorithm is basically extended from MAPCLUS to deal with
one-mode three-way similarity data. The loss function fitting the model to the
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similarity is

Lr D ˛rAr C ˇrBr ; (3)

In (2), Ar is the term of normalized sum of squared error;
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and Br is designed to force the pairwise products pirpjrpkr to be 0 or 1;
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where ı.l/
ijk D sijk �

PR
rD1
r¤l

wrpirpjrpjk � c and ˛r C ˇr D 1.

While the present algorithm is similar to MAPCLUS, there are several differ-
ences between two algorithms; the iterative procedure to estimate pir and wr ,
combinatorial optimization, and the threshold values of the polishing. Details are
shown in Yokoyama et al. (2009).

3 Improvement of the Algorithm

In Yokoyama et al. (2009), the authors analyzed one-mode three-way artificial data
and joint purchase data, but they mentioned in Sect. 5 of Yokoyama et al. (2009)
that the suggested algorithm needs two improvements. The first is the stability of
the algorithm and the second is the negative weights. In the present paper, the
authors execute the improvement of the algorithm to eliminate negative weights.
This improvement is as follows: If objects belong to the cluster where the weight is
negative, joint occurrence of these objects in the cluster has negative influence on
the similarities. Thus, we temporarily take the absolute value of wr and interchange
the values of pir in the iterative procedures of estimating pir and wr . Because the
iterative procedure becomes endless, the number of the improvement is limited to 10
times in each iterative procedure, and the improvement satisfies that three or more
values of pir should equal to 1 in cluster r .

To examine the effectiveness of this improvement, one-mode three-way simi-
larity data shown in Table 2 are analyzed using two algorithms, one is with the
improvement, another is without the improvement. The data are explained in Sect. 4
in detail. In these analyses, the data are analyzed using 10,000 different random
initial values of pir, the maximum number of clusters is eight, and the minimum is



196 S. Yokoyama et al.

Table 1 The proportion of the frequencies of the results not having negative weights

Num. of Cluster 8 7 6 5 4 3

Without improvement 0.00% 0.00% 0.08% 0.56% 3.35% 27.89%
With improvement 0.01% 0.14% 0.46% 4.05% 20.75% 39.25%

three. The proportion of the frequencies of the results not having negative weights
of these analyses are shown in Table 1.

The proportion had decreased by 5.5 points on the average due to the improve-
ment. Especially, in four, five, and six clusters, the results not having negative
weights increased drastically, and in seven and eight clusters, the results not hav-
ing negative weights were able to be derived. However, negative weights still
appear after the improvement, the fundamental improvement of the algorithm seems
necessary.

4 An Application

In the present study, the panel data of meals are analyzed using with the improved
algorithm. This data was provided by Data Analysis Competition 2008 (sponsored
by Joint Association Study Group of Management Science). The data recorded the
menus and foodstuffs for every meal during one year for about 200 families living in
the Tokyo area, and consist of 150,000 meals including about 1,000 menus and about
2,000 foodstuffs. In the present study, we have paid attention to liquors which were
drunk during each evening meal. In the evening meal, sometimes several liquors are
served on the table, and sometimes the liquor is not served. For the present analysis
we extracted meals where several liquors were served from the data, and one-mode
three-way similarity data are calculated the frequencies of three liquors are jointly
served.

The calculated data have more than 15 categories of liquors, but in the present
analysis, nine categories, which have substantial frequency of being jointly served,
are selected. The nine categories are; 1. Beer, 2. Burgundy, 3. White wine, 4. Cham-
pagne, 5. Whiskey, 6. Cocktails, 7. Sake, 8. Shochu (a clear liquor distilled from
sweet potatoes, rice, etc.), and 9. Fruit liquor (incl. Chinese liquor). The derived
one-mode three-way similarity data are shown in Table 2.

The similarity data were analyzed using the improved algorithm, the largest VAF
for each number of clusters is regard to be the maximum VAF at that number of
clusters. The resulting maximum VAF in eight through three clusters were 0.984,
0.984, 0.984, 0.978, 0.961, and 0.886. Because of the noticeable elbow of the VAF
and the interpretation of the results, the six cluster result was chosen as the final
solution shown in Table 3.

In the analysis, Beer belongs to Clusters 1, 2, 3, 4, and 6, Shochu belongs to
Clusters 1, 3, 4, and 5. Especially, to Clusters 1, 3, and 4, Beer and Shochu belong
together. Similarly, Beer and Burgundy belong together to Clusters 2 and 4, Beer
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Table 2 One-mode three-way similarity data

2: 3: 4. 5: 6: 7: 8:

1. Beer 3. White wine 9

4. Champagne 2 3

5. Whiskey 11 24 0
6. Cocktails 1 0 0 2

7. Sake 141 7 1 7 1

8. Shochu 77 198 3 24 12 103

9. Fruit liquor 1 1 1 1 1 10 12

2. Burgundy 4. Champagne 2

5. Whiskey 1 0
6. Cocktails 0 0 0

7. Sake 1 1 0 0

8. Shochu 3 1 0 1 37

9. Fruit liquor 1 1 0 0 1 1

3. White wine 5. Whiskey 0
6. Cocktails 0 0

7. Sake 1 0 0

8. Shochu 1 9 0 4

9. Fruit liquor 1 0 0 1 1

4. Champagne 6. Cocktails 0

7. Sake 0 0

8. Shochu 0 0 1

9. Fruit liquor 0 0 1 1

5. Whiskey 7. Sake 0

8. Shochu 2 2

9. Fruit liquor 0 0 0

6. Cocktails 8. Shochu 0

9. Fruit liquor 0 1

7. Sake 9. Fruit liquor 2

and White wine belong together to Clusters 1 and 6, Beer and Sake belong together
to Clusters 2 and 3, Burgundy and Sake belong together to Clusters 2 and 5, and
Sake and Shochu belong together to Clusters 3 and 5.

For the reason of the value of each weight, with Beer and Shochu, White wine
is more frequently served than Sake or Burgundy is, because the weights are 0.990,
0.510, and 0.379 for Clusters 1, 3, and 4, respectively. Similarly, with Beer and
Burgundy, Sake is more frequently served than Shochu. With Beer and White wine,
Shochu is more frequently served than Whisky is. With Beer and Sake, Burgundy
is more frequently served than Shochu is. With Burgundy and Sake, Beer is more
frequently served than Shochu is. With Sake and Shochu, Beer is more frequently
served than Burgundy is.

To compare with the one-mode three-way result, one-mode two-way similar-
ity data are calculated the frequencies of two liquors are jointly served, and were
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Table 3 The solution of one-mode three-way analysis

Category Cluster
1 2 3 4 5 6

1. Beer 1 1 1 1 0 1
2. Burgundy 0 1 0 1 1 0
3. White wine 1 0 0 0 0 1
4. Champagne 0 0 0 0 0 0
5. Whiskey 0 0 0 0 0 1
6. Cocktails 0 0 0 0 0 0
7. Sake 0 1 1 0 1 0
8. Shochu 1 0 1 1 1 0
9. Fruit liquor 0 0 0 0 0 0
Weight 0.990 0.702 0.510 0.379 0.177 0.111

Table 4 One-mode two-way similarity data

1. 2. 3. 4. 5. 6. 7. 8.

2. Burgundy 471
3. White wine 286 31
4. Champagne 23 3 6
5. Whiskey 503 18 28 1
6. Cocktails 73 3 2 1 3
7. Sake 1,458 239 12 1 12 6
8. Shochu 2,856 142 216 3 49 31 182
9. Fruit liquor 60 1 1 1 1 1 28 24

Table 5 The solution of one-mode two-way analysis

Category Cluster
1 2 3 4 5 6

1. Beer 1 1 1 1 1 0
2. Burgundy 0 0 0 1 0 1
3. White wine 0 0 0 0 1 0
4. Champagne 0 0 0 0 0 0
5. Whiskey 0 0 1 0 0 0
6. Cocktails 0 0 0 0 0 0
7. Sake 0 1 0 0 0 1
8. Shochu 1 0 0 0 1 1
9. Fruit liquor 0 0 0 0 0 0
Weight 0.908 0.505 0.172 0.160 0.084 0.063

analyzed by using one-mode two-way model. The derived one-mode two-way
similarity data are shown in Table 4.

One-mode two-way similarity data were analyzed by using MAPCLUS. The
resulting maximum VAF in eight through three clusters were 0.999, 0.999, 0.998,
0.992, 0.984, and 0.966. Same as the one-mode three-way analysis, the six cluster
result was chosen as the final solution shown in Table 5.
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In one-mode two-way analysis, Beer belongs to Clusters 1 through 5. In Clus-
ters 1 through 4, Beer combines with Shochu, Sake, Whisky, and Burgundy. Espe-
cially, the weight of Clusters 1 and 2 is 0.908 and 0.505, and they are larger than the
others. Therefore, with Beer, Shochu or Sake is more frequently served than Whisky
or Burgundy is.

Here, we pay attention to Clusters 2 through 5 in one-mode three-way analysis,
which Beer, Burgundy, Sake, or Shochu belongs to any of Clusters 2 through 5.
These categories belong to Clusters 1, 2, and 4 in one-mode two-way analysis. From
a viewpoint of the weight, the following six results are obtained:

With Beer and Burgundy, Sake is more frequently served than Shochu is,
with Beer and Sake, Burgundy is more frequently served than Shochu is,
with Beer and Shochu, Sake is more frequently served than Burgundy is,
with Burgundy and Sake, Beer is more frequently served than Shochu is,
with Burgundy and Shochu, Beer is more frequently served than Sake is, and
with Sake and Shochu, Beer is more frequently served than Burgundy is.

Here, from one-mode three-way similarity data in Table 2, we examine the frequen-
cies of combinations among three categories in four categories, Beer, Burgundy,
Sake and Shochu; Beer, Burgundy, and Sake is 141, Beer, Burgundy, and Shochu is
77, Beer, Sake, and Shochu is 103, and Burgundy, Sake, and Shochu is 37. There-
fore, the six cases are substantiated by these frequencies completely. Similarly, the
frequencies of combination of two categories from these four from Table 4 are sub-
stantiated the one-mode two-way results. However, in the combination between two
categories by one-mode two-way analysis, we cannot grasp which combinations
among three categories are frequently served, i.e., we can grasp the combination of
Beer and Shochu have been frequently served by the one-mode two-way analysis,
but we cannot grasp that if Sake or Burgundy is more frequently served with Beer
and Shochu. Thus, one-mode three-way analysis can express the information which
cannot be expressed by one-mode two-way analysis.

5 Discussion and Conclusion

In the present study, the authors introduced the one-mode three-way overlapping
cluster analysis model and the associated algorithm in brief. Then the authors
attempted to improve the one of problems of the algorithm, and compared with two
algorithms. As the results shown in Table 1, the results not having negative weights
had increased in all number of clusters by the improvement, that is, we can derive a
result with smaller number of initial values. Thus the improved algorithm becomes
more practical.

Moreover, one-mode three- and two-way similarity data, were analyzed by using
one-mode three- and two-way overlapping cluster analysis models, respectively.
Because these results were compared, the authors succeeded in indicating the
necessity of one-mode three-way analysis.
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In these analyses, the VAF were very large in the present analysis, and they are
more than 0.9 for almost all cases. These are attributed to the frequencies of three
and two liquors jointly served, so that these similarity data might be easy to divide
into clusters by the analyses. It seems to be necessary to analyze various kinds of
data, and examine the results carefully in future studies.

In the present study, the authors applied the overlapping cluster analysis model
to one-mode three-way similarity data. In the future, it is necessary to analyze one-
mode four (or more) -way, or two-mode four-way similarity data where individuals
are added to one-mode three-way data. Thus, the present model should be extended
to accommodate these data, and further improvements should be possible.
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Evaluation of Clustering Results: The Trade-off
Bias-Variability

Margarida G.M.S. Cardoso, Katti Faceli, and André C.P.L.F. de Carvalho

Abstract Clustering evaluation generally relies on some desirable properties of
clustering solutions (partitions, in particular): the properties of clusters’ compact-
ness and separation, as well as the property of stability are often considered as
indicators of clustering quality. In fact, since the real clustering is unknown (clus-
tering being originated by an unsupervised process), one should focus on obtaining
good enough partitions.

Clustering quality is, however, a difficult concept to put in practice. Furthermore,
when aiming for clusters compactness and separation one does not necessarily meet
the real clusters (e.g. Brun et al. 2007). Similarly, when focusing on the property of
stability, one may find that solutions which are more stable but do not necessarily fit
better the real solution (e.g. Cardoso et al. 2008).

In the present paper we consider clustering solution’s reproducibility in other
data sets drawn from the same source as an indicator of stability. We use a new
cross-validation procedure and measure the agreement between clustering solutions
obtained and the real partitions (real data sets from the UCI repository, Asunción
and Newman 2007, are used). Next, we study the association between indicators of
stability and agreement with the real partition. We conclude with a discussion of the
trade-off bias-variability, which we believe is a relevant issue to investigate within
unsupervised learning, clustering in particular.

1 Desirable Properties of a Clustering Solution

Ideally, clustering evaluation should take into account the degree of fit between
the partition obtained (derived through cluster analysis) and the real or true par-
tition. However, since the real partition is unknown (clustering is unsupervised),
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one should focus on the identification of a good enough partition, which exhibits
some desirable properties.

The compactness and separation properties of a clustering structure define its
quality: compactness measures the internal cohesion among objects within clusters;
separation measures the isolation of clusters when compared to other clusters. Qual-
ity indices such as the Calinski and Harabasz (1974) and the Davies and Bouldin
(1979) index are commonly used to evaluate these properties (e.g. Cardoso and
Carvalho 2009).

Stability is also widely recognized as a desirable property of a clustering solu-
tion (e.g. Gordon 1999). A (stable) clustering solution should stay approximately the
same when minor changes occur in the clustering procedure: alternative parameteri-
zations of the clustering algorithm; introduction of noise in data; different clustering
base variables; distinct data samples, etc.

2 Evaluating Stability

2.1 Indices of Agreement Between Partitions

Indices of agreement (IA) are frequently used to evaluate a clustering solution’s
stability, measuring the association between two partitions. They are generally based
on data from a contingency table, built from the partitions (˘K and ˘Q) being
compared (see Cardoso and Carvalho 2009).

Several alternative IA can be found in the literature. The Rand index (Rand 1971),
is, perhaps, the most popular of them. It quantifies the proportion of pairs classified
in agreement by two partitions (1 indicating perfect agreement).

Hubert and Arabie (1985) studied the Rand index distribution under the hypoth-
esis of random agreement, relying on the generalized hypergeometric model, and
then suggested a modified Rand index. This Adjusted Rand index (AR) incorporates
a threshold index value (expected index value under the null hypothesis) including
a correction for agreement by chance:

Table 1 General cross-validation procedure

Step Action Output

1 Perform training-test sample split Training and test samples
2 Cluster training sample Clusters in the training sample
3 Build a classifier in training sample super-

vised by clusters’ labels; use the classi-
fier in the test sample.

Classes in the test sample

4 Cluster test sample Clusters in the test sample
5 Obtain a contingency table between clus-

ters and classes in the test sample and
calculate indices.

Indices of agreement values, indicators of
stability
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The Variation of Information Index (VI) (Meila 2007) is based on Information
Theory. This index measures how much of information is either lost or gained when
objects are moved from one cluster to another (the smaller, the better, 0 indicating
perfect agreement):
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2.2 Cross-validation

A common procedure for the evaluation of supervised analysis techniques is the
use of cross-validation (Stone 1974). McIntyre and Blashfield (1980) import the
concept of cross-validation from supervised to unsupervised analysis, clustering in
particular. Breckenridge (1989) uses cross-validation and compares three alternative
rules, Nearest Centroid, Quadratic Discriminant and Nearest Neighbour, to obtain
classes in the test sample. This general cross-validation procedure is presented in
Table 1.

Cross-validation may be replicated using alternative training-test splits, which
provide several samples to evaluate the stability of a clustering solution (several IA
values being considered; Tibshirani et al. 2005; Levine and Domany 2001; Dudoit
and Fridlyand 2002; Law and Jain 2003; Lange et al. 2004; Cardoso 2007).

3 The Proposed Approach

When performing cross-validation, one needs to select an appropriate classifier to
be trained using the clusters’ labels in its training sample and able to obtain the
desired classes within a test sample. According to Lange et al. (2004), “by select-
ing an inappropriate classifier, one can artificially increase the discrepancy between
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solutions (...) the identification of optimal classifiers by analytical means seems
unattainable. Therefore, we have to resort to potentially suboptimal classifiers in
practical applications”, (pp.1304–1305).

In this paper, the authors propose a new approach that overcomes the need for
selecting a classifier when performing cross-validation. This approach relies on
weighted samples and calculates the IA values based on the entire sample. Note
that alternative approaches relying on sampling with replacement (e.g. Law and Jain
2003), also determine IA values based on the entire sample. However, they resort
to a classifier to induce the clustering structure for all observations in the original
sample.

The proposed approach – a weighted cross-validation procedure – enables to
analyze the relationship between variability/stability and agreement with the real
partition, when evaluating a clustering solution. It can be described as follows:

Cluster the original sample
Evaluate bias: obtain IA values between the partition being evalu-
ated and the real one
For t D 1 to 20 do:

Draw a weighted sample from the original sample
Cluster the weighted sample
Obtain IA[t] values between the original and the weighted

sample’s partition
Evaluate variability: use 20 IA[t] values based on the weighted
samples to obtain IA descriptive statistics

The well known K-Means (MacQueen 1967), and the maximum likelihood
estimation of a finite mixture model (via a EM-Expectation-Maximization based
algorithm, (Dempster et al. 1977; Vermunt and Magidson 2002), are used to obtain
alternative clustering solutions.

In order to produce the weighted sample, drawn from the original sample, a unit
weight is (randomly) associated with 2/3 of the observations, while a 10�10 weight
is used for the remaining observations.

The IAs used to evaluate agreement between partitions are the Adjusted Rand
Index (Hubert and Arabie 1985) and the Variation of Information (Meila 2007).

4 Data Analysis

Four data sets are used to illustrate the proposed approach: Iris, Wine, Haberman
and Diabetes (UCI repository, Asunción and Newman 2007).

Results from the analysis are presented in Tables 2 and 3. In these tables, KM
refers to K-Means results and EM to Expectation-Maximization results. The index
0 refers to the original partition, based on the entire dataset (the one being evalu-
ated). Each IA average, standard deviation and coefficient of variation refers to 20
weighted samples’ clustering results, providing measures to evaluate stability. The
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Table 2 Illustrating the trade-off bias-variability

Results using KM Results using EM

(KM_0, weighted AR VI (EM_0, weighted AR VI

samples) samples)

Average 0.936 0.198 Average 0.819 0.463

Std. deviation 0.086 0.202 Std. deviation 0.120 0.252

Coef. of variation 0.092 1.017 Coef. of variation 0.147 0.545

(KM_0, Iris) 0.730 0.760 (EM_0, Iris) 0.834 0.556

Average 0.940 0.243 Average 0.906 0.306

Std. deviation 0.033 0.123 Std. deviation 0.077 0.220

Coef. of variation 0.035 0.505 Coef. of variation 0.084 0.720

(KM_0, Wine) 0.880 0.437 (EM_0, Wine) 0.898 0.390

Table 3 When stability is not a good indicator of agreement with the real partition

Results using KM Results using EM

(KM_0, weighted AR VI (EM_0, weighted) AR VI

samples) samples)

Average 0.950 0.093 Average 0.656 0.700

Std. deviation 0.074 0.120 Std. deviation 0.176 0.236

Coef. of variation 0.078 1.294 Coef. of variation 0.268 0.337

(KM_0, Haberman) 0.128 1.297 (EM_0, Haberman) 0.141 1.637

Average 0.889 0.246 Average 0.442 0.959

Std. deviation 0.101 0.166 Std. deviation 0.191 0.328

Coef. of variation 0.114 0.674 Coef. of variation 0.431 0.342

(KM_0, Diabetes) 0.075 1.604 (EM_0, Diabetes) 0.013 1.805

agreement between the clustering solution obtained and the real partition measures
the bias (the datasets’ names are used to indicate the known (real) classes).

As expected, the analysis results show a clear relationship between the Variation
of Information index and the Adjusted Rand index values: the Pearson correlation
coefficient values range from �0:974 to �1.

As observed in an earlier work (Cardoso et al. 2008), the IA values yielded by
the resampling procedure (measuring variability/stability) tend to overestimate the
goodness of the clustering solutions. In addition, there are some situations when
stability is clearly not a good indicator of agreement with the real partition: these
are the cases illustrated in Table 3.

In an attempt to differentiate these cases, the quality index Calinski and Harabasz
(1974) was used for measuring the quality (compactness-separability) of the parti-
tions: the larger the CH value the better the partition. This pseudo-F-statistic has
evidenced a good performance in experiments performed by Milligan and Cooper
(1985).
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Table 4 Calinski and Harabask index values

Iris Wine Haberman Diabetes

True 486.321 68:252 8:36 24:299

KM_0 560.400 70:688 76:342 961:218

KM in weighted samples 555.658 70:499 76:077 954:064

(average)

EM_0 524.689 68:370 48:158 179:437

EM in weighted samples 522.365 67:929 36:662 488:330

(average)

CH
�
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D B

�
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�ı
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W
�
˘K

�ı
.n �K/

According to the obtained results, the CH index values clearly differentiate data
sets in Tables 2 and 3: the real Diabetes and Haberman partitions are not compact
and well separated, while the clustering algorithms (K-means in particular) tend to
yield solutions that exhibit these properties (see Table 4).

5 Discussion and Perspectives

The proposed cross-validation approach to evaluate clustering solutions has some
important advantages:

� It is applicable to all clustering algorithms;
� The sample dimension is not a severe limitation for implementing clustering sta-

bility evaluation, since the IA values are based on the entire (weighted) sample,
and not in a holdout sample;

� The fact that a weighted sample is used mimics the subsample random drawing,
but there is no need to select a classifier to implement cross-validation, which
could be less adequate to induce partitions and certainly more time consuming.

Regarding the bias-variability relationship, it should be further investigated.
Experiments with additional datasets are necessary to analyze clustering vari-
ability/stability as addressed by the proposed approach. The relationship between
stability and compactness-separability should also be further evaluated (the present
work indicates that the effectiveness of stability indicators may be related with the
compactness-separability properties). A complementary approach could be focused
on cluster-wise stability (Hennig 2007). In addition, the relationship between sta-
bility and the adequacy of the clustering criteria to the data set at hand should be
further discussed (recent works in the field, like Ben-David and von Luxburg (2008),
should be considered).
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Cluster Structured Multivariate Probability
Distribution with Uniform Marginals

Andrzej Sokolowski and Sabina Denkowska

Abstract Reducing the dimension of classification space we doubt if this transfor-
mation is spoiling the original group structure of the mixture generating our data.
This problem can be discussed on the basis of analysis of data generated by the
specific probability distributions. Denkowska and Sokolowski (1997) proposed two-
dimensional probability distribution with probability distributed uniformly on two
squares which size is controlled by one parameter. In this paper, the special multi-
variate probability distribution is proposed. In n-dimensions it has a cluster structure
consisting of hypercubes but all marginal distributions are uniform.

1 Introduction

Denkowska and Sokolowski (1997) proposed two-dimensional probability distribu-
tion with probability distributed uniformly on two squares which size is controlled
by one parameter. In this paper, the special multivariate probability distribution
is proposed. In n-dimensions it has a cluster structure consisting of hypercubes.
The main interesting feature of this distribution is the fact that its every marginal
distribution is uniform. It means that the group structure is completely lost while
considering any marginal distribution. In other words, omitting one variable out of
n, loses group structure.

2 The 3-Dimensional Case

The density function of the proposed distribution in the three-dimensional case is
following:

f .x; y; z/ D
(

1
a3C3a.b�a/2 if .x; y; z/ 2 A

0 if .x; y; z/ … A
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Fig. 1 Domain A for which
the density function is greater
than zero, consists of four
prisms (cubes when b D 2a)

where:
A WD .u; uCa/	.v; vCa/	.w;wCa/[ .uCa; uCb/	.vCa; vCb/	.w;wCa/[
[.u; uCa/	.vCa; vCb/	.wCa;wCb/[ .uCa; uCb/	.v; vCa/	.wCa;wCb/
and .u; v;w/ 2 R3; 0 < a < b:

Set A for which the density function is greater than zero, consists of four rectangular
prisms (Fig. 1).

2.1 Description of Proposed Probability Distribution

2.1.1 Marginal Distributions

The marginal distributions of proposed three-dimensional probability distribution
are uniform in the case when b D 2a and it means that the group structure is lost
while considering any marginal distribution.
The density functions of all marginal distributions are listed below:

� The marginal distribution of random vector (X, Y):

fX;Y .x; y/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

a
a3C3a.b�a/2 if .x; y/ 2 .u; uC a/ 	 .v; vC a/[

[.uC a; uC b/ 	 .vC a; vC b/
b�a

a3C3a.b�a/2 if .x; y/ 2 .u; uC a/ 	 .vC a; vC b/[
[.uC a; uC b/ 	 .v; vC a/

0 otherwise

� The marginal distribution of random vector (Y, Z):

fY;Z.y; z/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

a
a3C3a.b�a/2 if .y; z/ 2 .v; vC a/ 	 .w;wC a/[

[.vC a; vC b/ 	 .wC a;wC b/
b�a

a3C3a.b�a/2 if .y; z/ 2 .v; vC a/ 	 .wC a;wC b/[
[.vC a; vC b/ 	 .w;wC a/

0 otherwise
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� The marginal distribution of random vector (X, Z):

fX;Z.x; z/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

a
a3C3a.b�a/2 if .x; z/ 2 .u; uC a/ 	 .w;wC a/[

[ .uC a; uC b/ 	 .wC a;wC b/
b�a

a3C3a.b�a/2 if .x; z/ 2 .u; uC a/ 	 .wC a;wC b/[
[.uC a; uC b/ 	 .w;wC a/

0 otherwise

� The marginal distribution of random variable X:

fX .x/ D

8
ˆ̂
<

ˆ̂
:

a2C.b�a/2

a3C3a.b�a/2 if x 2 .u; uC a/
2a.b�a/

a3C3a.b�a/2 if x 2 .uC a; uC b/
0 otherwise

� The marginal distribution of random variable Y:

fY .y/ D

8
ˆ̂
<

ˆ̂
:

a2C.b�a/2

a3C3a.b�a/2 if y 2 .v; vC a/
2a.b�a/

a3C3a.b�a/2 if y 2 .vC a; vC b/
0 otherwise

� the marginal distribution of random variable Z:

fZ.z/ D

8
ˆ̂
<

ˆ̂
:

a2C.b�a/2

a3C3a.b�a/2 if z 2 .w;wC a/
2a.b�a/

a3C3a.b�a/2 if z 2 .wC a;wC b/
0 otherwise

2.1.2 Raw and Central Moments

Some other characteristics of the proposed distribution are:

� the “r1 C r2 C r3”th raw moment (ri 2 N0; i D 1; 2; 3) equals:

mr1r2r3
D E.X r1Y r2Zr3/ D 1

.r1C1/.r2C1/.r3C1/.a3C3a.b�a/2/
�

h�
.wC a/r3C1�wr3C1

���
.vC a/r2C1 � vr2C1

��
.uC a/r1C1� ur1C1

�C �.vC
b/r2C1 � .vC a/r2C1

��
.uC b/r1C1 � .uC a/r1C1

��C
�
.wC b/r3C1 � .wC

a/r3C1
���

.vC b/r2C1 � .vC a/r2C1
��
.uC a/r1C1 � ur1C1

�C �.vC a/r2C1 �
vr2C1

��
.uC b/r1C1 � .uC a/r1C1

��i
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� the “r1 C r2 C r3”th central moment (ri 2 N0; i D 1; 2; 3) equals:

Mr1r2r3
D EŒ.X �m100/

r1.Y �m010/
r2.Z �m001/

r3 � D
1

.r1C1/.r2C1/.r3C1/
�

a3C3a.b�a/2
�

"
�
.wC a �m001/

r3C1 � .w �m001/
r3C1

�
�

 
�
.uCa�m100/

r1C1�.u�m100/
r1C1

��
.vCa�m010/

r2C1�.v�m010/
r2C1

�
C

�
.uC b �m100/

r1C1 � .uC a �m100/
r1C1

��
.vC b �m010/

r2C1 � .vC a �

m010/
r2C1

�
!

C
�
.w C b � m001/

r3C1 � .w C a � m001/
r3C1

�
 
�
.u C b �

m100/
r1C1�.uCa�m100/

r1C1
��
.vCa�m010/

r2C1�.v�m010/
r2C1

�
C
�
.uC

a�m100/
r1C1�.u�m100/

r1C1
��
.vCb�m010/

r2C1�.vCa�m010/
r2C1

�
!#

In particular, the expected values and variations of individual random variables are
as follows:

m100 D E.X/ D
D 1

2
�

a3C3a.b�a/2
�
��
a2C.b�a/2��.uCa/2�u2/

�C2a.b�a/�.uCb/2�.uCa/2�
�

m010 D E.Y / D
D 1

2
�

a3C3a.b�a/2
�
��
a2C.b�a/2��.vCa/2�v2/

�C2a.b�a/�.vCb/2�.vCa/2�
�

m001 D E.Z/ D
D 1

2
�

a3C3a.b�a/2
�
��
a2C.b�a/2��.wCa/2�w2/

�C2a.b�a/�.wCb/2�.wCa/2�
�

M200 D D2.X/ D
�
a2 C .b � a/2��.uC a �m100/

3 � .u �m100/
3
�

3
�
a3 C 3a.b � a/2� C

C 2a.b � a/�.uC b �m100/
3 � .uC a �m100/

3
�

3
�
a3 C 3a.b � a/2�

M020 D D2.Y / D
�
a2 C .b � a/2��.vC a �m010/

3 � .v �m010/
3
�

3
�
a3 C 3a.b � a/2� C

C 2a.b � a/�.vC b �m010/
3 � .vC a �m010/

3
�

3
�
a3 C 3a.b � a/2�

M002 D D2.Z/ D
�
a2 C .b � a/2��.wC a �m001/

3 � .w �m001/
3
�

3
�
a3 C 3a.b � a/2� C

C 2a.b � a/�.wC b �m001/
3 � .wC a �m001/

3
�

3
�
a3 C 3a.b � a/2�
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2.1.3 The Characteristic Function

To obtain a full formal description of the proposed distribution, the characteristic
function is derived:

'.t1; t2; t3/ D E.ei.t1XCt2Y Ct3Z// D 1
�i t1t2t3.a3C3a.b�a/2/


.ei t1.uCa/ � ei t1u/ �

.ei t2.vCa/�ei t2v/.ei t3.wCa/�ei t3w/C .ei t1.uCb/�ei t1.uCa//.ei t2.vCb/�ei t2.vCa// �

.ei t3.wCa/�ei t3w/C.ei t1.uCa/�ei t1u/.ei t2.vCb/�ei t2.vCa//.ei t3.wCb/�ei t3.wCa//C

.ei t1.uCb/ � ei t1.uCa//.ei t2.vCa/ � ei t2v/.ei t3.wCb/ � ei t3.wCa//
�

3 Cluster Structured 3-Dimensional Distribution
with Uniform Marginals

To simplify, let’s assume that .u; v;w/ D .0; 0; 0/:
The most interesting case is when b D 2a. Then each marginal distribution is
uniform. Then probability density function for random variable (X, Y, Z) is the fol-
lowing:

f .x; y; z/ D
(

1
4a3 if.x; y; z/ 2 A
0 if .x; y; z/ … A

where
A D .0; a/	 .0; a/	 .0; a/[ .a; 2a/	 .a; 2a/	 .0; a/[ .0; a/	 .a; 2a/	 .a; 2a/[
.a; 2a/ 	 .0; a/ 	 .a; 2a/:

In this case the selected raw and central moments are:
E.X/ D E.Y / D E.Z/ D a
D2.X/ D D2.Y / D D2.Z/ D a2

3
:

The marginal distribution of random vector (X, Y) is uniform inside the square with
the side (0, 2a) without line segments connecting the centers of the opposite sides:

fX;Y .x; y/ D
8
<

:

1
4a2 if .x; y/ 2 .0; a/ 	 .0; a/[ .a; 2a/ 	 .a; 2a/[

[.0; a/ 	 .a; 2a/ [ .a; 2a/ 	 .0; a/
0 otherwise

The density functions for the remaining cases of the two-dimensional random vec-
tors are analogical:

fY;Z.y; z/ D
8
<

:

1
4a2 if .y; z/ 2 .0; a/ 	 .0; a/ [ .a; 2a/ 	 .a; 2a/[

[.0; a/ 	 .a; 2a/ [ .a; 2a/ 	 .0; a/
0 otherwise

fX;Z.x; z/ D
8
<

:

1
4a2 if .x; z/ 2 .0; a/ 	 .0; a/[ .a; 2a/ 	 .a; 2a/[

[.0; a/ 	 .a; 2a/ [ .a; 2a/ 	 .0; a/
0 otherwise
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The marginal distribution of every individual random variable is uniform on the
segment .0; 2a/ without its center:

fX .x/ D
�

1
2a

if x 2 .0; a/[ .a; 2a/
0 otherwise

fY .y/ D
�

1
2a

if y 2 .0; a/[ .a; 2a/
0 otherwise

fZ.z/ D
�

1
2a

if z 2 .0; a/ [ .a; 2a/
0 otherwise

Both in the case of two-dimensional and one-dimensional probability distributions,
the exclusion of, respectively, the sum of segments or the point of the domain for
which the density function is greater than zero, does not influence the properties of
uniform distribution.

To simplify, let’s consider the case when a D 1
2
; b D 1. Then the probability

function is as follows:

f .x; y; z/D
8
<

:

2 if .x; y; z/ 2 .0; 1
2
/ 	 .0; 1

2
/ 	 .0; 1

2
/[ .1

2
; 1/ 	 .1

2
; 1/ 	 .0; 1

2
/[

[.0; 1
2
/ 	 .1

2
; 1/ 	 .1

2
; 1/[ .1

2
; 1/ 	 .0; 1

2
/ 	 .1

2
; 1/

0 otherwise

In this case expected values and variations are:

E.X/ D E.Y / D E.Z/ D 1
2

D2.X/ D D2.Y / D D2.Z/ D 1
12

and all marginal distributions are uniform:

fX;Y .x; y/ D
8
<

:

1 if .x; y/ 2 .0; 1
2
/ 	 .0; 1

2
/ [ .1

2
; 1/ 	 .1

2
; 1/[

[.0; 1
2
/ 	 .1

2
; 1/[ .1

2
; 1/ 	 .0; 1

2
/

0 otherwise

fX;Z.x; z/ D
8
<

:

1 if .x; z/ 2 .0; 1
2
/ 	 .0; 1

2
/[ .1

2
; 1/ 	 .1

2
; 1/[

[.0; 1
2
/ 	 .1

2
; 1/[ .1

2
; 1/ 	 .0; 1

2
/

0 otherwise

fY;Z.y; z/ D
8
<

:

1 if .y; z/ 2 .0; 1
2
/ 	 .0; 1

2
/ [ .1

2
; 1/ 	 .1

2
; 1/[

[.0; 1
2
/ 	 .1

2
; 1/[ .1

2
; 1/ 	 .0; 1

2
/

0 otherwise

fX .x/ D
�
1 if x 2 .0; 1

2
/[ .1

2
; 1/

0 otherwise

fY .y/ D
�
1 if y 2 .0; 1

2
/[ .1

2
; 1/

0 otherwise

fZ.z/ D
�
1 if z 2 .0; 1

2
/[ .1

2
; 1/

0 otherwise
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4 The n-Dimensional Case

Three-dimensional .X; Y;Z/ distribution can be generalized onto n-dimensional
case. The main problem lies in finding such configuration of hypercubes for which
marginal distributions are uniform.

To simplify, let’s assume that b D 2a (in that case all marginals are uniform) and
let’s use the notation which shortens the description of hypercubes for which the
density function is non-zero. So, in case when n D 2; the notation “01” means that
the density function is greater than zero for .x; y/ 2 .u; uCa/	 .vCa; vCb/. The
first digit informs us about the first coordinate, and “0” means that x 2 .u; uC a/,
and “1” that x 2 .u C a; u C b/; the second digit informs about the second
coordinate, and, analogically, “0” means that y 2 .v; vC a/, and “1” means that
y 2 .vCa; vCb/. In the two-dimensional case described in [1], using proposed nota-
tion, squares with non-zero density function would be labeled: “00”, “11”. In the
case of probability distribution of random vector (X,Y,Z) proposed in this paper, the
density function equals 1

a3C3a.b�a/2 for four cubes: “000”, “110”, “101” and “011”.
Obviously a proposed choice of cubes isn’t the only solution, but it is convenient to
extending to n-dimensional case.

The considered n-dimensional hypercubes (for n D 2, 3, 4, 5) are listed in
Table 1, and those with non-zero density function are reported in bold. For two and
three dimensional space the choice of hypercubes is easy, but in four-dimensional
space it is not so obvious. Let’s have a look how the cubes have been described and
chosen in the low-dimensional spaces. To move from the two-dimensional distribu-
tion to the three-dimensional one, the 0/1 sequence from the first column (for n D 2)
had to be expanded by the third coordinate first with 0’s and then with 1’s. In that
way, the description of squares has been expanded into the description of cubes. For
the first four cubes z 2 .w;wC a/, and for the rest of them z 2 .wC a;wC b/. The
choice of cubes with non-zero density function is given in Table 1. When the last
coordinate equals 0, we chose the same sequence of 0/1 as for the lower dimension,
and finally, every second cube. Then the rest of the cubes are chosen among those
with 1 in the last coordinate.

Having n � 1 cubes in (n � 1)-dimensional space, which form set A with non-
zero density function, we can construct the distribution of n-dimensional random
variable. Simplifying the problem by assuming b D 2a (in that case all marginals
are uniform) we come to the following density function:

f .x1; : : : ; xn/ D
(

1
2n�1an if .x1; : : : ; xn/ 2 A
0 if .x1; : : : ; xn/ … A

A random number generator has been written in STATISTICA Visual Basic
(SVB) for the proposed distribution. Generated data sets have been analysed by
various multidimensional methods provided in STATISTICA. The results show the
expected uniformity of marginal distributions and lack of group structure while
reducing the dimensionality of classification space.
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Table 1 The n-dimensional hypercubes (for n D 2; 3; 4; 5). Domain A for which the density
function is greater than zero consists of cubes reported in bold

n D 2 n D 3 n D 4 n D 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 1 0 0 0 0
1 1 1 1 0 1 1 0 0 1 1 0 0 0
0 1 0 1 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 0 1 0 1 0 0
1 1 1 1 1 1 0 1 1 1 0 0
0 1 1 0 1 1 0 0 1 1 0 0

0 0 0 1 0 0 0 1 0
1 0 0 1 1 0 0 1 0
1 1 0 1 1 1 0 1 0
0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 0
1 0 1 1 1 0 1 1 0
1 1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0

0 0 0 0 1
1 0 0 0 1
1 1 0 0 1
0 1 0 0 1
0 0 1 0 1
1 0 1 0 1
1 1 1 0 1
0 1 1 0 1
0 0 0 1 1
1 0 0 1 1
1 1 0 1 1
0 1 0 1 1
0 0 1 1 1
1 0 1 1 1
1 1 1 1 1
0 1 1 1 1

Reference

Denkowska, S., & Sokolowski A. (1997). O pewnym rozkladzie prawdopodobienstwa dwuwymi-
arowej zmiennej losowej (On a certain probability distribution of a two-dimensional random
variable). Cracow University of Economics, Proceedings of 35th conference of statistics,
econometrics and mathematics departments of universities of economics (pp. 59–67). Cracow.



Analysis of Diversity-Accuracy Relations
in Cluster Ensemble

Dorota Rozmus

Abstract Ensemble approaches based on aggregated models have been success-
fully applied in the context of supervised learning in order to increase the accuracy
and stability of classification. Recently, analogous techniques for cluster analysis
have been introduced. Research has proved that, by combining a collection of dif-
ferent clusterings, an improved solution can be obtained.

Diversity within an ensemble is very important for its success. An ensemble of
identical classifiers or clusterers will not be better than the individual ensemble
members. However, finding a sensible quantitative measure of diversity in classifier
ensembles turned out to be very difficult (Kuncheva 2003; Kuncheva and Whitaker
2003). Diversity in cluster ensembles is considered here. The aim of the research
is to look into the relationship between diversity and the accuracy of the cluster
ensemble.

1 Introduction

Ensemble techniques based on aggregated models have been successfully applied in
supervised learning in order to improve the accuracy and stability of classification
algorithms (Breiman 1996). The idea of aggregation can be formulated as follows:
instead one model for prediction use many different models and then combine
many predicted values with some aggregation operator. In the case of classifica-
tion the most often used operator is majority voting, i.e. an observation is assigned
to the most often chosen class. Among the most popular methods there are eg. bag-
ging based on bootstrap samples (Breiman 1996) and boosting based on increasing
weights to the wrongly classified examples (Freund 1990).

In the last few years, the ensemble approach for cluster analysis has been
introduced. It is believed that it allows to increase the classification accuracy and
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robustness of the clustering solutions. The main aim of aggregation is to combine
results of several different clusterings in order to get a final clustering with better
quality. Recently several studies on combination methods of clustering solutions
have established a new area in the conventional taxonomy. There are several possi-
ble ways of applying the idea of ensemble approach in the context of unsupervised
learning (1) aggregation of results of different clustering algorithms; (2) receiving
different partitions by resampling the data, such as in bootstrapping techniques,
eg. bagging; (3) applying different subsets of features (disjoint or overlapping);
(4) using a given algorithm many times with different values of parameters or
initializations.

2 Diversity Measures

Intuitively, an ensemble works the best when its clustering solutions are of good
quality and at the same time differ from one another significantly. Diversity within
an ensemble is very important for its success. If all the clusterers or classifiers of
an ensemble will be the same then the aggregated solution will not outperform
the individual ensemble members. However, finding a good quantitative measure of
diversity in classifier ensembles has appeared very difficult (Kuncheva 2005, 2003;
Kuncheva and Whitaker 2003). In last few years, diversity of cluster ensembles
has also been studied. Fern and Brodley (2003) have found that ensemble mem-
bers with higher diversity offer larger improvement than less diverse ensembles.
In the literature many different diversity measures for cluster ensembles have been
suggested. In this work the concept of measure introduced by Hadjitodorov et al.
(2006) was used. The Authors presented five measures based on accuracy index of
the clustering algorithm. In this proposition the measure of diversity and the match
index for the ensemble accuracy was based on the Adjusted Rand Index. But from
experiments, carried out by mentioned Authors, the relationship between diversity
measures based on this index and the accuracy of the ensemble was not quite clear.
The aim of this work is to check if applying of other popular accuracy indexes as
a base for proposed diversity measures will give any improvement, i.e. will reveal
clear relationship between diversity measures and the quality of ensemble so that
one can pick from a set of ensembles the one that is most likely to be good. In this
work Rand Index, Jaccard Index and Fowlkes and Mallows Index were used. Rand
Index which measures a similarity between the final (aggregated) partition Cagr and
the true labels C T as a measure of correctness of the final partition was used.

Generally there are two ways for measuring the ensemble diversity: pairwise
and non-pairwise approach. In the first approach the ensemble diversity measure
proposed by Hadjitodorov, Kuncheva and Todorova is given by formula:

Dp D 2

M.M � 1/
M�1X

iD1

MX

j DiC1

.1 � acc.Ci ; Cj // (1)
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where as a measure of accuracy (acc) the Authors used Adjusted Rand Index, and
in this research Rand Index, Jaccard Index and Fowlkes and Mallows Index was
used. It should be noted that acc gives similarity between partitions, therefore 1 �
acc.Ci ; Cj / would be the measure of pairwise diversity.

For the non-pairwise approach, after the ensemble decision is specified, each
clusterer has assigned a diversity value measuring its difference from the ensemble
output. So in order to obtain an overall measure of diversity one can simply take the
average of the M individual diversities:

Dnp1 D 1

M

MX

iD1

.1 � acc.Ci ; Cagr// (2)

In the previous studies (Kuncheva and Hadjitodorov 2004) the mentioned
Authors have found that ensembles with a larger spread of individual diversities
are generally better than ensembles with a smaller spread. Therefore, they con-
structed the second non-pairwise diversity measure as the standard deviation of the
individual diversities:

Dnp2 D
v
u
u
t 1

M � 1
MX

iD1

Œ.1 � acc.Ci ; Cagr//�Dnp1�2 (3)

The Authors discovered also that the spread alone was not strongly related to
the ensemble accuracy either. Therefore they proposed a third non-pairwise diver-
sity measure that was based on the following intuition. Because it is believed that
the ensemble decision is close to the true labeling of the data, the accuracy of the
individual clusterers can be estimated based on how close they are to the ensemble
decision. Thus larger values of 1 � Dnp1 should be preferred. On the other hand,
variability within the ensemble can be estimated by the spread of the individual
diversities. Large variability will be indicated by larger values ofDnp2. The simplest
compromise measure can be constructed as:

Dnp3 D 1

2
.1 �Dnp1 CDnp2/ (4)

Another compromise measure can be constructed as the coefficient of variation:

Dnp4 D Dnp3

Dnp1

(5)

3 Numerical Experiments and Results

In the research artificial data sets were used that are usually applied in comparative
studies in taxonomy. Their short characteristics are shown in Table 1. The inputs of
the Cuboids problem are uniformly distributed on a three-dimensional space within
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Table 1 Characteristics of data sets
Data set # instances # features # classes

Cuboids 500 3 4
Smiley 500 2 4
Spirals 500 2 2
Ringnorm 500 2 2
Threenorm 500 2 2

three cuboids and a small cube in the middle of them. The Smiley consists of two
Gaussian eyes, a trapezoid nose and a parabula mouth (with vertical Gaussian noise).
The inputs of the Spirals data set are points on two entangled spirals. The inputs of
the Ringnorm problem are points from two Gaussian distributions. Class 1 is mul-
tivariate normal with mean 0 and covariance four times the identity matrix. Class 2
has unit covariance and mean .a; a; : : : ; a/, where a D d�0:5 and d is dimension of
the problem. The inputs of the Threenorm data set are points from two Gaussian dis-
tributions with unit covariance matrix. Class 1 is drawn with equal probability from
a unit multivariate normal with mean .a; a; : : : ; a/ and from a unit multivariate nor-
mal with mean .�a;�a; : : : ;�a/. Class 2 is drawn from a multivariate normal with
mean at .a;�a; a; : : : ;�a/; a D 2=d�0:5. The first three sets have clearly separated
classes and the second two are sets with overlapping classes.

A cluster ensemble of lengthB D 50was built by running the k-means algorithm
on bootstrap samples of the data. The final partition was obtained by the optimiza-
tion approach which formalizes the natural idea of describing consensus clusterings
as the ones which “optimally represent the ensemble” by providing a criterion to
be optimized over a suitable set C of possible consensus clusterings. If dist is an
Euclidean dissimilarity measure and .c1I : : : I cB / are the elements of the ensemble,
the problem is solved by means of least squares consensus clusterings (generalized
means; Hornik 2005):

BX

bD1

dist.c; cb/
2 ) minc2C (6)

Generally, results reveal that very clear and strict relation between the diver-
sity and the accuracy measures there is only in the case of one data set, i.e. for
Threenorm.

Looking at the diagrams (Fig. 1) where on x-axis there is the accuracy of the
ensemble, and on y-axis there is diversity measure, in the case of the pairwise mea-
sure it can be observed that the relationship is almost linear and negative directed.
For the first non-pairwise measure there can observed very similar behaviour –
negative and linear correlation, but it seems to be more strict than for the pair-
wise measure. The second, third and fourth non-pairwise measures reveal the same
patter – linear and positive correlation with greater intensity of the strength than in
the case of the pairwise and the first non-pairwise measure.
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Fig. 1 Accuracy-diversity relationship for the Threenorm data set

Table 2 Pearson’s linear coefficient of correlation
Diversity Adj. rand index Rand index Jaccard index Fowlkes and
measure mallows index

Dp �0:679 �0:682 �0:717 �0:693
Dnp1 �0:869 �0:874 �0:924 �0:891
Dnp2 0:933 0:931 0:938 0:923

Dnp3 0:973 0:973 0:978 0:973

Dnp4 0:957 0:957 0:967 0:958

Because the relationship seems to be linear it is also possible to count Pearson’s
linear coefficient of correlation in order to check which of the four indexes gave the
strongest relationship between accuracy and diversity. From the results presented
in the Table 2 it appears that the best is Jaccard Index, especially with the third
non-pairwise measure.

Moving towards the next data sets, at the beginning it should be noted that they
did not give so strict and clear relationship but in few cases follows some general
pattern: lower diversity for higher accuracy of an ensembles in the case of the pair-
wise and first non-pairwise measure, and for the rest of non-pairwise measures the
relation was inverse: higher diversity went together with higher accuracy.

In the case of Cuboids data set (Fig. 2) this general lower diversity-higher accu-
racy pattern can be noticed especially for the first non-pairwise measure. In the case
of the rest of non-pairwise measures the third and fourth measure with Jaccard and
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Fig. 2 Accuracy-diversity relationship for the Cuboids data set

Fowlkes and Mallows Index especially confirm the general higher diversity-higher
accuracy pattern.

For the Ringnorm data set (Fig. 3) in the case of non-pairwise and first pairwise
measure it is rather difficult to find a confirmation of the general lower diversity –
higher accuracy pattern, whereas the rest of non-pairwise measures very slightly
confirm the higher diversity – higher accuracy pattern.

For the Smiley data set (Fig. 4) again in the case of the non-pairwise and first
non-pairwise measure it is difficult to find any clear relationship. For the rest of
non-pairwise measures one can conclude that although high diversity sometimes
goes together with relatively low accuracy, but high diversity is essential for the
high accuracy of the ensemble.

In the case of Spirals data set (Fig. 5) it is rather difficult to find any clear
relationship for both pairwise and non-pairwise measures.

4 Summary

To sum up, it should be noted that it is generally believed that diverse cluster
ensembles are better than non-diverse ensembles but on the basis of results from
discrimination field it is also accepted that the relationship between diversity and
accuracy is not clear and straightforward (Kuncheva and Whitaker 2003). Since
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Fig. 3 Accuracy-diversity relationship for the Ringnorm data set

Fig. 4 Accuracy-diversity relationship for the Smiley data set
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Fig. 5 Accuracy-diversity relationship for the Spirals data set

ensemble diversity is a loosely defined concept, there are many different ways to
specify and measure it. Here were used five measures proposed in the literature
but with different base accuracy measures for estimating diversity in cluster ensem-
bles. From the experiments carried out it is rather difficult to find a strict and clear
relationship between ensemble accuracy and the used measures of diversity, but
in some cases it can be observed that for the non-pairwise and first non-pairwise
measure lower diversity went together with higher accuracy whereas for the rest
of non-pairwise measures higher diversity went together with higher accuracy. It is
also rather difficult to point out which of those four used indexes gave the strongest
relationship between diversity and accuracy. The only exception was the Threenorm
data set where the relationship was linear and the best index was Jaccard Index.
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Linear Discriminant Analysis with more
Variables than Observations: A not so Naive
Approach

A. Pedro Duarte Silva

Abstract A new linear discrimination rule, designed for two-group problems with
many correlated variables, is proposed. This proposal tries to incorporate the most
important patterns revealed by the empirical correlations while approximating the
optimal Bayes rule as the number of variables grows without limit. In order to
achieve this goal the new rule relies on covariance matrix estimates derived from
Gaussian factor models with small intrinsic dimensionality.

Asymptotic results show that, when the model assumed for the covariance matrix
estimate is a reasonable approximation to the true data generating process, the
expected error rate of the new rule converges to an error close to that of the optimal
Bayes rule, even in several cases where the number of variables grows faster than
the number of observations.

Simulation results suggest that the new rule clearly outperforms both Fisher’s
and Naive linear discriminant rules in the data conditions it was designed for.

1 Introduction

The classical theory of Linear Discriminant Analysis (see McLachlan 1992) assumes
the existence of a training data set with more observations than variables leading to
a non-singular empirical covariance matrix. However, nowadays many applications
work with data bases where a large number of variables is measured on a smaller
set of observations. Practical experience has shown (Dudoit et al. 2002) that, for
problems of this type, natural extensions of Fisher’s linear discriminant rule have
a disappointing performance. On the other hand, in the same problems the Naive
discriminant rule that ignores all variable correlations can be quite effective.

In a seminal paper, Bickel and Levina (2004) have shown that these surprising
results have a deep theoretical justification. Using an asymptotic analysis which
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allows the number of variables to grow faster than the number of observations, these
authors have demonstrated that the expected error of the Naive rule can approach
a constant close to the expected error of the optimal Bayes rule, while generalized
versions of Fisher’s rule are asymptotically no better than simple random guessing
ignoring the data.

Here, it will be shown that Linear Discriminant Rules based on covariance esti-
mates derived from low-dimensional factor models, can successfully incorporate
some of the information available on the empirical correlations and, under condi-
tions similar to those considered in Bickel and Levina (2004), can either achieve or
come close to asymptotical optimality, for some problems where both Fisher’s and
Naive Bayes rules perform poorly.

The reminder of this paper is as follows. In Sect. 2 the new proposal is presented
and Sect. 3 discusses its asymptotic properties. Section 4 describes preliminary
simulation results and Sect. 5 concludes the paper.

2 A Not so Naive Linear Discriminant Rule

Consider the two-group homoscedastic Gaussian model where entities are repre-
sented by binary pairs .X; Y /IX 2 <p IY 2 f0; 1g and the distribution of X
conditioned on Y is the multivariate normal Np.�.Y /; ˙/. The classical discrim-
inant problem deals with the development of rules capable of predicting unknown
Y values (class labels) given X observations. When the parameters �.0/; �.1/; ˙

are known and the a-priori probabilities �0 D P.Y D 0/, �1 D P.Y D 1/ are
equal it is well known (McLachlan 1992) that the minimal error classification rule
is the population Bayes rule

Y D ıB.X/ D 1.
T˙�1� > 0/ (1)

where 
 D �.1/ � �.0/ and � D X � 1
2
.�.0/ C �.1//.

In practice,
; � and˙�1 are usually unknown and need to be estimated from a
training sample of n D n0 C n1 observations ..Xi ; Yi /I i D 1; : : : ; n/ with known
class labels. When n0  p and n1  p common estimators are

O
 D NX1 � NX0 D 1

n1

X

Yi D1

Xi � 1

n0

X

Yi D0

Xi (2)

O� D X � 1
2

 NX0 C NX1

�
(3)

Ȯ
F D 1

n � 2

2

4
X

Yi D0

.Xi � NX0/.Xi � NX0/
T C

X

Yi D1

.Xi � NX1/.Xi � NX1/
T

3

5 (4)

which, for non-singular ȮF , leads to the Fisher’s rule

Y D ıF .X/ D 1. O
T Ȯ �1
F O� > 0/ (5)
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Here, we will be most concerned with problems where p is close to, or higher
than n. In the latter case ȮF is singular and rule (5) can not be applied directly.
However, a modified Fisher’s rule can be defined by replacing Ȯ �1

F by ȮF Moore-
Penrose generalized inverse.

Alternatively, when ˙ is estimated by the diagonal matrix of training sample
variances, ȮI D diag. ȮF /, one gets the Naive Bayes rule

Y D ıI .X/ D 1. O
T Ȯ �1
I O� > 0/ (6)

Several studies (see e.g. Dudoit et al. 2002) have shown that rule (6) is surpris-
ingly effective even in problems where many variables are clearly correlated, and
when p  n often outperforms more sophisticated approaches that do not rely on
Gaussian assumptions.

Recently, Bickel and Levina (2004) have demonstrated that under general con-
ditions where p ! 1, .lnp/=n ! 0 and n=p ! d < 1, the worst-possible
expected error rate of the modified Fisher’s rule converges to 1=2, but a variant of
ıI that replaces O
 and O� by consistent estimators of 
 and � can have a much
smaller asymptotic error rate. Furthermore, when the ratio between the largest and
the smallest eigenvalues of the population correlation matrix can be bounded by
some “moderate” constant, the asymptotic performance of the Naive rule is close to
that of the optimal Bayes.

Building on these results, here we will propose an alternative linear rule with
good asymptotic performance for some common data conditions where ratios of
correlation eigenvalues can be large. In particular, we will assume that true popu-
lation covariance can be reasonably approximated by a covariance matrix derived
from the following q-dimensional (q � p) factor model

X D �.Y / C ˇ F C˝ �Iˇ 2 <p�qI˝ D diag.!1; : : : ; !p/I!j > k0 2 <C (7)

where F and � are respectively q-dimensional and p-dimensional random vec-
tors following Nq.0; Iq/ and Np.0; Ip/ distributions. When model (7) holds the X
covariance matrix, given by ˙ D ˇˇT C˝2, is non-singular with inverse equal to

˙�1 D ˝�2 �˝�2ˇŒIq C ˇT˝�2ˇ��1ˇT˝�2 (8)

This suggests the rule

Y D ıFctq .X/ D 1. O
T Ȯ �1
Fctq
O� > 0/ (9)

where ȮFctq is given by

ȮFctq D Ǒ ǑT C Ő 2I . Ǒ; Ő / D arg minjj ȮFctq � ȮF jj2 (10)

and jj � jj denotes the Frobenius matrix norm, jjAjj2 D tr.ATA/.
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3 Asymptotic Properties

In this section we will discuss the min-max asymptotic performance of rule ıF ctq .
In particular, we will be concerned with the conditions for convergence, and the
limit of the min-max expected misclassification error

W �Fctq
.ıFctq / D max�Fctq


P� .ıFctq .X/ D 1jY D 0/

�
(11)

where
� D .
; �;˙/ 2 F ctq .k0; k1; k2; B; c/

and

Fctq .k0; k1; k2; q; B; c/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

.
; �;˙/ W

T˙�1
 � c2

k1 � �min.˙/ � �max.˙/ � k2


; � 2 B
8j D 1; : : : ; pI a D 1; : : : ; q

P
j 0;l 0

ˇ
ˇ
ˇ

@ˇ.j;a/
@˙.j 0;l 0/

ˇ
ˇ
ˇ! e <1

P
j 0;l 0

ˇ
ˇ
ˇ

@!j

@˙.j 0;l 0/

ˇ
ˇ
ˇ! f <1

9
>>>>>>>>>>>=

>>>>>>>>>>>;

˙Fctq D ˇ ˇT C˝2I .ˇ;˝/ D arg minjj ˙F ctq �˙ jj2
ˇ 2 <p�q I˝ D diag.!1; : : : ; !p/I!j > k0 2 <C

with B being and a compact subset of l2.N /, and �min.˙/ , �max.˙/ the smallest
and largest eigenvalues of ˙ .

The definition of the set F ctq deserves a few comments.
The condition 
T˙�1
 � c2 establishes the minimum degree of group sepa-

ration on F ctq . For all � 2 F ctq the optimal misclassification rate is bounded by
1 � ˚.c=2/, which becomes a benchmark against which the asymptotic rate of any
empirical rule can be compared. Condition k1 � �min.˙/ � �max.˙/ � k2 ensures
that ˙ is always non-singular.

Conditions 
; � 2 B are necessary technical requirements to ensure that con-
sistent estimation of 
 and � is possible. We note that when 
 … l2.N / and
jj˙ jj is bounded the expected misclassification rate of the Bayes rule converges
to zero when p ! 1. In that case, it may be possible to find empirical rules
with similar perfect asymptotic performance, even if their coefficients diverge from
those of the theoretical rule. While such problems may have some interest on their
own, they will not be considered here, and we will focus on the more standard
conditions where rules approaching perfect group separation are not allowed. There-
fore, we assume that 
 2 l2.N / and that O
; O� are consistent estimators such that
E� jj O
 � 
jj2 D o.1/ and E� jj O� � � jj2 D o.1/. Known results in the theory of
countable Gaussian sequences (see Johnstone 2002 and Lemma 1 in Bickel and
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Levina 2004) show that such estimators exist if and only if 
 and � are restricted to
lie on a compact subset of l2.N /.

The previous two conditions are equal (or equivalent) to corresponding condi-
tions assumed by Bickel and Levina (2004) in their theoretical study of the Naive
rule.

Conditions

8j; a
X

j 0;l 0

ˇ
ˇ
ˇ
ˇ
@̌ .j; a/

@˙.j 0; l 0/

ˇ
ˇ
ˇ
ˇ! e <1

X

j 0;l 0

ˇ
ˇ
ˇ
ˇ

@!j

@˙.j 0; l 0/

ˇ
ˇ
ˇ
ˇ! f <1 (12)

are new technical requirements, specific to the ıF ctq rule, that are necessary to
ensure that convergence of ȮF to˙ translates into convergence of ȮF ctq to˙F ctq .
They imply that for any variable .j / and variable pair .j; l/ the contribution of their
variances and covariances to the underlying structure of the closest q-factor model
can be essentially recovered after a finite number of new variables are added to the
model. This seems to be a sensible and reasonable assumption, should it fail no sta-
ble q-factor model could be used to approximate the covariance structure defined by
the sequence of X variables.

Condition
8j D 1; : : : ; p !j > k0 2 <C (13)

ensures that for .
; �;˙/ 2 F ctq ; ˙F ctq remains always non-singular and well-
conditioned. The empirical versions of this condition and formula (8) are central in
guaranteeing that, similarly to ȮI and unlike ȮF , ȮF ctq can always be inverted
and leads to an approximation error jj Ȯ �1

F ctq
� ˙�1

F ctq
jj that can be bounded by a

constant times the error jj ȮF ctq �˙F ctq jj.
We are now in condition to state the main result of this section.

Theorem 1. If .ln p/=n! 0, then

lim supn!1 W �Fctq
.ıFctq / � 1 � ˚

 p
K0Fq

1CK0Fq

c

!

K0Fq
D max�F ctq

�max.˙0F ctq /

�min.˙0Fctq /
I˙0Fctq D ˙� 1

2

Fctq ˙

�

˙
� 1

2

Fctq

�T

For a proof see Duarte Silva (2009).
We note that the bound defined in Theorem 1 has the same form as the limit

found in Bickel and Levina (2004) for the min-max expected error of the Naive rule,
replacing the bound (K0) on the ratio for the eigenvalues of the correlation matrix
by K0Fq

. This constant reflects the maximum distance between the true covariance
and a covariance compatible with the postulated q-factor model. When the data
generating process satisfies model (7), ˙0F ctq is an identity, K0Fq

D 1, and rule
ıF ctq is asymptotically equivalent to the theoretical Bayes. On the other hand, when
K0Fq

increases without limit as p grows, the true generating process diverges from
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the postulated model and ıFctq is asymptotically no better than random guessing.
For intermediate cases, with K0Fq

> 1 but bounded by some finite constant, the
performance of ıFctq , although not converging to that of the optimal rule, can be
close, particularly if K0Fq

is never too large.
The main motivation for our proposal, is the fact that K0Fq

can be much smaller
than K0 if the true data generating process implies a correlation structure that is far
from total independence but close to a structure compatible with a q-dimensional
factor model. In such case, Theorem 1 shows that, as p grows, ıF ctq can approach a
considerably smaller expected error rate than ıI . The promising simulation results
presented in the next section suggest that for these conditions, ıF ctq can still
perform much better than ıI , and ıF , even for moderate values of p and n.

4 Simulation Study

In order to evaluate the performance of ıFctq in finite samples we performed a small
simulation experiment with the following design.

We considered balanced samples with two combinations of number of variables
and sample size, (p D 100; n D 200), and (p D 100; n D 50). The first condi-
tion intends to illustrate a more traditional situation where the ratio n=p, although
relatively small, is still larger than 1, while the second condition starts to explore
conditions with p > n. For each combination of n and p we considered the
following five data generating processes:

Condition A – All variables are independent.
Conditions B, C, D – Variables are generated according to model (7) with
q D 1(Condition B), q D 20 (Condition C) and q D p (Condition D).
Condition E – Variables are generated according to a factor model with p factors,
without specific variances.

In conditions B, C, D, and E factor loadings were generated randomly according
to an uniform U(0,1) distribution, and then normalized in order to achieve a pre-
specified communality level. This level was set to 0.5 in conditions B, C and D,
while in conditions A and E was respectively equal to 0 and 1. In all conditions we
assume that 90% of the variables represent noise and have equal population means
(set to 0) in both groups. For the remaining 10% (the signal), we set the means in
the second group to the geometric sequence �1 D .�; 0:9 �; 0:92 �; : : :/ where the
constant � is chosen in order to ensure that the Mahalanobis distance between group
centroids is equal to 3. With this setting, the expected rate of the theoretical Bayes
rule is equal to 1 � ˚.1:5/ D 0:0668.

We generated 100 independent training samples, used them to find 100 ıF ,
ıI , and ıF ctq (with q D 1; 2 and 3) rules, and evaluated them on an indepen-
dently generated balanced validation sample with 100,000 observations. Since in
this experiment p is not too large, we simply estimated 
 and � by (2) and (3).
However, we note that for problems of higher dimensionality where the influence of
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Table 1 Misclassification error rates on the Validation sample: n D 50 p D 100

Data conditions
A B C D E

Fisher 0.268 0.297 0.306 0.305 0.500
Naive 0.147 0.368 0.357 0.352 0.500
Fctq1 0.148 0.155 0.177 0.166 0.500
Fctq2 0.149 0.156 0.177 0.167 0.500
Fctq3 0.150 0.157 0.177 0.167 0.500

Table 2 Misclassification error rates on the Validation sample: n D 200 p D 100

Data conditions
A B C D E

Fisher 0.173 0.171 0.170 0.168 0.169
Naive 0.090 0.325 0.289 0.278 0.500
Fctq1 0.090 0.090 0.108 0.098 0.500
Fctq2 0.091 0.090 0.108 0.099 0.500
Fctq3 0.091 0.091 0.107 0.099 0.500

noisy variables might be more serious, alternative estimators employing some form
of shrinkage or variable selection may be required.

The average misclassification rates in the validation sample are shown in Tables 1
and 2.

We can see in Table 1 that for data condition E with n D p=2, none of the meth-
ods tried performed better than simple random guessing. However, when n D 2p

the Fisher rule performed reasonably well (see Table 2) for this condition . This
is a condition that was chosen exactly because of its inherent difficultly and we
conjecture that similar structures might not be common in real life applications.

On the other hand, both the ıI and ıfctq
rules are quite effective when the data

is indeed independent (data condition A). However, the performance of the Naive
worsens considerably for all conditions with correlated variables. The choice of the
dimensionality (q) assumed by the ıfctq

rules had only a negligible impact with all
three variants tested leading to almost identical results.

The most interesting results are those concerning data conditions C and D. In
these conditions, that we believe to be the more realistic ones, each variable has a
variability explained in part by a common factor structure and in part by its own
characteristics. In both conditions, the true intrinsic dimensionality of the underly-
ing model is considerably higher than the one assumed by the ıFctq rules, although
in condition C (but not in condition D) is smaller than the total number of vari-
ables. In both cases, the ıFctq rules give the best results with an expected error rate
that is close the corresponding rate for the condition (B) where the assumed model
agreed with the true data generating process. These results are particularly encour-
aging and we have as top research priority to investigate if they still hold for higher
dimensionalities and real data sets.
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5 Conclusions and Perspectives

We proposed a new linear discriminant rule capable of incorporating information
regarding correlation structures in problems with more variables than observations.
Asymptotic properties and moderate sample simulation results suggest that this rule
can be quite effective under data conditions where Fisher’s and Naive discrimination
rules perform poorly.

In the present from, the present rule can be computationally too demanding for
very high dimensional problems common in genetic and microarray applications.
Variants that try to alleviate the computational burden while retaining some of its
desirable statistical properties are currently under investigation. Other avenues of
future research include the evaluation of the proposed rule for real-world data sets,
and the development of generalizations to more than two groups and quadratic het-
eroscedastic discrimination problems. An R implementation of the rules described
in this paper is available from the author upon request.
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Fast Hierarchical Clustering
from the Baire Distance

Pedro Contreras and Fionn Murtagh

Abstract The Baire or longest common prefix ultrametric allows a hierarchy, a
multiway tree, or ultrametric topology embedding, to be constructed very efficiently.

The Baire distance is a 1-bounded ultrametric. For high dimensional data, one
approach for the use of the Baire distance is to base the hierarchy construction on
random projections.

In this paper we use the Baire distance on the Sloan Digital Sky Survey (SDSS,
http://www.sdss.org) archive. We are addressing the regression of (high quality,
more costly to collect) spectroscopic and (lower quality, more readily available)
photometric redshifts. Nonlinear regression is used for mapping photometric and
astrometric redshifts.

1 Introduction

In this work we introduce a novel (ultrametric) distance called Baire and show
how it can be used to produce clusters through grouping data in “bins”. We seek
to find inherent hierarchical structure in data, rather than fitting a hierarchy struc-
ture to data (as is traditionally used in multivariate data analysis) in an inexpensive
computational way.

This paper is structured as follows: firstly we give a definition of the Baire dis-
tance; secondly we apply that distance to a chemoinformatics dataset; thirdly we
apply the Baire distance to an astronomy dataset; finally we present our conclusions.
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2 Longest Common Prefix or Baire Distance

2.1 Ultrametric Baire Space and Distance

A Baire space consists of countably infinite sequences with a metric defined in terms
of the longest common prefix: the longer the common prefix, the closer a pair of
sequences. What is of interest to us here is this longest common prefix metric as
defined in Murtagh et al. (2008). The longest common prefixes at issue are those of
precision of any value. For example, consider two such values, xij and yij, which,
when the context easily allows it, we will call x and y.

Without loss of generality we take x and y to be bounded by 0 and 1. Each are of
some precision, and we take the integer jKj to be the maximum precision. We pad
a value with 0s if necessary, so that all values are of the same precision.

Thus we consider ordered sets xk and yk for k 2 K . In line with our notation, we
can write xk and yk for these numbers, with the setK now ordered. So, k D 1 is the
first decimal place of precision; k D 2 is the second decimal place; . . . ; k D jKj is
the jKj th decimal place. The cardinality of the set K is the precision with which a
number, xk , is measured.

Consider as examples xk D 0:478; and Yk D 0:472. In these cases, jKj D 3. For
k D 1, we find xk D yk D 4. For k D 2, xk D yk . But for k D 3, xk ¤ yk .

We now introduce the following distance (case of vectors x and y, with 1
attribute):

dB.xK ; yK/ D
�
1 if x1 ¤ y1

inf 2�n xn D yn 1 � n � jKj (1)

We call this dB value Baire distance, which can be shown to be an ultrametric
(Murtagh 2004a,b,c, 2005; Murtagh et al. 2008).

Note that the base 2 is given for convenience. When dealing with binary data 2
is the chosen base. When working with real numbers the chosen base is 10.

3 Application to Chemoinformatics

In the 1990s, the Ward minimum variance hierarchical clustering method became
the method of choice in the chemoinformatics community due to its hierarchical
nature and the quality of the clusters produced. This method reached its limits
once the pharmaceutical companies tried processing datasets of more than 500,000
compounds mainly due to its processing requirement of O.n2/.

Datasets of half a million compounds are normal in today’s world. There are
different ways of encoding a compound to a machine readable form. In chemistry
binary fingerprints for chemical compounds are common. The compound is encoded
in a fixed length binary string. For details of different encoding systems in chemistry
see Brown (2009).
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In Murtagh et al. (2008) we applied the Baire distance to a chemoinformatics
dataset with the following characteristics:

– 1.2 million chemicals crossed by 1,052 presence/absence attributes (binary
matrix)

– The data matrix is highly sparse, occupancy is�8:6347%
– Chemicals per attribute follow a power law with exponent�1:23
– Attributes per chemical are approximately Gaussian.

3.1 Dimensionality Reduction by Random Projection

As mentioned above it is a well known fact that traditional clustering methods do not
scale well in very high dimensional spaces. A standard and widely used approach
when dealing with high dimensionality is to first apply a dimensionality reduction
method. For example, Principal Component Analysis (PCA) is a very popular choice
to deal with this problem. It uses a linear transformation to form a simplified data set
retaining the characteristics of the original data. PCA does this by means of choosing
the attributes that best preserve the variance of the data. This is a good solution when
the data allows these calculations, but PCA as well as other dimensionality reduction
techniques remain expensive, computationally speaking.

In order to apply the Baire distance our first step was to reduce the dimensional-
ity of the original data. We chose to use random projection (Bingham and Mannila
2001; Vempala 2004) not only because of performance but also because of some
nice properties of this methodology. Random projection is the finding of a low
dimensional embedding of a point set.

In fact random projection here works as a class of hashing function. Hashing
is much faster than alternative methods because it avoids the pair-wise compar-
isons required for partition and classification. If two points .p; q/ are close, they
will have a very small kp � qk (Euclidean metric) value; and they will hash to the
same value with high probability. If they are distant, they should collide with small
probability.

3.2 Chemoinformatics Data Clustering

In order to cluster the binary data we did the following:

– Normalise the binary data matrix A by column sums; let’s call the resulting
matrix B

– Produce a random vector Z
– Project B into Z; let’s call the resulting matrix R
– Sort the matrix R
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– ClusterR applying the longest common prefix or Baire distance; then values that
are identical fall in the same cluster.

Following the above process, we show in Murtagh et al. (2008) (p. 728) that
for this dataset we can get clusters that are very close to the clusters obtained by
k-means. This can be due to many reasons: one reason is that data sparsity in a key
factor (i.e. in a large sparse dataset groups are likely to be far from each other, and
therefore groups are easier to identify).

4 Application to Astronomy

The Sloan Digital Sky Survey (SDSS) (SDSS 2008) is systematically mapping the
sky, producing a detailed image of it and determining the positions and absolute
brightnesses of more than 100 million celestial objects. It is also measuring the
distance to a million of the nearest galaxies and to one hundred thousand quasars.
The acquired data has been openly given to the scientific community.

In this work we are interested into four parameters from a subset of the SDSS
data release 5 (Raffaele et al. 2007): declination (DEC), right ascension (RA), spec-
trometric (Zspec) and photometric (Zphot). In particular we look into redshift data
that, for either redshift, vary between 0 and 0.6.

DEC and RA give the position of an astronomical object in the sky. Spectro-
metric and photometric parameters are two different values obtained to measure the
redshift. On one hand we have the spectrometric technique that uses the spectrum
of electromagnetic radiation (including visible light) which radiates from stars and
other celestial objects. On the other hand we have the photometric technique that
uses a faster and more economical way of measuring the redshift, but is less precise
than the spectrometric method.

Notice that when talking on the context of speed the advantage of using the Baire
metric lies on that it can calculated in O.n/ time, unlike many of the traditional
clustering method that need a higher computational complexity.

4.1 Clustering SDSS Data Based on a Baire Distance

Figure 1a shows DEC versus RA, i.e. the object’s position in the sky. Figure 1b
shows the Zspec and Zphot currently used to cluster redshifts. This section of the sky
represents approximately 0.5 million coordinate points. As can be observed, various
sections of the sky are represented in the data.

Figure 1c–f show graphically howZspec andZphot clusters look at different levels
of decimal precision. For example, on the one hand we find that values of Zspec and
Zphot that have equal precision in the 3rd decimal digit are highly correlated. On the
hand when Zspec and Zphot have only the first decimal digit in common correlation
is weaker (as shown in Fig. 1e).



Fast Hierarchical Clustering from the Baire Distance 239

Fig. 1 SDSS data and results for a given precision digit

Notice that in Fig. 1f the data point are scatter around the plot area, these are the
data points that have the least information in common, i.e. the data points that do
not share any decimal places but the first digit.

Table 1 shows the clusters found for all different levels of precision. In other
words this table shows the confidence levels for mapping of Zspec and Zphot. For



240 P. Contreras and F. Murtagh

Table 1 Clusters based on the longest common prefix

Digit No %

1 76:187 17:19

2 270:920 61:14

3 85:999 19:40

4 8:982 2:07

5 912 0:20

6 90 0:02

7 4 –
443:094 100

example, we can expect that 82:49% of values for Zspec and Zphot to have at least
two common prefix digits. Additionally we observe that a considerable number of
observations share at least 3 digits in common.

In the following section we a take this notion of clusters even further and compare
it to results obtained with the k-means clustering algorithm.

4.2 Baire and K-means Cluster Comparison

In order to establish how “good” the Baire clusters are we can compare them with
k-means. Let us recall that our data values are in the interval [0, 0.6[ (i.e. including
zero values but excluding 0.6). Thus when building the Baire based clusters we will
have a root node “0” that includes all the observations. For the Baire distance equal
to two we have six nodes (or clusters) with indices “00, 01, 02, 03, 04, 05”. For
the Baire distance of three we have 60 clusters with indices “000, 001, 002, 003,
004; : : : ; 059” (i.e. ten children for each node 00; : : : ; 05).

We carried out a number of comparisons for the Baire distance of two and three.
For example, we know that for dB D 2 there are six clusters, then we took our
data set and applied k-means with six centroids based on the Hartigan and Wong
(1979) algorithm. The results can be seen in Table 2, where the columns are the
k-means clusters and the rows are the Baire clusters. From the Baire perspective we
see that the node 00 has 97084 data points contained within the first k-means cluster
and 64950 observations in the fifth. Looking at node 04, all members belong to the
cluster 3 of k-means. We can see that the Baire clusters are closely related to the
clusters produced by k-means at a given level of resolution.

We can push this procedure further and compare the clusters for dB defined from
3 digits of precision, and k-means with k D 60. Looking at the results from the
Baire perspective we find that 27 clusters are overlapping, 9 clusters are empty,
and 24 Baire clusters are completely within the boundaries of the ones produces by
k-means as presented in Table 3.
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Table 2 Cluster comparison based on Baire distance D 2; columns present the k-means clusters
(k D 6); rows present Baire nodes

— 1 5 4 6 2 3

00 97084 64950 0 0 0 0
01 0 28382 101433 14878 0 0
02 0 0 0 18184 4459 0
03 0 0 0 0 25309 1132
04 0 0 0 0 0 11116
05 0 0 0 0 0 21

It is seen that the match is consistent even if there are differences due to the
different clustering criteria at issue. We have presented results in such as way as to
show both consistency and difference.

5 Conclusions

In this work a novel distance called the Baire distance is presented. We show how
this distance can be used to generate clusters in a way that is computationally inex-
pensive when compared with more traditional techniques. This approach therefore
makes a good candidate for exploratory data analysis when data sets are very big
or in cases where the dimensionality is large. In addition to the advantage of speed,
this distance is an ultrametric which can easily be seen as a hierarchy. We applied
the Baire definition of distance to two cases:

� In the chemoinformatics case “good” clusters were obtained in the sense that
these are close to those produced by k-means.

� In the astronomy case clusters generated with the Baire distance can be use-
ful when calibrating redshifts. In generally, applying the Baire method to cases
where digit precision is important can be of relevance, specifically to highlight
data “bins” and some of their properties.

Future direction of work includes applying the Baire metric to other data sets.
Our particular interest lies in high dimensional and massive data sets like the ones
presented in this paper.



242 P. Contreras and F. Murtagh

T
ab

le
3

C
lu

st
er

co
m

pa
ri

so
n

ba
se

d
on

B
ai

re
di

st
an

ce
D

3;
co

lu
m

ns
pr

es
en

t
th

e
k-

m
ea

ns
cl

us
te

rs
(k

D
60

);
ro

w
s

pr
es

en
t

B
ai

re
no

de
s

—
21

1
6

38
25

58
32

20
15

13
14

37
17

2
51

4

01
5

37
33

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
00

4
0

34
95

0
0

0
0

0
0

0
0

0
0

0
0

0
0

01
8

0
0

21
61

0
0

0
0

0
0

0
0

0
0

0
0

0
02

0
0

0
0

13
70

0
0

0
0

0
0

0
0

0
0

0
0

00
1

0
0

0
0

96
8

0
0

0
0

0
0

0
0

0
0

0
00

0
0

0
0

0
51

5
0

0
0

0
0

0
0

0
0

0
0

02
2

0
0

0
0

0
89

6
0

0
0

0
0

0
0

0
0

0
03

4
0

0
0

0
0

0
76

4
0

0
0

0
0

0
0

0
0

03
6

0
0

0
0

0
0

0
65

2
0

0
0

0
0

0
0

0
03

7
0

0
0

0
0

0
0

50
8

0
0

0
0

0
0

0
0

02
6

0
0

0
0

0
0

0
0

55
5

0
0

0
0

0
0

0
02

7
0

0
0

0
0

0
0

0
46

4
0

0
0

0
0

0
0

03
2

0
0

0
0

0
0

0
0

0
48

4
0

0
0

0
0

0
03

0
0

0
0

0
0

0
0

0
0

0
43

0
0

0
0

0
0

04
5

0
0

0
0

0
0

0
0

0
0

0
39

8
0

0
0

0
04

4
0

0
0

0
0

0
0

0
0

0
0

29
5

0
0

0
0

03
9

0
0

0
0

0
0

0
0

0
0

0
0

27
8

0
0

0
02

4
0

0
0

0
0

0
0

0
0

0
0

0
0

26
0

0
0

04
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

23
1

0
04

2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
22

5
0

04
7

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
35

0
04

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

57
04

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
05

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1



Fast Hierarchical Clustering from the Baire Distance 243

References

Bingham, E., & Mannila, H. (2001). Random projection in dimensionality reduction: Applications
to image and text data. KDD ’01: Proceedings of the Seventh International Conference on
Knowledge Discovery and Data Mining. ACM. San Francisco, California.

Brown, N. (2009). Chemoinformatics – An introduction for computer scientists. ACM Computing
Surveys, 41(2). Article 8.

Hartigan, J. A., & Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28,
100–108.

Murtagh, F. (2004). On ultrametricity, data coding, and computation. Journal of Classification, 21,
167–184.

Murtagh, F. (2004). Thinking ultrametrically. In D. Banks, L. House, F. R. McMorris, P. Arabie
and W. Gaul (Eds.), Classification, clustering, and data mining applications (pp. 3–14). Berlin,
Heidelberg, New York: Springer.

Murtagh, F. (2004). Quantifying ultrametricity. J. Antoch (Ed.), Proceedings in Computational
Statistics, Compstat (pp. 1561–1568). Berlin, Heidelberg, New York: Springer.

Murtagh, F. (2005). Identifying the ultrametricity of time series. European Physical Journal B., 43,
573–579.

Murtagh, F., Downs, G., & Contreras, P. (2008). Hierarchical clustering of massive, high dimen-
sional data sets by exploiting ultrametric embedding. Society for Industrial and Applied
Mathematics. SIAM Journal of Scientific Computing, 30(2), 707–730.

Raffaele, D., Antonino, S., Giuseppe, L., Massimo, B., Maurizio, P., Elisabetta, D., & Roberto,
T. (2007). Mining the SDSS archive. I. Photometric Redshifts in the Nearby Universe. ArXiv,
arXiv:astro-ph/0703108v2.

SDSS. (2008). Sloan digital sky survey. http://www.sdss.org.
Vempala, S. (2004). The Random Projection Method (Vol. 65). DIMACS: Series in Discrete

Mathematics and Theoretical Computer Science, Rutgers University. American Mathematical
Society.

http://www.sdss.org


The Trend Vector Model: Identification
and Estimation in SAS

Mark de Rooij and Hsiu-Ting Yu

Abstract Recently, the trend vector model was proposed for the analysis of longi-
tudinal multinomial data. It is a very nice model which graphically represents trends
over time for various groups in a low dimensional Euclidean space. The model uses
multidimensional scaling tools, which are highly interpretable. The trend vector
model, and more general the ideal point classification model has a nasty indeter-
minacy. De Rooij (2009a,b) solved this problem by using metric multidimensional
unfolding with single centering, but this can only be incorporated after the algorithm
has converged. Here we show simpler identification results. With the new set of
identification constraints the model can be estimated in the SAS software package,
which makes the models available to a large audience.

1 Introduction

Longitudinal data arises in many fields of research. When the outcome variable is
normally distributed sufficient tools exist for the analysis of such data. For categor-
ical variables the last decennia showed a boost of studies mainly as extensions of
generalized linear models. For multinomial unordered categories, i.e. nominal vari-
ables, the availability of statistical tools and theory is limited. It can be argued that
for nominal outcome variables development is hampered by the dimensionality of
the problem. With a discrete outcome variable having G classes the dimensionality
is G � 1, i.e., for each explanatory variable G � 1 regression parameters have to be
estimated and interpreted in a multinomial logit model. To deal with this problem,
De Rooij (2009b) proposed the trend vector model, that utilizes multidimensional
scaling ideas to reduce the dimensionality.

In the trend vector model the conditional probability �gt .xit/ of an outcome cate-
gory g (g D 1; : : : ; G) at time point t (t D 1; : : : ; Ti ), for a subject i (i D 1; : : : ; n)
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with p-dimensional covariate vector xit is modeled. The covariate vector contains
both time and group information and possibly other explanatory variables. The
conditional probability will be modeled by the squared distance between two points
in Euclidean space of dimensionalityM (M � G � 1): ideal points yit for the sub-
jects and class-points zg for the categories. The ideal points yit D .yit1; : : : ; yitM/

T,
which are gathered in a matrix Y D .y11; : : : ; y1T1

; : : : ; ynTn
/T, are a linear

combination of the predictor variables X, i.e.,

Y D XB;

where X D .x11; : : : ; x1T1
; : : : ; xnTn

/T. The conditional probability that subject i at
time point t will be in class g is then equal to

�gt .xit/ D
exp.�d 2

.it/.g/
/

P
k exp.�d 2

.it/.k/
/
;

where d 2
.it/.g/

is the squared Euclidean distance between the ideal point for subject
i at time point t and the class point for category g in M -dimensional space, i.e.,

d 2
.it/.g/ D

MX

mD1

.yitm � zgm/
2:

The trend vector model is estimated by maximizing

L D
nX

iD1

TiX

tD1

log
GY

gD1

�gt.xit/
fitg ; (1)

which is the likelihood function for cross sectional data. In our case it is not a
true likelihood, since the dependencies among the repeated responses are not taken
into account. As is shown in Liang and Zeger (1986) maximizing L with repeated
measurements does provide consistent estimates of the model parameters. However,
standard errors computed from the Hessian or information matrix of this function
are generally biased. To deal with this bias, Liang and Zeger (1986) introduced
a sandwich estimator. For generalized linear models Liang and Zeger (1986) also
adapt the estimation equations using these sandwich functions to obtain generalized
estimating equations (GEE). Various forms of correlation structures have been pro-
posed to obtain the sandwich function like independence, exchangeable, first order
auto regressive, or unstructured. When maximizing (1) we implicitly use the GEE
framework with independence assumptions to estimate the model parameters.
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2 Example

We use data published in Adachi (2000) to illustrate our trend vector model. In this
research Japanese boys and girls were asked after their preferred type of TV pro-
gramme at five time points. The five time points are the first year of elementary
school (ages 6–7), the fourth year of elementary school (ages 9–10), first year of
junior high school (ages 12–13), first year of high school (ages 15–16), and as uni-
versity freshmen (ages 18–20). The TV programme categories are Animation (A),
Cinema (C), Drama (D), Music (M), Sport (S), and Variety (V). Frequencies of
preference for each category at the five time points are given in Table 1.

We constructed a time variable T by using the midpoints of the ages at the spe-
cific time points as scores (i.e., 6.5 for the first time point, 9.5 for the second, etc.)
and center around the mean (12.25). The question is whether boys and girls differ in
their trends in TV-viewing behavior and how the trends look like. Figure 1 gives the
solution where there is a main effect for gender and the time development follows a
polynomial of degree two. The regions where the odds for a give category are high-
est are given by the regions around the class points. The two arrows give the trends
over time for boys and girls, the markers represent the ages 6 till 20. Boys and girls
have the same quadratic trend over time, but a different starting position. Although
boys and girls both start with preferring ‘animation’ the trend for boys passes ‘vari-
ety’, ‘music’, and ends in ‘sports’, while that for girls passes ‘drama’ and ends in
‘music’.

Table 1 Frequencies of preference for TV programme categories for Japanese boys and girls

Group Preference Time point
t D 1 t D 2 t D 3 t D 4 t D 5

Boys A 36 26 2 1 0

C 0 2 4 4 10

D 1 0 7 14 4

M 1 2 10 10 10

S 3 4 9 7 14

V 8 15 17 13 11

Girls A 49 31 8 2 1

C 0 0 1 3 11

D 0 6 26 21 12

M 0 1 6 13 15

S 0 1 0 2 4

V 2 12 10 10 8

A stands for Animation, C for Cinema, D for Drama, M for Music, S for Sport,
and V for Variety
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Fig. 1 Solution of the trend vector model on the TV preference data. The straight lines represent
boundaries where the odds for two categories are even. The two curves represent the trends for
boys and girls, with markers for ages from 6 till 20

3 Identification Problems

The parameters of the trend vector model are the regression weights B and the class
points Z. The model has rotational freedom and a more intricate indeterminacy, that
is, the probabilities remain the same when a constant is added for each subject:

�gt .xit/ D
exp.�d 2

.it/.g/
/

P
k exp.�d 2

.it/.k/
/
D exp.�d 2

.it/.g/
C ci /

P
k exp.�d 2

.it/.k/
C ci /

:

So, we can add a constant to each subjects’ squared distances to the class points
without changing the probabilities. We call this second type of indeterminacy the
‘multinomial indeterminacy’. De Rooij (2009a) shows that these indeterminacies
allow for the transformations of Z and B to

Z� D 1vT C ZT

B� D B.T�1/T
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with T an M 	 M matrix and v an M 	 1 vector, under the restriction that
diag.Z�ZT� / D diag.ZZT / C q1 for any q. The total number of indeterminacies
equals max.M.M � 1/=2;M.M C 1/� .G � 1//, as is shown in detail in De Rooij
(2009a).

3.1 De Rooij’s Solution

In order to obtain an identified solution De Rooij (2009a) observed that row-wise
centering makes unidentified solutions equal. Let… D f�gt .xit/g,� D log…, and
J D IG � 1G1T

G=G. Then it was noted that ��J D DJ, with D the matrix with
squared Euclidean distances between ideal points and class points for any uniden-
tified solution. This makes it possible to use metric unfolding with single centering
for identification. This procedure works fine, except in the situation of maximum
dimensionality, i.e. M D G � 1. In this case de Rooij identified the solution by
a transformation of Y such that YTY D nI, which can be obtained using a singu-
lar value decomposition, and solving for the class points (see De Rooij 2009a for
details). This identification solution can only be implemented after the algorithm
has converged, i.e. an extra analysis step is needed. It would be much nicer if direct
constraint can be placed on the configuration such that it is identified from the begin-
ning. Here we will propose a set of constraints that can be imposed at the start of
the optimization, in fact it are fixed coordinates constraints.

3.2 Simpler Solution

Looking at the number of indeterminacies max.M.M �1/=2;M.MC1/�.G�1//
we see that the first term is related to rotation of the space while the second term
amount to indeterminacies implied by the multinomial distribution (2). The first
indeterminacy is solved, like in De Rooij (2009a) by setting the upper triangular
part of B equal to zero. The other indeterminacies are solved by restrictions on the
class points Z. In all cases these restrictions amount to centering and scaling of the
class points. Note that the origin of the space is determined through the matrix with
explanatory variables X, since this matrix does not include a constant vector, and
thus when xit D 0 then yit is 0.

In the following we explicitly deal with two dimensional solutions, but the details
will make transfers to higher dimensional solutions clear. The term M.M C 1/ �
.G � 1// with M D 2 shows that for G D 3; 4; 5 indeterminacies exists, while for
G > 5 only rotational indeterminacies remain, which are solved as described above.

The case of G D 3

In this case, we have to impose three additional restrictions on the class points. This
can be accomplished by setting the ‘scale’ on both dimensions and centering on
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one of the dimensions. Therefore, restrict z11 D 1 and z22 D 1, i.e. the scale on
both dimensions is fixed now, since the origin was already determined. Moreover,
let z32 D �.z12 C z22/ to center along the second dimension.

The case of G D 4

In this case, we have to impose two restrictions on the class points. Compared to the
three class case we can drop the centering condition, but we have to keep the scaling
restrictions. An identified solution is obtained by setting z11 D 1 and z22 D 1.

The case of G D 5

In this case, we have to impose a single restriction on the class points. Compared to
the four class case we can drop one scaling condition, i.e. only a scaling condition on
the first dimension has to be imposed. An identified solution is obtained by setting
z11 D 1.

4 Estimation with SAS proc nlmixed

It is not well known that the NLMIXED procedure of SAS has a general optimiza-
tion tool in it, and therefore it can be used for models without random effects.
Detailed information about the NLMIXED procedure can be found on http://support.
sas.com/documentation/cdl/en/statug/59654/HTML/default/nlmixed_toc.htm. Here
we provide the code for a model with three classes and four predictor variables.

001 proc nlmixed data=trenddata;
002 PARMS
003 b1_1-b1_4=0 b2_2-b2_4=0
004 z1_2 = 0 z2_1 = 0 z1_3=0;
005 /*Code linear predictors */
006 y1 = b1_1*x1 +b1_2*x2 + b1_3*x3 + b1_4 *x4;
007 y2 = b2_2*x2+ b2_3*x3 + b2_4*x4;
008 /* identification constraints */
009 z1_1 = 1; z2_2=1; /*scaling*/
010 z2_3 = -(z2_1+z2_2); /*centering second dim*/
011 /*Code squared distances*/
012 dist1= (y1-z1_1)*(y1-z1_1) + (y2-z2_1)*(y2-z2_1);
013 dist2= (y1-z1_2)*(y1-z1_2) + (y2-z2_2)*(y2-z2_2);
014 dist3= (y1-z1_3)*(y1-z1_3) + (y2-z2_3)*(y2-z2_3);

http://support.sas.com/documentation/cdl/en/statug/59654/HTML/default/nlmixed_toc.htm
http://support.sas.com/documentation/cdl/en/statug/59654/HTML/default/nlmixed_toc.htm
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015 /*probabilities*/
016 denom = exp(-(dist1))+ exp(-(dist2))+ exp(-(dist3));
017 if (resp = 1) then p = exp(-(dist1)) / denom;
018 else if (resp = 2) then p = exp(-(dist2)) / denom;
019 else if (resp = 3) then p = exp(-(dist3)) / denom;
020 /*Define likelihood*/
021 if (p > 1e-8) then ll = log(p);
022 else ll = -1e100;
023 model resp general(ll);
024 run;

In lines 002–004 starting values for the parameters are declared, often starting
with values for the regression weights equal to zero and using dispersed class points
works well. One has to be aware of the fact that the algorithm may run into local
optima, so that multiple start points have to be performed. In lines 005–007 the
linear combinations that define the ideal points are given. Identification constraints
for this three class problem, as discussed above, are implied in lines 008–010. Then
for each response category the squared distance from an ideal point till the class
points are given in lines 011–014. From these distances conditional probabilities
are obtained in lines 015–019. Finally, the optimization function is defined in lines
020–023.

As is shown in Yu and de Rooij (2010), likelihood ratio statistics and BIC
statistics are favored for model selection. The BIC is given by

BIC D �2 � LC log.N / 	 npar

where npar denotes the number of parameters. It should be noted that the BIC value
that SAS is giving is not correct, since it uses in the penalty term N D Pn

iD1 Ti ,
where Ti is the number of observations for subject i and it should be the total num-
ber of subjects (N D n). This is easily repaired by hand, since the deviance and
the number of parameters are given in the output file. The standard errors that are
reported by SAS are biased, since we have no correct likelihood function, i.e., these
should not be used for model selection purposes.

5 Conclusion

We provided a simpler set of identification constraints for the trend vector model
and gave SAS code in order to fit the model. We think this is valuable, since SAS is
a computer program that many people have access to.
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Discrete Beta-Type Models

Antonio Punzo

Abstract A more interpretable parameterization of a beta density is the starting
point to propose an analogous discrete beta (d:b:) distribution assuming values on a
finite set. Thus a smooth estimator using d:b: kernels is considered. By construction,
it is both well-defined and free of boundary bias. Taking advantage of the discrete
nature of the data, a technique of smoothing parameter selection is also proposed in
moderate-to-large samples. Finally, a real data set is analyzed in order to appreciate
the advantages of this nonparametric proposal.

1 Introduction

Let X be a discrete random variable (r:v:), assuming values on the finite set S D
f0; 1; : : : ; kg. Moreover, let p.x/ D P.X D x/, x 2 S, be the unknown probability
mass function (p:m:f:) of X .

There exists a wide variety of practical problems in which the phenomenon of
interest is inherently described by X . For example, in item response theory con-
text, X could be either the number of correct responses in a test with k nominal
items, or the so-called raw total score in a test with I ordinal items having response
categories 0; 1; : : : ;M (with these conditions, the extreme raw total scores are 0
and k D I �M ). Many other phenomena, usually described by a ratio-continuous
variable, could be analyzed by X too. The distinction between “discrete” and
“continuous” is indeed only conceptual because of both boundedness of the usual
measuring instruments and conventional discretization. For example, the age of a
subject, that is by nature a continuous variable, should be analyzed by X since
every time it belongs to the interval Œj; j C 1/, the convention suggests attribut-
ing the value j; j 2 S. Consequently any variable, even in principle continuous, is
pragmatically discrete. Again, as underlined in Punzo and Zini (2008), all practical
problems in which the phenomenon of interest assumes values on the compact
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interval Œ0; 1� (e.g., rates, positive normalized indexes, and so on) can be described
by X after a convenient discretization; in these cases, a choice of k equal to 100,
1;000, or 10;000, permits a simple interpretation of the x values in %, %� and %��
terms, respectively (in truth, if the observed values have c decimal places, k D 10c

guarantees the maximum degree of approximation).
Thus, a statistical model for exploring and presenting the distribution of the data

becomes probably more important in the discrete case than in the continuous one.
In large samples, it is natural to use the naive unbiased estimator of p.x/, that is, its
empirical counterpart fx D nx=n, being nx the absolute frequency of observations
equals to x in the sample x1; : : : ; xn; obviously, n DPk

xD0 nx . However, in small-
to-moderate samples, such an estimator is not so compelling. Moreover, it may be
too “rough”. In such circumstances at least two routes are possible. First, to rely on
some assessed simple parametric structure for p.x/ (e.g. a binomial p:m:f:); sec-
ond, according to the general philosophy that, at the varying of x 2 S, fx gives
a version of p.x/ obscured by noise and that judicious smoothing can reduce this
noise without distorting the true picture, to attempt to smooth the k C 1 naive esti-
mates. Naturally, the choice of one route does not exclude the other: for example,
if no a priori information about the unknown p:m:f: is available, a preliminary
smoothing analysis could give valuable indication of features such as skewness and
multimodality, useful in suggesting simple parametric formulations or, vice versa,
in rejecting any parametric specification.

The paper, making a contribution in both the above-mentioned directions, is
structured as follows. From a parametric viewpoint, in Sect. 2, a discrete analogue
defined on S of a beta density is proposed, starting from one of its more interpretable
parameterizations. This discrete analogue is used in Sect. 3, from a nonparametric
viewpoint, to define a kernel smooth estimator of p.x/ having as kernels discrete
beta distributions opportunely “placed” in the single observations. In order to select
the smoothing parameter of this model, a technique taking advantage of the discrete
nature of the data is proposed in Sect. 3.1 for moderate-to-large samples. Finally, in
Sect. 4, a real data set is analyzed in order to appreciate advantages and motivations
of the nonparametric proposal.

2 A Re-parameterized Discrete Beta Distribution

In this section, in order to obtain a more flexible parametric model for p.x/ than the
existent ones, a discrete version of a beta distribution is proposed. To do this, a more
interpretable parameterization of a beta distribution will be taken into account. In
detail, let

f .yI k; ";m; h/ D .y C "/ mC"
h.kC2"/ .k C " � y/ kC"�m

h.kC2"/

.k C 2"/ hC1
h B



mC "

h.k C 2"/ C 1;
k C " �m
h.k C 2"/ C 1

� ;
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with,
� " � y � k C "; (1)

with m; h 2 IR and " > 0, be an alternative parameterization of a beta distribution
defined on Œ�"; k C "�. From the standard theory on the beta distribution, a r:v: Y
with density function (1) has variance

Var.Y / D h Œ.mC "/C h.k C 2"/� Œ.k C " �m/C h.k C 2"/�
.2hC 1/2.3hC 1/ : (2)

The advantage of the re-parameterization (1) is in terms of graphical interpretation
of the parameters m and h. Specifically, a point of maximum (minimum) in corre-
spondence to y D m is obtained if m 2 Œ�"; k C "� and h > 0 (h < 0). Moreover,
considering h > 0 and m 2 Œ�"; k C "� in (2), the variance results directly propor-
tional to the value of h: in detail, the limit of (2), as h ! 0C, is zero, while as h
becomes large the limit is .kC2"/2=12, that is the variance of a uniform distribution
defined on Œ�"; k C "� (note that f .yI k; ";m; h/ converges to a uniform distribution
when h!1).

Discretizing (1) on S, the following discrete beta (d:b:) distribution can be
considered

p .xI k; ";m; h/ D .x C "/ mC"
h.kC2"/ .k C " � x/ kC"�m

h.kC2"/

kX

j D0

.j C "/ mC"
h.kC2"/ .k C " � j / kC"�m

h.kC2"/

; x 2 S; (3)

with m; h 2 IR and, as before, " > 0 (for a natural parameterization of a d:b:
distribution, see Punzo and Zini 2008). The considerations on the interpretation
of the parameters m and h in (1) can be re-stated as follows: if m 2 S, then
p.xI k; ";m; h/, at the varying of x 2 S, represents a p:m:f: with a single mode
in x D m and, in addition when h ! 0C, it tends to a Dirac delta function in
x D m. Conversely, if h ! ˙1, then p.xI k; ";m; h/ tends to a discrete uniform
distribution. The effect of varying h, the other parameters being fixed, is illustrated
in Fig. 1, while the graphical effect of varying m, fixed h, k and ", is displayed in
Fig. 2. Note that in Fig. 2 the variation of m is stopped on the middle point x D 50
since two distributions of kind (3), having modes in m and k �m, other parameters
being equal, are each other’s reflection in k=2, that is

a b c

h D 0:4 h D 0:04 h D 0:004

Fig. 1 The effect of varying h (k D 100, " D 0:5, m D 30)
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a b c d

m D 0 m D 5 m D 20 m D 50

Fig. 2 The effect of varying m (k D 100, " D 0:5, h D 0:1)

p.xI k; ";m; h/ D p.k � xI k; "; k �m; h/: (4)

It is interesting to note that the value " D 1=2 can be considered as a sort of
continuity correction. Computational efforts indeed shown that, if h > 0 (in order
to avoid U-shapes) and m 2 S, then the individual probabilities (3) are related to
the beta distribution (1) by the following approximation

p

�

xI k; 1
2
;m; h

�

�
Z xC 1

2

x� 1
2

f

�

yI k; 1
2
;m; h

�

dy; x 2 S; (5)

in which the error committed is almost always negligible and it is even null when
h!1. The left-hand side of (5) equals the area of a rectangle with height
p.xI k; 1=2;m; h/ whose basis is the interval of unitary length centered at x, x 2 S.
Note that the degree of approximation decreases when at least one of the following
conditions holds: h! 0C, m is located near to the boundary, k is small.

3 Smoothing by Discrete Beta Kernels

Kernel smooth estimators for p:m:f s have been considered by several authors (see,
e.g., Aitchison and Aitken 1976; Titterington 1980; Wang and van Ryzin 1981; Hall
and Titterington 1987). These estimators are merely a sum of n (usually symmetric)
“bumps” (the so-called kernels), with equal weights 1=n, placed at the observations
by means of their mode. Unfortunately, as stressed in Chen (1999) for the continuous
case, while using a symmetric kernel is appropriate for fitting distributions with
unbounded supports, it is not adequate for distributions with compact or bounded
from one end only supports as it causes boundary bias. The cause of boundary bias
is due to the fixed symmetric kernel which allocates weight outside the support
when smoothing is made near the boundary. This section shows how a convenient
use of d:b: kernels automatically permits a solution to this problem. Moreover, the
resulting estimator produces well-defined estimates, that is, estimates satisfying all
the fundamental properties of a p:m:f:

Consider a d:b: distribution with m 2 S, h > 0, and " D 1=2. Placing it in
correspondence with each single observation by puttingm D xi in (3), it is possible
to consider the following kernel smooth probability estimator
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bp.xIh/ D 1

n

nX

iD1

p

�

xI k; " D 1

2
;m D xi ; h

�

D 1

n

nX

iD1

kh.xI xi /; x 2 S; (6)

where kh.xI xi / and h are the d:b: kernel and the smoothing parameter, respec-
tively. By construction, (6) defines a p:m:f: The extension of this model to the case
" ¤ 1=2 is straightforward. An equivalent representation of (6) is

bp.xIh/ D
kX

mD0

fmkh.xIm/; x 2 S; (7)

that is merely a mixture, with “observed” weights fm, of k C 1 d:b: components
kh.xIm/, of equal parameter h, with mode in m, m 2 S.

Two quantities characterize the nonparametric estimator (6)–(7): the smooth-
ing parameter h and the d:b: kernels kh.xI xi /. The former can be considered as
smoothing parameter for the following considerations: according to the results of
Sect. 2, if h is chosen too large, all details, modes, spurious or otherwise, may be
obscured; vice versa, as h becomes small, spurious fine structure becomes visible.
The limit as h ! 0C is a sum of Dirac delta function spikes at the observations;
consequently, bp.xIh/ converges to the empirical frequency distribution fx , x 2 S.
As regards the d:b: kernels, they obey the fundamental graphical properties of a
kernel function. In detail, they are non-negative, sum to one, assume their maxi-
mum value when x D xi , and are smoothly non-increasing as jx � xi j increases.
The only unconventional property is their skewness: indeed, fixed h > 0, the ker-
nel shape changes naturally according to the position where the observation xi falls
(see Fig. 2); however, based on (4), equal weight (equal kernel) at the symmetrical
observations falling in x and k � x is attributed. This characteristic, along with the
fact that the support S of a d:b: kernel matches the support of the unknown p:m:f:,
constitutes a natural remedy to the problem of boundary bias.

Finally, although the d:b: kernel estimator (6) is in philosophy similar to the
beta kernel density estimator proposed by Chen (1999), there are differences both
in context (Chen’s estimator is defined on Œ0; 1�) and in structure (the way the beta
kernels are adopted). Because of the structural difference, unlike the probability
estimator in (6), Chen’s estimator produces a p:m:f: non-integrating to one.

3.1 Choosing the Smoothing Parameter h

In order to solve the problem of choosing the smoothing parameter, it should never
be forgotten that the appropriate choice of h will always be influenced by the
purpose for which the p:m:f: estimate is to be used. Taking advantage of the dis-
crete nature of the data, a method permitting the choice of h subjectively on the
basis of the degree of fit with the observed distribution that the user considers right,
will be here proposed. In effect, as pointed out in Titterington (1985), it would
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seem unreasonable to choose h in such a way that the resulting bp.xIh/ provides
an unacceptably poor fit to the observed data.

Considering the kC 1 observed frequencies in (7) as a priori fixed, it is possible
to use (as function of h) the well-known Pearson’s chi-squared statistic

X2.h/ D
kX

xD0

Œnx �bnx.h/�
2

bnx.h/
;

where bnx.h/ D nbp.xIh/, having approximately the �2
.k�1/

distribution when

n=k !1. Logically, the value X2.h/ D 0, corresponding to a perfect fit between
the model and the empirical frequency distribution, can be obtained when h! 0C.
Now, let �2

.k�1I˛/
be the quantile of a �2

.k�1/
having on the right a probability mass

equal to 1 � ˛. Choosing in advance the degree of fit 1 � ˛ that is retained oppor-
tune, the value of h such that X2.h/ D �2

.k�1I˛/
can be selected. In order to do this,

numerical procedures could be used to solve, for example, the following problem:

bh D arg min
h>0

h
X2.h/ � �2

.k�1I˛/

i2

: (8)

4 Application to a Real Data Set

With the aim of underlining the advantages of the d:b: kernel estimator, a real data
set concerning the number of deaths – subdivided both by year of death and age of
death for individual – that occurred in Catania during the period 2001–2004, has
been analyzed. The n D 13;592 data utilized here were made available by the Data
Archive at the office of vital statistics of Catania.

In detail, let X WD “age of death for individual” be the variable of interest. Cer-
tain relevant summary statistics are given in Table 1. Moreover, the mortality
barplots, placed one behind the other in chronological order, are depicted in Fig. 3(a).
Not surprisingly, also confirming the informations in Table 1, the barplots are
skewed with a short tail for older ages. Again, a strong incidence of mortality in
the first year of life, as well as its decrease over time, is made strikingly clear. Not
as clear, due to both the ragged behavior of the barplots and the complexity of the
phenomenon, are other general features of interest as, for example, the most com-
mon age of death, the locations of the modes, changing in the structure over time,
and so on, all information that could have interesting practical interpretations.

Additional information can be gleaned by examining Fig. 3(b) where the d:b:
beta kernel estimator (6)–(7) is fitted to the observed data over time. Observe that,
for each considered year, k has been posed equal to the maximum observed age
of death for individual (see Table 1) in order to avoid null observed frequencies.
Moreover, having the data in Fig. 3(a) an evident complex structure, the smoothing
parameter h for each year, estimated minimizing in Mathematica environment
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Table 1 Summary statistics

year X 2001 2002 2003 2004 2001–2004

max.X/ 103 107 106 104 107
�.X/ 75:6953 76:5704 77:3759 77:3582 76:7099

	.X/ 15:5484 15:0517 14:1953 14:2074 14:8143

Skew.X/ �1:9236 �1:9469 �1:8621 �1:8128 �1:9058

p x year

0
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100

x
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2002

20032004 year
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0.04

a p x year

0
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100

x

2001
2002

20032004 year

0.00

0.01

0.02

0.03

0.04

b

Mortality barplots Discrete beta kernel estimators

Fig. 3 Probability mass function estimators over time (from 2001 to 2004)

the quantity (8), has been chosen to guarantee a 99% degree of fit. The estimated
values of h, as well as the graphical representation of the objective function in (8)
plotted against h, is displayed in Fig. 4.

Fig. 3(b) indicates that these populations each have at least two modes – probably
placed in the points of most common age of death in the subpopulations of males
(first mode) and females (second mode) – and that there is some change in the
structure over time: more “deaths belonging to the second mode” enter in the first
so that the first peak becomes slowly more dominant and the second less promi-
nent. Surprisingly, the information on the impact of mortality in the first year of
life, as well as its decrease over time, is also preserved with respect to the barplots
in Fig. 3(a). Careful examination reveals another general feature of interest: some
small but prominent bumps in the “curves”, between the ages of 15 and 50, are vis-
ible too. This “excess mortality” is probably due to an increase in a variety of risky
activities, the most notable being obtaining a driver’s license.

In line with the considerations in Sect. 1, Fig. 3(b) suggests rejecting any discrete
parametric specification since the existent models of this category, including among
these the d:b: distribution, can only produce unimodal distributions per se. Again,
the existence of a group-structure for sex in the data could suggest, for example, a
finite mixture of two d:b: distributions with modes in correspondence of the most
common ages of death for males and females and weights related to the number
of deaths for sex: unfortunately, also in this case, other fundamental characteristics
such as, for example, the strong impact of mortality in the first year of life, should be
oversmoothed. In conclusion, the complexity of the phenomenon needs a statistical
model flexible enough to capture the characteristics of the mortality distribution;
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Fig. 4 Plot of
h
X2.h/� �2.k�1I˛/

i2
as a function of h, fixed ˛ D 0:01

in these terms, the d:b: kernel estimator provides an example of how a statistical
model can show structures that are very difficult to see by classical methods.

5 Concluding Remarks

In this paper the problem of modeling discrete distributions defined on a finite sup-
port has been faced making both a parametric and a nonparametric contribution.
The building block is the discrete beta (d:b:) distribution obtained by simple dis-
cretization of a beta density conveniently parameterized. Kernel estimators using
d:b: kernels are also considered. By construction they are free of boundary bias,
well-defined (non-negative and summing to one), and easy both in concept and in
implementation. Moreover, it is remarked that this smooth estimator makes it pos-
sible to estimate discrete distributions of greater complexity with the degree of fit
that is viewed as convenient. As a final remark, this article leaves an important open
question: the computation of the moments of the d:b: distribution in terms of its
parameters. In order to do this, an in-depth theoretical study of the approximation
suggested in (5) could be a useful starting point.
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The R Package DAKS: Basic Functions
and Complex Algorithms in Knowledge
Space Theory

Anatol Sargin and Ali Ünlü

Abstract R is a language and environment for statistical computing and graphics.
It is available as free software and can easily be extended by user contributed pack-
ages. This paper introduces the R package DAKS (version 1.0-0) developed by the
authors for the theory of knowledge spaces in psychometrics. Knowledge space the-
ory provides a theoretical framework for the modeling, assessment, and training of
knowledge. It utilizes the idea that some pieces of knowledge may imply others,
and is based on order and set theory. The package DAKS contains general functions,
for instance, for switching between different formulations in knowledge space the-
ory, a simulation tool, a graph drawing device for Hasse diagrams, and several data
analysis methods for detecting implications between test items.

1 Introduction

Knowledge space theory (KST) was introduced by Doignon and Falmagne (1985)
and most of the theory is presented in a monograph by Doignon and Falmagne
(1999). KST provides a theoretical framework for the modeling, assessment, and
training of knowledge. It utilizes the idea that some pieces of knowledge may imply
others. Implications between pieces of knowledge are modeled in KST by order and
set theoretic structures. Deriving implications from data plays an important role in
KST. Three inductive item tree analysis (IITA) algorithms have been proposed for
deriving implications from dichotomous data: the original IITA algorithm (Schrepp
2003), and the corrected and minimized corrected IITA algorithms (Sargin and Ünlü
2009; Ünlü and Sargin 2010).

These exploratory data analysis methods constitute the main part of the R (http://
www.R-project.org/; R Development Core Team 2010) package DAKS (version
1.0-0), which is available on CRAN (http://CRAN.R-project.org/package=DAKS).
This package also implements functions for computing population and estimated
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asymptotic variances of the fit measures. Other features are a Hasse diagram
drawing device, a simulation tool for generating binary response data and order
structures, and functions for switching between item and person related formula-
tions in KST and for computing response pattern and knowledge state frequencies
in the data.

2 Basics of KST and IITA

Assume a set Q of m dichotomous items. Mastering an item j 2 Q may imply
mastering another item i 2 Q. If no response errors are made, these implications,
j ! i , entail that only certain response patterns (represented by subsets of Q) are
possible. Those response patterns are called knowledge states, and the set of all
knowledge states (including ; and Q) is called a knowledge structure, and denoted
by K. The knowledge structure K is a subset of 2Q, the power set ofQ. Implications
are assumed to form a quasi order, that is, a reflexive, transitive binary relation,v on
the item set Q. In other words, an implication j ! i stands for the pair .i; j / 2v,
also denoted by i v j . Quasi orders are referred to as surmise relations in KST.

Let n be the sample size. The data are the observed absolute counts of response
patterns R � Q. Let D denote the corresponding n 	 m data matrix of 0/1 item
scores. The data are assumed to be multinomially distributed over 2Q. Let �.R/
denote the (unknown) true probability of occurrence of a response pattern R. The
basic local independence model (BLIM) is based on the following assumptions. To
each knowledge state K 2 K is attached a probability p.K/ measuring the likeli-
hood that a respondent is in state K . For a manifest response pattern R � Q and
a latent knowledge state K 2 K, r.R;K/ specifies the conditional probability of
response pattern R for a respondent in state K . The item responses of a respondent
are assumed to be independent given the knowledge state of the respondent (local
independence). The response error, that is, careless error and lucky guess, proba-
bilities ˇq and �q are attached to the items and do not vary with the knowledge
states.

The BLIM allows expressing the occurrence probabilities �.R/ of response
patterns R by means of the model parameters p.K/ and ˇq; �q :

�.R/ D
X

K2K

8
<

:

Y

q2KnR

ˇq �
Y

q2K\R

.1 � ˇq/ �
Y

q2RnK

�q �
Y

q2Qn.R[K/

.1 � �q/

9
=

;
p.K/:

The number of independent model parameters is 2jQj C .jKj � 1/, where jKj
denotes the size of K. Since jKj generally tends to be prohibitively large in prac-
tice, parameter estimation and model testing based on classical maximum likelihood
methodology are not feasible in general. This is why exploratory methods such as
the IITA algorithms are important in KST.

Random errors in the responses of a respondent are the reason why deriving a
surmise relation from data is difficult. The three IITA algorithms are exploratory
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methods for extracting surmise relations from data. In each algorithm, competing
quasi orders are generated, and a fit measure is computed for every relation in order
to find the quasi order that fits the data best. In the following, the IITA algorithms
are briefly reviewed (for details, see Sargin and Ünlü 2009; Schrepp 2003; Ünlü and
Sargin 2010).

The inductive procedure for generating the competing quasi orders is the same
for all three IITA algorithms: For two items i; j , the value bij WD jfR 2 Dji 62
R ^ j 2 Rgj is the number of counterexamples, that is, the number of observed
response patterns R in the data matrix D contradicting j ! i . Based on these
values, binary relations v

L
for L D 0; : : : ; n are defined. Let i v

0
j W, bij D 0.

The relation v
0

is a quasi order. Construct inductively: Assume v
L

is transitive.

Define S .0/
LC1 WD f.i; j /jbij � L C 1 ^ i 6vL

j g. From S
.0/
LC1, exclude those item

pairs that cause an intransitivity in v
L
[S .0/

LC1; the remaining pairs are referred to

as S .1/
LC1. This process continues iteratively, k times, until no intransitivity is caused.

The generated relation v
LC1
WD v

L
[S .k/

LC1 is a quasi order by construction.
The diff fit measure is defined by

diff .v;D/ D 1

m.m� 1/
X

i 6Dj

.bij � b�
ij /

2;

where (depending on the algorithm used) corresponding estimates b�
ij are used.

These estimates are computed based on a single error probability.
In the original IITA version this single error rate is computed by

�
v
D 1

jvj �m
X

ivj;i 6Dj

bij

pjn
:

If .i; j / 2v, the expected number of counterexamples is estimated by b�
ij D

�
v
pjn. If .i; j / 62 v, the estimate b�

ij D .1 � pi /pjn.1 � �v
/ is used.

In the corrected IITA version the same �
v

and b�
ij D �

v
pjn for .i; j / 2 v

are used. The choice for b�
ij in the case of .i; j / 62 v now depends on whether

.j; i/ 62 v or .j; i/ 2 v. If .i; j / 62 v and .j; i/ 62 v, set b�
ij D .1 � pi /pjn

(independence between i and j ). If .i; j / 62 v and .j; i/ 2 v, set b�
ij D .pj �piC

�
v
pi /n (follows from derivations in the two-by-two table for i and j ).
In the minimized corrected IITA version the corrected estimators b�

ij of the cor-
rected IITA version are used. Minimizing the diff expression as a function of the
error probability �

v
gives �

v
D �x1Cx2

x3Cx4
, where

x1 D
X

i 6vj ^ j vi

�2bijpinC 2pipjn
2 � 2p2

i n
2;

x2 D
X

ivj

�2bijpjn;
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x3 D
X

i 6vj ^ j vi

2p2
i n

2;

x4 D
X

ivj

2p2
jn

2:

The idea here is to use the corrected estimators and to optimize the fit criterion.
The fit measure then favors quasi orders that lead to smallest minimum discrepan-
cies, or equivalently, largest maximum matches, between the observed and expected
numbers of counterexamples.

In Sargin and Ünlü (2009) and Ünlü and Sargin (2010), it is shown that the
corrected and minimized corrected estimation schemes lead to better results.

3 The R Package DAKS

In this section, we describe how surmise relations and knowledge structures are
implemented, and illustrate some functions of this package with real and simulated
data. At the end of the section we give a table summarizing all functions of the pack-
age. The implementation in R is based on the packages sets and relations,
developed by David Meyer and Kurt Hornik.

A quasi order is a set of tuples, where each tuple is a pair .i; j / representing the
implication j ! i . The following R output shows an example quasi order:

{(1, 2), (1, 3), (2, 3)}

or

{(1L, 2L), (1L, 3L), (2L, 3L)}

This code is to be read: item 1 is implied by items 2 and 3, and item 2 is implied
by item 3. This gives the chain 3 ! 2 ! 1. Note that in the second code line
an item i is represented by iL. This transformation takes place internally in the
packages sets or relations, but it does not influence computed results. Note
that reflexive pairs are not shown in order to reveal implications between different
items only, and to save computing time.

We exemplify usage of the package DAKS with part of the 2003 Programme
for International Student Assessment (PISA; http://www.pisa.oecd.org/) data. The
dataset consists of the (1 for correct, 0 for incorrect) answers by 340 German stu-
dents on a five-item dichotomously scored mathematical literacy test. This is the
pisa dataset accompanying the package DAKS.

First, we get a general idea of the data by looking at the five highest frequencies
of occurring response patterns and the numbers of correct answers for all test items.

R> pat <- pattern(pisa)
R> pat
$response.patterns

http://www.pisa.oecd.org/
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11100 11000 10000 11110 00000
67 61 41 40 20

$states
NULL

R> sum(pat$response.patterns)
[1] 229

We see that the five most frequent response patterns make up for 229 out of the 340
patterns. These are the Guttman patterns of the chain d ! c ! b ! a. This is also
indicated by the following code.

R> apply(pisa, 2, table)
a b c d e

0 51 91 167 261 293
1 289 249 173 79 47

From items a to e, the sample item popularities (proportions-correct) are well-
differentiated and strictly decreasing. For instance, item a is most popular (most
frequently solved), item e is least popular (least frequently solved).

Since we do not know whether the underlying quasi order may or may not be a
chain, we run the minimized corrected IITA algorithm on the PISA data.

R> mini <- iita(pisa, v = 1)
R> mini
$diff
[1] 143.53305 137.39922 132.13348 115.37663 120.16808
[6] 110.48656 82.54234 38.97623 27.56613 107.39041
[11] 242.37313 1079.05432 2887.72089

$implications
{(1L, 2L), (1L, 3L), (1L, 4L), (1L, 5L), (2L, 3L),
(2L, 4L), (2L, 5L), (3L, 4L), (3L, 5L)}

$selection.set.index
[1] 9

The quasi order with tenth index in the selection set (the selection is not shown here
and can be obtained using the DAKS functionind_gen) is a chain. The neighboring
quasi orders, including the solution quasi order with index nine produced here (see
also Fig. 1), are very close to a chain, and therefore we expect the underlying (true)
quasi order to be one of these.

Graphics are convenient to use and they can present information effectively.
Hasse diagrams are used in KST for presenting information. A Hasse diagram can
be plotted by:

R> hasse(mini$implications, 5)
list()
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4L 5L

3L

2L

1L

Fig. 1 Hasse diagram of the quasi order obtained for the PISA dataset under the minimized
corrected IITA algorithm

To illustrate other functions of the package DAKS, especially functions providing
the basis for inferential statistics, we start with simulating a dataset.

R> ex_data <- simu(9, 1500, 0.1, 0.1, delta = 0.15)

The randomly generated quasi order underlying the simulated data is:

R> ex_data$implications
{(1L, 6L), (3L, 1L), (3L, 2L), (3L, 6L), (3L, 7L), (5L, 1L),
(5L, 2L), (5L, 3L), (5L, 6L), (5L, 7L), (7L, 2L), (7L, 6L),
(9L, 2L), (9L, 6L), (9L, 7L)}

We run the corrected IITA procedure on the simulated dataset (under the other
two algorithms the analyses are analogous).

R> ex_corr <- iita(ex_data$dataset, v = 2)

The quasi order obtained by data analysis is the true quasi order underlying the data.

R> ex_corr$implications == ex_data$implications
[1] TRUE

Next we discuss the functions which provide the basis for statistical infer-
ence methodology. The corrected IITA algorithm can be performed in population
quantities, yielding information about the population diff values, population occur-
rence probabilities of response patterns, population error rates, and the inductively
generated selection set, by:

R> pop <- pop_iita(ex_data$implications, 0.1, 0.1, 9,
R+ dataset = ex_data$dataset, v = 2)
R> attributes(pop)
$names
[1] "pop.diff" "pop.matrix" "error.pop" "selection.set"
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As shown in Ünlü and Sargin (2010), the MLEs diff are asymptotically normal.
Large sample normality with associated standard errors can be used to construct
confidence intervals for the population values of and to test hypotheses about the diff
coefficients. For instance, one could test whether one of two quasi orders has a sig-
nificantly smaller diff value in the population. The quasi orders could, for example,
be derived from querying experts. In order to do such a test, the asymptotic variances
need to be estimated. Population asymptotic variances and consistent estimators of
the latter can be computed using the delta method.

The estimated asymptotic variance can be computed by:

R> variance(ex_data$dataset, ex_data$implications, v = 2)
[1] 5.866841e-06

The corresponding population asymptotic variance is:

R> pop_variance(pop$pop.matrix, pop$selection.set
R+ [[which(min(pop$pop.diff) == pop$pop.diff)]], pop$error.pop
R+ [which(min(pop$pop.diff) == pop$pop.diff)], v = 2)
[1] 4.176084e-06

The sample and population values are quite similar. The sample variance is a con-
sistent estimator for the population variance (convergence in probability).

Table 1 summarizes all functions of the package DAKS.

Table 1 Summary of the DAKS functions

Function Short description

corr_iita Computing diff values for the corrected IITA algorithm
hasse Plotting a Hasse diagram
iita Computing sample diff values and the best fitting quasi order for one of the

three IITA algorithms selectively
imp2state Transforming from implications to knowledge states
ind_gen Inductively generating a selection set
mini_iita Computing diff values for the minimized corrected IITA algorithm
ob_counter Computing numbers of observed counterexamples
orig_iita Computing diff values for the original IITA algorithm
pattern Computing frequencies of response patterns and knowledge states
pop_iita Computing population diff values and the selection set for one of the three

IITA algorithms selectively
pop_variance Computing population asymptotic variances
simu Data simulation tool
state2imp Transforming from knowledge states to implications
variance Computing estimated asymptotic variances
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4 Conclusion

This paper has introduced the R package DAKS. This package contains several basic
functions for KST, and it primarily implements the IITA methods for data analy-
sis in KST. Functions for computing various population values and for estimating
asymptotic variances are also contained. These tools provide the basis for statisti-
cal inference methodology and for further analyses in KST. We have described the
functions of the package DAKS and demonstrated their usage by real and simulated
data examples.

In future research, we plan to implement other fit measures, and functions for
computing confidence intervals and for performing hypothesis tests for the diff (and
other) fit measures.

By contributing the package DAKS we hope to have established a basis for com-
putational work in the so far combinatorial theory of knowledge spaces using the R
language and environment.
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Methods for the Analysis of Skew-Symmetry
in Asymmetric Multidimensional Scaling

Giuseppe Bove

Abstract The decomposition of any square matrix in symmetric and skew-
symmetric components has inspired many methods in asymmetric multidimensional
scaling (reviews are provided e.g. in Zielman and Heiser 1996; Bove and Rocci
1999; Borg and Groenen 2005; Saito and Yadohisa 2005). Separate analyzes of the
two components seem preferable when symmetry is much more relevant in the data
or when we want to represent separately skew-symmetric residuals of statistical
models (e.g. symmetry or quasi-symmetry). In this paper two and three-way meth-
ods for the analysis of skew-symmetry are reviewed focalizing on multidimensional
models with graphical capabilities.

1 Introduction

A skew-symmetric data matrix N D Œnij � is a square matrix in which:

nij D �nj i ; i; j D 1; 2; : : : ; n (1)

Matrix N can be directly observed as debits/credits balance data, preferences,
results of matches in a tournament, etc. or it can be derived as the skew-symmetric
component of an asymmetric data matrix � representing flow data, import/export
data, confusion rates, etc. In the second case � is split into a symmetric part M
and a skew-symmetric part N such that � D M C N, where M D 0:5.� C �0/
and N D 0:5.� ��0/, and �0 denotes the transpose of �. The sum of squares is
similarly decomposed

k�k2 D kMk2 C kNk2

G. Bove
Dipartimento di Scienze dell’Educazione, Università degli Studi Roma Tre, Italy
e-mail: bove@uniroma3.it

H. Locarek-Junge and C. Weihs (eds.), Classification as a Tool for Research,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-10745-0_29, c� Springer-Verlag Berlin Heidelberg 2010

271

bove@uniroma3.it


272 G. Bove

or in scalar notation

X

i

X

j

!2
ij D

X

i

X

j

m2
ij C

X

i

X

j

n2
ij

because the sum of cross-products vanishes. The previous splitting property holds
also for more general types of inner products which were completely character-
ized by Critchley (1988). Therefore the skew-symmetric part N may be viewed and
analyzed independently of the symmetric part M. Separate analyzes seem prefer-
able, for instance, when methods for the joint representation of the two components
fail to represent adequately matrix N, because symmetry is much more relevant in
the data, or when we want to represent separately skew-symmetric residuals of sta-
tistical models (e.g. symmetry or quasi-symmetry). In the following sections we
review some methods for multidimensional representation of N focalizing on their
graphical capabilities.

2 Scalar Product-like Models (Two-Way Case)

Most of the methods proposed for the analysis of two-way skew-symmetric data are
particular cases of the following general formulation:

nij D x0
i R xj C eij (2)

in which xi , xj are vectors of loadings (or coordinates) respectively for objects i and
j, R is a square matrix representing underlying relationships of asymmetry and eij

is an error term. Probably the first multidimensional method for representing skew-
symmetry was proposed in a pioneering paper by Gower (1977). It is based on the
particular form taken by the singular value decomposition (SVD) of N (for a proof
see e.g. Gower and Zielman, 1992),

N D P
Q0 D P
JP0 (3)

where the columns of P are the singular vectors, 
 D diag.ı1; ı1; ı2; ı2; : : :/ con-
tains the singular values, with the last diagonal element equal to zero when n is odd,
and J is a block diagonal matrix with 2	2 matrices



0 1

�1 0
�

along the diagonal and, if n is odd, the last diagonal element conventionally set
to one to ensure that J is orthogonal. The singular values come in pairs, and for
the presence of J, if a,b are left-hand singular vectors associated with the same
singular value then b,-a are the corresponding right-hand singular vectors. In the
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two-dimensional case the method proposed by Gower is based on the best rank-2
approximation of N given by the truncated SVD

N D P(2)�(2)J(2)P0
(2) C E D

D Œp1 p2�



ı1 0

0 ı1

� 

0 1

�1 0
� 


p0
1

p0
2

�

C E D ı1.p1p0
2 � p2p0

1/C E (4)

that is a particular case of (2) with xi D Œp1i ; p2i �
0 and

R D


0 ı1

�ı1 0

�

so that, in scalar notation, we have

nij D ı1.p1ip2j � p1jp2i /C eij (5)

It follows from the last equation that the method represents in a plane the objects
with coordinates provided by vectors p1;p2, and the appropriate interpretation of
the diagram is not in terms of distances but in terms of areas, in particular it is the
area of the triangle that points i and j form with the origin that is proportional to
the size of skew-symmetry, whose sign is given by the plane orientation (positive
counterclockwise). This solution is arbitrary to the extent that unit vectors p1;p2

may be replaced by any other linear transformation Œ˛p1 C ˇp2; �p1 C �p2� with
˛��ˇ� D 1. However this indeterminacy does not affect the area interpretation of
the diagram. For the purpose of illustrating interpretation of triangle areas, in Fig. 1
is provided the diagram obtained applying the Gower method to the skew-symmetric
component of asymmetric data concerning the e-message traffic among seven spe-
cialists in the study of social networks during a period of 18 months (Freeman 1997,
Table 3, p. 11). Labels represent the first three letters of specialist names. Posi-
tive skew-symmetry characterize the communication flows from the two specialists
named Wel and Ber, this means that they sent more messages than they received,
especially to the colleague named Fre (large triangle areas). Small skew-symmetry
concern communication between the specialists named Dor, Alb and Mul.

Rotational indeterminacy becomes important for the Gower method when we fit
more than two dimensions (a bimension or a hedron). We can restrict to the case of
an even number of dimensions, given the particular form taken by the SVD of N. In
the case of four dimensions (two bimensions) the model takes the form

nij D ı1.p1ip2j � p1jp2i /C ı2.p3ip4j � p3jp4i /C e�
ij (6)

and it follows that to deduce the skew-symmetry between objects i and j we have
to sum algebraically (weights given by singular values) twice the areas of trian-
gles in two diagrams. This feature discourages the use of more bimensions in the
applications.
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Fig. 1 First bimension of e-mail communication data Freeman 1997

However if we write

P�
(r) D P(r)


1=2
(r) ; U(r) D


p�

1; p
�
3; : : :

�
; V(r) D


p�

2; p
�
4; : : :

�
(7)

then the model can be rewritten in matrix form

N D U(r) ;V(r)
�



0 I
�I 0

� 

U0

(r)

V0
(r)

�

C E (8)

and it turns out (Rocci and Bove, 2002) that rotations within and between bimen-
sions are admissible when performed by an orthonormal matrix T with the particular
block form

T D



Z W
�W Z

�

(9)

that is

N D U(r) ;V(r)
�



0 I
�I 0

� 

U0

(r)

V0
(r)

�

C E D

D U(r) ;V(r)
�

T



0 I
�I 0

�

T0



U0
(r)

V0
(r)

�

C E (10)

Rotation methods, like that proposed by Rocci and Bove (2002, p. 415–416),
can allow to isolate independent systems of relationships in each bimension (as
rotations to simple structure in the factor analytic tradition), reducing the problem to
make linear combinations of areas in the different bimensions to reconstruct skew-
symmetry (for an application to import/export data see Rocci and Bove 2002).
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Rotations where particularly studied in a famous unpublished report by Harsh-
mann (1981) where he proposed Dedicom analysis of matrix N. Originally proposed
for square asymmetric data matrices, the model takes the form

N D ARA0 C E (11)

The truncated SVD of N provides r-dimensional Dedicom representation as well
(A D P(r) , R D 
(r)J(r)). Harshmann (1981) proposed several procedures for using
rotations to obtain simple structure.

Alternating least squares algorithms were proposed by Kiers and Takane (1993)
to fit Dedicom with different constraints on different bimensions. Instead of per-
forming a simple structure rotation of bimensions they proposed to constrain the
solution by imposing the same constraints on both dimensions of a bimension. These
algorithms can be usefully combined with rotations and a priori information on
asymmetry in order to define a possible strategy. In fact, when a single bimension is
not sufficient to represent adequately the data, we can fit more bimensions, choosing
constraints suggested by a preliminary rotated solution.

3 Scalar Product-like Models (Three-Way Case)

Methods for skew-symmetry were also proposed when we have to analyze more
data matrices regarding the same set of objects (three-way case). Replications may
represent several times, different subjects or occasions of observation. A general
formulation for the different methods proposed is a natural extension of the two-way
case

nijk D x0
i Rk xj C eijk (12)

in which xi , xj are vectors of loadings (or coordinates) respectively for objects i and
j in a common space, Rk is a square matrix representing underlying relationships of
asymmetry at occasion k and eijk is an error term.

In the following we list and comment briefly some particular cases of model
(12), in the equations below Dk are diagonal matrices with diagonal entries coming
in pairs and indicating the relative importance of the underlying bimensions for
occasion k.

(a) Three-way Dedicom, skew-Idioscal (Rk skew) (Harshmann, 1978; Kiers, 1993;
Zielman, 1993)

(b) Three-way single domain (“strong”) Dedicom (Rk D DkRDk skew) (Harsh-
mann, 1978; Kiers, 1993)

(c) Skew-Indscal (Rk D DkJ) (Zielman, 1993)

Models (a)–(c) were originally proposed for three-way (a)symmetric multidi-
mensional scaling and adapted to the skew-symmetric case. For only one bimension
the models are identical. Case (a) is most general but has a difficult interpretation
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because matrix Rk is not necessarily block diagonal, so that when we have more
than one bimension we need to analyze all possible pairs of dimensions (i.e. a large
number of diagrams). An application and interpretation of model (b) is provided in
Lundy et al. (2003). The interpretation of model (c) is very similar to the two-way
case, keeping in mind the different scales contained in matrix Dk corresponding to
each occasion. Negative or positive weights can be interpreted in term of direction
of asymmetry, unlike symmetric Indscal where negative weights cannot be consid-
ered. An application of this method to social mobility data is provided in Zielman
(1993).

A three-way model for asymmetric proximities was proposed in Zielman (1991,
p. 11), where the skew-symmetric component of the data is represented by a linear
model corresponding to the “vector model” of preference data proposed by Carroll
(1972). The model has the following form

nijk D w0
k.xi � xj /C eijk (13)

where the vector wk represents occasion k; the projections of objects-points on the
vector indicate the skew-symmetry rank order for that particular occasion.

4 Distance-like Models

The analysis of distances in a diagram is easier than the analysis of areas of triangles.
For this reason some authors considered the possibility to model skew-symmetry by
distances. Bove (1989) proposed to represent the size of skew-symmetry

ˇ
ˇnij

ˇ
ˇ by

euclidean distances performing standard symmetric multidimensional scaling, that
is by the model

f .
ˇ
ˇnij

ˇ
ˇ/ D

q
.xi � xj /0.xi � xj /C eij (14)

An advantage of this model is that it is easy to incorporate non metric approaches
and external information regarding the objects (Bove 2006) even by standard statis-
tical software (e.g. Proxscal, Spss-Categories). A disadvantage is that we loose the
possibility to analyze the sign of skew-symmetry in the diagrams. A proposal to
avoid this inconvenience is provided in Borg and Groenen (2005) that represent
skew-symmetry by the model

nij D sign.x0
i Jxj /

q
.xi � xj /0.xi � xj /C eij (15)

where distances between points estimate the size of skew-symmetry and the direc-
tion of rotation provides the sign, i.e. for each fixed object-point i all points j
positioned in the half plane with angles between 0ı and 180ı (clockwise direction)
have a positive estimate for nij , all the other points positioned in the half plane with
angles between 0ı and �180ı have a negative estimate for nij . Thus the diagram
interpretation of the sign of skew-symmetry works like in Gower diagrams. Borg
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and Groenen (2005, p. 501–502) also provide an application of the previous model
to the largely known Morse-code confusion data to show the performance of their
model. However they remind that a general-purpose optimization routine in MatLab
was applied to fit model (15), that may be quite sensitive to local optima.

5 Conclusions

We have reviewed some models for the analysis of skew-symmetry in two and
three-way cases. A possible strategy of analysis based on rotations and parameter
constraining was also suggested in the two-way case when data are represented in
more bimensions. Future developments could concern comparative applications of
three-way methods and further study of performances of the approaches modeling
skew-symmetry by distances.
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Canonical Correspondence Analysis in Social
Science Research

Michael Greenacre

Abstract The use of simple and multiple correspondence analysis is well estab-
lished in social science research for understanding relationships between two or
more categorical variables. By contrast, canonical correspondence analysis, which
is a correspondence analysis with linear restrictions on the solution, has become one
of the most popular multivariate techniques in ecological research. This restricted
form of correspondence analysis can be used profitably in social science research
as well, as is demonstrated in this paper. We first illustrate the result that canonical
correspondence analysis of an indicator matrix, restricted to be related to an external
categorical variable, reduces to a simple correspondence analysis of a set of concate-
nated (or “stacked”) tables. Then we show how canonical correspondence analysis
can be used to focus on, or partial out, a particular set of response categories in sam-
ple survey data. For example, the method can be used to partial out the influence of
missing responses, which usually dominate the results of a multiple correspondence
analysis.

1 Introduction

Simple correspondence analysis (CA) of two categorical variables, and multiple cor-
respondence analysis (MCA) of more than two variables, are methods commonly
used to visualize and interpret categorical data in the social and environmental sci-
ences. In ecology one of the main uses of CA is in a form known as canonical
correspondence analysis (CCA), which visualizes a matrix of biological data (e.g.,
abundance data of various species at a set of sampling locations) in relation to a
set of concomitant environmental variables, which could be measured on continu-
ous and/or discrete scales (CCA was originally proposed in Ter Braak 1986; for a
short summary, see Greenacre 2007, Chap. 24). In CCA the solution space, usually
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a two-dimensional plane, is not the optimal one that would have been obtained by
regular CA, but is restricted to be related linearly to the concomitant variables – in
other words, the objective is to find a solution directly related to the concomitant
variables.

This idea can also be used fruitfully in the analysis of social science data, as
we shall demonstrate. We give two possibilities in the context of MCA of a set of
question responses in a social survey: first, the analysis of the questions with a single
concomitant variable that is discrete; and second, the focusing on, or partialling out,
a chosen set of response categories. The strategy of partialling out the effects of
missing responses in a questionnaire survey is particularly useful since these usually
dominate the MCA solution and obscure the more interesting relationships amongst
the substantive variables.

2 Canonical Correspondence Analysis

The theory of CA is well-known and we just summarize it here to establish nota-
tion. Suppose that N is an I 	 J table of non-negative data – divided by its grand
total n it is called the correspondence matrix P D .1=n/N. Let the row and column
marginal totals of P be the vectors r and c respectively – these are the weights, or
masses, associated with the rows and columns. Let Dr and Dc be the diagonal matri-
ces of these masses. Then CA is based on the singular-value decomposition (SVD)
of S D D�1=2

r .P � rcT/D�1=2
c : S D UD� VT, where UTU D VTV D I. The princi-

pal coordinates of the rows and columns are F D D�1=2
r UD� and G D D�1=2

c VD�

respectively, hence are scaled in such a way that FTDr F D GTDcG D D2
� WD D2

� ,
i.e. the weighted sum of squares of the coordinates on the k-th dimension (or their
inertia in the direction of this dimension) is equal to 	2

k
, called the principal iner-

tia (or eigenvalue) on dimension k. Standard coordinates are similarly defined but
without scaling on the right by the singular values, and hence the standard coordi-
nates on any given dimension have weighted sum of squares equal to 1. The sum of
squares of the decomposed matrix S is called the total inertia, and this quantity is
decomposed by the squared singular values 	2

k
, which are in decreasing order. The

best solution in two dimensions would use the first two columns of the coordinate
matrices, and the explained inertia would be the sum of the first two terms 	2

1 C 	2
2 ,

usually expressed as a percentage of the total inertia.
When a separate set of concomitant variables is available that can be regarded

as possibly explaining the phenomena evident in the results of a CA, it is com-
mon to relate them to a given CA solution as supplementary variables (see, for
example, Greenacre 2007: Chap. 12). In ecological applications this is known as
‘indirect ordination’ because the concomitant variables play no role in determin-
ing the solution but are mapped into the solution a posteriori, with the result that
the concomitant variables may be poorly correlated with the CA solution. By con-
trast, in CCA, the dimensions are intentionally defined as linear combinations of
the concomitant variables, so this ensures that the concomitant variables have high
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correlations with the solution space: this is called ‘direct ordination’. Geometrically,
the principal axes in CCA are sought in that restricted part of the space which is
projected onto the concomitant variables. We can also look for principal axes in the
space that is uncorrelated with the concomitant variables, in which case the (linear)
effects of the concomitant variables have been partialled out. In this latter case we
have what is called partial canonical correspondence analysis (PCCA), which could
optionally also involve its own separate set of constraining concomitant variables.

Algebraically, CCA follows the same scheme as CA except that there is an ini-
tial projection of the data onto the space spanned by the concomitant variables.
Suppose X.I 	 K/ is the matrix of K concomitant variables used to restrict the
CA solution, supposed to be standardized to mean 0, variance 1 (the rows are
always weighted by their masses in all computations). Then the projection matrix
is Q D D1=2

r .XTDr X/�1XTD1=2
r and the matrix S defined previously, projected

onto the concomitant variables, is S� D QS. Notice here that projection, which is a
scalar product operation, incorporates the weighting of the rows by the row masses
in Dr . Having performed the projection, everything follows as for regular CA, using
S� rather than S. For PCCA, projection takes place on the space orthogonal to the
concomitant variables: S? D .I � S/Q, and then the same steps follow as before,
applied to S?.

In CCA there is a double decomposition of inertia: first, total inertia is decom-
posed into a part in the restricted space and the complementary part in the unre-
stricted space. In the restricted space there is the usual decomposition along princi-
pal axes, and similarly there can be a decomposition of the complementary part of
inertia along principal axes in the unrestricted space. In the applications considered
here, we shall use these results in the case of MCA, when the primary data in N
consist of dummy variables. Hence, to make our terminology even more specific,
we could say that we are performing ‘canonical multiple correspondence analy-
sis’ and ‘partial canonical multiple correspondence analysis’. The data considered
are from the survey of International Social Survey Program (ISSP) on Family and
Changing Gender Roles II (ISSP 1994), specifically responses from 2,494 respon-
dents in Spain to 11 questions relating to the issue of working women (Table 1 lists
the questions and the five substantive response categories).

3 Constraining by a Single Categorical Variable

In social science applications, the variables being analyzed are generally categorical,
hence the relevance of CA and MCA. Figure 1 shows the MCA of the Spanish
data for the questions in Table 1. Three clusters of response categories are evident:
all the missing categories at upper right, all the moderate responses (“agree” and
“disagree”) and middle responses (“neither agree nor disagree”) in a bunch near the
origin (these are the most frequent responses), and all extreme responses (“strongly
agree” and “strongly disagree”) at upper left. A demographic variable, age group,
with six categories from young to old, a1 (16–25 years) to a6 (more than 65 years),
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Fig. 1 MCA of 11 questions from ISSP (1994), Spanish sample (N D 2,494), with age group
variable as supplementary – the supplementary age categories are all close together near the centre
of the map (e.g., the labels a1, a5 and a6 are just visible, with the oldest age group a6 tending in
the direction of the missing responses)

Table 1 Eleven questions from ISSP (1994) concerning women working: respondents had to
choose between 1–strongly agree, 2–somewhat agree, 3–neither agree nor disagree, 4–somewhat
disagree, 5–strongly disagree

A[C] A working mother can establish just as warm and secure a relationship with her children
as a mother who does not work

B[�] A pre-school child is likely to suffer if his or her mother works
C[�] All in all, family life suffers when the woman has a full-time job
D[�] A job is all right, but what most women really want is a home and children
E[‹] Being a housewife is just as fulfilling as working for pay
F[C] Having a job is the best way for a woman to be an independent person
G[‹] Most women have to work these days to support their families
H[C] Both the man and woman should contribute to the household income
I[�] A man’s job is to earn money; a woman’s is to look after the home & family
J[‹] It is not good if the man stays at home and cares for the children and the woman goes

out to work
K[‹] Family life often suffers because men concentrate too much on their work

Don’t know/missings are coded as 6. Statements clearly in favour of women working are marked
(C), others clearly opposed (�), and the remainder not so clearly oriented (‹)
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is displayed in the form of supplementary points, all near the origin. This result
is typical of an MCA of questionnaire data such as these: the missing responses
dominate as well as response styles (moderates versus extremes, independent of the
fact that several questions have reverse wording) and a supplementary variable has
categories only slightly separated spatially.

Suppose that we wanted to see the map of the response categories specifically in
their relation to the age groups. This can be achieved by constraining the solution
space to be defined by the age categories, that is performing a CCA on the indicator
matrix of the 11 questions (66 dummy variables), with the indicator matrix of the age
groups (six dummy variables) as the constraining variables. This CCA is identical to
the CA of the concatenated matrix of the 11 cross-tabulations of the questions with
the age variable, that is the matrix with 66 rows and six columns with the 11 cross-
tables stacked one on top of another (this stacked matrix is equal to the transpose
of the 66-column indicator matrix of the questions multiplied by the six-column
indicator matrix of the age groups). This result follows from the fact that CCA is
equivalently defined as the CA of the weighted averages of the constraining vari-
ables for each response category (see, for example, Greenacre 2007, 191–192). This
simplifying result appears to be not well-known: for example, Nishisato’s “forced
classification” (Nishisato 1984) is identical to the CCA described here, which in turn
is identical to the CA of the stacked tables. Figure 2 shows the CA of the stacked
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Fig. 2 CA of cross-tabulations of 11 questions with age groups. The standard biplot scaling is
used (Greenacre 2007, Chap. 13)
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tables, which is more efficiently performed than the CCA of the large indicator
matrices.

In Fig. 2 the domination of the response styles seen in Fig. 1 has vanished and we
pick up the liberal-to-traditional scale from left to right in the response categories,
with the reversely worded questions lining up as we would expect: for example, the
most spread-out question is in favour of men working and women staying at home,
question I (see Table 1), from I5 on the left to I1 on the right, while question A in
favour of women working goes in the opposite direction. Notice that all the missing
value categories are on the right, in the direction of the older respondents.

4 Constraints for Dealing with Missing Responses

CCA can be used to focus on, or partial out, an external variable or variables.
In Fig. 1 we have all the missing response categories defining a diagonal spread
of points, very dominant in the analysis because of the high association amongst
missing responses on different questions. To avoid deleting cases that have missing
responses from the study, Greenacre and Pardo (2006a,b) proposed a subset version
of correspondence analysis to choose subsets of categories for visualizing – this
approach can be used to select all substantive response categories and ignore the
missing ones. The present approach is an alternative strategy where we define exter-
nal variables for constraining the solution. There are different ways of doing this,
and we show just one of the alternatives where the constraining variable is defined
as the count of missing responses for each respondent. For example, a respondent
with no missing respondents gets value 0, with one missing response 1, and so on,
with respondents giving missing responses to all 11 questions getting a value 11.
If we constrain the MCA solution to be linearly related to this single variable we
obtain a one-dimensional CCA solution. In Matschinger and Angermeyer (2006)
the missing value counts are also used to take care of missing responses – the count
variable is added as a categorical variable (i.e., with as many categories as levels of
counts) to each of the questions of the questionnaire and then generalized canonical
analysis is used with a restriction to concentrate the missing count categories onto a
single dimension. The idea is the same: to partial out the missing responses to avoid
having to delete cases with missing data.

Figure 3 shows the constrained solution as the horizontal axis (labeled ‘CCA1’),
and the second axis is the optimal first axis of the unconstrained solution (labelled
‘CA1’). Comparing this map to Fig. 1 we see that the constraint has forced the
missing categories to coincide with the first axis. The variable “missings” that we
created, is the sum of the 11 columns of the indicator matrix corresponding to the
missing categories, hence its position in space is the average of these categories, as
shown by the vector in Fig. 3.

In this sense CCA is acting like a target rotation of the MCA solution. The
remaining unconstrained dimensions are orthogonal to this dimension and so the



Canonical Correspondence Analysis in Social Science Research 285

0 1 2 3 4

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

CCA1

C
A

1

A1

A2

A3
A4

A5

A6

B1

B2

B3B4

B5

B6

C1

C2

C3C4

C5

C6

D1

D2

D3

D4

D5

D6

E1

E2

E3
E4

E5

E6

F1

F2

F3F4

F5

F6

G1

G2

G3

G4

G5

G6

H1

H2

H3H4

H5

H6

I1

I2

I3

I4

I5

I6

J1

J2

J3
J4

J5

J6

K1

K2

K3

K4

K5

missings
K6

Fig. 3 CCA of 11 questions constrained by number of missings, which is a point vector lying at
the average of the 11 dummy variables for the missing categories. This vector is constrained to be
the first axis in the CCA
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Fig. 4 CCA of 11 questions after partialling out “missings” counts. Missing categories (numbered
‘6’) now play almost no role in the solution

missing response effect has been mostly partialled out. Figure 4 shows axes 2 and 3,
the first two unconstrained axes of the CCA – we have kept the first unconstrained
axis vertical as in Fig. 3, so that Fig. 4 is a rotation of the solution in Fig. 3 around
the vertical axis, bringing into view the next dimension (labeled ‘CA2’) on the
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horizontal axis. The vertical separation is the more important one, separating out
the response styles, but now we manage to recover the liberal-traditional dispersion
along the horizontal axis, among the extreme responses at the top, and among the
moderate and middle responses at the bottom.

5 Discussion

We have shown how CCA can be used to incorporate external information into MCA
results or to treat specific response categories in survey data by imposing linear
constraints on the solution space. The map can be concentrated on the display of
these variables or categories, or their effects can be partialled out. We are also using
this approach fruitfully to study the “middle” response categories (Greenacre and
Pardo 2008) and their relationship to demographic variables, as well as to partial
out acquiescence effects which are rife in questionnaire data.
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Exploring Data Through Archetypes

Maria Rosaria D’Esposito, Giancarlo Ragozini, and Domenico Vistocco

Abstract In this paper we propose a mixed analytical and graphical exploratory
strategy based on data archetypes for the exploratory analysis of multivariate data.
Our approach is of considerable help in exploring the periphery of the data scatter,
exploiting an outward-inward perspective, to highlight small peripheral groups as
well as anomalies, outliers and irregularities in the data cloud shape. The strategy
is carried out in a comprehensive quantitative programming environment provided
by the joint use of the software system R and of the visualization system GGobi.
It provides a visualization system involving both static and dynamic graphics based
on the so-called multiple views paradigm. The views are organized in a spreadplot
and heavily exploit dynamics and interactive statistical graphics.

1 Introduction

Exploratory data analysis (EDA) is, in the words of Tukey (1977) p. 21, “a detective
work, finding and revealing the clues”, i.e. uncovering unanticipated structures in
the data. EDA uses numerical as well as visual and graphical techniques to accom-
plish its aims. Graphical and visual tools (such as stars, glyphs, parallel coordinates)
become particularly necessary for the exploration of multivariate data as they make
it possible to visualize multidimensional data in 2D (for a review see, among others,
Chambers et al. 1983; Wegman and Carr 1993).

However, visualization systems that focus on the graphical representation of
information can run into several problems. Mainly, there can be loss of valuable
information – when too much data are visualized on the screen – and needs to
organize discoveries off line (Yang et al. 2007). Interactive and dynamic statisti-
cal graphics which incorporate motion and user interaction with graphical display –
such as brushing and slicing, coloring and rendering, empirical and algebraic linking
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(Young et al. 1993) – can become part of the visualization techniques to enhance the
results of the analysis and to overcome some of the problems of the visualization
systems. A major advance can also be obtained by introducing integrated analyti-
cal devices into the visualization systems, which could aid users in the knowledge
discovery task.

In this paper we propose a mixed analytical and graphical exploratory strat-
egy based on data archetypes for the exploratory analysis of multivariate data.
Archetypes are few pure types given by weighted average of the data. They are use-
ful in summarizing the data, but, in our opinion, may also be profitably employed to
explore the periphery of the data scatter.

It is known that small peripheral groups, anomalies, outliers and irregularities in
the data cloud shape in higher dimensions can easily hide in marginal projection or
in usual graphical representations. On the contrary, by adopting an outward-inward
perspective, i.e. by analyzing the archetypes’ surroundings, all the previous data
structures can be more easily detected.

With this purpose, we propose an integrated strategy: first, based on the aims
of the analysis, extract the archetypes from the data, then represent the data in
the space spanned by the archetypes adopting dynamic and interactive visualiza-
tion tools. The strategy, carried out in the comprehensive quantitative programming
environment provided by the joint use of R (R Development Core Team 2008) and
GGobi (Cook and Swayne 2007; Lang et al. 2008), will result in a visualization
involving both static and dynamic graphics based on the so-called multiple views
paradigm (Wilhelm 2005), which allows interaction through dynamic graphics and
provides multiple different and simultaneous plots of the same data. The views will
be organized in a spreadplot, a spreadsheet-like arrangement of linked, dynamic,
interactive plots (Young et al. 1992, 1993).

The paper is organized as follows: Sects. 2 and 3, respectively, present the basic
elements of archetypal analysis and spreadplot design; the proposed procedure is
illustrated in Sect. 4, both theoretically and practically, exploiting a real dataset;
concluding remarks are in Sect. 5.

2 Elements of Archetypal Analysis

Archetypal analysis is a quite recent statistical method for multivariate data analysis
(Cutler and Breiman 1994). It aims at finding archetypes that represent a sort of
“pure individual types”, i.e. few points lying on the boundary of the data scatter that
are intended as a synthesis of the observed points. At the same time, as they are not
necessarily observed points, they represent ideal objects on which the observed data
may be patterned.

Formally, the archetypes a0
j are a convex combination of the observed data:

a0
j D ˇ0

j X (1)

where X is the observed data matrix, ˇji � 0 8j; i and ˇ0
j 1 D 1 8j:
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On the other hand, all the data points can be expressed in terms of the archetypes:

x0
i D � 0

i A (2)

with �ij � 0 8i; j and � 0
i 1 D 1 8i . In (2) A is the archetype matrix and � 0

i are
weights of the archetypes for each data point.

Equation (1) and the related constraints on ˇ’s coefficients imply that archetypes
belong to the convex hull boundary of the data, while (2) and the related constraints
on � ’s coefficients imply that all the data belong to the convex hull boundary of
the archetypes. Hence, the archetypes must coincide with the v vertices of the data
convex hull to fulfill the previous conditions (Porzio et al. 2008).

However, in practice, the number of the data convex hull vertices is generally too
large to properly synthesize the data. For this reason, looking for a smaller number of
pure types, and wishing to preserve their closeness to the data, Cutler and Breiman
(1994) defined the archetypes as thosem, withm � v, points that fulfill (2) as far as
possible, satisfying all the other conditions. Hence, given m, the archetypes can be
defined as the points A.m/ D .a1; : : : ; am/ minimizing the distances between the
observed data points x0

i and the reconstructed points Qx0
i .m/, with Qx0

i .m/ D � 0
i .m/ �

A.m/.
Formally, the archetypes are those points that minimize the quantity:

RSS.m/ D 		X � QX.m/		
F
D kX� � .m/A.m/kF D

	
	X� � .m/B0.m/X

	
	
F

(3)

holding all the other conditions, and where kYkF D
p
T r .YY0/ is the Frobenius

norm for a generic matrix Y, with B.m/ D Œˇj i � and � .m/ D Œ�ij �. The solution to
this minimization equation depends on m, and solutions are not nested as m varies.
That is, the archetypal points that solve (3) form D m� are not necessarily a subset
of the points that solve (3) for mDm�C 1. For this reason, we denote with a0

j .m/

the j -th archetype for a given m, and we will generally have a0
j .m/ ¤ a0

j .l/, for
m ¤ l . Theoretically, the RSS.m/ in (3) is a decreasing function of m that has the
maximum for m D 1 and goes to zero for m approaching the number of the convex
hull vertices. For a given m, it highlights the synthesizing power of the archetypes
since it shows how well archetypes reconstruct data.

Figure 1 exhibits a set of 50 simulated data points with seven convex hull vertices.
For this dataset, the RSS.m/ function shows that three archetypes are sufficient to
synthesize the data. Indeed, for m D 3 the RSS.m/ is close to zero as the majority
of the data belongs to the archetypes’ convex hull (the triangle highlighted in Fig. 1),
and it is well reconstructed by the archetypes.

Up to now archetypal analysis has been applied in many fields. In the field of
physics, it has been used to detect clusters of cellular flames (Stone and Cutler 1996;
Stone 2002) and of galaxy spectra (Chan et al. 2003). It has found application as a
tool for image decomposition (Marinetti et al. 2006, 2007), where archetypal anal-
ysis seems to provide results which are easily interpretable in terms of physical
meaning.
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Fig. 1 A set of 50 simulated data points with seven convex hull vertices. Clockwise: the dataset
with the convex hull boundary andm D 7 archetypes highlighted; the dataset with three archetypes
highlighted, data convex hull boundary and archetype convex hull boundary; the RSS.m/

function

Marketing research is also a relevant field of applications. The idea of archetypes
has been associated to the idea of archetypal consumers; they have been exploited
for market segmentation and consumer fuzzy clustering (Elder and Pinnel 2003; Li
et al. 2003). In the same field, the extension of archetypal analysis to interval coded
data has been recently proposed (D’Esposito et al. 2006).

In performance analysis, archetypes have been exploited to construct data driven
benchmarks (Porzio et al. 2008), to analyze CPU performance (Heavlin 2007), and
to obtain a multivariate ordering procedure based on the idea of the “worst-best”
direction selected through the archetypes (D’Esposito and Ragozini 2008).

In all the above mentioned applications the archetypes have been mainly adopted
as summarizing observations. In this paper we propose to use them as a tool to
analyze the structure of the data in a genuine exploratory fashion by merging the
analytics of archetypes with dynamic and interactive visualization tools according
to a spreadplot scheme (Young et al. 1992).
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3 Elements of Spreadplot Design

Enhanced man-machine interaction makes it possible to design tools for an interac-
tive visual exploration of data, and for visually querying the data. Strictly related
to interactivity is the paradigm of the linked views (Wilhelm 2005). It consists
of linking, empirically or algebraically, several views of the same dataset and
in propagating information through different plots that display different aspects
(dimensions) of the same dataset (Stuetzle 1987; Young et al. 1993). Brushing, slic-
ing and coloring allow one to visually explore data and to investigate if a particular
pattern or position is confirmed on different views of the same dataset.

In this framework, different data views can be arranged as a spreadplot (Young
et al. 1992), a spreadsheet-like arrangement of dynamic and interactive plots empir-
ically and algebraically linked together by equations. Each individual view can
be either dynamic or static, and can support high-interaction direct manipulation.
Moreover, different views can be linked and when the user changes the information
shown in one view, the changes can be processed by a set of equations and instantly
represented in the others. The user can interactively modify analysis parameter by
acting on user interface tools of the spreadplot, such as moving points, sliding
cursors.

In this paper, we propose an exploratory strategy based on the archetypes and
visually translated into a spreadplot. This includes a set of ad hoc R routines imple-
menting the method and is based on open source software whose core is the R
software system integrated with the visualization system GGobi (Buja et al. 2003)
through the rggobi package (Lang et al. 2008). We choose the GGobi system since
it contains several dynamic and interactive graphics such as tourplot, scatterplot,
bar chart and parallel coordinate plot. The whole software architecture exploits
the Model-View-Controller (MVC) design pattern and the Observer design pattern
(Buschmann et al. 1996; Gamma et al. 1995).

4 The Proposed Exploratory Data Analysis Strategy

It is well known that for high dimensions data structures anomalies and outliers,
irregularities in the data cloud shape, and small peripheral groups can easily hide
in marginal projections or in usual graphical representations. At the same time,
archetypes which are located on the boundary of the data convex hull, can provide
an outward-inward point of view on the data scatter that will allow to explore the
data cloud peripheries and highlight many data patterns more easily.

The strategy we propose for the exploration of a multivariate dataset is based
on the outward-inward perspective given by the archetypes, combined with the
geometric properties of the � coefficients in (2), and the dynamic and interactive
visualization tools conveyed in a spreadplot.
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The proposed exploratory strategy consists of the following steps:

� Derive the archetypes by increasing their number m one unit at time and look
at the RSS.m/ function in order to understand the synthesizing power of each
additional archetype;

� For each m analyze the archetypes in the data space through some graphical
representation (e.g. percentile profile plots, star plot, parallel coordinate plot) to
interpret and compare the archetypes;

� On the basis of the previous steps, choose the first interestingm and for this:

– Represent, through a parallel coordinate plot, the data within the space spanned
by the archetypes according to the � coefficients derived from (2);

– Use interactive and dynamic tools like brushing, coloring and linking to high-
light peripheries selecting the data with �ij coefficients close to 1 on each
archetype, i.e. select the outer data looking for gaps and peripheral structures
and for isolated data points;

� Iterate by increasingm, i.e. selecting another subsequent interestingm;
� Stop when increasingm does not provide additional information.

The previous steps are detailed in the following subsections using a real dataset
adopted as an illustrative example. The data refer to a study on the performance of
central processing units (CPUs) and consist of a set of 209 CPUs to be compared by
considering seven performance indicators (Cycle time – ns, Minimum memory – kb,
Maximum memory – kb, Cache size – kb, Minimum channels, Maximum channels,
Relative performance); low values of the indicators stand for poor performances
(Ein-Dor and Feldmesser 1987). Apart from the usual goals (discovering patterns,
groups, outliers, : : :), the analysis will aim also at finding CPUs with good or bad
performance in terms of the seven indicators, and in comparing all the others with
them.

4.1 Deriving and Analyzing Archetypes by Varyingm

The first step consists of looking at the RSS.m/ function defined in (3) and deriv-
ing the archetypes as m increases. When the aim is data synthesis, it is necessary to
choose one appropriatem. This will corresponds to the one that does not yield a sig-
nificant decrease in the RSS.m/. If the aim is to explore data, we suggest to look at
archetypes for different values of m, evaluating also their interpretability by visual-
izing them through percentile profile plot, stars or other graphical representations. In
particular, the percentile profile plot displays for each archetype a sequence of ver-
tical bars (one for each variable) with heights equal to the value of the cumulative
empirical distribution evaluated at the archetypal point. It visualizes the archetype’s
relative standing with respect to the others points.

Figures 2 and 3 show two spreadplots, respectively for m D 4 and m D 6,
portraying the RSS.m/ function, percentile profile plots/star plots along with the
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parallel coordinate plot for the computer data. Note that in the spreadplots the sliding
cursor makes it possible to change interactively the number of archetypes in order to
see how percentile profiles and stars change. The values of m D 4 and m D 6 have
been chosen because, by looking at the RSS.m/ function in Fig. 3, it appears that
RSS.m/ decreases sharply up to m D 6 with a quite flat behavior between m D 2

and m D 4.
An inspection of the percentile profile plot in Fig. 2 highlights that archetypes

a2.4/ and a3.4/ correspond to bad performances except for the first indicator in
a3.4/, as all the percentile bars are low in values, i.e. the archetypes are close to
the low values of the indicators. On the other hand a4.4/ represents the best CPUs
and a1.4/ the average CPUs. The coordinate parallel plot shows that the majority
of CPU data are close together with very few of them having better performances
on different indicators. The parallel coordinate plot also highlights skewed marginal
distributions.

Withm D 6 (Fig. 3) we note that one archetype represents the best CPUs (a3.6/),
and two archetypes represent the worst CPUs (a4.6/ and a5.6/). The remaining
three archetypes represent CPUs with high values on only some indicators. Even if
RSS.6/ is much lower than RSS.4/, the two additional archetypes give no further
information and there does not appear to be much gain in interpretability.

Fig. 2 A spreadplot for the CPUs dataset for m D 4 archetypes. Clockwise: the control panel
which clearly shows the sliding cursor for interactively choosing the number of archetypes, and the
list of possible graphical representations; the RSS.m/ function and the percentile profile plots for
the chosen four archetypes; the parallel coordinate plot of the CPUs data along with the archetypes
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Fig. 3 A spreadplot for the CPUs dataset for m D 6 archetypes. Clockwise: the control panel
which clearly shows the sliding cursor for interactively choosing the number of archetypes, and the
list of possible graphical representations; the RSS.m/ function and the star plots for the chosen
six archetypes; the parallel coordinate plot of the CPUs data along with the archetypes

4.2 Representing Data in the Spaces Spanned by the Archetypes

The next step of the proposed procedure relies on the representation of the data in
the m-dimensional spaces spanned by the archetypes.

The archetypes are vertices of a simplex in the data space <p, and for each data
point x0

i new coordinates with respect to the archetypes can be obtained by solving
the equation .�i1 C � � � C �im/ x0

i D �i1 a0
1 C � � � C �im a0

m.
The coefficients .�i1; : : : ; �im/ are the new coordinates of x0

i in an associated
space, and they are called barycentric coordinates (see e.g. Coxeter 1969) with
respect to the archetypes. The archetypes themselves have barycentric coordinates
.1; 0; : : : ; 0/; .0; 1; : : : ; 0/; : : : ; .0; 0; : : : ; 1/; as they are the associated space basis.
We note that, from the geometric properties of the barycentric coordinates, in the
space spanned by the archetypes the data points actually belong to an .m � 1/
dimensional subspace of this associated space.

The reconstructed data points Qx0
i have barycentric coordinates in the archetype

associated space as well. In particular, the equation .�i1 C � � � C �im/ Qx0
i D �i1

a0
1 C � � � C �im a0

m, is exactly solved for �ij D �ij , j D 1; : : : ; m. Hence, it turns
out that the �ij .m/ coefficients are the barycentric coordinates for the reconstructed
points in the associated space (see Porzio et al. 2008 for details).

Consequently, they may be exploited to map the original data into a lower dimen-
sional space. Given the relationship between each x0

i and its corresponding Qx0
i , each
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original point will be represented by the coefficients �ij into the archetype associates
space. Note that the same dataset may be mapped into many archetype spaces, one
for each value of m. Analyzing data in these associated spaces provides further
insights into the data structure from a different perspective.

4.3 Exploring the Peripheries of the Data Scatter

As previously stated, when the aim is to explore the data, it can be useful to look at
the archetypes for different values ofm. Indeed, it is worth noticing that looking at a
set of values ofmmay be necessary – even if theRSS.m/ indicates that a smallm is
sufficient to well reconstruct the data – to search for outliers and peripheral groups.
In such cases, it could happen that outliers will coincide with some archetypes not
corresponding to a sharp decrease in the RSS.m/. Indeed, the first archetypes will
catch the majority of data, while additional archetypes will point to outliers or to
small peripheral groups, if any.

The exploration task can be pursued exploiting static and dynamic graphical
representation, such as parallel coordinates and tourplot, in the associated space
provided by the barycentric coordinates. In the parallel coordinate plot of such asso-
ciated spaces, multivariate skewness could be highlighted as marginal asymmetry
along some directions. Moreover interaction tools – brushing, slicing and coloring –
can offer the user a thorough exploration of the data periphery. Brushing and col-
oring data around the archetypes in the parallel coordinate plot can highlight gaps
in the data structures, small groups and outliers. To enhance the detection of inter-
esting patterns the parallel coordinate plot can also be empirically linked to the
corresponding data in the tourplot graph.

For example, in Fig. 4, which correspond to m D 4 archetypes, the parallel coor-
dinate plot depicts all the data in a 4-D space where all the coordinates are the �
coefficients as previously stated (for the geometric properties of � coefficients it
is actually a 3-D space). The plot shows that, for three out of the four axes, some
points are isolated even if not very far from the others, while for the a3.4/ axis there
are three data groups. By pointing to the observations close to a3.4/ – i.e. those
points with coordinate values close to the pattern (0, 0, 1, 0) – we highlight three
data points in the tourplot along the Cycle time dimension. Further investigations
can be pursued to analyze the other groups appearing on the same archetype-axis.
Some skewness and clusters appear by looking along the directions of the first two
archetypes.

While in Sect. 4.1 we observed that going from m D 4 to m D 6 there was not
much gain in interpretability and synthesizing power, when exploring the periph-
eries of the data scatter, the analysis is enhanced at m D 6 archetypes. In fact in
Fig. 5, more peripheral groups appear: in four out of six dimensions small periph-
eral groups can be detected. For example, by pointing to the observations close to
a3.6/ – i.e. those points with coordinate values close to the pattern (0, 0, 1, 0, 0,
0) – we highlight in the tourplot twelve isolated data points along the Cycle time
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Fig. 4 The strategy in action for m D 4 archetypes: acting through brushing and coloring in the
parallel coordinate plot in the � space involves the highlighting of the corresponding points in the
tourplot

dimension. Remember that with m D 4 archetypes we succeeded in detecting only
three isolated data points. Furthermore, the first three archetypes and the last one
show severe skewness. It is worth noticing that the tourplot view in Fig. 5 spotting
the isolated group is not straightforward. In our case, with the aid of data representa-
tion in the space spanned by the archetypes and of interactive graphics, it was easier
for us to capture this particular projection.

5 Concluding Remarks

The approach we have used in this paper to explore multidimensional data scatter
seems promising in “finding and revealing the clues”, mainly in uncovering gaps in
the data structures, small groups, outlying values, asymmetries and irregularities in
the shape.

The whole procedure, being based on open source softwares, can be easily repli-
cated and perhaps enhanced. Moreover it is not computationally intensive and it
does not require huge hardware capabilities.

Finally, note that for the sake of presentation we split the procedure into several
spreadplots. However, all the different views can be merged in a unique spreadplot
and inspected at the same time.
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Fig. 5 The strategy in action for m D 6 archetypes: acting through brushing on the parallel
coordinate plot in the � space involves the highlighting of the corresponding points in the tourplot
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Exploring Sensitive Topics: Sensitivity,
Jeopardy, and Cheating

Claudia Becker

Abstract The general problem of nonresponse or false reporting in surveys is well
known. Especially when asking questions about so-called sensitive topics, these
effects can be severe. One proposal to overcome the problem is to use random-
ized response techniques for reducing bias due to these effects. The original work
of Warner (1965) deals with estimating the proportion of people in a population
having a certain (sensitive) characteristic. Later, also the collection of quantitative
sensitive variables came into focus. One general assumption of the models is that
people asked with these techniques respond honestly. More recently, researchers in
the field realized that also under randomized response we find false reporting due to
lying or not understanding the procedures. The paper reviews possible approaches
and discusses challenges in exploring sensitive topics and in understanding people’s
reactions on them.

1 Introduction

Avoiding nonresponse and false reporting is a major challenge when performing
questionnaire based surveys. Especially for sensitive topics, people might not want
to answer or, if responding, might not answer honestly due to the fear of compro-
mising themselves. To overcome this problem, Warner (1965) proposes to integrate
a randomization technique when asking sensitive questions to protect each single
respondent’s privacy while still being able to conclude on a population. Warner’s
original work deals with estimating proportions (assigned to binary variables, trans-
ferred to the case of qualitative sensitive characteristics by Horvitz et al. 1967;
Greenberg et al. 1969), but his approach can also be generalized to situations with
quantitative sensitive characteristics (e.g. Greenberg et al. 1971; Eichhorn and Hayre
1983).
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The general assumption of the models, namely that people respond honestly, even
to sensitive questions, because their privacy is protected by the techniques, might be
doubted. Even with randomized response, cheating happens. Reasons for this can be
seen in the context of the respondents’ jeopardy (Leysieffer and Warner 1976), or of
the questions’ sensitivity level (Gupta et al. 2002; Huang 2004). First approaches in
the literature develop procedures to estimate the level of false reporting (Clark and
Desharnais 1998). Also, estimation of the topics’ sensitivity level is used to judge
the reliability of answers.

Whether a topic is sensitive usually depends on the socio-cultural context. For
example, in the mid-seventies (Krotki and Fox 1974) investigate women’s fertility.
In their study, among the sensitive topics we find questions about abortions, sex-
ual activity before marriage, children born illegitimate, or the use of contraceptives.
Most of these topics would probably not found to be sensitive nowadays, at least in
Europe, since people’s attitudes towards them have changed. Hence, the classifica-
tion of topics according to their current sensitivity – apart from common sense or
scientific knowledge – might be helpful.

The paper is organized as follows. In Sect. 2, a brief introduction to randomized
response is given. Section 3 is dedicated to approaches for exploring the sensitivity
of topics, while Sect. 4 illustrates some problems in the estimation of sensitivity
itself. Finally, in Sect. 5 some ideas for further research are given.

2 Randomized Response

For understanding the concept of randomized response, consider the following
example for the case of a binary sensitive characteristic. The question of interest
is the consumption of illegal drugs during the last six months. Instead of asking
respondents directly, “Did you ever, during the last six months, consume illegal
drugs?” (with possible answers YES and NO), the interviewees are requested to act
according to the following instructions. The respondents get two dice, one red, one
white, and are asked to throw the dice and add the resulting numbers. Depending on
the result, they have to act further. If they got a total of 4–10 points, then they have
to answer YES or NO to the question given above. If, on the other hand, they got a
total of less than 4 or more than 10 points, they have to answer YES or NO to the
question “Did the red dice show a 2 or 5?” To reach the promised privacy protection,
the respondents must not be observed by the interviewer while performing the dice
experiment, and the respondents must not give any other answer than YES or NO.
Especially, they are not to tell the interviewer to which of the questions the given
answer belongs.

The general idea of randomized response techniques for qualitative characteris-
tics is hence to let the respondent answer to the sensitive question with some given
probability p, 0 < p < 1 and with 1� p let him or her answer to something differ-
ent, where only the respondent knows to which question the answer is given, while
the interviewer knows p. “Something different” varies with the various versions of
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randomized response. In the example given above, the so-called unrelated question
model (Horvitz et al. 1967; Abul-Ela et al. 1967; Greenberg et al. 1969), the alter-
native question is a question about some topic which has nothing to do with the
sensitive characteristic.

For quantitative characteristics, a similar approach is also possible (see Greenberg
et al. 1971), but here it is more convenient to let the respondent report a scrambled
answer (e.g. by multiplying the value of his/her sensitive characteristic by some ran-
dom number, cf. Eichhorn and Hayre 1983), where again only the respondent knows
the true value and the interviewer knows the distribution of the scrambling process.

Compared to asking sensitive questions directly, the randomized response
approaches have the advantage that the answers are given anonymously, since the
interviewer does not know which question is answered (or which is the true quantita-
tive value). Hence, there is no conclusion possible about the individual respondent,
but due to applying the method to a whole sample, still information about a pop-
ulation can be generated by the according estimators for the proportion of people
carrying the sensitive characteristic (in the qualitative case), or for the population
mean (in the quantitative case), respectively. The hopes which are connected with
randomized response are that respondents accept the protection of their privacy by
the method and hence do not feel the necessity to report falsely to the sensitive ques-
tion. When constructing estimators and comparing the various randomized response
versions, the general assumption hence is that only honest answers are collected due
to the randomization.

3 Exploring Sensitivity

When exploring people’s reactions to randomized response, one realizes that the
general assumption of honest answers might be questioned. In summer 2007, we
conducted an experiment on randomized response using an unrelated question
model. The setting (two dice, numbers) was as described at the beginning of Sect. 2,
the question asked was “Have you ever, during the last six months, deliberately
dodged the fare in public transport?” German associations for public transport esti-
mate from their own experiences of controls in buses, trains etc. that about 13–18%
of people using public transport do not pay the fares. The experiment yielded an
estimated proportion of about 28% traveling without paying the fare (females: 20%,
males: 35%). This surprisingly high value at seems to be a mixture of two effects.
On the one hand, the use of randomized response contributes to the increased value
(compared to the impression given by the public transport associations). Experi-
ences from studies show that this desired effect of reducing the estimated number of
unreported cases indeed results from randomized response techniques (one example
can be seen in the study of Goodstadt and Gruson 1975). On the other hand, in our
case the sample was biased towards younger people, since the experiment was con-
ducted during university’s open house, where traditionally many pupils and students
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show up. It might be assumed that the amount of persons dodging the fare is higher
among younger people.

One necessity for getting honest answers in such randomized response settings is
that people trust the protection of their privacy given by the randomization. Already
in the work of Leysieffer and Warner (1976) it is mentioned that this protection
might not be given if the randomization mechanism is not constructed with the nec-
essary precision. They define the so-called jeopardy, meaning that a respondent is
jeopardized if for a binary sensitive variable the probability

P.belonging to sensitive group Ajanswer induced by randomization/

> P.belonging to A/

which results in a decreasing willingness to cooperate (an hence an increase in non-
response), since the respondent feels exposed rather than protected. Leysieffer and
Warner conclude that the question design has to be chosen accordingly to decrease
jeopardy. Whether jeopardy is really a problem obviously depends on whether the
respondent realizes the probabilities mentioned above.

To supplement the results of our experiment, we also asked the respondents
whether they thought that their privacy was really protected by the method (“Do you
think that now we really do not know whether you personally dodged the fare?”).
Here, about 59% (females: 57%, males: 61%) signalled their trust, meaning that
more than 40% of the respondents did not assume that their privacy was really guar-
anteed by the method. Hence, we conclude that a lack of trust into the method exists
which may cause problems when applying such randomized response techniques.

Clark and Desharnais (1998) explicitly assume that there is a certain amount
of respondents not reacting according to the randomized response instructions,
the so-called cheaters. Clark and Desharnais introduce a special version of ran-
domized response for a dichotomous sensitive characteristic, the forced answer
randomized response, to estimate the proportion of cheaters in a sample. In this ran-
domized response version, the respondents, with probability p, have to answer to
the interesting question (“Do you belong to the sensitive group?”), with 1 � p they
are just told to answer “Yes” (independently of their membership to the sensitive
group). Since in this setting, the answer “Yes” is potentially stigmatizing, Clark and
Desharnais assume that cheaters always answer “No”. Then in their model it is pos-
sible to estimate the proportion of cheaters and to test this proportion against zero.
Clark and Desharnais do not propose any adjustment of the randomized response
estimator, but conclude that, if the amount of cheaters is too large, the survey results
are not to be used. In their work it is not discussed whether the cheater assumption
(cheaters always answer “No”) is realistic. Moreover, the problem of people not
understanding the randomized response instructions at all is not considered.

In our experiment the interviewers had to write down their impression of whether
the respondents understood what they had to do according to the instructions pre-
sented to them. Although this is only a subjective personal impression, it is quite
interesting that according to the interviewers’ opinion, only about 82% (females:
80%, males: 84%) of the respondents did really understand the instructions.
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Altogether the results of the experiment hint to the fact that a not too small
amount of people do not trust the randomized response idea, or do not under-
stand the instructions to perform a randomized response technique as intended.
Both can yield the problem of people not answering accordingly to the randomized
response type questions, either intentionally, or unintentionally. But the assumption
of answering as instructed is still a basic one in randomized response techniques. In
the following section, we will briefly introduce the sensitivity level and its estima-
tion and show how this estimation is influenced by people not answering according
to the instructions.

4 The Sensitivity Level

Gupta et al. (2002) introduce the sensitivity level of a topic in the framework of
a quantitative sensitive variable. They define the method of optional randomized
response: the respondent chooses to either answer directly, or to give a scrambled
answer according to some randomization mechanism. The sensitive question asked
is of the type “Which value does the interesting variable have in your case?” (e.g.
“What amount of your income did you not declare for the tax declaration last
year?”). The sensitivity level of the topic is then defined as the probability that
scrambling is chosen instead of direct answering.

Denote, more formally, the sensitive variable by X > 0, and let the scram-
bling variable be S > 0, then the respondents report Y D SZX , whereZ D 1 if the
answer is scrambled,Z D 0 otherwise. The sensitivity level is given as E.Z/ D w.
Gupta et al. derive estimators for the mean �X of the sensitive variableX as well as
for the sensitivity level w.

In this model the central assumptions are that w is a population parameter (espe-
cially it is not varying individually between the respondents), w is independent of
X , and all respondents understand the randomized response instructions and answer
honestly according to these instructions.

In the results of our experiment (dodging the fare in public transport) we see
that there exists a nonignorable amount of non-understanders and of non-trusting
respondents. Moreover, it can also be shown that at least in this experiment trust and
understanding are independent. Hence the assumption of people understanding and
acting according to the instructions might be doubted. Finally, it can be noted that
some people, independently of what they were instructed to do, openly reported that
they did never dodge the fare intentionally, while none of the respondents openly
reported having dodged the fare. Hence, it can also be concluded that the assumption
of w being independent of X might not hold.

A small simulation shows the influence of violating these assumptions (w inde-
pendent of X , all respondents acting according to instructions) on the estimation
of �X and w. Assume the setting given in Gupta et al. (2002), where X D ˛ C
ˇV C V 1=2", with V �  .1=1:44; 5/ (shape D 1=1:44, rate D 1=5), " � N.0; 1/,
S � �2

1. The values of ˛ and ˇ are chosen yielding �X D 24:167. Scrambling
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Table 1 Simulation results for sensitivity level: estimated values when violating the assumptions

c D 90%-quantile c D 80%-quantile
n w bw b�X w bw b�X

100 0:5 0:481 23:167 0:5 0:462 22:618

100 0:6 0:574 23:165 0:6 0:555 22:625

100 0:9 0:859 23:144 0:9 0:825 22:600

500 0:5 0:483 23:155 0:5 0:465 22:595

500 0:6 0:579 23:159 0:6 0:557 22:612

500 0:9 0:863 23:171 0:9 0:833 22:601

1,000 0:5 0:484 23:167 0:5 0:466 22:606

1,000 0:6 0:579 23:167 0:6 0:557 22:612

1,000 0:9 0:864 23:158 0:9 0:833 22:592

is simulated as described below, for each respondent Y D SZX is recorded. The
simulation is run with 20;000 replications for samples of sizes n D 100; 500; 1; 000
and sensitivity levels w D 0:5; 0:6; 0:9.

To model the dependency of w on X , the respondents’ behavior is modelled in
the following way: ifX < cut-off value c, then the sensitivity level w is identical for
all respondents, and hence a proportion w of the respondents reports the scrambled
value ofX , while 1�w report their true value. If, on the other hand,X � c, then all
respondents report only half of their true value. The value c is chosen as a certain
quantile of the X distribution. The results are summarized in the following Table 1.

Obviously, violating the assumptions influences the estimation quality. In gen-
eral, we can see a tendency of the sensitivity level being slightly underestimated
(getting worse for larger sensitivity levels), while the influence is stronger for
estimating the population mean of the sensitive characteristic (which is also under-
estimated). The effects become better visible for larger amounts of people not acting
according to the instructions (c chosen as the 80% quantile), and it may be conjec-
tured that we can generate even stronger effects if choosing a different answering
mechanism for the non-compliers. Moreover, the effects do not vanish for larger
sample sizes.

5 Conclusions

Further research on the application of randomized response techniques will have
to deal with the fact that the strong assumptions like people acting according to
instructions given to them and answering honestly due to the protecting effect of
the methods do not hold in practice. In the special case of estimating the sensitiv-
ity level of a certain topic it can be seen that already small deviations from these
assumptions disturb the results clearly. Moreover, some of the assumptions might
also have to be questioned, e.g. the assumption of the sensitivity level being inde-
pendent of the values of the sensitive variable and identical for the whole population.
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Hence, it might be necessary to find ways to define the sensitivity level differently.
For modelling answering behavior, it might be interesting to integrate behavioral
science into models and estimators. Also, robust estimation of �X and w could be a
promising approach to overcome the problems connected with peoples’ behavior in
reality.
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Sampling the Join of Streams

Raphaël Féraud, Fabrice Clérot, and Pascal Gouzien

Abstract One of the most critical operators for a Data Stream Management System
is the join operator. Unfortunately, the join operator between the stream A and B is
a blocking operator: for each current tuple of the stream A, the entire stream B have
to be scanned. The usual technique used for unblocking stream operators consists to
restrict the processing to a sliding window. This technique emphasizes recent data
which are considered to be more relevant than old data. However, in a Data Stream
Management System, a general approach is needed to join any data streams for any
applications. Our approach is to consider data stream join as an estimation problem.
The estimation model is simple and generic: a reservoir per data stream is used to
model the join. The quality of join estimator is based on the frequencies of join key
in the join. We propose four algorithms to feed reservoirs. The proposed methods
outperform reservoir sampling approach on synthetic and real data streams.

1 Introduction

For a telecommunication operator there is at least two major applications of stream
mining techniques:

� The first one consists of processing network sensor. To build indicators for
monitoring the network, sensors are installed on network nodes. Each sen-
sor is equiped with processors and memory. Each sensor emits a stream. The
monitoring module joins and aggregates data from each distributed stream.

� The second major application for a telecommunication operator is the feeding
of information system. Each application (services, CRM, Billing, etc.) produces
data. These data are written on operational data stores. Each day, the opera-
tional data stores are used to feed the datawarehouse. To feed datawarehouse
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at lower cost, tables can be processed as streams on a centralized Extraction
Transformation and Loading server.

These two applications lead to different constraints. For processing network sensor,
each stream has to produce its result without information about others streams. For
feeding information system, streams are processed together on a centralized server.
Therefore streams can exchange information. In the next section we propose a gen-
eral framework for sampling join of streams. Four algorithms using this framework
are detailed in the following section. These algorthms are tested first on a synthetic
problem and then on a real problem. On the last part we achieve the comparison
with a reminder of application constraints.

2 General Framework

Our goal is to be able to answer various queries on the join of two data streams
F1 and F2 at any point t in time: Unfortunately, the join operation is blocking. The
join cannot be emitted as a flow without keeping F1 and F2 in memory under finite
memory constraint, the whole join cannot be produced (see Babcock et al. 2002 for
an overview of stream mining). The join must be estimated from samples of F1 and
F2. To produce and maintains a sample from a stream of size n, Reservoir Sampling
algorithm (Vitter 1985) an inclusion probability of n=.t C 1/ is given for each tuple
arrived at time t. An interesting property of this algorithm is that, when t tuples have
been observed, all the t tuple have the same probability to be included in the reser-
voir: n=t . It exists biased version of this algorithm, to take into account recent data
(Aggarwal 2006) or weighted data (Chaudhuri and Motwani 1999; Kolonko and
Wasch 2004; Efraimidis and Spirakis 2004). A first solution for Sampling join con-
sists of sampling each stream using reservoir sampling and then join them. However,
the drawback of this approach is that when the number of tuples is important each
reservoir can contain a lot of tuples that do not join. In the stream mining frame-
work, memory resources are limited, and it is crucial to avoid the wasting space.
Chaudhuri and Motwani (1999) and Chaudhuri et al. (1999), proposed an algorithm
to avoid the wasting space. A first step consists to draw a biased sample for the first
stream with weight corresponding to the frequency on the second stream. The sec-
ond step consists to complete the sample with tuples of the second stream. Another
interesting approach is the Ripple join algorithm (see Hellerstein et al. 1997; Heller-
stein and Haas 1999; Hellerstein et al. 2000). The idea is to produce at anytime an
estimation of the query with a confidence interval. The user stops the query when the
confidence interval is sufficient. The drawback of this approach is that the compu-
tational time and the memory resources needed are unknown in advance. A general
framework is proposed by Das et al. (2003). The model is composed by a reservoir
for each stream. When a query is requested, reservoirs are joined. The model can be
integrated to exchange information between each reservoir, or modular to be decen-
tralized. We use and develop this general framework for sampling joins of streams.
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Fig. 1 General framework

The sample of the join consists in two or more reservoirs which can be joined at any
time. We have to consider four probabilities by stream (see Fig. 1):

� PF .i/, the probability of join key i in the stream F,
� PR.i/, the probability of join key i in the reservoir R,
� q.i/, the inclusion probability of join key i in the reservoir,
� qout.i/, the exclusion probability of join key i from the reservoir.

3 Four Algorithms for Sampling the Join of Streams

3.1 Reservoir Sampling

To draw a sample of size n from a stream, reservoir sampling algorithm (Vitter
1985) takes the n first points. Then, each following tuples randomly replace one of
the tuples of the reservoir with the probability:

q.t/ D jRj=.t C 1/

It can be shown that when t tuples have been processed, the probability of each tuple
of the reservoir is jRj=t . Reservoir sampling allows to draw efficiently an uniform
sample for each stream, which can be joined at any time.

3.2 Weighted Reservoir Sampling

The drawback of reservoir sampling is that each reservoir may contain a lot of
keys which do not join. When memory resources are limited, it is crucial to avoid
this wasting reservoir space. In other words, we need to reach in each reservoir
a probability distribution of each key which maximizes the size of the join and
which respects the key distribution in the join with a bounded reservoir size. If we
formalize our idea we obtain that we want to maximize the join size:

jR1j � jR2j �
X

j

PR1
.j / � PR2

.j /
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under three constraints:

� P
j PR1

.j / D 1 and 8i PR1
.i/ > 0,

P
j PR2

.j / D 1 and 8i PR2
.i/ > 0, PR1

and PR2
are probabilities,

� R1 CR2 D R, the sum of the size of each reservoir is bounded,

� PR1
.i/:PR2

.i/
P

j PR1
.j /:PR2

.j /
D PF1F2

.i/, there is no sampling bias,

The previous optimisation problem is equivalent to maximize independently:

� jR1j � jR2j under the constraint R1 CR2 D R
� P

j PR1
.j /:PR2

.j / under the constraints
P

j PR1
.j / D 1 and 8i PR1

.i/ > 0,P
j PR2

.j / D 1 and 8i PR2
.i/ > 0

Therefore, the optimal solution is:

� R1 D R2 D R=2,

� 8i PR1
.i/ D PR2

.i/ and as PF1F2
.i/ D PF1

.i/:PF2
.i/

P
j PF1

.j /:PF2
.j /

then the optimal

solution is obtained using: PR1
.i/ D PR1

.i/ /pPF1F2
.i/

It can be shown that the obtained join size jJ j is larger than the one obtained using
Reservoir Sampling. Using Reservoir Sampling, with two reservoirs of equal size
R=2, we have:

jJRS j D
�
R

2

�2X

i

PF1
.i/:PF2

.i/

Using Weighted Reservoir Sampling, we have:

jJWRS j D
�
R

2

�2X

i

PR1
.i/:PR2

.i/

, jJWRS j D
�
R

2

�2 P
i PF1

.i/:PF2
.i/

�P
j

p
PF1

.j /:PF2
.j /
�2

We have
�P

j

p
PF1

.j /:PF2
.j /
�2 � 1 and

P
i PF1

.i/:PF2
.i/

�P
j

p
PF1

.j /:PF2
.j /

�2 � 1 then

jJRS j � jJWRS j �
�
R

2

�2

3.3 Deterministic Reservoir Sampling

To obtain the optimal estimator, the minimum variance estimator, a sample drawn
from the join key distribution is needed. It is the purpose of Deterministic Reservoir
Sampling. Deterministic Reservoir Sampling uses three steps to reach this goal:
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� At the first step a sampling design based on the join key is built.
� At the second step the samples R1 and R2 are collected.
� At the third step the obtained samples R1 and R2 are optimised.

The sampling design consists of the draw of jJ j keys according to the distribution
of the join key in the join:

� J D 0
� For i D 1 to jJ j do

– Draw a key k from PF1F2
.k/

– J D J C k
The second step consists of the collect of the J desired keys. Streams are read until
size of desired join is obtained. Keys are included for both reservoirs in order to
respect the sample design for each key:

� R1 D 0
� R2 D 0
� While jR1j � jR2j < jJ j do

– If a key k arrive fromF1 then if jR1.k/j<jJ.k/j and jR1.k/j�max.1; jR2.k/j/
< jJ.k/j then R1 D R1 C k

– If a key k arrive fromF2 then if jR2.k/j<jJ.k/j and jR2.k/j�max.1; jR1.k/j/
< jJ.k/j then R2 D R2 C k

The purpose of the last step is to avoid rounding error between the obtained samples
R1 and R2 and the sampling design J. For each key, stop condition of the second
step is that the number of obtained values is greater than the desired values. For
large values of jJ j, the rounding error can be important. For example, with a sample
design of 1; 001 items for a particular key, if 1;000 items are obtained on R1 and 2
on R2, the rounding error is on the same order of the number of items needed. The
last step of Deterministic Sampling Reservoir allows to reduce this rounding error.
It is done only when a query is requested on the join.

� For all join key i in jR1 >< R2j
– E1 D .jR2.i/j � .jR1.i/j � 1/� jJ.i/j//2
– E2 D .jR1.i/j � .jR2.i/j � 1/� jJ.i/j//2
– E D .jR2.i/j � jR1.i/j � jJ.i/j//2

� While .E1 < E and jR1.i/j > 1/ or .E2 < E and E2 < E1 and jR2.i/j > 1/
– if .E1 < E2/ then exclude a key i from R1

– if .E2 < E1/ then exclude a key i from R2

– Evaluate E , E1, E2
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3.4 Active Reservoir Sampling

We want a sample where the distribution of the join key is as close as possible of
the true one. Here, the idea is to minimize the Khi2 between PR1R2

and PF1F2
:

Khi2.PR1R2
; PF1F2

/ D jR1 >< R2j
X

i

�
PR1R2

.i/� PF1F2
.i/
�2

PF1F2
.i/

The optimisation is done by controlling inclusion probabilities q1.i/ and q2.i/:

qtC1
1 D qt

1 � ˛
@Khi2.PR1R2

; PF1F2
/

@q1.k/
(1)

Update equation is obtained by the derivation of the (1):

@Khi2.PR1R2
; PF1F2

/

@q1.k/
D
X

i

jR1 >< R2j
PF1F2

.i/
:
@K.i/

@q1.k/

The first term of the previous equation is constant for any given key i , and K.i/ D
�
PR1R2

.i/ � PF1F2
.i/
�2

. For the reservoir R1, we have:

@K.i/

@q1.k/
D
X

j

@K.i/

@PR1
.j /
� @PR1

.j /

@q1.k/
(2)

The first term of the (2) is obtained by direct derivation, and the second term is
obtained from the balance equation between inputs and outputs:

@PR1
.j /

@q1.k/
D�.1��jk/

D1

jR1jPF1
.k/
jR1.j /j
jR1j C�jk

D1

jR1j
�

PF1
.k/�PF1

.k/
jR1.j /j
jR1j

�

(3)
Where �ij D 1 if i D j and 0 else, and jD1j is the rate of the stream 1.

4 Experimental Results

The accuracy of the system is given by:

� The variance (robustness) of the estimator,
� The size of the obtained sample join which is linked to the confidence interval on

the query result,
� and the memory resources used.

To evaluate each of these indicators, a toy problem is used: two streams, contain-
ing three keys with very different probabilities (see Table 1), are joined. Variances
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Table 1 A toy problem:
frequencies table of each
stream

Key F1 F2 F1 >< F2

1 0.05 0:02 0:012

2 0.01 0:9 0:10

3 0.94 0:08 0:88

Fig. 2 All the following results are obtained using 100 draws for each value

Table 2 A real problem:
frequencies table of each
stream

F1 F2 F1 >< F2

Size 408333 30239496 19550134962
Number of 74117 61381 61357

joined keys

and size of joins versus size of reservoirs are observed using 100 draws for each
value (see Fig. 2). We observe that Reservoir Sampling estimator is not robust:
large variance and small size of join. Deterministic Reservoir Sampling estimator is
robust: smaller variance than other estimators. Weighted Reservoir Sampling esti-
mator leads to a large size of join, but with a variance higher than Deterministic
Reservoir Sampling. Active Reservoir Sampling seems to outperform other algo-
rithms: low variance, and large size of join for limited resources. To confirm these
first results, real traces extracted form information system of Orange is used:

� A services subscription trace F1,
� An use of services trace F2.

The first conclusion of the test on real traces is that with a large number of keys (see
Table 2), Active Reservoir Sampling cannot be used (computational time cost is
n3). Reservoir Sampling estimators still not robust: large variance and small size of
join. Weighted Reservoir Sampling estimator performs better than Reservoir Sam-
pling. Deterministic Reservoir Sampling estimator outperforms other estimators:
low variance, and large size of join for limited resources (see Fig. 3).

5 Conclusion and Future Works

In this preliminary work, we proposed four algorithms to build one of the most crit-
ical operators for a Data Stream Management System: the join operator. On real
traces, Deterministic Reservoir Sampling outperforms other estimators. It seems to
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Fig. 3 All the following results are obtained using 100 draws for each value

be the best algorithm for joining streams. Nevertheless, it depends on the appli-
cation. Deterministic Reservoir Sampling needs to exchange frequencies between
each reservoir. For distributed sensors in a telecommunication network, it is not
possible. For distributed streams Weighted Reservoir Sampling is well-suited. In a
future work, we need to investigate deeper theoretical properties of each algorithm.
In particular, we need to bound variances of each estimator and to evaluate the error
on different types of queries.
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The R Package fechner
for Fechnerian Scaling

Thomas Kiefer, Ali Ünlü, and Ehtibar N. Dzhafarov

Abstract Fechnerian scaling provides a theoretical framework for constructing
distances among objects representing subjective dissimilarities. A metric, called
Fechnerian, on a set of objects (e.g., colors, symbols, X-ray films, or even statis-
tical models) is computed from the probabilities with which two objects within the
set are discriminated from each other by a system (e.g., person, technical device, or
even computational algorithm) “perceiving” these objects. This paper presents the
package fechner for performing Fechnerian scaling of object sets in R. We describe
the functions of the package and demonstrate their usage on real Morse code data.

1 Introduction

Let fx1; : : : ; xng be a set of objects endowed with a discrimination function
 .xi ; xj /. The primary meaning of  .xi ; xj / in Fechnerian scaling (FS) is the
probability with which xi is judged to be different from (not the same as) xj . For
example, a pair of colors .xi ; xj / may be repeatedly presented to an observer, and
 .xi ; xj / may be estimated by the frequency of responses “they are different.” Or,
.xi ; xj /may be a pair of statistical models, and .xi ; xj / the probability with which
model xj fails to fit (by some statistical criterion) a randomly chosen data set gen-
erated by model xi . Moreover,  need not be a probability, it can be any pairwise
measure which can be interpreted as the degree of “how dissimilar xi and xj are.”

FS is aimed at imposing a metric on fx1; : : : ; xng based on  . Unlike mul-
tidimensional scaling (e.g., Kruskal and Wish 1978), FS does not require the
 -data to satisfy such properties as constant self-dissimilarity ( .xi ; xi /� const)
or symmetry ( .xi ; xj /D .xj ; xi /). It is a well-established empirical fact that
 .xi ; xj / is not a metric. Discrimination probabilities based on same-different
judgments (see the Morse code data used in this paper) systematically violate the
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probability-distance hypothesis, a hypothesis the data-analytic techniques such as
multidimensional scaling are based on: for some “true” distance d.xi ; xj / and some
monotone transformation f ,  .xi ; xj /Df .d.xi ; xj //. The only property of the
 -data which is required by FS is regular minimality. In addition to the Fechnerian
distances, FS also computes geodesic chains and loops, points of subjective equal-
ity, and the generalized Shepardian dissimilarity index. These concepts of FS are
explained in Sect. 2.

This paper presents the R (http://www.R-project.org/,R Development Core Team
2009) package fechner for FS of object (or stimulus) sets. The package is avail-
able on CRAN (http://CRAN.R-project.org/package=fechner). It has functions for
checking the required data format and the fundamental regular minimality (or maxi-
mality) property. The main function of the package computes the overall Fechnerian
distances, and such additional information as the geodesic chains and loops, oriented
Fechnerian distances, points of subjective equality, and the generalized Shepardian
dissimilarity index. There are plot and summary methods for graphing and out-
lining the results obtained from FS analyses. Currently available software for FS
includes FSCAMDS, which runs on MATLAB, and a MATLAB toolbox. This soft-
ware can be downloaded from http://www.psych.purdue.edu/~ehtibar/ and http://
www.psychologie.uni-oldenburg.de/stefan.rach/, respectively.

The paper is structured as follows. In Sect. 2, we briefly review the theory of FS.
In Sect. 3, we describe the functions of the package fechner. In Sect. 4, we apply
the functions to real Morse code data of discrimination probabilities.

2 Theory of FS

For details about the theory of FS, see Dzhafarov and Colonius (2006). The only
property of the  -data which is required by FS is regular minimality (RM). This
property can be formulated in three statements:

(a) For every xi there is one and only one xj such that  .xi ; xj / <  .xi ; xk/ for
all k ¤ j (this xj is called the point of subjective equality, or PSE, of xi );

(b) For every xj there is one and only one xi such that  .xi ; xj / <  .xk ; xj / for
all k ¤ i (this xi is called the PSE of xj );

(c) xj is the PSE of xi if and only if xi is the PSE of xj .

Every data matrix in which every diagonal entry  .xi ; xi / is smaller than all entries
 .xi ; xk/ in its row (k ¤ i/ and all entries  .xk ; xi / in its column (k ¤ i/ satisfies
RM in the simplest (so-called canonical) form. In this simplest case every object xi

is the PSE of xi . (Note that regular maximality can be defined analogously, replacing
“minimal” with “maximal.” This is required when the  -data represent closeness
values rather than differences: e.g.,  .xi ; xj / may be the percent of times xi is
judged to be the same as xj .)

Given a matrix of  .xi ; xj /-values with the rows and columns labeled by
fx1; : : : ; xng, if (and only if) RM is satisfied, the row objects and column

http://www.
-project.org/
http://CRAN.
-project.org/package=fechner
http://www.psych.purdue.edu/~ehtibar/
http://www.psychologie.uni-oldenburg.de/stefan.rach/
http://www.psychologie.uni-oldenburg.de/stefan.rach/
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objects can be presented in pairs of PSEs .x1; xk1
/; .x2; xk2

/; : : : ; .xn; xkn
/, where

.k1; k2; : : : ; kn/ is a permutation of .1; 2; : : : ; n/. The FS procedure identifies and
lists these PSE pairs and then relabels them so that two members of the same pair
receive one and the same label:

.x1; xk1
/ 7! .a1; a1/; .x2; xk2

/ 7! .a2; a2/; : : : ; .xn; xkn
/ 7! .an; an/:

For instance, the matrix of  -data

2

6
6
4

x1 x2 x3

x1 0:2 0:1 0:5

x2 0:7 0:3 0:2

x3 0:1 0:6 0:3

3

7
7
5

becomes 2

6
6
4

a3 a1 a2

a1 0:2 0:1 0:5

a2 0:7 0:3 0:2

a3 0:1 0:6 0:3

3

7
7
5 D

2

6
6
4

a1 a2 a3

a1 0:1 0:5 0:2

a2 0:3 0:2 0:7

a3 0:6 0:3 0:1

3

7
7
5

in which each diagonal entry is minimal in its row and in its column. After this rela-
beling the original function .xi ; xj / is redefined: pij D O .ai ; aj /. In the package
fechner the pairs of PSEs are assigned identical labels leaving intact the labeling of
the rows and relabeling the columns with their corresponding PSEs (referred to as
canonical relabeling).

FS imposes a metric G on the set fa1; : : : ; ang in such a way that, if xi and
xi 0 are each other’s PSEs relabeled into ai and xj and xj 0 are each other’s PSEs
relabeled into aj , then G.xi ; xj / D G.xi 0 ; xj 0/ D G.ai ; aj /. For every pair of
objects .ai ; aj / we consider all possible chains of objects .ai ; ak1

; : : : ; akr
; aj /,

where .ak1
; : : : ; akr

/ is a sequence chosen from fa1; : : : ; ang. For each such a chain
we compute what is called its psychometric length (of the first kind) as

L.1/.ai ; ak1
; : : : ; akr

; aj / D
mDrX

mD0

.pkmkmC1
� pkmkm

/;

where we put ai D ak0
and aj D akrC1

. The quantities pkmkmC1
� pkmkm

are
referred to as psychometric increments of the first kind. Then we find a chain with
the minimal value of L.1/, and take this minimal value of L.1/ for the quasidis-
tance G.1/

ij from ai to aj (referred to as the oriented Fechnerian distance of the
first kind). Quasidistance (quasimetric, or oriented distance) is a pairwise measure
which satisfies all metric properties except for symmetry. In FS we symmetrize this
quasimetric and transform it into a metric by computing G.1/

ij C G.1/
j i and taking

it for the “true” or “overall” Fechnerian distance (of the first kind) Gij between
ai and aj . Any chain .ai ; ak1

; : : : ; akr
; aj / with L.1/.ai ; ak1

; : : : ; akr
; aj / D
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G
.1/
ij is called a geodesic chain (of the first kind). Then the overall Fechnerian

distance Gij is the psychometric length (of the first kind) of a geodesic loop
.ai ; ak1

; : : : ; akr
; aj ; al1

; : : : ; als
; ai /, or equivalently .aj ; al1

; : : : ; als
; ai ; ak1

; : : : ;

akr
; aj /.
We can also compute the psychometric length (of the second kind) of an arbitrary

chain .ai ; ak1
; : : : ; akr

; aj / as

L.2/.ai ; ak1
; : : : ; akr

; aj / D
mDrX

mD0

.pkmC1km
� pkmkm

/;

where pkmC1km
� pkmkm

are called psychometric increments of the second kind,
and then define the quasidistance (the oriented Fechnerian distance of the second
kind) G.2/

ij from ai to aj as the minimal value of L.2/ across all chains inserted
between ai and aj . It makes, however, no difference for the final computation of
the overall Fechnerian distance Gij (of the first or second kind), because it can be
shown that

Gij D G.1/
ij CG.1/

j i D G.2/
ij CG.2/

j i :

Any geodesic loop .ai ; ak1
; : : : ; akr

; aj ; al1
; : : : ; als

; ai / of the first kind, if tra-
versed in the opposite direction, as .ai ; als

; : : : ; al1
; aj ; akr

; : : : ; ak1
; ai /, becomes

a geodesic loop of the second kind.
The package fechner compares the value of Gij (referred to as G) to what we

call a Shepardian index of dissimilarity Sij : Sij D pij Cpj i �pi i �pjj . Note that
Gij � Sij in all cases. If the geodesic loop for .ai ; aj / contains no other objects,
i.e., if it is .ai ; aj ; ai /, then Gij D Sij .

3 The R Package fechner

The package fechner is implemented based on the S3 system. It comes with a
namespace and consists of three external functions (functions the package exports);
they are described below. The package also contains internal functions, which basi-
cally are plot, print, and summarymethods for objects of the class fechner.
There are two real and two artificial data sets accompanying this package.

The functions check.data

check.data(X, format = c("probability.different",
"percent.same", "general"))

and check.regular

check.regular(X, type = c("probability.different",
"percent.same", "reg.minimal", "reg.maximal"))

are used to check whether the data X are of required format and whether X satisfy
regular minimality/maximality, respectively. The data X must be a matrix or data
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frame, have the same number of rows and columns, and be numeric (no infinite,
undefined, or missing values are allowed). This is the "general" data format.
The "probability.different" and "percent.same" formats, in addi-
tion, require that the data lie in Œ0; 1� and Œ0; 100�, and imply checks for regular
minimality and regular maximality, respectively. The values "reg.minimal"
and "reg.maximal" can be specified to force checking regular minimality and
regular maximality, respectively, independent of the data set used. If all of the
requirements for a data format are satisfied, check.data returns the data with
rows and columns labeled. If the data do satisfy regular minimality/maximality,
check.regular returns the canonical representation of the data in which reg-
ular minimality/maximality is satisfied in canonical form, and the pairs of PSEs
with their common labels.

The primary function of the package is fechner, which provides all the
Fechnerian scaling computations:

fechner(X, format = c("probability.different",
"percent.same", "general"), compute.all = FALSE,
check.computation = FALSE)

The argument format and the requirements for the data X are the same as before
(fechner calls the function check.regular, which in turn calls check.
data). The default value FALSE for compute.all corresponds to short com-
putation, which yields the main Fechnerian scaling computations (see Sect. 4). The
value TRUE corresponds to long computation, which additionally yields intermedi-
ate results and also allows for a check of computations if check.computation
is set TRUE. The performed check computes the difference “overall Fechnerian
distance of the first kind minus overall Fechnerian distance of the second kind.”
The function fechner returns an object of the class fechner, for which plot,
print, and summary methods are provided. The plot method graphs the results
obtained in the FS analyses. It produces a scatterplot of the overall Fechnerian dis-
tance G versus the S -index. The print method prints the main results obtained in
the FS analyses, which are the overall Fechnerian distances and the geodesic loops.
The summary method outlines the results obtained in the FS analyses. It returns
a list consisting of the pairs of objects and their corresponding S -index and G val-
ues, the value of the Pearson correlation coefficient between them, the value of the
C -index (as an ad hoc measure of the “improvement” the psychometric increments
need to become metric), and the level of comparison chosen. For details, see Ünlü
et al. (2009).

4 Example

We use the Rothkopf (1957) Morse code data of discrimination probabilities among
36 auditory Morse code signals for the letters A;B; : : : ; Z and the digits 0; 1; : : : ; 9
to demonstrate the functions of the package. Each number in the data frame morse
gives the percentage of subjects who responded “same” to the row signal followed
by the column signal.
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The data set morse satisfies regular maximality in the canonical form:

R> check.regular(morse, type = "percent.same")$check
[1] "regular maximality"
R> check.regular(morse,
R+ type = "percent.same")$in.canonical.form
[1] TRUE

For typographic reasons only, in the sequel we consider a small subset of this
stimulus set, chosen to form a “self-contained” subspace: a geodesic loop for any
two elements of such a subset (computed using the complete data set) is contained
entirely within the subset. Note that the results obtained from Fechnerian scaling
analyses restricted to self-contained subspaces are the same as the results obtained
based on the entire stimulus sets. For instance, a particular self-contained 10-code
subspace of the 36 Morse codes consists of the codes for the letter B and the digits
0; 1; 2; 4; 5; : : : ; 9.

R> indices <- which(is.element(names(morse),
R+ c("B", c(0, 1, 2, 4:9))))
R> f.scal.morse <- fechner(morse, format = "percent.same")
R> f.scal.morse$geodesic.loops[indices, indices]

B 1 2 4 5 6 7 8 9 0
B B B1B B2B B46B B5B B6B B676B B67876B B6789B B06B
1 1B1 1 121 141 151 161 1781 181 191 101
2 2B2 212 2 242 252 262 272 282 2192 21092
4 46B4 414 424 4 454 46B4 474 4784 494 404
5 5B5 515 525 545 5 56B5 575 585 595 505
6 6B6 616 626 6B46 6B56 6 676 67876 678976 606
7 76B67 7817 727 747 757 767 7 787 7897 789097
8 876B678 818 828 8478 858 87678 878 8 898 8908
9 9B6789 919 9219 949 959 976789 9789 989 9 909
0 06B0 010 09210 040 050 060 097890 0890 090 0

The discrimination probabilities for this part of the morse data are:

R> (morse.subspace <- morse[indices, indices])
B 1 2 4 5 6 7 8 9 0

B 84 12 17 40 32 74 43 17 4 4
1 5 84 63 8 10 8 19 32 57 55
2 14 62 89 20 5 14 20 21 16 11
4 19 5 26 89 42 44 32 10 3 3
5 45 14 10 69 90 42 24 10 6 5
6 80 15 14 24 17 88 69 14 5 14
7 33 22 29 15 12 61 85 70 20 13
8 23 42 29 16 9 30 60 89 61 26
9 14 57 39 12 4 11 42 56 91 78
0 3 50 26 11 5 22 17 52 81 94

We see that the Morse code discrimination probability data violate constant self-
dissimilarity. For example, the Morse code for digit 1 was judged different from
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itself by 16% of respondents, but only by 6% for digit 0. Symmetry is violated as
well: The digits 4 and 5, for instance, were judged to be different in 58% of cases
when 4 was presented first, but in only 31% when 4 was presented second.

The function fechner is the main function of the package and provides all the
Fechnerian scaling computations. The overall Fechnerian distances are:

R> f.scal.subspace.mo <- fechner(morse.subspace,
R+ format = "percent.same", compute.all = FALSE,
R+ check.computation = FALSE)
R> f.scal.subspace.mo$overall.Fechnerian.distances

B 1 2 4 5 6 7 8 9 0
B 0.00 1.51 1.42 0.97 0.97 0.18 0.61 1.05 1.49 1.60
1 1.51 0.00 0.48 1.60 1.50 1.49 1.27 0.99 0.61 0.73
2 1.42 0.48 0.00 1.32 1.64 1.49 1.25 1.28 1.06 1.21
4 0.97 1.60 1.32 0.00 0.68 0.97 1.27 1.45 1.65 1.69
5 0.97 1.50 1.64 0.68 0.00 1.08 1.39 1.60 1.71 1.74
6 0.18 1.49 1.49 0.97 1.08 0.00 0.43 0.87 1.35 1.46
7 0.61 1.27 1.25 1.27 1.39 0.43 0.00 0.44 0.92 1.18
8 1.05 0.99 1.28 1.45 1.60 0.87 0.44 0.00 0.63 0.83
9 1.49 0.61 1.06 1.65 1.71 1.35 0.92 0.63 0.00 0.26
0 1.60 0.73 1.21 1.69 1.74 1.46 1.18 0.83 0.26 0.00

The information provided using short computation, an overview (the output is
omitted, for typographic reasons):

R> attributes(f.scal.subspace.mo)

An overview of the information computed under long computation, which addi-
tionally yields intermediate results and allows for a check of computations (the
output is omitted, for typographic reasons):

R> f.scal.subspace.long.mo <- fechner(morse.subspace,
R+ format = "percent.same", compute.all = TRUE,
R+ check.computation = TRUE)
R> attributes(f.scal.subspace.long.mo)

Objects of the class fechner can be summarized:

R> summary(f.scal.morse)

number of stimuli pairs used for comparison: 630

summary of corresponding S-index values:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.180 1.260 1.520 1.435 1.670 1.850

summary of corresponding Fechnerian distance G values:
Min. 1st Qu. Median Mean 3rd Qu. Max.
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0.180 1.203 1.490 1.405 1.660 1.850

Pearson correlation: 0.9764753

C-index: 0.002925355

comparison level: 1

5 Conclusion

We have introduced the package fechner for Fechnerian scaling of object sets in R.
The package has functions for checking the required data format and the regular
minimality/maximality property, a fundamental property of discrimination in psy-
chophysics. The main function of the package provides all the Fechnerian scaling
computations, in the short and long variants.

By contributing the package fechner in R we hope to have established a basis
for computational work in this field. The realization of Fechnerian scaling in R may
prove valuable in applying current or conventional statistical methods to the the-
ory of Fechnerian scaling. For instance, the determination of confidence regions
(e.g., for overall Fechnerian distances) and hypothesis testing (e.g., testing for
RM) in Fechnerian scaling are likely to be based on resampling methods. Such
an endeavor would involve extensive computer simulation, something R would be
ideally suited for.
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Asymptotic Behaviour in Symbolic Markov
Chains

Monique Noirhomme-Fraiture

Abstract Many random processes depending upon time appear in fact in interval
even if the standard modelisation reduces it to the mean. It is the case for daily
temperature, daily value of stocks. They are known with minimum and maximum
values, during a period of time. Thus, they can be considered as multivalued stochas-
tic processes.

In another paper (Noirhomme-Fraiture and Cuvelier 2007) we have introduced
the so-called symbolic stochastic processes and more particularly the symbolic
Markov chains. In that case, we suppose that the process has no memory of the
past. In this paper, after reminding the basic notions for symbolic Markov chains,
we will present some asymptotic behaviour for these processes.

1 Introduction

A stochastic process X t is a random variable which depends on time. In the stan-
dard theory, the state space can be discrete or continuous but in the real life Xt can
also appear as multi-valued or an interval or even an histogram. For example, let
us consider the evolution of a stock value, per day: the stock has several (continu-
ous) values: open, close, mean, maximum. We could consider it as an interval value
Œmin;max�. In meteorology, the temperature is also daily given by a minimum and
a maximum value. In another domain, the evolution of the daily audience of a TV
channel is given by the percentage of time spent at watching the channel. The audi-
ence is thus given by a histogram. In all these cases the variables are symbolic ones.

Many books have been written about stochastic processes (Cox and Miller 1965;
Karlin 1966; Beichelt 2006; Gihman and Skorohod 2004), but very few has been
done on symbolic stochastic ones. De Carvalho et al. (2004) have studied sym-
bolic linear regression. Prudencio et al. (2004) have studied time series. We have
introduced the basic concepts of Symbolic Markov Chain in Noirhomme-Fraiture
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and Cuvelier (2007) and given the Chapman Kolmogorov theorem in all the sym-
bolic cases. In this paper, after reminding the basic definitions and results, we study
the asymptotic behaviour of a Markov Chain in discrete time for the multi-valued
categorical and interval-valued cases.

2 Symbolic Variables

The symbolic data analysis has been studied by E. Diday and his partners in SODAS
and ASSO projects (Bock and Diday 2000; Diday and Noirhomme-Fraiture 2008).
Let us remind the definition of a symbolic variable.

Let .˝;A;P / a probability space. A symbolic variableX is a mapping˝ ! ˇ,
where ˇ is more general then in the discrete or continuous state space case. We have
in fact the different cases:

1. Single valued variable: ˇ 
 R

2. Single valued categorical: ˇ 
 N

3. Multi-valued categorical: Let Y 
 N, ˇ D P.Y / ˇ is the set of Y subsets
4. Interval: Let Y 
 R, ˇ D I.Y / ˇ is the set of intervals of Y
5. Modal: Let Y 
 N ˇ DM.Y / ˇ is the set of a specified non-negative measure

on Y . This measure could be a probability or a weighting.

Let X t a stochastic process. If X t is symbolic, we will speak about symbolic
stochastic process. We intend to generalise the theory of Markov chains to the
symbolic case. In particular, we will consider the results on limit distributions.

3 Markov Chains

When studying a stochastic process X t , we make different assumptions in order to
simplify the problem.

3.1 The Markov Property

PrŒa < X t � b j X t1
D x1; X t2

D x2; : : : ; X tn
D xn�

D PrŒa < X t � b j X tn
D xn�; t1 < t2 < : : : < tn < t (1)

express that a Markov chain is a stochastic process without memory of its story.
We consider usually that this process is homogeneous in time. It means that the
transition probabilities PrŒX t 2 A j X s D x� are function to f � s and not of s.
This property has not to be confused with a Stationary process property. For such a
process, the joint distribution is the same with a translation in the time

PrŒX t1Ch D x1; : : : ; X tnCh D xn� D PrŒX t1
D x1; : : : ; X tn

D xn�: (2)
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The aim of the theory of stochastic processes in discrete time is to obtain PrŒX t 2
A j X t�1 D x� from the knowledge of the value of PrŒX t 2 A� or to obtain at least
asymptotic properties when t tends to 1 (stationary process case). Let the time
discrete (n D 1; 2; : : : ). Let Xn a categorical variable (categories j D 1; : : : ; k) at
time n. Let Pij .n/ D PrŒXmCn D j j Xm D i � the stationary transition probabili-
ties. They verify the relation

P.mC n/ D
X

k

Pik.m/ Pkj .n/: (3)

It is called the Chapman-Kolmogorov property(CK property). LetP.n/ D fPij .n/g.
The Chapman-Kolmogorov property leads to P.n/ D P n. Thus from Pij we
can compute Pij .n/. These properties can be directly applied to single valued
categorical symbolic variables.

4 The CK Property for Symbolic Stochastic Processes

4.1 Multivalued Categorical Variable

Let j D .j1; : : : ; js/ where jk D
(
1 if category Ck is present,

0 elsewhere.
The Chapman-Kolmogorov property can be generalised at s-vector states

Pij.nCm/ D
X

k

Pik.n/ Pkj.m/ (4)

which allows to compute Pij.n/, knowing Pij.

4.2 Interval Valued Variable

In Noirhomme-Fraiture and Cuvelier (2007) we have considered a single valued
variable known in an interval. Here, we modelise an interval-valued variable as a
two dimensional variable described by the min and the max of the random interval
Œxmin; xmax� with the constraint xmin � xmax. It is more convenient to use the center
c and the half length h of the interval which has the easier constraint h � 0. Let
us consider the two-dimensional stochastic process X D .cn; hn/ at time n. Let
x D .c; h/, x1 D .c1; h1/; : : : ; xn D .cn; hn/. Then Xn is an interval Markov
process if

PrŒcn � c; hn � h j X1 D x1; : : : ;Xn�1 D xn�1�

D PrŒcn � c; hn � h j Xn�1 D xn�1�: (5)
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Let

F..c0; h0/I .c; h/; n/ D PrŒcn � c; hn � h j c0 D c0; h0 D h0�

D F.x0I x; n/; (6)

the two dimensional joint conditional distribution for center and half-length. We still
suppose that it is homogeneous in time. We can show that

F.x0I x; mC n/ D
Z C1

�1

Z 1

0

dc;h F.x0I z; m/ F.zI x; n/ (7)

with z D .c; h/. The relation (7) is the CK equation for two dimensional contin-
uous variable. Except for very particular cases, these equations can be solved only
numerically. If we consider the particular case where cn and hn are independent,

PrŒcn � c; hn � h j c0 D c0; h0 D h0� D PrŒcn � c j c0� PrŒhn � h j h0�: (8)

In this case, the interval-valued process is a juxtaposition of two independent one-
dimensional Markov processes and can be studied separately.

5 Stationary Distribution in Discrete Time

For a stationary process, we have a stationary or equilibrium distribution when
limn!1Pi;j .n/ exists and is still a probability distribution. Let us see the existence
of such a distribution for the different cases.

5.1 Single Categorical Variable

Let us recall some definitions in Markov chain theory:
A class: the set of states which communicates, it means

that there exists n and m such that Pi;j .n/ > 0

and Pj;i .m/ > 0

Recurrent state: j is recurrent if
P

n

Pi;j .n/ D1
Recurrent non-null: if the mean recurrence time is finite
Ergodic: aperiodic, recurrent, non-null state

Theorem 1. For an aperiodic Markov chain with only one final class, the limit
vj D lim

n!1Pij .n/ exists and is independent of the initial state. If moreover the class

is recurrent non-null, the limit distribution is solution of
P

vj D 1; vj DPk vk
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Pkj ; j 2 ˇ (Feller 1971, p. 393 – Cox and Miller 1965, p. 108). We can use this
result for categorical variables.

5.2 Multivalued Categorical Variable

When coding the states as explained earlier, we can extend the result to the multi-
variate case. For an ergodic chain, we have the stationary distribution

vj D lim
n!1Pi;j.n/ (9)

solution of
P

vj D 1; vj DPk vk Pkj:

5.3 Single Valued Quantitative Variable (Continuous Variable)

Let pn.xIy/ the probability density function at time n

pn.xIy/ dy D PrŒy < Xn � y C dy j X0 D x�: (10)

The Chapman-Kolmogorov relation can be used for the one step transition proba-
bility

pn.xIy/ D
Z C1

�1
pn�1.xI z/ p.z; y/ d z: (11)

If the equilibrium (or stationary) distribution exists limn!1 pn.xIy/ D f .y/; then
it is solution of

f .y/ D
Z C1

�1
f .z/ p.z; y/ d z: (12)

In some particular cases, it may be possible to solve such an equation analytically
otherwise one may need to use numerical methods.

5.4 Particular Case: The Random Walk

Let
Xn D Xn�1 CZn (13)

and let us suppose that the distribution of the increment Zn in one step is only
function of the difference between Xn and Xn�1. Let p.z; y/ D g.y � z/. Let �
the mean and 	2 the variance of Zn. We have Xn D X0 C Z1 CZ2 C : : : CZn.
Xn is the sum of n independant identically distributed variables and if n is large,Xn
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is normally distributed with mean n� and variance n	2, by the normal law of large
numbers. It can be shown that

� if � > 0, Xn ! C1; limn!1 PrŒXn > c� D 1; for all c > 0
� if � < 0, Xn ! �1; limn!1 PrŒXn > �c� D 1; for all c > 0
� if � D 0, the random walk will be within a distance from its starting point after n

jumps. This does not exclude the possibility of large excursions from the origin.

(Cox and Miller, p. 48).

5.5 Interval Valued Variable

We have seen that an interval variable can be considered as a two dimensional
Markov process Xn D .cn; hn/. For the partial derivatives of F , if they exist, we
have

pmCn.x0I x/ D
Z C1

�1

Z 1

0

pm.x0I z/ pn.zI x/ dc dh; (14)

where z D .c; h/. In particular

pn.x0I x/ D
Z C1

�1

Z 1

0

pn�1.x0I z/ p.zI x/ dc dh: (15)

If the limit limn!1 pn.x0I x/ D f .x/ exists then it is solution of

f .x/ D
Z C1

�1

Z 1

0

f .z/ p.zI x/ dc dh: (16)

5.6 Particular Case

Let us suppose that c and h are independent

pn.x0 W x/ D pn.c0I c/ pn.h0Ih/: (17)

Thus, when n tends to1, the limit distribution is given by

f .x/ D fc.c/ fh.h/ (18)

with fc and fh respectively solutions of the following equations

fc.c/ D
Z C1

�1
fc.z1/ pc.z1I c/ d z1; c 2 Œ�1;C1�; (19)

fh.h/ D
Z 1

0

fh.z2/ ph.z2Ih/ d z2; h 2 Œ0;C1�: (20)
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5.7 Random Walk in Discrete Time

For the centre of the interval, we can use the result of the continuous variable case
in paragraph 5.3. The case of the half length is more complex because it has a
reflecting barrier at 0. Let hn D hn�1CZn � 0. As said before, for a random walk,
Zn are independent, identically distributed of density g, but here Zn are positive.
Let 8

ˆ̂
<

ˆ̂
:

Hn.x/ D PrŒhn � x�; x > 0;

0; x < 0;

Hn.0/ D PrŒhn D 0� . ¤ 0 /; .�/
(21)

(*) the distribution has a discontinuity jump at 0. From CK relation

Hn.x/ D
Z 1

0

Hn�1.y/ g.x � y/ dy: (22)

If Hn.x/! H.x/, H.x/ is solution of

H.x/ D
Z 1

0

H.y/ g.x � y/ dy; x � 0; (23)

H.x/ D 0; x � 0: (24)

It has been shown that there is a unique probability distribution H.x/ if E Zn < 0

and no solution if EZn � 0 (Cox and Miller, p. 63). This means that the half length
is stable if the increasing process has a negative mean (=negative drift). On the other
hand, if EZn � 0, then hn will not have an equilibrium distribution as n!1.

5.8 Non Independent Random Walk

If cn and hn are non independent, but random walk, we can still write

Xn D X0 C Z1 C � � � C Zn (25)

where Zi are independent two-dimensional random vectors with a given bivariate
distribution. It means

.cn; hn/ D .c0; h0/C .
c1; 
h1/C .
c2; 
h2/C : : : (26)

with zn D .
cn; 
hn/ with mean .�1; �2/ and dispersion matrix˙

˙ D
ˇ
ˇ
ˇ
ˇ

var
c covar.
c;
h/
covar.
c;
h/ var
h

ˇ
ˇ
ˇ
ˇ : (27)
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By the central limit theorem, Xn is asymptotically distributed as a bivariate normal
variable with mean n� and dispersion matrix n
.

6 Conclusion

We have considered symbolic variables depending on time with a Markovian
behaviour. For the symbolic cases, in particular the interval one, we have
shown how to get the stationary or equilibrium distribution limn!1Pij .n/ or
limn!1Pn.x0; x/. An explicit solution is given when the center and the half length
of the interval are independent. We have also studied the random walk case with
independent or dependent variables.

6.1 Future Work

Among others, we intend to present the results for the continuous time. We have also
to consider the general case where the centre c and the half-length h are dependent.
We will apply the theory to real data.
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An Interactive Graphical System for Visualizing
Data Quality–Tableplot Graphics

Waqas Ahmed Malik, Antony Unwin, and Alexander Gribov

Abstract Poor quality, inaccurate or inadequate data can lead to inappropriate
assumptions, misleading results, bias and ultimately poor policy and decision mak-
ing. Finding errors and cleaning data is a time consuming process and requires
domain knowledge. This work presents a modified technique – called Interactive
Tableplot – for visualizing data and supporting the incorporation of user’s domain
knowledge so that erroneous cases are easily revealed. Tableplot is implemented
in the software Gauguin (Gribov et al. 2006) that provides techniques for the
interactive visual exploration of multivariate datasets.

1 Introduction

The increased use of data to inform policy and improve practice requires a renewed
emphasis on assuring the underlying accuracy and reliability of data. High quality
data are critical for decision making, priority setting, and ongoing monitoring of
programs and policies.

Many techniques employed for detecting erroneous data are fundamentally iden-
tical but with different names in different fields. For example, in the field of
statistics, the term outlier detection has been used for many years to detect and,
where appropriate, remove anomalous observations from data. However, in com-
puter sciences or data mining, novelty detection, anomaly detection, noise detection,
deviation detection or exception mining are also found. According to Barnett and
Lewis (1994) observations which appear to be inconsistent with the rest of the
dataset are outliers or potential anomalies.

Graphics have been widely used in detection of outliers. Unfortunately graphical
techniques are unable to incorporate more than a few dimensions of different types.
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Fig. 1 A Tableplot of the Labour Force Survey Dataset for the demographic variables. The data is
sorted by age in descending order

To make best use of domain knowledge, the user has to be able to work with different
data types and many dimensions simultaneously; and be able to visualize data in
such a way that anomalies are emphasized.

Figure 1 shows a Tableplot for the demographic variables of the Labour Force
Survey dataset. In this plot, the data are presented in a table-like layout. Each column
represents a variable, and each row is an aggregation of 160 cases. The data have
been sorted according to age in descending order. Querying the graphic shows that
the proportion of literates is low for old persons in the dataset. Almost all other
variables in the plot show a strong interaction with age, as for instance marital
status and relation to head do.
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The arrows 1 and 2 show some young persons whose relation to head and mari-
tal status are not consistent with each other. Some very young persons are reported
spouse in variable relation to head whereas they are “never married” in variable
marital status. Also there are a few people who are reported “married” in marital
status while their relation to head is “son/daughter (unmarried)”. One of these vari-
ables contains erroneous data. Age and marital status are consistent with each other.
Therefore it is most likely that relation to head is an error. The Tableplot in Fig. 1
was created using the software Gauguin.

2 Visualization Design

The use of Tableplot not only provides a scale advantage – since the bars can be
scaled to one pixel wide without perturbing relative comparisons – but also an
exploration advantage, since large numbers of tiny bars can be scanned much more
quickly than a bunch of textually represented numbers. In a Tableplot representation
each cell in the dataset is mapped to a bar in the visualization with the length and
colour of the bar encoding the value of the cell. For continuous variables the length
of the bar is proportional to the relative size of the represented value within the
variable. Cells containing categorical information are mapped to fixed-length rows
whose colour encodes the attribute value. This representation was described in Rao
and Card (1994).

Figure 2 shows a schematic representation. Each column in the Tableplot repre-
sents a column in the spreadsheet and each row represents a case. When the dataset
is large and it is not possible to draw all cases individually on screen, then cases are

Fig. 2 Visualization design of Tableplot
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aggregated. For an aggregated continuous variable, the average value is shown by a
horizontal bar of corresponding size (cf. variable age in Fig. 1). For an aggregated
categorical variable, a horizontal bar is shown, which is subdivided according to
the proportion of cases within the particular aggregation group (cf. variable sex in
Fig. 1).

3 Interactivity in Tableplot

Interactivity is an essential feature of graphics for data exploration, especially in
high dimensions. Interactivity features allow using the user’s domain knowledge
effectively. The following features are implemented in Tableplot.
Sorting: Sorting is an important tool in EDA and is a first step for looking for
associations among variables. The data in Tableplot in Fig. 1 have been sorted by
age, and association of all other variables with age is shown, for instance marital
status, relation to head and literacy. We can see that marital status is associated with
age, and young people are single. Literacy is also associated with age: the level of
literacy amongst older people is less than amongst young people.
Zooming: The Tableplot can scale to more rows than vertical pixels available
by mapping multiple values into a single line. This is achieved by aggregating
neighbouring values. Erroneous cases are usually few in numbers and zooming is
important for finding them. Zooming of graphics is achieved by adjusting the row
width and aggregation count value.
Querying: Providing different levels of querying is an elegant way of aiding the
analyst in an unobtrusive manner (Unwin et al. 2006). Querying a case in Tableplot
provides both the value of the selected case and summary statistics of that variable
(depending upon the variable type; cf. Fig. 2). In current version of software the
querying of continuous variables gives minimum and maximum values but including
more statistics like mean, standard deviation and quartiles would help in identifying
outliers. Querying allows users to identify outlier values. This helps in deciding
what kind of outlier a case is.

4 Tableplot for Visualizing Data Quality

Sorting a column provides powerful support for exploring data. Many properties of
the values in a sorted column are apparent by examining the graphical marks (e.g.,
colour bars) and the shape of the curve in the column. Thus, looking for correlated
variables is a matter of scanning across the columns to identify other columns that
exhibit a similarly shaped descending curve or one that approximates a mirror image
of the curve. This phenomenon helps to find anomalous cases. The cases which don’t
follow the pattern will be revealed easily.
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The Labour Force Survey (LFS) dataset of Pakistan for 2003–04 has been taken
to show the power of Tableplot in investigating data quality. Figure 3 shows a Table-
plot for seven variables of the LFS dataset for 3,596 regular government employees.
The columns include categorical variables sex, marital status, kind of enterprise
and also numeric variables age, monthly income, educational level and occupation
type. Each row is an aggregation of four cases. Continuous variables are represented
by graphical bars proportional in length to the represented values, and categorical
values with a corresponding colour. The rows in Fig. 3 are sorted by age within
education. In the dataset occupations are coded from higher to lower i.e. manager is
coded as 1 and labour is coded as 33, while level of education is coded from lower to
higher i.e., no education is coded as 1 and PhD is coded as 14. The software allows
the user to change the position of columns by simple drag and drop. In this way, one
can compare particular variables more easily.

In Fig. 3, it is visible that education and occupation are associated with each
other. People with high education are working in high level occupations while peo-
ple with less education are working in low level occupations. In Fig. 3 we can see

Fig. 3 A Tableplot of the LFS dataset for the employment variables. Rows are sorted by age within
education in descending order
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that monthly income declines with occupation level. Arrow 1 shows that persons
with medical or engineering degrees have relatively higher monthly income than
others. Arrow 2 shows persons with no or low education and working in federal gov-
ernment with very high income. The sudden spikes in the monthly income variable
are useful for checking consistency of income with education and occupation.

Association between education and occupation is visible in Fig. 3. Highly edu-
cated persons work in managerial and professional occupations while persons with
less education work in occupations like industrial worker, machine operator etc.
Cases which have no consistency between education, occupation and monthly
income are considered to be potentially erroneous cases. Arrow 3 points to highly
educated persons who are working in low occupations. Tableplot in Fig. 4 contains
the same variables as in Fig. 3 but rows are sorted by occupation within education.

Arrows 1 and 2 in Fig. 4 show the persons who have no education or very little
education but are working in high level occupations like corporate manager or senior
legislator, where only a person with high education can work. The income of these

Fig. 4 A Tableplot of same variables as in Fig. 3. Rows are sorted by occupation within education.
Columns are also reordered accordingly
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persons is far less than average income of their occupational groups, which means
that occupation is in error.

5 Comparison with Other Plots

Other visualization methods for multivariate data include mosaicplots for categori-
cal data and parallel coordinate plots for continuous data. Comparison of Tableplot
with these high dimensional plots is performed below.

Mosaicplot: The fluctuation diagram is a variation of mosaicplot, which can be
used for visualization of two or more categorical variables (for details see Chen
et al. (2008)). Fluctuation diagram of education and occupation is drawn in Fig. 5.
Due to the large difference between the size of biggest and smallest cell, censored
zooming is used to zoom in very small cells. In censored zooming, the zooming
works by censoring the size of cells at the size of largest cell of the un-zoomed plot
[for details see Theus and Urbanek (2008)]. The cells with red borders are censored
cells. From this plot we can see that highly educated persons are working in high
occupations and low educated persons are working in low occupations. Some pecu-
liar cases are revealed. Persons with low or even no education are working in high
occupations (shown by 1), and some highly educated persons are working in low
occupations (shown by 2). These small cells which refer to anomalies become visi-
ble after censored zooming. Higher dimensional plots allow validating and checking
which variable is inconsistent with other variables. Mosaicplots are designed for cat-
egorical variables only. Therefore we cannot include continuous variables (e.g. age
or monthly income) in a mosaicplot. However, Tableplot can visualize categorical
and continuous variable together.
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Fig. 5 Fluctuation diagram (a variation of mosaicplot) of education and occupation from LFS
dataset after censored zooming. The plot was drawn with Mondrian Theus (2002)
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Education

Age Occupation

Income

Fig. 6 A Parallel coordinate plot of some variables from LFS dataset. Employees in low level
occupations are selected and using hot selection rest of the cases are discarded. The plot was
drawn with Mondrian

Parallel Coordinate Plot: Inconsistent cases have been identified by mosaicplot
in Fig. 5 but it is not clear which variable contains erroneous values. Introducing
other variables like monthly income or monthly household expenditure will clar-
ify which variable contains peculiar data. Parallel coordinate plot can be used with
both continuous and categorical variables. Figure 6 shows a parallel coordinate plot
for the variables age, education, occupation and income. People working in a low
occupation (e.g., machine operator) are selected and using hot selection the remain-
ing cases have been filtered out. The cases which do not have consistent values are
shown. Some of the cases with high education also have high income (so probably
occupation is wrong). Some of the cases have low income (so education is probably
wrong).

6 Software

The Tableplots in this paper were created using the software Gauguin (www.rosuda.
org/software/). Gauguin is a standalone package for interactive graphics with an
interface to R allowing the seamless integration of some R routines (Urbanek 2003).
The major emphasis of the application is to provide interactive graphics for glyphs,
and grouping of glyphs by clustering or multi-dimensional scaling. The interac-
tive features include selection, querying, zooming, variation of displays, multiple
views and linked highlighting for all plot types. Along with Tableplot, the data can
be visualized with different graphics at the same time (e.g., histogram, barchart,
scatterplot-matrices, glyphs).

www.rosuda.org/software/
www.rosuda.org/software/
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7 Conclusion

Finding anomalies and revealing erroneous data is a difficult and time consuming
task. Even a small proportion of bad data can seriously influence analysis results.
In many fields, even a very small number of erroneous cases is not acceptable, as in
medical and financial data. This paper presents a technique that provides an intuitive
visualization approach that could reveal erroneous data more easily. Tableplot along
with other interactive plots, available in Gauguin, provides an excellent framework
for detecting erroneous data.
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Symbolic Multidimensional Scaling Versus
Noisy Variables and Outliers

Marcin Pełka

Abstract The aim of the paper is to present and compare effectiveness of symbolic
multidimensional scaling methods when we are dealing data with noisy variables
and/or outliers. In the article basic terms of symbolic data analysis and symbolic
multidimensional scaling are presented.

In empirical part simulation experiment results with application of Interscal and
I-Scal (random and rational start point) are compared based on artificial data (con-
taining noisy variables and/or outliers) generated by cluster.Gen procedure
from clusterSim package of R software.

1 Introduction

Symbolic multidimensional scaling aims to present relations between objects treated
as hypercubes in multidimensional space. To allow interpretation and graphical rep-
resentation of the results usually two-dimensional space is used. Most of symbolic
multidimensional scaling methods require interval dissimilarity matrix as input.
This matrix can be obtained from n judges, opinions or from dissimilarity mea-
sure for interval-valued variables that produces interval-valued dissimilarities (see
Lechevallier 2001).

In the first part of the paper basic terms of symbolic data, like symbolic variable,
symbolic objects, are described. Second part of the article presents four multidi-
mensional scaling methods: SymScal and I-Scal proposed by Groenen et al. (2005,
2006) and Interscal proposed by Denœux and Masson (2000) and an adaptation of
Sammon’s nonlinear mapping for symbolic objects (Sammon 1969). The third part
presents models with noisy variables and/or outliers. In the empirical part results
of symbolic multidimensional scaling of artificial data (with noisy variables and/or
outliers) are compared.
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2 Symbolic Data

Bock and Diday have defined five different symbolic variable types (Bock and Diday
2000, p. 2):

1. single quantitative value,
2. categorical value,
3. quantitative variable of interval type,
4. set of values or categories (multivalued variable),
5. set of values or categories with weights (multivalued variable with weights),
6. modal interval-valued variable proposed in Billard and Diday (2006).

Regardless of their type symbolic variables also can be (Bock and Diday 2000, p. 2):

� taxonomic – which presents prior known structure,
� hierarchically dependent – rules which decide if a variable is applicable or not

have been defined,
� logically dependent – logical rules which affect variableŠs values have been

defined.

There are two main symbolic objects types:

1. First order objects (simple objects) – single respondent, product, company (sin-
gle individuals) described by symbolic variables (see Table 1) This objects are
individuals that are symbolic by their nature, e.g. a questionnaire might contain
such questions as: “please select additional features of a car, that you will buy”,
“please indicate the interval of a price, that you want to pay for a new car”, and
so on.

2. Second order objects (aggregate objects, super individuals) – more or less homo-
geneous classes, groups of individuals described by symbolic variables (see
Table 2).

Table 1 Table of symbolic objects (first order objects)

Symbolic objects Symbolic variables
Owned
car mark

Preferred car price Preferred car mark Preferred colours

Responder 1 Audi <65000; 80000> {80% Audi; 20%
Toyota}

{blue}

Responder 2 Opel <30000; 50000> {60% VW, 30% Audi;
10% Skoda}

{green, white}

Responder 3 Skoda <28000; 37000> {60% Honda; 40%
Toyota}

{red, white, yellow}

Responder 4 Skoda <33000; 58000> {80% Audi, 15% Opel,
5% Toyota}

{black, yellow}

Responder 5 Audi <66000; 90000> {65% Audi; 35% VW} {green}
Responder 6 Opel <25000; 36000> {100% Opel} {black, red}

Source: own research.
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Table 2 Table of symbolic objects (second order objects)

Symbolic objects Symbolic variables
Preferred price Preferred car mark Preferred colours

Audi <65000; 90000> {80% Audi; 20%
Toyota; 35% VW}

{blue, green}

Opel <25000; 50000> {100% Opel; 60% VW;
30% Audi; 10%
Skoda}

{green, white, black,
red}

Skoda <28000; 58000> {80% Audi; 60%
Honda; 40% Toyota;
15% Opel}

{red, white, yellow,
black}

Source: own research.

Symbolic data table

Symbolic variables of different types
Interval-valued variables

Dissimilarity
measures for

symbolic objects

Dissimilarity matrix of
interval type

Interscal

Jugdes, opinions

Dissimilarity
measures for

classical objects

Distance matrix

Nonmetric
multidimensional

scaling

Transformation of
symbolic variables to

classical ones

Classical
multidimensional

scaling
SymScal I-Scal

Fig. 1 Symbolic multidimensional scaling methods. Source: own research based on Denœux and
Masson (2000); Groenen et al. (2005, 2006)

3 Symbolic Multidimensional Scaling Methods

Figure 1 presents main two main approaches ins symbolic multidimensional scaling,
classical approach – also known as “symbolique-numerique-symbolique” proposed
by E. Diday in 1978 – and symbolic multidimensional scaling based on interval-
valued distances. The Fig. 1 presents also main methods for each approach.

The classical approach is based on transformation of symbolic variables to clas-
sical ones. It allows to present symbolic objects as points, but transformation causes
some information loss about original data structure. Methods based on symbolic
dissimilarity measures don’t cause loss of information, but they also treat symbolic
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objects as points. Symbolic objects shouldn’t be treated as points due to the fact that
they are not points in multidimensional space. That’s why symbolic multidimen-
sional scaling methods based on interval-valued dissimilarities should be applied. In
the empirical part Interscal and I-Scal (with random and rational start point) methods
were applied. For Interscal I-STRESS loss function was applied. All experiments
were done in R software with application of source codes written by author.

Algorithm of Interscal method (Denœux and Masson 2000; Lechevallier 2001):

1. Obtain interval-valued dissimilarities, from interval-valued variables or judge-
ments, opinions of n respondents, experts, etc.

2. Construct 
 matrix of interval-valued dissimilarities, where ıij means lower
bound of dissimilarity between i th and j th object; ıij means upper bound of
dissimilarity between i th and j th object.

3. Construct e
 matrix defined as follows:

e
 D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 ı12
ı12Cı12

2
ı13

ı13Cı13
2

: : : ı1n
ı1nCı1n

2

0 0
ı12Cı12

2
ı12

ı13Cı13
2

ı13 : : :
ı1nCı1n

2
ı1n

ı21
ı21Cı21

2
0 0 ı23

ı23Cı23
2

: : : ı2m
ı2mCı2m

2
ı21Cı21

2
ı21 0 0

ı23Cı23
2

ı23 : : :
ı23Cı23

2
ı2m

ı31
ı31Cı31

2
ı32

ı32Cı32
2

0 0 : : : ı3m
ı3mCı3m

2
ı31Cı31

2
ı31

ı32Cı32
2

ı32 0 0 : : :
ı3mCı3m

2
ı3m

:::
:::

:::
:::

:::
:::

: : :
:::

:::

ım1
ım1Cım1

2
ım2

ım2Cım2
2

ım3
ım3Cım3

2
: : : 0 0

ım1Cım1
2

ım1
ım2Cım2

2
ım2

ım3Cım3
2

ım3 : : : 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(1)

4. Find the matrix B D �1
2

Jf�
.2/

J with J the centering matrix.
5. Find eigenvaluesˆ2 and eigenvectors P of matrix B.
6. Compute 2n points in S -dimensions using the formula: yis D pis�ss for i D
1; 2; : : : ; 2n and s D 1; 2; : : : ; S .

7. When applying I-STRESS loss function construct the center coordinates X and
spreads of rectangle R for each object i and each dimension s as follows:

xis D .y2i;s C y2iC1;s/

2
(2)

ris D jy2i;s � y2iC1;s j
2

(3)

8. Compute I-STRESS.

Algorithm of I-Scal method (Groenen et al. 2006):

1. Obtain interval-valued dissimilarities, from interval-valued variables or judg-
ments, opinions of n respondents, experts, etc.
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2. Set matrix X0 to initial matrix for coordinate centers of rectangles (I-Scal
random start point).
For I-Scal rational start point obtain matrix X0 from Interscal.

3. Set matrix R0 to initial matrix of nonnegative values for the rectangle width.
For I-Scal rational start point obtain matrix R0 from Interscal.

4. Set maximum iteration number t and the convergence criterion " to a small
positive value e.g. 10�6.

5. Set iteration counter k D 0 and X�1 D X0, R�1 D R0.
6. While I-STRESSk�1 � I-STRESSk � " and k � t :
7. k D k C 1
8. Set Yk D Xk�1 and Qk D Rk�1.

For every dimension:
9. Compute A.1/

s and B.1/
s [see: Groenen et al. (2006) for details].

10. Compute and update matrix of coordinate centers for rectangles X.
11. Compute A.2/

s and b.2/
s [see: Groenen et al. (2006) for details].

12. Compute and update matrix of nonnegative values for the rectangle width R.
13. Set Xk D X and Rk D R.

The I-STRESS loss function, which takes values between 0 and 1, is defined as
follows (Groenen et al. 2006; Lechevallier 2001):

I-STRESS D 	2
I .X;R/

Pn
i<j wij Œı

.U /
ij �2 CPn

i<j wij Œı
.L/
ij �2

(4)

where: 	2
I .X;R/ D

Pn
i<j wij Œı

.U /
ij �d .U /

ij .X;R/�2CPn
i<j wij Œı

.L/
ij �d .L/

ij .X;R/�2;
X, R – matrix of rectangles centers .X/ and matrix of rectangles span .R/;
wij – weights;

ı
.U /
ij and ı.L/

ij – upper and lower distances between i th and j th hiperrectangles;

d
.U /
ij and d .L/

ij – upper and lower distances between rectangles.

4 The Models

For empirical part of the paper four models, each containing 100 objects described
by interval-valued variables, were generated with application of cluster.Gen
procedure from clusterSim package of R software.

Model I – Three elongated clusters in two dimensions. The observations are
independently drawn from bivariate normal distribution with means (0, 0), (1.5, 7),
(3, 14) and covariance matrix

P
.	jj D 1; 	jl D 0:9/.
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Model II – Three elongated clusters in three dimensions. The observations are
independently drawn from multivariate normal distribution with means(1.5, 6, 3), (3,
12, 6), (4.5, 19, 9), and identity covariance matrix, where

P
	jj D 1; .1 � j � 3/,

	12 D 	13 D 0:9, and 	23 D 0:9.
Model III – Five clusters in two dimensions that are not well separated. The

observations are independently drawn from bivariate normal distribution with means
(5, 5), (3, 3), (3, 3), (0, 0), (5, 5), and identity covariance matrix

P
.	jj D 1; 	jl D

0:9/.
Model IV – Five clusters in three dimensions that are not well separated. The

observations are independently drawn from multivariate normal distribution with
means (5, 5, 5), (3, 3, 3), (3, 3, 3), (0, 0, 0), (5, 5, 5), and covariance matrix

P
,

where 	jj D 1 .1 � j � 3/, and 	jl D 0:9 .1 � j ¤ l � 3/.
To obtain symbolic interval data the data were generated for each model twice

into sets A and B and minimal (maximal) value of fxA
ij I xB

ij g is treated as the begin-
ning (the end) of an interval. The noisy variables are simulated independently from
the uniform distribution. We require that the variations of noisy variables in the
generated data are similar to non-noisy variables. Outliers (for metric and symbolic
interval data only). The outliers are generated independently for each variable for
the whole data set from uniform distribution with range [1, 10]. The generated val-
ues are randomly added to maximum of j th variable or subtracted from minimum
of j th variable.

Paths of simulations:

� pure model with no noisy variables and/or outliers,
� model with one noisy variable added,
� model with two noisy variables added,
� model with five noisy variables added,
� model with 20% outliers addes,
� model with one noisy variable and 20% of outliers,
� model with two (three) noisy variables and 20% of outliers,
� model with five noisy variables and 20% of outliers.

5 Results of Simulations

For each model and path of simulation (see: Sect. 4) fifty runs of symbolic multidi-
mensional scaling where done and the means and standard deviations of I-STRESS
values where compared.

While Table 3 presents results of simulation for models with known number
of noisy variables or models with 20% of outliers, Table 4 presents results of
simulations for models with 20% of outliers and known number of noisy variables.
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Table 3 Results of simulations – models with noisy variables or 20% of outliers added

Model no. Method Mean and SD Number of noisy variables 20% of outliers
0 1 2 5

I Interscal Mean 0:3391 0.3992 0.3120 0:4298 0.3734
SD 0:2153 0.1860 0.1335 0:1356 0.2896

I-Scala Mean 0:1333 0.3086 0.2461 0:3143 0.2998
SD 0:0317 0.1534 0.1291 0:1209 0.2092

I-Scalb Mean 0:0981 0.4426 0.2344 0:2978 0.2714
SD 0:0300 0.1544 0.1201 0:1154 0.2765

II Interscal Mean 0:3553 0.4221 0.3678 0:4001 0.4109
SD 0:1362 0.1131 0.1452 0:1653 0.1896

I-Scala Mean 0:1209 0.2763 0.2577 0:3243 0.3123
SD 0:0071 0.1222 0.1098 0:1473 0.1720

I-Scalb Mean 0:0798 0.3663 0.1876 0:2649 0.2808
SD 0:0300 0.1544 0.1201 0:1154 0.0987

III Interscal Mean 0:4239 0.5049 0.4200 0:3654 0.3987
SD 0:1667 0.1532 0.1211 0:0973 0.2234

I-Scala Mean 0:1092 0.1763 0.2097 0:1980 0.2034
SD 0:0635 0.0976 0.1112 0:1092 0.1331

I-Scalb Mean 0:0991 0.1378 0.1876 0:1765 0.2008
SD 0:0900 0.0865 0.1098 0:1021 0.1109

IV Interscal Mean 0:4092 0.5112 0.3961 0:3098 0.4409
SD 0:1441 0.1110 0.1481 0:2022 0.2344

I-Scala Mean 0:1949 0.2109 0.1782 0:2031 0.3092
SD 0:0742 0.1021 0.1073 0:1143 0.1108

I-Scalb Mean 0:1302 0.1992 0.1444 0:1673 0.2655
SD 0:01 0.1009 0.1121 0:1 0.0873

SD – standard deviation
aI-Scal with random start point;
bI-Scal with rational start point, see: Sect. 3
Source: own research

6 Final Remarks

In this paper several symbolic multidimensional scaling methods were compared
on artificially generated symbolic data sets. The experiment showed that the most
adequate one for this kind of data in most cases is I-Scal with rational star point,
sometimes I-Scal with random star point archives better results as I-Scal with ratio-
nal start point. When considering all models and paths of simulations I-Scal with
rational start point gets the best results and Interscal gets always the worst results.
It’s suggested to use I-Scal (with random and rational start point) in symbolic
multidimensional scaling method in case of real symbolic data.

Note that when we deal table of symbolic objects described by different kinds
of symbolic variables (intervals, set of categories, etc.) and we want to preserve all
information about the objects, the only way is to treat them as points and apply well-
known non-metric multidimensional scaling for classical data. But symbolic objects
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Table 4 Results of simulations – models with 20% of outliers and number of noisy variables
added
Model no. Method Mean and SD Number of noisy variables

1 2 3 5

I Interscal Mean 0.5954 0.6003 0.6970 0.8393
SD 0.1884 0.2073 0.1137 0.1205

I-Scala Mean 0.3604 0.4889 0.6659 0.8318
SD 0.1167 0.1143 0.1656 0.0746

I-Scalb Mean 0.2530 0.5339 0.6567 0.7629
SD 0.0480 0.2025 0.1733 0.1310

II Interscal Mean 0.5402 0.6094 0.7642 0.8875
SD 0.1986 0.2772 0.2091 0.0987

I-Scala Mean 0.4091 0.5004 0.6109 0.6812
SD 0.0923 0.1556 0.2441 0.1771

I-Scalb 0.3992 Mean 0.5618 0.6099 0.5665
SD 0.0791 0.1780 0.1029 0.1245

III Interscal Mean 0.4112 0.5443 0.6732 0.8092
SD 0.1552 0.2007 0.1982 0.2567

I-Scala Mean 0.3507 0.4172 0.5094 0.6110
SD 0.1010 0.1002 0.1788 0.2019

I-Scalb Mean 0.3678 0.4221 0.4785 0.5012
SD 0.1209 0.1021 0.1102 0.1761

IV Interscal Mean 0.4509 0.5588 0.6789 0.8195
SD 0.1408 0.1062 0.1343 0.1555

I-Scala Mean 0.4021 0.5678 0.6201 0.7985
SD 0.1231 0.1092 0.0861 0.1023

I-Scalb Mean 0.4056 0.5401 0.5903 0.7109
SD 0.1019 0.0989 0.1009 0.1102

SD – standard deviation;
aI-Scal with random start point;
bI-Scal with rational start point, see: Sect. 3
Source: own research.

due to their complexity shouldn’t be treated as points in multidimensional space and
lower spaces as well.
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Principal Components Analysis for Trapezoidal
Fuzzy Numbers

Alexia Pacheco and Oldemar Rodríguez

Abstract Scientists in many disciplines face the problem of interpretation of com-
plex structures such as the symbolic data extracted from databases with a significant
amount of records; or containing fuzzy numbers based on expert knowledge or par-
tial knowledge originating from incomplete records. Principal Components Anal-
ysis (PCA) is most often used to interpret complex patterns as it allows reducing
dimensionality and extracting the main characteristics of the data sample, as well as
visualization in a two-dimensional plane and in a correlation circle. There is a need
to extend this widely used method to the above mentioned data types.

A new method called PCA-TF is proposed that allows performing PCA on data
sets of trapezoidal (or triangular) fuzzy numbers, that may contain also real numbers
and intervals. The approach is an extension to fuzzy numbers of the algorithm by
Rodríguez (2000). A group of orthogonal axes is found that permits the projection
of the maximum variance of a real numbers’ matrix, where each number repre-
sents a trapezoidal fuzzy number. The initial matrix of fuzzy numbers is projected
to these axes by means of fuzzy number arithmetic, which yields Principal Compo-
nents and they are also fuzzy numbers. Based on these components it is possible to
produce graphs of the individuals in the two-dimensional plane. It is also possible to
evaluate the shape of the ordered pairs of fuzzy numbers and visualize the member-
ship function for each point on the z axis over the two-dimensional xy plane. The
application is demonstrated on a data sample of students’ grades in Denœux and
Masson (2004) and is compared to the results of the principal component analysis
of fuzzy data using associative neural networks proposed by Denœux & Masson
(D&M-PCA). Also, an important relation between the arithmetics of the intervals
and projection formulas for the interval data type is demonstrated.
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1 Introduction

Recent developments in informatics and statistics opened a possibility of assess-
ing data types with more complex structures such as symbolic objects (Bock and
Diday 2000) extracted from a huge amount of records or fuzzy numbers (Kaufman
and Gupta 1991) generated on the basis of expert knowledge or partial knowledge
originating from incomplete records. It is therefore necessary to extend the classi-
cal methods of data analyses to these new data types. One of the most frequently
used methods is the Principal Component Analysis (PCA) as it allows dimension
reduction and visualization of the results in a low-dimensional space and as a corre-
lation circle. In the context of symbolic data analysis and fuzzy data analysis there
have been a number of attempts to extend this method to cover the new data types,
for example, intervals (Cazes et al. 1997; Rodríguez 2000) and trapezoidal fuzzy
numbers based on associative neural networks (Denœux and Masson 2004).

Herein a new approach,PCA-TF, to perform PCA on a trapezoidal fuzzy number
matrix is suggested. It considers the theoretical aspects of several independent topics
that all operate on interval variable types such as fuzzy numbers, interval arithmetic
and symbolic data. An important relation between the arithmetic of the intervals
and projection formulas for the interval data type used in the context of symbolic
data analysis is demonstrated. A relationship between fuzzy numbers and intervals
was already noted by Lodwick and Jamison (2003). Two computer programs (Edit-
PCA-TF, PCA-TF) were developed to apply and to test the method on arbitrary data
sets. The application is shown on the example of the data matrix with student grades
found in Denœux and Masson (2004).

2 The Method: PCA-TF

As in the case of an usual PCA, the objective of PCA-TF is to obtain a low-
dimensional representation of the objects/individuals with minimum information
loss, which facilitates compression of the initial data and extraction of the most
relevant characteristics. The new development is an extension of the algorithm by
Rodríguez (2000)(Cazes et al. 1997) to fuzzy numbers. A set of orthogonal axes is
found that allows projecting the maximum variance of a real matrix that corresponds
to the middle points of the mean intervals representing each trapezoidal fuzzy num-
ber in the most natural way, as noted by Dubois (2006). The initial fuzzy numbers
matrix is projected on these new axes by means of fuzzy numbers arithmetic, this
yields principal components that are fuzzy numbers as well. Based on these com-
ponents, it is possible to plot the individuals in the principal component plane and
also appreciates the shape of the ordered fuzzy number pairs. Besides it is possible
to visualize in a 3D space (XYZ) the principal component plane (xy� axis) and the
value of the membership function on the z-axis.

To extend the algorithm by Rodríguez (2000) (Cazes et al. 1997), first a rela-
tionship among the equations for the projection of an interval type variable and
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the interval arithmetic was proved, specifically in [Rodríguez 2000, Theorem 4.1.1]
where it is established that if an interval type variable which geometrically is a
hypercube defined by the i -th column of the matrix Z is projected over the j-th
principal component (in the direction uj , where uj is a real number vector), then the
maximum (rij ) and minimum (rij ) values are defined by the following equations:

rij D
pX

kD1;ukj >0

Zki � ukj C
pX

kD1;ukj <0

Zki � ukj , (1)

rij D
pX

kD1;ukj >0

Zki � ukj C
pX

kD1;ukj <0

Zki � ukj , (2)

where Zi represents an interval type variable and Zj i D ŒZj iZj i �.
Using X D Zt (Xij D Zj i ), yij D rij , yij D Œyij ; yij � and rij D Œrij ; rij � then

equations (1) and (2) are rewritten as following,

yij D
pX

kD1;ukj >0

Xik � ukj C
pX

kD1;ukj <0

Xik � ukj , (3)

yij D
pX

kD1;ukj >0

Xik � ukj C
pX

kD1;ukj <0

Xik � ukj . (4)

Formally the following theorem is established:

Theorem 1. Let X be an interval matrix defined by:

X D

0

B
B
@

ŒX11; X11� : : : ŒX1p ; X1p�

:::
: : :

:::

ŒXn1; Xn1� : : : ŒXnp; Xnp�

1

C
C
A :

Let uj be the j -th column vector of the matrix Up	p and Xi be the i-th row of
the matrix X . The (3) and (4) [Rodríguez 2000, Theorem 4.1.1] to calculate the
maximum and minimum projections of the vectors xi 2 Xi over uj can be done by
using the interval arithmetic to compute Xi � uj , that is:

yij D
pX

kD1;ukj >0

Xik � ukj C
pX

kD1;ukj <0

Xik � ukj , (5)

yij D
pX

kD1;ukj >0

Xik � ukj C
pX

kD1;ukj <0

Xik � ukj . (6)
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Proof. Interval arithmetic establishes that given a D Œa; a� and b D Œb; b� intervals
then:

aC b D ŒaC b; aC b�, a � b D Œa � b; a � b�
8c 2 IR; ca D ˚ Œca; ca� if c � 0 and Œca; ca� if c < 0.

Then yij D Xi � uj D Pp

kD1
Xik � ukj D Œ

Pp

kD1
Xik � ukj ;

Pp

kD1
Xik � ukj ],

where

Xik � ukj D
( 

ukj �Xik; ukj �Xik

�
if ukj � 0,


ukj �Xik; ukj �Xik

�
if ukj < 0.

Therefore,

Xik � ukj D
�

ukj �Xik if ukj � 0,
ukj �Xik if ukj < 0,

Xik � ukj D
�

ukj �Xik if ukj � 0,
ukj �Xik if ukj < 0.

This gives the following results:

yij D
pX

kD1;ukj >0

Xik � ukj C
pX

kD1;ukj <0

Xik � ukj ,

yij D
pX

kD1;ukj >0

Xik � ukj C
pX

kD1;ukj <0

Xik � ukj .

which correspond to the equations given in (5) and (6).

This result offered the basis for formulating a theorem for projection of a fuzzy
number variable using fuzzy number arithmetic. Before presenting the theorem the
following definitions are introduced:

� A trapezoidal fuzzy number Y is represented by Y D .Y .1/; Y .2/; Y .3/; Y .4//

and its membership function is defined by:

�Y .x/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

0 if x < Y .1/,
x�Y .1/

Y .2/�Y .1/ if Y .1/ � x < Y .2/,
1 if Y .2/ � x � Y .3/,

Y .4/�x

Y .4/�Y .3/ if Y .3/ < x � Y .4/,
0 if Y .4/ < x.

(7)

� The support and core of the trapezoidal fuzzy numberY are defined as supp.Y / D
ŒY .1/; Y .4/� and core.Y / D ŒY .2/; Y .3/�.
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� The ˛ level for the trapezoidal fuzzy number Y , noted by Y˛, corresponds to
Y˛ D ŒY .1/ C ˛.Y .2/ � Y .1//; Y .4/ � ˛.Y .4/ � Y .3//�.

� The mean interval for a trapezoidal fuzzy number Y is defined by NE.Y / D
ŒE�.Y /; E�.Y /� (Dubois 2006) where

E�.Y / D
Z 1

0

.infY˛/ d˛ D
Z 1

0

.Y .1/ C ˛.Y .2/ � Y .1//d˛ D Y .1/ C Y .2/

2

E�.Y / D
Z 1

0

.supY˛/ d˛ D
Z 1

0

.Y .4/ � ˛.Y .4/ � Y .3//d˛ D Y .3/ C Y .4/

2

� The middle point of mean interval for a trapezoidal fuzzy number Y is defined

by Y .1/CY .2/CY .3/CY .4/

4
.

Theorem 2. Let X be a trapezoidal fuzzy number matrix defined by:

X D

0

B
B
@

.X
.1/
11 ; X

.2/
11 ; X

.3/
11 ; X

.4/
11 / : : : .X

.1/
1p ; X

.2/
1p ; X

.3/
1p ; X

.4/
1p /

:::
: : :

:::

.X
.1/
n1 ; X

.2/
n1 ; X

.3/
n1 ; X

.4/
n1 / : : : .X

.1/
np ; X

.2/
np ; X

.3/
np ; X

.4/
np /

1

C
C
A :

Let uj be a column vector in IRp, Xi the i -th row of matrix X , yi supp D
supp.Xi / � uj , yi core D core.Xi / � uj , yi ˛ D .Xi /˛ � uj and yi the trapezoidal

fuzzy number defined as .y.1/
i ; y

.2/
i ; y

.3/
i ; y

.4/
i / D .yi supp; yi core; yi core; yi supp/.

Then

yi ˛ D Œy.1/
i C ˛.y.2/

i � y.1/
i /; y

.4/
i � ˛.y.4/

i � y.3/
i /� D .Xi /˛ � uj .

The two components of yi ˛ can be written in another way, respectively as:

y
.1/
i C ˛.y.2/

i � y.1/
i / DPp

kD1;ukj >0
.X

.1/

ik
C ˛.X .2/

ik
�X .1/

ik
// � ukj

CPp

kD1;ukj <0
.X

.4/

ik
� ˛.X .4/

ik
�X .3/

ik
// � ukj ,

(8)

y
.4/
i � ˛.y.4/

i � y.3/
i / DPp

kD1;ukj >0
.X

.4/

ik
� ˛.X .4/

ik
� X .3/

ik
// � ukj

CPp

kD1;ukj <0
.X

.1/

ik
C ˛.X .2/

ik
�X .1/

ik
/ � ukj .

(9)

The proof has been omitted for briefness [Pacheco 2007, Theorem 3.2.2].
To plot the principal component plane and to show the membership function

of an ordered pair of trapezoidal fuzzy numbers, a 3d (XYZ) space was used.
The value of membership functions is represented on z axis and it is defined by
zi D �.xi ;yi / D min.�xi

; �yi
/, where .xi ; yi / is an ordered pair of trapezoidal

fuzzy numbers.
It was also demonstrated that the intervals PCA is a particular case of the

PCA-TF [Pacheco 2007, Theorem 3.3.2] and thus, the classic PCA as well [Pacheco
2007, Theorem 3.3.1].
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Algorithm – Principal Components Analysis for Trapezoidal Fuzzy Numbers
(PCA-TF)

This algorithm is an extension to trapezoidal fuzzy numbers of the algorithm
suggested by Rodríguez (2000)

Inputs

n D Number of individuals (number of rows of the data matrix).

p D Number of variables (columns of the data matrix).

X D Data table (matrix of trapezoidal fuzzy numbers).

Outputs

C D Principal components (trapezoidal fuzzy numbers matrix).

R D Correlation between variables and principal components (interval matrix).

CAL D Quality of representation of individuals (real number matrix).

CTR D Individual contribution to the components (real number matrix).

INR D Individual contribution to the total inertia (real number matrix).

Steps

1. Defuzzify X calculating the middle point of the mean interval. XE represents
defuzzified X .
With i D 1; : : : ; n and j D 1; : : : ; p, calculate:

XE D ..XE
ij // D NE.X/ D . NE.Xij // D

  
4X

lD1

Xij
.l/

4

!!

.

2. Calculate the mean and standard deviation for the columns of the matrix XE .
With i D 1; : : : ; n and j D 1; : : : ; p, calculate:

NXE
j D

nX

iD1

XE
ij

n
, 	j

E D
 

nX

iD1

.XE
ij � NXE

j /
2

n

!1=2

.

3. Calculate the matrix Z D .zij /, where with i D 1; : : : ; n and j D 1; : : : ; p,

calculate: zij D 1p
.n/

XE
ij � NXE

j

�E
j

.

4. Calculate the matrixXc D .Xc
ij /, where with i D 1; : : : ; n and j D 1; : : : ; p,

calculate: Xc
ij D 1p

.n/

Xij � NXE
j

�E
j

.
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5. Calculate the matrix V D ZtZ.
6. Calculate the first q eigenvectors u1; u2; : : : ; uq of V and its associated eigen-

values �1 � �2 � � � � � �q � 0.
7. Calculate the principal components Ck . For k D 1; : : : ; q do: Ck D .Xc/ � uk ,
C c

k D Z � uk

8. Calculate the eigenvector for the matrix ZZt using those of the ZtZ matrix.
For i D 1; : : : ; n y j D 1; : : : ; q calculate: wij D 1p

j

.
Pn

kD1 zik � ukj /.

9. Calculate the correlations amongst variables and the principal components:
For k D 1; : : : ; q do: PRk D .Xc/t wk , Rk D .supp.PRki \ Œ�1; 1�/,

10. Calculate the interpretation parameters:
Individual representation quality for individual i in the factorial axis j

CAL.i; j / D CAL.Xi ; uj / D .C c
ij /

2

Pp
iD1.zij /2

.

Contribution of individual i to the factorial axis inertia j

CTR.i; j / D CTR.Xi ; uj / D .C c
ij /

2

n � �j

.

Contribution of the i to the total inertia

INR.i/ D INR.Xi / D 1p
n

Pp
iD1.zij /

2

Pp
iD1 �p

.

11 End of the algorithm.

3 Tests of the Performance of the PCA-TF Method

The performance of the suggested method has been tested on the example of two
different data sets (student data set Denœux and Masson 2004, fruit juices data set
Giordani and Kiers 2006) and the results were compared to those obtained by a
similar method by Denœux and Masson (2004).

Let us consider first the hypothetical data set shown in Table 1, taken from
Denœux and Masson (2004).

Applying the PCA-TF, the principal component plane and the correlation circle
shown in Figs. 1 and 2 respectively, are obtained. The plot in Fig. 1 is generated
by drawing the ordered pairs of fuzzy numbers .Cij ; Cik/, each of which represent
the individual i , where j and k are the selected axes for visualization (in Figs. 1
and 2, j D 1 and k D 2). In this way the support rectangle, the core rectangle
and the borders, where the membership function for ordered pair of trapezoidal
fuzzy number experiences a change, can be examined. For the positioning of the
individuals a traditional interpretation can be applied.
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Table 1 Student dataset (Denœux and Masson 2004)
M1 M2 P1 P2

TOM 15 fairly good unknown [14,16]
DAVID 9 good fairly good 10
BOB 6 [10,11] [13,20] bien
JANE very bad very good 19 [10,12])
JOE (0,0,2,6) fairly good [10,14] 14
JACK (1,1,1,1) [4,6] 9 [6,9]

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

JANE

TOM

BOB

DAVID

Principal plane X=C1 and Y=C2  Inertia=81.35%

JOE

JACK

Fig. 1 Principal plane using the first two principal components

From the results shown in Figs. 1 and 2, it seems that the first principal com-
ponent is related with the behavior in mathematics (variables M1 and M2), while
the second principal component reflects the behavior in physics (variables P1 y P2).
That is why Jane, who had the best grades in mathematics, appears in the upper right
corner of principal component plane, while Jack having the worst grades – is at the
left fringe. The second principal component has a high negative correlation with P2.
Therefore, those with good grades on this variable are located in the inferior part of
the principal component plane and viceversa. Besides it is noted that Jack is repre-
sented by a rectangle shape due to the fact that his data values are hard or “crisp”
intervals, while the data for Jane consist of fuzzy numbers for the coordinates x and
y in principal component plane, given that half of her grades are fuzzy numbers.
Tom’s grade in P1 is unknown and therefore it was represented by an interval for
the whole range of grades variation, which yields the biggest support intervals for
the coordinates among all the students.
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Fig. 2 Correlation circle using the first two principal components

In the correlations circle shown in Fig. 2, the correlation between M1 and M2

can be verified with first principal component, and that ofP2with the second princi-
pal component.P1 reflects the huge variation range in Tom’s grade in this variable,
as his data were modeled as [0,20] interval due to his unknown grade.

In the method proposed by Denœux and Masson (2004) (D&M-PCA) the stan-
dard iterative gradient descent is proposed, further on, there is no guarantee of the
orthogonality of the axes, which is a clear weakness. Meanwhile classical PCA
guarantees that the principal components are not correlated. Another drawback is
that minimizing the function by means of the gradient descent algorithm a mini-
mum local can be found instead of the absolute one, since it’s a greedy algorithm.
In PCA-TF the axes to which the matrix of fuzzy numbers are projected (which
yields principal components) are orthogonal.

A comparison of the results of these two methods applied to the same data
showed that they were similar, despite of the fact that in the method by Denœux &
Masson the axes were not orthogonal.

PCA-TF was also applyed to fruit juices data set (Giordani and Kiers 2006)
and the results were compared to D&M-PCA (method proposed by Giordani and
Kiers 2006). The components have similar interpretations, but the axes to which
the matrix of fuzzy numbers are projected are orthogonal, in the case of PCA-TF
method (Pacheco 2007). The details has been omitted for briefness. Further work
will be oriented to a simulation study to gain better knowledge on the performance
of the method.
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4 Conclusions

The study presented herein considered the theoretical aspects of several indepen-
dent topics that all operate on interval variable type such as fuzzy numbers, interval
arithmetic and symbolic data to propose a new method called PCA-TF. For that, an
important relationship between the interval arithmetic and the formulas for project-
ing interval valued data was also proved (Theorem 1). Relationship between fuzzy
numbers and intervals was already noted before by other authors.

The proposed PCA-TF method is an extension PCA to trapezoidal fuzzy num-
bers. The approach is developed in the context of symbolic data analysis for interval
data type, applying the fundamental theory of operations on interval data and fuzzy
number arithmetic. The performance of the method was tested on two data set of
fuzzy numbers (student grades and fruit juices) and compared with D&M-PCA.
PCA-TF method has an advantage of projecting over orthogonal axes and it yields
the components which are trapezoidal fuzzy numbers. Both the classical PCA and
the interval PCA are particular cases of PCA-TF. Further work will be oriented to
a simulation study to gain better knowledge on the performance of the method.
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Factor Selection in Observational Studies –
An Application of Nonlinear Factor Selection
to Propensity Scores

Stephan Dlugosz

Abstract Observational studies have become a major research methodology in
scientific disciplines where experiments are hard to perform. These most notably
include the health sciences, social sciences and (macro-)economics. It is difficult
to estimate treatment effects due to the non-randomised character of these studies.
Propensity scores solve this problem to some extent by incorporating the con-
trol variables into one measure (Rosenbaum and Rubin 1983). An estimation of
these propensity scores can be performed by any method of categorical regression
(logit etc.). Nevertheless, estimated effects are very sensitive to the propensity score
(Drake 1993; Heckman et al. 1998; Brookhart et al. 2006) and for this reason, the
propensity score should be estimated with great care. In order to avoid a poor gen-
eralisation performance of the propensity score estimation, it is important to choose
factors appropriately. Unfortunately, it is not possible to select factors during the
estimation of the propensity score and independently from treatment calculation. In
this paper, an integrated factor selection method is proposed, which considers the
treatment effect estimation during the propensity score estimation.

1 Introduction

Empirical researchers in many scientific disciplines – such as sociology, economy,
and epidemiology – are often faced with the problem that they cannot use ran-
domised experiments if these are tied up with economic or ethical issues. Data
for these kinds of research are usually obtained from observing subsets of the
population. Unfortunately, often neither the sampling process nor the treatment
assignment is randomised. In randomised experiments, simple comparisons between
the treatment and the control group result in unbiased treatment effect estimates;
but the same simple comparisons between the two groups usually result in an over-
estimation of the treatment effect in the presence of selection bias. This estimation

S. Dlugosz
ZEW Centre for European Economic Research, Mannheim
e-mail: dlugosz@zew.de

H. Locarek-Junge and C. Weihs (eds.), Classification as a Tool for Research,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-10745-0_39, c� Springer-Verlag Berlin Heidelberg 2010

361

dlugosz@zew.de


362 S. Dlugosz

bias is caused by confounding variables (x) that are related to the treatment assign-
ment (t) and to the outcome (y). Thus, a stratification of the sample according to
all of these background variables is necessary. Then, we can estimate the treatment
effect for each strata separately and calculate a weighted sum – usually according
to the population frequencies of the strata – to approximate the average treatment
effect.

This method works well as long as the number of variables – and therefore the
number of strata – is small compared to the number of independent observations.
This curse of dimensionality problem is usually solved by “compressing” the high
dimensionality of the covariate space to a single dimension, which is the proba-
bility of being treated conditional on the covariates, i.e. the propensity score (PS)
P.t D 1jx/. This dimensionality reduction is effective in the sense that stratifica-
tion according to the PS yields the same correction for the biased estimation as exact
matching (Rosenbaum and Rubin 1983). Unfortunately, the true PS is usually not
known and has to be estimated; and – to make matters worse – the results are very
sensitive to the specification of this PS estimation model (Drake 1993; Heckman
et al. 1998). Flexible – non-parametric or at least non-linear – models should be
used to take care of this. Unfortunately, these are very sensitive to high dimensional
factor spaces and an appropriate method of factor selection is needed.

In their seminal paper, ROSENBAUM and RUBIN do not suggest any method of
factor selection (Rosenbaum and Rubin 1983) and implicitly assume that every vari-
able is relevant. Under this assumption, simple tests of independence (i.e. �2-tests)
are suitable for selecting the relevant factors (cf. Rosenbaum 2002 for examples).
Instead of testing independency, we should be more interested in testing high depen-
dency as the example demonstrates. Often – in real-world studies – the PS is
estimated via parametric methods like logistic regression; and factor selection for
this regression model is done with standard parameter testing using bottom-up or
top-down model construction (Hirano et al. 2003; D’Agostino 1998) and deriving
stopping rules for the procedures (Judkins et al. 2007). Apart from the fact that
these approaches are dependent on model choice, order of factor in- or exclusion,
they are also algorithmically quite expensive for high numbers of factors. Another
very appealing approach uses the following iterative procedure (Dehejia and Wahba
2002):

1. Start with a parsimonious model
2. Sort data according to estimated PS
3. Stratify observations based on PS
4. Test means of treated group and control group within stratum

(a) If balanced: stop
(b) If covariates are not balanced for some stratum, divide stratum
(c) If a covariate is not balanced for many strata, add it or add interactions to the

model and re-evaluate

This algorithm takes the special structure of the factor selection problem for PS
models into account. Unfortunately, it is order-dependent – especially on the starting
model – and thus it cannot ensure that only the most relevant factors are selected,
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as it usually selects too many variables. Additionally, it is an expensive procedure
because of the necessary re-evaluation of the whole PS model.

2 Theoretical Framework

With the causal relationships between the covariates, the treatment and the out-
come (cf. Fig. 1) in mind, we can divide the covariates into four groups of variables
according to their causal relationship to the treatment t and/or the outcome y with
the following properties (cf. Brookhart et al. 2006; Dawid 1979) for the notation of
conditional independence):

1. Variables are independent between the four groups, but not necessarily within the
groups, i.e. x0; xy ; xt;y; xt are stochastically independent

2. Variables from group x0 are stochastically independent from the outcome and the
treatment assignment, i.e. y?? x0?? t

3. Variables from group xy are independent from treatment, i.e. xy ?? t
For notational simplification, let .y0; y1/ denote the (possible) outcome variables

for each unit in the control and in the treatment group with (y1) and without (y0)
treatment. Obviously, y1 is missing for the control group and y0 for the treatment
group (cf. Rosenbaum and Rubin 1983 for details).

4. Variables from group xt are independent from the outcome, i.e. xt ?? .y0; y1/

5. The model includes at least all relevant variables, i.e. strong ignorability of
the treatment assignment is given (Rosenbaum and Rubin 1983): .y0; y1/??
t j.x0; xy; xt;y ; xt /

This simple framework leads us directly to the following simple facts:

(a) .y0; y1/?? t j.xy ; xt;y; xt / (assumptions 1, 2 and 5)
(b) .y0; y1/?? t jp.xt;y ; xt / [PS (cf. Rosenbaum and Rubin 1983), assumption 3

and a]
(c) xt ?? .y0; y1/j.xt;y; xy/ (assumptions 1, 3 and 4)

Obviously, the variables from group x0 are irrelevant for the PS model. Further-
more, the variables from xy can naturally be excluded from the PS model, as they
are independent from the treatment. Property (c) indicates that variables in xt behave
like an additional source of randomisation for the study. Thus, it should not be nec-
essary to stratify by the variables from xt and we can reduce the PS model by these
variables. It seems that a restricted model p.xt;y/ D pr.t D 1jxt;y/ for the PS based
on xt;y is sufficient to control for the selection bias.

Fig. 1 Illustration of the
causal framework

x0

xy

xt,y

xt
t

y
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Proposition 1. Under assumptions 1–5, it is true:

.y0; y1/?? t j.xy ; xt;y/

Proof. Starting with .y0; y1/?? t j.xy ; xt;y; xt /; by using c) and with Lemma 4.3 of
Dawid (1979) it is true that .y0; y1/?? .t; xt /j.xy ; xt;y/ and with Lemma 4.2(i) of
Dawid (1979) we get the result. ut

Now we can show that p.xt;y/ is sufficient to model the PS:

Corollary 1. Under assumptions 1 to 5, it is true:

E

y1jp.xt;y/; t D 1

�� E

y0jp.xt;y/; t D 0

� D E

y1 � y0j.xy ; xt;y; xt /

�

Proof. Application of Theorem 4 of Rosenbaum and Rubin (1983) by using Propo-
sition 1 and afterwards making use of assumption 3. ut

3 Factor Selection for Propensity Score Modelling

3.1 Non-linear Factor Selection

The idea of non-linear factor selection aims at the more general problem of factor
selection for any kind of supervised (regression/classification) data analysis task for
high dimensional categorical data. Two measures are needed for factor selection: A
measure for the predictive power of a factorX on outcome Y to decide its relevance
for the model in size and a measure of (dis-)similarity of the impact of two factors
to deal with the association structure of the factors.

In general, a measure of predictive association could look like Dlugosz and
Müller-Funk (2008)

AD.Y jX/ D 1 �LX



D.Y jX/
D.Y /

�

2 Œ0; 1�; (1)

which is based on the relation of the dispersions of a-posterioriD.Y jX/ and a-priori
D.Y / distribution, which can be interpreted as the gain in precision of the prediction
of outcome Y if the value for factor X is known. These relative gains have to be
centred by a measure of location LX overX (e.g. mean).

It is possible to deal with an ordinal Y appropriately with the help of an ordinal
measure of dispersion (other variants are discussed in the same paper). Dlugosz and
Müller-Funk (2008):

Do.p/ D L
"

: : : ;D

 
rX

iD1

pi ;

KX

iDrC1

pi

!

; : : :

#

(2)
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This measure is based on an ordinary measure of dispersion D for categorical
variables Müller-Funk (2007).

A factor selection method which seeks for the factors with the largest predictive
measure of association would neglect the associations between the factors, and most
likely select a set of highly correlated factors. Therefore, a measure of difference in
the impact of two factors V , W on the outcome has been proposed (Dlugosz and
Müller-Funk 2008):

d.V;W / D
X

k;`

ˇ
ˇ O�V .�jk/� O�W .�j`/

ˇ
ˇ
T V
O�V;W .k; `/; (3)

where O�V .�jk/ denotes the estimated probability of the outcome conditional on V
having value k.

In order to render an ordinal measure of factor distances, the total variation in (3)
can be replaced by a variant for ordinal variables

j�1 � �2joT V D 1

C � 1
C �1X

c

ˇ
ˇ
ˇ
X

i�c

�1.i/�
X

i�c

�2.i/
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
X

i>c

�1.i/�
X

i>c

�2.i/
ˇ
ˇ
ˇ;

whose construction principle is similar to that of the ordinal dispersion measure
(cf. Dlugosz and Müller-Funk 2008 for details).

The distances between the factors are used in a hierarchical cluster algorithm
with an inhomogeneity minimising objective function – like ‘complete linkage’ –
to identify groups of similar factors. In a subsequent data analysis, one representa-
tive factor from each of the groups should be selected according to the predictive
association of the factor with the target variable.

3.2 Factor Selection for the Propensity Score Model

The following two conditions should hold for variables within the PS model, i.e. for
variables, that belong to xt;y:

1. The relevant variables should be close to the treatment in a factor selection for a
model that explains the outcome with the help of the independent variables and
the treatment (treated as one of the covariates).

2. The relevant variables should be close to the outcome in a factor selection for a
model that explains the treatment assignment with the help of the independent
variables and the outcome (treated as one of the covariates).

Based on this idea, the following algorithm is proposed:

1. calculate the two dendrograms of .X; T /! Y and .X; Y /! T

2. use tests to identify x0
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3. identify variable groups:

� xy � A � xy [ xt;y through distance to treatment
� xt � B � xt;y [ xt through outcome dendrogram (covered by treatment)
� xy � C � xy [ xt;y through treatment dendrogram (covered by outcome)
� xt � D � xt;y [ xt through distance to outcome
! identification through intersections, i.e.

xy � A\ C and xt � B \D and then xt;y � .A [ C/\ .B [D/

4 Example

This example is based on an artificial data set describing an evaluation of a labour
market programme from 1976 in the US (LaLonde 1986). The treatment is pro-
gramme participation and the measured outcome is real income for the year 1978.
Possible covariates are age, education (in years), genetic origin, marital status, high-
school degree, real income for the years 1974 and 1975 and longer unemployment
phases in 1974 and 1975.

The factor selection method requires categorical data. For this reason, some of
the variables have to be categorised. For better results, the categorisation procedure
follows two principles: (1) use only a few categories to speed up calculation time and
sufficient number of cases per cell; (2) choose boundaries by maximising variance
on categorised variables to maximise the power of the method. Additionally, the
variables ‘hispanic’ and ‘black’, which are mutually exclusive, are combined to one
variable called ‘color’.

In a first step, the measures of association AD and ADo
as well as tests on fac-

tor relevance, i.e. simple Wald and likelihood-ratio tests for ‘linear’ dependence
(cf. Dlugosz and Müller-Funk 2008) and �2-tests for independence (cf. Rosenbaum
and Rubin 1983) have been computed (cf. Table 1 for corresponding p-values).

Table 1 LALONDE data: Predictive associations and p-values of some factor relevance tests

Outcome Treatment
Factor AD ADo LR �2 AD Wald �2

Age 0.0311854 0.0308896 0.442 0.671 0.0209229 0.785 0.904
Education 0.0179272 0.0247675 0.131 0.095 0.0367440 0.400 0.010
Color 0.0153731 0.0306167 0.011 0.001 0.0096511 0.129 0.115
Married 0.0021067 0.0011027 0.938 0.486 0.0016722 0.467 0.369
No degree 0.0046661 0.0062814 n.a. 0.031 0.0233209 0.017 0.002
Real income 74 0.0077462 0.0056868 0.365 0.553 0.0037928 0.374 0.810
Real income 75 0.0087970 0.0107277 0.976 0.832 0.0206913 0.655 0.107
Real income 78 1 1 – – 0.0229913 0.041 0.062
Unemployed 74 0.0019883 0.0023366 n.a. 0.598 0.0023383 0.736 0.330
Unemployed 75 0.0024489 0.0029584 n.a. 0.418 0.0080206 0.546 0.070
Treatment 0.0058111 0.0086944 0.053 0.065 1 – –
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The results from Table 1 imply – �2-tests for both aspects are significant at the
10% level – that the simple factor selection methodology inspired by Rosenbaum
and Rubin (1983) would yield the variables ‘education’, ‘color’ and ‘no degree’. In
particular the exclusion of ‘age’ is not plausible from an economic point of view.
Furthermore, due to its exemplary character, we could not expect the LALONDE

data to contain irrelevant variables in advance. This is why the variable ‘random’ –
describing a binary random variable – has been added to the data set. Following
the idea of ‘grouping’ the variables according to their ‘unique’ information on the
target variable, variables that do not have a high impact on the outcome should be
‘close’ to ‘random’. Please note that this is neither a test nor sufficient, it is simply
an illustration of the methodology.

Applying the techniques proposed in this paper yields the dendrograms Fig. 2.
The first dendrogram shows the impact of the factors on the outcome and the second
dendrogram shows their impact on the treatment.

We define the four classes of factors by dividing the dendrograms at ‘treat-
ment’ (groups A and B) and ‘real income 78’ (groups C and D), respectively:
A includes ‘education’, ‘color’, and ‘age’; B is ‘income 75’, ‘no degree’, ‘income
74’, ‘unemployed 74’, ‘unemployed 75’, and ‘married’;C has ‘income 75’, ‘income

Rescaled Distance Cluster Combine

C A S E 0 5 10 15 20 25
Label Num  +---------+---------+---------+---------+---------+

random 11 ───┐
married 10 ───┴─────┐
real income 74 7 ─┬───┬───┴─────┐
unemployed 74 9 ─┘ │ │
unemployed 75 8 ─────┘ │
no degree 6 ───────────────┴───┐
real income 75 4 ───────────────────┴─────┬─────┐
treatment 5 ─────────────────────────┘ │
education 3 ───────────────────────────────┴─────┐
color 2 ─────────────────────────────────────┴───────────┐
age 1 ─────────────────────────────────────────────────┴───

Rescaled Distance Cluster Combine

C A S E 0 5 10 15 20 25
Label Num +---------+---------+---------+---------+---------+

random 11 ─────┐
married 10 ─────┴───┐
unemployed 74 9 ─┐ │
real income 74 8 ─┴───────┴───────────┐
color 6 ─────────────────────┴─────────────┐
age 4 ───────────────────────────────────┴───────┬───┐
unemployed 75 7 ─────────────┐ │ │
real income 75 5 ─────────────┴─────────────────────────────┘ │
real income 78 3 ───────────────────────────────────────────────┴─┐
education 1 ───────────────────────┬─────────────────────────┴───
no degree 2 ───────────────────────┘

Fig. 2 Dendrograms of clustered covariates
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74’, ‘unemployed 74’, ‘unemployed 75’, ‘color’, ‘age’, and ‘married’; andD is ‘no
degree’, and ‘education’. We identify ‘married’ as a less important variable (group
x0) by looking at the ‘random’ variable. The other three groups are identified by
the intersections and result in (a) Oxy D A\ C with ‘color’, ‘age’; (b) Oxt D B \D
with ‘no degree’ and (c) Oxt;y with ‘income 74’, ‘income 75’, ‘unemployed 74’,
‘unemployed 75’, and ‘education’.

This result demonstrates the power of the new methodology as it leads to
well-interpretable conclusions. The covariates ‘age’ and ‘color’ are known to be
important in economic models for income (Cahuc and Zylberberg 2004). It is plau-
sible that they do not matter in explaining the assignment to the labour market
programme as well as the participation decision to attend the programme of the
chosen participants. Also, the variable ‘no degree’ is more relevant for programme
assignment than for labour market outcomes, as it is just a ticket for participation
and does not determine your wage (it does not, in fact, determine more than ‘edu-
cation’). Marriage does not seem to be important at all, which is also plausible.
The other variables reflect the employment history and the educational background.
These are relevant for the labour market outcome and also for the assignment to
labour market programmes as only the unemployed and poorly educated participate
in such programmes.

The new method is superior to older methods in terms of computation time, it
deals with the special structure of the factor selection problem for PS models, and
it is non-parametric. Although the variables have to be categorised to be handled,
this explorative technique produces plausible results (in a popular example) and
the information loss through categorisation can be reduced by using measures for
ordinal data.
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Nonlinear Mapping Using a Hybrid
of PARAMAP and Isomap Approaches

Ulas Akkucuk and J. Douglas Carroll

Abstract Dimensionality reduction aims to represent higher dimensional data by a
lower-dimensional structure. A well-known approach by Carroll, Parametric Map-
ping (PARAMAP) (Shepard and Carroll 1966) relies on iterative minimization
of a loss function (called kappa or “�”) measuring the smoothness or continu-
ity of the mapping from the lower dimensional representation to the original
data. The approach was resuscitated recently with important algorithmic modifi-
cations (Akkucuk 2004; Akkucuk and Carroll 2003, 2006). However improved,
the approach still involved the need to make a large number of random starts. In
this paper we discuss the use of a variant of the Isomap method (Tenenbaum et al.
2000) to obtain a starting framework, consisting of a core set of landmark points.
These core set of landmark points are used to construct a rational start for running
PARAMAP algorithm only once. Since Isomap is faster and less prone to local opti-
mum problems than PARAMAP, and the iterative process involved in adding new
points to the configuration will be less time consuming (since only one starting con-
figuration is used), we believe the resulting method should be better suited to deal
with large sets of realistically based data, and more inclined to obtain a satisfactory
solution in reasonable time.

1 Introduction

Dimension reduction techniques involve algorithms aiming to find a lower dimen-
sional structure which preserves the characteristics of the higher dimensional input
configuration. Nonlinear mapping techniques specialize in structures where the rela-
tionship between the coordinates is highly nonlinear. Prime examples to nonlinear
surfaces are spheres, tori and spirals such as those shown in Fig. 1. PARAMAP
(Shepard and Carroll 1966) approach and Isomap (Tenenbaum et al. 2000) approach
are two methods that deal with such nonlinear surfaces. A comparison of PARAMAP
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Fig. 1 Representative nonlinear manifolds (from left to right): A sphere in three dimensions, a
torus in three dimensions and a spiral in two dimensions

and Isomap algorithms was provided by Akkucuk and Carroll (2006). In this former
paper, solutions provided by Isomap and PARAMAP were compared using various
performance criteria. The main conclusion of Akkucuk and Carroll was that Isomap
was not designed to handle closed surfaces and also open surfaces with insufficient
point density. PARAMAP could handle closed surfaces well but computation time
was prohibitive.

In this paper our purpose is to propose a hybrid technique that will combine
important features of Isomap and PARAMAP. The new algorithm will use Isomap
as a precursor to PARAMAP, hence the resulting algorithm will not require differ-
ent random starts, but will require a number of quick Isomap runs followed by one
PARAMAP run. The initial Isomap run will result in either an incomplete or com-
plete solution (in the sense of the lower dimensional embedding containing the same
number of points as the higher dimensional input configuration). If the solution is
incomplete, the points in the lower dimensional solution provided by Isomap will
be regarded as the landmark points. Our proposed algorithm will create the starting
configuration from the incomplete solution containing the landmark points and use
this “rational” starting configuration as input to PARAMAP. This paper will pro-
ceed as follows: Sect. 2 will review the salient technical features of PARAMAP and
Isomap. Section 3 will present the new proposed hybrid approach combining Isomap
and PARAMAP. Section 4 will present the results of running the algorithm on dif-
ferent experimental configurations, involving nonlinear manifolds. Finally Sect. 5
will give the conclusions and directions for future research.

2 PARAMAP and Isomap Algorithms

The technical features of the two algorithms were discussed extensively in a number
of previous papers, especially in Akkucuk and Carroll (2006). Here we will provide
a summary of the essential terminology for understanding the arguments we make
in this paper.
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2.1 The PARAMAP Algorithm

The PARAMAP algorithm attempts to find a lower dimensional configuration tak-
ing as input a higher dimensional configuration. In doing so PARAMAP tries to
minimize a measure of continuity called “kappa” or abbreviated as �, that relates
the lower dimensional configuration to the higher dimensional configuration. The
kappa function is computed by using the input dissimilarities (to be called ıij ) com-
puted from the higher dimensional input configuration and the distances computed
from a lower dimensional configuration (to be called dij ). The kappa function is
computed as shown in (1):
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This function measures the degree of continuity inversely; hence smaller val-
ues indicate that the higher dimensional structure is well represented by the lower
dimensional solution. This function is minimized using a gradient based approach
with various parameters to be specified by the user. The most important parame-
ters being the number of random starts to use, the maximum number of iterations
permitted and the length of gradient stopping criterion.

It is worthwhile to make a note here about the values of � that are reported in this
paper. In order to standardize � it is necessary to consider the condition in which
the ıij and dij are perfectly correlated. If � is multiplied by a constant that is only a
function of the ıij , in particular if this constant is chosen such that it is the inverse
of � when ıij D dij , then � will be standardized such that the lowest possible value
is 1. This naturally has no effect on the minimization process, but results in an easier
interpretation of �.

2.2 The Isomap Algorithm

The Isomap algorithm (Tenenbaum et al. 2000) uses a shortest path method to create
the matrix of the “geodesic” distances between the points lying on a nonlinear man-
ifold, rather than the straight line Euclidean distances. Before running the shortest
path algorithm, the nearby points are connected by using either of the two options,
namely by connecting the “k nearest neighbors” or “neighbors closer than a small
value "”. After this connection step, the shortest path procedure computes the short-
est path distances between all the points and then a classical metric MDS step creates
the lower dimensional solution. After the lower dimensional soution is found, the
Isomap program computes a measure of mapping performance called the “residual
variance” which we abbreviate by RV. This measure is equal to 1 – (the squared
correlation between the geodesic distances and the distances computed from the
lower dimensional embedding). Naturally, the closer the value is to “0” the better the
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Isomap mapping performance since the true geodesics are reflected in the classical
MDS solution.

The solutions and the RV values change depending on the choice of the param-
eter k or ". It is also clear that connected (i.e., the full set of points in the input
configuration are represented in the solution) or disconnected (i.e., a subset of the
full set of points in the input configuration is represented in the output configura-
tion) solutions may occur depending on the selection of the value of the parameters
of Isomap. When the k nearest neighbors option is used it is impossible to end up
with disconnected solutions but when the other option (neighborhood size epsilon)
is used it is possible that below a threshold value some points will not be able to
connect and will be left out of the solution.

The proper selection of the neighborhood size parameter (") has been discussed
in the literature and one suggestion was increasing the neighborhood size at regular
intervals, starting from a low value, and observing RV. It was reported that the RV
value starts decreasing slowly than at a particular point experiences a sudden jump
upwards (Balasubramanian et al. 2002). It may thus be wise to stop and choose the
solution with the minimum RV right before the sudden jump. In our experiments we
also observed a similar phenomenon. Also, we observed that in some of those cases
the graph was not fully connected and the total number of points in the solution
did not equal the number of points in the input configuration. The main reason in
the sudden deterioration is that as " increases some points on opposite sides of the
manifold are connected (an act known as “short-circuiting” or “cross-branching”,
similar to for example connecting two opposite points on a sphere by going inside
the sphere rather than going over the surface of the sphere) and this perturbs the
actual geodesic distances. The solution strategy we offer in this paper is taking this
partially complete solution (but otherwise geometrically sound) solution and use it
as an input to PARAMAP program hence eliminating the need to do many random
starts with the computationally expensive algorithm.

2.3 Evaluation of the Mapping Results

The values of � and RV could be used to judge the quality of the mapping that
takes place by either of the algorithms or the hybrid algorithm that we are propos-
ing. Another possible measure is called the “Rate of Agreement in Local Structure”
also abbreviated as A or “agreement rate” (Akkucuk and Carroll 2006). The agree-
ment rate takes a certain neighborhood size (this is not related to the neighborhood
size used in Isomap and in our applications we have taken this number as 5) and
computes the percentage of points that are in the neighborhood of the same points
both in the input configuration and in the output configuration (order is not impor-
tant). The agreement rate has a maximum theoretical value of 100% and a minimum
of 0%. In this paper �, RV and A will be used to evaluate the mapping performance
of various results. The ideal (or best) values are respectively 1.00, 0.00 and 100.00
(the last one being expressed generally as a percentage).
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3 PARAMAP-Isomap Hybrid Approach

The main difference of the Isomap approach over PARAMAP is its ability to con-
verge in reasonable time. The hybrid algorithm takes advantage of this feature of
Isomap and uses a configuration obtained by Isomap as an initial starting configura-
tion which will be further fine tuned by PARAMAP. The PARAMAP algorithm will
only be run once such that the additional costs of running many random starts will be
eliminated. In certain Isomap solutions the number of data points may be less than
the number of data points in the input configuration (an incomplete start). In certain
solutions the number of data points in the solution will be equal to that of the input
configuration (a complete start). If the start is incomplete, the so called “core” set
of landmark points will define the “interior” of the ultimate total configuration we
aim to fit, and then new points will be added based on their proximity to landmark
points in this initial framework. As new points are added to this core set of land-
mark points, the complete framework is gradually built via an evolutionary process
by which points farther and farther out in the periphery of the ultimately defined
structure are incorporated into what will be this final structure. The iterative pro-
cess underlying PARAMAP also will tend to change the interrelationships among
points in the initial framework, so that the final configuration may bear relatively
little relationship to this initial structure. The proposed algorithm will be composed
of the initial “Isomap Preprocessing Step” and the second and final step “Mapping
the Holdout Points”.

3.1 Isomap Preprocessing Step

In this step of the hybrid procedure, the input configuration will be subject to anal-
ysis via the Isomap algorithm. There will be more than one run since it is essential
here to try different values of the parameter " and compare the residual variance
(RV) values reported by the Isomap software. Since Isomap converges vey fast
the few additional runs made at this step need not increase the total computational
burden.

As already mentioned, Isomap takes as input a user specified parameter which
can be either one of the options “k” or “"”. The first option connects to each point
the k nearest neighbors hence constructs the neighborhood graph. The latter option
connects the points that are less than distance of " to each point and hence constructs
the neighborhood graph. It is evident that with the first option disconnected (incom-
plete) solutions are not possible while with the second option we might have some
disconnected solutions and this actually forms the basis of our algorithm.

When selecting different values of " one sensible technique is to start from “0”
and increment in fixed step sizes. The fixed step size should be small enough to
permit disconnected solutions. In some data sets the solutions will not be discon-
nected due to sufficient point density. The step size can also be formulated as a
function of the interpoint distances. In this work we used a step size as small as
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0.05. This was sensible with the data sets we used but may not work with other data
sets. When the RV values for different step sizes are recorded, at some point the RV
values should degenerate (increase rapidly). This will be due to an effect known as
“cross branching”, i.e., the step size is too much and the nearest neighbor turns out
to be a point on the other side of the manifold. The starting configuration for the
PARAMAP algorithm will be selected to be the one just before the degeneration
occurs.

3.2 Mapping the Holdout Points

In this stage of the algorithm the holdout points are mapped in one step. The entire
set of holdout points are first located at the points they are closest to in the input
configuration. Then one PARAMAP run is taken to find the solution. During the
PARAMAP run the positions of the landmark points are free to vary as are the
positions of the holdout points.

4 Results on the Experimental Configurations

There are three experimental configurations on which we test the hybrid algorithm.
The sphere with 62 regularly spaced points (composed of 5 parallels, 12 meridians
and 2 poles), the Swiss Roll with 1,000 points (this data set is essentially a spi-
ral generalized to three dimensions and was used in some of the data analysis in
Tenenbaum et al. 2000), and a sphere with 1,000 points randomly generated to fall
on the surface but with unequal spacing between them.

4.1 Sphere with 62 Regularly Spaced Points

This is a very special case where the Isomap algorithm results in a complete projec-
tion if the parameter " is selected such that the 62 points are connected. The reason
for this is that the Isomap procedure results in the points opposite to each other on
the surface of the sphere to be mapped on to each other. The agreement rate for this
solution is as low as 48.71%. If the parameter " is selected such that the RV measure
is minimized then this results in 12 points being mapped but with superior mapping
performance (100% agreement rate). Although this particular case does not have
a large number of points it may be an indicator that the algorithm is promising.
According to a previous result [3], the best PARAMAP solution has an agreement
rate of 79.35% and � value of 1.13. This particular configuration in two dimensions
is shown in Fig. 2. This solution is what we believe to be the optimal solution and
has been obtained by doing 300 random starts.
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Fig. 2 PARAMAP globally optimal solution to the 62 points regularly spaced on the sphere

Table 1 Isomap preprocessing step results on the regular sphere with 62 points

" Number of Size of RV
connected components largest component

0.30 40 12 0.050
0.35 40 12 0.050
0.40 18 12 0.050
0.45 18 12 0.050
0.50 18 12 0.050
0.55 1 62 0.320

When the hybrid algorithm is used, the Isomap common step procedure results
in 12 connected points. Indeed this turns out to be the points 50–61, which we may
refer to as the northernmost parallel. Table 1 shows the changes in RV values when
the Isomap algorithm is run varying " between 0.30 and 0.55. The point, right before
the sudden jump in RV value, is shown in bold and italics. In order to be able to
compare the solutions with the solutions obtained using PARAMAP alone we will
provide here the agreement rate and kappa values of the best solution by PARAMAP.
When the remaining 62 � 12 D 50 points are mapped in at the same time, we
obtain the solution given in Fig. 3. This solution has an agreement rate of 75.48%
and a � value of 1.21. The results indicate that the hybrid algorithm cannot reach
the global optimum but produces satisfactory solutions in terms of preserving local
structure. When Isomap is run alone, the users need to contend with a projection or
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Fig. 3 Mapping of the 62 points on the sphere obtained by the proposed hybrid algorithm

a solution where a large fraction of the points are missing. In terms of run times, the
hybrid algorithm is obviously superior to using only PARAMAP since the hybrid
algorithm requires one run, and no random starts. However the flexibility of doing
many random starts is foregone.

4.2 Sphere with 1,000 Points

In this configuration, the points fall exactly on the surface of a sphere, i.e., the
Euclidean distance between all points and the center of the sphere is 1. Yet the
spacing between the points is not regular. The preprocessing step this time results
in a skeleton solution with 431 points as shown in Table 2 (in bold and italics). The
skeleton configuration with 431 points is used as input to a single run of PARAMAP.
Using the hybrid algorithm results in � D 1:146 and A D 73:01%. These values
indicate once again that a good mapping has taken place. In Akkucuk (2004), using
another method of selecting landmark points the same data set was mapped using
PARAMAP. The former landmark selection procedure chose a fixed number of land-
mark points and did multiple random starts with the smaller set. After choosing the
best solution with respect to �, and placing the holdout points on top of the points
they are closest to, one PARAMAP run was performed. This second phase of the
former algorithm was essentially similar to the hybrid algorithm we are describing
here. The two levels of landmark points experimented before resulted in differ-
ent solutions. Thirty-two points resulted in a � value of 1.295 and 100 landmark
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Table 2 Isomap preprocessing step results on the regular sphere with 1,000 points

" Number of Size of RV
connected components largest component

0.05 623 63 0.032
0.10 222 227 0.059
0.15 31 431 0.034
0.20 2 997 0.197
0.25 1 1000 0.211
0.30 1 1000 0.224
0.35 1 1000 0.229

points resulted in a � value of 1.073. Also respectively the agreement rates were
75.84% and 77.88%. Our hybrid algorithm performs quite well compared to the
other landmark selection procedure. It should also be noted that the previous land-
mark procedure requires many PARAMAP random starts for the landmark points
(if not for the whole set of points) and one PARAMAP run for the complete set,
our hybrid procedure requires only one PARAMAP run for the complete set. This
results in savings in computational time.

4.3 Swiss Roll with 1,000 Points

This shape is the three-dimensional generalization of a spiral in two dimensions. In
this data set the common step results in a fully connected solution. Further runs by
PARAMAP do not result in any improvements. Agreement rate is 78.74% and does
not improve further. This is an example of a case where the Isomap algorithm pro-
duces a solution that is sound both with respect to the “global” criterion that Isomap
tends to minimize and the “local” criterion that PARAMAP tends to optimize.

5 Conclusion

We believe this hybrid approach is a very useful data analytic tool and can deal with
either open surfaces with insufficient point density or with closed surfaces with a
large number of points. The former case is difficult for Isomap since the resulting
solution will not be complete. In this case the proposed hybrid algorithm can be used
to map in the remaining points. In the latter case running different random starts
with PARAMAP may be costly, so the hybrid algorithm can be used and only one
PARAMAP run is necessary. In cases where Isomap produces a complete solution
with a superior residual variance, then PARAMAP can be used to test the optimality
of the solution. PARAMAP generally results in no further improvements in such a
case since Isomap apparently produces the globally optimal solution also according
to the PARAMAP criterion �.
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One possible avenue of further research is exploring the use of mapping the hold-
out points in batches instead of mapping in all points simultaneously. In this case the
optimal selection of the batch size is of concern. Another important issue for further
research opportunity is the study of using the agreement rate as a stopping criterion
in the initial Isomap procedure rather than the RV stopping criterion. One other prac-
tical improvement to the algorithm would involve integrating the two approaches
into a single program (perhaps coded in Matlab or R), thus creating a single pack-
age with many options. Finally, an important problem with the hybrid algorithm is
the inability to test different random starts. This problem can be partially solved
by adding relatively small random perturbations to the final solution and running
PARAMAP a number of times from such differently perturbed configurations. This
may have the effect of enabling finding a nearby globally optimal solution.
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Dimensionality Reduction Techniques
for Streaming Time Series: A New Symbolic
Approach

Antonio Balzanella, Antonio Irpino, and Rosanna Verde

Abstract A growing number of applications generates massive streams of data
which are on-line collected and potentially unbounded in size.

To cope with the high dimensionality of data, several strategies for dimensional-
ity reduction have been proposed.

In this paper we introduce a new approach to represent an append only data
stream into a reduced space. The main aim is to transform a real valued data stream
into a string of symbols. The string includes a level component and a shape com-
ponent allowing to get a better representation of data while maintaining a strong
compression ratio.

1 Introduction

A growing number of applications in several disciplines including telecommunica-
tions, climate monitoring, security, wide-area sensor networks, generates massive
streams of data over time.

In recent years there has been an increasing interest for data mining on such kind
of data and many works have been proposed for clustering, classifying, detecting
frequent patterns, approximating, data streams.

Streaming data are on-line collected and are potentially unbounded in size, this
poses several computational and mining challenges:

� It is no longer possible to process data efficiently by using multiple passes;
� Data after processing are discarded or archived and become not easily available

anymore;
� Memory resources are reduced withărespect to the amount of data to process;
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Since data stream analysis is performed using a bounded amount of memory it is
not always possible to produce exact answers, so high-quality approximate ones are
usually acceptable.

Moreover, often, in data stream mining tasks it is not possible to produce a new
answer just when a new observation is seen, this is because the time required for
computing answers can be bigger than the inter-arrival time among observations.
In order to deal with this problem strategies performing dimensionality reduc-
tion, based on data sampling, synopses, data compression have been proposed as
preprocessing tool for data stream mining.

Among dimensionality reduction techniques for data streams, time series repre-
sentation criteria can be effectively used if the data stream paradigm is satisfied in
the computational process. This is because real valued, append only data streams
can be considered as continuously arriving time series. Usually these data are called
“Streaming Time Series”.

With this premise, we introduce a new strategy which provides a discretized
representation of the incoming data by means of a string of symbols. It uses the
knowledge extracted from a training set in order to get a more compact represen-
tation maintaining, at the same time, the main features of data as well as the same
metric schema.

Moreover, we show how our strategy can be extended to represent multivariate
streaming time series.

2 Related Works

Recently, there has been an increasing interest in developing strategies for time
series dimensionality reduction in the data stream framework.

Some of these refer to some adjustments of techniques for stocked data while
others have been proposed just for data streams. Among the existing techniques, we
can mention: Discrete Fourier Transform (DFT) (Faloutsos et al. 1994), Discrete
Wavelet Transform (DWT) (Kin-pong Chan and Ada Wai-Chee Fu 1999), Piecewise
Linear Representation (PLR) (Morinaka et al. 2001), Piecewise Aggregate Approx-
imation (PAA) (Yi and Faloutsos 2000), Symbolic Aggregate approximation (SAX)
(Lin et al. 2003).

The main proposals based on DWT and DFT use sliding windows which move
one step at a time, to update the transformation continuously over time. The few first
coefficients are used for representing the streaming time series into a reduced space.

PLR consists in approximating data with a set of line segments. Since the number
of segments is usually smaller than the time series size, a dimensionality reduction
is so, performed.

The main criteria for the segments choice are linear interpolation and linear
regression. The former is based on connecting the first and the last point of a
subsequence, the latter uses the best fit segment in the sense of least squares.
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In PAA the dimensionality reduction of the time series is performed splitting the
incoming data into subsequences of equal-size and representing each one through
its average value.

Starting from PAA, by means of SAX, a time series is transformed into a symbols
sequence that can be processed using discrete data tools.

The basic idea is to map the PAA coefficients to symbols. The mapping rule is
based on getting equi-probable regions from a normalized Gaussian distribution and
to assign a symbol to each region. In such a way when a new batch of data arrives,
the average value is computed and a symbol is assigned according to the region
which includes such average value.

3 A New Symbolic Strategy for Streaming Time Series
Dimensionality Reduction

Among time series reduction strategies, SAX is a very interesting one, both for its
easy applicability and for its performance in several applicative fields. However,
SAX is based on some assumptions which are often not met.

It gets equi-probable regions by means of a normalized Gaussian distribution, on
the basis of the assumption that normalized time series have a Gaussian distribution.
As shown in Fig. 1 this is not always true. Moreover if data are high frequency, an
approach only based on the average value of windowed data could be not able to
catch the true information if not by using a lot of symbols to make the string.

The here proposed approach, deals with these problems providing an effective
solution to the time series representation challenge.

Given a time series Y D Œ.y1; t1/; .y2; t2/; : : : ; .yi ; ti /; : : : ; .yN ; tN /� where
yi 2 < is a data point and ti a time stamp, we represent Y through a string S
of symbols.

Fig. 1 Sensor signal - QQ plot
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We propose to partition Y into W disjoint windows of equal size ws and to map
the data of each window to a couple of symbols. Each couple of symbols includes a
“level” component and a “shape” component, in order to catch the shape of data in
addition to their amplitude level.

In particular, starting from a streaming time series Y, we get a symbolic string
such as “1A 5F 7B 7A 4A 3C” where the numeric symbols summarizes the ampli-
tude of data while the alphabetic symbol represents the shape underlying the data of
each window.

The proposed approach shares some ideas with Vector Quantization (VQ) tech-
niques which aim at finding the best approximation of a d-dimensional random
vector X with distribution P by a random vector Y with at most n values in its
image. As in VQ, we use the concept of alphabet (codebook) for approximating
data, however we introduce specific features to facilitate data mining and on-line
applications.

The strategy includes a training step, where a levels alphabet and a shapes alpha-
bet are built on a training dataset, and a representation step of the on-line arriving
data, according to the detected alphabets.

The training step has been introduced to take advantage of some apriori knowl-
edge about data which is usually available also, in a streaming context. Moreover
this approach provides a solution to the problem of using a Gaussian distribution to
get the symbols regions used to map the data.

3.1 Training Step

In order to detect the two alphabets we split the data of the training dataset into
windows of equal size ws .

For the Levels alphabet, we have to build a rule to assign the level symbols to
equi-probable regions of the time series domain.

This is performed by choosing the Levels alphabet size J and, then, by comput-
ing the histogram of the PAA coefficients in the training data set where the number
of buckets is J .

This is to get a set B D Œb1; b2; : : : ; bj ; : : : ; bJ � (where j 2 J ) of equi-probable
regions. Data are, then, mapped to the level symbols L D Œl1; l2; : : : ; lj ; : : : ; lJ �

through the rule bj ( lj .
To detect the Shape alphabet, we need a rule to map symbols to predefined data

shapes.
To reach this aim, the data of each window are scaled by subtracting their average

value and then processed by a clustering algorithm.
We propose to use a Dynamic Clustering Algorithm (DCA) (Diday 1971) since

it looks both for a representation of the clusters and the best partition according to
the minimization of a criterion function which is based on a suitable a dissimilarity
measure.
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The DCA performs a step of representation of the clusters and a step of allo-
cation of the data according to the minimization of the distance of the data to the
representative elements of the clusters (prototypes).

The clustering algorithm outputs a setP D Œp1; p2; : : : ; pk; : : : ; pK � (where k 2
K and K is the size of the shape alphabet) of representative elements (prototypes)
of the clusters. These are mapped to the shape alphabet S D Œs1; s2; : : : ; sk; : : : ; sK �
by the rule pk ( sk , where sk is a shape symbol.

3.2 Online Representation

Starting from the alphabets it is possible to compute the on-line representation of
the streaming time series. The strategy can be summarized as follows:

� For each window

1. Compute the average value Nyw

2. Detect the level symbol for Nyw

3. Detect the shape symbol comparing the shifted window data to the prototypes
pk with k D 1; : : : ; K

� End for each

When a new batch of data arrives, the algorithm searches for a suitable couple of
symbols. The level symbol lj is chosen by computing the average value Nyw of data
in a window and then detecting the symbol mapped to the histogram region which
includes Nyw (Fig. 2). To detect the shape symbol, we propose to shift the data by
subtracting the average value Nyw and then to find the symbol sk mapped to the
prototype pk which minimizes the Euclidean distance between the shifted data and
the prototypes.

20
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43
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Fig. 2 Online detection of the Level symbol
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3.3 A Feasible Representation for Bivariate Streaming
Time Series

In the previous sections we have introduced our strategy for representing univariate
time series. Here we extend such strategy for representing bivariate time series.

The main aim is to represent a bivariate time series by means of a string of
couples of symbols just like in the univariate case.

Note that the here advised variations on the strategy proposed for univariate
time series, are suitable for multivariate time series, however in order to maintain
the effectiveness of the strategy, the alphabets size considerably increases.

The first adjustment is in the choice of the two alphabets.
In order to get the levels symbols, an algorithm for getting multivariate his-

tograms is needed. An interesting proposal is Iacono and Irpino (2008) which
quickly computes equi-probable rectangles from data. Each rectangle is here mapped
to a level symbol lj .

For the shape alphabet, the clustering algorithm used in the univariate case, is
performed on the multidimensional trajectories, so to get multivariate prototypes.

The clusters prototypes are mapped to the shape symbols just like before, to form
the shapes alphabet.

In the on-line algorithm, the step 1 has to be modified by introducing the com-
putation of the average value for each variable in the window; in the step 3, the
detection of the shape symbol is performed after shifting the single variables by
their average value.

3.4 Time Series Approximation

From the symbolic string it is possible to build an approximation of the starting time
series. The procedure can be summarized as follows:

� For each couple of symbols Œlj sk �

– Compute the average value of the region Nbj mapped to lj
– Detect the shape pk mapped to the current shape symbol sk
– Sum the average value Nbj to the shape data pk

� End for each

The procedure builds the approximated time series by joining the local represen-
tations detected from each couple of symbols. This is incrementally performed, at
first, computing the average value of the region mapped to the level symbol and then
summing the prototype mapped to the shape symbol.
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4 Experimental Evaluation

In order to evaluate the effectiveness of the proposed strategy, we have performed
tests on real data coming from several applicative contexts. Here we show the main
results for one of these.

It is a dataset storing the electrical power consumptions of an home user. The
recordings are performed, by means of a smart meter, every two minutes. The whole
dataset includes 2 years of recordings.

The proposed strategy has been applied to this context, to evaluate how well it is
able to approximate the collected data in term of mean square error.

Moreover, in order to compare our symbolic representation to the existing tech-
niques, we have applied the PAA on the same dataset and then we have compared
the approximation quality.

The choice of using the PAA has been performed since it shares with us the
objective of producing an approximation of the represented time series to be used
in data mining processes. This is not straightly included in SAX where the symbols
summarize data through bounds instead of single identifiable values.

The first test consists in evaluating the impact of the windows size on the rep-
resentation quality. The training set is made by power consumptions recorded in
a week. To detect the shape alphabets, the well known k-means has been used
since it is a particular case of DCA where the prototypes are the barycenter and
the dissimilarity is the Euclidean distance.

The chosen alphabets size are: L D 20, S D 8. In order to make the comparison
more effective, the windows size is chosen to be the double of the one chosen for
PAA. This is to keep the same compression ratio since our strategy requires two
coefficients for each window while PAA requires only one (However, note that PAA
produces real valued approximations of the window data while the proposed strategy
only uses a discrete set of values which require lesser storage resources).

Figure 3 shows how the means square error evolves by changing the window size
for both the strategies. It is possible to note that our representation produces, for
each window size, a better approximation quality compared to PAA.

A further test has been performed to evaluate the impact of the alphabets size on
the quality of approximation. We have at first evaluated the MSE for several size
of the Shape alphabet S setting ws D 35 and L D 20 and then we have measured
the influence of the Level alphabet size by setting ws D 35 and S D 6. The results
available in Fig. 4 highlight how both the two components the representation, affect
the approximation quality.

5 Conclusions and Perspectives

In this paper we have proposed a new approach for representing time series by
means of a string of symbols. The choice to use two alphabets facilitates knowledge
discovery processes such as frequent pattern mining or clustering, since it allows to
keep distinct the shape component from the amplitude component of data.
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However, the preliminary choice of the levels and shapes alphabets can intro-
duce approximation problems when the knowledge about data is limited. This is
especially true if there is an unpredictable change in the unknown statistical distri-
bution underlying the data. To deal with this issue, further developments will be to
update the alphabets when the prototypes and levels are no more able to ensure an
high quality approximation of the original time series.
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A Batesian Semiparametric Generalized Linear
Model with Random Effects Using Dirichlet
Process Priors

Kei Miyazaki and Kazuo Shigemasu

Abstract The purpose of this paper is to propose a parameter estimation method
that doesn’t need to set the number of heterogeneous populations in generalized
linear models. We use a finite dimensional Dirichlet process mixed model (Ishwaran
and James 2001). Due to the use of Dirichlet process, we make no assumption about
the number of subgroups that are mixed. The proposed model can be considered
as the direct extension of the model of Lenk and DeSarbo (2000) in the sense that
the proposed method needs no assumption for the number of mixed latent classes in
their model.

1 Introduction

The purpose of our presentation is to propose a parameter estimation method that
doesn’t need to set the number of heterogeneous populations in generalized linear
models using Dirichlet process priors.

Generalized linear models (GLMs) can be applied to the data that follow the
distributions of exponential family (McCullagh and Nelder 1983). Especially in
behavioral sciences, because there are hardly any situations where the data are
obtained from simply one population, finite mixture models that assume hetero-
geneous populations (latent classes) are often used (Wedel and DeSarbo 1995).
Recently, finite mixture models that assume heterogeneous subpopulations (latent
classes) and explain within-class heterogeneity by introducing random effects have
been proposed (Lenk and DeSarbo 2000).

The existing methods require that the number of subgroups is determined in
advance and moreover, these methods require the calculation of information cri-
terion in order to determine the number of subgroups, which usually results in a
heavy computational burden. The method could be useful that made it possible to
estimate the parameters and the number of latent classes simultaneously.
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In this presentation, we use a Batesian estimation method with a finite Dirich-
let process mixed model (Ishwaran and James 2001). Due to the use of a Dirichlet
process, we make no assumption about the number of subgroups that are mixed.
Kleinman and Ibrahim (1998) introduce Dirichlet process as a method that can
assume any forms of distribution. Whereas, we introduce Dirichlet process as a
method that can make it unnecessary to set the number of subgroups (latent class)
before parameter estimation.

The proposed model can also be considered as the direct extension of the model
of Lenk and DeSarbo (2000) in the sense that the proposed method needs no
assumption for the number of mixed latent classes in their model.

2 Finite Mixture GLM with Random Effects

We begin with reviewing the finite mixture GLM with random effects (Lenk and
DeSarbo 2000). There are several observations on each subject. i -th subject has J
observations. Let yij be the j -th dependent observation on subject i and xij be the
corresponding p 	 1 vector of independent variables. Define:

y i D

0

B
@

yi1

:::

yiJ

1

C
A Xi D

0

B
@

x0
i1
:::

x0
iJ

1

C
A for i D 1; : : : ; n (1)

The probability density function of yij is expressed as follows:

f .yij jˇi / D exp

"
yijh.x

0
ijˇi /� bŒh.x0

ijˇi /�

a.�i /
C c.yij ; �i /

#

(2)

�i is the scale parameter and a, b, c, h are functions depending on the member of the
exponential family. We use the expression ki D l to imply that the i -th examinee
belongs to the l-th component. When ki D l , ˇi .p 	 1/ follows the normal dis-
tribution with mean vector of � l D .�1l ; : : : ; �pl/

0 and variance-covariance matrix
of �l

ˇi jki D l � N.�l ;� l/ (3)

3 Representation of the Dirichlet Process Mixture Model

According to Sethuraman (1994), when Dirichlet process priors F � DP.˛;G0/

are assumed, F is expressed as follows:

F.�/ D
1X

lD1

�lı
l
.�/; �l � G0 (4)
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where ı
l
denotes a discrete measure concentrated at �l , �l D

Ql�1
kD1.1 � Vk/Vl

and V1; V2; : : : independently follow a beta distribution Be.1; ˛/. In this, ˛ is the
parameter that indicates ease of transition to other components while G0 indicates
a reference distribution. Parameters are generated from this distribution when the
new component is generated. When the above Dirichlet process priors are assumed,
a random variable vector y is expressed by the following Dirichlet process mixture
models:

y �
1X

lD1

�lf .�j l/ (5)

where f is the sampling distribution of data y and  l is a parameter vector (refer
to Walker et al. 1999 for a detailed explanation of the Dirichlet process mixture
model). This equation indicates that any distribution can be expressed as a mixture
distribution of conventional distributions such as normal distributions, and it is not
necessary to set the number of mixed components for analysis.

Ishwaran and Zarepour (2000) proposed the following finite-dimensional Dirich-
let process priors:

F.�/ D
LX

lD1

�lı
l
.�/; �l � G0 (6)

Assuming the above finite-dimensional Dirichlet process priors, a random variable
vector y is expressed by the following finite-dimensional Dirichlet process mixture
models:

y �
LX

lD1

�lf .�j l/ (7)

where L is the maximum number of components. Ishwaran and James (2001) (The-
orem 2) proved that (7) approximates infinite-dimensional Dirichlet process mixture
models with satisfactory accuracy when the value of L is large enough and the
value of the upper bound of errors that changes according to the sample size and
the value of L is described with sketches of proofs. According to their paper, the
truncation value of L has more influence than the sample size on reducing the error
(Theorem 2).

Prior Distributions
The prior distributions for the mean vector � and variance-covariance matrix � are
the multivariate normals, inversed Wishart distributions, as follows:

� � DPL.˛;N.	0; ˙0//

� � DPL.˛; IW.�0; S0/
(8)

DPL denotes L-dimensional finite Dirichlet process prior and IW the inverted
Wishart distribution. The values of hyper parameters 	0; ˙0; �0; S0 are fixed (see
Sect. 5 simulation studies). ˛ is the parameter that indicates ease of transition to
other components.
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4 Algorithm: Blocked Gibbs Sampler

In this section, we apply the Blocked Gibbs Sampler proposed by Ishwaran and
James (2001) to our semiparametric generalized linear model. We describe the
Blocked Gibbs Sampler for our model setup and introduce the full conditional dis-
tributions of each parameter’s vector necessary to draw samples in each iteration.
Refer to Diebolt and Robert (1994) who recommended the Markov Chain Monte
Carlo algorithms for finite mixture models. Our algorithm is based on the works of
Ishwaran and James (2001) as well as Diebolt and Robert (1994).

Algorithm and the Full Conditional Distributions
Let fk�

1 ; : : : ; k
�
mg be the set of the current m unique values of k. ‘� � � ’ means that

the other parameters are given. Then to run the Blocked Gibbs Sampler, we draw
parameter values in the following order:

(1) ˇ: Generate ˇ from the following full-conditional distribution:

p.ˇi j � � � / / p.y i jˇi /p.ˇi jki D l;� l ;� l/

/ exp
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l .ˇi � � l/

#

(9)

ˇi is generated with the aid of a Metropolis step. Refer to Lenk and DeSarbo
(2000) who recommended the method of generating ˇ. This step is based on the
work of them.

(2) �: Generate � l from p.� l j
� / for each k 2 k�fk�
1 ; : : : ; k

�
mg (for components

to which no subject has been allocated). For components to which at least one
subject has been allocated, � l is generated from the following full-conditional
distribution
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(3) � : Generate � l from p.� l j
� / for each k 2 k � fk�
1 ; : : : ; k

�
mg (for com-

ponents to which no subject has been allocated). For components to which
at least one subject has been allocated, � l is generated from the following
full-conditional distribution



A Batesian Semiparametric GLM with Random Effects Using DP Priors 395
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(4) k: Generate ki from the following distribution
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where

�li D �lp.ˇi jki D l;� l ;� l/
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lD1 �lp.ˇi jki D l;�l ;� l/
(13)

(5) �: the full conditional distribution of � is the generalised Dirichlet distribution:

�l D
l�1Y

mD1

.1 � Vm/Vl

Vl � Be.al CMl ; bl C
LX

mDlC1

Mm/

(14)

and Ml is the number of ki that equals l .

By using a Dirichlet process, we can evaluate the posterior probabilities of the
numbers of components drawn by this sampler.

5 Simulation Studies

In order to prove the reliability of the proposed method, we conducted two simula-
tion studies. Via two simulation studies, we will verify that for a known number of
mixture components the MCMC procedure recovers the unknown parameters.

Simulation Study 1
In the first simulation study we generated 100 data sets from a linear regression
model with normal error, and for each data set, we obtained the usual Bayesian
estimates as well as estimates using the proposed method. We were interested in
how accurately our method estimated the parameters. The number of the depen-
dent and the explanatory variables was 10 and 3, respectively. The number of true
components was 2. Keeping in mind the upper bound of errors caused by using



396 K. Miyazaki and K. Shigemasu

Table 1 The true and estimated values of parameters in simulation study 1

True values Estimates RMS True values Estimates RMS

�1 0.7 0.688 4:70 	 10�2 �111 1.0 0.977 0.135
�2 0.3 0.296 3:78 	 10�2 �211.D �121/ �0:5 �0:489 0.137
�3 * 9:94	 10�3 2:75 	 10�2 �311.D �131) 1.5 1.47 0.208
�4 * 3:17	 10�3 4:00 	 10�3 �221 2.0 1.99 0.234
�5 * 1:59	 10�3 1:70 	 10�3 �321.D �231) �1:0 �0:989 0.238
�6 * 8:27	 10�4 8:35 	 10�4 �331 3.0 2.95 0.413
�7 * 4:15	 10�4 4:41 	 10�4 �112 3.0 2.95 0.661
�8 * 1:87	 10�4 1:89 	 10�4 �212.D �122) 0.5 0.565 0.326
�9 * 6:85	 10�5 6:92 	 10�5 �312.D �132) �0:8 �0:749 0.438
�10 * 1:48	 10�5 1:49 	 10�5 �222 1.0 1.07 0.255
�11 0 6:78	 10�3 7:83 	 10�2 �322.D �232) 0.3 0.279 0.237
�21 2.0 1.97 0.134 �332 2.0 1.97 0.521
�31 �2:0 �1:98 0.147 * * * *
�12 �2:0 �1:98 0.301 * * * *
�22 0 3:46	 10�2 0.176 * * * *
�32 2.0 2.03 0.322 * * * *

Table 2 The true and estimated values of parameters in simulation study 2

True values Estimates RMS True values Estimates RMS

�1 0.6 0.516 0.118 �11 0 �0:0755 0.275
�2 0.4 0.306 0.111 �21 �1:0 �0:817 0.548
�3 * 0.102 0.122 �12 �1:0 �0:873 0.333
�4 * 0.0467 0.0625 �22 1.0 0.737 0.706
�5 * 0.0184 0.0256 �111 0.02 0.0219 0.0151
�6 * 7:25 	 10�3 0.0119 �211.D �121/ 0.03 0.0253 0.0179
�7 * 2:63 	 10�3 5:31 	 10�3 �221 0.07 0.0527 0.0255
�8 * 5:59 	 10�4 1:34 	 10�3 �112 0.07 0.0542 0.0337
�9 * 1:10 	 10�4 4:06 	 10�4 �212.D �122/ �0:03 �0:0165 0.0244
�10 * 1:19 	 10�5 1:92 	 10�5 �222 0.02 0.0143 0.0177

finite-dimensional Dirichlet process priors, as shown by Ishwaran and James (2001),
we set � and L as 3 and 10, respectively. We fixed the hyperparameters as follows:
	0l D 0; ˙0l D 100I; �0l D p C 1 D 4; S0l D 0:1I (common across compo-
nents). For every 100 trials, we generated 200 observations, all of which followed
the same population parameters (or true values) as given in Table 1. After employ-
ing 2,000 burn-in iterations, we employed 3,000 Gibbs iterations to calculate the
numerical posterior distributions or the posterior moments. For each of the 100 data
sets, we calculated the parameters estimates and averaged the 100 sets of estimates,
and in order to check the accuracy of the results of this simulation, we calculated
Root mean squares (RMS) between estimates and true values for each data sets and
averaged them. These results are listed in Table 1. These results indicate that the
proposed method yielded accurate estimates of the parameters.
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5.1 Simulation Study 2

For the second simulation study, we generated 50 data sets from a logistic regerssion
model. As in the first simulation study, we also set � and L to 3 and 10, respec-
tively, and set 3,000 observations for each data set. The number of true components
was 2. After employing 2,000 burn-in iterations, we employed 3,000 Gibbs iter-
ations to calculate the numerical posterior distributions or the posterior moments.
The number of the dependent and the explanatory variables was 50 and 2, respec-
tively. We fixed the hyperparameters as follows: 	0l D 0; ˙0l D 100000I; �0l D
p C 1 D 3; S0l D 0:00001I (common across components). The true parameters
and the quality of their estimates can be assessed by Table 2. As criterions to com-
pare the accuracy of the results of this simulation, for each data set we generated
1,000 observed values of dependent variables from the true model. Thereafter, we
calculated predictive values of dependent variables using the proposed model, sin-
gle component GLM (that is, standard GLM), respectively. We calculated the Root
Mean Squared errors between the true values of dependent values and the estimates
of them. The obtained values were 0.619 and 2.12 for our proposed model and a
standard model, respectively. RMSs were approximately 3.4 times larger than that of
the proposed method. This result therefore also indicates that the proposed method
yields accurate estimates of the parameters, whereas the standard model essentially
yields biased estimates.

6 Conclusion

In this study, we proposed a semiparametric Bayesian estimation method in gener-
alized linear models using Dirichlet process priors. As we know from the study of
Sethuraman (1994), any shapes of distributions are expressed through a mixture of
probability density functions of conventional distributions such as normal distribu-
tions. Applying Dirichlet process mixture models that do not rely on an assumption
of the number of mixed components, our new semiparametric generalized linear
model can estimate both the parameters as well as the number of mixed components.

The existing methods cannot simultaneously estimate the parameters and deter-
mine the number of components. The analysis process using the existing methods
is as follows: when Bayesian estimation is used on 1 to some number of compo-
nents, construct some number of models, estimate the parameters for each model
and find the most appropriate model using criteria such as AIC, BIC or marginal
likelihood. These criteria are usually difficult to calculate. To complete one study,
one would need to construct and run at least two kinds of programs. On the other
hand, our method does not require that the most appropriate number of components
to be mixed be decided. In other words, when using this method, one only has to
construct and run one kind of program, giving our method an advantage over the
existing methods.

Dirichlet process mixture modelling is often used to construct semiparametric
or nonparametric Bayesian modelling, and our model is largely consistent with this
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idea. In other words, it can be said that we have proposed a new semiparametric
Bayesian generalized linear model. Owing to the use of Bayesian estimation, our
method is effective even when the sample size is small.
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Exact Confidence Intervals for Odds Ratios
with Algebraic Statistics

Anne Krampe and Sonja Kuhnt

Abstract Odds ratios, which compare the odds of an event occurring in the pres-
ence of a potential risk-factor to the odds of it occurring in the absence of the
potential risk-factor, are commonly used in medical and social science research.
Confidence intervals usually rely on approximate results or exact enumeration.
We suggest an algebraic solution to this problem which is of particular use in
situations where the approximation is not adequate and exact enumerations are com-
putationally too costly. This algebraic approach relies on the Diaconis-Sturmfels
algorithm which combines computational commutative algebra and Markov chain
Monte Carlo methods to simulate samples of the conditional distribution of a dis-
crete exponential family with given sufficient statistic. In particular a Groebner basis
is used for the construction of the Markov chain. In a simulation study we determine
and compare the simulated, exact and approximate results.

1 Introduction

Categorical data occur in various statistical applications. In many situations it is not
only of interest to detect a dependency between two variables but rather to estimate
the strength of the relationship. In clinical studies or epidemiology, for example, it
is often of interest to identify so-called risk-factors. These factors increase the risk
of contracting a disease. The odds ratio (OR) compares the chance to fall ill under
exposure with the chance to fall ill under no exposure. Formally, we consider two
binary random variables X and Y with outcome i 2 f1; 2g and j 2 f1; 2g. The
odds ratio is defined as cross-product ratio OR D P.Y D1jXD1/=P.Y D2jXD1/

P.Y D1jXD2/=P.Y D2jXD2/
: Let nij

denote the counts in a sample of size n andNij the random variable. The Maximum-
Likelihood estimator for the odds ratio is given by cOR D N11�N22

N12�N21
. Modified versions

of the estimator have been proposed to account for the situation where n12 or n21
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are equal to zero (cf. Haldane 1955; Fleiss et al. 2003; Agresti 2002). Here, we stay
with the common ML estimator. The resulting confidence interval allows us to draw
conclusions concerning the statistical significance. Usually, the confidence interval
is based on an approximation which might not be adequate, e.g. if the data are sparse.
Mehta et al. (1985) suggest an exact confidence interval conform to Fisher’s exact
test for independence, which, however, is known to be conservative.

In this paper we develop an alternative confidence interval. In algebraic statistics
results from algebraic geometry are used to address statistical problems (Ricco-
magno 2009). In a key paper, Diaconis and Sturmfels (1998) combine computational
algebra and statistics via Markov chain Monte Carlo methods. Using the Metropolis-
Hastings algorithm (Chib and Greenberg 1995; Sørensen and Gianola 2002), a
Markov chain is generated whose stationary distribution equals the conditional dis-
tribution of a discrete exponential family with given sufficient statistic. We exploit
these results to derive an algebraic confidence interval based on a simulated exact
distribution of the estimated odds ratio.

2 Traditional Confidence Intervals for the Odds Ratio

For inference, it is convenient to consider the log-transformed odds ratio, log.OR/.
Woolf’s approximate confidence interval for the odds ratio relies on the asymptotic
normal distribution of log.cOR/ with mean log.OR/ (Woolf 1971). Using the delta-
method it is easy to show that the variance of log.cOR/ can be estimated by

b	2.log.cOR// D 1

N11

C 1

N12

C 1

N21

C 1

N22

:

Hence, it holds that

P

 

�u1�˛=2 � log.cOR/ � log.OR/

b	.log.cOR//
� u1�˛=2

!

� 1� ˛;

where u1�˛=2 denotes the .1� ˛
2
/-quantile of the standard normal distribution. After

some calculation we get the .1 � ˛/ � 100%-confidence interval

CI.OR/ WD
h
cOR � expf˙u1�˛=2 �b	.log.cOR//g

i
:

Note that this confidence interval does not exist if the value of cOR is zero or 1.
In such cases the lower limit is set to zero and the upper limit of this confidence
interval is set to1, respectively.

Using the idea of Fisher’s exact test for independence we can construct an exact
confidence interval for the odds ratio. We assume thatNij ; i; j D 1; 2; are multino-
mially distributed. Conditional on the observation of the sufficient statistic for the
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parameters of the independence model, t D .n1C; n2C; nC1; nC2/
0, the distribution

of N11 depends only on OR and is noncentral hypergeometric

f .N11 D xj t;OR/ D
�

n1C

x

� � � n2C

nC1�x

� � .OR/x

mCP

uDm�

�
n1C

u

� � � n2C

nC1�u

� � .OR/u
; m� � x � mCI

with m� D max.0; n1C C nC1 � n/ and mC D min.n1C; nC1/, see Fleiss et al.
(2003), Mehta et al. (1985), and Zelen (1971) for details. The lower limit OR� of the
exact .1� ˛/ � 100%-confidence interval for the odds ratio is determined as follows

OR� D 0 if n11 D m�; and
mC

X

xDn11

f .xj t;OR�/ D ˛

2
if m� < n11 � mC:

The upper exact limit OR� fulfills the condition

n11X

xDm�

f .xj t;OR�/ D ˛

2
if m� � n11 < m

C; and OR� D1 if n11 D mC:

3 Algebraic Confidence Interval

We now develop a new confidence interval for the odds ratio as an alternative to
the traditional methods. Its construction relies on both, the exact and the approx-
imate confidence interval. In particular, we replace the normal approximation in
the common confidence interval by a simulation of the exact one. The exact con-
fidence interval relies on the noncentral hypergeometric distribution on the set of
all data sets with observed sufficient statistic t , which we denote by Zt . This is a
conditional distribution of a discrete exponential family given the sufficient statistic
t . For this general situation Diaconis and Sturmfels (1998) suggest the concept of
a so-called Markov basis to construct an appropriate proposal distribution for the
Metropolis-Hastings algorithm. Thereby a Markov chain can be generated with the
hypergeometric distribution as stationary distribution, and we are able to substitute
the exact distribution by a simulation in cases where an exact enumeration becomes
unfeasible and the approximate distribution might not yet be applicable.

To apply the Diaconis and Sturmfels algorithm (Diaconis and Sturmfels 1998) it
is essential to display Zt as

Zt WD fz W H! Nj
X

x2H
z.x/T �.x/ D tg;
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where H is the finite sample space, T � the adequate mapping from H to N
d and d

the dimension of t . For 2	2 tables we have x D .i; j / 2 H D f.i; j / j i; j D 1; 2g.
The joint probability function of the multinomially distributed Nij , i; j D 1; 2,
belongs to a four-parametrical exponential family and the sufficient statistic for the
parameters in this independence model consists of the row and column sums of the
given table, hence T D .N1C; N2C; NC1; NC2/

0. We can now identify T � for a
2	2 table under the assumption of independence. T �..i; j // is a vector of the same
length than the sufficient statistic with two entries equal to one at positions i and
2C j , the other entries are zero. Hence, we get

T �..1; 1// D .1; 0; 1; 0/0 T �..1; 2// D .1; 0; 0; 1/0
T �..2; 1// D .0; 1; 1; 0/0 T �..2; 2// D .0; 1; 0; 1/0:

A Markov basis is defined as a set of functions m1; m2; : : : ; mL W H ! Z, called
moves, such that

� P

x2H
mi .x/T

�.x/ D 0; for all 1 � i � L and

� for any t and z; z0 2 Zt there is a sequence of moves .mi1 ; : : : ; miA/ as well as a
sequence of directions .�1; : : : ; �A/ with �j D ˙1, such that

z0 D zC
AX

j D1

�jmij and zC
aX

j D1

�jmij � 0; foral l 1 � a � A:

Hence, adding or subtracting sequences of moves to the observed table does not
change the value of the sufficient statistic and each element of Zt can be reached
by such a sequence. Now computational algebra becomes relevant as each x in
the sample space H is identified by an indeterminant, also denoted by x and we
let kŒH� be the ring of polynomials in these indeterminants. Further, any function
g W H! N is identified by a monomial

Q

x2H
xg.x/. Now consider the auxiliary ideal

Ia D fx � T T �.x/; x 2 Hg with T T �.x/ WD T T �

1
.x/

1 � T T �

2
.x/

2 � � �T T �

d
.x/

d
and T �

i the

i th component of T � according to the considered model, see e.g. Krampe and Kuhnt
(2009). Denote the reduced Gröbner basis of Ia by Ga and set IT WD Ia \ kŒH�.
The reduced Gröbner basis G of IT consists of those polynomials of Ga that only
involve elements of H. Diaconis and Sturmfels (1998) (Theorems 3.1 and 3.2) show
that G equals the Markov basis needed for the Metropolis-Hastings algorithm.

Here, we calculate the Gröbner basis Ga of the ideal Ia,Ia D< x11 �N1CNC1;

x12�N1CNC2; x21�N2CNC1; x22�N2CNC2; > :Assuming graded lexicograph-
ical ordering the resulting Gröbner basis for the independence model for a 2	2 table
is G D fx11x22 � x12x21g. This polynomial can be considered as a matrix. Note
that each function m W H ! Z can be rewritten as m.x/ D mC.x/ � m�.x/ with
mC; m� W H! N,mC.x/ D max.m.x/; 0/ andm�.x/ D max.�m.x/; 0/. We can
thereby write the polynomial,x1

11x
0
12x

0
21x

1
22 � x0

11x
1
12x

1
21x

0
22 D x11x22 � x12x21,
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as table (or move) �C1 �1
�1 C1

�

:

Hence, the allowed move of the table used to generate data sets with the same
observed sufficient statistic as the considered table is intuitive.

Based on the moves from the Markov basis the Markov chain using the
Metropolis-Hastings algorithm is constructed as follows, cf. Rapallo (2003):

� Choose a movemU uniformly on f1; : : : ; Lg and a direction of the move � D ˙1
with probability 1

2
independently of U .

� Assume that the chain is currently in state z 2 Zt .
� The chain moves to z0 D zC �mU 2 Zt with probability

˛ D min

�
H.z0/
H.z/

; 1

�

D min

0

@

Q

x2H
z.x/Š

Q

x2H
.z.x/C �mU .x//Š

; 1

1

A:

If the suggested new state z0 has a negative entry, the hypergeometric density
H.z0/ and thereby ˛ are zero and hence, the chain stays in z 2 Zt .

Practically, we generate a Markov chain with l states. According to the usual
MCMC approach we disregard the initial b states in the so-called burn-in-phase and
then sample each sth table. For each of the remaining b l�b

s
c tables we calculate

the logarithm of the estimated odds ratio log.cOR/ and thereby determine the condi-
tional distribution of log.cOR/, assumingX1 andX2 are independent. By considering
log.cOR/�log.OR/p

b�.log.cOR//
we switch over to a standardized statistic. Note that log.OR/ equals

zero under the hypothesis of independence. According to Woolf’s approximate con-
fidence interval for the odds ratio, we use for the algebraic confidence interval that

P

0

B
@qalg, ˛

2
� log.cOR/ � log.OR/

q

b	.log.cOR//
� qalg,1� ˛

2

1

C
A � 1 � ˛;

where the simulated algebraic quantiles qalg replace the approximate quantiles
of the standard normal distribution. Hence, the algebraic .1� ˛/ � 100% confidence
interval for the odds ratio is given by

CI.OR/ WD


cOR � exp

�

�qalg; 1� ˛
2
�
q

b	.log.cOR//

�

I

cOR � exp

�

�qalg; ˛
2
�
q

b	.log.cOR//

��

:
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Table 1 Cell probabilities
for the simulation model with
OR D 1
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Fig. 1 95%-confidence limits for n D 15

4 Simulation Study

In this simulation study we evaluate the performance of the new algebraic confi-
dence interval and compare it to the corresponding exact and asymptotic procedures.
The computation is done is R 2.8.1 and SAS 9.1. For the algebraic confidence
interval we generate a Markov chain with l D 500;000 states, disregard the first
50;000 tables in the burn-in-phase and sample each s D 100th data set.

We base the simulation on an independence model with probabilities as given
in Table 1, hence OR D 1. We simulate 100 tables each for a small sample size
of n D 15, where the approximation of the distribution of log.cOR/ might not be
adequate, and for a relatively large sample size of n D 50. Only those generated
contingency tables are treated, which lead to strictly positive estimated cell proba-
bilities. For n D 15 we had to generate 103 to obtain 100 appropriate data tables,
for n D 50 no extra tables were necessary. For each simulated table we calcu-
late the approximate, the exact, and the algebraic 95%-confidence interval. For a
better representation of our findings, we arrange the results according to the size
of the estimated odds ratio. Starting with n D 15 in Fig. 1 we observe that the
lower confidence limits almost agree for all applied procedures. Upper values of the
approximate CI (110:26; 171:20) for the two largest estimated OR’s are not shown.
The algebraic upper confidence limit reaches a value of infinity in 16 cases. Due
to the small sample size too many data tables with cell entries n12 or n21 equal
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to zero are generated in the Metropolis-Hastings algorithm. The modified estima-
tor cORmod D .N11C0:5/�.N22C0:5/

.N12C0:5/�.N21C0:5/
might improve this behavior. Nevertheless is the

exact upper limit in 79 cases larger than the approximate or the algebraic coun-
terpart. The exact procedure is conservative, as expected. With the larger sample
size of n D 50 the lower confidence limits almost coincide (cf. Fig. 2) whereas
the upper limits differ. In 48 cases the algebraic confidence interval is the small-
est of all three. Altogether we observe that the exact approach usually provides the
largest confidence intervals while the algebraic and asymptotic confidence limits are
close by.

5 Example

We examine data from a case-control study conducted in the 1980s in Barbone et al.
(1993). Its purpose was to analyze the effect of diet on endometrial cancer. There-
fore, 103 cases and 236 controls filled out a questionnaire concerning their eating
habits. Of interest is the association between consumption of milk and endometrial
cancer. The data are given in Table 2.

Since the estimated odds ratio takes a value of 0.663 we assume a preventive
effect of milk consumption on endometrial cancer. Inspecting the 95%-confidence
intervals we cannot statistically verify an association at level ˛ D 0:05 (approxi-
mate: 0.411, 1.072; algebraic: 0.389, 1.062; exact: 0.400, 1.106).
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Table 2 Observed number of
endometrial cancer patients
and controls

Regular consumption of milk
Yes No

Case 61 42
Control 162 74

6 Discussion

In this paper, we show how an alternative algebraic confidence interval for the odds
ratio can be derived by using MCMC methods and computational commutative alge-
bra. Traditional and new confidence intervals are compared in a simulation study,
where none sticks out as best. However, we expect that the MCMC simulated CI will
turn out to be a useful amendment in cases of higher dimensional cases to which the
approach can now readily be extended and where exact intervals can not be calcu-
lated easily. We further suggest to examine the use of the modified estimator for the
odds ratio for 2	2 data tables as well as the Mantel-Haenszel-estimator for the odds
ratio for higher dimensional contingency tables in future.
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The CHIC Analysis Software v1.0

Angelos Markos, George Menexes, and Iannis Papadimitriou

Abstract In this paper we describe CHIC (Correspondence & HIerarchical Cluster)
Analysis, a specialized software package for Correspondence Analysis-CA (Simple
and Multiple) and Hierarchical Cluster Analysis (Benzécri’s chi-square distance,
Ward’s linkage criterion). The implementation of CA is in line with both the French
approach and the Gifi System of data analysis. CHIC Analysis combines the graphi-
cal interface features of CodeGear Delphi with the computational power of MatLab.
The software was implemented as an attempt to contribute to the effectiveness and
reliability of CA. For this purpose, it offers a variety of aids to the results’ interpre-
tation and tools for the construction of special data tables. A modified version of the
CA algorithm is implemented in the multivariate case. Special emphasis has been
put on the graphical options for biplots, maps and dendrograms.

1 Introduction

Correspondence Analysis (CA) is a multidimensional data analytic method, suit-
able for graphically exploring the association between two or more, non-metric
variables without a priori hypotheses or assumptions. Similar to Principal Com-
ponent Analysis, CA results in elegant but simple lower-dimensional displays, so
that the principal dimensions (usually two or three) capture the most variance (or
inertia) possible. There are two popular ways to treat CA; the geometrical point of
view of the French school of data analysis (Benzécri 1992) and the optimal scaling
framework of the Gifi System (Gifi 1990).

A common practice among researchers and practitioners is the complementary
use of CA and a hierarchical cluster analysis (HCA) procedure, based on Ward’s
minimum-distance criterion and Benzécri’s chi-square distance (Benzécri 1992;
Lebart 1994). This specific Ward clustering provides a decomposition of inertia
with respect to the nodes of a dendrogram, analogous to the decomposition in the
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CA context (Greenacre 2007). More details on the theoretical background of HCA,
CA and various extensions can be found in Benzécri (1992), Gifi (1990), Greenacre
(1984), Greenacre (2007), Greenacre and Blasius (2006), Murtagh (2005).

CA has become increasingly popular over the last decades and simple and multi-
ple CA were introduced into most of the mainstream statistical software packages.
General purpose software such as SAS (SAS Institute Inc. 2003), SPSS (Meulman
and Heiser 2005) and XL-STAT (Addinsoft 2007), implement CA offering a variety
of options. However, apart from the XL-STAT software, none of the major pro-
grams offers recent developments (Nenadic and Greenacre 2006). Additionally, the
widespread adoption of R (R Development Core Team 2007) within the statistics
community led to some important open source CA implementations. The ca pack-
age (Nenadic and Greenacre 2006) provides functions for Simple, Multiple and Joint
CA. Simple and Canonical CA are provided by anacor (Mair and de Leeuw 2009), a
package which offers alternative plotting options and scaling methods. Multiple CA
also known as Homogeneity Analysis (HOMALS) along with various Gifi exten-
sions can be computed by means of the homals package (Mair and de Leeuw 2009).
FactoMineR performs CA (simple and multiple) offering a variety of interpretation
options (Le et al. 2008). For most R packages a strong level of familiarity with the
command line is kind of assumed.

In this paper we present CHIC (Correspondence & HIerarchical Cluster) Analy-
sis, a specialized software which implements CA (Simple and Multiple) and HCA as
a complementary method. The software combines two different development tools;
Codegear Delphi 7, a visual programming language and MATLAB (The Math-
Works, Inc. 2007), a high-level scripting language. This scheme offers a high degree
of flexibility since MATLAB is useful for implementing matrix computations, while
Delphi offers a variety of tools for the design of graphical user interfaces. The
implementation of CA is accompanied by a variety of options for empirical inter-
pretation, statistical inference and visualization, inherent either in the Gifi System or
the French approach. Moreover, it offers a modification of the main CA algorithm,
so that the analysis of “tall” data sets (objects variables) becomes both feasible
and effective. Finally, it is important to note that the development of CHIC Analysis
was motivated by the need to teach CA and related methods to students with little
or no statistical background and familiarity with the command line.

The paper is organized as follows: Sect. 2 describes in brief the data entry and
data management options. The various interpretation options and relative criteria
for simple and multiple CA, available in CHIC Analysis, are described in Sects. 3, 4
and 5. A hierarchical clustering procedure as a complementary method is discussed
in Sect. 6. A numerical example is given to demonstrate the use of new or interesting
features. The paper concludes in Sect. 7.

2 Data Entry and Data Management

CHIC Analysis offers a customized data spreadsheet for direct data entry in the
form of either a raw data table (observations 	 variables) or a contingency table
of variable categories. Additionally, data can be imported into the spreadsheet from
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Fig. 1 A tool for Burt Subtable construction

an MS Excel or a text delimited file. There are, also, tools for the discretization of
quantitative variables into ordinal and the recoding of categorical variables.

Additionally, the software offers a graphical tool for the direct construction of
a Burt subtable or a two-way pivot table, in an abstract form (see Fig. 1). The user
can select variables of interest from a list of all available variables in the data set
and then drag and drop the desired variables into the available row and column lists.
The corresponding variable categories correspond to the rows and columns of a Burt
subtable, a contingency table which will be subsequently analyzed by CA.

3 Simple Correspondence Analysis

The implementation of the CA algorithm follows that of Blasius and Greenacre
(1994); Greenacre (2007) and its crucial step is the Singular Value Decomposition
(SVD) of the standardized residuals matrix. The standard output of CA contains
the eigenvalues and the relative and cumulative percentages of explained inertia
for all available dimensions. The selection of significant axes can be based on the
scree plot and on three different statistical significance tests of the principal iner-
tias proposed by Nishisato (1980), Van de Geer (1993) and Greenacre (1984, 2007),
respectively. Table 1 shows the output of CA on the smoke dataset, which contains
frequencies of smoking habits for staff groups in a fictional company (Nenadic and
Greenacre 2006; Greenacre 2007). According to the first two criteria, only the first
principal component is statistically significant at the 5% level (p.VdG/ < 0:05,
p.Nish./< 0:05). The options for row and column points include principal coordi-
nates with respect to the dimensionality of the solution, total quality (QLT), inertias
(INR), masses (MASS), squared correlations (COR) and contributions (CTR) (see
Greenacre 2007 for more details about these concepts). Additional significance cri-
teria of individual points include correlations (SQCOR), which is the equivalent
of the factor loadings in PCA (Blasius and Greenacre 1994) and the Best index,
which, similar to CTR, is an indicator of which points best explain the inertia
of each dimension (SAS Institute Inc. 2003). In the case of supplementary vari-
ables, an (S) is appended to the supplementary variable names in the output, which
includes only the QLT, INR and COR indices. Table 2 exhibits the row output for
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Table 1 Eigenvalues, percentages of inertia and statistical significance

Axis �2 df (VdG) p (VdG) �2 (Nish.) -df (Nish.) p (Nish.) Inertia % Cum. %

1 14:429 6 0.025 14:608 6 0.024 0.075 87:756 87:756

2 1:933 4 0.748 1:893 4 0.755 0.010 11:759 99:515

3 0:080 2 0.961 0:078 2 0.962 0.000 0:485 100:000

Critical �2 value D 15.24 (˛ D 0:05)

Table 2 Principal row projections, contributions and correlations

QLT MASS INR Best F1 INR1 COR1 SQCOR1 CTR1 Best1

SM 0.092 0.057 0.003 3 �0:066 0.000 0.092 �0:304 0.003 0
JM 0.526 0.093 0.012 2 0:259 0.006 0.526 0:726 0.084 0
SE 1.000 0.264 0.038 1 �0:381 0.038 1.000 �1:000 0.512 1
JE 0.942 0.456 0.026 1 0:233 0.025 0.942 0:971 0.331 1
SC 0.865 0.130 0.006 2 �0:201 0.005 0.865 �0:930 0.070 0

the first significant axis of the smoke dataset. Optionally, the user can ask for the
expected frequencies, three kinds of residuals (plain, standardized and adjusted)
of the original contingency table, variable chi-square contributions and the recon-
structed input data for a given dimensionality of the solution, as described in Blasius
and Greenacre (1994).

4 Multiple Correspondence Analysis

Multiple CA is in fact a simple CA that can be carried out in terms of the SVD on
either the indicator matrix or the Burt matrix, a choice which depends on the purpose
of the analysis. The indicator matrix is a binary representation of the different cate-
gorical values of each variable, while the Burt matrix is equal to the cross-product of
the indicator matrix and concatenates all two-way cross-tabulations between pairs of
variables (Greenacre 1984, 2007). In cases where a CA on the indicator matrix Z is
of interest, we perform alternatively the SVD on the standardized residuals matrix,
calculating on the Burt matrix B. Then, we use the well-known transition formu-
lae of CA (Greenacre 1984, 2007) and the relation between Z and B, to obtain the
results of the CA on Z. This scheme bypasses the decomposition of Z and can be
efficient in the case of “tall” data sets, where the number of objects is much greater
than the number of variables. It is important to note that the same CA solution can be
also efficiently obtained by means of an Alternating Least Squares algorithm (ALS),
which iteratively minimizes a least-squares loss function (Gifi 1990). A thorough
description of the modified CA version and its efficiency can be found in Markos
et al. (2009).
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The standard output of MCA remains the same as in the simple case (see Sect. 3).
Additional options include the summary of contributions (CTR) for each variable
and the discrimination measures (Gifi 1990; Meulman and Heiser 2005), an impor-
tant interpretation option inherent in the Gifi System. Furthermore, test values can
be calculated for supplementary variables, as a measure of the significance between
a variable and an axis (Lebart 2006). The selection of significant axes can be based
on a statistical significance test of the principal inertias, proposed by Nishisato
(1980) and on Cronbach’s alpha, as a measure of reliability of each principal inertia
(Greenacre 2007). Finally, in case the analysis is based on the Burt matrix, two iner-
tia adjustment options are offered for solving the low percentage of inertia problem,
proposed by Greenacre (2007) and Menexes and Papadimitriou (2003), respectively.
Both options are based on the average inertia in Burt’s off-diagonal blocks.

5 Visualization Options

The basic plot in CA and MCA is the symmetric map where both rows and columns
are plotted in principal coordinates. Depending on the situation, other types of dis-
play are appropriate. This can be set with the normalization options for CA and
MCA. Following Nenadic and Greenacre (2006), in Table 3 we give a brief overview
over the available options and their meanings.

The first three scaling options lead to a biplot, while the last one results in a
symmetric map (Greenacre 2007). The intepretation of biplots is enhanced with the
option to draw the biplot axes passing through each row (or column) point, as shown
in Fig. 2. The dots represent the intersections of the orthogonal projections of points
on these biplot axes. In the case of RPN or CPN, the corresponding biplot is likely
to be crowded; in that case the interpretation can be based on a table of distances and
correlations (Table 4). The distances are in ascending order and indicate a ranking or
ordering of the projected points, while Cos2 indicates the square cosine of the angle
between a biplot axis and a position vector of a point. For example, for the biplot axis
passing through the point “SM”, the distance of the projection of the point “Heavy”,
on the biplot axis, from the point “SM” is 1:791 and the squared correlation between
“Heavy” and “SM” is 0.14.

Table 3 Normalization options in CA and MCA maps

Option Description

RPN - Row Principal Rows in principal and columns in standard coordinates
CPN - Column Principal Rows in standard and columns in principal coordinates
SN - Symmetrical Row and column coordinates are scaled to have

variances equal to the singular values
PN - Principal Rows and columns in principal coordinates (default)
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Fig. 2 Asymmetric map of the smoking data with CPN and biplot axes

Table 4 Distances and correlations on biplot axes

SM Heavy None Medium Light
Distance 1.791 1.873 1.982 2.103
Cos2 0.140 0.039 0.998 0.307

JM Heavy None Medium Light
Distance 2.469 2.540 2.636 2.744
Cos2 0.390 0.780 0.615 0.109

SE Heavy None Medium Light
Distance 1.373 1.383 1.403 1.434
Cos2 0.043 0.025 0.754 0.675

JE Light Medium None Heavy
Distance 0.936 1.009 1.082 1.141
Cos2 1.000 0.874 0.204 0.430

SC Light Medium None Heavy
Distance 0.987 1.058 1.129 1.187
Cos2 0.404 0.718 0.085 0.949
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6 Ward Clustering as a Complementary Method

Hierarchical Cluster Analysis (HCA) can be used as a complementary method to
CA, in order to identify relatively homogeneous clusters either in the original data
or in the low-dimensional space. A Ward clustering procedure takes into account
the chi-square distances between the profiles and the associated masses. This way
it provides a decomposition of inertia with respect to the nodes of a dendrogram,
analogous to the decomposition of inertia with respect to principal axes in CA
(Greenacre 2007). The total inertia (or equivalently the chi-square statistic) of the
table is reduced by a minimum at each successive level of merging of the rows
(or columns). More details on the HCA algorithm implementation can be found in
Greenacre (2007), Lebart (1994), Murtagh (2005).

Furthermore, CHIC Analysis offers a group of interpretation options traditionally
called VACOR, which allow the user to explore the representation of clusters derived
from the hierarchical trees in factor space and describe the cluster dipoles which take
account of the cluster components. More details on the VACOR implementation can
be found in Benzécri (1992); Murtagh (2005).

7 Summary

We have presented CHIC Analysis, a specialized software for simple, multiple cor-
respondence analysis and hierarchical clustering. The software contains most of the
features of present available software packages as well as various new features that
are not available elsewhere. Amongst the main advantages of this program is that
it is menu driven, available for free and offers a large variety of complementary
options to facilitate data interpretation. The included data entry and data manage-
ment utilities make it possible to handle directly almost any data table, and this
gives the user a great deal of flexibility. The software and its user’s manual can be
downloaded from http://www.amarkos.gr/en/research/chic.

In future releases, we plan to take advantage of the common mathematical foun-
dation of many multivariate data analysis methods, as a basis for incorporating CA
variations and related methods.
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Clustering the Roman Heaven: Uncovering
the Religious Structures in the Roman
Province Germania Superior

Tudor Ionescu and Leif Scheuermann

Abstract The antique Roman religion in the province Germania Superior is char-
acterized by the large number of different goddesses and gods which cover and
represent the whole Roman civilization (Spickermann 2003). By analyzing them,
historians have the possibility to reconstruct everyday life in a mostly illiterate time.
At this juncture the multitude of sources makes an overall analysis with traditional
methods almost impossible. For this reason automated clustering and classification
become more and more interesting for researchers in historical sciences. In this
study data consisting of the descriptions of altars (inscriptions, reliefs, and statues),
gods and groups of gods, and the towns in the German Southwest where these find-
ings have been made were used in a two-way multivariate cluster analysis. More
than 90 gods and over 500 altars from around 100 towns have been initially inves-
tigated. Our results consisting of a tree of gods and a tree of towns indicate that
there are at least two dominant and distinct religious cults represented by military
and imperial gods, respectively, while the tree of towns reveals some interesting
structures based on geographical proximity and economic ties.

1 Introduction

In the reconstruction of everyday life of the ancient Romans the main problem lies
in the lack of literal sources. Historians have to find another way to gain knowl-
edge about the worries and joys of the ancient Roman. One attempt to reproduce the
Roman environment is to reconstruct its religion and belief. The Roman religion,
in its diversity, is characterized by an understanding of the Divine as manifesting
or even existing in the world. The ancient deity embodies one or more aspects of
the experienced. The God and the experienced form a unity. For example, Mars
embodies aggression and destructiveness. This may reveal itself to believers during
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the sensual experience of a river or in the middle of a battle. The situations may
differ from case to case but the divine does not. The Roman world, i.e. the perceived
reality, was not mundane but sacred. The Romans were in each moment surrounded
by religion as a vital part of everyday life displayed in the precise attendance of
rituals and taboos. As (Rüpke 2006) noted, this also means that the Roman religion
revealed to us by places of cult, inscriptions, sculptures, and other archaeological
findings can be understood as a mirror of society and everyday life. By analyzing
these findings historians have the possibility to get a deeper understanding of every-
day life in a mostly illiterate time. The variety and multitude of religious sources
always leads to the necessity of a reduction of the complexity of the themes. For
traditional analyses this means that the types of gods or the investigation area must
be narrowed down and thus the overall scope is lost even before the detailed analysis
begins.

In this study we analyzed a total number of 500 inscriptions and sculptures found
at 96 different locations (towns) within an area of about 5,000 square kilometers
located in today’s South-Western Germany. This was a region of mainly geopolitical
importance for the Roman province Germania Superior from 90 AD until 360 AD.
A total number of 90 names given to 45 distinct types of gods can be found on
these artifacts which are sometimes difficult to distinguish because of the similarity
in iconography. These data were filtered and prepared for a two-way multivariate
cluster analysis. The number of occurrences of the different gods (i.e., mentioned
by name or a pictogram) on findings from different locations (towns) have been
counted and summarized in a contingency table. The gods were clustered by using
the finding locations as variables and vice-versa.

Some of the questions related to these findings which we seek to answer through
cluster analysis are the following: Can a schema of relating religious cults be built
for the studied area starting from these data? What administrative, social, econom-
ical, etc. structures within the area are displayed by the findings? Are the collected
archaeological data suitable for cluster analysis and can historians benefit from its
results? Our results indicate that there are at least two dominant and distinct religious
cults in Germania Superior represented by military and imperial gods, respectively.
The key for obtaining a meaningful tree of gods was to use a binary version of the
contingency table (i.e., presence–absence data) for clustering the gods. Concerning
the tree of towns, we identified two clusters corresponding to two Civitae and an
agglomeration of towns with economical importance. However, unlike in the case
of the tree of gods, these structures could not be validated through correspondence
analysis.

2 Data and Methods

The gods mentioned on artifacts together with the towns where they were found
constituted the data for our two-way multivariate cluster analysis. Figure 1 shows the
related contingency table used as the basis for reconstructing the tree of towns. We
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Towns \ Gods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
StuttgartBadCannstatt 17
HeilbronnBoeckingen
Koengen
Walheim
BadWimpfen
RottenburgamNeckar
Bietigheim
Boeblingen
Gueglingen
HausenanderZaber
LoechgauWeissenhof
Mainhardt
Moeglingen
Mundelsheim
Neuenhaus
NeuenstadtamKocher
NeuhausenaufdenFildern
Oberriexingen
Oehringen
Pleidelsheim
Pliezhausen
Schorndorf
Sindelfingen
WeilimSchoenbuch
Welzheim
StuttgartZazenhausen
SteinheimanderMurr
Hemmingen
Gundelsheim
Murrhardt
Jagsthausen
MarbachBenningen
Waiblingen

0 8 1 4 0 4 1 4 0 10 1 7 5 3 2 0 1 1 4
3 3 0 1 0 0 0 2 0 1 1 0 1 1 0 1 0 0 1 0

10 0 0 0 1 1 0 0 2 0 1 0 3 1 0 1 1 0 0 0
9 3 1 0 2 2 0 3 3 0 3 0 4 1 2 3 2 0 2 1
4 0 0 4 5 1 0 4 1 0 7 1 0 5 1 0 2 1 0 6

12 1 2 0 6 0 0 0 3 0 2 1 2 1 3 3 0 1 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 2 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 0 0 3 0 2 0 0 0 0
1 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
4 0 0 0 5 1 0 4 2 0 3 3 3 2 2 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 1 0 3 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 3 0 0 1 0 2 0 0 0 1
0 1 0 0 0 0 0 0 1 0 2 0 2 0 0 0 1 0 0 0
3 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1 3 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1
3 0 0 0 1 0 0 0 0 0 2 0 0 1 1 0 0 0 1 2
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 1 0 1 6 0 0 0 0 1 3 2 0 0 0 2 4
2 3 0 0 4 1 0 1 1 1 2 0 0 4 2 0 2 1 1 1
2 0 0 0 1 1 0 0 0 0 2 0 2 0 1 0 0 0 1 1

Fig. 1 Contingency table of 33 towns and 20 gods (from left to right): Jupiter, Herecura, Mithras,
Matrones, Minerva, Vulkan, Alle Gottheiten, Fortuna, Diana, Campestres, Merkur, Nymphen,
Epona, Genius, Herkules, Apollo, Viktoria, Silvanus, Mars, Juno

considered only those towns where more than two artifacts were found. Conversely,
only those gods were considered which were mentioned by inscriptions on artifacts
from at least two different locations. For computing the dissimilarity matrix for the
tree of towns the squared Euclidian distance was used.

For constructing the tree of gods the binary version of the contingency table from
Fig. 1 was used. This choice is founded on the argument that the co-occurrence
of two or more gods in different towns represents a more appropriate measure of
similarity between gods when the actual number of mentions per god for each town
is not taken into account. A similar approach for clustering ancient graves based
on the presence or absence of certain artifacts in the graves can be found in Manly
(1996) while another similar approach for clustering species of fish based on their
presence or absence in a selection of lakes can be found in Jackson et al. (1989).
The 12 similarity coefficients for ordinal data conveniently listed in Warrens (2008)
were then used to compute dissimilarity matrices for constructing the tree of gods.

During the analysis we evaluated the trees reconstructed by 4 different distance-
based hierarchical clustering methods: Unweighted Pair Group Method with Arith-
metic Mean (UPGMA) (Sneath and Sokal 1973), Neighbor-Joining (NJ) (Saitou and
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Nei 1987), Fitch (Felsenstein 1997) from the PHYLIP package (Felsenstein 2005),
and Minimum Tree Cost Quartet Puzzling (MTCQP) (Ionescu et al. 2010) from
the CLUSTIO package (Ionescu 2008). UPGMA is a fast algorithm which starts
by merging the two elements being clustered closest to each other according to a
dissimilarity matrix into a new virtual element whereby the distance between the
newly emerged element and the remaining unbound elements is recomputed using
the arithmetic mean. NJ differs from UPGMA only in the way this distance is recom-
puted. Fitch starts from a star tree of 3 randomly chosen elements being clustered
and attaches the remaining ones, one by one, until there are no unbound elements
left. At each step, for each edge of the intermediary tree the sum of squares between
the computed (i.e., from the distance matrix) and the realized (i.e., by summing up
the edge lenghts for each path of the intermediary tree) distances is evaluated and the
element is connected to the edge which yields the smallest sum of squares. MTCQP
differs from Fitch in that it uses the least squares criterion on full trees priorly recon-
structed using the same additive procedure but a different local cost function based
on the 4-point condition applied to quartets of elements being clustered.

Using the 12 coefficients and the 4 clustering methods 48 different trees of gods
were reconstructed. The task of objectively evaluating the quality of the clusters
formed in each of these trees by visual means proved to be almost impossible.
Therefore we applied the majority rule (extended) consensus method (Morris and
Powers 2008) to find the best one out of the 12 trees reconstructed by each of the
4 clustering methods.

Finally, using the 4 clustering methods and the squared Euclidian distance matrix
4 trees of towns were reconstructed. The most historically meaningful tree was
chosen by means of visual inspection.

3 Results and Interpretations

Figure 2 depicts the consensus tree of gods corresponding to both MTCQP and
Fitch and the tree of towns reconstructed by MTCQP. The topology of the tree of
gods from Fig. 2 is identical to the ones of the trees reconstructed by MTCQP,
Fitch, and NJ using the Jaccard coefficient (Jaccard 1912). By comparison with the
displayed consensus tree, in the UPGMA tree of gods Mars, Fortuna, and Genius are
placed into the cluster with Jupiter, Merkur, Herkules, Minerva, Juno, and Epona.
As will be explained later, historically, this is not correct. In the tree of towns as
reconstructed by MTCQP and Fitch two clusters corresponding to the two Civitae
can be identified.

We now give an interpretation to the trees in Fig. 2 which were considered to be
interesting from the historical point of view.

The tree of gods shows two large clusters (i.e. imperial gods and military gods),
a smaller one (i.e. abstract gods), and a forth one composed of the gods Vulkan,
Viktoria, and Diana. It is remarkable that although the imperial gods are common
all over the Roman Empire none of the local gods belongs to this group. This is due
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Mithras (4)

Apollo (9)

Campestres (2)

Mars (7)

Matrones (4)

AlleGottheiten (2)
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Weil im Schoenbuch (5)
Oberriexingen (5)
Mundelsheim (3)
Murrhardt (3)
Stuttgart Zazenhausen (6)
Boeblingen (4)
Loechgau Weissenhof (6)
Waiblingen (11)
Gundelsheim (11)
Pliezhausen (8)
Schorndorf (9)
Neuhausen a.d. Fildern (6)
Neuenhaus (6)
Sindelfingen (7)
Hausen an der Zaber (3)
Pleidelsheim (3)
Hemmingen (5)
Gueglingen (6)
Moeglingen (4)
Steinheim an der Murr (7)
Neuenstadt am Kocher (8)
Bietigheim (3)

a b

Civitas Aurelia G

Civitas Sumelocennensis

Forts / Towns of economical importance (markets)

Imperial gods

Abstract gods

Military gods

Fig. 2 (a) The consensus tree of gods based on the trees reconstructed by MTCQP and Fitch;
(b) The tree of towns as reconstructed by MTCQP. The values in parentheses represent the number
of mentions per god and town, respectively

to the fact that, contrary to the Rhine area, by the time of the Roman occupation
there was actually no indigenous population in the studied area so that no local cult
could have been passed on to the Romans. This entire cluster of imperial gods is
mostly found in a provincial cult called Jupitergigantensäulen representing the right
order of the state. Herein Jupiter and Mercur take an exceptional position forming a
sub-cluster due to their large number of mentions.

The second large cluster is an assemblage of military gods. There is Mars (the
god of aggression and war) in close connection to the Campestres – the campus
goddesses – as well as the Nymphs which were worshiped on the big aqueducts
built by troupes to provide the forts with fresh water. In this cluster there are also
mentions of all gods – Alle Gottheiten (lat. Ceteri omnes di et deae) which are mostly
worshiped by beneficiarii – soldiers who were detached from their troupes for civil-
administrative and police duties. Herecura is a subtype of Isis / Magna Mater, who
had a big temple in Mainz / Mogontiacum – the provincial capital of Germania
Superior. The temple was mostly used by the centuriae stationed there. In these
two cases, the connection to the military forces is evident. A little more difficult
to interpret is the appearance of the matronae – the mothergodesses worshiped in
northern Germania Superior and in Germania Inferior. Many of these findings are
sculptures for which a clear assignment to a goddess is almost impossible. Some
of them are probably Herecurae or Campestres. This cluster also includes Apollo
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and Mithras. In the northern provinces of the empire, Mithras was included into the
provincial pantheon (Belayche 2001). Both are related via Sol Invictus – a subtype
of Mithras – who represents the sun which is also one of the main aspects of Apollo.
The only god not fitting into this cluster is Silvanus.

The last, small cluster consists of only two types of gods: the Genii and the
Fortunate. Both are rather collective terms impersonating abstract principles rather
than divine entities. Fortuna stands for luck in any way which can be adapted to
a specific situation, e.g. Fortuna Redux stands for the lucky return from a journey.
Genius is a tutelary god also specialized by the place, time, or principle where the
protection shell comes from.

In the tree of towns there are two recognizable clusters (Civitas Aurelia G and
Civitas Summelocennensis) and one interesting caterpillar-like tree section contain-
ing towns of greater economical importance. These were settlements founded in the
direct vicinity to forts and therefore they have strong connections to the military
forces. There are many differences among the towns in the length of the period of
military occupation and its importance. For example, Rottenburg was probably for
only half a year in the 1st century AD a fort whereas settlements like Mainhardt,
Öhringen, or Jagsthausen were founded about 150 AD and remained forts until
230/260 AD. Another common feature of these towns is their economical impor-
tance which is indirectly connected to the troupes stationed there. With the advance
of the military forces, at some of the locations the markets persisted and grew.

The less economically powerful settlements are geographically divided into two
clusters. In the first one there are the northern settlements which belong to the
administration of the Civitas Aurelia G and in the other one there are the southern
settlements belonging to the Civitas Summelocennensis.

4 Validation of the Results

We consider a validation approach based on the correspondence analysis (CA)
method applied to the contingency table from Fig. 1. Figure 3a depicts the CA plot
of the gods (with hidden towns) for the binary version of the contingency table from
Fig. 1 whereas Fig. 3b shows the CA plot of the towns (with hidden gods) for the
exact table from Fig. 1.

The analysis confirms the clustering of the two main groups of imperial and
military gods revealed by the tree from Fig. 2a. On the other hand, it reveals that
the Genius-Fortuna cluster which appears in the tree is actually a part of the group
of military gods and that the Vulkan-Diana-Viktoria cluster is part of the group of
imperial gods.

Figure 3b does not allow the clear identification of any clusters. However, the
towns forming the Civitas Sumelocennensis and the Civitas Aurelia which appear
as clusters in the tree of towns also appear relatively close together in the CA plot.
Stuttgart-Zazenhausen, Murrhardt, and Haus and der Zaber seem to be outliers.
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Fig. 3 Results of the correspondence analysis applied for the contingency table from Fig. 1

In conclusion, CA justifies the choice of the binary version of the contingency
table for clustering the gods and confirms the two main clusters present in the tree of
gods. The fact that there are no clearly distinguishable clusters of towns in the CA
plot suggests either that the available data may be insufficient to cluster the towns of
Germania Superior using the method presented in this paper or that it is not possible
to cluster them solely based on religious artifacts.

5 Conclusion

In this paper we report the results of a two-way multivariate cluster analysis of the
data on 45 Roman gods mentioned on archaeological findings from 100 towns in an
area of about 5,000 square kilometers in the German southwest. The results reveal at
least two dominant and distinct religious cults represented by military and by impe-
rial gods in the tree of gods and two clusters corresponding to two Roman Civitae
in the tree of towns. The correspondence analysis used to validate the results con-
firms the structure of the tree of gods while some open questions regarding the tree
of towns are left. Was the dataset incomplete or can the localities from an ancient
Roman province at all be clustered based on the spreading of religious artifacts used
at that time?

We conclude by stating that cluster analysis offers complementary support in
interpreting the data on Roman religious cults in the province of Germania Superior.
It both provided new insights and confirmed some of the existing hypotheses about
the schema of relating religious cults and the administrative, social, and economical
structures of that time in the studied area. It should, however, always be used in
combination with traditional historical methods of interpretation and with statistical
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validation methods. Our further work in this field will be based on a larger database
of Roman findings from a territory comprising both Germania Inferior and Superior
which will provide more complete data for similar cluster analyses.
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Geochemical and Statistical Investigation
of Roman Stamped Tiles of the Legio XXI
Rapax

Hans-Georg Bartel, Hans-Joachim Mucha, and Jens Dolata

Abstract Roman stamped tiles of the legio XXI Rapax are under investigation com-
ing from different findspots in Germania Superior. Their chemical composition was
measured by X-ray fluorescence analysis. Here we propose an approach for com-
paring the measurements coming from different laboratories. First results suggested
that the set of tiles can be divided into seven clusters by the Ward method (Jain and
Dubes 1988). The main part of this paper consists of confirming these results by
cluster validation via bootstrapping such as introduced in Dolata et al. (2007). Here
a cluster of tiles that contains all findings of Biesheim is of special archaeological
interest. The supposed provenance Straßburg-Königshofen can be rejected from the
statistical point of view.

1 Introduction

We enlarged our statistical analysis of Roman bricks and tiles by taking into
account additional Roman stamped tiles from Vindonissa and from other findspots
in Switzerland and France, i.e. from the South of the Roman province Germania
Superior. In this paper, the tiles under consideration were stamped by the legio XXI
Rapax. Schematic maps of stamp-type distribution of this legio in Northern and
Western Switzerland are to be found in Giacomini (2001).

First we are going to explain our approaches for comparing the measurements
of two different laboratories (see Sect. 3) and for an appropriate data preparation
in view of clustering. From the statistical point of view the set of tiles can be
divided into seven clusters by the hierarchical Ward method (Dolata et al. 2009).
The main part of the paper consists of confirming these results by cluster valida-
tion via subsampling (simulations) such as introduced in Dolata et al. (2007) and
by applying partitional cluster analysis. A cluster of tiles that contains all findings
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of Biesheim (France) is of special archaeological interest with the focus on discov-
ering the unknown location of the military brickyard. In this connection, it will be
demonstrated again that cluster validation can also be useful.

2 The Roman Stamped Tiles Investigated by Giacomini

Giacomini investigated the petrographic and chemical characterization of tiles from
the findspots in Switzerland and Strasbourg (France) with the aim of finding prove-
nances. The results were published in his Thesis nı 1,346 (Université de Fribourg)
in 2001, see Giacomini (2001). Concerning the tiles of legio XXI Rapax, the data
of the chemical compositions of the analyzed samples reported in Annex E were
used for our investigations. In 2005, Giacomini published his recent book about the
Roman stamped tiles of Vindonissa Giacomini (2005). He and M. Maggetti from the
Université de Fribourg kindly support our work that will bring together the results
obtained from two different laboratories.

3 Preparation of Data Coming from Different Laboratories

The chemical composition of 157 samples were measured using the X-ray fluores-
cence analysis (XRF) based on the same technical equipment, a PHILIPS PERL’X-2
machine, at two laboratories: 112 measurements at the Institut de Minéralogie
et de Pétrographie, Université de Fribourg (sample labeling FG standing for the
investor Folco Giacomini), and 45 measurements at the Institut für Chemie und
Biochemie – Anorganische Chemie, Freie Universität Berlin (Gerwulf Schneider
and Małgorzata Daszkiewicz, sample labeling W). Concretely, the following find-
spots and provenances (*) and their cardinality (in brackets) are documented:
Alpnach (13), Avenches (5) Biesheim (18), Haut Vully (1), Joressant (1), Kaisten
(4), Neuchâtel (1), Frankfurt-Nied (*) (12), Petinesca (3), Rheinzabern (*) (1),
Rufenach (1), Seeb (30), Strasbourg (7), and Vindonissa (60).

For calibration aims, 10 measurements of Fribourg are included in the set of the
45 ones of Berlin that were analyzed repeatedly. concretely, the milled powder of
such a tile was divided into two parts, one was analyzed at the laboratory in Berlin
and one in Fribourg. By doing so, there is the hope for a good calibration between
the two different laboratories.

The following contents will be considered below: the oxides SiO2, TiO2, Al2O3,
Fe2O3, MnO, MgO, CaO, Na2O, and K2O (in mass percentage), and the trace ele-
ments V, Cr, Ni, Zn, Rb, Sr, Y, Nb, and Ba (in ppm). Thus, altogether 18 variables
were measured. As mentioned above, to establish comparability 10 samples from
Fribourg were made available to be analyzed again in Berlin. On this basis the
factors are determined that will be used to adjust the samples from Fribourg. Let
denote the calibration samples of Berlin by X D .xij / and the corresponding ones
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Table 1 Slope (1) and calibration factors (2) of each variable for the measurements coming from
the laboratory of Fribourg

Variable (oxid)
Result SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O

Slope 1.00 1.01 0.98 1.01 1.01 0.99 0.98 1.05 1.01
Factor f 1.00 0.99 1.02 0.99 0.99 1.01 1.02 0.95 0.99

Variable (trace element)

Result Ba Cr Nb Ni Rb Sr V Y Zn

Slope 1.02 0.96 1.00 1.02 1.10 0.96 0.84 1.10 0.93
Factor f 0.98 1.05 1.00 0.98 0.91 1.04 1.19 0.91 1.07

of Fribourg by Y D .yij /. These matrices consist of I D 10 rows (samples) and
J D 18 columns (variables) each, where the element xij and yij provide a value for
the j th variable describing the i th object of X and Y, respectively. For each variable
j; j D 1; 2; : : : ; J , a factor fj will be obtained such that the line of best fit based
on 10 lines is fulfilled:

yij D .tan˛/j xij .i D 1; 2; : : : ; 10/:

Under the assumption of errors in both the y- and the x-values, the line of best fit
gives the result (Baule 1966):

.tan.2˛//j D 2
P

i xijyij
P

i x
2
ij �

P
i y

2
ij

:

From this one gets

.tan ˛/j D 1

.tan.2˛//j
.˙
q
.tan.2˛//2j C 1 � 1/: (1)

At the end the factor fj of variable j is

fj D .tan ˛/�1
j D .cot˛/j : (2)

Table 1 presents the final numerical result of calibration based on the 10 double
analyzed samples.

Cluster analysis methods based on Euclidean distances are dependent on the
scales of the variables. Thus it is necessary to transform the data because the oxides
and trace elements come in quite different scales: either in percent or in ppm.
Dividing each value of a variable by its arithmetic mean is a quite simple data pre-
processing step. It seems to be appropriate because the coefficient of variation (cv)
of the original variable becomes the standard deviation of the transformed one. (The
cv is defined as the ratio of the standard deviation to the mean.) Thus, the ‘native’
variability of each variable is preserved. Moreover, the (graphical and numerical)
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Fig. 1 Principal component analysis plot with cluster membership

comparison of the variables becomes easy because the mean of each transformed
variable is equal to 1.

4 Hierarchical Cluster Analysis by Ward’s Method

Hierarchical clustering (Ward’s sum of squares method, see Jain and Dubes 1988)
suggests four, five or seven clusters based on the so-called elbow test (Dolata et al.
2009). From the archaeological point of view the seven clusters solution seems to be
particularly suitable for interpretation. Figure 1 shows this solution projected onto
the plane of the first two principal components. Also by visual inspection of this
plot, seven clusters seem to be a proper partition. In Dolata et al. (2009), this result
was described in detail. As seen in Fig. 1, clusters C7 and C4 are isolated. C3 is
clearly separated from C5. In the PCA-plot of first and third principal component
cluster C6 is more clearly separated, see Dolata et al. (2009). Cluster C5 contains
all tiles that come from the findspot Biesheim.

5 Validation of Cluster Analysis Results

As already seen in Dolata et al. (2007), the adjusted Rand measure yields reliable
results for the investigation of stability of cluster analysis results by successive clus-
tering of bootstrap samples. See, for instance, Hubert and Arabie (1985), Jain and
Dubes (1988) and Mucha (2009) for some statistical background of cluster valida-
tion based on comparing partitions. First, the simulation algorithm determines the
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Fig. 2 Adjusted Rand measure with respect to the number of clusters

number of clusters, and second it assesses the stability of each single cluster, for
details see Hennig (2004) and Mucha (2009). Figure 2 presents the result of valida-
tion of the hierarchical Ward method by bootstrapping technique using 250 random
drawn samples. The maximum adjusted Rand measure R (median) is obtained for
two clusters. Similar highR-values nearby the maximum are obtained for five, seven
and four clusters, respectively. Taking into account the standard deviation S of the
R-values for the decision about the number of clusters, the seven clusters solution
offers a more than three times lower S than the two class solution. Therefore seven
clusters seem to be the more appropriate solution. Similar conclusions hold true for
the five and the four cluster solution.

Concerning the validation of each cluster it was found that clusters C5, C6 and
C7 are most stable with regard to the following three different statistical measures
(see Hennig 2004; Mucha 2009): Jaccard, Dice, and rate of recovery.

Crossing the result of hierarchical cluster analysis (Ward’s method, ordinate) and
the result of partitional clustering (K-means) gives the contingency Table 2. The
latter verifies the former to a relatively high degree (apart from cluster C1). In Mucha
et al. (2009), Mucha et al. show that the clusters of the legio XXI Rapax remain stable
when the data under investigation is extended by tiles stamped by other military
units.

Finally, the focus will be on the investigation of the interesting cluster C5
containing all tiles from Biesheim. The archaeologist M. Reddé supposed that
Straßburg-Königshofen is a potential provenance for these tiles. To verify this, the
total set of tiles from C5 and Straßburg-Königshofen is investigated by Ward’s clus-
ter analysis method. Figure 3 shows the principal component analysis (PCA) plot
that reflects a clear separation of tiles of C5 from tiles of the identified military
brickyard Straßburg-Königshofen.
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Table 2 Crossing the results of clustering by Ward and K-means

K-means cluster analysis
Cluster K1 K2 K3 K4 K5 K6 K7 Total

C1 36 1 34 71
C2 28 28

Ward’s C3 13 13
method C4 5 5

C5 21 1 22
C6 13 13
C7 5 5
Total 36 21 14 29 13 34 10 157

Fig. 3 PCA plot of tiles of cluster C5 (label W) and of tiles manufactured in Straßburg-
Königshofen (F, G, and H)

Figure 4 presents the result of validation of the hierarchical Ward method by boot-
strapping technique. It shows both a graphical representation of the most important
statistical results of simulations concerning the adjusted Rand index R and a table
containing the corresponding numerical values of these univariate statistics. The
reading of Fig. 4 is as follows: The axis at the left hand side and the bars in the
graphic are assigned to the standard deviation S of R, whereas the axis at the right
hand side and the box-plots are assigned to other statistics of R (average, upper and
lower 5% quantile). The average of R for K D 2 takes the maximum value. That
means, the two cluster solution can be confirmed in a high degree for almost all
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Fig. 4 Adjusted Rand measure with respect to the number of clusters

samples. Moreover, the two cluster solution gives the minimum standard deviation
equals 0. The higher the number of clusters the lower the average of the adjusted
Rand index R median and the higher the standard deviation become, respectively.
Therefore, without any doubt the tiles of cluster C5 were not manufactured in
Straßburg-Königshofen.

6 Interpretation of the Geochemical Clusters

From the statistical point of view the set of tiles can be divided into seven clus-
ters obtained by hierarchical cluster analysis. This can be confirmed by validation
via bootstrapping such as described in Dolata et al. (2007). Moreover partitional
clustering gives similar results. The location of the corresponding military brick-
yard of the cluster that contains all findings from Biesheim is not yet known and
therefore remains an open question. As far as we today know, these tiles were not
manufactured in Straßburg-Königshofen. As a result of validations, archaeologists
can now modify and consolidate their ideas about the internal structure of Roman
tiles stamped by the legio XXI Rapax.



434 H.-G. Bartel et al.

References

Baule, B. (1966) Die Mathematik des Naturforschers und Ingenieurs – Band II: Ausgleichs- und
Näherungsrechnung. Leipzig: Hirzel.

Dolata, J., Bartel, H.-G., & Mucha, H.-J. (2009) Geochemische und statistische Erkundung der
Herstellungsorte von Ziegeln der legio XXI Rapax. In M. Reddé (Ed.), Oedenburg – Fouilles
françaises, allemandes et suisses à Biesheim et Kunheim, Haut-Rhin, France. Vol. 1: Les camps
militaires Julio-Claudiens (pp. 355–364). Römisch-Germanisches Zentralmuseum, Mainz.

Dolata, J., Mucha, H.-J., & Bartel, H.-G. (2007). Uncovering the internal structure of the roman
brick and tile making in Frankfurt-Nied by Cluster Validation. In R. Decker and H.-J. Lenz
(Eds.), Advances in data analysis (pp. 663–670). Berlin: Springer.

Giacomini, F. (2001). The roman stamped tiles of Vindonissa (Northern Switzerland): Provenance
and technology of the production. Thesis nı 1346. Université de Fribourg (Suisse).

Giacomini, F. (2005). The Roman Stamped Tiles of Vindonissa (1st Century AD., Northern
Switzerland), Provenance and technology of production – an archaeometric study. BAR
International Series 1449, Oxford.

Hennig, C. (2004). A general robustness and stability theory for cluster analysis. Preprint no 7,
Universität Hamburg.

Hubert, L. J., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. New Jersey: Prentice Hall.
Mucha H.-J. (2009). Cluscorr98 for Excel 2007: Clustering, multivariate visualization, and valida-

tion. In H.-J. Mucha and G. Ritter (Eds.), Classification and clustering: models, software and
applications (pp. 14–41). Report no. 26. Berlin: WIAS.

Mucha, H.-J., Bartel, H.-G., & Dolata, J. (2009). Zur Klassifikation römischer Ziegel von Fun-
dorten im südlichen Obergermanien. In A. Hauptmann and H. Stege (Eds.), Archäometrie und
Denkmalpflege (pp. 144–146). (Metalla (Bochum), Sonderheft 2).



Land Cover Classification by Multisource
Remote Sensing: Comparing Classifiers
for Spatial Data

Alexander Brenning

Abstract Land cover classification is a standard remote-sensing task in which typ-
ically multispectral satellite data is used to identify features such as land use. The
detection of rock glaciers is a particularly challenging task that requires the com-
bination of satellite data with terrain analysis data because their spectral signature
alone is not distinct enough for their classification based on satellite imagery alone.
The performance improvements that can be achieved by selecting an optimal clas-
sifier in this particular land cover classification problem are investigated.

In the case study, eleven statistical and machine-learning techniques are com-
pared in a benchmarking exercise, including logistic regression, generalized additive
models (GAM), linear discriminant techniques, the support vector machine, and
bootstrap-aggregated tree-based classifiers such as random forests. Penalized linear
discriminant analysis (PLDA) achieves a median false-positive rate (mFPR, esti-
mated by cross-validation) of 8.2% in early detection of rock glaciers at a sensitivity
of 70%, which is significantly better than all other classifiers. The GAM and linear
discriminant analysis are second best (mFPR: 8.8%). The mFPR of the worst three
classifiers is about one-quarter higher compared to the best three classifiers.

The land cover classification problem is further analyzed in general terms from
a methodological perspective, highlighting potentials and pitfalls related to phe-
nomena including error estimation in the presence of spatial dependence, high-
dimensional problems in hyperspectral remote sensing, and indirect models.

1 Introduction

Land cover classification and change detection are important applications of (mostly
supervised) classification techniques in remote sensing, i.e. the study of the Earth’s
surface using aerial and satellite imagery. As an example, according to Thomson
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Reuters’ ISI Web of Knowledge, the staggering number of 577 scientific papers
with either ‘land cover classification’, or ‘change detection’ and ‘remote sensing’
in the title, abstract or keywords was published during the 5-year period from 2004
to 2008. However, only 19 of these papers fall within the subject fields of computer
science, mathematics or statistics, indicating an imbalance between theoretical and
applied research.

Based on these observations, this contribution aims at making the land cover
classification problem more well-known among more theoretical researchers. For
this purpose, the benefits of using modern classification techniques are demon-
strated in the challenging land cover classification problem of rock glacier detection
(Sect. 2), and based on this case study and related studies some of the methodolog-
ical challenges of land cover classification and geospatial analysis are illuminated
(Sect. 3).

In land cover classification, the land cover type (e.g., land use, vegetation or crop
type, building type) is known in some areas or at individual locations from so-called
‘ground-truthing’, i.e. based on ground inspection, ancillary data sources or expert
interpretation of higher-resolution imagery. The land cover type may be binary, but
it is more often polychotomous, sometimes with 10–20 classes. In multispectral
remote sensing, predictor variables represent the reflective properties of ground sur-
face at different spectral wavelengths or ‘bands’. As an example, Landsat ETMC
provides nine bands of different visible and near-infrared wavelengths at 30 m spa-
tial resolution, but a wide range of systems with different spectral resolutions (<10
to >100 bands) and spatial resolutions (<1m to >1 km) is available. A classifier,
often quadratic discriminant analysis (QDA; referred to as maximum-likelihood
classification in remote sensing), is then fitted on the training samples – more or
less sparse point or area samples – and applied pixel by pixel to a remote-sensing
image to predict land cover across a study region.

Much of the remote-sensing literature further focuses on the derivation of enhan-
ced information such as band ratios or texture filters from spectral data to improve
the predictive performance (compare Lu and Weng 2007). The comparison of new
satellite sensors to older ones as well as the combination of different data source
(multisource classification) is also receiving significant interest, although a formal
benchmarking framework (Hothorn et al. 2005) is rarely adopted (Brenning 2009).
In many applications, terrain analysis variables provide valuable information that
helps improve classifications based on remotely-sensed data (Sect. 2 and Brenning
2009; Michelson et al. 2000).

Segmentation methods and object classification are increasingly being used to
exploit the spatial characteristics of image data (Lu and Weng 2007). Apart from
these geometric classification approaches, remote-sensing research also focuses on
enhancing the feature space of the problem at hand, and using advanced statistical
and machine-learning techniques (Brenning 2009; Brenning et al. 2006; Chan and
Paelinckx 2009; Huang et al. 2002). This paper examines this issue from a method-
ological perspective, highlighting known and novel links between classification
science and remote-sensing applications.
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2 Benchmarking Classifiers for Multisource Rock Glacier
Detection

The case study focuses on the application of statistical benchmarking approaches
(Hothorn et al. 2005) to (1) rank statistical and machine-learning classification tech-
niques and (2) assess the benefit of integrating multispectral remote-sensing data
with terrain attributes in the detection of rock glaciers across a mountain area. Rock
glaciers are a landform resulting from the creep of ice-rich (�40–60% by volume)
mountain permafrost. They are important stores of frozen water in some dry moun-
tain areas (Brenning et al. 2007), however relatively little is known about their exact
distribution and location. Rock glacier ice is not exposed at the surface, making
their detection particularly difficult. The use of terrain attributes derived from dig-
ital elevation models (DEMs) is a promising approach, and their combination with
multispectral remote-sensing data is the objective of the present case study, which
is presented elsewhere in detail (Brenning 2009).

2.1 Materials and Methods

The learning sample consists of N D 2071 points randomly distributed across the
San Juan Mountains, Colorado, USA (2784 km2). At these locations, rock glacier
presence (n D 86) and absence was determined visually from high-resolution (1 m)
grey-scale air photos. Eleven spectral and derived remote-sensing variables (Landsat
ETMC, 30 m resolution) and 54 terrain attributes (Shuttle Radar Topography Mis-
sion SRTM, 30 m, and smoothed topographies) are used as predictor variables
(Brenning 2009; Brenning et al. 2007). Many of the terrain attributes are highly
correlated, and it is known from previous studies that some of their relationships to
the response variable are nonlinear; interactive effects have not been examined in
this area but can also be expected to exist (Brenning et al. 2007).

The predictive performance of classification techniques is determined in terms of
the median false-positive rate (FPR) at a 70% sensitivity using 100-repeated five-
fold cross-validation stratified based on the response variable. Differences in FPR
were first examined with a global permutation test (Hothorn et al. 2005), and then
in pairwise signed-rank tests using a Simes procedure to control the false-discovery
rate of 5%.

This study compares 11 different classification techniques ranging from discrim-
inant analysis (DA) methods to generalized (logistic) linear and additive models
(GLM, GAM), tree-based ensemble techniques and the support vector machine
(SVM). The DA methods studied are linear DA (LDA), stabilized LDA (SLDA)
(Läuter 1992) and penalized LDA (PLDA; with default parameter � D 1) (Hastie
et al. 1995). Logistic regression and the logistic GAM use stepwise forward vari-
able selection based on the AIC; the GAM also uses this criterion to choose between
linear and nonlinear (2 d.f.) effects. The Polyclass method is similar to the GAM
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and used with default settings (Kooperberg et al. 1997). The tree-based techniques
applied in this study are bagging, bundling with SLDA as an ancillary classifier
(Hothorn and Lausen 2005), and random forests. Finally, the SVM (C -classification
with radial basis function kernels and shrinking heuristics, LIBSVM implementa-
tion) is used in two settings: With default hyperparameters (C D 1, � D p�1, where
p D # of variables), and with an grid-search hyperparameter estimation based on an
internal cross-validation (within each cross-validation design set).

The predictive performance of the best three classifiers is further estimated using
only terrain attributes (TA) and using only remote-sensing data (RS) in order to
assess the benefits of combining both sets of variables.

2.2 Results

The comparison of the 11 classification techniques (Fig. 1) indicates that, in general
terms, the less flexible linear and moderately nonlinear methods outperform the
more flexible tree-based ones and the SVM. PLDA performs significantly better than
all other classifiers, and the GAM and LDA are on rank two but perform significantly
better than the lower-ranked methods. The median FPR of the worst-performing
three classifiers is 27% higher than the FPR of the best three techniques, i.e. the
area incorrectly classified as rock glacier can be considerably reduced by selecting
the optimal method.

Interestingly, the SVM with internal hyperparameter tuning (SVM-CV) does not
perform better than with fixed default parameters. It appears that the data set is
too small to produce stable hyperparameter estimates. PLDA and SLDA attempt to
solve the problem of (near-)high-dimensionality in different ways. The dimension
reduction approach used by SLDA, which is based on singular value decomposition,

Fig. 1 Cross-validated false-positive rates achieved by the 11 classification techniques at a 70%
sensitivity using terrain attributes and remote-sensing data
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Table 1 Median false-positive rates achieved by the best three classifiers in rock glacier detec-
tion at a sensitivity of 70% using different sets of predictor variables (TA: terrain analysis;
RS: multispectral remote-sensing)

Method TA C RS TA RS

PLDA 0.082 0.134 0.222
GAM 0.088 0.145 0.194
LDA 0.088 0.131 0.227

does not effectively retain all information relevant for discriminating the feature of
interest. It should also be noted that QDA, one of the standard methods frequently
used by remote-sensing practitioners, failed because of the large number of predictor
variables compared to the number of presence data.

The multisource classification clearly outperformed classification based on only
terrain attributes or only remote-sensing data (Table 1).

3 Discussion

3.1 State-of-the-Art Classifiers for Land Cover Mapping

The case study presented in this paper focused on the use of relatively new clas-
sification techniques such as PLDA, GAM, or random forests compared to more
traditional ones (LDA, GLM), and on the comparison of predictive performances
of different data sources and their combination (multisource classification). In
this example, geomorphological expert knowledge tells us that nonlinear, non-
monotonous relationships must be present in several predictor variables (e.g. catch-
ment slope), suggesting the use of nonlinear modeling techniques such as the GAM
or tree-based techniques. However, less flexible, even linear methods (PLDA, LDA)
were better able to predict the response variable, presumably because the availability
of a large set of strongly correlated predictors allowed to capture nonlinear effects
sufficiently well.

The present case study and similar comparative studies in land cover classifica-
tion (Brenning et al. 2006) and landslide susceptibility modeling (Brenning 2005)
indicate that linear methods may perform well in situations where large numbers
of strongly correlated predictor variables are present. Tree-based methods tend to
overfit to the training data, which may in some cases be related to spatial autocor-
relation (Brenning 2005; Brenning et al. 2006). It is however difficult to generalize
these results.
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3.2 High-Dimensional Problems in Remote Sensing

High-dimensional or nearly high-dimensional problems occur in a variety of sit-
uations in land cover classification, especially (1) when hyperspectral remote-
sensing data is used (Chan and Paelinckx 2009), (2) when multitemporal imagery
is combined (Brenning et al. 2006), or when multiple data sources such as ter-
rain attributes and remote-sensing imagery are ‘stacked’ (Brenning 2009). Standard
methods designed for ‘low-dimensional’ problems may not be applicable in these
situations, or they may overfit to strongly correlated and partly non-informative
variables. A variety of techniques such as PLDA and random forests have been
developed for this situation. High-dimensional problems similar to the analysis of
hyperspectral remote-sensing data occurred earlier in chemometrics in the context
of spectroscopy. Ad hoc dimension reduction approaches such as the use of the most
important principal components or eigenvectors do not appear make effective use of
the available data, as can be seen in the poor performance of SLDA in the present
case study compared to PLDA (Brenning 2009). Dimension reduction by principal
component analysis is however still common in applied remote sensing.

3.3 Spatial Error Estimation

A common challenge in modeling spatial data is the autocorrelation of data observed
at nearby locations. This phenomenon, which is the starting point for geostatistical
theory, may not only render ordinary regression estimators inefficient. In a predic-
tive situation, it may also be necessary to take spatial dependence into account in
error estimation using resampling-based methods (Davison et al. 2003). When the
learning sample has a high spatial density (which is not the case in the present case
study), the standard (non-spatial) cross-validation or bootstrap error rates will be
nearly identical to the apparent error because adjacent samples are virtually identical
and may end up in the test and training set.

Block bootstrap approaches for dependent data have mainly been studied in the
similar situation of time series analysis, but the size and properties of the blocks to
be resampled may influence the results (Bühlmann 2002; Zhu and Morgan 2004). A
different approach is a spatial cross-validation in which training and test samples are
required to have some minimum distance (Brenning 2005). In the context of land-
slide susceptibility modeling based on densely gridded inventory data, the apparent
error rate was heavily overoptimistic compared to the spatial estimator (Brenning
2005).

Special resampling approaches have also been proposed for grouped data. In crop
detection, where pixel-level multispectral data is grouped at the field level due to
field-specific random effects (e.g. same cultivar and sowing date), it may be advis-
able to resample the learning sample at the field level rather than the pixel level
(Brenning et al. 2006). Similar procedures have been proposed for other grouping
structures such as the classification of paired organs (Brenning and Lausen 2008).
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It is evident that further research on error estimation in the spatial domain is
needed because this has immediate consequences for benchmarking classifiers and
data sources such as new satellite sensors.

3.4 Indirect Classification in Remote Sensing

The theoretical framework of indirect classification may provide further new insights
into the classification of remote-sensing data and may potentially improve predic-
tive performances (Peters et al. 2005). Indirect classification attempts to make use of
ancillary information that is available on the training set but not normally in a pre-
dictive situation. This ancillary information is represented by intermediate variables
that are predicted based on the available predictor variables and then incorporated
into the set of variables of the final model.

In rock glacier detection, the ‘non-rock glacier’ class corresponds to a number
of land cover classes that are not of interest for the final results, but are known
on the training set. This provides us with a structured class definition that may be
exploited to improve the predictive performance because different predictor vari-
ables are useful to predict vegetation and vegetation-free land, both of which are
non-rock glacier areas. On the other hand, the use of ancillary models predicting for
example ground surface temperature (as a proxy for the presence of permafrost) as
an input to permafrost presence/absence models fits perfectly within the framework
of indirect models.

At a simpler level, practitioners often use ‘thresholding’ and ‘masking’ steps as
preprocessing steps. Systematically integrating these steps into indirect land cover
classification models would help incorporate the uncertainties of these steps into
error estimation, and identify optimal decision thresholds.

4 Conclusions

The present work discussed a number of potentials and pitfalls in the application of
classification techniques to land cover mapping. Adequate spatial error estimation
and benchmarking methods are needed in order to provide guidance in the selection
of classification techniques and feature extraction algorithms, the evaluation of new
satellite sensors or the integration of multiple data sources. Most studies however
have relied on apparent or test set error rates instead of (spatial) resampling-based
methods, and hypothesis tests on differences between classification approaches are
therefore not available in most existing comparisons (compare however Brenning
2005; Brenning et al. 2006; Brenning 2009).

Strengthening the interaction between researchers in the field of classification
methodology and remote-sensing applications could therefore be very fruitful for
both communities. The ifcs 2009 meeting ‘Classification as a Tool for Research’
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in Dresden with its Special Interest Sessions on Spatial Classification and Spa-
tial Planning provided a platform for this dialogue, which may be extended to
other fields of geospatial analysis such as hazard susceptibility modeling (Brenning
2005), digital soil mapping (McBratney et al. 2003), or species habitat modeling
(Prasad et al. 2006). Moreover, recent developments in the integration of geograph-
ical information systems (GIS) and the statistical software R also promise to boost
interdisciplinary cooperation in geospatial analysis. The existing evidence suggests
that a reduction of error rates on the order of one-quarter is at stake (Brenning 2005,
2009; Brenning et al. 2006). Remote-sensers would be ill-advised to disregard this
potential improvement, which comes at virtually no cost compared to new satellite
sensors.
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Are there Cluster of Communities with the
Same Dynamic Behaviour?

Martin Behnisch and Alfred Ultsch

Abstract Demographic and economic changes lead to the phenomena of grow-
ing and shrinking cities. The issue of this article is to find groups (cluster) of
communities with the same dynamic characteristics in Germany. Community Data
Mining represents a methodological approach that discovers logical, mathematical
and partly complex descriptions of urban patterns and regularities inside statistical
data. The approach relies on 12,430 communities and refers to data from well known
and easily accessible institutions. Emergent SOM is presented as an appropriate and
powerful method for clustering and classification. The application of U*-Matrix
shows that it is of high value, first, to visualize the structure of highdimensional
data and second, to detect meaningful classes. Knowledge Discovery is applied to
find a description and recognition of a given set of cluster. The structure and the
machine generated explanations were validated mindful of the spatial analyst and
yielded a spatial abstraction. Such approaches might lead to a benchmark system
for regional policy or to other strategic instruments such as semi or fully automated
urban monitoring systems.

1 Introduction

The German financial system leads to extensive disparities between different types
of communities. It can be assumed that economical crisis and demographical
changes will foster regional and spatial disparities. New types of communities are
arising and precise individual concepts are needed for their urban development.
As communities are facing such complex problems, it is necessary to recognize
this complexity and tackle it with comprehensive and multidimensional approaches.
There is a need for discovering the properties on which politicians and planners
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shall work with. Needless to say that many former studies already discovered grow-
ing and shrinking processes in Germany (Gatzweiler et al. 2003; Siedentop et al.
2003). It is therefore well-known that the southern and western part of Germany
is growing and the eastern part (former GDR) is shrinking. But these studies were
just interested in summarizing growing or shrinking properties, but not in a com-
plex understanding and extraction of multidimensional properties. For this reason
the authors want to identify new patterns as well as multiple dynamic behaviours
of all communities. The assumption is that unexpected patterns will emerge both in
dynamic and in localisation.

2 Data for German Community Dynamics

Six variables were selected for the classification analysis: population, migration,
taxing-capacity, dwellings, employment rate and commuter ratio. The standardized
and comparable data was created by the Federal Institute for Research on Building,
Urban Affairs and Spatial Development (BBSR). These variables are often used in
former approaches (Gatzweiler et al. 2003). A multidimensional dynamic means a
combined view on all these variables. The dynamic processes are mostly charac-
terized by positive or negative percentage quotations between the year 1994 and
2004. Some variables are used to describe the present situation referring to one
specific year. For example taxing capacity provides an indication of the economi-
cal and financial situations of communities (Bundesamt 2005). Table 1 shows the
calculation of variables.

The inspection of data includes the visualisation in form of histograms,
Q-Q-Plots, PDE-Plots (Ultsch 2003) and Box-Plots. The authors decided to use
transformation measurements such as ladder of power to take into account restric-
tions of multivariate statistics. Figures 1 and 2 show an example for the distribution
of variables. The first hypothesis to the distribution of the variables was a bimodal
distribution of lognormally distributed data (Data > 0: skewed right, Data < 0:
skewed left). The variables are transformed using y D sign.x/ � log.jxj C 1/: The
investigation of distributions leads to the finding of dichotomy in all six variables
(positive or negative development). Scatter plots are used for a graphical display
of the relationship between variables. The variables are also proofed by correlation
coefficients. A strong correlation can not be detected.

Table 1 Overview of the dynamic variables

V Label Calculation

1 Population Change in population as percentage, 1994–2004
2 Migration (Move-in)–(move-out) as a number of persons, 1997–2004
3 Taxing capacity Deviation to a tax-value (170 Euro/inh.) as percentage, 2003
4 Dwellings Change in number of dwellings as percentage, 1994–2004
5 Employment rate Change in employment as percentage, 1997–2004
6 Commuter ratio (In-commuter)–(out-commuter)/population, 2004
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Fig. 3 Qualitative distribution of all variables using PDE

Figure 3 shows the qualitative properties of all transformed variables. Under
the assumption that all combinations of characteristics exist 64 classes might des-
cribe the multidimensional dynamic of German communities. An equal distribu-
tion of objects to these classes gives a prior probability of 1=64 D 1:56% for
each class. Pertaining to the classification approach (e.g. U*-Matrix and subsequent
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U*C-algorithm Ultsch 2005) and the properties of the Euclidian distance the data
needs to be standardized.

3 Visualization and Clustering of Similar Dynamics

The power of self-organization allows the emergence of structure in data and sup-
ports its visualization, clustering and labeling concerning a combined distance and
density based approach. To visualize high-dimensional data, a projection from the
high dimensional space onto two dimensions is needed (D planar map). The map
of an ESOM preserves the neighborhood relationships of the high dimensional data
in a very good manner. The weight vectors of the neurons are thought as sampling
point of the data. On the U*-Matrix a cluster structure in the dataset can be detected
directly. Such visualization is used in tiled form to avoid border effects. The island
view is realized by mask to reduce redundancies that means each neuron is nearly
visible at once. The ESOM (50	 150 neurons) is trained with the pre-processed
dynamic data. The corresponding U*-Map (island view) delivers a geographical
landscape of the input data on a projected map (imaginary axis). The cluster bound-
aries are expressed by mountains, which means the value of height is defining the
distance between different objects, which are displayed on the z-Axis. A valley
describes similar objects, characterized by small U-heights on the U*-Map. Data
points found in coherent regions are assigned to one cluster. All local regions lying
in the same cluster have the same dynamic properties. U*-Map of Fig. 4 includes
the clustering results of the algorithm (U*C) and offers a visualization of hidden and
unsuspected structures (13 cluster). Assigning a name to a cluster is one of the most
important processes. In most times an aggregation process is necessary to build up
a meaningful classification.

Fig. 4 Island of multidimensional community dynamics (U*-Map)
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Table 2 Machine knowledge generation

Cluster with a positive employment rate

Cluster C1 (3377/174 communities): employment rate pos., migration pos.
=> subcluster C1.1/C1.2 (depending on population)
Cluster C2 (678/127/310 communities): employment rate pos., migration neg.
population pos. => subcluster C2.1
population neg. => subcluster C2.2/C2.3 (depending on commuter ratio)

Cluster with a negative employment rate

Cluster C3 (3197/324/276 communities): employment rate neg., migration pos.
=> subcluster C3.1/C3.2/C3.3 (depending on population and taxing-capacity)
Cluster C4 (2114/158 communities): employment rate neg., migration neg.
=> subcluster C4.1/C4.2 (depending on dwellings)
Cluster C5 (395 communities): employment rate, migration neg., population pos.
Cluster C6 (1300 communities)

4 Explaining Patterns of Multidimensional Dynamics

The integration of Knowledge Discovery Techniques allows to understand the struc-
ture in a complementary form and supports the finding of an appropriate cluster
aggregation and denomination. An extraction of explanations is realized and fits the
minimal information for each cluster (Bishop 2006; Breiman et al. 1984). In this
manner 2 or 3 variables are extracted to get a deeper view to the structure (Table 2).

5 Transition to Knowledge and Spatial Abstraction

Knowledge Conversion clarifies the understanding of detected structures and
machine generated explanations. All results were validated mindful of the spatial
analyst and yielded a spatial abstraction. In particular there are six main multidi-
mensional dynamics and one class of outliers (Fig. 5). The localization of objects
(Table 3) and additional spatial analysis were continuously used to proof the inter-
pretation of cluster. The official city hierarchies (e.g. low-level/high-level-center),
spatial typologies (e.g. central area or periphery), transport infrastructure (e.g. high-
way and railway system) and travel isochrones are used for a deeper interpretation.
One sub-cluster should be highlighted (“Loser of the German reunification”). It con-
tains many small rural communities and is explicit extracted in the Eastern part of
Germany. The summarized communities are representing a dramatic development
which is characterized by a massive negative job situation, a clear negative migra-
tion balance and a stationary or even decreasing number of dwellings. Furthermore
the higher-order central places are often far away (50˙ 18min).
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Fig. 5 Observed patterns of multidimensional dynamic

6 Discussion

The aim of Knowledge Discovery implies the transition of data to knowledge. Such
knowledge is required to be previously unknown, unsuspected and useful.

At first it was surprising that the observed distribution of communities was not
equal in consideration of the prior probability (1/64D 1.56%). All 12,430 commu-
nities are distributed to just a few classes. Six main multidimensional dynamics are
identified. Furthermore one class of outliers contains all classes in minority that
means not fully occupied (below 1%). The approach poses some questions. Why do
some classes not exist? What factors have an effect on the observed distribution of
communities? The different size of communities has a strong influence on the con-
centration of cluster (e.g. Rheinland Pfalz). It might be good to take the modifiable
unit problem into account (Openshaw 1984).

Secondly the dependencies between cluster and variables are discovered. Accord-
ing to the requirements of Knowledge Discovery such knowledge is previously
unknown and due to the combined interpretation it might be utilized by decision
makers within the field of spatial planning. The classes are addressed to the approved
pressure factors for urban dynamic development (employment rate and popula-
tion) and are extra represented by new and unsuspected combinations of dynamic
properties.

Thirdly specific cluster should be investigated in detail by other structural and
temporal parameters (e.g. age of population, buildings, infrastructure etc.). Due to
the interpretation of cluster it is possible to proof several hypothesis about the Ger-
man communities and their dynamic behaviour. These hypothesis are formed by
the denomination of cluster (e.g. “Baby boomer losing jobs” or “Losers of the
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Table 3 Localization of multidimensional dynamics

Growing Dynamic – Commuting with growing jobs – Dormitory towns

Baby boomer losing jobs – Hard reachables, losers of the reunification – others

German reunification”). Spatial outliers might be also of specific interest in the
future (Shekhar et al. 2003).

7 Conclusion

The presented “Community Data Mining” approach provides the ability to identify
hidden relationships and unusual patterns within a large amount of data (Behnisch
2009). An unsupervised classification approach is applied to 12,430 communities.
The issue of the presented case study are shrinking and growing phenomena. In
particular multidimensional patterns are explored to reveal knowledge about this
spatiotemporal phenomenon.
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First the pool of data is examined and the importance for the investigation of
distributions is demonstrated according to the multidimensional dichotomy. One
unsuspected result during the pre-processing is also the finding of a specific deci-
sion boundary in taxing capacity. It was therefore used for the optimized calculation
of this variable (see Table 1) and might be interesting for further investigations.
Afterwards it is shown that the use of Emergent SOMs is an appropriate method
for clustering and classification. The advantage is to visualize the structure of data
and later on to define a number of feasible cluster using U*C-algorithm while typ-
ical hierarchical algorithm often fail to examine complex structures (Ultsch 2006).
The presented approach leads to the identification and abstraction of multidimen-
sional dynamics. The structure control and interpretation was realized by finding
a significant number of explanatory variables. Knowledge Conversion provides the
transition from data to knowledge and it generates several hypotheses for further
investigations. Six main dynamics of communities are therefore discovered.

In consideration of different multidimensional patterns it might be possible to
think in new spatial relations and neighborhoods (e.g. comparative strengths, inter-
regional communication and cooperation), thus, communities obtain a new urban
condition. Common standards for a continuous observation of specific planning
processes or mitigation measurements should be established based on multidimen-
sional results. Especially the integration of temporary multidimensional investiga-
tions might encourage the short-term and long-term development of communities.
Actually decision makers are not able to understand the underlying process that
controls changes and patterns of changes. Furthermore procedures on the basis
of knowledge-based systems are currently not sufficiently developed for a direct
integration into the regional and urban planning and development processes. Such
approaches might lead to a benchmark system for regional policy or to other
strategic instruments such as semi or fully automated urban monitoring systems.
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Land Cover Detection with Unsupervised
Clustering and Hierarchical Partitioning

Laura Poggio and Pierre Soille

Abstract An image segmentation technique relying on spatial clustering related to
the single linkage approach has been put forward recently. This technique leads
to a unique partition of the image domains into maximal segments satisfying a
series of constraints related to local (˛) and global (!) intensity variation thresh-
olds. The influence of such segmentation on clustering separability was assessed in
this study, as well as the threshold values for segmentation maximising the cluster
separability. The CLARA clustering method was used and the separability among
clusters was calculated as the total separation between clusters. The clustering was
applied to: (i) raw data; (ii) segmented data with varying ˛ and ! parameters;
and (iii) masked segmented data where the transition segments were excluded.
The results show that the segmentation generally increases the separability of the
clusters. The threshold parameters have an influence on the separability of clusters
and maximising points could be identified while the transition segments were not
completely included in one single cluster. The constrained connectivity paradigm
could benefit land cover types/changes detection in the context of unsupervised
object-oriented classification.

1 Introduction

The classification of a satellite image into land cover classes can be addressed at
the level of pixels or segments generated by an image segmentation technique. The
segmentation of an image can be defined as its partition into disjoint connected seg-
ments such that there exists a logical predicate returning true on each segment and
false on any union of adjacent segments (Zucker 1976). Given an arbitrary logical
predicate P , more than one valid segmentation may exist. If a unique segmentation
is needed, the logical predicate P has to be based on equivalence relations (Jardine
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et al. 1967; Johnson 1967; Jardine and Sibson 1971). The segmentation of an image
into meaningful regions can be achieved with numerous methods. Some examples
of possible predicates are:

� Segments containing one and only one regional minimum. It leads to many
possible segmentations.

� Watershed transformation (Vincent and Soille 1991): a steepest slope path linking
each pixel of the segment to its corresponding minimum. It does not guarantee
that there would be only one possible segmentation.

� Iso-connectivity path (Brice and Fennema 1970): two pixels are connected if and
only if they can be joined by an iso-intensity path. This breaks the image into
segments of uniform grey level. The method leads to a unique segmentation, but
it normally gives a very fine partitioning with a lot of segments identified.

� ˛-connectivity (Nagao et al. 1979): two pixels of a grey image are connected
if there exists a path of pixels linking these pixels and such that the grey level
differences along adjacent pixels do not exceed a given threshold (˛, local range
parameter). This method is equivalent to single-linkage clustering (Gower and
Ross 1969) and leads to an unique segmentation. However the resulting partition
is often too coarse because some distinct objects are not identified when they are
separated by one or more transitions with intensity steps � ˛.

� ˛,! constrained connectivity (Soille 2008) : the difference between the maximum
and the minimum values of each connected component is limited with a second
threshold value (!, global range parameter) and a series of constraints related to
˛ and ! is introduced in order to obtain a unique segmentation.

In this paper, the last segmentation method, ˛,! constrained connectivity, is used.
The image clustering often benefits from preliminary segmentation of the images.
The aim of this work was to apply data clustering to the generated segments in
order to (i) measure the influence of segmentation on clustering separability; (ii)
evaluate which threshold values for segmentation maximise the cluster separability;
and (iii) assess if the clustering could be helpful to detect segments corresponding
to transition regions between adjacent segments.

2 Processing Flow

The processing flow of this study is briefly presented in Fig. 1. The test area is
located in an agricultural region in France, south of Paris (Fig. 2). LANDSAT
ETMC data were used and bands 2,3,4 were selected in this preliminary approach.
The bands were normalised in order to equalise the variance of the bands. The
normalisation was done with the znorm transformation in which the mean of each
attribute of the transformed set of data points is reduced to zero by subtracting the
mean of each attribute from the values of the attributes and dividing the difference
by the standard deviation of the attribute.
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Fig. 1 Processing flow

RGB representation of the sample
data

(a) 4-3-2 false colour composite (Not
simplified image in the text)

(b)

Fig. 2 Test data
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3 Hierarchical Segmentation

The image was segmented with the method described in Soille (2008). This tech-
nique leads to a unique partition of the image domains into maximal segments sat-
isfying a series of constraints related to local (˛) and global (!) intensity variations
thresholds.

The (˛; !)-connected component of a pixel p was defined (Soille 2008) as the
largest ˛i -connected component of p such that (i) ˛i � ˛ and (ii) its range (i.e.
difference between its maximum and minimum values) is lower than or equal to !:

.˛; !/�CC.p/ D
_n

˛i�CC.p/
ˇ
ˇ
ˇ˛i � ˛ and R

�
˛i�CC.p/

�
� !

o
: (1)

The existence of a largest ˛i -connected component is secured due to the total order
relation between the ˛i -connected component of a pixel:

.˛; !/�CC.p/ 
 .˛0; !0/�CC.p/ for all ˛ � ˛0 and ! � !0: (2)

Finally two pixels p and q are said to be (˛; !)-connected if and only if q 2
.˛; !/�CC.p/.

The increasing of ˛ and ! values leads to a hierarchy of connected components.
Partitions obtained with lower ˛-! values are fully included into partitions obtained
with larger ˛-! values. The hierarchy of connected components can be graphi-
cally represented in a 3D dendrogram, where the leaves correspond to connected
components of iso-intensity (Soille and Grazzini 2008).

The segmentation was done increasing ˛ and ! values from 2 to 32 using
various combinations of values. Figure 3 presents an example of labelling for dif-
ferent values of ˛ and !. Larger values create more homogeneous areas and thus
a more simplified image (see Fig. 4). The simplified images were obtained setting
each (˛-!)-connected component of Fig. 3 to the mean values for the considered
bands.

3.1 Transition Regions and Image Masking

The small regions created with the segmentation process were defined as regions
that cannot contain the elementary structuring element defined by a pixel and its
adjacent neighbours (Soille and Grazzini 2008). Such regions were subtracted from
the original image to obtain masked images for each ˛, ! combination considered.
Figure 5 shows that lower values of ˛ and ! created a very high amount of small
regions, corresponding to almost the whole image.
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α = ω = 32(a) α = ω = 8(b)

Fig. 3 Labelled ˛ D ! connected components

α = ω = 32(a) α = ω = 8(b)

Fig. 4 Simplified images, obtained setting each (˛-!)-connected component to its band mean

4 Unsupervised Clustering

The clustering method used was CLARA (Kaufman and Rousseeuw 1990) as imple-
mented in the R software (http://www.r-project.org/index.html). The algorithm is
based on the search for k representative objects (medoids) among the observations
of the dataset. After finding a set of k medoids, k clusters are constructed by assign-
ing each observation to the nearest medoid. The medoids are chosen to minimise
the sum of the dissimilarities of the observations to their closest representative
object. Compared to other partitioning methods, CLARA can deal with much larger

http://www.r-project.org/index.html
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α = ω = 32(a) α = ω = 8(b)

Fig. 5 Small regions identified by pixel size threshold from ˛-!-connected components

Not Masked(a) Masked(b) (c) Differences

Fig. 6 Unsupervised classification on seven classes

datasets. This is achieved by considering sub-datasets of fixed size (sampsize) such
that the time and storage requirements become linear rather than quadratic. Com-
pared to the k-means approach, CLARA also accepts a dissimilarity matrix and it
is more robust because it minimises a sum of dissimilarities instead of a sum of
squared Euclidean distances.

The selection of the number of clusters was based on the Calinski criterion
(Calinski and Harabasz 1974) obtained for a cascade of several partitions from a
small to a large number of clusters. The resulting number was considered as best
compromise among the different combinations of ˛ and !.

5 Classification and Cluster Separability

The classification results for masked and not masked images are presented in Fig. 6
for a relative high value of ˛ and !. The differences in classification occurred
for the small regions, but also in the case of some larger objects. This suggests
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Fig. 7 Cluster separability measures

the importance of detection and correct classification of the small regions, as their
influence on the classification of the image can be rather large.

A number of distance based statistics were computed for validation and com-
parison of clustering (Haldiki et al. 2001). The maximum separability was chosen
as summarising parameter among masked and not-masked images for the various
combinations of ˛ and ! considered. Figure 7a presents the separability values
for not-masked images. The values are rather scattered, but it is possible to iden-
tify a peak in the separability for values of ! D 32 and ˛ D 8. The separability is
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always increased compared to raw data (˛ D ! D 0). The separability values for
the masked images with small regions excluded from the clustering are plotted in
Fig. 7b. In this case it is possible to identify a trend with slightly increasing sepa-
rability for increasing values of ˛ and !. The maximum separability is reached for
˛ D ! D 24.

6 Concluding Remarks and Prospectives

The masking of the small regions proved to be useful to improve the unsupervised
classification and to increase the cluster separability. The link with supervised classi-
fication is not yet fully explored. Further examples on different areas with different
spectral information and more complex morphology are needed to get a potential
pool of optimising values for ˛ and ! as, indeed, any other connectivity constraint
(see examples in Soille 2007). The constrained connectivity paradigm could benefit
land cover types/changes detection in the context of unsupervised object-oriented
classification.
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Using Advanced Regression Models for
Determining Optimal Soil Heterogeneity
Indicators

Georg Ruß, Rudolf Kruse, Martin Schneider, and Peter Wagner

Abstract Nowadays in agriculture, with the advent of GPS-based vehicles and
sensor-aided fertilization, large amounts of data are collected. With the importance
of carrying out effective and sustainable agriculture getting more and more obvious,
those data have to be turned into information – clearly a data analysis task.

Furthermore, there are novel soil sensors which might indicate a field’s hetero-
geneity. Those sensors have to be evaluated and their potential usefulness should be
assessed. Our approach consists of two stages, of which the first stage is presented
in this article.

The data attributes will be comparable to the ones described in Ruß (2008). In
the first stage, we will build and evaluate models for the given data sets. We will
present a comparison between results using neural networks, regression trees and
SVM regression. Results for an MLP neural network have been published in Ruß
et al. (2008). In a future second stage, we will use the model information to evaluate
and classify new sensor data. We will then assess their usefulness for the purpose of
(yield) optimization.

1 Introduction

Due to the modernization and better affordability of state-of-the-art GPS technology
and a multitude of available sensors, a farmer nowadays harvests not only crops
but also growing amounts of data. These data are small-scale and precise – which
is essentially why the combination of GPS, agriculture and data has been termed
precision agriculture.

However, collecting large amounts of data often is both a blessing and a curse.
There is a lot of data available containing information about a certain asset – here:
soil and yield properties – which should be used to the farmer’s advantage. This is a
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common problem for which the term data mining or data analysis has been coined.
Data analysis techniques aim at finding those patterns or information in the data that
are both valuable and interesting to the farmer.

A common specific problem that occurs is yield prediction. As early into the
growing season as possible, a farmer is interested in knowing how much yield he is
about to expect. In the past, this yield prediction has usually relied on farmers’
long-term experience for specific fields, crops and climate conditions. What if
a computational model could be generated that allows to predict current year’s
yield based on past data and current year data? This problem of yield predic-
tion encountered here is one which intelligent data analysis should be applied to.
More specifically, multi-dimensional regression techniques could be used for yield
prediction.

Nowadays, we can collect small-scale, precise data in-season using a multitude
of sensors. These sensors essentially aim to measure a field’s heterogeneity. In future
work, these sensors will be assessed as to how useful they are for the purpose of yield
prediction. For this work, this article should serve as an overview on the capabilities
of different regression techniques used on agricultural yield data.

1.1 Research Target

The overall research target is to find those indicators of a field’s heterogeneity which
are suited best to be used for a yield prediction task. Since this should be done
in-season, the sub-task here is one of multi-dimensional regression – predicting
yield from past and in-season attributes. At a later stage, when multi-year data are
available, models from past years could be used to predict present year’s yield.

Therefore, this work aims at finding suitable data models that achieve a high
accuracy and a high generality in terms of yield prediction capabilities. Since multi-
year data are not yet available, the prediction can only be done in space using cross-
validation, instead of in time. As soon as multi-year data are available, the models
can be trained using these data for prediction in time. We will evaluate different
types of regression techniques on different data sets. Since these models usually are
strongly parameterized, an additional question is whether the model parameters can
be carried over from one field to other fields which are comparable in (data set) size.
This issue will also be addressed in this work. This is especially useful when new
data have to be evaluated using one of the presented models.

1.2 Article Structure

Section 2 lays out the data sets that this work builds upon. The attributes and
their properties will be presented shortly. Section 3 briefly presents four selected
regression techniques from the data mining area which will be used for yield
prediction.
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Section 4 shows the results of the modeling/regression stage and provides ans-
wers to the aforementioned research questions.

At the end of this article, future work is pointed out and implementation details
are provided.

2 Data Description

The data available in this work have been obtained in the years 2003–2006 on
three fields near Köthen, north of Halle, Germany (GPS coordinates: Latitude N
51 40.430, Longitude E 11 58.110). All information available for these 65-, 72-
and 32-hectare fields was interpolated using kriging (Stein 1999) to a grid with 10
by 10 meters grid cell sizes. Each grid cell represents a record with all available
information. During the growing season of 2006, the latter field was subdivided into
different strips, where various fertilization strategies were carried out. For an exam-
ple of various managing strategies, see e.g. Schneider and Wagner (2006), which
also shows the economic potential of PA technologies quite clearly. The fields grew
winter wheat, where nitrogen fertilizer was distributed over three application times
during the growing season.

Overall, for each field there are seven attributes – accompanied by the respective
current year’s yield (2004 or 2006) as the target attribute. Those attributes have been
described in detail in Ruß et al. (2008), an overview is given below. In total, for the
F04 field there are 5241 records, for F131 there are 2278 records, for F330 there are
4578 records, thereof none with missing values and none with outliers. In addition,
a subset for F131 was available: in this subset, a special fertilization strategy was
carried out which used a neural network for prediction and optimization – this data
set is called F131net and has 1144 records.

In this work, data sets from three different fields are evaluated. A brief summary
of two of the available data sets is given in Tables 1a and 1b. On each field, dif-
ferent fertilization strategies have been used. One of those strategies is based on a
technique that uses a multi-layer perceptron (MLP) for prediction and optimization.
This technique has been presented and evaluated in, e.g., Ruß et al. (2008); Ruß
(2008) or Weigert (2006). For each field, one data set will contain all records, thus
containing all the different fertilization strategies. In addition, a subset of F131 has
been chosen to serve as a fourth data set to be evaluated.

3 Advanced Regression Techniques

As mentioned in the introduction, the task of yield prediction is essentially a task
of multi-dimensional regression. Therefore, this section will serve as an overview
about different regression techniques that are applicable to the yield data sets. We
aim to evaluate these techniques on the data sets presented in the preceding section.
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Table 1 Overview of the F04 and F131 data sets. The additional data sets F330 and F131net,
which is a subset of F131, are not shown as their statistical properties are very similar to those of
F04 and F131

(a) Data overview, F04 (b) Data overview, F131
F04 min max mean std F131 min max mean std

YIELD03 1.19 12.38 6.27 1.48 YIELD05 1.69 10.68 5.69 0.93
EM38 17.97 86.45 33.82 5.27 EM38 51.58 84.08 62.21 8.60
N1 0 100 57.7 13.5 N1 47.70 70 64.32 6.02
N2 0 100 39.9 16.4 N2 14.80 100 51.71 15.67
N3 0 100 38.5 15.3 N3 0 70 39.65 13.73
REIP32 721.1 727.2 725.7 0.64 REIP32 719.6 724.4 722.6 0.69
REIP49 722.4 729.6 728.1 0.65 REIP49 722.3 727.9 725.8 0.95
YIELD04 6.42 11.37 9.14 0.73 YIELD06 1.54 8.83 5.21 0.88

The regression task can be formalized as follows: the training set

T D ffx1; : : : ; xng; yi gNiD1 (1)

is considered for the training process, where xi ; i D 1; : : : ; n are continuous input
values and yi ; i D 1 : : : ; N are continuous output values. Given this training set,
the task of the regression techniques is to approximate the underlying function
sufficiently well.

3.1 Introduction to Regression Techniques

Since one particular technique, namely MLPs, has been used successfully in previ-
ous work (Ruß et al. 2008; Ruß 2008), it is used as a reference model here. Three
additional modeling techniques, namely RBF networks, regression trees, and sup-
port vector regression, will be presented, which are suitable for the task of yield
prediction. The aforementioned techniques have, to the authors’ knowledge, not
been compared to each other when used with different data sets in the agriculture
context. This section presents some of the background for each of the techniques
before they will be evaluated in Sect. 4.

3.2 Neural Networks

In previous work multi-layer perceptrons (MLPs), a type of neural networks, have
been used for a modeling task (Ruß et al. 2008; Ruß 2008) similar to the one
encountered here. Furthermore, neural networks have shown to be quite effective in
modeling yield of different crops (Drummond et al. 1998; Serele et al. 2000). The
MLP model was established as a reference model against which further regression
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techniques would have to compete. For a more detailed and formal description of
MLP neural networks, it is referred to Hagan (1995) or Haykin (1998). The net-
work layout and the parameters will be given in Sect. 4. In this work, the matlab
implementation for the MLP network was used: newff.

Furthermore, a different type of neural network, a radial basis function (RBF)
network, will be evaluated, since it is well-suited to the regression task. For this
network, matlab’s newrb function has been utilized.

3.3 Regression Tree

Regression as well as decision trees are usually constructed in a top-down, greedy
search approach through the space of possible trees (Mitchell 1997). The basic algo-
rithms for constructing such trees are CART (Breiman et al. 1984), ID3 (Quinlan
1986) and its successor C4.5 (Quinlan 1993). The idea here is to ask the question
“which attribute should be tested at the top of the tree?” To answer this question,
each attribute is evaluated to determine how well it is suited to split the data. The
best attribute is selected and used as the test node. This procedure is repeated for the
subtrees. For further information on the construction details and possible problems
(such as overlearning) the reader is referred to Mitchell (1997). For this work the
standard matlab implementation of classregtree has been utilized.

3.4 Support Vector Regression

Support Vector Machines (SVMs) are a supervised learning method discovered
by Boser et al. (1992). However, the task here is regression, so the focus is on sup-
port vector regression (SVR). A more in-depth discussion can be found in Gunn
(1998). Given the training set, the goal of SVR is to approximate a linear function
f .x/ D hw; xi C b with w 2 R

N and b 2 R. This function minimizes an empirical
risk function defined as

Remp D 1

N

NX

iD1

L".ŷ � f .x//; (2)

where L".ŷ � f .x// D max..j�j � "/; 0/. j�j is the so-called slack variable, which
has mainly been introduced to deal with otherwise infeasible constraints of the opti-
mization problem, as has been mentioned in Smola and Schölkopf (1998). By using
this variable, errors are basically ignored as long as they are smaller than a prop-
erly selected ". L" is called "-insensitive loss function. Other kinds of functions
can be used, some of which are presented in Chap. 5 of Gunn (1998). To estimate
f .x/, a quadratic problem must be solved. See Mejía-Guevara and Kuri-Morales
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(2007) for the dual form of this problem. In this work, the SVMtorch implementa-
tion from Collobert et al. (2001) has been utilized. Its documentation also points out
further details of the SVR process.

3.5 Linear Regression and Naive Estimator

For comparison reasons, two further prediction methods are employed to compare
the advanced regression techniques against. The first of these is a simple multi-
linear regression estimator. The second is a naive estimator which simply reports
the previous year’s yield as the output yield of the current year.

3.6 Model Parameter Estimation

Each of the aforementioned four different models will be evaluated on the same
data sets. One of the research goals here is to establish whether a model which has
been used on one data set can be used on a different data set without changing
its parameters. This would lead us to believe that comparable fields could use the
same prediction model. Hence, the F04 data set is used to determine the model
parameters experimentally. Afterwards, the models are re-trained on the remaining
data sets using the settings determined for F04. The parameter settings are given in
Sect. 4.

For training the models, a cross-validation approach is taken. As mentioned in
e.g. Hecht-Nielsen (1990), the data will be split randomly into a training set, a vali-
dation set and a test set. The model is trained using the training data and after each
training iteration, the error on the validation data is computed. During training, this
error usually declines towards a minimum. Beyond this minimum, the error rises –
overlearning (or overfitting) occurs: the model fits the training data perfectly but
does not generalize well. Hence, the model training is stopped when the error on
the validation set starts rising. A size ratio of 8:1:1 for training, validation and test
sets is used. The data sets are partitioned randomly 20 times and the models are
trained. The models’ performance will be determined using the root mean squared
error (RMSE) and the mean absolute error (MAE) on the test set. It is assumed that
the reader is familiar with these measures.

4 Regression Results

The models are run with the parameter settings given below. Those were determined
experimentally on F04 using a grid search, and carried over to the remaining data
sets.

MLP A relatively small number of 10 hidden neurons is used and the network is
trained until a minimum gradient of 0:001 is reached, using a learning rate of
0:25 and the tangens hyperbolicus sigmoid activation function.
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Table 2 Results of running different models on different data sets. The best predictive model for
each data set is marked in bold font
Model/Dataset MAE RMSE

F04 F131 F131net F330 F04 F131 F131net F330

MLP 0.3706 0.2468 0.2300 0.3576 0.4784 0.3278 0.3073 0.5020
RBF 0.3838 0.2466 0.2404 0.3356 0.5031 0.3318 0.3205 0.4657
REGTREE 0.4380 0.2823 0.2530 0.4151 0.5724 0.3886 0.3530 0.6014
SVR 0.3446 0.2237 0.2082 0.3260 0.4508 0.3009 0.2743 0.4746
LINREG 0.4285 0.3257 0.2766 0.3820 0.5578 0.4392 0.3871 0.5330
NAIVE 2.9061 0.6135 0.6492 4.7157 3.1253 0.7613 0.7847 4.8308

RBF For the radial basis function network, a radius of 1 is used for the radial basis
neurons in the hidden layer. The algorithm, which incrementally adds neurons
until the error goal of 0:001 is met, uses a maximum number of 70 neurons.

RegTree For the regression tree, the default settings of classregtree perform opti-
mal; the full tree is pruned automatically and the minimum number of training
examples below which no split should be done is 10.

SVR For the support vector regression model, the radial basis function kernel
yields the best results, using the parameters C D 60, 	 D 4:0 and � D 0:2.

Considering the results in Table 2, support vector regression obviously performs
best on all but one of the data sets, regarding both error measures. Furthermore,
SVR also is the model taking the least amount of computation time. Hence, the
slight difference between the RMSE of SVR and RBF on the F330 data set may
be considered insignificant in practice when computational cost is also taken into
account when deciding for a model. Regarding the understandability of the gener-
ated models, it would certainly be desirable to have the regression tree as the best
model since simple decision rules can easily be generated from the tree. However,
the regression tree performs worst in all of the cases. On the other hand, when com-
paring the hitherto reference model MLP with the current best model SVR, there is
not much difference in the understandability of both models.

5 Conclusion

The results clearly show that support vector regression can serve as a better reference
model for yield prediction than MLP. Even if the improvement should be statistically
insignificant, the advantages of SVR over MLP remain. It is computationally less
demanding, at least as understandable as the MLP and, most importantly, mostly
produces better yield predictions. Furthermore, the comparison against a linear
regression baseline and a naive estimator shows that the additional effort for using
SVR is worth it.

Furthermore, the results also show that model parameters which have been estab-
lished on one data set can be carried over to different (but similar with respect
to the attributes) data sets. A model for identifying the most useful heterogeneity
indicators is currently being evaluated.
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5.1 Future Work

Due to the relatively high spatial resolution of the input data, the possible issue
of spatial autocorrelation arises. This influences the modeling during the cross-
validation stage. This will be investigated in future work.

Acknowledgements Experiments have been conducted using Matlab 2008a. The field trial data
came from the experimental farm Görzig of Martin-Luther-University Halle-Wittenberg, Germany.
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Local Analysis of SNP Data

Tina Müller, Julia Schiffner, Holger Schwender, Gero Szepannek,
Claus Weihs, and Katja Ickstadt

Abstract SNP association studies investigate the relationship between complex
diseases and one’s genetic predisposition through Single Nucleotide Poly-
morphisms. The studies provide the analyst with a wealth of data and lots of chal-
lenges as the moderate to small risk changes are hard to detect and, moreover,
the interest focusses not on the identification of single influential SNPs, but of
(high-order) SNP interactions. Thus, the studies usually contain more variables than
observations. An additional problem arises as there might be alternative ways of
developing a disease.

To face the challenges of high dimension, interaction effects and local differ-
ences, we use associative classification and localised logistic regression to classify
the observations into cases and controls. These methods contain great potential for
the local analysis of SNP data as applications to both simulated and real-world
whole-genome data show.

1 Introduction

The risk of developing a complex disease, e.g., cancer, is most likely not determined
by a single factor, but rather influenced by several different external (e.g., lifestyle
or environmental factors) and internal factors (e.g., genetic factors), cf. Fig. 1. Out
of the possible genetic information sources, we focus on SNPs (Single Nucleotide
Polymorphisms). A SNP refers to a single base exchange at a specific locus on the
genome that is present in at least 1% of the population. For homologous chromo-
somes, there are three possible genotypes at each loci: the homozygous reference (if
both chromosomes show the more frequent base), the heterozygous genotype (if one
chromosome shows the more frequent and the other the less frequent base) and the
homozygous variant (if both chromosomes show the less frequent base).

As interacting SNPs are assumed to influence the risk of developing diseases
(Garte 2001), they might help to classify new observations into cases and controls.
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Fig. 1 Different factors and their interactions influence the disease risk

Unfortunately, lots of challenges accompany the analysis of SNP association
studies. Since high throughput methods like SNP chips are widely used to gener-
ate the data, the analyst is usually confronted with more variables (up to several
hundreds of thousands) than observations (� 1,000), which results in the failure of
standard procedures like logistic regression, especially if interactions are of inter-
est. Furthermore, the effects on disease risk are assumed to be relatively small and
might be due to interaction effects rather than to main effects alone. As can be seen
in Fig. 1, instead of just one impact it is hypothesised that there are several compet-
ing ways of altering the disease risk (Clark et al. 2005). Therefore, we investigate
local methods that can handle both interactions and large amounts of data. We will
focus on associative classification (Liu et al. 1998; Müller et al. 2008) from the field
of data mining and on localised logistic regression (Loader 1999; Tutz and Binder
2005; Schiffner et al. 2009), in comparison to ordinary logistic regression as well as
logic regression (Ruczinski et al. 2003).

The two local methods will be introduced in Sect. 2, followed by a description of
the data sets that will be analysed. The performance of all methods will be presented
in Sect. 4. The final section gives a summary and an outlook on future work.

2 Methods

2.1 Associative Classification

A set of training data .xn; yn/, n D 1; : : : ; N , is given with xn 2 IRV indicating
the genotype of an observation n on V loci and yn 2 f0; 1g being the class label
for the disease status. For applying associative classification, each SNP has to be
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transformed into three dummy variables, each corresponding to one possible geno-
type. All D D 3V dummy variables Id , d D 1; : : : ;D, are now called items, while
the observations are called transactions tn. This yields the set of all transactions
T D f�∞;�∈; : : : ;�N g and the set of all items I D fI∞; I∈; : : : ; IDg. A subset
sj 
 I is called an itemset.

An itemset sj can have different characteristics, e.g., it can be frequent which is
quantified by its support Supsj

(Borgelt and Kruse 2002):

Supsj
D 1

N

NX

nD1

Ifsj �tng; tn 2 T ; sj 
 I;

with Ifg being the indicator function. If Supsj
exceeds a prespecified minimum

support threshold, sj is considered frequent. The support can be seen as an estimate
for Pr.sj 
 tn/ for a random transaction tn.

The concept of frequent itemsets can be extended to association rules. An asso-
ciation ruleRi consists of an antecedent (an itemset sRi

) and a consequent (a single
item IRi

), giving information about how likely it is to observe the consequent in a
transaction that is known to contain the antecedent. This likeliness can be quantified
by the association rule’s confidence Conf Ri

(Borgelt and Kruse 2002):

Conf Ri
D

NP

nD1

IffsRi
[IRi

g�tng

NP

nD1

IfsRi
�tng

; tn 2 T ; sRi

 I:

An associations rule’s support can be defined as the support of its antecedent,
SupRi

D SupsRi
. If both Ri ’s support and confidence exceed chosen thresholds,

the respective rule is mined from the data.
The algorithm apriori (Agrawal 1993) searching for association rules is capable

of handling huge amounts of data. As SNP data sets can easily comprise several
hundred thousand variables, this feature is extremely helpful. The second advan-
tage is the interpretability of association rules. If the consequent is restricted to
consist of one of the two class labels only, the rule gives information about the
likeliness of observing the respective disease status given the genetic profile of the
antecedent. If the antecedent consists of more than one item, its itemset can be seen
as an interaction between the SNPs involved.

For building a classifier, consider a set of mined association rules R. A test
observation x is classified based on the subset R.x/ of R that is applicable (i.e.,
the antecedent of all Ri 2 R.x/ is part of x). This ensures the locality, as every x
defines its individual subset. Now, let Co.Ri / be the consequent of association rule
i (case: Co.Ri / D 1, control: Co.Ri / D 0). Test observation x is then classified
according to the decision rule
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ı.R.x// WD
(
1; if 1

jR.x/j
P

Ri 2R.x/ Co.Ri / � �
0; else.

(1)

In (1), � gives the minimum fraction of all applicable rules that predict the status
“case” in order to classify x as a case. We will use � D 0:100 which has been
a reasonable choice in preliminary analyses. The combination of association rules
and classification in general is called associative classification (Liu et al. 1998),
while this specific approach based on a vote of the rules will be called AC Vote in
the following.

2.2 Localised Logistic Regression

The second local method we investigate is localised logistic regression (Tutz and
Binder 2005).

Again, consider a set of training data .xn; yn/, n D 1; : : : ; N . As yn is a binary
outcome, it cannot be modeled by, e.g., linear regression. Instead, a link function is
needed to map the range of the dependent variable to IR. A famous choice is the
logit link function, which results in the logistic regression model

ln

�
�n

1 � �n

�

D z0
nˇ; n D 1; : : : ; N;

with �n D P.yn D 1 j xn/ being the class posterior probability, zn 2 IRQ being
a design vector, e. g., z0

n D .1; x0
n/, and ˇ D .ˇ0; : : : ; ˇQ�1/ 2 IRQ being the

parameter vector, to be estimated by maximising the log likelihood function

L.ˇ/ D
NX

nD1

yn ln�n C .1 � yn/ ln.1 � �n/: (2)

In ordinary logistic regression, a global model is fitted on the training data and
a new observation x is classified according to the probability resulting by applying
this model. In the local version, a separate model is fitted for each test observation,
and weights wk.x; xn/ indicating the similarity of the new observation to the train-
ing observations xn are introduced multiplicatively into the log likelihood function
(Loader 1999):

Lk
x .ˇ/ D

NX

nD1

.yn ln�n C .1 � yn/ ln.1� �n// � wk.x; xn/: (3)

This ensures the influence of observations similar to x to be greater than for nonsim-
ilar observations. The weighting function wk.x; xn/ D K .dist.x; xn/=k/ depends
on a kernelK.�/, a distance dist and a bandwidth k. We use
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K.x/ WD
�
.1 � jxj3/3; if jxj � 1
0; otherwise;

(tricube kernel) and a distance based on flexible matching coefficients (Selinski and
Ickstadt 2008) which are suitable for SNP data.

For each x the individual parameter estimate Ǒx is computed by iterative Fisher
scoring. In case of numerical problems due to local collinearities of predictors Tutz
and Binder (2005) proposed to add the penalty term ��ˇ0Iˇ to Lk

x .ˇ/ in (3).
As in high dimensions local estimates are hardly local, we apply a variable selec-

tion (Tutz and Binder 2005) where the relevance of predictors is assessed by a local
variant of Wald tests. After estimating Ǒx the test statistic

c. Ǒx;q/ D j Ǒx;qj
q
dVar. Ǒx;q/

; q D 1; : : : ; .Q � 1/ (4)

is calculated and predictors exceeding a threshold cˇ are selected. The variance of
the parameter estimates in (4) is estimated by the inverse Fisher matrix. The entire
process of classifying a test observation x is given by:

1. Calculate weights wk.x; xn/.
2. Determine Ǒx by iterative Fisher scoring (possibly with penalty �).
3. If the Fisher scoring converges, select predictors, recalculate the weights, and

repeat the Fisher scoring for the selected influential factors.
4. Use the (reduced) model to predict the class for x.

This procedure depends on the three parameters k, �, and cˇ that can be optimized
by means of a grid search.

3 Data

To compare the performance of the classification methods, we will analyse a
simulation study as well as a genome-wide real-world data set.

All simulated data sets (using the software SNaP Nothnagel 2002) contain 500
cases and 500 controls with categorical values for 40 SNP variables. We designed
four scenarios in which interactions between different numbers of SNPs with given
penetrances (probability of developing the disease given a certain genotype of the
causative SNPs) influence the disease status. In the first scenario, one interaction
between two SNPs (one two-way interaction) determines the disease status. In sce-
narios 2 and 3, two and three mutual independent two-way interactions, respectively,
are responsible for the outcome disease. Finally, two independent three-way inter-
actions influence the disease risk in scenario 4. We chose minor allele frequencies
between 0.1 and 0.3 for the causative SNPs (consistent with real-world studies)
and penetrances rising with more variants within the SNP interaction. There are ten
data sets in each scenario, each used once as training data and once as test data for
classification.
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Our real-world data set is a subset of the HapMap data (The International
HapMap Consortium 2003) comprising 45 unrelated Han Chinese from Beijing and
45 unrelated Japanese from Tokyo. Thus, ethnicity is used as a class label. The
subset consists of 157 SNPs showing the largest values of Pearson’s �2-statistics
amongst the 121774 SNPs from the Nsp array of the Affymetrix GeneChip Mapping
500K Array Set that express all three genotypes and have a minor allele frequency
greater than 0.1.

4 Results

All results were obtained using the software package R 2.8.1 (R Development
Core Team 2008), in particular packages arules (Hahsler 2007) and LogicReg
(Kooperberg and Ruczinski 2008). AC Vote and localised logistic regression (LLR)
were applied to all data sets and compared to the results of ordinary logistic regres-
sion (with main effects only) and logic regression (Ruczinski et al. 2003), a method
especially designed for SNP data. While the local methods have two advantages
over logistic regression (they present interactions and give an individual result for
every test observation) and the advantage of individual results over logic regression,
we compare all classification performances by assessing the misclassification rate
(MCR).

As can be seen in Fig. 2, for the first simulated scenario (one causative two-way
interaction) all MCRs are between 0.210 and 0.252, with LLR leading to the low-
est MCR. In the second scenario, all MCRs are quite similar and have a maximum
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Fig. 2 Misclassification rates achieved by AC Vote, LLR, logic regression and logistic regression
for the simulation study
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Table 1 Misclassification rates for the HapMap data achieved by logistic regression, LLR, logic
regression and AC Vote.

logistic regression LLR logic regression AC Vote

MCR HapMap — 0.500 0.144 0.011

at 0.335. Three causative two-way interactions (Scenario 3) seem to be the hard-
est classification task. AC Vote yields the highest MCR (0.452), mainly due to lack
of sensitivity. As three interactions induce many fragmental association rules (con-
taining only part of an interaction) that can falsely predict control status, the whole
performance of AC Vote gets worse. The approaches based on logistic regression
still do fairly well (0.357). In Scenario 4, AC Vote and especially logistic regression
outperform the two other methods. The success of logistic regression, similarly to
the third scenario, is probably due to the simulation process (cases in Scenario 4
can mostly be determined by one of the interacting SNPs), therefore logistic regres-
sion is able to pick up the signal even if it does not necessarily trace it back to
the causative interaction. AC Vote gives good results if the interaction of interest is
present in the applicable rule set, averaging to a reasonable MCR.

Logistic regression fails in classifying the HapMap example as it contains more
variables than observations. LLR is still feasible (with � D 0:700), but yields no rea-
sonable result. The data set is well distinguishable into Han Chinese and Japanese,
with AC Vote yielding a MCR of only 0.011 (cf. Table 1).

5 Summary and Discussion

We showed on different SNP data sets that local methods, in particular associa-
tive classification and localised logistic regression, are applicable and yield good
and interpretable results. Their misclassification rates are in some cases best, but
not always better than standard methods (logistic regression and logic regression).
However, they keep the advantage of locality (in contrast to logistic and logic regres-
sion) and of allowing for interaction effects in high dimension (in contrast to logistic
regression).

In this paper we analysed only a subset of the HapMap data that was already
sufficient for a good classification of the observations. If we use the genome-wide
data, however, AC Vote is the only method among the four, and among very few that
can detect high order SNP interactions that is feasible without an initial reduction
of the data to a couple of hundreds of SNPs.

Still, there is lots of room for improvement, both on computational aspects and
on sophisticated threshold and parameter choices. E.g., the voting scheme of AC
Vote, saying that a new observation will be classified as a case if at least 10% of all
applicable rules predict this outcome, can be refined into an approach where each
rule gets an individual weight in the voting process to improve the misclassification
rate.
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A further adaption of the computational aspects of localised logistic regression
will be investigated to allow for more input variables.
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Airborne Particulate Matter and Adverse Health
Events: Robust Estimation of Timescale Effects

Massimo Bilancia and Francesco Campobasso

Abstract Numerous epidemiological studies based on time-series analysis have
shown associations between morbidity/mortality caused by respiratory and cardio-
vascular adverse events and chronic exposure to airborne particles (Bell et al. 2004),
but a considerable uncertainty remains to be seen. This begs the question of whether
these associations represent premature morbidity within only a few days among
those people already near to acute health events. Statistical aspects of such a dis-
placement effect (or harvesting) have been discussed by several authors (Dominici
et al. 2003 and references therein); a reasonable underlying hypothesis is that mor-
tality/morbidity displacement is associated with shorter timescales, while longer
time scales are supposed to be resistant to displacement. If associations reflect only
harvesting, the effect of air pollution on morbidity can be considered as having a
limited impact from a public-health point of view. In this paper we discuss a new
approach to assess the effect of short term changes in air pollution on acute health
effects. Our method is based on a Singular Spectrum Analysis (SSA) decomposition
of airborne particulate matter time series into a set of exposure variable, each one
representing a different timescale. An advantage of our approach is that timescales
need not to be set prior to their estimation.

1 Introduction

Numerous epidemiological studies based on time-series analysis have shown associ-
ations between morbidity/mortality caused by respiratory and cardiovascular adverse
events and chronic exposure to airborne particles (Bell et al. 2004). Particles with
an aerodynamic diameter of less than 10 microns are referred to as PM10; they
may be inhaled reaching upper airways and lungs, with risk for health. Despite this
growing body of evidence, a considerable uncertainty remains to be seen; this begs
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the question of whether these associations represent premature morbidity within
only a few days among those already near to acute health events. Such a displace-
ment (or harvesting) effect has been discussed by several authors (see, for example,
Dominici et al. 2003 and references therein). A reasonable underlying hypothesis is
that mortality/morbidity displacement is associated with shorter timescales, while
longer time scales are supposed to be resistant to mortality displacement.

A prominent approach to timescale effect estimation was introduced in Dominici
et al. (2003), in which the authors developed a methodology based on the Discrete
Fourier Transform (DFT) by partitioning the base interval Œ0; �� into a given set
of Fourier frequencies, to obtain a decomposition of pollutant series into a set of
orthogonal predictors, each one representing a different timescale. A drawback of
such methodology is that timescales need to be set prior to estimation; this is why
we introduce an alternative approach based on Singular Spectrum Analysis (SSA,
see Golyandina et al. 2001), which can be defined as a model-free approach to
decompose time series into easy-to-interpret components (such as trend, mid and
short-period waveforms) without any prior knowledge of relevant timescales. On
the basis of real data, we contrast our approach with results obtained by Fourier
decomposition.

2 Materials and Methods

2.1 Data and Statistical Approach to Estimation of Associations
at Different Timescales

Our case study is based on daily measurements of PM10 obtained in Bari (Apulia,
Italy); particulate matter and meteorological variables measurements were obtained
from the city monitoring network maintained by the Municipality of Bari (Depart-
ment of Environmental Protection and Health). Original pollutant data were obtained
on a bi-hourly basis; details about pre-processing and outlier filtering are described
elsewhere (Bilancia and Stea 2008). Epidemiological data were obtained from the
Apulian Regional Epidemiological Center; we used the daily time-series of hospi-
talized people among residents in the city of Bari (in total N D 579 days between
June 1th, 2000 and December 31th, 2001), diagnosed as suffering from pulmonary
diseases (ICD-IX Classification: 460–519). Data are shown in Fig. 1 below.

We assume that following over-dispersed Generalized Additive Model (GAM)
holds for daily counts Yt of adverse health events

Yt j�t
ind.� Poisson .�t / Var .Yt / D ��t (1)

with � > 1 and (see Dominici et al. 2003 for a wide review of related statistical
methods)

log .�t / D ˛ C ˇxt CDOWt C S .t; ı1/C S .tempt ; ı2/C S .umrt ; ı3/ (2)
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Fig. 1 Daily time series of hospitalizations for pulmonary diseases (ICD-IX Classification: 460–
519), and levels of particulate matter with an aerodynamic diameter less than 10 �g=m3 (PM10)
for Bari, Apulia, Italy, during the period June 1th, 2000 – December 31th, 2001

where xt is the daily PM10 concentration measured in �g=m3, DOWt is a six-
dimensional vector of dummy variables modeling day-of-the-week effects and
S .t; ı1/ is a smooth term function of calendar time protecting for confound-
ing by seasonality and longer-term trends (the degree of roughness being con-
trolled by the smoothing parameter ı1). Further smooth confounders entering the
model are the daily temperature (tempt ) measured in ıC and the daily relative
humidity (umrt ) expressed as percentage (meteorological variables may affect the
pollution-morbidity association, Samet et al. 1998).

In our approach the term ˇxt is replaced with the linear function
Pp

`D1
ˇ`x`t ,

assuming that the following linear decomposition holds

xt D
pX

`D1

x`t (3)

where x1�; : : : ; xp� is a set of suitable predictors each one representing a different
timescale. The model (3) estimates the effect of airborne pollution on health at dif-
ferent timescales; for given timescale `, this effect is quantified by the adjusted
relative risk (ARR) exp.10 � ˇ`/, which represents the ratio of risks between sub-
populations defined by x`� D x?

`� and x`� D x?
`� C 10 (this ratio does not depend on

the reference level x?
`�).

Automatic model selection is a suitable way to set the degrees of freedom asso-
ciated with smooth terms entering model (2). In our case, given that the scale
parameter � is unknown, smoothing parameter estimation can be based on the
mean square prediction error, that is the average squared error in predicting a new
observation using the fitted model. Generalized Cross Validation (GCV) is a com-
putationally feasible approach to expected prediction error estimation (Wood 2004).
As in the present paper, several competing linear decompositions (3) are indeed
possible. For this reason, GCV scores can be used as well to assess the predictive
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accuracy of corresponding models, which specifically differ from each other for the
predictors representing timescales.

2.2 Fourier Decomposition

We begin by summarizing the Fourier decomposition proposed in Dominici et al.
(2003). Suppose that the time series fxt W t D 1; : : : ; N g has lengthN and let !j D
2�j=N be the j -th Fourier frequency for !j 2 Œ0; ��. For j D 1 we have the first
harmonic, whose angular frequency and period are respectively !1 D 2�=N and
T1 D 2�=!1 D N . Such a harmonic is a one-cycle in the length of data waveform
which describes the longest-term fluctuation. In the case N is even the shortest-
term fluctuation corresponds to j D N=2, which gives !N=2 D � and TN=2 D 2,
whereas, if N is odd, j D .N � 1/=2 has to be set. Consider now the Discrete
Fourier Transform (DFT) of the data

d.!j / D 1

N

NX

tD1

xt exp.�{!j t/ (4)

for 0 � j < N � 1 so that 0 � !j < 2� . Apparently redundant specifi-
cation of frequencies !j in the range Œ0; 2�Œ disappears when we note that for
j > N=2, that is !j 2 ��; 2�Œ, we have d.!j / D d.!N �j /, where d.�/
denotes the complex conjugate of d.�/. Consider now a partition of the interval
Œ0; �� based on p Fourier frequencies, that need to be set prior to computations,
say


!0; !1; : : : ; !`; : : : ; !p ; !pC1

�
with !0 D 0 and !pC1 D � , and let I` D

�!`�1; !`� [ Œ!N �`; !N �`C1Œ. A linear decomposition (3) follows by suitable
rearrangement of the inverse DFT terms

xt D
N �1X

j D0

d.!j / exp.{!j t/ D
pC1X

`D1

2

4
X

!j 2I`

d.!j / exp.{!j t/

3

5 D
pC1X

`D1

x`t (5)

2.3 Singular Spectrum Analysis

In this section we review the basics of SSA and propose a refined version of the
algorithm described in Bilancia and Stea (2008) (a detailed exposition of SSA
can be found in Golyandina et al. 2001). Consider again a realization of a one-
dimensional time series fxt W t D 1; : : : ; N g and let L be a fixed integer, called the
window length, with 1 < L < N=2. The embedding procedure consists in defining
a sequence of K D N � L C 1 lagged vectors X .L/

i D .xi ; xiC1; : : : ; xiCL�1/
T

and the trajectory matrix given by
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X D xij

�L;K

i;j D1
D
h
X

.L/
1 ; : : : ; X

.L/
K

i
(6)

The embedding procedure is closely linked to the method of delays in dynamical
system theory; it is worth noting that the matrix X is a Hankel matrix, i.e. all the
elements xij along the secondary diagonals such that i C k D constant are equal
and its columns are copies of overlapping segments of time series. Vice versa, if
any rectangular matrix X is Hankel, then X it is the trajectory matrix of some time
series.

The second phase of the algorithm includes the computation of the Singular Val-
ued Decomposition (SVD) of the matrix X : let S D XXT , d D rank.S/, �i

the eigenvalues of S in decreasing order, Ui the corresponding eigenvectors and
Vi D XTUi=

p
�i for i D 1; : : : ; d . The SVD of the trajectory matrixX is given by

X D
dX

iD1

p
�iUiV

T
i (7)

The squared roots
p
�i are known as singular values, while Ui and Vi are respec-

tively called the left and right singular vectors. Finally the collection
�p
�i ; Ui ; Vi

�

is called the i-th eigentriple of the matrix X . Hence, the trajectory matrix is decom-
posed into a sum of elementary rank-one, pairwise bi-orthogonal matrices. It can be
also proved that

Pd
iD1 �i equals the squared Frobenius-Perron norm of the matrix

X , as well as that �i is the squared Frobenius-Perron norm of the component matrix
Xi D

p
�iUiV

T
i (i D 1; : : : ; d ). Thus the ratio

Pr
iD1 �i=

Pd
iD1 �1 measures the

degree of approximation of the trajectory matrix, when X is approximated by the
sum of the first r terms in the left-hand side of (7).

The grouping phase is to select p disjoint subsets from the index set f1; : : : ; d g,
say

˚
I1; : : : ; Ip

�
, with Ij D

�
j1; : : : ; jnj

�
such that the SVD decomposition (7)

can be formulated as X D XI1
C � � � C XIp

with XIj
D Xj1

C � � � C Xjnj
(j D

1; : : : ; p). Suppose now that each matrix XIj
is Hankel; hence they are trajectory

matrices from which component series can be reconstructed. Alternatively diagonal
averaging can be applied (Buchstaber 1994), which is the result of the application of
a suitable orthogonal linear projection operator H of minimum norm to both sides
of the decompositionX D XI1

C � � � C XIp
. It is easily proved that HX D X and

that HXIj
is Hankel, from which the linear decomposition (3) of the original series

into p reconstructed components (RC) can be easily recovered. There are several
rules that apply for proper grouping that extracts feasible components, such as trend
and higher frequency oscillations. We suggest to apply the linear operator H to both
sides of the full SVD decomposition (7); if eXi D HXi then

X D eX1 C � � � C eXd (8)

The sum of any two Hankel matrices on the right-hand side of (8) needs not to be
Hankel; in this connection, it easily follows from heXi ; eXj iM D 0 that eXi C eXj is
Hankel Golyandina et al. (2001) and thus the trajectory matrix of some component
time series. By h�; �iM we mean the standard inner product compatible with the
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Frobenius-Perron matrix norm. The condition heXi ; eXj iM D 0 will be referred to
as weak L-separability. By joining elementary components in (8) having minimum
distance in terms of weakL-separability, we often obtain a sensible grouping whose
component matrices are as close as possible to Hankel matrices, and, for this rea-
son, feasible of proper interpretation after diagonal averaging. A suitable measure
of weak L-separability between components i and j in (8) is the w-correlation
wij D heXi ; eXj iM=keXikMkeXj kM. If the absolute value of the w-correlation is
small, then the corresponding series are almost M-orthogonal, but if the value
is large, then the two series are far from being M-orthogonal and thus badly
L-separable. Consequently, grouping of components can be made by means of

complete link hierarchical clustering assuming 1 � jW j D ˚
1 � jwij j

�d

i;j D1
as the

dissimilarity matrix.
An essential target is to estimate the number of clusters p (i.e. the number

of RCs). As each eigenvalue �i measures the degree of approximation of the
component matrix Xi to the trajectory matrix X , we can define an pseudo-R2

p

score to measure the degree of homogeneity within each cluster. Let SST DPp
j D1

Pnj

sD1.�sj � �/2 be the total sum of squares with respect to the full eigen-

value spectrum; similarly, let SSWj DPnj

sD1.�sj ��j /
2 be sum of squares within

the j -th group (�st denotes the s-th eigenvalues within the j -th cluster). The R2
p

index for a decomposition into p groups is defined as

R2
p D

SST �Pp
j D1 SSWp

SST
D SSBp

SST
(9)

A sensible decision criterion prescribes that a decomposition into p? group is cho-
sen if supp.R

2
p �R2

p�1/ is reached for p D p?, for p varying into a suitable range
(for example p D 3; : : : ; 8).

3 Results and Discussion

In order to consider Fourier decomposition of the PM10 series, cut-off periods
2�=!j D N=j were respectively set to 579, 30, 14, 7 and 3.5 days; for exam-
ple, the first component represent the contribution from �30 days, the second from
14 � < 30 days and so on. The final result of the decomposition is shown in Fig. 2;
estimates of timescale effects are reported in Table 1, from which it is apparent that
neither mortality displacement nor associations at longer timescales occur (p-values
and model score computations were carried out by the R mgcv package, Wood
2004).

In determining an appropriate window length L for SSA decomposition, we
computed the smoothed periodogram of the residual PM10 series. We found a
dominant frequency corresponding to a period of about 26 days. If L is rela-
tively small, component separation results are less stable with respect to small
perturbations in L (Golyandina et al. 2001) and thus we tried a range of integer
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a b

c d

Fig. 2 Output of the decompositions discussed in the text. The periodogram of residual PM10

series was smoothed by a series of moving averages of length 3 and 5

values around L D 26, comparing them on the ground of the predictive power of
the corresponding RCs. The optimal decomposition, in terms of the GCV score,
was obtained for L D 27. Timescales associated with RCs were estimated as
˘` D Number of days N=Number of peaks in the `-th RC, for ` D 1; : : : ; p. By
exploiting this simple device we found ˘1 D 34:06, ˘2 D 19:30, ˘3 D 7:30,
˘4 D 4:08, ˘5 D 2:80 and ˘6 D 2:26. Estimates of timescale effects are not sta-
tistically significant at shorter timescale (see p-values shown in Table 1, but see also
the lower GCV score than the first model), but these results suggest a negative asso-
ciation at the longest timescale (about one month). Our results suggest that increases
in overall risk associated with airborne pollution are not statistically significant for
susceptible populations, and that it is likely to postulate the existence of a pool of
healthy individuals which are still healthy one months after exposure.

A weakness of our approach is that the window length L needs to be set in
some way; an appropriate choice is crucial, given that results may significantly
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Table 1 Timescale effect estimates, p-values and global model scores for the two decompositions
discussed in the text

Fourier decomposition SSA with L D 27

Estimate P-value ARR 95% C.I. Estimate P-value ARR 95% C.I.

Intercept 2:1972 <2e-16 – – 2:4779 <2e-16 – –
Series 1 0:0004 0:790 – – �0:0062 0:0494 0.9394 .0:8828; 0:9997/

Series 2 �0:0004 0.827 – – 0:0027 0.1178 – –
Series 3 �0:0013 0.467 – – �0:0015 0.4315 – –
Series 4 �0:0012 0.481 – – 0:0005 0.8216 – –
Series 5 0:0026 0.186 – – 0:0020 0.5523 – –
Series 6 – – – – 0:0017 0.6591 – –
� 1:3332 1:3247

GCV 1:3916 1:3868

vary even though L undergoes small changes. Anyway a satisfactory method for
window length setting is still missing. Another possibility that will be explored in
future papers is the “Empirical Mode Decomposition”, based on the Hilbert-Huang
transform (Huang et al. 1999), by means of which any complicated data set can be
decomposed into a small-number of intrinsic mode functions and no free parameters
need to be set.
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Identification of Specific Genomic Regions
Responsible for the Invasivity of Neisseria
Meningitidis

Dunarel Badescu, Abdoulaye Baniré Diallo, and Vladimir Makarenkov

Abstract In this article, we present four distance-based discrimination functions
for the identification of relevant genomic segments that distinguish between two
groups of data. These discrimination functions are designed for the detection of
genomic regions responsible for disease. One of them was previously employed
for the analysis of the Human Papilloma Virus family in relation to carcinogenicity
(Diallo et al. 2009). Here, we used an improved version of the algorithm described
in Badescu et al. (2008) and Diallo et al. (2009) for analyzing the information con-
tent of a multiple sequence alignments (MSA) in relation to epidemiologic data. In
this study, those functions have been applied to identify specific genomic regions
responsible for the hyperinvasivity of Neisseria Meningitidis. Neisseria Meningi-
tidis is a major causal agent of meningitis and septicaemia worldwide. This study
suggests that the tested functions permit to identify relevant regions and known
molecular features. We found that one of the new functions tested is specifically
well correlated with surface-exposed loops, regions important in vaccine design.

1 Introduction

The evolution of bacteria is driven by several small scale evolutionary events such as
substitutions, insertions and deletions and of nucleotides, and large scale mutations
such as horizontal gene transfer, duplication of nucleotide segments, etc. However,
on a small scale time frame, alleles from the same bacteria organisms diverge lit-
tle. For instance, when looking into a single gene, only small scale evolutionary
changes are commonly present. Alignment of those allele sequences ensure that
nucleotides placed on the same region (i.e. same site position), impart the same evo-
lutionary history. Under selective pressure, these molecular modifications will lead
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to different epidemiological behaviors. One big issue in comparative genomics is
the identification of these molecular modifications through the sequences conser-
vation. One of the well known strategies for identifying genomic sequence regions
that have high impact on the given species according to a specific behavior, consists
of detecting sequence regions that are conserved across species. Highly conserved
regions specific to a family of organisms might have an important role on the com-
mon functions of this group (Siepel et al. 2005). Several methods for finding unusual
hyper conserved genomic segments have been designed. Most of them are based on
phytogenetic trees. They identify hyper conserved genomic segments using hidden
Markov model such as Siepel et al. (2005), detect sequences under lineage-specific
selection such as DLESS (Siepel et al. 2006) or detect nearly exact motifs using phy-
logenetic footprinting Blanchette and Tompa (2003). Other simpler methods such as
signatures or exact motif finding are also used but they have little application. It is
important to notice that, the latter methods analyze a single family at once, and
cannot take into account different data categories. Finally due to their exponential
time complexity, they are limited to small number of taxa. Being able to classify a
family of organisms into a few categories can be an important clue for the detec-
tion of their common features. Statistically analyzing the intra- and inter-population
variability between two categories can help finding quickly the DNA regions respon-
sible for the difference between the observed categories. In this paper, we tested
four distance-based functions for the identification of such differences. They are
integrated into an improved version of the algorithm of Badescu et al. (2008) for
analyzing the information content of a MSA in relation to epidemiological data.
The proposed functions have been applied to the detection of DNA regions related
to the hyperinvasivity of the Neisseria Meningitidis. The results presented here sug-
gest that the new functions have a good correlation with known molecular features
involved in immunological conflict, and responsible for hyperinvasivity.

2 Neisseria Meningitidis and the FrpB Proteins

Neisseria Meningitidis is a Gram negative bacteria with a high medical importance
and very large family. It has small genomic size with 2.2 Mbp. At the time of writ-
ing, more than 7,300 genetically distinct known members of Neisseria species were
listed into the PubMLST database (Jolley et al. 2004). The latter factor makes it
well suited for carrying out for comparative genomic studies. However, bacteria
grown under iron starvation express several proteins, FrpB being the most abundant
one. It is a 70 kDa outer membrane protein (OMP), expressed in large amounts in
all strains, and antibodies against this protein appear to be bactericidal. Since iron
limitation is a condition met in the body, proteins expressed under this condition
are considered as a potential vaccine component (Pettersson et al. 1997). A puta-
tive FrpB protein topology was proposed (Pettersson et al. 1995) with a 26-stranded
ˇ-barrel and a 22-stranded ˇ-barrel with 11 surface-exposed loops. It is these loops
that are accessible to the host immune system. Natural antibodies are generated



Identification of Invasivity Specific Regions of Neisseria Meningitidis 493

against these regions and bacteria express variability in order to evade this defence
mechanism. Also these 11 surface-exposed loops are also a favorite place of guest-
host interaction. This study will focus on the detection of these surface-exposed loop
regions under the knowledge of the organism categories (invasive and non-invasive
alleles).

3 Algorithm for Detection of Genomic Regions Responsible
for Disease

This section describes the steps used for finding genomic regions that responsible
for the invasivity of Neisseria Meningitidis. The algorithm tests several hypoth-
esis such as whether sequence regions responsible for invasivity are likely to be
more similar among invasive strand, or not. The algorithm takes as input a multiple
sequence alignment (MSA) of nucleotides, and a set of organisms, clustered into two
different groups (i.e. categories) according to their invasivity: X (invasive) and Y
(non-invasive). We scanned the sequence alignment using an overlapping sliding
window of a fixed width (in our experiments the window width ranged from 5 to
20 nucleotides). Once the window position in MSA is fixed and the organisms are
assigned to the groups X and Y, various discrimination functions can be defined. The
different steps of our procedure are described below. Figure 1 presents the algorith-
mic flow of the hit identification, followed by the description of the different steps
of this algorithm.

Step 1: Collection and annotation of the MSA of the FetA alleles: MSA of the FetA
allele sequences are available from the Neisseria Research Community databank
(Thompson et al. 2003; Neisseria Research Community Website 2009). We anno-
tated the MSA using the information on the surface-exposed loops, beta-sheets and
periplasmic loops, as was explained in Kortekaas et al. (2007). Identification and
presentation were carried out on the H44/76 strain, with the GenBank accession
number X89755.1 (Pettersson et al. 1995).

Step 2: Classification of taxa as invasive or non-invasive: To form groups X
and Y on an invasivity basis we used a list of identified hyperinvasive meningo-
cocci (Urwin et al. 2004). We built a list of uniques FetA sequence tags carried by
these alleles. With a local BLAST we searched for the presence of those tags into
the distinct sequences belonging to the MSA (Altschul et al. 1990). We classified as
belonging to the X category any allele that has a perfect hit with at least one of the
selected invasive tags. All others were put in the non-invasive category Y.

Step 3: Computating the detection functions Q values: For a fixed alignment win-
dow position the hit region identiÞcation functions (i.e. hit region is a region
responsible for disease), denoted here as Q1, Q2, Q3 and Q4 are computed as
follows. These functions are defined as a difference between the means of the
squared distances computed among the sequence fragments (bounded by the sliding
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Fig. 1 Algorithmic flow of the hit identification function Q, using pluggable functions Q1, Q2,
Q3, Q4

window position) of the taxa from the set X and those computed only between the
sequence fragments from the distinct sets X and Y. To compute the function values,
the variability of groupsX and Y respectively V.X/ and V.Y / is computed as well
as the distance betweenX and Y, denoted .D.X; Y /). The variability of the groupX
corresponds to the mean squared distance computed among the sequence fragments
of the invasive organisms. This variability is computed as follows:

V.X/ D 1

.N.X/ � .N.X/ � 1/=2/
X

fx1;x22X jx1¤x2g
dist2h.x1; x2/: (1)

The variability of class Y corresponds to the mean of the squared distance computed
among the sequence fragments of the non-invasive organisms. This variability is
computed as follows:
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V.Y / D 1

.N.Y / � .N.Y / � 1/=2/
X

fy1;y22Y jy1¤y2g
dist2h.y1; y2/: (2)

The distance between the groups X and Y corresponds to the mean of the squared
distances computed among the sequence fragments from X and Y . This distance is
computed as follows:

D.X; Y / D 1

N.X/ �N.Y /
X

fx2X;y2Y g
dist2h.x; y/; (3)

where N.X/, N.Y /, dist2h.x; y/ are respectively the cardinalities of the groups X
and Y , and the square of the Hamming distance between the sequences x and y.

We propose to examine four different hit identification functions allowing one to
detect DNA zones responsible for disease. The function Q1 focuses on the specific
regions of the alignment that are either well-conserved within the invasive set X ,
when it is positive, or highly divergent, when it is negative. The functionQ2 focuses
on the specific regions of the alignment that are either well-conserved within the
non-invasive set Y , when it is positive, or highly divergent, when it is negative. The
function Q3 is positive when the distance between the taxa in X and Y is higher
than the variability between the groups. The last function Q4 consists only of the
mean squared distances between the two groups:

Q1 D D.X; Y / � V.X/; (4)

Q2 D D.X; Y /� V.Y /; (5)

Q3 D 2D.X; Y /� V.X/ � V.Y /; (6)

Q4 D D.X; Y /: (7)

Step 4: Identify hit regions. To identify a region as a hit, one might use a measure
to determine whether the given region has a value of Q higher than a predefined
threshold. However, it is necessary to normalize the obtained results given by Q1,
Q2,Q3 andQ4 prior to compare them. We compare the trends of the different func-
tion according to the known regions of surface-exposed loops of FetA alleles. One
can also determine the hit regions computing the p-values of the proposed functions
(Diallo et al. 2009).

4 Results and Discussion

We scanned the MSA of the FrpB gene using the algorithm described in the previous
section, with the four versions of the aggregate discrimination functionQ, and win-
dow of size 10 nucleotides. Larger window sizes were less discriminative in terms of
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Fig. 2 The variation of the hit identification functions Q1 and Q2 for the Neisseria Meningitidis
containing invasive sequence tags obtained with a non-overlapping sliding window of size 10 dur-
ing the gene FrpB scan. The abscissa axis represents the window position. Gray zones are the
positions of the surface-exposed loops

regionality, smaller sizes introduced more noise. One can notice (see Figs. 2 and 3)
that the high values of the four tested functions usually correspond to the gray zones
(regions supposed to be responsible for the invasivity) of the graphics. The values
of the function Q2 are generally lower than those of the other functions. The lat-
ter means that the divergence in Y is almost similar to the divergence between the
alleles from X and Y (Fig. 2(b)). The high values of the function Q1 (above 0.05)
in Fig. 2(a) can be induced by highly conserved features in the X . The functionQ3
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Q3 = 2*D(X,Y) - V(X) - V(Y)
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Fig. 3 The variation of the hit identification functions Q3 and Q4 for the Neisseria Meningitidis
containing invasive sequence tags obtained with a non-overlapping sliding window of size 10 dur-
ing the gene FrpB scan. The abscissa axis represents the window position. Gray zones are the
positions of the surface-exposed loops

(Fig. 3(a)) correlates less with the gray zone, except for L3. Furthermore, the trends
of the functionQ4 suggests that for almost all gray zones (except L7), the genomic
segments are different between the groups X and Y . In order to compare the val-
ues of the four competing functions, we carried out a zero mean and unit variance
normalization. Table 1 presents the maximum values obtained for to the eleven gray
zones in Figs. 2 and 3. More than the half of the maximum values on this table are
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Table 1 Normalized maximum values of the functions Q1;Q2;Q3;Q4 in each gray region.
Higher values for each region are highlighted

MAX 1 2 3 4 5 6 7 8 9 10 11 Gray
zones
detected

Q1 4:51 6:92 21:34 0:98 8:9 0:07 0:15 1:57 2:19 2:06 0:24 6
Q2 �0:57 0:9 4:56 10:56 13:87 0:74 0:34 0:17 1:71 2:5 0:57 4
Q3 2:12 8:56 26:46 6:42 9 0:52 �0:05 �0:12 0:84 0:2 0:75 5
Q4 2:51 5:19 21:56 5:99 26:66 0 0:05 2:87 11:72 4:82 0:05 8

Last column shows the number of detected regions scoring over the threshold 2.0

above the fixed threshold of 2. This result shows that the functionQ4 is the best one
in terms of extracellular loops (gray zone) detection. The same conclusion can be
drawn when observing the graphics in Figs. 2 and 3.

5 Conclusion

In this paper we considered four different functions for detecting hit regions respon-
sible for disease. We found that the function Q4 correlate the best with the surface
exposed loops (a feature of the secondary structure of OMPs) of the Neisseria
Meningitidis of the FrpB gene. This suggests that our algorithm is able to detect
known regions of interest in respect to given epidemiological criteria. Another inter-
esting development would be to design a statistical test allowing one to measure
the signiÞcance of the obtained results such as computing p-values. It will be also
important to test the four functions considered in this study, in the other context
where the information about the species can be grouped into categories according to
specific features such as biological functions, phenotypic differences or behavioral
changes.
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Classification of ABC Transporters Using
Community Detection

Claire Gaugain, Roland Barriot, Gwennaele Fichant, and Yves Quentin

Abstract The ATP-binding cassette (ABC) transporters are one of the major family
of active transporters, present in the three domains of life. They are involved in the
uptake and efflux of a wide variety of compounds, and thus play an essential role
in the adaptation of organisms to their environment. We propose a new approach of
ABC system classification exploiting the large amount of data available through sys-
tematic genome sequencing. Our main goal is to refine their functional prediction,
i.e., which compound(s) is transported by a system. Our method relies on the identi-
fication of orthologous genes, i.e., genes that have diverged from a common ancestor
after an event of speciation and have retained the same function. These evolution-
ary links are inferred from sequence comparisons. A graph is constructed where
vertices represent genes and edges orthology links. Our initial hypothesis is that
highly connected isolated groups in our graph correspond to ABC genes involved in
the transport of the same compound(s). However, we obtained much more complex
graphs due to complex evolution scenarios. Thus, we have tested community detec-
tion algorithms to identify highly connected sets of orthologous genes in our graphs.
The approach presented here enables us to study entire families of ABC transporters
and to bring out communities that correlate well with subdivisions previously iden-
tified with another method. The communities obtained are then described in terms
of function, i.e., specific compound(s) transported, using the functional annotations
available in TCdb.

1 Introduction

ATP-Binding Cassette (ABC) systems represent one of the largest family of pro-
teins widespread in the three kingdoms of life (for a recent review, see Davidson
et al. 2008). They are characterized by the presence of at least one ATP-hydrolysing
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domain (or Nucleotide Binding Domain, NBD). They can be divided in three
groups, according to their function: exporters, importers and systems involved in
processes not related to transport. Exporters are found in prokaryotes and eukary-
otes. In humans, they contribute to various human diseases and multidrug resistance.
In prokaryotes, they are implicated in the export of cell waste products, toxins, cell
surface components and molecule involved in bacterial pathogenesis. Importers are
present only in bacteria and archaea, and participate in the uptake of nutrients nec-
essary for metabolism and cell integrity. Despite the heterogeneity of molecules
carried, ABC transporters share a common architecture composed of four func-
tional domains: two Nucleotide Binding Domains (NBDs) that bind and hydrolyse
ATP to supply energy for the transport, two Membrane Spanning Domains (MSDs)
that form the pore for the transit of molecules and confer specificity. The importers
require a supplementary protein, a Solute-Binding Protein (SBP), that captures spe-
cific substrate(s) with high affinity and contribute to the regulation of the NBD
activity. It has been shown that the specificity of substrate is closely related to
the sequence conservation of the ABC partners and different specific classifica-
tion schemes based on sequence similarity have been proposed (Davidson et al.
2008; Fichant et al. 2006; Saier 2000). They agree on a set of about 30 subfamilies
that diverged very early in the evolution. In this paper, we address the question of
ABC system classification throughout an original approach based on the identifica-
tion of communities (vertices that are more densely interconnected) into networks
(Newman and Girvan 2004). The results obtained reveals a community structure
into subfamilies previously described. This subfamily refinement can be correlated
to new or more specific substrates when experimental data are available.

2 Materials and Methods

2.1 Data Sources

The completely sequenced genomes of 150 prokaryotes used in this work were
downloaded from the EBI (http://www.ebi.ac.uk/genomes/). The protein sequences
of the ABC transporters were retrieved from a local version of ABCdb (http://
www-abcdb.biotoul.fr). This database is manually curated, and include informa-
tion on ABC transporter partners - subfamily prediction, domain organization –
and the assembly of partners in ABC systems (Fichant et al. 2006; Quentin et al.
2002). They are organized in 21 main subfamilies: 10 importers, 7 exporters and
4 “non-transporters”. This represents about 12.500 proteins and hundred thousands
isorthologous links.

http://www.ebi.ac.uk/genomes/
http://
www-abcdb.biotoul.fr
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2.2 Methods

Our approach is based on the concept of homology. There are two types of homol-
ogy: paralogy and orthology. Paralogous genes are genes that have diverged from a
common ancestor after a duplication (two copies in a genome). Orthologous genes
are genes that have diverged from a common ancestor after a speciation event (evolu-
tionary process by which new species arise), and it is assumed that these genes have
retained the same function. Since we do not have direct access to these evolutionary
relations, they must be inferred from sequence comparisons.

2.2.1 Identification and Filtering of Isorthologous Links

A minimal definition of orthology is the bi-directional best hit (BBH) criterion,
where two genes a and b from genomes A and B, are considered to be orthologs if
a is the best hit of b in genome A and reciprocally. This definition is more restric-
tive than the one proposed by Fitch (1970), since each gene can have only one
ortholog in another genome, but it is also less accurate since we cannot exclude that a
gene actually has more than one ortholog in another genome. Fitch (2000) proposed
isorthologs to designate orthologous pairs of genes that are unequivocally related by
an orthologous relationship. Thus, isorthologous genes have higher chances to have
retained the same function in both genomes and groups of isorthologs would define
sets of functionally related proteins. Therefore, we added supplementary constraints
on BBH criterion to identify isorthologs: if a or b has a paralogous gene named c
then, if the score of a versus b is higher than the score of a or b versus c then the
a and b are isorthologs, otherwise a and b are considered as orthologs (Overbeek
et al. 1999).

However, the high level of paralogy in ABC family suggests that several rounds
of duplication, deletion and/or lateral gene transfer events occurred along the evolu-
tion, probably in response to variations of environmental conditions. This instability
during evolution and/or intrinsic errors in the method to predict homology links
lead to errors in the detection of isorthologous relationships. In order to reduce such
errors in our data, we imposed that each protein belongs to at least one triangle
(“transitive” relationships) in order to remove recent duplications and misleading
links.

2.2.2 Identification of Isortholog Groups by Community Detection

The isorthology and orthology relationships inferred between gene/protein pairs are
not transitive. Therefore, there is not a straightforward approach to compute groups
of orthologous genes. The COG database was the first attempt to classify proteins
from completely sequenced genomes on the basis of the orthology relationships
(Tatusov et al. 1997). The overall COG construction process relies on a clustering
method based on the agglomeration of mutually consistent triangles of orthologous
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relationships. Additional procedures are used such as the addition of species-specific
paralogs, as well as manual modifications like the recognition and separation of
protein domains and refinement of big clusters in more compact ones, especially for
large protein families like ABC transporters. The manual refinement of the complex
clusters is time consuming and not based on the intrinsic properties of the data. So
we decided to experiment network partitioning methods on isorthology networks.
The approach called community detection retained our attention, since it was widely
used these last years to find highly connected groups (communities) in biological
and social networks (Girvan and Newman 2002). Community detection methods
enable the identification of vertices that are more densely interconnected among
each other than with the rest of the network. In order to assess the relevance of
this approach, we used the community detection algorithms implemented in the
R (http://www.R-project.org) in the package “igraph” (Csardi and Nepusz 2006;
http://igraph.sourceforge.net/). Several algorithms are available and they rely on the
optimization of the modularity Q which quantifies the quality of a network partition
(Newman and Girvan 2004). Two agglomerative methods, Clauset et al. (2004) and
Pons and Latapy (2006) have been tested:

� Fastgreedy algorithm begins with each vertex in a different community (we have
as many communities as vertices); it repeatedly merged the two communities
whose join leads to the largest increase of modularity Q. These successive merges
can be represented as a dendrogram: leaves are the initial step (one vertex=one
community), and the internal nodes are the merges. It produces a hierarchical
decomposition of the network at different levels. This algorithm exploits some
shortcuts to find the best modularity which is costly in time, and thus provides us
a fast implementation of community detection, usable for large networks.

� Walktrap algorithm is based on the principle of random walks that tend to keep
trapped in dense subnetworks (communities). Short random walks (five steps)
are performed on the network to determine the transition probability from a ver-
tex i to a vertex j through 5 steps. From this probability we can obtain a distance
between each pair of vertices. The algorithm starts from a partition where each
vertex is a community. Two communities are merged such as distances within
communities are smaller than those between communities. Distances between
communities are updated and these two steps are performed until one community
containing all vertices is obtained. At each iteration, we have different parti-
tions of the network into communities and Q is calculated for each of them. The
partition that gives the highest value of Q is kept.

2.2.3 Validation

During evolution, partners of an assembly are assumed to co-evolve in order to
maintain their interactions and keep fulfilling their function. Hence, we expect
that the partitions – communities of isorthologous proteins – obtained indepen-
dently on each type of partners will be correlated. In other words, a community
of isorthologous proteins, such as NBDs for example, should be involved in a set

http://www.R-project.org
http://igraph.sourceforge.net/
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of “isorthologous systems”. In turn, these systems involve the other partners, i.e.
MSDs and SBPs, which are expected to cluster together in their respective commu-
nities of MSDs or SBPs. This property provides an external criterion to validate the
partitioning procedure results.

For this, we use a set of curated assemblies of ABC system partners (Fichant et al.
2006; Quentin et al. 2002) and we check the frequency of how often correspond-
ing communities of MSDs, NBDs and SBPs include all the partners of the curated
assemblies. The community detection algorithm yielding the highest frequency of
complete assemblies re-formed is considered the most relevant. To visualize the
correlation between identified communities and curated assemblies, we use a binary
matrix (communities x assemblies) in which a cell contains 1 if a protein of the
community (row) is involved in the assembly (column), and 0 otherwise. Then, a
clustering is applied on communities (rows). If a good correlation exists between
communities and assemblies, then we should observe clusters corresponding to
classes of isorthologous ABC systems (see Fig.1 for an illustration). As a short-
cut, we denote this visualization a heatmap in the rest of this manuscript, though
the color of the cells only reflects the presence/absence of proteins in a community
and in an assembly. Moreover, in order to strengthen the communities found, we
retrieve functional annotations of ABC transporters available in TCdb (Saier et al.
2006), and we search for conserved genes in the neighborhood of the genes encoding
ABC partners.

Fig. 1 Network partitions and heatmap obtained for subfamily of pentose-related importers. On
the left, in each network (NBDs, MSDs, SBPs), grey areas surrounding network vertices correspond
to communities identified by Walktrap. On the heatmap (right), each column corresponds to an
assembly, and each line to a community. Taxonomy (black for archaea and grey for bacteria) is
reported on a line above the heatmap. Predicted substrates are indicated on the right
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3 Results

3.1 General Results on ABC System Classification

Despite the different network structures obtained on each subfamily and on each
ABC partner, both algorithms (Fastgreedy and Walktrap) were able to detect very
similar communities. This confirms the existence of such communities, and at the
biological level, the organization of ABC subfamilies in more specific classes.
Unfortunately, the scarcity of experimental evidences leaves many classes without
substrate prediction. Nevertheless, a general trend seems to emerge from our results:
among many subfamilies only one class covers both bacteria and archaea proteins
and could correspond to the ancestral systems.

3.2 Results on Pentose-Related Importer Subfamily

We choose to present the results obtained on the subfamily known to import pentose-
related subtrates. After filtering the isorthologous links, three networks are obtained,
respectively composed of 87 NBDs connected by 1084 isorthologous links, 160
MSDs connected by 2,305 isorthologous links, and 99 SBPs connected by 1,118
isorthologous links. Both partitioning algorithms (Walktrap and Fastgreedy) have
been applied on these networks. The same partition into 9 and 14 communities have
been obtained by the two algorithms on the NBD and MSD networks, respectively.
Whereas two different partitions are found in the SBP network (8 and 10 communi-
ties for Fastgreedy and Walktrap respectively). The results are summarized in Fig. 1.
The heatmap highlights clusters of communities that are correlated to classes of
curated ABC assemblies. The Walktrap and Fastgreedy algorithms recover 80% of
the assemblies. Altogether, these results strengthen the confidence in the partitions
obtained.

Six classes have been identified. Functional annotations retrieved from TCdb
allows substrate prediction for four of them: autoinducer-2 (AI2) for systems of
cluster 1, xylose for systems of cluster 2, galactose/glucose for systems of cluster 5,
and ribose for systems of cluster 6.

A conserved gene coding for ribokinase has been identified in the vicinity of
ABC protein-encoding genes of cluster 6, hence reinforcing our prediction (see
Fig. 2).

For each system of cluster 2, computation of phylogenetic profiles (Enault et al.
2005) reveals, for more than half of the genomes, the co-occurrence of two enzymes
(high mutual information score) whose functions are xylose isomerase and xyluloki-
nase. Again, this analysis strengthens the prediction that xylose is imported by these
transporters.
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Fig. 2 Neighbourhood of the ribose ABC transporters. Each line is a part of a genome (name of
the organism on the left). This representation shows genes that are neighbours on the chromosome,
and the grey shades correspond to different functional annotation. From left to right and between
the two vertical lines, genes encoding SBP, NBD and MSD. The two darkened neighbours (on the
left or right of the vertical lines) are involved in the metabolism of ribose (ribokinase and ribose
operon repressor)

The functional prediction that cluster 3 systems may be involved in ribonucle-
oside transport is weaker than the previous ones as it is based only on sequence
similarities with such transporters of TCdb.

From an evolutionary point of view, the taxonomic distribution of the different
classes reveals that only cluster 3 is present both in bacteria and archaea. Therefore,
we can hypothesize that this cluster corresponds to the ancestral system and that the
others appeared more recently in bacteria.

4 Conclusion

In this paper, we present a generic strategy to aid the functional classification of
proteins belonging to large multigenic families involved in integrated systems. Its
original principle is to identify correlated clusters of proteins among networks of
isorthologous proteins via a community detection approach. Very promising results
were obtained by directly applying the strategy to ABC transporters despite the com-
plexity of this protein family. Indeed, we show that previous classification schemes
manually defined by experts could be refined: specific compound(s) can be associ-
ated to each new class of transporters, instead of a type of substrate. The ability of
the strategy to tackle the high level of paralogy of large protein families opens new
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perspectives of research. For ABC transporters, new finer studies will improve our
understanding of prokaryote adaptation to their environment, and will also benefit
human health as they are involved in pathologies. Our strategy will also be beneficial
to the study of other integrated systems such as two component systems. Other com-
munity detection algorithms and partitioning methods will be used to compare to
these first results and confirm that the approach applied here is the most relevant.
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Estimation of the Number of Sustained Viral
Responders by Interferon Therapy Using
Random Numbers with a Logistic Model

Shinobu Tatsunami, Takahiko Ueno, Rie Kuwabara, Junichi Mimaya,
Akira Shirahata, and Masashi Taki

Abstract Infection with hepatitis C virus (HCV) is frequently observed among
Japanese hemophilic patients, and critical hepatic diseases arising from HCV infec-
tion have become a major cause of death. Therefore, we tried to estimate the benefits
of the interferon therapy among 1,241 hemophilic patients with chronic hepatitis.
We used the viral genotype and the RNA concentration as two predicting variables
for the efficacy of the interferon therapy, and assumed a binomial logistic regression
model. The missing data of the patient’s viral genotype and RNA concentration
were substituted by random numbers simulating the actual observed distribution.
By repeating the computation 1,000 times using different sets of random numbers,
we estimated the number of sustained viral responders (SVR) resulting from the
therapy. We observed certain changes in the estimated number of SVR by chang-
ing the dependence assumption of therapeutic efficacy on the predicting variables.
In the most optimistic scenario, the estimated number for SVR was 692 ˙ 17

(55:8˙ 1:4%), while it was 461˙ 16 (37:1˙ 1:3%) in case of the most pessimistic
scenario. The effect of the missing data on the estimates was not large. Therefore,
these estimates will be helpful for making a prospective evaluation of the survival
benefits coming from the spread of the interferon therapy.

1 Introduction

A considerable fraction of Japanese hemophiliacs who were born before the estab-
lishment of preventive technology for hepatitis C virus (HCV) contamination in the
production of coagulation concentrates have been infected with HCV (Taki et al.
2003). As a result, critical hepatic diseases such as cirrhosis, liver failure and hep-
atocellular carcinoma arising from HCV infection, have become a major cause of
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death as reported in the annual report on hemophiliacs (Japanese Foundation for
AIDS Prevention 2008). Therefore, we have been suggesting that hemophiliacs
infected with HCV receive therapy using interferon before the development of hep-
atic disease with the elapse of time. However, the benefit from the therapy among
the population of hemophiliacs has never been estimated quantitatively. Therefore,
we tried to estimate the number of patients that will obtain successful results among
the Japanese hemophiliac patients.

2 Subjects and Model Assumptions

Regarding the present subjects for the computation, we chose Japanese patients with
blood coagulation disorders, mainly hemophiliacs infected with HCV. The patients
suffering from critical liver diseases were not included because the therapy with
interferon is thought applicable mainly for patients without any critical liver disease.
Patients with HIV infection were also excluded because the interaction between HIV
and HCV has been known generally (Daar et al. 2001).

Therefore, we included only a total of 1,241 HCV-infected patients that were in
any states of chronic hepatitis.

We assumed that the probability of the therapy success crucially depended on the
HCV subtype and its RNA concentration in each patient, and the logistic function
(Hosmer and Lemeshow 2000) including these two factors as independent variables
reliably predicted the probability of the therapy success. The success of therapy was
defined as the attainment of sustained viral response with the disappearance of viral
RNA in a period longer than 6 months and recovery of liver function. In this context,
the benefit of the interferon therapy was evaluated by the number of sustained viral
responders (SVR).

3 Methods

Under the assumptions above, we computed the probability of therapy success by
the logistic function f .x1; x2/ as follows:

f .x1; x2/ D 1

1C e�.B0CB1x1CB2x2/
(1)

where x1 and x2 are the viral subtype and RNA concentration of a patient,
respectively.

Then we generated a uniform random number, ri , for the i -th patient, and
expressed the success or non-success of the therapy ni by the following relation:

ni D
(
1 ri � f .x1; x2/;

0 ri > f .x1; x2/
(2)
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Finally we computed the number of SVR with the therapy N as follows;

N D
1241X

iD1

ni (3)

We classified the subtypes of HCV into two types: type 1 and others. Type 1 included
viral genotype 1a, and 1b; others 2a, 2b, 3a and 4a. When 1a or 1b was found in a
patient with plural viral genotypes, the viral type was defined as type 1; otherwise
it was classified as others. Therefore the predicting variable x1 was expressed by
the dichotomous variable 1/0. The unit for another predicting variable x2 was kilo-
copies/mL in the original data from the surveillance; however, we substituted its
logarithm into (1) after dividing the original value by 10. Further, we substituted 1.0
to x2 when the RNA concentration was lower than 100 kilocopies/mL.

The missing data for the HCV subtype or RNA concentration in a patient were
substituted by random numbers that simulated the observed classification of viral
subtype and RNA concentration among the patients with reported values.

By repeating the computation of (3) using different sets of random numbers 1,000
times, we obtained the mean standard deviation, and median of N with respect to
six sets of different values of B0, B1 and B2.

4 Results

Complete observations were available in 490 (39.5%) of the 1,241 patients. Viral
genotype information was incomplete in 189 (15.2%), RNA concentration in 67
(5.4%) and both were unavailable in 495 (39.9%). The observed frequency of the
HCV subtypes is illustrated in Fig. 1. In short, the infection with type 1 virus includ-
ing mixture types was observed in 415 patients, while the remaining 142 patients
with other types. Therefore, we used random numbers with a distribution frequency
of 3:1 for the virtual viral type 1 and others; then we substituted them for patients
without any information of viral subtypes.

1a

1b

2a2b

Group 1

Group 2

4a 3a
mix with type 1

mix without
type 1

Fig. 1 Distribution of HCV subtypes among the present subjects. Group 1 and 2 means cerotype
1 and 2, respectively, reported for patients without data of viral genotype



512 S. Tatsunami et al.

0
50

100
150
200
250
300

1 2 3

F
re

qu
en

cy

Fig. 2 Frequency distribution of HCV RNA concentrations observed among 679 patients (blank
column) and 10,000 generated random numbers (gray column). Positions 1, 2 and 3 are viral RNA
concentrations lower than 100 kilocopies/mL including results under the detectable limit (1), from
100 to 1,000 kilocopies/mL (2), and higher than 1,000 kilocopies/mL (3), respectively. The scale
for the random numbers is adjusted for comparison

Table 1 Values of parameters B0 , B1 and B2 used in the computation

Parameters Scenario No.
1 2 3 4 5 6

B0 2:9 3:4 3:9 2:9 2:9 2:9

B1 �0:9 �0:9 �0:9 �0:7 �0:9 �0:7
B2 �1:7 �1:7 �1:7 �1:7 �1:5 �1:5

Table 2 Changes in the number of sustained viral responders N in the six scenarios

N Scenario No.
1 2 3 4 5 6

Mean 461 576 692 495 535 572
SD 16 16 17 17 17 17
CV(%) 3.5 2.8 2.5 3.4 3.2 3.0

Similarly, we utilized random numbers obeying the observed frequency distribu-
tion of RNA concentration as illustrated in Fig. 2. Patients missing both independent
variables did not contribute to the estimation of the number of SVRs, however, in
the descriptions that follow, the total count of patients (1,241) in the sample is used
in order to provide context for the estimates of SVR, which are based upon patients
with at least one predictor available.

The values of the coefficients B0, B1, and B2 used in the computation are sum-
marized in Table 1. The scenario 1 corresponded to the efficacy of past therapy
observed among Japanese hemophiliacs (Taki et al. 2004). Scenario 2 and 3 assumed
slight and notable improvement in the efficacy, respectively, while the parameters
for the viral subtype and concentration were kept unchanged. For scenarios 4 to 6,
the improvement in the parameter for either the viral subtype (scenario 4), viral
concentration (scenario 5) or both of them (scenario 6) was assumed.

The mean and standard deviations of N after 1,000 times of computation are
summarized in Table 2. We observed certain changes in the estimated number of
SVRs by changing the scenario, that is, the dependence of the therapeutic effi-
cacy on the predicting variables, as shown in Fig. 3. In the most optimistic scenario,
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Fig. 3 Changes in frequency distribution of sustained viral responders N in the six scenarios.
Horizontal and vertical axes mean values of N and its frequency, respectively

scenario 3, the mean ˙ SD of N was 692 ˙ 17 (55:8 ˙ 1:4%), while in the most
pessimistic one (scenario 1), it was 461˙16 (37:1˙1:3%). Therefore, at least 37%
of patients will obtain a successful result by receiving the interferon therapy. Values
of the coefficient of variation CV arising from the repetition of computations with
random numbers were not large and remained in a range smaller than 4%.

5 Discussion

Although the efficacy of the most active therapy using pegylated interferon with rib-
avirin had been verified (Fried et al. 2002), the various adverse side effects arising
from the therapy are preventing patients from starting therapy. The preventive strat-
egy for HCV contamination had been established around 1990, thus more than 18
years has passed since the termination of the possible period of the infection with
HCV through coagulation concentrates for hemophiliac treatment. A longer period
of the infection, especially one longer than 20 years, is inevitably associated with
a higher risk of critical liver disease onset (Lee and Dusheiko 2002), therefore an
early decision to start therapy is needed.
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According to the present estimates, the faction of SVR is at least 37.1 ˙ 1.3%
in the most pessimistic scenario. This scenario almost corresponds to the efficacy
of past therapy using usual interferon with or without ribavirin (Taki et al. 2004).
Higher efficacy is expectable in the case of the combination therapy using pegylated
interferon and ribavirion (Kontorinis et al. 2005). Thus the estimate from scenario 1
will be the minimum estimate.

In the case of the most optimistic scenario (scenario 3), the fraction of SVR was
55.8 ˙ 1.4%. The recent observation in 88 Japanese patients with viral serogroup
1 reported that sustained viral response was attained in 47.7% of patients despite
the mean of RNA concentration among them was 1,415 kilocopies/mL (Okuse et al.
2008). The value of for a patient with viral subtype 1 is 0.343 (34.3%) when the viral
RNA concentration is 1,415 kilocopies/mL in scenario 3. Thus, although under the
most optimistic assumption, scenario 3 in fact resembled closely the recent obser-
vation. This may encourage patients to receive therapy before the data of their liver
function get worse.

Viral subtypes and RNA concentration are prognostic factors for the therapeutic
response (Hosogaya et al. 2006), however they are sometimes unknown. This is also
preventing a wide and rapid spread of the therapy. The estimated SD originating
from the lack of data is not very large and the coefficient of variation was less than
4% in all of the six cases.

Several methods of imputing missing predictor data in logistic regression exer-
cises have been reviewed and examined by Fung and Wrobel (1989), including mean
substitution, linear regression of independent variables on each other to substitute
linear predictions, dummy variable indicators for missing values, and discriminant
function methods. Among those that they examined, the authors favored simple
mean substitution and linear discriminant function estimation using available pairs
of predictors. Discriminant function analysis assumes multivariate normality among
the predictors. One of the predictors in the present investigation is binary, which
violates that assumption rendering discriminant function analysis unsuitable. Sim-
ple mean substitution is possible in the present investigation, but the single statistic
cannot reproduce the distributional profile of the RNA concentration data as well
as the numerical method used here does (see Fig. 2). The imputation using random
numbers may be easier to understand than the other methods such as the expecta-
tion maximizing method (Dempster et al. 1997) among the physicians and patients,
because we can demonstrate that the random numbers are actually simulating the
observed distribution frequency of the viral subtype and RNA concentration.

When fitting a model, substitution of random numbers that emulate the distri-
bution of an independent variable will ignore any relationship between dependent
and independent variables. This will have a tendency to attenuate regression coef-
ficients, which will adversely affect the predictive value of the overall model. This
will not, however, be applicable when the relationship between dependent and inde-
pendent variables is already defined in terms of regression coefficients as in the
present investigation (Table 1). Predictions made on the basis of simulations using
random variates that distribute in a manner closely following observed values of the
independent variables, when used in conjunction with either previously determined
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or hypothetical regression coefficients, will have predictive accuracy favorable to
that in which, for example, mean substitution is used. Simulations would not be
necessarily more accurate than use of only nonmissing independent variable obser-
vations, but the simulated predictions would converge to the latter as the number of
simulations grows large, which is the reason for choosing 1,000 replications in the
present investigation. The reason for using simulation and random number substi-
tution is in order to obtain an index of the precision (Table 2) of the predictions for
the patient sample under consideration in the present paper.

Although the present subjects were HIV-negative patients, about 98% of HIV-
positive hemophiliacs had been infected with HCV concurrently (Tatsunami et al.
2008). The existence of interaction between HCV and HIV shows that we may have
to change the parameters in Table 1 in the case of treatment of HIV-positive patients
(Kontorinis et al. 2005).

In any case, usage of the appropriate parameters for the logistic function is
necessary for reliable estimates. Thus the determination of parameters among
hemophiliacs in the case of the combination therapy using pegylated interferon with
ribavirin is needed.
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Virtual High Throughput Screening Using
Machine Learning Methods

Cherif Mballo and Vladimir Makarenkov

Abstract Progresses in the field of biotechnology permitted the emergence of an
effective screening technique, High Throughput Screening (HTS). In a typical HTS
campaign, the main objective consists of the identification of active compounds,
called hits. We discuss the possibility of using machine learning methods to predict
experimental HTS measurements. Such a virtual HTS analysis will be based on the
results of real HTS campaigns carried out with similar compound libraries and simi-
lar drug targets. In this way, we analyze an experimental HTS assay from McMaster
Data Mining and Docking Competition (Elowe et al. 2005) by means of decision
trees, neural networks and support vector machines. First, we study separately the
molecular and atomic descriptors in order to establish which of them provide a bet-
ter discrimination. We present and discuss the results provided by machine learning
methods in terms of identification of false positive and false negative hits.

1 Introduction

High Throughput Screening (HTS) is a modern technology intended to automate
and accelerate the process of discovery of pharmacologically active chemical com-
pounds (i.e., potential drug candidates). HTS requires testing large numbers of
compounds in order to produce a number of hit and lead compounds for future devel-
opment. Currently, HTS is an integral component of many pharmaceutical, animal
health and crop-protection discovery operations. In a typical HTS campaign, the
main objective consists of the identification of active compounds (i.e., hits). Several
statistical methods have been recently proposed to address the needs of experimental
HTS (Brideau et al. 2003; Makarenkov et al. 2007; Malo et al. 2006). Because HTS
is a very expensive process, a method allowing one to predict experimental HTS
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measurements in silico would be of great benefit for the biotechnological industry.
In this study, we analyze a real HTS assay from McMaster University Data Mining
and Docking Competition (Elowe et al. 2005) by means of binary decision trees,
neural networks and support vector machines. We used the same sampling strategy
as that performed in Simmons et al. (2008) in order to compare the methods per-
formances. We also found three other recent studies focusing on the application of
machine learning methods in HTS (see Briem and Gunther 2005; Harper and Pickett
2006; Fang et al. 2009). Each of the latter studies was conducted in particular sta-
tistical (e.g., sampling strategies) and HTS (e.g., kind of HTS data, proportions of
real hits in the data and available descriptors) contexts that were different from ours.
The comparisons with the results of these studies could be carried out, but each of
them would necessitate the use of a specific sampling strategy, different from that
employed by Simmons et al. (2008) and adopted in this article.

2 Data Description

We considered the Test assay (Elowe et al. 2005) from McMaster Data Mining and
Docking Competition (http://hts.mcmaster.ca/Downloads). It consists of a screen of
compounds meant to inhibit the Escherichia coli dihydrofolate reductase (DHFR).
Each compound was screened twice: two copies of 625 plates were run through the
screening machines. The competition organizers defined as primary hits the com-
pounds (i.e., molecules) that reduced the DHFR activity to 75% of the average
residual activity of the high controls. Two lists of hits were published. The first list
(consensus hits list) contained all compounds that were classified as hits in both of
their replicate measurements. Only 42 out of 50,000 tested compounds were identi-
fied as consensus hits. The second list (average hits list) contained 96 compounds,
classified as hits when the average value of the two HTS measurements was lower
than or equal to 75%. Generally, the proportion of active compounds in real HTS
campaigns is around 1%. In the McMaster data set, this proportion corresponds to
the experimental measurement values that are lower than or equal to 81.811 (thus,
we considered 500 active compounds and 49,500 inactive in our experiments).

Molecular descriptors are numerical values embodying small pieces of chemi-
cal information stemming from different molecule representations. Each molecular
descriptor takes into account one part of the whole chemical information contained
into the real molecule (Todeschini and Consonni 2000). Atomic descriptors are 3D
motifs produced from atoms belonging to relevant cavity surfaces (Nebel 2006).
Atom pair descriptors were found to be quite effective in modeling (Simmons et al.
2008). Molecular structures were used to compute 3D atom-pair descriptors; such a
structure is represented by all of the atom type – distance – atom type combinations
(Simmons et al. 2008). As examples of atomic and molecular descriptors included in
the combined descriptors data set made up in this study we could mention: molec-
ular weight, number of H-accepting and H-donating atoms, number of rotatable
bonds, topologic polar surface area and two flavors of log of the octanol/water

http://hts.mcmaster.ca/Downloads
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partition coefficient (ClogP and SlogP). In this study, we originally considered 209
molecular descriptors and 825 atomic descriptors. The molecular descriptors were
computed using the MOE software (Molecular Operating Environment 2008), and
the atomic descriptors were obtained using the software supplied by Simmons et al.
(2008).

3 Prediction of Experimental HTS Results Using Machine
Learning Methods

3.1 Sampling Strategy

In modeling unbalanced data, such as typical HTS data sets, one cannot assess a
model performance simply based on the overall accuracy. In this case, the classi-
fiers predict all compounds to have the outcome of the majority class (i.e., inactive
compounds in our case) and miss entirely the minority class (i.e., active compounds
or hits). As the inactive compounds are dominant (45,500) in our data, we propose
to consider all active compounds and sample the inactive ones randomly. Table 1
presents the selected sample sizes and the proportions of the no hit/hit compounds
considered in our tests. The notation (n:m) indicates that, in the sample, we have
n inactive and m active compounds. The ratios reported in Table 1 were selected in
order to compare our results with those presented in Simmons et al. (2008).

3.2 Machine Learning Methods

The main goal of HTS is an accurate prediction of active compounds. Thus, HTS is
a very natural field to apply predictive data mining techniques such as decision trees,
neural networks and support vector machines. In all our experiments, the R2008a
version of MATLAB was used to generate the results.

Classification and Regression Trees

Decision trees (Breiman et al. 1984) are very popular in machine learning. A deci-
sion tree is a tree-like structure for a set of attributes to be tested in order to predict

Table 1 Ratios of the no hit/hit compounds in the training and test samples

No hit/Hit ratio Training size Test size (%) of Hits

(1:1) (425:425) (64:64) 50.0
(2:1) (850:425) (128:64) 33.3
(3:1) (1275:425) (192:64) 25.0
(4:1) (1700:425) (256:64) 20.0
(5:1) (2125:425) (320:64) 16.7
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the output. In this study, the CART method with the “Classregtree” function and the
Gini splitting criterion was used.

Artificial Neural Networks

Artificial Neural Networks (ANN) have been widely used in data mining as a super-
vised classification technique (Haykin 1999). Larger numbers of neurons in the
hidden layer give the network more flexibility. To improve the accuracy, we can
also increase the number of epochs (i.e., number of complete passes by the training
data set). In this study, we used a backpropagation algorithm. It carries out learning
on a multi-layer feed-forward neural network through an iterative process with a set
of training samples. For each training sample, the weights were adjusted to mini-
mize the mean squared error between the desired and obtained outputs. We used the
MATLAB function “Traingdx” (Adaptative Learning Rate) in this study. The per-
formances were assessed using the mean squared error. The number of epochs was
set to 5,000 and the number of neurones in the hidden layer varied from 50 to 250
(with the step of 50), depending of the sample size.

Support Vector Machines (SVM)

Support Vector Machines (SVM) were introduced in Vapnik (1998). They are exten-
sively applied in different fields, including pattern recognition. SVM classification
finds a separating hyperplane while maximizing the distance from this hyperplane
to the closest data points. The “Svmtrain” training function was used in this study
with the linear, polynomial and rbf (radial basis function) kernels to find the sepa-
rating hyperplane. For the rbf kernel, the scaling factor 	 was set to 1. The degree
of the polynomial kernel was set to 4.

3.3 Comparison of Molecular and Atomic Descriptors

In HTS, a large number of chemical descriptors is usually available. The selection
of a subset of the most predictive variables represents an important issue in this area.
The goal of the variable selection is to identify the optimal set of measured variables
which best characterize the system under study.

For the considered McMaster data set, we computed the values of 209 molecular
descriptors (i.e., variables in our tests) using MOE (Molecular Operating Environ-
ment 2008), and the values of 825 atomic descriptors using both MOE and the
homemade software supplied by Simmons et al. (2008). For the atomic descrip-
tors, we computed the correlation coefficients between each descriptor and the
quantitative response variable (i.e., the biological activity); 209 atomic descriptors
associated with the highest values of the correlation coefficient were retained for
the further analysis. Thus, both data sets (molecular and atomic) contained the same
number of descriptors. We then carried out the CART, ANN and SVM (with linear
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and polynomial kernels) methods, separately for the atomic and molecular data sets
in order to determine the descriptors providing a better discrimination of the hit/no
hit outcome. The proportions of hits and no hits in each considered sample are
reported in Table 1 (see also Simmons et al. 2008). In each experiment, we computed
the numbers of false positive and false negative hits obtained for each test data set,
and then determined the specificity (Sp) and sensitivity (Se) of the models (Equation
1), where TP is the number of true positives, FN – number of false negatives, TN –
number of true negatives and FP – number of false positives.

Sp D TN=.TN C FP/ISe D TP=.TP C FN/ (1)

Figure 1 illustrates the ROC curves obtained for the atomic and molecular descrip-
tors for each of the considered machine learning methods. When examining the
curves in Fig. 1, we can notice that the atomic and molecular descriptors usually
yielded very close results in terms of predicting active compounds. However, in the
case of SVM (both linear and polynomial), the molecular descriptors were more
discriminant than the atomic ones.

Then, we selected the best variables among the molecular and atomic descrip-
tors using the method of “stepwise” variable selection, which is a technique that
combines advantages of the forward and backward selections. We used the module
“Stepwise” of MATLAB for molecular and atomic descriptors separately; 75 molec-
ular and 64 atomic descriptors were retained. Thus, our new combined data set of
predictive variables contained 139 descriptors.

3.4 Results and Discussion

The main objective of this study was to compare the decision tree, neural network
and SVM methods in the context of HTS. The values of the 139 descriptors obtained
by stepwise selection were used for the final comparison. All presented results
are the averages obtained after 100 iterations. At each iteration, we divided ran-
domly each sample into training (85%) and test (15%) subsets to build the model
for prediction (see Table 1).

Figure 2 presents the obtained results in terms of percentages of FN, FP, sum of
errors (FP C FN) and model sensitivity for the three competing machine learning
methods. For the SVM kernel method, we presented the results obtained with the
linear and polynomial functions only (the sums of errors were usually higher for the
rbf SVM). The SVM method clearly outperformed the CART and NN methods for
all measured parameters: FP, FN, FPC FN, and the sensitivity (Fig. 2). For all three
methods, one can notice that the recovery of active compounds deteriorates as their
ratio in the data set decreases.

Table 2 presents the comparison of our best performances (obtained with the
polynomial SVM method) and those obtained for similar sample sizes and train-
ing and test sets ratios by Simmons et al. (2008). In the latter paper, 10 different
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Fig. 1 Molecular versus atomic descriptors comparison (the atomic descriptors are represented by
squares and the molecular descriptors by triangles) for the NN (a), CART (b), linear SVM (c) and
polynomial SVM (d)

Table 2 The results (polynomial SVM) obtained in this study compared to those provided by
Simmons et al. (2008). The latter are indicated between parentheses. The results for ratios (3:1)
and (5:1) were not available in Simmons et al. (2008)

No hit/Hit ratio % FN % FP % (FN C FP)

(1:1) 4.30 (16.20) 11.64 (12.00) 15.94 (28.20)
(2:1) 11.17 (23.30) 7.86 (8.20) 19.03 (31.50)
(3:1) 15.59 (na) 6.04 (na) 21.63 (na)
(4:1) 20.75 (15.40) 5.45 (9.60) 26.20 (25.00)
(5:1) 24.77 (na) 5.02 (na) 29.79 (na)

machine learning methods were tested, including InfoEvolve, decision trees (CART
and C4.5), oblique decision tree model, kNN (k-Nearest Neighbors), logistic regres-
sion, linear discriminant, PLS (Partial Least Squares), NN and FIRM (Simmons
et al. 2008). The best overall performances found by Simmons et al. (2008) are
reported between parentheses in Table 2. In general, our results were better for all
three measured parameters (FN, FP, and FNC FP).
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Fig. 2 Comparison of the CART, NN and SVM methods: false negatives (a), false positives (b),
sum of errors (c) and ROC curves (d). The NN method is represented by circles, CART by squares,
linear SVM by .C/ and polynomial SVM by (X)

4 Conclusion and Future Developments

As this study suggests, the machine learning methods can be successfully applied in
HTS. As the traditional campaign of identification of hits is a very costly process,
an in silico method allowing one to predict experimental HTS results accurately
would be of great importance. We showed that the molecular descriptors generally
had more power to predict active molecules (see Fig. 1c and d). To the best of our
knowledge, such a comparison, made in the context of HTS, is novel. Moreover, we
carried out a stepwise regression to select the best descriptors in both data sets and
create a combined data set of explanatory variables. The results obtained by the three
machine learning methods in terms of sensitivity were very encouraging, especially
those obtained by the SVM method with linear and polynomial kernel functions.
The differences between our results and those obtained by Simmons et al. (2008)
should be due to the use of the combined set of atomic and molecular descriptors
(Simmons et al. considered only the atomic descriptors) and the application of the
SVM method.
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As future works, we plan to test other machine learning methods such as kNN
and PLS; apply classification methods allowing one to get rid of the descriptors
not contributing to clustering (i.e., noisy variables); combine information from
computational and combinatorial chemistry (i.e., docking and binding scores) with
available descriptors in order to improve the prediction accuracy; and finally, deploy
a two-fold machine learning procedure for large HTS data sets having small percent-
ages (1–5%) of hits (such a procedure could use one set of molecular descriptors
to select 10–15% of the best samples at the first step, and then perform a sec-
ond selection within this restricted data set, using a different set of molecular
descriptors).
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Network Analysis of Works on Clustering
and Classification from Web of Science

Nataša Kejžar, Simona Korenjak Černe, and Vladimir Batagelj

Abstract Web of Science (WoS) is a database that provides information about cur-
rent and past articles published in over 10,000 of the most prestigious, high impact
research journals in the world from year 1970 on. A file with full information –
records about selected articles – can be downloaded and further analyzed. We col-
lected from WoS complete records on articles from Journal of Classification, articles
citing these articles, and articles in WoS cited by them at least 10 times. A special
program WoS2Pajek was developed for converting such data into Pajek network
files. The citation network between articles, networks of articles 	 authors, arti-
cles 	 keywords, articles 	 journals, and the partition according to publication year
were obtained from the data. These networks were analyzed in order to identify the
most important authors, works and topics that have been involved in the field in the
last decades.

1 Introduction

Web of Science (WoS) is an online academic service provided by Thomson Reuters.
It provides access to seven world’s leading citation databases: Science Citation
Index, Social Sciences Citation Index, Arts & Humanities Citation Index, Index
Chemicus, Current Chemical Reactions, Conference Proceedings Citation Index:
Science, and Conference Proceedings Citation Index: Social Science and Human-
ities. It covers data on over 10,000 of the highest impact journals of science,
technology, social sciences, arts, and humanities, and over 110,000 books and
conference proceedings.

WoS allows one to get full information, a record, about an article, a book or
other work: its title, authors, abstract, keywords, publication properties (keywords,
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journal, volume, pages, publication year, etc.) and its references. From such biblio-
graphic data many analyses can be done.

Network analysis has been used by Newman (2001) who observed some sci-
entific collaboration networks or, as he called them, acquaintance networks. He
analyzed the networks from four different databases of published papers in the
5-year period of 1995–1999 inclusive (MEDLINE, Los Alamos ArXiv, SPIRES
and NCSTRL). He discovered some significant statistical differences between pre-
specified different scientific communities. Collaboration networks were analyzed
also for some other data such as Erdős network (Batagelj and Mrvar 2000), boards
of directors (On and Balkin 2004), movies database (IMDB) (Ahmed et al. 2007),
etc. A wide research of the dynamics of collaboration networks for the fields of
mathematics and neuro-science was done by Barabási et al. (2002). They looked
at the network from 1991–1998 and investigated the intensity of collaboration, the
average separation (in terms of shortest paths) of authors, the clustering coefficients
between the fields, as well as through time. They proposed models for the evolution
of collaboration networks. The ones predicting connectivity distribution are based
on continuum theory, however those that deal with other quantities are studied by
Monte Carlo simulations.

Many different network analyses of bibliographic data sets were published in the
field of scientometrics. The primary interest of the field is to study science using
the scientific methods of science. Citations between scientific works can be stud-
ied directly or on agglomerated level as citations between journals or authors. Very
informative visualizations of the structure for the whole science (natural and social
sciences) from WoS data was constructed by Börner (2009); Börner et al. (2003);
Boyack et al. (2005). Visualizations of scientific networks through time and devel-
opment of various methodological concepts were done by Leydesdorff (see e.g.
Leydesdorff et al. 2008; Lucio-Arias and Leydesdorff 2008).

Research was done mainly on 1-mode networks (of collaboration between authors
or citations between works or journals). However, as Dorogovtsev and Mendes
(2002) pointed out, networks obtained from bibliographic databases are inherently
bipartite (2-mode).

In this paper we look at records from WoS database for the field of clustering
and classification. We further limit to records from and related to the Journal of
Classification (as one of the most important journals in classification) in order to
reveal the relevant (groups of) works, authors and topics.

2 Networks from WoS

Initially we intended to analyze the entire field of clustering and classification.
Searches from WoS were done for all years (from 1970–2008) and topics (a)

"cluster analy*" (67,962 records), (b) "clustering*" (49,216), and (c)
"classificat*" (220,190). Additional search was done for all years and publi-
cation name (d) "Journal of Classification" and extended with related
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works. The results were converted into networks in Pajek (Batagelj and Mrvar 2008)
format using program WoS2Pajek (Batagelj 2008).

The usual ISI name of a work (field CR) has the following structure

GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GRANOVETTER M, 1983, SOCIOLOGICAL THEORY, V1, P203

which allows for many inconsistencies. Program WoS2Pajek supports also shorter
names (similar to the names used in HistCite (Garfield 2007) output) in the format:

LastNm[:8] + ’_’ + FirstNm[0] + ’(’ + PY + ’)’ + VL + ’:’ + BP

that eliminate most of the inconsistencies. For example: GRANOVET_M(1973)78:1360.
WoS2Pajek produces the following networks:

� citation network Ci (stored in file Cite.net) of works only
� 2-mode network works 	 authors WA (WA.net)
� 2-mode network works 	 journals WJ (WJ.net)
� 2-mode network works 	 keywords WK (WK.net)

As keywords are considered regular keywords and also all words from title and
abstract without stopwords.

Preliminary network analyses of networks from "cluster analy*" showed
that the hard core clustering community – members of IFCS (with the exception
of some really fundamental works like Ward’s Hierarchical grouping to optimize
an objective function from 1963, or Sneath & Sokal’s Numerical Taxonomy, 1973)
don’t play a prominent role in the broad field. Most of the important authors/works,
however, belong to the field of biology. This could be due to different publishing
cultures in the involved scientific communities (number of coauthors, number of
references) or due to the use of the terms cluster, clustering and classification for
different meanings.

This was the reason to limit our further analyses in this paper to JoC data set
which consists of the WoS records on: (a) articles from Journal of Classification
(JoC), (b) articles citing these articles, and (c) articles cited at least 10 times from
(a or b) articles and having descriptions in WoS.

3 Analyses of Records from JoC

There are 81,581 different works in the JoC data set of which 4,188 have full
description records – 599 from JoC. The works come from 9,448 different jour-
nals and there are 37,690 authors in the data. Note that for references only the first
author is known.

In the original data there was 1 loop (selfreference) in the citation network Ci.
The inspection of the original paper showed that the error was in the WoS data.
We removed the loop from the network and also transformed multiple arcs into
single arcs.
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Fig. 1 Number of works by degree

Figure 1 shows the input and output degree distributions for the citation net-
work in log-log scale. The number of works with input degree (number of citations
received) decreases very rapidly (power-law). The 15 most cited works with the
number of received citations at their beginning are: 349 – HUBERT_L(1985)2:193,

270 – HARTIGAN_J(1975):, 249 – DEMPSTER_A(1977)39:1, 236 – SNEATH_P(1973):, 181

– SCHWARZ_G(1978)6:461, 170 – GOWER_J(1986)3:5, 161 – WARD_J(1963)58:236, 159 –

RAND_W(1971)66:846, 153 – JOHNSON_S(1967)32:241, 149 – KAUFMAN_L(1990):, 136 – SAITOU_N

(1987)4:406, 134 – JAIN_A(1988):, 134 – MCLACHLA_G(1988):, 132 – KRUSKAL_J(1964)29:1, 129 –

ROHLF_F(1999)16:197.

The output degree (number of citations made), however, has a more peculiar
shape. It starts high, steps down for 2 and 3, then increases till around 40 and
then rapidly decreases. The largest outdegree have works that are either books or
overview articles. Note that only works with a full description are considered since
only referenced works (without full description) have output degree 0.

Boundary

For further analyses we limit the size of the network (boundary problem) to the
works with full descriptions and referenced only works that are referenced often
enough – at least k times. We delete vertices for which it holds .0 < indeg.v/ <
k/ ^ .outdeg.v/ D 0/. In our case we selected k D 3.

Frequencies of publications in journals

Let us look at the largest indegrees in the WJ network. The journal names in WoS
are not unified (normalized) – the same journal can appear under different names.
For example: J Roy Stat Soc B, J R Stat Soc B, J Royal Stat Soc B, J Roy Stat Soc B 4, J Roy Stat Soc B Met,

J Roy Stat Soc Ser B-Stat Met, J Roy Statist Soc Ser B Metho; or P National Academy S, Proc Nat Acad Sci USA, P
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Natl Acad Sci USA; Multivar Behav Res, Multivariate Behav R, Multivariate Behav Res, Multivariate Behavio; J Am

Stat Assoc, J Amer Statist Assn, . . .
The list of journals in the bounded network with at least 50 published articles

(first number is the number of published articles from the journal) contains: 1009 –

J Classif, 425 – Psychometrika, 248 – Syst Biol, 215 – Mol Biol Evol, 207 – Syst Zool, 197 – J Am Stat Assoc, 136 –

Comput Stat Data Anal, 120 – Evolution, 117 – Lect Note Comput Sci, 108 – P Natl Acad Sci USA, 104 – Pattern

Recogn, 101 – Biometrics, 99 – Bioinformatics, 96 – Multivar Behav Res, 96 – J Mol Evol, 89 – Brit J Math Stat

Psy, 88 – IEEE T Pattern Anal, 85 – Cladistics, 82 – Biometrika, 76 – J Roy Stat Soc B, 72 – Science, 71 – J Math

Psychol, 70 – Nature, 68 – Math Biosci, 60 – J Marketing Res, 58 – Mol Phylogenet Evol, 56 – Ann Stat, 54 – Genetics,

54 – Discrete Appl Math, 52 – J Theor Biol, 52 – Soc Networks, 51 – Ecology, 51 – Annu Rev Ecol Syst, 51 – Pattern

Recogn Lett.

Distribution of articles by the number of authors

The largest number of (co)authors in the articles from JoC is 6 (see Fig. 2), while in
other works the number of (co)authors is much larger. Most of the articles from JoC
(almost 70%) have only one author, while in other works two authors are more com-
mon. This confirms the conjecture that the JoC community has a different publishing
‘culture’ than the others.

3.1 Collaboration Network

The collaboration network Co can be obtained from the 2-mode network WA by
network multiplication Co DWAT �WA.
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Fig. 2 Distribution of articles by the number of authors (black – JoC, gray – other)
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Fig. 3 Main part of line cut at level 3 of collaboration network. Colors represent cuts (connected
subnetworks)

In larger collaboration networks we usually try to identify their dense parts using
(generalized) cores (Seidman 1983; Batagelj and Zaveršnik 2002). The collabora-
tion network is a sum of cliques determined by each set of authors. For our network
the results obtained by standard cores consist mainly of cliques corresponding to the
papers with many coauthors. More interesting results are obtained by applying cores
to the subnetwork of lines with weight at least 2 or using pS-cores. Even better view
on the collaboration structure is obtained by the line cut at level 3 – we preserve in
a network only lines with weight at least 3. This network has 298 vertices, 276 lines
and 84 components. In Fig. 3 its main part is presented.

3.2 Citation Network Analysis

Main path and CPM path in the citation network

To measure the importance (weight) of arcs in acyclic networks we use the methods
proposed by Hummon and Doreian (1989). An efficient algorithm for computing
these weights in large networks was developed by Batagelj (2003) and implemented
in Pajek by Batagelj and Mrvar. The SPC (Search Path Count) method counts for
each arc .u; v/ the number of different paths from source (initial vertex) to sink
(terminal vertex) passing through it. Therefore the higher the number, more paths
pass the arc – more important is the arc. Citation networks are (almost) acyclic. The
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problem emerges if there are cycles (nontrivial strong components) in the network.
Bounded JoC network has seven such strong components of size 2. All except one
are citations between two works from the same publication. We shrink each of them
into one vertex.

After weights are computed, the main path and CPM path can be determined.
Main path is a path from the source vertex to the sink, starting with the arc with the
largest weight and selecting at each step the arc to the neighbors with the largest
weight. CPM (Critical Path Method) determines the source-sink path(s) with the
largest total sum of weights.

Main path: HOLDER_M(2008)57:814, STEEL_M(2008)57:243, COTTON_J(2007)56: 445,

WILKINSO_M(2007)56:330, WILKINSO_M(2005)54:419, EULENSTE_O(2004)53:299, PISANI_D

(2002)269:915, PISANI_D(2002)51:151, SEMPLE_C(2000)105:147, SANDERSO_M(1998)13:105,

LAPOINTE_F(1997)46:306, PURVIS_A(1995)44:251, BULL_J(1993)42:384, DEQUEIRO_A(1993)

42:368, BARRETT_M(1991)40:486, DONOGHUE_M(1989)20:431, KLUGE_A(1989)38:7, SOKAL_R

(1986)17:423, DESOETE_G(1985)2:173, DESOETE_G(1984)1:235, CARROLL_J(1984)1:25,

CARROLL_J(1983)48:157,PRUZANSK_S(1982)47:3,#TVERSKY_A(1982)89:123,SHEPARD_R(1980)

210:390, CARROLL_J(1980)31:607, SHEPARD_R(1979)86:87, ARABIE_P(1978)17:21, WHITE_H

(1976)81:730, BREIGER_R(1975)12:328, SHEPARD_R(1974)39:373, ARABIE_P(1973)10:148,

CARROLL_J(1970)35:283, (HORAN_C(1969)34:139, BLOXOM_B(1968):, CLIFF_N(1968)33:225,

MCGEE_V(1968)3:233, YOUNG_F(1967)12:498, ROSS_J(1966)31:27, SHEPARD_R(1966)3:287,

TUCKER_L(1966)31:279, WOLD_H(1966):391, TUCKER_L(1964):109, TUCKER_L(1963)28:333,

TORGERSO_W(1958):, ECKART_C(1936)1:211).The articles in brackets are all linked to the
previous node.

Main topics of the works on the main path are supertree methods in the consensus
setting in the latest works (mainly published in Systematic Biology), and multidi-
mensional scaling in earlier works, published mainly in Journal of Mathematical
Psychology and Psychometrika.

CPM path: GOKER_M(2008)8:86, AUCH_A(2006)7:350, THINES_M(2006)110:646, HUSON_D

(2006)23:254, DELSUC_F(2005)6:361, GUINDON_S(2003)52:696, CHOR_B(2000)17:1529,

STEEL_M(2000)17:839,MAU_B(1999)55:1,RAMBAUT_A(1997)13:235,#MIYAMOTO_M(1995)44:64,

HUELSENB_J(1995)44:17, BULL_J(1993)42:384, DEQUEIRO_A(1993)42:368, DOYLE_J(1992)

17:144, PAGE_R(1990)6:119,PAGE_R(1989)5:167,PAGE_R(1988)37:254,PENNY_D(1986)3:403,

PENNY_D(1985)34:75, DAY_W(1983)66:97, DAY_W(1983)103:429, ROHLF_F(1982)59:131,

ROHLF_F(1981)30:459, #MICKEVIC_M(1981)30:351, SOKAL_R(1981)30:309, SCHUH_R(1980)

29:1, FARRIS_J(1979)28:483, MICKEVIC_M(1978)27:143, MICKEVIC_M(1976)25:260, FARRIS_J

(1972)106:645, (FARRIS_J(1970)19:172, FARRIS_J(1970)19:83, KLUGE_A(1969)18:1,

ESTABROO_G(1968)21:421, THROCKMO_L(1968)17:355, FARRIS_J(1967)16:44, HENNIG_W

(1966):, CAMIN_J(1965)19:311, WILSON_E(1965)14:214, SOKAL_R(1963):).

Main topics on the CPM path are phylogenetic analysis, evolutionary trees and
genome trees and most of the works on this path are published in Systematic
Biology.

Although most works are related with biology, the only common works on
both paths are BULL_J(1993)42:384 and DEQUEIRO_A(1993)42:368. All other works are
different. Both paths can be found also in the main island in Fig. 4.



532 N. Kejžar et al.

#TVERSKY_A{1982}89:123

#MICKEVIC_M{1981}30:351

#MIYAMOTO_M{1995}44:64

MCMORRIS_F{1983}4:131 CUNNINGH_J{1978}17:165

LANDRY_P{1996}13:818

RAND_W{1971}66:846

STEINLEY_D{2004}9:386

SOKAL_R{1963}:

CORMACK_R{1971}134:321

BANFIELD_J{1993}49:803

BENSMAIL_H{1996}91:1743

BENSMAIL_H{1997}7:1
CELEUX_G{1995}28:781

DASGUPTA_A{1998}93:294

FRALEY_C{1998}41:578
FRALEY_C{1998}20:270

FRALEY_C{1999}16:297

FRALEY_C{2002}97:611

FRALEY_C{2003}20:263

ROEDER_K{1997}92:894

YEUNG_K{2001}17:977

BRUSCO_M{2001}18:3

HUBERT_L{1992}9:211
ARABIE_P{1991}56:567

GROENEN_P{1995}12:3

GROENEN_P{1996}61:529

GROENEN_P{1999}16:225

SHEPARD_R{1974}39:373

CARROLL_J{1983}48:157

BRUSCO_M{2001}66:249

BRUSCO_M{2004}9:510

MILLIGAN_G{1988}5:181

STEINLEY_D{2003}8:294

STEINLEY_D{2005}22:221

STEINLEY_D{2006}59:1

STEINLEY_D{2006}11:178

STEINLEY_D{2007}24:99

DESARBO_W{1982}47:449

BRUSCO_M{2000}17:197

ARABIE_P{1980}45:211

CARROLL_J{1976}41:439

SHEPARD_R{1979}86:87

MILLIGAN_G{1989}6:53

FELSENST_J{1985}39:783

DOOLITTL_W{1999}284:2124

LEGENDRE_P{2000}17:153

STEEL_M{1992}9:91

WATERMAN_M{1977}64:199BAKER_F{1975}70:31

DESARBO_W{1984}49:187

DESOETE_G{1985}2:173

GORDON_A{1987}150:119

CARROLL_J{1970}35:283

HANSEN_P{1978}73:397

FARRIS_J{1970}19:172

FELSENST_J{1981}17:368

GASCUEL_O{2000}17:67

SATTATH_S{1977}42:319

TVERSKY_A{1977}84:327

KASS_R{1995}90:773

POSSE_C{2001}10:464

STANFORD_D{2000}22:601

HENNIG_W{1966}:

ARABIE_P{1978}17:21

BOCK_H{1996}23:5

HUBERT_L{1976}29:190

CARROLL_J{1980}31:607

BRYANT_D{1998}15:1346

FARRIS_J{1973}22:250

RZHETSKY_A{1992}9:945

NELSON_G{1979}28:1

ROHLF_F{1982}59:131

WILKINSO_M{1994}43:343

TUCKER_L{1972}37:3

ARABIE_P{1992}43:169

DESOETE_G{1983}48:621

KASS_R{1995}90:928

DESARBO_W{1984}49:57

GREEN_P{1990}7:271

MAKARENK_V{1999}16:3

PRUZANSK_S{1982}47:3

LAPOINTE_F{1991}8:177

ROHLF_F{2000}17:185

RAMSAY_J{1982}145:285

SHEPARD_R{1980}210:390

BREIGER_R{1975}12:328

BULMER_M{1991}8:868

FURNAS_G{1984}1:187

HUBERT_L{1977}16:233

LAPOINTE_F{1992}41:158

LAPOINTE_F{1992}41:378PAGE_R{1991}40:54

ROHLF_F{1981}30:459

CARROLL_J{1984}1:25

FARRIS_J{1972}106:645

FITCH_W{1981}18:30

BARTHELE_J{1981}1:235

NEUMANN_D{1983}63:271

STINEBRI_R{1984}46:923

MILLIGAN_G{1987}11:329

BOORMAN_S{1973}10:26

HENDY_M{1993}10:5

BAKER_F{1974}69:440
ARABIE_P{1973}10:148

DESOETE_G{1987}4:155

FELSENST_J{1984}38:16

FELSENST_J{1978}27:27

HENDY_M{1984}44:1054

LAPOINTE_F{1990}39:1

PAGE_R{1988}37:254

PAGE_R{1990}39:205

SHAO_K{1986}35:582

WINSBERG_S{1983}48:575FINDEN_C{1985}2:255

GORDON_A{1986}3:335

CAMIN_J{1965}19:311

ARABIE_P{1981}18:310

DESOETE_G{1984}1:235

FITCH_W{1971}20:406

DESOETE_G{1984}49:289ADAMS_E{1986}3:299

SOKAL_R{1981}30:309
HUBERT_L{1974}39:283

MILLIGAN_G{1989}24:163

SRIRAM_N{1990}7:33

SRIRAM_N{1993}10:241

CAVENDER_J{1987}4:57

FELSENST_J{1978}27:401

HENDY_M{1989}38:297

HENDY_M{1989}38:310

HENDY_M{1991}96:51

DESARBO_W{1984}1:147

DOBSON_A{1974}11:32

FELSENST_J{1988}22:521

KLUGE_A{1969}18:1

PENNY_D{1986}3:403
DAY_W{1985}2:7

FARRIS_J{1970}19:83

FARRIS_J{1979}28:483
MICKEVIC_M{1978}27:143

SCHUH_R{1980}29:1

FAITH_D{1986}3:257

SOKAL_R{1986}17:423

FELSENST_J{1981}16:183

FELSENST_J{1982}57:379

WHITE_H{1976}81:730

FELSENST_J{1983}146:246FELSENST_J{1985}34:152

DAY_W{1983}66:97

DAY_W{1985}47:215

DAY_W{1983}103:429
MONJARDE_B{1981}35:173

BROWN_E{1984}1:93

LUAN_Y{2003}19:474

ALLMAN_E{2003}186:113

STURMFEL_B{2005}12:204

SZEKELY_L{1993}14:200

MAITRA_R{2009}6:144

STEINLEY_D{2008}73:647

BARRETT_M{1991}40:486

DELSUC_F{2005}6:361
HARTMANN_S{2008}8:95

PHILLIPS_M{2004}21:1455

DELSUC_F{2008}46:592

GOLDMAN_N{1990}39:345

GOLDMAN_N{1993}36:182

HUELSENB_J{2001}17:754LARGET_B{1999}16:750

RANNALA_B{1996}43:304

RONQUIST_F{2003}19:1572

YANG_Z{1997}14:717

COTTON_J{2006}55:345

CRISCUOL_A{2006}55:740

EULENSTE_O{2004}53:299

GOLOBOFF_P{2002}18:514

GUINDON_S{2003}52:696

RANWEZ_V{2007}56:798

SEMPLE_C{2000}105:147

SCORNAVA_C{2008}9:413

STEINLEY_D{2008}43:77

STEINLEY_D{2008}73:125

FRAIMAN_R{2008}103:1294

MEDVEDOV_M{2004}20:1222

HUSON_D{2006}23:254

NYE_T{2008}57:785

MAU_B{1999}55:1

STEEL_M{2008}57:243

HOLDER_M{2008}57:814

BIERNACK_C{2000}22:719

OH_M{2001}96:1031

FARRIS_J{1973}22:50

CASANELL_M{2007}24:288

HUELSENB_J{1995}44:17
LAKE_J{1994}91:1455

LOCKHART_P{1994}11:605

STEEL_M{1993}31:289

SUMNER_J{2008}253:601

CHOR_B{2000}17:1529

STEEL_M{1992}5:63

HENDY_M{2008}5:461

HUELSENB_J{2001}294:2310

SMYTH_P{2000}10:63

ZALIK_K{2008}29:1385

COTTON_J{2007}56:445

STEEL_M{2000}17:839

WILKINSO_M{2005}54:419

LAPOINTE_F{1997}46:306

SNEATH_P{1975}24:311

BRUEN_T{2008}57:251

CRISCUOL_A{2008}9:166

AUCH_A{2006}7:350

BRYANT_D{2002}2452:375

BRYANT_D{2004}21:255

FARRIS_J{1967}16:44

GOKER_M{2008}8:86

PHILLIPS_M{2003}28:171

RAMBAUT_A{1997}13:235

MORRISON_D{2005}35:567

PACHTER_L{2004}101:16132

ALLMAN_E{2006}13:1101

HUELSENB_J{1993}42:247

LOCKHART_P{1996}93:1930

PENNY_D{1992}7:73

WHITE_W{2007}24:2029

PENNY_D{2008}25:239

YANG_Z{1996}11:367

STRIMMER_K{1996}13:964

ALLMAN_E{2008}211:18

DOYLE_J{1992}17:144

KLUGE_A{1989}38:7

PISANI_D{2002}269:915

SANDERSO_M{1998}13:105

PEEL_D{2001}96:56

DONOGHUE_M{1989}20:431

GRAYBEAL_A{1998}47:9

THORLEY_J{2000}16:486

PISANI_D{2002}51:151

PURVIS_A{1995}348:405

PURVIS_A{1995}44:251

RAGAN_M{1992}28:47

STEEL_M{2000}49:363

ALLMAN_E{2007}17:1299

MORET_B{2004}1:13

PENNY_D{1996}45:596

STEEL_M{1993}42:581

LEGENDRE_P{2002}51:199

MAKARENK_V{2004}11:195

PENNY_D{1993}31:275

RANWEZ_V{2001}18:1103

STEEL_M{1993}364:440

WAGELE_J{2007}7:147

HENDY_M{1993}31:231

ALLMAN_E{2006}41:138

FERRETTI_V{1993}25:290

BAKER_F{1976}71:870

CRANSTON_K{2007}56:578

BRYANT_D{1995}16:425

ERDOS_P{1999}14:153

WILKINSO_M{2004}53:989

LIU_F{2001}291:1786

PENNY_D{1985}34:75

BREMER_K{1990}6:369

PAGE_R{2002}2452:537

WILKINSO_M{2007}56:330

SHEPHERD_L{2007}43:480

RONQUIST_F{1996}45:247

BULL_J{1993}42:384

FAITH_D{1991}7:1

FAITH_D{1991}40:366

REEVES_P{2007}56:302

PAGE_R{1992}8:87

GAUTHIER_O{2007}56:345

ERDOS_P{1999}221:77

GAUTHIER_O{2007}32:8

DEQUEIRO_A{1993}42:368

HILLIS_D{1996}383:130

SANDERSO_M{1989}5:113

SNEATH_P{1986}35:470

THINES_M{2006}110:646

PENNY_D{1999}48:76

PAGE_R{2000}14:89

BAUM_B{1993}42:637

LANYON_S{1993}49:45

SALAMIN_N{2002}51:136

HILLIS_D{1994}264:671

LAPOINTE_F{1995}12:266

TEMPLETO_A{1983}37:221

MICKEVIC_M{1976}25:260

THROCKMO_L{1968}17:355

WILSON_E{1965}14:214

LOCKHART_P{1999}16:573

FOVELL_R{1997}10:1405

LAPOINTE_F{1994}3:256

FELSENST_J{1979}28:49

ESTABROO_G{1976}29:181

PAGE_R{1990}6:119
PAGE_R{1989}5:167

PENNY_D{1995}12:863

ESTABROO_G{1968}21:421

Fig. 4 Main line island of size Œ5; 300�. Colors represent the same depth level of vertices in the
acyclic network

Line islands in citation network

We used line islands to detect subnetworks (clusters) with stronger internal cohe-
sion relatively to its neighbors. A line island of size Œk;K� is a weakly connected
subnetwork of the selected size in the interval Œk;K� where arcs, linking vertices
from the island to their neighbors outside island have weights lower than the values
of arcs of a spanning tree inside the island (Zaveršnik and Batagelj 2004). Figure 4
represents the largest island of size Œ5; 300�. All other islands are much smaller.

In this island two main branches can be noticed. The first branch contains
the CPM path. It starts with nine works from sixties (Sokal 1963; Farris 1967,
1970, etc.) at the bottom left. Then it follows works about taxonomic studies by
Mickevitch and Rohlf, and about consensus index methods by Day, followed by
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Penny and Page. From there on, this branch is further divided into two parts: one
goes in the middle and further on coincides with the CPM path. The other part (left
of it) can be also seen as two branches: one on the far left includes works from Page,
Gordon and LaPointe on hierarchical-classification and its applications in the bio-
sciences, continuing with Bock on probabilistic models in cluster analysis, Fraley
and Raftery with review of general methodology for model-based clustering, and
Steinley on cluster validation. The other branch include works from Milligan with
methodology review, Arabie and Brusco on unidimensional and multidimensional
scaling, and others, that are related also with works on the second main branch.

The second main branch on the right side of the figure is formed along the main
path. It starts with works of Carroll and Arabie. At the bottom, both branches are
connected with the strong arc from BARTHELE_J(1981)1:235 to ARABIE_P(1978)17:21 .
Further, the second main branch continues with works of Shepard, Carroll, DeSarbo,
De Soete et al. on multidimensional scaling, additive clustering, tree represen-
tation, and meets the first main branch with the article Partitioning and com-
bining data in phylogenetic analysis by Bull (BULL_J(1993)42:384), published in
Systematic Biology, and with article For Consensus (sometimes) by Dequeiroz
(DEQUEIRO_A(1993)42:368). After them both branches separate again. The second main
branch continues with works of Purvis and Sanderson on phylogenetic supertrees,
then splits into two parts: one consisting of the works of Legendre on reticulate evo-
lution, and the other that follows the main path with works from Pisani, Wilkinson
and others on combining phylogenetic trees.

3.3 Citations Between Authors

By multiplying Ca DWAT �Ci�WA, the authors citation network can be obtained.
In this authors 	 authors network the arc weight corresponds to the number of
citations that the first author makes to the second.

3.3.1 Line Islands Œ10; 400� – Authors Citations

There are 47 simple (one peak) line islands in authors citations network. The largest
of them have sizes: 11 – Bezdek, Hathaway, et al.; 10 – Felsenstein, Penny, Hendy,
Steel, et al.; 10 – Priebe, Wierman, et al.; 9 – Sokal, Gower, Legendre, et al.;
6 – Maharaj, et al.; 5 – Rohlf, et al. The strongest arcs are in the islands: Brusco
! Hubert Arabie; DeSarbo ! Caroll  De Soete; and Steinley  Milligan.
Increasing the upper boundK of island size, the islands with the strongest links join
into a single island and the other islands are joining this island. This indicates that
there is essentially a single main topic in the network.

Figure 5 presents the largest island where most of the well known names from
the IFCS community can be found.
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Fig. 5 Largest line island of authors citations

The main groups (clusters) that can be visually identified in the main island can
be found also in a part of dendrogram, see Fig. 6, corresponding to hierarchical
clustering of vertices of the network using Ward’s method on corrected Euclidean
distance.
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SOKAL_R
FARRIS_J
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LAPOINTE_F
WILKINSO_M
PAGE_R
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Fig. 6 Part of dendrogram

To find out what is the topic of selected group of authors we considered the
2-mode network AK D WAT �WK. Its arc weight counts how many times the
authorA used the keywordK . From it we extract the subnetwork group	 keywords
and analyze it using methods presented in Ahmed et al. (2007).

4 Conclusion

In the paper we presented the network analysis approach to analysis of bibliographic
data. Program WoS2Pajek transforms the original data from Web of Science to a
1-mode citation network and three 2-mode networks (works 	 authors, works 	
journals, works 	 keywords) that can be analyzed separately or in combination
with the citation network as derived networks. Using program Pajek we can identify
important subnetworks in them and analyze their characteristics.
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Because of limited space available for this paper some pictures are rather small
and can be read in details only with a magnifying glass. The original color pictures in
pdf format can be seen on the web page http://pajek.imfm.si/doku.php?id=examples
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Recommending in Social Tagging Systems
Based on Kernelized Multiway Analysis

Alexandros Nanopoulos and Artus Krohn-Grimberghe

Abstract Along with the new opportunities introduced by Web 2.0 and collabo-
rative tagging systems, several challenges have to be addressed too, notably the
problem of information overload. Recommender systems are among the most suc-
cessful approaches for increasing the level of relevant content over the “noise”.
Traditional recommender systems fail to address the requirements presented in
collaborative tagging systems. This paper considers the problem of item recom-
mendation in collaborative tagging systems. It is proposed to model data from
collaborative tagging systems with 3-mode tensors, in order to capture the 3-way
correlations between users, tags, and items. By applying multi-way analysis, latent
semantic correlations are revealed, which help to improve the quality of recom-
mendations. Nevertheless, high-order tensors tend be sparse, a fact that hinders
the application of multi-way analysis. To address this problem, we propose the
application of kernel-based methods, which act as smoothing functions against
sparsity. Experimental comparison, using data from a real collaborative tagging sys-
tem (Bibsonomy), indicates the superiority of the proposed method against the non
kernel-based method and also against other baseline methods.

1 Introduction

Social tagging (a.k.a. collaborative tagging) is a process by which users assign labels
in the form of keywords to a set of resources with a purpose to share, discover and
recover them. Discovery enables users to find new content of their interest, that is
shared by other users. Nowadays, collaborative tagging services proliferate on the
Web. Some notable examples are Flickr, Delicious, or My Web 2.0. Collaborative
tagging is also very popular for multimedia data, e.g., Last.fm and YouTube.

A. Nanopoulos (B)
Institute of Computer Science, Information Systems and Machine Learning Lab,
University of Hildesheim, Germany
e-mail: nanopoulos@ismll.de

H. Locarek-Junge and C. Weihs (eds.), Classification as a Tool for Research,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-10745-0_58, c� Springer-Verlag Berlin Heidelberg 2010

537

nanopoulos@ismll.de


538 A. Nanopoulos and A. Krohn-Grimberghe

Along with the new opportunities introduced by Web 2.0 and collaborative tag-
ging systems, several challenges have to be addressed too, notably the problem of
information overload. One of the most successful approaches for increasing the level
of relevant content over the “noise” lays on recommender systems. Tags can be con-
sidered as indicators of interests and preferences. For this reason, tags are a valuable
source for recommendation.

Traditional recommender systems fail to address the requirements presented in
collaborative tagging systems, because they usually operate over 2-way data arrays,
ignoring the 3-way (users, items, tags) aspect of information that is present in
collaborative tagging systems. To address the new requirements, recent research,
e.g., Hotho et al. (2006), has started to examine novel approaches for develop-
ing recommender systems in the context of collaborative tagging systems. Most
of these approaches concern the recommendation of tags, in order to create a
“collabulary” (collaborated vocabulary). However, the central purpose of Web 2.0
and collaborative tagging systems is to facilitate users in discovering items of inter-
ests (e.g., documents, products, songs, video, etc.). Recently, Tso-Sutter et al. (2008)
examined the problem of item recommendation in collaborative tagging systems.
However, in this work the 3-way-correlation between users, items, and tags is treated
as an repeated 2-way-problem.

An effective algorithm for recommending items in collaborative tagging systems
models all 3-way correlations between users, items, and tags. This is attained by
modelling the data as 3-dimensional matrixes, which are called 3-order tensors. This
approach allows to reveal latent semantics, by performing multi-way analysis based
on Tucker decomposition Acar and Yener (2009). Nevertheless, tensors that model
social tagging data tend to be highly sparse, because users provide limited numbers
of tags. Sparsity can significantly hinder the application of multi-way analysis. To
address sparsity, in this paper we propose the use of kernel functions that smooth
the data and allow for effective application of multi-way analysis. The superiority
of the kernel-based method is supported with experimental results on data from a
real-world social tagging system (Bibsonomy).

The rest of this paper is organized as follows. Section 2 summarizes the related
work, whereas Sect. 3 reviews the multi-way analysis methods that are employed in
the proposed approach. The proposed for providing recommendations is described
in Sect. 4, whereas Sect. 5 elaborates on the use of kernels as smoothing functions.
Experimental results are given in Sect. 6. Finally, Sect. 7 concludes this paper.

2 Related Work

The problem of recommending tags has attracted significant attention the previ-
ous years. Several such algorithms detect conceptual structures in folksonomies
similarly to the hyperlink structures detected by search engines. The FolkRank
algorithm Hotho et al. (2006) exploits folksonomies by applying the Personalized
PageRank algorithm (a modification of global PageRank) to identify important tags
to suggest.
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Regarding methods that model data from folksonomies with tensors, Xu et al.
(2006) proposed a method that recommends tags by using ternary analysis.
Symeonidis et al. (2008) used HOSVD for recommending tags. The two aforemen-
tioned methods, and all methods summarized in the previous paragraph, focus on
how to manage folksonomies for the problem of tag recommendation, whereas the
method proposed in this paper is focused on the problem of item recommenda-
tion. The two problems are different, because tag recommendation aims at creating
a converged vocabulary for tags that will be commonly used and, hopefully, alle-
viate the main problems in folksomies, like polysemy and synonymy. Conversely,
item recommendation is about helping users to find relevant items (e.g., documents,
products, songs, video, etc.). Therefore, both problems are interesting and solutions
to them can act complementary.

As mentioned, the problem of tag-aware item recommendations has recently
started to attract attention. A generic, state-of-the-art item recommendation algo-
rithm is the Tag-aware Fusion, proposed by Tso-Sutter et al. (2008). They propose
a generic method that allows tags to be incorporated to traditional, 2-way recom-
mender algorithms, by reducing the 3-way correlations to three 2-way correlations
and then applying a fusion method to re-associate these correlations. As will
be shown by experimental results, this decomposition breaks the original 3-way
structure of the folksonomy and reduces the effectiveness of recommendation.

3 Tensors and Tucker Decomposition

This section provides a concise introduction to the topic of tensors and their decom-
position. A tensor is a multi-dimensional matrix. A N -order tensor A is denoted
as A 2 R

I1:::IN , with elements ai1;:::;iN . In this paper, for the purposes of the pro-
posed approach, only 3-order tensors are used. In the following, tensors are denoted
by calligraphic uppercase letters (e.g., A, B), matrices by uppercase letters (e.g., A,
B), and scalars by lowercase letters (e.g., a, b).

Tucker decomposition for tensor De Lathauwer et al. (2000) generalizes SVD
to multi-dimensional matrices. To compute Tucker decomposition on a 3-order
tensor A, we need the definition of the following three matrix unfoldings:

A1 2 RI1	I2I3 ; A2 2 RI2	I1I3 ; A3 2 RI1I2	I3

EachAn, 1 � n � 3, is called the n-mode matrix unfolding of A and is computed
by arranging the corresponding fibers of A as columns of An. Next, the n-mode
product of an N -order tensor A 2 RI1	���	IN by a matrix U 2 RJn	In is defined,
which is denoted as A	n U . The result of the n-mode product is an .I1	 I2 	 � � � 	
In�1 	 Jn 	 InC1 	 � � � 	 IN /-tensor, the entries of which are defined as follows:

.A 	n U /i1i2:::in�1jninC1:::iN D
X

in

ai1i2:::in�1ininC1:::iN ujnin (1)
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Fig. 1 Visualization of Tucker decomposition

Since the focus is on 3-order tensors, n 2 f1; 2; 3g, only 1-mode, 2-mode, and
3-mode products are being used.

By extending SVD, the Tucker decomposition of 3-order tensor A can be written
as follows De Lathauwer et al. (2000):

A D S 	1 U
.1/ 	2 U

.2/ 	3 U
.3/ (2)

where U .1/, U .2/, U .3/ contain the orthonormal vectors (called the 1-mode, 2-
mode and 3-mode singular vectors, respectively) spanning the column space of
the A1; A2; A3 matrix unfoldings. S is the core tensor and has the property of all
orthogonality. Figure 1 illustrates the Tucker decomposition.

4 Recommendation Based on Tucker Decomposition

This section elaborates on how Tucker decomposition is applied on tensors and on
how the recommendation of items is performed according to the detected latent
associations. This procedure is summarized with the following sequence of steps.

1. The initial construction of tensor A From the usage data triplets (user, tag, item),
an initial 3-order tensor A 2 Ru	t	i is constructed, where u, t , i are the numbers of
users, tags and items, respectively. Each tensor element measures the preference of
a (user u, tag t) pair on an item i .

2. Matrix unfoldings of tensor A As described, a tensor A can be matricized i.e.,
generate matrix representations in which all the column (row) vectors are stacked
one after the other. In the proposed approach, the initial tensor A is matricized in
all three modes. Thus, after the unfolding of tensor A for all three modes, 3 new
matrices A1, A2, A3, are created as follows:

A1 2 RIu	It Ii ; A2 2 RIt 	IuIi ; A3 2 RIuIt 	Ii

3. Application of SVD on each mode SVD is applied to the three matrix unfoldings
An, 1 � n � 3:

An D U .n/ �˙ .n/ � V .n/T
(3)
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4. Computing the low-rank approximations In matrix dimensionality reduction,
low-rank approximations are used to filter out the small singular values that intro-
duce “noise”. Thus, SVD is truncated to the first c higher singular values and the
corresponding singular vectors. The resulting matrix is denoted as rank-c approxi-
mation and SVD is optimal in the sense that it computes the rank-c approximation
with the minimum Frobenious norm.

In the case of tensor dimensionality reduction, a rank-c1; c2; c3 approximation
tensor has to be computed, where ci is the number of dimensions maintained for
i -mode. To compute the rank-c1; c2; c3 approximation, ci singular values and the
corresponding left singular vectors from U .i/ have to be retained, when applying
SVD on the unfolded matrixAi of i -mode. The selection of c1; c2; c3 determines the
final dimensionality of the core tensor S. Since each of the three diagonal singular
matrices S .1/, S .2/, and S .3/ are calculated by applying SVD on matrices A1, A2

and A3 respectively, a different ci value is used for each matrix U .i/ (1 � i � 3).
This results to .U .i/

ci
/ matrixes, which denote the ci -dimensionally reduced U .i/

matrix (1 � i � 3).

5. The core tensor S construction The core tensor S governs the interactions among
users, items, and tags. Since the dimensions of U .1/, U .2/ have been selected, and
U .3/ matrices, the proposed method proceeds to the construction of the core tensor
S, as follows:

S D A 	1 U c1

.1/T 	2 U c2

.2/T 	3 U c3

.3/T

(4)

where A is the initial tensor and U cn
.n/T

is the transpose of the cn-dimensionally
reduced U .n/ matrix, 1 � n � 3.

6. The tensor OA construction Finally, tensor OA is reconstructed by the product of
the core tensor S and the mode products of the three matrices U .1/, U .2/ and U .3/

as follows: OA D S 	1 U c1

.1/ 	2 U c2

.2/ 	3 U c3

.3/; (5)

where S is the c1 	 c2 	 c3 reduced core tensor and U cn

.n/ is the cn-dimensionally
reduced U .n/ matrix, 1 � n � 3.

7. The generation of item recommendations The reconstructed tensor OA measures
the associations among the users, tags and items, so that the elements of OA represent
quadruplets of the form {u, t , i , p}, where p is the likeliness that user u will tag item
i with tag t . Therefore, items can be recommended to u according to their weights
associated with {u, t} pair. Specifically, if it is required to recommend to a user u N
items that are related to a tag t , then the N items with the highest p values among
all {u, t , i , p} quadruplets are recommended.

5 Smoothing with Kernel Functions

In Sect. 4 we described that Tucker decomposition applies SVD on the three matrix
unfoldingsAn that results to the three matrixes U .n/, 1 � n � 3, which contain the
orthonormal vectors (left singular vectors) for each mode. As already mentioned,
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sparsity is a severe problem in 3-dimensional data and it can affect the outcome
of SVD. To address this problem, instead of SVD we can apply Kernel-SVD
Cristianini and Shawe-Taylor (2004) in the three unfolded matrices. Kernel-SVD
is the application of SVD in the Kernel-defined feature space.

For each unfolding Ai (1 � i � 3) we have to non-linearly map its contents to
a higher dimensional space using a mapping function �. Therefore, from each Ai

matrix we can derive an Fi matrix, where each element axy of Ai is mapped to the
corresponding element fxy of Fi , i.e., fxy D �.axy/. Next, we can apply SVD and
decompose each Fi as follows:

Fi D U .i/S .i/.V .i//T (6)

The resulting U .i/ matrixes are then used to construct the core tensor, that is,
the procedure continues as described in Sect. 4. Nevertheless, to avoid the explicit
computation of Fi , all computations must be done in the form of inner products. In
particular, as we are interested to compute only the matrixes with the left-singular
vectors, for each mode i we can define a matrix Bi as follows:

Bi D FiF
T
i (7)

As Bi is computed using inner products from Fi , we can substitute the computa-
tion of inner products with the results of a kernel function. This technique is called
the “kernel trick” Cristianini and Shawe-Taylor (2004) and avoids the explicit (and
expensive) computation of Fi . As each U .i/ and V .i/ are orthogonal and each S .i/

is diagonal, it easily follows from 6 and 7 that:

Bi D .U .i/S .i/.V .1//T /.U .i/S .i/.V .i//T /T D U .i/.S .i//2.U .i//T (8)

Therefore, each required U .i/ matrix can be computed by diagonalizing each Bi

matrix (which is square) and taking its eigen-vectors. Regarding the kernel func-
tion, in our experiments we use two widely used functions: (a) the Gaussian kernel

K.x; y/ D e� jjx�yjj
2

c (c parameter is called the width of the kernel) and (b) the
Polynomial kernel K.x; y/ D .x � y C 1/d (d parameter is called the degree of the
Polynomial).

6 Experimental Results

In this section we experimentally compared four methods: (i) “Kernel”, which com-
bines kernel functions with tucker decomposition of tensors, (ii) “Tensor”, which
uses only Tucker decomposition without kernel functions, (iii) “Epsilon”, which
simply adds a small � value to every zero element in the tensor (we used � D 0:001),
and (iv) “Popular”, which recommends to a user the most frequently tagged items
that has not been already tagged by him in the training data. Comparison between
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Kernel and Tensor helps to understand the usefulness of kernel functions, whereas
Epsilon and Popular act as simple baseline methods. The three first methods
were implemented using the Tensor Toolbox (csmr.ca.sandia.gov/~tgkolda/
TensorToolbox) by setting cn D 70%, 1 � n � 3.

We used real data from the Bibsonomy (www.bibsonomy.org), a social book-
marking system for web resources. The original data was a snapshot taken on April
30, 2007, with 1,037 users, 28,648 items, and 86,563 tags. To remove noise, after
applying the 5-core preprocessing (each user, item, and tag must occur in at least 5
posts), 9,763 triples were maintained with 116 users, 361 items, 412 tags. We per-
formed Random Sub-sampling by keeping a fraction of triples for testing (building
the tensor) and the rest for training. Each presented results is the average of 30 rep-
etitions (standard deviation is also reported). For each user u - tag t combination in
the test data, all methods tried to predict the items tagged by u as t in the test data.
We selected recall as the performance measure. Sparsity in the data is characterized
by the ratio between the size of the test data to the size of original data, which are
given as fractions compared to the size of the original data (e.g., test/training: 0.2/0.8
means that the test and training data was 0.2 and 0.8, respectively, of the original
data size, measured in the number of triplets). All measurements are given versus
the number of recommended items.

Comparing the results in Fig. 2a and b, we observe that, for the Polynomial kernel
(d D 2), Kernel is more efficient than Tensor when the ratio between test/training
data sizes increases, i.e., when sparsity increases in the results of Fig. 2b compared
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to lower sparsity in the results of Fig. 2a. Please notice that the differences in Fig. 2b
are much higher than one standard deviation (depicted with error bars). The same
conclusion holds for the Gaussian kernel in Fig. 2c. However, the Polynomial kernel
is sensitive to the degree d . Figure 2d present results for d D 4. The lower perfor-
mance of Kernel is due to overfitting that incurs due to high d . We observed that the
Gaussian kernel is less sensitive to its width c (result not presented here due to lack
of space).

7 Conclusions

We proposed the enhancement of recommending items based on Tucker decom-
position with the use of Kernel functions that smooth the tensor data and address
the sparsity. Our experimental results with real data presented the superiority of the
proposed method over current standard approaches.
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Dynamic Population Segmentation in Online
Market Monitoring

Norbert Walchhofer, Karl A. Froeschl, Milan Hronsky, and Kurt Hornik

Abstract The objective of the SEMAMO (Semantic Market Monitoring) project is
to make use of the increasingly growing information available at Web-based sales
and marketing channels for market research, using semi-automatic analysis driven
by application domain models. The assumptions are that (i) the Web may serve as
a representative “picture” of reality, (ii) the respective online channels map salient
market developments, and (iii) all of this accurately and in a timely manner.

Limited server requests and market specific access structures of Web portals
inhibit both full scans of sampling populations and random selection of sampled
offers. Further, product feature categories entail multiple classifications within offer
clusters (e.g., geography in tourism). Therefore, SEMAMO proposes an adaptive
sampling strategy dealing simultaneously with (i) the dynamics of the popula-
tion frame, (ii) price dynamics, and (iii) multiple (fuzzy) classifications of offered
products.

The paper discusses a heuristic method of dynamically segmenting monitored
offer populations to stratify online data harvesting depending on both observed price
changes and information relevance, and outlines the mechanics of harvest schedule
derivation.

1 Introduction

The transparency of e-markets and increasing market dynamics call for more
responsive and encompassing approaches towards the monitoring of markets and
competition. A natural response to this overall development, advanced information
technology (Wen and Wen 2006) – and particularly semantic technologies – provide
an unprecedented means to expand both the scope and speed of market observation
by reducing the cost of information procurement and, thus, improving competi-
tive decision making. In this respect, SEMAMO (Walchhofer et al. 2009) arguably
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extends the range of current business intelligence methodologies and solutions by
designing and implementing a (semi-) automatic market monitoring framework,
capitalizing on semantically enriched models of online information extraction.

The ensuing framework is applied to a leading e-commerce domain, tourism,
providing (i) a fairly challenging test-bed in terms of market complexity (Werthner
and Klein 1999), (ii) an information-rich environment comprising a multitude of
online marketing channels, and (iii) structural peculiarities such as volume and
access constraints restricting actual data retrieval. Hence, efficient monitoring of
online markets depends on a dynamic allocation of access resources, adjusting the
observation and analysis effort to varying market conditions.

Section 2 of this paper briefly relates the methodology employed in SEMAMO to
preceding work in information retrieval, sampling in online contexts, and modeling
of dynamic phenomena such as market prices. Next, Section 3 sketches the supposed
model of price dynamics in online markets and introduces the heuristic evidence-
based SEMAMO approach towards adaptive market segmentation reflecting the
similarity of price change patterns. Referring to the fundamental feedback loop gov-
erning the adaptive SEMAMO data harvesting scheme, Section 4 then describes the
proposed harvest balancing approach to derive (by combinatorial optimization) fea-
sible data harvest schedules representing both the dynamics and economic utility of
market information gathered iteratively. The concluding section presents a summary
of the already achieved state of project development, and indicates further project
challenges.

2 Related Work

Online market monitoring gathers product information (quality, price) across var-
ious online portals by extracting market information (Doorenbos et al. 1997)
from heterogeneous semi-structured sources (Wiederhold 1992), using specifically
designed wrapper tools (Hammer et al. 1997; Baumgartner et al. 2005). Contrary to
many attempts of document retrieval (Appelt 1999) seeking to optimize precision
and recall for a wide range of conceivable queries, SEMAMO continually observes
a set of deeply structured objects of interest over time.

It turns out empirically that, in many applications, (online) markets typically fea-
ture (discrete) jump processes rather than continuously varying prices. Thus, except
for its purpose to monitor price dynamics of products within identified markets, the
SEMAMO task resembles the tracking of occasional changes in (large) document
sets (Cho and Garcia-Molina 2003). Efficiency considerations suggest exploiting
evidence of change dynamics for the sake of parsimonious observation; accord-
ingly, SEMAMO capitalizes on an adaptive sampling model reflecting (expected)
frequencies of price changes expressed in terms of Poisson-distributed latencies
(Grimes and Ford 2008; Matloff 2005). However, the online habitat of SEMAMO
inhibits a straight application of proven sampling methods (Levy and Lemenshow
1999); notably, the populations to sample from are explored in a piecemeal fashion
as inherent part of the information extraction process proper.
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3 Sensor Binning Based on Price Dynamics

By definition, a market monitor aims at tracking price levels as well as their change
dynamics of products on offer, for varying degrees of aggregation. Typically, such
as in tourism, the offers within a single market are placed on different sales chan-
nels – Web portals, in particular – simultaneously; apparently, the same product
may appear on multiple portals, with possibly differing prices. Thus, as an analyti-
cal unit of observation, it is reasonable to choose an individual product – such as a
hotel room, or a package tour, to book – irrespective of multiple portal occurrences,
implying that, over time, offer prices may vary reflecting changing market condi-
tions. In what follows, the technical term “sensor” is used to denote a particular offer
representing a triplet of (i) channel (Web portal), (ii) market aggregator, and (iii) the
individual product on sale as such enabling statistical aggregation over, as well as
comparison between, each of these sensor components. However, in an online con-
text, target populations are rather ill-defined because of (i) the pace of change and, as
a consequence of this, (ii) the difficulty of actually tracking all population members.

Methodologically, SEMAMO implements a directed data flow from – pre-
selected – Web sources (typically, a set of online stores, or portals, in a given market)
of raw online observation data towards aggregated business reports. Starting each
harvest cycle with a data harvesting component, consisting of wrappers, and a data
transformation unit (Baumgartner et al. 2007) attached, cleansed data is rectified
into a regularized representation of price series for the offers monitored. Aligned
across data sources in terms of multi-dimensional data warehouse structures, reg-
ularized and accumulated price data are ready for a variety of statistical analyses
according to customer-defined market reports. Additionally, parameters estimated
from accumulated harvest data are used to adaptively drive the iterated harvesting
of online data.

To illustrate typical price dynamics, the left-hand side of Fig. 1 exhibits a sample
of 20 price series taken from the SEMAMO test domain of hotel room offers,
tracked over some 40+ harvest cycles. The right-hand part of Fig. 1 contrasts these
real price series with simulated ones, using Poisson-distributed jump processes
(with � � �.5; 5/ chosen randomly for each price series, a magnitude random step
size � � ˇ.0:4; 4/, and the sign of step change also chosen randomly 50:50, in this
sequence; starting prices have been generated exponentially distributed with � D 90
within the interval Œ40; 300�).

3.1 Harvest Adaptation

Because of technical reasons, access to individual sensors is generally not possible;
rather, data wrappers are restricted to formal query binding patterns using a fixed
set of filter parameters. This limitation entails a specific kind of cluster sampling.
Additionally, very often the feasible number of access operations on a portal at a
time is bounded for various reasons such as (i) the amount of requests assigned
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might cause an overload of the portal server system and/or may lead to service
denial, (ii) the amount of data to harvest might turn out too time consuming, or
(iii) the data carry little information suggesting a reduction of observations, or data
are not available at all.

Naturally, sensor populations are stratified by the portals monitored. Now, seek-
ing to strike a balance between good population coverage through iterated harvest-
ing and a parsimonious use of portal access resources, an additional stratification
of sensor populations based on price change dynamics (Cho and Garcia-Molina
2003) is introduced. To this end, an active harvest heuristic estimates the expected
change rate, or latency, of a product expressed in terms of regular harvest intervals
from both the frequency of observed price changes and the (relative) magnitude of

change. Roughly, letting p0
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using the time lapse 
t between successive price observations pt�1; pt of the hith-
erto observed price series p0; p1; p2; : : : ; pt ; : : : ; pn of this sensor as a weighting
factor (with weighting function w monotonically decreasing in its argument). Then,
Q� is converted to the active harvest weight

wA D �.1 � �/Q (3)
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of a sensor, based on some initially set inclusion probability 0 < � � 1. Accord-
ingly, sensors exhibiting more frequent non-negligible price changes receive a
higher active harvest weight (/ probability) for inclusion in the upcoming harvest
schedule. Actually, this active weight, adapting to the observation history of a sen-
sor, is combined with a further delay weight (compensating sensors overdue for
observation because of either recently failed access trials or not having randomly
selected them in recent harvest cycles). Active and delay weights are recomputed
(updated) every time a harvest iteration has taken place and combined to the harvest
weight of a sensor.

The right-hand part of Fig. 1 exhibits the heuristically estimated harvest times for
the simulated price series by overlaying asterisks to the respective step functions;
the heuristic starts working after 40 “observed” harvest cycles used for parameter
estimation.

3.2 Dynamic Population Segmentation

Based on the current harvest weights – but regardless of the sensor assignments
to portals – a sensor population is segmented into a (pre-defined) number of har-
vest strata, or “strips”, pooling sensors of (adaptively estimated) similar weight,
interpreting the stratum centre (e.g., median weight) as sampling rate for randomly
selecting sensors of the stratum as observation candidates of the upcoming harvest
schedule. Obviously, the effective size of the schedule depends on the respective
current stratum sizes of the sensor population, the stratum samples are drawn from.
Jointly with the implicit portal stratification, this weight-based segmentation induces
a two-way stratification of a sensor population as sketched in Fig. 2 (simplified to

P1 P2 P3

0.14c1

c2

s2

c3

s1

∏ 3

0.33

0.56

0.84

Online portals

H
ar

ve
st

 s
tr

ip
s

Fig. 2 Sensor stratification over several online portals



550 N. Walchhofer et al.

three portals and four harvest strips only), with randomly selected sensors in the
preliminary pre-selection schedule marked black.

Most of the time, this pre-selection schedule is practically infeasible for actu-
ally harvesting online data since portal wrappers can process certain query binding
patterns only each of which represents, in general, whole sensor classes. By log-
ical necessity, sensor classes are always embedded in portal segments of a sensor
population, but usually cut across harvest strips, as indicated to the right of Fig. 2.
Worse still, a sensor may entertain multiple class memberships (e.g., because of
fuzzy assignments), classes may occur nested (e.g., any 4* hotel is also a 3* hotel by
definition), and sensor classes often can be collapsed reasonably into larger sensor
classes permitting less complex wrapper queries. Accordingly, the sampled sensors
of the pre-selection scheduleD have to be mapped into a suitable set of “wrappable”
sensor classes to (i) the best degree possible such that (ii) all imposed portal access
constraints are met.

4 Harvest Balancing

In what follows, let s.c/ denote the function returning the set of sensors in sen-
sor class c and let Jm denote any subset of sensor classes available for building
a covering set for D within portal m. Furthermore, assume that J DSm Jm still
allows the identification of original elements in the Jm sets. Now, assume some
real-valued finite cost bound �m > 0 for each of the q portals relevant for a given
sensor population instance, and let ym.c/ � 0, 1 � m � q, denote the real-valued
functions calculating (estimated) access costs of actually scanning the sensor class c
on portalm.

4.1 Feasible Harvest Schedules

Using the terminology introduced and writing jsj for the set cardinality of set s, the
optimal feasible harvest schedule can be determined as solution of a “0–1 knapsack
problem” (Kellerer et al. 2005) as follows:

find arg max
J
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ˇ
ˇ
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subject to
X

c2Jm

ym.c/ � �m; for 1 � m � q: (5)

Clearly, the identified solution set J � of sensor classes may not provide a unique
harvest schedule, particularly if D 
 �Sc2J s.c/

�
.
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4.2 Harvest Schedule Tuning

Having obtained a feasible harvest schedule of optimal D-coverage may still leave
unsatisfied a couple of additional criteria. Arguably, it is advisable to compose the
coverage of D of mutually disjoint sensor classes, even though overlaps do not
conflict with resource constraints expressed as cost bounds of portals – clearly, the
effort of successive processing of harvested data increases proportionally with the
size of the data sets generated, regardless of their actual redundancy. Moreover,
it is desirable to avoid querying the same offers several times in a single harvest
cycle, as this could increase the threat of being recognized as an unsolicited source
of Web server load which might cause access denial as a worst case. A further
factor entering the objective function could represent a cumulated valence based
on a non-negative function of the harvest weights of sensors comprised in sensor
classes (such as an average, median, or mode value) emphasizing the inclusion of
sensor classes contributing a larger share of sensors to sensor population strata with
higher sampling rates.

Apparently, in view of the notorious complexity of knapsack problems, solu-
tions exploiting suitably tailored meta-heuristics might work quite efficiently as a
replacement of the standard dynamic programming approach.

5 Summary

Transferring market research into online contexts is quite challenging, in particular
if one looks for a fairly automatic, application-independent methodology of online
market monitoring. This paper has focused on the specific aspect of adaptively gen-
erating feasible randomized observation schemes – termed “harvest schedules” –
aiming to allocate the data collection effort towards market segments exhibiting
higher volatility (in terms of changes in offers as well as, in particular, prices
of offers) as compared to apparently more stable market segments. The devised
approach towards online data harvesting capitalizes on Web mining methods sug-
gested in the literature, applied to the problem of tracking changes of Web sites
or in documents accessible online. In doing so, the specific access conditions of
online portals are taken into account such as (i) the re-identification of previously
registered online offers (using record linkage techniques), (ii) the update of offer
population registries, (iii) computing and maintaining adaptive weights associated
which each offer tracked, reflecting the probability of re-harvesting an observa-
tion unit in the upcoming harvest schedule, and (iv) the derivation of harvest
schedules matched to the constraints of online data access based on combinatorial
optimization using adaptively segmented target (sensor) populations. Since rou-
tine statistical sampling methodologies do not apply straightforwardly, task-specific
heuristics capturing the dynamics of market monitoring have been developed using
the domain of (e-)tourism as a prototypical test bed of SEMAMO. The system
operates in a cyclic mode, repeating over and over again the job sequence of data
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harvesting, data cleansing and rectification, weights updating, and adaptive harvest
schedule preparation based on the updated data gathered accumulatively in a historic
database.

To date, in the SEMAMO project the processing framework, its main functional
and storage components, and the mechanics of the harvest cycle have been devel-
oped and implemented prototypically. Parallel to system development, real online
data in the domain of tourism are extracted to empirically evaluate the conceived
heuristics governing adaptive data harvesting. Currently the proposed method of
adaptive harvest scheduling is benchmarked against (i) non-adaptive data extrac-
tion schemes, and (ii) adaptive harvesting using a non-stratified random selection of
observations, respectively.
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Gaining ‘Consumer Insights’ from Influential
Actors in Weblog Networks

Martin Klaus and Ralf Wagner

Abstract Worldwide, weblog users make up a permanently growing conversation
database including various private topics, but also discussions about services, prod-
ucts and brands. Hyperlinks create a social network between weblogs in the course
of a dialog. This new form of social interaction shifts power in B2C marketing com-
munication toward the consumers.

In this study, we visualize and analyze a social network of weblogs which dis-
cuss mobile communication devices. We use different methods of the social network
analysis to identify sub-communities and influential weblogs within the whole net-
work. Once these important blogs are identified, we use the netnography procedure
to gain “consumer insights” which tell us what the consumers really think and what
their needs, wishes, problems and questions are regarding the products.

1 Introduction

Although consumers are concerned about the use and the possible abuse of their
transactional information e.g., identity theft or e-mail spamming, they volunteer to
disclose non-transactional information by generating and maintaining Web 2.0 con-
tents. This non-transactional information is divided into two qualities: Data mining
techniques enable the identification of a person’s interests and opinions by exploit-
ing his or her contributions, such as blog entries (Glance et al. 2005). The other
quality is provided by the relationship of a person to other persons or groups of
persons as well as links to topics. Up to now, marketing research applications failed
to grasp both the structure and the contents of non-transactional data. To achieve
the best possible courses of marketing action, this paper’s new approach combines
first a quantitative methodology of social network analysis (SNA) with a qualitative
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method of netnography. These two different existing practices from other research
areas transferred to marketing matters fit together by first reducing the data and thus
the target group to focus on more closely. Then, only the condensed data need to
be analyzed qualitatively to gain important information. By seizing the challenge of
identifying the relevant knots in a communication network first, and then gaining
“consumer insights”, this paper aims to:

� propose the ego-network as a useful basic unit of investigation for studies aiming
to improve marketing communication.

� demonstrate the usefulness of pre drawing the quantitative SNA to enhance the
netnography for gaining “consumer insights”.

This paper is structured as follows: Sect. 2 combines the analytic methodology
with the qualitative netnography process. First, the SNA, with some of its measures
and its relation to the blogosphere, is explained. Netnography is introduced briefly
as a method for content analysis. An empirical study of blogs concerning mobile
communication is used in Sect. 3 to demonstrate the applicability and relevance of
the approach. In the last Section, we summarize our findings and draw conclusions.

2 Methods for Analyzing the Blogosphere

2.1 SNA Measures and Ego Networks

Blogs are interconnected via a huge network (blogosphere). Selected parts of this
network concerning topics, brands or products need to be analyzed to make this
modern communication channel usable for direct marketing. We aim to identify
“important” blogs within the network by social network analysis. The blogosphere
is a directed graph where the actors are blogs and the relations are links. Therefore,
multiple outgoing edges from one blog to an- other have a meaningful interpretation
like permalinks, trackbacks, blogrolls and comments (Klaus and Wagner 2009).

The degree centrality Cd .�/ provides an impression of the network’s structure
of the network by considering the number of connections from a given point pk

(Everett and Borgatti 1999):

Cd .pk/ D
Pn

iD1 a.pi ; pk/

.n� 1/ (1)

where a.pi ; pk/ D 1 indicates there is a direkt connection from pi to pk and
a.pi ; pk/ D 0 otherwise n denotes the network size. In the direct marketing con-
text the degree centrality is deemed to be the dimension of possible communication
activity within the network. The more links a blog has, the higher is the probability
of direct communication with other bloggers. Thus, we assess how applicative blogs
are to start canvassing on these blogs with a high degree centrality. The betweenness
centrality Cb.�/ considers the shortest distances within the graph.
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Cb.pk/ D
2.
Pn

iD1

Pn
j DiC1 bij.pk//

n2 � 3nC 2 (2)

where i ¤ j ¤ k and bij.pk/ D gij.pk/

gij
with gij defining the number of geodesics

linking pi and pj . gij.pk/ giving the number of geodesics linking pi and pj that
contain pk . In this study the betweenness centrality assesses the opportunities for
controlling the communication process. If many shortest distances run over a blog,
it has a high influence on the network communication, assuming the blogger usually
uses the shortest way to communicate. In this way, communication from these blogs
can be monitored and assessed by marketers with a view of influencing them as they
wish. The closeness centrality Cc.�/ provides an impression of a blog’s centrality in
relation to other blogs.

Cc.pk/ D n � 1
Pn

iD1 d.pi ; pk/
(3)

with d.pi ; pk/ denoting the number of edges in the geodesic linking pi and pk . In
our application domain, the closeness centrality is deemed to be the dimension for
independence from other blogs. The measure grows as knots are far apart. Thus this
centrality expresses closeness. Consequently, a blog is less dependent on another
blog because it has many others close by. Moreover, this measure is assessed as the
efficiency of a blog in all the other knots within the network. Considering the dis-
tance from one blog to all other blogs in the graph, the closeness centrality indicates
how fast a marketing communication measure could spread through the network,
starting at blog pk .

Each blog is also assessed by its ego network which comprises a single actor
(ego), the actors that are connected to it (alters), and all the links among those alters
(Everett and Borgatti 2005). The larger an ego network is, the more alters it has –
these alters do not know, or barely know, one another – and the more different the
alters are in relation to other criteria, the more powerfully this ego can distribute
information. Blogs which seem to be “important” in the examined network because
they are surrounded by a strong, dense ego network and show a high centrality
measure, are important for marketing purposes because of two facts: (1) They act as
multiplicators (Katz and Lazarsfeld 1955) of information within the network, and
(2) highly involved bloggers do not often have long actualization breaks on their
blogs.

2.2 Netnography

The term netnography was coined by Kozinets (2002). He divides his qualitative
methodology into the following four steps which need to be processed. The first
two are “Making cultural entre” and “Gathering and analyzing data” which is done
in this papers approach by choosing the relevant of the blogosphere, collecting the
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data with a web crawler and analyzing it with the above SNA methods. The third
step is “Conducting ethical research” which is done by reading the important blogs
carefully and extracting consumer insight. Automated text mining methods cannot
replace the thorough reading procedure because weblogs have no fixed format, so
difficulties in processing these data automatically arise. Particularly, it is almost
impossible to indicate and extract the texts in various blog formats precisely. Even
if the text data are pre-processed manually it still would be challenging to extract
the relevant information with text mining algorithms, because weblogs are written
in a colloquial style. Term frequencies and ontologies do not substitute for interpre-
tations The netnography goes deeper in selected details by extracting not only topics
or themes from the text but gaining detailed and valued statements and opinions. In
line with the argumentation of Kozinets (2006) we conclude that the qualitative way
to actually read the weblog content and verbally save the information is best in our
application context. In the fourth step, “Providing opportunities for culture member
feedback” we develop action alternatives for marketing activities.

3 Empirical Study: Mobile Communication

3.1 Data Description

For this study, the topic Mobile Communication and Phones was chosen as an exam-
ple within the German blogosphere. Therefore, blog URLs related to this topic were
collected by searching them via Google.Blog-Search and Technorati with key terms
like “Handy”, “Mobiltelefon” and “mobile Kommunikation”. Not only topic-related
blogs in general were searched, but also blogs related to mobile phone brands and
products. In all, 173 blog URLs were collected, including 131 generally linked to
the topic-related blogs, 18 Apple blogs (iPhone), 15 Nokia blogs, 3 Sony Ericsson
blogs, 2 LG blogs, 2 Samsung and 2 XDA blogs. The resulting network is depicted
in Fig. 1.

It is clear from the graph that there are many isolates which are not connected to
any other blog within the network shown on the edge of the figure. In addition, there
are two subnetworks, each with seven blogs, and one with only two blogs. Analysis
of these subnetworks indicates that the bigger ones are blog spam farms. Bloggers
use these blog spam farms which are interlinked to optimize their search results in
engines like Google to get more hits and thus sell their pages for banner marketing.
The small subnetwork is just not connected with the rest. After excluding the blog
spam farms and isolates from the network, the final blog community network con-
cerning the topic of Mobile Communication and Phones includes 112 blogs, and has
a density d.whole net/ D 4:13%. This network is the database for all the following
analyses.
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Fig. 1 Blog network with subnetworks and isolates of 173 blogs

Table 1 Extract of the top 112 weblogs with its SNA centrality measures

Blog URL Type Cd Cc Cb

blog.telefon.de general Handy 12 42:36 3:90

blog.handymeile-nord.de general Handy 3 34:79 0:72

guteshandy.de general Handy 6 38:54 2:13

handy-blogg.de general Handy 13 40:95 3:36

lgblog.de lg 27 47:63 14:01

iphone-news.eu apple iphone 5 37:12 1:09

apfelphone.net apple iphone 10 34:90 0:60

apfeltalk.de apple iphone 10 36:87 0:88

iphoneblog.de apple iphone 20 41:41 6:52
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

3.2 SNA Analysis

Obviously, the central and interacting blogs are closer together in the middle of the
graph, and less connected blogs fade out toward the border. Also considered for the
position of the blogs in the net is the number of the directed links which, for reasons
of legibility, are not shown in the graph. The three introduced centrality measures
of the 112 blogs are listed for exemplarily chosen URLs in Table 1.
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The lgblog.de is highlighted because it has the highest betweenness of all the
considered blogs. Thus, this blog appears to be suited to control the communi-
cation process. Moreover, lgblog.de has the highest degree centrality within the
network, so this blog is also eligible from which to start communication activities.
Furthermore, this recommendation is supported by lgblog.de’s comparatively high
closeness of Cc.lgblog.de/ D 47:639. Because of its centrality and independence,
this blog provides an efficient knot of origin for marketing communication measures
in the blog network under consideration. The ego network of lgblog.de connects
with 27 of the other 112 observed blogs, and there are 167 ties in this ego network.

3.3 Netnographical Analysis

Depending on the marketing activity approach adopted, one of the three different
centrality measures needs to be used to identify and select the ego for a strong
network of combined ego networks.

� Degree: communication activity (participate)
� Betweenness: communication control (monitor)
� Closeness: advertisement (canvass)

For this study, the ego networks of the eight blogs with the high- est betweenness
were chosen to be further analyzed with the netnography procedure to monitor the
community. The result is a new network with 78 blogs and a density d.reduced/ D
6:90% which is quite higher than the density of the original network. A higher
density stands for a better communication flow (Everett and Borgatti 2005).

Using netnography related to Kozinets (2002), first a “Cultural entre” is needed,
which will be the topic-related community from the German blogosphere for this
work. Second, the data need to be gathered and analyzed. For this study, the data
were crawled and analyzed, and afterwards the “important blogs” concerning mobile
communication were identified. Thus, the analysis continues with the third step of
“conducting ethical research” by extracting “consumer insights” from the identified
network resulting from the eight ego blog networks. All post and comments from
the eight ego blogs have been read carefully, and information related to the topic
of mobile communication which gave new insights, contained opinions, proposals,
ideas or critique were collected in a database.

All detected “consumer insights” were divided into five different insight cate-
gories. On the selected blogs, users talked in more detail about hardware, acces-
sories, the combination of applications with hardware, software, and they discussed
more general topics. Table 2 gives an overview of all detected “consumer insights”
in the five insight categories.

Finally, in the last step of the netnography, opportunities for culture member
feedback such as action alternatives and instructions for mobile businesses need
to be provided. For this study, the authors provide alternatives and instructions
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Table 2 Extract of the top 112 weblogs with its SNA centrality measures

Hardware Accessories Apps & Hardware

� Rechargeable battery � Uniform battery charger � Medical functions
� “QWERTY” keyboard � Protection Cover � GPRS location detection
� ECO Phones � Engraved designs for phones � Navigation
� Display resolution � Bluetooth keyboard
� RFID technology � Wireless headphones
:
:
:

:
:
:

Software Software Discussion topics

� Push vs Sync � Widgets � Phone prices
� SMS read out � Screensaver � Tariff prices
� “Kindle” ebook reader � SOC software (facebook) � Customer treatment
� Facebook pics to phone � TV guide � Fair news
� Instruction manuals on phones � Mobile Twitter � Design & technology
� iPhone organizer for PC � P2P call software dublicates
� E-Mail programm � AppStor Errors � Product studies

exemplarily related to three different marketing areas. First, the “consumer insights”
could be used for product development.

Example: Consumers often remark that they wish to have standardized ports for mobiles.
Thus, recharging, headphones (3.5 klinke adapter), PC connection (mini USB) and memory
card-ports should be the same for all mobiles.

In the examined data, the users gave many ideas for new product features and
evaluated existing ones. Companies could use this information to have an impres-
sion of what customers like, dislike and what their wishes are. By listening closely to
customers’ needs, companies can improve their image, gain a competitive advantage
and finally increase their sales volume.

4 Conclusions and Future Work

Online communities like the blogosphere contain a lot of interesting information for
marketing uses. This paper aims to outline methodologies to identify blogs suited for
triggering and controlling a marketing communication process on online communi-
ties in the blogosphere. The structure of the blog community network related to the
topic of mobile communication was crawled and visualized in a first step. In addi-
tion, different SNA centrality measures for quantifying the individual blog’s position
in the communication network have been discussed. The calculation of these mea-
sures enables the identification of “important blogs” which have a strong influence
on the network. Then, these blogs were examined to gain “consumer insights” about
brands, products and topics from which marketing action alternatives were finally
derived. The selection of important blogs out of the whole network is an expedient
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reduction of burdens in the subsequential netnographical analysis. This emphasises
the benefit of supporting the qualitative analysis by both visualisation and quantita-
tive social network analysis. The ego-networks turned to provide suited criteria for
the selection of blogs.

Continuing working on this research area, we need to find a decision criterion to
decide how many egos should be chosen as “influentials”. Moreover, creating two
mode networks with additional information describing the actors is likely to provide
researchers with even more informative clustering results.
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Visualising a Text with a Tree Cloud

Philippe Gambette and Jean Véronis

Abstract Tag clouds have gained popularity over the internet to provide a quick
overview of the content of a website or a text. We introduce a new visualisation
which displays more information: the tree cloud. Like a word cloud, it shows the
most frequent words of the text, where the size reflects the frequency, but the words
are arranged on a tree to reflect their semantic proximity according to the text. Such
tree clouds help identify the main topics of a document, and even be used for text
analysis. We also provide methods to evaluate the quality of the obtained tree cloud,
and some key steps of its construction. Our algorithms are implemented in the free
software TreeCloud available at http://www.treecloud.org.

1 Introduction

Tag clouds have become very popular on the web. They allow the representation of
entire websites in a compact way, through a set of tags whose size or colour reflects
their frequency of use (Viégas and Wattenberg 2008). Tags are usually manually
associated to the individual articles. However, word clouds have been proposed,
that can be built directly from a text using the word frequencies, after getting rid of
stop words.

The words of a tag or word cloud are often sorted in alphabetical order. This
ordering provides no information, although it could be used to express some seman-
tic information on the displayed words, captured using their cooccurrence level.
Such improvements of tag clouds have appeared in the literature, for example
in Hassan-Montero and Herrero-Solana (2006), where unsupervised clustering, with
the number of clusters given as a parameter, is first used to put similar tags on
the same line, followed by a reorganization of the lines to group together similar
clusters.
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Graphs can also be used to display words as well as their cooccurrence rela-
tionships, for example in some text mining software like WordMapper, Blake
Shaw’s visualisation of Del.icio.us tags (Shaw 2005), or Chris Harrison’s Bible
Visualisation (Harrison 2008). Other approaches have considered multidimensional
scaling (van Eck 2005; Fujimura et al. 2008) or factor analysis (Brunet 1993; Viprey
2006) to express the semantic proximity by displaying the most frequent words in
two or three dimensions. However, these visualisations are often quite complex, and
difficult to read and analyze quickly.

Here we propose to use a tree to reflect the semantic distance between words of
a tag cloud, and we call it a tree cloud. Then, the distance between two words is
given by the length of the path between them in the tree. In fact, the idea of using a
tree in this context was already given in Kaser and Lemire (2007), but the tree was
not used explicitly and was just a step in an algorithm to display the tag cloud in a
compact way.

The problem of finding a tree which reflects a distance matrix was introduced
in bioinformatics to reconstruct phylogenetic trees from the information on the dis-
tances between their leaves. This very active field has provided algorithms which
were also used in text and information processing to represent for example proxim-
ity inside a set of texts. It has also been used to reflect the semantic distance between
words, according to Google (Cilibrasi and Vitanyi 2007), or inside a text (Brunet
1993; Véronis 2004), but was not used yet to enhance tag clouds.

We describe how to build such tree clouds in Sect. 2. For each step of the
algorithm, we give alternative methods or formulas. Then, in Sect. 3, we present
some possible test procedures to evaluate the quality of the obtained tree cloud, or
the method choosed to generated it. We will focus on a corpus of 138 campaign
speeches by Barack Obama, retrieved at http://www.barackobama.com/speeches/.

2 Constructing a Tree Cloud

We consider that we are given an input text containing t words, and detail how to
build a tree cloud which describes it.

2.1 Building the List of Frequent Terms

The first step is to extract from this text the list of its most frequent words. Before
this process, punctuation should be removed, and other changes in the text can be
performed: conversion to lower case or lemmatization (sometimes it should not
be applied, see for example “Americans” and “American”, which, interestingly,
appear in different subtrees in Fig. 1). Some words can also be grouped together, for
example different ways to refer to a person: “Barack Obama”, “President Obama”,
“Obama”. . .

Once the list of most frequent words is obtained, stop words (words unlikely
to have a semantic value) may be removed to get a meaningful tree cloud. This

http://www.barackobama.com/speeches/
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operation is crucial in any word cloud as well, because stop words are among the
most frequent, and even on top of the list. Finally, we consider that we obtain a list
L of k words, with their frequency.

2.2 Building the Distance Matrix

We then compute some semantic distance between the words in L. Note that we use
the word “distance” to refer in fact to a dissimilarity, that is, the triangle inequality
may not be satisfied; we only guarantee that the distance matrices are symmetric
and contain positive numbers, with 0 on the diagonal.

We use the classical principle that the semantic distance between two words in a
text is well captured by their cooccurrence. However, there is no ultimate formula
to compute the semantic distance, and many have been used in different contexts:
more than 20 were gathered and uniformly defined in Evert (2005).

These formulas of cooccurrence distance between two words wi and wj are based
on a set of portions of the text. O11

i;j (resp. O12
i;j , O21

i;j , O22
i;j ) counts the number of

such portions which contain wi and wj (resp. wi but not wj , wj but not wi , neither
wi nor wj ). A portion can correspond to a sentence, a paragraph, or just a sliding
window, depending on the type of text whose tree cloud is being built.

For sliding windows, two parameters have to be chosen: the width w of the
window (by default, 30 words), and the size of the sliding step s between two con-
secutive windows (1 by default). We discuss the choice of these two parameters in
Sect. 3.

For the second parameter, a one word sliding step should be chosen to get the
most accurate cooccurrence computation. In this case, our algorithm to compute the
Oab matrices consists in storing the set Lw of the words of L currently contained
in the sliding window with their number of occurrences in the window, updating the
content of the O11 matrices in O.min.w; jLj/2/, and then updating Lw (in constant
time) when the sliding window is shifted. This provides an algorithm of complexity
O.t:min.w; jLj/2/ which is in practice much faster than the naive algorithm which
computes the cooccurrence for each pair of words inO.jLj2:t/. Note that the begin-
ning of the sliding window of width w starts at position 1�w, and stops at position t .
This ensures that each word has the same weight in the cooccurrence distance.

2.3 Building the Tree

The most popular tree reconstruction algorithm is Neighbor-Joining (Saitou and Nei
1987). For trees reconstructed from textual data, the method mostly used is a variant
of AddTree (Sattah and Tversky 1977) proposed by Barthélémy and Luong (1987).
It is not clear whether this method is used because it is adequate for such data, or
just because Neighbor-Joining was not popular enough when this field of research
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started. Other heuristics have been proposed to reconstruct a tree from a distance
which is not close to a tree distance, for example a numerical procedure which
consists in fitting the distance to a tree distance (Gascuel and Levy 1996) or a more
recent one based on quartets (Cilibrasi and Vitanyi 2007).

The bootstrapping methods to evaluate the quality of tree clouds presented in
Sect. 3 can help choosing the most appropriate tree reconstruction method for
some data. Currently, our program uses only Neighbor-Joining as implemented
in SplitsTree, but adding some format conversion functions, to make other tree
reconstruction algorithms available, is ongoing work.

2.4 Building the Tree Cloud

The size of keywords can simply reflect the frequency of words, as it is usually the
case in tag clouds, or, it can be used differently, for example, to reflect the statistical
significance of the various words with respect to a reference corpus. For instance,
the words trees representing Barack Obama’s and George Bush’s discourses could
be contrasted that way: the largest words would be those which are the most salient
for each of them.

Keyword colours can also convey information. One obvious use is the categori-
sation according to topics (e.g. Sports, Politics, Business, etc. on a news website).
Brightness could be used to show whether the word appears in one same place in
the text or in many places (according to some dispersion coefficient). If the corpus
is associated with dates, the most recent words can be displayed with the highest
intensity or with a different colour, as in Fig. 1.

Information can be conveyed also by edge thickness, length and colour. However,
it remains to be seen how much information can be superimposed in the same tree
without disturbing its overall readability. A good trick to improve the general aspect
of the tree cloud is to force unit edge length. This avoids the long branch problem
which occurs with most of the semantic distances: the branches leading to the leaves
are very long and the structure of the tree is hidden in the center. The obtained
visualisation reflects the semantic distance less faithfully, but the subtree topology
appears more clearly.

3 Evaluating the Quality of a Tree Cloud

Tree clouds are useful to get a quick glance at the content of a text. However, one
could also use them for further analysis by looking more carefully at clusters of
words associated the different subtrees. The tree should then give a good represen-
tation of the semantic distance between words in the text, although this distance is
just approximated by the tree distance.
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Fig. 1 Fifty word tree cloud of Obama’s presidential campaign speeches, with Jaccard distance,
and chronology colouring. Light grey corresponds to the beginning of the campaign (“children”,
“Irak”, “war”, “world”), while dark grey corresponds to the end (“McCain”, “Wall Street”, “crisis”,
“taxes”)

In this section, we give some methods to evaluate this quality. They can also
be used to choose appropriate distance formulas or tree reconstruction methods for
some given input data.

Note that, contrary to phylogenetic tree where the tree distance is supposed to
have a biological interpretation (it can represent time, or the number of mutations),
the semantic distance formulas which are reflected by the tree have no clear inter-
pretation. In fact, applying an increasing function to the distances would not change
their ordering, and the obtained distances can be considered as valid as the input.
This explains why the quality of the tree clouds should not be evaluated by direct
comparison of the distance matrix and the tree distance.

Instead, we propose an bootstrap evaluation based on the stability of the results.
If small changes in the input text provide a similar tree cloud, then it is stable, and
the method to build it can be considered robust. We will also give another criterion,
arboricity, which evaluates how close the semantic distance is to a tree distance, and
discuss how it is related to stability.



566 P. Gambette and J. Véronis

3.1 Stability and Robustness

Evaluating the stability of a tree cloud requires two steps: altering the input text, and
computing how much the tree has changed. For text alteration, we implemented two
procedures: either each word is deleted with probability p, or the text is cut into 100
parts, and some of those parts are removed.

Then, to evaluate stability, we count how many edges of the tree built from the
original text are present in the one built from the altered text, seeing each edge as a
split, i.e. a bipartition of the leaves into two separate clusters. Each edge leading to
a leaf is trivially present in both trees, so we neglect those trivial splits, and define
stability as the proportion of non-trivial splits which appear in both trees.

3.2 Arboricity

Tree reconstruction algorithms are more efficient on distances which fit a tree. Thus,
one can expect that the tree cloud will be more stable for semantic distance formulas
which provide distances with a good arboricity, that is, close to a tree distance. We
first give two formulas which evaluate arboricity, and we will test below whether this
can be an objective criterion to evaluate the quality of the tree cloud by avoiding the
bootstrap procedure.

The discrete arboricity1 (Guénoche and Garreta 2000) of a symmetric matrix
M 2 Œ0; 1�n	n is

Arbd .M/ D 1
�

n
4

� jffi; j; k; lg such that Smax � Smed < Smed � Smingj; (1)

where Smin, Smed and Smax are the three sums Mi;j C Mk;l , Mi;k C Mj;l and
Mi;l CMj;k , sorted in increasing order. The continuous arboricity (Guénoche and
Darlu 2009) of M is

Arbc.M/ D 1
�

n
4

�
X

i<j <k<l

Smed � Smin

Smax� Smin
: (2)

3.3 Distance Comparison on the Obama Corpus

We applied our quality control procedures on the tree clouds obtained on Obama’s
speeches with the 13 semantic distance formulas implemented in TreeCloud, with
text alteration based on removing words with 5% probability.

1 This formula reflects how much the four point condition, characteristic of tree distances, is
verified for each subset of four elements.
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Table 1 Average stability (5% alterations) and arboricity of various semantic distances for the tree
clouds of the 50 most frequent words of 138 campaign speeches, with sliding windows of size 30
and sliding gap 1

Distance: Li. g.m. Ja. Di. m.s. z.s. Hy. �2 P.S. l.l. od. NGD m.i.

Av. stability (%) 56.8 56.8 56.6 56.5 56.0 55.1 55.0 53.9 52.3 51.8 30.9 27.1 17.6
Arbd (%) 67.2 64.3 65.3 64.4 64.8 66.0 64.4 68.9 53.4 61.8 55.6 59.0 42.1
Arbc (%) 70.0 66.3 67.6 66.4 66.9 68.2 66.4 72.7 55.4 65.0 55.1 57.5 42.4

Table 2 Average stability of various semantic distances, for the tree clouds of the 50 most frequent
words of 138 campaign speeches, to changing the sliding window width (30 by default) or the
sliding step (1 by default)

Distance: Li. g.m. Ja. Di. m.s. z.s. Hy. �2 P.S. l.l. od. NGD m.i.

w D 10 36.2 35.8 35.8 35.5 34.7 35.4 34.6 35.3 34.1 34.4 17.8 10:4 1:2

w D 100 28.9 29.1 29.7 29.1 28.5 29.2 25.4 28.4 21.6 27.4 12.5 6:8 1:4

s D 5 68.9 70.7 71.0 69.2 69.9 67.0 67.6 61.5 50.1 52.3 27.2 42:1 25:6

s D 15 47.9 48.9 48.9 48.5 48.1 48.0 47.8 45.2 39.6 41.6 23.3 24:5 9:7

s D 30 34.0 35.0 35.5 35.5 35.6 34.3 33.1 33.9 31.5 32.5 17.7 14:0 3:1

The results are available as supplementary material for this article at http://www.
treecloud.org, and a summary given in Table 1 shows that all distance formulas2

perform approximately equally well, except except mutual information which is
very bad, normalized Google distance, and oddsratio. Although oddsratio gives tree
clouds with lower stability, it is still an interesting distance, because it provides nice
trees even when the edge lengths are not forced to unit length.

The correlation between arboricity and stability is not very good (0.6 correlation
coefficient). However, very bad arboricity (below 50%) implies bad stability, and
very good arboricity (over 90%) implies good stability.

3.4 Robustness to Parameter Variations

We evaluated stability to decreasing (w D 10words) or increasing (w D 100words)
sliding window width, and to variations of the sliding step (s D 5; 15; 30) which give
similar results for the different distances, shown in Table 2, except for loglikelihood
and Poisson-Stirling which seem less robust to sliding step variations.

4 Conclusion

We presented a new visualisation tool which improves word clouds to get a quick
overview of the content of a text, as well as some quality control procedures to
evaluate how much a tree cloud can be trusted for text analysis. The study of other

2 The abbreviations correspond to: Liddell, geometric mean (Evert 2005), Jaccard, Dice, mini-
mum sensitivity, z-score, Hyperlex (Véronis 2004), �2, Poisson-Stirling, log-likelihood, oddsratio,
normalized Google distance (Cilibrasi and Vitanyi 2007), mutual information.

http://www.treecloud.org
http://www.treecloud.org
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Fig. 2 Visualisation of stability results of Tables 1 and 2

uses in this context (topic-focused tree cloud, tree cloud comparison. . . ) is ongoing
work.
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A Tree Kernel Based on Classification
and Citation Data to Analyse Patent Documents

Markus Arndt and Ulrich Arndt

Abstract We consider the problem of representing patent documents in such a way
that a kernel matrix reflecting the similarities of the documents can be efficiently
computed.

The European classification system ECLA is a deep level hierarchical taxonomy
comprising about 130,000 classification symbols. Depending on their technical con-
tent, patent documents are assigned one or more ECLA classification symbols. In
this study we represent the complete ECLA taxonomy as a tree labelled by the clas-
sification symbols, called the ECLA tree. Within the ECLA tree a positive value
is attached to each node of the tree reflecting the technical specificity of the cor-
responding classification symbol. Based on the directly assigned symbols as well
as on symbols of the cited and citing documents, patent documents are mapped to
subtrees of the ECLA tree. Taking into account the specificity of the tree nodes, we
define an inner product on subtrees representing the documents. It is shown that the
inner product is a valid kernel function which can be effectively used for discovering
clusters in a set of patent documents.

1 Introduction

Defining similarity measures based on taxonomies has been an active area of
research for some time. Several such measures have been developed in the con-
text of WordNet in order to calculate the semantic similarity between expressions
(Lin 1997; Resnik 1999).

In this study we focus on the European Classification system ECLA which
is a taxonomic scheme for classifying technical documents, in particular patent
documents (European classification 2008; Dickens 1994). When comparing two
documents each with one or more ECLA classification symbols assigned we want
to answer the question of how technically related these documents are. Moreover,

M. Arndt (B)
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as patent citations clearly indicate that the citing and cited document share techni-
cal content, a similarity measure for patent documents should include the citation
information (Li et al. 2007).

A kernel function, which expresses the relatedness of documents, is developed
by combining classification and citation information such that use can be made of
the kernel toolbox for clustering patent documents, for calculating distances, for
visualization document sets, etc. (Shawe-Taylor and Cristianini 2004). The defined
kernel function has been applied to cluster a set of patent documents in order to
validate its usability by way of an example.

2 European Classification System ECLA

As an extension to the International Patent Classification system (International
Patent Classification IPC) the European Classification system ECLA is a deep level
hierarchical taxonomy comprising about 130,000 classification symbols (Dickens
1994; European classification 2008). It is organized in nine sections designated by
one of the capital letters A through H and Y. By introducing a generic root sym-
bol (ECLA Root) having edges to the nine sections, one can represent the complete
ECLA taxonomy as a tree labelled by the classification symbols. This tree is called
the ECLA tree.

In a manually performed classification process, a document is assigned to one or
many ECLA symbols when its technical content matches the definition of one of
the ECLA symbols. As a general rule, a document is given the classification symbol
at the deepest appropriate hierarchical level which is not necessarily a leaf of the
classification tree. Formally, document classification can be regarded as a mapping
from the set of documents to the power set of classification symbols.

The technical specificity of an ECLA symbol� can be quantified as follows: Let
S� be the subtree rooted at the symbol � and let jS�j denote the size of S� which
equals its number of nodes (cf. Fig. 1), then

Specificity.�/ D 1

1C ln jS�j (1)

Fig. 1 ECLA specificity
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By this definition, a leaf symbol has the specificity value of 1; and the specificity of
an ECLA symbol within the tree becomes smaller the larger the subtree attached to
that symbol. The rationale behind this definition is that the specificity of an ECLA
symbol can be regarded as the quantity of domain specific information contained in
the symbol. As a leaf node characterizes a technical concept most precisely, it rep-
resents the relative maximum information with respect to the associated technical
domain. The specificity of a node within the ECLA tree depends on the structure of
the subtree which is rooted at this node. When an ECLA symbol has a large sub-
tree, this indicates that there is much domain specific information attached. Hence,
this node contains relatively general information and, consequently, the specificity
associated with that node must be smaller.

3 Patent Citations

Search reports are established for a patent application in order to identify prior art
documents relevant to the claimed subject-matter. During the examination phase
which follows the search, the assessment of novelty and inventive step of the subject-
matter defined in the claims is based on the documents which have been cited in
the search report. For these reasons, patent citations provide a strong link from the
technical content of the application to the technical content of other documents. In
this study we make use of this link by relating cited and citing documents via their
ECLA symbols, a concept which has previously been applied by Li et al. (2007).

4 Tree Kernel

A standard model for representing text documents is the vector space model (VSM)
which uses vectors to represent documents. According to the VSM, each dimension
of the vectors corresponds to a particular word. If a word occurs in a document,
its value in the corresponding vector is non-zero such that the bag of words of a
document is mapped to a vector (Salton et al. 1975).

In our model we make use of the directly assigned ECLA symbols as well as of
symbols of the cited and citing documents to describe the information content of
patent documents, whereby the hierarchical ECLA taxonomy suggests that docu-
ments be represented by rooted subtrees of the ECLA tree (cf. Fig. 2). We further
propose that these subtrees be mapped to vectors ı, whereby each dimension of
the vectors corresponds to a particular ECLA symbol. A component of a vector
is assigned a non-zero value whenever the associated ECLA symbol is part of the
ECLA subtree which represents a particular document. The function which deter-
mines the value is related to the specificity of the respective ECLA symbol (cf.
Sect. 2 and (2)). The kernel function which captures the technical content two doc-
uments have in common is than given by the inner product between the feature
vectors (Shawe-Taylor and Cristianini 2004): �.ıA; ıB/ D hıA; ıBi D ıT

AıB .
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Fig. 2 The subtree �A represents a document A with three ECLA symbols �1, �2 and �3; the
other subtree �B a documentB with two ECLA symbols�1 and�4. The common technical content
of the two documents A and B is expressed by the largest common subtree �c of the trees �A and
�B . Thus, �c equals �A \ �B

As in the standard bag-of-word vector space model we represent a set of docu-
ments by a document matrix E . In this matrix each row is related to a document
and each column to an ECLA symbol. Naturally, the document matrix E is a sparse
matrix, since the ECLA subtree which represents a document comprises just a small
number of all the ECLA symbols. The kernel or Gram matrix which expresses the
relateness between any two documents in the set is then the document by document
matrix K D EET .

Four data matrices are defined in order to effectively calculate the document
matrix E: a document classification matrix Dec ; a root path classification matrix
CRoot ; a classification weighting matrix R, and a document citation matrix Dct .
These data matrices are combined such that the resulting document matrix E

contains information for each document of its associated ECLA tree.
The classification matrix Dec is a document by ECLA symbol matrix. An entry

indicates that a particular ECLA symbol is assigned to a document. The matrix
CRoot is an ECLA symbol by ECLA symbol matrix. An element in a row is assigned
a value of 1 whenever the column corresponds to an ECLA symbol of the root path
of the ECLA symbol of the row. Examples of these matrices are shown in Figs. 3
and 4.

Further, a weighting scheme, which is based on the technical specificity of the
ECLA symbols as defined in (1), is introduced. This scheme is implemented as a
diagonal matrix R, wherein a diagonal element corresponds to an ECLA symbol �
and an element ri i is calculated by (2) below. The difference as expressed by (2) is
applied in order to place emphasis on the leaves of a largest common subtree when
calculating the kernel function.

ri i D

8
<̂

:̂

p
Specificity.�/

if � is the root
ECLA symbol

p
Specificity.�/ � Specificity.�parent / otherwise

(2)

Finally, there is a standard adjacency or citation matrix Dct on the directed cita-
tion graph induced by the document’s citations. Within Dct the i th row and the i th
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column are related to a particular document. An element dct i;j is assigned a value
of 1 when document i cites document j .

The calculation of the kernel matrix is carried out by standard matrix operations.

E1 D sgn.DecCRoot /

Firstly, the classification matrix and the root path matrix are multiplied and the
sign function is applied to each element. This results in a matrix wherein each row
corresponds to a particular document and the data in that row contains the infor-
mation concerning the associated ECLA tree. That is, for any classification symbol
present in the classification matrix, the symbols on the root path are added via matrix
multiplication.

D2 D Dct CDT
ct

E2 D 0:5 sgn.D2DecCRoot /

Similarly, the citation matrix, the classification matrix and the root path matrix are
combined. This yields a matrix which contains information on the ECLA tree of the
cited and citing documents. The importance of the citation classification matrix is
limited by introducing a weighting value.

D3 D DctDct CDT
ctD

T
ct

E3 D 0:25 sgn.D3DecCRoot /

There is a further matrix E3 for which citations via citations are evaluated.
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Combining the matrices E1; E2; E3 and applying the weighting matrix R one
obtains:

E D .E1 C E2 C E3/R

which is used to calculate the Gram matrix or tree kernel matrix

K D EET

In a final step, the kernel matrix is normalizedKN W kN ij D ki kjp
kii kjj

.

5 Experiment

As a first use case, and to empirically validate that the proposed tree kernel reveals
underlying information, a cluster experiment for a set of patent documents was
carried out.

The experiment is based on the patent documents assigned the specific ECLA
symbol F24H8/00. As closely related patents documents are organized in patent
families, we used one patent document per patent family for the analysis. There
were 588 patent families having the ECLA symbol F24H8/00 assigned thereto. In
order to ensure that there was sufficient information available for the clustering pro-
cess, documents were removed from this set when they could not be related by
direct assignments and assignments via citations to at least three ECLA symbols.
This resulted in 522 documents for the experiment. The core set was expanded by
all the documents which cite a document in the core set as well as all the documents
which were cited by the documents in the core set. The bibliographic data of the doc-
uments in the expanded set was downloaded from Open Patent Services (OPS). The
citation data and the classification data of the documents in the expanded set was
then used to calculate the expanded normalized tree kernel matrix, as described in
Sect. 4 above using a weighting matrixR in which the values of the low level hierar-
chy symbols (1st–4th level) was set to 0. A core tree kernel matrix was then formed
by removing all rows and columns from the expanded tree kernel matrix which were
not associated with a document in the core set. Hence, the core tree kernel matrix
contained solely the information about the relateness for any two documents within
the core set.

The core tree kernel matrix was passed to the spectral clustering algorithm of
Ng et al. (2001). In addition, we tested kernel k-means clustering which also per-
formed reasonably. For comparing the clustering methods as well as for determining
the number of clusters, the modularity measure Q according to M. Newman was
applied (Newman 2006). Visualization was carried out by kernel principal compo-
nent analysis (KPCA) (Schölkopf et al. 1996) as implemented by the R package
kernlab (Karatzoglou et al. 2004). Figure 5 shows the four clusters identified by the
clustering experiment. Each solid object represents one of the 522 documents, the
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Fig. 5 Visualization of the clustered data set by kernel principal component analysis

color and shape indicating the cluster assignment. The diameter of an object corre-
sponds to the distance of a document to the respective cluster centroid in the feature
space. An object has a large diameter when its distance to the centroid is small.
Hence, large diameters refer to documents which can be regarded as representative
of the cluster. It can be seen in Fig. 5, that within the projection space created by
kernel PCA, the largest objects are situated in a corner of a cluster and not in its
centre which, however, simply illustrates that the projection space and the feature
space do not have the same structure.

The technical concept related to the ECLA symbol F24H8/00 is directed to
“Fluid heaters having heat-generating means specially adapted for extracting latent
heat from flue gases by means of condensation”. When taking a closer look at the
technical content of the four clusters, we are able to identify three technical sub-
concepts which can be labelled “Air heaters”, “Water heaters with a water tube heat
exchanger” and “Water heaters including fire tubes”. In addition, there is a further
generic cluster.

6 Conclusions

The presented approach shows how classification and citation information of patent
documents can be combined to form a tree kernel on the basis of a strict separa-
tion between the definition of the specificity function related to ECLA symbols, the
definition of the weighting scheme, the calculation of the relatedness by a kernel
function and the final normalizing step. As an example, the kernel function has been
applied to cluster patent documents in an effective manner. The results had been
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validated by a subject-matter expert. The experiment showed that underlying struc-
tures in a specific document set can be revealed. An algorithm-supported application
would be a recommendation system to present for a selected document similar doc-
uments based on kernel distance measures to users. A suggestion for future work
would be to combine the tree kernel with text kernels and direct citation kernels
to enhance the results, thereby including further information available in the patent
documents.

Disclaimer: This article represents the views and opinions of the authors alone.

We would like to thank the anonymous reviewer for the valuable comments and
suggestions.
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A New SNA Centrality Measure Quantifying
the Distance to the Nearest Center

Angela Bohn, Stefan Theußl, Ingo Feinerer, Kurt Hornik, Patrick Mair,
and Norbert Walchhofer

Abstract In Social Network Analysis (SNA) centrality measures focus on activity
(degree), information access (betweenness), distance to all the nodes (closeness),
or popularity (pagerank). We introduce a new measure quantifying the distance of
nodes to the network center. It is called weighted distance to nearest center (WDNC)
and it is based on edge-weighted closeness (EWC), a weighted version of closeness.
The WDNC will be tested on two e-mail networks of the R community, one of the
most important open source programs for statistical computing and graphics. We
will find that there is a relationship between the WDNC and the formal organization
of the R community.

1 Introduction

Until now, SNA centrality measures are based on the idea that a node should be
considered more central if it is connected to a lot of other nodes or at least if its
friends have many contacts. However, it depends on the question asked to a measure,
if this interpretation of centrality makes sense. Imagine a president’s wife who is
maybe not very interested in politics and who has only a few contacts in a political
network, but who has a large influence on her husband. Should she be considered
central or not?

The WDNC is based on the idea that not only a node’s integration into the net-
work is important for its centrality, but also its distance to the center. In the scientific
scene, not everyone feels the need to chat with dozens of people every day. How-
ever, such people may stay in contact with the network’s information brokers, which
guarantees him or her access to the most important news. The WDNC will be applied
to the R (R Development Core Team 2009) mailing lists R-help, designed to dis-
cuss users’ questions, and R-devel, a communication platform for developers. We
will find that the WDNC partly reflects the formal organization of the R community.
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2 Methodology

The paper introduces a new measure called WDNC. Wasserman and Faust (1997)
provide an overview of the most frequently used centrality measures and cluster-
ing approaches. The WDNC is based on a widely used centrality measure called
closeness (Freeman 1979). It is defined as the normalized average distance (length
of shortest path) from one vertex to all the others. A modification of closeness, the
EWC (Bohn et al. 2009), allows to take line values into account. It is defined as

EWC.i/ D
P

j

llv.i; j /

d.i; j /

max.lv/.n � 1/ ; (1)

where llv.i; j / is the (average) last line value on the shortest path between i and j ,
d.i; j / is the distance between i and j , max.lv/ is the maximum line value in the
entire network and n is the network size. The line value between i and j indicates
the intensity of interaction and the distance between i and j is the length of the
shortest path between them. The shortest path is the minimum number of edges
needed to go from i to j . The last line value on the shortest path from i to j is then
the line value between k and j , where k is the penultimate node lying on this path.
k is identical with i if the distance between i and j is 1. The reason for considering
only the last line value instead of using the sum or another aggregation of the line
values is a matter of scaling. One could as well use the sum of line values on the
shortest i -j -path. In this case, the larger the distance between i and j the more j ’s
contribution to i ’s EWC is influenced by the line values between i and k. Taking
only the last line values is more in line with the regular closeness, where each node
contributes a certain distance and not a sum of distances. The impression that only
the last line value is considered and the others are completely ignored is, however,
false. When calculating i ’s EWC, all j are taken into account and thus all the lines
lying on shortest paths contribute to i ’s EWC.

Splitting the sum in the enumerator into its summands and marking the distance
in which a vertex gains the most EWC, corresponds to the definition of the WDNC.
The WDNC of vertex i is defined as

WDNC.i/ D
0

@inf argmax
p

X

j 2Jp.i/

llv.i; j /=d.i; j /

1

A � 1 (2)

where Jp.i/ is the set of all nodes j which can be reached from vertex i by a path
of length p. In words: The WDNC of a vertex i is the neighborhood p in which it
gains the maximum EWC minus 1. If the maximum is not unique, infimum chooses
the smallest p. The result may be interpreted as a line-weighted distance to the
nearest center. The centers are vertices whose WDNC is 0. Thus, the WDNC com-
bines elements of centrality measures, used to find influential nodes, and community
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p

1 2 3 4
i A 0.136 0.145 0.008 0.000

B 0.111 0.111 0.008 0.000
C 0.111 0.151 0.008 0.000
D 0.049 0.173 0.012 0.000
E 0.062 0.167 0.012 0.000
F 0.395 0.019 0.000 0.000
G 0.136 0.142 0.004 0.000
H 0.012 0.062 0.095 0.003
I 0.012 0.062 0.095 0.003
J 0.012 0.049 0.074 0.006

A
0.29

B
0.23

C
0.27

D
0.23

E
0.24

F
0.41

G
0.28

H
0.17

I
0.17

J
0.14

WDNC

0
1
2

Fig. 1 Example for the calculation of the WDNC

detectors, serving to cluster nodes. (The R-code for the WDNC can be downloaded
from http://r-forge.r-project.org/projects/ewc/.)

Figure 1 shows an example for the calculation of the WDNC. The matrix on the
left shows the summands of the EWC enumerator with bold maxima. The corre-
sponding graph with WDNC clusters in gray scale and EWC values as labels is on
the right. The line strength symbolizes the size of the line values. The black ver-
tices having an EWC of 0.23 and 0.41 form the center of the graph. Most of their
neighbors’ WDNC is 1. However, the node having an EWC of 0.14 has a WDNC
of 2, because of its low adjacent line value. This shows that the WDNC does not
calculate the distance to the nearest center, but the weighted distance to the nearest
center: Vertices having high line values are closer to the center than nodes having
low line values. It is important to notice that the vertices having a WDNC of 1 have
higher EWC values than the black node with an EWC of 0.23. This illustrates that
the WDNC is not the same as calculating EWC quantiles.

3 Data and Data Preparation

The characteristics of the WDNC are investigated using network data of the R-help
and R-devel mailing lists during 2008. They serve to discuss questions from R
developers and users, therefore they contain interesting information about a part
of their social structure. Every e-mail sent to the mailing list is forwarded to all sub-
scribers. They can be downloaded as compressed text files from https://stat.ethz.ch/
pipermail/r-devel/ and https://stat.ethz.ch/pipermail/r-help/, respectively.

Transforming Thread Trees to a Social Network

Usually, mailing lists are represented as thread trees showing the referencing links
between e-mails. Each e-mail has a message-ID and follow-ups additionally have
reply-to IDs allowing to build thread trees (Feinerer et al. 2008). The next data
preparation step consisted in transforming the thread trees, where nodes represent

http://r-forge.r-project.org/projects/ewc/
https://stat.ethz.ch/pipermail/r-devel/
https://stat.ethz.ch/pipermail/r-devel/
https://stat.ethz.ch/pipermail/r-help/
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e-mails, in such a way that nodes represent e-mail authors. We drew an edge between
an author and his or her “forefathers” in the thread tree. The networks are repre-
sented as weighted matrices, where the weights correspond to the number of e-mails
exchanged between two authors. To calculate the WDNC, we need the networks
to be strongly connected. As the largest strongly connected subgraph (component)
cover only a small part of the network members we symmetrized the networks using
the sum of incoming and outgoing arc weights (sum of sent e-mails and received
e-mails) and only the largest component was considered. The other components
(42 in R-help and 15 in R-devel) have only one to three members and are therefore
negligible.

Finding Aliases

The second data preparation step consisted in finding aliases, as authors may have
several different user names and e-mail addresses. Like Bird et al. (2006) we first
normalized the user names and e-mail addresses, then we used the Levenshtein
distance (Levenshtein 1966) to find clusters of similar names. To increase the prob-
ability of finding all aliases, we allowed a distance of 0.3 between the names within
one cluster. Thus, each cluster contained a number of strings that differed in at most
3/10 of the symbols. We checked those clusters manually and rejected 60% of them,
so we expect to have found most aliases. This way, the R-help network was reduced
from 5,128 to 4,065 nodes and the R-devel network from 837 to 652.

Description of R-Help Network

The largest component of the network has 3,672 nodes, its diameter (length of
longest shortest path) is seven, the average degree (number of direct neighbors) is
11.8 and the median degree is 4. Each network member wrote 7.6 e-mails on aver-
age. The maximum of e-mails sent was 1,071 by Brian Ripley. About 1,640 people
wrote only one e-mail. About 76% of the line values (number of e-mails exchanged
between two authors) is 1. The maximum of e-mails exchanged between two authors
was 72 (Gabor Grothendieck and Brian Ripley) and their mean is 1.5.

Description of R-Devel Network

The largest component of the R-devel network has 566 nodes. Its diameter is 6. As
the network is much smaller, the average degree is 8.5, but the median degree is also
4. Brian Ripley is by far the most active author in the R-devel network. He sent 522
e-mails and his degree is 332. The second most active author, Duncan Murdoch,
wrote only 255 e-mails and his degree is 177. Most line values (67%) are 1 and the
their mean is 1.9. The maximum of e-mails exchanged between two authors was 63
(Brian Ripley and Duncan Murdoch).
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4 Results

In this section, we will apply the WDNC presented in Sect. 2 to the networks
described in Sect. 3. The results will be compared to other centrality measures.
Finally, the informal structure of software development will be compared to the
formal organization.

4.1 R-Devel Network

In the R-devel network, we identified five very central authors using the WDNC:
Peter Dalgaard, Gabor Grothendieck (GG), Martin Mächler, Duncan Murdoch, and
Brian Ripley (BR). They are in close contact to each other, so the network does
not to have several separated centers with each having its own community, but it is
monocentric. BR is the most active author in terms of degree and number of e-mails
sent. Many vertices adjacent to BR do not have any other contacts. He prevents the
network from being split into many small components. In contrast, some of BR’s
neighbors are more active and they are well connected to other network members, so
they may be considered to be the core of the network. 69% of the network members
have a WDNC of 1. Most of them are neighbors of the central cluster. 28% have a
WDNC of 2 and most of them are neighbors of those having a WDNC of 1.

4.2 R-Help Network

In the R-help network we identified three very central authors: GG, Jim Holtman,
and BR. Like in the R-devel network, the central nodes are in close contact to each
other. However, in this network, each of the vertices having a WDNC of 0 have
a community that is partly separated from the others. Furthermore, all nodes in
the central cluster are comparably active. These observations indicate, that BR’s
position is not as marked as in the R-devel network.

4.3 Empirical Evidence of the Usefulness of the WDNC

As the WDNC defines a vertex’ importance according to its weighted distance to
the nearest center, it is crucial to know whether the choice of centers is reasonable.
Figure 2 shows boxplots of centrality measures for each WDNC cluster (x-axis) in
the R-help network. The vertices having a WDNC of 0 are far more central than the
other clusters according to degree and pagerank (Brin and Page 1998). Compared
to closeness and EWC, the difference between cluster 0 and the others is smaller,
because the WDNC is based on these measures. The corresponding boxplots of the
R-devel network are very similar (Fig. 3), so we conclude that in the mailing list
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Fig. 2 Boxplots of WDNC vs. centrality measures in the R-help network
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Fig. 3 Boxplots of WDNC vs. centrality measures in the R-devel network

networks, the algorithm chose a few very central vertices to have a WDNC of 0.
Nodes with a WDNC of 1 are clearly less central, however, the amount of out-
liers in this cluster (139–140 in R-help and 23–25 in R-devel) indicates that it is
heterogeneous.
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Table 1 Cross-classified table of WDNC vs. developer and user groups

R-devel R-help
WDNC c.d.a m.d.b o.d.c users sum WDNC c.d.a m.d.b o.d.c users sum

0 4 0 1 0 5 0 1 0 1 1 3
1 11 11 186 185 393 1 11 13 411 961 1,396
2 0 2 64 94 160 2 3 3 581 1,552 2,139
3 0 0 3 5 8 3 0 2 33 96 131
4 0 0 0 0 0 4 0 0 1 2 3
sum 15 13 254 284 566 sum 15 13 1,027 2,612 3,672
mean 0.7 1.2 1.3 1.4 1.3 mean 1.1 1.4 1.6 1.7 1.7
aCore developers
bMain developers
cOther developers

4.4 WDNC Compared to Formal R Organization

The formal organization of R is not as strictly defined as in software companies.
However, the R community can be roughly divided into several groups of developers
and users. There are 19 core developers and 44 main developers who are mentioned
on the R Core Team website (http://www.r-project.org/contributors.html). In addi-
tion, there are hundreds of other developers whose names can be obtained from the
R package descriptions on CRAN (http://cran.r-project.org/).The group of users can
be divided into active and passive users. Active users report bugs, make suggestions
for improvements and write to the mailing lists. Passive users do not communicate
their experiences, but only use the software. Thus, the mailing lists contain only
information about active users. However, we cannot distinguish between the dif-
ferent kinds of active users. Table 1 shows a cross-classified table of WDNC vs.
developer and user groups.

It shows that, although R-devel is intended for developers and R-help for users,
a separation between users and developers is only partly realized: Half of the R-
devel authors are users and 29% of the R-help authors are developers. (Note that
some developers might be classified as users if their package is not yet on CRAN.)
However, inside the networks, the behavior of the groups differs. If we take the
membership of an author to a certain developer or user group as an indicator for the
level of commitment of this author to R, where the membership to the core devel-
opers corresponds to highest commitment and the membership to the user group
means lowest commitment, we see that the mailing list behavior reflects these dif-
ferences: The core developers have the lowest average WDNC in both networks (0.7
and 1.1), which means that they are most central. The group of main developers is
slightly less central (1.2 and 1.4) and the other developers have an average WDNC
of 1.3 and 1.6. Finally, many users are located at the periphery, which results in an
average WDNC of 1.4 and 1.7. (Like any other centrality measure, the WDNC of a
vertex can only be interpreted in comparison to nodes of the same network and not
across networks: An average WDNC of 1.4 can indicate a central position in one

http://www.r-project.org/contributors.html
http://cran.r-project.org/
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network and a peripheral position in another.) Thus, a low WDNC is associated with
high commitment.

5 Conclusion and Discussion

This paper introduced a combination of centrality measure and clustering approach
called WDNC. The WDNC was applied to the OSS mailing lists R-devel and R-help.
We found that the network structure of both mailing lists are similar: They are mono-
centric and dominated by a few very active e-mail authors staying in close contact
to each other. This can be explained by the fact that the mailing lists do not reflect a
stringent separation between developers and users. However, the WDNC reveals that
the behavior of users and types of developers differs. If we take a developer’s formal
role as indicator for his or her commitment to R, where the membership to the core
development group indicates highest commitment and being a user indicates lowest
commitment, we see that a low WDNC is associated with high commitment. Thus,
the level of commitment tends to be reflected by a central and influential position
in the mailing lists. However, the validity of the results is restricted to the commu-
nication via mailing lists which capture only a small part of the social behavior.
Although the data structure did not allow to use the directed version of WDNC, it
can be useful in other applications, for example to distinguish question-people from
answer-people.
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Mining Innovative Ideas to Support New
Product Research and Development

Dirk Thorleuchter, Dirk Van den Poel, and Anita Prinzie

Abstract Here, we present an approach for automatically identifying the innova-
tive potential of new technological ideas extracted from textual information. The
starting point of each innovation is a good and new idea. Unfortunately, a high per-
centage of innovations fail, which means many ideas do not have the potential to
become an innovation in future. The innovation process from a new idea as starting
point via research, development, and production activities through to an innovative
product is very cost- and time-consuming. Therefore, the aim of our work is to iden-
tify the innovative potential of new technological ideas to improve the performance
of the innovation process.

We extract new technological ideas from provided textual information. We also
identify innovative technology fields by analysing relationships among technolo-
gies. All identified ideas are assigned to innovative technology fields by using text
mining and text classification methods. Technological ideas in these fields are pre-
sented to the user as innovative ideas and might be used as starting point for new
product research and development divisions.

1 Introduction

The word innovation refers to the latin terms novus (that means new) and innova-
tion (that means something is newly created). An innovation includes a new idea
(Guiltinan and Paul 1991) as well as its realization e.g. as innovative product that is
successful in marked. Therefore in economical sense, we talk about innovations if
the newly created object increases producer or customer value (Mckeown 2008).

To create an innovation, an innovation process can be used. It has the aim to lead
a new idea to an innovative product. Therefore, the starting point of the innovation
process is a new technological idea (Möslein and Matthaei 2008). Based on this idea,
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a research process starts. The result is probably a prototype that is developed further
in a developing process. After this developing process a production process starts
and leads to a product (Bürgel et al. 1996). If this product is successful in market that
means it increases producer or customer value then it is an innovative product and
the idea standing behind this innovation can be defined as innovative idea. However,
by use of this economical definition, we only can identify innovative ideas subse-
quent to the innovation process that means after they become successful products in
marked.

Unfortunately, the innovation process is very cost- and time-consuming (Dis-
selkamp 2005) and a high percentage of innovations fail. Therefore, the aim of
our work is to identify the innovative potential of new technological ideas before
selecting them as starting ideas. This probably can improve the performance of the
innovation process.

2 Rationale Behind Mining Innovative Ideas

Our definition of a technological innovation is based on bibliometrical analysis as
described in Reiß (2006). There, it is shown that innovations normally do not occur
alone but together with several further innovations. These groups of innovations are
based on a common innovation field. Innovation fields are newly appeared technolo-
gies or scientific disciplines that occur on the borders of established technologies or
scientific disciplines. This means they occur between at least two technologies or
scientific disciplines that are not related. A definition of possible relationships is
given in Sect. 6. Therefore, innovations can be classified as interdisciplinary prod-
ucts. The (innovative) ideas behind these innovations also are of an interdisciplinary
nature and they also occur together in an innovation field.

Our idea definition derived from technique philosophy (Rohpohl 1996). There,
a technological idea consists of two things: a means and an appertaining purpose
(Thorleuchter et al. 2010). Therefore, we define an idea as a text phrase. This text
phrase consists of domain specific terms that occur together in textual information.
These terms can be divided up into two subsets. The first subset should represent a
means and the second subset should represent a purpose. An example for an idea is a
nanomagnet (the means) that can be used to switch electronic signals (the appertain-
ing purpose). This definition is used to identify interdisciplinary ideas by assigning
means and purpose of an idea to different non-related, established technologies or
scientific disciplines.

To classify ideas as innovative, we have to identify several interdisciplinary ideas
that occur together in an innovation field. For this, we firstly have to provide tech-
nological context information containing descriptions of established technologies or
scientific disciplines and we have to define their relations.

Secondly, we have to classify ideas as interdisciplinary by assigning means and
purposes to established technologies or scientific disciplines that are not related.
For example, if a means from a bionic idea can be assigned to biology and the
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appertaining purpose can be assigned to technological engineering then the bionic
idea is interdisciplinary. This gives a hint that the combination of biology and
technological engineering is probably an innovation field.

To be sure that it is really an innovation field, we thirdly have to find several
further interdisciplinary ideas that can be assigned to the same non-related tech-
nologies or scientific disciplines combination and classify all the interdisciplinary
ideas in this field as innovative ideas.

3 Process of Mining Innovative Ideas

This approach uses an existing idea mining approach (Thorleuchter 2008) that sup-
ports users to identify means and purposes in text phrases (see Sect. 4). Then, we
provide descriptions of scientific categories as context information (see Sect. 5).
Both the means and purpose of extracted new and useful ideas are assigned to sev-
eral scientific categories by use of multi-label classification (see Sect. 7). After this,
we compare each scientific category from means to each scientific category from
purpose to find out relationships between them (see Sect. 6). Figure 1 shows an
example for the processing of this approach.

Mean

Purpose

Ophthalmology

Imaging Science & Photographic
Technology

Ophthalmology covers resources on the
eye, its diseases, and refractive errors.
Coverage includes research on the
cornea, retina, and eye diseases. This
category  also includes resources on
physiological optical and optometry as well
as reconstructive surgery...

Imaging Science & Photographic
Technology includes resources that cover
pattern recognition, analog and digital
signal processing, remote sensing , and
optical technology. This category also
covers resources on the photographic
process (the engineering of photographic
devices and the chemistry of  photography)
as well as machine-aided imaging,
recording materials and media, and visual
communication and image representation

Innovative idea

digital
imaging
sensor
signal
processing

eye
refractive
errors
diseased
cells
retina

An artificial eye is a digital imaging sensor
with signal processing that bypasses the
refractive errors from diseased cells in the
retina.

Fig. 1 Means and purpose are extracted from an idea and are assigned to different scientific cate-
gories. If the categories that are assigned by the means are not related to categories that are assigned
by the purpose then the idea is interdisciplinary. If several ideas also are interdisciplinary concern-
ing these categories then the combination of both categories is defined as innovation field and ideas
from this field are presented as innovative ideas
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If a means is assigned to several scientific categories and the appertaining pur-
pose is assigned to further scientific categories that are not related to any scientific
category of the means then the corresponding idea is interdisciplinary. If several fur-
ther ideas also are interdisciplinary concerning at least two of the above mentioned
scientific categories then we define the combination of these scientific categories as
innovation field. For this, the user provides the smallest number of interdisciplinary
ideas that is sufficient to define such an innovation field. Ideas from these innovation
fields are classified as innovative ideas.

4 Acquisition of Ideas

Our approach is based on technological ideas. The user extracts them from provided
textual information e.g. patent data. He is supported by a further approach that auto-
matically extracts new and useful ideas from textual information as presented in
Thorleuchter (2008). This approach extracts textual phrases that represent new and
useful ideas. Additionally for each idea, it identifies terms that represent a means as
well as terms that represent the appertaining purpose. This is used as input for our
approach.

5 Acquisition of Technological Context Information

To provide technological context information, we focus on scientific categories. We
can find an overview of current scientific categories in the science citation index
(SCI). This index is built on bibliographic information, author abstracts, and cited
references from about 3,700 science and technical journals. The content of these
highly cited journals is assigned to 172 scientific categories. The official description
of all categories in the SCI is available in scope notes (Institute for Scientific Infor-
mation 1997) that is manually created, of good quality, and up to date. We use this
description as technological context information for our approach.

6 Relationship among Scientific Categories

After providing descriptions of scientific categories that represent technological
context information, the next step is to identify relationships among these scientific
categories.

In general, we identify two different kinds of relationships (Geschka et al. 2005).
One kind of relationship is that technologies can be similar to other technologies.
They deal with the same technology field but have a different focus. The descriptions
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of two similar technologies also are similar because they both contain the same
domain specific terms by describing the technological field.

A further kind of relationship is that technologies are related in a substitutive,
integrative, predecessor or successor way. If technologies are related in this way then
they deal with the same application field. Their descriptions also are similar because
they both contain the same domain specific terms representing the application field.

The descriptions of the scientific categories in scope notes contain terms repre-
senting the technological field as well as terms representing potential application
fields. If we identify similar terms in descriptions of two different scientific cate-
gories then both categories are related according to at least one kind of relationship.
Therefore, related categories are identified by comparing category descriptions
among each other.

Comparing is done by transforming category description to term vectors in vector
space model. For this, terms in the descriptions are tokenized (Feldman and Sanger
2007) by using the term unit as word, stop word filtered by using a standard stop
word list (Lustig 1986), and stemmed (Hotho et al. 2005) using a dictionary-based
stemmer combined with a set of production rules (Porter 2008) to give each term
a correct stem. The production rules are used when a term is unrecognizable in the
dictionary. Vectors representing scientific categories can be compared using similar-
ity measures in combination with the fuzzy alpha cut method (Abebe 2000) and two
categories are classified as related if the corresponding similarity measure result
value is greater than or equal to alpha. For comparing, we prefer the well-known
Jaccard’s coefficient measure (Ferber 2003) because it considers well the different
sizes of both vectors.

7 Classification of Ideas

Each selected idea consists of a set of terms that represents a means and of a set
of terms that represents an appertaining purpose. To identify an interdisciplinary
technological idea we have to assign both sets to scientific categories. Both sets
of terms are stop word filtered and stemmed as described in Sect. 6. For multi-
label classification, we transform these sets to term vectors in vector space model
and compare them with term vectors from each scientific category. For comparing,
we also use Jaccard’s coefficient measure in combination with the fuzzy alpha cut
method. As a result, means and purposes are assigned to scientific categories only if
the appertaining Jaccard’s coefficient result value is greater than or equal to alpha.

Each means and each purpose of a new idea is probably assigned to several sci-
entific categories. To identify relations, we compare each scientific category from
means to every single scientific category from purpose as described in Sect. 6. If we
cannot find any relationships then the new idea is interdisciplinary and each of these
scientific category combinations from means and purpose is probably an innovation
field. If we identify at least n interdisciplinary ideas that can be assigned to one spe-
cific scientific category combination then we define an innovation field on this basis.
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The user provides the smallest number n of interdisciplinary ideas that are sufficient
to define such an innovation field.

8 Results and Evaluation

We present a heuristic approach for automatically identifying the innovative poten-
tial of new technological ideas. The extraction of ideas and the identification of
terms that represent means and purposes is already evaluated in Thorleuchter (2008).
Therefore, the evaluation is limited to the further steps of our approach. The evalua-
tion of new ideas for their innovative potential based on current context information.
For this, scientific categories in the science citation index as current technological
information described in scope notes (Institute for Scientific Information 1997) are
used.

The approach extracts 1,000 new ideas from randomly selected patents because
patent descriptions consist of new ideas that also are innovative. However, not
all new ideas are innovative in terms of the technological innovation definition in
Sect. 2. Five hundred ideas are used as training examples to obtain the optimal
parameter values and 500 ideas are used as test set to validate and compare the
model. To evaluate the results of the approach, we use precision and recall measures
commonly used in information retrieval based on true positives, false positives, and
false negatives. For this, the ground truth for our evaluation is defined. Therefore, a
human expert classifies the 1,000 new ideas as innovative or as non-innovative.

The approach depends on three parameters (n, ˛1, ˛2). The smallest number (n)
of interdisciplinary ideas that is sufficient to define an innovation field gives a hint
concerning the innovative potential of the new idea. If the number n is large then
we only obtain ideas as result items that probably consist of a very high innovative
potential. This is because we identify many ideas that are classified concerning a
specific non-related combination of scientific categories. Here, we have a high prob-
ability that this category combination represents an innovation field. If the number
n is small e.g. it equals one then we get all interdisciplinary ideas as result items
regardless weather they consists of high or low innovative potential. This is because
every idea – that is classified concerning a specific non-related combination of sci-
entific categories – is presented as innovative idea. We estimate that an optimal value
of n is between 4 � n � 8.

After this, the alpha cut of Jaccard’s coefficient results are estimated. The first
alpha cut is the set of all terms that represents a means or a purpose such that the
corresponding result value by comparing this set to a scientific category is greater
than or equal to ˛1. With the second alpha cut we identify two related scientific
categories only if the appertaining Jaccard’s coefficient result value is greater than or
equal to ˛2. If ˛1 is too small or too large then means and purposes are not classified
correctly. If ˛2 is too small or too large then the identification of relationships among
scientific categories fails. This leads both to a small precision and to a small recall
value. An optimal value of ˛1 and ˛2 is estimated between 5% � ˛1; ˛2 � 20%.
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To investigate the dependency of the approach on the parameters, we explic-
itly check if the parameter values are identifiable on the training set. These values
are used to compute precision and recall on the test set. For this, we use the esti-
mations for n 2 f4; 5; : : : ; 8g and the percentages ˛1 2 f5%; 6%; : : : ; 20%g and
˛2 2 f5%; 6%; : : : ; 20%g. We identify 5 � 16 � 16 D 1280 different parameter
combinations of (n, ˛1, ˛2). The training set is used to compute average precision
and recall for each parameter combination to identify the optimal parameter values
with a maximal F-measure. The F-measure is used because precision and recall are
equally important. As a result, parameter values n D 5, ˛1 D 14%, and ˛2 D 16%
are identified. These parameter values are used to compute precision and recall for
each test example and the average precision and recall values for all test examples.
We get a precision value of 38% and a recall value of 30%. A precision value of
38% means that if this approach predicts 100 ideas as innovative ideas then 38 of
them are innovative. A recall value of 30% means that if there are 10 innovative
ideas in the provided text then this approach identifies three of them.

We compare this approach to a baseline model because we are not aware of other
approaches for identifying the innovative potential of ideas at the present time. A
positive class probability of 5% is already calculated by human experts. This leads to
a 5% precision at 30% recall for a random prediction and it shows that this approach
is much better than random. We think that the results are sufficient to proof the
feasibility of our approach.

Using the 500 new ideas from the test set, the approach automatically computes
several innovation fields. We present examples for these innovation fields. They
can be found between ‘Health Care Sciences and Services’ and ‘Computer Sci-
ence, Artificial Intelligence’ (e.g. the use of methods from artificial intelligence for
health care applications), between ‘Imaging Science and Photographic Technology’
and ‘Medical Informatics’, between ‘Remote Sensing’ and ‘Tropical Medicine’,
and between ‘Computer Science, Theory and Methods’ and ‘Psychiatry’. Then, the
approach identifies ideas from these innovation fields as innovative ideas.

This approach can be re-evaluated by using our application for mining innovative
ideas (see http://www.text-mining.info). There, the web based application that is
programmed in perl/ruby and all texts that are used for evaluation are presented. The
application extracts ideas from a provided text, creates terms representing means and
purposes, identifies innovation fields, and classifies the ideas as (non-) innovative
ideas.

9 Outlook

This work shows that the automatic identification of the innovative potential of new
technological ideas is feasible using text classification and specific technological
definitions. Further work should aim at enlarging and optimizing this approach e.g.
by identifying further properties of innovative ideas. A second avenue of further
research could take the granularity of the context information into account e.g. by

http://www.text-mining.info
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using technologies rather than scientific categories. This also probably leads to an
increasing precision and recall.
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The Basis of Credit Scoring: On the Definition
of Credit Default Events

Alexandra Schwarz and Gerhard Arminger

Abstract The concrete circumstances which lead to the definition of a certain credit
as default or non-default are usually not discussed in the literature. Since we have
access to a large data set of complete payment histories of relatively short-termed
installment credits, we can investigate a possible solution to the problem of defin-
ing and detecting defaulted credits. We propose a definition of credit default events
where we adopt the patterns of payment, a common measure for the control of
accounts receivable, to the case of installment credits. In addition, we define indica-
tors of individual payment performance which can be used for monitoring payment
behavior on-line, once a credit scoring system has been implemented in practice.
Consequently, the update of a scoring model need not depend on the information of
closed credits, which becomes only available at the end of the payment term at the
earliest.

1 Introduction

Credit scoring is the standardized process of analyzing and classifying the payment
behavior of individuals, i.e. private consumers or companies. This process is based
on statistical methods for estimating the individual propensity to show the expected
payment behavior, e.g. to settle payment by installments regularly. On the basis of
this assessment, credit applicants are assigned to one of two (or even more) classes.
These classes represent sufficient and insufficient payment, or creditworthy and not
creditworthy customers, respectively.

The statistical techniques that cover the process of modeling individual credit
risks are widely discussed in the literature (e.g. by Hand and Henley 1997; Thomas
et al. 2002). In contrast, we find only few statements on how the dependent variable
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default yes/no in a scoring model is defined. Even in statistical publications, this
definition is always said to be given, but not described. Nonetheless, defining credit
default events is a critical task within the process of modeling credit risk as any
such definition is needed to operationalize the key dependent variable, e.g. credit-
worthiness. It can be assumed that this lack of information is due to confidentiality
reasons because the definition of credit default gives direct insight into a bank’s or
company’s internal calculations, its credit policy and marketing strategy.

In Sect. 2 we briefly describe the empirical data set which we analyze in the
course of this paper. To arrive at a possible definition of credit default we adopt the
patterns of payment, a common measure for the control of accounts receivable, to
the case of installment credits in Sect. 3. Based on a measure of profitability that
can be derived from the payment patterns we classify events of default and non-
default. In Sect. 4 we define indicators of individual payment performance for the
monitoring of payment behavior and evaluate them with respect to their potential
to detect defaults on-line, i.e. already during the payment process. The paper closes
with a discussion in Sect. 5.

2 Data Set of Individual Payment Histories

To exemplify our proposals for defining and monitoring credit default events, we
analyze 33,986 installment purchases of household appliances, each of them paid
off by 15 regular installments. For the company granting these credits, 13.29% of the
financed amounts remain uncollectible. The data set consists of all credits for which
the due date of the first rate of payment lays between March 01, 2004 and August 31,
2004. Therefore, we analyze a complete cohort of credits. For each credit, we
observe the payment history running from the due month of the first installment
until March, 2007. The payment histories are given in the form of monthly account
balances. This implies an exact installment plan with a due date of each installment,
but we are not given the exact date at which payments are made. Consequently, we
analyze the data related to each installment credit on a monthly basis.

3 A Payment-Pattern Approach to the Identification
of Credit Default Events

A loan contract in the special form of a payment in installment always involves an
installment plan which documents the due dates and due amounts of repayment.
These due, expected payments can be compared to the actual payments of a debtor
by means of the individual account balances. The basic idea of the proposed clas-
sification is to balance expected and actual payments of debtors at every point in
time at which payments are expected. By evaluating this pattern of payments and
the profitability of the involved accounts we can determine the maximum period of
deficient payment which is acceptable for financial purposes.
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3.1 The Patterns of Payment

In the context of sales on credit the receivable balance pattern “is the proportion of
any month’s sales that remains outstanding at the end of each subsequent month”
(Johnson and Kallberg 1986). This proportion is expected to decay over the sub-
sequent months. Therefore, it is tracked by simply following the percentages over
time. The collection pattern is the mirror image of the receivable balance pattern,
giving the cumulative collections of the subsequent months in percent of credit sales.
In the following, we define suitable patterns of payment for the case of installment
credits. A description of the original procedures is given in Stone (1976).

Suppose we observe the complete payment history of n installment credits i D
1; : : : ; n with total financed amounts yi . We also suppose that these credits are paid
off by an equal number T of installments, and that payments are due at regular
intervals. Hence, payments are observed at points in time t D 1; : : : ; T; : : : ; T C
h; : : : ; T CH with every t denoting an observation point of due installments. Then
T denotes the total number of installments and at the same time the end of the
agreed payment term, andH is the number of points in time h D 1; : : : ;H at which
we observe payments after the end of the regular payment term. Hence, T C H

describes the end of our complete observation period.
Let yi;t denote the due amount of payment of credit i at time t , which is the

agreed installment at time t , and let xi;t denote the respective amount actually paid
at time t . Then

Xk D
kX

tD1

xt with xt D
nX

iD1

xi;t (1)

are the cumulated payments actually made until k with k 2 f1; : : : ; T C H g.
Equivalently, the cumulated expected payments until k are denoted by

Yk D
kX

tD1

yt with yt D
nX

iD1

yi;t (2)

Consequently,


k D
kX

tD1

ıt with ıt D
nX

iD1

.yi;t � xi;t / (3)

are the cumulated outstanding payments at time k. Obviously, Yk D Xk C 
k at
each k. In this retrospective analysis of payments the collection pattern over T CH
points of observation can be calculated as the respective cumulated payments in %
of the overall financed amount Y DPT

tD1 yt , i.e.Xk=Y for all k. Respectively, the
receivable balance pattern is given by 
k=Y , that are the respective cumulated
outstanding amounts in % of the total expected payment.
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3.2 Measurement of Profitability

Our definition of credit default events is based on the profitability of accounts which
can be measured using the patterns of payment described above. To illustrate this
approach we assume that an account is (still) profitable at time k if the additional
costs caused by deficient payment that occurred up to k are strictly smaller than
the absolute profit margin generated by payments made up to k. For measuring the
profitability Pk of accounts at time k, we introduce a weight a for the cumulated
payments and a weight c for the cumulated outstanding amounts
k . Here a (in %)
may be interpreted as the profit margin and c may denote the rate of additional costs
(in %), especially interest charges, involved in the cumulated outstanding amounts.
Then the profitability can be measured as

Pk D a �Xk �
kX

tD1

c �
k (4)

Here the cumulated additional costs
Pk

tD1 c �
k incorporate the so-called revolving
effect of credit which occurs if deficient payments are protracted over a certain
period. Let t� denote the minimum k of all observation points for which Pk � 0:

t� D min
kD1;:::;T CH

.k jPk � 0/ (5)

This means, t� is the point in time of the period of deficient payments at which the
performance of credits is no longer acceptable, whereas t��1 denotes the last point
in time of the period of acceptable performance. This leads to the following classi-
fication rule concerning the definition of the default eventZ: Credit i is assigned to
the class of bad accounts if it contributes to the overall loss, that is, it shows an out-
standing amount at t�. Otherwise credit i is assigned to the class of good accounts.
With

ıi;t� D
t�

X

tD1

.yi;t � xi;t / (6)

denoting the sum of outstanding amounts for credit i at t� the classification rule is

zi D
�
1 if ıi;t� > 0

0 else
(7)

From a financial perspective, classifying credits as defaults based on t� as defined
in (5) means that the costs of financing the outstanding amounts exceed the profit
made by the received payments. Hence, it may be useful to generalize the right hand
side of (5) by Pk � � where � D 0 in the above example.
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3.3 Application to the Empirical Data Set

In the empirical example we observe the individual payment histories of n D 33;986
credits with an agreed number of installments T D 15 and an additional observation
period of H D 17 months where we expect accounts to be finally balanced. There-
fore, the complete observation period is T CH D 32 months. Figure 1 shows the
patterns of payment in % of the overall financed amount for each t , that are the
expected pattern (Yk=Y ), the collection pattern (Xk=Y ) and the receivable balance
pattern (
k=Y ).

To exemplify the measurement of profitability we choose a D 5%, c D 1% for
the regular payment term t D 1; : : : ; 15 and a D 5%, c D 2% for the additional
period t D 16; : : : ; 32 after the end of the agreed payment term. In Fig. 1 the prof-
itability is given in % of the expected profit (Pk=.a � Yk/). The left vertical line
denotes the end of the regular payment term. The vertical line in the middle denotes
the point in time between t� � 1 and t� which we would use for defining default
events in terms of profitability, i.e. where the profitability becomes negative. The
decision rule that was finally implemented by the company providing the data is
illustrated by the right vertical line. Here the end of the period of acceptable per-
formance is set to t� � 1 D 27, which is twelve months after the end of the regular
payment term. The resulting classification rule for the default eventZ is

zi D
�
1 if ıi;28 > 0

0 else
(8)

The numbers of detected defaults and non-defaults on basis of the classification rule
are given in Table 1.
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Fig. 1 Patterns of payment and profitability for the empirical data set
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Table 1 Detected defaults and non-defaults for the empirical data set

Defaults (zi D 1) 5 382 15.84%
Non-defaults (zi D 0) 28 604 84.16%

Total 33 986 100.00%

4 Indicators of Individual Payment Performance

The proposed approach has two main disadvantages with respect to the monitoring
and forecasting of credit default events in practice. First, the analysis of the payment
patterns and the profitability of the portfolio of customers over time does not tell us
anything about the individual performance of credits during the period of deficient
payment (t D 1; : : : ; t�). Second, this analysis is based on a retrospective analysis
of complete histories which are observed for a very long period, even after the end of
the agreed payment term. This is not suitable for monitoring and forecasting default
events because such a data base is not available during the actual payment process
where we observe payments in real time. Therefore, we propose two indicators for
measuring the individual payment performance. The basic idea of these indicators is
to evaluate the development of paid amounts with respect to the expected amounts
and the time line of the payment process.

4.1 Description of Indicators

The first indicatorLi;k , which we call the individual liquidity, relates the cumulated
amounts which are paid until k to the respective cumulated expected amounts:

Li;k D Xi;k

Yi;k

(9)

The individual liquidity at time k is therefore the proportion of due paid amounts
until k. The second indicator PCi;k is called the individual payment career and
relates the total stock of paid amounts to the total stock of expected payments:

PCi;k D
Pk

tD1Xi;k
Pk

tD1 Yi;k

(10)

Figure 2 gives two hypothetical examples of individual payment histories where a
total financed amount of 600 Euros has to be paid off by six regular installments of
100 Euros each. Both payment histories show deficient payment. The customer who
paid off credit A missed to pay at t D 2, but balances the account immediately at
t D 3. The account related to credit B still shows deficient payment at the end of the
regular payment term. From the respective figures of the performance indicators, the
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Fig. 2 Two examples of individual payment histories

main differences between the two indicators emerge. Whereas the individual liquid-
ity equals 1 again at t D 3 for credit A, the individual payment performance keeps
the deficient payment in mind for a longer time. But in contrast to the individual
liquidity, the individual payment career can not directly be interpreted in financial
terms, e.g. as proportion of due payments. Hence, it would be suitable to evaluate
both indicators in parallel.

4.2 Application to the Empirical Data Set

For evaluating the defined indicators of individual payment performance on basis
of the empirical data set we restrict their calculation to the regular payment term
(T D 15). Figure 3 shows the box plots for the distribution of the individual liquidity
(left) and the individual payment career (right) over T D 15. These plots exclude
outside values. The data are grouped according to their definition as default and non-
default given in Table 1. Obviously, both indicators show the ability to distinguish
between good and bad accounts, and this ability is increasing with t . But the group-
specific distributions of both indicators also show an area of intersection, even for
large t .

To exemplify the early detection of default events we choose Li;k � 1=6, that
is, we calculate the number of defaults and non-defaults showing an individual liq-
uidity of Li;k � 1=6 for k D 1; : : : ; T . Using this cut-off value, we would detect
54.79% of the 5,382 credits defaults already at t D 6. For t D 12 this proportion
increases to 57.62%, and to 61.93% at t D 15. At the same time, the proportion
of non-defaults detected by this cut-off value for the individual liquidity decreases
from 1.56% at t D 6 to 0.66% at t D 12 and to 0:50% at t D 15. Although espe-
cially the misclassification error is relatively low, it has to be remembered that this
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Fig. 3 Box plots of individual liquidity and individual payment career

classification directly depends on the definition of default in (8) and the underlying
cost ratio when measuring the profitability. Furthermore, the analysis is based on
empirical, historical data of credit histories, and this implies that the company took
action to collect outstanding amounts. It has to be assumed that the analysis is biased
as these actions do or do not have an effect on the individual payment behavior of
customers.

5 Discussion

A consistent concept of credit default and the definition of credit default events
does not exist. To contribute to the scientific discussion on these topics we pro-
posed a payment-pattern approach to the definition of credit default events, and we
defined and analyzed indicators of individual payment performance. Such indica-
tors can be useful tools for monitoring payment behavior. The proposed measures
and indicators should be improved by relating the payment histories to the respec-
tive histories of collection activities. This would directly bring up advice on how
to improve accounts receivable management. Since this is not available so far, our
further research in this area will concentrate on the comparative analysis of further
appropriate methods, like transition probability and event history analysis.
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Forecasting Candlesticks Time Series
with Locally Weighted Learning Methods

Javier Arroyo

Abstract In finance, candlestick charts describe the price movements of an equity
over time. Each candlestick summarizes the variability of a trading session by means
of two pairs of values: the opening-closing and the lowest-highest prices of each ses-
sion. In this sense, candlesticks can be seen as a kind of symbolic variable.

Candlestick charts are believed to reflect the psychology of the market and are
used by technical analysts to make investment decisions. However, despite their
popularity, little academic research has been done in order to determine if they are
useful to forecast the future state of the considered equity. This article is devoted to
this purpose as it proposes to forecast candlestick time series using locally weighted
learning methods (Atkeson et al. 1997), such as the k-Nearest Neighbors algo-
rithm. This kind of methods have been successfully applied to forecast other kind of
financial time series (Aparicio et al. 2002; Fernández-Rodríguez et al. 1999). The
forecasting ability of the proposed methods will be illustrated with a candlestick
time series of the S&P500 stock index.

1 Introduction

A high frequency financial time series is a sequence of transaction prices of a given
financial asset observed throughout time. This kind of time series may contain hun-
dreds or thousands of prices for each single trading day. The analysis of these time
series is not trivial as is complicated by irregular temporal spacing, diurnal patterns,
price discreteness, and complex dependence (Engle and Russell 2009). Moreover,
it is impossible to forecast the whole sequence of intradaily prices for the next day.
As a result, financial forecasters usually deal with the time series of the daily close
prices (or returns). However, in doing so, the valuable information contained in the
rest of the intra-daily prices is neglected.
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Fig. 1 White and black
candlesticks

One approach to avoid this loss is to aggregate the intra-daily values by means
of a symbolic variable. In other words, to summarize the high frequency financial
time series by a lower frequency symbolic time series. Examples of this approach
can be found in Arroyo et al. (2009), where interval time series represent the range
between the daily lowest and highest prices of a financial asset, and in Arroyo and
Maté (2009), where histograms are used to represent the distributions of intra-daily
returns, giving rise to a daily histogram time series of returns. However, other kind of
symbolic variables can be applied. In this work, candlesticks, a well-known financial
tool, will be considered as a new kind of symbolic variable.

In financial newspapers and web sites, candlestick charts are used to represent the
temporal evolution of asset prices. In these charts, each period of time is described
by a candlestick composed of two meaningful intervals

� ŒLow;High� that represents the volatility of the asset in the period
� ŒOpen;Close� that represents the return of the asset in the period

Figure 1 shows how candlesticks summarize price time series. The body is black
if the opening price is greater than the closing price, and white otherwise. Candle-
stick charts offer an informative summary of the prices which is believed to reflect
the psychology of market. Technical analysts study candlestick charts looking for
patterns that help them to make profitable investment decisions. However, their
heuristics often lack a rigorous basis. The fuzzy approach proposed in Lee et al.
(2006) to represent candlesticks is a first step to alleviate this problem.

Despite the scarcity of rigorous approaches dealing with candlesticks, the four
values that characterize them have been used for a long time in finance to estimate
the volatility of an asset (Garman and Klass 1980; Rogers and Satchell 1991). This
fact along with the study in Fiess and MacDonald (2002) prove that these four values
provide valuable information.

Knowing these four values in advance can be very useful to make investment
decisions and to determine the future volatility. Thus, the aim of this work is to pro-
pose a forecasting method for candlestick time series. A locally weighted learning
(LWL) method will be adapted for this purpose.

LWL methods can be useful to estimate complex non-linear functions. As finan-
cial time series are supposed to be non-linear, it is expected to obtain good results
with LWL methods. However, literature shows mixed evidence about this fact
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(Aparicio et al. 2002; Fernández-Rodríguez et al. 1999; Meade 2002), which is not
surprising due to the intrinsic difficulty of financial forecasting.

The next section is devoted to the adaptation of a LWL method to forecast
candlestick time series.

2 Locally Weighted Learning Methods for Candlestick
Time Series

Lazy learning is a form of learning that defers processing of training data until a new
instance arrives. As it only involves storing the past instances, it is also known as
memory-based learning. Lazy learning can deal with complex target functions and
does not miss information in the training process. On the other hand, it can be easily
fooled by irrelevant attributes and the response time for a new query is greater than
for other learning approaches.

LWL is a form of lazy learning that combines in some way the most relevant
instances from training data to yield a solution. In this kind of learning, instead of
estimating a single global model for the whole data set, a new local model is esti-
mated for each new instance using only the information provided by the closest
already known instances. LWL methods include nearest neighbors, weighted aver-
ages and locally weighted regression. A comprehensive review of this field can be
found in Atkeson et al. (1997).

In the next section, a LWL method, the k-Nearest Neighbors (k-NN), will be
adapted to forecast candlestick time series. The adaptation of this method extends
the adaptation for interval time series proposed in Arroyo (2008).

2.1 k-NN for Candlestick Time Series

Let fQtg with t D 1; : : : ; n be a candlestick time series (CTS) where each can-
dlestick Qt is defined by a quadruple of values: the open Ot , close Ct , low Lt ,
and high Ht prices at time t . Qt can also be defined by the low-high interval
ŒLH�t D ŒLt ;Ht �, where Lt � Ht , and the open-close interval ŒOC�t D ŒOt ; Ct �,
without the Ot � Ct constraint. The k-NN for CTS requires to represent fQtg as a
series of d -dimensional candlestick vectorsQd

t D .Qt ;Qt�1; : : : ;Qt�dC1/.
Given that, the k-NN consists in two steps: determination of the k nearest neigh-

bors and generation of the forecast. They are shown next.

2.1.1 Determination of the k Nearest Neighbors

In order to determine the distance between the last candlestick vector Qd
n and all

the past candlestick vectors Qd
t with t D d; : : : ; n � 1, a distance for candlestick
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vectors has to be defined. For this purpose, the kernel-based interval distance shown
in González et al. (2004) will be extended to deal with candlesticks.

Before introducing this distance, it is needed to clarify that an interval ŒX� D
ŒXL; XU � D hXC ; XRi can be defined by its lower XL and XU upper bounds or,
alternatively, by its centerXC D .XL CXU /=2 and its radiusXR D .XU �XL/=2.
Given that, the kernel-based distance between intervals ŒA� and ŒB� is defined as

Dk.ŒA�; ŒB�/ D
p
.BC � AC /2 C .BR � AR/2: (1)

This distance is in fact the Euclidean distance between two intervals defined by
their centers and their radii. More details about the properties of the distance and
the kernel considered can be found in González et al. (2004).

If we consider that a candlestick is an individual defined by two intervals, then
we can propose a Minkowski metric in <2 using the distance in (1), similar to what
is done with the Hausdorff distance for intervals in Palumbo and Irpino (2005).
The resulting distance for two candlesticks Qi D fŒOC�i ; ŒLH�i g with i D 1; 2
and where ŒLH�i D hLHC i ; LHRii and ŒOC�i D hOCC i ;OCRii (being possible
OCRi < 0) is given by

DQ;s.Q1;Q2/ D .Dk.ŒOC�1; ŒOC�2/
s CDk.ŒLH�1; ŒLH�2/

s/1=s; (2)

where Dk is the distance in (1) and s is the order of the Minkowski metric.
Given the distance in (2), the dissimilarity between the last candlestick vectorQd

n

and all the past candlestick vectorsQd
t with t D d; : : : ; n� 1 can be represented as

a distance-based Root Mean Square Error

RMSEQd;s.Q
d
n ;Q

d
t / D

v
u
u
t 1

d

dX

tD1

DQ;s.Qn�iC1;Qt�iC1/2: (3)

Once all the n � d distances are computed, the k closest vectors are identified
and denoted as Qd

tp
with p D 1; : : : ; k.

2.1.2 Generation of the Forecast

The forecast OQnC1 has to be generated from the subsequent candlesticks of the k
closest vectors, i.e., fromQtpC1. It is proposed that OQnC1 D fh OOCC nC1; OOCRnC1i;
h OLHC nC1; OLHRnC1ig be a convex linear combination of the candlestick compo-
nents with weights !p, where !p � 0 and

Pk
pD1 !p D 1,
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OOCC nC1 D
kX

pD1

!pOCC tpC1; OOCRnC1 DPk
pD1 !pOCRtpC1;

OLHC nC1 D
kX

pD1

!pLHC tpC1; OLHRnC1 DPk
pD1 !pLHRtpC1: (4)

In the unweighted k-NN, !p D 1=k; 8k. While, in the weighted k-NN

!p D  p
Pk

lD1  l

, with  p D .D.Qd
n ;Q

d
tp
/C 10�8/�1; (5)

where 10�8 avoids the infinite values caused by zero distances.

3 Forecasting the S&P500 Candlestick Time Series

In this section, the proposed k-NN method will be applied to forecast the Standard &
Poor’s 500 (S&P500) CTS in 2007. The S&P500 is a stock index that includes the
500 companies with the largest capitalization in the United States. The required data
can be downloaded from financial websites such as http://finance.yahoo.com/.

As it is well known, financial prices time series often show a stochastic trend.
Unfortunately, the k-NN method does not work well on trended time series, because
trends make it harder to find neighbors similar to the current sequence in the past of
the time series. Thus, it is needed to propose approaches to remove the stochastic
trend from the CTS.

3.1 Removing the Trend from Candlestick Time Series

In order to remove the stochastic trend from the time series of the four candlestick
components, some kind of difference operator should be applied to render them
stationary. Two approaches will be explored.

3.1.1 Differencing the Intervals

In Arroyo et al. (2009), a difference operator is proposed to remove the stochastic
trend in interval time series. Given an ITS fŒX�t g D fŒXLt ; XUt �g D fhXC t ; XRtig,
the method consists in doing the following operation

hXC t � XC t�1; XRti D ŒXLt �XC t�1; XUt � XC t�1�; 8t: (6)

http://finance.yahoo.com/
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This operation removes the stochastic trend from the interval positions, i.e., from
the center time series.

This operation can be applied to the open-close and low-high intervals that com-
pose the CTS, but, as both intervals are independently differenced, the candlestick
property ŒOt ; Ct � 
 ŒLt ;Ht � is not necessarily fulfilled for all t in the differenced
CTS. This is not a problem because the original CTS is obtained once the difference
operation is reversed. However, if the k-NN method is applied to forecast the dif-
ferenced CTS, it cannot be guaranteed that the forecasted CTS fulfills this property
once the difference operation is reversed. Thus, this approach will be ruled out.

3.1.2 Differencing the Candlestick Using the Previous Close Value

The stochastic trend can also be removed by subtracting to all the components of
the present candlestick the previous close price Ct�1

ŒOt � Ct�1; Ct � Ct�1; Lt � Ct�1;Ht � Ct�1�; 8t: (7)

This approach fulfills the property ŒOt ; Ct � 
 ŒLt ;Ht �;8t and in most cases will
remove the stochastic trend from the time series of the four candlestick components.

3.2 The One-Step Ahead Forecasting Experiment

The daily CTS in 2007 (see an extract in Fig. 2) has been divided into the initial-
ization set (first 50 periods), the training set (next 150 periods) and the test set (last
51 periods). The initialization set is used to provide the k-NN with enough past to
look for the neighbors. While the training set is used to determine the number of
neighbors k and the length of the vector d applied in each k-NN. These values will
be the ones that minimize the error in the training set. Error will be measured as the
distance-based RMSE given by

RMSEQ;s.fQtg; f OQtg/ D
v
u
u
t 1

d

nX

tD1

DQ;s.Qt ; OQt /2; (8)

where DQ;s is a Euclidean-like distance obtained by taking the distance in (2) with
s D 2.1

The candlestick k-NN method has been applied to two time series: the CTS
and the close-value differenced CTS. For each of these time series, the k-NN
has been applied with both the unweighted and the weighted schemes. The naïve

1 The dissimilarity measure in (3) will also be estimated with s D 2.
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Fig. 2 Test period of the SP500 candlestick time series

Table 1 RMSE in each of the candlestick components time series in the test set

Method Open Close Low High

Naïve 17.7 19:8 14:6 14.5
Independent univar. k-NN unweighted 18.8 21 15:1 18.5
Independent univar. k-NN weighted 19.8 20:2 16:6 18.5
Independent diff. univar. k-NN

unweighted
19.5 19:8 13:9 14.4

Independent diff. univar. k-NN weighted 17.4 19:3 13:9 15.2
Candle. k-NN unweighted (k D 4,
d D 1)

4.7 21 13:9 12.8

Candle. k-NN weighted (k D 5, d D 1) 4.7 19:8 13:4 12.4
Close-value diff. candle. k-NN

unweighted (k D 20, d D 1)
3.1 20:1 14:3 11.4

Close-value diff. candle. k-NN weighted
(k D 20, d D 1)

3.1 20:1 14:2 11.5

method OQtC1 D Qt has been used as the benchmark. In addition, to compare the
candlestick k-NN with a non-symbolic approach, the univariate k-NN has been
independently applied to forecast each one of the four candlestick component time
series, both differenced and non differenced. The performance of all of these fore-
casting approaches is shown in Table 1 that displays the Root Mean Square Error in
the test period for each one of the candlestick components time series.

The first conclusion that can be drawn from the table is that forecasting the CTS
as a whole is much better than doing it as four independently-considered time series.
In addition, the latter approach does not guarantee that the four independently fore-
casted values are a valid candlestick. These facts reinforce the idea that if data is
symbolic, then they should be analyzed with symbolic methods.

The components where the improvement is more significant are the open and the
high prices. On the other hand, in the close price no improvement with respect to
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the naïve method is obtained. This is not surprising as it is very difficult to beat the
naïve method when forecasting financial close prices.

Another interesting conclusion from the table is that the optimal length of the
sequence for all the k-NN methods is d D 1, which means that only the candlestick
in t is needed to characterize the time period t and that the past periods do not
provide relevant information. This fact also concurs with financial theory, which
considers that all the information relevant to the price can be found in the present
period.

4 Future Work

The k-NN method proposed to forecast CTS improved the naïve method perfor-
mance, which is the usual benchmark in financial time series, in all the components
except in the close value, where is usually very difficult to improve the naïve method
performance. However a question arises, are these results enough to obtain profits?
A simulation with trading rules using the forecasted candlesticks should be done to
clarify this point.

Other line of future work would be to improve the proposed method by explicitly
taking into account the orientation of the open–close interval as is done for principal
component analysis in Irpino (2006). The forecasting performance for other time
horizons should also be analyzed. Moreover, other LWL methods, such as locally
weighted regressions, can also be proposed to forecast CTS.
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An Analysis of Alternative Methods
for Measuring Long-Run Performance:
An Application to Share Repurchase
Announcements

Wolfgang Bessler, Julian Holler, and Martin Seim

Abstract Measuring the long-run financial performance around and subsequent to
specific corporate announcements is important and of special interest to researchers
and practitioners alike. A variety of methods have been developed and applied to
estimate these valuation effects but so far there is no general consensus on the best
approach from a financial and statistical perspective. The objective of our research
is to analyze and compare empirically alternative methods using 144 repurchase
announcements in Germany for the period from 2000 to 2006. Overall, we find that
the methodology used strongly influences the results.

1 Introduction

One of the major research areas in corporate finance are the long-run valuation
effects subsequent to specific corporate events and especially financing decisions
such as dividend changes and share repurchases. Although there exists a large num-
ber of empirical studies there is hardly any consensus on the best approach for
measuring long-run performance. In addition to the specification of risk factors
and the appropriate benchmark there are a number of methodological issues. For
instance, many tests are often biased due to event clustering and cross-sectional
correlations in abnormal performance measures. While new approaches have been
developed to address these problems, most suffer from new biases and only allow
for limited cross-sectional inference. In order to address these problems, we imple-
ment a new approach developed by Höchle et al. (2009) that attempts to overcome
these shortcomings and compare the results to those of alternative approaches. We
apply various methods to a dataset of 144 share repurchase announcements in
Germany for the period from 2000 to 2006. During the last decade, share repur-
chases have become an important alternative to dividends for distributing cash flows
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to shareholders. As documented in the literature, share repurchases often result in
substantial short- and long-run valuation effects which can be explained by two
competing hypotheses (Bessler et al. 2009). The ‘signaling’-hypothesis proposes
that stock repurchases convey positive private information of corporate managers
to the stock markets. In contrast, the ‘free cash flow’-hypothesis views the distribu-
tion of cash flows to shareholders as a means to control managerial moral hazard
(Bessler et al. 2010). Overall, we find significant stock price reactions for all differ-
ent methods. However, the magnitude and the direction of the results depend on the
method employed.

2 Methodologies for Measuring Long-Run Performance

Various methods such as buy-and-hold abnormal returns (BHAR) and the calen-
dar time approach have been developed for measuring the valuation effects and the
long-run financial performance subsequent to corporate announcements and events.
In order to overcome the statistical shortcomings of these methods, Höchle et al.
(2009) developed a generalized calendar time approach. All these methods differ
with respect to their statistical assumptions and the cross-sectional factors used
for explaining abnormal stock returns. The intuition as well as the strengths and
weaknesses of the three approaches are analyzed in the following sections.

2.1 BHAR, Fama-French Alphas and Cross-Sectional
Regressions

The approach most often used for analyzing long-run abnormal stock returns is
to determine buy-and-bold abnormal returns (BHAR). These are calculated for
company i as follows:

BHARi D
 

TY

tD1

.1CRi;t /

!

�
 

TY

tD1

.1CRM;t /

!

(1)

where T indicates the holding period, Ri;t is the stock’s return and RM;t is the
return of a market index used as a benchmark. This performance measure compares
the average performance of a buy-and-hold strategy of investing in all companies
at the event date to a buy-and-hold investment in a broad-based market benchmark
with a similar risk profile as the event companies. In order to control for the impact
of common risk factors, some studies employ a time-series regression for each event
company on the Fama-French-factors SMB and HML:

Ri;t �Rf;t D ˛i C ˇM

�
RM;t � Rf;t

�C ˇSMBRSMB;t C ˇHMLRHML;t C �i (2)
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where ˛i measures the outperformance and HML (high minus low) and SMB (small
minus big) represent the factor mimicking portfolios. In order to determine the
relevant economic variables that explain the abnormal stock performance, the cross-
section of the BHAR and alpha estimates are regressed on a set of explanatory
variables:

BHARi D ˛ C ˇ � xi C �i or ˛i D ˛ C ˇ � xi C �i (3)

where xi is a vector containing company-specific variables and �i is an i:i:d: error-
term. Despite its intuitive appeal and its ability to include many different types of
explanatory variables in the cross-section, this approach suffers from one major
drawback. In many corporate finance events there is a pronounced clustering of
events over time. With the simple one-factor model used in most BHAR appli-
cations, this may result in cross-sectional dependence in abnormal performance
estimates due to omitted risk factors which often leads to underestimated standard
errors. This problem is most pronounced for longer holding periods and is more
severe for a higher frequency of overlapping events (of the same firm or across
firms).

2.2 Calendar Time Portfolio Approach

The problems of event-clustering and cross-sectional correlations are addressed the
calendar time portfolio approach. This method takes advantage of the fact that
portfolio formation naturally adjusts for any cross-sectional dependence in stock
returns. Thus, equally weighted portfolios are formed in calendar time. Companies
are included for a predetermined holding period which begins at the event date.
More formally, for each time period t an equally weighted average of all stock
returns is calculated:

RP;t;l D 1

Nt

NX

iD1

pi;t;l �Ri;t (4)

whereN is the total number of firms in the sample and pi;t;l is an indicator variable
equal to one if the firm had an event during the last months where l defines the hold-
ing period.Nt equals the number of firms for which pi;t;l equals 1. To determine the
abnormal performance, a time-series regression on a given set of risk factors such
as the Fama-French factors is performed:

RP;t � Rf;t D ˛P C ˇM

�
RM;t � Rf;t

�C ˇSMBRSMB;t C ˇHMLRHML;t C �i (5)

A positive and significant ˛ indicates an outperformance. However, this approach
has a weakness in that it imposes limits on the cross-sectional analysis of the vari-
ables that explain abnormal performance. In fact, it is restricted to the analysis of
dichotomous variables. From a statistical point of view, this approach is biased
in case of event-clustering, because it puts excessive weight on those events that
take place during time periods with a low frequency of events. There are additional
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problems in the application of this approach. First of all, the length of the holding
period has an impact as different events might influence stock returns for different
time periods. It further determines the stability of the composition of the calendar
time portfolios. This becomes an important issue if there is event-clustering. In addi-
tion, some companies may have multiple events so that holding periods for the same
company might overlap. In this case the calendar time portfolio puts a relatively high
weight on individual companies for specific intervals.

2.3 Generalized Calendar Time Approach

In order to combine the statistical advantages of the calendar time approach with
the cross-sectional analysis, Höchle et al. (2009) developed a ‘Generalized Calendar
Time Approach’ (GCT approach). They show that a pooled panel regression aug-
mented by Driscoll and Kraay (1998) standard errors is able to replicate the results
of the calendar time approach for the case of a dichotomous variable. The panel
structure of this model naturally carries over to other discrete as well as continuous
variables. The structure of their panel regression model is given by:

Ri;t D Œ.pi;t ˝ xi;t /˝ zt � � ˇ C �i;t (6)

where zt denotes the set of risk factors specified by the specific asset pricing model.
These can vary over time and are the same for all firms; xi;t is a set of firm character-
istics which can vary over time as well as across firms; pi;t contains a constant and a
dummy variable indicating whether an event took place over a specific time period.
The significant innovation is the application of nonparametric Driscoll-Kraay stan-
dard errors which account for spatial correlations and therefore corrects for the
major shortcoming of the BHAR approach while still allowing for cross-sectional
inference.

3 Data and Empirical Results

For the empirical analysis, we use a sample of 144 share repurchase announcements
that occurred between December 2000 and September 2006. 40 announcements
were made by established firms listed in the DAX or MDAX and 104 by start-up
firms that went public at the ‘Neuer Markt’. For all methods we limit our analy-
sis to this specific time period to ensure that all calculations are based on the same
events. A holding period of 24 months is used, beginning in the month subsequent
to the repurchase announcement. In order to compare the capability of the differ-
ent approaches for determining the relevant variables that may explain the abnormal
performance, we selected the following firm-specific control variables: debt-to-asset
ratio (LEV), return on equity (ROE), market value (MV), market-to-book ratio
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(MTB), and cash-to-assets ratio (CTA). The factor mimicking Fama-French port-
folios were calculated by using the MSCI Germany style indices for small and large
caps as well as the corresponding indices for value and growth stocks. In addition,
the CDAX performance index is used as a market index and the EURIBOR 3-month
rate represents the risk-free rate.

3.1 BHAR, Fama-French Alphas and Cross-Sectional
Regressions

Table 1 indicates an outperformance of nearly 20% for DAX and MDAX firms
over the 2 year period following the repurchase announcement based on the BHAR
approach. For this subset the BHAR are significantly different from zero for each
time horizon. In contrast, the BHAR for IPOs are insignificant, although there
appears to be a positive trend. However, Fama-French alpha estimates are on average
significantly different from zero for both the DAX and MDAX firms as well as for
the IPO subsample. Nevertheless, they are higher in magnitude for the IPO group.

The goal of the cross-sectional analysis is to explain BHAR and alpha estimates
using accounting measures from the financial statement prior to the repurchase
announcement. As reported in Table 2, these control variables fail to explain BHAR
and alpha estimates in nearly all cases. However, when alpha or BHAR are used
as the dependent variable in the regression, the coefficient estimates of the Fama-
French alpha regressions (Panel B) have a lower magnitude compared to the BHAR
regressions (Panel A). It needs to be recognized, however, that the alpha measures an
average monthly return whereas the BHAR are estimated over the entire 24 months
holding period. From an economic perspective, it is important to note that CTA has
a positive and significant impact on the alpha estimate for IPO firms. This result is
in line with the ‘free cash flow’-hypothesis. When young firms are subject to severe
agency problems due to an excessive cash position, the decision to payout additional
cash flows should reduce managerial moral hazard. Hence, a repurchase announce-
ment results in superior future firm performance. Moreover, it is fair to conclude
that the variables explain at least part of the performance as the constant terms in
the regressions are insignificant indicating diminishing performance.

Table 1 Single stock performance measures: 24 months BHAR and Fama-French alphas

av. 24 months BHAR av. 24 months Fama-French ˛

DAX/MDAX 19.70%*** 12.72%*
IPO NM 10.91% 18.48%***
� 10% significance level
��� 1% significance level
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Table 2 Cross-sectional regressions: 24 months BHAR and Fama-French alphas

Const. LEV ROE MV MTB CTA

Panel A: BHAR24

DAX/MDAX 0.2337 0.0005 0.0141 �0:0000 �0:0811 0.0005
IPO NM 0.0901 0.0001 �0:0008 0.0002 �0:0618 0.0028

Panel B: alpha24

DAX/MDAX 0.0024 �0:0000 0.0000 �0:0000 0.0030 0.0001
IPO NM �0:0038 0.0001 �0:0000 �0:0000 �0:0003 0.0002*
� 10% significance level
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3.2 Calendar Time Portfolio Approach

The calendar time portfolios are constructed for a holding period of 24 months giv-
ing equal weight to each firm at each point in time. The number of firms in the
portfolio and the portfolio returns for DAX/MDAX and IPO firms and the CDAX
index are presented in Fig. 1.

It becomes immediately evident that our calendar time portfolios for both sub-
samples are biased towards events occurring during time periods when the event
frequency is relatively low, i.e. at the beginning and at the end of the sample period.
Table 3 reports the results for the Fama-French regressions of established firms and
IPOs. DAX and MDAX firms exhibit a significant market exposure close to one
while they have no significant loadings on SMB and HML. Finally, the positive
intercept term indicates outperformance of the DAX/MDAX portfolio, albeit indis-
tinguishable from zero. In contrast, the IPO portfolio is more strongly exposed to the
market factor and significantly biased towards small stocks and growth stocks. The
coefficient estimate for the intercept term is negative but statistically insignificant.
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Table 3 Fama-French performance evaluation of calendar time portfolios

˛ Market SMB HML

DAX/MDAX 0.0035 0.9933*** 0.2875 �0:0939
IPO NM �0:0010 1.2156*** 0.8132*** �0.6416***
��� 1% significance level

Table 4 GCT model: interaction of event firms with firm-specific and risk factors

Panel A: Interaction Terms with Firm-Specific Variables
Event dummy LEV ROE MV MTB CTA

DAX/MDAX �0:0074 �0:0000 0.0003 �0:0000 0.0019 0.0001
IPO NM �0.0261** 0.0000 �0.0002*** �0:0000 0.0077*** 0.0003

Panel B: Interaction Terms with Market Wide Factors
Market SMB HML

DAX/MDAX 0.0318 0.442 0.4391***
IPO NM 0.3518** 0.2212 �0:3304
�� 5% significance level
��� 1% significance level

Overall, the results for the DAX/MDAX events are in line with BHAR results and
Fama-French alphas. In contrast, the negative alpha estimate of the IPO portfolio
stands in contrast to the positive average alpha on a single event basis and also to
the positive but insignificant 24 months BHAR.

3.3 Generalized Calendar Time Approach

Using the whole CDAX universe with stock and balance sheet data for more than
700 firms as a control sample, we estimate the GCT model in the last step. Table 4
presents the coefficient estimates only for the event dummy which equals one for
the 24 months subsequent to the repurchase announcement as well as the interaction
terms with the firm-specific variables and the risk factors.

Surprisingly, the coefficient estimate for the DAX/MDAX event dummy is
negative but insignificant and hence weakly indicates an inferior performance of
established firms that announced a share repurchase compared to the control group.
While DAX/MDAX event firms do not exhibit any differences compared to the
control group regarding the firm-specific variables, this group has a significantly
stronger exposure to the value factor. In contrast, the event dummy for IPO firms
is negative and significant corroborating the result from the Fama-French calendar
time regression. Furthermore, a higher market-to-book ratio and a lower return on
equity lead to an increase in the performance of IPOs, but these firms also carry a
higher market exposure indicating that they are perceived as high risk firms.
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4 Conclusion

Overall, we find empirical evidence that the results of long-run performance studies
depend strongly on the method used. The GCT model indicates a significant under-
performance of IPOs and a negative but insignificant performance for DAX/MDAX
firms after controlling for firm-specific variables as well as market wide risk factors.
However, the results are not in the same direction as the results of the cross-
sectional regressions on BHAR and Fama-French alphas and the calendar time
approach. These differences in empirical results are presumably closely related to
clustering of repurchase activities in specific time periods. More precisely, event
clustering induces cross-sectional correlations in the BHAR analysis but it also
causes substantial variation in portfolio size as well as size differences between
IPO and DAX/MDAX portfolios in the calendar time portfolio analysis. Thus, the
methodology used strongly influences the results.
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Knowledge Discovery in Stock Market Data

Alfred Ultsch and Hermann Locarek-Junge

Abstract This work presents the results of a Data Mining and Knowledge
Discovery approach on data from the stock markets using Databionic techniques.
Stock market data is analyzed using methods that were learned from nature and
previously applied primarily to DNA microarray data. It is demonstrated that the
discovery of new insights into the stock markets is possible by the application of
sensible preprocessing of daily returns (Relative Differences), application of a pro-
jection which has the potential to show emergent structures in the data (U-Matrix)
and allows for a nontrivial clustering of the data (U*C).

1 Introduction

An issue that is the subject of intense debate among academics and financial profes-
sionals is the Efficient Market Hypothesis (EMH). It states that security prices fully
reflect all available information at any time. The implications of the EMH are truly
profound. Most individuals that buy and sell stocks in practice however, do so under
the assumption that the securities they are buying are worth more than the price that
they are paying, while securities that they are selling are worth less than the selling
price.

Empirical evidence has been mixed, but has generally not supported strong forms
of the efficient markets hypothesis, e.g. low P/E stocks have greater returns. Ear-
lier papers also refuted the assertion that higher returns could be attributed to
higher beta, which has been accepted by efficient market theorists as explaining
the anomaly in neat accordance with modern portfolio theory. One can also iden-
tify “losers” as stocks that have had poor returns over some number of past years.
“Winners” would be those stocks that had high returns over a similar period. Some
trading rules say that in trends one should buy “winners” and sell “losers”. While
proponents of the EMH don’t believe that it is possible to beat the market, some
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believe that stocks can be divided into categories based on risk factors. However,
these risk factors are considered to be stable over time. In this paper, we analyze a
very large stock market to find out whether there exist groups of stocks and clusters
of time, where the groups that we find behave similar in the way that the probability
of rising or falling stock prices within the created groups can be forecasted and is
different from randomness, which would challenge the EMH.

2 Daily Returns on Stocks

Primary data in this paper are the adjusted daily closing prices of stocks traded in the
USA. The prices of 7031 stocks were collected from Yahoo Finance (finance.yahoo.
com) for the period Jan. 1st 2000 to 1st of march 2008 (observation period). This
resulted in 2047 trading days. A total of 14,390,410 stock prices were obtained in
this way. Standard & Poor’s 500 Index – S&P 500 gives an overall picture of the
market situation during the observation period (see Fig. 1). The S&P 500 is one of
the most commonly used benchmarks for the overall U.S. stock market. It can bee
seen that the observation period rising as well as falling market conditions.

For each day (t) and each price p(t) the daily return was calculated as Relative
Difference .RelDiff(t)/:

RelDiff(t) D 2 � .p.t/ � p.t � 1//=.p.t/C p.t � 1/
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Fig. 1 S&P 500 during observation period
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Relative Difference has several advantages over other formulas for return, like
LogRatio .log.p.t/=p.t � 1// or Ratio .p.t/ � p.t � 1//=p.t � 1/. See Ultsch
(2009) for a detailed discussion. The most important for this investigation is that
RelDiff possesses a symmetric and finite range: if a company defaults (p.t/ D 0)
then RelDiff D �200% . If a company has exorbitant gains .p.t � 1/ < p.t//

then RelDiff approachesC200%. This allows to model returns with finite variances.
In Ultsch (2009) it was shown that returns measured in RelDiff can be modeled
with a mixture of distributions using one Normal (Gaussian) and two LogNormal
distributions. The definition of logarithms was generalized to negative numbers
as log0.x/ D sign.x/ � log.abs.x//. An initial LogNormal, Gaussian, LogNormal
(LGL) model was fitted to the data using the Expectation Maximization algorithm
(e.g. Izenman 2008). Figure 2 shows the empirical probability distribution measured
with a kernel density estimator Pareto Density Estimation (PDE) (Ultsch 2003). The
LGL model is depicted in Fig. 2 using dashed lines for each component and a solid
line for the mixture. The quality of the model was assessed with a quantile/quantile
plot resulting in an extremely good fit (see Ultsch 2009, Fig. 5).

This model can be naturally interpreted as a random result for returns, i.e. the
central Gaussian N.0; 1:7/ with a fraction of 75% of all returns. Furthermore there
are two non random distributions for returns, losses (12.5%) and wins (12.5%),
which are lognormal distributed.
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624 A. Ultsch and H. Locarek-Junge

3 Knowledge Discovery in Market Activities

Using the model described in the last chapter it can be decided, whether a return
belongs to the Random, Losses or Wins class using Bayes decision. We define
UnitWin D p.Return > Random/ � p.Return < Random/, where the probabil-
ities are calculated with Bayes’ theorem on the model developed above. UnitWin
gives �1 for Losses, 0 for Random and C1 for Wins. In Fig. 3 UnitWin is shown
for all returns.

The advantage of UnitWin is that differences in returns within same group are
zero. UnitWin is therefore a good measure to compare the performance of different
stocks for all trading days. The market activity on each day can be measured as the
average number of non random returns for that day. This gives

Activity(t) D mean
i
.abs.UnitWin.t; i///

The distribution of Activity is shown in Fig. 4 using PDE.
It can be seen that Activity can be modeled as a mixture of Gaussians GMM

(see Fig. 4). Using this GMM active days and inactive days can be distinguished.
We found that the market was active for 2,045 days during our observation period.
The next question is, whether there are days with more than average performance
of the stock market. We defined the DailyPerformance.i/ of a as the sum of all
UnitWins for stock i . We found that the DailyPerformance consisted of three dif-
ferent distributions: a Gaussian around zero, i.e. passive performance or sideways
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movement of stocks and a winner and loser distribution, both lognormal distributed.
Furthermore we found that only 568 D 8% of all stocks dominated the performance
of the stock market (marked leaders).

4 Types of Marked States

With UnitWins returns can be compared for sets of stocks and groups of days. The
similarity respectively dissimilarity of marked days was defined as the Euclidean
distance of the UnitWins of a set of stocks. Using this distance definition the dif-
ferent types of market days (winning, losing and passive) were compared for the
marked leaders. For each of these groups a clustering procedure was performed
using Emergent Self Organizing Feature Maps (ESOM) with the U-Matrix dis-
play (Deboeck and Ultsch 2000) and the clustering algorithm U*C (Ultsch 2007).
Figure 5 shows an example of a U-matrix.

This 3D landscape is interpreted as follows: data in valleys are close in the high
dimensional input space. Data separated by mountains are in different clusters. The
U �C clustering resulted in three clusters for Winner days (w1; : : :w3), four classes
for Loser days(l1; : : : l4) and only one class for the Passive days.

As a next step the transition frequencies for each class were counted. The results
is shown in Fig. 6. It is remarkable, that some states are rather persistent. For class
l3, one of the loser classes, the probability that the next day is also a loser class
is 74%.
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For class w3 it was also observed that with a probability of 60% the next day
is also a winning day. Other states are instable. E.g. in loser state l2 with 58%
probability, the next day is either passive or winning.

5 Discussion

This paper is an example of knowledge discovery in stock marked data. Knowl-
edge Discovery is defined as the discovery of understandable knowledge which is
new and useful. We have found that there are three types of returns: random, losses
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and wins. Using Bayesian decision a meaningful aggregation of collective behavior
could be defined (UnitWin).

Market activity was found to be either active or inactive. Daily performance could
be classified in passive, winning and losing. UnitWin can be used for the definition
of a sensible distance function. It has the advantage that inner group differences, e.g.
within passive stocks or days, are zero.

Inter group differences contribute a precise and finite value to the distance func-
tion. Using this distance function, a clustering of the winner and loser market days
was possible. The usefulness of these clusters can be seen in the transition frequen-
cies to other. Some of the states suggest the buying (e.g. l2) others the selling of
stocks (e.g. w1). It was not intended that this works may be used for the genera-
tion of buy-or-sell signals. It may, however, be useful to calculate measures for the
overall state of a market day.

6 Conclusion

The EMH is the backbone of classical capital market theory. It has been tested
empirically quite often, using econometrical testing and event studies. Several
anomalies have been found, but they could mostly explained by applying risk
measures and models for investor utility.

In this paper, knowledge discovery in stock marked data is applied. In the paper
we found that there are three types of returns: random, losses and wins. A meaning-
ful aggregation of collective behavior was defined and market activity was found to
be either active or inactive while performance could be classified in passive, winning
and losing. A clustering of the winner and loser market days was possible, where
some of the states suggest buying, others the selling of stocks. It was not intended
that this work may be used for the generation of buy-signals or sell-signals. It may,
however, be useful to calculate measures for the overall state of a market day.

The authors will try to test the properties out-of-sample and in various other mar-
kets to find out whether the method works only in the sample period or it is a general
property of the stock market, which remains to be proven with an independent test
set. This challenge for the EMH remains future work.
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The Asia Financial Crises and Exchange Rates:
Had there been Volatility Shifts for Asian
Currencies?

Takashi Oga and Wolfgang Polasek

Abstract We analyse the volatility structure of Asian currencies against the U.S.
dollar (USD) for the Thai Baht THB, the Philippine Peso PHP, the Indonesian
Rupiah IDR and the South Korean Won KRW. Our goal is to check if the characteris-
tics of the volatility dynamics have changed in a K-state AR(1)-GARCH(1,1) model
in the last decade 1995–2008 covering the Asian crisis. We estimate the model of
Haas et al. (2003) with MCMC and we find that for the four currencies the volatility
dynamics has changed at least once.

1 Introduction

GARCH (generalized autoregressive conditional heteroscedasticity) models of
Bollerslev (1986) have become very popular in econometrics to analyze the volatil-
ity structures of financial time series. Since the pioneering work of Hamilton (1989),
Markov switching models have become a primary tool to analyze break points in
time series. The last decade have seen some financial crises and it is interesting
to see if these crises can be detected or are reflected in the volatility structure of
exchange rates.

The term financial crisis is applied broadly to a variety of situations in which
some financial institutions or assets suddenly loose a large part of their value. The
consequences of financial crises can be manifold like banking panics, recessions
and currency revaluations or system changes. Other situations that are often called
financial crises include stock market crashes and the bursting of financial bubbles,
as well as international phenomena like currency crises and sovereign defaults.

In the following we concentrate on volatility changes of four Asian currencies
in the period 1995–2008, which covers the Asia financial crisis of 1997. Recall that
the Asian financial crisis
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Table 1 Asian currencies
that changed from pegged to
floating

Thailand July 2, 1997
Philippine July 11, 1997
Indonesia August 14, 1997
South Korea December 16, 1997

� Has started May 1997 in Thailand,
� Had most effects for Thailand, Indonesia and South Korea,
� Minor effects for Hong Kong, Malaysia, Laos and Philippines,
� While China, India, Taiwan, Singapore, Vietnam and Japan were less suffering.

The reason why we concentrate on these four currencies is the fact that these
currencies gave up their currency pegs in the aftermath of the Asia crisis. Table 1
lists the dates when the four countries changed to a floating system. Note that these
four changes occurred in the second half of the financial crisis year 1997. Singapore,
China, Hong Kong and Russia did not change their currency systems following the
Asia crisis. Similarly, their currencies were pegged mainly to the USD. Now our
question is: Had the changes in the currency systems been accompanied by similar
patterns in the volatility of the returns? If the pegs were abandoned because of spec-
ulative attacks, then the time point of the peg change must coincide with a break
point in a volatility model of the currency returns. Can econometric models detect
the regime shifts in the volatilities and do the estimated results correspond to the
official dates? Analysing regime shifts in the volatilities since 1995, an econometric
models could possibly detect other change points that were not necessarily related
to the Asian crisis and might have been there for other reasons. We consider the data
for the four currencies that are listed in Table 1: Thailand Baht THB, Philippine Peso
PHP, Indonesia Rupiah IDR, and South Korea Won KRW from Jan. 3rd 1995 to mid
2008. We construct a Markov switching AR(1)-GARCH(1,1) model to analyze the
structural change in the volatility dynamics and to interpret why the volatility change
occurred. From a Bayesian view, we construct a Markov chain Monte Carlo MCMC
algorithm to simulate parameter densities and we employ the deviance informa-
tion criterion DIC for determining the number of the structural changes. Section 2
introduces the AR(1)-GARCH(1,1) model and the Bayesian MCMC approach and
Sect. 3 discusses the empirical results of four currencies: THB, PHP, IDR, and KRW.
Conclusions are given in Sect. 4.

2 Model and Bayesian Inference

2.1 The Volatility Model

We assume a K-state Markov switching model where each component
k D 1; : : : ; K . is a GARCH model with an AR(1) disturbance. Each component
is assumed to have an unconditional mean �k and AR(1) coefficient �k .
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yt D fk.yt / D �k C �k.yt�1 � �k/C "k;t ; "k;t � N .0; hk;t /; (1)

The conditional variance hk;t is allowed to change through time by a GARCH(1,1)
process:

hk;t D !k C �khk;t�1 C ˛k"
2
k;t�1; (2)

The discrete random variables s D fs1; : : : ; st ; : : : ; sT g are the state indicators at
time t , and st 2 f1; : : : ; k; : : : ; Kg, follows a Markov process with transition matrix
… with K states

st � Markov.…/; (3)

and the elements of the probability �ij of… are given by

�ij D P.st D j jst D i/; i D 1; : : : ; K; j D 1; : : : ; K: (4)

As the regime changes, the indicator st changes from 1 to K in ascending ordering.
Therefore we define for … a restricted (step-up) transition probability matrix fol-
lowing the approach of Chib (1998). Under these settings, the observation equation
is a mixture model

yt D
KX

kD1

1.st D k/fk.yt /; (5)

where 1.�/ is a indicator variable for the event in the parenthesis. If the condition is
true, then the indicator is 1, otherwise zero. The likelihood function is given by

L.y j ‚/ D f .y1 j ‚1/

TY

tD2

KX

kD1

f .yt j yt�1; st ;‚/P.st D k j yt�1;‚/;

D f ."1;1j‚1/

TY

tD2

KX

kD1

f ."k;t jIt�1;‚k/P.st D kjIt�1;‚/ (6)

where y D .y1; : : : ; yT /
0, yt D .y1; : : : ; yt /

0, It is the available information set at
time t , and ‚ D f‚1; : : : ;‚K ;…g, ‚k is the parameter vector associated with
model k, namely .�k ; �k; !k ; �k; ˛k/

0.
Under these assumptions the likelihood function is,

f ."1;1 j ‚1/ D 1
r

2�
h1;1

1��2
1

exp

0

@� .y1 � �1/
2

2
h1;1

1��2
1

1

A ; (7)

f ."k;t j It�1;‚k/ D 1
p
2�hk;t

exp

�

� .yt � �k � �k.yt�1 � �k//
2

2hk;t

�

: (8)
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We can evaluate the likelihood function using the GARCH densities as in Hamil-
ton (1989) method independently only under Haas et al. (2003) formulations without
any approximations for the GARCH model. This makes the likelihood of the models
easy to be evaluated. Because of the non-linearity and the many parameters for large
K , classical maximum likelihood methods requiring numerical optimizations are
difficult to apply. In this situation, Bayesian MCMC methods yield faster parameter
estimates without any optimizations.

2.2 The Prior and Posterior Distribution

Let ‚ be the parameter set of the K-state model and we assume that the prior for
‚ D f‚1; : : : ;‚K ;…g is block-wise independent:

p.‚/ D p.�/p.�/p.�/
K�1Y

kD1

p.�kk/ (9)

with � D .�1; �2; : : : ; �K/
0; � D .�1; �2; : : : ; �K/

0; � D .� 0
1; �

0
2; : : : ; �

0
K/

0;
�k D .!k ; �k; ˛k/

0; k D 1; : : : ; K . For the vector of mean coefficients� we assume

� � N .�0;�;†0;�/; �0;� D 0K	1;†0;� D 1;000 	 IK	K ;

and for the AR(1) coefficients vector �, we assume independent uniform prior for
each element �k ,

�k � U.�1; 1/; k D 1; : : : ; K;
To assure stationarity, the prior density is truncated to the interval .�1; 1/.

For the prior of the GARCH parameters, we assume a truncated normal density

� � N .�0;� ;†0;� /; �0;� D 03K	1;†0;� D 1; 000 	 I3K	3K :

where the truncation is implied by imposing positive variances as a condition for
the GARCH model and are given for each state i D 1; : : : k by

!i ; �i ; ˛i > 0; and �i C ˛i < 1;

For the non-zero probabilities elements of the step-up transition matrix we use
the beta distribution

�i i � B.a; b/;

and following Chib (1998) we use the hyper-parameters a D 9; b D 0:1.
The posterior distribution is – by Bayes’s theorem – proportional to multiplying

(9) and (6)
f .‚ j y/ / L.y j ‚/p.‚/: (10)
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Table 2 Model choice by DIC for five regimes (minimum DIC in bold)

THB PHP IDR KRW

k = 1 3864.64 2374.26 8079.09 3899.39
k = 2 3682.10 1871.54 7963.10 3822.86
k = 3 3693.61 1855.72 7830.75 3808.48
k = 4 3589.26 2006.95 7986.91 5698.24
k = 5 4022.80 2549.86 7984.27 4470.55

2.3 Gibbs Sampling

This section develops a MCMC algorithm for the K-state AR(1)-GARCH(1,1)
model and lists all necessary full conditional distributions for the posterior in (10).
The MCMC sampling scheme with Metropolis-Hastings (MH) steps comprises:

0 initialize‚.0/,
1 draw �i i from a beta distribution (see Kim and Nelson 1999),
2 draw � using a random walk MH algorithm (see Holloway et al. 2002),
3 draw � using the MH algorithm (see Chib and Greenberg 1995),
4 draw � from a normal distribution,
5 draw s from a Bernoulli distribution (see Kim and Nelson 1999).

we iterate step 1–5 for G D 50;000 times and we discard 10,000 iterations as burn-
in.

3 Empirical Analysis

We consider the daily log returns of four Asian currencies against the USD from
Jan. 3, 1995 to June 30, 2008: Thailand’s Baht THB, Philippine Peso PHP, Indonesia
Rupiah IDR, and S. Korea KRW (with sample sizes 3,387, 3,152, 3,140, and 3,390).

3.1 Model Choice

To determine the adequate number of regimesK , we calculate the dispersion infor-
mation criterion DIC suggested by Spiegelhalter et al. (2002). Table 2 lists the DIC’s
for up to the K D 1; : : : ; 5 regimes. Only for the Thai THB we find three structural
changes (as the minimum DIC for K is 4) between 1995 and 2008, while for the
other three currencies

To estimate the exact date of the structural change, we have computed the
posterior probability of the states st using s.g/

t from the MCMC sample:
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OP.st D i/ D G�1

GX

gD1

1.s.g/
t D i/; i D 1; : : : ; K:

In the Markov switching model, the state st is estimated through the largest posterior
probability OP .st D i/ and the estimated regime changes are shown in Table 3.

The time series of estimated posterior volatilities and the probability of a break
point for the four countries are shown in Figs. 1–4.

3.2 Thailand

Thailand’s currency changed three times the volatility regime and Table 3 shows
that the first break point occurred on May 15, 1997. Recall from Table 1 that the
Asia crisis started by serious attacks of hedge funds on May 14 and 15 against the
Thai currency, so the break point marks exactly the beginning of the Asian crisis.
After fruitless defenses the authorities had to change the currency system on July 2,
6 weeks after the attacks began, thus the estimated structural change in volatilities
is exactly in line with financial history.

The second break point occurred on Sep. 29, 1998, five quarters after the regime
switch, and marked the end of the high volatilities, and about 1 month after a new
agreement with the IMF was found.1

Table 3 Estimated dates of the break points

Break Points 1st 2nd 3rd

Thailand 5/15, 1997 9/29 1998 12/11, 2006
Philippines 5/7, 1996 7/4, 1997 N/A
Indonesia 7/15, 1997 10/9, 2001 N/A
South Korea 1/30, 1996 1/23, 1998 N/A

Fig. 1 Thailand THB
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1 On Oct. 3, 1998, Japan declared “A New Initiative to Overcome the Asian Currency Crisis" (or
New Miyazawa Initiative) to help Asian economies and the stability of financial markets. Japan
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Fig. 2 Philippine PHP
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Fig. 3 Indonesian IDR
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Fig. 4 South Korean KRW
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The third break point is estimated for Dec. 11, 2006, after which the volatil-
ity increased almost to the level of the Asia crises. This increase in volatility was
caused by a coup d’etat, which took place on Tuesday 19 Sep. 2006, when the Thai
Army toppled the elected government of Prime Minister Thaksin Shinawatra. The
subsequent instability of the new government of Thailand made the currency more
volatile.

provided a package of US$30 billion for the economic recovery in Asia. It seems that the funding
program has helped to stabilize the markets.
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3.3 The Philippines

The Philippine currency dynamics changed two times according to the estimates
of posterior probability in Fig. 2. The first break point in the currency volatilities
is July 11, 1996, 1 year before the Asia crisis and from the estimated volatilities
we see that the size and duration was negligible compared with the Asia crises.
Table 3 shows that the second break point was on July 4, 1997, 2 days after the
Thai authorities had to change their currency system. It shows that the currency has
become volatile before the currency system changed and after the Philippine central
bank raised interest rates by 3.75% points in defense of the peso in spring 1997.
After the second structural change point, the high PHP volatilities have continued
for a long time and the stabilization worked rather gradually.

3.4 Indonesia

Similar to Thailand, the first volatility break point occurred on July 15, 1997, right
1 month before the date of change in the currency system on Aug. 14, 1997, and the
volatility of the IDR went up. The next change point is estimated for Oct. 9th, 2001,
as can be seen in Fig. 3 and Table 3. President Abdurrahman Wahid was discharged
on July 23th 2001, as he broke with the IMF. The next president Diah Permata
Megawati Setiawati Sukarnoputri, the daughter of the former president Sukarno,
restored the relationship between Indonesia and the IMF. After the event, the IMF
resumed the financial support for Indonesia on Sep. 10, 2001, and the long 4-year
period of high volatilities came to an end. This shows that the restart of IMF fund-
ing policy stabilized the Indonesia IDR despite the coincidence of the 9/11 attacks
which had no effects on the Asian currencies.

3.5 South Korea

South Korea’s currency changed two times the regime according to the estimates
shown in Fig. 4. The first change occurred on Jan. 30, 1996, 2 years before the
second one, during the peg regime and was quite small. This first sign of trouble in
Korea became evident, when the current account deficit widened from 2% of GNP
in 1995 to 5% in 1996. The subsequent change in the currency occurred on Dec. 16,
1997, and was the latest of the four countries considered in this study. This came
after some serious drops in the stock markets at the end of the year together with a
downgrading from A1 to B2 in Moody’s credit rating.

Table 3 shows that the second break point is on January 23, 1998, 1 month after
the currency system has changed. Thus the currency became shortly volatile after
the change from peg to floating. This raises an interesting issue: Why were there
no speculative attacks on the KRW and is this the reason of a delayed volatility
response in the currency?
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4 Conclusions

This paper has analyzed the structural changes in the volatilities of Asian currencies
over the 1995–2008 decade covering the Asia and the “dot.com” crises and the
slump following the 9/11 attacks. We find that strong volatility changes had occurred
for the Thai THB and Indonesian rupiah caused by the Asian crisis.

In the introduction we asked: Were the changes in the four currency systems
accompanied by similar patterns in the volatility structure? The answer is rather no,
despite the fact that the four countries changed from peg to float in the second half
of 1997. Vulnerability, duration and the response dates to currency attacks seem
to be quite different and to depend on the underlying strength of the economies.
Occasionally we find similar patterns of currency changes like the one for Thailand
and Indonesia. Furthermore, some regime shifts are strongly related to the internal
politics of the countries, like discharge of presidents or coup d’etat. And we find
that quite intensive influence by the IMF or other countries can be an effective way
to stabilize the volatility of the currencies.

We find that that the effects of the Asia crises are quite divers if we only concen-
trate on currency fluctuations. More can be learned if we take into account the effects
of the stock markets and interest rates, or growth and deficits. But the modeling
complexity will not decrease since relationships between countries will not become
easier in times of a crisis. But our modeling approach shows that regime shift models
can resolve some of the complexities that are triggered by crises developments.
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The Pricing of Risky Securities in a Fuzzy Least
Square Regression Model

Francesco Campobasso, Annarita Fanizzi, and Massimo Bilancia

Abstract This work aims to estimate the relationship between the expected return
of a financial investment and its risk by means of a fuzzy version of the Capital Asset
Pricing Model (CAPM). The expected return is usually computed as a function both
of the rate of a risk-free security, that represents the time value of money, and of
a premium that compensates investors for taking on an additional risk in the mar-
ket. Actually we estimate the parameters of a simple regression model, where the
dependent variable consists in the percentage change in prices of a surveyed (stable
or volatile) stock and the independent variable consists in the percentage change in
market indexes. As both changes in closure prices only partially represent the actual
trend in returns, we use a range of observed values for each price; this allows us
to estimate the sensitiveness of the stock to risk by means of the so called Fuzzy
Least Square Regression. The corresponding estimates are compared with the ones
obtained by means of the Ordinary Least Square Regression.

1 The Capital Asset Pricing Model

According to the Capital Asset Pricing Model (Black et al. 1972), the expected
return of a stock depends both on the rate of a risk-free security, that represents the
time value of money, and on a premium for taking on an additional risk. In formal
terms the aforesaid relationship can be written as

E
�
rit � rf

� D ˇi


E.rmt/� rf

�
(1)

where

� rit is the risky return of the i -th stock at time t , which equals the percentage
change in its prices between times t � 1 and t ;
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� rmt is th risky return of the market portfolio at time t , which equals the percentage
change in levels of the market index between times t � 1 and t ;

� rf is the risky free return, i.e. the return of a short run Treasury Bond.

Let us suppose that rf is constant, as investors know the risk-free return when they
choose their portfolios. After defining the unexpected return of the i -th stock at time
t as

uit D rf � E.rit/ (2)

and the unexpected return of the market portfolio at time t as

umt D rf � E.rmt/ (3)

the model (1) can take the following form

rit � rf D ˇ.rmt � rf /C "it (4)

where "it D uit � ˇi umt satisfies the classic Gauss-Markov assumptions.
Noting that only rf affects the intercept in the linear relationship between rit and

rmt, we can specify model (1) as

rit D ˛i C ˇi rmt C "it (5)

where ˛i D rf C ˇi rf represents such an intercept. The regression coefficient ˇi

measures the way in which the price of the i -th stock varies according to the mar-
ket. We can easily obtain its estimate by means of Ordinary Least Squares (OLS)
method. Depending on whether Ǒi D 1, Ǒi > 1 or Ǒi < 1, the premium for the risk
of the i -th stock may equal, exceed or underlie the premium for the market risk.

The estimate of the regression coefficient ˇi may be improper, as the percentage
changes in closure prices (both of the i -th stock and of the market index) only par-
tially represent the actual trend of the corresponding returns. We propose to use a
range of various percentage changes varying between the following two ratios (both
decreased by 1): the ratio of the highest price of the i -th stock (market index) at time
t to the lowest price at time t � 1, and the ratio of the lowest price of the i -th stock
(market index) at time t to the highest price at time t � 1. Accordingly, it is worth
noting that

lowest price.t/

highest price.t � 1/�1 �
closure price.t/

closure price.t � 1/�1 �
highest price.t/

lowest price.t � 1/�1 (6)

The more the values of the range roll away from the percentage change in closure
prices, the less they are likely. This feature of the suggested values allows us to
introduce triangular fuzzy numbers in the Capital Asset Pricing Model.
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2 A Fuzzy Least Squares Regression Approach

Fuzzy techniques can be used to fit data into a regression model, where deviations
between dependent variable and its model are connected with the uncertain nature
whether of independent variables or of their coefficients. There are two lines of
investigation developed in literature in this regard.

The first one (Tanaka et al. 1989) considers as nuanced the relationship between
observed variables and, therefore, uses regression coefficients of fuzzy type; these
are estimated minimizing through linear programming their total spread, represent-
ing uncertainty of the model (Fuzzy Possibilistic Regression).

The second approach (Diamond 1988) is similar to traditional one, because
regression coefficients are estimated minimizing the distance between observed
fuzzy values and corresponding theoretical values (Fuzzy Least Square Regression).
This work follows on from this approach, whose main merit consists in introducing
a metric onto the space of fuzzy numbers, although necessarily triangular.

A fuzzy set eX for the statistical variableX is defined as the set of pairs
˚
xi ; � eX

�
,

where xi represents any possible value of X and � eX .xi / W X ! Œ0; 1� expresses its
membership degree to eX . Finally a fuzzy number is any fuzzy set which is at once
normal and convex.

A triangular fuzzy number (Zimmermann 1991) eX D .x; xL; xR/T for the vari-
able X is characterized by a membership function � eX W X ! Œ0; 1�, see the one
represented in Fig. 1, that expresses the membership degree of any possible value
of X to eX . The accumulation value x is considered the centre of the fuzzy number,
while x � xL and xR � x are respectively considered as the left spread and the
right spread. Note that x belongs to eX with the highest degree, while the other val-
ues included between the extremes xL and xR belong to eX with a gradually lower
degree.

A metric onto the space onto the space of triangular fuzzy numbers was intro-
duced in Diamond (1988), according to which the distance between and eX and
eY is

d.eX; eY /2 D .x � y/2 C .xL � yL/2 C .xR � yR/2 (7)

On the ground of these considerations we analyzed the performance of financial
investments through the Fuzzy Least Square Regression, that covers the case of
a dependent fuzzy variable eYt (the percentage change in the prices of a specific

Fig. 1 Representation of a
triangular fuzzy number xL x xR X

1

μ∼x
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stock) in terms of an independent fuzzy variable eXt (the percentage change in the
prices of the market index). In particular, if we observe eYt D .yt ; y

L
t ; y

R
t /T and

eXt D .xt ; x
L
t ; x

R
t /T at time t , the regression model becomes

eYt D ˛ C ˇ eXt C "t (8)

The expression of the estimated parameters of the model is derived from mini-

mizing the sum
Pn

tD1 d.˛Cˇ eXt ;eYt /
2 of the squared distances between theoretical

and empirical values of the fuzzy dependent variable with respect to ˛ and ˇ.
It was proved in Diamond (1988) that the Fuzzy Least Squares optimization

problem has, under mild conditions, the following unique solutions

Ǫ D 1

3

h
.y C yL C yR/� Ǒ.x C xL C xR/

i
(9)

Ǒ D 3
Pn

iD1


.xR

t /.y
R
t /C .xL

t /.y
L
t /C xtyt

� � n.y C yL C yR/.x C xL C xR/

3
Pn

iD1


x2

t C .xR
t /

2 C .xL
t /

2
� � n.x C xL C xR/

(10)
where y, yR and yL (x, xR and xL) represent respectively the average accumulation
value and the average extreme values, both on the right and on the left, of the fuzzy
dependent (independent) variable.

The expressions of the parameters Ǫ and Ǒ are similar to those based on Ordinary
Least Squares, differing only for the adopted metrics. It should be noted that the total
of theoretical accumulation and extreme values, both on the right and on the left, of
the dependent variable coincides with the same amount of empirical values, but
the average estimated values of the dependent variable does not match the average
empirical values, unlike in classical regression. In particular the estimated regression
coefficient Ǒ is still equal to the ratio of the covariance between the two observed
variables on the variance of the independent variable, both expressed in fuzzy terms.

As the same author says, the computational simplicity of the estimation pro-
cedure offsets the severity of its restriction to a certain type of fuzzy numbers
(triangular ones).

In order to evaluate how the Fuzzy Least Square Regression fits the data, we
propose a fuzzy version of R2 index, that can be called Fuzzy Fit Index (FFI). Its
expression can be still obtained as the ratio between regression deviance and total
deviance, clearly expressed in accordance with the introduced metrics

FFI D
Pn

iD1 d.
eY ?

t ; Y
?
/2

Pn
iD1 d.

eYt ; Y /2
(11)

where Y
?

and Y represent the averages respectively of the theoretical and of
the observed values of the dependent variable, while eY ?

t are the fitted values on
the Fuzzy Regression line. The closer this index is to one, the better the model
fits the observed data (Campobasso et al. 2008). Note that FFI not necessarily



The Pricing of Risky Securities 643

increases when the number of explanatory variables included in the model growths;
at variance with classical regression, the average estimated values of the dependent
variable does not match the average empirical values, as we stated above.

3 Case Study

The case study refers to the Italian financial market in the period between January
2003 and January 2009. In order to test the ability of the model to forecast quotations
both of a stable stock and of a volatile one on the basis of the fluctuations in the
market, we consider the percentage change in prices of the MIBTEL index as the
independent variable, while the percentage change in prices of the TISCALI stock
first and then of the ENEL stock as the dependent variable (Fig. 2). Specifically, in
order to analyze if the frequency of observations affects the estimates in the model,
we consider daily, weekly and monthly closures.

In the case of a volatile stock (Table 1), both the fuzzy and the classic approach
determine a regression coefficient ˇ greater than 1, so that the premium for the stock
risk appears anyway greater than the premium for the market risk. Specifically the
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Fig. 2 Percentage change in daily prices between January 2nd, 2003 and January 31th, 2009.
Two stocks, TISCALI and ENEL, as dependent variable, and the composite MIBTEL index, as
independent variable, have been considered
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Table 1 The estimates for the TISCALI stock
Daily prices Weekly prices Monthly prices

Estimates Fuzzy Classic Fuzzy Classic Fuzzy Classic

Intercept 0.00 –0.11 0.00 –0.51 –0.02 –1.91
Mibtel 2.01 1.09 2.15 1.24 2.30 1.93
FFI 0.52 – 0.65 – 0.64 –
R2 – 0.17 – 0.24 – 0.35

Table 2 The estimates for the ENEL stock
Daily prices Weekly prices Monthly prices

Estimates Fuzzy Classic Fuzzy Classic Fuzzy Classic

Intercept 0.00 0.01 0.00 0.03 0.00 –0.06
Mibtel 1.10 0.88 1.03 0.82 1.00 0.71
FFI 0.84 – 0.85 – 0.94 –
R2 – 0.51 – 0.50 – 0.47

fuzzy approach determines a definitely greater ˇ and fits the data much better than
the classic one. Moreover the sensitiveness of the stock to market fluctuations grows
from daily to monthly lists (maybe because the stock does not react immediately to
any change in the market).

In case of a stable stock (Table 2), the fuzzy approach determines a regression
coefficient ˇ slightly greater than 1, whereas the classic approach determines a ˇ
smaller than 1; therefore the performance of the stock results more or less reward-
ing than the market one depending on the selected estimation procedure. However
the fuzzy model fits the data in a better way. Moreover the sensitiveness of the
stock to market fluctuations decreases from daily to monthly lists (maybe because
its reactions tend to smooth over time). In both cases (TISCALI and ENEL) the
intercept of the fuzzy model almost equals zero, because the estimation procedure
takes into account the fluctuations of the risk-free return (generally minimal and
assumed constant) during an economic growth or regression.

The goodness of fit of our proposal is also tested using available data beyond
the estimation period. By taking into account daily and weekly quotations of the
considered stocks from February 2009 to May 2009, we compare the obtained fuzzy
spreads with the classic confidence intervals in order to verify whether empirical
observations are included in both such ranges. Monthly quotations are omitted, as
their fluctuations are unduly smooth. It is possible to observe that the percentage
change in prices of the stable stock (ENEL) always lies between fuzzy extremes,
whereas it does not in confidence intervals (Fig. 3); this happens in the case both
of daily and of weekly quotations (especially in the first one). The same is true
for weekly and, albeit to a lesser extent, for daily quotations of the volatile stock
(TISCALI), that cannot be reliably estimated by means of classic methods (Fig. 4).
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Fig. 3 Percentage change and corresponding confidence bounds in daily and weekly prices of
ENEL stock between February 1st, 2009 and May 31th, 2009

4 Final Remarks

A fuzzy version of the Capital Asset Pricing Model allows to better estimate the
sensitivity of a stock to market fluctuations, because it uses additional information
on the observed trends. A simple application demonstrates how such a version is
better suited to a fast moving reality: the stronger the variability of a stock is, the
more suitable representation of its expected return is provided. In this case, in fact,
the typical hypothesis of the Capital Asset Pricing Model (that the risk-free return
in a market is constant over time) can not occur in practice and yet its fuzzy version
blurs any changes of such a return over time.

The Fuzzy Fit Index represents the portion of variance of the stock return
explained by the market index and provides a measure of the systematic risk (impos-
sible to remove by means of diversification); the remaining part of the variance
represents the specific risk due to the volatility of the stock (that can be managed by
means of diversification). Such an index arises if the model includes stable stocks
(which are characterized by a low variability in prices over time) and however if the
frequency of the observed data decreases, maybe because the fluctuations in prices
become more regular. In particular the expected premium for the risk of a volatile
stock exceeds the expected premium for the market risk; moreover the sensitiveness
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Fig. 4 Percentage change and corresponding confidence bounds in daily and weekly prices of
TISCALI stock between February 1st, 2009 and May 31th, 2009

to market fluctuations of such a stock grows when the frequency of the observed
data decreases. On the contrary the expected premium for the risk of a stable stock
almost equals the expected premium for the market risk; moreover the sensitiveness
of such a stock tends to smooth when the frequency of the observed data decreases.
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Classification of the Indo-European Languages
Using a Phylogenetic Network Approach

Alix Boc, Anna Maria Di Sciullo, and Vladimir Makarenkov

Abstract Discovering the origin of the Indo-European (IE) language family is one
of the most intensively studied problems in historical linguistics. Gray and Atkin-
son (2003) inferred a phylogenetic tree (i.e., additive tree or X-tree, Barthelémy and
Guénoche 1991) of the IE family, using bayesian inference and rate-smoothing algo-
rithms, based on the 87 Indo-European language data set collected by Dyen et al.
(1997). When conducting their classification study, Gray and Atkinson assumed
that the evolution of languages was strictly divergent and the frequency of word
borrowing (i.e., horizontal transmission of individual words) was very low. As
consequence, their results suggested a predominantly tree-like pattern of the IE lan-
guage evolution. In our opinion, only a network model can adequately represent the
evolution of the IE languages. We propose to apply a method of horizontal gene
transfer (HGT) detection (Makarenkov et al. 2006) to reconstruct a phylogenetic
network depicting the evolution of the IE language family.

1 Introduction

A number of curious parallels between the processes of historical linguistics and
species evolution have been observed (Atkinson and Gray 2005; Gray and Atkin-
son 2003; Rexová et al. 2003). The evolutionary biologists and historical linguists
often look for answering similar questions and face similar problems (Atkinson and
Gray 2005). Recently, the theory and methodology of the two fields have evolved in
remarkably similar ways. A number of important studies have considered the appli-
cations of phylogenetic methods to process language data (e.g., Atkinson and Gray
2005; Gray and Atkinson 2003; Rexová et al. 2003). For instance, one of the most
intensively studied topics is the evolution of the Indo-European (IE) language fam-
ily (Diamond and Bellwood 2003). Gray and Atkinson (2003) inferred a consensus
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phylogenetic tree of the IE language family using maximal likelihood models of
lexical evolution, bayesian inference and rate-smoothing algorithms; the 87 Indo-
European language data set collected by Dyen et al. (1997) was analyzed in Gray
and Atkinson (2003). On the other hand, Rexová et al. (2003) also reconstructed a
phylogeny of the IE languages when applying a cladistic methodology to study the
same lexicostatistical data set (Dyen et al. 1997). The results obtained in Rexová
et al. (2003) were very similar to those found in Gray and Atkinson (2003). How-
ever, to reconstruct their phylogenies Gray and Atkinson, as well as Rexová et al.,
were constrained to assume that the evolution of languages was strictly divergent,
each language was transmitted as a whole, and the frequency of borrowing (i.e.,
horizontal transmission of individual words) between languages was low. As con-
sequence, the obtained results suggested a predominantly tree-like pattern of the IE
language evolution with little borrowing of individual words.

In our opinion, only a phylogenetic network can adequately represent the evolu-
tion of this language family. A network model can incorporate the borrowing and
homoplasy (i.e., evolutionary convergence) processes that influenced the evolution
of the Indo-European languages. For example, although English is a Germanic lan-
guage, it has borrowed around 50% of its total lexicon from French and Latin (Pagel
2000).

We propose to apply the methods of horizontal gene transfer (HGT) detec-
tion, which are becoming very popular among molecular biologists, in order to
reconstruct the evolutionary network of the IE language family. The most frequent
horizontal word transfers, representing borrowing events, will be added to the phy-
logenetic tree inferred by Gray and Atkinson (Fig. 1 in Gray and Atkinson 2003) to
represent the most important word exchanges which occurred during the evolution
of the IE languages. In particular, a HGT detection algorithm (Makarenkov et al.
2006) will be applied to build the evolutionary network of the IE languages.

In this article, we first outline the data in hand and then describe the new features
of the HGT detection algorithm used to identify the word borrowing events. In the
Results and Discussion section, we present the obtained results for the 12 most
important groups of the IE languages and report the words borrowing statistics. The
most important word exchanges characterizing the evolution of this language family
will be brought to light and discussed.

2 Description of the Dyen Database

The database developed by Dyen et al. (1997) includes the 200 words of the
Swadesh list (Swadesh 1952). The Swadesh list is one of several lists of vocabu-
lary with basic meanings, developed by Morris Swadesh in the 1940–50s (Swadesh
1952), which is widely used in lexicostatistics (quantitative language relatedness
assessment) and glottochronology (language divergence dating). Dyen et al. (1997)
built a database that provides cognation data among 95 Indo-European speech vari-
eties. For each word meaning in the list of 200 basic meanings (chosen by Swadesh
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in 1952), the database contains the forms (e.g., words) used in the 95 speech vari-
eties and the cognation decisions among the speech varieties made by Isidore Dyen
in the 1960s. For each meaning, the forms were examined and cognation judgments
were made (Dyen et al. 1997). The cognation judgments were made only between
forms having the same meaning. The cognation judgments were recorded in classes
of forms such that the forms in each class were “cognate” or “doubtfully cognate”
with each other. Two forms, in two different speech varieties, were identified as
“cognate” if within both of the varieties they had an unbroken history of descent
from a common ancestral form. For example, since the English word FRUIT and
French word FRUIT are known to be related by borrowing, they have been assigned
different Cognate Classification Numbers (CCN) in the Dyen database (Dyen et al.
1997). Forms believed to be related by borrowing or by accidental similarity were
thus not treated as cognate. In a small number of cases it was difficult to distinguish
cognates from borrowings or accidental similarities; in this case the forms were clas-
sified as “doubtfully cognate” (Dyen et al. 1997). The cognate content information
was used by Gray and Atkinson (2003) to reconstruct the evolutionary tree of IE
languages. In our study, we also subdivided the 200 words of the Swadesh list into
two broad categories: lexical (nouns and verbs; 138 words in total) and functional
(adjectives C pronouns, conjunctions and determiners; 62 words in total) in order
to see whether the rate of borrowing differs for these two broad categories.

3 Materials and Methods

In this section, we describe the new features of the HGT detection algorithm
Makarenkov et al. (2006), applied here in a biolinguistics context, to infer a phy-
logenetic network of the IE languages family. When applied in a biological context,
this algorithm identifies horizontal gene transfers (HGT) of a given gene for a given
set of species thus reconciliating the species and gene phylogenetic trees. At each
step of the reconciliation process, a HGT event is inferred. In this study, we draw
a parallel between the HGT detection and the word borrowing detection processes.
In our model, the IE languages tree (Fig. 1 and Fig. 4 in Gray and Atkinson 2003)
plays the role of the species tree and the word tree, representing the evolution of
a given word (a given translation in all 87 considered languages), plays the role of
the gene tree. The algorithmic procedure includes the three main steps, which are as
follows:

Step 1. Let L be the rooted tree of 87 IE languages inferred by Gray and Atkinson
(2003). Figure 1 shows a representation of this tree by groups (the group content
is reported on the right). We also considered the 200 words of the Swadesh list
(Swadesh 1952) and their translations into 87 IE languages (Dyen et al. 1997). For
each word of this list, we computed a distance matrix, Di .87	87/, i D 1; : : : ; 200,
between its translations using a normalized Levenshtein distance [(1), Levenshtein
1966].



650 A. Boc et al.

100

Irish A & B,
Welsh N & C,

Breton List, SE &
ST

Lithuanian O & ST,
Latvian

Swedish Up, VL &
List, Riksmal,
lcelandic ST,

Faroese, Danish
Romani,

Singhalese
Marathi, Gujarati,

Panjabi ST,
Lahnda, Hindi,
Bengali, Nepali
List, Khaskura,

Kashmiri

Slovenian,
Macedonian,

Bulgarian,
Serbocroatian,
Lusatian L & U,

Czech, Czech E,
Slovak, Ukrainian,

Byelorussian,
Russian, Polish

Ossetic, Wakhi,
Persian List,

Tadzik, Baluchi,
Afghan, Waziri

Greek ML, MD,
Mod, D & K

Albanian T, G,
Top, K & C

Armenian Mod &
List

Tocharian A & B

Hittite

Romanian List
Vlach, Ladin,

Italian, Sardinian
N, C & L

Provencal, French,
Wallon, French
Creole C & D,

Spanish,
Portuguese ST,

Brazilian, Catalan

German ST, Penn
Dutch, Dutch List,

Afrikaans, Flemish,
Frisian, English

ST, Sranan

67

46

44

100

100

98

3896

40

100

100

72

98

99

100 (59, 75)

100

100

100

100

100

100

Anatolian (1)

AnatolianTocharian (2)

TocharianArmenian (2)

ArmenianGreek (5)

Greek

Albanian (5) Albanian

Iranian (7)

Iranian

Indic (11)

IndicSlavic (13)

Slavic

100

100

84

100 (88)

Baltic (3)
Baltic

North Germanic (7)

West Germanic (8)
W. Germanic

N. Germanic

French/Iberian (9)

French/
Iberian

Italic (7)
Italic

Celtic (7)

Celtic
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parentheses

d.i; j / D Levenshtein_distance.i; j /

length.i/C length.j /
: (1)

For each such matrix, we inferred the word phylogenetic tree Wi, using the
Neighbor Joining method (Saitou and Nei 1987). Figure 2 shows the Robinson and
Foulds (RF) topological distance (Robinson and Foulds 1981) (normalized by its
maximal value of 2n � 6 for two binary trees with n leaves) between each of the
200 word trees Wi and the language tree L. The average value of the normalized
RF distance was 82%. Such a high value suggests an important overall discrepancy
between the language tree L and the word trees Wi .i D 1; : : : ; 200/.
Step 2. We applied the HGT detection algorithm (Makarenkov et al. 2006) to infer
the word borrowing events, considering, in turn, the language tree L and each of
the 200 word treesWi. Therefore, 200 different scenarios of tree reconciliation were
computed. As the Dyen database (Dyen et al. 1997) did not comprise any translation
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Fig. 2 Normalized Robinson and Foulds topological distance (Robinson and Foulds 1981)
between each of the word trees and the IE language tree in Fig. 1

for the Hittite and Tocharian languages, belonging to the Anatolian and Tocharian
groups respectively, these languages were not considered in our analysis.

Step 3. We combined all results from the obtained transfer scenarios to compute the
word borrowing statistics. Intra-group transfers were ruled out in our computations
because of the high risk of accidental similarity among the words from the same
language group. First, we assessed the total numbers of transfers (i.e., number of
word borrowings) between each pair of groups, and then the percentages of words
affected by these transfers in each group. The 10 most important transfers were
mapped into the IE language tree (see Figs. 3–5). These computations were carried
out, first, for all 200 words and then, separately, for the words from the lexical and
functional categories.

4 Results and Discussion

Figure 3 shows the total numbers of borrowed words found for each pair of groups.
The 10 most active transfers are highlighted in dark grey. These transfers have
been mapped into the IE language tree (Fig. 5a). If the geographical proximity can
explain most of the frequent exchanges (e.g., between the West and North Germanic
groups), some of them occur between the groups located far away from each other
in the tree (e.g., between the Celtic and Indic, or Iranian and Celtic groups).

We can also observe a number of very active exchanges between the clus-
ter combining the Indic and Iranian groups, and that combining the Celtic, Italic,
French/Iberian, West/North Germanic and Slavic groups. These results suggest that
despite the fact that the Iranian and Celtic groups are located far away from each
other in the phylogenetic tree (Fig. 1), there is a strong relationship between them.

Figure 4 reports the percentages of words of a given group affected by trans-
fers originating from other groups. Similarly to the results reported in Fig. 3, the
highest values were found for the neighbor groups. One can also notice that the
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Fig. 4 Percentages of words affected by borrowing from other groups. For instance, 3.98% of the
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cluster combining the Indic and Iranian groups has a sustained influence on the
other groups. In the same way, we mapped the 10 most intensive transfers into the
IE evolutionary tree (Fig. 5b). Some other high percentages (in light grey) can be
explained either by well-known historical migration events (e.g., between the Arme-
nian and Iranian groups) or should be investigated in more detail (e.g., between the
Slavic and the Albanian groups). For instance, Armenian borrowed so many words
from the Iranian languages that it was at first considered a part of the Indo-Iranian
languages, and was not recognized as an independent group of the Indo-European
languages for many decades (Waterman 1976) (see the value of 11.7% for the trans-
fers form Iranian to Armenian in Fig. 4). On the other hand, Baltic languages are
extremely well preserved, retaining archaic features similar to ancient Latin and
Greek. Similarities of the Baltic languages to ancient Greek (see the value of 5.14%
for Greek to Baltic in Fig. 4) and Sanskrit (see value of 4.31% for Indic to Baltic in
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Fig. 5 Ten most frequent word exchanges between the IE language groups in terms of (a) total
numbers of transferred words, and (b) percentages of affected words by group

Fig. 4) were noted long ago by Franz Bopp, the founder of comparative linguistic
(Bopp 1867). Overally, 37% of the considered words were affected by borrowing
from other language groups. The analogous results were obtained for the words of
the lexical category (36.9%) and functional category (37.1%).

5 Conclusion

In this paper, we reconstructed a phylogenetic network of the Indo-European lan-
guage family. The obtained network allowed us to represent the word borrowing
events that have an important influence on the evolution of the IE languages. We
found that 37% of the IE words have been affected by borrowing from other IE
groups. Very similar results were obtained for the lexical and functional categories.
This means that the word borrowing process does not depend on the broad lex-
ical/functional category. However, the obtained result should be interpreted with
caution because some of the word similarities, even for words belonging to different



654 A. Boc et al.

language groups, can be due to accidental resemblance. In the future, we plan to con-
duct a refined study where the cognate content information (Dyen et al. 1997) will be
taken into account. This should eliminate the impact of the accidental word similari-
ties. We also found that the clusters combining the Indic and Iranian groups, and the
Celtic, Italic, French/Iberian, West/North Germanic groups have much closer rela-
tionships than it is represented in the traditional IE tree (Gray and Atkinson 2003).
This may be the evidence of a much closer common ancestry between these two
clusters or of an intensive migration of the ancestors of the involved nations. In the
future, it would be important to carry out a more comprehensive words borrowing
analysis based on the 850 words of the Basic English (Ogden 1930). Basic English
is an English-based controlled language created by Ogden (1930) (in essence, a sim-
plified subset of English) as an international auxiliary language. Such a new analysis
could help find more recent activities of borrowing. It would be also interesting to
establish a parallel between each of the determined high word borrowing activi-
ties (see Figs. 3 and 4) and the historical events, external to the internal language
systems, such as wars, migrations, or important commercial trades between related
nations.
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Parsing as Classification

Lidia Khmylko and Wolfgang Menzel

Abstract Dependency parsing can be cast as a classification problem over strings
of observations. Compared to shallow processing tasks like tagging, parsing is a
dynamic classification problem as no statically predefined set of classes exists and
any class to be distinguished is composed of pairs from a given label set (syntac-
tic function) and the available attachment points in the sentence, so that even the
number of “classes” varies with the length of the input sentence. A number of fun-
damentally different approaches have been pursued to solve this classification task.
They differ in the way they consider the context, in whether they apply machine
learning approaches or not, and in the means they use to enforce the tree property
of the resulting sentence structure. These differences eventually result in a different
behavior on the same data making the paradigm an ideal testbed to apply different
information fusion schemes for combined decision making.

1 Introduction

Syntactic parsing aims at determining structural properties among the word forms
of a natural language utterance as a prerequisite for further processing, like infor-
mation extraction, semantic interpretation, or machine translation. For this purpose,
hierarchical descriptions are usually used.

Two different paradigms are mainly used: phrase or dependency structures. In
phrase structure parsing, word forms are recursively grouped into increasingly larger
constituents which carry a category taken from a finite inventory. In this sense phrase
structure parsing can be seen as a classification problem, however, neither the num-
ber nor the local extensions of the objects to be classified (i.e. the constituents) is
known beforehand.
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Dependency structures renounce the phrasal nodes and express the syntactic rela-
tions in a sentence as edges of a directed graph the nodes of which are built of the
word tokens. With an artificial root token, such a graph is acyclic and (weakly)
connected, it also has to satisfy the single-head constraint and, thus, makes up a
tree.

Dependency parsing much better fits the notion of classification because there
the structural description can be broken down into a number of separate pieces of
information which need to be assigned to each word form in the input utterance.
Hence, it resembles the much simpler problem of tagging, for which a number of
solution methods is known.

The goal of tagging is to uniquely assign a category (syntactic or semantic)
t.wi / from a finite set T to each of the locally ambiguous word forms in the input
utterance based on information about the individual context in which they occur.
The influence of the context on the decision can either be captured by constraint-
based (Karlsson et al. 1994), transformation-based (Brill 1995), or probabilistic
multi-class classification (Brants 2000) methods.

To extend the idea of tagging to dependency parsing the representation needs to
be changed in a way that it allows to model linguistic dependency as the attach-
ment of one word form to another. That requires replacing the fixed predefined
set of categories by a set of positional indices which can be interpreted as attach-
ing the given word form to another one in the input utterance d.wi / D j , i ¤ j ,
i D 1; : : : ; N , j D 0; : : : ; N , where a special position (in our case the one
with index 0 is used to provide an attachment point for the top-most node of the
dependency tree. Sometimes, the problem is further restricted to projective depen-
dency trees which have to obey the additional constraint on positional indices:
i < j < k ^ .d.wi / D k _ d.wk/ D i ^ d.wj / D l ! i � l � k//, i.e. a depen-
dency edge is not allowed to cross the projection line of another word form. Such a
representation, also called bare dependencies, is not sufficient for many applications.
Usually, one wants to also assign a (syntactic) function, like subject or genitive mod-
ifier, to the structural relationships, i.e. a label, again taken from a finite inventory
d.wi / D .j; l/, i ¤ j , i D 1; : : : ; N , j D 0; : : : ; N; l 2 L.

These two assignment tasks are taken as standard scenarios for evaluating a
dependency parser with respect to its output quality. Yet another refinement could
be introduced, since a word form typically has more than a single lexical read-
ing (morpho-syntactic, syntactic, or semantic). The parsing problem can again be
extended to also regard which of the available readings from a word-form spe-
cific set Ri was considered when choosing the attachment point and the label
d.wi / D .j; l; r/; i ¤ j; i D 1; : : : ; N; j D 0; : : : ; N; l 2 L; r 2 Ri .

Although the final description has grown in complexity, the fundamental similar-
ity to a classification problem is preserved: The set of possible (complex) categories
and the objects to be classified are known in advance. Therefore, a similar variety of
solution methods as for the tagging problem is available. Also, tagging and parsing
share the same underlying difficulty that a reliable decision cannot be taken locally
but has to consider the context, both in terms of input word forms and their structural
relationships. Even worse it turned out that in most cases the complete utterance will
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be needed instead of a limited window of word forms mostly sufficient for tagging
as additional global well-formedness conditions have to be observed. Thus, in case
of dependency parsing the problem grows to be multi-class structured classification
problem.

Recently, three systems for dependency parsing have been particularly success-
ful: WCDG (Foth and Menzel 2006), MSTParser (McDonald et al. 2006) and
MaltParser (Nivre et al. 2007). The following sections primarily discuss these three.
Subsequently possible ways of parser combination are analyzed.

2 WCDG

Weighted Constraint Dependency Grammar (WCDG) rests on the formalism of a
Constraint Dependency Grammar extended with weights by Schröder (2002) to bet-
ter deal with structural ambiguities. Well-formed structures are described in this
grammar entirely by constraints. The relative importance of constraints is expressed
by a weight lying in the interval between zero and one, a lower value makes a con-
straint more prohibitive. The parse found by the system is analyzed for constraint
violations between the structure and the rules expressed by constraints. The score
of an analysis is the product of all the weights for constraint violations occurring in
the parse.

Current WCDG for German comprises about 1,000 constraints and can
be freely obtained from http://nats-www.informatik.uni-hamburg.de/view/CDG/
DownloadPage.

WCDG treats the parsing problem as a Constraint Satisfaction Problem and
searches for an analysis with the highest score. Unfortunately, applying a complete
search is intractable for this problem type, but efficient heuristics exist. The most
reliable method has proven to be the transformation-based solution. Starting with
an initial guess about the optimal tree, changes of labels, subordinations, or lex-
ical variants are applied, whereby the constraint violations are used as a control
mechanism guiding the transformation process (Foth et al. 2000). If the rearrange-
ment of the tree structure has not been successful, increasingly long transformation
sequences are tried out.

Resolving the optimum is not guaranteed by the transformation-based search, but
this method does provide additional benefits. It is not only more resource efficient
than the complete search, but it can be interrupted at any time and will always return
an analysis with a list of constraint violations that could not be disposed of. The
algorithm terminates on its own if the parse does not violate any constraints above
a predefined threshold or if an optional timeout is reached.

Although the approach employed by WCDG has a number of limitations as such,
it can serve as a framework for integrating contributions from external predictor
components in a soft manner.

Five additional statistical components have been previously added to WCDG –
tagger, chunker, supertagger, PP attacher, shift-reduce oracle – even though their

http://nats-www.informatik.uni-hamburg.de/view/ CDG/DownloadPage
http://nats-www.informatik.uni-hamburg.de/view/ CDG/DownloadPage
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accuracy lies mostly, with the exception of the tagger, below that of the parser
itself, WCDG not only avoids error propagation successfully, but its performance
improves slightly with each component added so that structural accuracy grows
from 89.7% for the combination with the tagger alone to 92.5% for the experi-
ment in which all five predictors interact (Foth and Menzel 2006). Labeled accuracy
increases thereby from 87.9% to 91.1%.

3 MSTParser

MSTParser (McDonald et al. 2006) is a state-of-the-art language independent data-
driven parser. It is freely available from http://sourceforge.net/projects/mstparser.
MSTParser successfully combines discriminative methods for structured classifica-
tion with graph-based solution methods for the parsing problem.

In this edge-factored graph-based model, each edge of the dependency graph
is assigned a real-valued score that expresses the likelihood of creating a depen-
dency edge between two words. The score of the graph is defined as the sum of its
edge scores. The parsing problem becomes equivalent to finding the highest scoring
directed spanning tree in the complete graph over the given sentence, and the correct
parse can be obtained by searching the space of valid dependency graphs for a tree
with a maximum score. The scoring function for edges is obtained by the Margin
Infused Relaxed Algorithm (MIRA), an online maximum margin learning similar
to Perceptron, which is extended for structured multi-class classification (Taskar
2004).

Efficient parsing algorithms have been found for both projective (Eisner 1996)
and non-projective (Chu and Liu 1965; Edmonds 1967) dependency trees. When
only features over single edges are taken into account, the complexity of the non-
projective parsing falls to unprecedentedO.n2/.

The above mentioned parsing algorithms only deduces the bare dependency
structure, labeling is applied to it in the second stage. Such an exclusion deprives
the attachment stage of important label cues.

While the inclusion of more than one edge into the scoring function is desired
to extend the locality of the context on which the decision is made, already con-
sidering adjacent edges in addition to single edges makes the non-projective parsing
intractable. Thus, an approximate, but efficient algorithm based on exhaustive search
with tree-to-tree transformation similar to the WCDG transformation-based solution
is provided for this case (McDonald et al. 2006).

The average structural and labeled accuracy that MSTParser shows over thir-
teen languages (McDonald et al. 2006) are 87.0% and 80.8% respectively. Only for
Arabic, Turkish and Slovene, the results fall below 80%, and for around half of the
evaluated languages it achieves structural accuracy over 90%.

The parsing model of MSTParser has the advantage that it can be trained glob-
ally and eventually be applied with an exact inference algorithm. On the other hand,
the parser has only limited access to the history of parsing decisions. To avoid

http://sourceforge.net/projects/mstparser
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complexity problems, the scores (and the feature representations) are restricted to a
single edge or adjacent edges.

4 MaltParser

MaltParser (Nivre et al. 2007) is another language-independent parsing system for
data-driven dependency parsing (freely available for research and education from
http://w3.msi.vxu.se/users/jha/maltparser/index.html).

MaltParser is a shift-reduce type parser which works in a single pass from left
to right through the sentence maintaining two main data structures – a queue of
remaining input tokens and a stack storing partially processed tokens. At every pro-
cessing step, it deterministically decides about the next elementary parser action:
shift to the stack, reduce or attach the top word in the stack to the left or right.

The words from the queue are successively shifted onto the stack until the top
word can be attached to the next word from the queue as its left or right dependent.
Reduce action pops the stack when the top word has been attached on the left to a
node other than the root and has already found all its right dependents. Shift action
is aimed at the nodes that have their heads on the right or remain attached to the root
node ever since initialization.

The shift-reduce algorithm is restricted to finding projective dependency struc-
tures and attaching to the right is performed together with popping the stack, because
all left and right dependents must have been already identified due to projectivity.
Attaching to the left immediately pushes the next word from the queue onto the stack
since no new left dependents are to be expected at this point, but new dependents on
the right may still exist and so the word cannot be popped.

In general, more than one action may be applied at each processing step, thus, to
make a deterministic choice the parser relies on oracle predictions. It uses memory-
based learning (MBL) employing history-based feature models and discriminative
machine learning. The main idea of MBL is that parsing actions that have to be
applied in some parsing state are similar to other that were applied previously in
similar parser configurations and thus the memorized solutions may be reused.

While MSTParser considers the global context when scoring the different
hypotheses, MaltParser conditions its decisions on its parsing history, i.e. the pars-
ing actions chosen so far, it approximates a globally optimal solution by applying a
series of locally optimal decisions.

To deriving an analysis, MaltParser needs time linear in the length of the sentence
which is very efficient. The tree property of the resulting structure is guaranteed by
the parsing algorithm implicitly. Moreover, labeling is integrated into the attachment
actions.

MaltParser shows unlabeled dependency accuracy above 80% (Nivre et al. 2007)
for 10 languages, whereby it shows the best result of 88.1% for English and German.
Its labeled accuracy ranges from 69.0% for Turkish to 86.3% for English with the
majority of languages lying above 75%.

http://w3.msi.vxu.se/users/jha/maltparser/index.html
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Dealing with non-projective trees comes at the expense of the growing complex-
ity that becomes quadratic in the length of the sentence if the incremental algorithm
by Covington (2001) is used. The stack is then replaced by an open list in which
each word can be attached to the next word from the queue and thus non-projective
structures may be derived.

Another technique to relax the projectivity restriction is the pseudo-projective
parsing proposed by Nivre and Nilsson (2005). It extends the main algorithm with
two additional graph transformation stages. First, the parser input is pre-processed
so that non-projective structures are transformed into projective ones by applying
minimal possible changes to the tree. During an additional post-processing phase,
non-projective structures are being recovered by performing exhaustive search for
the real head constrained by an extended arc label.

5 Parser Combination

Traditionally, approaches to parser combination haven been mainly based on the
idea of a post-hoc selection which can be carried out for either complete parses,
or individual constituents and dependency edges, respectively (Henderson and Brill
1999). The selection component itself is based on heuristic procedures, like a major-
ity vote. Alternatively, a second-level classifier is trained to decide which component
to trust under which conditions, an approach often referred to as classifier stack-
ing (Zeman and Žabokrtský 2005). Since global consistency criteria are crucial for
deciding about the final sentence structure, a large amount of information about the
context of a partial structure needs to be considered. Therefore, approaches seem to
be more promising which instead of relying on an ad hoc selection of features use
all the available information and integrate it by means of a single global decision
criterion. This can be achieved at three different points in time: prior, during, or past
parsing.

Pre-parsing integration is taking place at training time. The training data for one
classifier is re-annotated with features taken from the parsing result of the other one
and vice versa. Nivre and McDonald (2008) combined MaltParser and MSTParser
this way. They trained a new model, which, in addition to the features from the input
sentence, uses features provided by the predictor model. The decision on the optimal
parse is still taken by the original parsing algorithm, without resorting to any local
selection heuristics. Since the two parsers are conditioned in quite different ways
(parse history vs. parse context) they exhibit a remarkable complementary behav-
ior (McDonald and Nivre 2007). Accordingly, significant mutual benefits have been
observed. Averaged over data from 13 different languages they report an improve-
ment of labelled accuracy from 80.83% to 82.53% using MSTparser enriched with
MaltParser results, and from 80.74% to 82.01% in the other direction. Note however,
that one of the major benefits of MaltParser, its incremental left-to-right processing,
is sacrificed under such a combination scheme.
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For systems based on manually developed grammars like WCDG, a pre-parsing
combination is not possible. Its equivalent consists in making the output of the
second parser immediately available to the decision procedure as additional cues.
WCDG’s predictor mechanism is perfectly suited for that purpose. Additional con-
straints check the compatibility of the current hypothesis with the external prediction
and impose a penalty if necessary. The advantage of such a combination consists
in the high degree of independence from the additional information: Even if no
external predictions are available, the original systems remains fully functional. So
far, however, no online integration of external predictions is possible. MSTParser
has comparably high performance to WCDG. On the German test data MSTParser
shows 90.5% structural and 87.5% labeled accuracy. Still, with MSTParser as an
oracle, WCDG achieves higher performance than each of the combined components
in isolation: 92.9% and 91.3% structural and labeled accuracy respectively.

In two post-parsing experiments, Sagae and Lavie (2006) combined a number
of dependency and constituent parsers, respectively. They created a new weighted
search space from the results of the individual component parsers using different
weighting schemes for the candidates. They then re-parsed this search space and
were able to improve the unlabeled accuracy of dependency structures to 92.7%
using an ensemble of four parsers of English with accuracies between 98.6% and
91.0%. For phrase structure trees they combined five parsers with F-scores between
86.7% and 91.0% and reached an overall F-score of 92.1%.

6 Conclusion

Dependency structures represent a major benefit to treat parsing as a classifica-
tion problem. Dependency structures can be specified in a more narrow locality
in comparison to phrase structures as per word relationships can be modeled a
straightforward way. Besides, lexical information is integrated into the structure.

Dependency parsing has a certain similarity to tagging, both of which can be
considered a dynamic classification problem. It turns out, however, that local crite-
ria for deciding on the best attachment point and label are not sufficient either for
parsing itself or for parser integration as the tree constraint should be additionally
met. Still different structured classification schemes are available.
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Comparing the Stability of Clustering
Results of Dialect Data Based on Several
Distance Matrices

Edgar Haimerl and Hans-Joachim Mucha

Abstract How can the investigation of the hidden structure in a proximity matrix be
condensed and targeted more towards domain expert knowledge? A data matrix that
combines different statistical measures of the proximity matrix under investigation
is proposed and evaluated. In order to validate the outcome and to measure how well
this requirement is met the original and the compound matrix have to be compared.
This is done by applying algorithms to determine cluster stabilities as introduced
in Mucha and Haimerl (2005): A simulation algorithm finds the best number of
clusters, calculates the stability of clusters found in hierarchical cluster analysis, and
at the most detailed level calculates the rate of recovery by which an element can
be reassigned to the same cluster in successive classifications of bootstrap samples.
Both the cluster stability and the consistency of the clustering results with expert
expectations prove the advantage of the compound matrix over the generally used
proximity matrix.

1 Introduction

First we are going to explain the background for establishing a “compound” dis-
tance matrix based on some statistical parameters of an original proximity matrix.
Here proximities are the general term for pairwise distances or similarities. It is
easy to switch between distances d and similarities s by dDmax(s)-s (or in the case
of our data sample by d D 100-s). The main part of the paper consists of compar-
ing these two matrices via hierarchical cluster analysis based on cluster validation
by subsampling as introduced in Mucha and Haimerl (2005). Here, the simulation
algorithms determine the number of clusters, the stability of clusters found in hier-
archical cluster analysis, and at the most detailed level the rate of recovery by which
an element can be reassigned to the same cluster in successive classifications of
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bootstrap samples. To proof this methodological concept it is applied to quantita-
tive linguistics data. In order to ease the comparison, the same data set as in Mucha
and Haimerl (2005), Haimerl and Mucha (2007) will be used – data from dialect
research of Northern Italy (Goebl 1998).

2 The Compound Matrix

Each row in a similarity matrix contains the similarity of one item (location) under
investigation to all other items in the corpus. Applying techniques of descriptive
statistics to each row yields characteristic values which differentiate the array of
values in one row from other arrays and thus indirectly one item from all other items.
Figures 1–3 show the nonparametric density estimation of the array of pairwise
similarities for locations A8, A77, and A122. They look quite different.

The values of the measures of range, central tendency and variability of a row
in the similarity matrix can be considered as a vector characterising the row (see
Table 1). A data matrix consisting of these vectors of statistical measures of the
original proximity matrix defines a “higher level” data matrix representing the hid-
den structure on a more abstract level. This compound data matrix serves as input
in further analysis, e.g. an Euclidean distance matrix can be calculated and used as
input for further cluster analysis.

The compound matrix is a more abstract view of the structure in the data
under investigation than the initial proximity matrix with values which have been
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Fig. 1 Nonparametric density estimation of pairwise similarities of location A8
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Fig. 2 Nonparametric density estimation of pairwise similarities of location A77
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Fig. 3 Nonparametric density estimation of pairwise similarities of location A122

Table 1 Statistical measures of locations (excerpt)

Location Minimum Mean Median Maximum Std.Dev. Skewness

A1 35.51 46.81 44.97 87.36 9.60 2.64
... ... ... ... ... ... ...
A8 31.80 43.14 41.19 91.20 10.09 2.68
... ... ... ... ... ... ...
A77 43.01 64.21 66.01 82.55 9.45 �0:61
... ... ... ... ... ... ...
A122 41.00 72.92 76.13 96.83 13.64 �0:66
... ... ... ... ... ... ...

calculated e.g. with the simple matching coefficient. This abstraction has to be
investigated in more detail in the context of the linguistic data. Similarity matri-
ces of spacial data can be visualized in VDM (Visual DialectoMetry) as reference
maps. For reference maps of the ALD area, explanations of the maps and interpre-
tations see (Bauer 2003, 2009; Haimerl n.d.). As a first approach reference maps
based on the RIV (relative identity value see Goebl 1984, p. 74) similarity matrix
and reference maps based on the compound matrix can be visualized side by side
in two VDM windows. Figure 4 shows the reference map of Brail (location A 8)
of the compound matrix. Locations with high similarity are dark. What strikes the
eye at first sight is that all locations in Grischun and in the three norther Dolomitic
Ladin valleys and some locations in Friuli – presented as dark and medium gray
polygones – share very high similarity though they are spatially far apart. But
from a linguistic view this makes sense as these are the Raeto-Romance language
areas. Further differences are the transition zones (light gray and hatched double
diagonally) where the grouping is scattered and no clear structures are observable.

This first visual impressions are depend by the map showing the Pearson’s
product-moment coefficient for each location (Fig. 5). We see low correlations (hor-
izontally hatched) especially at the border areas between the Raeto-Romance areas
in the North and the Italien language areas in the South whereas in Veneto the
correlation is very high (dark gray).
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Fig. 4 Reference map of location A8 (Brail)

Fig. 5 Mapping of the product-moment coefficient for each location
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3 Why Use these Statistical Measures for Linguistic Data?

The statistical measures of rows in the proximity matrix describe these items relative
to the other items (rows) in statistical terms. In addition to this statistical description
dialectometric experts did come up with content and topic oriented explanations. In
order to condense the structure hidden in the RIV similarity matrix and to target the
information toward the knowledge and expectations of linguists and dialectologists
the most frequently discussed statistical measures are applied:

� Minimum: You can think of the location with the smallest similarity to all other
locations as the most disliked location - it is the chief opponent. (see Goebl 1998;
Bauer 2004).

� Maximum: The location with the highest similarity to all other locations has a
lot of friends with which it is closely related. This is characteristic for locations
in dialect kernels. (see Goebl 2001, p. 183).

� Mean and median: These measures of central tendency express how good a
location is cross-linked with the environment under investigation. High mean
and median values indicate that this location has only few locations with low
similarity; thus this location is tightly cross-linked with its neighbors. (see Goebl
1984, p. 148).

� Standard deviation: this measure of dispersion sheds light on the spacial disper-
sion of language systems. (see Goebl 2004, p. 266).

� Skewness is of special interest for the linguistic interpretation as this mea-
sure of distribution gives information about linguistic comprise or exchange –
“Sprachausgleich”. (see Goebl 2006, p. 241).

Each of these values fills one column in the compound matrix; the values are nor-
malized and disturbing weights from high correlations between statistical measures
are eliminated. Certainly many more measures like higher order statistics could
be applied, but we want to restrict the investigation to those measures for which
linguistic interpretations are published.

4 Comparing Hierarchical Cluster Results

4.1 Cluster Stability Results

The comparison of these two proximity matrices via hierarchical cluster analysis
is based on cluster validation by subsampling as introduced in Mucha and Haimerl
(2005). Here, the simulation algorithms determine the number of clusters, the stabil-
ity of clusters found in hierarchical cluster analysis, and at the most detailed level the
rate of recovery by which an element can be reassigned to the same cluster in suc-
cessive classifications of bootstrap samples. As already seen in Haimerl and Mucha
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Fig. 6 Output of the validation tool

(2007), the adjusted Rand measure yields reliable results for cluster comparison.
Figure 6 shows the result of the validation.

Comparing the adjusted Rand values of HCA based on the compound matrix
with the values of HCA of the RIV matrix (see Mucha and Haimerl 2005, Fig. 2)
yields that

� The adjusted Rand values of the compound matrix are higher – max value 0.9
versus 0.8 for the RIV matrix.

� There is a clear vote for six partitions, whereas the RIV Rand values vote for
seven partitions but with less good distinction.

4.2 Interpretation of the Dialect clusters

The stability of the HCA result based on the compound matrix does not guaran-
tee that the clusters are meaningful and valuable for domain experts. The clustering
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Fig. 7 HCA results based on the compound matrix

results can be mapped as Voronoi map (as shown in Fig. 7); one polygon for each
location in one color for each cluster. Does this mapping of the clusters make sense
to dialect experts of Northern Italy? Three out of the six clusters are very stable – the
recovery rate is better than 95% for all of the clustered locations. Cluster (1) con-
nects quite distant regions: Grischun/Switzerland with the three norther Dolomitic
Ladin valleys. Cluster (2) extends over three dispersed regions: direct neighbors to
Grischun, the two southern Ladin valleys and Friul. These are in fact very interest-
ing dialect clusters which match closely with the Raeto-Romance concept which
goes back to Ascolli. Cluster (3) is not surprising and has been found in many prior
clusterings of the area under investigation.

What is unique for the HCA result based on the compound matrix is that locally
dispersed language structures are joined into one cluster. This becomes evident
when Fig. 7 is compared with the result from the same HCA algorithm applied to
the RIV matrix directly as discussed in Mucha and Haimerl (2005). The fact that the
cluster partition based on the compound matrix is less biased by spacial distances
can be explained: The compound matrix uses the characteristics of the locations
as derived from their statistical measures. For example the locations which share all
characteristics “chief opponent – not well cross linked – resists to language compro-
mise” end up in one group. There is no indirect spacial distance in the compound
data matrix and derived proximity matrices.
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Marketing and Regional Sales: Evaluation
of Expenditure Strategies by Spatial Sales
Response Functions

Daniel Baier and Wolfgang Polasek

Abstract Non-linear production functions are a common basis for modelling
regional sales responses to marketing expenditures. A recent article of Kao et al.
(Evaluating the effectiveness of marketing expenditures. Working Paper, 2005) sug-
gests to use such models to estimate the effectiveness of marketing strategies. In this
paper the underlying approach is extended: Firstly, a spatial component is explicitly
modelled in the production function, and secondly, a hierarchical approach in the
clustering of regional sales is used. The developed Cross Sectional Sales Response
(CSSR) models use Stochastic Partial Derivatives (SPD) constraints. They are tested
using synthetic and pharma marketing data.

1 Introduction

The sales and cost effectiveness of marketing instruments has gained considerable
attention in recent years. So, e.g., in the pharmaceutical industry, more and more
companies are troubled by the effectiveness of their regional salespersons who
personally visit physicians for explaining and promoting the company’s products.
Instead, they consider alternative instruments like, e.g., phone calls, one-to-one-
video-conferencing, interactive websites, or online community events (see, e.g.,
Lerer 2002; Queitsch and Baier 2005).

However, in order to estimate the sales effectiveness of marketing instruments
and strategies, a proper sales response modelling of these marketing instruments is
needed. Here, recently, Kao et al. (2005) have proposed to use a class of non-linear
production functions under optimization constraints for this purpose: Using x and z
for (time-dependent) marketing expenditures and y for (time-dependent) sales their
basic modelling assumption is the traditional multiplicative model

y D �xˇ1zˇ2e� : (1)

D. Baier (B)
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By assuming that the company distributes its expenditures in the theoretically opti-
mal sense that marginal returns are equal across instruments (@y=@x D @y=@z) Kao
et al. estimate valid model parameters from observed (y, x, z)-values.

In this approach we extend this approach in two directions: First we model
explicitly a spatial component in the production function and secondly, we explore
the use of a hierarchical model in the clustering in order to optimize the geographic
cost-effectiveness ratio of marketing strategies. We propose a new class of Cross
Sectional Sales Response (CSSR) models. The goal is to test the effectiveness of
existing regional marketing expenditures and to suggest new expenditure patterns.
The hierarchical extension of the model is in the spirit of Rossi et al. (2005) and
follows the idea, that the sales elasticities can vary geographically across macro-
regions. While the original model of Kao et al. (2005) is a panel model that estimates
the response parameters across time, the developed CSSR model can be estimated
only on data from few time points. In Sect. 2 the basic CSSR model and the MCMC
estimation procedure is developed and in Sect. 3 a spatial dimension is added. The
last section concludes.

2 Cross Sectional Sales Response Models

2.1 The Basic CSSR Model

Starting from y D �xˇ1zˇ2e� , taking logs, using ˇ D .ˇ0; ˇ1; ˇ2/
0 with ˇ0 D

log.�/, the CSSR model (in the following shortly: SRF for sales response function)
with partial derivative restrictions is defined as

ln y � N.Xˇ; 	2
yIn/: (2)

This homoscedastic log-linear model has the conditional mean �y D Xˇ.
Adding the partial derivative restrictions for the two regressors, which imposes the
theoretical optimality conditions that the marginal allocations should be equal across
units, in a stochastic way we obtain

ln x � N.�x; 	
2
xIn/;

ln z � N.�z; 	
2
z In/

where the variances control the tightness of the optimality constraints: larger vari-
ances allow for more deviations from the optimal strategy. The conditional means
�x D �x.ˇ; �/ and �z D �z.ˇ; �/ are given by

�x D .ˇ0 C ln ˇ1 � �1 C ˇ2ln z/=.1� ˇ1/;

�z D .ˇ0 C ln ˇ2 � �2 C ˇ1ln x/=.1 � ˇ2/:
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This follows from both partial derivatives:

@y=@x D yx D ˇ0ˇ1x
ˇ1�1zˇ2

@y=@z D yz D ˇ0ˇ2x
ˇ1 zˇ2�1:

Since x and z are fully observed quantities (like money expenses or sales efforts
via local and global advertising), these restrictions take specific but known values for
each observation, if the parameters of the model (ˇ; 	2

y ) are fully known. Now we
assume that the model can be estimated by imposing stochastic partial derivatives
(SPD) constraints in the following form:

log.yx/ � NŒ�1; �
2
1 �

log.yz/ � NŒ�2; �
2
2 �

The �i ’s could be interpreted as some kind of average utility level of the sales
responses while the �2

i ’s take the role of tightness parameters across observations
in the sample. It seems reasonable to fix them as known hyper-parameters and to
estimate the average marginal utilities �i ’s.

A further aspect of the SPD constraints are that by including marginal util-
ity demons to a SRF we actually endogenize the inputs of the SRF and more
complicated estimation techniques are needed.

2.2 Bayesian Inference by MCMC for CSSR Models

The parameters of the model are � D .ˇ0; : : : ; ˇ2; �1; �2; 	
2
y ; 	

2
x ; 	

2
z /. Assuming

block-wise independence, the prior distribution is given by

p.�/ D N Œˇ j ˇ�;H��
2Y

j

NŒ�j j �j �; �2
j ��

3Y

j

GaŒ	2
j j 	2

j �nj �=2; nj �=2�:

We adopt the convention that all parameters with a star are known hyper-parameters
of the prior distribution and those with ** are known hyper-parameters of the pos-
terior distribution. Let D D fy; x; zg denote the observed data, then the likelihood
function is

l.ln y j D; �/ D NŒln y j Xˇ; 	2
� In�N Œln x j �x ; 	

2
xIn�N Œln z j �z; 	

2
z In� � J

(3)
where J is the appropriate Jacobian of the model. For the multiplicative model this
is J D 1 � ˇ1

1�ˇ1

ˇ2

1�ˇ2
. From the posterior distribution for � , which is proportional

to
p.� j D/ / l.ln y j x; z; �/p.�/ (4)
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we can work out the posterior simulator for � by MCMC using the following full
conditional distributions (fcd) for the posteriors:

1. The fcd for ˇ is given by

p.ˇ j y; : : :/ / NŒˇ j ˇ�;H��l.ln y j x; z; �/
N Œln x j �x ; 	

2
xIn�N Œln z j �z; 	

2
z In�:

The last two components contain also ˇ’s because of the SPD constraints. Since
this is not a known density we have to employ a Metropolis step, e.g. a random
walk chain for the proposal ˇnew

ˇnew D ˇold CNŒ0; cˇI3�

where ˇold is the previous generated value and cˇ is a tuning constant for the
variance. The acceptance probability involves the whole posterior density in (4)
and is

˛.ˇold ; ˇnew/ D min
�
p.ˇnew/

p.ˇold /
; 1

�

:

2. The fcd for �j ; j D 1; 2 (the average utility levels) is given in the ‘usual’ way, as

p.�1 j y; : : :/ / NŒ�1 j �1�; �1��N Œln x j �x; 	
2
xIn�; (5)

p.�2 j y; : : :/ / NŒ�2 j �2�; �2��N Œln z j �z; 	
2
z In�; (6)

where the second normal kernels can be viewed as sort of likelihood function.
Again we need a Metropolis step:

�new
j D �old

j CNŒ0; c;j �

where c;j is a small proposal variance. The acceptance probability is

˛.�old
j ; �new

j / D min

�
p.�new

j /

p.�old
j /

; 1

�

;

where p.:/ is the corresponding fcd from (5) or (6).
A direct derivation shows that the pdf is a conjugate normal density:

��2
1�� D ��2

1� C 	�2
x .1 � ˇ1/

2

and
�1�� D �2

1��Œ��2
1� �1� C 	�2

x .1 � ˇ1/
2�1�:
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3. The fcd for 	j ; j 2 y; x; z are given by

p.	2
j j y; : : :/ / GaŒ	2

j j 	2
j ��nj ��=2; nj ��=2�

with
nj �� D nj � C n

and
nj ��	2

j �� D nj �	2
j � C e0

j ej

where ej D lnj��j being the current residuals of the three regression equations
and for j 2 y; x; z.

Finally, MCMC in the CSSR model takes the following steps:

1. Starting values: set ˇ D ˇOLS and � D 0.
2. Draw 	�2

y from  Œ	�2
y j s2

y��; ny���.
3. Draw 	�2

x from  Œ	�2
x j s2

x��; nx���.
4. Draw 	�2

z from  Œ	�2
z j s2

z��; nz���.
5. Draw �j from p.�j j �j ��; 	�2

j ��/.
6. Draw ˇ from p Œˇ j b�;H�� l.� j y/.
7. Repeat until convergence.

3 A Spatial Auto-Regressive Extension to CSSR Models

Since the seminal work by Anselin (1988), spatial interactions have become an
important tool in econometrics. Spatial applications have become popular in applied
sciences, like in economics and also social sciences.

3.1 Spatial Lags

Consider a regression model where the dependent variable y D .y1; : : : ; yn/
0 is

not independently observed but can be spatially correlated given the n 	 K matrix
of independent observations X. To model the spatial dependence we have to know
(or specify) a spatial weight matrix W which has 3 properties: (1) All entries are
positive, (2) the main diagonal elements are zero, and (3) all row sums are 1. Such
a weight matrix could be a distance matrix if the y’s are observed at geographical
locations, it could be the first nearest neighbor only, but also a set of all contiguous
neighbors.

This allows to specify a spatial lag variable of the dependent variable Qy D Wy.
Each element of Qy, i.e., Qyj D wj y is a new “neighborhood observation”, which
summarizes the influence of the neighbors in form of a weighted average of the
dependent variable and the j th row vector wj .
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Therefore we can formulate a ‘structural’ form of the spatial SAR model in the
following form:

y D Xˇ C �WyC �; � � N 
0; 	2In

�
; (7)

where In is the n	n identity matrix and � is the spatial correlation parameter. If � is
zero then the model reduces to a simple regression model with independent errors.

Additionally, a reduced form is available by shifting all dependent variables on
the left hand side:

z D yC �Wy D Xˇ C �; � � N 
0; 	2In

�
:

Using the spread matrix R and its inverse R�1 D .In��W/�1; the reduced form

y � N 
R�1Xˇ; 	2.R0R/�1

�
;

is available since Var.R�/ D 	2RR0. The prior distribution for the parameter � D
.ˇ; 	�2; �/ is given by the product of (independent) blocks of normal and gamma
distributions:

p.ˇ; 	�2; �/ D p.ˇ/ � p.	�2/ � U Œ� j �1; 1�
D N Œˇ j b�;H�� �  Œ	�2 j s2�; n��

1

2
;

where U Œ�1; 1� stands for a uniform distribution in the interval .�1; 1/. Because of
restrictions, the interval of feasible �’s depends on �min and �max , the minimum
and maximum eigenvalue of W. It can be shown ��1

min < 0 and ��1
max > 0 and

therefore �t must lie between these bounds. Therefore, we restrict the prior space of
� to the interval .��1

min; �
�1
max/.

The joint distribution for y and the parameter � D .ˇ; 	2; �/ is

p.ˇ; 	�2; �; y/ / N 
y j Xˇ; 	2

� �N Œˇ j b�;H�� �  Œ	�2 j s2�; n��:

3.2 The CSSR-SAR Model

The CSSR-SAR model is the CSSR model as in (2) with a spatial lag:

ln y � NŒ�y D �W ln y CXˇ; 	2
yIn� or

ln y D �W ln y C ˇ0 C ˇ1ln x C ˇ2ln zC �

with � � N.0; 	2
yIn/. The partial derivative restrictions for the two regressors stay

the same

ln x � N.�x; 	
2
xIn/ and ln z � N.�z; 	

2
z In/:
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The parameter vector is � D .ˇ0; : : : ; ˇ2; �1; �2; 	
2
y ; 	

2
x ; 	

2
z ; �/ and includes

the spatial �. The prior is – proportionally – the same (constant) since we assume
uniform prior for �: U Œ� j �1; 1� D 0:5. The reduced form of the model is

ln y � N

R�1Xˇ; 	2.R0R/�1

�
;

because Var.R�/ D 	2RR0. This expression will now be used in the likelihood
function

l.ln y j D; �/ D NŒln y j Xˇ; 	2
� .R

0R/�1� (8)

NŒln x j �x; 	
2
xIn�N Œln z j �z; 	

2
z In� � J (9)

where J is the Jacobian of the model as before. For MCMC we can use the fcd
results of the previous section. We just have to specify the additional fcd:

p.� j y; : : :/ / jIn � �W j exp

 

��
0
���

2	2
y

!

where the residuals of the spatial regression are

�� D ln y �Xˇ � �W ln y:

Again, an additional Metropolis step is needed. We use

�new D �old C c��; � � N Œ0; 1�

where the scalar c� is a tuning parameter and �old the parameter of the previous
value. The acceptance probability is

˛.�old; �new/ D min

�
p.�new/

p.�old/
; 1

�

;

where p is the full conditional distribution above. Finally, the MCMC procedure has
just to add one more draw for the � parameter:

1. Starting values: set � D 0; ˇ D ˇOLS and � D 0
2. Draw 	�2

y from  Œ	�2
y j s2

y��; ny���
3. Draw 	�2

x from  Œ	�2
x j s2

x��; nx���
4. Draw 	�2

z from  Œ	�2
z j s2

z��; nz���
5. Draw �j from p.�j j �j ��; 	�2

j ��/
6. Draw ˇ from p Œˇ j b�;H�� l.� j y/
7. Draw � using p.� j ˇ; 	�2

y /

8. Repeat until convergence.
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4 Empirical Test

The above models have been implemented using R and tested using synthetic and
empirical data. Firstly, synthetic data with respect to a true model have been drawn
using a bivariate sales response function where the x and z regressors were generated
according to the above described SPD constraints. Repeatedly, a sample with size
n D 20was drawn and used as input for the MCMC algorithm, each with 1,000 rep-
etitions. The average acceptance rate was 55.3%, the parameters of the true model
could be adequately reproduced, indicating that the modeling framework and the
MCMC algorithm work even for small samples.

Secondly, actual regional data from German pharma marketing were used for
testing. For a specific brand and n D 1;900 (standard) regions, sales and market-
ing efforts data were available for Germany: brand and category prescriptions at the
aggregated pharmacy wholesale level from a market research institute as well as
number of visits of physicians by the company’s salespersons. Additionally, data on
further regional marketing activities could be used. The regions differ with respect to
the neighboring regions, purchasing power, population density, number of types of
physicians as well as category sales and brand shares. Assumed are differences with
respect to the sales elasticities by, e.g., population density (urban vs. rural regions),
average number of patients per physician or purchasing power per inhabitant. These
differences were assumed to have an influence on the effectiveness of the marketing
expenditures.

For testing the above CSSR model, sales figures (for one brand) and correspond-
ing regressors (visits of two types of relevant physicians) were selected. Since the
visits are very costly, one could expect that the company allocates them according to
the assumed equal marginal returns rule. The analysis showed, that the CSSR mod-
els could be calibrated by the MCMC algorithms. However, it also showed by high
�-values, that the expected optimal allocation rule wasn’t obeyed across all regions.

5 Conclusions and Outlook

New sales response functions were proposed, the Cross Sectional Sales Response
(CSSR) model and its Spatial Auto Regressive (SAR) extension taking the neighbor-
hood structure of the observations into account. They make use of Stochastic Partial
Derivative (SPD) constraints and of MCMC algorithms for improving the parameter
estimation. First tests with simulated and real data show promising results. However,
more tests with simulated and real data are needed for assessing the benefits of these
sales response models over the traditional ones in more detail.
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A Demand Learning Data Based Approach
to Optimize Revenues of a Retail Chain

Wolfgang Gaul and Abdolhadi Darzian Azizi

Abstract We consider the problem of selling a perishable product via a retail chain
during a restricted time interval. Based on data describing buying behavior in the
outlets of the retail chain in the first part of a specified selling season, we provide an
optimal policy for reallocating the remaining inventory of the product and setting
prices in the remaining part of the selling season in order to optimize total expected
revenues. We use a Bayesian update approach in which the retail chain learns about
customers’ demand patterns in each outlet during earlier periods and decides how
to allocate the remaining stock and adjust prices w.r.t customer arrival rates and
willingness to pay. An illustrative example is used to describe our demand learning
approach.

1 Introduction

Retailers who are selling perishable products usually face problems such as demand
uncertainty and supply inflexibility to optimize revenues. Demand uncertainty refers
to the lack of information about how successful a product will be in the market
and supply inflexibility describes a situation in which one has no opportunity to
replenish inventory during the selling season. In such cases, retailers have to apply
effective pricing policies to reduce the costs of mismatching between demand and
supply. For example, M&S lost £150 million due to failures in matching supply with
demand in 1998–1999 (Christopher and Towill 2002).

For retail chains that operate in different markets (w.r.t outlets, sales channels,
etc.) the determination of successful pricing policies is even more difficult because
demand patterns could vary among markets. In this paper, we consider the problem
of selling a perishable product in several outlets over a finite horizon of time, provide

W. Gaul (B)
Institut fRur Entscheidungstheorie und Unternehmensforschung, Karlsruhe University,
Karlsruhe, Germany
e-mail: wolfgang.gaul@wiwi.uni-karlsruhe.de

H. Locarek-Junge and C. Weihs (eds.), Classification as a Tool for Research,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-10745-0_75, c� Springer-Verlag Berlin Heidelberg 2010

683

wolfgang.gaul@wiwi.uni-karlsruhe.de


684 W. Gaul and A.D. Azizi

a Bayesian update approach in which we learn about customers’ demand patterns
in each outlet during earlier periods of the sales season, and update the parameters
of the demand distributions by using these observations to determine an optimal
selling policy based on (1) inventory, (2) time, and (3) demand patterns in order to
maximize the total expected revenues.

Problems of this kind are considered in the literature on revenue management
in which optimal pricing policies are determined based on inventory on-hand and
remaining time until the end of the selling season (e.g., Bitran and Mondschein
1993; Gallego and van Ryzin 1994; Bitran and Caldentey 2003). In practice, how-
ever, there are many situations where sellers do not have full knowledge concerning
demand patterns. Thus, demand learning is an effective approach to resolve demand
uncertainty in which a decision maker improves his knowledge about the real situa-
tion based on the observed demand during the sales season and updates forecasts of
future demand (e.g., Lazear 1986; Jorgensen et al. 1999; Burnetas and Smith 2001;
Petruzzi and Dada 2002; Lin 2005).

Studies on retail chain management have considered the situation of clearance
(markdown) pricing policies without demand learning (e.g., Smith and Achabal
1998; Bitran et al. 1998) and also the determination of an optimal pricing policy
based on demand learning (e.g, Elmaghraby and Keskinocak 2003). In this paper,
we develop a Bayesian learning approach to revise the parameters of the future
demand distribution for each outlet and provide an algorithm to determine the opti-
mal selling policy including an optimal price and a reallocation w.r.t the remaining
inventory at the beginning of a future period of time.

The organization of this paper is as follows: After describing our model and
main assumptions in Chap. 2, we provide an optimal selling policy on the basis of a
Bayesian learning approach. In Chap. 3, we present a numerical study to show how
our approach is able to tackle the underlying situation. Finally, we summarise our
work in Chap. 4 and suggest future applications for our demand learning approach.

2 Model Description

We consider a retailer who orders a fixed amount of a perishable product before the
selling season Œ0; T � which is divided into T equal periods Œt � 1; t �, t D 1; : : : ; T .
The retailer has J outlets across a monopolistic market and charges the same price
for the product in all outlets during a given period Œ0; t �. At decision point t , we
assume that the retailer updates the price and reallocates the remaining inventory
for the rest of the selling season. We also assume that there exists a predetermined
set of prices Pt for the product after period t .

As we can see in Fig. 1, the retailer orders the initial inventory of the product, q0,
before the sales season. At time zero, he sets the initial price at p0 and determines the
initial allocation of inventory to each outlet, qj 0, j D 1; : : : ; J . Then, he monitors
the arrivals of customers nj D

˚
nj1; : : : ; njt

�
and the sales sj D

˚
sj1; : : : ; sjt

�

w.r.t outlet j in the first t periods. At the end of period t , he uses the observations
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n1 = {n11,..., n1t}

[0, t]

ptT =?

q1tT =?

q2tT =?

qjtT =?

[t, T ]

Outlet1 Outlet1

Outlet2 Outlet2

Outletj Outletj

s1 = {s11,..., s1t}

n2 = {n21,..., n2t}

nj = {nj1,..., njt}

s2 = {s21,..., s2t}

sj = {sj1,..., sjt}
qj0

q20

q10

q0

p = p0

Fig. 1 A scheme of a retail chain operation in several outlets

collected so far to determine an optimal selling policy for the remaining time .t; T �.
Here, two questions arise:

1. At which price should the product be sold during the remaining time?
2. How many units of the remaining inventory should be reallocated among the

outlets for the remaining time?

To determine an optimal selling policy by using data from earlier periods, we
need a model to forecast future demand for the product in each outlet. We assume
that demand for the product is the result of the customers’ arrival rates and reserva-
tion prices. In terms of the arrival rates, we assume that customers arrive at outlet j ,
j D 1; : : : ; J , according to a Poisson process with mean �j that does not depend on
the posted price, is unknown to the retailer, but follows a gamma distribution with
density function

f .�j I aj ; bj / D bj e
�bj j .bj�j /

aj �1

 .aj /
; �j � 0: (1)

Under this assumption, the probability distribution of the total arrivals NNjt at outlet
j during time-interval [0,t] is

P. NNjt D n/ D
Z 1

0

P. NNjt D nj�j /f .�j I aj ; bj /d�j

D  .aj C n/
nŠ .aj /

�
bj

bj C t
�aj

�
t

bj C t
�n

; n D 0; 1; : : : ;
(2)
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(where  .k/ D .k � 1/Š D R1
0
xk�1e�xdx is the gamma function), i.e., the prob-

ability of observing NNjt arrivals is given by a negative binomial distribution that
performs well in retailing (e.g., Agrawal and Smith 1996). If the number of arrivals
at outlet j during the t earlier periods is equal to Nnjt D PkDt

kD1 njk , the posterior
distribution of the customers’ arrival rate will be again a gamma distribution, now
with parameters (aj C Nnjt ,bj C t) (e.g., DeGroot and Schervish 2002):

g.�j / D .bj C t/e.�bj Ct/j ..bj C t/�j /
aj C Nnjt �1

 .aj C Nnjt /
; �j � 0: (3)

Using (3), the probability distribution of the arrivals at outlet j during periods t C
1; : : : ; T will be

P. NNjT � NnjtDn/D .aj C Nnjt C n/
nŠ .aj C Nnjt /

�
bjCt
bjCT

�aj C Nnjt
�
T�t
bjCT

�n

; n D 0; 1; : : : ;
(4)

where . NNjT � Nnjt / is the number of arriving customers at outlet j during time .t; T �,
i.e., we have again a negative binomial distribution.

In terms of the customers’ reservation prices, we assume that each arriving cus-
tomer at outlet j has a willingness to pay equal to vj that is a random variable
with a continuous cumulative distribution function F RP

j .:/. The retailer knows that
an arriving customer will probably purchase one unit of the product if the posted
price is not larger than his reservation price. That is, when the retailer sets the price
at p, an arriving customer will purchase the product if vj � p (with probability
NFRP
j .p/ D 1�FRP

j .p/). In the literature on revenue management exponential and
Weibull distributions are usually used to represent the probability density function of
the customers’ reservation price (e.g., Bitran and Wadhwa 1996; Bitran and Mond-
schein 1997). Therefore, the expected demand for the product in outlet j during
periods t C 1; : : : ; T , at price ptT , is given by

NDjtT .ptT / D
1X

nD1

nP. NNjtT D n/.1 � FRP
j .ptT //; (5)

where NNjtT D NNjT � Nnjt and P. NNjtT D n/ is the probability that n customers
arrive at outlet j during the remaining periods [see (4)]. It is worth noting that our
Bayesian approach allows to consider the situation where both the customers’ arrival
rate and the customers’ willingness to pay can be different among the outlets. In this
setting, the optimal revenue problem can be formulated as:

R D max
ptT 2P

JX

j D1

Expected Revenue for out let j
‚ …„ ƒ
ptT
NSjtT .ptT ; qjtT /

NSjtT .ptT ; qjtT / D qjtTP. NDjtT .ptT / � qjtT /

(6)
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s:t:

JX

j D1

qjtT � Qt

ptT 2 Pt ; qjtT 2 f0; 1; : : : ;Qtg;
where
NSjtT .:/ : Expected sales in outlet j during the periods t C 1; : : : ; T ;
NDjtT .:/: Expected demand in outlet j during the periods t C 1; : : : ; T ;
ptT : Posted price over the periods t C 1; : : : ; T ;
Pt : The set of prices for the product after period t ;
qjtT : Number of units allocated to outlet j for the periods t C 1; : : : ; T ;
Qt : Quantity of the remaining units at the end of period t .

The optimal expected revenues after period t are given by the maximum of the
sum of the expected revenues in the outlets. For the non-linear optimization problem
.6/ we use a greedy algorithm that is based on the idea of allocating each remaining
unit of the product to that outlet which has the largest marginal expected revenues.
Five steps have to be carried out:

Step 1: Compute the probability distribution of the customers’ arrivals at each
outlet during the next periods.

Step 2: Compute the probability of demanding at least x unit(s) in each outlet
during the next periods, x D 1; : : : ;Qt .

Step 3: Set different prices and compute the expected revenues of selling x unit(s)
and the marginal expected revenues of selling the xth unit in each outlet,
x D 1; : : : ;Qt .

Step 4: Find the maximum total expected revenues w.r.t each price in Pt .
Step 5: Find that price which creates the maximum total expected revenues.

3 Numerical Study

Consider q0 D 33, J D 2, T D 5, and t D 3, i.e., a retailer wants to sell 33
units of a perishable product in two outlets during a five periods selling season.
The retailer sets the initial price at p0 D 30 and decides to update the price after
3 periods. Table 1 presents information w.r.t the outlets such as the arrivals, sales,
and the parameters (aj ; bj ) of the gamma distributions for the three first periods
by which we are able to compute the parameters of the arrival distributions and the
parameter of the customer’s reservation price distribution for the remaining periods.
The parameters (aj , bj ) are given by

aj D �2
nj
=	2

nj
; bj D �nj

=	2
nj
: (7)

where �nj
is the mean of the arrivals during the first three periods in outlet j and

	2
nj

the corresponding variance. The parameter of the customer’s reservation price
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Table 1 Information w.r.t the outlets of the retail chain
Outlets nj1 nj2 nj3 Nnj3 Nsj aj bj �j

1 17 15 16 48 10 384 24 0.052
2 11 11 8 30 8 50 5 0.044

0

0

0.02

0.04

0.06

0.08

10

Outlet 2 Outlet 1

20
Number of Arriving Customers (n)

f(
n)

30 40 50

Fig. 2 The probability distributions of the arrivals at the outlets during the remaining periods

�j can be derived via

Nsj D Nnj 3.1 � FRP
j .p0// D Nnj 3e

��j p0 ) �j D ln. Nnj 3=Nsj /
p0

; (8)

whereNsj : Number of units sold in outlet j during periods 1; : : : ; 3.
Nnj 3: Number of customers that arrived at outlet j during periods 1; : : : ; 3.
p0 : Initial price of the product (the price during periods 1; : : : ; 3).
�j : Parameter of the reservation price distribution in outlet j .
In the first step, we compute the probability distribution of the customers’ arrivals

at each outlet during the 4th and 5th periods via (4) and data from Table 1. Figure 2
shows the probability distributions of the arrivals at the outlets during the remaining
periods.

In the second step, we compute the probability of demanding at least x unit(s) in
each outlet during the next periods by

P. NDjtT � x/ D 1 � F A
j .n/n�minfnWne

��jt ptT Dxg; x D 1; : : : ;Qt ; (9)

where F A
j .n/ is the cumulative distribution function of the customers’ arrivals at

outlet j based on (4)(see Fig. 3).
In the third step, we consider different pricesptT 2 Pt and compute the expected

revenues (ER) of selling x D 1; : : : ;Qt unit(s) and the marginal expected revenues
(MR) of selling the xth unit in each outlet as follows:

ERjtT .x/ D ERjtT .x � 1/C P. NDjtT � x/ptT ; ERjtT .0/ D 0: (10)

MRjtT .x/ D ERjtT .x/ �ERjtT .x � 1/ D P. NDjtT � x/ptT : (11)

Figures 4 and 5 show the results of this step.
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Fig. 3 The probabilities of
demanding at least x unit(s)
in the outlets during the
remaining periods.
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In the fourth step, we find the maximum total expected revenue with respect
to each price from P3. And finally, we find that price which causes the maximum
total expected revenues together with the corresponding inventory allocations to
the outlets. Figure 6 shows the optimal price ptT D 26:4 and the maximum total
expected revenue R D 326:5. In this example, the optimal allocation of the 15
remaining units is fq135; q235g D f8; 7g.

4 Summary and Future Directions

In this paper, we studied the problem of selling a fixed amount of a perishable prod-
uct via a retail chain during a sales season Œ0; T � under demand uncertainty. We
assumed that the demand for the product in each outlet can be determined with the
help of the corresponding customers’ arrival rate and their willingness to pay. Addi-
tionally, we assumed that the customers arrive at each outlet according to a Poisson
process, whose mean follows a gamma distribution, and that an arriving customer
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Fig. 6 The maximum total expected revenues of selling the remaining inventory Qt D 15 as a
function of price

purchases one unit of the product according to a “willingness-to-pay” distribution
function. We developed a Bayesian approach by which the retailer is able to learn
about the demand patterns in each outlet as time progresses and can determine the
optimal price and the optimal allocation of the remaining inventory in order to max-
imize his total expected revenues. An “easy-to-understand” example was used to
demonstrate how the overall procedure works. Of course, different specifications of
the underlying model parameters and moving t situations can be considered. Addi-
tionally, several extensions of the here described situation are of interest for future
studies, e.g., considering the case in which the retailer is allowed to sell the product
at different prices in different outlets, allowing (optimal) replenishments during the
selling season, or taking into account non-homogeneous arrivals.
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Missing Values and the Consistency Problem
Concerning AHP Data

Wolfgang Gaul and Dominic Gastes

Abstract For AHP (Analytic Hierarchy Process) applications a paired comparison
data matrix with special structure is needed. The limited ability of human respon-
dents to provide paired comparison data that fulfil a consistency constraint and
absent knowledge to judge all pairs of items under consideration can often result
in data for which a best approximating complete AHP matrix has still to be found.

We compare existing methodologies for the problem and describe an own app-
roach to handle this situation. An illustrative example is used to explain our findings.

1 Introduction

The Analytic Hierarchy Process (AHP) is a frequently used method in the field of
multicriteria decision making and has helped to support decision makers in many
different application areas. For recent overviews concerning applications see Ho
(2008) and Vaidya and Kumar (2006). Typically a main objective of decision makers
using the AHP is to calculate priority weights for hierarchically organized elements
on different levels. These elements can be objectives, subobjectives, tangible or
intangible criteria or attributes, and, at the bottom level, alternatives, that are the
basic items that one wants to value with the help of hierarchically ordered sub-
problems. Within a sub-problem paired comparisons of the elements belonging to
the underlying level have to be carried out. Thus, a multi criteria decision problem
is divided into h (h D 1; : : : ;H ) sub-problems. Each sub-problem h contains nh

elements, which have to be pairwise compared to each other w.r.t. an element of the
next higher level. By pairwise comparisons between all those elements linked within
sub-problem h, a pairwise comparison matrix Ah can be constructed. In the follow-
ing the index of sub-problem hwill be omitted, because the further investigations do
not focus on hierarchical structures or aggregation procedures but on the pairwise
comparison matrix in an underlying sub-problem.
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When decision makers are asked to compare two objects i and j, the discussion
about the limitations of human capacity for processing information has to be con-
sidered (see Miller 1956; Saaty and Ozdemir 2003). This is one reason, why the
AHP often uses the so-called Saaty scale, which contains the numbers 1; 2; : : : ; 8; 9
and their reciprocals. When comparing two elements a value of 1 is assigned to
the verbal statement “element i and element j are equally important”, a value of
3 is assigned to the verbal expression “element i is preferred to element j” and a
value of 9 is assigned to “element i is extremely preferred (or absolute dominant)
w.r.t. element j”. Intermediate values can be used for more detailed assessments and
reciprocals for vice versa evaluations (see Saaty 1980). Thus, one gets the matrix

A D

0

B
@

a11 � � � a1n

:::
: : :

:::

an1 � � � ann

1

C
A (1)

under the assumptions

aij 2
�
1

9
;
1

8
; : : : ; 1; : : : ; 8; 9

�

(Saaty scale) (2)

aij � aj i D 1 8 i; j (reciprocity) (3)

aij D aik � akj 8 i; j; k (consistency) (4)

If assumptions (2), (3), (4) hold, the priority weights of the n elements can be
calculated by solving the eigenvalue problem:

Aw D �maxw (5)

The normalized eigenvector w D .w1; : : : ;wn/
0, which is assigned to the principal

eigenvalue �max of A, represents the priority weights of the decision maker for the
n elements. In addition �max is equal to the number of elements n and for all entries
aij D wi

wj
is valid (see Saaty 1980). In applications assumption (4) is often violated.

Thus, a consistency index (CI) was developed to measure the degree of violation of
the consistency assumption of matrix A (see Saaty 2003), which has the form

CI D �max � n
n� 1 : (6)

To get a normalized measure for different sized matricesA the CI-value is related to
the average random consistency index RI.n/ of randomly chosen reciprocal matri-
ces of size n 	 n constructed via entries the values of which are taken from the
Saaty scale [see (2)]. The so-called consistency ratio (CR) of matrix A is given
as CR D CI

RI.n/
, A is called “full consistent”, if CR D 0. A is called “˛ consis-

tent” if 0 < CR � ˛ and “˛ inconsistent” if CR > ˛ for ˛ 2 .0; 1�. Usually
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˛ D 0; 1 is chosen. The limiting condition of CR � 0; 1 was explained by statistical
experiments (see Vargas 1982).

Full, or at least ˛ consistency (˛ � 0; 1) is necessary, because w reflects cardinal
preferences yielded by the ratios wi

wj
, that approximate the entries of A. To preserve

the strength of preferences, w has to be invariant under multiplication by a posi-
tive constant and also under hierarchic composition w.r.t. its own judgment matrix.
These conditions for w are satisfied, if A is ˛ consistent (see Saaty 2003).
˛ consistency instead of full consistency may be due to the limitations of the

Saaty scale, inaccuracies caused by of a lack of concentration or uncertainties of the
decision maker. Especially, if the number of objects, which have to be compared,
is high, it is a challenging task for decision makers to provide all comparisons
in a full or even ˛ consistent way (see Decker et al. 2008 for a simulation study
on automated detecting and debugging different kinds of erroneous statements in
comparison matrices).

2 Consistency Adjustment Approaches

In applications comparison matrices are often neither full nor ˛ consistent. In an
ongoing study we conducted a paper and pencil AHP resulting in 13 comparison
matrices of size 6	6 and 78 matrices of size 7	7. 58% of the 91 matrices were not
0.1 consistent (a similar percentage can be found in a study containing 84 compar-
ison matrices Lin et al. 2008). If a comparison matrix is not at least 0.1 consistent,
it should be adjusted (see Saaty 2003), for which several methods can be used. One
can distinguish between manual and automated consistency adjustment approaches.

2.1 Manual Consistency Adjustment Approaches

A way of dealing with inconsistency is to control consistency during the data col-
lection processes. A kind of tutoring system can be used, which guides the decision
maker by showing a range in which a comparison value has to be, to stay within a
given consistency limit (see Ishizaka and Lusti 2004).

Another way of manual consistency adjustments is the reassessment approach.
It is used in many AHP software products. If, after data collection, the comparison
matrix A is not sufficiently consistent, the software selects the “most inconsistent
entry” Oaij and the decision maker is asked to reconsider and probably reassess
his evaluation for this entry. This procedure can be repeated until A is at least
˛ consistent.

One advantage of manual approaches for consistency adjustments is that the
decision maker is forced to reconsider inconsistent preferences and that inaccura-
cies or mix-ups can be detected and corrected. A big disadvantage is that a manual
reassessment approach is very time-consuming and that a decision maker, who is
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concentrated on evaluating elements in his imagination of consistency, may – now –
answer not according to his conviction only to respond to the consistency standards
that he is urged to fulfil.

2.2 Automated Consistency Adjustment Approaches

Automated consistency adjustment methods start with a given comparison matrix
A, which is not sufficiently consistent, and try to find ˛ or full consistent matrices
without asking the decision maker for activities.

2.2.1 Automated Expert-Choice Method (AEM)

Given an inconsistent matrix A with eigenvalue �max and corresponding eigenvec-
tor w, a method to adjust the consistency without reassessment is to select that entry
aij with the largest corresponding error term �ij D aij

wj

wi
, set aij and the reciprocal

aj i to zero, and calculate a more consistent value for aij with the help of a weight
vector Qw of a modified matrix QA with Qai i D Qajj D 2 and Qaij D Qaj i D 0. The entry

aij in the original matrix A is replaced by aij D QwiQwj
and aj i D Qwj

Qwi
(see Harker

1987). We call this approach “Automated Expert-Choice Method” (AEM), because
the idea of selecting the aij with the largest corresponding �ij as first entry to be
adjusted is also used by the Expert Choice AHP software (see Saaty 2003).

2.2.2 Iterative Eigenvalue Improvement Method (IEM)

A different approach was suggested in Zeshui and Cuiping (1999). The authors sug-
gested an algorithm, which modifies a comparison matrix A stepwise, so that the
corresponding maximum eigenvalue is changed with each iteration r . The formula

is a.rC1/
ij D .a

.r/
ij /

�

�
!

.r/

i

!
.r/

j

�1��

with 0 < � < 1 and !.r/ as corresponding nor-

malized principal eigenvector of A.r/. We call this approach “Iterative Eigenvector
Improvement Method” (IEM).

2.2.3 Genetic Adjustment Method (GAM)

Our new approach is based on a genetic algorithm, which finds a “best fitting”
comparison matrix X , w.r.t. the given matrix A, as solution of the following
minimization problem:

min W
8
<

:

X

ij

.aij � xij /
2

9
=

;
; (7)
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subject to

xij 2
�
1

9
;
1

8
; : : : ; 1; : : : ; 8; 9

�

(Saaty scale) (8)

xij � xj i D 1 8 i; j (reciprocity) (9)

CR � 0; 1 (˛ D 0; 1 consistency) (10)

where CR D CR.X/.
This approach minimizes the difference between the given, but inconsistent eval-

uations A of the decision maker, and the adjusted and ˛ consistent values of the
solution X where ˛ D 0; 1 is selected in this application. We call this approach
“Genetic Adjustment Method” (GAM).

3 Comparison of Automated Consistency Adjustment
Approaches

As described in the previous section, the AEM and the IEM produce stepwise
adjusted matrices with decreasing consistency ratios. In every step at least two
entries of the underlying matrix are changed. One should notice that the new entries
of the adjusted matrices do not necessarily fulfil the Saaty scale assumption (2).
On the one side the adjusted matrices may contain entries the values of which lie
between the values of the Saaty scale, thus, they have no longer a linguistic repre-
sentation w.r.t. the comparison situation that was formulated in terms of the Saaty
scale. On the other side the matrices may contain entries the values of which are
even outside of the bounds of the Saaty scale. Only the GAM approach provides a
solution matrix with Saaty scale values and is directly comparable with the given
matrix of the decision maker.

For comparisons between the different approaches 100 random comparison
matrices Ak , k D 1; : : : ; 100, with corresponding consistency ratios between 0,5
and 1 with sizes of 7	 7 as well as 8	 8 were generated. Then the AEM, IEM, and
our GAM solutions were calculated. Also rank vectors were used, because methods
may lead to different weights, but can result in the same rank orders of the elements
involved (see Zanakis et al. 1998).

3.1 Common Performance Measures

As one comparison measure between the inconsistent matrices (Ak) and the
adjusted ˛ consistent matrices (Ak

AEM ; A
k
IEM ; A

k
GAM ) the mean squared matrix

error (MSME) was used. For comparisons between the priority weight rank vec-
tors (wk;wk

AEM ;w
k
IEM ;w

k
GAM ) the mean squared priority weight vector error for

ranks (MSPER) was computed as a performance measure. The larger the value of
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this measure gets, the more do the rank vectors of the inconsistent matrices and
the corresponding adjusted matrices differ. As an additional indicator for the rela-
tion between rank vectors, the Spearman correlation coefficient for ranks (SCR) was
calculated (see Carmone et al. 1997; Zanakis et al. 1998). For matrices A,B these
measures are:

MSME.A;B/ D 1
n2

nP

iD1

nP

j D1

.aij � bij /
2 (11)

MSPER.wA;wB/ D 1
n

nP

iD1

.wAi � wBi /
2 (12)

SRC.wA;wB/ D
6�

nP

iD1

.wAi �wBi /2

n.n2�1/
(13)

3.2 Results

In Table 1 it can be seen, that the average consistency ratios of the adjusted matri-
ces are lower then ˛ D 0; 1 and, thus, the adjusted matrices are ˛ consistent. The
GAM is in the 7 	 7 case as well as in the 8 	 8 case nearest to the given limit
of ˛ consistency (CR � 0; 1). If lower ˛ values are of interest this can easily be
considered by a reformulation of constraint (10). The IEM can be influenced via
the choice of the value for the parameter �. All following results are based on a
parameter value of � D 0; 9. Also simulations with values near to 0,9 were con-
ducted, but did not differ much from the results achieved with the parameter value
of � D 0; 9 (see Zeshui and Cuiping 1999). Tables 2 and 3 show the average mean
squared matrix errors between the corresponding matrices. It can be seen, that the
GAM is nearest to the values given by the randomly selected Ak matrices. Tables
4 and 5 show the mean squared priority weight vector error for ranks. One can see,
that the ranks derived from the inconsistent matrices and the ranks derived from
the matrices adjusted with the IEM are most similar with respect to MSPER. The

Table 1 Overview of average consistency ratios

CR(Ak ) CR(AkAEM ) CR(AkIEM ) CR(AkGAM )

Ak7�7 0,8056 0,0841 0,0891 0,0981
Ak8�8 0,8340 0,0879 0,0886 0,0993

Table 2 Average MSME
based on 100 7	 7 matrices
Ak

Average MSME (7	 7)

AkAEM AkIEM AkGAM
Ak 6,1846 3,9784 2,8073
AkAEM 3,8486 3,5427
AkIEM 1,4855
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Table 3 Average MSME
based on 100 8	 8 matrices
Ak

Average MSME (8	 8)

AkAEM AkIEM AkGAM
Ak 6,4438 4,4551 3,1912
AkAEM 3,8846 3,6792
AkIEM 1,6209

Table 4 Average MSPER
based on 100 8	 1 priority
rank vectors

Average MSPER (7 	 1)

wk
AEM wk

IEM wk
GAM

wk 2,3257 0,2800 1,2857
wk
AEM 2,0600 2,6029

wk
IEM 1,0657

Table 5 Average MSPER
based on 100 7	 1 priority
rank vectors

Average MSPER (8	 1)

wk
AEM wk

IEM wk
GAM

wk 3,2675 0,4200 1,8600
wk
AEM 2,7250 3,9475

wk
IEM 1,6125

Table 6 Average SRC based
on 100 7	 1 priority rank
vectors

Average SRC (7 	 1)

wk
AEM wk

IEM wk
GAM

wk 0,7093 0,9650 0,8393
wk
AEM 0,7425 0,6746

wk
IEM 0,8668

Table 7 Average SRC based
on 100 8	 1 priority rank
vectors

Average SRC (8	 1)

wk
AEM wk

IEM wk
GAM

wk 0,6888 0,9600 0,8229
wk
AEM 0,7405 0,6240

wk
IEM 0,8464

greatest mean differences were found between vectors corresponding to the incon-
sistent matrices and matrices adjusted with the AEM. Tables 6 and 7 display the
Spearman correlation coefficients for ranks, to point out the correlation between the
derived priority weight rank vectors of the inconsistent starting matrices and their
adjustments. The results demonstrate, that the highest positive correlations can be
observed after adjustment via the IEM and the GAM.

In short, the main findings can be outlined as follows:
With respect to priority weight rank vectors the IEM produces the most similar

vectors after adjustment. Here, the GAM gets only the second place.
But using the GAM seems to be a reasonable alternative to other automated

consistency adjustment approaches. The results of the comparisons show, that the
matrices adjusted with the GAM are closest to the underlying matrices of the deci-
sion makers in terms of MSME. Under the assumption, that a decision maker has
made his evaluations with care, one would expect, that he would prefer an adjusted
solution which incorporates his evaluations as good as possible.
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Furthermore the adjusted matrices calculated by using the GAM contain only
entries the values of which belong to the Saaty scale, i.e. they correspond to the
accompanying verbal expressions which would make it easier for a decision maker
to decide, if he would agree with a adjusted solution.

4 Outlook

Research on consistency adjustments for comparison matrices is a very important
field of AHP related research. This study of different approaches gives first insights,
which methods to which extent might be appropriate for automated consistency
adjustments. Further research could be conducted with respect to other levels of
inconsistencies. Furthermore, the GAM opens a door to conduct an empirical study,
where decision makers are confrontated with adjusted matrices and can decide to
which extent they would accept the adjusted comparisons.
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Monte Carlo Methods in the Assessment
of New Products: A Comparison of Different
Approaches

Said Esber and Daniel Baier

Abstract In New Product Development (NPD), different financial assessment
methods can be used, e.g., static and dynamic net present value methods, deci-
sion tree methods, and real options approaches. In all approaches, uncertainties can
be specified and their impact on the project value can be analyzed using Monte
Carlo Methods. This paper describes the use of Monte Carlo methods in informa-
tion technology (IT). For comparing these different methods, the NPD case of the
new video-conference system BRAVIS is elaborated.

1 Introduction

There are strategic reasons for new product developments. Successful, new product
developments can offer long-term, financial returns on investments which support
marketing efficiency, increase corporate image and use production, operative as well
as human resources effectively. Investments in product development are of prime
importance to research & development (R&D) projects. On the one hand, these
investments hold a strategic position because they shall ensure and increase the
future competitiveness of the company. On the other hand, these investments highly
influence the financial strength of the company because of being linked with high
expenditures. The financial assessment of product development projects includes
the uncertainties and acting possibilities of the management. The characteristics of
R&D projects cannot be considered certain because these projects are future-related.
From a corporate point of view, it is distinguished between technical risks (realisa-
tion risk, performance risk, cost risk and regulatory risks) and economic risks (price
risk, competition risks, Me-Too-products and the risk of accepting the new product)
(Dilling 2002; Pritsch 2000).
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Three possible courses of action are just the right thing for the R&D management
in order to react to the uncertainty problem. The first possibility is the conscious or
unconscious ignorance of uncertainty aimed at making the decision easier if the
information is withheld from the field of management. The second form of reaction
is the reduction of uncertainty by gathering information so that the information basis
is improved. The third possibility is the acceptance of uncertainty. The analysis
of risk structure and flexibility of decisions can make future chances feasible and
occurring risks reducible (Adam 1996; Damodaran 2001; Kirchler 1999). Within the
scope of this paper, the following research issue is to be addressed: In which way can
the practical use of decision-supporting tools (decision trees, Real Option approach
and Monte Carlo Simulation) be realized in the assessment of new products (here:
Video-conference system) in R&D projects?

2 Assessment Methods of NPD

In R&D projects, various financial methods for assessing new product development
are used. The net present value (NPV) method is a standard capital market-oriented
method. This method is that monetary procedure of dynamic investment calculation
most frequently used. The NPV method considers all monetary movement (in and
out) involved in investment and measures the advantageousness of an investment
absolutely in a value (net present value). In this respect, net present value is the sum
of all monetary movement (in and out) caused by an investment object discounted at
any point in time. Within the framework of strategic decisions (takeover and fusion)
of companies or product development), massive simplifications of the models and
inaccuracies of the results are accepted with the net present value method (Copeland
and Antikarov 2001).

Sensitivity analysis can be used for identifying the main risks as far as suc-
cess of a project is concerned. For this purpose, an optimistic and a pessimistic
case are recalculated for each uncertain value driver to jointly fix the interval in
which the values can range. Afterwards, the effects of the pessimistic or optimistic
assumption are individually calculated for each value driver. A problem in using
the sensitivity analysis is that no standardisation for the definitions of “optimistic”
and “pessimistic” exist (Brealy and Myers 2003; Damodaran 2001; Franke and Hax
1999).

Monte Carlo Simulation is a tool for risk analysis and depiction of all possible
combinations of variables. At first, a model for the calculation of the project value
is formulated and the value drivers are identified. After this, a probability distribu-
tion is determined by empirical assessments for each of these value drivers. In each
simulation sequence, a respective Software-Program (here: @Risk) draws a value
for each of the uncertain value drivers using an accident generator and calculates
the project value for this combination. While the advantages of this method are the
high freedom of data assessment and the modelling of complex problems, the prob-
lems of this method will occur if the number of dependencies increases and the
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probability distributions for the value drivers cannot be determined (Hommel and
Pritsch 1999; Perridon and Steiner 1999).

Consideration of the acting flexibility of the management (e.g. additional mar-
keting activities, capacity extensions or sale of the production plant) can be made
by the decision tree method. The decision problems can be mapped by decision
trees. In this respect, the project sequence is subdivided into various phases. The
project is subdivided into various phases considering the fact that during project
execution new information becomes available to change the cash value. Whereas
decision nodes show the acting possibilities of the management, the state nodes
represent the results of acting alternatives in dependence on the occurrence of var-
ious surrounding conditions. The assessment of the tree and the determination of
the optimum behavior pattern are carried out recursively from right to left. The best
decision to be taken is determined at each decision node. The decision trees make
thinking about future strategy necessary and represent the connection between the
present situation and possible future developments. For this reason, the complexity
of decision trees accompanied by a great number of decision points and alternatives
are considered a restriction (Brealy and Myers 2003).

The term “real options” was substantiated by Myers in 1977 for the first time
(Dixit and Pindyck 1995). A real option means future scopes of activity and invest-
ment possibilities of a company, connected with the ability of the management
to adjust operative decisions to changed environmental conditions (Hommel and
Pritsch 1999). The real options are characterised by five properties: uncertainties of
future returns, irreversibility of investment costs, flexibility with regard to determi-
nation of execution time of option, exclusivity of exercise right of option only by
option owner and information access with regard to improvement of information
basis (Brach 2003). In R&D projects, option types are often classified into three
groups consisting of learning, insurance and growth options. The learning options
make it possible for the company to acquire new knowledge, learn from it and
then take the investment decisions on a more solid foundation. The learning options
include postponement options (waiting options), delay options and stage investment
options (Amram and Kulatilaka 1999; Copeland and Antikarov 2001). The insur-
ance options enable the company to react to unfavourable market developments and
thus avoid future losses. For this reason, these options serve for risk management
of a company. The insurance options include capacity change options, breaking-off
options and readjustment options (Mostowfi 2000; Trigeorgis 1996). The growth
options will offer management the possibility of expanding the primary indication
if unfavourable environmental conditions occur and keeping as well as improving
the competitive position. The growth options include the extension options and inno-
vation options (Brealy and Myers 2003; Kilka 1995). For the assessment of whether
an investment makes sense or not, the assessment method should consider some cri-
teria which distinguish a good decision rule from all others, such as guarantee of
maximisation of the company value, presentation of the uncertainties and flexibil-
ity, consideration of the irreversibility in terms of investments that have already been
realised and applicability to various projects and investment projects, respectively.
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3 Real Options in the Assessment of NPD

Video-conference means a general form of communication in which people talk
to and see each other at the same time even though they are not sitting in the same
room. The video-conference system BRAVIS (Brandenburg Video Conferential Ser-
vice) has been developed at the Chair for Computer Networks and Communication
Systems at the Brandenburg University of Technology (BUT) Cottbus and within
the framework of a federal state project (Zühlke 2004). BRAVIS shall support
telegraphing applications (e.g. teleprinters, telecommunications, examinations and
special lectures) and closed user groups of up to 20 participants. For marketing
the BRAVIS-approach, the BRAVIS GmbH [www.bravis.eu] as BUT-Spin-off was
founded in autumn 2005. Presently, the company employs 15 staff members at the
Cottbus site. More than 20 articles at international conferences, three dissertations,
three patents and more than 15 graduation papers have been dealing with BRAVIS.

Excel is used as a decision instrument in the economic and financial field. The
decision-supporting Excel-based tools offer R&D management a better understand-
ing of the problem structure and a deep background of each decision. For this reason,
these tools are very appropriate and useful for R&D management. Two Excel add-
one (Precision Tree and @Risk 4.5 from Palisade in Theca, NY) can be used to
depict the decision trees, to analyse economic and technical uncertainties and to
make sensitivity results visible (Rese and Baier 2007). Precision Tree offers the
necessary tools for depicting and analyzing the decision trees. Figure 1 shows a
decision tree which is drawn up by Precision Tree within Excel. R&D manage-
ment has to decide on product development of BRAVIS 2 for the BRAVIS 1 which

Fig. 1 Decision tree for introducing BRAVIS 2 with assumed uncertainties
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has been introduced already. Depending on market acceptance of product develop-
ment (high or low turnover), the management can take a decision on further product
developments (BRAVIS 3). The decision on development and market introduction
of BRAVIS depends on: BRAVIS-price p, variable costs c, turnover of BRAVIS
1,2 and 3 (for BRAVIS 1 the turnover is assumed as x “low turnover” and, in the
introduction of BRAVIS 2 and 3, possible additional turnover for BRAVIS 2 are
modeled as x1 and for BRAVIS 3 as x2), R&D costs for BRAVIS-development C
and on the probability P of realizing higher turnover after BRAVIS 2 UNC 3 have
been introduced. The values are alienated in this section for confidentiality reasons.
Figure 1 shows the calculation of the profits for each terminal node of the decision
tree. As far as a decision in favor of the introduction of BRAVIS 2 is concerned,
some estimates can be made in such a way. For example, the probability of realiz-
ing higher sales is assumed to be equally distributed between 20% and 40%. The
possible additional sales of BRAVIS 3 are assumed to be distributed on average of
75,000 systems and a standard deviation of 15,000. Using this information, @Risk
carries out a Monte Carlo Simulation for the decision tree, analyses each result
and graphically illustrates those uncertainties which decision makers compare (see
Sect. 4).

4 Monte Carlo Simulation in Assessment of NPD

Mobility and cooperation play a significant part in the design of internet appli-
cations. Today the number of mobile phone users amounting to approx. 3 billion
clearly exceeds the number of internet users covering about 1 billion. In the course
of the last 15 years, mobile communication market has developed to a growth market
whose potential is certainly not yet exhausted. Although great efforts in research and
development have been made in the last 10 years to develop attractive mobile phone
applications, the use of mobile phone services in Europe is mainly concentrated
on language communication and SUMS-service. The design of mobile collabora-
tive services and applications makes a smooth transition between different types of
networks, integration of existing web services and endurance of relevant protection
targets (e.g. confidentiality, privacy) necessary. It must become possible to actively
participate in relevant decision processes world-wide and to receive the required
information irrespective of whether in a fixed or a mobile network.

Within the framework of the Undereaten Region (Company Region), the inno-
vation initiative for the New Federal States, the Federal Ministry for Education and
Research (Undenominational füa Building UNC Forsaking) with its new promotion
program Format (Research for the Market in a Team) is now aiming at connecting
two new approaches for knowledge and technology transfer. The strategic aim of
the Format-project is the development of a platform for providing mobile collab-
orative applications and services. The characteristic features of this platform are:
Openness, because the platform shall be flexible and extendable and offer the possi-
bility of integrating existing web services. The second feature is the transparent use
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of the web because the mobile collaborative applications shall be independent of the
network and usable by the fixed and mobile networks. The third feature is the safe
communication because the platform shall support confidential communication, if
required. The three business fields of the project are Mobile Video-based Collab-
oration (based on BRAVIS), Smart Home on the Phone Applications and Mobile
Collaborative Games. Within the framework of this paper, the business field Mobile
Video-based Collaboration is assessed. Web or video conferential is considered a
helpful means for saving time and costs. They are regarded as a simple instrument
for the transfer of information and for efficient communication. At the moment,
the international market for audio- and teleconference systems is growing by about
17% per year. Because of the increasing mobility of the communication partners
and the fast moving character of the world of work, mobile video communication
solutions make it possible that mobile partners participate in video and audio con-
ferences while on the way and can access important documents as well as ensure
a stable, qualitatively high connection between the participating partners so that a
continuous exchange of information is enabled. The customer groups for this field
of business are private customers, clients and founders of a new business for soft-
ware developments. At the beginning, the product and service offer is directed to
business customers who are in need of collaborative solutions. In the further course,
the private customer market shall also be opened up. While the sale of licenses is
prioritized in the field of business customers, experience gained by BRAVIS GmbH
has revealed that high income can be reached in the field of private customers mainly
in connection with advertisement pop-ups.

The proportional costs for the development of the service for mobile video-based
collaboration amount to 250,000 Euro. The platform to be developed should be pro-
vided as a product within 2 years term of the project. In the private field, a charge
of 1 Euro for a one-time use of the service, monthly 1,500 users of the service
(yearly 18,000 Euro) will accrue. In the business field, 150,000 Euro would already
have accrued as cash flow based on a sales price of 150 Euro and a sales volume of
1,000 licenses a year. Further sales can be generated by the founders for software
development. For average prices of 10,000 Euro, there will be 13 software devel-
opments for further 130,000 Euro a year. A model for calculating the project value
has been formulated using an Excel-calculation table. The values are alienated for
confidentiality reasons.

Figure 2 shows the result of the Monte Carlo Simulation for the cash flows of
the project. In each course of simulation, @Risk draws a value for each uncertain
value driver and afterwards the decision tool reflects the possibility of introducing
the new product. An @Risk simulation calculates multiple scenarios of a model by
repeatedly sampling values from the probability distributions for the uncertain vari-
ables and using those values for the cell. @Risk simulations can consist of as many
trials (or scenarios), hundreds or even thousands in just a few seconds. During a sin-
gle trial, @Risk randomly selects a value from the defined possibilities (the range
and shape of the distribution) for each uncertain variable and then recalculates the
spreadsheet. @Risk offers a sensitivity analysis for determining critical factors. This
analysis can be used for the classification of uncertain parameters in dependence on
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Fig. 2 Distribution of the Cash Flow according to a Monte Carlo simulation

Fig. 3 Sensitivity analysis for the Cash Flow

their effects on profits. Figure 3 shows the sensitivity analysis in form of a tornado
diagram. The tornado-diagram shows that the charge for a one-time use of the ser-
vice in the field of private customers and the sales volume in the field of founders
for software development have a very strong influence.

5 Conclusions and Outlook

The Paper shows that the use of the Real Options approach in R&D projects using
decision tools is possible and reasonable. The consideration of the Real Options
method is very significant for modelling the technical uncertainties, and those
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which have been caused by the market during the development processes of the
BRAVIS-system, as well as for modelling the possible courses of action done by
the management using decision trees and risk analysis. Within the framework of the
Monte Carlo Simulation, different distributions for uncertain parameters could be
considered. From this, a distribution for the project value could be derived and the
most significant value drivers recognisee.
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Preference Analysis and Product Design
in Markets for Elderly People: A Comparison
of Methods and Approaches

Samah Abu-Assab, Daniel Baier, and Mirko Kühne

Abstract The elderly people fraction is rapidly increasing in the industrialized
countries. The average life expectancy for many Europeans is now over 80, and
by 2,020 around 25% of the population will be over 65. It is known that with ageing
the behavior changes and body condition starts to diminish. Hence, the urge for new
products and services that meet the target group’s needs, requirements, inspirations,
and comfort is essential and promising for potential producers. As a result, it is a
critical issue for market researchers to adjust their methods and techniques to those
markets. The main focus of the paper is to suggest a new approach for measuring
the preference of elders. The new approach can be used for designing products and
services. It is based on well-known preference analysis methods (i.e., a combination
of conjoint analysis and quality function deployment as with Baier 1998 or Pull-
man et al. 2002). The various approaches are discussed and implemented on elders.
The development of a new mobile phone for elders is used as a demonstration and
validation sample.

1 Introduction

This paper investigates two approaches which combine conjoint analysis (CA) in
quality function deployment (QFD) known as conjointQFD.

Quality Function Deployment QFD is a method to develop a design of quality
which meets the needs and demands of customers (Akao 1990). Two objectives
linked the need of QFD which started with the user (or customer) and the other
ended with its producer. The first objective is the conversion of customers demands
and requirements – product attributes (PAs) – into product characteristics (PCs). The
second objective is the deployment of quality characteristics identified to production
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activities (Revelle et al. 1998). During its diffusion three different approaches in the
work process was introduced: the comprehensive QFD concept (Akao 1990), with
his thirty-table concept besides the four-phase concept from ASI (ASI 1992). The
“House of Quality” (HoQ) is the most implemented phase in QFD. In the HoQ, cus-
tomer demands are collected then they are interpreted to engineering characteristics
by an expert team. The subjectivity (i.e., potential error) of collecting the customers
voice and determining the relationship of PCs on PAs led the researcher to try to
find ways to minimize and to eliminate the source of error (e.g., Hauser and Simmie
1981). Other researchers suggested the use of conjoint analysis (Gustafsson 1996;
Baier 1998; Pullman et al. 2002).

Conjoint Analysis Since its introduction into marketing in the early 1970s, CA
was considered as a major set of techniques for measuring the preferences of the
customers among multi-attributed products and services (see Green and Rao 1971;
Srinivasan and Shocker 1973). CA has also gone through a lot of improvements;
new models were developed. For example, choice-base conjoint, hybrid conjoint
including Johnson’s adaptive CA model (Green 1984). In estimating the part-worth,
the hierarchical Bayes proved to be preciser than other used methods e.g., the ordi-
nary least square (Green et al. 2001). In the last two decades, researcher have tried
to combine and compare other methods with/to CA to improve their results. Baier
(1998) used conjointQFD. Baier’s result identified that conjointQFD outperforms
the traditional QFD. ConjointQFD is designated in the paper as Baier’s Approach.
Pullman et al. (2002) compared QFD and CA by applying each to the design of
a new product: all-purpose climbing harness. Their interpretation of their results
showed that the two methods should be considered as complementary than compet-
itive and are better conducted simultaneously. Pullman’s experiment is designated
in this paper as Pullman’s Approach. The paper suggests a new approach tailored
for elders and compares its results to Pullman’s approach results on the example of
mobile phones for elders. The next section will handle the elderly group with its
various peculiarities and specifications.

Elderly People The industrial countries are facing a dramatic demographical devel-
opment in their societies: their societies are growing old. The main aspects of the
problem are observed in the increase in the mean and median age, and in the tran-
sition in the children fraction in a population, which are also the main causes of the
demographical problem (Gavrilov and Heuveline 2003). Growing old or ageing in
simple words is “the body’s natural process of wearing down.” It is an individualized
process that begins at birth, and is affected by many factors as people age. In modern
gerontology, ageing is defined as a process that takes place at one time at differ-
ent levels: physically, emotionally, socially and socio-culturally. On one or more of
those levels, it can be triggered in which way the process of ageing is initiated and its
effect on the other levels (Baltes and Baltes 1994). The process of ageing involves-
partly conditional and possible physiological changes that happen to elderly. These
changes differentiate the elderly group from other younger groups e.g., N.A. (2009).
Despite thesenatural changes, today’s elderly generation are not to be compared
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with elders from previous generations. Today’s elders seek a quality life and self-
fulfilment. For the marketers, they build a new confident consumption generation.
For example, elders (taken here ab 60plus) expenditure reaches 316 billion Euros,
one-third of total expenditure from the household in Germany. According to the
Ministry for Family, Seniors, Women and Youth, this share will increase to 386 bil-
lion Euros, more than 41% of total household expenditure until 2,050 from purely
demographical factor. Product developers and market researchers have to take the
elders into consideration when designing and marketing products. The products and
innovations should better meet needs of the elderly group to contribute into an easier
life for them as long as possible.

2 New Approach for Elderly People

Baier’s approach implements CA in HoQ so that to determine the importance of
PAs and also to evaluate PCs effect on the PAs, taking advantage of the “trade-off”
feature of the method, increasing the objectivity of the evaluation (Baier 1998). The
new approach uses the same core methodological idea as Baier’s approach: CA is
used in QFD taking into account the difficulties of elderly people which vary in their
intensity from one person to another (e.g., distorted colors, difficulties in reading
the font-size, computer competence, knowledge of theme, etc.). These difficulties
of elderly are mainly overcomed in the new approach by introducing an optional
observation phase, an obligatory information phase and adjusting the interviews
questions in the online questionnaire to simplify the task for the elderly people. For
example by using technologies (e.g., animated multimedia, avatars, pop-ups info,
videos, voice questions, etc.) to make it easier for them as well as to get more valid
results. Table 1 illustrates the two approaches, their main steps and the new inte-
grated levels. From Table 1, the first integrated level in step one is the Information
phase which is obligatory and it should be conducted at the very beginning. It sup-
plies the elders with the necessary update of the product options and state-of-the-art
of the tested product or service. A slight difference can be recorded in the way of
collecting the PAs in both methods (see Table 1). In the new approach, it is recom-
mended to use face-to-face interviews with elderly (e.g., less than 30 respondents.
In step two, another information phase is introduced to help those who need more
information on the subject. In step 3, the elders group should be presented when
building the expert team. In the next step (step 4) an information phase could be
implemented in the various CA to calculate the correlation between the PAs and
PCs. Methodologically, the new approach doesn’t differ from the baier’s approach
and it should be applicable for elders as well as for all age-groups. The levels added
aims to adjust certain defficiencies due to ageing to make it simpler and clearer for
elders. The experiment was conducted using the Baier’s approach with minimum
information phases, therefore for the purpose of the current research the Baier’s
approach is taken as the new approach. The details of the experiment is discussed in
the next section.
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Table 1 Baier’s approach vs New approach for elderly People

Baier’s approach New approach for elderly

Step1: Selecting PAs

PAs are selected by QFD team, using info
from retailers Journals, internet.

Recommended face-to-face Interviews with
integrated observation phase, integrated
information phase and optimal presentation of
attributes and levels

Step 2: Evaluating the importance of PAs

Running conjoint analysis Running conjoint analysis with integrated
information phase

Step 3: Selecting PCs

Expert team Expert team (includes elderly members)

Step 4: Estimating the influence of PCs on PAs

Expert team, conjoint analysis Expert team, conjoint analysis with integrated
information phase

Step 5: Computing importance of PCs in the eye of customers

Sum of PC shares per PA shares weighted by
PA shares

Sum of PC shares per PA shares weighted by PA
shares

2.1 Application of the New Approach for Elderly People

In a previous work, the authors investigated the Pullman’s approach on the exam-
ple of mobile phone design for elders (see Abu Assab and Baier 2010). In this
paper, the new approach is applied on the same example. ECs and PAs were taken
from the HoQ from Pullman’s approach to guarantee the same conditions in the two
experiments (for the comparison purpose). Elders were asked to evaluate both the
PAs and their importance as well as the influence of PCs on the PAs. A total of
10 ACA interviews were assessed by each of 40 respondents with average time
of 2:15 h/interview. ACA1 was performed to assess the PAs importance. From
ACA2-ACA9, the strength of the correlation was assessed between the PAs and
PCs. Finally, ACA10 was conducted to test the validity of the results. A Summary
of results of the ACAs in the HoQ is shown in Table 2. A disadvantage of the
approach is that it requires a long time and elders are then overburden from running
the interviews. The results show that elders’ most important product characteris-
tics are: “emergency number” (0.111), “weight” (0.095), “cost” (0.087);“Volume”
(0.059); “display size” (0.035), whereas; the PCs with the least importance for elders
are: “battery capacity” (0.011);“waterproof” (0.021); “sound quality” (0.022); and
“distance between keys” (0.024).
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Table 3 Ten most important PAs: Pullman’s approach, new approach and ACA
10 Most Important Product Characteristics (PAs)

Importance (rank) Si
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Pullman’s approach 0.733 0.653 0.725 0.921 0.921 0.972 1.00 0.608 0.617 0.900

(5) (7) (6) (3) (3) (2) (1) (9) (8) (4)

New approach 0.032 0.049 0.111 0.026 0.021 0.031 0.011 0.095 0.059 0.087
(6) (5) (1) (8) (9) (7) (10) (2) (4) (3)

ACA 0.127 0.066 0.125 0.0819 0.069 0.102 0.117 0.099 0.061 0.152
(2) (9) (3) (7) (8) (5) (4) (6) (10) (1)

2.2 Comparison of Results

The top ten product Characteristics for elderly people are compared by Pullman’s
approach, new approach and the ACA. The results of Pullman’s approach shows
that “battery capacity” rank(1) is the most important PC, “energy consumption”
rank(2), “water proof” and “impact resistance” both rank(3). On the other hand,
the results of the new approach show that the most important PCs are “emergency
number” rank(1), “weight” rank(2), and “cost” rank(3). ACA results are as follows
“cost” rank(1),“menu layers” rank(2), followed by “emergency button” rank(3) (see
Table 3 for the top 10 results of the three approaches). The overall results from the
comparison show that there are some similarities, however, the differences are sig-
nificant. In this experiment, the authors want to check the external validity: Which
approach has a better external validity? For this purpose, a “field predictability test”
is conducted to the validity. The test consists of various measures that test real life
mobiles for the three approaches to figure out which approach outperforms in real
life (see next section).

2.3 Field Predictability Test

The expert team selected 20 mobile phones from the several classes for elderly (e.g.,
“AURO Comfort 1010”, “Emporia Life Plus”, “Nokia 1200”, “Nokia 6500 slide”
and “Motorola RAZR2 V8”). The most ten top PCs were selected as the test criteria
to perform the “field predictability test” (see Table 3). Then each mobile phone was
assigned a value for each selected PA using its product catalogue. These specifica-
tions were then evaluated for each mobile using Pullman’s approach, new approach
and ACA. A case in point is the “Emporia Life Plus”: PC values were assigned
as follows (average values): “emergency number”: yes (P:12.74, B: 58.93, ACA:
14.35) “Key size”: big (P: 19.65, B:47.74, ACA: 54.26). This procedure enabled us
to rank the 20 mobile for each approach. In this step, three evaluation measures:
hits in “Google.de”, number of reviews in “amazon.de” and number of offers in
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Table 4 Field predictability test total results

Pullman Approach New Approach ACA

Hits in “google.de” 1 3 1
Reviews in “amazon.de” 3 3 2
Offers in “amazon.de” 1 1 1
Totals 5 7 4

“amazon.de” were selected to run the comparison. The new approach recorded more
hits than from other approaches: 5, 7, and 4 hits respectively (see Table 4).

3 Discussion and Outlook

The main goal of the paper is to introduce a new approach for elders and then
test its external validity in comparison to the other approaches mentioned in the
paper. Methodologically, the new approach is similar to the Baier’s approach (see
Chapter 1) with some adjustment phases to pass with the normal process of ageing.
The “field predictability test” was introduced. Accordingly, the external validity was
tested for the various approaches using internet indicators. The main result shows
that the new approach correlate better as Pullman’s approach and the traditional
ACA. However, the disadvantage of the new approach – it requires long time from
elders- overburden the elderly people. Therefore, further research is recommended
to improve the measures -better test the predictive validity- as well as to check how
reasonable is the new approach.
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Usefulness of A Priori Information about
Customers for Market Research: An Analysis
for Personalisation Aspects in Retailing

Michael Brusch and Eva Stüber

Abstract Many studies use a priori information about the customers, either as cri-
teria for the selection of respondents or during data analysis and interpretation.
Although the often use of this information, the question is how reasonable it is.
We analyse this in the framework of personalisation aspects in the retail market.
While we extend the data of a conjoint analysis through Hierarchical Bayes esti-
mation and market segmentation approaches we compare three types of data (a
priori data, priority data and benefit data) and their effects with respect to predictive
validity.

1 Introduction

Within market research, a lot of studies are based on a priori information about
the customers. This information can be used as criteria for the selection of respon-
dents (e.g., “quota sampling”) or during data analysis and interpretation (see, e.g.,
DeSarbo and Mahajan 1984). Although this a priori information is often used, the
question is how reasonable it is.

This will be analysed in the framework of personalisation aspects in the retail
market. The data of a conjoint analysis (see, e.g., Green et al. 2001) is extended
through Hierarchical Bayes (HB) estimation (see, e.g., Lenk et al. 1996) and market
segmentation approaches. We compare three types of data: a priori data (information
about respondents), benefit data (part worth estimates) and priority data (importance
estimates) and their effects on validity. Finally we will identify the best way to
estimate preferences in such heterogenous and/or unknown fields as personalisation
aspects in retailing.
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We briefly introduce personalisation aspects (Sect. 2) as well as conjoint anal-
ysis, HB and clustering approaches for preference estimation (Sect. 3). Later our
empirical investigation (Sect. 4) is shown.

2 Personalisation Aspects in Retailing

The retail market can be differentiated in online shopping and traditional retailing.
Although the relatively new alternative of online shopping has a growing impor-
tance, its impersonality is still an impediment (see, e.g., Holzwarth et al. 2006). A
long time traditional retailing was dominated of impersonal shops (e.g., hypermar-
kets). Nowadays the opportunity for one-to-one marketing is reopened (e.g., while
using debit cards).

Personalisation is defined as using personal advisers, namely welcoming and
offering of recommendations to buy (offers of alternatives or additional products) in
online shopping or in traditional retailing. Personalisation has a positive impact on
customer satisfaction (see, e.g., Mittal and Lassar 1996) and likewise on customer
loyalty (see, e.g., Srinivasan et al. 2002).

Personal advisers in online shopping (so-called avatars) lead to more satisfaction
with the retailer, a more positive attitude toward the product and a greater purchase
intention (see, e.g., Holzwarth et al. 2006). In traditional retailing the customer loy-
alty is significantly affected by the relationship between customer and seller as well
as the quality of this relationship (see, e.g., Dixon et al. 2001).

Recommendations to buy are especially in online shopping of interest. Current
investigations focus on the applied technology, the so-called recommender systems
and their algorithms (see, e.g., Bodapati 2008). Computer-based recommendations
have an impact on the choice of products, customer satisfaction and loyalty (see,
e.g., Senecal and Nantel 2004), while time for gaining product information is being
decreased and buying decision’s quality can be increased (see, e.g., Häubl and Trifts
2000).

3 Preference Estimation in Market Research

To analyse the preferences of consumers (e.g., regarding different personalisation
aspects in retailing) conjoint analysis can be used. Conjoint analysis is a method
to estimate the structure of consumer’s preferences (see, e.g., Green and Srinivasan
1978). Typically, hypothetical concepts for products or services (attribute level com-
binations) are presented to and rated by a sample of consumers in order to estimate
part worths for attribute levels from a consumer’s point of view. Nowadays for con-
joint analysis a huge number of applications are known as well as many specialized
tools for data collection and analysis have been developed (see, e.g., Green et al.
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2001). Especially Hierarchical Bayes (HB) estimation and clusterwise estimation
procedures seem to be attractive newer developments.

HB estimates individual part worth distributions by “borrowing” information
from other individuals (for further descriptions of this aspect in a conjoint analysis
setting see, e.g., Baier and Polasek 2003). Preference heterogeneity is not assumed
via introducing segments. Instead, the deviation of the individual part worth distri-
butions from a mean part worth distribution is derived from the collected individual
data (for methodological details and new developments see, e.g., Lenk et al. 1996;
Liechty et al. 2005). The application of HB estimation seems to outperform tradi-
tional models w.r.t. to predictive validity and seems to be robust (see, e.g., Orme
2000).

Furthermore, part worth estimation can be enhanced using clustering and clus-
terwise estimation approaches that provide traditional ways to model preference
heterogeneity in conjoint analysis (see, e.g., Baier and Gaul 1999; Brusch and Baier
2008).

We use clustering and clusterwise HB procedures which will be applied to pref-
erence data for personalisation aspects. We compare three types of data (a priori,
benefit and priority data). This is in contrast to other empirical studies which either
don’t use conjoint analysis (for measuring preference information, see, e.g., White
et al. 2008) or select the respondents from a small variety of demographic data (with
a limited number of a priori information, mostly students, see, e.g., Iyengar et al.
2008). We are in search of ways to avoid typical problems in market research like
focusing the wrong sample or getting less useful (less valid) results. Especially while
investigating personalisation aspects the problem of customers with a heterogenous
and/or unknown preference structure (at the individual and the aggregated level) is
very prominent.

4 Empirical Investigation

4.1 Research Object and Design

For our investigation most important personalisation attributes are used. In total six
attributes (e.g., type of personalization, place of personalization) each with three
(one attribute) or two (five attributes) levels (e.g., namely welcoming, personalisa-
tion at the internet store) are integrated. In total, 13 part worth parameters have to
be estimated in our analyses.

A conjoint study is carried out using the nowadays standard tool for conjoint data
collection, Adaptive Conjoint Analysis (ACA) of Sawtooth Software’s ACA system
(see, e.g., Sawtooth Software 2002), to be precise ACA/Web as online version of
ACA within SSI/Web. For our investigation a four-step analysis is done.

As step 1 we analyse the overall quality of our study. We had 538 finished ques-
tionnaires. Standard ACA methodology is used for individual part worth estimation.



720 M. Brusch and E. Stüber

Standard selection criteria (with respect to predictive validity) reduce the number of
usable respondents to 318 with passably goodR2-measures (with a mean of 0.784).

In step 2 we divide our respondents into groups depending on our three types
of data. For our cluster based on a priori data (step 2a) we select relevant socio-
demographic characteristics (age, sex, income, profession) and carry out a cluster
analysis (using Euclidean distances and Ward’s method). An optimal solution with
three clusters can be found. For our cluster based on benefit data (step 2b) we
use standardised individual part worths (where the attribute level with the lowest
(worst) part worth is becoming 0, the best attribute level combination (combina-
tion of the best attribute levels of each attribute) is becoming 1). For our following
cluster analysis we use again Euclidean distances and Ward’s method and find a
solution with four clusters. For our cluster based on priority data (step 2c) we divide
the respondents into groups in accordance to the attribute with the highest relative
importance (e.g., the most important attribute (and therefore the largest group) is
influence on personalisation with 25.5% (81) respondents). Because every attribute
has its admirer all six attributes can be integrated as a cluster.

In step 3 we compute the distributions of individual part worths via aggregated
HB as well as via clusterwise HB part worth estimations. For our analysis, the
software ACA/HB (see, e.g., Sawtooth Software 2006) is used as the actual most
relevant standard tool for conjoint data analysis (with 5,000 iterations as burn in and
10,000 draws to be used for each respondent). Preprocessing in order to segment the
available individual data was done via SAS.

In step 4 we calculate the predictive validity values. This was considered while
questioning on the basis of the integration of a specific holdout task. This task
included the evaluation of five (additional) personalisation concepts, similar to the
“calibration concepts” of an usual ACA questionnaire.

Predictive validity is measured using the Spearman rank-order correlation coeffi-
cient and the first-choice-hit-rate. The Spearman rank-order correlation compares
the predicted preference values with the corresponding observed ordinal scale
response data from the holdout task. The first-choice-hit-rate is the share of respon-
dents where the stimulus with the highest predicted preference value is also the one
with the highest observed preference value.

4.2 Results

First we calculated the predictive validity values for traditional (standardised) ACA
part worths. When using individual data of the 318 selected respondents a first-
choice-hit-rate of 57.40% and a mean Spearman of 0.580 results.

The validity values shown in Table 1 are based on the HB estimation and are
given for the total sample and for the three clusterwise estimations (clustered using
the a priori data). The clusters are separated after the membership during the esti-
mation (total sample or segment). The description “in total sample” means that the
HB utilities of the respondents were computed by “borrowing” information from
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Table 1 Validity values for the total sample and for the clusters based on a priori data for HB
estimation

Total Sample Cluster 1/3 Cluster 2/3 Cluster 3/3
(n D 3144) (n D 1664) (n D 101) (n D 30)

ITS IS ITS IS ITS IS

First-Choice-Hit-Rate [%] 57.40 55.16 54.75 61.95 62.38 59.55 58.75
(using individual draws,

n D 10;000)
Mean Spearman 0.580 0.517 0.514 0.666 0.670 0.622 0.625
(using individual draws,

n D 10;000)
First-Choice-Hit-Rate [%] 60.19 57.23 57.23 66.34 65.35 60.00 60.00
(using individual averages)
Mean Spearman 0.611 0.540 0.543 0.701 0.698 0.686 0.665
(using individual averages)
Total Mean Spearman

(ITS / IS)
0.611 0.609 / 0.608

(using individual averages)
4...no. of respondent with missing or invalid holdout data that could not be considered; ITS...in
total sample; IS...in segment

the total sample (not only from members of the own segment). Thus, the HB esti-
mation happened for all respondents together, but the validity values for the three
clusters were calculated later separately. On the other hand, the description “in seg-
ment” means that the HB utilities of the respondents were computed by “borrowing”
information only from members of the own segment (clusterwise HB estimation).

The validity values in Table 1 are shown for the computations based on the 10,000
draws (10,000 HB utilities) for each respondent and for the computations based on
the mean HB utilities (one HB utility as mean of 10,000 draws (iterations)) for each
individual. Furthermore, an overall mean value for the Spearman rank-order corre-
lation coefficient over all clusterwise estimations is given. This helps to compare “in
total sample”- or “in segment”-estimations.

As you can see in Table 1 the validity values for the total sample as well as for
all clusters are higher than the values for the traditional ACA estimation.

In Table 2 the same values are given when the clustering process uses the benefit
data. Similar results (higher than ACA estimation, no significant influence of “in
total sample”/“in segment”-estimations) can be found.

In Table 3 the values are given when the benefit data is used and the respondents
were divided into groups in accordance to their priority (integrated as relative impor-
tance). Most results are the same as in other cases (higher than ACA estimation).
But in contrast to the others the “in segment”-estimations lead to the highest mean
validity value.

When comparing all the results it can be seen that all validity values for the
individual averages based HB estimation are higher than for the ACA estimation,
regardless which HB estimation basis (“in total sample” or “in segment”) is used.
In the case of HB estimation using individual draws, a mixed result with respect to
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Table 2 Validity values for the clusters based on benefit data for HB estimation

Cluster 1/4 Cluster 2/4 Cluster 3/4 Cluster 4/4
(n D 1102) (n D 45) (n D 931) (n D 661)
ITS IS ITS IS ITS IS ITS IS

First-Choice-Hit-Rate [%] 52.65 52.40 53.26 51.76 69.97 69.63 50.40 49.65
(using individual draws,

n D 10;000)
Mean Spearman 0.547 0.544 0.626 0.623 0.704 0.704 0.428 0.427
(using individual draws,

n D 10;000)
First-Choice-Hit-Rate [%] 54.55 53.64 55.56 48.89 74.19 73.12 53.03 53.03
(using individual averages)
Mean Spearman 0.575 0.560 0.664 0.648 0.740 0.725 0.452 0.464
(using individual averages)
Total Mean Spearman (ITS / IS) 0.611 / 0.601
(using individual averages)
1=2...no. of respondent with missing or invalid holdout data that could not be considered; ITS...in
total sample; IS...in segment

Table 3 Validity values for the clusters based on priority data for HB estimation

Cluster 1/6 Cluster 2/6 Cluster 3/6
(n D 76) (n D 521) (n D 631)

ITS IS ITS IS ITS IS

First-Choice-Hit-Rate [%] 57.32 56.13 56.66 56.10 52.26 52.23
(using individual draws, n D 10,000)
Mean Spearman 0.569 0.558 0.573 0.578 0.529 0.537
(using individual draws, n D 10,000)
First-Choice-Hit-Rate [%] 61.84 64.47 57.69 55.77 52.38 53.97
(using individual averages)
Mean Spearman 0.618 0.623 0.609 0.605 0.548 0.555
(using individual averages)
Total Mean Spearman (ITS / IS) 0.611 / 0.616
(using individual averages)

Cluster 4/6 Cluster 5/6 Cluster 6/6
(n D 20) (n D 792) (n D 24)

ITS IS ITS IS ITS IS

First-Choice-Hit-Rate [%] 66.23 66.77 58.49 58.85 61.77 61.39
(using individual draws, n D 10,000)
Mean Spearman 0.595 0.582 0.605 0.619 0.668 0.661
(using individual draws, n D 10,000)
First-Choice-Hit-Rate [%] 70.00 70.00 63.29 62.03 62.50 62.50
(using individual averages)
Mean Spearman 0.621 0.611 0.625 0.645 0.706 0.689
(using individual averages)
Total Mean Spearman (ITS / IS) 0.611 / 0.616
(using individual averages)
1=2 ... no. of respondent with missing or invalid holdout data that could not be considered; ITS...in
total sample; IS...in segment
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validity can be found. Furthermore, the usage of priority data leads to the highest
validity values.

5 Conclusion and Outlook

We investigated the use of clustering and clusterwise HB as well as combined esti-
mation procedures which has been applied to preference data for personalisation
aspects. While we compare the use of three types of data (a priori data, benefit data
and priority data) we find hints to avoid some typical problems in market research.

Our study – which is exemplary for investigations in new and unknown market
research fields – suggests two implications if personalisation aspects are analysed.
Firstly, the usage of HB estimation is recommended. Secondly, the usage of a priori
data can be enhanced through the (alternative) usage of priority data (here integrated
as the relative importance coming from the estimated preference structure).

Furthermore, for market research (in general) the usefulness of using a priori
information (demographic data) can be certified and especially the possibility of
focusing priority information must be increased. For conjoint analysis (in special)
beside the usage of Hierarchical Bayes estimation the separate HB estimation at the
individual cluster level (“in segment”) can be confirmed.
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Importance of Consumer Preferences
on the Diffusion of Complex Products
and Systems

Sabine Schmidt and Magdalena Missler-Behr

Abstract Complex products and systems (CoPS) are project-developed, represent
a significant proportion of gross value and competitive advantages. A British study
investigated the importance of CoPS and found out, that in UK an account for around
21 per cent of gross value added, approximately 133 billion in output, is produced
(Davies and Hobday 2005). In UK CoPS count around 15 percent of international
trade over past 30 years (Davies and Hobday 2005). CoPS belong to highly inno-
vative products and are specific customised systems. The high product complexity
is a result from numerous product components and their interactions. These char-
acteristics lead to other requirements for enterprises and consumers. In the case of
CoPS firms have to anticipate individual consumer preferences which influence the
success of the diffusion process. Consumer behaviour is the result of various socio-
demographic, social, economical and psychological factors (Chandrasekaran and
Tellis 2008). In order to investigate the interactions between consumer behaviour
and diffusion process of CoPS, it is used the methodology of System Dynamics.
A System Dynamics model operates as a decision support system and takes into
consideration feedback, time delays and nonlinearities. The model describes the
interaction between diffusion process and specific important consumer preferences
like income, personal innovativeness and leapfrogging behaviour. An empirical
data analysis hereby supports the development of the diffusion model. Different
scenarios are used to deepen understanding.

1 Motivation

The development of CoPS is not a new research field. However the development and
commercialization of CoPS in the business-to-business-to-consumer sector poses a
challenge for enterprises. The reason is the structure and accordingly the features
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of such CoPS. Furthermore they have an added value and are very cost-intensive.
CoPS belong to capital goods, are customised, have various neteffects and generally
are produced in one-off projects. The structure of CoPS, for example their product
complexity and the high degree of innovativeness, leads usually to a deceleration of
diffusion process (Davies 1997; Tidd et al. 2005). The majority of innovation and
marketing literature concentrates on simple products, which are produced in large-
scale production. The understanding of consumer behaviour and a detailed analysis
of interaction between diffusion of CoPS and consumer behaviour is essential for
marketing activities. In the case of cost-intensive and high-technology products it
is useful considering socio-economical, behaviour-oriented as well as psycholog-
ical criteria for instance technical attitude, income and leapfrogging behaviour of
consumers. Examples for CoPS are intelligent buildings and business information
networks.

Based on the raised research deficiency, the existing investigation considers the
feedback between diffusion process of CoPS and consumer behaviour by using
System Dynamics modelling.

2 Specifics of Complex Products and Systems

Before accurating the understanding of the major problem and deducing recom-
mendations for action, it is essential to point out the characteristics of CoPS. At
present there is no definition of CoPS in general. However it is possible to describe
the fundamental characteristics of CoPS. First, CoPS have a systemic structure.
That means CoPS consist of numerous elements, sub-systems and are organized
in hierarchical structures. Due to this fact system elements by themselves do not
achieve their functionality. The second characteristic is derived from the numer-
ous elements. There is a specific interaction between components. The interaction
indicates the interface between the components. As a result minimal changes in
one component have an important influence on the functionality of the product. In
extreme case there are disastrous failures (Hobday et al. 2000; Singh 1997). For a
better understanding the speciality of CoPS is presented in comparison with sim-
ple products. Simple products have an easy structure, standardized components and
are produced in mass production. In general only one enterprise manufactures it.
Enterprise does not involve the consumer in the development as well as in the pro-
duction process. In contrast to simple products it is a matter of urgent necessity that
enterprises have to involve the consumer in the development process of CoPS. In
conclusion consumer is able to follow up the utility of the CoPS in a better way. The
differentiation into supplier-side and consumer-side characteristics is deepening the
discrepancy between simple products and CoPS by considering the aspects of prod-
uct life cycle, use of marketing-mix-instruments, purchase decision, or ex ante and
ex post purchase uncertainty et cetera (Schmidt 2009).
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3 The Diffusion of Complex Products and Systems

The diffusion research interfaces the product innovation with the consumer behavi-
our research (Trommsdorff and Steinhoff 2007).The current status of diffusion
models has to be analyzed in order to consider the diffusion of CoPS. Due to the
fact that CoPS has numerous components with various interactions, it is necessary
to select such diffusion models which integrate these characteristics. A total of 93
diffusion models (from 1969 to 2008) were investigated. Within this quantity, dif-
fusion models of products with interations are very rare. In literature such models
are named “multi-product growth models”, “growth models for multiproduct inter-
actions” or “multi-innovation diffusion models” (Bayus et al. 2000; Mahajan and
Peterson 1985; Peterson and Mahajan 1978). Equations by Peterson and Mahajan
(1978) are the foundation for describing the diffusion of CoPS because they consider
four different interactions separately between two products [see (1)]. Equations are
based on principles of the diffusion model by Bass (1969).

ni .t/ D dNi .t/

dt
D .˛i C ˇiNi .t/C ciNj .t//. NNi �Ni .t//i (1)

The solution of the differential equation ni .t/ D dNi .t/
dt

describes the consumer,
who has already bought the product i in a certain period t. Ni .t/ is the cumulative
amount of adopters who have already bought the product i in a certain period and
NN is the market potential of product i. In this context ˛ is in accordance with coef-

ficient of innovation and ˇ with coefficient of imitation. Equation (1) has the basic
structure for describing a CoPS. In order to investigate diffusion process of CoPS it
is essential to analyse at least two interactions and two product components. CoPS
belong to the value added products. Therefore complementary and contingent inter-
actions are important. Complementary interaction means that the coefficient ci

has a positive sign (ci > 0) and in the case of two products, one product has a posi-
tive effect on the other one and the other way round. Contingent interaction [see
(2, 3)] means that there is a strict condition, the adopters of the first product will not
buy the second without the first one, for example digital camera and photo viewer.

n1.t/ D dN1.t/

dt
D .˛1 C ˇ1N1.t//. NN1 �N1.t// (2)

n2.t/ D dN2.t/

dt
D .˛2 C ˇ2N2.t//.N1.t/ �N2.t// (3)

These two described positive interactions are the foundation for modelling the
diffusion process of CoPS. In this approach, CoPS consist of three product compo-
nents with complementary and contingent interactions. These product components
have their individual and limited life cycle with different duration time.

Every product component gets older gradually or gets broken. After a period
of time consumer decides if he will buy a new product component or leapfrog
the next technological generation. These aspects are included into the approach for
developing the simulation model.
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The diffusion process is very dynamic and has a lot of feedback and interrela-
tions between system elements and stimulates the system again. The methodology
of System Dynamics is an experimental instrument, considers feedback loops, time
delays, nonlinearities and dynamical problems over time. All feedback loops form
a differential equation system and each variable is described by one formula (San-
drock 2006). System Dynamics use two analytical elements: causal loop diagrams
as well as stock and flow diagrams. The last one describes the simulation model.
The structure of the basic diffusion dynamics of product component C with com-
plementary interaction is explained by (4) and Fig. 1 which visualizes the stock and
flow structure.

Adoption from complementary neteffect product component C on A

[households/year]D Coefficient of compl neteffect product component C on A

*Potential adopters product comp C � Adopters product comp C

/(Potential adopters product comp CC Adopters product comp C) (4)

As soon as potential adopter has bought one product component, the depreciation
of product component starts and in the model it is calculated by a fixed depreciation
time. The life of product component corresponds to the tax code for depreciation
in Germany. After depreciation time every adopter decides about a new purchase or
leapfrogs a technological generation. In this situation the decision depends on the
individual innovativeness of consumer. By using the adopter categories of Mahajan
et al. (1990) and Rogers (2003) it is distinguished between innovators and imitators.
In the model innovators and imitators percentage of repeat purchases is 16% and
84%.

COEFFICIENT OF COMPL
NETEFFECT

PRODUCTCO  C ON A

Potential Adopters
Product co C

<Total Pot
Adopters>

Adoption from
advertising

Productco C

Adoption from compl
neteffect Productco C

on A

<Adoption from compl
neteffect Productco A

on C>

<Effect of income on
Adoption totally>

Adoption from
WoM Productco C

Adoptionrate
Productco C

Adopters
Productco C

COEFFICIENT OF
IMITATION

PRODUCTCO  C

COEFFICIENT OF
INNOVATION

PRODUCTCO  C

<Actual repeat
purchase Productco C>

<Actual repeat
purchase leapfrog

 Productco C>

Fig. 1 Basic dynamics for diffusion of product component C
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4 Consumer Preferences in the Diffusion of CoPS

This section considers the income of the private households (PHH) in detail.
Consumer behaviour is the result of various socio-demographic, psychological,
emotional and socio-economical factors (Kroeber-Riel and Weinberg 2003), which
control and determine consumer preferences. CoPS are very cost-intensive, the first
investment is usually very high and there are other purchases following in order
to split expenses. The financial budget of a private household is normally limited,
depends on different expenses (Cezanne 2005) and on willingness to pay for a spe-
cific product. Experiences of adopters, associations about special product features
and income of private household influence willingness to pay. Every private house-
hold can allocate its income for expenses after reducing it by tax and contributions
by law. The definitions of Statistical Federal Office are the initial point for describing
the structure of the model. The income of private households is a stock in a certain
period (t) in the System Dynamics methodology. The stock “disposable income of
private households” changes by one inflow “the annual income” and one outflow
“expenses” [see (6) and Fig. 2].

Disposable income PHH [Euro]D Disposable income PHH (5)

C Annual income PHH � Expenses PHH

The annual income is used as a fixed number and is derived from data of the
Statistical Federal Office in the period of time 1998 until 2007.

Annual income PHH [Euro/year]D Average income PHH (6)

Total expenses consist of private consumption, savings and other expenses (e.g.
private health insurance). Besides costs for high-technology products like CoPS
have to be added [see (7)]. In dependence of CoPS diffusion process and other
influencing factors the expenses for high-technology products increase or decrease.
There is a feedback between the diffusion process and the income of private
households.

Expenses PHH [Euro/year]D Expenses for high technology products

C ConsumptionC SavingsC Other expenses (7)

Figure 2 shows the fundamental dynamics for analysing income. For modelling
the feedback between income of private households and the diffusion process of
CoPS it is used the income elasticity. It gives information about changes of the
amount of demand gx in comparison to changes of consumer income gY (Cezanne
2005).

�.Y / D gx

gY
(8)
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Annual income
PHH

Disposable
Income PHH

Fig. 2 Basic dynamics for income of private households

5 Model Behaviour

After developing the simulation model it is important to validate its structure and
behaviour in order to increase validity and significance (Milling 1974). The existing
model is based on scientific approaches and theories in particular diffusion theory of
innovations with interactions, consumer behaviour research as well as income elas-
ticity. Simulation model shows the feedback between diffusion process of CoPS,
income of private households and individual innovativeness. The simulation model
was tested by numerous model structure and model behaviour tests (e.g. structure
and parameter verification tests, extreme condition tests, sensitivity tests). Addition-
ally a field research supports configuration of model structure and determination of
specific value of model parameters. Out of 1002 private households in Germany
(target group) the return rate of the survey was 15.4%.

The validation outcome of all three phases led to satisfying results (validation
of model structure, model behaviour and model parameters). The validated model
is the basis to generate policies. In order to test strategic decisions there are two
possibilities for influencing model behaviour: changes of the parameter values and
small changes of the model structure.

Stocks and flows are the relevant analysis variables in System Dynamics models.
The simulation period includes 12 years (1998–2009). Numerous product compo-
nents belong to an intelligent house and it is very difficult to get real data, because
of interactions and different life cycles. However three product components belong
to the first application field of an intelligent house: personal computer (PC), internet
access and digital camera, which were modelled in a contingent and complementary
interaction. Real data - the degree of equipment of each product component – were
chosen from Federal Statistical Office of Germany.

The private household can’t buy everything but has to take into consideration the
private budget every month. Private households have totally an average income of
1395 billion Euro per year (1998–2009) according to real data. In 1998, at that time
the simulation product components: personal computer, internet and digital camera
have different states of life cycle. For this reason in t D 1998 the stock of adopters
for personal computer and internet isn’t zero. Figure 3 shows the diffusion process
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of product component A (PC). Product component B and C shows the same curve
progression with other data.

In the starting point of simulation, there are different investigation events. Beside
the reference curve (base run), there are two scenarios. The background of the
first scenario is that the average willingness to pay for all intelligent applications
represents about 5000 Euro (Szuppa 2007). This amount is not an ideal solution of
tangible assets and services of an intelligent house for private consumption. It is
called a minimum. The second scenario visualises the comfort solution with a price
of 15,000 Euro (Szuppa 2007). In comparison with the changes in willingness to pay
there are fluctuations in the diffusion process and the disposable income of private
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households. How strong the changes are, depends on the definition of parameter
values.

6 Summary

Complex products and systems penetrate more and more in the target group of privat
consumer (B2B2C). One difficult problem for firms is, that the diffusion process
slows down or delays because of high product complexity, partly non-transparent
presented benefit of CoPS, stepwise purchase and high investments for consumers.
By means of a detailed analysis of characteristics of CoPS as well as simulating the
diffusion process, it is possible to improve the understanding about diffusion barriers
by CoPS and to generate specific policies. Up to now the amount of diffusion models
is very rare which analyses two interactions parallel. Furthermore the most diffusion
models consider the supplier and not the consumer perspective.
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Household Possession of Consumer Durables
on Background of some Poverty Lines

Józef Dziechciarz, Marta Dziechciarz, and Klaudia Przybysz

Abstract Monitoring of poverty indexes and structure of household expenditures
is one of diagnostic and warning tool for social politics. Well-being or poverty of
selected households’ groups can be illustrated not only by mentioned categories,
but also by possession of consumer durables. Thus, there is implication for poverty
and possession (or lack) of some consumer durable goods. This assumption is being
tested in Polish reality. In the article Polish households are grouped according to
chosen classification method. Ownership of selected consumer durables was vital
in obtaining clusters. Moreover, in the analysis of clusters, life quality and durable
goods possession, modified poverty indexes were implemented. Obtained results
were confirmed that there is the significant relationship between the social poverty
and consumer durable goods.

1 Introduction

The concept of poverty as a problem of economic and social development is
widely discussed in numerous studies, not only in the field of social policy (see
Radziukiewicz 2006). It is also one of the main issues undertaken in the strategies
of the European Union. Similarly, the issue of measuring poverty, application of
appropriate measures and indicators is the subject of numerous publications, includ-
ing statistical ones (see Kot 2000). The primary source of knowledge about poverty
is household survey carried out regularly in most countries.

The research presented in this article was undertaken basing on the statement
that the formulas of all aggregate measures of poverty are based on the choice of
poverty line. Thus, the question of construction of poverty lines is a fundamental
problem of identifying the poor. Furthermore we assume that the measurement of
poverty should consider households’ durables possession. It may have an impact on
the subjective view of the financial situation of the household. It seems obvious that
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a household which has no durable goods is in worse situation that the one which has
the same level of income and possess washing machine, TV set or a car.

2 The Method

Poverty lines used in social policy are different in its nature. It is possible to apply
the following classification of poverty lines (see Radziukiewicz 2006, pp. 20–21):

� Relative – defined in relation to the overall distribution of income or consumption
in the country,

� Absolute – based on estimates of the cost of basic nutritional needs plus the
amount necessary to meet the needs of some non-food products,

� Alternative – subjectively defined by the respondents,
� Objective – all which have not been constructed on the background of the

respondents opinions.

Poverty lines and their levels in Poland in 2007 (monthly income) are as follows:

� The statutory limit of poverty – 461 PLN (less than 100¤),
� Social minimum – 820,6 PLN (about 175¤),
� Relative poverty line – 479 PLN (about 100¤),
� Subjective poverty line – ?,
� Subsistence level – 387 PLN (about 85¤).

In order to confirm the hypothesis the data on 4,941 households from the sur-
veys conducted in 2007 was used. It was published in Social Diagnosis 2007.
Life Standard and Life Quality of Polish Society. Initially households were clas-
sified according to income. Afterwards the classification was made according to the
adopted definition of poverty lines. The test group showed no differentiation at three
out of five criteria:

� The statutory limit of poverty,
� Subsistence level,
� Relative poverty line.

The next stage of the study was to determine differences or similarities in the
possession of consumer durables in determined types of households using three
variables (poverty measurement):

� Subjective,
� Objective,
� Composite.

Taken the results of described classifications into account a new composite indi-
cator was defined. It includes a social minimum as poverty line and subjective sense
of belonging to a group of poor. We can say that it is a new kind of modified poverty
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line. The next stage of research was to check whether the obtained classes are dif-
ferentiated according to the possession of durable goods. Due to the large variety
of goods referred to as durables, it was necessary to divide the durables using some
criterion. Based on the theory of multi-dimensional treatment of goods, proposed by
J. Kramer (see Kramer 1993, pp. 161–164), the following classification of durable
goods was used:

� Basic durable goods available to almost every household – more than 50% of
households possess them,

� Standard durable goods available to 15% – 50% of households possess them,
� Luxury durable goods available to less than 15% of households.

Three groups of durable goods were established as a result of described classifi-
cation (see Tables 1–3).

Figures 1–3 illustrate possession of durable goods in households divided into
poor and not poor. The term poverty is understood as the situation of the households
with monthly income lower than 820 PLN (about 175 ¤) and no poverty – with
monthly income higher than this amount. The scale 0–4 or 0–5 used in following
figures illustrate the number of possessed goods from groups: basic, standard or
luxury accordingly. For example in the Fig. 1 the fifth column shows that over 20%
of poor households possess two out of four basic durable goods (see Table 1).

As you can see, the smallest variation in discrete groups of households because
of durable goods possession classification is in the field of luxury goods. In the next

Table 1 Basic durable goods in numbers and percentage

Basic durable goods Number Percentage

Wash machine 4 262 83,12
Car 2 883 56,30
DVD 2 557 50,18
PC 2 449 50,10

Table 2 Standard durable goods in numbers and percentage

Standard durable goods Number Percentage

Microwave oven 2 151 41,89
Cable TV 1 718 33,35
Satelite TV 1 375 26,65
LCD TV Set 1 016 19,77

Table 3 Luxury durable goods in numbers and percentage

Basic durable goods Number Percentage

Home cinema 658 12,65
Garden plot 653 12,71
Laptop, notebook 469 9,03
Dish machine 389 7,45
Summer house 205 3,80
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Fig. 1 Percentage of poor and not poor households possessing from 0 to 4 basic durable goods
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Fig. 2 Percentage of poor and not poor households possessing from 0 to 4 standard durable goods
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Fig. 3 Percentage of poor and not poor households possessing from 0 to 5 luxury durable goods

phase of the study households were divided according to subjective poverty line.
The subjective poverty line was created on the basis of households’ responses to the
question whether they hardly or easily makes ends meet. As a result of these classifi-
cation two groups of households were distinguished. About 77% of the respondents
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Fig. 4 Percentage of households easily and hardly making ends meet, which possess from 0 to 4
basic durable goods
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Fig. 5 Percentage of households easily and hardly making ends meet, which possess from 0 to 4
standard durable goods

with difficulty makes ends meet, the remaining 23% has no problems in this area.
The following figures illustrate the households’ possession of durable goods in two
created classes (see Figs. 4–6).

The next stage of the study consisted in households’ classification using the mod-
ified poverty line (composite indicator variable). As a result of this division three
groups of households were obtained. Confirmed poverty – with income below the
poverty line and the sense of poverty (27.6%), unconfirmed poverty – with income
above the poverty line and the sense of poverty (50.1%), lack of poverty – with
income above the poverty line and the lack of the sense of poverty (22.3%).

The distribution of households according to the new, modified poverty line,
allowed to observe the possessions of households which describe its financial posi-
tion as poor even though according to objective poverty line they are not in the
area of poverty. Possession of three kinds of durable goods in elaborated groups of
households is shown on Figs. 7–9.
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Fig. 6 Percentage of households easily and hardly making ends meet, which possess from 0 to 5
luxury durable goods
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Fig. 7 Percentage of households with confirmed poverty, unconfirmed poverty and lack of poverty,
which possess from 0 to 4 basic durable goods
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Fig. 8 Percentage of households with confirmed poverty, unconfirmed poverty and lack of poverty,
which possess from 0 to 4 standard durable goods
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Fig. 9 Percentage of households with confirmed poverty, unconfirmed poverty and lack of poverty,
which possess from 0 to 5 luxury durable goods

For each of three described divisions of households, classification trees (of dis-
criminatory character because the dependent variable is measured on nonmetric
scale (see Panek 2009) were created. A set of learner was used. In each case, the
categories of variables were different: in the first case two categories – poverty;
no poverty, in the second case two categories: easily; hardly, and three categories
in the third case: confirmed poverty; unconfirmed poverty; lack of poverty. Other
categories of variables, namely the durable goods possession, the number of per-
sons in the household, the family head education and place of residence, remained
unchanged. Analysis of the obtained results allows to conclude that respondents
were well differentiated by households’ possession variables. Each of the analyzed
cases proved to be statistically significant. The most interesting division was brought
by the application of new composite indicator. Analyzed households have been
divided first in respect to the variable “basic durable goods possession”, next in
respect to the variable “standard durable goods possession” and at the end in respect
to the variable “luxury durable goods possession”. This correctness was affected
only in one node of the classification tree.

3 Conclusions

The results confirm that households’ durables possession have an considerable
impact on the individual (subjective) assessment of the economic situation of the
household. The application of the composite indicator variable allowed to extract the
specific and number grup of households called unconfirm poverty. Further analysis
of the extracted through classification trees segments may help to identify addi-
tional areas that should be taken into account in assessing the financial situation of
households, in order to be able to design the most objective measures of poverty.
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Effect of Consumer Perceptions of Web Site
Brand Personality and Web Site Brand
Association on Web Site Brand Image

Sandra Loureiro and Silvina Santana

Abstract This study present a conceptual model linking web site brand personality
and web site brand association to web site brand image. The model was estimated
on data from consumers of online products from two countries, Spain and Scotland,
using PLS technique.

1 Introduction

Brands are an important source of competitive advantage. Therefore, knowing how
actual and potential clients perceive a brand is fundamental to inform its manage-
ment. In brand theory, a brand is said to have attributes such as brand personality,
brand association, and brand image to which brand knowledge is always linked
[e.g., (Aaker 1991; Keller 1993, 1998)]. Some authors defend that the consumer-
brand relationship depends largely on the successful establishment of the brand
Knowledge (Keller 2003).

Brand Knowledge can be formed directly from a consumer’s experience. There-
fore, they might be crucial mediators between brand experience and consumer-brand
relationship. If such a relation proves, understand the way these concepts interrelate
with each other might be valuable to inform marketing strategy formulation, namely,
in what concerns brand management.

The main goal of this paper is to test a model relating web site brand personality
and web site brand association with the formation of web site brand image from an
experiential view. The model was estimated on data from 195 consumers of online
products from two countries, Scotland and Spain, using PLS technique.

To our best knowledge, this is the first time web site brand Knowledge (associa-
tion, personality, and image) are addressed in such a way and the study differs from
previous work which have related brand Knowledge of goods and services (Bart
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et al. 2005; Chang and Chieng 2006), sold through virtual stores (web site) or phys-
ical stores. Second, this study focuses on consumers experiences in two European
countries with very different levels of Internet use for shopping. Given the paucity
of cross-country studies in this area, using PLS might prove to be valuable to con-
siderably advance existing knowledge and enhance current practices of web use for
retailing.

2 Theoretical Background and Hypotheses

In this study we state that web site brand personality, web site brand association
and web site brand image all hold different information that link to a web site brand
(Aaker 1991). Furthermore, we assume that web site brand personality and web site
brand association are important determinants of website image.

Brand image is defined here as perceptions about a brand as reflected by the
brand associations held in consumer memory (Keller 1993). Brand personality is
defined as the set of human characteristics associated with a brand (Aaker 1997).
It is a comprehensive concept, which includes all the tangible and intangible traits
of a brand, such as beliefs, values, prejudices, features, interests, and heritage. A
brand personality makes it unique. Brand personality is seen as a valuable factor
in increasing brand engagement and brand attachment, in much the same way as
people relate and bind to other people. Researchers have proposed that brand per-
sonality is an aspect of brand image (Keller 1993, 1998; Plummer 2000) and results
from empirical studies indicate that brand personality have a statistically significant
positive influence on brand image (O’Cass and Lim 2001).

According to previous studies (Chang and Chieng 2006; Keller 1998), brand
association is defined as the information linked to the node in memory. This infor-
mation reflects an association between a range of aspects and the brand in the mind
of the consumer. Brand associations have been presented as critical components
in developing a brand image (Keller 1993) and empirical studies have shown that
brands associations lead to the formation of a distinct brand image in the minds of
consumers (Hsieh 2002). In this work, the above three concepts are transposed to
the context of web site brand and we hypothesize that:

H1: Web site brand personality significantly and positively influences web site
brand image

H2: Web site brand association significantly and positively influences web site
brand image

3 Methods

The surveys were conducted in June 2008 through face-to-face interviews in uni-
versities of Spain and Scotland. We collected 95 completely filled questionnaires
from students of Spain and 100 from students of Scotland. Each sub-sample has the
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same average age of 24 years. The respondents were split almost equally in terms
of gender for both countries.

Brand association was measured using two dimensions (product and organi-
zation) (Barclay et al. 1995; Carmines and Zeller 1979). Brand personality was
operationalized using 5 dimensions (sincerity, excitement, competence, sophistica-
tion, and ruggedness) (Aaker 1997) and brand image with 3 dimensions (function,
experience, and symbolic) (Chang and Chieng 2006; Keller 1993). Each statement
of the questionnaire was recorded on a 5-point Likert scale (1 D strongly disagree,
5 D strongly agree).The questionnaire was built in English, translated to Spanish
and than translated back to English in order to guarantee the content validity.

A structural equation model approach using Partial Least Squares (PLS) (Ringle
et al. 2005) was employed to test the hypotheses of this study. PLS (Partial Least
Squares) is based on an iterative combination of principal components analysis and
regression, and it aims at explaining the variance of the constructs in the model. In
terms of advantages, PLS simultaneously estimates all path coefficients and indi-
vidual item loadings in the context of a specified model, and as a result, it enables
researchers to avoid biased and inconsistent parameter estimates. Based on recent
developments (Chin et al. 2003), PLS has been found to be an effective analytical
tool to test interactions by reducing type II error. By creating a latent construct which
represents the interaction term, a PLS approach significantly reduces this problem
by accounting for the error related to the measures. In fact, PLS models are based
on prediction-oriented measures, not covariance fit like covariance structure mod-
els developed by Karl Jöreskog (or LISREL program developed by Jöreskog and
Sörborn).

LISREL estimates causal model parameters aiming at minimizing the discrepan-
cies between the initial empirical covariance data matrix and the covariance matrix
deduced from the model structure and the parameter estimates (Barclay et al. 1995).
PLS seeks to maximize variance explained in constructs and/or variables, depending
on model specification. In addition, LISREL offers a number of measures of overall
model “fit” such as the X2 goodness-of-fit (which are related to the ability of the
model to account for the sample covariances). PLS does not possess these kind of
overall fit measures, relying instead on variance explained (i.e. R2) as an indicator
of how well the technique has met its objective (Barclay et al. 1995). In spite of
that, there are several fit indices available on PLS software (Ringle et al. 2005) such
as communality and redundancy measures and Stone-Geisser’s Q2 measure, which
can be used to evaluate the predictive power of the model.

As a substitute to parametric global goodness of fit measures that are used in
LISREL technique (Tenenhaus et al. 2005) proposes the geometric mean of the
average communality (outer model) and the average R2 (inner model) (going from
0 to 1) as overall goodness of fit (GoF) measures for PLS (Cross validated PLS
GoF):

GoF D
q

communali ty �R2 (1)
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Table 1 Measurements Results
Manifest LV Item Composite AVE�

Construct Index Loading reliability
Values

Spain

Brand association 3.5 0.8441 0.7309
AS1:Product 0.9000
AS2:Organization 0.8070

Brand personality 3.2 0.8769 0.7039
PS1:Excitement 0.8490
PS2:Sophistication 0.8660
PS3:Ruggedness 0.8000

Brand Image 3.3 0.8702 0.6915
IS1:Functional 0.7650
IS2:Experience 0.8820
IS3:Symbolic 0.8440

Scotland

Brand association 3.6 0.9542 0.9125
ASc1:Product 0.9550
Asc2:Organization 0.9550

Brand personality 3.2 0.8780 0.7063
PSc1:Excitement 0.8850
PSc2:Sophistication 0.7870
PSc3:Sincerity 0.8460

Brand Image 3.2 0.8834 0.7164
ISc1:Functional 0.8290
ISc2:Experience 0.8400
ISc3:Symbolic 0.8700

�AVE Average Variance Extracted.

4 Results

A PLS model should be analyzed and interpreted in two stages. First, the adequacy
of the measures (see Tables 1 and 2) is assessed by evaluating the reliability of the
individual measures and the discriminant validity of the constructs (Hulland 1999).
Then, the structural model is evaluated.

All the loadings (Table 1) of reflective constructs approach or exceed 0.707,
which indicates that more than 50% of the variance in the manifest variable is
explained by the construct (Carmines and Zeller 1979), excepting for the construct
brand personality. Sincerity and competence were eliminated from the Spanish
sample. Competence and ruggedness were eliminated from the Scottish sample.
Composite reliability was used to analyze the reliability of the constructs since
this has been considered a more exacting measurement than the Cronbach’s alpha
(Fornell and Larcker 1981).
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Table 1 indicates that all constructs are reliable since the composite reliabil-
ity values exceed the threshold of 0.7 and even the strictest one of 0.8 (Nunnally
1978). The measures also demonstrates convergent validity as the average variance
of manifest variables extracted by constructs (AVE) is at least 0.5, indicating that
more variance is explained than unexplained in the variables associated to a given
construct.

To assess discriminant validity the square root of AVE should be greater than
the correlation between the construct and other constructs in the model (Fornell and
Larcker 1981). Table 2 shows that this criterion has been met.

The structural results for Spain are presented in Fig. 1.
All the path coefficients are found to be significant at the 0.001 level and all

the coefficients signs are in the expected direction. In this study a nonparametric
approach, named Bootstrap, was used for estimating the precision of the PLS esti-
mates and support the hypotheses. Accordingly, 500 samples sets were created in
order to obtain 500 estimates for each parameter in the PLS model. Each sample
was obtained by sampling with replacement to the original data set (Chin 1998;
Fornell and Larcker 1981). The results of this procedure support all the hypothe-
sized relations. The model also demonstrates a high level of predictive power (R2)
as the modeled constructs explains 66.6% of the variance in the brand image. The
overall goodness of fit (Tenenhaus et al. 2005) reveals a good fit.

Table 2 Discriminant Validity: square root of AVE and correlations of constructs

Construct Correlations of constructs
Brand Brand Brand

association Image personality

Spain

AVE1=2 0.8549 0.8316 0.8390
Brand association 1.0000 0.7663 0.4448
Brand Image 0.7663 1.0000 0.5926
Brand personality 0.4448 0.5926 1.0000

Scotland

AVE1=2 0.9553 0.8464 0.8404
Brand association 1.0000 0.7324 0.6732
Brand personality 0.7324 1.0000 0.6845
Brand Image 0.6732 0.6845 1.0000

Brand
Association

Brand
Personality

Brand image

p<0.001

0.314***
18.6%

0.627***
48.0%

R2= 66.6%
Q2= 0.458

GoFSpain= 0.6872

Fig. 1 Structural results (Spain)



748 S. Loureiro and S. Santana

Brand
Association

Brand
Personality

Brand image

p<0.001

0.350***
24.0%

0.497***
36.4%

R2= 60.3%
Q2= 0.406

GoFScotland= 0.6854

Fig. 2 Structural results (Scotland)

The multiplication of the Pearson correlation value for the path coefficient value
of each two constructs reveals that 48.0% of the brand image variability is explained
by the brand association.

The structural results for Scotland are presented in Fig. 2.
All the path coefficients are significant at the 0.001 level and all the coefficients

signs are also in the expected direction. Like in the Spanish sample, the Bootstrap
approach with nD 500 was used and all the hypothesized relations were supported.
The value of Q2 is positive attesting that the relations in the model have predic-
tive relevance. The model also demonstrates a high level of predictive power, as the
modeled constructs explains 60.3% of the variance in the brand image and the over-
all goodness of fit proposed also reveals a good fit. The multiplication of the Pearson
correlation value for the path coefficient value of each two constructs reveals that
39.4% of the brand image variability is explained by the brand association and that
24.0% is explained by the brand personality.

Finally, the differences between the Scottish and the Spanish samples are com-
pared using a t-test of mC nC 2 degrees of freedom (mDSpain sample size and
n D Scotland sample size). This test uses the path coefficients and the standard
errors of the two structural paths calculated by PLS with the samples of both
countries, using the following expression:

t D .ˇSpain � ˇScotland/

Sp 	
r�

1
m C 1

n

� (2)

Sp D
v
u
u
t

"
.m � 1/2

.mC n � 2/
	 SE2

Spain C
.n � 1/2

.mC n � 2/
	 SE2

Scotland

#

The t-test results (Table 3) show that there are not statistically significant dif-
ferences between the two countries in any of the two structural paths (at critical
t � value D j1:960j ).
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Table 3 Multi-group Analysis Results

Structural paths Standard Standard Sp1 ˇspain � ˇscotland t -test
error error
Spain Scotland

Brand association ! Brand
image 0.0974 0.0922 0.9306 0:1299 0:0014

Brand personality ! Brand
image 0.0898 0.0983 0.9273 �0:0362 �0:0004
1Unbiased estimator of average error standard variance

5 Discussion

This study is the first attempt to considerer the web site brand in a structural
model using PLS approach, which analyze simultaneously the causal order between
web site brand association and web site brand image and between web site brand
personality and web site brand image.

The results show that web site brand association and web site brand personal-
ity are good predictors of web site brand image and that the two hypotheses are
confirmed for the Scottish and the Spanish samples. However, competence and
ruggedness were eliminated from the Scottish sample and sincerity and compe-
tence were eliminated from the Spanish sample. The differences between the two
countries are not statistically significant but the way students see web site brand
personality might depend on the country culture. This area should be the object of
further investigation.

Traditionally, brand image and brand personality are different constructs. How-
ever, PLS technique seems to evidence some correlation between the competence
(eliminated in this analyze) of brand personality and the symbolic part of brand
image.

Further directions for future work have been pointed out by this first study of
web site brand knowledge. The model is being redesigned to include other con-
structs and we are planning to extend our research to other countries, such as Brazil,
USA, Germany, Portugal and Poland. With a cross-country approach we will be
able to analyze the impact of culture on consumers’ perception and test the effect of
globalization, advancing existing knowledge and generating valuable information to
decision makers, marketers and web designers.
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Perceptually Based Phoneme Recognition
in Popular Music

Gero Szepannek, Matthias Gruhne, Bernd Bischl, Sebastian Krey,
Tamas Harczos, Frank Klefenz, Christian Dittmar, and Claus Weihs

Abstract Solving the task of phoneme recognition in music sound files may help
for several practical applications: it enables lyrics transcription and as a consequence
could provide further relevant information for the task of an automatic song classi-
fication. Beyond it can be used for lyrics alignment e.g. in karaoke applications.

The effect of both different feature signal representations as well as the choice
of the appropriate classifier are investigated. Besides, a unified R framework for
classifier optimization is be presented.

1 Introduction

This work is an extension of previous studies at the Fraunhofer IDMT on auto-
matic phoneme classification in polyphonic music (Gruhne et al. 2007). An accurate
phoneme recognition in music may yield a basis for several applications like auto-
matic lyrics extraction (and further automatic classification of songs) as well as for
the automatic alignment of previously known lyrics to music for karaoke applica-
tions. The specific goal of this work consists of the examination of different feature
sets extracted from audio data combined with an appropriate choice and parameter
tuning of classifiers. Concerning the feature sets, perceptive phenomena have been
more and more introduced in audio processing during the last years. It is of interest
up to what extent it is beneficial to model human sound processing. A detailed neu-
rophysiological simulation model of the human auditory periphery (serving as basis
for feature extraction) is compared to a simpler and computationally less expensive
phenomenological one. Auditory model-based features are opposed to well-known
standard acoustical feature vector representations. A unified framework for the sta-
tistical programming language R is presented that easily allows to tune, optimize
and compare the influence of different classifiers for specific data situations and the
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given task. A description of the task in Sect. 2 is followed by a brief introduction
to auditory modelling in Sect. 3. Feature extraction from audio data (based on the
original waveform as well as on the auditory simulation model output) is described
in Sect. 4. The framework for classifier optimization is presented in Sect. 5. Finally,
the results of the study, a discussion and a summary are given in Sects. 6 and 7.

2 Description of the Task

The data under investigation consists of 45 files of popular music (30 male and
15 female singers, 44.1 kHz, e.g. I’m a believer (Monkees), Sweet dreams (Eurith-
mics), Zepher (Red Hot Chili Peppers), Billie Jean (Michael Jackson), Killing me
softly (Roberta Flack), Song #2 (Blur), . . . ). The music files are split into training
and test files (2/3 : 1/3). All songs are phonetically manually labelled at the Fraun-
hofer IDMT according to the TIMIT phonetic transcription. Only one single feature
vector (from a 1,024 samples window, i.e. 23.6 ms) is computed per phoneme to
avoid highly correlated observations. In automatic speech recognition monophones
are typically modelled as three state hidden Markov models (HMMs) where the sec-
ond state corresponds to its stationary part (see e.g. Gold and Morgan 2000, p. 365).
We assumed to maximise the chance to hit this “inner” steady state of the phonemes
when considering the window at half of the phonemes total duration. Fifteen differ-
ent vowels as well as consonants were taken into the analysis as far as there were at
least 50 observations of each phoneme in total. The resulting classes are: /a/, /ae/,
/e/, /ee/, /i/, /j/, /l/, /m/, /n/, /o/, /oa/, /oe/, /ou/, /r/ and /w/. Finally, there were 1,549
phonemes in the training and 672 phonemes in the test set. For the detailed auditory
model the *.wav files have to be amplitude normalized before processing to be
able to set the absolute sound pressure level (SPL) (see also Sect. 3).

We applied sinusoidal preprocessing as it turned out to be beneficial (Gruhne
et al. 2007). Basically, the audio signal is considered to be a sum of voice and back-
ground. The voiced part is further modelled as a sum of sinusoids of the estimated
fundamental and its harmonics. The amplitudes of all other fourier frequencies are
set to 0 in the spectral domain and the result is back-transformed to the time domain
(for further details, see Gruhne et al. 2007).

3 Auditory Modelling

Several well-known psycho acoustical phenomena can be traced back to sound pro-
cessing in the auditory system, e.g. nonlinear frequency resolution and amplitude
saturation or masking effects. Basically, the sound wave is nonlinearly bandpass-
filtered at the inner ear along the basilar membrane (BM) and transduced into
electric impulses (action potentials, APs) at the auditory nerve fibres (ANFs) of dif-
ferent center frequency (CF) by inner hair cells. A simple computational auditory
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model (referred to as “Seneff-model”, Slaney 1998) phenomenologically imitates
human auditory sound processing within a chain of five successive steps, consisting
of: critical band filtering (BM excitation), halfway rectification saturating non linear-
ity (inner hair cell current), short term adaption circuit (synaptic neurotransmitter
release), low pass filtering (nerve fibre: synchrony reduction) and rapid automatic
gain control (nerve fibre: refractory effect). The output of the model can be inter-
preted as time varying neural firing rates at 40 different ANFs (of 0.5 bark CF
difference).

Besides this, also a very detailed and computationally more intensive model of
the human auditory periphery is implemented where all steps reproduce neurophys-
iological measurements. It simulates exact firing times of 251 different ANFs with
CF differences of 0:1 bark (Szepannek et al. 2005).

Figure 1 (left) shows the average auditory nerve firing activity of the detailed
model during 200 ms along the BM (abscissa) for a 1 kHz sine of different sound
pressure level (SPL, ordinate). A level of 0 dB SPL denotes the threshold of hearing
(Gold and Morgan 2000). Figure 1 (right, bottom) shows the response of the audi-
tory simulation model to some vowel /a/. The ordinate represents the unrolled inner
ear (BM) while the abscissa denotes the time. The output of the simulation model is
binary and of the form

Xi .t/ D
�
1; AP of ANF i at time t ;
0; else.

It can be seen that different positions along the BM are differentially excited
(according to the signal frequencies). The ANFs further respond periodically with
the signal period. This phenomenon is commonly referred to as phase locking
(Szepannek et al. 2009). For the studies in this paper, 50 repetitive simulations of
the ANFs of different type are pursued. The signals were presented to the auditory
model at a (typical) level of 62:5 dB SPL (Szepannek et al. 2009).
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of the auditory model for a vowel /a/ (right)
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4 Feature Extraction

A key idea of timbral feature extraction is the source-filter model (of speech pro-
duction). Speech signal waves are excited at the glottis (either noisy or periodic)
and get their characteristic timbre being filtered by the specific shape of the vowel
tract. Thus, the filter coefficients of (fixed) orderp meaningfully represent the sound
characteristics. These linear predictive (filter) coefficients (LPCs) are derived by
Levinson-Durbin recursion to minimize the predictive error (see e.g. Gold and Mor-
gan 2000). According to former studies (Szepannek et al. 2008) a choice of p D 16
is used here.

Based on the principles of neural information coding mentioned above two dif-
ferent non-standard feature sets are extracted from the simulated auditory neural
response (see Sect. 3). Place / mean rate features (MR) count the neural activity at
different ANFs independently of its temporal fine structure, i.e.

XMR
i D

X

t 2 window

Xi .t/=window size:

According to Allen (1994) groups of eight neighbouring ANFs of the detailed audi-
tory model in the CF range of Œ200; 6400�Hz are averaged to build a 24 dimensional
feature vector.

On the other hand, average localized synchrony detection features (ALSD, Ali
et al. 2002) temporally encode neural auditory information:

XALSD
k D 1

3

kC1X

lDk�1

As tan�1

"
1

As

 
hjXPSTH

l
.t/CXPSTH

l
.t � nk/ji � ı

hjXPSTH
l

.t/ � ˇnkXPSTH
l

.t � nk/ji

!#

(1)
with XPSTH

l
.t/ being the time-varying firing rate of ANF l (estimated by the post

stimulus time histogram of the neural activity in time bins of 1
14700

s averaged over
all simulations and eight neighbour ANFs as for XMR for the detailed model). The
h:i operator denotes temporal averaging, ni is the period (in time bins) of the CF of
ANF i . Basically, the denominator checks, whether on average the neural activity
is the same as it has been one (CF-)period before. The constant ˇ D 0:99 avoids
obtaining zeros in the denominator. ı D 60 spikesdt s�1 corrects for spontaneous
neural activity and As D 4 is a scaling constant. According to (1) the XALSD

representation consists of a 22 dimensional feature vector.
Mel frequency cepstral coefficients (MFCCs) (see e.g. Gold and Morgan 2000,

pp. 280–288) have recently become popular for speech and music analysis. They
also rely on the source-filter model of speech production: in the spectral domain
the signal is the product of the excitation and the filter amplitudes (of the vowel
tract). Building the logarithm changes this into a sum. A subsequent inverse discrete
fourier transform can be interpreted as a “spectral analysis of the log-spectrum”:
strong periods in the spectrogram represent the fundamental and its harmonics
and are captured in the higher coefficients (quefrencies) as well as noise is. The
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characteristic shape of the log-spectrum is represented in the lower coefficients.
Thus, only the lowest q coefficients are used for further timbre analysis. In this
application, a typical value of q D 13 is chosen. To imitate human perception fre-
quency grouping according to the mel scale is performed. The log transform can
be further compared to human auditory nonlinear amplitude saturation (Szepannek
et al. 2009).

Perceptual linear prediction coefficients (PLPs) also take into account human
auditory sound processing (see Gold and Morgan 2000, p. 299). Before computing
LPCs (see above) the sound signal is transformed into the frequency domain where
amplitudes are compressed (typically by building cubic roots) and frequencies are
grouped according to the perceptive mel scale. After some inverse back-transform
into the time domain, LPCs are calculated. Also, an order of p D 16 is chosen for
this work (Szepannek et al. 2008). For standard features like MFCCs, LPCs and
PLPs an R implementation of the Matlab rastamat toolbox (Ellis 2005) is used.

5 Classifier Tuning

The aim of this work is to investigate the combination of both feature extraction
and the choice of an adequate classifier. There exist numerous different classifica-
tion algorithms (for an overview see e.g. Hastie 2001), many requiring the choice of
additional free parameters. The list below shows the classifiers that were imple-
mented for this study (in brackets the parameters that were varied): SVMs with
polynomial kernels (K.x; y/ D .1 C hx; yi/d , PSVM, d 2 f1; 2; 3; 4g, cost of
constraints violation c 2 2f�4;�3;:::;3;4g/, SVMs with RBF kernels (K.x; y/ D
e�jjx�yjj2 =� , RSVM, � 2 2f�4;�3;:::;3;4g/, cost c 2 2f�4;�3;:::;3;4g/, linear dis-
criminant analysis (LDA, -), quadratic discriminant analysis (QDA, -), mixture
discriminant analysis (MDA, equal number of subclasses 2 f2; : : : ; 5g), naive
Bayes (NB, -), classification trees (RPART, factor of required improvement for a
split to be kept in the tree model 2 f0:005; 0:01; 0:03g), random forests (RF, -) and
k nearest neighbours (kNN, k 2 f1; 2; 3; 4; 6; 8; 10g). All classifiers are evaluated in
R using the packages kernlab, MASS, e1071, mda, rpart, randomForest
and kknn. The free parameters are optimized on grids using an internal fivefold
cross validation (cv) on the training data. A typical problem using the programming
language R for classification purposes is the heterogenity of the different imple-
mented algorithms. A framework has been developed in order to easily enable
optimizing and benchmarking different classifiers using the R package {mlr}
(Bischl 2009). Its features are: an object oriented S4 interface to R classification
methods, easy extension to new methods, it provides a unified call of different
methods, bootstrapping, cross-validation, train/test splits, parameter tuning and
benchmarking of different classification algorithms are possible (e.g. by ‘double
cv’ with tuning on an inner cv).
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6 Results and Discussion

At first glance, the choice of the feature set appears to play the dominant role on the
accuracies. Figure 2 (left) shows the performances as a function of the choice of the
feature set. As simple LPCs show the worst results on average it turns out to be worth
including perceptive phenomena into feature extraction design. No strong advan-
tages are observed using the detailed neurophysiologically parameterized auditory
model instead of the simpler phenomenological one. Concerning auditory model
based feature extraction ALSD outperforms MR feature extraction. Nevertheless
standard features like MFCCs and PLPs show the best results. Even their averaged
accuracies over all classifiers are better than the best results for optimized classifiers
for any of the auditory model based feature sets. It should be noted that these feature
sets both include simplified perceptual models as well as a speech production based
motivation. The auditory model based features on the other hand are restricted to
modelling perception. An additional cepstral transformation of the auditory model
based features did not improve the results. There is no equivalent to masking effects
included in MFCC or PLP feature extraction. Apparently, this effect is not of rel-
evance for this application. Figure 3 shows the performance of the classification
algorithms compared to the average accuracy on each data set separately. The best
classifier is not the same for all feature sets emphasizing importance of a problem-
specific classifier tuning. Some methods (NB, RPART and kNN) are a bad choice
for any of the investigated feature sets. Some other classifiers (SVMs and LDA)
are often among the best methods. MDA shows good results for the non-auditorily
extracted features whereas random forests only perform well for the auditory model
based features.

In order to obtain general hints on the choice of the classifier, a consensus rank-
ing is derived (see e.g. Hornik and Meyer 2007). Significant differences in test
accuracy of any two classifiers for each data set are investigated using McNemar’s
test (Dietterich 1998). The results are summarized using a Bradley-Terry model for
paired comparisons. Table 1 shows the resulting �i that can be interpreted as “prior

LPC

60

50

40

30

0.15

P
er

ce
nt

ag
e 

of
 d

is
ag

re
em

en
t

0.20

0.25

0.30

M
R

LP
C A
LS

D

P
LP

M
F

C
C

M
R

_S
en

A
LS

D
_S

en

A
cc

ur
ac

y 
(%

)

20

10

0

MR MR_Sen ALSD_Sen

Feature set

ALSD PLP

Cluster DendrogramMaximum and mean of all classifiers

MFCC

Fig. 2 Maximal/average (light/dark grey) accuracy over different classifiers (left). Feature sets
clustered according to distances given by the fraction of differently predicted (test-)objects (right)



Perceptually Based Phoneme Recognition in Popular Music 757

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

–10

15

10

5

0

–5

–10

MR

LPC PLP MFCC Classifier

Poly SVM
RBF SVM
LDA
QDA
MDA
NB
RPART
RF
KNN

MR_Sen ALSD_Sen ALSD

Fig. 3 Classifier performance compared to average accuracy per data feature set

Table 1 Consensus ranking of the classifiers over all data sets

PSVM RSVM RF MDA LDA QDA RPART kNN NB

�i 0.424 0.155 0.141 0.108 0.099 0.029 0.020 0.015 0.009

probabilities” for each specific classifier to be the significantly best choice. The con-
sensus ranking of the classifiers strongly suggests the use of optimized SVMs with
polynomial kernel (cf also Fig. 3). Nevertheless, the best overall results (53:42%)
are obtained using RBF-kernel SVMs and MFCC features once again emphasiz-
ing the importance of problem specific classifier choice. Random forests as well
as LDA and MDA also appear to be a good choice in general. Nevertheless, gen-
eralization of these results should be handled with care. The tuned parameters of
the optimal model are 	 D 0:0625 of the RBF kernels and complexity parameter
c D 2. But the results strongly depend on the parameters, within the investigated
parameter grid also accuracies below 20% are observed. Finally, Fig. 2 (right) iden-
tifies MFCCs and PLPs as well as the simpler auditory (Senneff) features to be
more similar to each other than the other features by average linkage clustering. It
should be further noted that – in contrast to modelling continuous speech the task of
classifying single frames becomes more complicated, especially due to the heteroge-
neous (nonstationary) polyphonic background noise. The use of HMMs smoothes
over successive frames for continuous modelling. The incorporation of posterior
probability estimates of optimized classifiers could improve the use of standard
Gaussian (MDA like) mixtures for continuous modelling (see e.g. Krueger et al.
2005). Further attention could be laid on feature combination as in Szepannek et al.
(2009).
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7 Summary

A task with many practical applications has been investigated: automatic recognition
of phonemes in popular music. Specific interest of the study was the investigation
of the influence of different feature representations in combination with the choice
and tuning of the appropriate classification method. A new R package framework
has been presented to solve the latter task. In conclusion both is beneficial: tak-
ing into account speech production as well as perception. No improvements have
been observed for high degrees of precision in auditory modelling. Nonetheless, the
appropriate choice and tuning of the classifier is of importance. The work could be
further extended towards feature combination and modelling continuous singing.
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SVM Based Instrument and Timbre
Classification

Sebastian Krey and Uwe Ligges

Abstract In this paper we propose a method that allows for instrument and tim-
bre classification from a single tone. Features are derived from a pre-filtered time
series divided into small windows. Afterwards, features from the (transformed)
spectrum, Perceptive Linear Prediction (PLP), and Mel Frequency Cepstral Coeffi-
cients (MFCCs) as known from speech processing are selected. Clustering methods
(e.g. k-means) are applied yielding a reduced number of aggregated features for the
final classification task.

It turns out that a polynomial kernel with reasonable complexity can be used for
the SVM. Accuracy of the results is very convincing given a misclassification error
of roughly 19% for 59 different classes of instruments. Misclassification error is
much smaller for a reasonable small number of classes, of course.

During methodological work, we ported the ‘rastamat’ library (Ellis 2005) func-
tionality from Matlab to R. This means feature extraction as known from speech
processing is now easily available from the statistical programming language R.

1 Introduction

A common task in Music Signal Processing is the recognition and classification of
instrument tones. In this paper we propose a method for preprocessing and feature
extraction to allow for a better classification of the recorded instruments than with
common features.

Features are derived from a pre-filtered time series divided into small windows.
Afterwards, feature selection is based on the (transformed) spectrum. Perceptive
Linear Prediction Coding (PLP) (Hermansky 1990) and Mel Frequency Cepstral
Coefficients (MFCCs) (Davis and Mermelstein 1980) are widely used in the context
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of speech recognition. Here they are used to model an instrument’s tone. Other meth-
ods for instrument and timbre analysis have been described by Klapuri and Davy
(2006).

In order to find a reduced number of aggregated features containing more specific
information of tones, we aim at clustering windows of the (at least) 3 phases of a
tone (attack, sustain, decay). Hence, clustering methods (e.g. k-means) are applied
yielding aggregated features for the final classification task.

Using a Support Vector Machine (SVM) with polynomial kernel the classifica-
tion gives convincing results. We used the implementation by Karatzoglou et al.
in the R (R Development Core Team 2008) package ‘kernlab’ (Karatzoglou et al.
2004). On the single note recordings of the McGill Instrument Database (Opolko
and Wapnick 1987) we achieve an misclassification error of 10% for classifying the
instruments in 25 instrument families and 19% for discriminating between all 59
available instrument timbres in the database. Misclassification error is much smaller
for a reasonable small number of classes, of course.

During methodological work, we ported the ‘rastamat’ library (Ellis 2005) func-
tionality from Matlab to R. This means feature extraction as known from speech
processing is now available from the statistical programming language R.

The used sounds from the McGill Instrument Database, which consists of 1986
notes (3–5 s long) played on 38 different instruments with different playing tech-
niques (with or without vibrato, pizzicato or bowed, clean or distorted, etc.) resulting
in 60 different timbres. For every timbre between 6 and 88 recorded notes are
available, representing the tonal range of the instrument.

Based on this dataset two classification tasks are formed. One task is to discrim-
inate between all instrument timbres. We drop the slapping and popping sounds of
the electronic bass (only six examples available), resulting in a 59 class problem.
For the other task the instruments are grouped in 25 instrument families (trumpets,
flutes, bowed strings, etc.) resulting in an much easier classification problem.

2 Feature Extraction

To allow clustering and classification of sound recordings the extraction of fea-
ture vectors is necessary. We propose the usage of two approaches. First one is
an autoregressive modelling approach called ‘Perceptive Linear Prediction’ (PLP),
see Sect. 2.2. For the second approach we use ‘Mel Frequency Cepstral Coef-
ficients’ (MFCC) that are derived from a spectral analysis of the transformed
spectrum after preprocessing the data, see Sect. 2.3. All these features are known
from speech processing and deliver promising results on recordings of musical
instruments.
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2.1 Preprocessing

The first preprocessing steps are identical for both sets of feature vectors.

Preemphasis Filtering

To compensate for the fact that the harmonics of a note produced by an instrument
quite often have less energy than the fundamental frequency the sampled waveform
of the recording is filtered using a digital one zero filter

yt D xt � 0:97xt�1

resulting in a boost of higher frequencies of the original time series xt .

Short Time Fourier Transformation

The second step is the transformation of the sampled waveform in the frequency
domain using a Fourier Transformation. In order to keep some temporal information
a Short Time- or windowed Fourier Transformation (STFT) is used:

F.t; k/ D
N �MX

j D1�M

w.j � t/yj exp

�

�2i�j k
N

�

;

where N is the number of samples in the recording, t the time, k the number of the
Fourier coefficient and M D N � T . To get smooth transitions at the borders of
each window we apply the Hamming window function with a window width of T
samples

w.t/ D
(
0:54 � 0:46 cos

�
2�t
T

�
; �T

2
� t � T

2

0 else

to form the different frames of the STFT. The window width is a compromise
between time and frequency resolution. We choose a width of 25 ms with 10 ms
movement of the window in each step. For the further processing steps we drop the
phase information and use the power spectrum.

Melscale Transformation

As a first information reduction step, the resulting Fourier frequencies of the STFT
are transformed to the Melscale, a psychoacousticly motivated frequency scale,
defined by

Mel.hz/ D 2595 log10

�

1C hz

700

�

;

and grouped into 40 equidistant frequency bins (from 0 to Nyquist frequency) on
the Melscale.
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2.2 Perceptive Linear Prediction

The construction of the Perceptive Linear Prediction (PLP) (Hermansky 1990) coef-
ficients needs four further steps. First a loudness correction, resulting in equal
loudness in all frequency bands, is performed through multiplying the amplitudes
of the 40 frequency bins with the factor

L.f / D
�

f 2

f 2 C 160 000
�2

� f
2 C 1 440 000

f 2 C 9 610 000
where f is the center frequency of each bin.

Then a loudness compression through a cubic root transformation is performed.
Afterwards each frame is transformed back into the time domain using an Inverse
Fourier Transformation. The last step is to fit an autoregressive model, yt DPp

j D1 ajyt�jCet , on every time frame. The resulting feature vector for each frame
consists of the AR coefficients .a1; : : : ; ap/, where p defines the complexity of the
model. We use p D 8 and p D 15.

2.3 Mel Frequency Cepstral Coefficients

The calculation of the Mel Frequency Cepstral Coefficients (MFCC) (Davis and
Mermelstein 1980) consists of only two steps. First a loudness compression is real-
ized through a logarithmic transformation of the 40 bins’ amplitudes. Denote these
grouped and transformed Fourier frequencies with zt . Then a Discrete Cosine Trans-
formation (DCT), Zk D

PN �1
tD0 zt cos .�t k=N/, of these transformed per frame

spectra is calculated. The resulting feature vectors are the first q DCT coefficients
.Z1; : : : ; Zq/. Here we use q D 16.

3 Clustering

After the preprocessing and feature extraction steps we have a p-dimensional fea-
ture vector for every frame of the Short Time Fourier Transformation. Motivated by
the idea to model the three different phases attack, sustain and decay of an instru-
ment’s sound as well as in need of feature reduction, we apply clustering techniques
to find representative feature vectors for every phase. We add an additional fourth
cluster to handle the silence/noise parts that typically appear in the beginning/end of
the recordings. In total we want to find the four mentioned clusters in every recorded
note and use their cluster centers instead of the original per frame feature vectors,
which greatly reduces complexity but still allows to make use of the change in the
instruments sound. As the silence and noise cluster holds no useful information
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Fig. 1 Clustering of the DCT frames of a piano note

for the following classification task this cluster center is completely dropped for a
further complexity reduction.

As clustering method we use k-means with 25 random start points, which gives
us promising clustering results. In Fig. 1 the almost perfect clustering of a piano
note is exemplarily shown.

4 Classification

The classification task is realised using a Support Vector Machine (SVM). A SVM
searches for a separating hyperplane in the dataspace through solving the following
optimization problem (Hsu et al. 2008)

min
w;b;


 
1

2
w0wC C

nX

iD1

�i

!

subject to �i � 0; yi .w
0'.xi /C b/ � 1 � �i

where K.xi ; xj / � '.xi /
0'.xj / is a kernel function and C the regularization

parameter of the SVM. Using kernel functions, very complex nonlinear decision
boundaries can be found. We have used the following four standard kernel functions
in our search for the best working SVM for this classification task:

Linear K.xi ; xj / D x0
ixj

Polynomial K.xi ; xj / D .	x0
ixj C r/d

Gaussian RBF K.xi ; xj / D exp.�	kxi � xj k2/
ANOVA RBF K.xi ; xj / D .Pp

kD1
exp.�	.xik � xjk/

2//d

where r; p 2 R, 	 > 0 and d 2 N.
The SVM classifier only supports binary classification tasks. To handle the multi-

class problems in this work binary classifiers for all n.n�1/
2

combinations are trained
and the final classifier is a majority vote of all these classifiers.
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The estimation of the misclassification error is done in the outer run of a nested
crossvalidation. In the inner run the best set of hyperparameters for the SVM is
searched. Both crossvalidations are fivefold to reduce computation time.

5 Software

During this work we had to discover that for R (R Development Core Team
2008) only very few signal processing tools are available. The signal processing
community developed their tools mainly for Matlab, resulting in quite a few imple-
mentations of the here used methods for feature extraction. As data transfer between
different software packages is a time consuming task, we have ported the (for us)
relevant parts of the function collection rastamat (Ellis 2005) to R, the software
of our choice.

For the classification task we use the SVM implementation of the package
kernlab (Karatzoglou et al. 2004). The classifiers’ hyperparameter optimiza-
tion and evaluation is performed with mlr (Bischl et al. 2009) a toolbox for easy
performance comparison and optimization of different classification methods.

6 Results

Applying the presented methods on the recordings of the McGill instrument database
delivers convincing results.

In Tables 1 and 2 the results of the 25 class problem, classifying the instruments
into 25 instrument families are presented. As a reference the performance of a Linear
Discriminant Analysis (LDA) and a Random Forest classifier are also listed. The
Polynomial kernel function is the best performing kernel for the SVM in both cases,
for PLPs and MFCCs. With a polynomial degree of d D 3 the PLPs achieve a
misclassification error of 26%, which is comparable to the performance (Roever
2003) achieved in his work on the same classification problem.

Using the MFCCs the misclassification error can be reduced further. Here using
a polynomial degree of d D 2 yields a misclassification error of 10%.

Table 1 Classification performance of PLPs on the 25 instrument families task

Classifier Parameter Error in % Std.Dev. in % Lag

SVM-Poly C D 1:4; d D 3 26 3:7 8

SVM-RBF C D 1:4; 	 D 0:133 47 3:3 8

SVM-ARBF C D 1:4; 	 D 0:142 37 3:7 8

SVM-Lin C D 1:5 38 2:9 8

RandFor U D 500; V D 7 22 2:5 8

LDA 46 1:8 8
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Table 2 Classification performance of MFCCs on the 25 instrument families task

Classifier Parameter Error in % Std.Dev. in %

SVM-Poly C D 0:6; d D 2 10 2:7

SVM-RBF C D 1:5; 	 D 0:011 11 2:7

SVM-ARBF C D 0:8; 	 D 0:011 10 2:2

SVM-Lin C D 1 11 2:6

RandFor U D 1500; V D 7 10 3:2

LDA 25 1:5

Table 3 Classification performance of PLPs on the 59 instrument timbres task

Classifier Parameter Error in % Std.Dev. in % Lag

SVM-Poly C D 1:6; d D 3 43 2:6 8

SVM-RBF C D 1:5; 	 D 0:122 71 5:0 8

SVM-ARBF C D 1:4; 	 D 0:117 55 3:0 8

SVM-Lin C D 1:5 51 2:8 8

RandFor U D 1500; V D 6 34 3:9 8

LDA 60 2:5 8

SVM-Poly C D 1:4; d D 3 47 2:6 15

Table 4 Classification performance of MFCCs on the 59 instrument timbres task

Classifier Parameter Error in % Std.Dev. in %

SVM-Poly C D 1; d D 2 19 3:0

SVM-RBF C D 1:5; 	 D 0:011 36 4:3

SVM-ARBF C D 0:6; 	 D 0:11 19 3:4

SVM-Lin C D 0:8 20 3:2

RandFor U D 500; V D 7 27 2:6

LDA 34 3:1

In both cases the Random Forest classifier is competitive to the SVM, whereas
the LDA is lagging behind.

The classifier performance on the task to discriminate between all 59 instru-
ment timbres are listed in Tables 3 and 4. The behaviour of the classifiers and
the two different feature sets are quite similar to the 25 class task but with a nat-
urally higher error rate. Here the PLPs achieve 43% and the MFCCs excellent 19%
misclassification error.

The performance of the PLPs can be improved with a per frame standardization
of the autoregressive coefficients ai before the clustering step. With this modifi-
cation the SVM with Polynomial Kernel reaches 33% misclassification error. The
Random Forest cannot benefit from this modification.

Increasing the Lag of the autoregressive model of the PLPs to p D 15 or
combining MFCCs and PLPs does not result in lower misclassification rates.

The best methods achieve a very good classification performance comparible to
other methods or human listeners as summarized in Klapuri and Davy (2006).
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7 Conclusion

In this paper we have presented a method to use features from speech processing for
instrument and timbre classification. These features are based on the windowed and
transformed spectrum of the input signal.

Through clustering we could reduce the original per window feature vectors dras-
tically to three cluster centers, which represent the different phases attack, sustain
and decay of an instruments sound. With these cluster centers as input variables we
could use a Support Vector Machine with polynomial kernel to classify the single
note recordings of the McGill instrument database. On the 25 classes problem to dis-
criminate between the different instrument families, we achieved a misclassification
error of 10%. The task to discriminate between all in the McGill database avail-
able 59 different instrument timbres resulted in a misclassification error of 19%. All
these results were estimated using a nested crossvalidation, avoiding the usage of
the same partition of the dataset for optimization of the SVM hyperparameters as
well as error estimation, which could give overly optimistic errorrates.

During this work we have ported the necessary parts of the Matlab function col-
lection rastamat to R, giving us the possibility to realize the whole numerical
calculations without the time consuming need to transfer data between different
software packages.
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Three-way Scaling and Clustering Approach
to Musical Structural Analysis

Mitsuhiro Tsuji, Toshio Shimokawa, and Akinori Okada

Abstract In the present paper, we propose and investigate three-way scaling and
clustering approaches to musical structural analysis of emotion expression. The
approach is applied to the affective values of music by subjects who were interested
in theater and in instrumental music as well. We expected that we would find inter-
esting structure in the affective expression of music from three view points: affective
values, individuals, and music. We analyzed the three-way structure model by apply-
ing INDSCAL and INDCLUS. We expected that the INDSCAL model would show
a geometrical structure which offers interesting insights about the characteristics of
affective values. Furthermore we expected that the INDCLUS model would reveal
further geometrical structure.

1 Introduction

The field of statistics in music research is very broad (Weihs et al. 2007). The data
we were going to deal with were responses by 14 subjects along 24 affective values
on 30 instrumental music pieces (Table 1). The 14 subjects were interested in theater
and were thought likely to give high affective values (Fig. 1) (Kishihara and Tsuji
2006).

First, we explain the characteristic interpretation which shows the structure of
affective judgements. We use factor analysis as an exploratory approach to compare
the result with that of INDSCAL. We then explain the geometrical interpretation of
the results of INDSCAL from the view point of various factors. Finally, we will val-
idate some additional interpretations of the results of INDCLUS from the view point
of the classification of the real structure. Of course, factor analysis and INDSCAL
are different, but from a psychological view, we can obtain a geometrical interpre-
tation of both. Taniguchi (1998) applied factor analysis to obtain structures from
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Table 1 Musical Stimuli: instrumental music pieces under discussion

No. Music Time No. Music Time

1 The First Noel 4:20 16 Exterminate 2:55
2 CUMBA’s DANCE 2:02 17 Beautiful 4:30
3 ATLANTIC WEAVE 6:05 18 Missing Link 2:22
4 Zontac Hill 5:00 19 The Dew of Life 3:35
5 Going Under 3:31 20 Calling You 4:38
6 Scarbough Fair 4:11 21 Eternal Prayer 5:12
7 Another Star 3:50 22 Sleepless Beauty 2:49
8 Author of Life Divine 2:27 23 Scarborough Fair (Akasa) 3:37
9 Temptation 2:00 24 FOR FOURTY DAYS 5:30

10 Solitude 4:44 25 Their Daily Lives 4:09
11 Love Letter to Andes 4:11 26 TNR 1:53
12 The Fool On The Hill 2:50 27 Samurai Faith 4:53
13 Follow Me Up To Carlow 3:57 28 Guilty 3:43
14 Beat of Dream 4:55 29 Scarborough Fair (Orig) 4:00
15 Scarborough Fair (Sala) 4:08 30 Accustom 1:15

Fig. 1 Three-way data under discussion

affective judgements. He dealt with the data of 24 affective values in music col-
lected from 183 students (subjects) on five classical music pieces. The resulting
five factors were “ Enhancement”, “Indiscretion”, “Intensity”, “Solemnization” and
“Affinity”. We applied the same method of Taniguchi (1998) to our data (Fig. 2).

We found several characteristic interpretations among the affective judgement;

� Five factors exist.
� Four variables (Cheerful, Joyous, Happy, and Bright) belong to “Enhancement

(C)” or “Indiscretion”.
� One variable, Restless, may belong to “Indiscretion”, “Intensity” or “Solemniza-

tion”.
� One variable, Calm, may belong to “Affinity” or “Intensity”.
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Fig. 2 Results (factor loading) using a traditional factor-analysis model

2 The Three-Way Structure Model

2.1 Results by INDSCAL

As the first step, we expected that INDSCAL might show a geometrical structure
which would offer some interesting insights concerning the affect of music. In the
INDSCAL model, the three-way matrix D � fdij;kg is estimated from an input
data matrix 
 � fıij;kg, where dij;k is the distance between affective values i
and j for individual k in the common stimulus space, and ıij;k is the dissimilarity
between affective values i and j for individual k. Distance dij;k is represented by

dij;k D
q
PR

rD1 wkr .xir � xjr /2, where wkr is the weight of importance along
dimension r.r D 1; : : : ; R/ for individualk.k D 1; : : :/, xir and xjr are coordinates
of the affective values i and j along dimension r of an R-dimensional common
stimulus space.

Using INDSCAL (Arabie et al. 1987), more than 1,000 initial coordinate val-
ues served as input. Output diagrams are shown in Figs. 3 and 4. In comparison to
the result of factor analysis, we found certain structures in the affective values, as
follows;

� It seems that there are six factors.
� The variable, Restless, is located at a strange position.
� The variable, Calm, seems to belong to “Affinity”.
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Fig. 3 Two-dimensional plot of affective values by INDSCAL (VAF D 0.701)

� In two dimensional projections of three-dimensional solution (lower part of
Fig. 4), we find that the bidirectional two factors (“Enhancement (C)” and
“Enhancement (�)”) seem to merge into one cluster.

2.2 Results Using INDCLUS Presented as a Hanabi Chart

We expected that INDCLUS might reveal a detailed geometrical interpretation of
the three-way structure (Fig. 1). The INDCLUS model is represented by sij;k ŠPR

rD1 wkrpirpjrCck , where sij;k is the similarity between affective values i and j
for individual k .k D 1; : : : ; K/; wkr is the weight of individual k for cluster r , pir

represents whether affective value i beings to cluster r (pir D 1) or not (pir D 0),
and ck is an additive constant of individual k. The characteristics of the INDCLUS
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Fig. 4 Three-dimensional plot of affective values using INDSCAL (VAF D 0.768)

model are overlapping clustering and non-hierarchy. The analysis using INDCLUS
(Arabie et al. 1987) was done with more than 500 initial values served as input.
The integrated approach of three-way analysis (INDSCAL and INDCLUS) is an
effective tool for exploratory analysis, and reveals interesting structures in affective
values as follows:

� Strong connection among variables which do not belong to any other cluster.
� Outlier variables which do not belong to any specific cluster.

For the agglomerative hierarchical clustering method, the contour line figure
reveals a simultaneous presentation of structures. For the INDCLUS model Hanabi
(fire works) Chart simultaneously presents the INDSCAL and INDCLUS results.
Hanabi Chart consists of two or more figures corresponding to the number of
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clusters. In each chart, we make a bridge by a dotted line between cluster num-
ber and affective variable which belongs to the specific cluster. This cluster number
is positioned on extension of the line from the origin to the mean affective value.
We named Hanabi Chart because the bridge by dotted lines resemble the light of fire
works.

In Fig. 5, we show the typical structure in the two-dimensional solutions of IND-
SCAL which we can see in the INDCLUS analysis including from two through four
clusters.

Variables Which do not Belong to any Cluster at First

When the number of clusters is small, there are some variables which do not belong
to any cluster. We put our attentions to four variables (Vigorous, Impetuous, Excit-
ing, and Emphatic), at the bottom of the uppermost panel of the Hanabi Chart
(Fig. 5) which are not connected to any cluster through dashed lines.

When the number of clusters is not so small, these four variables are connected
to the same cluster at least once. So we can confirm that these four variables belong
to the same cluster.

Variable Which does not Belong to any Specific Cluster

Often some variables may not belong to any specific cluster. In our data, variable,
Restless, does not belong to the original group “Indiscretion”. We find the existence
of this strange variable in Fig. 5. In the case of two clusters, variable Restless is
connected to the same cluster C-2 as three other variables, Whimsical and Merry and
Light, which belong to group (“Indiscretion”). In the case of four clusters, variable
Restless is not connected to the same cluster.

3 Conclusion and Discussion

We utilized a three-way scaling and clustering approach to investigate musical
structural analysis of emotion expression.

The approach was applied to the affective values in music derived by subjects
interested in theater and instrumental music. We have analyzed this three-way struc-
ture model by applying INDSCAL and INDCLUS, and have found that INDSCAL
shows a geometrical interpretation which offers some interesting insights about the
subjects’ affective judgement. We found that INDCLUS shows the detailed geomet-
rical interpretation of this structure. Moreover we have introduced an Hanabi Chart
which supports simultaneous presentation of INDSCAL and INDCLUS results.
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Fig. 5 Affective value two-dimensional and two-four clusters plot using INDSCAL and IND-
CLUS (VAF D 0.438, 0.510, 0.537)

We found a variable, Restless, which does not belong to any specific cluster. By
removing this variable in the next analysis (Fig. 6), we could improve the VAF value
(goodness of fit) from 0.608 into 0.695.
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Improving GMM Classifiers by Preliminary
One-class SVM Outlier Detection: Application
to Automatic Music Mood Estimation

Hanna Lukashevich and Christian Dittmar

Abstract Automatic estimation of music mood has emerged as an important task
in Music Information Retrieval. It has direct applications in music search engines
and cross-modal multimedia tools. During the last years, Gaussian Mixture Models
(GMM) became one of the most popular classifiers for mood estimation. One of the
remaining key challenges is the impossibility to collect representative training data
sets. With GMM classifiers, “unknown” test data can result in low log-likelihoods
for all mood classes, so that the resulting decision becomes immethodical. Thus,
we suggest using a preliminary outlier detection based on one-class Support Vec-
tor Machines (SVM). In this paper we introduce a novel approach to optimize the
one-class SVM parameters via minimizing the differences between the fraction of
outliers, fraction of support vectors and parameter �.

1 Introduction

During recent years the scientific and commercial interest in Music Information
Retrieval (MIR) has significantly increased. Stimulated by the ever-growing avail-
ability and size of digital music collections, automatic music mood estimation has
been identified as an increasingly important means to aid convenient exploration
of large music catalogs. Online music shops and content aggregators have real-
ized that search functionality beyond conventional metadata such as artist, title
and album is a very effective tool to push unknown or long-tail (Celma 2008)
content. Especially for professional applications, such as TV post production and
program planning in radio stations, automatically derived mood tags can signifi-
cantly enhance organization and accessibility of content. Aupeo1 and Musicovery2

1 http://www.aupeo.com
2 http://www.musicovery.com
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are examples of innovative services that allow end-users to listen to personalized
mood based Internet radio streams.

1.1 Mood Models

Many publications have addressed suitable modeling methods for musical mood,
although it is obvious that the human perception of music mood as a subjective,
context dependent and multi-dimensional concept that can not be modeled to the
utmost extent. Generally, moods are not well-defined and cannot be unambiguously
identified by human listeners. Mood models reported in the literature can be roughly
divided into category-based, dimension-based and combinations of both. Early work
on music expression concentrates on category based formalization, such as Hevner’s
adjective circle (Hevner 1936). Category based approaches allow the assignment of
music items into one or multiple groups which results in a single- or multi-label
classification problem. Dimension-based mood models focus on the description of
mood as a point within a multi-dimensional mood space, commonly using dimen-
sions such as valence and arousal. As an example, Thayer’s model (Thayer 1989)
uses the dimensions energy and tension. Mood models, that combine categories and
dimensions typically place mood adjectives in a region of the mood space, e.g. the
Tellegen-Watson-Clark model (Tellegen et al. 1999).

1.2 Mood Audio Features

Publications on automatic mood classification report a variety of acoustic features.
Lu et al. (2006) utilize various rhythmic features such as Rhythm Strength, Aver-
age Tempo and Average Onset frequency. Li and Ogihara (2004) and Tolos et al.
(2005) use spectral features (e.g. Mel-Frequency Cepstral Coefficients (MFCC),
Audio Spectrum Centroid (ASC) and others) to describe the timbre. Furthermore,
Wu and Jeng (2008) setup a complex mixture of a wide range of acoustical features
for valence and arousal estimation: Rhythmic Content, Pitch Content, and others. In
the system described in this paper, the following features are used: Log Loudness,
Norm Loudness, MFCC, Audio Spectrum Envelope, ASC, Spectral Crest Factor,
Spectral Flatness Measure and Zero Crossing Rate. Besides this set of low-level
features, several mid-level representations (Dittmar et al. 2007) are used. These
mid-level features are specialized in the domains timbre, rhythm and tonality. They
range from simple modulation coefficients, to auto-correlation-based rhythmic pat-
terns, to histograms of note and chord candidates derived from a chromagram, based
on Enhanced Pitch Class Profiles (Lee 2006).
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1.3 Mood Classification

Well described machine learning algorithms such as GMM and SVM are most com-
monly used in the literature. The discriminative SVM approach is used in Li and
Ogihara (2004). Trohidis et al. (2008) compare different multi-label classification
schemes based on an SVM and k-Nearest Neighbor classifier. Examples for GMM
based approaches are given in Lu et al. (2006) and Zhang et al. (2003). In Dunker
et al. (2008), GMM and SVM classifiers are compared with a slightly better result
for the SVM approach. A fundamental issue with conventional GMM-based single-
label classification is the assumption that every observed data sample is generated
by one, and only one class. Thus, it is impossible to assemble enough training data
for this Open-World (the number of classes is unbound) classification problem in
practice. In fact, the Open-World problem is mostly simply treated as Closed-World
(the number of classes is fixed) problem. Although this simplification is working
for a number of classification tasks, it is by no means justified. As will be detailed
in the following sections, we attempt to turn the Open-World problem into a real
Closed-World problem by constraining the region of interest.

2 Proposed System

As mentioned above, it is not feasible to collect sufficient representative training
data sets for GMM-based mood classification. In topological terms, undefined areas
remain in the feature space. If test data exhibits properties that the model has not
been trained with it can result in low log-likelihoods for all mood classes in parallel.
Thus, the resulting decision which class to favor becomes immethodical. To tackle
this problem we propose an outlier detection algorithm based on one-class SVM.
Basically, we can deduce some information about our region of interest, which is
defined as the partition of the feature space, where the majority of training data is
situated. The work flow of the proposed system is depicted in Fig. 1. On the training
stage we extract acoustical feature vectors as described in Sect. 1.2. We apply a fea-
ture space transformation (FST) to reduce the dimensionality of the feature space. In
this work, Linear Discriminant Analysis (LDA) (Webb 2002) is used. The transfor-
mation matrix of LDA obtained on the training stage is re-used in the testing stage to
perform the FST. Each mood class is modeled with a multivariate GMM. In parallel
we train a one-class SVM on the entirety of feature vectors (i.e., across all classes)
to obtain the hyper region of the feature space containing the majority of training
data (see Sect. 3 for details). In the testing stage we use one-class SVM to classify
the feature vectors in so-called targets (data points belonging to class “1” of the
one-class SVM) and outliers (data points belonging to class “�1” of the one-class
SVM). Consequently, we apply GMM to classify all test data, targets and outliers
and achieve three accuracy values. Comparison of these accuracy values allows us
to assess if one-class SVM indeed rejects outliers.
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3 Outlier Detection with One-Class SVM

3.1 One-Class SVM

One-class SVM was firstly proposed by Schölkopf et al. (2001) for estimating the
support of a high-dimensional distribution. As in the case of a two-class SVM, the
kernel function is used to map the feature vectors into a higher dimensional space.
By utilizing one-class SVM, most of the data are separated from the origin by a
large margin in the higher dimensional space. Given the training vectors xi 2 Rn,
i 2 Œl �, the model is estimated in the following way:

min
w;b;¸;�

1

2
wT w � �C 1

�l

lX

iD1

�i (1)

subject to wT �.xi / � � � �i ; �i � 0;

where �= kwk specifies the distance from the decision hyperplane to the origin, and
�i are introduced slack variables. The trade-off parameter � 2 .0; 1� corresponds to
an expected fraction of outliers within the feature vectors. A solution of the system

(1) enables the usage of the decision function: sgn
�Pl

iD1 ˛iK.xi ; x/� �
�

, where

K.xi ; xj / � �.xi /
T �.xj / is a kernel function, equivalent to a dot product of the

feature vectors mapped into the higher dimensional space; and ˛ is a vector with
Lagrange multipliers, needed to solve (1). In the experiments in this work, we use
the most common type of kernel, namely Radial Basis Function (RBF):K.xi ; xj / D
exp

���kxi � xjk2
�
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3.2 Estimation of Kernel Parameters

We propose a novel approach to optimize one-class SVM kernel parameters. Due to
the lack of class labels in the one-class SVM, it is not possible to optimize the ker-
nel parameters using cross-validation, as it is common for a two-class SVM. In the
case of the RBF kernel, we have to tune the kernel parameter � . Different methods
have been reported for choosing the best parameters for an one-class SVM. In Tax
and Duin (2001) an estimate for the volume covered by the one-class classifier is
obtained. In Tran et al. (2005) the fraction of support vectors is chosen to charac-
terize the precision of one-class SVM. Xie (2006) utilized a weighted sum of two
kind of errors, namely fraction of support vectors and fraction of outliers. It was
shown by Schölkopf et al. (2001), that the trade-off parameter � is an upper bound
on the fraction of outliers and a lower bound to the fraction of support vectors. Our
optimization method is based on minimizing the differences between the fraction of
outliers fout , the fraction of support vectors fSV and the trade-off parameter �. The
optimal � minimizes F D �� .fSV � �/C .1 � �/ � .fout � �/, where � 2 Œ0; 1�.
Figure 2 demonstrates how the selection of the kernel parameter � influences the
resulting decision hyperplane of one-class SVM. Panel (a) shows the decision hyper-
planes for three � values. The objective function F , fSV , fout and volume fraction
fvol for different values of � are represented in panel (b). Our observations show,
that � values corresponding to the minimal F reside on the left side of the “valley”
of the objective function, while the optimal working point lies on the right side of
the “valley”. To account for this property, we use an additional tolerance parameter,
shifting the working point to the right until the maximum allowed loss of accuracy
is achieved. In this work, the additional accuracy loss is set to 0.01.

4 Evaluation

4.1 Dataset and Parameter Settings

We used a music set compiled by expert listeners. It comprises the following 10-
fold mood taxonomy: Aggressive, Calm, Stressful, Danceable, Dramatic, Energetic,
Happy, Melancholic, Fun and Relaxing. In total, the original feature space spanned
by concatenating the features described in Sect. 1.2 is d D 167 dimensional. The
total number of data samples is 4361 thus, around 430 data vectors represent each
class. We simulate the lack of training data by restricting the fraction of the data set
used for training. This fraction of data taken for training the models (further notated
as p) is varied within p D f0:2; 0:3; 0:4; 0:5; 0:6; 0:7g. For example, p D 0:3 cor-
responds to using randomly chosen 30% of the data set for training the models and
testing with the remaining 70%. We use LDA to reduce d to 9 dimensions. We var-
ied the number of mixtures used for the GMM according to m D f3; 5; 10; 15; 20g,
wheras optimal results with our test scenario were achieved for m D 15. The best
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F for different values of kernel parameter � . Vertical lines mark � values corresponding to the
hyperplanes depicted in panel (a). Trade-off parameter � is set to 0:02, weighting parameter � for
F calculation is set to 0:7
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Fig. 3 Accuracy results for the proposed approach. Vertical blocks correspond to the results cor-
responding to various p values. Within each p-block, the trade-off parameter � is varied from left
to right within a range of 0:01� 0:90. For p D 0:2, the highest increase in accuracy is achievable

results for our data set have been achieved with a kernel parameter � D 0:25.
The last parameter is the expected number of outliers �, it is varied in the range
f0:01; : : : ; 0:90g.

4.2 Results

As can be seen in Fig. 3, the effect of the proposed method is most pronounced in
case of low p, i.e., a small training set. Thus, it is applicable for real world classi-
fication problems. As expected, the small training set decimates the generalization
capabilities of the one-class SVM, as can be seen from the increasing elevation of
the total accuracy. The trade-off for improved target accuracy is a large fraction of
outliers fout , i.e., data samples that are rejected by the one-class SVM. Thus, the
method is applicable for the tasks where a recall is not crucial, e.g., mood estima-
tion scenarios. As an example, for p D 0:5, approximately 5% increase of target
accuracy is achievable when tolerating 50% rejected data.

5 Conclusions

In this publication, an outlier detection algorithm based on one-class SVM has been
described as pre-processing for GMM classification. This novel approach to opti-
mization of one-class SVM parameters shows promising results. The method is
useful in case of small training sets and for classification tasks, where low recall
is tolarable.
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Multiobjective Optimization for Decision
Support in Automated 2.5D System-in-Package
Electronics Design

Martin Berger, Michael Schröder, and Karl-Heinz Küfer

Abstract We propose a multiobjective optimization approach for decision support
in the 2.5D System-in-Package (SiP) design automation. 2.5D SiP is a relatively
new integration concept for miniaturization in which a microelectronic system is
integrated on vertically stacked substrate modules. We approach the SiP layout pro-
cess with Pareto optimization. A database of optimized SiP layouts is interactively
explored with our decision support tool 3D SiP Expert. Our optimization methods
streamline the layout process, eliminate time-consuming redesign steps and support
selecting SiP technologies and the ideal number of substrate modules.

We discuss a constructive heuristic that places the devices on the substrates. Our
computational results show that the heuristic is efficient and finds solutions within
6% of optimality. We also propose group constraints that implicitly cluster device
groups, e.g., functional cooperating devices, and that structure the placement.

1 Introduction

2.5D System-in-Package (SiP) is a relatively new integration concept for miniatur-
ization in which discrete devices (e.g., passives, diodes, antennas) and integrated
circuits of an electronic system are placed on vertically stacked substrate mod-
ules. SiP aims for cost-effective and flexible developed microsystems demanded
for mobile communication, medical applications and the computer memory market.
Figure 1 exemplarily shows two SiP technologies.

While engineers apply highly developed software tools for other integrations,
there is a lack of tools for the design of SiPs (Polityko 2008). Deficiencies arise
in the three stages of the layout process: the partitioning, the placement, and the
routing. Figure 2 illustrates the layout stages in SiP design.
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Fig. 1 Two SiPs: integrated on a flexible bended substrate (left) and integrated on rigid modules
electrically interconnected via conductive solder balls (right)

Fig. 2 Abstract view of the layout process of an SiP

Partitioning is to assign the devices to modules. This is currently a manual and
time-consuming task. Placement and routing of the devices on the modules can be
done with printed circuit board layout tools. However, the tools disregard vertical
inter-module connections (VICs). In addition, the engineers select SiP technologies
and the number of modules based on experience only.

Hence, we solve partitioning and placement as multiobjective optimization prob-
lems and approximate the Pareto-optimal layouts, i.e., layouts where no other layout
can be better or at least as good in all objectives. Both height and perimeter of
the SiP, the number of VICs, and the wirelength are optimized. For exploring the
created layout database we developed a decision support tool 3D SiP Expert. In
Sect. 2 we discuss our decision support approach. It streamlines the design with
optimization and eliminates time-consuming redesigns by providing a database of
alternatives. SiP technologies and the module number are selected by exploring
tradeoffs between the objectives.

In Sect. 3 we formulate the placement problem and in Sect. 4 we discuss a con-
structive heuristic that places the devices on the substrates. It reassembles two
intuitive and natural ideas (Chen and Huang 2006): (1) Do less flexible decisions
first. (2) Place devices where they fit best. The heuristic does not prove optimality
but works effective in practice. We show in Sect. 6 that it is efficient and finds always
near-optimal or sometimes even optimal solutions.

We also propose group constraints that implicitly cluster device subgroups, e.g.,
functional cooperating devices, and that add more structure to the placement. To
organize the placement of collaborating devices we need connectivity and topol-
ogy structure. In Sect. 5 we develop constraints assuring that group devices are
connected and satisfy topological properties. We also derive a sufficient condition
detecting that a set of group constraints is unsatisfiable.
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2 Multiobjective Decision Support

The current design workflow is an iterative process. The engineer starts with the
electronic schematic and develops a single SiP parameterization, including, e.g.,
the choice of technology and the module number. A single layout is designed and
studied in detail. If it violates a requirement, the engineer must change parameters
and has to redesign the layout.

Figure 3 shows the current workflow versus our workflow that concurrently con-
siders alternative parameterizations. The algorithms create a layout database for
each parameterization. We subdivide the layout process into two stages: Near Pareto
solutions of the partitioning serve as input for the subsequent placement. For each
partitioning we create near Pareto placements. The engineer navigates the database
interactively and chooses “ideal” layouts by restricting the lower and upper bounds
of a selected objective (Richter et al. 2007). These mechanisms guide him to a
manageable number of compromise SiP layouts.

Investigating different parameterizations concurrently avoids time-consuming
redesign steps. A layout is selected interactively on an objective basis. The engi-
neer directly explores the compromise solutions and compares technologies based
on the objective values. Figure 4 shows a two-dimensional (2D) projection of the
objective space and the trade-off between technologies whose solutions often clus-
ter in characteristic technology regions. Investigating the technology regions helps
the engineer to make an adequate choice.
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3 Optimization Problems and Algorithms

In our layout workflow for SiP we have two main optimization problems: partition-
ing and placement. We neglect the routing because SiP layouts selected with the 3D
SiP Expert can be further processed with existing routing tools.

We currently solve the partitioning problem with a Pareto simulated annealing
(Jaszkiewicz 2001). In this paper we study the placement problem that is to arrange
a set of devices that can be rotated by 90ı such that no two devices overlap. Both the
module size and the interconnection length between devices of electrical nets should
be minimized. Hence, we have a bi-objective problem. However, in this paper we
focus on minimizing the module size.

We introduce the following mathematical model: The devices are modeled as
rectangles. They are placed in a 2D container that represents a module. We denote
R WD fr1; : : : ; rng as a set of rectangles with index set I WD f1; : : : ; ng; wi ; hi 2 N

represent the width and height, xi ; yi 2 N0 the coordinates of the lower left corner
and oi 2 f0; 1g models the orientation of rectangle ri . W;H 2 N represent the
width and height of the container with upper bounds Wmax;Hmax. We use the half
perimeter as linear objective for the module size, i.e., f1 WD W CH . Therefore, we
have the following problem (PP):

min f1 subject to

xi C sx
i � W; W � Wmax; (1)

yi C sy
i � H; H � Hmax; (2)

.1 � oi /wi C oihi D sx
i ; oi wi C .1 � oi /hi D sy

i ; 8i 2 I; (3)

.xi C sx
i �xj / _ .xj C sx

j � xi / (4)

_ .yi C sy
i �yj / _ .yj C sy

j � yi /; 8i; j 2 I; i < j:

The constraints (1–2) ensure the rectangle containment, (3) define the size of the
oriented rectangles and (4) make sure that no two rectangles overlap by arranging
them left, right, below or above of each other. In Berger et al. (2008) we developed
a constraint program (CP) and a mixed integer program (MIP) for PP. Both pro-
grams model the disjunctive non-overlapping constraints by introducing additional
variables. In the CP, the variables Cij 2 fleft, right, below, aboveg capture the geo-
metric relations between ri and rj and propagation algorithms prune the search tree.
In the MIP, the variables z1

ij ; z
2
ij ; z

3
ij ; z

4
ij 2 f0; 1g are used to model the disjunction

with the help of a big-M relaxation (Hooker 2007).

4 Constructive Placement Heuristic

We propose a heuristic that successively chooses a rectangle ri and its orientation
oi , and places ri in the container of fixed size .W;H/. If the insertion fails, it post-
pones ri and retries to place it later. The failed positions are stored to avoid trying
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Algorithm 1 Pseudocode of our constructive placement heuristic.
while not all rectangles placed and half perimeter � upper bound do

for all feasible W and H (W � H ) that give half perimeter do
mark all rectangles unplaced.
while not all rectangles placed and not all positions failed do

place a rectangle at an insertion position not yet failed.
if placement fails then

postpone rectangle and mark insertion position as failed.
end if

end while
if all rectangles placed then

return placement.
end if

end for
increase half perimeter.

end while
return fail.

them again. If ri cannot be placed at all, the container size is increased and all rect-
angles are placed again. This procedure is repeated until all rectangles are placed.
Algorithm 1 shows the pseudocode of the heuristic. In order to avoid investigating
all .W � 1/.H � 1/ possible insertion positions, we only place the rectangles at
corner points defined as follows:

Definition 1. A corner point p is either an unoccupied corner of the container
or a position .x; y/ in the container .W;H/ where at least two rectangles or one
rectangle and the container touch each other in form of a T-junction.

Every rectangle corner can only be involved in at most one corner point yield-
ing at most 4 .nC 1/ corner points with the container corners. However, not every
placement can be extended by using corner points only. In this case we refine
to intersection points, i.e., coordinates that align with placed rectangles or any
container boundary. There are at most 4 .nC 1/2 intersection points.

We initialize the half perimeter with f1 D
j
2
pP

i2I wihi

k
and increment it

iteratively. The rectangles, the orientations and the insertion positions are dynami-
cally ordered in every iteration. The basic idea is to prioritize those decisions such
that cavities of already placed rectangles are filled as good as possible. This is an
intuitive strategy which was already studied in Chen and Huang (2006). We propose
the following slightly different evaluation of a placement decision:

Definition 2. Let p be a corner point formed by the placed rectangles rj and rk .
Let dx

min; d
y
min be the minimum distance in x and y direction, respectively, of a

rectangle ri placed at p to the placed rectangles of Rnfri ; rj ; rkg. The maximal
distance of the rectangles R to any container boundary is dmax D max.W;H/ �
minri 2R min.wi ; hi /. Then we define the cavity factor as

cf WD dmax min
�
dx

min; d
y
min

�Cmax
�
dx

min; d
y
min

�
:
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Lemma 1. The cavity factor satisfies cf � dmax .dmax C 1/.
Proof. min.dx

min; d
y
min/ � max.dx

min; d
y
min/ � dmax proves the claim.

Hence, we use a normalized cavity factor, i.e., cfn WD cf
dmax.dmaxC1/

2 Œ0; 1� :

In our algorithm we prioritize the rectangle, orientation and insertion position that
minimize cfn. In case of a tie we choose the larger rectangle, as smaller rectangles
can be placed more flexible later on.

Letm be the number of different container sizes which our algorithm tries. Then
the runtime complexity of the algorithm isO.mn3/, because for each container size
and for each rectangle it has to determine all corner points or all intersection points
in O.n2/.

5 Group Constraint Concept

Now we introduce two group constraints for different ways of arranging a group of
devices. The examples in Fig. 5 illustrate different basic properties of a placement
that can be achieved with the help of the group constraints.

Definition 3. A pair of rectangles
�
ri ; rj

�
is connected if they contact each other at

their boundaries or corners. An undirected graphG is called the connection graph of
rectangles R0 
 R if its vertices represent R0 and there is an edge between vertices
ri and rj if the rectangles are connected. A group of rectangles R0 is connected if
G is connected. A connected group constraint CC .R

0/ requires that the rectangles
R0 are a connected group.

Definition 4. An orthoregion D is the union of finitely many rectangles R0 
 R,
i.e., D D S

r2R0 r . The box hull bh.D/ is the smallest rectangle that contains D.
A connected group of rectangles R0 is box-free if no rectangle of RnR0 intersects
with bh.D/. A box-free group constraint CB .R

0/ is a connected group constraint
requiring the rectangles R0 to be a box-free group.

Fig. 5 Placements with five hatched devices of a collaborating group: random arrangement (l);
contacting each other (m); exclusively arranged within a rectangle (r). The four gray devices are
part of no group and the white regions are unoccupied
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In the left placement of Fig. 5 the hatched rectangles are disconnected but in
the middle they are a connected group. Only in the right placement the hatched
rectangles form a box-free connected group.

Lemma 2. The box-free group constraint network with the constraints C 1
B WDfr1; r2g; C 2

B WD fr2; r3g and C 3
B WD fr3; r1g is unsatisfiable.

Proof. We assume C 1
B ; C

2
B ; C

3
B are satisfied. Hence, r1; r2; r3 must be connected

and contact each other in exactly one point .x; y/. However, then one box hull of
two rectangles is not free of the third rectangle in .x; y/.

Now we sketch the approach to integrate connected and box-free group con-
straints in our heuristic and in the CP and MIP model of Berger et al. (2008). For
a connected group constraint we store its connection graph and test if the graph
is connected. A box-free group constraint is transformed into constraints on the
coordinates and the geometric relations of the rectangles.

Lemma 3. If all rectanglesR0 of a box-free group constraintCB .R
0/ are connected

and in the same geometric relations to R nR0 then CB .R
0/ is satisfied.

Proof. We assume that CB .R
0/ is violated and that there exists no rectangle of

R n R0 that is in different geometric relations to two rectangles of R0. Then we can
find two horizontal and two vertical lines that separate R0 from those rectangles of
R n R0 that are left, right, below and above of R0. Consequently, the box hull of R0
is free of other rectangles which contradicts our assumption.

However, when at least two box-free group constraints are non-disjoint we have
to use constraints on the coordinates instead of the geometric relations.

Fig. 6 Real world SiP placed by our heuristic
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6 Computational Results

We implemented the constructive heuristic with ILOG Solver 6.6 and tested instan-
ces of size n D 5; : : : ; 27 where the rectangle sizes are inspired by SiP devices. The
instances can be found in Berger et al. (2008). Also, we run the algorithm on a real
world SiP with n D 133 devices and place them on a single module.

The second column of Table 1 shows that our algorithm runs within seconds.
The third column shows the gap to the optimal solutions we published in Berger
et al. (2008) (dash if optimality is unknown). All solutions are within 6% of opti-
mality. The fourth column lists the percentage of lost module area. A qualitative
placement has less than 15% of free area in practice. Therefore, our solutions are of
high quality. The SiP shown in Fig. 6 was found in 11 CPU seconds.

Figure 7 illustrates placements where no (left), a connected (middle) and a box-
free group (right) constraint for the dark gray group of devices is applied. It shows
that the constraints introduce more structure for collaborating device groups. More
structured placements are preferred by the engineers.

Table 1 Results for the heuristic
n CPU (sec.) Gap (%) Lost area (%)
5 0.05 0.00 1:79

6 0.02 0.00 7:83

7 0.03 2.25 11:34

8 0.03 1.12 7:41

9 0.02 1.14 6:77

10 0.08 5.45 10:64

11 0.09 – 11:82

12 0.05 – 5:98

13 0.14 1.59 7:89

14 0.06 – 4:59

15 0.28 2.37 5:14

16 0.20 – 7:65

17 0.23 – 4:40

18 0.20 – 6:21

19 0.25 – 6:49

20 0.39 – 8:42

21 0.36 – 7:74

22 0.30 – 4:48

23 0.39 – 6:57

24 0.39 – 5:92

25 0.44 – 5:76

26 1.09 – 8:58

27 0.64 – 6:26
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Fig. 7 Group constraints applied to the test instance with n D 13

7 Conclusion

We presented an optimization approach for improving both the basis for decision-
making and the automation in 2.5D SiP design. This is confirmed by engineers that
tested our tool. We developed a heuristic that produces high quality placements
fast. Finally we introduced group constraints that help to place collaborating device
groups. In future work we will extend the heuristic for bi-objective placement and
refine the group constraint concept.
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Multi-Objective Quality Assessment for EA
Parameter Tuning

Heike Trautmann, Boris Naujoks, and Mike Preuss

Abstract Evolutionary algorithms are non-deterministic and highly parameteriz-
able optimization methods. Therefore, the setting of parameters greatly influences
their performance and methods for parameter tuning became more and more pop-
ular in recent years. However, obtained parameter settings are usually valid only
for the tackled combination of algorithm, problem, and performance measure. In
most investigations concerning EA tuning, only one performance measure is uti-
lized, inherently defining it as ’user preference’. However, users’ preferences may
be different. While one user may only look for a single best solution from a couple
of runs for a design problem (single-excellent case), another may be interested in
a generally stable behavior of the algorithm displayed by a good expected value of
multiple runs and a low variance (robust case). An efficient handling of this trade-
off is investigated here. In particular, we investigate the possibility to control the
behavior of a given algorithm on a given problem between the two stated extremes
via changing one or a small number of parameters.

1 Introduction

Industrial optimization is generally guided by searching for the global best solution.
However, today’s technology enables engineers to model highly complex processes
and thus make them accessible for optimization based on computer experiments.
The resulting optimization problems are highly complex as well, and solving such
tasks, i.e. to find the global best solution, is hard.

To address such problems, randomized search heuristics such as evolutionary
algorithms (EA, cf. Eiben and Smith 2003; DeJong 2006) have been developed.
They are able to explore the search space much better than deterministic search
strategies such as e.g. gradient based methods.
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Due to the stochastic nature of such algorithms, different optimization runs yield
different qualities of the results. While it is advantageous to have good average
results to measure the quality of some optimization procedure, a single very good
solution is more appealing to the engineer who solely looks for the best solution to
implement.

In this paper we are addressing this trade-off by tuning EA accordingly. To this
end, the framework of Sequential Parameter Optimization (SPO) (cf. Sect. 3.1 or
Bartz-Beielstein 2006 and Jones et al. 1998) is used to optimize EA parameter set-
tings for good average solutions on the one hand and single excellent solutions on
the other hand. This ends up to be a multi-objective optimization problem, and we
search for parameters to run along the resulting Pareto front enabling the user to
scale from one optimization goal (e.g. good average solutions) to the other.

The paper is organized as follows: the next section gives a small introduc-
tion to test function sets for Evolutionary Multi-Objective Optimization algorithms
(EMOA, cf. Deb 2001; Coello Coello et al. 2002) and motivates as well as intro-
duces the new combination of single-objective test functions into a multi-objective
one. Section 3 describes the experiments executed and analyses the results. Section 4
concludes the contribution and provides an outlook on further research.

2 Definition of Test Functions

Since research on EMOA established a rather popular scientific field in the late
1990s, different sets of test functions to compare the quality of different approaches
have been proposed. The first frequently used such set was proposed by Zitzler et al.
(2000). Some preliminary studies for the contribution at hand have been carried
out on function ZDT4. Although these test functions are still used frequently, they
feature several disadvantages, the most important one is sharing only two objectives.
This was overcome by publishing the DLL test function set (cf. Deb et al. 2002).

Up to now, the test functions from above are still in use, however they have
been improved and adjusted to fit more general situations. The most current and
frequently used function set was published by Huband et al. (2006). Some of these
test functions have been invoked to compare different EMU approaches during one
of the latest conferences of the evolutionary computation (ESC) community. The
congress on evolutionary computation (CEO) 2007 test function set (Huang et al.
2007) is the state-of-the-art for EMU algorithm comparisons today.

Preliminary results on different test functions revealed that typical EMU test
functions such as ZDT4 from Zitzler et al. (2000) or SYMPATHY from the CEO
2007 collection are too easy to solve for the considered algorithm, e.g. SUMS-
EMOA (cf. Sect. 3.1). Consequently, more complex test functions from the field
of single-objective optimization have been considered. Surprisingly, this work is
the first approach to combine such single-objective test functions to design multi-
objective ones to our knowledge.
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Fig. 1 Astringing’s (F10, left) and Schlemiel’s test function (F12, right) for a two dimensional
search space

The two single objective test functions considered were incorporated in a com-
parison on a former CEO conference, i.e. CEO 2005 (Suganthan et al. 2005). We
decided to combine the shifted and rotated version of Astringing’s function (F10)
from the above collection with Schlemiel’s function (F12) to receive FD (F10, F12).
Not to start with too complex situations, it was decided to start with a small search
space dimension of d D 2. The next step will be a generalization to higher dimen-
sional cases. A plot of both functions for this search space is provided in Fig. 1.

3 Experiments and Results

3.1 Experiments

As mentioned above, the evolutionary multi-objective optimization algorithm used
for this paper is the SUMS-EMOA (Beume et al. 2007). This algorithm considers
two ranking criteria to select the succeeding population within a .�C 1/-selection
scheme1, namely the dominance rank and selection based on the hypervolemia. The
hypervolemia is the space covered by the Pareto front with respect to some pre-
defined reference point (cf. Zitzler 1999). While the dominance rank is a standard
selection technique as used in popular algorithms like NASA-II (cf. Deb et al. 2002)
as well, the SUMS-EMOA in particular rejects the individual contributing the least
hypervolemia to the worst ranked Pareto front.

The standard variation operators for the generation of new individuals in the
EMOA field are simulated binary crossover (SAX, cf. Deb 2001) and polynomial

1 cf. standard EA literature for the notation. The general .� C �/-selection scheme indicates that
� parents exist within the EA and � offsprings are generated in each generation. The succeeding
population is formed by the � best solutions from the union of parents and offsprings.
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Table 1 SUMS-EMOA settings for SPO

� PC �C PM �M

Interval [10, 200] [0.1,1] [5, 50] [0.1,1] [5, 50]
Standard 100 1 20 1/n 15

The indices C and M refer to the crossover and the mutation operator,
� equals the population size

mutation (ibid.). Both are typically controlled by two parameters, namely their
application probability and a parameter controlling the deviation of the underlying
distribution. All parameters considered within our investigation are listed together
with the default values (standard) and the interval we employed for the investigation
(interval) in Table 1.

The framework of Sequential Parameter Optimization (SPO, Bartz-Beielstein
2006) is a stepwise procedure to indicate good parameter settings for one algorithm
applied to a special application or test function. This stepwise procedure starts with
a space-filling design [e.g. Latin Hypercube Design (LHD)] within the algorithm
parameter space and evaluates the algorithm’s performance for the corresponding
parameter settings. Building sophisticated models based on the outcome of these
first experiments, regions of interest are determined within the parameter space and
the search for good parameter settings is continued focusing on these regions.

For each optimization run of SUMS-EMOA 2,500 evaluations have been exe-
cuted with 2,000 runs allowed for each SPO. The number of design point evaluations
was set to 10 for the first experiments.

3.2 Results

First experiments have been conducted on the function SYMPATHY from the CEO
2007 test case collection, but this problem turned out to be too easy. As a result, no
significant trade-off with respect to the hypervolemia could be observed.

Further preliminary experiments have been conducted on ZDT4 from the corre-
sponding test case collection. Here, a possible influence of two parameters, namely
the population size (�) and the recombination probability (PC ) was observed. How-
ever, the drawback was that not enough points on the Pareto front were generated
during the SPO runs. Furthermore, the estimation of the Pareto front was not reliable
enough.

3.2.1 Results on F10–F12

As a more complex test case, the combination of the two single-objective test
functions F10 and F12 was considered. Comparing all different parameter influ-
ences with each other in a scatter plot, a possible influence of the recombination
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probability was identified. The corresponding diagrams have been merged in Fig. 2,
right part, where the comparison of the recombination probability and both hyper-
volemia measurements (mean(HV) and max(HV)) is presented. Here, the scaling
effect can be observed.

The left part of Fig. 2 shows the trade-off between the average hypervolemia
values and the best hypervolemia values in general. Here and for all following fig-
ures, the Pareto-front was incorporated next to the solutions dominated by only one
solution (rank two Pareto-front) resulting in a ‘Pareto front region’. Thus a kind of
"-dominance approach is carried out being aware of an uncertainty in the location
of each point of the front.

As a consequence of the identification of PC , a grid test was conducted for this
parameter. Here, all other parameters under investigation were fixed at their median
level. The results achieved from this grid test are given in Fig. 3. The colors indicate
different areas of the Pareto front. Unfortunately the scaling only focused on the
upper part of the Pareto front which indicated that important parameter interactions
have been neglected (cf. Fig. 3, left part).

As the visual analysis of the scatterplot-matrices thus was not promising, statis-
tical classification methods like CART (Classification and Regression Tree) seemed
to be more appropriate to at least discriminate between the two “edges” of the Pareto
front (Fig. 3, right part). For this purpose the reliability of the approximation of the
“true” Pareto front is a key issue as the desired analysis only makes sense if the
uncertainty of the estimated points is sufficiently low.

Figure 4 shows all 20 hypervolemia values for each point of the Pareto front
and reveals the high variance of the SUMS-EMOA performance for all parameter
settings. Certainly this is due to the stochastic nature of an evolutionary algorithm.
Nevertheless, the extent of the variation is surprisingly high. In order to reduce the
variance, the arithmetic mean was replaced by the median as a robust estimator of
average performance. Though this seemed to be a promising approach as the arith-
metic mean is highly influenced by the maximum hypervolemia value, the spread of
solutions does not differ significantly from the situation before.

A validation of the points is presented in Fig. 5, left part. The SUMS-EMOA was
run 100 resp. 1,000 times using the input parameter combination of each point to be
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investigated, and the minimum as well as the median of the resulting hypervolemia
indicator was computed. Each validation run is marked by a different symbol, and
the colors match the respective point on the original estimated front. Convex hulls
of the points are used to roughly visualize the region of the point locations. It
becomes obvious that the Pareto front estimation so far is not stable at all, and
that the underestimation of the solution quality increases with decreasing number of
SUMS-EMOA runs.
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In order to measure the uncertainty of the Pareto points more accurately, in a
second validation step the 1,000 repeated SUMS-EMOA runs were treated as 50
separate validations with in each case 20 SUMS-EMOA runs. For each of the 50 val-
idations the two objectives max.HV / and median.HV / were computed resulting in
50 validation points for each Pareto point. Convex Hulls of these points visualize the
spread of the validation points in the objective space (Fig. 5, right part). The colors
of the lines match the color of the respective Pareto front point. Once again the high
uncertainty of the Pareto front estimation becomes obvious while the variance in the
median values exceeds the variance in the single excellent solutions.

4 Conclusions and Outlook

The original task was to find one or two algorithm parameters as handles for switch-
ing between a good average and a good peak performance. We started by tuning
parameters of the investigated SUMS-EMOA regarding these two performance
goals, hoping to find a Pareto front between them. It turned out that the algorithm
configurations representing the front behave much more stochastic than expected.
Consequently, all trials of identifying parameters as switches failed, and the obtained
Pareto fronts are proven to be rather questionable. These result led to very interest-
ing insight and more ‘informed’ investigations that shall be carried out in future.
It can be stated that our original research goal was too ambitious due to the high
uncertainty of the desired Pareto front estimation. However, the awareness of this
‘failure’ itself is an important research result leading to a better understanding of
EMOA results.

In order to try to reduce the solution variance, next steps will include an increase
in the maximum number of function evaluations of the SUMS-EMOA, which will
result in a higher convergence probability. Secondly, it will be investigated how the
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two separate univariate SPO runs can efficiently be replaced by a multivariate SPO
technique Ponweiser et al. 2008 in combination with specific techniques for noisy
environments.
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A Novel Multi-Objective Target Value
Optimization Approach

S. Wenzel, S. Straatmann, L. Kwiatkowski, P. Schmelzer, and J. Kunert

Abstract In the recent years the Efficient Global Optimization algorithm (EGO)
by Jones has become a widely used technique in engineering applications. Based
on a small initial design a surrogate model is fitted and updated sequentially using
the so-called expected improvement criterion to find the global optimum. Henken-
johann and Kunert presented a multivariate extension of EGO using the concept of
desirabilities. Due to difficulties with the distribution of the desirability index, their
extension is restricted to one-sided desirabilities only. We therefore extended their
strategy to enable target value optimization using two-sided desirabilities. Instead
of calculating the exact expected improvement using the uncertainty distribution we
determine the improvement based on a very rough Monte Carlo simulation. A case
study from mechanical engineering demonstrates the usability of the approach.

1 Introduction

The optimization of an engineering process usually is very complex. Large numbers
of influencing parameters and several objectives are to be optimized simultaneously.
At the same time, engineers try to reduce the number of experimental runs needed
due to time and cost constraints. Sequential optimization has become a very pop-
ular tool for such situations. The most popular algorithm is the Efficient Global
Optimization algorithm (EGO) by Jones et al. (1998). Since then various variants
of EGO for multivariate problems or constraint problems appeared. All those algo-
rithms are designed for minimization or maximization problems. We were asked
to optimize a simple pot produced with the sheet metal spinning process. This
is an incremental forming process that produces complex rotationally symmetric
workpieces (cf. Fig. 1).

The geometry of the mandrel defines the final shape of the workpiece. We
decided to maximize the sheet thickness and to minimize the other objectives.
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Fig. 1 Producing a pot with the sheet metal spinning process

Unfortunately, unexpected swelling occurred and the optimal pot missed the actual
targets. In this particular application an optimization regarding a specified target
value is needed. The existing algorithms can not be transformed straight for-
ward into a target-value problem, since a simple transformation of the objective
into an objective that can be minimized or maximized yields in difficult and
mostly unknown distributions of the objective. This paper introduces a multivariate
sequential optimization algorithm that is able to handle target value problems. It is
structured as follows. Section 2 gives a brief introduction to the EGO algorithm, the
expected improvement criterion, and a multivariate adaption of EGO using desir-
abilities. In Sect. 3, the new approach to target-value optimization is presented.
Section 4 discusses the presence of unknown constraints. Optimization results for
the spinning process are presented in Sect. 5. Finally, in Sect. 6 a short conclusion is
given.

2 Efficient Global Optimization (EGO)

The EGO algorithm was introduced by Jones et al. (1998). EGO starts with an
initial design to fit a surrogate model. With the help of the expected improve-
ment criterion (EI) so-called updating points are chosen to refine the surrogate
model until a defined stopping criterion is reached. The EI balances the exploita-
tion from the surrogate model, where the prediction is optimal with the need for
exploration where the uncertainty is high. The EI of x given the observations y.n/

and the current optimum observation ymax is the expected value of the improvement
I.x/ D 1ŒY.x/>ymax�.Y.x/ � ymax/ conditional on the uncertainty distribution of the
model fY.x/, hence

EŒI.x/jy.n/� D
Z 1

ymax

.I.z//fY.x/jy.n/.z/d z: (1)

The improvement I.x/ thereby addresses the potential in optimization for x. The
point x that maximizes the EI is the new updating point. The refinement process
is stopped as soon as the maximum EI is smaller than 1% of ymax. Jones et al.
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Fig. 2 Exemplary one- (left) and two-sided (right) Harrington desirability functions

suggest to use Kriging models as surrogate models. For those models the uncertainty
distribution is Y.x/jy.n/ � N. Oy.x/; s2

Oy.x/
/ and the EI can be given in a closed form

Jones et al. (1998).

The concept of desirability

Harrington (1965) introduced the concept of desirability to handle multivariate prob-
lems. Desirability functions are used to map the objectives to the interval Œ0; 1�.
The transformation enables the comparison of objectives with different scales. Fig-
ure 2 shows different examples to specify a desirability function. On the left hand
side one-sided specifications for a maximization problem are given. The desir-
ability starts at zero indicating the results that are unacceptable. The desirability
d.y/ increases with increasing result value y and stays 1 when a desired value is
exceeded. In the same way a minimization problem can be specified. The right hand
side of the figure shows two-sided specifications that account for target value prob-
lems. The desirability is 1 when the target value is met and gets smaller the further
away the results move from the target. Different kurtosis values can be used to influ-
ence how strong divergences are penalized. Derringer and Suich (1980) introduced
asymmetric specifications, that allow to penalize differently whether the target is
exceeded or under-run. Having transformed each objective with a desirability func-
tion, they are joined to a univariate desirability index. It usually is the (weighted)
geometric mean of the desirabilities. The maximum of the index indicates where the
joint optimum is situated. Desirability indices using two-sided desirability functions
exactly addresses the issue of target-value optimization.

Multivariate expected improvement using desirabilities

Henkenjohann and Kunert (2007) introduced a multivariate expected improvement
criterion using the concept of desirabilities. This EI is based on the vector of
desirabilities d.x/ and the indexDI.x/:

EŒI.x/jy.n/
1 ; : : : ; y.n/

m � D
Z

z2Œ0;1�mW

DI.z/>DImax

I.z/ � f
d.x/jy.n/

1
;:::;y

.n/
m
.z/d z; (2)

where I.x/ D 1ŒDI.x/>DImax� min
f 2Fmax

.jjf � DI.x/jj/ and f
d.x/jy.n/

1
;:::;y

.n/
m

is the

joint distribution of the vector of desirability functions. The joint distribution of
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the desirability vector is very hard to determine and could so far only be derived for
the special case of one-sided Harrington desirability functions. For length of com-
putation time, a full Monte-Carlo Simulation of the distribution is also not feasible.
Hence, this approach cannot handle target-value problems.

3 The New Approach

On the basis of the multivariate expected improvement of Henkenjohann and Kunert
(2007) we present an optimization heuristic to target-value that uses two-sided desir-
abilities. Instead of deriving or fully simulating the distribution of the desirability
vector we calculate only a very rough approximation of the uncertainty distribu-
tion of the untransformed predictions by so-called virtual observations. Similarly to
Cox et al. (1997) we construct virtual observations by means of 1 � ˛ confidence
boundaries for the predictions byi using the prediction errors si . Figure 3 shows
for one exemplary predicted point . Oy1.x/; Oy2.x// the upper and lower confidence
boundary for each objective y1 and y2. This results in nine virtual observations,
including the prediction, each representing one possible true result .y1.x/; y2.x//.
The virtual observations give a very rough impression of how the model uncertainty
influences the prediction. If several confidence levels are used at the same time, e.g.
three levels as in the right hand side of the figure, the impression gets better. A
large number of levels of course would yield in a full Monte-Carlo simulation of the
model uncertainty distribution. But already for three levels 48 virtual observations
have to be constructed for each predicted point, and the following procedure would
become inefficient. Figure 4a shows virtual observations of two confidence levels
for a whole vector of predictions. For better illustration, the example has two objec-
tives and only one influencing parameter. The predictions are quite certain in the
interval [1, 5] and very uncertain in the interval [5,11]. The target is drawn with a
horizontal line. The current local optimum for y1 lays in the space with small model
uncertainty. Whereas the predictions do not indicate any improvements in EI in the
uncertain area, the virtual observations show a high potential of containing global
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Fig. 4 Exemplary virtual observations for two ˛-levels and resulting desirability indices

optima in different places. The same applies to all other objectives. To determine the
possible joint global optima of the multivariate problem, we now use desirabilities
to transform the problem into a univariate one. The vectors of virtual observations
coming from the different ˛ levels are transformed to (two-sided) desirability vec-
tors. The desirability vectors of all objectives are then cross-combined with each
other, resulting in (number of ˛-levels)number of objectives different indices. Figure 4b
shows some indices for the simple example, we skip those having the maximum
in the already found local optimum. Some of the indices have new peaks that are
larger than the peak of the current local optimum. Those are points with a high
potential for a joint global optimum. For each desirability index improvements are
calculated, resulting in a vector of improvement values per desirability index. We
determine the points that maximize one of the vectors of improvement values and
get a set of points that we call the candidates for global optimums. Since some of
the candidates often lie close to each other or occur several times, we use standard
hierarchical clustering to determine groups of points. The model is refined with the
candidates which are the most in the middle of those groups.

3.1 Exemplary Progress

Figure 5 shows an exemplary progress of the set of candidates. The example has
three objectives and two influencing factors. The contour plot of the true desirability
index shows two global and one local optima. In the beginning of the optimization
when the model is still very uncertain the candidates are scattered widely. During
the further steps, the candidates concentrate more and more on the global optima,
but also the region of the local optimum is tested. In the end, the two global optima
of the true desirability index are found.

3.2 Stopping Criterion

In contrast to Jones et al. we have several improvement vectors, and our stopping
criterion has to take them all into account. With extensive studies and comparisons
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Fig. 5 Exemplary progress of the set of candidates during the optimization steps

we found that the best stopping indicator is taking the maximum of all vectors
of improvements and choose again the maximum out of it. The algorithm can be
stopped, when the maximum of the maximums reaches 0, i.e. no virtual observation
reaches better results than the current found. Depending on the ˛ levels it will take
a very long time until 0 is reached, therefore we propose to observe the progress of
the criterion and stop when it saturates at a level close to 0.

4 Handling of Missing Values

The optimization of engineering processes often involves the problem of unknown
failure boundaries. If an updating point produces a failure part, the quality measures
are missing. Ignoring them would be fatal, since the model stays unchanged in this
region and the algorithm will stall there. Forrester et al. (2006) therefore suggest
to substitute the failure point with a penalized prediction that diverts the algorithm
towards the feasible region. For the two-sided case, we suggest to substitute the
failure at x with Oy.x/ � s.x/ if the prediction of the last surrogate model Oy.x/ is
smaller than the target value and Oy.x/C s.x/ if Oy.x/ exceeds the target value.

Additionally, we adapt the strategy of Henkenjohann et al. (2005) to exclude
failure regions from the parameter space. Assuming the feasible area of the process
is convex, the area lying from the viewpoint of a feasible point behind a failure
point must belong to the failure region (cf. left hand side of Fig. 6). To determine
failure regions a polyhedral convex cone is spanned by the feasible points and a
failure point as cone tip with the very efficient double description method by Fukuda
and Alain (1996). All points lying inside this cone belong to the failure region and
can be excluded from the parameter space. The right hand side of Fig. 6 shows a
parameter space and the excluded regions as white space. The exclusion of known
failure regions prohibits that the algorithm suggests points in an uncertain area that
lies in the failure region.
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Fig. 7 Desirability functions for the sheet metal spinning process

5 Case Study

We tested our algorithm with the optimization of the sheet metal spinning pro-
cess (cf. Sect. 1). Again a pot is optimized over the three objectives, depth NT ,
diameterD, thickness S all measured in mm. The optimization deals with six influ-
encing parameters (A–F) and a grid of 15,625 points representing settings in the
six-dimensional parameter space. Figure 7 shows the specified asymmetric two-
sided Derringer-Suich desirabilities. Note that for the thickness, results that exceed
the original sheet thickness of 2 mm, are penalized very strongly to prohibit swelling
of the material. The algorithm started with a space-filling design with only 15 points
and used three confidence boundary levels 0.0001, 0.001 and 0.01. The global opti-
mum is found within six steps, where the computing time per step was about 30 min
on a 2 Ghz machine. The last part meets the target values (S D 2mm, D D 73mm
andNT D 96mm) very good, especially the thickness S does not exceed the target
as before.

Table 1 shows for each step the currently found optimum and its correspond-
ing desirability index. The desirability could be improved from about 0.93 to 0.97.
Although, this seems not to be a great improvement, the algorithm did a good job.
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Table 1 Current optima in the single steps of the optimization

Points DI A B C D E F S D NT

1–15 0.9295449 �1 10 30 0.95 0 1.5 1.74 76.4 97:88

1–25 0.9417639 �1 20 38 1.01 0 1.5 1.86 76.9 94:1

1–32 0.9417639 �1 20 38 1.01 0 1.5 1.86 76.9 94:1

1–39 0.9436689 1 20 54 0.92 �1 2.7 1.96 76.5 91:6

1–46 0.9513387 2 20 62 0.92 �2 1.5 1.86 75.9 94:23

1–51 0.9719737 2 10 30 0.92 �1 1.5 1.95 75.4 94:69

Because of too liberal a specification of the desirabilities, the first workpiece in
Table 1 already has a desirability of 0.93, although it is a quite poor part. Figure 7
shows that the majority of the desirability index values lie between 0.8 and 1.0.
Hence, between the first best part and the overall best part, the quality changes a lot.

6 Summary

In this paper, a heuristic for sequential multi-objective target value optimization
was introduced. The algorithm does not need a closed form of the multivariate
uncertainty distribution, but uses confidence boundaries for the single objectives.
Updating the surrogate model with several points in each step, the heuristic is able
to find a global optimum efficient and engineering friendly. Since every possible
desirability function can be used the optimization target can be specified very flex-
ible. However, the specification of the desirabilities has to be done very carefully,
to avoid too liberal or conservative specifications. The more different confidence
boundaries are used, the better the algorithm works. Due to time constraints the
number of confidence boundaries should be restricted to four or five different lev-
els. Extensive studies should still be done to give a guideline for the user, which
levels give the best progress of the optimization. Furthermore, the algorithm is still
rather slow when more then four objectives are considered. We are working on a
variant of the heuristic, that preselects the important confidence boundaries before
cross-combining them to desirability indices, to allow high-dimensional problems.
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Desirability-Based Multi-Criteria Optimisation
of HVOF Spray Experiments

Gerd Kopp, Ingor Baumann, Evelina Vogli, Wolfgang Tillmann,
and Claus Weihs

Abstract The reduction of the powder grain size is of key interest in the thermal
spray technology to produce superfine structured cermet coatings. Due to the low
specific weight and a high thermal susceptibility of such fine powders, the use of
appropriate process technologies and optimised process settings are required. Exper-
imental design and the desirability index are employed to find optimal settings of a
high velocity oxygen fuel (HVOF) spraying process using fine powders .2�8�m).
The independent factors kerosene, hydrogen, oxygen, gun velocity, stand-off dis-
tance, cooling pressure, carrier gas and disc velocity are considered in a 12-run
Plackett-Burman Design, and their effects on the deposition efficiency and on the
coating characteristics microhardness, porosity and roughness are estimated. Fol-
lowing an examination of possible 2-way interactions in a 25�1 fractional-factorial
design, the three most relevant factors are analysed in a central composite design.
Derringer’s desirability function and the desirability index are applied to find opti-
mal factor settings with respect to the above characteristics. All analyses are carried
out with the statistics software “R”. The optimisation of the desirability index is
done using the R-package “desiRe”.

1 The Process of High Velocity Oxy-Fuel Spraying

Thermal spraying has emerged as a suitable and effective surface engineering
technology to apply wear and corrosion protective coatings for various industrial
applications such as tools, aero engine parts and gate valves, which are exposed to
high mechanical load or intensive friction.

Among the available thermal spray processes, the High Velocity Oxy-Fuel
(HVOF) spray technique is one of the most promising and preferable methods to
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produce sophisticated, wear resistant cermet coatings with exceptional high quality
regarding microstructure and surface finishing. Due to high gas jet velocities and
lower flame temperatures than all other thermal spray processes, HVOF spraying
allows to produce coatings with extremely low porosity, low oxidizations and low
carbide decomposition or carbide-matrix dissolution resulting in high hardness and
high abrasion resistance (Nieminen et al. 1997).

In contrast to commonly used conventional coarse agglomerated and sintered
feedstock powders with grain sizes of 15�60�m, HVOF spraying of fine pow-
ders with grain sizes < 10�m offers the possibility to manufacture novel superfine
structured coatings with significantly improved macroscopic properties (Jia et al.
1998).

However, the feeding and processing of fine powders involves major difficulties.
Due to the high surface-to-volume ratio and low specific weight, fine powders do
not only provide a poor flowability in the feeding process, but also show a different
thermo-kinetic behaviour during spraying. As a result, fine powders tend to over-
heat rapidly in the spray process leading to carbon loss of the carbide phase or the
occurrence of carbide-matrix reactions, which can reduce the wear resistance of the
deposited coatings. Powder agglomeration, which might encounter in the feeding
or thermal spraying process represents another major problem. This effect can lead
to blockages in the powder feeder system or prevent the formation of a targeted
superfine structured coating morphology during the spray process.

In order to reduce such undesired effects, a sensitive selection and optimisation
of the process parameter settings are necessary (Tillmann et al. 2008).

The properties of HVOF sprayed coatings depend on a number of adjustable
parameters during the spray process (Turunen 2005), including the feeding param-
eters feeder disc velocity (FDV) and carrier gas level (CGL), the kinematic param-
eters stand-off distance (SOD) and gun velocity (GV) as well as the substrate
temperature which is affected by the backside cooling pressure (BCP). The kerosene
(KL), oxygen (OL) and hydrogen (HL) levels, which compose the combustion
medium, are the main factors affecting the thermo-kinetic HVOF flame charac-
teristic as well as the corresponding acceleration and melting behavior of the fine
particles in-flight.

SOD is defined as the distance between the substrate surface and the top of the
gun, where the powder injected HVOF process gas leaves the acceleration nozzle.
FDV and CGL are the main factors controlling the amount of powder which is trans-
ferred into the HVOF gun. BCP indicates the cooling intensity level of the sample’s
backside by compressed-air convection to avoid an overheating of the substrate sur-
face during spraying. GV controls the coating deposition process, particularly the
deposition efficiency and the heat transfer to the substrate surface.

In this study fine, broken 75Cr3C2=25.N iC r20/ feedstock powders with a grain
size of 2�8�m are processed to manufacture superfine structured cermet coatings
with high hardness (MH), low surface roughness (RRa) and low porosity (Po) of the
microstructure at high deposition efficiencies (DE).
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2 Experimental Designs

In order to find optimum settings for the HVOF spraying process, three consec-
utive experimental designs are used, bearing the idea to gradually reduce process
variables, adjust level settings and to check for significant interaction and quadratic
effects.

2.1 Plackett-Burman Design

In an initial 12-run Plackett-Burman design the eight independent variables as intro-
duced in Sect. 1 are varied at two levels according to Table 1. Assuming multiple
linear models for each of the introduced response variables (Sect. 1) analysis in
“R” (function lm()) yields the results summarised in Table 2. Three factors are
dropped thereafter for different reasons: (1) BCP quite obviously has no effect on
any of the responses and is in the following held constant at 20 psi, (2) GV has
a positive effect on DE but cannot be increased any further due to machine limi-
tations. As no interaction effects are expected GV is fixed at the highest possible
setting 30,000 mm/min in further experiments, (3) CGL has a negative effect on

Table 1 Factor levels used in the experimental design stages

Plackett-Burm. Fractional-Fact. Central Composite
�1 +1 �1 0 +1 �2 �1 0 +1 +2

KL (L/h) 7 9 8 9 10 8 9 10 11 12
HL (L/min) 60 80 60 80 100 80
OL (L/min) 800 900 800 850 900 750 800 850 900 950
GV (mm/min) 20,000 30,000 30,000 30,000
SOD (mm) 120 140 100 130 160 100 115 130 145 160
BCP (psi) 20 60 20 20
CGL (L/min) 9 11 11 11
FDV (rpm) 2.0 2.6 2.3 2.6 2.9 2.6

Table 2 Model estimates and p-values based on the Plackett-Burman design

MH (max.) DE (max.) RRa (min.) Po (min.)
Est. p-v. Est. p-v. Est. p-v. Est. p-v.

Int. 578:7 NA 24:92 0.0003 3:65 0.0000 1:24 0.0074
KL 127:0 NA 2:61 0.1249 �0:76 0.0001 �0:77 0.0272
HL 25:3 NA 1:18 0.4086 �0:21 0.0069 �0:17 0.4448
OL 9:3 NA 0:99 0.4827 0:43 0.0008 �0:25 0.2797
GV �27:8 NA 4:01 0.0477 �0:03 0.4144 0:25 0.2797
SOD �22:0 NA �2:08 0.1905 �0:14 0.0204 0:30 0.2067
BCP �24:5 NA �0:71 0.6047 0:01 0.8237 0:21 0.3464
CGL 13:3 NA �0:77 0.5793 �0:13 0.0257 �0:13 0.5333
FDV 16:7 NA 1:49 0.3155 �0:03 0.4640 0:08 0.7020
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RRa, which is to be minimised. As settings beyond 11 L/min caused the formation
of powder caking in the powder injection ring and the acceleration nozzle of the
HVOF gun in several pilot tests, the highest reasonable level 11 L/min is used in
the following designs. Despite the lack of any significant results FDV is assumed to
effect in particular DE and is therefore analysed in a different range (2.3–2.9 rpm)
in the following fractional factorial design. Other levels are adjusted according to
Table 1. Of particular importance is the increase of both kerosene levels. Three
experiments of the Plackett-Burman design run with low KL resulted in coatings
too thin to allow a measurement of MH. As a consequence, no sample variance and
no p-values could be estimated in the MH-model (Table 2, value NA). High KL
is associated with better DE, Po and RRa in the screening model, supporting the
approach to increase KL.

2.2 Fractional-Factorial 25�1 Design

Table 3 gives selected results of the models for all four responses considering all
main and 2-way interaction effects based on a fractional-factorial 25�1 design with
three additional center runs (level 0). None of the effect estimates left out in Table 3
are associated with p-values below 0.1. MH is mainly affected by SOD and KL,
where KL should be high and SOD should be low or moderate in order to max-
imise MH. Figure 1a) suggests a quadratic influence of SOD regarding MH. DE is

Table 3 Selected model estimates and p-values from the fractional-factorial design

MH (max.) DE (max.) RRa (min.) Po (min.)
Est. p-v. Est. p-v. Est. p-v. Est. p-v.

KL 55:8 0.069 7:28 0.004 0:98 0.121 �0:12 0.260
OL 1:1 0.961 �2:13 0.105 0:89 0.146 �0:01 0.912
SOD �87:4 0.022 �7:53 0.004 �1:81 0.029 0:07 0.510
KL*OL 35:4 0.175 �1:54 0.195 0:32 0.536 �0:17 0.152
KL*SOD 19:9 0.394 �2:32 0.087 �1:75 0.031 �0:29 0.046
OL*SOD 6:7 0.761 1:54 0.196 �0:41 0.431 0:06 0.517
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Fig. 1 Main effect and interaction plots from the fractional-factorial design
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mainly determined by KL and SOD including their interaction. When holding SOD
fixed, DE increases with an increase in KL. The best DE results are attained with a
combination of high KL and low SOD (Fig. 1b) The same combination, however,
generates very poor results for RRa (6.06–13.1�m), while a mixture of high KL
and high SOD yields the best RRa results (1.99–2.95�m, Fig. 1c) The model fit
for Po is rather poor (adj. R2 D 0:23), which is most likely due to the difficult and
unexact measurement procedure for porosity, which induces high variance.

2.3 Central Composite Design

For the central composite design star points are used with a distance 2 from the
center to enable adjustability of KL, which can only be varied in steps of 1 L/h
with the device being used. The according levels for KL, OL and SOD are captured
in Table 1. Using the R function “stepAIC” (Venables and Ripley 2002) for each
response the best fit is determined, allowing the algorithm to choose from all pos-
sible main and quadratic effects and all possible 2-way interactions. Starting with
a model including only a constant, effects are added (or dropped) stepwise until no
further improvement of the AIC criterion is possible. The resulting models are

MH D 784:57C 66:77 �KLC 30:90 �OL2 � 60:51 �OL
C 48:07 � SOD2 � 46:86 � SOD C " .se: 95:73; adj: R2 0:54/

(1)

DE D 55:008� 4:108 �KL2 C 5:542 �KL � 7:577 �OL
� 4:848 � SOD � 2:986 � .OL �KL/C " .se: 6:64; adj: R2 0:73/

(2)

RRa D 2:056C 0:948 � SOD2 � 1:059 � SOD C " .se: 1:40; adj: R2 0:53/

(3)

For Po no effect could establish an improvement compared with the very basic
model including only a constant. This is in line with the difficulties experienced
in previous designs for Po, and it appears that Po cannot be properly modelled with
the considered process variables. It is therefore dropped from further analysis. While
residual standard errors (se.) in models (1) and (2) are considerably small, that in
(3) is large, accounting for almost 3/4 of the overall mean, and results in large pre-
diction intervals (Fig. 3c). It is, however, largely induced by one single observation
made at SOD D 100 mm (�2), where RRa D 10:71 �m, while the mean of the
remaining 17 observations is 2.44�m and the second largest observation is 4.11�m.
Dropping this highly influencial point would result in a completely different model
(using only KL2 and KL) with an overall mean of 2.12 and residual standard error
of 0.34. Results from the fractional-factorial design have shown that the observed
high measurement is typical for runs at SOD D 100mm (Fig. 1c), supporting the
decision to use model (3) despite the large residual standard error.
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3 Multi-criteria Optimisation

The idea of multi-criteria optimisation is to find a combination of the independent
variables that optimises ideally all responses at the same time, or at least constitutes
the best possible compromise.

3.1 Overlayed Contours

If the number of responses is small, as is the case here, overlayed contour-plots can
assist in finding an optimum overall setting of the independent variables. Figure 2
shows the contours for MH, DE and RRa at KL levels 1 (a) and 2 (b). It is quite
obvious, that MH improves while moving away in circles from (OL D 1=SOD D
0:5), DE gets better as OL decreases, and RRa takes its lowest value in the valley
where SOD D 0:56. Comparing plots (a) and (b) indicates a small advantage of
KL D 2 over KL D 1, as e.g. in (OL D �2=SOD D 0:56) the prediction for
the most important response MH clearly exceeds 1,100 with KL D 2, but with
KL D 1 it stays just below this mark. However, as a kerosene setting of 12 L/h
(KL D 2) comes with severe technical difficulties, 11 L/h (KL D 1) would have
to be preferred here – remembering that KL can only be varied in steps of 1 L/h
(Sect. 2.3). A disadvantage of contour-plots of the original responses is that they
don’t answer the question of how a setting, which gives rather good results for all
responses (like the one just discussed), compares with a setting that produces a bad
result for one response, but an excellent one for another (such as (KL D 1=OL D
�2=SOD D �2)). In order to be able to make such comparisons all responses must
be combined into one single measure.

3.2 Desirabilities

Before several response variables can be combined, they must be measured on a
common scale. One very practical method to achieve this is to apply Derringer’s
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Table 4 Parameters for desirability transformations (s D 1 in all cases)

MH (max.) d(MH) DE (max.) d(DE) RRa (min.) d(RRa)

LSL 700 0 30 0 1 1
USL 1100 1 60 1 4 0

desirability function (Derringer and Suich 1980) (here for maximisation problems),

d.Y / D
8
<

:

0 if Y < LSL
. Y �LSL

USL�LSL
/s if LSL � Y � USL

1 if Y > USL
(4)

where the desirability of a response Y takes on the value 0 when Y falls below a
lower specification limit (LSL), and the value 1 as Y exceeds the upper specification
limit (USL). Values in between the limits are assigned desirabilities according to (4),
where the transformation is linear if s D 1.

Applying the transformation to predictions made based on the models (3)–(2)
yields desirabilities of these responses which can be combined into one desirability
index, using e.g. the weighted geometric mean D D Qp

iD1.di .Yi //
wi with weights

wi > 0 and
Pp

iD1 wi D 1 for p quality criteria.
After transforming the original responses into desirabilities according to Table 4,

using the R-package “desiRe” (Trautmann et al. 2008), contours of the desirabil-
ity index with weights (MH D 0:4=DE D 0:35=RRa D 0:25) as shown in
Fig. 2c, makes comparisons between different settings easy. For example, the two
settings compared in Sect. 3.1 correspond to desirabilities of 0.92 (KL D 1=OL D
�2=SOD D 0:56) and 0 (KL D 1=OL D �2=SOD D �2). This is due to
unacceptable roughness predictions (�4�m) for SOD < �1, resulting in a desira-
bility 0.

Optimisation of the desirability index in R yields the optimum setting (KL D
1:42=OL D �2:2=SOD D 0:56) with a desirability of 0.93. For reasons explained
in Sect. 3.1 the kerosene level 1 (11 L/h) is used in verification experiments, along
with an oxygen level �2 (750 L/min) – this is preferred over -2.2 (740 L/min) as
this is outside the region of experimentation – and a stand-off distance of 0.56
(138 mm).

The results of three verification experiments with this setting are captured in
Fig. 3, showing the prediction lines along with their corresponding 95% prediction
intervals for MH (a), DE (b) and RRa (c). All results are within the prediction lim-
its and account for desirabilities of 0.93 (˘), 0.83 (ı) and 0.65 (�). Here, even
the weakest point features quite acceptable MH (865) and RRa (1.82), its DE
(61.6) achieves desirability 1. DE for the other two experiments is exceptional (76.1
and 74.4). The latter of these two also accomplishes exceptional MH (1130) with
corresponding desirability 1.
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Fig. 3 Prediction line and 95% prediction interval lines (dashed) for MH, DE and RRa, including
three verification experiments at (KL D 1;OL D �2; SOD D 0:56)

4 Conclusion

A HVOF spraying process was optimised for the deposition of fine, broken
75Cr3C2=25.N iC r20/ feedstock powders with a grain size of 2�8�m. After three
stages of experimental design the process characteristics microhardness, deposition
efficiency and roughness were transformed into desirabilities and combined into
one desirability index which was optimised. Three verification experiments near
the optimum gave very satisfying results with associated desirabilities between 0.65
and 0.93.
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religious structures, 419
spatio-functional data, 167
stability, 665
words, 657

ClusterSim, 187, 188
Combining models, 138–139
Community data mining, 451
Community detection, 501–508
Complex products and systems (CoPS),

726–728, 732
Confidence intervals, exact for odds ratios,

399
Conjoint analysis (CA), 709–712, 717–720,

723
Consensus, 54–56, 58, 59
Constraints, 284–286
Consumer behavior, 726, 729, 730
Consumer behavior modeling, 595, 600–602
Consumer insights, 553
Consumer preferences, 725
Correspondence analysis, 279, 409
Credit default, 595–602
Credit scoring, 595
Cross-validation, 437, 438, 440

Data analysis, 204–206
Data cleaning, 331
Data clustering, 456
Data drift, 26–28, 33, 35
Data stream, 381, 382

join operator, 307
symbolic analysis, 381

Decision support, 783–791
Decision trees, 518, 519, 521, 522
Demand learning, 683
Dependency parsing, 658, 659, 661, 663
Desirability, 803, 805, 807, 808, 811
Dialect data, 665
DialectoMetry, 667
Diffusion of complex products and systems,

725
Diffusion theory, 730
Dimension reduction, 49, 362, 371, 381
Discriminant analysis

discrete, 137
more variables than observations, 227

Dissimilarity measure, 148–150, 169
Distance, 665, 666, 671

Baire, 235
functions, 492

matrices, 665
string, 15

Distance to the nearest center, 579
Diversity, 217
Document categorization, 76, 77
2.5 D System-in-package design, 783–791
Dynamic classification, 663
Dynamic population segmentation, 545

Electronics design, 783
Emotional expression, 772
Environmental epidemiology, 482
e-PCA, 81–83, 86, 88
ESOM, 448
Euclidean distances, 246, 249
Evolutionary algorithms, 793, 797
Evolutionary algorithms, parameter tuning,

793
Experimental design, 813–815
Exploratory data analysis, 263
Exponential family, 81–84, 87, 88

Factor selection, nonlinear, 361
False negative and positive rates, 178
Fama-French model, 614–615, 617–618
Feature extraction, 751, 752, 754–756
Fechnerian scaling, 315
Finance, 604
Finite dimensional Dirichlet process, 393, 396
Finite dimensional representation, 157
Finite mixtures, 129
Forecasting, 604, 605, 607–610
Functional data, 157
Functional data analysis, 167, 168
Fuzzy least square regression, 639
Fuzzy numbers, 351

Generalized additive models (GAM), 482
Generalized linear model with random effects,

391
Genetic algorithm, 53, 54, 59
Genetic search, 49
Genomic regions, 491
Geographic cost-effectiveness, 674
Geostatistical data, 167
Germania superior, 419, 426

Hepatitis C virus (HCV), 509–513, 515
Hierarchical Bayes estimation, 717, 719, 723
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Hierarchical cluster analysis (HCA), 409, 410,
415

Hierarchical clustering, 63, 566, 665, 669–671
Hierarchical coupling, 137
Hierarchical spatial models, 674
Hierarchy, 235, 241
High throughput screening (HTS), 517
High velocity oxygen fuel (HVOF), 811–814,

818
Historical linguistics, 647
Hit, 517–519, 521–524
Hit identification, 493–497
Horizontal gene transfer (HGT), 648–650

Idea mining, 589–590
Image segmentation, 455
INDCLUS, 767, 770–772, 774
INDSCAL, 767, 769–774
Information extraction, 546
Information visualisation, 564, 567
Innovation, 587–593
Instrument, 759–762, 764–766
Interactions, 474, 477–479
Interval, 352–356, 358–360
Interval data, 323
Interval-valued dissimilarities, 341, 344
Invasivity, 491
Isomap, 371–377, 379, 380
I-STRESS, 344–346

Journal of classification, 526, 527

k-center, 9, 10
k-d tree, 4–8
Kernel functions, 538, 541–544
Kernelized multiway analysis, 537
Kernel smoothing, 254, 256–258
Knowledge discovery, 621, 624–627
Knowledge space theory, 263

Language classification, 647
Large-scale simultaneous testing, 177
Latent class models, 127
Latent variable, 92–94, 96, 98, 101–108
Local and global false discovery rates, 180
Locality, 475, 479
Local linear regression, 149
Locally weighted learning, 603
Logistic regression, 514
Longitudinal data, 245
Long-run performance, 613

Machine learning, 517
Manifold, 6
Mantel correlation coeffcients, 49
Marketing

communication, 554, 555, 558, 559
regional sales, 673

Market research, 717
Market research, a priori information, 717
Markets for elderly people, 709
Markov chain Monte Carlo (MCMC),

674–677, 679, 680
Markov switching GARCH models, 630
Microarray, 49–59
Minimax regret, 230
Mining innovative ideas, 587
Missing data, 284
Missing values and the consistency problem,

693
Mixture models, 257

Bayesian, 81
Gaussian, 109

Model, 465, 466, 470
averaging, 105
choice, 633–634
discrete Beta-type, 253
local, 473
logistic, 509
trend vector, 245

Model-based cluster analysis, 109
Monte Carlo methods, 701
Mood estimation, 775
Multi-criteria optimization, 811
Multidimensional scaling

asymmetric, 271
symbolic, 341

Multilayer mixture, 111
Multiobjective optimization, 783
Multi-objective quality assessment, 793
Multi-objective target value optimization, 801
Multiple classifier systems, 26, 27, 35
Multiple correspondence analysis, 93–94, 281
Multiple hypothesis testing, 177
Multisource remote sensing, 435
Multivariate distribution, cluster structured,

209
Multivariate expected improvement, 803, 804
Multi-way analysis, 538
Music, 751, 752, 754, 758, 759
Musical structural analysis, 767, 772
Music information retrieval, 775

Naïve Bayes, 132–134, 228, 229
Neighborhood, 42, 43
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Neisseria Meningitidis, 491
Netnography, 544–556, 558
Network, 502, 504–507
Network analysis, 525
Neural networks, 518–521
New product development (NPD), 701–707
New product research, 587
New video-conference system BRAVIS, 702,

704–705
Nonlinear mapping, 371
Non-linear processes, 153, 154
Non-stationary process, 152, 154
Normal mixture models, 180, 181

One-mode three-way data, 200
Online market monitoring, 545
Ordinary kriging, 169, 170
Orthology links, 503–504, 506
OSS development, 586
Overlapping cluster analysis, 193–195, 199,

200

Paired comparisons, 693
Parametric mapping (PARAMAP), 371–380
Parsing, 657
Partial least squares (PLS) approach, 745,

749
Patent classification, 572
Patent documents, 571
Performance guarantees, 3
Persistent topology, 66–69
Personalisation, 717
Phoneme recognition in popular music, 751
Phylogenetic network approach, 647
Phylogenetic tree, 648–651
Phylogeny, 15
Possession of consumer durables, 735
Poverty indexes, 735, 736
Poverty lines, 735
Precision agriculture, 463
Predictive measure of association, 365
Preference analysis, 709
Pricing, 683, 684
Pricing of risky securities, 639
Principal components analysis, 351
Product design, 709
Production functions, 673
Propensity scores, 361
Protein family, 41, 46
Proximity data, 193
Psychometrics, 263
Psychophysics, 322

Quality based fusion, 29–35
Quality function deployment (QFD), 709–712
Questionnaires, 280, 283, 284, 286

Randomized response, 300–304
Random number, 509–515
Real options, 703–705, 707
Recommender systems, 538
Recommending in social tagging systems, 537
Reconstructed history, 38, 46, 47
Reconstructing evolutionary events, 37
Regression, 463–470
Religion, 419, 420
Religious structures, 419
Respiratory acute disease, 484
Retailing, 717
Revenue management, 684, 686
Revenues of a retail chain, 683
Ridgeline plot, 109
Robust estimation, timescale effects, 481
ROC curves, 521, 523
Roman empire, 422
Roman stamped tiles, 427

Sampling, 308–314, 518, 519
Scale shift, 38, 39, 41–47
Semantic proximity, 562
Sensitive questions, 299–301
Sequential optimization, 801, 802
Sequential parameter optimization (SPO), 794,

796–798, 800
Share repurchase announcements, 613
Significance threshold, 43
Significant common word, 16
Similarity, 666, 667, 669

coefficients, 140, 141, 144
graphs, 71

Simulation models, 187, 188
Single linkage, 64
Singular spectrum analysis (SSA), 482, 484,

486, 488
Singular value decomposition (SVD), 411, 412
SNP association studies, 474
SNP data, 473
Social network analysis (SNA), 553, 554, 560,

579
Social networks, centrality measure, 579
Social science, 279
Social tagging, 537, 538
Software, R, 263, 315
Software, SAS, 245
Soil heterogeneity indicators, 463
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Sparsification, 71–78
Spatial dependence, 440
Spatial planning, 450
Spatial sales response functions, 673
Spatio functional model, 167
Spray experiments, 811
Spreadplot, 288, 290–294, 296
Statistical software, 334
Stock marked analysis, 626, 627
Stock market, 621
Stream mining, 307, 308
String distance, 15
Structural breaks, 630
Structure of household expenditures, 735
Subjective dissimilarity, 316
Support vector machines (SVM), 518–520,

759
Support vector machines, one-class, 775
Surveys, sensitive topics, 299
Symbolic data, 352, 360
Symbolic data analysis, 352, 609
Symbolic Markov chains, asymptotic behavior,

323
Symbolic multidimensional scaling., 341
System dynamics, 726, 728–730

Tag cloud, 561, 562, 564
Target value problem, 802, 804
Text classification, 593
Text mining, 589

Three-way analysis, 193
Three-way scaling, music structure, 767
Time series, 381–388, 603–610
Time series clustering, 147, 148
Tree cloud, 561
Treed Gaussian process models, 101
Tree Kernel, 571

Ultrametric, 235, 236, 241
Unfolding, 249
Unimodality, 111, 115
Unsupervised sparsification, 71
Use of mixture models, 177

Vaccine design, 492
Validation, 202–204, 206, 428, 430–433, 665,

669, 670
Variable selection, 59
Variational Bayes method, 82, 84–86
Viral responders, 509
Visual exploratory data analysis, 291
Visualization, text, 561
Visualizing data quality, 331

Weblog, 556, 557, 559
Weblog networks, 553
Web of science, 525
Web site brand, 743
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