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Abstract. In many works dealing with knowledge representation, there is a temp-
tation to extend the truth-set underlying a given logic with values expressing ig-
norance and contradiction. This is the case with partial logic and Belnap bilattice
logic with respect to classical logic. This is also true in three-valued logics of rough
sets. It is found again in interval-valued, and type two extensions of fuzzy sets. This
paper shows that ignorance and contradiction cannot be viewed as additional truth-
values nor processed in a truth-functional manner, and that doing it leads to weak or
debatable uncertainty handling approaches.

1 Introduction

From the inception of many-valued logics, there have been attempts to attach an
epistemic flavor to truth degrees. Intermediary truth-values between true and false
were often interpreted as expressing a form of ignorance or partial belief (less of-
ten, the idea of contradiction). However, multiple-valued logics are generally truth-
functional. The trouble here is that, when trying to capture the status of any unknown
proposition by a truth-value, the very assumption of truth-functionality (building
truth-tables for all connectives) is debatable. Combining two propositions whose
truth-value is unknown sometimes results in tautological or contradictory state-
ments, whose truth-value can be asserted from the start, even without any prior
knowledge. As long as p can only be either true or false, even if this truth-value
cannot be computed or prescribed as of to-day, the proposition p∧¬p can be un-
mistakably at any time predicted as being false and p∨¬p as being true while p∧ p
and p∨ p remain contingent. So there is no way of defining a sensible truth-table that
accounts for the idea of possible : belief is never truth-functional [21]. Mixing up
truth and belief has led to a very confusing situation in traditional many-valued log-
ics, and has probably hampered the development of applications of these logics. The
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epistemic understanding of truth-functional many-valued logics has been criticized
by some scholars quite early, for instance by Urquhart [41]. Fuzzy logic is likewise
often attacked because it is truth-functional. A well-known example is by Elkan [25]
criticising the usual fuzzy connectives max,min,1−, as leading to an inconsistent
approach. Looking at these critiques more closely, it can be seen that the root of
the controversy also lies in a confusion between degrees of truth and degrees of be-
lief. Fuzzy logic is not specifically concerned with belief representation, only with
gradual (not black or white) concepts [33]. However this misunderstanding seems
to come a long way. For instance, a truth-value strictly between true and false was
named “possible” [38], a word which refers to uncertainty modelling and modalities.
We claimed in [18] that we cannot consistently reason under incomplete or conflict-
ing information about propositions by augmenting the set of Boolean truth-values
true and false with epistemic notions like “unknown” or “contradictory”, modeling
them as additional genuine truth-values of their own, as done in partial logic and
Belnap’s allegedly useful four-valued logic.

After reminding how uncertainty due to incompleteness is handled within propo-
sitional logic, the paper summarizes the critical discussion on partial logic previ-
ously proposed in [18], showing the corresponding extension of sets to ill-known
sets, whose connectives are closely related to Kleene 3-valued logic. Two examples
of ill-known sets are exhibited, especially rough sets. The debatable assumption be-
hind some three-valued logics of rough sets is laid bare. Next, a critical discussion
on Belnap logic is given, borrowing from [18]. Finally, we consider the case of
truth-functional extensions of fuzzy set algebras, such as interval-valued fuzzy sets
and membership/nonmembership pairs of Atanassov, as well as type two fuzzy sets
where truth-functionality is also taken for granted, and that suffer from the same
kind of limitations.

2 Truth vs. Belief in Classical Logic

In the following, 1 stands for true and 0 stands for false. In a previous paper [22]
we pointed out that while classical (propositional) logic is always presented as the
logic of the true and the false, this description neglects the epistemic aspects of this
logic. Namely, if a set B of well-formed Boolean formulae is understood as a set
of propositions believed by an intelligent agent (a belief base) then the underlying
uncertainty theory is ternary and not binary. The three situations are:

1. p is believed (or known), which is the case if B implies p;
2. its negation is believed (or known), which is the case if B implies ¬p;
3. neither p nor ¬p is believed, which is the case if B implies neither ¬p nor p.

In this setting belief is Boolean, in the sense that a proposition is believed or not.
We can define a belief assessment procedure to propositions, by means of a cer-
tainty function N assigning value 1 to p whenever B implies p (N(p) = 1) and 0
otherwise. The third situation above indicates a proposition that is neither believed
nor is disbelieved by a particular agent. N is not a truth-assignment: one may have
N(p) = N(¬p) = 0, when p is unknown. The N function encodes a necessity-like
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modality. Indeed it is not fully compositional; while N(p∧ q) = min(N(p),N(q)),
N(p∨q) �= max(N(p),N(q)), generally, and N(p) is not 1−N(¬p). The latter is the
possibility function, in agreement with the duality between possibility and necessity
in modal logic. So even Boolean belief is not compositional.

It is clear that belief refers to the notion of validity of p in the face of B
and is a matter of consequencehood, not truth-values. The property N(p ∧ q) =
min(N(p),N(q)) just expresses that the intersection of deductively closed knowl-
edge bases is closed, while N(p∨q) �= max(N(p),N(q)) reminds us that the union
of deductively closed propositional bases is not closed.

Through inference, we can check what are the possible truth-values left for
propositions when constraints expressed in the belief base are taken into account.
In fact, belief is represented by means of subsets of possible truth-values enabled
for p when taking propositions in B for granted. Full belief in p corresponds to
the singleton {1} (only the truth-value ”true” is possible); full disbelief in p cor-
responds to the singleton {0} ; the situation of total uncertainty relative to p for
the agent corresponds to the set {0,1}. This set is to be understood disjunctively
(both truth-values for p remain possible due to incompleteness, but only one is cor-
rect). Under such conventions, the characteristic function of {0,1} is viewed as a
possibility distribution π (Zadeh [48]). Namely, π(0) = π(1) = 1 means that both
0 and 1 are possible. It contrasts with other uses of subsets of truth-values, inter-
preted conjunctively, whereby {0,1} is understood as the simultaneous attachment
of ”true” and ”false” to p (expressing a contradiction, see Dunn [24]). This conven-
tion is based on necessity degrees N(0) = 1−π(1);N(1) = 1−π(0). Then clearly,
N(0) = 1 = N(1) indicates a strong contradiction. But this convention cannot be
easily extended beyond two-valued truth sets, so we shall not use it.

It must be emphasized that {0},{1}, and {0,1} are not truth-values of propo-
sitions in B. They express what can be called epistemic valuations whereby the
agent believes p, believes ¬p, or is ignorant about p respectively. It makes it clear at
the mathematical level that confusing truth-values and epistemic valuations comes
down to confusing elements of a set and singletons contained it it, let alone subsets.

Clearly, the negation of the statement p is believed (inferred from B) is not the
statement ¬p is believed , it is p is not believed. However, the statement p is not
believed cannot be written in propositional logic because its syntax does not allow
for expressing ignorance in the object language. The latter requires a modal logic,
since in classical logic, if one interprets p ∈ B as a belief, ¬p ∈ B means that ¬p,
is believed, not that p is just not believed. Likewise, p∨ q ∈ B is believed does
not mean that either p is believed or q is believed. Assigning epistemic valuation
{1} to p∨ q is actually weaker than assigning {1} to one of p or q. In the case of
ignorance about p, {0,1} should be assigned to p and to ¬p. However only {1} can
be attached to their disjunction (since it is a tautology). This fact only reminds us
that the union of deductively closed belief sets need not be deductively closed.

In order to capture the lack of belief or ignorance at the object level, formulas
of propositional logic can be embedded within a modal-like system (Dubois, Hájek,
and Prade [17], Banerjee and Dubois [6]). This embedding of classical logic into a
modal logic is not the usual one: usually, propositional logic is a fragment (without
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modalities) of a modal logic. In the system MEL developed in [6], all wffs are made
of classical propositions p prefixed by �, or their combination by means of classical
connectives (formulas α of the form �p are in MEL, and so are ¬α , α ∧β ). Boxed
formulas �p are new atoms of a (higher order) propositional logic MEL satisfies
modal axoms K and D, but does not allow for nested modalities. The boxed fragment
of MEL is isomorphic to propositional calculus. Any modal logic where the K axiom
�(p → q) → (�p → �q) holds verifies this embedding property. So MEL is not at
all a standard modal logic, in the sense that it encapsulates propositional calculus
but it does not extend it. Philosophically, MEL modalities are understood de dicto,
and not de re, contrary to the tradition of XXth century logic. Namely, �p concerns
the certainty of being able to assert p, not the certainty that an event referred to as p
has occurred, is really true: MEL forbids direct access to the “real world”, and this
is consistent with the fact that propositional formulas like p (stating that p is true)
cannot be expressed in MEL.

In fact, the truth-value of �p tells whether p is believed or not: �p is true pre-
cisely means that the agent’s beliefs enforce {1} as the subset of truth-values left
to p, i.e. it is true that p is believed (to be true). So, what belief internally means
may be captured by a kind of external truth-set, say {0,1}. Mind that the value
1 in t(�p) = 1 and the value 1 in t(p) = 1 refer to different truth-sets (and dif-
ferent propositions). This trick can be used for probability theory and other non-
compositional uncertainty theories (see Godo, Hájek et al. [30, 29]) and leads to a
better way of legitimating the use of many-valued logics for uncertainty manage-
ment: the lack of compositionality of belief is captured in the object language. For
instance, the degree of probability Prob(p) can be modeled as the truth-value of the
proposition “Probable(p)” (which expresses the statement that p is probably true),
where Probable is a many-valued predicate, but Prob(p) is not the (allegedly) mul-
tivalued truth-value of the (Boolean) proposition p.

3 From Partial Logic to Ill-Known Sets

Partial logic starts from the claim that not all propositional variables need to be
assigned a truth-value, thus defining partial interpretations and that such undefined-
ness may stem from a lack of information. This program is clearly in the scope of
theories of uncertainty and partial belief, introduced to cope with limited knowl-
edge. Other interpretations of partiality exist, that are not considered here. From a
historical perspective, the formalism of partial logic is not so old, but has its root
in Kleene [35]’s three-valued logic, where the third truth-value expresses the im-
possibility to decide if a proposition is true or false. The reader is referred to the
dissertation of Thijsse [40] and a survey paper by Blamey [11].

3.1 Connectives of Partial Logic

At the semantic level, the main idea of partial logic is to change interpretations s ∈ S
into partial interpretations, also called coherent situations (or situations, for short)
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obtained by assigning a Boolean truth-value to some (but not all) of the propositional
variables forming a set Prop = {a,b,c, . . .}. A coherent situation can be represented
as any conjunction of literals pertaining to distinct propositional variables. Denote
by σ a situation, S the set of such situations, and V (a,σ) the partial function from
Prop×S to {0,1} such that V (a,σ) = 1 if a is true in σ , 0 if a is false in σ ,
and is undefined otherwise. Then, two relations are defined for the semantics of
connectives, namely satisfies (|=T ) and falsifies (|=F ):

• σ |=T a if and only if V (σ ,a) = 1; σ |=F a if and only if V (σ ,a) = 0;
• σ |=T ¬p if and only if σ |=F p; σ |=F ¬p if and only if σ |=T p;
• σ |=T p∧q if and only if σ |=T p and σ |=T q;
• σ |=F p∧q if and only if σ |=F p or σ |=F q
• σ |=T p∨q if and only if σ |=T p or σ |=T q;
• σ |=F p∨q if and only if s |=F p and σ |=F q.

In partial logic a coherent situation can be encoded as a truth-assignment tσ map-
ping each propositional variable to the set {0, 1

2 ,1}, understood as a partial Boolean
truth-assignment in {0,1}. Let tσ (a) = 1 if atom a appears in σ , 0 if ¬a appears in
σ , and tσ (a) = 1

2 if a is absent from σ . The basic partial logic can thus be described
by means of a three-valued logic, where 1

2 (again) means unknown. The connectives
can be expressed as follows: 1− x for the negation, max for disjunction, min for the
conjunction, and max(1− x,y) for the implication. Note that if tσ (p) = tσ (q) = 1

2 ,
then also tσ (p∨q) = tσ (p∧q) = tσ (p → q) = 1

2 in this approach.

3.2 Supervaluations

Since these definitions express truth-functionality in a three-valued logic, this logic
fails to satisfy all classical tautologies. But this anomaly stems from the same dif-
ficulty again, that is, no three-element set can be endowed with Boolean algebra
structure! (nor is the set 3 of non-empty intervals on {0,1}). A coherent situation
σ can be interpreted as a special set A(σ) ⊆ S of standard Boolean interpretations,
and can be viewed as a disjunction thereof. A coherent situation can be encoded as
a formula whose set of models A(σ) can be built just completing σ by all possible
assignments of 0 or 1 to variables not assigned yet. It represents an epistemic state
reflecting a lack of information. If this view is correct, the equivalence σ |=T p∨q if
and only if σ |=T p or σ |=T q cannot hold under classical model semantics. Indeed
σ |=T p supposedly means A(σ)⊆ [p] and σ |=F p supposedly means A(σ)⊆ [¬p],
where [p] is the set of interpretations where p is true. But while A(σ)⊆ [p∨q] holds
whenever A(σ) ⊆ [p] or A(σ) ⊆ [q] holds, the converse is invalid!

This is the point made by Van Fraassen [42] who first introduced the notion of
supervaluation to account for this situation. A supervaluation SV over a coherent
situation σ is (in our terminology) a function that assigns, to each proposition in the
language and each coherent situation σ , the super-truth-value SV(p,σ) = 1 (0) to
propositions that are true (false) for all Boolean completions of σ . It is clear that
p is “super-true” (SV(p,σ) = 1) if and only if A(σ) ⊆ [p], so that supervaluation
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theory recovers missing classical tautologies by again giving up truth-functionality:
p∨¬p is always super-true, but SV(p∨ q,σ) cannot be computed from SV(p,σ)
and SV(q,σ). The term “super-true” in the sense of Van Fraassen stands for “cer-
tainly true” in the terminology of possibilistic belief management in classical logic.
The belief calculus at work in propositional logic covers the semantics of partial
logic as a special case. It exactly coincides with the semantics of the supervaluation
approach. Assuming compositionality of epistemic annotations by means of Kleene
three-valued logic provides only an imprecise approximation of the actual Boolean
truth-values of complex formulas [14].

3.3 Ill-Known Sets

Besides, the algebra underlying this (Kleene-like) three-valued logic is isomorphic
to the set 3 of non-empty intervals on {0,1}, equipped with the interval extension
of classical connectives. Consider 1

2 as the set {0,1} (understood as an interval such
that 0 < 1), the other intervals being the singletons {0} and {1}. Indeed this comes
down to computing the following cases:

• For conjunction : {0}∧{0,1}= {0∧0,0∧1}= {0};
{1}∧{0,1}= {1∧0,1∧1}= {0,1}, etc.

• For disjunction : {0}∨{0,1}= {0∨0,0∨1}= {0,1};
{1}∨{0,1}= {1∨0,1∨1}= {1}, etc.

• For negation: ¬{0,1} = {¬0,¬1} = {0,1}.

It yields the following tables for connectives ∨ and ∧ :

Table 1 Kleene disjunction for interval-valued sets

∨ {0} {0,1} {1}
{0} {0} {0,1} {1}
{0,1} {0,1} {0,1} {1}
{1} {1} {1} {1}

Table 2 Kleene conjunction for interval-valued sets

∧ {0} {0,1} {1}
{0} {0} {0} {0}
{0,1} {0} {0,1} {0,1}
{1} {0} {0,1} {1}

This remark suggests that sets could be extended to ill-known subsets of a set S,
assigning to elements s ∈ S one of the three non-empty subsets of {0,1}. It is tempt-
ing to model them by three-valued sets denoted Â whose characteristic function
ranges on 3 = 2{0,1}− /0 with the following conventions
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μÂ(s) = {1} if s belongs for sure to the set A

{0} if s for sure does not belongs to the set A

{0,1} if it is unknown whether s belongs or not to the set A

It encodes a pair of nested sets (A∗,A∗), A∗ containing the sure elements, A∗ \A∗
being the elements with unknown membership. This is called an interval-set by
Yao [45]. It is possible to extend the standard set theoretic operations to such three-
valued sets using Kleene three-valued logic, equivalent to the interval operations to
connectives defined in Tables 1 and 2 (Â looks like a kind of fuzzy set). Equiva-
lently, one may, as done by Yao [45], consider the interval extension of Boolean
connectives to interval sets A∗ ⊂ A ⊂ A∗. Note that while the subsets of {0,1} form
a Boolean algebra (under set inclusion), the set of “intervals” 3 = {{0},{1},{0,1}}
of {0,1} form a 3-element chain, a different structure, hence the loss of tautologies,
if it is used as a new truth set, so that ill-known sets have properties different from
sets. However it should be clear that this algebraic structure does not address (but
in a very approximate way) the issue of reasoning about the ill-known set A. For
instance, the complement of Â is Âc obtained by switching {0} and {1} in the above
definition, i.e. yields the pair ((A∗)c,(A∗)c). Hence Â∩ Âc corresponds to the pair
(A∗ ∩(A∗)c,A∗ ∩(A∗)c), where A∗ ∩(A∗)c = /0 while A∗ ∪(A∗)c �= /0, generally [45].
However, the fuzzy set Â is not an object in itself, it is a representation of the in-
complete knowledge of an agent about a set A, of which all that is known is that
A∗ ⊂ A ⊂ A∗. But despite the fact that A is ill-known, A∩Ac = /0 regardless of what
is known or not, and this information is lost by the Kleene setting, considering sub-
sets of truth-values as truth-values and acting compositionally. Kleene’s three valued
logic is more naturally truth-functional when viewed as a simplified variant of fuzzy
logic, where the third truth-value means half-true. The loss of classical tautologies
then looks more acceptable.

For instance, let a one-to-many mapping Φ : S → 2V represent an imprecise ob-
servation of some attribute f : S → V . Namely, for each object s ∈ S, all that is
known about the attribute value f (s) is that it belongs to the set Φ(s) ⊆ V . Sup-
pose we want to describe the set f−1(T ) of objects that satisfy a property T , namely
{s ∈ S : f (s) ∈ S ⊂V}. Because of the incompleteness of the information, the subset
f−1(T )⊆ S is an “ill-known set” [20]. In other words, f−1(T ) can be approximated
from above and from below, respectively by upper and lower inverses of A via Φ:

• Φ∗(T ) = {s ∈ S s.t. Φ(s)∩A �= /0} is the set of objects that possibly belong to
f−1(T ).

• Φ∗(T ) = {s ∈ S s.t. Φ(s) ⊆ A} is the set of objects that surely belong to f−1(T ).

The pair (Φ∗(T ),Φ∗(T )) is such that Φ∗(T ) ⊆ f−1(T ) ⊆ Φ∗(T ) and defines an ill-
known set. The multi-valued mappings Φ∗ and Φ∗ are respectively upper and lower
inverses of Φ . Clearly, connectives will not be not truth-functional, since in general,
inclusions Φ∗(T ∩U)⊂Φ∗(T )∩Φ∗(U) and Φ∗(T )∪Φ∗(T )⊂Φ∗(T )∪Φ∗(U) will
be strict.
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4 Rough Sets and 3-Valued Logic

Another typical example of ill-known set is a rough set. Here, uncertainty takes the
form of a partition of the universe S of objects, say S1, . . .Sk. For instance objects are
described by an insufficient number of attributes so that some objects have the same
description. All that is known about any object in S is which subset of the partition
it belongs to. So each subset A of S is only known in terms of its upper and lower
approximations, a pair (A∗,A∗) such that

A∗ = ∪{Si,Si ∩A �= /0}

and
A∗ = ∪{Si,Si ⊆ A}.

It is clear that truth-functionality fails again as (A∩B)∗ ⊂ A∗ ∩B∗ and A∗ ∪B∗ ⊂
(A∪B)∗, in general (e.g. Yao [46]).

4.1 Three-Valued Settings for Rough Sets

However, various authors have tried to capture the essential features of rough sets
by means of a three-valued compositional calculus (for instance Banerjee [7, 5],
Itturioz [34], etc.). This is due to the existence of several points of view on rough
sets, some of which are compatible with a less stringent interpretation. The most
standard view is to call rough relatively to an equivalence relation R a subset A
of S such that A∗ �= A∗; on the contrary, a set A such that A∗ = A∗ is said to be
exact. The next definition considers rough sets as equivalence classes of subsets of
S that have the same upper and lower approximations. In this view, two sets A and
B such that A∗ = B∗ and A∗ = B∗ are considered indistinguishable, and one is led to
study nested pairs of exact sets (E,F) with E ⊆ S as primitive objects representing
equivalence classes of indistinguishable sets. Note that (E,F) is indeed a pair of
upper and lower approximation only if F \E does not contain any singleton of S
(since such a singleton can never overlap a subset of S without being included in it).
So defining a rough set as any nested pair of exact sets (E,F) is not really faithful
to the basic framework.

It is nevertheless tempting to see approximation pairs of subsets as naturally 3-
valued entities. The basic justification for this move is the existence of some under-
lying sets C,D such that (Bonikowski [12]):

C∗ = A∗ ∩B∗ and D∗ = A∗ ∪B∗ (1)

that depend on the original sets A,B. Moreover C∗ = A∗ ∩B∗ and D∗ = A∗ ∪B∗ as
well. Banerjee and Chakraborty [7] use

C = A�B = (A∩B)∪ (A∩B∗ ∩ (A∩B)∗c)

and
D = AB = (A∪B)∩ (A∪B∗ ∪ (A∪B)c

∗).



Degrees of Truth, Ill-Known Sets and Contradiction 73

Likewise, noticing that (Ac)∗ = (A∗)c, an implication ⇒ can be defined such that
(E,F)⇒ (E ′,F ′) holds if and only if E ⊆ E ′ and F ⊆ F ′, namely, if E = A∗, F = A∗,
E ′ = B∗, F ′ = B∗, the pair of nested exact sets (E,F)⇒ (E ′,F ′) is made of the upper
and lower approximations of ((A∗)c ∪B∗)∩ ((A∗)c ∪B∗). This framework for rough
equivalence classes is the one of what Banerjee and Chakraborty [7] call prerough al-
gebra. It is shown to be equivalent to a 3-valued Łukasiewicz algebra by Banerjee [5].

4.2 On the Language-Dependent Definition of Sets

However, it must be noticed that the sets C and D as defined by Banerjee and
Chakraborty [7] (also Iturrioz [34]) so as to ensure the validity of equation (1) do
not depend on operands A and B only: since C is defined using an upper approxima-
tion and D involves a lower approximation, C and D depend on the partition used to
define exact sets. In fact Bonikowski [12] shows that the set C is always of the form
(A∗ ∩B∗)∪Y where Y is obtained as follows: Let the exact set (A∗ ∩B∗)\ (A∗ ∩B∗)
be made of union S1 ∪ ·· · ∪ Sk of equivalence classes of objects in S, and consider
proper non-empty subsets Ti of Si, i = 1 . . .k. Then take Y = T1 ∪ ·· · ∪ Tk. Note
that by construction Y∗ = /0, while Y ∗ = S1 ∪ ·· · ∪ Sk. These properties ensure that
C∗ = A∗ ∩B∗ while C∗ = A∗ ∩B∗. Besides, this construct makes it clear that no such
equivalence class Si should be a singleton of the original set S (otherwise Si has no
proper non-empty subset, and Y∗ = /0 may be impossible.)

Rough sets are induced by the existence of several objects that cannot be told
apart because of having the same description in a certain language used by an ob-
server. However, subsets of S defined in extension exist independently of whether
they can be described exactly or not in this language. The set C, laid bare above,
whose upper and lower approximations are A∗ ∩ B∗ and A∗ ∩ B∗ depends on the
number of attributes used to describe objects. Moreover, this set is not even uniquely
defined. Here lies the questionable assumption: sets A and B are intrinsically inde-
pendent of the higher level language: they are given subsets of objects that can
be defined in extension (perhaps using a lower level more precise language). On
the contrary, their upper and lower approximations depend on the higher level lan-
guage used to describe these sets: the more attributes the finer the descriptions.
In other words, pairs of exact sets (A∗,A∗) and (B∗,B∗) are not existing entities,
they are mental constructs representing A and B using attributes. They are observer-
dependent, while A and B can be viewed as actual subsets. On the contrary the
above discussion shows that C and D are not actual entities, as these subsets are
observer-dependent as well, and can be chosen arbitrarily to some extent. Adding
one attribute will not affect A nor B but it will change the equivalence relation,
hence the partition, hence C and D as well. So the algebraic construct leading to
a three-valued logic does away with the idea that approximation pairs stem from
well-defined intrinsic subsets of the original space, and that logical combinations
of such approximation pairs should reflect the corresponding combination of lower
level (“objective”) entities, that should not be affected by the discrimination power
of the observer or the higher level language used to describe the objects : to be
objective entities, C and D should be well-defined and depend only on A and B in S.
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But then as recalled earlier, truth-functionality is lost, i.e. we cannot exactly repre-
sent the combination of subsets of S by the combination of their approximations.

The pre-rough algebras and the corresponding 3-valued logic studied by Banerjee
and Chakraborty [7] are tailored for manipulating equivalence classes of subsets of
S, all consisting of all sets having the same upper and lower approximations, without
singling out any of them as being the “real” one in each such equivalence class. More
recently, Avron and Konikowska [3] have tried to suggest a more relaxed three-
valued setting for rough sets using non-deterministic truth-tables, that accommodate
the inclusions (A∩B)∗ ⊂ A∗ ∩B∗ and A∗ ∪B∗ ⊂ (A∪B)∗, admitting the idea that if
an element belongs to both boundaries of two upper approximations, it may or not
belong to the boundary of the upper approximation of their intersection.

5 Belnap Four-Valued Logic

Two seminal papers of Belnap [9, 10] propose an approach to reasoning both with
incomplete and with inconsistent information. It relies on a set of truth-values form-
ing a bilattice, further studied by scholars like Ginsberg [28] and Fitting [26] (see
Konieczny et al. [36] for a recent survey). Belnap logic, considered as a system for
reasoning under imperfect information, suffers from the same difficulties as partial
logic, and for the same reason. Indeed one may consider this logic as using the three
epistemic valuations already considered in the previous sections (certainly true, cer-
tainly false and unknown), along with an additional one that accounts for epistemic
conflicts.

5.1 The Contradiction-Tolerant Setting

Belnap considers an artificial information processor, fed from a variety of sources,
and capable of anwering queries on propositions of interest. In this context, incon-
sistency threatens, all the more so as the information processor is supposed never
to subtract information. The basic assumption is that the computer receives infor-
mation about atomic propositions in a cumulative way from outside sources, each
asserting for each atomic proposition whether it is true, false, or being silent about
it. The notion of epistemic set-up is defined as an assignment, of one of four values
denoted T,F,BOTH,NONE, to each atomic proposition a,b, . . . :

1. Assigning T to a means the computer has only been told that a is true.
2. Assigning F to a means the computer has only been told that a is false.
3. Assigning BOTH to a means the computer has been told at least that a is true by

one source and false by another.
4. Assigning NONE to a means the computer has been told nothing about a.

In view of the previous discussion, the set 4 = {T,F,BOTH,NONE} coincides
with the power set of {0,1}, namely T = {1}, F = {0}, the encoding of the other
values depending on the adopted convention: under Dunn Convention, NONE = /0;
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BOTH = {0,1}. It expresses accumulation of information by sources. This con-
vention uses Boolean necessity degrees, i.e. BOTH means N(0) = N(1) = 1,
NONE means N(0) = N(1) = 0. According to the terminology of possibility theory,
NONE = {0,1}; BOTH = /0. These subsets represent constraints, i.e., mutually ex-
clusive truth-values, one of which is the right one. NONE means π(0) = π(1) = 1,
BOTH means π(0) = π(1) = 0. Then /0 corresponds to no solution.

The approach relies on two orderings in 4:

• The information ordering, �, such that NONE � T � BOTH;NONE � F �
BOTH. This ordering reflects the inclusion relation of the sets /0, {0},{1}, and
{0,1}, using Dunn convention. It intends to reflect the amount of (possibly con-
flicting) data provided by the sources. NONE is at the bottom because (to quote)
“it gives no information at all”. BOTH is at the top because (following Belnap)
it gives too much information.

• The logical ordering, ≺ , according to which F ≺ BOTH ≺ T and F ≺ NONE ≺
T each reflecting the truth-set of Kleene’s logic. It corresponds to the idea of ”less
true than”, even if this may sound misleadingly suggesting a confusion with the
idea of graded truth. In fact F ≺ BOTH ≺ T canonically extends the ordering
0 < 1 to the set 3 of non-empty intervals on {0,1}, under Dunn convention and
F ≺ NONE ≺ T does the same under possibility degree convention.

Then, connectives of negation, conjunction and disjunction are defined truth-funct-
ionally on the bilattice. The set 4 is isomorphic to 2{0,1} equipped with two lattice
structures:

• the information lattice, a Scott approximation lattice based on union and inter-
section of sets of truth-values using Dunn convention. For instance, in this lattice
the maximum of T and F is BOTH;

• the logical lattice, based on the interval extension of min, max and 1− from
{0,1} to 2{0,1} \{ /0} respectively under Dunn Convention (for BOTH ) and pos-
sibility degree convention (for NONE).

These logical connectives respect the following constraints:

1. They reduce to classical negation, conjunction and disjunction on {T,F};
2. They are monotonic w.r.t. the information ordering �;
3. p∧q = q if and only if p∨q = p;
4. They satisfy commutativity, associativity of ∨,∧, De Morgan laws.

For instance, the first property enforces ¬T = F and ¬F = T and then, the mono-
tonicity requirement forces the negation ¬ to be such that ¬BOTH = BOTH and
¬NONE = NONE. It can be shown that the restrictions of all connectives to the
subsets {T,F,NONE} and {T,F,BOTH} coincide with Kleene’s three-valued
truth-tables, encoding BOTH and NONE as 1

2 . The conjunction and disjunction
operations ∨ and ∧ exactly correspond to the lattice meet and joint for the log-
ical lattice ordering. In fact, BOTH and NONE cannot be distinguished by the
logical ordering ≺ and play symmetric roles in the truth-tables. The major new
point is the result of combining conjunctively and disjunctively BOTH and NONE.
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The only possibility left for such combinations is that BOTH∧ NONE = F and
BOTH∨NONE = T. This looks intuitively surprising but there is no other choice
and this is in agreement with the information lattice.

5.2 Is It How a Computer Should Think ?

Belnap’s calculus is an extension of partial logic to the truth-functional handling
of inconsistency. In his paper, Belnap does warn the reader on the fact that the
four values are not ontological truth-values but epistemic ones. They are qualifi-
cations referring to the state of knowledge of the agent (here the computer). The
set-representation of Belnap truth-values after Dunn [24] rather comforts the idea
that these are not truth-values. Again, {1} is a subset of {0,1} while 1 is an element
thereof.

Belnaps explicitly claims that the systematic use of the truth-tables of 4 “tells us
how the computer should answer questions about complex formulas, based on a set-
up representing its ‘epistemic state”( [9], p. 41). However, since the truth-tables of
conjunction and disjunction extend the ones of partial logic so as to include the value
BOTH, Belnap’s logic inherits all difficulties of partial logic regarding the truth-
value NONE. Moreover, equalities BOTH∧BOTH = BOTH, BOTH∨BOTH =
BOTH are hardly acceptable when applied to propositions of the form p and ¬p, if
it is agreed that these are classical propositional formulas.

Another issue is how to interpret the results BOTH∧NONE = F and BOTH∨
NONE = T. One may rely on bipolar reasoning and argumentation to defend that
when p is BOTH and q is NONE, p∧ q should be BOTH∧NONE = F. Suppose
there are two sources providing information, say S1 and S2. Assume S1 says p is true
and S2 says it is false. This is why p is BOTH. Both sources say nothing about q, so
q is NONE. So one may consider that S1 would have nothing to say about p∧q, but
one may legitimately assert that S2 would say p∧q is false. In other words, p∧q is
F: one may say that there is one reason to have p∧ q false, and no reason to have
it true. However, suppose two atomic propositions a and b with E(a) = BOTH and
E(b) = NONE. Then E(a∧b) = F. But since Belnap negation is such that E(¬a) =
BOTH and E(¬b) = NONE, we also get E(¬a∧b) = E(a∧¬b) = E(¬a∧¬b) = F.
Hence E((a∧b)∨ (¬a∧b)∨ (a∧¬b)∨ (¬a∧¬b)) = F that is, E(�) = F which is
hardly acceptable again. See Fox [27] for a related critique.

More recently Avron et al. [2] have reconsidered the problem of a computer
collecting and combining information from various sources in a wider framework,
where sources may provide information about complex formulas too. The combi-
nation of epistemic valuations attached to atoms or formulas is dictated by rules
that govern the properties of connectives and their interaction with valuation assign-
ments in a more transparent way than Belnap truth-tables. Various assumptions on
the combination strategy and the nature of propositions to be inferred (the possi-
bly true ones or the certainly true ones) lead to recover various more or less strong
logics, including Belnap formalism. The proposed setting thus avoids making the
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confusion between truth-values (that can be Boolean or not in the proposed ap-
proach, according to the properties chosen) and epistemic valuations.

6 Interval-Valued Fuzzy Sets

IVFs were introduced by Zadeh [50], along with some other scholars, in the seven-
ties (see [23] for a bibliography), as a natural truth-functional extension of fuzzy
sets. Variants of these mathematical objects exist, under various names (vague
sets [13] for instance). The IVF calculus has become popular in the fuzzy engineer-
ing community of the USA because of many recent publications by Jerry Mendel
and his colleagues [39]. This section points out the fact that if intervals of member-
ship grades are interpreted as partial ignorance about precise degrees, the calculus
of IVFs suffers from the same flaw as partial logic, and the truth-functional calculus
of ill-known sets, of which it is a many-valued extension.

6.1 Definitions

An interval-valued fuzzy set is defined by an interval-valued membership function.
Independently, Atanassov [1] introduced the idea of defining a fuzzy set by ascribing
a membership function and a non-membership function separately, in such a way
that an element cannot have degrees of membership and non-membership that sum
up to more than 1. Such a pair was given the misleading name of “Intuitionistic
Fuzzy Sets” as it seems to be foreign to intuitionism [23]. It also corresponds to
an intuition that differs from the one behind IVFs, although both turned out to be
mathematically equivalent notions (e.g. G. Deschrijver, E. Kerre [15]).

An IVF is defined by a mapping F from the universe S to the set of closed inter-
vals in [0,1]. Let F(s) = [F∗(s),F∗(s)]. The union, intersection and complementa-
tion of IVF’s are obtained by canonically extending fuzzy set-theoretic operations
to interval-valued operands in the sense of interval arithmetic. As such operations
are monotonic, this step is mathematically obvious. For instance, the most elemen-
tary fuzzy set operations are extended as follows, for conjunction F ∩G, disjunction
F ∪G and negation Fc, respectively:

[F ∩G](s) = [min(F∗(s),G∗(s)),min(F∗(s),G∗(s))];

[F ∪G](s) = [max(F∗(s),G∗(s)),max(F∗(s),G∗(s))];

Fc(s) = [1−F∗(s),1−F∗(s)].

Considering IVFs as a calculus of intervals on [0,1] equipped with such operations,
they are a special case of L-fuzzy sets in the sense of Goguen [31], so as mathemat-
ical objects, they are not of special interest. An IVF is also a special case of type
two fuzzy set (also introduced by Zadeh [49]). Of course all connectives of fuzzy
set theory were extended to interval-valued fuzzy sets and their clones. IFVs are be-
ing studied as specific abstract algebraic structures [16], and a multiple-valued logic
was recently proposed for them, called the triangle logic [43].
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6.2 The Paradox of Truth-Functional Interval-Valued
Connectives

Paradoxes of IVFs are less blatant than those of Kleene and Łukasiewicz three-
valued logics (when the third truth-value refers to ideas of incomplete knowledge)
because in the latter case, the lack of excluded-middle law on Boolean propositions
is a striking anomalous feature. In the case of fuzzy logic, some laws of classical
logic are violated anyway. However, the fact that interval-valued fuzzy sets have
a weaker structure than the fuzzy set algebra they extend should act as a warning.
Indeed, since fuzzy sets equipped with fixed connectives have a given well-defined
structure, this structure should be valid whether the membership grades are known
or not.

For instance, the fact that min(F(s),Fc(s)) ≤ 0.5 should hold whether F(s) is
known or not. This is a weak form of the contradiction law. However, applying
the truth-tables of interval-valued fuzzy sets to the case when F(s) = [0,1] (total
ignorance) leads to min(F(s),1−F(s)) = [0,1], which means a considerable loss of
information. The same feature appears with the weak excluded middle law, where
again max(F(s),Fc(s)) = [0,1] is found, while max(F(s),Fc(s)) ≥ 0.5 should hold
in any case. More generally, if the truth-value t(p)= F(s) is only known to belong to
some subinterval [a,b] of the unit interval, the truth-functional calculus yields t(p∧
¬p) = min(F(s),1−F(s)) ∈ [min(a,1−b),min(b,1−a)], sometimes not included
in [0, 1

2 ].
In fact, treating fuzzy sets with ill-known membership functions as a

truth-functional calculus of IFVs is similar to the paradoxical calculus of ill-known
sets based on Kleene’s three-valued logics, where the third truth value is interpreted
as total ignorance. Indeed, as shown above, operations on ill-known sets as well as
partial logic are debatably construed as an interval-valued truth-functional extension
of Boolean logic that is isomorphic to Kleene logic. Ill-known sets are to classical
sets what IVFs are to fuzzy sets.

The basic point is that IVFs lead to a multiple-valued logic where the truth set
[0, 1] is turned into the set of intervals on [0, 1], i.e. intervals are seen as gen-
uine truth-values. This approach does not address the issue of ill-known member-
ship grades, where the latter are nevertheless supposed to be precise, even if out of
reach. Choosing intervals for truth-values is a matter of adopting a new convention
for truth, while reasoning about ill-known membership grades does not require a
change of the truth set. When reasoning about ill-known membership grades, the
truth set remains [0, 1] and truth-values obey the laws of some multiple-valued
calculus, while intervals model epistemic states about truth-values, just like ele-
ments in Belnap 4. A logic that reasons about ill-known membership grades cannot
be truth-functional. It should handle weighted formulas where the weight is an in-
terval representing our knowledge about the truth-value of the formula, similar to
Pavelka’s logic [33], Lehmke’s weighted fuzzy logic [37]. Then, the algebraic prop-
erties of the underlying logic should be exploited as constraints. Interval-weighted
formulas are also signed formulas in many-valued logic. Reasoning about ill-known
membership grades is then a matter of constraint propagation, especially interval



Degrees of Truth, Ill-Known Sets and Contradiction 79

analysis, and not only simple interval arithmetics on connectives. Automated rea-
soning methods based on signed formulae in multiple-valued logics follow this line
and turn inference into optimization problems [32].

6.3 Reasoning about Ill-Known Truth-Values

The generic reasoning problem in interval-valued fuzzy logic is of the following
form: Given a set of weighted many-valued propositional formulas {pi, [ai,bi]), i =
1, . . . ,n}, the problem of inferring another proposition p comes down to finding the
most narrow interval [a,b] such that (p, [a,b]) can be deduced from {pi, [ai,bi]), i =
1, . . . ,n}. It corresponds to the following optimization problem:

maximize (resp. minimize) t(p) under the constraints t(pi) ∈ [ai,bi], i = 1, . . . ,n.

This problem cannot be solved by a truth-functional interval-valued fuzzy logic.
A simpler instance of this problem is the one of finding the membership function of
a complex combination of IVFs. It comes down to finding the interval containing the
truth-value of a many-valued formula, given intervals containing the truth-values of
its atoms. For instance, using the most basic connectives, finding the membership
function of F ∩Fc when F is an IVF comes down to solving for each element of the
universe of discourse the following problem:

maximize (resp. minimize) f (x) = min(x,1− x) under the constraint x ∈ [a,b].

Since the function f is not monotonic, the solution is obviously not (always) the
interval [min(a,1−b),min(b,1−a)] suggested by IVF connectives, it is as follows:

f (x) ∈ [a,b] if b ≤ 0.5;

f (x) ∈ [min(a,1−b),0.5] if a ≤ 0.5 ≤ b;

f (x) ∈ [1− a,1−b] if a ≥ 0.5.

Only the first and the third case match the IVF connectives solution.
In Łukasiewicz logic, using the bounded sum and linear product connectives,

inferring in the interval-valued setting comes down to solving linear programming
problems [32]. Especially the condition F ∩Fc = /0 is always trivially valid using
linear product, even if F is an IFV, since max(0,x +(1− x)−1)= 0.

6.4 Type 2 Fuzzy Sets vs. Fuzzy Truth-Values

The next step beyond interval-valued fuzzy sets is the case of type two fuzzy sets.
It is then assumed that the truth value F(s) of element s ∈ S is changed into a fuzzy
set of the unit interval. Generally, it is supposed to be a fuzzy interval on the unit
interval, that for clarity we can denote by F̃(s), with membership function μF̃(s) for
each s ∈ S. The rationale for such a notion is again the idea that membership grades
to linguistic concepts are generally ill-known, or that several different persons will
provide different membership grades. On such a basis connectives for fuzzy sets are
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extended to type two fuzzy sets using the extension principle [50, 19], for instance
using extended versions of min, max and 1−· :

μF̃(s)∩G̃(s)(t) = sup
t=min(t′ ,t”)

min(μF̃(s)(t
′),μG̃(s)(t

′′))

μF̃(s)∪G̃(s)(t) = sup
t=max(t′ ,t”)

min(μF̃(s)(t
′),μG̃(s)(t

′′))

μF̃c(s)(t) = μF̃(s)(1− t)

See [44] for a careful study of connectives for type two fuzzy sets; their results apply
as well to the special case of IVFs. An operational setting where this truth-functional
calculus makes sense is yet to come.

In fact, this calculus is partially at odds with the most usual interpretation of
type two membership grades, namely fuzzy truth-values proposed by Zadeh [49].
It corresponds to a fuzzification of the ill-known attribute situation of section 3.3.
Bellman and Zadeh [8] defined the fuzzy truth-value of a fuzzy statement “x is F”
given that another one, “x is B”, is taken for granted. When B = {s0}, i.e. “x = s0”,
the degree of truth of “x is F” is simply F(s0), the degree of membership of s0

to the fuzzy set F . More generally, the information on the degree of truth of “x is
F” given “x is B” will be described by a fuzzy set τ(F ;B) of the unit interval with
membership function:

μτ(F;B)(t) =
{

sup{B(s) | F(s) = t}, if F−1(t) �= /0
0, otherwise

(2)

for all t ∈ [0,1]. As can be checked, τ(S;D) is a fuzzy subset of truth-values and
μτ(F;B)(t) is the degree of possibility, according to the available information B, that
there exists an interpretation that makes “x is F” true at degree t.

We can apply this approach to interpret type two fuzzy sets as stemming from an
ill-known attribute f described by means of a fuzzy mapping Φ : S → V such that
Φ(s) is a fuzzy subset of possible values of the actual attribute f (s). The degree F(s)
to which an element s ∈ S satisfies a prescribed fuzzy property PF defined on V is
ill-known and can be represented by a fuzzy membership grade F̃(s) = τ(PF ,Φ(s)).
Again, it will not be possible to apply the truth-functional calculus of type two fuzzy
sets to this case where membership grades are ill-known. Generally, considering the
case of two fuzzy properties PF ,PG on V , the fuzzy truth-value τ(PF ∩PG,Φ(s)) is
not a function of τ(PF ,Φ(s)) and τ(PG,Φ(s)); τ(PF ∪PG,Φ(s)) is not a function of
τ(PF ,Φ(s)) and τ(PG,Φ(s)). This lack of compositionality is one more proof that
fuzzy truth-values are not full-fledged truth-values in the sense of a compositional
many-valued logic.

7 Conclusion

In conclusion, there is a pervasive confusion between truth-values and the epis-
temic valuations an agent may use to describe a state of knowledge: the former
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are compositional by assumption, the latter cannot be consistently so. This paper
suggests that such difficulties appear in partial logic, three-valued logics of rough
sets, Belnap logic, interval-valued and type two fuzzy logic. In logical approaches
to incompleteness and contradiction, the goal of preserving tautologies of the un-
derlying logic (classical or multivalued) should supersede the goal of maintaining a
truth-functional setting. Considering subsets or fuzzy subsets of a truth-set as gen-
uine truth-values leads to new many-valued logics that do not address the issue of
uncertain reasoning on the underlying original logic. Such “powerset logics” are
special cases of lattice-valued logic that need another motivation than reasoning
under uncertainty. Our critique encompasses the truth-functional calculus of type
two fuzzy sets [39] as well, since it again considers fuzzy sets of truth-values as
truth-values. In that respect, the meaning of “fuzzy truth-values” proposed in [49] is
sometimes misunderstood, as they cannot be at the same time genuine truth-values
and ill-known ones.
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30. Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. In: Proc. 11th Annual Con-
ference on Uncertainty in Artificial Intelligence, Montreal, pp. 237–244. Morgan Kauf-
mann, San Francisco (1995)

31. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 8, 145–174 (1967)
32. Haehnle, R.: Proof Theory of Many-Valued Logic - Linear Optimization - Logic Design:

Connections and Interactions. Soft Computing 1, 107–119 (1997)
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