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Preface

Uncertainty exists almost everywhere, except in the most idealized situations; it is
not only an inevitable and ubiquitous phenomenon, but also a fundamental scien-
tific principle. Furthermore, uncertainty is an attribute of information and, usually,
decision-relevant information is uncertain and/or imprecise, therefore the abilities
to handle uncertain information and to reason from incomplete knowledge are cru-
cial features of intelligent behaviour in complex and dynamic environments. By
carefully exploiting our tolerance for imprecision and approximation we can often
achieve tractability, robustness, and better descriptions of reality than traditional de-
ductive methods would allow us to obtain. In conclusion, as we move further into
the age of machine intelligence, the problem of reasoning under uncertainty, in other
words, drawing conclusions from partial knowledge, has become a major research
theme.

Not surprisingly, the rigorous treatment of uncertainty requires sophisticated ma-
chinery, and the present volume is conceived as a contribution to a better under-
standing of the foundations of information processing and decision-making in an
environment of uncertainty, imprecision and partiality of truth.

This volume draws on papers presented at the 2008 Conference on Information
Processing and Management of Uncertainty (IPMU), held in Málaga, Spain, orga-
nized by the University of Málaga. The conference brought together some of the
world’s leading experts in the study of uncertainty.

Since its first edition, held in 1986, the focus of IPMU conferences has been
on the development of foundations and technology needed for the construction of
intelligent systems. Over the years, IPMU has grown steadily in visibility and im-
portance, and has evolved into a leading conference in its field, embracing a wide
variety of methodologies for dealing with uncertainty and imprecision, and this ex-
plains the unusually wide variety of concepts, methods and techniques which are
discussed in the book. The growth in importance of IPMU reflects the fact that as
we move further into the age of machine intelligence and mechanized decision-
making, the issue of how to deal with uncertain information becomes an issue of
paramount concern.



VI Preface

The book starts with a revisited approach for possibilistic fuzzy regression meth-
ods proposed by Bisserier et al., in which the identification problem is reformulated
according to a new criterion that assesses the model fuzziness independently of the
collected data. Later, Bonissone et al. propose the fundamentals to design and con-
struct a “forest” of randomly generated fuzzy decision trees in an approach which
combines the robustness of multi-classifiers, the construction efficiency of decision
trees, the power of the randomness to increase the diversity of the trees in the forest,
and the flexibility of fuzzy logic and the fuzzy sets for data managing. The third
contribution, by Delgado et al., is related to the well-known framework of mining
association rules for extracting useful knowledge from databases; they introduce so-
called double rules as a new type of rules which in conjunction with exception rules
will describe in more detail the relationship between two sets of items. Next, Dubois
discusses ignorance and contradiction, and argues that they cannot be viewed either
as additional truth-values or processed in a truth-functional manner, and that doing
it leads to weak or debatable uncertainty handling approaches.

The volume continues with Grzegorzewski’s work, which introduces new algo-
rithms for calculating the proper approximation by trapezoidal fuzzy numbers which
preserves the expected interval. Next, Jenhani et al. investigate the problem of mea-
suring the similarity degree between two normalized possibility distributions en-
coding preferences or uncertain knowledge. Later, Julián et al. propose an improved
fuzzy query answering procedure for multi-adjoint logic programming which avoids
the re-evaluation of goals and the generation of useless computations, thanks to
the combined use of tabulation with thresholding techniques. Then, Kacprzyk and
Wilbik focus on an extension of linguistic summarization of time series; in addi-
tion to the basic criterion of a degree of truth (validity), they also use a degree of
imprecision, specificity, fuzziness and focus as an additional criteria.

In the final part of the volume, Kalina et al. discuss the possibility of apply-
ing the modified level-dependent Choquet integral to a monopersonal multicriterial
decision-making problem; they propose an algorithm which produces an outrank-
ing of objects taking into account an interaction between criteria. Next, Llamazares
and Marques Pereira consider mixture operators to aggregate individual preferences
and characterize those that allow to extend some majorities rules, such as simple,
Pareto and absolute special majorities, to the field of gradual preferences. Later,
Mercier et al. concentrate on the links between the different operations that can
be used in the theory of belief functions to correct the information provided by a
source, given meta-knowledge about that source. Then, Miranda compares the dif-
ferent notions of conditional coherence within the behavioural theory of imprecise
probabilities when all the referential spaces are finite. Finally, Soubaras focuses on
evidential Markov chains as a suitable generalization of classical Markov chains to
the Dempster-Shafer theory, replacing the involved states by sets of states.

Last, but not least, we would like to thank the following institutions for their
help with the organization of the 12th IPMU Conference: Ministerio de Educación
y Ciencia, grant TIN2007-30838-E, Junta de Andalucı́a, grant Res. 2/07-OC, Uni-
versidad de Málaga, Diputación Provincial de Málaga, Patronato de Turismo de la
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Costa del Sol, Ayuntamiento de Málaga, Ayuntamiento de Torremolinos, European
Society for Fuzzy Logic and Technology, EUSFLAT, IEEE Computational Intelli-
gence Society.

Paris, Mieres, Málaga, Granada, New York
September 2009 Bernadette Bouchon-Meunier

Luis Magdalena
Manuel Ojeda-Aciego

José Luis Verdegay
Ronald R. Yager
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Linear Fuzzy Regression Using Trapezoidal
Fuzzy Intervals

Amory Bisserier, Reda Boukezzoula, and Sylvie Galichet

Abstract. In this paper, a revisited approach for possibilistic fuzzy regression meth-
ods is proposed. Indeed, a new modified fuzzy linear model form is introduced
where the identified model output can envelop all the observed data and ensure a
total inclusion property. Moreover, this model output can have any kind of spread
tendency. In this framework, the identification problem is reformulated according
to a new criterion that assesses the model fuzziness independently of the collected
data. The proposed concepts are used in a global identification process in charge of
building a piecewise model able to represent every kinds of output evolution.

1 Introduction

Model identification is based on a general principle which consists in determining,
among candidate models, the one that best explains the behavior of the system to
be modeled. Assuming a particular class of models such as linear functions, splines,
rule-based systems, neural networks, ..., the best candidate is determined from the
available information, usually a set of observations of the input and output vari-
ables. Classical identification techniques assume perfect knowledge of input and
output values. It means that the observations are supposed to be both precise (point-
valued) and certain. However, there are situations in which this assumption is not
realistic, especially when the information about the output value is obtained through
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measuring devices with limited precision. In the framework of fuzzy modeling in
which it is possible to handle imprecise representations using fuzzy set theory as
proposed by Zadeh [19], the assumption of perfect data becomes even paradoxical.
Nevertheless, most fuzzy model identification techniques used in practice, espe-
cially in fuzzy control, still consider crisp data.

In this context, we are interested in developing modeling techniques for building
fuzzy models from fuzzy observations. For this purpose, it is proposed to focus on
works about fuzzy regression techniques. Fuzzy regression, a fuzzy type of conven-
tional regression analysis, has been proposed to evaluate the functional relationship
between input and output variables in a fuzzy environment. This approach [14] is
well adapted for situations where data are imprecise and/or partially available, and
where human estimation is influential. It can be applied in many non quantitative
fields, like social, health or biological sciences for example. According to [6], fuzzy
regression techniques can be classified into two distinct categories. The first, ini-
tially proposed by Tanaka known as possibilistic regression aims at minimizing the
total spread of the model output under data inclusion constraints. In this case, the
problem is viewed as finding fuzzy coefficients of a regression model according to a
mathematical programming problem. The second approach, developed by Diamond
[5], is based on the minimization of the total square error between data and model
outputs using a fuzzy least square method.

In this study, we adopt the possibilistic regression approach. Since its introduc-
tion by Tanaka and al. [15, 17] in a linear context, several improved methods have
been proposed. For example, Tanaka, Hayashi and Watada [15] propose different
expressions of the criterion to be optimized and different formulations of the con-
straints to be satisfied for possibility and necessity estimation models. Still in a
linear context, Tanaka and Ishibushi [16] extends their approach for dealing with
interactive fuzzy parameters. Furthermore, the complete specification of regression
problems highly depends on the nature of input-output data [6]. Some works are
thus devoted to crisp input - crisp output data [12, 14] while others [13] consider
fuzzy input - fuzzy output data. Most commonly, a mixed approach (crisp input -
fuzzy output) is chosen [7, 8, 9, 10, 15, 17]. That is the formalism we adopt here in
a linear context with the idea of keeping a simple model, possibly invertible [2, 3].

Unfortunately, three types of problems emerge from most of above cited
methods:

• The assumption of symmetrical triangular fuzzy parameters is most frequently
used. However, such parameters have some limitations, especially when total
inclusion of the observed data in the model output must be ensured.

• The identification is made at a chosen level α considered as a degree of fitting of
the obtained model to the observed data. If this way of doing allows to simplify
the problem by using interval arithmetics to express the inclusion problem, after
reconstruction of the parameters, inclusion is no more guaranteed at any level α .

• The obtained models are not able to represent any tendency of the output spread.
It follows that the identified model may become more imprecise than necessary
in some situations.
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The main objective of this paper is to revisit some theoretical works about fuzzy
regression techniques [6] and to propose some slight improvements for suppressing
the limitations mentioned previously. This paper is organized as follows. In Sect. 2,
the concepts of intervals and fuzzy intervals are introduced. Sect. 3 is devoted to the
conventional fuzzy linear regression. A revisited approach of the latter is detailed
in Sect. 4. Sect. 5 and Sect. 6 present the identification process and its application
in the identification of a piecewise model. A generalization to multi-input model
identification is described in Sect. 7. Applications on several examples are shown in
Sect. 8. Finally, conclusions and perspectives are presented in Sect. 9.

2 Intervals and Fuzzy Intervals

This section introduces some relevant concepts and notations about conventional
intervals and fuzzy ones.

2.1 Conventional Intervals

An interval is defined by the set of elements lying between its lower and upper limits
as:

a = {x|a− ≤ x ≤ a+,x ∈ R} (1)

Given an interval a, its Midpoint M(a) and its Radius R(a) are defined by:

M(a) = (a− + a+)/2 and R(a) = (a+ − a−)/2 (2)

For two intervals a and b, an inclusion relation of a in b is defined as follows [4]
(see Fig. 1):

a ⊆ b ⇔
{

b− ≤ a−
a+ ≤ b+ ⇔

{
M(b)− R(b) ≤ M(a)− R(a)
M(a)+ R(a) ≤ M(b)+ R(b)

⇔
{

M(b)− M(a) ≤ R(b)− R(a)
M(a)− M(b) ≤ R(b)− R(a) (3)

From Eq. 3 it follows:

a ⊆ b ⇔ |M(b)− M(a)| ≤ R(b)− R(a) (4)

When a is a scalar value, the relation defined in Eq. 4 becomes:

a ∈ b ⇔ |M(b)− a| ≤ R(b) (5)

Fig. 1 Inclusion of two
conventional intervals
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2.2 Fuzzy Intervals

An interval a can be viewed as a special fuzzy number whose membership function
μa(x) takes the value 1 over the interval and 0 anywhere else. A fuzzy interval A
is represented by its membership function μA. In order to specify the fuzzy interval
shape, one has to consider two dimensions. The first one (horizontal dimension) is
similar to that used in interval representation, that is the real line ℜ. The second
one (vertical dimension) is related to the handling of the membership degrees and
thus restricted to the interval [0,1]. In this context, two kinds of information are
required for defining a fuzzy interval. Both pieces of information, called support
and kernel intervals, are defined on the horizontal dimension, but are associated to
two different levels (level 0 and level 1) on the vertical dimension (see Fig. 2). For
a fuzzy trapezoidal interval A we have:

Support: SA = [S−
A ,S+

A ], Kernel: KA = [K−
A ,K+

A ] (6)

To completely define the fuzzy interval, two additional functions are used to link
the support and the kernel:⎧⎨

⎩
(A−)α = inf{x | μA(x) ≥ α ; x ≥ S−

A }

(A+)α = sup{x | μA(x) ≥ α ; x ≤ S+
A }

(7)

where α ∈ [0,1] represents the vertical dimension. In this case, for a given α-cut on
the fuzzy interval A, a conventional interval is obtained:

[A]α = [(A−)α ,(A+)α ] (8)

Finally, in the same way that the conventional interval a is denoted [a−,a+], the
fuzzy interval A will be defined by its support and kernel bounds:

A = (KA,SA) = ([K−
A ,K+

A ], [S−
A ,S+

A ]) (9)

A particular case of trapezoidal fuzzy intervals are triangular symmetrical ones.
In this case, the fuzzy number can be defined by its kernel (modal value) KA and the
radius of its support RA, i.e. A = (KA,RA), that is:

K−
A = K+

A = KA, S+
A = KA + RA, S−

A = KA − RA (10)

Fig. 2 A fuzzy trapezoidal
interval
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3 Fuzzy Linear Regression

Let us consider a set of N observed data samples with single input defined on the
interval D = [xmin,xmax]. Let the jth sample be represented by the couple (x j,Yj), j =
1, ...,N where x j are crisp inputs sorted in increasing order and Yj the corresponding
fuzzy outputs which are assumed to be triangular and symmetrical fuzzy intervals.
In this case, the jth fuzzy interval Yj is completely defined by its modal value KYj

and its radius RYj , that is:
Yj = (KYj ,RYj) (11)

Like for any regression technique, the fuzzy regression objective is to determine
a predicted functional relationship Ŷ = h(x) between input x and output Y . In this
paper, the function h is assumed to be linear and given by the following expression:

Ŷ (x) = A0 ⊕ A1.x (12)

defined on the domain D.
In order to consider the fuzziness of the observed outputs, the parameters A0 and

A1 are fuzzy coefficients. The latter are assumed to be triangular and symmetrical,
represented by:

A0 = (KA0 ,RA0) and A1 = (KA1 ,RA1) (13)

3.1 Inclusion Problem Statement

A fuzzy interval is a standard normal fuzzy set defined on the set of real numbers,
whose α-cuts, are closed intervals of real numbers with bounded supports. Using
an α-cut representation, a fuzzy interval is viewed as a weighted family of nested
intervals. By doing so, for a specified α-cut, the fuzzy interval becomes a conven-
tional interval, which states that a fuzzy interval representation is a generalization
of a conventional one. Moreover, this strategy has the advantage to reduce the fuzzy
computational complexity and makes easier its implementation, especially in op-
timization and identification problems. That is the approach proposed by Tanaka
for the identification of a fuzzy model in the form of Eq. 12 in references [15, 17]
where a possibilistic regression methodology is developed according to the α-cut
representation principle.

Indeed, for a set of observed data, the authors try to identify the fuzzy model
parameters A0 and A1 so that all observed data are included in the predicted ones for
some α-cut, i.e.,

[Yj]α ⊆ [Ŷj]α (14)

Eq. 14 is viewed as a constraint in the identification procedure. The latter is based
on the minimization of a criterion which exhibits the spreads of the predicted inter-
vals, that is:

minKA0
,KA1

,RA0
,RA1

N.RA0 + RA1.
N

∑
j=1

|x j| (15)
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After optimization is performed, the obtained parameters computed for a given
α-cut are assumed to be defined for all α ∈ [0,1].

Let us give a simple example used by Tanaka in [17] to illustrate this method (see
Table 1). In this example, the pessimistic case (maximum of uncertainty) is adopted,
i.e. α = 0. In this case, the constraints are the following ones:⎧⎨

⎩
KA0 + KA1 .x j + RA0 + RA1.|x j| ≥ KYj + RYj

KA0 + KA1 .x j − (RA0 + RA1.|x j|) ≤ KYj − RYj

(16)

The identification method gives the fuzzy symmetrical triangular coefficients
A0 = (3.85,3.85), A1 = (2.1,0), and the predicted intervals represented in Table 1.

Table 1 Observed and predicted intervals

j x j observed intervals predicted intervals

1 1 [6.2,9.8] [2.1,9.8]
2 2 [4.2,8.6] [4.2,11.9]
3 3 [6.9,12.1] [6.3,14]
4 4 [10.9,16.1] [8.4,16.1]
5 5 [10.6,15.4] [10.5,18.2]

For example, when j = 1, the observed and the predicted output are respectively
Y1 = [6.2,9.8] and Ŷ1 = [2.1,9.8]. It can be stated that the inclusion constraint is
respected for α = 0, i.e.,

[Y1]α=0 ⊆ [Ŷ1]α=0 (17)

According to Fig. 3, it is obvious that although the inclusion is respected for
α = 0, it is not respected for any α ∈ [0,1].

From a general point of view, if the fuzzy model parameters are identified for a
chosen level α under the constraint of Eq. 14, the inclusion of all observed outputs
in the predicted ones is not guaranted. Indeed, the inclusion relation between α-cuts
is not sufficient to guarantee the total inclusion of the fuzzy intervals. For example,
when the inclusion is ensured for α = 0 (support inclusion), according to the kernel

Fig. 3 Observed and pre-
dicted outputs for j = 1
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value positions in the fuzzy interval, three cases can be obtained (see Fig. 4 for two
fuzzy intervals A and B). It is then clear that the total inclusion of fuzzy intervals is
respected if and only if modal values are equal. More generally, whatever the iden-
tification level α , total inclusion requires modal value equality. It follows that total
inclusion for all observations (or equivalently identification at α = 1) is achievable
only if observed modal values strictly fit a straight line [6]. Moreover, the higher the
α considered for identification, the wider the support of the predicted fuzzy number
is [13]. These drawbacks weaken the potential use of this method, especially in real
identification problems.

Fig. 4 Three cases of sup-
port inclusion for triangular
fuzzy intervals

3.2 Tendency Problem Statement

Let us now apply the Tanaka identification method for another example presented
in Table 2. In this case, it can be stated that the observed outputs have a spread
which is globally decreasing. Applying Tanaka identification method for α = 0, the
predicted intervals given in Table 2 are obtained. The identified fuzzy parameters are
A0 = (2.574,4) and A1 = (2.43,0). A representation of the model output is given in
Fig. 5.

Table 2 Observed and predicted intervals

j x j observed intervals predicted intervals

1 1 [1,9] [1,9]
2 2 [5.4,10.6] [3.43,11.43]
3 3 [8,12] [5.85,13.85]
4 4 [10,12] [8.28,16.28]
5 5 [13.5,14.5] [10.71,18.71]

According to Table 2 and Fig. 5, it can be observed that the identified model
output spread is constant. Obviously, it would be better if it was decreasing, i.e. if
the identified model presented the same spread variation than the observed data.

More generally, one weakness of this method is the fact that the fuzziness of
the model output varies in the same way than the absolute value of the inputs. In
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Fig. 5 Representation of the
identified model

this case, it is impossible to have a decreasing (resp. increasing) spread of the model
output for positive (resp. negative) inputs. This restriction is acceptable in a mea-
surement context where it is usual to express percentage relative errors. However,
when fuzziness is considered as an intrinsic characteristic of the system to be mod-
eled, the assumption that the higher the input, the higher the fuzziness attached to
the model output, is open to criticism. Finally, as classical fuzzy regression models
are not able to represent any tendency of output spread, they become more imprecise
than necessary in some situations. As a consequence, in piecewise fuzzy regression
problems, in which collected data can have any kind of spread tendency, actual iden-
tification methods are clearly insufficient.

Let us now study the tendency output problem in order to release a suitable so-
lution. From the model of Eq. 12, the output modal value and spread can be deter-
mined. Indeed, as A0 and A1 are symmetrical triangular fuzzy intervals, and x a crisp
input, Ŷ (x) is also a symmetrical triangular fuzzy interval. In this case, the modal
value M(Ŷ (x)) and the spread R(Ŷ (x)) are given by:

⎧⎨
⎩

M(Ŷ (x)) = KŶ (x) = KA0 + KA1 .x

R(Ŷ (x)) = RŶ(x) = RA0 + RA1.|x|
(18)

As x is varying on D, the variation of Eq. 18 needs to be analyzed according to
the sign of x.

From Eq. 18, it follows that the variation of M(Ŷ (x)) depends on the sign
of KA1 and can be increasing or decreasing for any value of the input x. On
the other hand, we see that the variation of R(Ŷ (x)) depends on the sign of
the input. As RA1 is always positive, it can be stated that when x is positive,
the output radius is increasing, whereas when x is negative, the output radius is
decreasing.
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In short, it is possible to have any kind of variation of the output modal value,
with an appropriate sign of KA1 . However, the radius output variation is limited by
the sign of the input x.

4 Revisited Fuzzy Linear Regression

In order to deal with the two drawbacks discussed in the previous section (inclusion
and tendency problems), two evolutionary concepts are introduced into the conven-
tional fuzzy regression model identification problems.

4.1 Inclusion Problem Solution

In order to overcome the inclusion problem relating to the α-cut specification, the
fuzzy model parameters A0 and A1 are assumed to be trapezoidal. In this case, it is
ensured that total inclusion of all observed inputs in the predicted ones at each level
α can be respected. As the fuzzy parameters are trapezoidal, the model output Ŷ (x)
is also a trapezoidal interval.

By using trapezoidal fuzzy intervals, whose kernel values are not reduced to point
values, inclusion can be guaranteed. Moreover, the membership function being lin-
ear, they are completely defined by only two α-cuts, and so easily expressible. This
is an advantage in the parametric regression framework.

In order to extend the Tanaka interval method and solving the inclusion problem,
two inclusion constraints must be taken into account in the identification method:

[Yj]α=0 ⊆ [Ŷj]α=0 and [Yj]α=1 ⊆ [Ŷj]α=1 (19)

In this case, as a trapezoidal fuzzy interval shape is assumed, it is obvious that
if relations of Eq. 19 are respected, then the total inclusion is guaranteed for each
level α ∈ [0,1], i.e.:

∀α ∈ [0,1], [Yj]α ⊆ [Ŷj]α (20)

Let us consider the jth observed data, whose output is the triangular symmetrical
fuzzy interval Yj = (KYj ,RYj ). The corresponding predicted output is the trapezoidal
fuzzy interval given by:

Ŷj = (KŶj
,RŶj

) = ([K−
Ŷj

,K+
Ŷj

], [S−
Ŷj

,S+
Ŷj

]) (21)

In this case, the constraints in Eq. 19 can be written as:

• for α = 1:
[Yj]α=1 ⊆ [Ŷj]α=1 ⇔ KYj ∈ [K−

Ŷj
,K+

Ŷj
] (22)

• for α = 0:

[Yj]α=0 ⊆ [Ŷj]α=0 ⇔ [KYj − RYj ,KYj + RYj ] ⊆ [S−
Ŷj

,S+
Ŷj

] (23)
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4.2 Tendency Problem Solution

As stated previously, the output model tendencies are not taken into account in the
conventional method. In order to solve this problem, a modified model expression is
proposed. Actually, the model output can have any kind of spread variation for any
sign of x by introducing a shift on the original model input. Doing so, it is possible to
obtain the desired sign for the shifted input variable, and so to influence the spread
variation of the output.

In this case, the fuzzy linear model of Eq. 12 defined on its domain D, becomes:

Ŷ (x) = A0 ⊕ A1.(x − shi f t) (24)

where A0 and A1 are trapezoidal parameters.
In the model of Eq. 24, the output spread is given by the support radius, i.e.:

∀x ∈ D, R(SŶ ) = R(A0)+ R(A1)|x − shi f t| (25)

According to Eq. 25 and by tuning the value of shi f t, the model output can have
any spread variation on D. Indeed,

• if x− shi f t ≥ 0 ∀x ∈ D, i.e. shi f t ≤ xmin, then the model output has an increasing
spread on D.

• if x− shi f t ≤ 0 ∀x ∈ D, i.e. shi f t ≥ xmax, then the model output has a decreasing
spread on D.

For the sake of simplicity, the value shi f t = xmin is chosen for a model whose
output has an increasing radius. On the contrary, for decreasing radius output,
shi f t = xmax is taken (see Table 3).

Table 3 The two models

output spread variation ↗ ↘
Used model A0 ⊕A1(x−xmin) A0 ⊕A1(x−xmax)

5 The Identification Process

In this section, a modified identification methodology for linear regression mod-
els is proposed. The latter exploits the concepts of inclusion and tendency dis-
cussed previously for determining the parameters of a fuzzy model in the form of
Eq. 24.
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When considering:

• a set of N observed data (x j,Yj), where x j are crisp inputs, sorted in in-
creasing order, and Yj the corresponding fuzzy triangular outputs,

• a fuzzy model in the form of Eq. 24, where its output is defined on the
domain D,

the identification statement lies in the answers given to the following ques-
tions:

1. In order to ensure the inclusion of all observed data in the predicted ones
for any α ∈ [0,1], is it possible to identify the fuzzy trapezoidal parameters
A0 and A1? In other words, what are the constraints to be taken into account
for the optimization problem?

2. For a better representation of the observed data tendencies, is it possible to
determine the parameter shi f t which allows the integration of any kind of
spread in the model?

So, two main steps have to be discussed: the choice of the value of shi f t and the
model parameter identification.

5.1 The shi f t Value Determination

The first step of the identification concerns the choice of the shi f t value according to
the output radius tendency. The most appropriate tendency is determined from ob-
served data, comparing the initial output radius Rinit attached to minimal inputs with
the final output radius R f in attached to maximal inputs. If Rinit < R f in, an increasing
tendency is chosen, otherwise a decreasing tendency is preferred.

The corresponding shi f t value is defined as:

• If Rinit > R f in then shi f t = xmax

• If Rinit ≤ R f in then shi f t = xmin

The Rinit and R f in values are estimated by computing mean values from k data,
that is Rinit = mean(R1,R2, ...,Rk) and R f in = mean(RN−k+1, ...,RN−1,RN). The next
step of the identification concerns the optimization of the fuzzy coefficients A0

and A1.

5.2 The Identification Method

Like all linear regression identification methods, the proposed one is based on the
minimization of a criterion under some constraints.
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5.2.1 The Used Criterion

In the sequel, for the clarity and the simplicity of notations we take: wj = (x j −
shi f t). So wj can be either always positive or always negative, depending on the
chosen value of shi f t for the considered domain. Indeed, the choice shi f t = xmin

leads to wmin = 0 and wmax > 0. On the contrary, when shi f t = xmax, wmin < 0 and
wmax = 0.

According to the model expression, the output of the fuzzy model is a trapezoidal
interval given by:

∀w ∈ D :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K−
Ŷ

= K−
A0

+(M(KA1)− R(KA1).Δ).w

K+
Ŷ

= K+
A0

+(M(KA1)+ R(KA1).Δ).w

S−
Ŷ

= S−
A0

+(M(SA1)− R(SA1).Δ).w

S+
Ŷ

= S+
A0

+(M(SA1)+ R(SA1).Δ).w

(26)

where:

Δ = sign(wmin + wmax) (27)

The choice of the criterion to be minimized is also an important issue. In con-
ventional methods [15], the used criteria are only based on the available data, their
minimization does not guarantee that the identified model has the least global fuzzi-
ness that could be achieved on the whole domain D. If the identified model is to
be used on the whole domain D, it may be more judicious to prefer a model with a
lower global fuzziness, i.e. a less imprecise model. It has been shown in [1], that it
is possible to minimize the whole spread of the identified model for fuzzy triangu-
lar output. The same approach is here proposed for dealing with trapezoidal fuzzy
models. In this case, the global fuzziness of the model is the “volume” covered by
its output on D, i.e. the integration of the area of the fuzzy output Ŷ (w) on D. For a
given input w, the area of Ŷ (w) takes into account all possible α levels from 0 to 1
(vertical dimension).

It can be stated that the output area represented by a trapezoidal fuzzy number
[18] is given by the following expression:

area(Ŷ (w)) =
K+

Ŷ
+ S+

Ŷ

2
− K−

Ŷ
+ S−

Ŷ

2
(28)

In this case, the volume delimited by the model output on its whole domain D is
given by:

volume =
∫ wmax

wmin

area(Ŷ (w))dw (29)
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Substitution of Eq. 28 in Eq. 29 yields:

volume = (wmax − wmin)(R(KA0)+ R(SA0))+
1
2
(w2

max − w2
min)(R(KA1)+ R(SA1)).Δ

(30)

It is clear that this criterion is independent from the data. The optimization is
performed on the whole definition domain of the model, and not only at the learn-
ing points. So, the learning data distribution doesn’t affect the model identification.
This property which guarantees some kind of “robustness” of the proposed criterion
allows the identification of models whose fuzziness is possibly lower than usually.

5.2.2 Assumed Constraints

In the optimization procedure, the constraints of Eq. 22 and Eq. 23 must be
respected.

• For α = 1:

KYj ∈ [K−
Ŷj

,K+
Ŷj

] ⇔ |M(KŶj
)− KYj | ≤ R(KŶj

) (31)

where: ⎧⎪⎨
⎪⎩

M(KŶj
) = M(KA0)+ M(KA1).wj

R(KŶj
) = R(KA0)+ R(KA1).wj.Δ

(32)

• For α = 0:

[KYj − RYj ,KYj + RYj ] ⊆ [S−
Ŷj

,S+
Ŷj

] ⇔ |M(SŶj
)− KYj | ≤ R(SŶj

)− RYj (33)

where: ⎧⎪⎨
⎪⎩

M(SŶj
) = M(SA0)+ M(SA1).wj

R(SŶj
) = R(SA0)+ R(SA1).wj.Δ

(34)

• In order to obtain a fuzzy interval, another inclusion constraint must be verified,
i.e., the inclusion of the kernel into the support:

[K−
Ŷj

,K+
Ŷj

] ⊆ [S−
Ŷj

,S+
Ŷj

] ⇔ |M(SŶj
)− M(KŶj

)| ≤ R(SŶj
)− R(KŶj

) (35)

To sum up, the proposed identification method is performed by minimizing
the linear criterion defined by Eq.30 under the inclusion constraints of Eq.31,
Eq. 33 and Eq. 35.
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6 Piecewise Linear Regression Problem

In this section, the previous identification method is used to identify a piecewise
fuzzy linear model of the form presented in Eq. 36:

Ŷ (x) =
S

∑
k=1

⊕
[Ak0 ⊕ Ak1.(x − shi f tk)].1[xk

min,xk
max]

(36)

where shi f tk ∈ {xk
min,x

k
max}, S is the number of segments which will compose the

global model, ∑⊕ represents the sum of several fuzzy intervals. The coefficients
Ak0 and Ak1 are fuzzy trapezoidal intervals. The function 1[xk

min,x
k
max]

is equal to 1 on

[xk
min,x

k
max] and to 0 otherwise.

At the beginning of the process, it is necessary to find a good segmentation of
the data set, i.e. to determine on which domains we have to identify the different
sub-models. As for a given data set, output modal value tendency and output radius
one have to be considered, the segmentation is made on both.

So, in order to finally get the different [xk
min,x

k
max], k = 1, ...,S, we apply on col-

lected data the following method:

• First, we make a segmentation on observed output modal values;
• On each interval got, we make another segmentation on the corresponding ob-

served outputs radius values.

Then, we apply the identification method presented in Section 5 on each interval
given by segmentation process, in order to determine the best model on this domain
according to the volume criterion. An advantage of this approach is that the sub-
models are independent, as well for their identification as for their potential use in
prediction.

7 Generalization to Multi-input Models

This section is devoted to the identification of multi-input models. This case can be
viewed as a straightforward generalization of the previous case, the used concepts
being the same.

Let’s consider a set of N observed data (x1 j,x2 j, ...,xM j,Yj), j = 1, ...,N, where
xj = [x1 j,x2 j, ...,xM j] is the input vector of M components, and Yj the corresponding
fuzzy triangular output. Each component xi of the input vector is defined on its
domain Di = [xmin

i ,xmax
i ].

The objective is to identify a model of the form:

Ŷ (x) = A0 ⊕ A1.(x1 − shi f t1)⊕ ...⊕ AM.(xM − shi f tM) (37)

The first step of the identification concerns the choice of shi f ti values. As stated
in subsection 5.1, this choice is made according to the output radius tendency.
In the case of multi-input models, a suitable value is chosen for each component
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xi of the input vector, considering the output radius tendency according to this
component.

Once appropriate values of shi f ti are chosen, the parameters identification is lead
by minimizing a linear criterion under constraints. In the sequel, for the simplicity
of the notations, we take: wi = xi − shi f ti, i = 1, ...,M. So, the model output is given
by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K−
Ŷ

= K−
A0

+ ∑M
i=1 (M(KAi)− R(KAi).Δi).wi

K+
Ŷ

= K+
A0

+ ∑M
i=1 (M(KAi)+ R(KAi).Δi).wi

S−
Ŷ

= S−
A0

+ ∑M
i=1 (M(SAi)− R(SAi).Δi).wi

S+
Ŷ

= S+
A0

+ ∑M
i=1 (M(SAi)+ R(SAi).Δi).wi

(38)

where Δi = sign(wi
min + wi

max).
The considered criterion in the case of multiple inputs is a generalization of the

one presented in Eq. 30:

volume =
∫ w1

max

w1
min

...
∫ wM

max

wM
min

area(Ŷ (w1, ...,wM))dwM...dw1 (39)

By introducing Eq. 38 and Eq. 28 in Eq. 39, the criterion to be optimized to
identify multi-input model is defined by:

volume = R(KA0)+ R(SA0)+
M

∑
i=1

(R(KAi)+ R(SAi)) ·M(Di) ·Δi (40)

The optimization must be achieved under the inclusion constraints obtained by
the generalization of those presented in Eq. 31, Eq. 33 and Eq. 35 to multi-input
case.

Several points can be underlined here:

• The extension to multi-input model identification is still based on a linear crite-
rion optimization under linear inclusion constraints.

• As stated prevouisly for single-input models, the considered criterion is a repre-
sentation of the model output uncertainty on the whole definition domain, which
allows some kind of “robustness” and the identification of potentially less uncer-
tain models.

• From computationnal point of view, the identification complexity increases with
the number of input vector components. However, the increase is limited by the
fact that the criterion is independent of the observed data. Only the number of
considered constraints is affected.

• This multi-input approach can be extended to piecewise models identification. In
this case, segmentation has to be made on each component of the input vector, and
appropriate values of shi f ti and parameters are determined for each submodel.
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8 Application on Several Examples

The proposed identification method is applied on the first example presented in
Table 1. The model given in Eq. 41, defined on D = [1,5], is obtained:

Ŷ (x) = A0 ⊕ A1.(x − 1) (41)

with: ⎧⎨
⎩

A0 = ([4.45,8], [2.25,9.8])

A1 = ([1.95,1.95], [1.95,2.1])
(42)

Fig. 6 Trapezoidal identi-
fied model

The model representation is illustrated in Fig. 6. The optimal volume computed
on D = [1,5] is 22.8.

In this case, it can be stated that all observed data and included in the predicted
ones. For example, when j = 1, the observed and the predicted output are respec-
tively Y1 = [6.2,9.8] and Ŷ1 = ([4.45,8], [2.25,9.8]) which illustrates that the inclu-
sion of the observed output into the predicted one is ensured ∀α ∈ [0,1] (see Fig. 7).

Fig. 7 Trapezoidal observed
and predicted outputs for
j = 1
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Fig. 8 Trapezoidal identi-
fied model representation

The identification method is also applied on the second example, presented in
Table 2. It leads to the following model:

Ŷ (x) = A0 ⊕ A1.(x − 5) (43)

with D = [1,5] and: ⎧⎨
⎩

A0 = ([13,14], [13,14.6])

A1 = ([2,2], [1.3,3])
(44)

A representation of the model is given in Fig. 8.
The model output has a decreasing spread, and so it well represents the data ten-

dency. So, the obtained model is less fuzzy than the one presented in Fig. 5.
Then, the piecewise identification process is applied on data proposed by Tanaka

and Ishibuchi ([16], example 2). Two different segments can be distinguished where
the change point is x = 11. The observed outputs on first segment present a glob-
ally decreasing spread. On the second segment, the spread is globally increas-
ing. Identification method leads to the following piecewise model (Eq. 45) (see
Fig. 9):

Ŷ (x) = (A01 ⊕ A11(x − 11))1[5,11]

+(A02 ⊕ A12(x − 11))1[11,17]

(45)

with: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A01 = ([10,10.18], [9,11])

A11 = ([0.392,0.5], [0,1])

A02 = ([9.84,10], [9,11])

A12 = ([0.385,0.5], [−0.83,1.83])

(46)
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Fig. 9 A representation
of the identified piecewise
model

So, with a piecewise model and shifted inputs, a good data representation can be
achieved, without using interactive coefficients as proposed by Tanaka and Ishibuchi
in [16].

Then, the proposed identification method is applied on a data set presented in [6],
concerning prefabricated houses prices variation according to several criterion (see
Table 4). Observed crisp data are structured as follows. Input x1 is the quality of
construction material (x1 = 1 for low grade, x1 = 2 for medium grade, and x1 = 3
for high grade), x2 the area of the first floor, x3 the area of the second floor, x4 the
total number of rooms and x5 the number of Japanese rooms. The output y is the
sale price, in million of yen.

Table 4 Data related to prefabricated houses

j x1 x2 x3 x4 x5 y j

1 1 38.09 36.43 5 1 606
2 1 62.10 26.50 6 1 710
3 1 63.73 44.71 7 1 808
4 1 74.52 38.09 8 1 826
5 1 75.38 41.1 7 2 865
6 2 52.99 26.49 4 2 852
7 2 62.93 26.49 5 2 917
8 2 72.04 33.12 6 3 1031
9 2 76.12 43.06 7 2 1092
10 2 90.26 42.64 7 2 1203
11 3 85.70 31.33 6 3 1394
12 3 95.27 27.64 6 3 1420
13 3 105.98 27.64 6 3 1601
14 3 79.25 66.81 6 3 1632
15 3 120.5 32.25 6 3 1699
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As stated in [6] and illustrated in Table 4, the price y globally decreases when
the total number of rooms x4 increases. Conventionnal methods fail to represent
this trend. As a consequence, identified model in [6] does not consider this input
x4. Here, by setting shi f t4 = 8, i.e. a shi f t value allowing a decreasing tendency
according to this input, the identified model global uncertainty (optimal value of the
identification criterion) is 83.58. It is better than for a conventional model without
any shi f t value, whose global uncertainty is 88.58 (see Fig. 10).

Finally, the proposed method for multi-input model identification is applied on
a data set presented in the Appendix section. In this example, the input vector has
two components x1 and x2. The observed outputs present several cases of radius
variation according to these components, and so a piecewise model is identified.
Our identification method leads to a global model composed of 12 submodels, as
illustrated in Fig. 11.

If we consider the submodel corresponding to x1 ∈ [−3,0] and x2 ∈ [−4,0], the
identified submodel is the following:

Ŷ (x) = (A0 ⊕ A1(x1 + 3))⊕ A2x2) ·1([−3,0]×[−4,0]) (47)

with: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0 = ([5.4,6.05], [1.4,10.375])

A1 = ([−1.8,−1.8], [−3.8,−0.125])

A2 = ([−1.25,−0.8], [−1.25,−0.8])

(48)

Fig. 10 A representation of the houses prices estimation
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Fig. 11 A representation
of the identified piecewise
multi-input model

In this case, the chosen values of shi f ti (i.e. shi f t1 = xmin
1 = −3 and shi f t2 =

xmax
2 = 0) allows the representation of an increasing output radius according to x1,

and of a decreasing one according to x2.
By considering all submodels (see Fig. 11) with appropriate values of shi f ti,

a suitable representation of observed data tendencies is got on each subdomain,
according to both x1 and x2. Obviously, as the parameters are trapezoidal fuzzy
intervals, the global inclusion is respected.

9 Conclusion

The proposed methodology is based on the use of shifted models with trapezoidal
fuzzy parameters. In this case, it becomes possible to represent output spreads ei-
ther increasing or decreasing with respect to inputs. Moreover, a total inclusion of
the observed data in the model output is ensured. Identifying such models leads
to models whose fuzziness is possibly lower than usually. All these concepts can
easily be applied to piecewise model identification, and generalized to the case of
multi-input models.

Further works concern the comparison of our method with regard to other ex-
isting techniques, for example the granular clustering proposed by Pedrycz in [11].
Moreover, although the proposed method doesn’t preserve the scalability, an exten-
sion can be found in order to take into account this propriety. Another point to be
studied is the generalization of the identification procedure to fuzzy inputs, in order
to manage uncertainties on collected data.

Appendix

Table 5 Multi-input data with several cases of tendencies

j x1 j x2 j KYj RYj j x1 j x2 j KYj RYj

1 -3 -4 11 4 5 -3 4 11 12
2 -3 -2 7 4 6 -3 7 12 9
3 -3 0 6 4 7 -2 -3 8 6
4 -3 3 10 10 8 -2 -1 5.5 6
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Table 5 (continued)

j x1 j x2 j KYj RYj j x1 j x2 j KYj RYj

9 -2 0 4 6 42 4 1 3 8
10 -2 2 7 10 43 4 2 4 10
11 -2 5 9.5 13 44 4 6 8 12
12 -2 6 10.2 12 45 4 7 9 11
13 -1 -4 5 8 46 5 -2 3 5
14 -1 -2 3.4 8 47 5 -1 2 5
15 -1 1 3 10 48 5 0 1 5
16 -1 3 5 14 49 5 3 4 11
17 -1 7 9 13 50 5 4 5 13
18 0 -4 4 10 51 5 5 6 12
19 0 -1 1 10 52 6 -4 4 4
20 0 0 0 10 53 6 -3 3 4
21 0 1 1 12 54 6 0 0 4
22 0 4 4 18 55 6 2 2 8
23 0 6 6 16 56 6 4 4 12
24 1 -2 3 9 57 6 6 6 10
25 1 0 1 9 58 7 -3 4 3
26 1 2 3 13 59 7 -2 3 3
27 1 3 4 15 60 7 1 2 3
28 1 5 6 16 61 7 5 6 10
29 1 7 8 14 62 7 7 8 8
30 2 -3 5 8 63 8 -4 6 2
31 2 -1 3 8 64 8 -1 3 2
32 2 2 4 12 65 8 0 2 2
33 2 4 6 16 66 8 2 4 6
34 2 6 8 14 67 8 3 5 8
35 3 -4 7 7 68 8 6 8 8
36 3 -2 5 7 69 9 -4 7 1
37 3 0 3 7 70 9 -3 6 1
38 3 1 4 9 71 9 -2 5 1
39 3 5 8 14 72 9 1 4 3
40 4 -3 5 6 73 9 5 8 8
41 4 -1 3 6 74 9 7 5 6
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Fundamentals for Design and Construction of a
Fuzzy Random Forest

Piero P. Bonissone, José Manuel Cadenas, Marı́a del Carmen Garrido,
and R. Andrés Dı́az-Valladares

Abstract. Following Breiman’s methodology, we propose the fundamentals to de-
sign and construct a “forest” of randomly generated fuzzy decision trees, i.e., a
Fuzzy Random Forest. This approach combines the robustness of multi-classifiers,
the construction efficiency of decision trees, the power of the randomness to in-
crease the diversity of the trees in the forest, and the flexibility of fuzzy logic and
the fuzzy sets for data managing. A prototype for the method has been constructed
and we have implemented some specific strategies for inference in the Fuzzy Ran-
dom Forest. Some experimental results are given.

Keywords: Approximate Reasoning, Fuzzy Decision Trees, Random Forest, Com-
bination Methods.

1 Introduction

Classification has always been a challenging problem, [1]. The explosion of infor-
mation that is available to companies and individuals today further compounds this
problem. We have witnessed a variety of methods and algorithms addressing the clas-
sification issue. In the last few years, we have also seen an increase of multi-classifiers
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based approaches, which have been shown to deliver better results than individual
classifiers, [22].

In this paper, we will not address the issue of how to obtain the best multi-
classifier system. Rather, our focus will be on how to start from a multi-classifier
system with a performance comparable to the best classifiers and extend it to handle
and manipulate imperfect information (linguistic labels, missing values, etc.)

To build the multi-classifier, we follow the random forest methodology. To incor-
porate the processing of imperfect data, we construct the random forest using fuzzy
trees as base classifiers. Therefore, we try to use the robustness of a tree ensemble,
the power of the randomness to increase the diversity of the trees in the forest, and
the flexibility of fuzzy logic and fuzzy sets for data managing.

In section 2, we review the major elements that constitute a multi-classifier and,
given that our proposal is based on an ensemble of fuzzy trees, we will also in-
clude some comments on aspect of fuzzy decision trees. In section 3, we explain the
classic algorithm to create a random forest according to Breiman [4]. In the same
section we also describe the adjustments, changes and considerations needed for the
construction and inference of a fuzzy random forest. We present some initial results
in section 4, followed by our conclusions in section 5.

2 Multi-classifiers

When individual classifiers are combined appropriately, we usually obtain a better
performance in terms of classification precision and/or speed and so find a better
solution. Multi-classifiers are the result of combining several individual classifiers.
Multi-classifiers differ in their diverse characteristics: (1) the number and (2) the
type of the individual classifiers; (3) the characteristics of the subsets used by every
classifier of the set; (4) the consideration of the decisions; and (5) the size and the
nature of the training sets for the classifiers [16].

Segrera [22] divides the methods for building multi-classifiers in two groups:
ensemble and hybrid methods. The first type, such as Bagging [3], Boosting [21]
and Random Subspace [11], induces models that merge classifiers with the same
learning algorithm, while introducing modifications in the training data set. The
second type, such as Stacking [24], creates new hybrid learning techniques from
different base learning algorithms.

The Bagging based ensemble uses the same base classifier a set number of times,
and the training set of each individual classifier is a subset of examples which are
formed by random selection and through replacement of a sample of m examples
taken from the original training set made up by m examples. Since each individual
classifier is trained on a bootstrap sample, the data distribution seen during training
is similar to the original distribution. Thus, the individual classifiers in a bagging
ensemble have relatively high classification accuracy. The only factor encouraging
diversity between these classifiers is the proportion of different examples in the
training samples. Although the classifier models used in Bagging are sensitive to
small changes in data, the bootstrap sampling appears to lead to ensembles of low
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diversity compared to other methods of creating ensembles. As a result, Bagging
requires larger ensemble sizes to perform well. To enforce diversity, a version of
Bagging called Random Forest was proposed by Breiman [4]. In a Boosting base
ensemble the individual classifiers are trained sequentially in a series, and the train-
ing set of the k-th classifier is chosen on the basis of the performance of the previous
k − 1 classifiers in the series. The probability of classifier k choosing an example
for training depends on the frequency with which this was badly classified by the
preceding k-1 classifiers. In other words, classifiers home in on the most complex
examples for learning. Finally, the ensemble based on Random Subspaces makes a
random selection of input attributes for each individual classifier.

Bagging, Boosting and Random Subspaces were evaluated in [8], where Boosting
was found to be the most exact method for problems with no noise, and Bagging
performed best with noise.

An ensemble uses the predictions of multiple base-classifiers, typically through
majority vote or averaged prediction, to produce a final ensemble-based decision.
The ensemble-based predictions typically have lower generalization error rates than
those obtained by a single model. The difference depends on the type of base-
classifiers used, ensemble size, and diversity or correlation between classifiers [1].

Among the hybrid multi-classifiers, the Stacking based ones stand out. These
are proposed to combine heterogeneous classifiers derived from different learning
algorithms and using different representation models on the same training set. In
this type of multi-classifier we can talk about two stages. In the first, a set of base
level classifiers is generated. In the second stage, a meta-level classifier is generated
which combines the outputs of the base level classifiers.

2.1 Multi-classifiers Based on Decision Trees

Decision trees have been the basis for the most important works on multi-classifiers
systems. As a result, the label “forest” has been given to an ensemble of trees work-
ing on the same classification problem.

In order to grow these ensembles, random vectors are often generated that gov-
ern the growth of each tree in the ensemble. An early example is bagging (Breiman
[1996]), where to grow each tree a random selection (without replacement) is made
from the examples in the training set. Another example is random split selection
(Dietterich [1998]) where at each node the split is selected at random from among
the K best splits. Breiman [1999] generates new training sets by randomizing the
outputs in the original training set. Another approach is to select the training set
from a random set of weights on the examples in the training set. Ho [1998] has
written a number of papers on “the random subspace” method which makes a ran-
dom selection of a subset of attributes to use to grow each tree.

The common element in all of these procedures is that for the k-th tree, a random
vector θk is generated, independently of the past random vectors θ1, ...,θk−1 but
with the same distribution; and a tree is grown using the training set and θk. After
a large number of trees has been generated, they vote for the most popular class.
These procedures are called random forests [4].
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As stated in the previous section, in bagging, diversity is obtained by constructing
each classifier with a different set of examples, which is obtained from the original
training set by re-sampling with replacement. Bagging then combines the decisions
of the classifiers using uniform-weighted voting. Bagging improves the performance
of single classifiers by reducing the variance error. Breiman categorizes bagging de-
cision trees as a particular instance of random forest classification techniques. A
random forest is a tree-based ensemble that uses some kind of independent random-
ization in the construction of every individual classifier. Many variants of bagging
and random forests with excellent classification performance have been developed
in [19]. Others types of random forest are: randomization [8], Forest-RI and Forest-
RC [4], double-bagging [12], rotation forest [20].

Hamza [10] concludes that: 1) Random Forests are significantly better than Bag-
ging, Boosting and a single tree; 2) their error rate is smaller than the best one
obtained by other methods; and 3) they are more robust to noise than the other
methods. Consequently, random forest is a very good classification method with the
following characteristics: (1) it is easy to use; (2) it does not require models, nor
parameters to select, except for the number of attributes to choose at random at each
node; and (3) it is relatively robust to noise.

Given that decision trees play an important role in constructing multi-classifiers,
below we will comment on some of their aspects and their relation to fuzzy logic.

2.1.1 Fuzzy Logic and Decision Trees

Decision tree techniques have proved to be interpretable, efficient and capable of
treating with applications of great scale. However, they are highly unstable when
small disturbances are introduced in data learning. Fuzzy logic offers an improve-
ment in these aspects, due to the elasticity of the fuzzy set’s formalism. In previous
works [13, 14, 15] we can find approaches in which fuzzy sets and their underlying
approximate reasoning capabilities have been successfully combined with decision
trees. This combination has preserved the advantages of both components: uncer-
tainty management with the comprehensibility of linguistic variables, and popular-
ity and easy application of decision trees. The resulting trees show an increased
immunity to noise, an extended applicability to uncertain or vague contexts, and
support for the comprehensibility of the tree structure, which remains the principal
representation of the resulting knowledge.

In the literature, we can find several proposals for building trees of fuzzy infor-
mation starting with algorithms already known for building traditional trees. Fuzzy
CART [13] was one of the first examples of this approach, being based on the CART
algorithm. However, most authors have preferred to use the ID3 algorithm to con-
struct trees for recursive partition of the data set of agreement to the values of the
selected attribute. To use the ID3 algorithm in the construction of fuzzy trees, we
need to develop attribute value space partitioning methods, branching attribute se-
lection method, branching test method to determine the degree to which data follow
the branches of a node, and leaf node labeling methods to determine classes. Fuzzy
decision trees have two major components: a procedure for building fuzzy decision
trees and an inference procedure for decision-making [15].
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Fuzzy decision trees are constructed in a top-down manner by recursive partition-
ing of the training set into subsets. Some particular features of fuzzy tree learning
are: the membership degree of examples, the selection of test attributes, the fuzzy
tests (to determine the membership degree of the value of an attribute to a fuzzy set),
and the stop criteria (besides the classic criteria when the measure of the information
is under a specific threshold).

As mentioned earlier, when we use the ID3 algorithm to construct fuzzy trees,
an important aspect is the partitioning or discretisation of the numerical attributes
that describe the examples. This partitioning has the same potential advantages of
reduced search space size, improved classifier performance and reduced risk of over-
fitting. However, these advantages may only be realised if the performance of the
discretisation method is good; a classification method may well give inferior perfor-
mance when using data which have been poorly discretised [7]. The categories into
which discretisation algorithms are divided, as defined in [9], are:

• Global or local. A local discretisation method produces discretisations which are
applied to localised regions of the database. A discretisation is formed separately
for each of these subsets. Global methods discretise the entire database instead.

• Supervised or unsupervised. Unsupervised methods form a discretisation based
purely upon the values of a given attribute. Supervised methods make use of the
class values of each example when forming the discretisation for any field. The
regions produced by such processes should each be relatively homogeneous with
respect to class (i.e. most of the examples contained within an interval should
belong to the same class). Unsupervised discretisation techniques run the risk of
losing classification information by placing examples in the same interval which
are very similar with respect to attribute value but belong to different classes.
This is because such techniques form the discretisation without making any use
of class information.

• Static or dynamic. Both methods require the definition of the maximum number
of intervals k into which each attribute may be discretised. Within static discreti-
sation, each attribute in turn is then split into k intervals. Dynamic discretisation
methods search for discretisations into at most k intervals for all attributes simul-
taneously. Such methods should therefore be able to take into account interde-
pendencies between attributes when performing discretisation.

3 Towards a Fuzzy Random Forest

Since multi-classifiers have been built based on decision trees, and these have been
combined with fuzzy sets and their underlying approximate reasoning capabilities, it
is of interest and appropriate to design multi-classifiers based on fuzzy classifiers. In
this section, we present the concepts for the design of a forest of fuzzy decision trees
generated randomly (Fuzzy Random Forest), following Breiman’s methodology [4].
We specify the adjustments, changes and considerations needed to construct these
multi-classifiers.
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3.1 Random Forest (Following Breiman’s Methodology)

As we observed above bagging requires larger ensemble sizes to perform well. To
enforce diversity, a version of Bagging called Random Forest was proposed by
Breiman [4]. The ensemble consists of decision trees again built on bootstrap sam-
ples. The difference lies in the construction of the decision tree. The attribute to split
a node is selected as the best attribute from a subset of F randomly chosen attributes
(from a total of M attributes), where F is a parameter of the algorithm. This small
alteration appeared to be a winning heuristic, in that diversity was introduced with-
out compromising the accuracy of the individual classifiers much. This procedure
was denoted by Breiman Forest-RI.

The algorithm of learning and inference in a random forest constructed with the
Forest-RI procedure, according to Breiman is the following:

Algorithm 1 - Forest-RI Algorithm following Breiman’s Methodology

ForestRI(in:DataSet,out:Random Forest)

begin

1. Take a random sample of N examples from the data set with replacement of the
complete dataset of N examples. Some examples will be selected more than once,
and others will not be chosen. Approximately 2/3 of the examples will be selected.
The remaining 1/3 of the cases is called “out of bag” (OOB).
For each constructed tree, a new random selection of examples is performed.

2. Using the examples selected in the previous step, construct a tree (to the maximum
size and without pruning). During this process, every time that it is needed to split
a node, only consider a subset F of the total set of attributes M. Select the set of
attributes as a random subset of the total set of available attributes. Perform a new
random selection for each split. Some attributes (inclusive the best) cannot be con-
sidered for each split, but a attribute excluded in one split may be used by other
splits in the same tree.

3. Repeat steps 1 and 2 to construct a forest, i.e. a collection of trees.

4. To classify an example, run it through each tree in the forest and record the predicted
value. Use the predicted categories for each tree as “votes” for the best class, and
use the class with the most votes as the predicted class.

end

Forest-RI have two stochastic elements: 1) the selection of data set used as input
for each tree; and 2) the set of attributes considered as candidates for each node
split. These randomizations, along with combining the predictions from the trees,
significantly improve the overall predictive accuracy.

When we constructed a random forest using the previous algorithm, about 1/3 of
the examples are excluded from each tree in the forest. These examples are called
“out of bag” (OOB); each tree will have a different set of OOB examples. The OOB
examples are not used to build the tree and constitute an independent test sample for
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the tree. To measure the generalization error of the tree, the OOB for each tree are
run through the tree and the error rate of the prediction is computed. The error rates
for the trees in the forest are then averaged to give the overall generalization error
rate for the decision tree model.

There are several advantages to this method of computing generalization error:
(1) all cases are used to construct the model, and none have to be held back as a
separate test set; (2) the testing is fast because only one forest has to be constructed
(as compared to cross-validation where additional trees have to be constructed).

Some advantages reported by Breiman in [4] of Forest-RI procedure to construct a
random forest include the improved speed in the construction of the multi-classifier,
compared to Adaboost and Bagging. This improvement is produced because in each
tree construction it is only necessary to evaluate F attributes from the total avail-
able for each node to expand. In data sets with many attributes the improvement in
computation time is very significant. Moreover, the results obtained with Forest-RI
compare favorably with Adaboost.

3.2 Approach and Considerations to Construct a Fuzzy Random
Forest

In this work we propose to use Algorithm 1 to generate a random forest whose trees
are fuzzy decision trees, proposing, therefore, a basic algorithm to generate a Fuzzy
Random Forest (FRF).

Algorithm 2 - Fuzzy Decision Tree Learning

FuzzyDecisionTree(in:Examples,out:Fuzzy Tree)

begin

1. Start with examples set of entry, having the weights of the examples (in root node)
equal to 1.

2. At any node N still to be expanded, compute the number of examples of each class.
The examples are distributed in part or in whole by branches. The amount of each
example distributed to a branch is obtained as the product of its current weight and
the membership degree to the node.

3. Compute the standard information content.

4. At each node search the set of remaining attributes to split the node.

4.1. Select with any criteria, the candidate attributes set to split the node.
4.2. Compute the standard information content to each child node obtained from

each candidate attribute.
4.3. Select the candidate attribute such that the information gain is maximum.

5. Divide N in sub-nodes according to possible outputs of the attribute selected in the
previous step.

6. Repeat steps 2-5 to stop criteria being satisfied in all nodes.

end
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Each tree in the forest will be a fuzzy tree generated following the guidelines
of [14], adapting it where is necessary.

Algorithm 2 shows the general steps to follow to construct a fuzzy tree. Before
constructing the trees, it is necessary to carry out a partitioning of the numerical
attributes which describe the examples of the databases. The partitioning algorithm
we use here is based on decision trees and is global, supervised and dynamic, in
accordance with the definition given above for such algorithms. A fuller description
of the algorithm can be found in [6].

In algorithm 3 we show the learning process of an FRF using the fuzzy trees
random generator which follows Breiman’s methodology.

Algorithm 3 - FRF Learning

FRFlearning(in:Dataset,out:Fuzzy Random Forest)

begin

1. Divide the examples set of entry in subsets according to step 1 of algorithm 1.

2. For each subset of examples, apply algorithm 2 (construct a fuzzy tree). This algo-
rithm has been adapted so that the trees can be constructed without considering all
the attributes to split the nodes. This is done to be able to apply step 2 of algorithm
1.

3. Repeat steps 1 and 2 until all fuzzy trees are built. At the end, we will have con-
structed a fuzzy random forest.

end

With this basic algorithm, we integrate the concept of fuzzy tree within the de-
sign philosophy of Breiman’s random forest. In this way, we augment the capacity
of diversification of random forests with the capacity of approximate reasoning of
fuzzy logic.

3.3 Proposal and Considerations For the Inference in Fuzzy
Random Forest

In this section we are going to present the main aspects to be taken into account
when classifying an input example with an FRF.

We will begin by briefly explaining the combination methods frequently used in
multi-classifiers to obtain the final decision starting from the decision of each base
classifier. Next, we present some notations that we will use throughout the section
and we will describe some general aspects of the FRF inference process, adapting
the combination methods from the literature. Finally, we show some specific imple-
mentation for an FRF.
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3.3.1 Combination Methods

Various combination methods have been used in the literature [16, 17, 18], to take a
final decision in a multi-classifier starting from individual classifiers.

In his papers, Kuncheva classifies the basic combination methods into two
groups:

• Combination methods without learning, which are those with which is possible
to work directly, once the classifiers have been learnt, i.e. no type of learning on
the ensemble is required.

• Combination methods with learning, which try to give greater importance in the
final decision to the more precise base classifiers in the case that the ensemble
classifiers do not have identical precision.

In this preliminary work with the FRF multi-classifier, we will only incorpo-
rate the basic combination methods without learning to the inference with FRF. We
highlight the following (Figure 1):

• majority vote, which takes as input the class vector of each element to be voted
for. It generates its vote for the majority class and returns a vector which indicates
the most voted class. Figure 1a) shows how this combination method works.
Given the class vectors of x elements, the vote of each element is generated to
its majority class and the vector o is provided with all its elements at 0, except
element c, which is 1, with c being the most voted class.

• the simple minimum, which takes as input the class vector of each element. It
obtains the minimum value for each class in these vectors and returns a vector
which indicates the class with the highest minimum value. Figure 1b) shows this
combination method. Given the class vectors of x elements, the minimum value

Fig. 1 Simple combination methods
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for each class is calculated and the vector o is provided with all its elements at
0, except element c, which is 1, with c being the class with the highest minimum
value. The simple maximum method is defined in a similar way.

• the average combination method takes as input the class vector of each element.
It calculates the average value for each class and provides a vector which indi-
cates the class of highest value. Figure 1c) shows this combination method. The
product combination method is defined in a similar way. It obtains the product of
the values of each class and so finally provides the class with the highest value.

3.3.2 Notations

Now, we introduce the notation that we will use:

• T is the trees’ number of the forest. We will use the index t to refer to a particular
tree in the forest.

• Nt is the number of leaf nodes reached by an example, in the tree t. A charac-
teristic inherent in fuzzy trees is that the classification of an example can derive
into two or more leaves due to the overlapping of the fuzzy sets. We will use the
index n to refer to a particular leaf in a tree of the forest.

• I is the number of classes that we consider. We will use the index i to refer to a
particular class.

• e is an example from the dataset used to build and to infer with the Fuzzy Random
Forest.

• χt,n(e) is the grade which the example e activates the leaf n from tree t.

• ωt,n is a vector with I elements indicating the weights of the I possible classes in
the leaf n of tree t, ωt,n=(ωt,n,1,ωt,n,2, ...,ωt,n,I), where ωt,n,i = Ei

∑I
j=1 E j

and E j is

the sum of the weights of examples with class j in the leaf.

Other ways of obtaining the content of ωt,n are:

– ωt,n,i = 1 if i is the majority class in this node and 0 for all other classes.

– ωt,n,i = Ei

∑I
j=1 E j

if i is the majority class in this node and 0 for all other classes.

– ωt,n,i = χt,n(e) if i is the majority class in this node and 0 for all other classes.

– ωt,n,i = χt,n(e) · Ei

∑I
j=1 E j

if i is the majority class in this node and 0 for all other

classes.

– ωt,n,i = χt,n(e) · Ei

∑I
j=1 E j

for each class.

• ωt is a vector with I elements indicating the weights of the I possible classes
in the tree t of forest, ωt=(ωt,1,ωt,2, ...,ωt,I), where each ωt,i is obtained by ap-
plying one of the combination methods described in the following section to the
different leaf nodes of tree t, i.e. each ωt,i combines the information provided by
each leaf of t.

• ωFRF is a vector with I elements indicating the weights of the I possible classes
in the forest FRF.



Fundamentals for Design and Construction of a Fuzzy Random Forest 33

3.3.3 Inference in FRF

Given that the use of fuzzy trees means many leaves are reached when we try to
classify an input example, the fuzzy classifier module operate on fuzzy trees of the
forest with two possible strategies:

Strategy 1: Combining the information from the different leaves reached in each
tree to obtain the decision of each individual tree and then applying the same one
or another combination method to generate the global decision of the forest.

Strategy 2: Combining the information from all leaves reached from all trees to
generate the global decision of the forest.

In both strategies, we use the function Faggre, which is defined as a frequently
used multi-classifiers combination method [16], e.g., majority vote, minimum, max-
imum, average, product, etc.

In Algorithm 4, Faggre is used to obtain ωt (the weight of each tree for each
class). Later, the values obtained in each tree t, will be aggregated by the function
Faggre (again, can be any combination method mentioned previously, which is able
to adapt to take into account about some considerations commented ahead) to obtain
the vector ωFRF that contains the weight proposed by fuzzy random forest for the
different classes.

For implementing strategy 2 (algorithm 5), the previous algorithm 4 is simplified
so that it does not add the information for tree, but directly provides the information
of all leaves reached by the example e in the different trees of the forest.

Algorithm 4 - FRF Inference (Strategy 1)

begin
TreeClasification.
ForestClasification.

end

TreeClasification (in : e, in : Random Forest,out : ω1,ω2, ...,ωT )

begin
for each Tree t do

ω t = Faggre(ω t,1,ω t,2, ...,ωt,Nt )
end for

end

ForestClasification (in : ω1,ω2, ...,ωT ,out : ωFRF)
begin

ωFRF = Faggre(ω1,ω2, ...,ωT )

end
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Algorithm 5 - FRF Inference (Strategy 2)

ForestClasification (in : e, in : Random Forest,out : ωFRF )
begin

ωFRF = Faggre(ω1,1,ω1,2, ...,ω1,N1 ,ω2,1,ω2,2, ...,ω2,N2 ,ωT,1,ωT,2, ...,ωT,NT )

end

3.3.4 Some Specific Implementations of Inference Methods

Now, we present some specific implementations of inference in the FRF multi-
classifier. Each will include some simple combination method from those described
in Figure 1 in either of the general strategies for inference described in the previous
section.

• Implementations based in Majority vote (MV).
This method assigns e to the class label most represented among the forest’s trees
outputs.

In strategy 1 the combination method based on majority vote is applied first
to the leaf nodes reached by example e to obtain the decision of each tree. It is
then applied to the decisions of the trees to obtain the forest’s decision. Figure
2a) shows a schema for this implementation.

In case of the second strategy every leaf reached of the forest is considered
to vote. The forest will decide the class c where c is the only element of the
vector ωFRF which takes a value 1. This implementation is shown illustratively
in Figure 2b).

a) to strategy 1 b) to strategy 2

Fig. 2 Majority vote applied to strategy 1 and strategy 2
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• Implementations based in Minimum simple (MS).
This method uses the minimum combination method to take the minimum in
each class of leaves and trees.

In strategy 1, we implementation the inference:

1) We apply at decision level of every tree the minimum simple as combination
method.

2) Then, we apply the majority vote combination method to the resulting vectors.

We show this implementation illustratively in Figure 3.

Fig. 3 Minimum-majority vote applied to strategy 1

Strategy 2 is simpler to apply since it only has one decision level. In this case the
vector ωFRF , is obtained by taking vectors ωt,Nt ,∀t as input in Figure 1b).

• In a similar way, we can calculate the class support from the decision profile
taking Maximum, Average and Product.

• Weighted versions of the simpler combination methods will be implemented by
taking into account aspects as the weight of leaves reached, standard error of
each tree, the amount of imperfect information to construct each tree, etc.

4 Experiments and Preliminary Results

We are currently developing an application that is (1) capable of generating the
random databases (Random Forest Generator), and (2) able to infer the classification
of the forest (Fuzzy Classifiers). Figure 4 shows a screen of this application, which
we have labeled FRF 1.0. We used FRF 1.0 to obtain our preliminary results.

We used the Iris database, Appendicitis database and Glass database from UCI
repository [2] and realized diverse tests. We constructed the fuzzy random forest



36 P.P. Bonissone et al.

Fig. 4 Screen of FRF 1.0

considering the majority vote and minimum simple (strategy 1 and strategy 2) as
inference methods. In Tables 2, 4 and 6, we show comparative data for classification
of the three databases from different techniques. For this comparison we have used
a set of techniques of platform Weka [23], FID3.4 [14] and the proposed multi-
classifier FRF 1.0. For each database we show the partition of the numerical at-
tributes used in the construction of the trees of the FRF 1.0 multi-classifier and the
results obtained with the original database and with the following versions of the
same:

• Introducing 5% of missing values.
• Introducing 10% of linguistic labels.
• Introducing 15% of linguistics labels.

In both the 10% and 15% introductions of linguistic labels, the values of the
original database are substituted by the corresponding linguistic label, defined by
the partition used.

Tables 2, 4 and 6 show the results of the various techniques carried out, and for
FRF 1.0 (strategy 1 and strategy 2), we also indicate in brackets which inference
method obtains the best value. The results are obtained by 10-fold cross validation,
showing the mean value and the standard deviation obtained.

4.1 Iris Database

This set of data contains three classes with 50 examples in each. Class refers to
the type of iris plant: Iris-Setosa, Iris-Versicolour and Iris-Virginica. One class is
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attributes=4 || candidates = 2 → attrib1, attrib3 || selection → attrib3

attrib3 ∈ling. label1 with membership degree α31: Set=38.00 Ver=0.00 Vir=0.00
attrib3 ∈ling. label2 with membership degree α32: Set=0.00 Ver=32.49 Vir=0.00
attrib3 ∈ling. label3 with membership degree α33: Set=0.00 Ver=14.51 Vir=6.00

| attributes=3 || candidates =2 → attrib1, attrib4 || selection → attrib4

| attrib4 ∈ling. label1 with membership degree α41: Set=0.00 Ver=14.51 Vir=0.00
| attrib4 ∈ling. label2 with membership degree α42: Set=0.00 Ver=0.00 Vir=4.90
| attrib4 ∈ling. label3 with membership degree α43: Set=0.00 Ver=0.00 Vir=1.10

attrib3 ∈ling. label4 with membership degree α34: Set=0.00 Ver=0.00 Vir=4.00
attrib3 ∈ling. label5 with membership degree α35: Set=0.00 Ver=1.00 Vir=39.00

Fig. 5 A fuzzy tree of the Fuzzy Random Forest FRF 1.0 for IRIS

Fig. 6 Attributes partition

linearly separable from the other two, but these are not linearly separable between
themselves. The database includes examples described by five attributes, of which 4
are numerical and one, class, is discrete. The numerical attributes have the following
meaning: z1 is the flower sepal length, z2 is the flower sepal width, z3 is the flower
petal length, z4 is the flower petal width, and Cl is the class.

Figures 5, 6 and table 1 show a fuzzy tree of the Fuzzy Random Forest FRF
1.0 for this database and the partitions of numerical attributes used by this tree,
respectively. Table 2 shows the results obtained.

Table 1 Attributes partition of Iris database

ling. label1 ling. label2 ling. label3 ling. label4
attr. 1 (0,0,0.496,0.587) (0.496,0.587,1,1)
attr. 2 (0,0,1,1)
attr. 3 (0,0,0.225,0.266) (0.225,0.266,0.652,0.653) (0.652,0.653,0.669,0.670) (0.669,0.67,1,1)
attr. 4 (0,0,0.602,0.606) (0.602,0.606,0.644,0.648) (0.644,0.648,1,1)
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Table 2 Preliminary results from FRF 1.0

IRIS

Technique without imperf. 5% miss. 10% ling. labels 15% ling. labels

Naives Bayes (NaiveBayes) 96.67 ± 4.47 96.00 ± 4.42 — —
C4.5 (J48) 96.00 ± 5.33 93.33 ± 7.89 — —
Neuronal Net (MultiplayerPerc.) 97.33 ± 3.27 92.00 ± 6.53 — —
Ripple-Down-Rule (Ridor) 94.67 ± 4.99 86.67 ± 9.43 — —
Random Forest (RandomForest) 95.33 ± 4.27 96.00 ± 4.47 — —
Boosting (AdaBoostM1) 95.33 ± 5.21 92.67 ± 6.29 — —
Bagging 96.00 ± 5.33 96.00 ± 4.42 — —
FID 3.4 96.67 ± 3.33 92.67 ± 6.96 96.67 ± 3.33 96.00 ± 4.42
FRF 1.0 (Strategy 1) 98.00 ± 4.27 98.66 ± 2.81 96.67 ± 3.33 96.67 ± 3.33

(MV,MS) (MS) (MV,MS) (MV,MS)
FRF 1.0 (Strategy 2) 98.00 ± 4.27 96.66 ± 4.71 97.33 ± 3.27 96.67 ± 4.47

(MV) (MV) (MV) (MV)

4.2 Appendicitis Database

The appendicitis database consists of seven laboratory tests to confirm the diagnosis
of acute appendicitis. This database includes examples described by eight attributes:
the seven results of medical tests and one, class (type of appendicitis). The first
seven features are numerical and the last is discrete. This database consists of only
106 examples in two classes: 85 patients had confirmed appendicitis while 21 did
not.

Table 3 shows the attributes partition used for the Fuzzy Random Forest FRF 1.0
for the Appendicitis database. Table 4 shows the results obtained for the various
techniques applied to this database.

Table 3 Attributes partition of Appendicitis database

ling. label1 ling. label2 ling. label3 ling. label4
attr. 1 (0,0,0.038,0.046) (0.038,0.046,0.367,0.402) (0.367,0.402,1,1)

attr. 2 (0,0,1,1)

attr. 3 (0,0,0.222,0.241) (0.222,0.241,0.410,0.429) (0.410,0.429,0.960,0.967) (0.960,0.967,1,1)

attr. 4 (0,0,0.116,0.120) (0.116,0.120,0.158,0.162) (0.158,0.162,0.219,0.225) (0.219,0.225,1,1)

attr. 5 (0,0,0.267,0.327) (0.267,0.327,1,1)

attr. 6 (0,0,0.058,0.071) (0.058,0.071,0.646,0.657) (0.646,0.657,0.756,0.767) (0.756,0.767,1,1)

attr. 7 (0,0,0.065,0.080) (0.065,0.080,1,1)

4.3 Glass Database

This set of data contains six classes with 70, 76, 17, 13, 9 and 29 examples in each
class. Class refers to the type of glass: building windows float processed, build-
ing windows non float processed, vehicle windows float processed, containers,
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Table 4 Preliminary results from FRF 1.0

APPENDICITIS

Technique without imperf. 5% miss. 10% ling. labels 15% ling. labels

Naives Bayes (NaiveBayes) 87.73 ± 6.21 88.64 ± 5.94 — —
C4.5 (J48) 85.91 ± 9.66 85.82 ± 9.79 — —
Neuronal Net (MultiplayerPerc.) 87.64 ± 8.83 83.00 ± 7.15 — —
Ripple-Down-Rule (Ridor) 86.82 ± 7.76 81.09 ± 7.57 — —
Random Forest (RandomForest) 87.82 ± 8.69 85.91 ± 7.76 — —
Boosting (AdaBoostM1) 86.91 ± 6.11 82.27 ± 9.29 — —
Bagging 86.91 ± 10.51 87.73 ± 5.92 — —
FID 3.4 93.45 ± 4.30 87.82 ± 10.08 93.64 ± 8.18 91.64 ± 8.80
FRF 1.0 (Strategy 1) 94.36 ± 4.86 91.64 ± 6.75 93.36 ± 4.60 94.36 ± 4.86

(MV) (MV) (MV,MS) (MV,MS)
FRF 1.0 (Strategy 2) 95.27 ± 4.99 91.64 ± 6.75 93.36 ± 4.60 94.36 ± 4.86

(MV) (MV) (MV) (MV)

tableware and headlamps. The study of classification of types of glass was moti-
vated by criminological investigation. The database includes examples described by
ten attributes, of which nine are numerical and one, class, is discrete. The numerical
attributes have the following meaning: RI-refractive index, Na-Sodium (unit mea-
surement: weight percent in corresponding oxide), Mg-Magnesium, Al-Aluminum,
Si-Silicon, K-Potassium, Ca-Calcium, Ba-Barium, Fe-Iron, and the type of glass
(class attribute).

Table 5 shows the attributes partition used for the Fuzzy Random Forest FRF 1.0
for the Glass database. Table 6 shows the results obtained for the various techniques
applied to this database.

Table 5 Attributes partition of Glass database

ling. label1 ling. label2 ling. label3
attr. 1 (0,0,0.257,0.265) (0.257,0.265,0.298,0.306) (0.298,0.306,1,1)
attr. 2 (0,0,0.383,0.384) (0.383,0.384,0.385,0.386) (0.385,0.386,1,1)
attr. 3 (0,0,0.589,0.631) (0.589,0.631,0.802,0.844) (0.802,0.844,1,1)
attr. 4 (0,0,0.348,0.356) (0.348,0.356,0.390,0.398) (0.390,0.398,1,1)
attr. 5 (0,0,0.241,0.253) (0.241,0.253,0.302,0.314) (0.302,0.314,1,1)
attr. 6 (0,0,0.001,0.002) (0.001,0.002,0.039,0.048) (0.039,0.048,1,1)
attr. 7 (0,0,0.222,0.227) (0.222,0.227,0.248,0.254) (0.248,0.254,1,1)
attr. 8 (0,0,0.085,0.128) (0.085,0.128,0.569,0.672) (0.569,0.672,1,1)
attr. 9 (0,0,0.246,0.264) (0.246,0.264,0.334,0.352) (0.334,0.352,1,1)

As can be observed from tables 2, 4 and 6, FRF 1.0 has a reasonably acceptable
behavior, but with the advantage of the versatile management of information (from
the different results obtained with the databases with imperfection we observe that
the behavior of FRF 1.0 is very stable). In these tables we show in bold the best
result obtained for each database. FRF 1.0 performs well in all cases and obtains the
best result in all but two, although in the case of Appendicitis database with 10%
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Table 6 Preliminary results from FRF 1.0

GLASS

Technique without imperf. 5% miss. 10% ling. labels 15% ling. labels

Naives Bayes (NaiveBayes) 50.89 ± 4.13 52.75 ± 4.36 — —
C4.5 (J48) 69.55 ± 7.35 67.12 ± 12.49 — —
Neuronal Net (MultiplayerPer. 70.02 ± 6.62 60.13 ± 9.24 — —
Ripple-Down-Rule (Ridor) 68.66 ± 6.70 64.94 ± 9.19 — —
Random Forest (RandomForest) 80.78 ± 7.57 78.64 ± 8.14 — —
Boosting (AdaBoostM1) 78.03 ± 6.00 70.00 ± 8.28 — —
Bagging 73.74 ± 6.69 74.20 ± 8.96 — —
FID 3.4 76.65 ± 11.12 71.54 ± 6.80 66.28 ± 10.84 66.77 ± 9.26
FRF 1.0 (Strategy 1) 81.86 ± 6.76 76.17 ± 8.42 81.36 ± 5.55 79.52 ± 7.99

(MV,MS) (MS) (MV) (MS)
FRF 1.0 (Strategy 2) 81.86 ± 6.76 75.30 ± 9.96 80.91 ± 6.45 79.59 ± 7.94

(MV) (MV) (MV) (MV)

of linguistic labels the standard deviation in much higher that obtained by FRF 1.0,
while the averages are very similar. Both general inference strategies provided here
obtain good results, and therefore seen promising.

5 Conclusions

This document presents the study of a multi-classifier system called Fuzzy Ran-
dom Forest with a reasonably acceptable behavior. Furthermore, the system has the
advantages of uncertainty management and the comprehensibility of linguistic vari-
ables. Given that there are not many techniques today that handle imperfect infor-
mation, we consider our proposal to be quite promising.

We have explained the underlying methodology and principal support techniques:

• We have presented a general description of a fuzzy random forest classifier.
• For fuzzy trees random generator, we carried out a hybridization of the tech-

niques of random forest and fuzzy trees for training
• For fuzzy classifiers we have presented the basic idea for the consideration of

the individual classifications and how they are combined to obtain the joint clas-
sification. Also, we have distinguished some considerations that will contribute
greater accuracy to the classifiers.

We are currently building a fuzzy random forest prototype, with which we plan
to validate our considerations to obtain efficient multi-classifiers with imperfect
information.

Finally, we must clarify that throughout this presentation, we refer to the task of
inference as classification, while the task of regression is implicit in this process.
This is due to the fact that the numerical attributes are divided into linguistic labels
and are treated as nominal ones.



Fundamentals for Design and Construction of a Fuzzy Random Forest 41

Acknowledgements. Supported by the project TIN2008-06872-C04-03 of the MICINN of
Spain and European Fund for Regional Development. Thanks also to the Funding Program
for Research Groups of Excellence with code 04552/GERM/06 granted by the “Fundación
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Mining Exception Rules

Miguel Delgado, Marı́a Dolores Ruiz, and Daniel Sánchez

Abstract. Mining association rules is a well known framework for extracting useful
knowledge from databases. They represent a very particular kind of relation, that
of co-occurrence between two sets of items. Modifying the usual definition of such
rules we may find different kinds of information in the data. Exception rules are
examples of rules dealing with unusual knowledge that might be of interest for the
user and there exists some approaches for extracting them which employ a set of
special association rules.

The goal of this paper is manyfold. First, we provide a deep analysis of the pre-
sented previous approaches. We study their advantages, drawbacks and their se-
mantical aspects. Second, we present a new approach using the certainty factor for
measuring the strength of exception rules. We also offer a unified formulation for
exception rules through the GUHA formal model first presented in the middle six-
ties by Hájek et al. Third, we define the so called double rules as a new type of
rules which in conjunction with exception rules will describe in more detail the re-
lationship between two sets of items. Fourth, we provide an algorithm based on the
previous formulation for mining exception and double rules with reasonably good
performance and some interesting results.

1 Introduction

Mining association rules is a well known framework for extracting useful knowl-
edge from databases. The kind of knowledge they extract is the appearance of a
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set of items (i.e., couples 〈attribute,value〉) together in most of the transactions in a
database. An example of association rule could be “most of transactions that contain
bread also contain butter”, and it is noted bread→ butter. The intensity of the above
association rule is most frequently measured by the support and the confidence mea-
sures [1], although there exists many proposals which try to extract semantically or
even statistically different association rules imposing new quality measures that col-
lect such kind of semantic or statistical aspect. In this line, the certainty factor [3]
has some advantages over the confidence as it extracts more accurate rules and the
number of them is substantially reduced.

There are few approaches dealing with the extraction of unusual or exceptional
knowledge that might be useful. We center our attention to those proposals that al-
low to obtain some uncommon information, referred to as peculiarities, exception or
anomalous rules. In general, these approaches are able to manage with rules that be-
ing infrequent provide a specific domain information usually delimited by a strong
association rule1.

Peculiarity rules are discovered from the data by searching the relevance among
the peculiar data [25]. Roughly speaking, peculiar data is given by the attributes
which contain any peculiar value. A peculiar value will be recognized when it is
very different from the rest of values of the attribute in the data set. Peculiarity rules
represent the associations between the peculiar data. These rules will be searched
among rules with low support and high confidence but having a high change of
support. An attribute-oriented method for extracting peculiarity rules is presented in
[25] and some recent works can be found in [16].

Exception rules were first defined as rules that contradict the user’s common be-
lief [21], more precisely looking for an exception rule consists in finding an attribute
which interacting with another may change the consequent in a strong association
rule [14, 23, 24]. There exists some approaches for extracting exceptional knowl-
edge. We can find a good survey of all of them in [9]. In particular some of them
define exception rules by employing association rules. We focus our attention in
those which are defined in terms of a set of “special” rules for mining the exception
rules [2, 14, 23].

In general terms, considering X ,Y two disjoint itemsets and E a single item, the
kind of knowledge the exception rules try to capture can be interpreted as follows:

X strongly implies Y ,
but, in conjunction with E ,

X confidently does not imply Y .

Anomalous rules are in appearance similar to exception rules, but semantically
different. An anomalous association rule is an association rule that comes to the
surface when we eliminate the dominant effect produced by a strong rule. In other
words, it is an association rule that is verified when a common rule fails [2]. A
formal definition of anomalous rule can be found in [2]. The knowledge these rules
try to capture is:

1 A→ B is a strong association rule if it exceeds the minimum thresholds minsupp, mincon f
imposed by the user.
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X strongly implies Y ,
but, in those cases where X does not imply Y ,

then X confidently implies A,

or in other words: when X , then we have either Y (usually) or A (unusually). Here,
A stands for an item that represents the anomaly.

The knowledge provided by the exception and the anomalous rules are (semanti-
cally) complementary. If we are interested in the agent of the “strange” behavior, we
will look for the exceptions, and if we are interested however in what is the strange
or unusual behavior, we will look for the anomalies.

The aim of this paper is to analyze in detail semantics and formulation of the
existing approaches for mining exception rules. The usual definition considers a
triple rule set (csr, exc, re f ) where csr and re f stand for common sense rule and
reference rule. Although association rules are used for defining exception rules, all
of them do not satisfy the support and confidence conditions (only the common
sense rule) as the exception and the reference rule are infrequent.

One of the tools for analyzing such kind of rules is the logic model first intro-
duced by Hájek et al. in [10], and then developed in [8] based on the GUHA (General
Unary Hypotheses Automaton) method. This model has good logical and statistic
foundations that help to a major understanding of both the nature of association
rules and the properties of the measures used for validating them.

The model uses the simple notions of contingency table and quantifier. The con-
tingency table called four fold table collects all the information about two chosen
itemsets from a database, and the quantifier is a mathematical object that unifies
two types of information: (1) it measures in some sense the relation between the
two attributes and (2) it also says if the measure satisfies some predefined thresh-
olds. It has been used for modeling several types of association. In particular in [8]
we show how the use of different quantifiers is useful for dealing with more kinds of
associations: implicational, double implicational, equivalence, etc. and they are also
helpful in order to generalize the notion of rule to many kinds of situations [13, 19].

Our objective is providing a deep analysis of the formulation and the semantics
of exceptions using the model developed in [8]. In [7] we used the logic model for
studying some semantical aspects of exceptions and anomalies in association rule
mining. Here, we discuss about the different definitions that exception rules have
received, analyzing them semantically and unifying them in a single definition. We
also propose a new approach for searching exception rules using the certainty factor
instead of confidence. This change will report several advantages as it will decrease
the number of extracted exception rules being more accurate.

We also provide a new framework for describing in more detail the relation be-
tween two sets of items. The main idea consists in the conjoint extraction of double
rules with their associated exceptions. A double rule will be a rule which represents
that there is a strong association in both rule’s directions X → Y and Y → X . For
example the double rule

if a vertebrate animal flies (X), usually it is a bird (Y )
if the vertebrate animal is a bird (Y ), it usually flies (X).
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has some exceptions in both directions. Mining conjunctly the double rule with its
associated exception rules we can describe more precisely the relation between the
double rule’s antecedent and consequent.

The remainder of the paper is organized as follows. First section introduces a
brief description of the formal model developed by Hájek et al. for association
rules. Section 3 analyzes the proposed definitions for exception rules from a se-
mantical point of view. Section 4 proposes a new framework for mining exception
rules using the certainty factor. Section 5 offers a unified formulation of some quan-
tifiers for extracting exception rules using the logic approach. Section 6 focuses in
defining double rules. We motivate their use and then we study the extraction of
exception rules when the common sense rule is a double rule. Section 7 presents a
simple algorithm for extracting these kinds of rules studying the time and memory
requirements, and we also show some interesting results with some real datasets.
Finally, section 8 concludes with the contribution of the paper pointing out some
lines for future research.

2 Modeling Association Rules

Association rules capture the semantics of conjoint appearance of sets of items.
There exists different proposals for measuring the strength and quality of the asso-
ciation. For dealing and modeling every type of measurement we will use a model
based on the GUHA (General Unary Hypotheses Automaton) method. This method
was first presented in the middle sixties by Hájek et al. [11, 12]. Then it has been de-
veloped in order to have a good model for association rules in several works [17, 18]
and we also have established some useful properties of this model in [7, 8].

The advantage of using this model lies in its simplicity and its logical and statistic
foundations that help to a major understanding of both the nature of association rules
and the basic properties of measures used for assessing their accomplishment.

We also want to emphasize that recently some authors have implemented a good
and fast algorithm [19] based on a bit string approach for mining association rules.
We will adapt it in section 5 for mining exception rules using the association rules
representation into this model.

The starting point is a database D where the rows and columns represent trans-
actions and items respectively (see table 1). Items could be couples of the form
〈attribute,value〉 or 〈attribute, interval〉 depending on the particular data set. The
entry (i, j) of D will be equal to 1 when the item is satisfied in transaction t j and 0
otherwise.

Table 1 Example of Database D

D i1 i2 . . . i j i j+1 . . . in

t1 1 0 . . . 0 1 . . . 0
t2 0 1 . . . 1 1 . . . 1
...

...
...

. . .
...

...
. . .

...
tn 1 1 . . . 0 1 . . . 1
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To the logic method we are presenting, an itemset is an aggregation of items by
means of the logic connectives ∧,∨,¬; and an association rule is an expression of
the type ϕ ≈ ψ where ϕ and ψ are itemsets (in the sense before) derived from D.
The symbol≈, called quantifier, will represent the measure used for the assessment
of the rule, and it will depend on the four fold table associated to the pair ϕ and ψ .

The so called four fold table will be denoted by M = 4 f t(ϕ ,ψ ,D) = 〈a,b,c,d〉
where a,b,c and d will be non-negative integers such that a is the number of trans-
actions satisfying both ϕ and ψ , b the number of those satisfying ϕ and not ψ , and
analogously for c and d; obviously a + b + c + d > 0. Graphically

M ψ ¬ψ
ϕ a b
¬ϕ c d

When the assessment underlying≈ is made from a four fold table then≈ is said
to be a 4 f t-quantifier involved in the rule ϕ ≈ψ . The association rule ϕ ≈ψ is said
to be true in the analyzed database D (or in the matrix M ) if and only if the condition
associated to the 4ft-quantifier≈ is satisfied for the four fold table 4 f t(ϕ ,ψ ,D).

Different kinds of association between ϕ and ψ can be expressed by suitable
4ft-quantifiers. We can find many examples of 4ft-quantifiers in [12], [11] and [17].

The classical framework of support-confidence for assessing association rules
can be expressed by the implication quantifier [8]⇒I

⇒I (a,b,c,d) =
a

a + b
(1)

This quantifier is the well known confidence of the rule ϕ → ψ . We will say that
ϕ ⇒I ψ is satisfied if and only if

⇒I (a,b,c,d)≥ mincon f ∧ a
n
≥ minsupp (2)

where 0 < mincon f ,minsupp < 1 denote the thresholds known as minimum confi-
dence and minimum support respectively, and n = a + b + c + d is the total number
of transactions in the database D. In [8] we explain deeply the relation between
quantifiers and the interest measures used for assessing the validity of rules.

3 Exception Rules

Recent approaches are based on obtaining useful knowledge by means of different
tools, referred to as peculiarities, infrequent rules, exceptions or anomalous rules.
The knowledge captured by these new types of rules is in many cases more useful
than that obtained by simple association rules as they provide specific information
about the association between two itemsets that might be of interest for the user.

Exception rules where first defined as rules that contradict the user’s common
belief [21]. In general the exception rules are rules that contradict in some sense a
strong rule satisfied in a database. In addition, the exception rules have a very strong
regularity between a set of items which are satisfied by a small number of individuals.
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There are several approaches for mining exception rules in databases. A usual
formulation considers a triple rule set (csr, exc, re f ) where the first two rules (com-
mon sense and exception rule) coincide and the reference rule changes according to
the considered approach. The following table shows the general formulation for the
common sense and the exception rules.

X → Y Common sense rule (frequent and confident)
X ∧E→¬Y Exception rule (confident)

In fact the only requirement for the exception rule is to be a confident rule because
the conditions imposed to the common sense rule and to the reference rule restrict
it to have low support.

Depending on the reference rule, we could handle with different kinds of excep-
tion rules. In general terms, the kind of knowledge these exceptions try to capture
can be interpreted as follows: X strongly implies Y (and not E); but in conjunction
with E , X imply ¬Y (or other item in contraposition with Y ).

Now we will discuss the formalization and the semantics captured by the triples
(csr,exc,re f ) proposed until now. After such an analysis we will propose an alter-
native for mining exceptions without the imposition of the reference rule.

3.1 Analyzing Semantics of Exception Rules

There are several proposals for dealing with the task of finding exception rules. We
have found three different approaches which use the triple (csr,exc,re f ) for mining
exception rules. We present them, analyze their weak points and we will see that the
imposition of the reference rule in these approaches it is not indispensable. The lack
of the reference rule can lead to spurious exception rules, but this can be solved by
using stronger association measurements as we will propose in section 4.

Hussain et al. [14] take the reference rule as E → ¬Y with low support or low
confidence. But in fact they impose that the rule E → Y is a strong one, i.e. it has
high support and confidence, which implies the fulfilment of the reference rule.

If we take into consideration this formulation of exception:

X → Y and E→ Y Strong rules
X ∧E→¬Y Confident rule

we see that Hussain et al. present a restrictive definition of exception. They impose
a double meaning. The former is the original semantics of exception rule associated
to the common sense rule X → Y , and the second is that X is also an exception to
the common sense rule E→ Y .

Suzuki et al. work in [22, 23] and also in other papers, with a distinct approach.
They consider the rule-exception pair

X → y (common sense rule)

X ∧E→ y′ (exception rule)
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where y and y′ are items with the same attribute but with different values and X =
x1∧ . . .∧ xp, E = e1∧ . . .∧ eq are conjunctions of items.

They also provide several proposals for measuring the degree of interestingness
of a rule-exception pair. In [23] they use an information-based measure to determine
the interestingness of the above pair of rules. But they also impose the constraint of
not to be confident to the reference rule E→ y′.

In general terms what they propose can be summarized by

X → Y Strong rule
X ∧E→¬Y Confident rule

E →¬Y Not confident

This approach is in some sense objectively novel, but in consonance to the general
semantics of exception rules it should not impose a restriction outside the dominance
of the common sense rule. Moreover, this restriction tells us that the major percent-
age of transactions which contain E and ¬Y also contain X , because if it does not
occur, E → ¬Y will be confident. Therefore, this approach is intended for giving
importance to the fact that E appears almost always when dealing with X and ¬Y .

In [2] Berzal et al. collect the meaning of exceptions proposing this alternative
formulation:

X → Y Strong rule
X ∧E→¬Y Confident rule

X → E Not strong

But imposing the reference rule will usually be redundant. Suppose that we impose
the opposite of the reference rule, i.e. X → E is a strong rule. This rule says that
E is frequent in those transactions containing X . The common sense rule also says
that Y is frequent in those transactions containing X . So there is a high probability
of having that Conf(X ∧E → Y ) exceeds the mincon f threshold. If mincon f > 0.5
since Conf(X ∧E → ¬Y ) = 1−Conf(X ∧E → Y ) the condition for the exception
rule will not be satisfied. So it has been showed that imposing the negation of X→E
not to be strong it is followed the negation of the exception rule condition, then
by contraposition we find that the conditions associated to the common sense and
the exception rules “implies with high probability the satisfiability of the previous
reference rule.”

3.2 Discussion about Formulation of Exception Rules

The main semantics of exception rules is collected by the proper exception rule exc
in the triple (csr,exc,re f ) as the common sense rule gives the relation between the
normal behavior and the exceptional one. Nevertheless, the reference rule is used
for restricting the action area of the exception or for dropping spurious exceptions
that can be found in data. Our claim is that even some false exceptions can be ex-
tracted from data, there is no necessity of imposing the reference rule fulfilment as
sometimes it maybe imposes some contradictory meaning to the exception or even
some redundant condition as for instance in the last case previously seen.
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Table 2 Summary of definitions of exception rules

Type of rule Approach Rule Supp Conf

csr Suzuki, Hussain, Berzal [21], [14], [2] X →Y High High
exc Suzuki, Hussain, Berzal [21], [14], [2] X ∧E→Y Low High
re f Suzuki et al. [21] E→Y High High
re f Hussain et al. [14] E→¬Y - Low
re f Berzal et al. [2] X → E Low (or) Low

The necessity of discerning between the truly exception rules can be solved by
imposing more restrictive quality measures as we treat in section 4.

We are going to analyze the reference rule semantics of previous approaches
(see table 2). Translating the formulation into a practical example, the role of E in
the exception rule is that of an agent which interferes in the usual behavior of the
common sense rule. An example of exception rule could be:

“with the help of antibiotics, the patient usually tends to recover,
unless (except when) staphylococci appear”

in such a case, antibiotics combined with staphylococci don’t lead to recovery, even
sometimes may lead to death. Following this example the possible reference rules
used in every approach are:

Approach Reference Rule Interpretation

Hussain et al. E → Y Strong A patient with staphylococci
tends to recover

Suzuki et al. E →¬Y Not confident In general staphylococci may not lead
to the recovering of the patient
(low confidence)

Berzal et al. X → E Not strong The use of antibiotics in a patient does
not imply the appearance of staphylo-
cocci (low support or confidence)

The approaches given by Hussain and Suzuki (first and second in the table) does
not give any reasonably semantics to the reference rule, nevertheless in the Berzal
et al’s approach (last in the table) the reference rule says that antibiotics and staphy-
lococci doesn’t have a direct relation. This example shows that the reference rule in
all these cases does not contribute to the semantics of exceptions even sometimes
give a contradictory information. Therefore we only take the common sense and
the exception rules for defining exceptions in the following, but we will study some
other measures of interest instead of confidence in the following section.
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4 Certainty Factor for Measuring the Strength of Exception
Rules

In the ambit of searching good measures for assessing the validity of association
rules many proposals had been described. One of them is known as the certainty fac-
tor framework [3, 6]. The theory of certainty factors was first introduced by Short-
liffe and Buchanan in [20] and then was used by Berzal et al. [3] as an alternative to
confidence. When mining exception rules there is a necessity of searching real ex-
ceptions dropping those that are spurious. For that we use the certainty factor since
it is stronger than the confidence.

In particular, the support-certainty factor framework reduces the number of rules
obtained being the extracted rules stronger than those obtained using the support-
confidence framework. The certainty factor, CF , can be defined as follows:

CF(ϕ → ψ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Conf(ϕ → ψ)− supp(ψ)
1− supp(ψ)

if Conf(ϕ → ψ) > supp(ψ)

Conf(ϕ → ψ)− supp(ψ)
supp(ψ)

if Conf(ϕ → ψ) < supp(ψ)

0 otherwise.

(3)

The certainty factor is interpreted as a measure of variation of the probability that
ψ is in a transaction when we consider only those transactions where ϕ is. More
specifically, a positive CF measures the decrease of the probability that ψ is not in
a transaction, given that ϕ is. A similar interpretation can be done for negative CFs.

The certainty factor measure has very interesting properties and we describe
some of them which will be of interest:

1. Conf(ϕ → ψ) = 1 if and only if CF(ϕ → ψ) = 1.
This property guarantees that the certainty factor of an association rule achieves
its maximum possible value, 1, if and only if the rule is totally accurate [6].

2. Let ϕ →ψ be an association rule with positive certainty factor. Then the follow-
ing equality holds [3]

CF(ϕ → ψ) = CF(¬ψ →¬ϕ).

The confidence does not fulfil this property, and it is very interesting since the
rules ϕ → ψ and ¬ψ →¬ϕ represent the same knowledge from a logic point of
view.

So, using the certainty factor we can extract more accurate exception rules as we
will drop those that do not exceed the minCF threshold. The reformulation of our
approach for mining exception rules is given by

X → Y Strong rule in D
E→¬Y Certain rule in DX

where DX = {t ∈ D : X ⊂ t} and we have called certain to the rule whose certainty
factor exceeds the imposed threshold for the certainty factor.



52 M. Delgado, M.D. Ruiz, and D. Sánchez

When restricting to DX mining exception rules using the confidence coincides
with the previous approach (without restricting to DX ) as Conf(X ∧ E → ¬Y ) =
ConfX(E →¬Y ) since

suppX(E) =
|X ∩E|
|X | =

|X ∩E|/ |D|
|X |/ |D| =

supp(X ∪E)
supp(X)

(4)

ConfX(E →¬Y ) =
suppX (E ∪¬Y )

suppX(E)
=
|X ∩E ∩¬Y |/ |X |
|X ∩E|/ |X | =

|X ∩E ∩¬Y |
|X ∩E| =

= Conf(X ∧E→¬Y )
(5)

where we have noted by suppX and ConfX the support and the confidence restricted
to the database DX .

Another problem when mining exception rules is the high number of extracted
rules that increments the complexity when mining exceptions since for each strong
rule we want to discover the associated exceptions. The certainty factor can also help
us reducing the number of extracted rules being stronger than those found using the
confidence. So, in this case it is convenient to use the following approach:

X → Y Frequent and certain in D
E→¬Y Certain in DX

In section 7 we will show how the certainty factor achieves a considerable reduction
in the number of extracted rules and in consequence in the number of discovered
exceptions.

5 Analysis of Exception Rules through the Logic Model

The search of a logic for dealing with exceptions or default values has received
a lot of attention during many years [4, 5]. Several proposals were introduced as
forms of default reasoning for building a complete and consistent knowledge base.
Our approach consists in modifying the existing formal model seen in section 2 for
(1) representing the knowledge collected by exception rules, and (2) for taking into
account the measures used in the task of mining exception rules which involves the
pair (csr,exc).

In [7] we presented a first approach for explaining the true semantics of excep-
tion and anomalous rules using the previous logic model. Moreover the model pro-
vides a unified framework for working conjunctly with association rules and their
exceptions.

This section is devoted to offer a new representation for the concept of exception
using the introduced formal model. Following our last approach we will treat two
different approaches. The former will use the confidence and the second the cer-
tainty factor. Let be X , Y and E three itemsets (or attributes in the logic model) in
a database D. We regard the frequency of appearance of E and Y in DX , where DX

contains those transactions in D satisfying X . The associated four fold table (4 f t) is
in the following table:
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DX Y ¬Y
E e f
¬E g h

a + b

where e is the number of transactions in DX satisfying Y and E; f the number of
transactions in DX satisfying E and not Y and so on. The sums of these frequencies
correspond to the a and b frequencies seen in the previous section, i.e. a = e + g,
b = f + h. We also use n for the number of transactions in D.

Using the predefined 4 f t-quantifiers for association rules we adapt them for the
particular case of mining exception rules. We say that a quantifier ≈E is an E-
quantifier if it involves only the four frequencies introduced in the previous table. If
we use confidence, we define the implication E-quantifier,⇒E by

⇒E (e, f ,g,h) =
f

e + f
(6)

which measures the strength (in particular, the confidence) of the exception rule. For
completing the task of mining the exception rules the implication E-quantifier must
be higher than the mincon f threshold:

⇒E (e, f ,g,h) ≥ mincon f . (7)

So, for mining exception rules, first we have to impose the usual restrictions to
the common sense rule by means of the implication quantifier previously seen,
that is,

⇒I (e, f ,g,h) =
e + g

e + f + g + h
≥ mincon f ∧ e + g

n
≥ minsupp (8)

and then the restriction associated to the E-quantifier.
It should be noted that an E-quantifier does not require the imposition of the

minsupp threshold. This is an important difference between simple quantifiers and
E-quantifiers. Simple quantifiers are usually based which means that there must be
enough transactions supporting the fulfilment of the quantifier.

For our approach the E-quantifier into consideration is the certainty factor E-
equivalence based on the equivalence≡CF defined in [8]. The resulting E-quantifier,
≡E

CF is defined as follows

≡E
CF (e, f ,g,h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⇒E (e, f )− suppX(¬Y )
1− suppX(¬Y )

if ⇒E (e, f ) > suppX(¬Y )

0 if ⇒E (e, f ) = suppX(¬Y )
⇒E (e, f )− suppX(¬Y )

suppX(¬Y )
if ⇒E (e, f ) < suppX(¬Y )

(9)
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which is equivalent to

≡E
CF (e, f ,g,h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f g− eh
(e + f )(e + g)

if f g > eh

0 if f g = eh
f g− eh

(e + f )( f + h)
if f g < eh.

(10)

Using the logic model, the proposed procedure is well summarized saying that
first we use the implication quantifier⇒I as usual for assessing the validity of the
strong rule X → Y in D (as we see at the end of section 2). Then we impose the
implication⇒E if we want to use the confidence or the equivalence≡E

CF for our new
approach. As we proved in [8] the certainty factor belongs to the class of equivalence
quantifiers [17] and it satisfies a set of desirable properties for a good interestingness
measure.

6 Double Rules

When mining rules, sometimes we may find that two itemsets are very related and
there is no difference about the direction of that relationship. We can take advantage
of this situation for extracting a new kind of knowledge from the database. We
propose a toy example for elucidating a prototypical ambient where this kind of
“bidirectional” rules are useful.

Example 1. Imagine we have a database collecting information about the vertebrate
animals and their characteristics in a national park. One of the strong rules we can
extract is:

if the animal flies, it is a bird.

But this rule can also be extracted in the other direction, i.e. the rule

if the animal is a bird, it flies

is also a strong rule.

In this context, we need a new kind of rules which collects this new type of knowl-
edge.

Definition 1. An association rule X→Y is double strong if both X →Y and Y → X
are strong.

Here and subsequently the double directional arrow X ↔ Y will denote double
strong rules. We also consider that X is the double rule’s antecedent if Con f (X →
Y )≥Con f (Y → X). If we have an equality, we can choose X or Y indistinctly. Ac-
cording to this definition, we propose the analogous definition for a 4ft-quantifier.

Definition 2. A quantifier≈ is called double strong if it is defined by the conditions:

≈ (a,b,c,d), ≈ (a,c,b,d)≥ p ∧ a
n
≥ minsupp

where 0 < p < 1 and 0 < minsupp < 1.
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Note that the support of both rules X → Y and Y → X is the same, and p represents
a threshold for the value of the quantifier. In our case, p = mincon f or minCF .

We remember that a 4ft-quantifier ≈ is symmetric [11] if ≈ (a,b,c,d) =≈
(a,c,b,d). Then, it is easy to see that a symmetric strong quantifier is always a
doble strong quantifier. This is resumed in the following corollary.

Corollary 1. A symmetric quantifier ≈ will be used in a double strong way if it
satisfies the following conditions:

≈ (a,b,c,d)≥ p ∧ a≥ Base

where 0 < p < 1 and 0 < Base < a + b + c + d.

This property reduces the number of threshold impositions when mining double
rules for every symmetric quantifier.

6.1 Exceptions for Double Rules

As double rules are constituted by two different strong rules they are able to have
several exceptions in both directions as we show in the following example.

Example 2. In the ambient of example 1 two kinds of exceptions can be discovered.
The first type contains the exceptions for the consequent of the double strong rule,
for example:

if the animal flies, it is a bird, except bats

and the second type will be the exceptions for the antecedent of the double rule:

if the animal it is a bird, it flies,
except penguin, ostrich, cock and hen.

This section is devoted to show the different situations when mining exception rules
in the special case of double rules analyzing some interesting cases.

In general, we are going to deal with some different alternatives.

1. It could happen that there are no exceptions for the double strong rule.
2. We find an exception in only one direction of the double rule.

either
X ↔ Y Double strong rule

X ∧E→¬Y Confident rule

or
X ↔ Y Double strong rule

Y ∧E→¬X Confident rule

3. We have exceptions in both double rule’s directions

X ↔ Y Double strong rule
X ∧E→¬Y Confident rule
Y ∧E ′ → ¬X Confident rule
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In this case, we have two possibilities:

a. The double strong rule has different exceptions in each rule’s direction, i.e.
E �= E ′.

b. The double strong rule has the same exceptions in both rule’s directions, i.e.
we have that E = E ′:

X ↔ Y Double strong rule
X ∧E→¬Y Confident rule
Y ∧E→¬X Confident rule

In order to illustrate this last case, let us consider the relation shown in table 3
containing twelve transactions. From this dataset, we obtain: supp(X↔Y )� 0.583,
Conf(X→Y )� 0.78, and Conf(Y →X)� 0.78, which show that X↔Y is a double
strong rule if we impose the minsupp threshold to 0.5 and the mincon f threshold
to 0.6. We also obtain: Conf(X ∧E→¬Y )� 0.67, and Conf(Y ∧E →¬X)� 0.67,
thus we obtain that E is the same exception for both sides of the double rule.

Table 3 Database with a double exception

X Y F · · ·
X Y F · · ·
X Y F · · ·
X Y F · · ·
X Y F · · ·
X Y F · · ·
X Y E · · ·
X Y ′ E · · ·
X Y ′ E · · ·
X ′ Y E · · ·
X ′ Y E · · ·
X ′ Y ′ E · · ·

Semantically we could say that we have found an “agent” which affects both
sides of the common sense rule, i.e. its presence disturbs the double strong rule’s
X ↔ Y usual behavior.

One interesting case is the last one where the interaction of a “strange” (in the
sense of unfrequent) factor changes the double strong rule’s behavior. When this
happen, we say that E is a double exception. For cases 2 and 3, depending on the
grade of satisfiability given by the measure (confidence or certainty factor) we can
extract a better description about the relation of two variables. This is the case of our
example, where the relationship between bird and flying is totally described when
we take into account its exceptions. In other fields as medicine, we can find a strict
relation between a disease and its symptoms when we also extract every posible
exception.
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7 Experimental Evaluation

We have proposed some new approaches for mining some new and useful knowl-
edge from a database. A new approach using the certainty factor has been proposed
for mining exception rules. We also have introduced a novel kind of rules that will be
useful when for describing in more detail the relation between a set of items. Min-
ing double rules in conjunction with the associated exceptions offers a clarification
about the agents that perturbs the strong rule’s usual behavior.

In the remainder of the section we will present a simple algorithm for mining ex-
ception rules optimized by using the fast-mining-bit string approach [15] and using
the defined quantifiers. We have performed experiments to assess some claims: (1)
the proposed algorithm is feasible in practice, and (2) the time complexity and mem-
ory requirements are also analyzed by means of a wide range of experiments with
some real datasets. We conclude presenting some interesting exception and double
rules extracted from real databases.

7.1 Algorithm and Implementation Issues

The algorithm we propose is able to mine conjunctly the set of strong rules in a
database with their associated exceptions. We only consider exceptions given by a
single item. For mining the association rules we use a simple implementation of
the Apriori algorithm modifying it for dealing with a set of items given by their
representation using BitSets.

Previous works [15, 19] have implemented the Apriori algorithm using a bit-
string representation of items. In both works the results obtained are quite good
with respect to time. Other advantage is the speediness when performing the logical
operations such as conjunction or cardinality.

In particular in our implementation instead of strings of bits we use the java class
java.util.BitSet which contains the implementation of the object BitSet
and some useful operations. The BitSet object stores a set of bits (zero or one) in
each position. The main idea of our implementation consists in storing the whole
database into a vector of BitSets with size equal to the number of transactions and
dimension equal to the number of items. Each BitSet will contain if an item (or
itemset when dealing with conjunction of items) is satisfied (1) or not (0) in each
transaction.

The general framework we have implemented for mining exceptions is described
in algorithm 1.

First step can be done in different ways for creating the suitable set of items
depending of the particular database.

Steps 1.1 and 1.2 are conjunctly processed in order to read the database only
once. The created BitSet vector will have dimension equal to the number of items
in the database and each element of the vector will contain a BitSet with the value
one or zero in position i if the item appears or not in the ith transaction.

The last part describes the process for mining exceptions. For that we will use
the antecedent and consequent BitSet representations for the common sense rule
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Algorithm 1: Mining Exceptions
Input: Transactional database, minsupp, minconf or minCF
Output: Set of association rules with their associated exception rules.

1. Database Preprocessing
1.1 Transformation of the transactional database into a boolean database.
1.2 Database storage into a vector of BitSets.

2. Mining Process (similar to Apriori methodology).
2.1 Mining Common Sense Rules

Searching the set of candidates (frequent itemsets) for extracting the common sense rule.
Storage of BitSet vector indexes associated to the frequent itemsets and their supports.
Common sense rules extraction exceeding the minsupp and minconf thresholds

2.2.1 Mining Exception Rules
For every common sense rule X →Y we compute the possible exceptions:

For each item E ⊂ I (except those in the common sense rule)
Compute X ∧E ∧¬Y and its support
Compute X ∧E and its support
Using confidence:
Compute Con f (X ∧E→¬Y ) if it is ≥ mincon f then we have an exception
Using certainty factor:
Compute suppX (¬Y )
Compute CFX(E→¬Y ) if it is ≥ minCF then we have an exception

and for the whole set of items. The crucial point in the step 2.2.1 is that of com-
puting the exception rule’s confidence/certainty factor that is, Conf(X ∧E → ¬Y )
or CF(X ∧E → ¬Y ) where E can be any single item (even not frequent) which is
high time-consuming, but using bitsets the conjunction and cardinality operations
are fast. The problem is the computation consequent’s negation ¬Y which is slower
than conjunction, but we solve this problem using what we know from the logic
model. Instead of doing the negation of the consequent we compute two frequen-
cies: supp(X ∪E ∪¬Y ) and supp(X ∪E) which are the f and e + f frequencies of
4 f t(E,Y,DX ) involved in the E-quantifier⇒E as follows:

f + e = supp(X ∪E), f = supp(X ∪E ∪¬Y ) = supp(X ∪E)− supp(X ∪E ∪Y ).

The proposed algorithm is also useful for mining double rules as it extracts all
the strong rules without taking care of the direction of the association. For a better
results exploration we search the common sense rule and just then its “opposite” for
obtaining double rules together.

7.2 Time and Space Complexity

The proposed algorithm integrates the extraction of exception rules in the principal
mining process. The Apriori implementation has been used for mining the common
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Table 4 Databases description used in the experiments

Database Size Items

Barbora 6181 33
Nursery 12960 27
Car 1728 21

sense rules but it has been modified for containing the exception rules mining. For
each mined rule we call to the exception rule mining process. The complexity of our
approach will depend on the complexity of the principal rule mining algorithm, in
the Apriori case is O(n2i) where n is the number of transactions and i the number of
items. It also depends linearly on the number of extracted rules says r and linearly
on the number of items. So in our case, we have a theoretic complexity of O(nri2i).
For improving the efficiency the principal rule mining algorithm can be changed by
a faster one, but our purpose here is showing that mining exception rules is feasible
even for large databases as we will see in some real experimentation.

Concerning memory, the size of memory requirements for standard databases is
acceptable. For example for the Barbora bank database (http://lispminer.
vse.cz/download) that is a part of Discovery challenge of the conference
PKDD99 held in Prague, the required memory for the database consisting in 6181
transactions and 12 attributes (33 items) is 107 kb [19], and for 61810 transactions
is 1.04 MB.

To illustrate the time complexity we have discussed, and to show the perfor-
mance of our proposals we have performed some experiments with the Barbora
bank database and with two databases (Car and Nursery) from the UCI repository
(see table 4). We used a 1.73GHz Intel Core 2Duo notebook with 1024MB of main
memory, running Windows XP. The extraction of exceptions is in general computa-
tionally expensive as we have to test for every strong rule if there exists any excep-
tion in the set of items. Our approach plays an essential role in this task. Imposing
the certainty factor for the common sense rule mining, the number of mined rules
decreases (obtaining more accurate association rules [3]) and in consequence, the
time consumed for mining exception rules is also decreased. In table 5 and figure 1

Table 5 Time (in seconds) and rule comparison between Confidence and Certainty Factor in
20 times the Barbora Bank database (123620 transactions) with minsupp = 5%

mincon f Rules Exceptions Time minc f Rules Exceptions Time

0.95 9 8 141 0.95 4 3 127
0.90 46 56 236 0.90 4 3 127
0.85 139 175 445 0.85 6 5 132
0.80 191 286 575 0.80 9 9 140
0.75 258 435 751 0.75 10 10 143
0.70 313 583 818 0.60 13 13 150
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Fig. 1 (a) Number of rules and exceptions (y-axis) as a function of mincon f (x-axis) in 20
times the Barbora Bank data set (123620 transactions). (b) Number of rules and exceptions
(y-axis) as a function of minCF (x-axis) in 20 times the Barbora Bank data set (123620
transactions).
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Fig. 2 Time in seconds (y-axis) as a function of the number of transactions (x-axis) for three
data sets (left Barbora, right Nursery, bottom Car).

we can see the differences between using confidence and certainty factor for mining
the common sense rules as well as the exception rules.

We want to remark that computing certainty factor does not increase the time
execution as we can see in figure 2. In these experiments we only increased the
number of transactions (repeating several times the databases) and we considered
the same mincon f threshold for the common sense rule mining (for obtaining the
same number of common sense rules) repeating them changing the imposition of
confidence by certainty factor for mining the exceptions.
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7.3 Some Interesting Results

Now we are interested in how using our approach we can find interesting exception
and double rules. In the previous section we show how imposing the certainty factor
reduces substantially the number of obtained exception rules as we also reduce the
number of common sense rules. We will show some interesting rules obtained using
our approach (csr, exc) by imposing confidence. We will use OR for enumerating
the different extracted exceptions.

In the Barbora bank data set we have found several exception rules as for
instance:

“IF the sex = woman & age ∈ [55−65) years old
T HEN the status of the mortgage = good (supp = 0.106 and con f = 0.866),
EXCEPT when the amount of money > 500000 czech crowns (con f = 0.889)
OR the payment is between 8000 and 9000 czech crowns (con f = 0.8)”.

In this case we have found two different exceptions for the same strong rule, al-
though we can see that both exceptions are related since when the amount of money
is high it is usual that the payment is also high.

Using the Car database we have a considerably big amount of exception rules.
This phenomenon is sometimes caused by the presence of a frequent itemset which
is complementary to one that appears in the consequent of the rule, as for instance:

“IF the price of buying the car is high
THEN its maintenance is low (supp = 0.125 and con f = 0.5),
EXCEPT if its maintenance is high (con f = 1) OR medium (con f = 1)”.

This rule confirms that our method works as it also extracts the obvious exception
rules.

Concerning to double rules the probability of finding double rules decreases when
we increase the minimum confidence threshold. As we have already mention, the re-
lation between two sets of items is better described by the strength of association in
both directions and it is complemented by the exceptions extracted in each direction.

In the Barbora bank database we have found a double strong rule which also has
exceptions in one rule direction, in particular in that with the lesser confidence. The
double rule which has support equal to 0.68 is:

“IF the salary ∈ [8000,10000) czech crowns
THEN the mortgage status is good (con f = 0.879) and vice versa (con f = 0.771),
EXCEPT when the salary is bigger than 10000 czech crowns (con f � 0.778)”.

This rule shows the high grade of relationship between a “small” salary and the
good status of the mortgage.

8 Conclusions and Future Research

Mining exception rules can be useful in several domains. We tried to do a wide
analysis about semantics and formulation of some previous approaches obtaining
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that the reference rule could be removed under some reasonably conditions. We
also offer a unified formulation behind the GUHA model which uses the concept
of quantifier. The proposed algorithm takes advantage of the formulation as we can
mine different exception rules by only changing the quantifier. In our approach we
only deal with the implication quantifiers⇒I and⇒E and the certainty factor equi-
valences ≡CF ,≡E

CF .
We present a new framework for describing in more detail the relation between

a set of items by means of double rules and their associated exceptions. This can
be useful in some area domains such as medicine where we know there is a straight
relationship between some sets of items (illness, symptoms and medicaments for
example).

We also have carried out several experiments for showing the reliability of our
approach which can be improve by using the certainty factor and a faster rule ex-
traction algorithm.

Note that exceptions only offers the “agent” that causes the unusual common
sense rule behavior, but there exists other approaches that focus in the complemen-
tary semantics like the anomalous rules.

Our future plans include an analogous analysis about anomalous rules and their
interaction with double rules. We also plan to offer a unified framework for mining
conjunctly exception and anomalous rules by means of the formulation of suitable
quantifiers.

Acknowledgements. We would like to acknowledge support for this work from the Min-
isterio de Educación y Ciencia of Spain by the project grants TIN2006-15041-C04-01 and
TIN2006-07262.
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Degrees of Truth, Ill-Known Sets and
Contradiction

Didier Dubois

Abstract. In many works dealing with knowledge representation, there is a temp-
tation to extend the truth-set underlying a given logic with values expressing ig-
norance and contradiction. This is the case with partial logic and Belnap bilattice
logic with respect to classical logic. This is also true in three-valued logics of rough
sets. It is found again in interval-valued, and type two extensions of fuzzy sets. This
paper shows that ignorance and contradiction cannot be viewed as additional truth-
values nor processed in a truth-functional manner, and that doing it leads to weak or
debatable uncertainty handling approaches.

1 Introduction

From the inception of many-valued logics, there have been attempts to attach an
epistemic flavor to truth degrees. Intermediary truth-values between true and false
were often interpreted as expressing a form of ignorance or partial belief (less of-
ten, the idea of contradiction). However, multiple-valued logics are generally truth-
functional. The trouble here is that, when trying to capture the status of any unknown
proposition by a truth-value, the very assumption of truth-functionality (building
truth-tables for all connectives) is debatable. Combining two propositions whose
truth-value is unknown sometimes results in tautological or contradictory state-
ments, whose truth-value can be asserted from the start, even without any prior
knowledge. As long as p can only be either true or false, even if this truth-value
cannot be computed or prescribed as of to-day, the proposition p∧¬p can be un-
mistakably at any time predicted as being false and p∨¬p as being true while p∧ p
and p∨ p remain contingent. So there is no way of defining a sensible truth-table that
accounts for the idea of possible : belief is never truth-functional [21]. Mixing up
truth and belief has led to a very confusing situation in traditional many-valued log-
ics, and has probably hampered the development of applications of these logics. The
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epistemic understanding of truth-functional many-valued logics has been criticized
by some scholars quite early, for instance by Urquhart [41]. Fuzzy logic is likewise
often attacked because it is truth-functional. A well-known example is by Elkan [25]
criticising the usual fuzzy connectives max,min,1−, as leading to an inconsistent
approach. Looking at these critiques more closely, it can be seen that the root of
the controversy also lies in a confusion between degrees of truth and degrees of be-
lief. Fuzzy logic is not specifically concerned with belief representation, only with
gradual (not black or white) concepts [33]. However this misunderstanding seems
to come a long way. For instance, a truth-value strictly between true and false was
named “possible” [38], a word which refers to uncertainty modelling and modalities.
We claimed in [18] that we cannot consistently reason under incomplete or conflict-
ing information about propositions by augmenting the set of Boolean truth-values
true and false with epistemic notions like “unknown” or “contradictory”, modeling
them as additional genuine truth-values of their own, as done in partial logic and
Belnap’s allegedly useful four-valued logic.

After reminding how uncertainty due to incompleteness is handled within propo-
sitional logic, the paper summarizes the critical discussion on partial logic previ-
ously proposed in [18], showing the corresponding extension of sets to ill-known
sets, whose connectives are closely related to Kleene 3-valued logic. Two examples
of ill-known sets are exhibited, especially rough sets. The debatable assumption be-
hind some three-valued logics of rough sets is laid bare. Next, a critical discussion
on Belnap logic is given, borrowing from [18]. Finally, we consider the case of
truth-functional extensions of fuzzy set algebras, such as interval-valued fuzzy sets
and membership/nonmembership pairs of Atanassov, as well as type two fuzzy sets
where truth-functionality is also taken for granted, and that suffer from the same
kind of limitations.

2 Truth vs. Belief in Classical Logic

In the following, 1 stands for true and 0 stands for false. In a previous paper [22]
we pointed out that while classical (propositional) logic is always presented as the
logic of the true and the false, this description neglects the epistemic aspects of this
logic. Namely, if a set B of well-formed Boolean formulae is understood as a set
of propositions believed by an intelligent agent (a belief base) then the underlying
uncertainty theory is ternary and not binary. The three situations are:

1. p is believed (or known), which is the case if B implies p;
2. its negation is believed (or known), which is the case if B implies ¬p;
3. neither p nor ¬p is believed, which is the case if B implies neither ¬p nor p.

In this setting belief is Boolean, in the sense that a proposition is believed or not.
We can define a belief assessment procedure to propositions, by means of a cer-
tainty function N assigning value 1 to p whenever B implies p (N(p) = 1) and 0
otherwise. The third situation above indicates a proposition that is neither believed
nor is disbelieved by a particular agent. N is not a truth-assignment: one may have
N(p) = N(¬p) = 0, when p is unknown. The N function encodes a necessity-like
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modality. Indeed it is not fully compositional; while N(p∧ q) = min(N(p),N(q)),
N(p∨q) �= max(N(p),N(q)), generally, and N(p) is not 1−N(¬p). The latter is the
possibility function, in agreement with the duality between possibility and necessity
in modal logic. So even Boolean belief is not compositional.

It is clear that belief refers to the notion of validity of p in the face of B
and is a matter of consequencehood, not truth-values. The property N(p∧ q) =
min(N(p),N(q)) just expresses that the intersection of deductively closed knowl-
edge bases is closed, while N(p∨q) �= max(N(p),N(q)) reminds us that the union
of deductively closed propositional bases is not closed.

Through inference, we can check what are the possible truth-values left for
propositions when constraints expressed in the belief base are taken into account.
In fact, belief is represented by means of subsets of possible truth-values enabled
for p when taking propositions in B for granted. Full belief in p corresponds to
the singleton {1} (only the truth-value ”true” is possible); full disbelief in p cor-
responds to the singleton {0} ; the situation of total uncertainty relative to p for
the agent corresponds to the set {0,1}. This set is to be understood disjunctively
(both truth-values for p remain possible due to incompleteness, but only one is cor-
rect). Under such conventions, the characteristic function of {0,1} is viewed as a
possibility distribution π (Zadeh [48]). Namely, π(0) = π(1) = 1 means that both
0 and 1 are possible. It contrasts with other uses of subsets of truth-values, inter-
preted conjunctively, whereby {0,1} is understood as the simultaneous attachment
of ”true” and ”false” to p (expressing a contradiction, see Dunn [24]). This conven-
tion is based on necessity degrees N(0) = 1−π(1);N(1) = 1−π(0). Then clearly,
N(0) = 1 = N(1) indicates a strong contradiction. But this convention cannot be
easily extended beyond two-valued truth sets, so we shall not use it.

It must be emphasized that {0},{1}, and {0,1} are not truth-values of propo-
sitions in B. They express what can be called epistemic valuations whereby the
agent believes p, believes ¬p, or is ignorant about p respectively. It makes it clear at
the mathematical level that confusing truth-values and epistemic valuations comes
down to confusing elements of a set and singletons contained it it, let alone subsets.

Clearly, the negation of the statement p is believed (inferred from B) is not the
statement ¬p is believed , it is p is not believed. However, the statement p is not
believed cannot be written in propositional logic because its syntax does not allow
for expressing ignorance in the object language. The latter requires a modal logic,
since in classical logic, if one interprets p ∈B as a belief, ¬p ∈B means that ¬p,
is believed, not that p is just not believed. Likewise, p∨ q ∈ B is believed does
not mean that either p is believed or q is believed. Assigning epistemic valuation
{1} to p∨ q is actually weaker than assigning {1} to one of p or q. In the case of
ignorance about p, {0,1} should be assigned to p and to ¬p. However only {1} can
be attached to their disjunction (since it is a tautology). This fact only reminds us
that the union of deductively closed belief sets need not be deductively closed.

In order to capture the lack of belief or ignorance at the object level, formulas
of propositional logic can be embedded within a modal-like system (Dubois, Hájek,
and Prade [17], Banerjee and Dubois [6]). This embedding of classical logic into a
modal logic is not the usual one: usually, propositional logic is a fragment (without
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modalities) of a modal logic. In the system MEL developed in [6], all wffs are made
of classical propositions p prefixed by �, or their combination by means of classical
connectives (formulas α of the form �p are in MEL, and so are ¬α , α ∧β ). Boxed
formulas �p are new atoms of a (higher order) propositional logic MEL satisfies
modal axoms K and D, but does not allow for nested modalities. The boxed fragment
of MEL is isomorphic to propositional calculus. Any modal logic where the K axiom
�(p→ q)→ (�p→ �q) holds verifies this embedding property. So MEL is not at
all a standard modal logic, in the sense that it encapsulates propositional calculus
but it does not extend it. Philosophically, MEL modalities are understood de dicto,
and not de re, contrary to the tradition of XXth century logic. Namely, �p concerns
the certainty of being able to assert p, not the certainty that an event referred to as p
has occurred, is really true: MEL forbids direct access to the “real world”, and this
is consistent with the fact that propositional formulas like p (stating that p is true)
cannot be expressed in MEL.

In fact, the truth-value of �p tells whether p is believed or not: �p is true pre-
cisely means that the agent’s beliefs enforce {1} as the subset of truth-values left
to p, i.e. it is true that p is believed (to be true). So, what belief internally means
may be captured by a kind of external truth-set, say {0,1}. Mind that the value
1 in t(�p) = 1 and the value 1 in t(p) = 1 refer to different truth-sets (and dif-
ferent propositions). This trick can be used for probability theory and other non-
compositional uncertainty theories (see Godo, Hájek et al. [30, 29]) and leads to a
better way of legitimating the use of many-valued logics for uncertainty manage-
ment: the lack of compositionality of belief is captured in the object language. For
instance, the degree of probability Prob(p) can be modeled as the truth-value of the
proposition “Probable(p)” (which expresses the statement that p is probably true),
where Probable is a many-valued predicate, but Prob(p) is not the (allegedly) mul-
tivalued truth-value of the (Boolean) proposition p.

3 From Partial Logic to Ill-Known Sets

Partial logic starts from the claim that not all propositional variables need to be
assigned a truth-value, thus defining partial interpretations and that such undefined-
ness may stem from a lack of information. This program is clearly in the scope of
theories of uncertainty and partial belief, introduced to cope with limited knowl-
edge. Other interpretations of partiality exist, that are not considered here. From a
historical perspective, the formalism of partial logic is not so old, but has its root
in Kleene [35]’s three-valued logic, where the third truth-value expresses the im-
possibility to decide if a proposition is true or false. The reader is referred to the
dissertation of Thijsse [40] and a survey paper by Blamey [11].

3.1 Connectives of Partial Logic

At the semantic level, the main idea of partial logic is to change interpretations s∈ S
into partial interpretations, also called coherent situations (or situations, for short)
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obtained by assigning a Boolean truth-value to some (but not all) of the propositional
variables forming a set Prop = {a,b,c, . . .}. A coherent situation can be represented
as any conjunction of literals pertaining to distinct propositional variables. Denote
by σ a situation, S the set of such situations, and V (a,σ) the partial function from
Prop×S to {0,1} such that V (a,σ) = 1 if a is true in σ , 0 if a is false in σ ,
and is undefined otherwise. Then, two relations are defined for the semantics of
connectives, namely satisfies (|=T ) and falsifies (|=F ):

• σ |=T a if and only if V (σ ,a) = 1; σ |=F a if and only if V (σ ,a) = 0;
• σ |=T ¬p if and only if σ |=F p; σ |=F ¬p if and only if σ |=T p;
• σ |=T p∧q if and only if σ |=T p and σ |=T q;
• σ |=F p∧q if and only if σ |=F p or σ |=F q
• σ |=T p∨q if and only if σ |=T p or σ |=T q;
• σ |=F p∨q if and only if s |=F p and σ |=F q.

In partial logic a coherent situation can be encoded as a truth-assignment tσ map-
ping each propositional variable to the set {0, 1

2 ,1}, understood as a partial Boolean
truth-assignment in {0,1}. Let tσ (a) = 1 if atom a appears in σ , 0 if ¬a appears in
σ , and tσ (a) = 1

2 if a is absent from σ . The basic partial logic can thus be described
by means of a three-valued logic, where 1

2 (again) means unknown. The connectives
can be expressed as follows: 1− x for the negation, max for disjunction, min for the
conjunction, and max(1− x,y) for the implication. Note that if tσ (p) = tσ (q) = 1

2 ,
then also tσ (p∨q) = tσ (p∧q) = tσ (p→ q) = 1

2 in this approach.

3.2 Supervaluations

Since these definitions express truth-functionality in a three-valued logic, this logic
fails to satisfy all classical tautologies. But this anomaly stems from the same dif-
ficulty again, that is, no three-element set can be endowed with Boolean algebra
structure! (nor is the set 3 of non-empty intervals on {0,1}). A coherent situation
σ can be interpreted as a special set A(σ) ⊆ S of standard Boolean interpretations,
and can be viewed as a disjunction thereof. A coherent situation can be encoded as
a formula whose set of models A(σ) can be built just completing σ by all possible
assignments of 0 or 1 to variables not assigned yet. It represents an epistemic state
reflecting a lack of information. If this view is correct, the equivalence σ |=T p∨q if
and only if σ |=T p or σ |=T q cannot hold under classical model semantics. Indeed
σ |=T p supposedly means A(σ)⊆ [p] and σ |=F p supposedly means A(σ)⊆ [¬p],
where [p] is the set of interpretations where p is true. But while A(σ)⊆ [p∨q] holds
whenever A(σ)⊆ [p] or A(σ)⊆ [q] holds, the converse is invalid!

This is the point made by Van Fraassen [42] who first introduced the notion of
supervaluation to account for this situation. A supervaluation SV over a coherent
situation σ is (in our terminology) a function that assigns, to each proposition in the
language and each coherent situation σ , the super-truth-value SV(p,σ) = 1 (0) to
propositions that are true (false) for all Boolean completions of σ . It is clear that
p is “super-true” (SV(p,σ) = 1) if and only if A(σ) ⊆ [p], so that supervaluation
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theory recovers missing classical tautologies by again giving up truth-functionality:
p∨¬p is always super-true, but SV(p∨ q,σ) cannot be computed from SV(p,σ)
and SV(q,σ). The term “super-true” in the sense of Van Fraassen stands for “cer-
tainly true” in the terminology of possibilistic belief management in classical logic.
The belief calculus at work in propositional logic covers the semantics of partial
logic as a special case. It exactly coincides with the semantics of the supervaluation
approach. Assuming compositionality of epistemic annotations by means of Kleene
three-valued logic provides only an imprecise approximation of the actual Boolean
truth-values of complex formulas [14].

3.3 Ill-Known Sets

Besides, the algebra underlying this (Kleene-like) three-valued logic is isomorphic
to the set 3 of non-empty intervals on {0,1}, equipped with the interval extension
of classical connectives. Consider 1

2 as the set {0,1} (understood as an interval such
that 0 < 1), the other intervals being the singletons {0} and {1}. Indeed this comes
down to computing the following cases:

• For conjunction : {0}∧{0,1}= {0∧0,0∧1}= {0};
{1}∧{0,1}= {1∧0,1∧1}= {0,1}, etc.

• For disjunction : {0}∨{0,1}= {0∨0,0∨1}= {0,1};
{1}∨{0,1}= {1∨0,1∨1}= {1}, etc.

• For negation: ¬{0,1}= {¬0,¬1}= {0,1}.
It yields the following tables for connectives ∨ and ∧ :

Table 1 Kleene disjunction for interval-valued sets

∨ {0} {0,1} {1}
{0} {0} {0,1} {1}
{0,1} {0,1} {0,1} {1}
{1} {1} {1} {1}

Table 2 Kleene conjunction for interval-valued sets

∧ {0} {0,1} {1}
{0} {0} {0} {0}
{0,1} {0} {0,1} {0,1}
{1} {0} {0,1} {1}

This remark suggests that sets could be extended to ill-known subsets of a set S,
assigning to elements s ∈ S one of the three non-empty subsets of {0,1}. It is tempt-
ing to model them by three-valued sets denoted Â whose characteristic function
ranges on 3 = 2{0,1}− /0 with the following conventions
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μÂ(s) = {1} if s belongs for sure to the set A

{0} if s for sure does not belongs to the set A

{0,1} if it is unknown whether s belongs or not to the set A

It encodes a pair of nested sets (A∗,A∗), A∗ containing the sure elements, A∗ \A∗
being the elements with unknown membership. This is called an interval-set by
Yao [45]. It is possible to extend the standard set theoretic operations to such three-
valued sets using Kleene three-valued logic, equivalent to the interval operations to
connectives defined in Tables 1 and 2 (Â looks like a kind of fuzzy set). Equiva-
lently, one may, as done by Yao [45], consider the interval extension of Boolean
connectives to interval sets A∗ ⊂ A⊂ A∗. Note that while the subsets of {0,1} form
a Boolean algebra (under set inclusion), the set of “intervals” 3 = {{0},{1},{0,1}}
of {0,1} form a 3-element chain, a different structure, hence the loss of tautologies,
if it is used as a new truth set, so that ill-known sets have properties different from
sets. However it should be clear that this algebraic structure does not address (but
in a very approximate way) the issue of reasoning about the ill-known set A. For
instance, the complement of Â is Âc obtained by switching {0} and {1} in the above
definition, i.e. yields the pair ((A∗)c,(A∗)c). Hence Â∩ Âc corresponds to the pair
(A∗ ∩(A∗)c,A∗ ∩(A∗)c), where A∗ ∩(A∗)c = /0 while A∗ ∪(A∗)c �= /0, generally [45].
However, the fuzzy set Â is not an object in itself, it is a representation of the in-
complete knowledge of an agent about a set A, of which all that is known is that
A∗ ⊂ A⊂ A∗. But despite the fact that A is ill-known, A∩Ac = /0 regardless of what
is known or not, and this information is lost by the Kleene setting, considering sub-
sets of truth-values as truth-values and acting compositionally. Kleene’s three valued
logic is more naturally truth-functional when viewed as a simplified variant of fuzzy
logic, where the third truth-value means half-true. The loss of classical tautologies
then looks more acceptable.

For instance, let a one-to-many mapping Φ : S→ 2V represent an imprecise ob-
servation of some attribute f : S → V . Namely, for each object s ∈ S, all that is
known about the attribute value f (s) is that it belongs to the set Φ(s) ⊆ V . Sup-
pose we want to describe the set f−1(T ) of objects that satisfy a property T , namely
{s∈ S : f (s) ∈ S⊂V}. Because of the incompleteness of the information, the subset
f−1(T )⊆ S is an “ill-known set” [20]. In other words, f−1(T ) can be approximated
from above and from below, respectively by upper and lower inverses of A via Φ:

• Φ∗(T ) = {s ∈ S s.t. Φ(s)∩A �= /0} is the set of objects that possibly belong to
f−1(T ).

• Φ∗(T ) = {s ∈ S s.t. Φ(s)⊆ A} is the set of objects that surely belong to f−1(T ).

The pair (Φ∗(T ),Φ∗(T )) is such that Φ∗(T )⊆ f−1(T )⊆Φ∗(T ) and defines an ill-
known set. The multi-valued mappings Φ∗ and Φ∗ are respectively upper and lower
inverses of Φ . Clearly, connectives will not be not truth-functional, since in general,
inclusions Φ∗(T ∩U)⊂Φ∗(T )∩Φ∗(U) and Φ∗(T )∪Φ∗(T )⊂Φ∗(T )∪Φ∗(U) will
be strict.
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4 Rough Sets and 3-Valued Logic

Another typical example of ill-known set is a rough set. Here, uncertainty takes the
form of a partition of the universe S of objects, say S1, . . .Sk. For instance objects are
described by an insufficient number of attributes so that some objects have the same
description. All that is known about any object in S is which subset of the partition
it belongs to. So each subset A of S is only known in terms of its upper and lower
approximations, a pair (A∗,A∗) such that

A∗ = ∪{Si,Si∩A �= /0}

and
A∗ = ∪{Si,Si ⊆ A}.

It is clear that truth-functionality fails again as (A∩B)∗ ⊂ A∗ ∩B∗ and A∗ ∪B∗ ⊂
(A∪B)∗, in general (e.g. Yao [46]).

4.1 Three-Valued Settings for Rough Sets

However, various authors have tried to capture the essential features of rough sets
by means of a three-valued compositional calculus (for instance Banerjee [7, 5],
Itturioz [34], etc.). This is due to the existence of several points of view on rough
sets, some of which are compatible with a less stringent interpretation. The most
standard view is to call rough relatively to an equivalence relation R a subset A
of S such that A∗ �= A∗; on the contrary, a set A such that A∗ = A∗ is said to be
exact. The next definition considers rough sets as equivalence classes of subsets of
S that have the same upper and lower approximations. In this view, two sets A and
B such that A∗ = B∗ and A∗ = B∗ are considered indistinguishable, and one is led to
study nested pairs of exact sets (E,F) with E ⊆ S as primitive objects representing
equivalence classes of indistinguishable sets. Note that (E,F) is indeed a pair of
upper and lower approximation only if F \E does not contain any singleton of S
(since such a singleton can never overlap a subset of S without being included in it).
So defining a rough set as any nested pair of exact sets (E,F) is not really faithful
to the basic framework.

It is nevertheless tempting to see approximation pairs of subsets as naturally 3-
valued entities. The basic justification for this move is the existence of some under-
lying sets C,D such that (Bonikowski [12]):

C∗ = A∗ ∩B∗ and D∗ = A∗ ∪B∗ (1)

that depend on the original sets A,B. Moreover C∗ = A∗ ∩B∗ and D∗ = A∗ ∪B∗ as
well. Banerjee and Chakraborty [7] use

C = A�B = (A∩B)∪ (A∩B∗ ∩ (A∩B)∗c)

and
D = A�B = (A∪B)∩ (A∪B∗ ∪ (A∪B)c

∗).
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Likewise, noticing that (Ac)∗ = (A∗)c, an implication ⇒ can be defined such that
(E,F)⇒ (E ′,F ′) holds if and only if E ⊆ E ′ and F ⊆ F ′, namely, if E = A∗, F = A∗,
E ′ = B∗, F ′ = B∗, the pair of nested exact sets (E,F)⇒ (E ′,F ′) is made of the upper
and lower approximations of ((A∗)c∪B∗)∩ ((A∗)c∪B∗). This framework for rough
equivalence classes is the one of what Banerjee and Chakraborty [7] call prerough al-
gebra. It is shown to be equivalent to a 3-valued Łukasiewicz algebra by Banerjee [5].

4.2 On the Language-Dependent Definition of Sets

However, it must be noticed that the sets C and D as defined by Banerjee and
Chakraborty [7] (also Iturrioz [34]) so as to ensure the validity of equation (1) do
not depend on operands A and B only: since C is defined using an upper approxima-
tion and D involves a lower approximation, C and D depend on the partition used to
define exact sets. In fact Bonikowski [12] shows that the set C is always of the form
(A∗ ∩B∗)∪Y where Y is obtained as follows: Let the exact set (A∗ ∩B∗)\ (A∗ ∩B∗)
be made of union S1 ∪ ·· · ∪ Sk of equivalence classes of objects in S, and consider
proper non-empty subsets Ti of Si, i = 1 . . .k. Then take Y = T1 ∪ ·· · ∪ Tk. Note
that by construction Y∗ = /0, while Y ∗ = S1 ∪ ·· · ∪ Sk. These properties ensure that
C∗ = A∗ ∩B∗ while C∗ = A∗ ∩B∗. Besides, this construct makes it clear that no such
equivalence class Si should be a singleton of the original set S (otherwise Si has no
proper non-empty subset, and Y∗ = /0 may be impossible.)

Rough sets are induced by the existence of several objects that cannot be told
apart because of having the same description in a certain language used by an ob-
server. However, subsets of S defined in extension exist independently of whether
they can be described exactly or not in this language. The set C, laid bare above,
whose upper and lower approximations are A∗ ∩ B∗ and A∗ ∩ B∗ depends on the
number of attributes used to describe objects. Moreover, this set is not even uniquely
defined. Here lies the questionable assumption: sets A and B are intrinsically inde-
pendent of the higher level language: they are given subsets of objects that can
be defined in extension (perhaps using a lower level more precise language). On
the contrary, their upper and lower approximations depend on the higher level lan-
guage used to describe these sets: the more attributes the finer the descriptions.
In other words, pairs of exact sets (A∗,A∗) and (B∗,B∗) are not existing entities,
they are mental constructs representing A and B using attributes. They are observer-
dependent, while A and B can be viewed as actual subsets. On the contrary the
above discussion shows that C and D are not actual entities, as these subsets are
observer-dependent as well, and can be chosen arbitrarily to some extent. Adding
one attribute will not affect A nor B but it will change the equivalence relation,
hence the partition, hence C and D as well. So the algebraic construct leading to
a three-valued logic does away with the idea that approximation pairs stem from
well-defined intrinsic subsets of the original space, and that logical combinations
of such approximation pairs should reflect the corresponding combination of lower
level (“objective”) entities, that should not be affected by the discrimination power
of the observer or the higher level language used to describe the objects : to be
objective entities, C and D should be well-defined and depend only on A and B in S.



74 D. Dubois

But then as recalled earlier, truth-functionality is lost, i.e. we cannot exactly repre-
sent the combination of subsets of S by the combination of their approximations.

The pre-rough algebras and the corresponding 3-valued logic studied by Banerjee
and Chakraborty [7] are tailored for manipulating equivalence classes of subsets of
S, all consisting of all sets having the same upper and lower approximations, without
singling out any of them as being the “real” one in each such equivalence class. More
recently, Avron and Konikowska [3] have tried to suggest a more relaxed three-
valued setting for rough sets using non-deterministic truth-tables, that accommodate
the inclusions (A∩B)∗ ⊂ A∗ ∩B∗ and A∗ ∪B∗ ⊂ (A∪B)∗, admitting the idea that if
an element belongs to both boundaries of two upper approximations, it may or not
belong to the boundary of the upper approximation of their intersection.

5 Belnap Four-Valued Logic

Two seminal papers of Belnap [9, 10] propose an approach to reasoning both with
incomplete and with inconsistent information. It relies on a set of truth-values form-
ing a bilattice, further studied by scholars like Ginsberg [28] and Fitting [26] (see
Konieczny et al. [36] for a recent survey). Belnap logic, considered as a system for
reasoning under imperfect information, suffers from the same difficulties as partial
logic, and for the same reason. Indeed one may consider this logic as using the three
epistemic valuations already considered in the previous sections (certainly true, cer-
tainly false and unknown), along with an additional one that accounts for epistemic
conflicts.

5.1 The Contradiction-Tolerant Setting

Belnap considers an artificial information processor, fed from a variety of sources,
and capable of anwering queries on propositions of interest. In this context, incon-
sistency threatens, all the more so as the information processor is supposed never
to subtract information. The basic assumption is that the computer receives infor-
mation about atomic propositions in a cumulative way from outside sources, each
asserting for each atomic proposition whether it is true, false, or being silent about
it. The notion of epistemic set-up is defined as an assignment, of one of four values
denoted T,F,BOTH,NONE, to each atomic proposition a,b, . . . :

1. Assigning T to a means the computer has only been told that a is true.
2. Assigning F to a means the computer has only been told that a is false.
3. Assigning BOTH to a means the computer has been told at least that a is true by

one source and false by another.
4. Assigning NONE to a means the computer has been told nothing about a.

In view of the previous discussion, the set 4 = {T,F,BOTH,NONE} coincides
with the power set of {0,1}, namely T = {1}, F = {0}, the encoding of the other
values depending on the adopted convention: under Dunn Convention, NONE = /0;
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BOTH = {0,1}. It expresses accumulation of information by sources. This con-
vention uses Boolean necessity degrees, i.e. BOTH means N(0) = N(1) = 1,
NONE means N(0) = N(1) = 0. According to the terminology of possibility theory,
NONE = {0,1}; BOTH = /0. These subsets represent constraints, i.e., mutually ex-
clusive truth-values, one of which is the right one. NONE means π(0) = π(1) = 1,
BOTH means π(0) = π(1) = 0. Then /0 corresponds to no solution.

The approach relies on two orderings in 4:

• The information ordering, �, such that NONE � T � BOTH;NONE � F �
BOTH. This ordering reflects the inclusion relation of the sets /0, {0},{1}, and
{0,1}, using Dunn convention. It intends to reflect the amount of (possibly con-
flicting) data provided by the sources. NONE is at the bottom because (to quote)
“it gives no information at all”. BOTH is at the top because (following Belnap)
it gives too much information.

• The logical ordering,≺ , according to which F≺ BOTH≺ T and F≺NONE≺
T each reflecting the truth-set of Kleene’s logic. It corresponds to the idea of ”less
true than”, even if this may sound misleadingly suggesting a confusion with the
idea of graded truth. In fact F ≺ BOTH ≺ T canonically extends the ordering
0 < 1 to the set 3 of non-empty intervals on {0,1}, under Dunn convention and
F≺ NONE≺ T does the same under possibility degree convention.

Then, connectives of negation, conjunction and disjunction are defined truth-funct-
ionally on the bilattice. The set 4 is isomorphic to 2{0,1} equipped with two lattice
structures:

• the information lattice, a Scott approximation lattice based on union and inter-
section of sets of truth-values using Dunn convention. For instance, in this lattice
the maximum of T and F is BOTH;

• the logical lattice, based on the interval extension of min, max and 1− from
{0,1} to 2{0,1} \{ /0} respectively under Dunn Convention (for BOTH ) and pos-
sibility degree convention (for NONE).

These logical connectives respect the following constraints:

1. They reduce to classical negation, conjunction and disjunction on {T,F};
2. They are monotonic w.r.t. the information ordering �;
3. p∧q = q if and only if p∨q = p;
4. They satisfy commutativity, associativity of ∨,∧, De Morgan laws.

For instance, the first property enforces ¬T = F and ¬F = T and then, the mono-
tonicity requirement forces the negation ¬ to be such that ¬BOTH = BOTH and
¬NONE = NONE. It can be shown that the restrictions of all connectives to the
subsets {T,F,NONE} and {T,F,BOTH} coincide with Kleene’s three-valued
truth-tables, encoding BOTH and NONE as 1

2 . The conjunction and disjunction
operations ∨ and ∧ exactly correspond to the lattice meet and joint for the log-
ical lattice ordering. In fact, BOTH and NONE cannot be distinguished by the
logical ordering ≺ and play symmetric roles in the truth-tables. The major new
point is the result of combining conjunctively and disjunctively BOTH and NONE.
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The only possibility left for such combinations is that BOTH∧NONE = F and
BOTH∨NONE = T. This looks intuitively surprising but there is no other choice
and this is in agreement with the information lattice.

5.2 Is It How a Computer Should Think ?

Belnap’s calculus is an extension of partial logic to the truth-functional handling
of inconsistency. In his paper, Belnap does warn the reader on the fact that the
four values are not ontological truth-values but epistemic ones. They are qualifi-
cations referring to the state of knowledge of the agent (here the computer). The
set-representation of Belnap truth-values after Dunn [24] rather comforts the idea
that these are not truth-values. Again, {1} is a subset of {0,1}while 1 is an element
thereof.

Belnaps explicitly claims that the systematic use of the truth-tables of 4 “tells us
how the computer should answer questions about complex formulas, based on a set-
up representing its ‘epistemic state”( [9], p. 41). However, since the truth-tables of
conjunction and disjunction extend the ones of partial logic so as to include the value
BOTH, Belnap’s logic inherits all difficulties of partial logic regarding the truth-
value NONE. Moreover, equalities BOTH∧BOTH = BOTH, BOTH∨BOTH =
BOTH are hardly acceptable when applied to propositions of the form p and ¬p, if
it is agreed that these are classical propositional formulas.

Another issue is how to interpret the results BOTH∧NONE = F and BOTH∨
NONE = T. One may rely on bipolar reasoning and argumentation to defend that
when p is BOTH and q is NONE, p∧ q should be BOTH∧NONE = F. Suppose
there are two sources providing information, say S1 and S2. Assume S1 says p is true
and S2 says it is false. This is why p is BOTH. Both sources say nothing about q, so
q is NONE. So one may consider that S1 would have nothing to say about p∧q, but
one may legitimately assert that S2 would say p∧q is false. In other words, p∧q is
F: one may say that there is one reason to have p∧ q false, and no reason to have
it true. However, suppose two atomic propositions a and b with E(a) = BOTH and
E(b) = NONE. Then E(a∧b) = F. But since Belnap negation is such that E(¬a) =
BOTH and E(¬b) = NONE, we also get E(¬a∧b) = E(a∧¬b) = E(¬a∧¬b) = F.
Hence E((a∧b)∨ (¬a∧b)∨ (a∧¬b)∨ (¬a∧¬b)) = F that is, E(�) = F which is
hardly acceptable again. See Fox [27] for a related critique.

More recently Avron et al. [2] have reconsidered the problem of a computer
collecting and combining information from various sources in a wider framework,
where sources may provide information about complex formulas too. The combi-
nation of epistemic valuations attached to atoms or formulas is dictated by rules
that govern the properties of connectives and their interaction with valuation assign-
ments in a more transparent way than Belnap truth-tables. Various assumptions on
the combination strategy and the nature of propositions to be inferred (the possi-
bly true ones or the certainly true ones) lead to recover various more or less strong
logics, including Belnap formalism. The proposed setting thus avoids making the
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confusion between truth-values (that can be Boolean or not in the proposed ap-
proach, according to the properties chosen) and epistemic valuations.

6 Interval-Valued Fuzzy Sets

IVFs were introduced by Zadeh [50], along with some other scholars, in the seven-
ties (see [23] for a bibliography), as a natural truth-functional extension of fuzzy
sets. Variants of these mathematical objects exist, under various names (vague
sets [13] for instance). The IVF calculus has become popular in the fuzzy engineer-
ing community of the USA because of many recent publications by Jerry Mendel
and his colleagues [39]. This section points out the fact that if intervals of member-
ship grades are interpreted as partial ignorance about precise degrees, the calculus
of IVFs suffers from the same flaw as partial logic, and the truth-functional calculus
of ill-known sets, of which it is a many-valued extension.

6.1 Definitions

An interval-valued fuzzy set is defined by an interval-valued membership function.
Independently, Atanassov [1] introduced the idea of defining a fuzzy set by ascribing
a membership function and a non-membership function separately, in such a way
that an element cannot have degrees of membership and non-membership that sum
up to more than 1. Such a pair was given the misleading name of “Intuitionistic
Fuzzy Sets” as it seems to be foreign to intuitionism [23]. It also corresponds to
an intuition that differs from the one behind IVFs, although both turned out to be
mathematically equivalent notions (e.g. G. Deschrijver, E. Kerre [15]).

An IVF is defined by a mapping F from the universe S to the set of closed inter-
vals in [0,1]. Let F(s) = [F∗(s),F∗(s)]. The union, intersection and complementa-
tion of IVF’s are obtained by canonically extending fuzzy set-theoretic operations
to interval-valued operands in the sense of interval arithmetic. As such operations
are monotonic, this step is mathematically obvious. For instance, the most elemen-
tary fuzzy set operations are extended as follows, for conjunction F ∩G, disjunction
F ∪G and negation Fc, respectively:

[F ∩G](s) = [min(F∗(s),G∗(s)),min(F∗(s),G∗(s))];

[F ∪G](s) = [max(F∗(s),G∗(s)),max(F∗(s),G∗(s))];

Fc(s) = [1−F∗(s),1−F∗(s)].

Considering IVFs as a calculus of intervals on [0,1] equipped with such operations,
they are a special case of L-fuzzy sets in the sense of Goguen [31], so as mathemat-
ical objects, they are not of special interest. An IVF is also a special case of type
two fuzzy set (also introduced by Zadeh [49]). Of course all connectives of fuzzy
set theory were extended to interval-valued fuzzy sets and their clones. IFVs are be-
ing studied as specific abstract algebraic structures [16], and a multiple-valued logic
was recently proposed for them, called the triangle logic [43].
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6.2 The Paradox of Truth-Functional Interval-Valued
Connectives

Paradoxes of IVFs are less blatant than those of Kleene and Łukasiewicz three-
valued logics (when the third truth-value refers to ideas of incomplete knowledge)
because in the latter case, the lack of excluded-middle law on Boolean propositions
is a striking anomalous feature. In the case of fuzzy logic, some laws of classical
logic are violated anyway. However, the fact that interval-valued fuzzy sets have
a weaker structure than the fuzzy set algebra they extend should act as a warning.
Indeed, since fuzzy sets equipped with fixed connectives have a given well-defined
structure, this structure should be valid whether the membership grades are known
or not.

For instance, the fact that min(F(s),Fc(s)) ≤ 0.5 should hold whether F(s) is
known or not. This is a weak form of the contradiction law. However, applying
the truth-tables of interval-valued fuzzy sets to the case when F(s) = [0,1] (total
ignorance) leads to min(F(s),1−F(s)) = [0,1], which means a considerable loss of
information. The same feature appears with the weak excluded middle law, where
again max(F(s),Fc(s)) = [0,1] is found, while max(F(s),Fc(s))≥ 0.5 should hold
in any case. More generally, if the truth-value t(p)= F(s) is only known to belong to
some subinterval [a,b] of the unit interval, the truth-functional calculus yields t(p∧
¬p) = min(F(s),1−F(s)) ∈ [min(a,1−b),min(b,1−a)], sometimes not included
in [0, 1

2 ].
In fact, treating fuzzy sets with ill-known membership functions as a

truth-functional calculus of IFVs is similar to the paradoxical calculus of ill-known
sets based on Kleene’s three-valued logics, where the third truth value is interpreted
as total ignorance. Indeed, as shown above, operations on ill-known sets as well as
partial logic are debatably construed as an interval-valued truth-functional extension
of Boolean logic that is isomorphic to Kleene logic. Ill-known sets are to classical
sets what IVFs are to fuzzy sets.

The basic point is that IVFs lead to a multiple-valued logic where the truth set
[0, 1] is turned into the set of intervals on [0, 1], i.e. intervals are seen as gen-
uine truth-values. This approach does not address the issue of ill-known member-
ship grades, where the latter are nevertheless supposed to be precise, even if out of
reach. Choosing intervals for truth-values is a matter of adopting a new convention
for truth, while reasoning about ill-known membership grades does not require a
change of the truth set. When reasoning about ill-known membership grades, the
truth set remains [0, 1] and truth-values obey the laws of some multiple-valued
calculus, while intervals model epistemic states about truth-values, just like ele-
ments in Belnap 4. A logic that reasons about ill-known membership grades cannot
be truth-functional. It should handle weighted formulas where the weight is an in-
terval representing our knowledge about the truth-value of the formula, similar to
Pavelka’s logic [33], Lehmke’s weighted fuzzy logic [37]. Then, the algebraic prop-
erties of the underlying logic should be exploited as constraints. Interval-weighted
formulas are also signed formulas in many-valued logic. Reasoning about ill-known
membership grades is then a matter of constraint propagation, especially interval
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analysis, and not only simple interval arithmetics on connectives. Automated rea-
soning methods based on signed formulae in multiple-valued logics follow this line
and turn inference into optimization problems [32].

6.3 Reasoning about Ill-Known Truth-Values

The generic reasoning problem in interval-valued fuzzy logic is of the following
form: Given a set of weighted many-valued propositional formulas {pi, [ai,bi]), i =
1, . . . ,n}, the problem of inferring another proposition p comes down to finding the
most narrow interval [a,b] such that (p, [a,b]) can be deduced from {pi, [ai,bi]), i =
1, . . . ,n}. It corresponds to the following optimization problem:

maximize (resp. minimize) t(p) under the constraints t(pi) ∈ [ai,bi], i = 1, . . . ,n.

This problem cannot be solved by a truth-functional interval-valued fuzzy logic.
A simpler instance of this problem is the one of finding the membership function of
a complex combination of IVFs. It comes down to finding the interval containing the
truth-value of a many-valued formula, given intervals containing the truth-values of
its atoms. For instance, using the most basic connectives, finding the membership
function of F ∩Fc when F is an IVF comes down to solving for each element of the
universe of discourse the following problem:

maximize (resp. minimize) f (x) = min(x,1− x) under the constraint x ∈ [a,b].

Since the function f is not monotonic, the solution is obviously not (always) the
interval [min(a,1−b),min(b,1−a)] suggested by IVF connectives, it is as follows:

f (x) ∈ [a,b] if b≤ 0.5;

f (x) ∈ [min(a,1−b),0.5] if a≤ 0.5≤ b;

f (x) ∈ [1− a,1−b] if a≥ 0.5.

Only the first and the third case match the IVF connectives solution.
In Łukasiewicz logic, using the bounded sum and linear product connectives,

inferring in the interval-valued setting comes down to solving linear programming
problems [32]. Especially the condition F ∩Fc = /0 is always trivially valid using
linear product, even if F is an IFV, since max(0,x +(1− x)−1)= 0.

6.4 Type 2 Fuzzy Sets vs. Fuzzy Truth-Values

The next step beyond interval-valued fuzzy sets is the case of type two fuzzy sets.
It is then assumed that the truth value F(s) of element s ∈ S is changed into a fuzzy
set of the unit interval. Generally, it is supposed to be a fuzzy interval on the unit
interval, that for clarity we can denote by F̃(s), with membership function μF̃(s) for
each s ∈ S. The rationale for such a notion is again the idea that membership grades
to linguistic concepts are generally ill-known, or that several different persons will
provide different membership grades. On such a basis connectives for fuzzy sets are
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extended to type two fuzzy sets using the extension principle [50, 19], for instance
using extended versions of min, max and 1−· :

μF̃(s)∩G̃(s)(t) = sup
t=min(t′ ,t”)

min(μF̃(s)(t
′),μG̃(s)(t

′′))

μF̃(s)∪G̃(s)(t) = sup
t=max(t′ ,t”)

min(μF̃(s)(t
′),μG̃(s)(t

′′))

μF̃c(s)(t) = μF̃(s)(1− t)

See [44] for a careful study of connectives for type two fuzzy sets; their results apply
as well to the special case of IVFs. An operational setting where this truth-functional
calculus makes sense is yet to come.

In fact, this calculus is partially at odds with the most usual interpretation of
type two membership grades, namely fuzzy truth-values proposed by Zadeh [49].
It corresponds to a fuzzification of the ill-known attribute situation of section 3.3.
Bellman and Zadeh [8] defined the fuzzy truth-value of a fuzzy statement “x is F”
given that another one, “x is B”, is taken for granted. When B = {s0}, i.e. “x = s0”,
the degree of truth of “x is F” is simply F(s0), the degree of membership of s0

to the fuzzy set F . More generally, the information on the degree of truth of “x is
F” given “x is B” will be described by a fuzzy set τ(F ;B) of the unit interval with
membership function:

μτ(F;B)(t) =
{

sup{B(s) | F(s) = t}, if F−1(t) �= /0
0, otherwise

(2)

for all t ∈ [0,1]. As can be checked, τ(S;D) is a fuzzy subset of truth-values and
μτ(F;B)(t) is the degree of possibility, according to the available information B, that
there exists an interpretation that makes “x is F” true at degree t.

We can apply this approach to interpret type two fuzzy sets as stemming from an
ill-known attribute f described by means of a fuzzy mapping Φ : S→ V such that
Φ(s) is a fuzzy subset of possible values of the actual attribute f (s). The degree F(s)
to which an element s ∈ S satisfies a prescribed fuzzy property PF defined on V is
ill-known and can be represented by a fuzzy membership grade F̃(s) = τ(PF ,Φ(s)).
Again, it will not be possible to apply the truth-functional calculus of type two fuzzy
sets to this case where membership grades are ill-known. Generally, considering the
case of two fuzzy properties PF ,PG on V , the fuzzy truth-value τ(PF ∩PG,Φ(s)) is
not a function of τ(PF ,Φ(s)) and τ(PG,Φ(s)); τ(PF ∪PG,Φ(s)) is not a function of
τ(PF ,Φ(s)) and τ(PG,Φ(s)). This lack of compositionality is one more proof that
fuzzy truth-values are not full-fledged truth-values in the sense of a compositional
many-valued logic.

7 Conclusion

In conclusion, there is a pervasive confusion between truth-values and the epis-
temic valuations an agent may use to describe a state of knowledge: the former
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are compositional by assumption, the latter cannot be consistently so. This paper
suggests that such difficulties appear in partial logic, three-valued logics of rough
sets, Belnap logic, interval-valued and type two fuzzy logic. In logical approaches
to incompleteness and contradiction, the goal of preserving tautologies of the un-
derlying logic (classical or multivalued) should supersede the goal of maintaining a
truth-functional setting. Considering subsets or fuzzy subsets of a truth-set as gen-
uine truth-values leads to new many-valued logics that do not address the issue of
uncertain reasoning on the underlying original logic. Such “powerset logics” are
special cases of lattice-valued logic that need another motivation than reasoning
under uncertainty. Our critique encompasses the truth-functional calculus of type
two fuzzy sets [39] as well, since it again considers fuzzy sets of truth-values as
truth-values. In that respect, the meaning of “fuzzy truth-values” proposed in [49] is
sometimes misunderstood, as they cannot be at the same time genuine truth-values
and ill-known ones.
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30. Hájek, P., Godo, L., Esteva, F.: Fuzzy logic and probability. In: Proc. 11th Annual Con-
ference on Uncertainty in Artificial Intelligence, Montreal, pp. 237–244. Morgan Kauf-
mann, San Francisco (1995)

31. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 8, 145–174 (1967)
32. Haehnle, R.: Proof Theory of Many-Valued Logic - Linear Optimization - Logic Design:

Connections and Interactions. Soft Computing 1, 107–119 (1997)
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Algorithms for Trapezoidal Approximations
of Fuzzy Numbers Preserving the Expected
Interval

Przemysław Grzegorzewski

Abstract. Fuzzy number approximation by trapezoidal fuzzy numbers which pre-
serves the expected interval is discussed. New algorithms for calculating the proper
approximations are proposed. It is shown that the adequate approximation operator
is chosen with respect both to the global spread of a fuzzy number and the size of
possible asymmetry between the spread of the left-hand and right-hand part of a
fuzzy number.

Keywords: fuzzy numbers, approximation of fuzzy numbers, expected interval, ex-
pected value, width, ambiguity, value of a fuzzy number.

1 Introduction

Trapezoidal approximation of fuzzy numbers was considered by many authors (see,
e.g. [1]– [4], [7], [14]– [18], [22]– [25]). In [16] a list of criteria which trapezoidal ap-
proximation operators should possess was formulated and a new approach to trape-
zoidal approximation that lead to, so-called, the nearest trapezoidal approximation
operator preserving the expected interval was suggested. Then in [17] a corrected
version of that operator was given but the ultimate shape of that approximation op-
erator was presented in [4] and [23]. It appears that the form of the nearest trapezoidal
approximation operator preserving the expected interval depends on the particular
shape of a fuzzy number to be approximated. Actually, a given fuzzy number might
be approximated by one of the four admissible approximation operators. Which one
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should be used depends on parameters that characterize the location and spread of a
fuzzy number, i.e. on its value, weighted expected value, ambiguity and width, re-
spectively. These conditions together with natural algorithms for computing the near-
est trapezoidal approximation preserving the expected interval were given in [14].

One may ask why the preservation of the expected interval is so exposed. There
are many reasons to do so starting from the important properties of the expected in-
terval itself (see, e.g. [10,20]). But there are also some other interesting properties of
fuzzy numbers which remain invariant under approximation provided the expected
interval remains unchanged (see [16]).

In the present paper we suggest modified conditions for choosing the proper ap-
proximation operator. They are both simpler than discussed previously and they
have more natural interpretation. One of the suggested algorithms indicates that the
adequate approximation operator is chosen with respect both to the global spread
of a fuzzy number and the size of possible asymmetry between the spread of the
left-hand and right-hand part of a fuzzy number. Moreover, another mathematical
formulae for the operators under discussion are proposed.

2 Concepts and Notations

Let A denote a fuzzy number, i.e. such fuzzy subset A of the real line R with mem-
bership function μA : R→ [0,1] which is (see [9]):

• normal (i.e. there exist an element x0 such that μA(x0) = 1),
• fuzzy convex (i.e. μA(λ x1 + (1− λ )x2) ≥ μA(x1)∧ μA(x2), ∀x1,x2 ∈ R, ∀λ ∈

[0,1]),
• μA is upper semicontinuous,
• suppA is bounded, where suppA = cl({x ∈R : μA(x) > 0}), and cl is the closure

operator.

A space of all fuzzy numbers will be denoted by F(R).
Moreover, let Aα = {x ∈ R : μA(x) ≥ α}, α ∈ (0,1], denote an α-cut of a fuzzy

number A. As it is known, every α-cut of a fuzzy number is a closed interval, i.e.
Aα = [AL(α),AU (α)], where

AL(α) = inf{x ∈ R : μA(x)≥ α} (1)

AU(α) = sup{x ∈ R : μA(x)≥ α}. (2)

The expected interval EI(A) of a fuzzy number A is given by (see [10], [20])

EI(A) =
[∫ 1

0
AL(α)dα,

∫ 1

0
AU(α)dα

]
. (3)

The middle point of the expected interval given by

EV (A) =
1
2

(∫ 1

0
AL(α)dα +

∫ 1

0
AU(α)dα

)
(4)
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is called the expected value of a fuzzy number and it represents the typical value of
the fuzzy number A (see [10], [20]). Sometimes its generalization, called weighted
expected value, might be interesting. It is defined by

EVq(A) = (1−q)
∫ 1

0
AL(α)dα + q

∫ 1

0
AU(α)dα, (5)

where q ∈ [0,1] (see [11]).
Another useful parameter characterizing the nonspecifity of a fuzzy number is

called the width of a fuzzy number (see [6]) and is defined by

w(A) =
∫ ∞

−∞
μA(x)dx (6)

=
∫ 1

0
(AU(α)−AL(α))dα.

To simplify the representation of fuzzy numbers Delgado et al. [7] suggested two
parameters – value and ambiguity – which represent some basic features of fuzzy
numbers and hence they were called a canonical representation of fuzzy numbers.
The first notion

Val(A) =
∫ 1

0
α(AL(α)+ AU(α))dα (7)

is called the value of fuzzy number A and might be seen as a point that corresponds
to the typical value of the magnitude that the fuzzy number A represents. The next
index, called the ambiguity is given by

Amb(A) =
∫ 1

0
α(AU(α)−AL(α))dα, (8)

and it characterizes the global spread of the membership function and hence is a
measure of vagueness of fuzzy number A.

For two arbitrary fuzzy numbers A and B with α-cuts [AL(α),AU(α)] and
[BL(α),BU (α)], respectively, the quantity

d(A,B) =

√∫ 1

0
(AL(α)−BL(α))2dα +

∫ 1

0
(AU(α)−BU(α))2dα (9)

is the distance between A and B (for more details we refer the reader to [11]). There
are, of course, some other measures of the distance between fuzzy numbers (e.g.
[5]), however (9) is not only very popular but it seems to be especially useful in
relation with the expected interval (see [12]).

3 Trapezoidal Approximation

Suppose we want to substitute a fuzzy number A by a “suitable” trapezoidal fuzzy
number T (A), i.e. by a fuzzy number with linear sides and the membership function
having the following form
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μT (A)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x < t1,
x−t1
t2−t1

if t1 ≤ x < t2,
1 if t2 ≤ x≤ t3,
t4−x
t4−t3

if t3 < x≤ t4,
0 if t4 < x.

(10)

A family of all trapezoidal fuzzy number will be denoted by FT (R).
Here one may ask a natural question: Why are we interested in trapezoidal ap-

proximation of fuzzy numbers?
Besides the immediate answer that it is a quite interesting mathematical prob-

lem there are, of course, many practical reasons for such approximations. The most
important motivation is to simplify the representation of fuzzy numbers which

• makes calculations easier
• simplifies computer applications
• gives more intuitive and more natural interpretation
• enables the first step of the defuzzification process, i.e.

A ∈ F(R)⇒ T (A) ∈ FT (R)⇒C(T (A)) ∈ P(R)⇒W (C(T (A))) ∈ R (11)

where P(R) is a family of all intervals, while C and W denote an operator that
produces an interval approximation and defuzzification operator, respectively.

If we agree that such trapezoidal approximation is worth of trouble, then the
following important question arises: How to construct an optimal trapezoidal ap-
proximation of a fuzzy number? And here one can suggest many possible solutions.
However, as it was motivated in [16], a suitable operator should possess some de-
sired properties and should fulfill some necessary and minimal requirement. For
the broad list of such postulated characteristics we refer the reader to [16]. More-
over, in this paper and in some further ones (see, e.g., [17, 4, 23]) is was shown
that the approximation operator which guarantees many desired properties can be
obtained as the operator T which produces a trapezoidal fuzzy number T (A) that
is the closest with respect to distance (9) to given original fuzzy number A among
all trapezoidal fuzzy numbers having identical expected interval as the original one.
More precisely, we get the following problem.

Problem:
Find such operator T : F(R)→ FT (R), which minimizes

d(A,T (A)) =

√∫ 1

0
(AL

α −TL
α (A))2dα +

∫ 1

0
(AU

α −TU
α (A))2dα (12)

and preserves the expected interval of a fuzzy number, i.e. fulfills
the following condition:

EI(T (A)) = EI(A). (13)
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However, since a trapezoidal fuzzy number is completely described by four real
numbers that are borders of its support and core, our goal reduces to finding such
real numbers t1 ≤ t2 ≤ t3 ≤ t4 that characterize T (A) = T (t1, t2, t3, t4). Such operator
is called the nearest trapezoidal approximation operator preserving the expected
interval (actually, T is d-nearest trapezoidal approximation operator, where D is
given by (9), however further on we call it, in brief, just the nearest one).

The solution of the above mentioned problem was suggested firstly in [16] and
later it was improved in [17]. Although operators given in these papers generally
produce proper approximations, one can construct such fuzzy number that they do
not work correctly and the output is not a trapezoidal fuzzy number. Therefore,
Ban [4] and Yeh [23] removed this gap and proposed a final solution containing
four possible operators Ti(A) = Ti(t1, t2, t3, t4), i = 1, . . . ,4:

(a) If

−
∫ 1

0
AL(α)dα +

∫ 1

0
AU(α)dα + 3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα ≤ 0

(14)

then the solution T1(A) = T1(t1, t2, t3, t4) is given by

t1 = 4
∫ 1

0
AL (α) dα−6

∫ 1

0
αAL (α) dα (15)

t2 = −2
∫ 1

0
AL (α) dα + 6

∫ 1

0
αAL (α) dα (16)

t3 = −2
∫ 1

0
AU (α) dα + 6

∫ 1

0
αAU (α) dα (17)

t4 = 4
∫ 1

0
AU (α) dα−6

∫ 1

0
αAU (α) dα (18)

(b) If

−
∫ 1

0
AL(α)dα +

∫ 1

0
AU(α)dα + 3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα > 0

(19)

and

2
∫ 1

0
AL(α)dα +

∫ 1

0
AU(α)dα −3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα ≤ 0

(20)

−
∫ 1

0
AL(α)dα−2

∫ 1

0
AU(α)dα + 3

∫ 1

0
αAL (α) dα + 3

∫ 1

0
αAU (α) dα ≤ 0

(21)
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then we get T2(A) = T2(t1,t2,t3,t4), where

t1 = 3
∫ 1

0
AL(α)dα +

∫ 1

0
AU(α)dα −3

∫ 1

0
αAL (α) dα (22)

−3
∫ 1

0
αAU (α) dα

t2 = −
∫ 1

0
AL(α)dα−

∫ 1

0
AU(α)dα + 3

∫ 1

0
αAL (α) dα (23)

+3
∫ 1

0
αAU (α) dα

t3 = t2 (24)

t4 =
∫ 1

0
AL(α)dα + 3

∫ 1

0
AU(α)dα −3

∫ 1

0
αAL (α) dα (25)

−3
∫ 1

0
αAU (α) dα

(c) If

2
∫ 1

0
AL(α)dα +

∫ 1

0
AU(α)dα −3

∫ 1

0
αAL (α) dα−3

∫ 1

0
αAU (α) dα > 0

(26)
then we get T3(A) = T3(t1,t2,t3,t4) given by

t1 = t2 = t3 =
∫ 1

0
AL(α)dα (27)

t4 = 2
∫ 1

0
AU(α)dα−

∫ 1

0
AL(α)dα (28)

(d) If

−
∫ 1

0
AL(α)dα−2

∫ 1

0
AU(α)dα + 3

∫ 1

0
αAL (α) dα + 3

∫ 1

0
αAU (α) dα > 0

(29)

then we obtain T4(A) = T4(t1,t2,t3,t4) such that

t1 = 2
∫ 1

0
AL(α)dα−

∫ 1

0
AU(α)dα (30)

t2 = t3 = t4 =
∫ 1

0
AU(α)dα. (31)

Therefore, we have received four different operators providing the nearest trape-
zoidal fuzzy number that preserves the expected value of the original fuzzy number,
where T1 leads to trapezoidal (but not triangular) fuzzy number, T2 stands for the
operator that leads to triangular fuzzy number with two sides, while T3 and T4 pro-
duce triangular fuzzy numbers with the right side only or with the left side only,
respectively (note, that in [17] operators T1 and T2 were given only).
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Which operator should be used in a particular situation depends on a given fuzzy
number, i.e. it depends on conditions (14), (19)–(21), (26) or (29) that seem to be
very artificial and technical. Hence there was a great need for some further consid-
erations to make these conditions more clear and to find their better interpretation. It
was done by Grzegorzewski [14] who simplified the requirements for choosing the
proper approximation operators. According to [14] we get the following algorithm for
computing the nearest trapezoidal approximation preserving the expected interval.

Algorithm 1

Step 1. If Amb(A)≥ 1
3 w(A) then apply operator T1 given by (15)-(18), else

Step 2. if EV1
3
(A)≤Val(A)≤EV2

3
(A) then apply operator T2 given by (22)-

(25), else
Step 3. if Val(A) < EV1

3
(A) then apply operator T3 given by (27)-(28), else

Step 4. apply operator T4 given by (30)-(31).

As it is seen we approximate a fuzzy number A by the trapezoidal approximation
operator T1 provided ambiguity of this fuzzy number is greater than one third of its
width. Otherwise, we approximate A by a triangular number. It means that for less
vague fuzzy numbers the solution is always a triangular fuzzy number.

Thus, to sum up, the distinction between possible solutions - either trapezoidal
T1(A) or triangular T2(A) - depends on the relationship between two parameters of
the original fuzzy number that describe its dispersion. In other words, to approxi-
mate a fuzzy number A we apply operator T2 provided A has only slight ambiguity
and its typical value is located neither close to the left nor to the right border of its
support. However, a fuzzy number with its value Val located close to the left border
of its support would be approximated by a triangular fuzzy number with the right
side only, produced by operator T3, while a fuzzy number with its value Val located
close to the right border of its support would be approximated by a triangular fuzzy
number with the left side only, produced by operator T4.

We can also obtain an equivalent algorithm for choosing a proper approximation
operator using parameter y(A) called the y-coordinate of the centroid point of a
fuzzy number A. In [21] the authors showed that

y(A) =
∫ 1

0 α (AU (α)−AL (α))dα∫ 1
0 (AU (α)−AL (α))dα

. (32)

It is easily seen that

y(A) =
Amb(A)

w(A)
. (33)

Therefore, we get immediately that our condition (14) is equivalent to the following
one

y(A)≥ 1
3
. (34)
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It means that we approximate a fuzzy number A by the trapezoidal approximation
operator T1 if the y-coordinate of the centroid point of A is not smaller than one third.
Otherwise, we apply operator T2 or T3 or T4. The consecutive steps for choosing a
suitable operator remains as before. Thus we get another algorithms (which are in
fact a conjunction of our Algorithm 1 and 2 and the algorithm given in [23]).

Algorithm 2

Step 1. If y(A)≥ 1
3 then apply operator T1 given by (15)-(18), else

Step 2. if EV1
3
(A)≤Val(A)≤EV2

3
(A) then apply operator T2 given by (22)-

(25), else
Step 3. if Val(A) < EV1

3
(A) then apply operator T3 given by (27)-(28), else

Step 4. apply operator T4 given by (30)-(31).

4 Discussion and New Algorithms

Although the given above explanation of the conditions that delimits situations cor-
responding to different approximation operators is correct, yet it sounds slightly in-
sufficient. Especially conditions related to the location parameters do not have clear
interpretation. However, it appears that we can propose equivalent conditions which
seem to be more satisfactory and more natural.

Since by (5)

EV2
3
(A) =

1
3

∫ 1

0
AL(α)dα +

2
3

∫ 1

0
AU(α)dα

EV1
3
(A) =

2
3

∫ 1

0
AL(α)dα +

1
3

∫ 1

0
AU(α)dα

then according to (4) and (6) we get

EV2
3
(A)+ EV1

3
(A) =

∫ 1

0
AL(α)dα +

∫ 1

0
AU(α)dα = 2EV(A)

and

EV2
3
(A)−EV1

3
(A) =

1
3

∫ 1

0
AU(α)dα − 1

3

∫ 1

0
AL(α)dα =

1
3

w(A).

Hence

EV2
3
(A) = EV (A)+

1
6

w(A)

and

EV1
3
(A) = EV (A)− 1

6
w(A).
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Thus conditions (20)-(21) is equivalent to

|EV (A)−Val(A)| ≤ 1
6

w(A). (35)

Similarly, requirement (26) might be replaced by

Val(A) < EV (A)− 1
6

w(A), (36)

while (29) is equivalent to

Val(A) > EV (A)+
1
6

w(A). (37)

Thus we get another algorithm.

Algorithm 3

Step 1. If Amb(A)≥ 1
3 w(A) then apply operator T1 given by (15)-(18), else

Step 2. if |EV (A)−Val(A)| ≤ 1
6 w(A) then apply operator T2 given by (22)-

(25), else
Step 3. if Val(A) > EV (A)+ 1

6 w(A) then apply operator T4 given by (30)-
(31), else

Step 4. apply operator T3 given by (27)-(28).

As it is seen now to find a proper approximation using Algorithm 2 we have to
calculate at most 4 parameters, while in previous Algorithm 1 we had 5 parameters.

To emphasize much more that the distinction among operators T2, T3 and T4 is
based on the asymmetry of spread of the membership function let us introduce the
following notions.

Definition 1. The left-hand ambiguity of a fuzzy number A with α-cuts Aα =
[AL(α),AU (α)] is defined by

AmbL(A) =
∫ 1

0
α[EV (A)−AL(α)]dα, (38)

while the right-hand ambiguity of a fuzzy number A is given by

AmbU(A) =
∫ 1

0
α[AU(α)−EV (A)]dα. (39)

One may notice that our definition of the left-hand and right-hand ambiguity differs
from the definitions proposed in [8] where the center point of the core of a fuzzy
number is placed instead of EV (A). Assuming that the expected value of a fuzzy
number EV (A) characterizes its typical value the left-hand and right-hand ambigu-
ity describe the spread of the the left-hand and right-hand part of a fuzzy number,
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respectively. Moreover, as it is easily seen, both characteristics give the total spread
of a fuzzy number, i.e.

AmbL(A)+ AmbU(A) = Amb(A). (40)

For our further considerations the following notion would be useful.

Definition 2. The difference between the left-hand and right-hand ambiguity of a
fuzzy number A is defined by

ΔAmb(A) = AmbU(A)−AmbL(A) (41)

By (7) and (4) we get immediately that

ΔAmb(A) = Val(A)−EV(A). (42)

Therefore we get another condition equivalent both to (20)-(21) and (35), i.e.

|ΔAmb(A)| ≤ 1
6

w(A). (43)

Similarly, condition

ΔAmb(A) >
1
6

w(A) (44)

is equivalent to (29) and (37), while condition

ΔAmb(A) <−1
6

w(A), (45)

i.e.

AmbL(A)−AmbU(A) >
1
6

w(A) (46)

is equivalent to (26) and (36).
Using these requirements we obtain another algorithm for computing the nearest

trapezoidal approximation preserving the expected interval.

Algorithm 4

Step 1. If Amb(A)≥ 1
3 w(A) then apply operator T1 given by (15)-(18), else

Step 2. if |ΔAmb(A)| ≤ 1
6 w(A) then apply operator T2 given by (22)-(25),

else
Step 3. if ΔAmb(A) > 1

6 w(A) then apply operator T4 given by (30)-(31),
else

Step 4. apply operator T3 given by (27)-(28).

It is worth noticing that Algorithm 4 utilizes 3 parameters only and a final deci-
sion for the proper choice of the approximation operator depends both on the global
spread of a fuzzy number and the size of possible asymmetry between the spread of
the left-hand and right-hand part of a fuzzy number.
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Last of all let us notice that we may express formulae describing operators T1−T4

using suitable parameters describing fuzzy numbers instead of relevant integrals
given in Section 3. In particular we obtain a very natural formulae especially for
operators T3 and T4, namely:

• T1(A) = T1(t1,t2,t3,t4), where

t1 = EV (A)−2w(A)+ 6AmbL(A) (47)

t2 = EV (A)+ w(A)−6AmbL(A) (48)

t3 = EV (A)−w(A)+ 6AmbU(A) (49)

t4 = EV (A)+ 2w(A)−6AmbU(A). (50)

• T2(A) = T2(t1,t2,t3,t4), where

t1 = EV (A)−w(A)−3ΔAmb(A) (51)

t2 = t3 = EV (A)−ΔAmb(A) (52)

t4 = EV (A)+ w(A)−3ΔAmb(A) (53)

• T3(A) = T3(t1,t2,t3,t4) is given by

t1 = t2 = t3 = EV (A)− 1
2

w(A) (54)

t4 = EV (A)+
3
2

w(A) (55)

• T4(A) = T4(t1,t2,t3,t4) is given by

t1 = EV(A)− 3
2

w(A) (56)

t2 = t3 = t4 = EV (A)+
1
2

w(A). (57)

As it is seen, in all cases the crucial point of the trapezoidal fuzzy number ob-
tained as the approximation is the expected value the original fuzzy number which
is invariant under approximation (see [14]). Then all points t1− t4 that describe the
trapezoidal fuzzy number are obtained by adding or subtracting some multiplicities
of different measures of spread of the original fuzzy number.

5 Properties

Before we discuss the properties of our trapezoidal approximation operators let us
notice that we can consider the family F(R) of all fuzzy numbers as a union of four
subfamilies Fi(R) corresponding to different approximation operators to be used.
Namely, we may say that a fuzzy number A belongs to subfamily Fi(R) if and only
if Ti (i = 1, . . . ,4) is an appropriate operator that should be used for getting a proper



96 P. Grzegorzewski

trapezoidal approximation. Thus, according to the previous sections we can prove
the following lemmas (which are extended versions of those given in [14]).

Lemma 1. The following conditions are equivalent:

(a) A ∈ F1(R),
(b) condition (14) holds,
(c) Amb(A)≥ 1

3 w(A),
(d) y(A)≥ 1

3 .

Lemma 2. The following conditions are equivalent:

(a) A ∈ F2(R),
(b) conditions (19), (20) and (21) hold,
(c) Amb(A) < 1

3 w(A) and EV1
3
(A)≤Val(A)≤ EV2

3
(A),

(d) y(A) < 1
3 and EV1

3
(A)≤Val(A)≤ EV2

3
(A),

(e) Amb(A) < 1
3 w(A) and |EV(A)−Val(A)| ≤ 1

6 w(A),
(f) Amb(A) < 1

3 w(A) and |ΔAmb(A)| ≤ 1
6 w(A).

Lemma 3. The following conditions are equivalent:

(a) A ∈ F3(R),
(b) condition (26) holds,
(c) Val(A) < EV1

3
(A),

(d) Val(A) < EV (A)+ 1
6 w(A),

(e) ΔAmb(A) < 1
6 w(A).

Lemma 4. The following conditions are equivalent:

(a) A ∈ F4(R),
(b) condition (29) holds,
(c) Val(A) > EV2

3
(A),

(d) Val(A) > EV (A)+ 1
6 w(A),

(e) ΔAmb(A) > 1
6 w(A).

One may notice that subfamilies F1(R), . . . ,F4(R) form a partition of a family of all
fuzzy numbers F(R). Actually, by lemmas given above, we may conclude immedi-
ately that

F1(R)∪ . . .∪F4(R) = F(R) (58)

and
Fi(R)∩F j(R) = /0 for i �= j. (59)

Introducing this useful notation we can now turn back to properties of the trape-
zoidal approximation operators. It can be shown that for A ∈ Fi(R) the nearest
trapezoidal approximation operator Ti, i = 1, . . . ,4, preserving expected interval is
invariant to translations and scale invariant, is monotonic and fulfills identity crite-
rion, preserves the expected value and the weighted expected value and fulfills the
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nearness criterion with respect to metric (9) in the subfamily of all trapezoidal fuzzy
numbers with fixed expected interval. Moreover, it is continuous and compatible
with the extension principle, is order invariant with respect to some preference fuzzy
relations, is correlation invariant and it preserves the width. For more details we refer
the reader to [4], [16] and [17]. It has been also shown ( [14]) that T1 and T2 preserve
the value of a fuzzy number, while Val(T3(A)) < Val(A) and Val(T4(A)) > Val(A).
However the ambiguity is preserved only by T1 and Amb(Ti(A)) > Amb(A) for
i = 2,3,4.

6 Conclusions

In the present contribution we have continued the discussion on the problem
of trapezoidal approximation of fuzzy numbers showing another algorithms for
computing the proper nearest trapezoidal approximation preserving the expected
interval. It seems that these new algorithms are simpler and have more clear inter-
pretation than the algorithms proposed before. Especially Algorithm 4 is the most
concise and shows that the choice of the adequate approximation operator depends
both on the global spread of a fuzzy number and the size of possible asymmetry be-
tween the spread of the left-hand and right-hand part of the original fuzzy number.

Trapezoidal approximation, of course, is not the only possible way for simplify-
ing the shape of the membership function of the fuzzy numbers under study. Even
greater simplification can be obtained through the interval approximation. The read-
ers interested in this approach are referred to [6,12,13]. On the other hand one may
need a nonlinear approximation. Such attempt was proposed in [19].
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Possibilistic Similarity Measures

Ilyes Jenhani, Salem Benferhat, and Zied Elouedi

Abstract. This paper investigates the problem of measuring the similarity degree
between two normalized possibility distributions encoding preferences or uncertain
knowledge. In a first part, basic natural properties of such similarity measures are
proposed. Then a survey of the existing possibilistic similarity indexes is presented
and in particular, we analyze which existing similarity measure satisfies the set of
basic properties. The second part of this paper goes one step further and provides a
set of extended properties that any similarity relation should satisfy. Finally, some
definitions of possibilistic similarity measures that involve inconsistency degrees
between possibility distributions are discussed.

1 Introduction

The concept of similarity is a very hot topic for many research fields and the compar-
ison of objects represents a fundamental task in many real-world application areas
such as, decision making, medicine, meteorology, psychology, molecular biology,
data mining, case-based reasoning, etc.

Uncertainty and imprecision are often inherent in modeling knowledge for most
real-world problems including the above mentioned areas. Uncertainty about values
of given variables (e.g. the source of a car breakdown, the temperature of a patient,
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the property value of a client asking for a loan, etc.) can result from some errors and
hence from non-reliability (in the case of experimental measures) or from different
background knowledge. As a consequence, it is possible to obtain different uncer-
tain pieces of information about a given value from different sources. Obviously,
comparing these pieces of information could be of a great interest and should be ac-
complished effectively in order to solve many problems in the presence of imperfect
data, like in fusion, clustering, classification, etc.

Comparing pieces of imperfect information has attracted a lot of attention in
probability theory [4, 21], in belief function theory [13, 19, 27, 32], in fuzzy set the-
ory (e.g. [2, 3, 14, 29]), in credal set theory (e.g. [1]), etc. In particular, to compare
probability distributions, one can use the well-known Minkowski (and its deriva-
tives, i.e., Euclidean, Manhattan, and Maximum distances) and KL-divergence [21].
Another distance has been proposed by Chan et al. [4] for bounding probabilistic
belief change. In belief function theory [24], several distance measures between
bodies of evidence deserve to be mentioned. Some distances have been proposed
as measures of performance (MOP) of identification algorithms [13,19]. A distance
was used for the optimization of the parameters of a belief k-nearest neighbor clas-
sifier [32]. In [27], authors proposed a distance for the quantification of errors re-
sulting from basic probability assignment approximations. Many similarity/distance
measures used in belief function theory go through the pignistic transformation [26]
of a basic belief assignment into a probability distribution, then apply probabilistic
distances.

Many contributions on measures of similarity between fuzzy sets have already
been made [2, 3, 14, 29]. For instance, in the work by Bouchon-Meunier et al. [3],
the authors proposed a similarity measure between fuzzy sets as an extension of
Tversky’s model on crisp sets [28]. The measure was then used to develop an image
search engine. In [29], the authors have made a comparison between existing clas-
sical similarity measures for fuzzy sets and proposed the sameness degree which
is based on fuzzy subsethood and fuzzy implication operators. Moreover, in [2]
and [14], the authors have proposed many fuzzy distance measures which are fuzzy
versions of classical cardinality-based distances.

Despite the popularity of possibility theory, only few works are dedicated to sim-
ilarity measures within this framework [16, 20, 22]. Existing works have provided
definitions of possibilistic similarity functions without natural properties of such
measures. Moreover, none of the proposed measures have taken into account the
concept of inconsistency when measuring possibilistic similarity. In fact, this lat-
ter concept plays an important role in evaluating the similarity degree between two
possibilistic pieces of information as it will be shown later.

In this paper, we will mainly focus on measures for the comparison of uncertain
information represented by normalized possibility distributions. We propose natural
properties that these measures should satisfy and provide an inconsistency-based
possibilistic similarity function satisfying the proposed axioms. This paper is an
extended and a revised version of the conference papers [17] and [18].

The rest of the paper is organized as follows: Section 2 gives necessary back-
grounds concerning possibility theory. Section 3 presents a set of natural properties
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that a possibilistic similarity measure (PSM for short) should satisfy. Section 4 gives
a brief overview of existing similarity and distance measures for possibilistic imper-
fect information. After showing that existing functions do not entirely satisfy the
proposed basic properties, we propose, in Section 5, additional properties that take
into account the inconsistency degree between possibilistic pieces of information.
Section 6 proposes a new PSM that satisfies all the new properties. Finally, Section
7 concludes the paper.

2 Possibility Theory: A Refresher

Possibility theory represents a non-classical uncertainty theory, first introduced by
Zadeh [31] and then developed by several authors (e.g. Dubois and Prade [7]). In
this section, we will give a brief refresher on possibility theory.

Possibility distribution
Given a universe of discourse Ω = {ω1, ω2, ..., ωn}, one of the fundamental con-
cept of possibility theory is the notion of possibility distribution denoted by π . π
is a function which associates to each element ωi from the universe of discourse
Ω a value from a bounded and linearly ordered valuation set (L,<). This value is
called a possibility degree: it encodes our knowledge on the real world. Note that,
in possibility theory, the scale can be numerical (e.g. L=[0,1]): in this case we have
numerical possibility degrees from the interval [0,1] and hence we are dealing with
the quantitative setting of the theory. In the qualitative setting, it is the ordering be-
tween different possible values that is important. For more details on discussions
between quantitative and qualitative possibility theory; see [8]. In the following, the
uncertainty scale will be represented by the unit interval [0,1].

By convention, π(ωi) = 1 means that it is fully possible that ωi is the real world,
π(ωi) = 0 means that ωi cannot be the real world (is impossible). Flexibility is
modeled by allowing to give a possibility degree from ]0,1[. In possibility theory,
extreme cases of knowledge are given by:

- Complete knowledge: ∃ωi, π(ωi) = 1 and ∀ ω j �= ωi, π(ω j) = 0.
- Total ignorance: ∀ ωi ∈Ω , π(ωi) = 1 (all values in Ω are possible).

For the sake of simplicity, for the rest of the paper, a possibility distribution π on a
finite set Ω = {ω1,ω2, ...,ωn} will be denoted by π [π(ω1),π(ω2), ...,π(ωn)].

Possibility and Necessity measures
From a possibility distribution, two dual measures can be derived [7] : Possibil-
ity and Necessity measures. Given a possibility distribution π on the universe of
discourse Ω , the corresponding possibility and necessity measures of any event
A ⊆ 2Ω are, respectively, determined by the formulas: Π(A) = maxω∈A π(ω) and
N(A) = minω /∈A (1−π(ω)) = 1−Π(A). Π(A) evaluates at which level A is con-
sistent with our knowledge represented by π while N(A) evaluates at which level A
is certainly implied by our knowledge represented by π .
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Normalized possibility distributions and inconsistency
A possibility distribution π is said to be normalized if there exists at least one state
ωi ∈Ω which is totally possible (i.e. maxω∈Ω{π(ω)}= π(ωi)=1). Otherwise, π is
considered as sub-normalized and in this case

Inc(π) = 1−max
ω∈Ω
{π(ω)} (1)

is called the inconsistency degree of π . It is clear that, for normalized π , maxω∈Ω
{π(ω)} = 1, hence Inc(π)=0. The measure Inc is very useful in assessing the de-
gree of conflict between two distributions π1 and π2 which is given by Inc(π1,π2) =
Inc(π1∧π2), where ∧ is a conjunctive t-norm operator (satisfying the axioms of :
boundary conditions, monotonicity, commutativity and associativity) [9]. For sake
of simplicity, we take the minimum and product conjunctive (∧) operators, which
have been largely used in a possibility theory framework. Obviously, when π1∧π2

gives a sub-normalized possibility distribution, it indicates that there is a conflict
between π1 and π2 (Inc(π1,π2) ∈]0,1]). On the other hand, when π1∧π2 is normal-
ized, there is no conflict and hence Inc(π1,π2) = 0.

Let π1[0.5,0,1,0.8] and π2[1,0.7,0.3,1] be two normalized possibility distribu-
tions. If we take the minimum as the conjunctive (∧) operator, we obtain:
Inc(π1,π2)=Inc([0.5,0,0.3,0.8])=1-0.8=0.2. We can conclude that the two sources
are slightly inconsistent with each others.

Non-specificity
Possibility theory is driven by the principle of minimum specificity: A possibility
distribution π1 is said to be more specific than π2 if and only if for each state of
affairs ωi ∈ Ω , π1(ωi) ≤ π2(ωi) [30]. Clearly, the more specific π , the more infor-
mative it is.

Another definition of non-specificity has been introduced in [15]. Given a permu-
tation σ of the degrees of a possibility distribution π [πσ(1), πσ(2), ..., πσ(n)] such
that πσ(1) ≥ πσ(2) ≥ ... ≥ πσ(n), the non-specificity of a possibility distribution π ,
so-called U-uncertainty is given by:

U(π) =
n

∑
i=2

(πσ(i)−πσ(i+1)) log2 i + (1−πσ(1)) log2 n (2)

where πσ(n+1) = 0 by convention. Note that if ∀ωi ∈ Ω , π1(ωi) ≤ π2(ωi), then we
necessarily have U(π1)≤U(π2). However, the converse is false. Namely, U(π1)≤
U(π2) does not necessarily imply that ∀ωi ∈ Ω , π1(ωi) ≤ π2(ωi). Indeed, let us
consider the following possibility distributions: π1[1,1,0] and π2[1,0.5,0.5]. We have
U(π2)=0.792<U(π1)=1 but it is not true that π2 < π1.

3 Basic Natural Properties of a Possibilistic Similarity Measure

The issue of comparing imperfect pieces of information depends on the way these
pieces of information are represented. In fact, each kind of imperfection has to be
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modeled by the appropriate uncertainty theory otherwise, resulting models and re-
sults of all operations on that models (fusion, inference, etc.) will not be faithful to
the reality. Hence, in the case of possibility theory, comparing uncertain pieces of
information comes down to comparing possibility distributions representing these
pieces of information. Hence, we need a measure to quantify the amount of simi-
larity between two possibility distributions. A fundamental question that arises is:
what are natural properties that such measures should satisfy?

Let π1 and π2 be two normalized possibility distributions on the same universe
of discourse Ω . Possibility distributions considered in this paper are assumed to be
normalized. A possibilistic similarity measure (PSM), denoted by s(π1,π2), should
satisfy the following basic properties [17]:

Property 1. Non-negativity
s(π1,π2)≥ 0.
Namely, similarity between two possibility distributions should never be negative.

Property 2. Symmetry
s(π1,π2) = s(π2,π1).
This property means that the similarity of π2 compared to π1 or π1 compared to π2

is strictly the same.

Property 3. Upper bound and Non-degeneracy
∀ πi, s(πi,πi) = 1 and ∀πi, π j, s(πi,π j)≤ 1.
Namely, identity implies full similarity, which is represented by the degree 1.

Property 4. Lower bound
If ∀ωi ∈Ω ,
i) π1(ωi) ∈ {0,1}, π2(ωi) ∈ {0,1} and ii) π2(ωi) = 1−π1(ωi) then
s(π1,π2)=0.
Maximally contradictory possibility distributions have the lowest similarity degree.
Item i) means that π1 and π2 should be binary. Since we deal with normalized pos-
sibility distributions, items i) and ii) imply:

iii) ∃ ωq ∈Ω s.t. π1(ωq) = 1
iv) ∃ ωp ∈Ω s.t. π1(ωp) = 0

The following example illustrates properties 3 and 4 :

Example 1. Let X be a variable with an unknown value and let Ω = {ω1,ω2,ω3,ω4}
be the set representing the possible values of X . Let us take the possibility distribu-
tion representing the total knowledge on X given by an agent, i.e., π1[1,0,0,0]. Thus,
a most similar possibility distribution to π1 according to Property 3 is π2[1,0,0,0]
(the best case) and according to Property 4, the least similar possibility distribution
to π1 is π3[0,1,1,1] (the worst case).

Next property says that if we have three information sources: the first one is giving
an information π1 which is more specific than the one given by the second source π2

which is in turn more specific than the one given by the third source π3. Moreover,
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we assume that all sources agree for at least one state. Then, π1 is closer to π2 than
to π3.

Property 5. Large inclusion (specificity)
If Inc(π1,π2) = Inc(π2,π3) = Inc(π1,π3) = 0 and ∀ωi ∈ Ω , π1(ωi) ≤ π2(ωi) and
π2(ωi)≤ π3(ωi), then s(π1,π2)≥s(π1,π3).

Property 6 says that the similarity between two possibility distributions π1 and π2

remains the same if we change the order of elements having the same indexes in
both possibility distributions π1 and π2.

Property 6. Permutation
Let π1 and π2 be two possibility distributions and let ρ be a permutation of indexes
in π1 and π2 (leading to πρ(1) and πρ(2)).
Then, ∀ π1, π2, s(π1,π2)=s(πρ(1),πρ(2)).

Next corollary follows from the permutation property for the case of four possi-
bility distributions. The corollary says that if the similarity between two pieces of
uncertain information π1 and π2 is greater than the similarity between π3 and π4,
switching or permuting the elements having the same indexes in π1 and π2 and do-
ing the same thing for π3 and π4 (but not necessarily the same indexes used with π1

and π2), then similarities will remain unchanged. Hence, similarity between π1 and
π2 is still greater than the similarity between π3 and π4. This expresses the fact that
elements of each possibility distribution have the same degree of importance.

Corollary 1. Let s be a similarity measure satisfying the permutation property and
π1, π2, π3 and π4 be four possibility distributions and let ρ (resp. ρ ′) be a permuta-
tion of indexes in π1 and π2 (resp. in π3 and π4).
Then, ∀ π1, π2, π3, π4, s(π1,π2)≥s(π3,π4) iff s(πρ(1),πρ(2))≥s(πρ ′(3),πρ ′(4)).

The proof is immediate since following Property 6, s(π1,π2) = s(πρ(1),πρ(2)) and
s(π3,π4) = s(πρ ′(3),πρ ′(4)).

The following example illustrates properties 5-6:

Example 2. Let X be a variable with an unknown value and let Ω = {ω1,ω2,ω3,ω4}
be the set representing the possible values of X . Let us consider the following possi-
bility distributions representing the opinions of three sources about the exact value
of X : π1[1,0,0,0], π2[1,0.3,0.2,0.5], π3[1,0.8,0.9,1].

We can see that ∀ωi, π1(ωi) ≤ π2(ωi) ≤ π3(ωi), which means that π1 is more
specific than π2 which is also more specific than π3. In this case, it is expected that
π1 is more similar to π2 than π3, namely: s(π1,π2) > s(π1,π3).

Let us now permute, for instance, the first and the third elements in the different
distributions. We obtain: π ′1[0,0,1,0], π ′2[0.2,0.3,1,0.5], π ′3[0.9,0.8,1,1]. Clearly,
we have ∀ωi, π ′1(ωi)≤ π ′2(ωi)≤ π ′3(ωi). Hence, from Property 5, we can conclude
that s(π ′1,π

′
2) ≥ s(π ′1,π

′
3).

The above six natural properties can be viewed as basic properties of any possi-
bilistic similarity measure. Nevertheless, they are not satisfied as a whole by several
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existing PSMs as it will be shown in the next section. Note that there are some other
evident properties not mentioned here like transitivity and some other not desirable
properties in the possibilistic framework like triangle inequality.

4 Property-Based Analysis of Existing Possibilistic Similarity
Measures

Several names are given to comparison measures which often belong to two dual
measures: similarity measures and dissimilarity measures. Terms such as closeness,
affinity, resemblance, etc. can be considered as expressing the degree of similarity
between objects or pieces of information. Likewise, terms such as distance and di-
vergence can be thought of as expressing dissimilarity. We can find many of these
words in the literature and generally, they are expressing the same thing with a pos-
sibly slight semantic differences.

The choice of the similarity or distance measure is strongly related to the domain
value of the objects to compare (real-values, symbolic values, strings, etc.) as well
as to the representation of that objects (single value, vector of individual values, sets
of values, sets of vectors, etc).

This section reviews some existing possibilistic similarity and distance functions.
An example will be given to illustrate each measure and a counter-example will be
also provided to show what is (are) the property(ies) violated by that measure. Let us
present these measures and show their weaknesses in expressing information simi-
larity between any given two agents (or sensors) who are expressing their opinions
(or measures), especially, in the form of possibility distributions.

4.1 Information Closeness

One of the first works, especially dedicated to the problem of measuring informa-
tion similarity between two possibility distributions was the one of Higashi and Klir
in 1983 [16]. Authors have proposed an information variation-based measure which
they have called information closeness denoted by G. Function G is computed using
their U-uncertainty measure [15] (Equation (2)) and it is applicable to any pair of
normalized possibility distributions. The less the value of G is, the more the infor-
mation are similar (G behaves as a distance measure).

Definition 1. Let π1 and π2 be two possibility distributions on the same universe of
discourse Ω . The information closeness G between π1 and π2 is defined as:

G(π1,π2) = g(π1,π1∨π2)+ g(π2,π1∨π2) (3)

where g(πi,π j) = U(π j)−U(πi). ∨ is taken as the maximum operator and U is
the non-specificity measure given by Equation (2). Consequently, function G can be
written as G(π1,π2) = 2 ∗U(π1∨π2)−U(π1)−U(π2).

Example 3. Consider the following distributions π1, π2, π3 and π4 over
Ω = {ω1, ω2, ω3, ω4}: π1[1, 0.5, 0.3, 0.7], π2[1, 0, 0, 0], π3[0.9, 1, 0.3, 0.7],
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π4[0, 1, 0.3, 0.7]. Let us compute the order expressing which from the infor-
mation given by π2, π3 and π4 is closer to π1. G(π1,π2) = 1.12, G(π1,π3) =
0.52, G(π1,π4) = 1.08. According to G, π3 is the closest distribution to π1 and
π4 is closer to π1 than π2.

Let πN be the set of all normalized possibility distributions on Ω .
Let Gmin = minπi∈πN ,π j∈πN{G(πi,π j)} and Gmax = maxπi∈πN ,π j∈πN

{G(πi,π j)}. One can easily check that Gmin = 0 and Gmax = 2 ∗ log2(|Ω |)−
log2(|Ω |− 1). Gmin is obtained when comparing identical possibility distributions
whereas Gmax is obtained when comparing a possibility distribution corresponding
to a situation of complete knowledge and its complementary possibility distribution
(e.g. π1[1,0,0,0,0] and π2[0,1,1,1,1]).

Hence, we can transform G to a similarity measure SG whose values are in the
interval [0,1]:

SG = 1− G(πi,π j)−Gmin
Gmax

The similarity measure SG does not satisfy Property 4 as it is illustrated by the
following counter-example.

Counter-example 1. Let us consider the following possibility distributions: π1[1, 0,
0, 0], π2[0, 1, 1, 1], π3[0, 1, 0, 1] and π4[1, 0, 1, 0]. Clearly, π1 = 1− π2 and
π3 = 1−π4.

Hence, SG should take its minimum value when comparing π1 and π2 as well as
π3 and π4. Nevertheless, according to SG, we obtain:

SG(π1,π2) = 1− 2∗log2(4)−log2(3)
2∗log2(4)−log2(3) = 1−1 = 0

SG(π3,π4) = 1− 2∗log2(4)−2∗log2(2)
2∗log2(4)−log2(3) = 1− 2

2.41 =0.17.

It means that π3 and π4 are more similar to each other than π1 and π2 are, which is
contrary to what is expected: SG(π3,π4) should be minimal and equal to SG(π1,π2).

4.2 Sangüesa et al. Distance

In a work by Sangüesa et al. [23] focusing on learning possibilistic causal networks,
the authors have proposed a modified version of a distance measure [22] between
two possibility distributions for DAG (Directed Acyclic Graph) learning and evalu-
ation. This is done by measuring the distance (which must be minimized) between
the possibility distribution implied by a DAG and the one underlying the database.
This idea is based on the interpretation of independence as information similarity.

Definition 2. Given two possibility distributions π1 and π2 on the same universe of
discourse Ω . The distance between π1 and π2 is defined as the non-specificity of the
distribution difference

distance(π1,π2) = U(πd) (4)

where πd(ω) = |π1(ω)−π2(ω)| f or each ω ∈Ω .
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Example 4. If we take the same distributions π1, π2, π3 and π4 of Example 3, we
obtain:

distance(π1,π2) = U([0,0.5,0.3,0.7]) = 1.27,
distance(π1,π3) = U([0.1,0.5,0,0]) = 1.1,
distance(π1,π4) = U([1,0.5,0,0]) = 0.5.

Hence according to this measure, π2 remains the farthest but π4 becomes the closest
to π1.

Let distancemin = minπi∈πN ,π j∈πN{distance(πi,π j)} and distancemax =
maxπi∈πN ,π j∈πN{distance(πi,π j)}. One can check that distancemin = 0 and
distancemax = log2(|Ω |).

Hence, we can transform distance to a similarity measure Sdistance whose values
are in the interval [0,1]:

Sdistance = 1− distance(πi,π j)−distancemin
distancemax

Sdistance is not satisfactory when the distribution difference (|π1 − π2|) is sub-
normalized (which occurs most of the time). In this case the second term of Equation
(2) will be considered. Note that measuring the non-specificity of a sub-normalized
distribution π comes down to measure the non-specificity of its normalized distri-
bution π ′ s.t π ′(ωi) = π(ωi)+(1−maxω∈Ω{π(ω)}). Obviously, this normalization
scheme is not suited for the proposed similarity function. The following counter-
example emphasizes this weakness.

Counter-example 2. Let us consider the following possibility distributions:

π1[1, 0, 0, 0], π2[1, 0, 0, 0], π3[0, 1, 1, 1], π4[1, 1, 0, 0].

Clearly, π2 is the closest possible distribution to π1 (the best case) while π3 is the
farthest distribution (the worst case). Nevertheless, the results provided by this dis-
tance measure do not correspond to these intuitions:

Sdistance(π1,π2) = 1− 2−0
2 = 0 (minimum)

Sdistance(π1,π3) = 1− 2−0
2 = 0 (minimum)

Sdistance(π1,π4) = 1− 0−0
2 = 1 (maximum)

Hence, according to this measure, π1 and π2 are minimally similar to each other.
This violates Property 3 because π1 = π2 and the similarity is minimal.

4.3 Information Divergence

A possibilistic analogy to the probabilistic measure of divergence was proposed by
Kroupa [20]. The author has used the Choquet integral [5] as an aggregation operator
of the possibility degrees characterizing the, generally, sub-normalized distribution
difference (πd = |π1(ωi)−π2(ωi)|, i=1..n) of any two normalized distributions π1

and π2.
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Definition 3. Given two possibility distributions π1 and π2 on the same universe of
discourse Ω , the measure of divergence D(π1|π2) is defined as the discrete Choquet
integral of the degrees of πd:

D(π1|π2) =
n

∑
i=1

πd(ωσ(i))[Π1(Aσ(i))−Π1(Aσ(i+1))] (5)

where σ is a permutation of indexes such that πd(ωσ(i))≤ ...≤ πd(ωσ(n)) and
Aσ(i) = {ωσ(i), ...,ωσ(n)}, i=1..n and Aσ(n+1) = /0.

Example 5. Let us reconsider the same distributions of Example 3. The application
of the divergence measure gives:

D(π1|π2) = 0∗(1−0.7)+0.3∗(0.7−0.7)+0.5∗(0.7−0.7)+0.7∗(0.7−0)= 0.49
D(π1|π3) = 0 ∗ (1−1)+ 0∗ (1−1)+0.1 ∗ (1−0.5)+0.5∗ (0.5−0)= 0.3
D(π1|π4) = 0 ∗ (1−1)+ 0∗ (1−1)+0.5 ∗ (1−1)+1∗ (1−0)= 1

Again, we obtain a different order from Example 3 and Example 4. In fact, according
to D, π3 is the closest to π1 and π4 is the farthest.

Let Dmin = minπi∈πN ,π j∈πN{D(πi|π j)} and Dmax = maxπi∈πN ,π j∈πN{D(πi|π j)}. One
can check that Dmin = 0 and Dmax = 1. Dmin is obtained when we compare identi-
cal possibility distributions whereas Dmax is obtained when we compare maximally
conflicting possibility distributions (e.g. ∀i, j, i f Inc(πi,π j) = 1 then D(πi,π j)= 1).

Hence, we can transform D to a similarity measure SD whose values are in the
interval [0,1]:

SD = 1−D(πi|π j)

Clearly, the measure SD is not symmetric and hence violates Property 2 (for the
above example, SD(π2|π1) = 1). SD(π2|π1) = 1 also shows that Property 3 is vio-
lated by SD since the similarity is maximal and π2 �= π1. Moreover, SD gives the
minimum similarity degree (Equal to 0) in the case of maximally conflicting possi-
bility distributions. In other words, SD is minimal when the distribution difference
πd is normalized. Counter-example 3 emphasizes this limit:

Counter-example 3 Let us consider the same distributions π1 and π4 of Example
3. Let us consider π5[0, 1, 1, 1]. SD(π1|π5) = SD(π1|π4) = 0. We can conclude that
this measure is not enough discriminatory since π4 appears to be closer to π1 than
π5 was.

4.4 Minkowski Distance and Its Derivatives

Since possibility distributions are represented by vectors of real values in the unit
interval [0,1], and where the position of each individual value (possibility degree) is
very important, the well-known Minkowski measure on the set of real numbers IR
can be used.
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Definition 4. Given two possibility distributions π1 and π2 on Ω = {ω1, ...,ωn}, the
non-normalized Minkowski distance is given by:

Lp(π1,π2) = p

√
n

∑
i=1
|π1(ωi)−π2(ωi)|p (6)

Particular and interesting cases of Equation (6) are:

• LM(π1,π2) = ∑n
i=1 |π1(ωi)−π2(ωi)|

n denotes the normalized Manhattan distance (or
City-Block distance).

• LE(π1,π2) =
√

∑n
i=1(π1(ωi)−π2(ωi))2

n stands for the normalized Euclidean distance.
• LC(π1,π2) = maxn

i=1 |π1(ωi)−π2(ωi)| is known as the normalized Maximum dis-
tance (or Chebyshev distance or chessboard distance).

The above distance measures can be transformed into similarity measures to com-
pare possibility distributions:

SM(π1,π2) = 1− ∑n
i=1 |π1(ωi)−π2(ωi)|

n
(7)

SE(π1,π2) = 1−
√

∑n
i=1(π1(ωi)−π2(ωi))2

n
(8)

SC(π1,π2) = 1− n
max
i=1
|π1(ωi)−π2(ωi)| (9)

Example 6. Let us reconsider the following possibility distributions from
Example 3: π1[1, 0.5, 0.3, 0.7], π3[0.9, 1, 0.3, 0.7]. The application of these mea-
sures gives:

SM(π1,π3) = 0.85, SE(π1,π3) = 0.745, SC(π1,π3) = 0.5.

We can notice that SC is not enough discriminatory since it only concentrates on
highest differences. For instance, if we take πi[1, 1, 1], π j[1, 1, 0] and πk[1, 0, 0],
we obtain SC(πi,π j) = SC(πi,πk) = 0.

Proposition 1. SM, SE and SC measures satisfy properties P1-P6.

SM, SE and SC measures are based on metric distances which, by definition, verify
properties of non-negativity, symmetry, identity and triangle inequality (if d is a
metric on a set X , then ∀x, y, z in X , d(x,z)≤ d(x,y)+d(y,z) ). Hence, it is easy to
verify that these similarity measures satisfy all the basic properties P1-P6 proposed
in Section 3. For more details see the Proofs in the appendix.

The fact that SC also satisfies the basic properties, while obviously it is not fully
satisfactory as shown by the above example, means that additional properties are
needed in order to get a genuine definition.

In addition to the above mentioned possibilistic similarity and distance measures,
we also mention a work by Fabris [12] in which the author has proposed a possi-
bilistic counterpart of the well known probabilistic mutual information [25] between



110 I. Jenhani, S. Benferhat, and Z. Elouedi

two variables X and Y defined on two different domains of discourse. This measure
could not be used in our case because we are measuring the similarity between two
possibility distributions given on the same domain of discourse (i.e. expressing pos-
sibility degrees on the values of the same variable).

5 Additional Properties of a Possibilistic Similarity Measure

The set of properties P1-P6, proposed in Section 3, represents basic properties of a
possibilistic similarity measure [17]. This set is too minimal and is satisfied by some
existing indexes (e.g. SM , SE and SC). However, these properties do not take into ac-
count an important factor, namely, the inconsistency degree between the possibility
distributions under comparison. Hence, in this section, we will mainly focus on re-
vising and extending these properties to highlight the introduction of inconsistency
in measuring possibilistic similarity [18].

5.1 The Role of Inconsistency in Measuring Possibilistic
Similarity

Let us recall that the inconsistency degree between two possibility distributions π1

and π2 is assessed by using the measure Inc (see Equation (1)) and is given by
Inc(π1,π2) = Inc(π1 ∧ π2). We take the ∧ as the minimum or product operator.
When π1∧π2 gives a sub-normalized possibility distribution, it indicates that there
is a conflict between π1 and π2 (Inc(π1,π2) ∈]0,1]).

This concept of inconsistency (conflict) should be considered when measuring
similarity between two normalized possibility distributions. Let us analyze the fol-
lowing example which motivates this assertion.

Example 7. Suppose that a conference chair has to select the best paper among three
selected papers (p1, p2, p3) to give an award to its authors. The conference chair
decides to make a second reviewing and asks two referees r1 and r2 to give their
preferences about the papers which, in fact, will be represented in the form of pos-
sibility distributions. Let us consider these two situations:

Situation 1: The referee r1 expresses his full satisfaction for p3 and fully rejects p1

and p2 (i.e. π1(p1) = 0, π1(p2) = 0, π1(p3) = 1) whereas r2 expresses his full satis-
faction for p2 and fully rejects p1 and p3 (i.e. π2(p1) = 0, π2(p2) = 1, π2(p3) = 0).
Clearly, p1 will be rejected but the chair cannot make a decision that fully fits refer-
ees’ preferences since they are in conflict.

Situation 2: The referee r1 expresses his full satisfaction for p1 and p3 and fully re-
jects p2 (i.e. π ′1(p1) = 1, π ′1(p2) = 0, π ′1(p3) = 1) whereas r2 expresses his full satis-
faction for p1 and p2 and fully rejects p3 (i.e. π ′2(p1) = 1, π ′2(p2) = 1, π ′2(p3) = 0).
In this case, the conflict disappears and the chair can make a decision that satisfies
both reviewers since they agree that p1 is a good paper.
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The fact that possibility degrees 0 and 1 do not play the same role is similar to what
is called bipolar information [6, 10, 11] which distinguishes between positive and
negative information. In fact, in the bipolar view of preference modeling, negative
preferences correspond to what is rejected, considered unacceptable, while positive
preferences correspond to what is desired.

Clearly, from the above example, we can see that, in some situations, similarity
alone is not sufficient to compare possibility distributions and hence does not allow
to make a decision since the expressed preferences in both situations have the same
similarity.

In fact, if we apply the similarity measures SM, SE and SC (which, hitherto, repre-
sent the only possibilistic similarity indexes (among all above presented measures)
satisfying properties P1-P6) to compare the possibility distributions (of the above
example):

π1=[0, 0, 1], π2=[0, 1, 0], π ′1=[1, 0, 1] and π ′2=[1, 1, 0], we obtain:
SM(π1,π2)=SM(π ′1,π

′
2)=0.33,

SE (π1,π2)=SE (π ′1,π ′2)=0.18,
SC(π1,π2)=SC(π ′1,π ′2)=0.

To overcome this drawback, we will enrich the proposed properties by some ad-
ditional ones.

5.2 Additional Possibilistic Similarity Properties

The first extension concerns Property 5, where we consider a particular case of strict
similarity in case of strict inclusion:

Property 7. Strict inclusion
∀π1, π2, π3 s.t. π1 �= π2 �= π3, if π1 ≤ π2 ≤ π3, then s(π1,π2) > s(π1,π3).

Note that π1 �= π2 and π1 ≤ π2 imply π1 < π2 (strict specificity).

Proposition 2. Properties P1-P4, P6-P7 imply Property 5.

Next property analyzes two sources who are proving conflicting pieces of informa-
tion. Suppose that the two sources, after discovering that they are conflicting, change
their opinions in the same way by enhancing the degree of a given situation (with
the same value). Then, the similarity will be even larger, if the enhancement leads
to a decrease of the amount of conflict:

Property 8. Reaching coherence
Let π1 and π2 be two possibility distributions . Let ωi ∈ Ω . Let π ′1 and π ′2 be two
normalized possibility distributions s.t.:

i) ∀ j �= i, π ′1(ω j) = π1(ω j) and π ′2(ω j) = π2(ω j),
ii) Let α s.t. α ≤ 1−max(π1(ωi),π2(ωi)).
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If π ′1(ωi) = π1(ωi)+ α and π ′2(ωi) = π2(ωi)+ α , then:

• If Inc(π ′1,π ′2)=Inc(π1,π2), then s(π ′1,π ′2) = s(π1,π2).
• If Inc(π ′1,π ′2)<Inc(π1,π2), then s(π ′1,π ′2) > s(π1,π2).

To illustrate Property 8, suppose that we have the following two maximally con-
flicting possibility distributions: π1[1,0,0] and π2[0,1,0] (Inc(π1,π2) = 1). Suppose
that the two sources decide to fully support the third situation and give it a possibility
degree equal to 1 (α = 1). We obtain: π ′1[1,0,1] and π ′2[0,1,1]. Clearly, Inc(π ′1,π ′2)
becomes 0. Hence, s(π ′1,π ′2) should be greater than s(π1,π2).

The intuition behind next property is the following: consider two sources who
provide normalized possibility distributions π1 and π2. Assume that there exists a
situation ω where they disagree. Now, assume that the second source changes its
mind and sets π2(ω) to be closer to π1(ω) (for instance, source 2 is convinced by
arguments given by source 1, and decides to change the possibility degree given to
ω with another degree closer to the one given by source 1, i.e. π1(ω)). Then the new
similarity between π1 and π2 increases. This is the aim of Property 9. :

Property 9. Mutual convergence
Let π1 and π2 be two possibility distributions such that for some ωi, we have
π1(ωi) > π2(ωi). Let π ′2 be a normalized possibility distribution s.t.:

i) π ′2(ωi) ∈]π2(ωi),π1(ωi)],
ii) and ∀ j �= i, π ′2(ω j) = π2(ω j).

Hence, we obtain: s(π1,π ′2) > s(π1,π2).
Corollary 2, concerns the situation when setting the new degree of π2(ωi) to be

equal to π1(ωi).

Corollary 2. Let π1 and π2 be two possibility distributions such that for some ωi,
we have π1(ωi) �= π2(ωi). Let π ′2 be a normalized possibility distribution s.t.:

i) π ′2(ωi) = π1(ωi),
ii) and ∀ j �= i, π ′2(ω j) = π2(ω j).

Hence, we obtain: s(π1,π ′2) > s(π1,π2).
Property 10 says that, if we consider two normalized possibility distributions π1

and π2 and we increase (resp. decrease) one situation ωp in π1 and one situation
ωq in π2 with a same degree α (leading to π ′1 and π ′2), then the similarity degree
between π1 and π ′1 will be equal to the one between π2 and π ′2. When decreasing α
from π1 and π2, the obtained π ′1 and π ′2 should remain normalized.

Property 10. Indifference preserving
Let π1 and π2 be two possibility distributions. Let π ′1 and π ′2 be two normalized
possibility distributions s.t.

i) ∀ j �= p, π ′1(ω j) = π1(ω j) and π ′1(ωp) = π1(ωp)+α (resp. π ′1(ωp) = π1(ωp)−α).
ii) ∀ j �= q, π ′2(ω j) = π2(ω j) and π ′2(ωq) = π2(ωq)+α (resp. π ′2(ωq) = π2(ωq)−α).

Then: s(π1,π ′1) = s(π2,π ′2).
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Let us illustrate property 10. Suppose that we have the following possibility dis-
tributions: π1[1,0,0] and π2[0,1,0]. The source providing π1 changes its mind by in-
creasing the possibility degree of the second situation by 1 which leads to π ′1[1,1,0].
On the other hand, the second source providing π2 will do the same thing as source
one but this time by increasing, with the same value, the possibility degree of the
third situation which leads to π ′2[0,1,1]. Property 10 requires that s(π1,π ′1) should
be equal to s(π2,π ′2).

Next corollary says that if one starts with a normalized possibility distribution
π1, and modify it (without loosing the normalization condition) by decreasing (resp.
increasing) only one situation ωi (leading to π2), or starts with a same distribution
π1 and only modify, identically, another situation ωk (leading to π3), then the simi-
larity degree between π1 and π2 is the same as the one between π1 and π3.

Corollary 3. Let π1 be a possibility distribution and α a positive number. Let π2

be a normalized possibility distribution s.t. π2(ωi) = π1(ωi)−α (resp. π2(ωi) =
π1(ωi)+ α) and ∀ j �= i, π2(ω j) = π1(ω j).

Let π3 be a normalized possibility distribution s.t. for k �= i, π3(ωk) = π1(ωk)−α
(resp. π3(ωk) = π1(ωk)+α) and ∀ j �= k, π3(ω j) = π1(ω j), then: s(π1,π2)=s(π1,π3).

Let us illustrate Corollary 3. Suppose that we have the following possibility distribu-
tion: π1[1,0,0]. The source providing π1 first changes its mind and gives π2[1,1,0]
which increases the possibility degree of the second situation with a degree 1. The
source will then realize that it made a mistake by assigning the degree 1 to the second
situation instead of the third one. The correction will lead to π3[1,0,1]. Corollary 3
requires that s(π1,π2) should be equal to s(π1,π3).

5.3 Derived Propositions

In what follows, we will derive some additional properties that follow from the
above defined properties. Proofs of propositions given in this paper can be found in
the appendix.

A consequence of Property 7 is that only identity between two distributions imply
full similarity, namely:

Proposition 3. Let s be a possibilistic similarity measure s.t. s satisfies Properties
1-10. Then, ∀πi, π j , s(πi,π j)=1 iff πi=π j .

This also means that: ∀π j �= πi, s(πi,πi) < 1. Clearly, proposition 3 provides a
stronger property than property 3.

Similarly, only completely contradictory possibility distributions imply a simi-
larity degree equal to 0. Next proposition provides stronger results than property 4:

Proposition 4. Let s be a possibilistic similarity measure s.t. s satisfies Properties
1-10. Then, ∀πi, π j , s(πi,π j)=0 iff ∀ωp ∈Ω ,

i) πi(ωp) ∈ {0,1} and π j(ωp) ∈ {0,1},
ii) and π j(ωp) = 1−πi(ωp)
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As a consequence of Property 8, discounting the possibility degree of a same situa-
tion could lead to a decrease of similarity if the discounting results in an increase of
the amount of conflict:

Proposition 5. Let s be a possibilistic similarity measure satisfying Properties 1-10.
Let π1 and π2 be two normalized possibility distributions. Let ωi ∈ Ω . Let π ′1 and
π ′2 be two normalized possibility distributions s.t.:

i) ∀ j �= i, π ′1(ω j) = π1(ω j) and π ′2(ω j) = π2(ω j),
ii) Let α s.t. α ≤ min(π1(ωi),π2(ωi)).

If π ′1(ωi) = π1(ωi)−α and π ′2(ωi) = π2(ωi)−α .
Then:

If Inc(π ′1,π ′2)=Inc(π1,π2), then s(π ′1,π ′2) = s(π1,π2).
If Inc(π ′1,π

′
2) > Inc(π1,π2), then s(π ′1,π

′
2) < s(π1,π2).

In fact, proposition 5 encodes the dual of property 8.
As a consequence of Property 9, starting from a given possibility distribution π1,

we can define a set of possibility distributions that, gradually, converge to the most
similar possibility distribution to π1:

Proposition 6. Let s be a possibilistic similarity measure satisfying Properties 1-10.
Let π1 and π2 be two normalized possibility distributions s.t. for some ωi, π1(ωi) >
π2(ωi). Let πk (k=3..m) be a set of m possibility distributions. Each πk is derived in
step k from πk−1 as follows:

i) πk(ωi) = πk−1(ωi)+ αk (with αk ∈]0,π1(ωi)−πk−1(ωi)])
ii) and ∀ j �= i, πk(ω j) = πk−1(ω j).

Hence, we obtain s(π1,π2) < s(π1,π3) < s(π1,π4) < ... < s(π1,πm)≤ 1.

Proposition 7. Let s be a possibilistic similarity measure satisfying Properties 1-10.
∀i, j ∈ {1, ..,m}, ∀ε ∈ [0,1] and ∀ω ∈Ω , we have:s(πi,πω−ε

i ) = s(π j,πω−ε
j ). πω−ε

i
means that we subtract ε from one situation ω of the possibility distribution πi. We
recall that ∀i, j ∈ {1, ..,m}, the possibility distributions πi, π j, πω−ε

i and πω−ε
j are

normalized.
The following figure illustrates proposition 7:

This proposition follows immediately from property 3 and property 10. In fact, let
us consider two normalized possibility distributions π1 and π2.

The equalities in the first line of all boxes is trivial since the similarity between
any identical possibility distributions is maximal and equal to 1 (Property 3).
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Let us now analyze one of the boxes of the figure. As we have already explained
in the illustration of corollary 3 (Section 5.2), if we subtract a value (here ε) from
one situation (for instance ω1) of a possibility distribution π1 which leads to π11 and
do the same thing but we subtract ε from another situation (for instance ω2) which
leads to π12, then s(π1,π11) = s(π1,π12). This applies to all boxes of the figure.

Now, let us look at the equalities between the boxes. Let us take the second box
(i.e. π2) and proceed exactly as we did with π1. Corollary 3 requires that s(π2,π21) =
s(π21,π22).

Moreover, as illustrated in the explanation of property 10, we should have
s(π1,π11) = s(π2,π21) and s(π1,π12) = s(π2,π22).

We can easily check that s(π1,π11) = s(π1,π12) = s(π2,π21) = s(π2,π22).
The following section provides a similarity measure that satisfies all properties

which means that P1-P10 is a coherent set of properties.

6 Information Affinity: The New Inconsistency-Based
Possibilistic Similarity Measure

Recall that, in Section 4, we have discarded some similarity functions, namely, SG,
Sdistance and SD since they do not satisfy all the basic properties (P1-P6) as shown by
the different counter-examples. However, we have provided proofs (in the appendix)
showing that SM , SE and SC satisfy basic properties P1-P6.

When considering all the proposed extended properties P1-P10, none of the SM,
SE and SC measures satisfy property 8 as shown by the following counter-example:

Counter-example 4 Let us take again the example of the reviewers given in Exam-
ple 7 where π1=[0, 0, 1], π2=[0, 1, 0], π ′1=[1, 0, 1] and π ′2=[1, 1, 0]. Clearly, we
have:

Inc(π1,π2) = 1. After adding the degree 1 to ω1 in both π1 and π2, the incon-
sistency has decreased (Inc(π ′1,π ′2) = 0). So, according to property 8, s(π ′1,π ′2)
should be greater than s(π1,π2) which is not the case when taking s as SM or SE or
SC. In fact: SM(π1,π2)=SM(π ′1,π

′
2)=0.33, SE(π1,π2)=SE(π ′1,π

′
2)=0.18, SC(π1,π2)=

SC(π ′1,π ′2)=0.

Considering the weaknesses related to the aforementioned existing possibilistic sim-
ilarity measures, we will propose a new measure that overcomes these drawbacks,
i.e., a measure that will satisfy all the proposed properties P1-P10.

Clearly, there are two important criteria in measuring possibilistic similarity,
namely, distance and inconsistency. We have chosen to combine them using a sum
weighted by κ and λ respectively. The choice of combining these two criteria is
justified by the fact that, in the possibilistic framework, a distance measure taken
alone does not always allow us to decide about the closest distribution to a given
one (as shown by Example 7).

Semantically, the proposed measure takes into account a classical informa-
tive distance (Manhattan or Euclidean) along with the well known inconsistency
measure.
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Definition 5. Let π1 and π2 be two possibility distributions on the same universe of
discourse Ω . We define a measure Aff (π1,π2) as follows:

Aff (π1,π2) = 1− κ ∗d(π1,π2)+λ ∗ Inc(π1,π2)
κ +λ

(10)

where κ > 0 and λ > 0. d denotes one of the Lp normalized metric distances (either
Manhattan or Euclidean) between π1 and π2. Inc(π1,π2) represents the inconsis-
tency degree between two distributions (see Equation (1)) where ∧ is taken as the
product or min conjunctive operators.

Intuitively, using the min operator instead of the product means that we give less
importance to the inconsistency degree in Equation (10), since Inc(π1 ∗ π2) >
Inc(min(π1,π2)).

Note that in Equation (10), if d = LC then P1-P10 are not satisfied. In fact, let
us consider the following possibility distributions: π1[1,1,1] and π2[1,0,0]. Let us
make the possibility degree of the second situation in π2 equal to the one in π1 (i.e.
by adding a degree 1) which leads to π ′2[1,1,0].

Let us take d as the Manhattan distance, ∧ as the minimum conjunctive operator
and κ = λ = 1. We obtain Aff (π1,π ′2) = Aff (π1,π2) = 0.5. This violates Property 9
which requires that Aff (π1,π ′2) > Aff (π1,π2). We can easily check that Property 9
and Property 10 will be also violated if we take d = LC.

Proposition 8. The Aff measure satisfies all the proposed properties P1-P10.

Next example shows how the Aff measure resolves the problem illustrated by Ex-
ample 7. We also give another general example that illustrates the Aff measure.

Example 8. If we reconsider the example of the referees where π1=[0, 0, 1], π2=[0,
1, 0], π ′1=[1, 0, 1] and π ′2=[1, 1, 0]. If we apply Aff , we obtain:
Aff (π1,π2)=0.16 < Aff (π ′1,π ′2)=0.66 which is conform to what we expect.

Now, let us take πa=[ 1
3 , 1, 1

3 ] and πb=[1, 1
3 , 1

3 ]. If we take ∧ as the min or the
product operator, we obtain Inc(πa,πb)=1- 1

3= 2
3 . On the other hand, d(πa,πb)=

LM(πa,πb)=
| 13−1|+|1− 1

3 |+| 13− 1
3 |

3 = 4
9 . Thus, Aff (πa,πb) = 1−

4
9 + 2

3
2 = 5

9 .

The following example illustrates some of the proposed additional properties in
conjunction with the proposed Aff similarity measure.

Example 9. For this example, we will take d as the Manhattan distance, ∧ as the
minimum conjunctive operator and κ = λ = 1.

Let us reconsider the example of the reviewers.

• Suppose that we have three reviewers expressing their opinions about three
papers by providing three possibility distributions: π1[0,0,1],π2[0.5,0.5,1] and
π3[1,1,1].

Clearly, π1 < π2 < π3. We have Aff (π1,π2) = 0.83 > Aff (π1,π3) = 0.66. This
is confirmed by property 7.
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• Let us now consider a fourth reviewer (π4[1,0,0]). Clearly, the first and the fourth
reviewers are in total conflict (Inc(π1,π4) = 1) and the similarity between their
opinions is Aff (π1,π4) = 0.16. Suppose that both reviewers have changed their
minds about the second paper and fully accept it (π ′1[0,1,1] and π ′4[1,1,0] ).
Clearly, the conflict has disappeared (Inc(π ′1,π

′
4) = 0). In this case, we have

Aff (π ′1,π ′4) = 0.66 > Aff (π1,π4) = 0.16. This is confirmed by property 8.
• Let us now take the opinions of the first and the second reviewers (π1[0,0,1],

π2[0.5,0.5,1]). Suppose that the first reviewer has changed his opinion about the
second paper and has joined the second reviewer (π ′1[0,0.5,1]). In this case, we
have Aff (π ′2,π1) = 0.91 > Aff (π2,π1) = 0.83. This is confirmed by property 9.

• Let us take again the first and the second reviewers (π1[0,0,1],π2[0.5,0.5,1]). Af-
ter reading the revised versions of the papers, the first reviewer has changed his
opinion about the second paper (by adding a degree of 0.5) and maintain his
opinions on the remaining papers (π ′1[0,0.5,1]). The second reviewer has also
changed his opinion but about the first paper (by adding a degree of 0.5 leading
to π ′2[1,0.5,1]). In this case, we have Aff (π ′1,π ′2) = Aff (π1,π2) = 0.83. This is
confirmed by property 10.

7 Conclusion

In this paper, we have provided an analysis of natural properties that a possibilistic
similarity measure should satisfy. In a first stage, we have proposed basic properties
of possibilistic similarity functions. Although these basic properties are not met by
most of the existing possibilistic similarity measures in the literature, they are too
minimal. In fact, as it has been shown, the Minkowski similarity function and some
of its derivatives satisfies the proposed properties. Moreover, this analysis led us
to the conclusion that inconsistency should be taken into account when comparing
possibilistic bodies of evidences.

Consequently, in a second stage, we have revised and extended these axioms
and proposed a new similarity measure, so-called, Information Affinity, which com-
bines distance and inconsistency in order to assess the similarity degree between
two normalized possibility distributions. We have shown that our new measure, that
combines a distance-based measure and the inconsistency degree, satisfies both ba-
sic and extended set of postulates.

Appendix. Proofs

Proof of Proposition 1. We want to prove that SM, SE and SC satisfy basic proper-
ties P1-P6. Let π1, π2, π3 and π4 be four normalized possibility distributions.

Property 1 - Property 2 - Property 3
Proofs of Properties P1-P3 are immediate since SM, SE and SC are normalized simi-
larity measures derived from the Minkowski metric which by definition satisfy non-
negativity, symmetry, upper bound and non-degeneracy properties.
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Property 4
If ∀ ωi, π1(ωi) ∈ {0,1}, π2(ωi) ∈ {0,1} and π2(ωi) = 1−π1(ωi)
⇒ |π1(ωi)−π2(ωi)|= 1,

√
(π1(ωi)−π2(ωi))2 = 1 and max|π1(ωi)−π2(ωi)|= 1

⇒ SM = 0, SE = 0 and SC = 0.

Property 5
If ∀ ωi π1(ωi)≤ π2(ωi)≤ π3(ωi)
⇒ ∀ ωi, |π1(ωi)−π2(ωi)| ≤ |π1(ωi)−π3(ωi)|
⇒ ∑ωi

|π1(ωi)−π2(ωi)| ≤ ∑ωi
|π1(ωi)−π3(ωi)|

⇒ 1−∑ωi
|π1(ωi)−π2(ωi)| ≥ 1−∑ωi

|π1(ωi)−π3(ωi)|
⇒ SM(π1,π2)| ≥ SM(π1,π3).
Similarly for SE and SC.

Property 6
The proof of property 6 is immediate.

Let π1 and π2 be two normalized possibility distributions and ρ a permutation.
Let πρ(1), πρ(2) be the possibility distributions obtained by permuting elements hav-
ing the same indexes in π1 and π2. The pairwise permutation of the elements has no
effect on SM ⇒ SM(π1,π2) = SM(πρ(1),πρ(1))(similarly for SE and SC).

Proof of Proposition 3. We want to prove that if s satisfies P1-P10, then it sat-
isfies the strong Upper bound property. One direction is immediate since π1 = π2

⇒ s(π1,π2)=1 (Property 3). Now, suppose that s(π1,π2)=1 and π1 �= π2. π1 �= π2

⇒ ∃ ωp s.t. π1(ωp) �= π2(ωp). Suppose that π1(ωp) > π2(ωp). Let us add α (with
α = π1(ωp)−π2(ωp)) to π2(ωp) which leads to π ′2.From property 9, we can con-
clude that s(π1,π ′2)>s(π1,π2)=1 (contradiction with property 3). Hence, π1 = π2

Proof of Proposition 4. We want to prove that if s satisfies P1-P10, then it satis-
fies the strong Lower bound property.

One direction is immediate since π1=1−π2 (with π1 and π2 are binary normal-
ized possibility distributions)⇒ s(π1,π2)=0 (Property 4).

Let us suppose that:
s(π1,π2)=0, π1 and π2 are binary possibility distributions and π1 �= 1−π2.
Let us first show that π1 = 1−π2. Assume that π1 �= 1−π2⇒∃ ωp s.t. π1(ωp) �=

1−π2(ωp). Suppose that π1(ωp) > π2(ωp).
Let π3 s.t. π3(ωp) < π1(ωp) and ∀ω �= ωp, π3(ω) = π1(ω).
From property 9, we can conclude that s(π1,π2)= 0 >s(π1,π3) (which is impos-

sible since the lower bound is 0).
Hence, π1 = 1−π2.
Now, let us show that π1 and π2 are binary possibility distributions. Indeed, sup-

pose that:
s(π1,π2)=0, π1 = 1−π2 and π1 and π2 are not binary possibility distributions.
π1 and π2 are not binary⇒ Inc(π1,π2) < 1.
Let us take all ωi verifying min(π1(ωi),π2(ωi)) = 1− Inc(π1,π2) (π1(ωi) < 1

and π2(ωi) < 1).
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Let us decrease all these ωi by α in both π1 and π2 and keep the remaining
possibility degrees of other ω j unchanged. According to proposition 5, this will
result in an increase of the inconsistency between π1 and π2 and hence will result in
a decrease of the similarity between π1 and π2 which is impossible because s(π1,π2)
is already equal to 0.

Proof of Proposition 5
We want to prove that if s satisfies P1-P10, then when decreasing one situation from
π1 and π2 by a degree α (leading to π ′1 and π ′2) then if Inc(π ′1,π

′
2) increases then

s(π ′1,π ′2) < s(π1,π2).
The proof of this proposition follows immediately from property 8. In fact, it is

simply the dual of property 8.
We start by π ′1 and π ′2 and add (the subtracted) α . Hence, we will recover π1 and

π2 and Inc(π1,π2) decreases. From property 8, we can conclude that s(π1,π2) >
s(π ′1,π ′2).

Proof of Proposition 6
The proof of proposition 6 follows immediately from property 9. In fact, we are
adding a degree αk to a given situation (step by step) and hence, the similarity in-
creases at each step.

Proof of Proposition 7
The proof of proposition 7 follows immediately from property 3 and property 10. In
fact, let us consider two normalized possibility distributions π1 and π2.

⇒ (1) We have: s(π1,π1)=s(π2,π2) = 1 (Property 3).

Now, let us take two situations ωp and ωq from π1 and ωk and ωl from π2.
Let π ′1 and π ′′1 be two normalized possibility distributions s.t.:

π ′1(ωp) = π1(ωp)− ε and ∀ωi �= ωp, π ′1(ωi) = π1(ωi).
π ′′1 (ωq) = π1(ωq)− ε and ∀ωi �= ωq, π ′′1 (ωi) = π1(ωi).

Let π ′2 and π ′′2 be two normalized possibility distributions s.t. π ′2(ωk) = π2(ωk)−
ε and ∀ωi �= ωk, π ′2(ωi) = π2(ωi).
π ′′2 (ωl) = π2(ωl)− ε and ∀ωi �= ωl , π ′′2 (ωi) = π2(ωi).

⇒ (2) We have: s(π1,π ′1) = s(π1,π ′′1 ) and s(π2,π ′2) = s(π2,π ′′2 ) (Corollary 3).
⇒ (3) We have also: s(π1,π ′1) = s(π2,π ′2) and s(π1,π ′′1 ) = s(π2,π ′′2 ) (Property 10).
⇒ From (2) and (3) we can conclude that s(π1,π ′1) = s(π1,π ′′1 ) = s(π2,π ′2) =
s(π2,π ′′2 ).

Proof of Proposition 8. We want to prove that the Aff measure satisfies Proper-
ties P1-P10. For the proof, d is either the normalized Manhattan or normalized Eu-
clidean distance. The proof is valid for these two cases. Similarly, ∧ can be either
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the minimum or the product operator. Again, the proof is valid for these two cases.
Given two possibility distributions π1 and π2, we have:

Property 1. Non-negativity:
By definition, 0≤ d(π1,π2)≤ 1. Moreover, 0≤ Inc(π1,π2)≤ 1 (possibility degrees

∈ [0,1]). Hence 0≤ κ∗d(π1,π2)+λ∗Inc(π1,π2)
κ+λ ≤ 1, and 0≤ 1− κ∗d(π1,π2)+λ∗Inc(π1,π2)

κ+λ ≤
1 which means 0≤ Aff (π1,π2)≤ 1.

Property 2. Symmetry:
Both d and Inc are symmetric.
Aff (π2,π1) = 1− κ∗d(π2,π1)+λ∗Inc(π2,π1)

κ+λ = 1− κ∗d(π1,π2)+λ∗Inc(π1,π2)
κ+λ =(π1,π2).

Property 3. Upper bound and Non-degeneracy:
Proof of the first part of property 3 : If π1 = π2⇒ Aff (π1,π2)=1:

I f π1 = π2, then Aff (π1,π2) = Aff (π1,π1)=1− κ∗d(π1,π1)+λ∗Inc(π1,π1)
κ+λ =1− (0+0)

κ+λ =1.
The proof of the second part of property 3, namely, ∀ πi, π j, Aff (πi,π j) ≤ 1 has

been already given in the proof of property 1.

Property 4. Lower bound
If π1 and π2 are binary and maximally contradictory possibility distributions,
then: d(π1,π2) is maximal and Inc(π1,π2) is maximal too ⇒ d(π1,π2) = 1 and

Inc(π1,π2) = 1⇒ κ∗d(π1,π2)+λ∗Inc(π1,π2)
κ+λ = κ∗1+λ∗1

κ+λ = 1⇒ Aff (π1,π2) = 0.

Property 5. Large inclusion
If π1 is more specific than π2 which is in turn more specific then π3, then π1,
π2 and π3 are fully consistent with each other (they all share at least one state
which is fully possible). More formally, Inc(π1,π2) = Inc(π1,π3) = Inc(π2,π3) = 0

and d(π1,π2) ≤ d(π1,π3). Hence, 1− κ∗d(π1,π2)
κ+λ ≥ 1− κ∗d(π1,π3)

κ+λ which implies
Aff (π1,π2)≥ Aff (π1,π3).

Property 6. Permutation
Let π ′1 and π ′2 be two possibility distributions obtained by permuting elements hav-
ing the same indexes in π1 and π2. Since we proceed pointwise computation of d
and Inc degree by degree, the pairwise permutation of the elements has no effect
on d and Inc. So we obtain d(π1,π2) = d(π ′1,π ′2) and Inc(π1,π2) = Inc(π ′1,π ′2)⇒
Aff (π1,π2) = Aff (π ′1,π

′
2).

Property 7: Strict inclusion
If π1 is (strictly) more specific than π2 which is in turn (strictly) more specific then
π3, then, as we only deal with normalized possibility distributions, it is obvious
that all these distributions share one fully possible element ω ⇒ Inc(π1,π2) =
Inc(π1,π3) = Inc(π2,π3) = 0
∀ωi, π1(ωi)≤ π2(ωi)≤ π3(ωi). ∃ ωk s.t. π1(ωk) < π2(ωk) and ∃ ωm s.t. π2(ωm) <
π3(ωm).
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⇒ d(π1,π2)<d(π1,π3)⇒ κ ∗ d(π1,π2) < κ ∗ d(π1,π3)
⇒ 1− κ∗d(π1,π2)

κ+λ > 1− κ∗d(π1,π3)
κ+λ ⇒ Aff (π1,π2) > Aff (π1,π3).

Property 8: Reaching coherence
We have d(π ′1,π ′2)=d(π1,π2) since we added the same value α to πk(ωi)k∈1,2.
On the other hand, adding α to πk(ωi)k∈1,2 may result in a decrease (and not an
increase) of the inconsistency. Hence, if Inc(π ′1,π ′2) < Inc(π1,π2) then Aff (π ′1,π ′2) >
Aff (π1,π2) and if the inconsistency remains unchanged, then Aff (π ′1,π ′2) =
Aff (π1,π2).

Property 9: Mutual convergence
We have, π2(ωi) �= π1(ωi) and ∀ j �= i, π ′2(ω j) = π2(ω j). When taking π ′2(ωi) = x
s.t. x ∈]π2(ωi),π1(ωi)], we always have:

⇒ d(π1,π ′2) < d(π1,π2).

On the other hand, we have Inc(π1,π ′2)≤ Inc(π1,π2)

⇒ κ ∗ d(π1,π ′2)+ λ ∗ Inc(π1,π ′2) < κ ∗ d(π1,π2)+ λ ∗ Inc(π1,π2)

⇒ Aff (π1,π ′2) > Aff (π1,π2).

Property 10: Indifference preserving
1) If we add α to π1(ωi) and keep the other degrees unchanged (which leads to π ′1)
and α to π2(ω j) and keep the other degrees unchanged (which leads to π ′2)

⇒ d(π1,π ′1)=d(π2,π ′2)= α
|Ω | and Inc(π1,π ′1)=Inc(π2,π ′2)=0 (since we only deal with

normalized distributions)

⇒ Aff (π1,π ′1)=Aff (π2,π ′2).

2) The second proof is immediate from 1) if we subtract α .
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Efficient Thresholded Tabulation for Fuzzy
Query Answering

Pascual Julián, Jesús Medina, Ginés Moreno, and Manuel Ojeda-Aciego

Abstract. Fuzzy logic programming represents a flexible and powerful declarative
paradigm amalgamating fuzzy logic and logic programming, for which there exists
different promising approaches described in the literature. In this work we propose
an improved fuzzy query answering procedure for the so-called multi-adjoint logic
programming approach, which avoids the re-evaluation of goals and the generation
of useless computations thanks to the combined use of tabulation with thresholding
techniques. The general idea is that, when trying to perform a computation step by
using a given program rule R, we firstly analyze if such step might contribute to
reach further significant solutions (non-tabulated yet). When it is the case, it is pos-
sible to avoid useless computation steps via rule R by using thresholds and filters
based on the truth degree of R, as well as a safe, accurate and dynamic estimation
of the maximum truth degree associated to its body.
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1 Introduction

Fuzzy Logic Programming is an interesting and still growing research area that ag-
glutinates efforts to introduce fuzzy logic into Logic Programming. During the last
decades, several fuzzy logic programming systems have been developed [8,17,3,7],
where the classical inference mechanism of SLD resolution is replaced with a fuzzy
variant which is able to handle partial truth and to reason under uncertainty.

This is the case of the extremely flexible framework of multi-adjoint logic pro-
gramming [20, 21, 22]. Given a multi-adjoint logic program, queries are evaluated
in two separate computational phases. Firstly, an operational phase in which ad-
missible steps (a generalization of the classical modus ponens inference rule) are
systematically applied by a backward reasoning procedure, in a similar way to clas-
sical resolution steps in pure logic programming; until an expression is obtained in
which all atoms have been evaluated. Then, this last expression is interpreted in the
underlying lattice during an interpretive phase [13], providing the computed answer
for the given query.

In [5] a non-deterministic tabulation goal-oriented proof procedure was intro-
duced for residuated (a particular case of multi-adjoint) logic programs over com-
plete lattices. The underlying idea of tabulation is, essentially, that atoms of selected
tabled predicates as well as their answers are stored in a table. When an identical
atom is recursively called, the selected atom is not resolved against program clauses;
instead, all corresponding answers computed so far are looked up in the table and
the associated answer substitutions are applied to the atom. The process is repeated
for all subsequent computed answer substitutions corresponding to the atom.

In [14] a fuzzy partial evaluation framework was introduced for specializing
multi-adjoint logic programs. Moreover, it was pointed out that if the proposed
partial evaluation process is combined with thresholding techniques, the following
benefits can be obtained:

• The unfolding tree (i.e., an incomplete search tree used during the partial eval-
uation process) consumes less computational resources by efficiently pruning
unnecessary branches of the tree and, hence, drastically reducing its size.

• Those derivation sequences performed at execution time need less computation
steps to reach computed answers.

In this work, we show how the essence of thresholding can be also embedded into a
tabulation-based query answering procedure, reinforcing the benefits of both meth-
ods in a unified framework. We also provide several kinds of “thresholding filters”
which largely help to avoid the generation of redundant and useless computations.

The structure of the rest of the work is as follows. In Section 2 we summarize
the main features of multi-adjoint logic programming. Section 3 adapts to the multi-
adjoint logic framework the original tabulation procedure for residuated logic pro-
grams of [5]. Inspired by [14], the resulting method is refined by using thresholding
techniques in Section 4. The benefits of such combination are reinforced in Sec-
tion 5. In the final section, we draw some conclusions and discuss some lines of
future work.
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2 Multi-Adjoint Logic Programs

This section is a short summary of the main features of multi-adjoint languages. The
reader is referred to [20, 22] for a complete formulation.

We will consider a language, L , containing propositional variables, constants,
and a set of logical connectives. In our fuzzy setting, we use implication connec-
tives (←1,←2, . . . ,←m) together with a number of aggregators. They will be used
to combine/propagate truth values through the rules. The general definition of ag-
gregation operators subsumes conjunctive operators (denoted by &1,&2, . . . ,&k),
disjunctive operators (∨1,∨2, . . . ,∨l), and average and hybrid operators (usually de-
noted by @1,@2, . . . ,@n).

Aggregators are useful to describe/specify user preferences: when interpreted as
a truth function they may be considered, for instance, as an arithmetic mean or a
weighted sum. For example, if an aggregator @ is interpreted as [[@]](x,y,z) = (3x+
2y + z)/6, x,y,z ∈ [0,1], we are giving the highest preference to the first argument,
then to the second, being the third argument the least significant. By definition, the
truth function for an n-ary aggregator [[@]] : Ln → L is required to be increasing in
each argument and fulfill [[@]](�, . . . ,�) =�, [[@]](⊥, . . . ,⊥) =⊥.

The language L will be interpreted on a multi-adjoint lattice,
〈L,�,←1,&1, . . . ,←n,&n〉, which is a complete lattice equipped with a collection
of adjoint pairs 〈←i,&i〉, where each &i is a conjunctor1 intended to provide a
modus ponens-rule wrt ←i. In general, the set of truth values L may be the car-
rier of any complete bounded lattice but, for simplicity, in the examples of this work
we shall select L as the set of real numbers in the interval [0,1].

A rule is a formula A←i B, where A is an propositional symbol (usually called
the head) and B (which is called the body) is a formula built from propositional
symbols B1, . . . ,Bn (n ≥ 0), truth values of L and conjunctions, disjunctions and
aggregations. Rules with an empty body are called facts. A goal is a body submitted
as a query to the system.

Roughly speaking, a multi-adjoint logic program is a set of pairs 〈R;α〉, where
R is a rule and α is a value of L, which might express the confidence which the user
of the system has in the truth of the rule R. Note that the truth degrees in a given
program are expected to be assigned by an expert. We will often write “R with α”
instead of 〈R;α〉.

2.1 Procedural Semantics

The procedural semantics of the multi–adjoint logic language L can be thought as
an operational phase followed by an interpretive one [13].

In the following, C [A] denotes a formula where A is a sub-expression (usually a
propositional symbol) which occurs in the (possibly empty) context C [ ], whereas
C [A/A′] means the replacement of A by A′ in context C [ ]. In the following defini-
tion, we always consider that A is the selected propositional symbol in goal Q.

1 An increasing operator satisfying boundary conditions with the top element.
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Definition 1 (Admissible Steps). Let Q be a goal, which is considered as a state,
and let G be the set of goals. Given a program P, an admissible computation is
formalized as a state transition system, whose transition relation→AS ⊆ (G ×G ) is
the smallest relation satisfying the following admissible rules:

1. Q[A]→ASQ[A/v&iB] if there is a rule 〈A←iB;v〉 in P and B is not empty.
2. Q[A]→ASQ[A/v] if there is a fact 〈A←;v〉 in P.
3. Q[A]→ASQ[A/⊥] if there is no rule in P whose head is A.

Note that the third case is introduced to cope with (possible) unsuccessful admis-
sible derivations. We shall use the symbols →AS1, →AS2 and →AS3 to distinguish
between computation steps performed by applying one of the specific admissible
rules. Furthermore, the application of a specific program rule on a step will be an-
notated as a superscript of the→AS symbol, when considered relevant.

Definition 2. Let P be a program and let Q be a goal. An admissible derivation is
a sequence Q→∗AS Q′. When Q′ is a formula not containing propositional symbols
it is called an admissible computed answer (a.c.a.) for that derivation.

Example 1. Let P be the following program on the unit interval of real numbers
([0,1],≤).

R1 : p←P q &G r with 0.8
R2 : q←P s with 0.7
R3 : q←L r with 0.8
R4 : r← with 0.7
R5 : s← with 0.9

where the labels P, G and L stand for Product, Gödel and Łukasiewicz connectives.
In the following admissible derivation for the program P and the goal p&Gr, we

underline the selected expression in each admissible step:

p&Gr→AS1
R1

(0.8&P(q&Gr))&Gr→AS1
R2

(0.8&P((0.7&Ps)&Gr))&Gr→AS2
R5

(0.8&P((0.7&P0.9)&Gr))&Gr→AS2
R4

(0.8&P((0.7&P0.9)&G0.7))&Gr→AS2
R4

(0.8&P((0.7&P0.9)&G0.7))&G0.7

The a.c.a. for this admissible derivation is: (0.8&P((0.7&P0.9)&G0.7))&G0.7.

If we exploit all propositional symbols of a goal, by applying admissible steps as
much as needed during the operational phase, then it becomes a formula with no
propositional symbols which can then be directly interpreted in the multi–adjoint
lattice L. We recall from [13] the formalization of this process in terms of the
following definition.

Definition 3 (Interpretive Step). Let P be a program and Q a goal. We formalize
the notion of interpretive computation as a state transition system, whose transi-
tion relation→IS⊆ (G ×G ) is defined as the least one satisfying: Q[@(r1,r2)]→IS
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Q[@(r1,r2)/[[@]](r1,r2)], where [[@]] is the truth function of connective @ in the
lattice 〈L,�〉 associated to P.

Definition 4. Let P be a program and Q an a.c.a., that is, Q is a goal not containing
propositional symbols. An interpretive derivation is a sequence Q →∗IS Q′. When
Q′ = r ∈ L, being 〈L,�〉 the lattice associated to P, the value r is called a fuzzy
computed answer (f.c.a.) for that derivation.

Example 2. We complete the previous derivation of Example 1 by executing the
necessary interpretive steps to obtain the final fuzzy computed answer, 0.504, with
respect to lattice ([0,1],≤).

(0.8&P((0.7&P0.9)&G0.7))&G0.7→IS

(0.8&P(0.63&G0.7))&G0.7→IS

(0.8&P0.63)&G0.7→IS

0.504&G0.7→IS

0.504

In this section we have just seen a procedural semantics which provides a means
to execute multi-adjoint logic programs. However, there exist a more efficient alter-
native for obtaining fuzzy computed answers for a given query as occurs with the
following tabulation-based proof procedure.

3 The Tabulation Proof Procedure

In what follows, we adapt the original tabulation procedure for propositional resid-
uated logic programs described in [5] to the general case of multi-adjoint logic pro-
grams [20]. There are two major problems to address: termination and efficiency.
On the one hand, the TP operator is bottom-up but not goal-oriented; furthermore,
the bodies of rules are all recomputed in every step. On the other hand, the usual im-
plementations of Fuzzy Logic Programming languages (e.g. [28]) are goal-oriented,
but inherit the problems of non-termination and recomputation of goals. In order
to overcome these problems, the tabulation technique has been proposed in the de-
ductive databases and logic programming communities. For instance, in [16] it is
proposed an extension of SLD for implementing generalized annotated logic pro-
grams that will be used to implement the here defined tabling procedure. Other im-
plementation techniques have been proposed for dealing with uncertainty in logic
programming, for instance translation into Disjunctive Stable Models [19], but rely
on the properties of specific truth-value domains.

The idea of tabulation (or tabling) is simply to create a table for collecting all
the answers to a given goal without repetitions. Every time a goal is invoked it is
checked whether there is already a table for that goal. If so, the caller becomes
a consumer of the tree, otherwise the construction of a new table is started. All
produced answers are kept in the table without repetitions, and are propagated
to the pending consumers. The most complete implementation of a full working
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tabulation system is XSB-Prolog [29] which implements SLG resolution. There is
also an extension of SLG for generalized annotated logic programs [24, 16] but
differs from the system we present here.

In this section we present a general tabulation procedure for propositional multi-
adjoint logic programs. The datatype we will use for the description of the method is
that of a forest, that is, a finite set of trees. Each one of these trees has a root labeled
with a propositional symbol together with a truth-value from the underlying lattice
(called the current value for the tabulated symbol); the rest of the nodes of each of
these trees are labeled with an “extended” formula in which some of the proposi-
tional symbols have been substituted by its corresponding value. For the descrip-
tion of the adaptation of the tabulation procedure to the framework of multi-adjoint
logic programming, we will assume a program P consisting of a finite number of
weighted rules together with a query ?A. The purpose of the computational proce-
dure is to give (if possible) the greatest truth-value for A that can be inferred from
the information in the program P.

3.1 Operations for Tabulation

For the sake of clarity in the presentation, we will introduce the following notation:
Given a propositional symbol A, we will denote by P(A) the set of rules in P which
have head A. The tabulation procedure requires four basic operations: Create New
Tree, New Subgoal, Value Update, and Answer Return. The first operation creates
a tree for the first invocation of a given goal. New Subgoal is applied whenever a
propositional variable in the body of a rule is found without a corresponding tree
in the forest, and resorts to the Create New Tree operation. Value update is used to
propagate the truth-values of answers to the root of the corresponding tree. Finally,
answer return substitutes a propositional variable by the current truth-value in the
corresponding tree. We now describe formally the operations:

Rule 1: Create New Tree

Given a propositional symbol A, assume P(A) = {〈A← jB j;ϑ j〉 | j = 1, . . . ,m} and
construct the tree below, and append it to the current forest. If the forest did not
exist, then generate a singleton list with the tree.

A : ⊥

ϑ1&1B1 ϑ2&2B2 . . . ϑm&mBm

Rule 2: New Subgoal

Select a non-tabulated propositional symbol C occurring in a leaf of some tree (this
means that there is no tree in the forest with the root node labeled with C), then
create a new tree by directly applying Rule 1, and append it to the forest.
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Rule 3: Value Update

If a tree, rooted at C : r, has a leaf B with no propositional symbols, and B→IS
∗s,

where s ∈ L, then update the current value of the propositional symbol C by the
value of supL{r,s}.

Furthermore, once the tabulated truth-value of the tree rooted by C has been mod-
ified, for all the occurrences of C in a non-leaf node B[C] such as the one in the left
of the figure below then, update the whole branch substituting the constant u by
supL{u,t} (where t is the last tabulated truth-value for C, i.e. supL{r,s}) as in the
right of the figure.

...

B[C]

B[C/u]
...

...

B[C]

B[C/supL{u,t}]
...

Rule 4: Answer Return

Select in any leaf a propositional symbol C which is tabulated, and assume that its
current value is r; then add a new successor node as shown below:

B[C]

B[C/r]

Once we have presented the rules to be applied in the tabulation procedure, it is
worth to recall some facts:

1. The only nodes with several immediate successors are root nodes; the successors
correspond to the different rules whose head matches the label of the root node.

2. The leaf of each branch is a conjunction of the truth value of the rule which
determined the branch with an instantiation of the body of the rule.

3. The extension of a tree is done only by Rule 4, which applies only to leaves and
extends the branch with one new node.

4. The only rule which changes the values of the roots of the trees in the forest is
Rule 3 which, moreover, might update the nodes of existing branches.

3.2 A Non-deterministic Procedure for Tabulation

Now, we can state the general non-deterministic procedure for calculating the an-
swer to a given query by using a tabulation technique in terms of the previous rules.

Initial step: Create the initial forest with the create new tree rule, applied to the
propositional symbol of the query.

Next steps: Non-deterministically select a propositional symbol and apply one of
the rules 2, 3, or 4.
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Following the steps in [6] it is not difficult to show both that the order of applica-
tion of the rules is irrelevant, and that the algorithm terminates under very general
hypotheses.

Example 3. Consider the following program with mutual recursion and query ?p:

R1 : p ←P q with 0.6
R2 : p ←P r with 0.5
R3 : q ← with 0.9
R4 : r ← with 0.8
R5 : r ←L p with 0.9

(i) p : ⊥→ 0.54

(ii) 0.6 &P q

(vi) 0.6 &P 0.9

(vii) 0.54

(iii) 0.5 &P r

(xi) 0.5 &P 0.8

(xii) 0.4

(iv) q : ⊥→ 0.9

(v) 0.9

(viii) r : ⊥→ 0.8

(ix) 0.8 (x) 0.9 &L p

(xiii) 0.9 &L 0.54

(xiv) 0.44

Fig. 1 Example forest for query ?p

Firstly, the initial tree consisting of nodes (i),(ii),(iii) is generated, see Figure 1.
Then New Subgoal is applied on q, a new tree is generated with nodes (iv) and (v),
and its current value is directly updated to 0.9.

By using this value, Answer Return extends the initial tree with node (vi). Now
Value Update generates node (vii) and updates the current value of p to 0.54.

Then, New Subgoal is applied on r, and a new tree is generated with nodes
(viii),(ix) and (x). Value Update increases the current value to 0.8.

By using this value, Answer Return extends the initial tree with node (xi). Now
Value Update generates node (xii). The current value is not updated since its value
is greater than the newly computed one.

Finally, Answer Return can be applied again on propositional symbol p in
node (x), generating node (xiii). A further application of Value Update generates
node (xiv) and the forest is terminated, as no rule performs any modification.

4 Combining Tabulation with Thresholding

In this section we will focus on the concept of thresholding, initially proposed
in [14] for safely pruning branches when generating unfolding trees. The original
method was firstly introduced inside the core of a fuzzy partial evaluation (PE)
framework useful not only for specializing fuzzy programs, but also for generating
reductants [22]. Reductancts were introduced in the context of multi-adjoint logic
programming to cope with a problem of incompleteness that arises for non-linear
lattices. For instance, given two non-comparable elements a,b in 〈L,�〉; assume
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that for a goal A there are only two facts whose heads are A, namely 〈A←;a〉 and
〈A←;b〉; both a and b are correct answers and, moreover, by definition of correct
answer [22], the supremum supL{a,b}, is also a correct answer which cannot be
computed. The problem above can be solved by extending the original program
with a special rule 〈A←supL{a,b};�〉, the so-called reductant.

The above discussion shows that a multi-adjoint logic program, interpreted inside
a partially ordered lattice, needs to contain all its reductants in order to guarantee
the completeness property of a sequence of admissible computations. This obvi-
ously increases both the size and execution time of the final “completed” program.
However, this negative effects can be highly diminished if the proposed reductants
have been partially evaluated before being introduced in the target program: the
computational effort done (just once) at generation time is avoided (many times) at
execution time.

Fortunately, if queries are evaluated following the tabulation method proposed
before, reductants are not required to be included in a program (which obviously
would increase both the size and execution time of the final completed program) be-
cause their effects are efficiently achieved by the direct use of Rule 3: Value Update,
as the reader can easily check. Anyway, even when reductants are not mandatory in
the tabulation method described in Section 3, it is important to recast some useful
ideas introduced in [14], where a refined notion of reductant (called PE-reductant)
was given by using partial evaluation techniques with thresholding. Partial evalua-
tion [18, 9, 1] is an automatic program transformation technique aiming at the opti-
mization of a program with respect to parts of its input: hence, it is also known as
program specialization. It is expected that the partially evaluated (or residual) pro-
gram could be executed more efficiently than the original program. This is because
the residual program is able to save some computations, at execution time, that were
done only once at PE time. To fulfill this goal, PE uses symbolic computation as
well as some techniques provided by the field of program transformation [4, 25, 2],
specially the so called unfolding transformation (essentially, the replacement of a
call by its definition body).

Following this path, the idea is to unfold goals, as much as possible, using the
notion of unfolding rule developed in [12, 13] for multi-adjoint logic programs, in
order to obtain an optimized version of the original program. In [14], the construc-
tion of such “unfolding trees” was improved by pruning some useless branches or,
more exactly, by avoiding the use (during unfolding) of those program rules whose
weights do not surpass a given “threshold” value. For this enhanced definition of
unfolding tree we have that:

1. Nodes contain information about an upper bound of the truth degree associated
to their goal;

2. A set of threshold values is dynamically set to limit the generation of useless
nodes.

This last feature provides great chances to reduce the unfolding tree shape, by stop-
ping unfolding of those nodes whose upper bound for the truth-valued component
falls below a threshold value α .
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4.1 Rules for Tabulation with Thresholding

In what follows, we will see that the general idea of thresholding can be combined
with the tabulation technique shown in the previous section, in order to provide
more efficient query answering procedures. Specifically, we will discard the previ-
ous descriptions of Rule 1: Create New Tree and Rule 2: New Subgoal, and instead
of them, we propose new definitions:

Rule 1: Root Expansion

Given a tree with root A : r in the forest, and a program rule 〈A←iB;ϑ〉 not con-
sumed before, such that ϑ � r, append the new child ϑ&iB to the root of the tree
and mark the program rule as consumed.

Rule 2: New Subgoal/Tree

Select a non-tabulated propositional symbol C occurring in a leaf of some tree (this
means that there is no tree in the forest with the root node labeled with C), then
create a new tree with a single node, the root C : ⊥, and append it to the forest.

There are several remarks to do regarding the new definitions of Rules 1 and 2.
Firstly, notice that the creation of new trees is now performed in Rule 2, instead
of Rule 1, which justifies its new name. On the other hand, the new Rule 1, does
not create a new tree by expanding (one level) all the possible children of the root.
Instead of it, the Root Expansion rule has a lazy behaviour: each time it is fired, it
expands the tree by generating at most one new leaf, if and only if this new leaf
might contribute in further steps to reach greater truth degrees than the current one
heading the tree. In this sense, the truth degree attached to the root of the tree,
acts as a threshold for deciding which program rules can be used for generating
new nodes in the tree. Note also that this threshold is dynamically updated by rule
Value Update: the more it grows, the less chances for Root Expansion to create new
children of the root.

The new non-deterministic procedure for tabulation with thresholding is as
follows:

Initial step: Create an initial tree by using the rule new subgoal/tree on the query.
Next steps: Non-deterministically select a propositional symbol and apply one of

the rules 1, 2, 3, or 4.

In order to show the correctness of the new tabulation procedure, we have just to
note that, in the Root Expansion rule, when we generate a leaf ϑ&iB for a root node
A : r, the value generated by the leaf will always be less than ϑ , independently of
the truth degree eventually computed for the subgoal B. So, we can safely discard
at run-time the use of those program rules (or facts) whose weight ϑ falls below the
threshold value r. Otherwise, we would generate useless nodes which never would
increase the truth degree of the root.
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4.2 A Deterministic Procedure for Tabulation with Thresholding

The main goal of thresholding is to reduce the number and size of trees in the forest.
This way, although the order of application of the rules is irrelevant because they
generate the same solutions, the refinements introduced by thresholding might pro-
duce different forests depending on how and when rules are applied. In this section
we provide some heuristics in order to minimize as much as possible the complexity
of the generated forest.

To begin with, we assume now that the procedure starts with a forest con-
taining a single tree with root A : ⊥, being A the propositional query we plan to
answer.

Obviously, the Root Expansion rule has a crucial role in this sense: the more
lazily it is applied, the less chances it has to generate new nodes. So, we assign it
the lowest priority in our deterministic procedure. For a similar reason, it is also
important to increase the threshold at the root of a tree as fast as possible. In order
to do this, we propose:

1. Assign maximum priority to Value Update and Answer Return.
2. When program rules are consumed by Root Expansion in a top-down way, we

assume that facts textually appear before rules with body, and program rules are
distributed in a descending ordering w.r.t. their weights, whenever possible.

(i) p : ⊥→ 0.54

(ii) 0.6 &P q

(v) 0.6 &P 0.9

(vi) 0.54

(iii) q : ⊥→ 0.9

(iv) 0.9

Fig. 2 Example threshold forest for p

Notice for instance, the distribution of the rules in Example 3, which accomplish
with the ordering we have just commented. The proposed strategy applied to the ex-
ample avoids the construction of a number of nodes, see Figure 2, which evidences
the benefits of combining tabulation with thresholding.

The answer to the query example with this optimized procedure is as follows:
the initial tree consisting of nodes (i),(ii) is generated. Then New Subgoal/Tree is
applied on q, a new tree is generated with nodes (iii) and (iv), and its current value
is directly updated to 0.9.

By using this value, Answer Return extends the initial tree with node (v). Now
Value Update generates node (vi) and updates the current value of p to 0.54.

Now, Root Expansion prevents using the rule with body r, since its weight is
smaller than the currently computed for p. Hence, the forest is terminated.
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5 Reinforcing Thresholding

As we have shown in the previous section, thresholding can be seen as an improve-
ment performed on the core of the basic tabulation proof procedure. The general
idea is that all nodes whose value of the body cannot surpass the current value of
the root node can be safely removed, or directly, not generated. The thresholding
technique described in Section 4 was based on the truth degree of each program
rule tried to expand the root of a given tree. However, there is at least two more
opportunities for performing thresholding, thus avoiding the unnecessary expansion
of trees, as we will see in this section.

A sound rule for determining the maximum value of the body of a program rule,
might consist in substituting all the propositional variables occurring in it by the top
element of the lattice,�. It is easy to see that this second kind of filter can reduce the
search space if it is appropriately implemented inside the Root Expansion Rule. This
idea was initially proposed as a further refinement of the original tabulation method
for propositional, residuated logic programs of [5]. In the multi-adjoint logic setting,
we also find a recent precedent: the same test was used in the PE-based reductant
calculus proposed in [14], when collecting leaves of residual unfolding trees. As we
are interested in formalizing the same idea inside our thresholded tabulation method
for multi-adjoint logic programs, we will consider the following descriptions:

• Let R = 〈A←iB;ϑ〉 be a program rule.
• Let B′ be an expression with no atoms, obtained from body B by replacing each

occurrence of a propositional symbol by �.
• Let v∈ L be the result of interpreting (by applying the corresponding interpretive

steps) B′ under a given lattice, i.e. B′ →∗IS v.
• Then, Up body(R) = v.

Apart from the truth degree ϑ of a program rule R = 〈A←iB;ϑ〉 and the maximum
truth degree of its body Up body(R), in the multi-adjoint logic setting, we can con-
sider a third kind of filter for reinforcing thresholding. The idea is to combine the
two previous measures by means of the adjoint conjunction &i of the implication←i

in rule R . Now, we define the maximum truth degree of a program rule, symbolized
by function Up rule, as: Up rule(R) = ϑ&i(Up body(R)).

Putting all pieces together, we propose the new improved version of the root
expansion rule as follows:

Rule 1: Root Expansion

Given a tree with root A : r in the forest, if there is at least a program rule R =
〈A←iB;ϑ〉 not consumed before and verifying the three conditions below, append
the new child ϑ&iB to the root of the tree.

• Condition 1. ϑ � r.
• Condition 2. Up body(R) � r.
• Condition 3. Up rule(R) � r.
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There are some remarks to do about our definition.

1. The more filters for thresholding we use, the more efficient the method becomes,
since the number of nodes in trees can be drastically diminished. Note that by
avoiding the generation of a single node, the method implicitly avoids the gener-
ation of all its possible descendants as well.

2. On the other hand, the time required to properly evaluate the filters is largely
compensated by the effects explained in the previous item.

3. Anyway, in order to perform an efficient evaluation of filters, it must be taken
into account that a condition only is checked if none of the previous ones fails. In
particular, the only situation in which the three filters are completely evaluated
appears only when the first two ones do not fail.

In order to illustrate the advantages of our improved method, consider that in our
running example, we replace the second program rule R2 : p ←P r with 0.5 by
R ′2 : p ←P (r&P 0.9) with 0.55. It is important to note that with the old version
(previous section) of the Root Expansion Rule, we could not obtain thresholding
benefits, due to the new truth degree 0.55 of R ′2. Note also, that this value veri-
fies the first condition of the new Root Expansion Rule when building the forest
of Figure 2. So, we proceed by evaluating the second one, which is also satisfied
since Up body(R ′2) = 1 ∗ 0.9 = 0.9 � 0.54. Fortunately, the third condition fails,
since Up rule(R ′2) = 0.55 ∗ 0.9 = 0.495 < 0.54, which avoids future expansions of
the tree and in our case, the process finishes generating exactly the same forest of
Figure 2.

5.1 Thresholded Tabulation and Termination

As far as we have seen before, the original procedural semantics of the multi-adjoint
logic framework described in Section 2, exhibits a non terminating behaviour in all
our previous examples, whereas tabulation has successfully avoided this problem
in an elegant, practicable way. Moreover, we have also shown that thresholding
has offered great opportunities to pure tabulation for improving its efficiency, by
allowing the safe pruning of many useless trees/branches on computational forests.
However, the following question arises now: can thresholding safely cut infinite
computations that could not be avoided by other simpler operational mechanisms
such as the ones proposed in Sections 2 (based on admissible/interpretive steps)
and 3 (based on pure tabulation techniques)?

In a propositional logic context, in order to answer this query, we have observed
that it is mandatory to consider programs having infinitely many propositional sym-
bols in their signature which should eventually be tabulated: in other words, the
Herbrand universe associated to a given fuzzy program must be infinite in order to
introduce risks of non termination when executing goals by using a pure tabulation
process2. This is just the case of our following example.

2 Obviously, if the number of trees to be built at tabulation time according Section 3 is
infinite (for infinite propositional symbols too), the operational semantics described in
Section 2 would also produce non-ending branches on the associated computational trees.
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Example 4. Consider the following infinite program P:
R1 : p ←P with 0.9
R2 : p ←P q1 with 0.4
R3 : q1 ←P q2 with 0.4
R4 : q2 ←P q3 with 0.4
R5 : q3 ←P q4 with 0.4

...
Here, if we try to solve goal p by using admissible/interpretive steps as described in
Section 2, we immediately find the unique solution 0.9 after using the first rule of P
by means of a simple→AS2 step. Unfortunately, the system enters into a loop when
generating the following infinite admissible/interpretive derivation:

p →AS1
R2 (0.4&P(q1)) →AS1

R3 (0.4&P(0.4&P(q2)))
→AS1

R4 (0.4&P(0.4&P(0.4&P(q3)))) →AS1
R5 . . .

A similar infinite behaviour emerges when using the (non-thresholded yet) tabula-
tion method introduced in Section 3, where an infinite forest is intended to be built
by generating trees rooted with propositional symbols p, q1, q2, q3, . . .

Fortunately, by using the thresholding techniques reported in this work, a very
small forest with just a single tree for p is needed to reach the single solution 0.9.
And still better, such a tree is not only finite, but it also has a tiny shape: after creating
its root and its unique leaf, our first thresholding filter avoids its infinite expansion
since it is not allowed to open a new branch (which would generate infinitely many
extensions of the forest) by using the second program rule, since its associated truth
degree 0.4 does not surpass the best value 0.9 currently found.

Although finding propositional examples with an infinite Herbrand universe seem
rather artificial, it is important to note that in first-order this fact is the most common
case, since a finite signature containing just a single non-constant function symbol
generates infinitely many atoms. For instance, the following finite first-order pro-
gram P′ has clear correspondences with the previous infinite propositional program
P (note the associations among propositional symbols p, q1, q2, q3, . . ., and first
order atoms p′(X), q(X), q(s(X)), q(s(s(X))), . . ., respectively):

R1 : p′(X) ← with 0.9
R2 : p′(X) ←P q′(X) with 0.4
R3 : q′(X) ←P q′(s(X)) with 0.4

We are currently working on the extension of our results to first-order multi-
adjoint logic programming (more on this will be said in the final section), but re-
garding future improvements via thresholding of termination results regarding fuzzy
tabulation techniques, we strongly believe that modern termination results on pure
logic tabulation methods (see [26], and its counterpart related to partial evaluation
techniques reported in [27]), admit much more affordable characterizations in a
fuzzy setting thanks to the possibility of flexible and intelligent manipulation of
truth degrees. Some experiences, for the specific problem of computing reductants
by using methods based on fuzzy partial evaluation with thresholding, are described
in [15, 14].
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6 Conclusions and Further Research

In this work, an extended and enhanced version of [10, 11], we were concerned
with efficient query answering procedures for propositional multi-adjoint logic pro-
grams. We have shown that, by using a fuzzy variant of tabulation (specially tailored
for the multi-adjoint logic approach) it is possible to avoid the repeated evaluation
of redundant goals. Moreover, in the same fuzzy setting, we have also combined
tabulation with thresholding, thus safely avoiding other kind of non-redundant, but
useless computations.

• Thresholding has been naturally embedded into the core of the tabulation method
by reformulating in a lazy way the rule which expands the root node of trees.

• By proposing a deterministic strategy which assigns priorities to each “tabulation
rule”, it is possible to increase the efficiency of the whole method.

• We exploit three kinds of “thresholding filters” for stopping the creation of new
tree nodes and maximally reducing the search space.

• Such filters (based on the truth degree of program rules, an upper bound estimation
of the truth degrees of their bodies, and a suitable combination of both values), spe-
cially the first and third one, have been specially formulated for the multi-adjoint
logic approach, and cannot be applied to other settings not based in weighted rules
(such as pure logic programming and residuated logic programming).

Nowadays, we are working in two practical extensions of our approach:

1. In order to cover more realistic programs than the ones reported in this paper,
we are enriching our technique to cope with the first-order case. In this sense,
we plan to take advantage from the experience acquired in [6] when lifting to
this more general case the original tabulation proof procedure for propositional
residuated logic programs [5].

2. Regarding implementation issues, our efforts are devoted to incorporate the pro-
posed technique inside the kernel of the FLOPER environment (see, for instance,
[23] and visit http://www.dsi.uclm.es/investigacion/dect/
FLOPERpage.htm). Our tool offers several programming resources regard-
ing the multi-adjoint logic approach, including two operational procedures for
debugging/tracing and executing goals. The first way is based on a direct trans-
lation of fuzzy logic programs into Prolog code in order to safely execute these
final programs (via classical SLD-resolution steps) inside any standard Prolog in-
terpreter in a completely transparent way for the final user. The second alternative
implements the notion of admissible step seen in Definition 1, in order to gener-
ate declarative traces based on unfolding trees with any level of depth. We think
that the inclusion of a third operational semantics supporting the thresholded tab-
ulation technique studied so far, will give us great opportunities for highlighting
the practical benefits of our approach and providing experimental results.

For the future, beyond query answering procedures, we also plan to study the role
that tabulation combined with thresholding might play in program transformation
techniques such as partial evaluation and fold/unfold, in order to efficiently special-
ize and optimize multi-adjoint logic programs.

http://www.dsi.uclm.es/investigacion/dect/FLOPERpage.htm
http://www.dsi.uclm.es/investigacion/dect/FLOPERpage.htm
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Linguistic Summaries of Time Series: On Some
Additional Data Independent Quality Criteria

Janusz Kacprzyk and Anna Wilbik

Abstract. We further extend our approach on the linguistic summarization of time
series (cf. Kacprzyk, Wilbik and Zadrożny) in which an approach based on a cal-
culus of linguistically quantified propositions is employed, and the essence of the
problem is equated with a linguistic quantifier driven aggregation of partial scores
(trends). Basically, we present here some reformulation and extension of our works
mainly by including a more complex evaluation of the linguistic summaries ob-
tained. In addition to the basic criterion of a degree of truth (validity), we also use
here as the additional criteria a degree of imprecision, specificity, fuzziness and fo-
cus. However, for simplicity and tractability, we use in the first shot the degrees
of truth (validity) and focus, which usually reduce the space of possible linguistic
summaries to a considerable extent, and then – for a usually much smaller set of
linguistic summaries obtained – we use the remaining three degrees of imprecision,
specificity and fuzziness for making a final choice of appropriate linguistic sum-
maries. We show an application to the absolute performance type analysis of daily
quotations of an investment fund.

1 Introduction

Financial data analysis is one of the most important application areas of advanced
data mining and knowledge discovery tools and techniques. For instance, in a report
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presented by G. Piatetsky-Shapiro’s KDNuggets (http://www.kdnuggets.com)
on top data mining applications in 2008, the first two positions are, in the sense of
yearly increase:

• Investment/Stocks, up from 3% of respondents in 2007 to 14% of respondents in
2008% (350% increase),

• Finance, up form 7.2% in 2007 to 16.8% in 2008 (108% increase).

This general trend will presumably continue over the next years, maybe decades,
in view of a world wide financial and economic difficulties that are expected to
continue well after 2009.

This paper is a continuation of our previous works (cf. Kacprzyk, Wilbik,
Zadrożny [19, 20, 21, 22, 24, 26] or Kacprzyk, Wilbik [12, 13, 14]) which deal with
the problem of how to effectively and efficiently support a human decision maker in
making decisions concerning investments. We deal mainly with investment (mutual)
funds. Clearly, decision makers are here concerned with possible future gains/losses,
and their decisions is related to what might happen in the future.

However, our aim is not the forecasting of the future daily prices, which could
have been eventually used directly for a purchasing decision. Instead, in our works,
we follow a decision support paradigm (Fig. 1), that is we try to provide the decision
maker with some information that can be useful for his/her decision on whether
and how many units of funds to purchase. We do not intend to replace the human
decision maker.

Fig. 1 Decision support paradigm

This problem is very complex. First of all, there may be two general approaches.
The first one, which may seem to be the most natural is to provide means to derive
a price forecast for an investment unit so that the decision maker could “automat-
ically” purchase what has been forecast, and as much as he/she could wish and/or
afford. Unfortunately, the success in such a straightforward approach has been much
less than expected. Basically, statistical methods employed usually for this purpose
are primitive in the sense that they just extrapolate the past and do not use domain
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knowledge, intuition, some inside information, etc. A natural solution may be to try
to just support the human decision maker in making those investment decisions by
providing him/her with some additional useful information, and not getting involved
in the actual investment decision making.

Various philosophies in this respect are possible. Basically, from our perspective,
the following one will be followed. In all investment decisions the future is what
really counts, and the past is irrelevant. But, the past is what we know, and the
future is (completely) unknown. Behavior of the human being is to a large extent
driven by his/her (already known) past experience. We usually assume that what
happened in the past will also happen (to some, maybe large extent) in the future.
This is basically, by the way, the very underlying assumption behind the statistical
methods too!

This clearly indicates that the past can be employed to help the human decision
maker find a good solution. We present here a method to subsume the past, the past
performance of an investment (mutual) fund, by presenting results in a very human
consistent way, using natural language statements.

We will apply our method to mutual funds quotations, as those time series are
easily available, and almost everyone can invest money in a mutual fund. However
if one looks at an information leaflet, one may always notice a disclaimer stating
that “Past performance is no indication of future returns” which is true. However,
on the other hand, in a well known posting “Past Performance Does Not Predict
Future Performance” [3], they state something that may look strange in this context,
namely: “. . . according to an Investment Company Institute study, about 75% of all
mutual fund investors mistakenly use short-term past performance as their primary
reason for buying a specific fund”. But, in an equally well known posting “Past
performance is not everything” [4], they state: “. . . disclaimers apart, as a practice
investors continue to make investments based on a scheme‘s past performance. To
make matters worse, fund houses are only too pleased to toe the line by actively
advertising the past performance of their schemes leading investors to conclude that
it is the single-most important parameter (if not the most important one) to be con-
sidered while investing in a mutual fund scheme”.

As strange as this apparently is, we may ask ourselves why it is so. Again, in a
well known posting “New Year’s Eve: Past performance is no indication of future
return” [2], they say “. . . if there is no correlation between past performance and
future return, why are we so drawn to looking at charts and looking at past perfor-
mance? I believe it is because it is in our nature as human beings . . . because we
don’t know what the future holds, we look toward the past . . . ”.

And, continuing along this line of reasoning, we can find many other examples
of similar statements supporting our position. For instance, in [34], the author says:
“. . . Does this mean you should ignore past performance data in selecting a mutual
fund? No. But it does mean that you should be wary of how you use that information
. . . While some research has shown that consistently good performers continue to
do well at a better rate than marginal performers, it also has shown a much stronger
predictive value for consistently bad performers . . . Lousy performance in the past
is indicative of lousy performance in the future. . . ”. And, further: in [7], we have:
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“... there is an important role that past performance can play in helping you to make
your fund selections. While you should disregard a single aggregate number show-
ing a fund’s past long-term return, you can learn a great deal by studying the nature
of its past returns. Above all, look for consistency.”. In [36], we find: ”While past
performance does not necessarily predict future returns, it can tell you how volatile
a fund has been”. In the popular “A 10-step guide to evaluating mutual funds” [1],
they say in the last, tenth, advise: “Evaluate the funds performance. Every fund is
benchmarked against an index like the BSE Sensex, Nifty, BSE 200 or the CNX 500
to cite a few names. Investors should compare fund performance over varying time
frames vis-a-vis both the benchmark index and peers. Carefully evaluate the funds
performance across market cycles particularly the downturns”.

Therefore we think, that linguistic summaries may be easily understood by the
humans and present them briefly the performance of the mutual fund, and this
knowledge may be later incorporated while making up decisions.

Here we extend our previous works on linguistic summarization of time series
(cf. Kacprzyk, Wilbik, Zadrożny [19, 20, 21, 22, 24, 26] or Kacprzyk, Wilbik [12,
13, 14]), mainly towards a more complex evaluation of results. Generally the basic
criterion for the evaluation of linguistic summaries is a degree of truth (used ini-
tially by us in first our papers [19, 20, 21, 26]) as it was originally proposed in the
static context by Yager [39]. However, later Kacprzyk and Yager [27] and Kacprzyk,
Yager and Zadrożny [28, 29] and Kacprzyk and Zadrożny [10, 11] introduced some
additional quality criteria. One of those was a degree of imprecision.

In this paper we will discuss the degree of imprecision, as well as two other mea-
sures similar in spirit, namely the degree of specificity and the degree of fuzziness.
The purpose of this is to provide an additional mechanism for the selection of proper
linguistic data summaries. Basically, there may often be a situation that two linguis-
tic data summaries have the same degree of truth, and are therefore considered to be
equally good while employing the basic criterion of a degree of truth. However, one
of them has a higher degree of imprecision and/or fuzziness, and may be therefore
considered to provide information that is too general to be useful for the user.

2 Linguistic Data Summaries

Under the term linguistic data (base) summary we understand a (usually short)
sentence (or a few sentences) that captures the very essence of the set of data,
that is numeric, large, and because of its size is not comprehensible for human
being.

In Yager’s basic approach [39], and later papers on this topic, as well as here the
following notation is used:

• Y = {y1,y2, . . . ,yn} is the set of objects (records) in the database D, e.g., a set of
employees;

• A = {A1,A2, . . . ,Am} is the set of attributes (features) characterizing objects from
Y , e.g., a salary, age in the set of employees.
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A linguistic summary includes:

• a summarizer P, i.e. an attribute together with a linguistic value (fuzzy predicate)
defined on the domain of attribute A j (e.g. low for attribute salary);

• a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);
• truth (validity) T of the summary, i.e. a number from the interval [0,1] assessing

the truth (validity) of the summary (e.g. 0.7);
• optionally, a qualifier R, i.e. another attribute together with a linguistic value

(fuzzy predicate) defined on the domain of attribute Ak determining a (fuzzy)
subset of Y (e.g. young for attribute age).

Thus, a linguistic summary may be exemplified by

T (most of employees earn low salary) = 0.7 (1)

or in richer (extended) form, including a qualifier (e.g. young), by

T (most of young employees earn low salary) = 0.82 (2)

Thus, basically the core of a linguistic summary is a linguistically quantified
proposition in the sense of Zadeh [45] which for (1) may be written as

Qy′s are P (3)

and for (2) may be written as

QRy′s are P (4)

Then the truth (validity), T , of a linguistic summary directly corresponds to the
truth value of (3) and (4). This may be calculated using either original Zadeh’s
calculus of quantified propositions (cf. [45]) or other interpretations of linguis-
tic quantifiers. In the former case the truth values of (3) and (4) are calculated,
respectively, as

T (Qy′s are P) = μQ

(
1
n

n

∑
i=1

μP(yi)

)
(5)

T (QRy′s are P) = μQ

(
∑n

i=1 μP(yi)∧μR(yi)
∑n

i=1 μR(yi)

)
(6)

where ∧ is the minimum operation (more generally it can be another appropriate
operator, notably a t-norm), and Q is a fuzzy set representing the linguistic quantifier
in the sense of Zadeh [45], i.e. regular, nondecreasing and monotone:

(a) μQ(0) = 0,
(b) μQ(1) = 1, and
(c) if x > y, then μQ(x)≥ μQ(y);
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It may be exemplified by most given by

μQ(x) =

⎧⎨
⎩

1 for x≥ 0.8
2x−0.6 for 0.3 < x < 0.8
0 for x≤ 0.3

(7)

Other methods of calculating T can be used here, notably those based on
OWA (ordered weighted averaging) operators (cf. Yager [40, 42] and Yager and
Kacprzyk [44]), and the Sugeno and Choquet integrals (cf. Bosc and Lietard [8] or
Grabisch [9]).

3 Linguistic Summaries of Trends

In our first approach we summarize the trends (segments) extracted from time series.
Therefore as the first step we need to extract the segments. We assume that segment
is represented by a fragment of straight line, because such segments are easy for
interpretation.

There are many algorithms for the piecewise linear segmentation of time series
data, including e.g. on-line (sliding window) algorithms, bottom-up or top-down
strategies (cf. Keogh [30, 31]). In our works [16, 17, 18, 19, 21, 22, 23, 24, 25] we used
a simple on-line algorithm, a modification of the Sklansky and Gonzalez one [37].

We consider the following three features of (global) trends in time series:

1. dynamics of change,
2. duration, and
3. variability.

By dynamics of change we understand the speed of change of the consecutive
values of time series. It may be described by the slope of a line representing the
trend, represented by a linguistic variable.

Duration is the length of a single trend, and is also represented by a linguistic
variable.

Variability describes how “spread out” a group of data is. We compute it as a
weighted average of values taken by some measures used in statistics: (1) the range,
(2) the interquartile range (IQR), (3) the variance, (4) the standard deviation, and (5)
the mean absolute deviation (MAD). This is also treated as a linguistic variable.

For practical reasons for all we use a fuzzy granulation (cf. Bathyrshin et
al. [5, 6]) to represent the values by a small set of linguistic labels as, e.g.: quickly
increasing, increasing, slowly increasing, constant, slowly decreasing, decreasing,
quickly decreasing. These values are equated with fuzzy sets.

For clarity and convenience we employ Zadeh’s [46] protoforms for dealing with
linguistic summaries [11]. A protoform is defined as a more or less abstract pro-
totype (template) of a linguistically quantified proposition. We have two types of
protoforms of linguistic summaries of trends:

• a short form:
Among all segments, Q are P (8)

e.g.: “Among all segments, most are slowly increasing”.
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• an extended form:
Among all R segments, Q are P (9)

e.g.: “Among all short segments, most are slowly increasing”.

The protoforms are very convenient for various reasons, notably: they make it
possible to devise general tools and techniques for dealing with a variety of state-
ments concerning different domains and problems, and their form is often easily
comprehensible to domain specialists.

In static context Kacprzyk and Yager [27], Kacprzyk, Yager and Zadrożny [28,
29], and Kacprzyk and Zadrożny [10, 11] proposed several additional quality cri-
teria, except from the basic one, the truth value. One of those was, among others,
degree of imprecision. We will discuss it here, as well as two other measures similar
in spirit, namely degree of specificity and degree of fuzziness.

Generating the set of summaries requires checking many possible summaries and
may be time consuming. However we follow a simplified approach, in that, we use
a two-level procedure:

1. we reduce the search space of possible linguistic summaries – for this purpose
we use the truth value and the degree of focus, and then

2. we additionally use the remaining degrees of imprecision, specificity and
fuzziness.

This heuristic method makes it possible to generate good summaries in computa-
tionally reasonable time.

3.1 Truth Value

The truth value (a degree of truth or validity), introduced by Yager in [39], is the ba-
sic criterion describing the degree of truth (in [0,1]) to which a linguistically quan-
tified proposition equated with a linguistic summary is true.

Using Zadeh’s calculus of linguistically quantified propositions [45] it is calcu-
lated in dynamic context using the same formulas as in the static case. Thus, the
truth value is calculated for the simple and extended form as, respectively:

T (Among all y’s, Q are P) = μQ

(
1
n

n

∑
i=1

μP(yi)

)
(10)

T (Among all Ry’s, Q are P) = μQ

(
∑n

i=1 μR(yi)∧μP(yi)
∑n

i=1 μR(yi)

)
(11)

where∧ is the minimum operation (more generally it can be another appropriate op-
erator, notably a t-norm). In Kacprzyk, Wilbik and Zadrożny [23] results obtained
by using different t-norms were compared. Various t-norms can be in principle used
in Zadeh’s calculus but clearly their use may result in different results of the lin-
guistic quantifier driven aggregation. It seems that the minimum operation is a good
choice since it can be easily interpreted and the numerical values correspond to the
intuition.
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3.2 Degree of Focus

The very purpose of a degree of focus is to limit the search for best linguistic sum-
maries by taking into account some additional information in addition to the degree
of truth (validity). The extended form of linguistic summaries (9) does limit by it-
self the search space as the search is performed in a limited subspace of all (most)
trends that fulfill an additional condition specified by qualifier R. The very essence
of the degree of focus is to give the proportion of trends satisfying property R to
all trends extracted from the time series. It provides a measure that, in addition to
the basic degree of truth (validity), can help control the process of discarding non-
promising linguistic summaries. The details are described in Kacprzyk and Wilbik’s
paper [15].

The degree of focus is similar in spirit to a degree of covering [14], however
it measures how many trends fulfill property R. That is, we focus our attention on
such trends, fulfilling property R. The degree of focus makes obviously sense for
the extended form summaries only, and is calculated as:

d f oc(Among all Ry, ’s Q are P) =
1
n

n

∑
i=1

μR(yi) (12)

In our context, the degree of focus describes how many trends extracted from
a given time series fulfill qualifier R in comparison to all extracted trends. If the
degree of focus is high, then we can be sure that such a summary concerns many
trends, so that it is more general. However, if the degree of focus is low, we may be
sure that such a summary describes a (local) pattern seldom occurring.

As we wish to discover a more general, global relationship, we can eliminate lin-
guistic summaries, that concern a small number of trends only. The degree of focus
may be used to eliminate the whole groups of extended form summaries for which
qualifier R limits the set of possible trends to, for instance, 5%. Such summaries,
although they may be very true, will not be representative.

3.3 Degree of Imprecision

A degree of imprecision, introduced by Kacprzyk and Yager in [27] and Kacprzyk,
Yager and Zadrożny [28], describes how imprecise the fuzzy predicates used in the
summary are. This measure does not depend on the data to be summarized, but only
on the form of a summary and the definition of linguistic values.

The degree of imprecision of a single fuzzy set Ai, defining the linguistic value
of a summarizer, is calculated as

im(Ai) =
card{x ∈ Xi : μAi > 0}

cardXi
(13)

In our summaries to define membership functions of the linguistic values we use
trapezoidal functions since they are sufficient in most applications [47]. Moreover,
they can be very easily interpreted and defined by a user not familiar with fuzzy sets
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and fuzzy logic, as shown in Figure 2. To represent a fuzzy set with a trapezoidal
membership function we need to store four numbers only, a, b, c and d. The use
of such a form of a fuzzy set is a compromise between a so-called cointension and
computational complexity (cf. Zadeh [47]).

Fig. 2 A trapezoidal mem-
bership function of a set

In a case of trapezoidal membership functions, defined as above, the degree of
imprecision of a fuzzy set Ai is calculated as:

im(Ai) =
d−a

range(Xi)
(14)

where range(Xi) is the range of values taken by the feature considered.
Then, these values – calculated for each fuzzy set Ai belonging to the summa-

rizer – are aggregated using the geometric mean. The degree of imprecision of the
summary, or in fact of summarizer P, is therefore calculated as

imP = n

√
n

∏
i=1

im(Ai) (15)

where n is the number of fuzzy predicates in summarizer P which are defined as
fuzzy sets Ai.

This degree focuses on the summarizer only. Similarly we can introduce the two
additional measures, a degree of imprecision of a qualifier and that of a quantifier,
as it was proposed in [35].

Hence, the degree of imprecision of a qualifier is calculated as

imR = n

√
n

∏
i=1

im(Ai) (16)

where n is the number of fuzzy predicates in qualifier R which are defined as fuzzy
sets Ai.

And the degree of imprecision of a quantifier is calculated as

imQ = im(Q) (17)
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We can aggregate those three measures using the the weighted average. Then the
degree of imprecision of a simple form of the linguistic summary “Among all y’s Q
are P” is calculated as

im(Among all y’s Q are P) = wPimP + wQim(Q) (18)

where wP and wQ are the weights of the degrees of imprecision of summarizer and
quantifier, respectively. wP,wQ ≥ 0 and wP + wQ = 1.

The degree of imprecision of the extended form of the linguistic summary
“Among all Ry’a Q are P” is calculated as

im(Among all Ry’s Q are P) = wPimP + wRimR + wQim(Q) (19)

where wP, wQ and wR are the weights of the degrees of imprecision of summarizer,
quantifier and qualifier, respectively. wP,wQ,wR ≥ 0 and wP + wQ + wR = 1.

In the fuzzy set theory there are other concepts capturing the notion of uncer-
tainty, like e.g. specificity or fuzziness.

3.4 Degree of Specificity

The concept of specificity provides a measure of the amount of information con-
tained in a fuzzy subset or possibility distribution. The specificity measure evaluates
the degree to which a fuzzy subset points to one and only one element as its mem-
ber, cf. Yager [43]. It is closely related to the inverse of the cardinality of a fuzzy
set. Klir (cf. Klir and Wierman [32] or Klir and Yuan [33]) has proposed the notion
of nonspecificity.

We will now consider the original Yager’s proposal [43] in which the specificity
measures a degree to which a fuzzy subset contains one and only one element. The
measure of specificity is a measure Sp : IX −→ I, I ∈ [0,1] if it has the following
properties:

• Sp(A) = 1 if and only if A = {x}, (is a singleton set),
• Sp(∅) = 0,

• ∂Sp(A)
∂a1

> 0 and ∂Sp(A)
∂a j

≤ 0 for all j ≥ 2, where A is a fuzzy subset over X and a j

is the j-th largest membership grade in A.

Yager [38] proposed a measure of specificity as

Sp(A) =
∫ αmax

0

1
card(Aα)

dα (20)

where αmax is the largest membership grade in A, Aα is the α-level set of A, (i.e.
Aα = {x : A(x)≥ α}) and cardAα is the number of elements in Aα .
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Let X be a continuous space, e.g. a real interval. Yager [41] proposed a general
class of specificity measures in the continuous domain as

Sp(A) =
∫ αmax

0
F(μ(Aα))dα (21)

where αmax is the maximum membership grade in A, F is a function F : [0,1] −→
[0,1] such that F(0) = 1, F(1) = 0 and F(x) ≤ F(y) ≤ 0 for x > y, μ is a fuzzy
measure (cf. e.g. Grabisch [9]) and Aα is the α-level set.

If F is defined as F(z) = 1− z, measure μ of an interval [a,b] is defined as
μ([a,b]) = b−a, and the space is normalized to [0,1], then the degree of specificity
of the fuzzy set A is calculated as

Sp(A) = αmax− area under A (22)

If the fuzzy set A has a trapezoidal membership function, as e.g. shown in Figure 2,
then

Sp(A) = 1− c + d− (a + b)
2

(23)

In most applications, both the fuzzy predicates P and R are assumed to be of a
rather simplified, atomic form referring to just one attribute. They can be extended to
cover more sophisticated summaries involving some confluence of various attribute
values as, e.g, “slowly decreasing and short” trends. To combine more then one
attribute values we will use t-norms (for instance, the minimum or product) for
conjunction and a corresponding s-norm (for instance, the maximum or probabilistic
sum, respectively) for disjunction.

We can aggregate the degrees of specificity of a summarizer, qualifier and quan-
tifier using the weighted average. Then the degree of specificity of the simple form
of the linguistic summary “Among all y’s Q are P” is calculated as

im(Among all y’s Q are P) = wPSp(P)+ wQSp(Q) (24)

where wP and wQ are the weights of the degrees of specificity of the summarizer
and quantifier, respectively. wP,wQ ≥ 0 and wP + wQ = 1.

The degree of specificity of the extended form of the linguistic summary “Among
all Ry’s Q are P” is calculated as

im(Among all Ry’s Q are P) = wPSp(P)+ wRSp(R)+ wQSp(Q) (25)

where wP, wQ and wR are the weights of the degrees of specificity of summarizer,
quantifier and qualifier, respectively. wP,wQ,wR ≥ 0 and wP + wQ + wR = 1.

If we consider the approach proposed by Klir and his collaborators (cf. Klir and
Wierman [32] or Klir and Yuan [33]) then the nonspecificity measure from fuzzy
sets theory is defined using the so-called Hartley function. For a finite, nonempty
(crisp) set, A, we measure this amount using a function from the class of functions

U(A) = c logb |A|, (26)
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where |A| denotes the cardinality of A, b and c are positive constants, b,c≥ 1 (usu-
ally, b = 2 and c = 1). This function is applicable to finite sets only but it can be
modified for infinite sets of R as follows: U(A) = log[1 + μ(A)], where μ(A) is the
measure of A defined by the Lebesque integral of the characteristic function of A.
When A = [a,b], then μ(A) = b−a and U([a,b]) = log[1 + b−a].

For any nonempty fuzzy set A defined on a finite universal set X , function U(A)
has the form

U(A) =
1

h(A)

∫ h(A)

0
log2 |Aα |dα, (27)

where |Aα | is the cardinality of the α-cut of A and h(A) – the height of A. If A is a
normal fuzzy set, then h(A) = 1.

If a nonempty fuzzy set is defined in R and the α-cuts are infinite sets (e.g.,
intervals of real numbers), then:

U(A) =
1

h(A)

∫ h(A)

0
log[1 + μ(Aα)]dα, (28)

For convenience, the values of nonspecificity are normalized.
Then the degree of specificity of “Among all y’s, Q are P” may be:

ds(Among all y’s Q are P) = 1−U(P) (29)

and the degree of specificity of “Among all Ry’s, Q are P” may be:

ds(“Among all Ry’s ,Q are P”) = 1− (U(P)∧U(R)) (30)

where U(P) is the degree of nonspecificity of the summarizer P, given by (28),
U(R) is the degree of nonspecificity of the qualifier R, and ∧ is a t-norm (minimum
or product).

We must emphasize the distinction between specificity and fuzziness. Fuzziness
is generally related to the lack of clarity, relating to the membership of some set,
whereas specificity is related to the lack of exact knowledge of some attribute.

3.5 Degree of Fuzziness

A degree of fuzziness describes a degree of imprecision (which may well be equated
with fuzziness) of the linguistic predicates in the summary. In general, a measure of
fuzziness of a fuzzy set is a function f : F −→R+, where F denotes the family of
all fuzzy subsets of X . In other words, for each fuzzy set A, this function assigns a
nonnegative real number f (A) that expresses a degree to which the boundary of A
is not sharp.

The function f must satisfy the following three requirements (cf. Klir and
Yuan [33]):

1. f (A) = 0 iff A is a crisp set.
2. f (A) attains its maximum value iff A(x) = 0.5 for all x ∈ X
3. f (A)≤ f (B) when set A is undoubtly sharper than set B:
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• A(x)≤ B(x) when B(x)≤ 0.5 for all x ∈ X , or
• A(x)≥ B(x) when B(x)≥ 0.5 for all x ∈ X .

One way to measure the fuzziness of A is by using a distance (metric) between its
membership function and the membership function of its nearest crisp set defined
as: a nearest crisp set of a fuzzy set A is a set A ⊂ X given by its characteristic
function:

μA =
{

0 μA(x)≤ 0.5
1 μA(x) > 0.5

(31)

Then, using different distance function we can obtain different measures, for
instance:

• the linear degree of fuzziness:

δ (A) =
2
n ∑

x∈X

|μA(xi)− μA(xi)| (32)

• the quadratic degree of fuzziness:

η(A) =
2
n

√
∑
x∈X

(μA(xi)− μA(xi))2 (33)

• the vector degree of fuzziness

ν(A) =
2
n ∑

x∈X

μA∩¬A(xi) (34)

Another way of measuring the (degree of) fuzziness of a fuzzy set is to measure
a (degree of) lack of distinction between a fuzzy set and its complement. Of course,
also here we can choose different forms of the fuzzy complements and distance
functions.

If we choose the standard complement and the Hamming distance, we have:

f (A) = ∑
x∈X

(1−|2A(x)−1|) (35)

where the range of f is [0, |X |], f (A) = 0 iff A is a crisp set and A = |X | when
A(x) = 0.5 for all x ∈ X .

The above form is only valid for fuzzy sets defined in finite universes of dis-
course. However we can modify it to fuzzy sets defined in R, the set of real numbers:
if X = [a,b], then

f (A) =
∫ b

a
(1−|2A(x)−1|)dx = b−a−

∫ b

a
|2A(x)−1|dx (36)

and this form of f (.) will be used here.
If the set A has a trapezoidal membership function, as e.g. shown in Figure 2,

then

f (A) =
b + d− (a + c)

2
(37)
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In general, the summarizer and the qualifier may involve more than one attribute
value. To combine them we will use a t-norm (for instance, the minimum or prod-
uct) for conjunction and a corresponding s-norm (for instance, the maximum or
probabilistic sum, respectively) for the disjunction.

The degree of fuzziness of “Among all y’s, Q are P” is:

d f (Among all y’s Q are P) = f (P)∧ f (Q) (38)

where f (P) is the degree of fuzziness of the summarizer P, f (Q) is the degree of
fuzziness of the quantifier Q, and ∧ is a t-norm (minimum or product).

The degree of fuzziness of “Among all Ry’s, Q are P” is:

d f (Among all Ry’s Q are P) = f (P)∧ f (R)∧ f (Q) (39)

where f (P) is the degree of fuzziness of the summarizer P, f (R) is the degree of
fuzziness of the qualifier R, f (Q) is the degree of fuzziness of the quantifier Q, and
∧ is a t-norm (minimum or product).

The degree of fuzziness is not of high importance in evaluation of the summaries.
However we discussed it for completeness.

4 Numerical Experiments

The method proposed in this paper was tested on data on quotations of an investment
(mutual) fund that invests at least 50% of assets in shares listed at the Warsaw Stock
Exchange. Data shown in Figure 3 were collected from January 2002 until the end
of March 2009 with the value of one share equal to PLN 12.06 in the beginning of
the period to PLN 21.82 at the end of the time span considered (PLN stands for the
Polish Zloty). The minimal value recorded was PLN 9.35 while the maximal one
during this period was PLN 57.85. The biggest daily increase was equal to PLN
2.32, while the biggest daily decrease was equal to PLN 3.46.

It should be noted that the example shown below is meant to illustrate the method
proposed by analyzing the absolute performance of a given investment fund. We do
not deal here with a presumably more common way of analyzing an investment
fund by relating its performance to a benchmark (or benchmarks) exemplified by
an average performance of a group of (similar) funds, a stock market index or a
synthetic index reflecting, for instance, the bond versus stock allocation.

Using the modified Sklansky and Gonzalez algorithm (cf. [37]) and ε = 0.25 we
obtained 422 extracted trends. The shortest trend took 1 time unit only, while the
longest one – 71. The histograms for duration, dynamics of change and variability
are shown in Figure 4.

We have applied different granulations, namely with 3, 5 and 7 labels for each
feature (dynamics of change, duration and variability). Minimal accepted truth value
was 0.6 and the degree of focus threshold was 0.1. The degree of focus, and the
method of effective and efficient generating summaries is described in Kacprzyk
and Wilbik’s paper [15].
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Fig. 3 Mutual fund quotations

When we have used 3 labels for dynamics of change (decreasing, constant and
increasing), 3 labels for duration (short, medium length and long) and 3 labels for
variability (low, moderate and high), then we have obtained the summaries shown
in Table 1.

The linguistic summaries are sorted according to the truth values, and later by
the values of degree of focus. The simple form summaries are before the extended
ones with the same truth value. The summaries here have high values of specificity,
indicating that they may be potentially useful for the user. Only a few summaries
have the degree of imprecision greater than 0.5, and they should be analyzed with
care. The values of degree of fuzziness are small, only for 3 summaries they exceed
the value of 0.2.

Let us now slightly modify the used properties. We add linguistic labels A, B, C.
Their membership functions together with the membership function of the fuzzy set
with label low are depicted in Fig. 5.

The values of the degree of imprecision, specificity and fuzziness of a single
fuzzy set are shown in Table 2.

Let us now analyze some of the summaries obtained.

100
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300

short medium long

duration

decreasing constant increasing

dynamics of change

100

200

100

200

300
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Fig. 4 Histograms of duration, dynamics of change and variability
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Fig. 5 Illustration of the membership functions for the linguistic labels low, A, B and C

Here, in Table 3, we may observe that higher values of the degree of specificity
(or lower of the degree of imprecision) may result in lower truth values. The low or
high values of fuzziness do not considerably affect the results in this case.

Those big differences in the values of degrees of imprecision, specificity and
fuzziness are visible also in evaluation of more complex linguistic summaries, e.g.
Table 4. The values of the degree of truth and the values of the degree of focus are
not shown in Table 4 as they are the same for all 4 summaries and equal to 1.0 and
0.2842, respectively.

The high values of imprecision of the last two summaries indicate, that they are
general, and should be analyzed with special care. On the other hand, high values

Table 2 The values of imprecision, specificity and fuzziness of fuzzy sets representing lin-
guistic labels low, A, B and C

lingistic label imprecision specificity fuzziness
low 0.4 0.7 0.2
A 0.006 0.994 0
B 0.5 0.5 0
C 1 0.497 0.994

Table 3 Some of the obtained summaries with the linguistic labels low, A, B and C

linguistic summary truth value imprecision specificity fuzziness
Among all y’s, most are low 0.8455 0.55 0.625 0.225
Among all y’s, most are A 0.5280 0.353 0.772 0.125
Among all y’s, most are B 1 0.6 0.525 0.125
Among all y’s, most are C 1 0.85 0.5235 0.622
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Table 4 Some of the obtained summaries with the linguistic labels low, A, B and C

linguistic summary imprecision specificity fuzziness
Among all short and decreasing y’s, most are low 0.4254 0.6067 0.1567
Among all short and decreasing y’s, most are A 0.2941 0.7047 0.09
Among all short and decreasing y’s, most are B 0.4588 0.54 0.09
Among all short and decreasing y’s, most are C 0.6254 0.539 0.4213

of the degree of specificity clearly indicate that those summaries may be promising
and useful.

Similar observations can made if, as the qualifier we use the linguistic labels low,
A, B and C, cf. e.g. Table 5. We can easily see the change in the values of the degree
of focus, and these changes are implied by different labels of the quantifier. Here
again the truth value is equal 1.0 for all 4 summaries.

Again, relatively high values of imprecision of the last two summaries indicate
that they are general, and should be analyzed with special care. Very high values of
the degree of specificity of the two first summaries indicate that those summaries
may be promising and useful.

For 5 labels for the dynamics of change (quickly decreasing, decreasing, con-
stant, increasing and quickly increasing), 5 labels for the duration (very short, short,
medium length, long and very long) and 5 labels for the variability (very low, low,
moderate, high and very high) we have obtained the summaries shown in Table 6.

Similarly, the linguistic summaries are sorted first according to the truth values,
and later according to the values of the degree of focus. The summaries here have
high values of the degree of specificity, indicating that they may be potentially useful
for the user. Values of the degree of specificity are higher than the values in the case
with 3 linguistic labels. Values of the degree of imprecision as well as the ones of
the degree of focus are smaller than in the case with 3 linguistic labels.

We also have used 7 labels for dynamics of change (quickly decreasing, decreas-
ing, slowly decreasing, constant, slowly increasing, increasing and quickly increas-
ing), 7 labels for duration (very short, short, rather short, medium length, rather long,
long and very long) and 7 labels for variability (very low, low, rather low, moderate,
rather high, high and very high) to describe the segments. In this case the summaries
obtained are shown in Table 7.

As previously the linguistic summaries are sorted first according to the truth val-
ues, and later by the values of the degree of focus. There are only 4 summaries that
“globally” describe the situation. Those are: one of a simple form and 3 with high

Table 5 Some of the obtained summaries with the linguistic labels low, A, B and C

linguistic summary focus imprecision specificity fuzziness
Among all low y’s, most are short 0.7227 0.39 0.73 0.1567
Among all A y’s, most are short 0.5640 0.2587 0.828 0.09
Among all B y’s, most are short 0.8910 0.4233 0.6633 0.09
Among all C y’s, most are short 0.8353 0.59 0.6623 0.4213
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values of the degree of focus. The degree of focus for the other summaries is smaller
than 15% so that they describe patterns more locally occurring. The summaries here
have high values of the degree of specificity, indicating that they may be potentially
useful for the user. Values of the degree of imprecision as well as the ones of the
degree of fuzziness are small. These small values of the degree of imprecision are
implied by a fine granulation used.

Let us note that the degree of imprecision and the degree of specificity are to
some extent related, notably large values of the degree of imprecision are associated
with small values of the degree of specificity and vice versa. The degree of fuzzi-
ness describes a different aspect. So it is possible to have a summary with a very
small value of the degree of specificity (i.e. big of the degree of imprecision) which
may have either a very small or big value of the degree of fuzziness. However, if a
summary has a very high degree of specificity, then its degree of fuzziness is low.

5 Concluding Remarks

We extended our approach to the linguistic summarization of time series based on
a calculus of linguistically quantified propositions used for a linguistic quantifier
driven aggregation of partial scores (trends). We presented a reformulation and ex-
tension of our works mainly by including a more complex evaluation of the linguis-
tic summaries obtained. In addition to the degree of truth (validity), we additionally
used a degree of imprecision, specificity, fuzziness and focus. However, for simplic-
ity and numerical tractability, we used in the first shot the degrees of truth (validity)
and focus, to reduce the space of possible linguistic summaries, and then – for a
usually much smaller set of linguistic summaries obtained – we used the remain-
ing three degrees of imprecision, specificity and fuzziness for making a final choice
of appropriate linguistic summaries. So this does not guarantee the optimality, our
experience however suggests that it makes possible to generate good summaries
in computationally reasonable time. A more formalized approach of this heuristic
method to find best summaries will be presented in next papers. We showed an ap-
plication to the absolute performance type analysis of daily quotations of an invest-
ment fund. The results obtained give more insight into the nature of the time series
of quotations analyzed, and may be very useful for supporting decision makers.
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11. Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms: toward
natural language based knowledge discovery tools. Information Sciences 173, 281–304
(2005)

12. Kacprzyk, J., Wilbik, A.: An extended, specificity based approach to linguistic summa-
rization of time series. In: Proceedings of the 12th International Conference Information
Processing and Management of Uncertainty in Knowledge-based Systems, pp. 551–559
(2008)

13. Kacprzyk, J., Wilbik, A.: Linguistic summarization of time series using linguistic quan-
tifiers: augmenting the analysis by a degree of fuzziness. In: Proceedings of 2008
IEEE World Congress on Computational Intelligence, pp. 1146–1153. IEEE Press, Los
Alamitos (2008)

14. Kacprzyk, J., Wilbik, A.: A new insight into the linguistic summarization of time series
via a degree of support: Elimination of infrequent patterns. In: Dubois, D., Lubiano,
M.A., Prade, H., Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for
Handling Variability and Imprecision, pp. 393–400. Springer, Heidelberg (2008)

15. Kacprzyk, J., Wilbik, A.: Towards an efficient generation of linguistic summaries of
time series using a degree of focus. In: Proceedings of the 28th North American Fuzzy
Information Processing Society Annual Conference – NAFIPS 2009 (2009)
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17. Kacprzyk, J., Wilbik, A., Zadrożny, S.: A linguistic quantifier based aggregation for a
human consistent summarization of time series. In: Lawry, J., Miranda, E., Bugarin, A.,
Li, S., Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Integrated
Uncertainty Modelling, pp. 186–190. Springer, Heidelberg (2006)

http://www.personalfn.com/detail.asp?date=9/1/2007&story=3
http://www.personalfn.com/detail.asp?date=9/1/2007&story=3


Linguistic Summaries of Time Series 165
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Preference Modelling Using the
Level-Dependent Choquet Integral with Respect
to Łukasiewicz Filters

Martin Kalina, Dana Hliněná, and Pavol Král’

1 Introduction

We would like to deal with the problem how to identify the best n objects within
a small database consisting of N (n < N) objects with respect to the given set of
criteria assuming only one decision maker, i.e., we restrict ourselves to the multicri-
teria mono personal decision making problems called preference modelling where
the preference structure is based on a query of the decision maker. We prefer to use
a fuzzy preference structure because of its ability to deal with a possible uncertainty
and inconsistency of a decision maker. For more details on fuzzy preference mod-
elling we refer the reader to [9]. For recent development on this topic see also [5,29].
We focus on the fuzzy preference relation derived from the set of utility functions
for quantitative criteria and the appropriate linguistic scales for ordinal qualitative
criteria. Nominal qualitative criteria are omitted. Unfortunately such fuzzy prefer-
ence relation does not meet any kind of transitivity in general. Even more the related
fuzzy incomparability relation can be non-empty. On the other hand, assumed cri-
teria can interact and their weights can be value dependent, i.e., the relative impor-
tance of criteria depends on the query and their weights can be different for different
levels of values and query.
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The lack of transitivity, non-empty incomparability relation, and interaction be-
tween criteria may cause serious problems to identify the required number of ele-
ments for the given query. So we need to find some suitable aggregation procedure
(dependent on the actual query of the decision maker) to deal with interacting crite-
ria with value dependent weights such that the procedure leads to a fuzzy preference
structure with fuzzy preference relation satisfying some kind of transitivity and, if
possible, an empty fuzzy incomparability relation. For simplicity we will assume
that all available information is included in the query and in the database. We do
not presume any additional information about criterial importance provided by the
decision maker. In our opinion a possible solution can be based on a special type of
a so-called level-dependent Choquet integral. We will present here a partial solution
of this problem.

An alternative approach to this problem is presented in [7] where fuzzy rule base
with conditional and unconditional fuzzy rules is assumed. Roughly speaking it
means that we can obtain a k-tuple of values from the unit interval representing the
coherence between the object and the query. Values included in the k-tuple are then
aggregated using some appropriate aggregation procedure, e.g. we can eliminate
values which are not sufficiently large etc. The main advantage of this procedure is
its simplicity and that we always obtain the ordered set of objects. But there are also
several drawbacks. We need a special querying language, for example FuzzySQL
(see [7]), the weights for partial criteria cannot be derived from the fuzzy rule base,
such procedure does not include the interaction between criteria and does not take
into account the fact that the importance of a criterion can be dependent on the given
query.

The paper is organized as follows: in Section 2 we present some basic prop-
erties of the evaluators (especially TL-, SL-evaluators), fuzzy preference structures
and study the connection between fuzzy preference and incomparability relations
and TL-evaluators; in Section 3 we present the generalization of the so-called level-
dependent Choquet integral, Section 4 is devoted to the description of our proposed
algorithm and finally Section 5 illustrates our approach using rather simple, but
practically oriented example.

A substantial part of this article was presented by the authors at IPMU 2008,
see [14].

2 Preliminaries

First of all we will recall some well-known definitions used in the rest of our paper.

Definition 1. (e.g. [19]) A triangular norm (t-norm for short) on the unit interval
[0,1] is a commutative, associative mapping T : [0,1]2→ [0,1] which is increasing
in both places and for which T (x,1) = x, for all x ∈ [0,1].

Remark 1. Note that, if T is a t-norm, then its dual t-conorm S : [0,1]2 → [0,1] is
given by

S(x,y) = 1−T(1− x,1− y).
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Remark 2. Note that each t-norm T and each t-conorm S are associative, i.e., though
they are defined as binary operations, they can be uniquely extended into ternary,
and by induction also into n-ry, operations by

T (x,y,z) = T (T (x,y),z) = T (x,T (y,z))
S(x,y,z) = S(S(x,y),z) = S(x,S(y,z)).

In the rest of our paper we will restrict ourselves to the Łukasiewicz t-norm,

TL(x,y) = max{0,x + y−1}

and Łukasiewicz t-conorm,

SL(x,y) = min{1,x + y}.

In our considerations we need to construct a comparison of elements from a given
set which is based on comparison of numerical evaluations of elements, i.e., we will
use evaluators defined on some at most countable fixed set X �= /0. Then we denote
by M the system of all functions f : X → [0,1]. Hence (M , ∧, ∨,�,⊥) is a lattice
with top and bottom elements � and ⊥, equal to constants 1 and 0, respectively.
In [4], evaluators have been defined on the system M .

Remark 3. In the decision-making context the set X represents the set of criteria.

Definition 2. ( [4]) A function ϕ : M → [0,1] is called an evaluator on M if

1. ϕ(�) = 1, ϕ(⊥) = 0,
2. for all f , g ∈M , if f ≤ g then ϕ( f )≤ ϕ(g).

In fact, evaluators can be defined for an arbitrary bounded lattice. However, we
restrict our considerations to the lattice M .

For each evaluator ϕ , we can define its dual evaluator ϕ̄ by

ϕ̄( f ) = 1−ϕ(1− f ).

The special type of evaluators, TL-evaluators and SL-evaluators, were first pro-
posed in [3]. The more detailed description of TL- and/or SL-evaluators can be found
in [4].

Definition 3. ( [3]) An evaluator ϕ : M → [0,1] is said to be a TL-evaluator on M
if it satisfies the formula

ϕ( f ∧g)≥ TL (ϕ( f ),ϕ(g)) . (1)

Definition 4. ( [3]) An evaluator ϕ : M → [0,1] is said to be an SL-evaluator on
M if it satisfies the formula

ϕ( f ∨g)≤ SL (ϕ( f ),ϕ(g)) . (2)
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There is a connection between TL-evaluators and SL-evaluators and Łukasiewicz
filters and Łukasiewicz ideals, respectively.

Definition 5. ( [18]) Let X �= /0 be a given at most countable set. Then a set-function
F : 2X → [0,1] is said to be a Łukasiewicz filter on X if and only if the following
are satisfied:

1. F (X) = 1,F ( /0) = 0,
2. (∀A,B⊆ X)(A⊆ B⇒F (A)≤F (B)),
3. for all A, B⊆ X the following holds

F (A∩B)≥ TL (F (A),F (B)) .

Łukasiewicz ideals represent a complementary notion to Łukasiewicz filters.

Definition 6. ( [13]) Let X �= /0 be a given at most countable set. A set-function
I : 2X → [0,1] is said to be a Łukasiewicz ideal on X if and only if:

1. I ( /0) = 1, I (X) = 0,
2. If A⊆ B⊆ X , then I (A)≥I (B),
3. for all A, B⊆ X the following is satisfied

TL (I (A), I (B))≤I (A∪B).

It is easy to show that every Łukasiewicz filter F : 2X → [0,1] is connected to a TL-
evaluator (see Lemma 1), and every Łukasiewicz ideal I : 2X → [0,1] is connected
to an SL-evaluator (see Lemma 2). Łukasiewicz filters which are self-dual, will be
called Łukasiewicz ultrafilters. Generalizing the results of [3], we get the following
assertions.

Lemma 1. ( [15]) Let ϕ : M → [0,1] be a TL-evaluator. Then there exists a Łukasie-
wicz filter F : 2X → [0,1] such that, for each A ∈ 2X ,

F (A) = ϕ(1A).

Lemma 2. ( [15]) Let ϕ : M → [0,1] be an SL-evaluator. Then there exists a
Łukasiewicz ideal I : 2X → [0,1] such that, for each A ∈ 2X ,

I (A) = 1−ϕ(1A).

Obviously, the dual to each TL-evaluator is an SL-evaluator and vice versa. By Defi-
nitions 3 and 4 we straightforwardly get the following:

Lemma 3. ( [15]) Let ϕ : M → [0,1] be a self-dual TL-evaluator (SL-evaluator).
Then it is also an SL-evaluator (a TL-evaluator).

On the other hand, there are evaluators which are TL- and SL-evaluators at the same
time. However, they are not self-dual (see [15]).
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Example 1. ( [15]) Let X = {a,b,c,d,e}. First, we define a Łukasiewicz filter F :
X → [0,1] by

F (A) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if |A|= 0,
0.25, if |A|= 1,
0.5, if |A|= 2,
0.5, if |A|= 3,
0.75, if |A|= 4,
1, if |A|= 5,

where |A| means the cardinality of A. For functions f : X → [0,1] we denote

core( f ) = {A⊆ X ;(∀x ∈ A) f (x) = 1}
and

supp( f ) = {B⊆ X ;(∀x ∈ B) f (x) > 0}.
Evaluator ϕ : M → [0,1], defined as

ϕ( f ) = F (core( f )),

is both TL- and SL-evaluator. However, the dual to ϕ is

ϕ̄( f ) = F (supp( f )).

Example 2. ( [15]) Let U : 2X → [0,1] be a Łukasiewicz ultrafilter (i.e. a self-dual
Łukasiewicz filter). Then ϕ : M → [0,1], defined by

ϕ( f ) =
1
2

(U (supp( f )+ core( f ))) ,

is a self-dual TL- and SL-evaluator.

Example 3. Another example of a self-dual TL- and SL-evaluator arises if we take a
probability distribution on the set X (which is a Łukasiewicz ultrafilter) and define
ϕ : M → [0,1] by

ϕ( f ) = μ({x ∈ X ; f (x)≥ 0.5}).
Another important notion in our considerations is preference structure. The prefer-
ence structure is a basic concept of preference modelling. In a classical preference
structure (PS), a decision-maker makes three decisions for any pair (a,b) from the
set A of all alternatives. His or her decision defines a triplet P, I,J of crisp binary
relations on A:

1. a is preferred to b if and only if P(a,b) = 1 (strict preference).
2. a and b are indifferent if and only if I(a,b) = 1 (indifference).
3. a and b are incomparable if and only if J(a,b) = 1 (incomparability).

A preference structure (PS) on a set A is a triplet (P, I,J) of binary relations on A, P:
A×A→ {0,1}, I: A×A→ {0,1}, J: A×A→ {0,1}, such that

(ps1) I is reflexive, P and J are antireflexive.
(ps2) P is asymmetric, I and J are symmetric.
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(ps3) P∩ I = P∩ J = I∩ J = /0.
(ps4) P∪ I∪ J∪Pt =A×A where Pt(x,y) = P(y,x).

A preference structure can be characterized by the reflexive relation R = P∪ I called
the large preference relation. It can be easily proved that

P = R∩ (Rt)c
, I = R∩Rt , J = Rc∩ (Rt)c

,

where Rc(a,b) is the complement of R(a,b). This allows us to construct a preference
structure (P, I,J) from a reflexive binary operation R only.

Decision-makers are often uncertain, even inconsistent, in their judgements. In
such cases, the restriction to two-valued relations has been an important drawback in
their practical use. A natural demand led researchers to introducing of a fuzzy pref-
erence structure (FPS). The original idea of using numbers between zero and one to
describe the strength of links between two alternatives goes back to Menger [21].
The introducing of fuzzy relations enables us to express degrees of preference, in-
difference and incomparability. Of course, the attempts to simply replace the no-
tion used in the definition of (PS) by their fuzzy equivalents have brought some
problems.

To define (FPS) it is necessary to consider some fuzzy connectives. We shall
consider a continuous De Morgan triple (T,S,N) consisting of a continuous t-norm
T , continuous t-conorm S and a strong negator N satisfying formula T (x,y) =
N(S(N(x),N(y))). The main problem lies in the fact that the completeness condition
(ps4) can be written in many forms, e.g.:

(P∪Pt)c = I∪ J,P = (Pt ∪ I∪ J)c,

P∪ I = (Pt ∪ J)c.

Let (T,S,N) be a De Morgan triplet. A fuzzy preference structure (FPS) on a set A
is a triplet (P, I,J) of binary fuzzy relations on A such that:

(f1) I is reflexive, P and J are antireflexive. I(a,a) = 1, P(a,a) = J(a,a) = 0.
(f2) P is T-asymmetric, i.e. T (P(a,b),P(b,a)) = 0, and I, J are symmetric.
(f3) T (P, I) = T (P,J) = T (I,J) = 0.
(f4) (∀(a,b) ∈ A)S(P,Pt , I,J) = 1 or N(S(P, I)) = S(Pt ,J) or other completeness

conditions.

In [2, 28] it was shown that the concept of a fuzzy preference structure is only
meaningful provided that the de Morgan triplet involved, contains a continuous
Archimedean triangular norm having zero divisors. Moreover, any fuzzy prefer-
ence structure with respect to a de Morgan triplet containing a continuous non-
Archimedean triangular norm having zero divisors can be transformed into a fuzzy
preference structure with respect to the standard Łukasiewicz triplet. This is why we
will use the triplet (TL,SL,N), where N(x) = 1− x in this paper.

As it has been already mentioned in our decision-making process it is important
to get some kind of transitivity of fuzzy preference relation P. Due to the used triplet
(TL,SL,N) it is natural to assume the TL-transitivity of fuzzy preference relation P.
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The TL-transitivity of fuzzy preference relation P means; if a1, a2, a3 are some
objects, then the following holds:

TL(P(a1,a2),P(a2,a3))≤ P(a1,a3). (3)

Assuming an evaluator ϕ , we define the fuzzy preference relation P as aggregation
of partial fuzzy preference relations Pi given criterion by criterion

P(a,b) = ϕ (P1(a1,a2),P2(a1,a2), . . . ,Pn(a1,a2)) , (4)

where n is the number of criteria. If ϕ is a TL-evaluator we get exactly the TL-
transitivity of P (formula (3)).

Hence we get the following theorem:

Theorem 1. ( [15]) Let P be a fuzzy preference relation given by formula (4). Then
P is TL-transitive if and only if ϕ : M → [0,1] is a TL-evaluator.

We can define the indifference relation I, again criterion by criterion, by

Ii(a1,a2) = 1−SL(Pi(a1,a2),Pi(a2,a1))

and I(a1,a2) = ϕ(I1(a1,a2), · · · , In(a1,a2)). The incomparability relation J is
defined by

J(a1,a2) = 1−SL(P(a1,a2),P(a2,a1), I(a1,a2)). (5)

We will denote Pϕ , Iϕ and Jϕ the preference, indifference and incomparability rela-
tions with respect to the evaluator ϕ .

For the proofs of Theorems 2-5 see [15].

Theorem 2. ( [15]) Assume ϕ is a TL-evaluator, which is bounded from below by a
self-dual TL-evaluator ϕ̃ . Then the relation Jϕ (relation of incomparability) is empty.

The reader can find more on the connection between Łukasiewicz filters and fuzzy
preference relations in [11].

The interaction of criteria means that if we have two different criteria, c1 and
c2 with their weights w1 and w2, respectively, then the weight of the set of criteria
{c1,c2} is different from the sum w1 + w2. An axiomatic approach to the measure-
ment of the amount of interaction among criteria was given by Kojadinovic in [20].

The interaction of criteria has been considered through non-additive integrals
such as Choquet integral. The interaction indices with respect to this integral were
introduced by Murofushi and Soneda ( [23]) with respect to only couples of criteria,
and by Mesiar ( [22]) with respect to all possible subsets of criteria. For the first time
this kind of integral, i.e. integral with respect to non-additive measure, was defined
by Vitali (1925, [27]) and then by Choquet (1953-54, [6]). Another important paper
on this topic was that of J. Šipoš (1979, [25]). We will restrict our interest to the
discrete case. The definition of the Choquet integral with respect to a fuzzy measure
is the following:
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Definition 7. ( [15]) Let μ : 2X → [0,1] be a fuzzy measure, which is continuous
from below. Then the following mapping, (C)

∫
: M → [0,1], is called the Choquet

integral with respect to μ:

(C)
∫

f dμ =
1∫

0

μ({z; f (z)≥ x})dx

for each f ∈M , where the right-hand integral is in the sense of Riemann.

Łukasiewicz filters are special fuzzy measures, i.e., we may integrate with respect
to them. Choosing some particular Łukasiewicz filter means choosing weights of
individual criteria, but also of any system of criteria (which means their interaction).

Example 4. ( [15]) Let us have three criteria: X = {x1,x2,x3}. We construct a Łuka-
siewicz filter F in choosing weights for each criterion according to its importance,
but also for each couple of criteria, see Table 1. Of course, the complete set of cri-
teria, X , has its weight equal to one. The system of weights has to fulfill conditions
of Definition 5:

Table 1 Weights of criteria

singletons weights couples weights
x1 0.1 x1,x2 0.5
x2 0.3 x1,x3 0.7
x3 0.5 x2,x3 0.9

The connection between TL- and/or SL-evaluators and Choquet integrals is given by
the following three theorems.

Theorem 3. ( [15]) Let F be an arbitrary Łukasiewicz filter on X. Then the Choquet
integral with respect to F is a TL-evaluator.

Theorem 4. ( [15]) Let U be an arbitrary Łukasiewicz ultrafilter on X. Then the
Choquet integral with respect to U is both a TL- and SL-evaluator.

In Example 2 we have constructed a self-dual TL- and SL-evaluator. Another con-
struction method uses Choquet integral:

Theorem 5. ( [15]) Let U : 2X → [0,1] be a Łukasiewicz ultrafilter. We denote by
ϕ : M → [0,1] the following evaluator:

ϕ( f ) = (C)
∫

f dU .

Then ϕ is a self-dual TL- and SL-evaluator.

TL- and/or SL-evaluators can be constructed also using other types of fuzzy integrals,
especially Shilkret ( [24]) and Sugeno ( [26]) integrals, but also in some other cases.
The reader can find more on this topic in [12].
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3 Generalized Choquet Integral

As it has been already mentioned the Choquet integral can be used to model the in-
teraction between criteria. However, in our situation we need the weights of criteria
and their interaction simultaneously according to level at which they are fulfilled.
Criteria with lower level of fulfillment could have other weights than criteria with
higher level of fulfillment because the importance of criteria changes according the
level they achieved. This problem can be solved using a so-called level-dependent
Choquet integral, introduced by S. Greco, S. Giove and B. Matarazzo (see [10]).

Definition 8. ( [10]) Let us consider a set of criteria X = {1,2, ...,m}. We define a
generalized capacity as function μG : 2X × [0,1]→ [0,1] such that

1) for all t ∈ [0,1] and A⊂ B⊂ X, μG(A,t)≤ μG(B,t),
2) for all t ∈ [0,1],μG( /0,t) = 0 and μG(X ,t) = 1,
3) (The regularity property) for all t ∈ [0,1] and for all A⊂ X ,μG(A,t) is continu-
ous with respect to t almost everywhere.

Definition 9. ( [10]) We define the level-dependent Choquet integral of a function
f : X → [0,1] with respect to the generalized capacity μG as follows

ChG( f ,μG) =
∫ 1

0
μG(A( f , t), t)dt

where the right-hand-side is the Lebesgue integral and

A( f , t) = {x ∈ X ; f (x) ≥ t}.

Let us remark that if f achieves k different positive values z1 < z2 < · · · < zk then
the level-dependent Choquet integral can always be written as

ChG( f ,μG) =
k

∑
i=1

∫ zi

zi−1

μG(A( f , t), t)dt,

where we have put z0 = 0. To illustrate how the level-dependent Choquet integral
works, we give the following example.

Example 5. Let X = {x1,x2,x3,x4,x5} and f : X → [0,1] be a function given by the
formula f (xi) = 1

i , for i = 1,2,3,4,5. Further, let us take the following generalized
capacity μG : 2X × [0,1]→ [0,1], defined as follows

μG(A,t) =

⎧⎨
⎩
|A|
5 , if 0.4 < t ≤ 1,( |A|

5

)2
, if 0≤ t ≤ 0.4,
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where |A| is the cardinality of A. Then

ChG( f ,μG) =
1
5
·1 +

(
1
4
− 1

5

)(
4
5

)2

+
(

1
3
− 1

4

)(
3
5

)2

+
(

0.4− 1
3

)(
2
5

)2

+
(

1
2
−0.4

)
2
5

+
(

1− 1
2

)
1
5

.= 0.455.

Roughly speaking, in the above computation we have split the area to be counted
into two parts - below 0.4 and above 0.4. In each of these areas we have used the
classical Choquet integral with respect to the corresponding (fuzzy) measure.

Remark 4. The level-dependent Choquet integral makes a completely different kind
of interaction of criteria possible. Though their weights might be additive, they in-
teract in changing the values of corresponding weights.

Observe that it is not a problem to generalize the level-dependent Choquet integral
to the case when X is a countable set (and with additional property of measurability
of μG even to uncountable set X). The following theorems can be found in [15].

Theorem 6. ( [15]) Let μG : 2X × [0,1]→ [0,1] be a generalized capacity such that
for each t ∈ [0,1] μG(·,t) : 2X → [0,1] is a Łukasiewicz filter. Then

ChG( f ,μG) =
1∫

0

μG(A( f ,t), t)dt

is a TL-evaluator.

Theorem 7. ( [15]) Let μG : 2X × [0,1]→ [0,1] be a generalized capacity such that
for each t ∈ [0,1] μG(·,t) : 2X → [0,1] is a Łukasiewicz ultrafilter. Then

ChG( f ,μG) =
1∫

0

μG(A( f ,t), t)dt

is a TL- and SL-evaluator at the same time.

Other possible modification of the Choquet integral lies in transforming the values
of the function to be integrated. The next two theorems concern this kind of modifi-
cation.

Theorem 8. ( [15]) Let us denote for each x ∈ X ηx : [0,1]→ [0,1] some isotone
transformation with 0 and 1 as fixed points. For each f ∈M we set η̃( f )(x) =
ηx( f (x)). Further, let F : 2X → [0,1] be a Łukasiewicz filter. Then ϕ : M → [0,1]
defined by

ϕ( f ) = (C)
∫

η̃( f )dF (6)

is a TL-evaluator.
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Theorem 9. ( [15]) Let us denote for each x ∈ X ηx : [0,1]→ [0,1] some isotone
transformation with 0 and 1 as fixed points. For each f ∈M we set η̃( f )(x) =
ηx( f (x)). Further, let U : 2X → [0,1] be a Łukasiewicz ultrafilter. Then ϕ : M →
[0,1] defined by

ϕ( f ) = (C)
∫

η̃( f )dU (7)

is a TL- and SL-evaluator.

Level-dependent Choquet integrals are not necessarily self-dual evaluators (see
[15]). A sufficient condition for the level-dependent Choquet integral to be a self-
dual evaluator, is using the same Łukasiewicz ultrafilter Gα for all couples of levels
(α,1−α) where α ∈ [0,0.5].

4 Construction of Preference Structures

Let us consider the following situation. We want to find the best fitting decision
with respect to preferences of a querying subject without, in general, any additional
information about the querying subject than the query itself. The starting point of
our algorithm is the construction of a partial preference relation given by a query
for each criterion. The preference structure for a selected criterion is often derived
from the corresponding utility function of the subject. We consider that the true
utility function is unknown. It is obvious that the preference relation must include
as much information as possible about the unknown utility function for a criterion.
Although the utility function is fully determined by the querying subject and in gen-
eral unknown, in many cases we know some of its general properties regardless of
the querying subject. Let us assume for simplicity that, for each criterion, the query
can be transformed either to real numbers or to triangular fuzzy numbers. From the
query the triplet (c1,c2,c3) of real numbers can be derived, where c1,c3 represent
the maximal and minimal acceptable values for the criterion, respectively, and c2

is the value explicitly specified by the querying subject as desired (not necessarily
optimal). Then for the selected criterion we can often identify if the utility func-
tion should be increasing or decreasing, optimal value of a criterion and minimal or
maximal acceptable value of that criterion. For example, in the case of price we can
assume that utility function is decreasing, the optimal but not practically reachable
value is 0 (c1), the values derived from the query represents the maximal accept-
able price (c3) and the desired price (c2), and objects with values up to the desired
price are definitely substantially better than other objects (from the point of view of
price). Let us start with quantitative criteria. Then the corresponding utility function
with respect to the query can be defined as follows:

Definition 10. Let c be the quantitative criterion with the range [z1,z2] ⊂ R, and
c(a) ∈ [z1,z2] be the value of a criterion for an object a. Assume corresponding
decreasing utility function with the domain [z1,z2]⊂R. Let c = (c1,c2,c3) be values
representing the query, c1,c2,c3 ∈ [z1,z2], c1 = z1 and α ∈ [0,1] be a parameter
related to the querying subject. Then the corresponding α-utility function ud

c,α :
R→[0,1] is given as



178 M. Kalina, D. Hliněná, and P. Král’

ud
c,α(c(a)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (c(a)) for c(a) ∈ [z1,c2[,
α for c(a) = c2,

g(c(a)) for c(a) ∈]c2,c3],
0 elsewhere,

(8)

where f ,g are decreasing continuous functions such that

lim
c(a)→c−2

f (c(a)) = lim
c(a)→c+

2

g(c(a)) = α, f (z1) = 1, g(z2) = 0.

In the previous definition we assume that the optimal value of a criterion (c1) is
identical with the lower bound of the domain of the criterion c. Then functions f ,g
and constant α are selected in order to better characterize the querying person. For
example in the case of price f ,g can be strictly decreasing linear functions and α
can be 0.9.

Definition 11. Let c be the quantitative criterion with the range [z1,z2] ⊂ R, and
c(a) ∈ [z1,z2] be the value of a criterion for an object a. Assume an increasing
corresponding utility function with the domain [z1,z2] ⊂ R. Let c = (c1,c2,c3) be
values representing the query, c1,c2,c3 ∈ [z1,z2], c3 = z2 and α ∈ [0,1] be related
to the querying subject. Then the corresponding α-utility function ui

c,α : R→[0,1]
is given as

ui
c,α(c(a)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (c(a)) for c(a) ∈ [c1,c2[,
α for c(a) = c2,

g(c(a)) for c(a) ∈]c2,z2],
0 elsewhere,

(9)

where f ,g are increasing continuous functions such that

lim
c(a)→c−2

f (c(a)) = lim
c(a)→c+

2

g(c(a)) = α, f (z1) = 0, g(z2) = 1.

The fuzzy preference for two objects a1,a2 can be derived from the above mentioned
utility functions in the following way:

Definition 12. Let c be the quantitative criterion with the range [z1,z2] ⊂ R, and
c(ai)∈ [z1,z2], for i = 1,2, be the values of a criterion for objects a1,a2, respectively.
Assume a decreasing utility function with the domain [z1,z2]⊂R. Let c = (c1,c2,c3)
be values representing the query, c1,c2,c3 ∈ [z1,z2], and α ∈ [0,1] be related to
the querying subject. Then the corresponding fuzzy preference for the given objects
a1,a2 is given by the following formula:

FPc(a1,a2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{(

ud
c,α(c(a1))−ud

c,α(c(a2))
)
,0
}

if c(a1) < c(a2) < c2

or c2 > c(a1) > c(a2),
1 if c(a1) < c2 < c(a2),
0 elsewhere.
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Definition 13. Let c be the quantitative criterion with the range [z1,z2] ⊂ R, and
c(ai)∈ [z1,z2], for i = 1,2, be the values of a criterion for objects a1,a2, respectively.
Assume an increasing utility function with the domain [z1,z2]⊂R. Let c2 be a value
explicitly specified by the querying subject, c2 ∈ [z1,z2], and α ∈ [0,1] be parameter
related to the querying subject. Then the corresponding fuzzy preference is given by
the following formula:

FPc(a1,a2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{(

ui
c,α(c(a1))−ui

c,α(c(a2))
)
,0
}

if c(a1) > c(a2) > c2

or c(a2) < c(a1) < c2,

1 if c(a2) < c2 < c(a1),
0 elsewhere.

If we assume ordinal qualitative data, the possible values are described using an ap-
propriate linguistic scale. We will assume only the triangular fuzzy numbers forming
a partition in the sense of Ruspini. The considered support is expressed using the
unit interval, i.e., if the utility function is increasing 0 is the total absence of optimal-
ity of a selected criterion, 1 is the perfect match with the optimal value. (Similarly
for a decreasing utility function 0 is the perfect match with the optimal value and 1
is the total absence of optimality for the criterion in question.) In this case the fuzzy
preference can be based on distances between fuzzy numbers.

Definition 14. Let c be the ordinal qualitative criterion where the minimal value
of the assumed scale is optimal. Denote by c(ai) ∈ [z1,z2] for i = 1,2 the values
of a criterion for objects a1,a2, respectively. Let c = (c1,c2,c3) be a triangular
fuzzy number representing the query, c1,c2,c3 ∈ [0,1]. Then the corresponding fuzzy
preference is given by the following formula:

FPc(a1,a2) =

⎧⎪⎨
⎪⎩

d(c(a1),c(a2)) if c(a1) < c(a2) < c or c < c(a1) > c(a2),
1 if c(a1) < c < c(a2),
0 elsewhere.

,

where d is a distance between fuzzy sets.

Definition 15. Let c be the ordinal qualitative criterion where the optimum is the
maximal value of the assumed scale. Denote by c(ai) ∈ [z1,z2] for i = 1,2 the values
of a criterion for objects a1,a2, respectively. Let c = (c1,c2,c3) be a triangular
fuzzy number representing the query, c1,c2,c3 ∈ [0,1]. Then the corresponding fuzzy
preference is given by the following formula:

FPc(a1,a2) =

⎧⎪⎨
⎪⎩

d(c(a1),c(a2)) if c(a1) > c(a2) > c or c(a2) < c(a1) < c,

1 if c(a2) < c < c(a1),
0 elsewhere,

where d is a distance between fuzzy sets.
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The constructed fuzzy preferences with respect to all criteria can be used to identify
the interaction between pairs of criteria and the relative importance of criteria. The
main idea is very simple. The similarity of preference relations means the similarity
of corresponding criteria and vice versa. More precisely a similarity of preference
relations takes values from the unit interval where 1 means that two criteria are
closely related (identical with respect to a generated ordering) to each other and 0
means that two criteria should be assumed independent of each other. Using simi-
larity between fuzzy preferences we can construct the similarity of criteria (for an
alternative view see [16, 17]).

Definition 16. Let Sim be the similarity between fuzzy preferences FPc1 , FPc2 for
criteria c1, c2, respectively. We say that criteria c1, c2 are similar at the level β if
we have that

Sim(FPc1 ,FPc2)≥ β .

We would like to group criteria with the similarity at a certain level β , therefore
the similarity of preference relations should fulfil some kind of transitivity, e.g.,
TL-transitivity. Assuming TL-transitive similarity relation of preference relation, we
obtain TL-transitive similarity of criteria at β and TL-transitive similarity of criteria
forms a TL-partition (see [1]). It is evident that at β = 0 all criteria belong to the same
group and at β = 1 only criteria with completely identical corresponding preference
structures are grouped together. If we assume all levels β for which the grouping
of criteria is changed, we obtain the levels of the assumed level-dependent Choquet
integral. Let us assume for simplicity that all criteria in the same group have equal
weights and all groups at certain level have the same weight. From the previous
section it is obvious that the level-dependent Choquet integral in our consideration
always exists and it is a TL-evaluator. Using the level-dependent Choquet integral
we obtain a fuzzy preference relation describing objects in our database. Due to
TL-transitivity we are able to identify at least n objects which are better then other
objects. Pairs of objects with the corresponding preference less than given threshold
β are considered as indifferent objects. Then we obtain groups of objects consisting
of at least n objects. The rest of the database is omitted. There are two problems
related to this procedure. The first one is related to the assumption of TL- transitiv-
ity. This fact can cause some cycles in our preference structure. Objects (groups)
corresponding to cycles are indifferent for us, i.e., we cannot separate them using
our preference relation. The second one is connected to the incomparability relation.
Because of Theorem 2 we know that the level-dependent Choquet integral leads to
empty incomparability relation if it is bounded from below by a self dual TL evalu-
ator. It is easy to show that such Choquet integral is not bounded from below by a
self-dual TL-evaluator in general, and this means that the relation of incomparability
is not empty.

Example 6. Let us assume five criteria, x1,x2,x3,x4,x5, and two objects (alterna-
tives), a1 and a2. In the following table we give the strict preferences of a1 to a2, of
a2 to a1, and of indifferences between a1 and a2, respectively, according to particular
criteria.



Preference Modelling Using the Level-Dependent Choquet Integral 181

Table 2 Strict preferences and indifferences with respect to particular criteria

x1 x2 x3 x4 x5
Pi(a1,a2) 0.3 0 1 0.7 0
Pi(a1,a2) 0 0.3 0 0 0.7
Ii(a1,a2) 0.7 0.7 0 0.3 0.3

Table 3 Weights of criteria at corresponding levels

x1 x2 x3 x4 x5
α ≤ 0.3 1/6 1/6 1/3 1/6 1/6
0.3 < α ≤ 0.7 1/4 1/4 1/4 1/8 1/8
0.7 < α ≤ 1 1/5 1/5 1/5 1/5 1/5

The weights from Table 3 (depending on particular levels) define the generalized
capacity, let us denote it by μG. We count now the strict preferences and the indif-
ference using the level-dependent Choquet integral with respect to μG.

P(a1,a2) = ChG(Pi(a1,a2),μG) = 0.3

(
1
6

+
1
3

+
1
6

)
+ 0.4

(
1
4

+
1
8

)
+ 0.3

1
5

= 0.41

P(a2,a1) = ChG(Pi(a2,a1),μG) = 0.3

(
1
6

+
1
6

)
+ 0.4

1
8

= 0.15

I(a1,a2) = ChG(Ii(a1,a2),μG) = 0.3

(
1
6

+
1
6

+
1
6

+
1
6

)
+ 0.4

(
1
4

+
1
4

)
= 0.4,

and hence J(a1,a2) = 1−SL(P(a1,a2),P(a2,a1), I(a1,a2)) = 0.04. This means that
in this example the lack of comparability (i.e., the incomparability) is not high. But
in general it may cause some troubles.

It means that the aggregation could result to a partial order, where some elements
are, to a certain level, incomparable. In order to have an empty incomparability
relation we have to add one additional step to our procedure, a modification of the
Choquet integral. From Example 6 and from the last section it is evident that there is
a problem with weights on levels under 0.5 which should be completely determined
by weights on levels above 0.5. It means that for α ≥ 0.5 we construct weights as
was mentioned above and for each α < 0.5 we put the corresponding weights equal
to those of the dual level 1−α . If we repeat the first step of our procedure using the
newly defined weights we obtain the preference structure with empty incomparabil-
ity relation. So we are able to select at least n objects related to query. In general
these objects can be separated into several groups. We have a comparison between
groups but objects within groups are indifferent.

In general, we may get yet another problem. Namely, if the group of objects is too
large, we can possibly get too much levels (values) of criteria to be distinguished. In
such a case, at least in the first step we can transform the values of criteria (utilizing
Theorems 8 and 9) to simplify our model.
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Table 4 Values of criteria for our system of objects

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

x1 7 6,5 6,5 6,2 5,5 7,3 7,5 7,8 4,5 4,5
x2 11,9 10,4 11,3 14,7 8,8 20,2 26,7 9 8,9 9,3
x3 70 68 88 77 51 105 110 50 66 38
x4 medium high low medium medium medium high low low low
x5 medium good medium good good good good low low low
x6 medium medium medium medium high low low medium medium low
x7 medium high low low low high high medium medium high

5 Application

In this section we illustrate a possible application of the level-dependent Choquet
integral to the decision problem with interacting parameters if weights are not pro-
vided by a decision maker in the query. Assume the following simple example of
selection of n appropriate cars for a one person with respect to the set of criteria.

Example 7. Let A = {a1,a2, . . . ,a10} be the set of 10 cars (Hatchback, gas) we
would like to choose from. We have a set of 7 criteria X = {x1,x2, . . . ,x7}, where x1

is the average gas mileage, x2 is the price (in thousands EUR), x3 is the power, x4

is the safety of passengers, x5 are the additional features, x6 is the statistic of stolen
cars, x7 are the additional costs. It is easy to see that x1,x2,x3 are quantitative cri-
teria, x4,x5,x6,x7 are ordinal qualitative criteria. Moreover, it is obvious that utility
functions for x1,x2 are decreasing, a utility function for x3 is increasing, for x4,x5

the maximum of a linguistic scale is the optimal value, for x6,x7 the minimum of
a linguistic scale is the optimal value. To make the model as simple as possible,
assume that utility functions are piecewise linear and linguistic scales have three
levels, low, medium, good, forming the fuzzy partition (in the sense of Ruspini) of
the unit interval. Let our query Q be represented by the following real numbers and
linguistuc terms (6; 15; 50; high; medium; low, low). We need to select the best
three cars. Let us have the following values of criteria for the set of objects:

We will deal with the following utility functions for quantitative criteria.
x1 - mileage

ud
x1,0(x(ai)) =

{
7−x(ai)

3 for x(ai) ∈ [4,7[,
0 for x(ai)≥ 7,

x2 - price (in thousands EUR)

ud
x2,0(x(ai)) =

{
15−x(ai)

8 for x(ai) ∈ [7,15[,
0 for x(ai)≥ 15,

x3 - the power

ui
x3,1(x(ai)) =

⎧⎪⎨
⎪⎩

0 for x(ai)≤ 50,
x−50

20 for x(ai) ∈]50,70],
1 for x(ai) > 70.
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We will use the following distance between two values in a selected scale:

d(z1,z2) =

⎧⎪⎨
⎪⎩

0 if z1 = z2,

0.5 if z1,z2 are adjacent,

1 elsewhere.
Using definitions 12-15 we obtain fuzzy preferences with respect to the given

criteria and query listed in Tables 5-11.

Table 5 Pair-wise preferences of objects given for criterion x1

x1 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.00 0.00 0.00 0.00 0.00 0.10 0.17 0.27 0.00 0.00
a2 0.17 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
a3 0.17 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
a4 0.27 0.10 0.10 0.00 0.00 1.00 1.00 1.00 0.00 0.00
a5 0.50 0.33 0.33 0.23 0.00 1.00 1.00 1.00 0.00 0.00
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.17 0.00 0.00
a7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a9 0.83 0.67 0.67 0.57 0.33 0.93 1.00 1.00 0.00 0.00
a10 0.83 0.67 0.67 0.57 0.33 0.93 1.00 1.00 0.00 0.00

Table 6 Pair-wise preferences of objects given for criterion x2

x2 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.00 0.00 0.00 0.35 0.00 1.00 1.00 0.00 0.00 0.00
a2 0.19 0.00 0.11 0.54 0.00 1.00 1.00 0.00 0.00 0.00
a3 0.08 0.00 0.00 0.43 0.00 1.00 1.00 0.00 0.00 0.00
a4 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
a5 0.39 0.20 0.31 0.74 0.00 1.00 1.00 0.02 0.01 0.06
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00
a7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a8 0.36 0.18 0.29 0.71 0.00 1.00 1.00 0.00 0.00 0.04
a9 0.38 0.19 0.30 0.73 0.00 1.00 1.00 0.01 0.00 0.05
a10 0.33 0.14 0.25 0.68 0.00 1.00 1.00 0.00 0.00 0.00

Table 7 Pair-wise preferences of objects given for criterion x3

x3 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.00 0.10 0.00 0.00 0.95 0.00 0.00 1.00 0.20 1.00
a2 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.90 0.10 1.00
a3 0.90 1.00 0.00 0.55 1.00 0.00 0.00 1.00 1.00 1.00
a4 0.35 0.45 0.00 0.00 1.00 0.00 0.00 1.00 0.55 1.00
a5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.65
a6 1.00 1.00 0.85 1.00 1.00 0.00 0.00 1.00 1.00 1.00
a7 1.00 1.00 1.00 1.00 1.00 0.25 0.00 1.00 1.00 1.00
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60
a9 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.80 0.00 1.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 8 Pair-wise preferences of objects given for criterion x4

x4 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.50 0.50
a2 0.50 0.00 1.00 0.50 0.50 0.50 0.00 1.00 1.00 1.00
a3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a4 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.50 0.50
a5 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.50 0.50
a6 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.50 0.50
a7 0.50 0.00 1.00 0.50 0.50 0.50 0.00 1.00 1.00 1.00
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 9 Pair-wise preferences of objects given for criterion x5

x5 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50
a2 0.50 0.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00
a3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50
a4 0.50 0.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00
a5 0.50 0.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00
a6 0.50 0.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00
a7 0.50 0.00 0.50 0.00 0.00 0.00 0.00 1.00 1.00 1.00
a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 10 Pair-wise preferences of objects given for criterion x6

x6 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
a2 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
a3 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
a4 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
a5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a6 0.50 0.50 0.50 0.50 1.00 0.00 0.00 0.50 0.50 0.00
a7 0.50 0.50 0.50 0.50 1.00 0.00 0.00 0.50 0.50 0.00
a8 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
a9 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
a10 0.50 0.50 0.50 0.50 1.00 0.00 0.00 0.50 0.50 0.00
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Table 11 Pair-wise preferences of objects given for criterion x7

x7 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

a1 0.00 0.50 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.50
a2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a3 0.50 1.00 0.00 0.00 0.00 1.00 1.00 0.50 0.50 1.00
a4 0.50 1.00 0.00 0.00 0.00 1.00 1.00 0.50 0.50 1.00
a5 0.50 1.00 0.00 0.00 0.00 1.00 1.00 0.50 0.50 1.00
a6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a8 0.00 0.50 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.50
a9 0.00 0.50 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.50
a10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

To compute a similarity between preference matrices for criteria xi,x j, for all
i, j ∈ {1,2, . . . ,7} , i �= j, we can use for example the following formula:

Sim(xi,x j) = 1− ∑(pk)
∣∣FPxi(ap,ak)−FPxj (ap,ak)

∣∣
90

,

where p,k ∈ {1,2, . . . ,10}.
Then we obtain similarities for pairs of criteria (ordered descending) given in

Table 12.

Table 12 Similarities counted for couples of criteria

Sim(x4,x5) Sim(x1,x2) Sim(x4,x6) Sim(x2,x7) Sim(x3,x5) Sim(x1,x7) Sim(x3,x4)
0.87 0.79 0.72 0.70 0.70 0.69 0.67

Sim(x5,x6) Sim(x3,x6) Sim(x5,x7) Sim(x1,x6) Sim(x4,x7) Sim(x2,x6) Sim(x6,x7)
0.67 0.66 0.65 0.61 0.61 0.58 0.58

Sim(x1,x4) Sim(x1,x5) Sim(x2,x4) Sim(x3,x7) Sim(x2,x5) Sim(x1,x3) Sim(x2,x3)
0.56 0.56 0.54 0.53 0.49 0.40 0.33

If we analyze Table 12, we can identify, e.g., the levels for the level-dependent
Choquet integral and corresponding groups of criteria, given in Table 13.

Table 13 Levels of level-dependent Choquet integral and corresponding groups

0.87 x4,x5
0.79 x1,x2

0.69 x1,x2,x7

0.66 x4,x5,x6,x3

0.33 all criteria
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If we assume that criteria in groups are of the same importance, we obtain the
additive weights listed in Table 14.

Table 14 Weights of criteria at corresponding levels

x1 x2 x3 x4 x5 x6 x7

α ≤ 0.33 1/7 1/7 1/7 1/7 1/7 1/7 1/7
0.33≤ α ≤ 0.66 1/6 1/6 1/8 1/8 1/8 1/8 1/6
0.66≤ α ≤ 0.69 1/12 1/12 1/4 1/12 1/12 1/4 1/12
0.69≤ α ≤ 0.79 1/10 1/10 1/5 1/10 1/10 1/5 1/5
0.79≤ α ≤ 0.87 1/6 1/6 1/6 1/12 1/12 1/6 1/6

0.87 ≤ α ≤ 1 1//7 1/7 1/7 1/7 1/7 1/7 1/7

From Table 14 we can define the level dependent capacity μG and compute strict
preferences. We illustrate it by means of the level-dependent Choquet integral for
pairs (a1,a2) ,(a1,a3) (a2,a1)(a2,a3) (a3,a1)(a3,a2) (see Table 15).

Table 15 Strict preferences between objects a1,a2,a3

FP a1 a2 a3

x1 0 0.1 0.09
x2 0.18 0 0.21
x3 0.25 0.3 0

Using the constructed strict fuzzy preference we obtain the following ordering:
a3 > a2 > a1. If we compute the strict fuzzy preference for all 90 pairs of objects,
we can derive an analogy for all objects.

6 Conclusions

In this paper we have discussed the possibility to apply the modified (level-depend-
ent) Choquet integral to a monopersonal multicriterial decision-making problem.
We have used the level-dependent Choquet integral to construct a simple decision-
making algorithm. The proposed algorithm produces an outranking of objects tak-
ing into account an interaction between criteria. It is close to the ELECTRE method
(see [8]). Finally, our approach is illustrated with choosing an appropriate car. In a
real situation, this approach may be applied to choosing a set of objects from on-
line available data set according to a query given by the client. We presented here
mainly the mathematical foundation of the proposed algorithm. Its detailed compar-
ison with ELECTRE methods, limitations of applicability and careful verification
of proposed algorithm from the decision-making point of view is goal of our fu-
ture research. Moreover, in our future work we intend to study further properties of
the proposed algorithm, especially an appropriate construction of weights, and the
possibility to deal with multipersonal decision-making problems.
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Majority Rules Generated by Mixture Operators

Bonifacio Llamazares and Ricardo Alberto Marques Pereira

Abstract. Aggregation operators are a fundamental tool in multicriteria decision
making procedures. Due to the huge variety of aggregation operators existing in
the literature, one of the most important issues in this field is the choice of the best-
suited operators in each aggregation process. Given that some aggregation operators
can be seen as extensions of majority rules to the field of gradual preferences, we
can choose the aggregation operators according to the class of majority rule that we
want to obtain when individuals do not grade their preferences. Thus, in this paper
we consider mixture operators to aggregate individual preferences and we charac-
terize those that allow us to extend some majority rules, such as simple, Pareto, and
absolute special majorities, to the field of gradual preferences.

1 Introduction

Aggregation operators are a fundamental tool in multicriteria decision making pro-
cedures. For this reason, they have received a great deal of attention in the literature
(see, for instance, Marichal [6], Calvo, Mayor and Mesiar [1] and Xu and Da [15]).

An interesting kind of non-monotonic aggregation is obtained when mixture
operators are used. Mixture operators are weighted averaging operators in which
the weights depend on the given attribute satisfaction values through appropriate
weighting functions. Mixture operators have been introduced in Marques Pereira
and Pasi [8] and Marques Pereira [7], and further investigated in Ribeiro and
Marques Pereira [11,12], Marques Pereira and Ribeiro [9], Mesiar and Špirková [10]
and Špirková [13, 14].
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Mixture operators can be used to aggregate individual preferences into a collec-
tive preference. Given that some aggregation operators can be seen as extensions of
majority rules to the field of gradual preferences, the aim of this paper is to deter-
mine the mixture operators that correspond to extensions of some particular classes
of majority rules.

We consider individual preferences expressed as pairwise comparisons between
alternatives, with preference intensity values in the [0,1] interval. In this way each
pairwise comparison is associated with a graded preference profile. Once an aggre-
gation operator is chosen, each graded preference profile produces a collective pref-
erence intensity value in the unit interval. On the basis of this value and through a
kind of strong α-cut, where α ∈ [0.5,1), we can decide if an alternative is chosen or
if both alternatives are collectively indifferent. When individuals do not grade their
preferences (that is, when they are represented through the values 0, 0.5, and 1), the
previous procedure allows us to obtain a majority rule. Hence, once α is fixed, it is
possible to know which class of majority rule is present in the aggregation process
according to the actual operator that is used.

We note that this procedure has already been used to characterize several classes
of aggregation functions that extend some well-known majority rules. Thus, Garcı́a-
Lapresta and Llamazares [3] generalized two classes of majorities based on
difference of votes by using quasi-arithmetic means and window OWA operators
as aggregation functions. Likewise, Llamazares [4, 5] has characterized the OWA
operators that generalize simple, Pareto, and absolute special majorities.

In this paper we characterize the mixture operators that allow us to extend simple,
Pareto, and absolute special majorities to the field of gradual preferences.

The organization of the paper is as follows. In Section 2 we introduce the model
used for extending a majority rule through an aggregation function. In Section 3 we
show some characterizations of simple, Pareto, and absolute special majorities. In
Section 4 we recall the construction of mixture operators and we determine those
that satisfy the self-duality property. Section 5 presents the main results of the paper.
We conclude in Section 6.

2 A Model for Extending Majority Rules

We consider m voters, with m ≥ 3, and two alternatives x and y. Voters represent
their preferences between x and y through variables ri. If the individuals grade their
preferences, then ri ∈ [0,1] denotes the intensity with which voter i prefers x to y.
We also suppose that 1− ri is the intensity with which voter i prefers y to x. If
the individuals do not grade their preferences, then ri ∈ {0,0.5,1} represents that
voter i prefers x to y (ri = 1), prefers y to x (ri = 0), or is indifferent between both
alternatives (ri = 0.5). The justification of this three-valued representation can be
found in Garcı́a-Lapresta and Llamazares [2].

A profile of preferences is a vector r = (r1, . . . ,rm) that describes voters’ prefer-
ences between alternative x and alternative y. Clearly, 1− r = (1− r1, . . . ,1− rm)
shows voters’ preferences between y and x. For each profile of preferences, the col-
lective preference will be obtained by means of an aggregation function.
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Definition 1. An aggregation function is a mapping F : [0,1]m −→ [0,1]. A discrete
aggregation function (DAF) is a mapping H : {0,0.5,1}m −→ {0,0.5,1}.
The interpretation of the collective preference is consistent with the foregoing in-
terpretation for individual preferences. Thus, if F is an aggregation function, then
F(r) is the intensity with which x is collectively preferred to y. Analogously, if
H is a DAF, then H(r) shows us if an alternative is collectively preferred to the
other (H(r) ∈ {0,1}), or instead if the two alternatives are collectively indifferent
(H(r) = 0.5).

Next we present some well-known properties of aggregation functions: symme-
try, monotonicity, self-duality and idempotency. Symmetry means that the collective
intensity of preference depends only on the set of individual intensities of prefer-
ence, but not on which individuals have those preference intensities. Monotonicity
means that the collective intensity of preference does not decrease if no individual
intensity of preference decreases. Self-duality means that if everyone reverses their
preference intensities between x and y, then the collective intensity of preference is
also reversed. Finally, idempotency means that the collective intensity of preference
coincides with the individual preference intensities when these are all the same.

Given r ∈ [0,1], r,s ∈ [0,1]m and σ a permutation on {1, . . . ,m}, we will use the
following notation: rσ = (rσ(1), . . . ,rσ(m)); 1 = (1, . . . ,1); r ·1 = (r, . . . ,r); and r≥ s
will denote ri ≥ si for all i ∈ {1, . . . ,m}.
Definition 2. Let F be an aggregation function.

1. F is symmetric if for every profile r ∈ [0,1]m and for every permutation σ of
{1, . . . ,m} the following holds

F(rσ ) = F(r).

2. F is monotonic if for all pair of profiles r,s ∈ [0,1]m the following holds

r≥ s ⇒ F(r)≥ F(s).

3. F is self-dual if for every profile r ∈ [0,1]m the following holds

F(1− r) = 1−F(r).

4. F is idempotent if for every r ∈ [0,1] the following holds

F(r ·1) = r.

All the previous properties are also valid for DAFs. Next we show some conse-
quences of the previous properties. The cardinal of a set will be denoted by #.

Remark 1. If H is a symmetric DAF, then H(r) depends only on the number of 1,
0.5, and 0. Given a discrete profile r, if we consider

m1 = #{i | ri = 1}, m2 = #{i | ri = 0.5}, m3 = #{i | ri = 0},

then m1 + m2 + m3 = m.
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Definition 3. Let H be a symmetric DAF and

M = {(m1,m2,m3) ∈ {0, . . . ,m}3 |m1 + m2 + m3 = m}.

We say that H is represented by the function H : M −→ {0,0.5,1}, defined by

H (m1,m2,m3) = H(1, (m1). . . ,1,0.5, (m2). . . ,0.5,0, (m3). . . ,0).

Definition 4. The binary relation � on M is defined by

(m1,m2,m3)� (n1,n2,n3) ⇔
{

m1 ≥ n1,

m1 + m2 ≥ n1 + n2.

We note that � is a partial order on M (reflexive, antisymmetric, and transitive
binary relation).

Remark 2. If H is a symmetric DAF represented by H , then it is monotonic if and
only if H (m1,m2,m3) ≥H (n1,n2,n3) for all (m1,m2,m3),(n1,n2,n3) ∈M such
that (m1,m2,m3)� (n1,n2,n3).

Remark 3. If H is a symmetric DAF represented by H , then it is self-dual if and
only if H (m3,m2,m1) = 1−H (m1,m2,m3) for all (m1,m2,m3)∈M . In this case,
H is characterized by the set H −1(1), since

H −1(0) = {(m1,m2,m3) ∈M |H (m3,m2,m1) = 1},
H −1(0.5) = M \ (H −1(1)∪H −1(0)

)
.

When a DAF is self-dual, both alternatives have an egalitarian treatment. Therefore,
if the DAF is also symmetric and the number of voters who prefer x to y coincides
with the number of voters who prefer y to x, then x and y are collectively indifferent.

Remark 4. If H is a symmetric and self-dual DAF represented by H , then for all
(m1,m2,m3) ∈M such that m1 = m3 we have H (m1,m2,m3) = 0.5.

By Remark 3, it is possible to define a symmetric and self-dual DAF H by means
of the elements (m1,m2,m3) ∈M where the mapping that represents H takes the
value 1. Based on this, we now show some DAFs widely used in real decisions.

Definition 5

1. The simple majority, HS, is the symmetric and self-dual DAF defined by

HS(m1,m2,m3) = 1 ⇔ m1 > m3.

2. The absolute majority, HA, is the symmetric and self-dual DAF defined by

HA(m1,m2,m3) = 1 ⇔ m1 >
m
2

.
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3. The Pareto majority, HP, is the symmetric and self-dual DAF defined by

HP(m1,m2,m3) = 1 ⇔ m1 > 0 and m3 = 0.

4. The unanimous majority, HU , is the symmetric and self-dual DAF defined by

HU(m1,m2,m3) = 1 ⇔ m1 = m.

5. Given β ∈ [0.5,1), the absolute special majority Qβ is the symmetric and self-
dual DAF defined by

Hβ (m1,m2,m3) = 1 ⇔ m1 > β m.

It should be noted that absolute and unanimous majorities are specific cases of ab-
solute special majorities. Moreover, given β ,β ′ ∈ [0.5,1), the absolute special ma-
jorities Qβ and Qβ ′ are the same if and only if [β m] = [β ′m], where [a] indicates the
integer part of the number a.

Given an aggregation function, we can generate different DAFs by means of a pa-
rameter α ∈ [0.5,1). The procedure employed is based on strong α-cuts. Moreover,
it is easy to check that the DAFs obtained are symmetric, monotonic, and self-dual
when the original aggregation function satisfies these properties.

Definition 6. Let F be an aggregation function and α ∈ [0.5,1). Then the α-DAF
associated with F is the DAF Fα defined by

Fα(r) =

⎧⎪⎨
⎪⎩

1, if F(r) > α,

0.5, if 1−α ≤ F(r)≤ α,

0, if F(r) < 1−α.

Remark 5. Given an aggregation function F and α ∈ [0.5,1), the following state-
ments hold:

1. If F is symmetric, then Fα is also symmetric.
2. If F is monotonic, then Fα is also monotonic.
3. If F is self-dual, then Fα is also self-dual.

Similar to the case of symmetric DAFs, when F is a symmetric aggregation function,
the restriction F|{0,0.5,1}m can be represented by F : M −→ [0,1], where

F (m1,m2,m3) = F(1, (m1). . . ,1,0.5, (m2). . . ,0.5,0, (m3). . . ,0).

Now we show the relationship between F and the family of mappings Fα that
represent the α-DAFs associated with F .

Remark 6. Let F be a symmetric aggregation function and α ∈ [0.5,1). Then Fα
and F|{0,0.5,1}m can be represented by the mappings Fα and F , respectively. The
following relationship between these mappings exists:
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Fα(m1,m2,m3) =

⎧⎪⎨
⎪⎩

1, if F (m1,m2,m3) > α,

0.5, if 1−α ≤F (m1,m2,m3)≤ α,

0, if F (m1,m2,m3) < 1−α.

3 Characterization of Simple, Pareto, and Absolute Special
Majorities

In order to generalize simple, Pareto and absolute special majorities by means of
mixture operators, we show in this section some characterizations of these majority
rules. The proofs of these results can be found in Llamazares [4, 5].

Simple majority is characterized through the elements (m1,m2,m3) ∈M such
that m1 = m3 + 1.

Proposition 1. Let H be a symmetric, monotonic, and self-dual DAF represented
by H . Then the following statements are equivalent:

1. H = HS.
2. H (m3 + 1,m− (2m3 + 1),m3) = 1 for all m3 ∈ {0, . . . , [m−1

2 ]}.
Pareto and absolute special majorities are both characterized through two elements
of M . The first one corresponds to the minimum support that alternative x needs to
be selected. The second one corresponds to the maximum support that alternative x
can obtain without being selected.

Proposition 2. Let H be a symmetric, monotonic, and self-dual DAF represented
by H . Then the following statements are equivalent:

1. H = HP.
2. H (1,m−1,0) = 1 and H (m−1,0,1) < 1.

Proposition 3. Let H be a symmetric, monotonic, and self-dual DAF represented
by H and β ∈ [0.5,1). Then the following statements are equivalent:

1. H = Qβ .
2. H ([β m]+ 1,0,m− [β m]−1)= 1 and H ([β m],m− [β m],0) < 1.

4 Mixture Operators

Mixture operators have been introduced in Marques Pereira and Pasi [8] and Mar-
ques Pereira [7] as weighted averaging operators in which the usual constant weights
are replaced by appropriate weighting functions depending on the attribute satisfac-
tion values. The usual weighted averaging operators remain a particular case.

Definition 7. Let ϕ : [0,1]−→ (0,∞) be a continuous function. The mixture operator
W ϕ : [0,1]m −→ [0,1] generated by ϕ is the aggregation function defined by
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W ϕ(r) =

m

∑
i=1

ϕ(ri)ri

m

∑
j=1

ϕ(r j)
.

The mixture operator W ϕ (r) can be written as a weighted average of the various ri,

W ϕ (r) =
m

∑
i=1

wi(r)ri,

where the classical constant weights wi are replaced by the weighting functions

wi(r) =
ϕ(ri)

m

∑
j=1

ϕ(r j)
.

Mixture operators are symmetric and idempotent aggregation functions. The
monotonicity of mixture operators has been studied by Marques Pereira and Pasi [8],
Marques Pereira [7], Ribeiro and Marques Pereira [11, 12], Marques Pereira and
Ribeiro [9], Mesiar and Špirková [10] and Špirková [13, 14].

With regard to the self-duality property, it is easy to check that the mixture oper-
ator W ϕ is self-dual if and only if for every r ∈ [0,1]m the following holds

m

∑
i=1

(
wi(r)−wi(1− r)

)
ri = 0. (1)

From this relationship, it is possible to obtain a characterization of self-dual mix-
ture operators based on the fulfillment of a similar property by the function ϕ .

Proposition 4. Let W ϕ be the mixture operator generated by ϕ . W ϕ is self-dual if
and only if ϕ(r) = ϕ(1− r) for all r ∈ [0,1].

Proof. Suppose that W ϕ(r) is self-dual. Given r ∈ (0,1], consider r0 = (r,0, . . . ,0).
Since

w1(r0) =
ϕ(r)

ϕ(r)+ (m−1)ϕ(0)
, w1(1− r0) =

ϕ(1− r)
ϕ(1− r)+ (m−1)ϕ(1)

,

by (1), we have

ϕ(r)
ϕ(r)+ (m−1)ϕ(0)

=
ϕ(1− r)

ϕ(1− r)+ (m−1)ϕ(1)
.

Therefore ϕ(r)ϕ(1) = ϕ(1− r)ϕ(0). Particularly, if r = 1/2 then ϕ(1) = ϕ(0) and,
consequently, ϕ(r) = ϕ(1− r) for all r ∈ [0,1].

On the other hand, if ϕ(r) = ϕ(1− r) for all r ∈ [0,1], then wi(r) = wi(1− r) for
all r∈ [0,1]m and for all i∈ {1, . . . ,m}. Therefore, condition (1) is satisfied. ��
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Remark 7. If W ϕ is the self-dual mixture operator generated by ϕ and γ =
ϕ(0.5)
ϕ(1)

,

then the mapping W ϕ that represents W ϕ |{0,0.5,1}m takes the following values:

W ϕ (m1,m2,m3) = W ϕ (1, (m1). . . ,1 , 0.5, (m2). . . ,0.5 , 0, (m3). . . ,0)

=
2m1ϕ(1)+ m2ϕ(0.5)

2((m1 + m3)ϕ(1)+ m2ϕ(0.5))
=

2m1 + m2γ
2(m1 + m3 + m2γ)

.

5 Majority Rules Obtained through Mixture Operators

In this section we establish the main results of the paper. Simple, Pareto, and absolute
special majorities are generated through α-DAFs associated with self-dual mixture
operators. In this way, the outcomes of this section allow us to extend these majority
rules to the framework of gradual preferences by means of mixture operators.

First of all, we give a necessary and sufficient condition in order to obtain the
simple majority through the α-DAFs associated with self-dual mixture operators.

Theorem 1. Let W ϕ be a self-dual mixture operator and γ =
ϕ(0.5)
ϕ(1)

. The following

statements hold:

1. If γ ≥ 1:

W ϕ
α = HS ⇔ α <

1
2

+
1

2(1 +(m−1)γ)
.

2. If γ < 1:

a. If m is odd:

W ϕ
α = HS ⇔ α <

1
2

+
1

2m
.

b. If m is even:

W ϕ
α = HS ⇔ α <

1
2

+
1

2(m+ γ−1)
.

Proof. Let W ϕ be the mapping that represents W ϕ |{0,0.5,1}m . By Proposition 1 and
Remark 6 we have that the condition W ϕ

α = HS is equivalent to W ϕ(m3 + 1,m−
(2m3 + 1),m3) > α for all m3 ∈ {0, . . . , [m−1

2 ]}. By Remark 7 we have

W ϕ(m3 + 1,m− (2m3 + 1),m3) =
2(m3 + 1)+ (m− (2m3 + 1))γ

2(2m3 + 1 +(m− (2m3+ 1))γ)

=
1
2

+
1

2(2m3 + 1 +(m− (2m3+ 1))γ)

=
1
2

+
1

2(mγ +(2m3 + 1)(1− γ))
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for all m3 ∈ {0, . . . , [m−1
2 ]}. Therefore,

W ϕ
α = HS ⇔ α < min

m3∈{0,...,[ m−1
2 ]}

{
1
2

+
1

2(mγ +(2m3 + 1)(1− γ))

}
.

We distinguish two cases:

1. If γ ≥ 1, then the minimum is reached when m3 = 0. Therefore,

W ϕ
α = HS ⇔ α <

1
2

+
1

2(1 +(m−1)γ)
.

2. If γ < 1, then the minimum is reached when m3 = [m−1
2 ]. We distinguish two

cases:

a. If m is odd, then m3 = m−1
2 . Therefore,

W ϕ
α = HS ⇔ α <

1
2

+
1

2m
.

b. If m is even, then m3 = m
2 −1. Therefore,

W ϕ
α = HS ⇔ α <

1
2

+
1

2(m+ γ−1)
. ��

From the previous result it is possible to obtain the values of α for which the simple
majority can be generated through the α-DAFs associated with self-dual mixture
operators.

Corollary 1

1. If m is odd, then there exists a self-dual mixture operator W ϕ such that W ϕ
α = HS

if and only if α <
1
2

+
1

2m
.

2. If m is even, then there exists a self-dual mixture operator W ϕ such that W ϕ
α = HS

if and only if α <
1
2

+
1

2(m−1)
.

Proof

1. Suppose first that there exists a self-dual mixture operator W ϕ such that W ϕ
α =

HS. By (1) and (2a) of Theorem 1, and given that

max
γ∈[1,∞)

{
1
2

+
1

2(1 +(m−1)γ)

}
=

1
2

+
1

2m
,

we have α <
1
2

+
1

2m
.

For the converse, it is sufficient to consider a self-dual mixture operator W ϕ such
that γ ≤ 1, i.e., ϕ(0.5)≤ ϕ(1).
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2. Suppose first that there exists a self-dual mixture operator W ϕ such that W ϕ
α =

HS. By (1) and (2b) of Theorem 1, and given that

max
γ∈[1,∞)

{
1
2

+
1

2(1 +(m−1)γ)

}
=

1
2

+
1

2m
,

sup
γ∈(0,1)

{
1
2

+
1

2(m+ γ−1)

}
=

1
2

+
1

2(m−1)

and

max

{
1
2

+
1

2m
,

1
2

+
1

2(m−1)

}
=

1
2

+
1

2(m−1)
,

we have α <
1
2

+
1

2(m−1)
.

For the converse, given α <
1
2

+
1

2(m−1)
, it is sufficient to consider a self-

dual mixture operator W ϕ such that γ <
1

2α−1
− (m− 1), i.e., ϕ(0.5) <

ϕ(1)
(

1
2α−1

− (m−1)
)

. ��

In the following theorem we characterize the self-dual mixture operators whose
associated α-DAFs correspond with the Pareto majority.

Theorem 2. Let W ϕ be a self-dual mixture operator and γ =
ϕ(0.5)
ϕ(1)

. The following

statement holds:

W ϕ
α = HP ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ <
2

(m−1)(m−2)
and

1− 1
m
≤ α <

1
2

+
1

2(1 +(m−1)γ)
.

Proof. Let W ϕ be the mapping that represents W ϕ |{0,0.5,1}m . By Proposition 2 and
Remark 6 we have that the condition W ϕ

α = HP is equivalent to W ϕ(m−1,0,1)≤α
and W ϕ (1,m−1,0) > α . Since by Remark 7 we have

W ϕ(m−1,0,1) =
2(m−1)

2m
, W ϕ (1,m−1,0) =

2 +(m−1)γ
2(1 +(m−1)γ)

;

then

W ϕ
α = HP ⇔ 1− 1

m
≤ α <

1
2

+
1

2(1 +(m−1)γ)
.
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To demonstrate the thesis of the theorem it is sufficient to take into account that

1− 1
m

<
1
2

+
1

2(1 +(m−1)γ)
⇔ m−2

2m
<

1
2(1 +(m−1)γ)

⇔ 1 +(m−1)γ <
m

m−2

⇔ γ <
2

(m−1)(m−2)
. ��

In the next theorem we give a necessary and sufficient condition in order to ob-
tain the absolute special majorities through the α-DAFs associated with self-dual
mixture operators.

Theorem 3. Let W ϕ be a self-dual mixture operator and γ =
ϕ(0.5)
ϕ(1)

. The following

statement holds:

W ϕ
α = Qβ ⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ > 2[β m]
m− [β m]−1

(m− [β m])(2[β m]+ 2−m)
and

1
2

+
1

2

(
1 +

m− [β m]
[β m]

γ
) ≤ α <

[β m]+ 1
m

.

Proof. Let W ϕ be the mapping that represents W ϕ |{0,0.5,1}m . By Proposition 3 and
Remark 6 we have that the condition W ϕ

α = Qβ is equivalent to W ϕ([β m],m−
[β m],0)≤ α and W ϕ ([β m]+ 1,0,m− [β m]−1)> α . By Remark 7 we have

W ϕ([β m],m− [β m],0) =
2[β m]+ (m− [β m])γ

2([β m]+ (m− [β m])γ)
,

W ϕ ([β m]+ 1,0,m− [β m]−1)=
2([β m]+ 1)

2m
.

Since

2[β m]+ (m− [β m])γ
2([β m]+ (m− [β m])γ)

=
1
2

+
[β m]

2([β m]+ (m− [β m])γ)

=
1
2

+
1

2

(
1 +

m− [β m]
[β m]

γ
) ,

then

W ϕ
α = Qβ ⇔

1
2

+
1

2

(
1 +

m− [β m]
[β m]

γ
) ≤ α <

[β m]+ 1
m

.
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To demonstrate the thesis of the theorem it is sufficient to take into account that

1
2

+
1

2

(
1 +

m− [β m]
[β m]

γ
) <

[β m]+ 1
m

⇔

⇔ [β m]
2([β m]+ (m− [β m])γ)

<
2[β m]+ 2−m

2m

⇔ [β m]+ (m− [β m])γ >
m[β m]

2[β m]+ 2−m

⇔ γ > 2[β m]
m− [β m]−1

(m− [β m])(2[β m]+ 2−m)
. ��

As particular cases of this theorem it is straightforward to give necessary and suffi-
cient conditions to obtain absolute and unanimous majorities through α-DAFs as-
sociated with self-dual mixture operators.

Corollary 2. Let W ϕ be a self-dual mixture operator and γ =
ϕ(0.5)
ϕ(1)

. The following

statements hold:

1. a. If m is odd:

W ϕ
α = HA ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ >
(m−1)2

m+ 1
and

1
2

+
1

2

(
1 +

m+ 1
m−1

γ
) ≤ α <

1
2

+
1

2m
.

b. If m is even:

W ϕ
α = HA ⇔ γ >

m
2
−1 and

1
2

+
1

2(1 + γ)
≤ α <

1
2

+
1
m

.

2. W ϕ
α = HU ⇔ α ≥ 1

2
+

m−1
2(m+ γ−1)

.

Proof
1. It is sufficient to take into account the following:

a. If m is odd: W ϕ
α = HA ⇔ [β m] =

m−1
2

.

b. If m is even: W ϕ
α = HA ⇔ [β m] =

m
2

.

2. It is sufficient to take into account that W ϕ
α = HU ⇔ [β m] = m−1. ��

6 Concluding Remarks

In this paper we have investigated under which conditions the α-DAF associated
with a self-dual mixture operator corresponds to one of the three classical major-
ity rules used in social choice theory: simple majority HS, Pareto majority HP, and
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absolute special majority Qβ . Interestingly, the necessary and sufficient conditions
presented in Theorems 1, 2 and 3 depend only on the dimension m and on the ratio
γ = ϕ(0.5)/ϕ(1), whose difference from the unit value encodes a global measure of
how much the self-dual mixture operator considered differs from the plain averaging
operator, with constant weights 1/m.
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VA002B08), the Spanish Ministry of Education and Science (Project SEJ2006-04267) and
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7. Marques Pereira, R.A.: The orness of mixture operators: The exponencial case. In: Pro-
ceedings of the 8th International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-based Systems (IPMU 2000), Madrid, Spain, pp.
974–978 (2000)

8. Marques Pereira, R.A., Pasi, G.: On non-monotonic aggregation: Mixture operators. In:
Proceedings of the 4th Meeting of the EURO Working Group on Fuzzy Sets (EURO-
FUSE 1999) and 2nd International Conference on Soft and Intelligent Computing (SIC
1999), Budapest, Hungary, pp. 513–517 (1999)

9. Marques Pereira, R.A., Ribeiro, R.A.: Aggregation with generalized mixture operators
using weighting functions. Fuzzy Sets and Systems 137, 43–58 (2003)
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Belief Function Correction Mechanisms

David Mercier, Thierry Denœux, and Marie-Hélène Masson

Abstract. Different operations can be used in the theory of belief functions to cor-
rect the information provided by a source, given metaknowledge about that source.
Examples of such operations are discounting, de-discounting, extended discounting
and contextual discounting. In this article, the links between these operations are ex-
plored. New interpretations of these schemes, as well as two families of belief func-
tion correction mechanisms are introduced and justified. The first family generalizes
previous non-contextual discounting operations, whereas the second generalizes the
contextual discounting.

Keywords: Dempster-Shafer theory, Belief functions, discounting operations, dis-
junctive and conjunctive canonical decompositions.

1 Introduction

Introduced by Dempster [1] and Shafer [13], belief functions constitute one of the
main frameworks for reasoning with imperfect information.

When receiving a piece of information represented by a belief function, some
metaknowledge regarding the quality or reliability of the source that provides the
information, can be available. To correct the information according to this meta-
knowledge, different tools can be used:
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• The discounting operation, introduced by Shafer in his seminal book [13], allows
one to weaken the information provided by the source;

• The de-discounting operation, introduced by Denœux and Smets [2], has the
effect of strengthening the information;

• The extended discounting operation, introduced by Zhu and Basir [20], makes it
possible to weaken, strengthen or contradict the information;

• The contextual discounting operation, a refining of the discounting operation,
introduced by Mercier et al. [10], weakens the information by taking into ac-
count more detailed knowledge regarding the reliability of the source in different
contexts, i.e., conditionally on different hypotheses regarding the answer to the
question of interest.

In this article, the links between these operations are explored. Belief function
correction mechanisms encompassing these schemes are introduced and justified.

First, discounting, de-discounting, and extended discounting are shown to be par-
ticular cases of a parameterized family of transformations [9]. This family includes
all possible transformations, expressed by a belief function, based on the different
states in which the source can be when the information is supplied.

Secondly, another family of correction mechanisms based on the concepts of
negation [4] and canonical decompositions [3, 12, 16] of a belief function is ex-
plored. This family is shown to generalize the contextual discounting operation.

Belief functions are used in different theories of uncertainty such as, for instance,
models based on lower and upper probabilities including Dempster’s model [1] and
the related Hint model [7], random set theory [6], or the Transferable Belief Model
developed by Smets [15, 19]. In the latter model, belief functions are interpreted as
weighted opinions of an agent or a sensor. This model is adopted in this article.

This article is organized as follows. Background material on belief functions is
recalled in Section 2. All the discounting operations are presented in Section 3. A
new interpretation of non-contextual discounting as well as a parameterized family
of correction mechanisms are introduced and justified in Section 4. Another fam-
ily of correction mechanisms based on the disjunctive and conjunctive canonical
decompositions of a belief function is presented in Section 5. In Section 6, an ex-
ample of a correction mechanism introduced in this article is tested with real data
in a postal address recognition application, in which decisions associated with con-
fidence scores are combined. Finally, Section 7 concludes this paper.

2 Belief Functions: Basic Concepts

2.1 Representing Information

Let us consider an agent Ag in charge of making a decision regarding the answer to
a given question Q of interest.

Let Ω = {ω1, . . . ,ωK}, called the frame of discernment, be the finite set contain-
ing the possible answers to question Q.
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The information held by agent Ag regarding the answer to question Q can be
quantified by a basic belief assignment (BBA) or mass function mΩ

Ag, defined as a

function from 2Ω to [0,1], and verifying:

∑
A⊆Ω

mΩ
Ag(A) = 1 . (1)

Function mΩ
Ag describes the state of knowledge of agent Ag regarding the answer

to question Q belonging to Ω . By extension, it also represents an item of evidence
that induces such a state of knowledge. The quantity mΩ

Ag(A) is interpreted as the
part of the unit mass allocated to the hypothesis: “the answer to question Q is in the
subset A of Ω”.

When there is no ambiguity, the full notation mΩ
Ag will be simplified to mΩ , or

even m.

Definition 1. The following definitions are considered.

• A subset A of Ω such that m(A) > 0 is called a focal element of m.
• A BBA m with only one focal element A is said to be categorical and is denoted

mA; we thus have mA(A) = 1.
• Total ignorance is represented by the BBA mΩ , called the vacuous belief function.
• A BBA m is said to be:

– dogmatic if m(Ω) = 0;
– non-dogmatic if m(Ω) > 0;
– normal if m( /0) = 0;
– subnormal if m( /0) > 0;
– simple if m has no more than two focal sets, Ω being included.

Finally, m denotes the negation of m [4], defined by m(A) = m(A), for all A⊆Ω .

2.2 Combining Pieces of Information

Two BBAs m1 and m2 induced by distinct and reliable sources of information can
be combined using the conjunctive rule of combination (CRC), also referred to as
the unnormalized Dempster’s rule of combination, defined for all A⊆Ω by:

m1 ∩©m2(A) = ∑
B∩C=A

m1(B)m2(C) . (2)

Alternatively, if we only know that at least one of the sources is reliable, BBAs m1

and m2 can be combined using the disjunctive rule of combination (DRC), defined
for all A⊆Ω by:

m1 ∪©m2(A) = ∑
B∪C=A

m1(B)m2(C) . (3)
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2.3 Marginalization and Vacuous Extension

A mass function defined on a product space Ω ×Θ may be marginalized on Ω by
transferring each mass mΩ×Θ (B) for B⊆Ω ×Θ to its projection on Ω :

mΩ×Θ↓Ω (A) = ∑
B⊆Ω×Θ ,
Proj(B↓Ω)=A

mΩ×Θ (B), (4)

for all A⊆Ω where Proj(B ↓Ω) denotes the projection of B onto Ω .
Conversely, it is usually not possible to retrieve the original BBA mΩ×Θ from its

marginal mΩ×Θ↓Ω on Ω . However, the least committed, or least informative BBA
[14] such that its projection on Ω is mΩ×Θ↓Ω may be computed. This defines the
vacuous extension of mΩ in the product space Ω ×Θ [14], noted mΩ↑Ω×Θ , and
given by:

mΩ↑Ω×Θ (B) =
{

mΩ (A) if B = A×Θ ,A⊆Ω ,
0 otherwise.

(5)

2.4 Conditioning and Ballooning Extension

Conditional beliefs represent knowledge that is valid provided that an hypothesis is
satisfied. Let m be a mass function and B⊆Ω an hypothesis; the conditional belief
function m[B] is given by:

m[B] = m ∩©mB. (6)

If mΩ×Θ is defined on the product space Ω ×Θ , and θ is a subset of Θ , the condi-
tional BBA mΩ [θ ] is defined by combining mΩ×Θ with mΘ↑Ω×Θ

θ , and marginalizing
the result on Ω :

mΩ [θ ] =
(

mΩ×Θ ∩©mΘ↑Ω×Θ
θ

)↓Ω
. (7)

Assume now that mΩ [θ ] represents the agent’s beliefs on Ω conditionally on θ ,
i.e., in a context where θ holds. There are usually many BBAs on Ω ×Θ , whose
conditioning on θ yields mΩ [θ ]. Among these, the least committed one is defined
for all A⊆Ω by:

mΩ [θ ]⇑Ω×Θ (A×θ ∪Ω ×θ) = mΩ [θ ](A). (8)

This operation is referred to as the deconditioning or ballooning extension [14] of
mΩ [θ ] on Ω ×Θ .

3 Correction Mechanisms

3.1 Discounting

When receiving a piece of information represented by a mass function m, agent
Ag may have some doubts regarding the reliability of the source that provided this
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information. Such metaknowledge can be taken into account using the discounting
operation introduced by Shafer [13, page 252], and defined by:

α m = (1−α)m+ α mΩ , (9)

where α ∈ [0,1].
A discount rate α equal to 1, means that the source is not reliable and the piece

of information it provides cannot be taken into account, so Ag’s knowledge remains
vacuous: mΩ

Ag = 1m = mΩ . On the contrary, a null discount rate indicates that the

source is fully reliable and the piece of information is entirely accepted: mΩ
Ag =

0m = m. In practice, however, agent Ag usually does not know for sure whether the
source is reliable or not, but has some degree of belief expressed by:{

mR
Ag({R}) = 1−α

mR
Ag(R) = α,

(10)

where R = {R,NR}, R and NR standing, respectively, for “the source is reliable”
and “the source is not reliable”. This formalization yields expression (9), as demon-
strated by Smets in [14, Section 5.7].

Let us consider a BBA mΩ
0 defined by

mΩ
0 (A) =

⎧⎪⎨
⎪⎩

β if A = /0

α if A = Ω
0 otherwise,

(11)

with α ∈ [0,1] and β = 1−α . The discounting operation (9) of a BBA m is equiva-
lent to the disjunctive combination (3) of m with mΩ

0 . Indeed:

m ∪©mΩ
0 (A) = m(A)mΩ

0 ( /0) = β m(A) = α m(A), ∀A⊂Ω ,

and

m ∪©mΩ
0 (Ω) = m(Ω)mΩ

0 ( /0)+ mΩ
0 (Ω) ∑

A⊆Ω
m(A) = β m(Ω)+ α = α m(Ω).

3.2 De-discounting

In this process, agent Ag receives a piece of information α m from a source S, differ-
ent from mΩ and discounted with a discount rate α < 1.

If Ag knows the discount rate α , then it can recompute m by reversing the dis-
counting operation (9):

mAg = m =
α m−α mΩ

1−α
. (12)

This procedure is called de-discounting by Denœux and Smets in [2].
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If the agent receives a mass function m discounted with an unknown discount rate
α , it can imagine all possible values in the range [0,m(Ω)]. Indeed, as shown in [2],
m(Ω) is the largest value for α such that the de-discounting operation (12) yields a
BBA. De-discounting m with this maximal value is called maximal de-discounting.
The result is the totally reinforced belief function, noted trm and defined as follows:

trm(A) =

{
m(A)

1−m(Ω) ∀A⊂Ω ,

0 otherwise.
(13)

The mass function trm is thus obtained from m by redistributing the mass m(Ω)
among the strict subsets of Ω .

3.3 Extended Discounting Scheme

In [20], Zhu and Basir proposed to extend the discounting process in order to
strengthen, discount or contradict belief functions. The extended discounting
scheme is composed of two transformations.

The first transformation, allowing us to strengthen or weaken a source of infor-
mation, is introduced by retaining the discounting equation (9), while allowing the

discount rate α to be in the range
[ −m(Ω)

1−m(Ω) ,1
]
.

• If α ∈ [0,1], this transformation is the discounting operation.

• If α ∈ [ −m(Ω)
1−m(Ω) ,0], this transformation is equivalent to the de-discounting oper-

ation (12) with the reparameterization α = −α ′
1−α ′ with α ′ ∈ [0,m(Ω)]. Indeed,

α m =
(

1− −α ′

1−α ′

)
m+

−α ′

1−α ′
mΩ =

m−α ′mΩ
1−α ′

. (14)

The second transformation, allowing us to contradict a non-vacuous and normal
belief function m, is defined by the following equation:{α m(A) = (α−1)m(A) if A⊂Ω ,

α m(Ω) = (α−1)m(Ω)+ 2−α otherwise,
(15)

where α ∈
[
1,1 + 1

1−m(Ω)

]
.

• If α = 1, α m = mΩ .
• If α = 1 + 1

1−m(Ω) , α m = trm, where m denotes the negation of m [4], defined

by m(A) = m(A), ∀A ⊆ Ω . In other words, after being totally reinforced, each
basic belief mass m(A) is transferred to its complement. The BBA m is then fully
contradicted.

This scheme has been successfully applied in medical imaging [20]. However, it
suffers from a lack of formal justification. Indeed, the number (1−α) can no longer
be interpreted as a degree of belief as it can take values greater than 1 and smaller
than 0.
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3.4 Contextual Discounting Based on a Coarsening

Contextual discounting was introduced in [10]. It makes it possible to take into
account the fact that the reliability of the source of information can be expected to
depend on the true answer of the question of interest.

For instance, in medical diagnosis, depending on his/her specialty, experience or
training, a physician may be more or less competent to diagnose some types of dis-
eases. Likewise, in target recognition, a sensor may be more capable of recognizing
some types of targets while being less effective for other types.

Let Θ = {θ1, . . . ,θL} be a coarsening [13, chapter 6] of Ω , in other words
θ1, . . . ,θL form a partition of Ω .

Unlike (10), in the contextual model, agent Ag is assumed to hold beliefs on the
reliability of the source of information conditionally on each θ�, � ∈ {1, . . . ,L}:{

mR
Ag[θ�]({R}) = 1−α� = β�

mR
Ag[θ�](R) = α� .

(16)

For all � ∈ {1, . . . ,L}, β� + α� = 1, and β� represents the degree of belief that the
source is reliable knowing that the true answer of the question of interest belongs
to θ�.

In the same way as in the discounting operation (9), agent Ag considers that the
source can be in two states: reliable or not reliable [10, 14]:

• If the source is reliable (state R), the information mΩ
S it provides becomes Ag’s

knowledge. Formally, mΩ
Ag[{R}] = mΩ

S .

• If the source is not reliable (state NR), the information mΩ
S it provides is dis-

carded, and Ag remains in a state of ignorance: mΩ
Ag[{NR}] = mΩ .

The knowledge held by agent Ag, based on the information mΩ
S from a source S

as well as metaknowledge mR
Ag concerning the reliability of the source can then be

computed by:

• Deconditioning the L BBAs mR
Ag[θ�] on the product space Ω ×R using (8);

• Deconditioning mΩ
Ag[{R}] on the same product space Ω ×R using (8) as well;

• Combining them using the CRC (2);
• Marginalizing the result on Ω using (4).

Formally:

mΩ
Ag[m

Ω
S ,mR

Ag] =
(
∩©L

�=1mR
Ag[θ�]⇑Ω×R ∩©mΩ

Ag[{R}]⇑Ω×R
)↓Ω

. (17)

As shown in [10], the resulting BBA mΩ
Ag , only depends on mS and on the vector

α = (α1, . . . ,αL) of discount rates. It is then denoted by α
Θ m.

Proposition 1 ([10, Proposition 8]). The contextual discounting α
Θ m on a coarsen-

ing Θ of a BBA m is equal to the disjunctive combination of m with a BBA mΩ
0 such

that:
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mΩ
0 = mΩ

1 ∪©mΩ
2 ∪© . . . ∪©mΩ

L , (18)

where each mΩ
� , � ∈ {1, . . . ,L}, is defined by:

mΩ
� (A) =

⎧⎪⎨
⎪⎩

β� if A = /0

α� if A = θ�

0 otherwise.

(19)

Remark 1. Two special cases of this discounting operation can be considered.

• If Θ = {Ω} denotes the trivial partition of Ω in one class, combining m with
m0 defined by (11) is equivalent to combining m with m0 defined by (18), so
this contextual discounting operation is identical to the classical discounting
operation.

• If Θ = Ω , the finest partition of Ω , this discounting is simply called contextual
discounting and denoted α m. It is defined by the disjunctive combination of m
with the BBA mΩ

1 ∪©mΩ
2 ∪© . . . ∪©mΩ

K , where each mΩ
k , k ∈ {1, . . . ,K} is defined

by mΩ
k ( /0) = βk and mΩ

k ({ωk}) = αk.

In the following section, a new parameterized family of transformations encom-
passing all the non-contextual schemes presented in this section, is introduced and
justified.

4 A Parameterized Family of Correction Mechanisms

In this section, the hypotheses concerning the states in which agent Ag considers
that the source can be, are extended in the following way.

Let us assume that the source can be in N states Ri, i ∈ {1, . . . ,N}, whose inter-
pretations are given by transformations mi of m: if the source is in the state Ri then
mΩ

Ag = mi.

mΩ
Ag[{Ri}] = mi, ∀i ∈ {1, . . . ,N} . (20)

Let R = {R1, . . . ,RN}, and let us suppose that, for all i ∈ {1, . . . ,N}:

mR
Ag({Ri}) = νi, with

N

∑
i=1

νi = 1 . (21)

The knowledge held by agent Ag, based on the information mΩ
S from a source S and

on metaknowledge mR
Ag regarding the different states in which the source can be,

can then be computed by:

• Deconditioning the N BBAs mΩ
Ag[{Ri}] on the product space Ω ×R using (8);

• Vacuously extending mR
Ag on the same product space Ω ×R using (5);

• Combining all BBAs using the CRC (2);
• Marginalizing the result on Ω using (4).
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Formally:

mΩ
Ag[m

Ω
S ,mR

Ag] =
(
∩©N

i=1mΩ
Ag[{Ri}]⇑Ω×R ∩©mR↑Ω×R

Ag

)↓Ω
. (22)

Proposition 2. The BBA mΩ
Ag defined by (22) only depends on mi and νi, i ∈

{1, . . . ,N}. The result is noted νm, ν denoting the vector of νi, and verifies:

mΩ
Ag = νm =

N

∑
i=1

νi mi . (23)

Proof. For all i ∈ {1, . . . ,N} and A⊆Ω :

• from (5) and (21), the vacuous extension of mR
Ag is given by:

mR↑Ω×R
Ag (Ω ×{Ri}) = νi ; (24)

• from (8) and (20), the deconditioning of mΩ
Ag[{Ri}] verifies:

mΩ
Ag[{Ri}]⇑Ω×R(A×{Ri}∪Ω ×{Ri}) = mi(A) . (25)

However, ∀i ∈ {1, . . . ,N} and ∀Ai ⊆Ω :

∩N
i=1(Ai×{Ri}∪Ω×{Ri}) = ∪N

i=1Ai×{Ri} , (26)

and, ∀ j ∈ {1, . . . ,N}:

(∪N
i=1Ai×{Ri})∩Ω ×{R j}= A j×{R j} . (27)

Therefore, the conjunctive combination of mΩ
Ag[{Ri}]⇑Ω×R , i ∈ {1, . . . ,N}, with

mR↑Ω×R
Ag , denoted ∩©mΩ×R

Ag , has N focal elements such that:

∩©mΩ×R
Ag (A j×{R j}) = ν j m j(A j)∏

i�= j
∑

A⊆Ω
mi(A)

︸ ︷︷ ︸
=1

, ∀ j ∈ {1, . . . ,N} , (28)

or, equivalently, ∀A⊆Ω and ∀i ∈ {1, . . . ,N}:
∩©mΩ×R

Ag (A×{Ri}) = νi mi(A). (29)

Then, after projecting onto Ω :

mΩ
Ag(A) =

N

∑
i=1

νi mi(A) ∀A⊆Ω , (30)

which completes the proof. �
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Proposition 3. Discounting, de-discounting and extended discounting operations
are particular cases of correction mechanisms expressed by (23):

• Discounting corresponds to the case of two states R1 and R2 such that m1 = mΩ
and m2 = m (as already exposed in Section 3.1).

• De-discounting corresponds to the case of two states such that m1 = m and m2 =
trm, which means a first state where the information provided by the source is
accepted, and a second one where this information is totally reinforced.

• The first transformation of the extended discounting operation, discounting equa-
tion (9) with α ∈ [−m(Ω)/(1−m(Ω)),1], is obtained in the particular case of
two states such that m1 = mΩ and m2 = trm.

• The second transformation of the extended discounting operation (15) is re-
trieved by considering two states: a first one where the source is fully contra-
dicted (m1 = trm) [18], and a second one where the information provided by the
source is rejected (m2 = mΩ ).

Proof. By considering two states such that m1 = m and m2 = trm, νm = ν1m+ν2
trm

is a reparameterization of the de-discounting operation (12) with ν1 = m(Ω)−α
(1−α)m(Ω) ,

α ∈ [0,m(Ω)]. Indeed:

νm(A) =
m(Ω)−α

(1−α)m(Ω)
m(A)+

(
1− m(Ω)−α

(1−α)m(Ω)

)
m(A)

1−m(Ω)

=
m(Ω)−α

(1−α)m(Ω)
m(A)+

(1−α)m(Ω)−m(Ω)+ α
(1−α)m(Ω)

m(A)
1−m(Ω)

=
m(Ω)−α

(1−α)m(Ω)
m(A)+

α (1−m(Ω))
(1−α)m(Ω)

m(A)
1−m(Ω)

=
m(A)
1−α

∀A⊂Ω ,

and
νm(Ω) =

m(Ω)−α
(1−α)m(Ω)

m(Ω) =
m(Ω)−α

1−α
.

The first transformation of the extended discounting operation, Equation (9) with
α ∈ [−m(Ω)/(1−m(Ω)),1], concerning the discounting or reinforcement of the
source, is a reparameterization of (23) in the particular case of two states such that
m1 = mΩ and m2 = trm with ν1 = (1−α)m(Ω)+ α . Indeed:

νm(A) = (1− (1−α)m(Ω)−α)
m(A)

1−m(Ω)
= (1−α) m(A), ∀A⊂Ω ,

ν m(Ω) = (1−α)m(Ω)+ α.

Finally, the second transformation of the extended discounting operation (15),
allowing one to contradict a source, is also a reparameterization of (23) by consider-
ing two states such that m1 = trm and m2 = mΩ , and setting ν1 = (α−1)(1−m(Ω))
with α ∈ [1,1 + 1

1−m(Ω) ]:
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ν m(A) = (α−1)(1−m(Ω))
m(A)

1−m(Ω)
= (α−1) m(A), ∀A⊂Ω ,

νm(Ω) = 1− (α−1)(1−m(Ω)) = 1−α + α m(Ω)+ 1−m(Ω)
= (α−1)m(Ω)+ 2−α. �

Models of correction mechanisms corresponding to discounting, de-discounting and
extended discount operations are summarized in Table 1.

Table 1 Models corresponding to the correction mechanisms presented in Section 3.

Interpretations Operation
m1 = mΩ m2 = m discounting
m1 = m m2 = trm de-discounting
m1 = mΩ m2 = trm extended disc. (1)
m1 = trm m2 = mΩ extended disc. (2)

Remark 2. The first transformation of the extended discounting operation is a dis-
counting of trm, while the second transformation is a discounting of trm.

Remark 3. De-discounting operation is a particular reinforcement process. A more
informative reinforcement than trm can be chosen, for instance, the “pignistic BBA”
defined, ∀ω ∈Ω , by:

betm({ω}) = ∑
{A⊆Ω ,ω∈A}

m(A)
(1−m( /0))|A| . (31)

Thus, another reinforcement process is given by:

νm = ν1m+(1−ν1)betm . (32)

Remark 4. By choosing mR
Ag as follows:

{
mR

Ag({Ri}) = νi ∀i ∈ {1, . . . ,N},
mR

Ag(R) = 1−∑N
i=1 νi,

(33)

with ∑N
i=1 νi ≤ 1, Equation (22) leads to:

νm =
N

∑
i=1

νi mi +(1−
N

∑
i=1

νi)mΩ , (34)

which is similar to (23) if one considers a state such that mi = mΩ .
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5 Correction Mechanisms Based on Decompositions

The preceding section has introduced a general form of correction mechanisms en-
compassing, in particular, the discounting, de-discounting and extended discounting
operations. As mentioned in Remark 1 in Section 3.4, the discounting operation can
also be seen as a particular case of the contextual discounting. However, the contex-
tual discounting does not belong to the family of correction mechanisms presented
in the previous section. In this section, contextual discounting is shown to be a par-
ticular member of another family of correction mechanisms based on the disjunctive
decomposition of a subnormal BBA introduced by Denœux in [3].

5.1 Canonical Conjunctive and Disjunctive Decompositions

In [16], extending the notion of separable BBA introduced by Shafer [13, chapter
4], Smets shows that each non-dogmatic BBA m can be uniquely decomposed into a
conjunctive combination of generalized simple BBAs (GSBBAs), denoted Aw(A) with
A⊂Ω , and defined from 2Ω to R by:

Aw(A) : Ω %→ w(A)
A %→ 1−w(A)
B %→ 0 , ∀B ∈ 2Ω \ {A,Ω} ,

(35)

with w(A) ∈ [0,∞).
Every non-dogmatic BBA m can then be canonically decomposed into a conjunc-

tive combination of GSBBAs:

m = ∩©A⊂Ω Aw(A) . (36)

In [3], Denœux introduces another decomposition: the canonical disjunctive de-
composition of a subnormal BBA into negative GSBBAs (NGSBBAs), denoted Av(A)

with A⊃ /0, and defined from 2Ω to R by:

Av(A) : /0 %→ v(A)
A %→ 1− v(A)
B %→ 0 , ∀B ∈ 2Ω \ { /0,A} ,

(37)

with v(A) ∈ [0,∞).
Every subnormal BBA m can be canonically decomposed into a disjunctive com-

bination of NGSBBAs:
m = ∪©A⊃ /0Av(A) . (38)

Indeed, as remarked in [3], the negation of m can also be conjunctively decom-
posed as soon as m is subnormal (in this case, m is non-dogmatic). Then:

m = ∩©A⊂Ω Aw(A)⇒ m = ∩©A⊂Ω Aw(A) = ∪©A⊂Ω Aw(A) = ∪©A⊃ /0Aw(A) . (39)

The relation between functions v and w is then v(A) = w(A) for all A⊃ /0.
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5.2 A Correction Mechanism Based on the Disjunctive
Decomposition

According to the previous definitions (35) and (37), BBAs m�, � ∈ {1, . . . ,L}, de-
fined in (19) by m�( /0) = β� and m�(θ�) = α�, can be denoted θ�β�

or θβ�
in a simple

way.
From (18) and (38), the contextual discounting on a coarsening Θ = {θ1, . . . ,θL}

of Ω of a subnormal BBA m is thus defined by:

α
Θ m = m ∪©θβ1

∪© . . . ∪©θβL
= ∪©A⊃ /0Av(A) ∪©θβ1

∪© . . . ∪©θβL
.

In particular, as Av1(A) ∪©Av2(A) = Av1v2(A) for all non empty subet A of Ω :

• The classical discounting of a subnormal BBA m = ∪©A⊃ /0Av(A) is defined by:

α m = Ωβ v(Ω) ∪©Ω⊃A⊃ /0Av(A) ; (40)

• The contextual discounting (Remark 1) of a subnormal BBA m = ∪©A⊃ /0Av(A) is
defined by:

α m = ∪©ωk∈Ω{ωk}βkv({ωk}) ∪©A⊂Ω ,|A|>1Av(A) . (41)

These contextual discounting operations are then particular cases of a more gen-
eral correction mechanism defined by:

α∪m = ∪©A⊃ /0AβAv(A), (42)

where βA ∈ [0,1] for all A⊃ /0 and α is the vector {αA}A⊃ /0.
In [10], the interpretation of each βA has been given only in the case where the

union of the subsets A forms a partition of Ω , βA being interpreted as the degree of
belief held by the agent regarding the fact that the source is reliable, knowing that
the value searched belongs to A.

Instead of considering (16), let us now suppose that agent Ag holds beliefs re-
garding the reliability of the source, conditionally on each subset A of Ω :{

mR
Ag[A]({R}) = 1−αA = βA

mR
Ag[A](R) = αA ,

(43)

where αA ∈ [0,1].
In the same way as in Section 3.4, the knowledge held by agent Ag, based on

the information mΩ
S from a source and on metaknowledge mR

Ag (43) regarding the
reliability of this source, can be computed as follows:

mΩ
Ag[m

Ω
S ,mR

Ag] =
(
∩©A⊆Ω mR

Ag[A]⇑Ω×R ∩©mΩ
Ag[{R}]⇑Ω×R

)↓Ω
. (44)

Proposition 4. The BBA mΩ
Ag resulting from (44) only depends on mΩ

S and the vector
α = {αA}A⊆Ω . The result is denoted α

2Ω m and is equal to the disjunctive combination

of mΩ
S with a BBA mΩ

0 defined by:
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mΩ
0 (C) = ∏

∪A=C

αA ∏
∪B=C

βB, ∀C ⊆Ω . (45)

Proof. For each A⊆Ω , the deconditioning of mR
Ag[A] on Ω ×R is given by:

mR
Ag[A]⇑Ω×R(A×{R}∪A×R) = βA, (46)

mR
Ag[A]⇑Ω×R(Ω ×R) = αA. (47)

With A �= B:

(A×{R}∪A×R)∩ (B×{R}∪B×R) = (A∪B)×{R}∪ (A∪B)×R .

Then:

∩©A⊆Ω mR
Ag[A]⇑Ω×R(C×{R}∪C×R) = ∏

∪D=C

αD ∏
∪E=C

βE , ∀C ⊆Ω , (48)

or, by exchanging the roles of C and C:

∩©A⊆Ω mR
Ag[A]⇑Ω×R(C×{R}∪C×R) = ∏

∪D=C

αD ∏
∪E=C

βE , ∀C ⊆Ω . (49)

It remains to combine conjunctively mΩ
Ag[{R}]⇑Ω×R and ∩©A⊆Ω mR

Ag[A]⇑Ω×R which

have focal sets of the form B×{R}∪Ω×{NR} and C×{R}∪C×R, respectively,
with B,C ⊆Ω . The intersection of two such focal sets is:

(C×{R}∪C×R)∩ (B×{R}∪Ω×{NR}) = B×{R}∪C×{NR} ,

and it can be obtained only for a particular choice of B and C. Then:

∩©A⊆Ω mR
Ag[A]⇑Ω×R ∩©mΩ

Ag[{R}]⇑Ω×R(B×{R}∪C×{NR}) =

=

[
∏
∪D=C

αD ∏
∪E=C

βE

]
mΩ

S (B).

Finally, the marginalization of this BBA on Ω is given by:

α m(A) = ∑
B∪C=A

[
∏
∪D=C

αD ∏
∪E=C

βE

]
mΩ

S (B), ∀A⊆Ω , (50)

�
Let us note that the above proof has many similarities with proofs presented in [10,
Sections A.1 and A.3].

As in the case of contextual discounting operations considered in Section 3.4, the
BBA mΩ

0 defined in Proposition 4 admits a simple decomposition described in the
following proposition.
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Proposition 5. The BBA mΩ
0 defined in Proposition 4 can be rewritten as:

mΩ
0 = ∪©A⊃ /0AβA

. (51)

Proof. Directly from (45) and the definition of the DRC (3). �

From (51), the contextual discounting α
2Ω m of a subnormal BBA m = ∪©A⊃ /0Av(A) is

defined by:
α
2Ω m = ∪©A⊃ /0Av(A) ∪©A⊃ /0AβA

= ∪©A⊃ /0AβAv(A) =α∪ m . (52)

This contextual discounting is thus equivalent to the correction mechanism intro-
duced in this section. Each coefficient βA of this correction mechanism can then be in-
terpreted as the degree of belief held by the agent Ag regarding the fact that the source
is reliable knowing that the true answer to the question Q of interest belongs to A.

5.3 A Correction Mechanism Based on the Conjunctive
Decomposition

In a similar way, a correction mechanism for a non-dogmatic BBA m can be defined,
from the conjunctive decomposition of m, by:

α∩m = ∩©A⊂Ω AβAw(A) ; (53)

where ∀A⊂Ω ,βA ∈ [0,1], and α is the vector {αA}A⊂Ω .
Correction mechanisms α∩m (42) and α∪m (53) are related in the following way.

Let us consider a subnormal BBA m, m is then non-dogmatic:

α∩m = ∩©A⊂Ω AβAw(A) . (54)

Then:
α∩m = ∩©A⊂Ω AβAw(A)

= ∪©A⊂Ω AβAw(A)

= ∪©A⊃ /0AβAw(A)
= ∪©A⊃ /0AβAv(A)
= α∪m

(55)

These two correction mechanisms can thus be seen as belonging to a general
family of correction mechanisms.

6 Application Example

In this section, an application example in the domain of postal address recognition
illustrates the potential benefits of using a particular correction mechanism of the
form (23).

In this application, three postal address readers (PARs) are available, each one
providing pieces of information regarding the address lying on the image of a
mail. These pieces of knowledge are represented by belief functions on a frame of
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discernment gathering all postal addresses. Belief functions can then be combined
in order to make a decision. This fusion scheme is represented in Fig. 1. Details of
this application can be found in [11].

Fig. 1 Fusion scheme with three PARs in the belief function framework.

An extension of this scheme is obtained by considering the fact that PAR 1 and
PAR 2 each output an address and a confidence score regarding the town part of the
address.

To visualize the real information provided by these confidence scores, scores of
correct and incorrect towns output by PAR 1 for a set of postal addresses are shown
in Fig. 2.

It can be observed that the greater the score is, the more important is the propor-
tion of addresses with a correct town. Hence, this score carries useful information
regarding the reliability of the town information in the output address. Similar ob-
servations were made with PAR 2. Therefore, BBAs m1 and m2 representing the
information provided by PAR 1 and PAR 2, should be corrected according to these
scores. An idea consists in reinforcing the information provided by a PAR when
the score is high, and, conversely, discounting it when the score is too low. For that
purpose, we defined four thresholds T1, T2, T3, and T4 illustrated in Fig. 2, such that
information provided by the PAR is:

• totally discounted, if the score is lower than T1;
• discounted according to the score, if the score belongs to [T1,T2];
• kept unchanged, if the score belongs to [T2,T3];
• reinforced according to the score, if the score belongs to [T3,T4];
• at last, totally reinforced, if the score is greater than T4.

Formally, this adjustment can be realized, for both PARs 1 and 2 (Fig. 3), by
using the correction mechanism defined by:

ν m = ν1 mΩ + ν2 m+ ν3
trm , (56)

where parameters νi are set as illustrated in Fig. 4.
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Fig. 2 Confidence scores and addresses provided by PAR 1 regarding images of a learn-
ing set. A dark rhomb corresponds to an address whose town is incorrect. A clear square is
associated with an address whose town is correct.

Fig. 3 An extended model adjusting BBAs provided by PAR 1 and PAR 2 according to
supplied scores.

Performances of this combination, on a test set of mails, are reported in Fig. 5.
To preserve the confidentiality of PARs performances, reference values were used
when representing performance rates. Correct recognition rates, represented on the
x-axis, are expressed relatively to a reference correct recognition rate, denoted by R.
Error rates, represented on the y-axis, are expressed relatively to a reference error
rate, denoted by E . The rate R has a value greater than 80%. The rate E has a value
smaller than 0.1%.

As different PARs are available in this application, we can expect the combina-
tion to yield the greatest possible recognition rates while keeping error rate at an
acceptable level. In this article, the maximal tolerated error rate is chosen equal to
the least PARs error rates.

This extended model allows us to obtain a combination point denoted by C+,
which is associated with an acceptable error rate and a higher recognition rate than
the previous combination point C, obtained with the model illustrated in Fig. 1. The
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Fig. 4 Correction parameters as function of the scores (ν1 +ν2 +ν3 = 1).

Fig. 5 PARs and combination performances regarding towns written on mails.

individual performances of PARs are further improved using the extended model
based on a correction mechanism.

In [8], another example of improvement in the same application can be found
using contextual discounting.

7 Conclusion

In this article, two families of belief function correction mechanisms have been
introduced and justified.
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The first family of correction mechanisms highlights the links between the dis-
counting, the de-discounting, and the extended discounting, and generalizes these
three operations. Different transformations, expressed by belief functions, can be
associated to different states in which the source can be: reliable, not reliable, too
cautious, lying, etc.

The second family, based on the concepts of negation of a BBA and disjunctive
and conjunctive decompositions of a BBA, generalizes the contextual discounting
operation.

An application example has illustrated a practical interest of the first family. It
introduces a way to combine scores with decisions to improve the recognition per-
formances.

Future works will aim at exploring more deeply the second family of correction
mechanisms and testing it on real data.

It would also be interesting to automatically learn the coefficients of the correc-
tion mechanisms from data, as done in the “expert tuning” method for the classical
or the contextual discounting operations [5, 10].
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A Comparison of Conditional Coherence
Concepts for Finite Spaces

Enrique Miranda

Abstract. We compare the different notions of conditional coherence within the
behavioural theory of imprecise probabilities when all the referential spaces are
finite. We show that the difference between weak and strong coherence comes from
conditioning on sets of (lower, and in some cases upper) probability zero. Next,
we characterise the range of coherent extensions, proving that the greatest coherent
extensions can always be calculated using the notion of regular extension. Finally,
we investigate which consistency conditions are preserved by convex combinations
point-wise limits, and whether it is possible to update a coherent lower prevision
while maintaining 2-monotonicity.

1 Introduction

This paper focuses on the theory of coherent lower previsions, established mainly
by Walley [16]. This theory is based on the work on coherent previsions by de
Finetti [7, 8], and considers some of its distinct features: the behavioural approach
to probability as a fair price, or supremum acceptable betting rate; the focus on
gambles (bounded random variables) instead of events; and the use of a consistency
criteria for the acceptable betting rates, which is called coherence. At the same time,
it accounts for imprecision by allowing us to be undecided between buying and
selling gambles for some prices, producing then what are called lower and upper
previsions.

The resulting theory, which we summarise in Section 2, not only generalises de
Finetti’s work to the imprecise case, but also includes as particular cases most of
the other models of non-additive measures considered in the literature, such as 2-
and n-monotone lower probabilities [1], sets of probability measures [9], or Choquet
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integrals [6]. It has, however, a number of drawbacks: one of them are the difficul-
ties that arise when we want to update our information, producing then the so-called
conditional lower previsions. In that case, it becomes necessary, when we have in-
finite spaces, to assume a principle called conglomerability in order to maintain the
consistency with the initial assessments. This principle is also one of the points of
disagreement between Walley’s and de Finetti’s work. But even if we restrict our-
selves to finite spaces, as we shall do in this paper, there is not a unique way to
guarantee the consistency of the conditional assessments, and also the verification
of the different possibilities is not straightforward.

Our goal in this paper is to compare and to provide more manageable expressions
for the notions of weak and strong coherence of a number of conditional lower
previsions. This is the subject of our work in Section 3. In Section 4, we investigate
the different ways of updating a coherent lower prevision under the light of new
information, establishing the most conservative and the more informative ways of
doing so.

The results we obtain in these two sections allow us to investigate a bit further
in Section 5 the properties of weak and strong coherence. Specifically, we investi-
gate whether the class of weakly coherent (resp. coherent) models is closed under
convex combinations and point-wise limits, and if the property of 2-monotonicity
is preserved when we update in a coherent way. Finally, we give some concluding
remarks in Section 6.

As we said before, we restrict ourselves here to finite spaces. This simplifies
a bit the mathematical developments we make in the paper, and allows for some
properties that do not hold on infinite spaces. The finite case is also interesting for
a number of applications, for instance in the context of credal networks [5]. Some
comments on the infinite case can be found in [11].

2 Coherence Notions on Finite Spaces

Let us give a short introduction to the concepts and results from the behavioural
theory of imprecise probabilities that we shall use in the rest of the paper. We refer
to [16] for an in-depth study of these and other properties, and to [10] for a brief
survey.

Given a possibility space Ω , a gamble is a bounded real-valued function on Ω .
This function represents a random reward f (ω), which depends on the a priori un-
known value ω in Ω . We shall denote by L (Ω) the set of all gambles on Ω . A
lower prevision P is a real functional defined on some set of gambles K ⊆L (Ω).
It is used to represent a subject’s supremum acceptable buying prices for these gam-
bles, in the sense that for any ε > 0 and any f in K the subject is disposed to accept
the uncertain reward f −P( f ) + ε . Given a lower prevision P, we will denote by
P its conjugate upper prevision, given by P( f ) = −P(− f ) for any gamble f . P( f )
represents the infimum acceptable selling price for the gamble f for our subject.

We can also consider the supremum buying prices for a gamble, conditional on a
subset of Ω . Given such a set B and a gamble f on Ω , the lower prevision P( f |B)
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represents the subject’s supremum acceptable buying price for the gamble f , pro-
vided he later comes to know that the unknown value ω belongs to B, and nothing
else. If we consider a partition B of Ω (for instance a set of categories), then we
shall represent by P( f |B) the gamble on Ω that takes the value P( f |B) if and only
if ω ∈ B. The functional P(·|B) that maps any gamble f on its domain into the
gamble P( f |B) is called a conditional lower prevision.

Let us now re-formulate the above concepts in terms of random variables, which
are the focus of our attention in this paper. Consider random variables X1, . . . ,Xn,
taking values in respective finite sets X1, . . . ,Xn. For any subset J ⊆ {1, . . . ,n} we
shall denote by XJ the (new) random variable

XJ := (Xj) j∈J,

which takes values in the product space

XJ :=× j∈JX j.

We shall also use the notation X n for X{1,...,n}. In the current formulation made by
random variables, X n is just the possibility space Ω .

Definition 1. Let J be a subset of {1, . . . ,n}, and let πJ : X n→XJ be the projection
operator, i.e., the operator that drops the elements of a vector in X n that do not
correspond to indexes in J. A gamble f on X n is called XJ-measurable when for
any x,y ∈X n, πJ(x) = πJ(y) implies that f (x) = f (y).

There is a one-to-one correspondence between the gambles on X n that are XJ-
measurable and the gambles on XJ . We shall denote by KJ the set of XJ-
measurable gambles.

Consider two disjoint subsets O, I of {1, . . . ,n}. P(XO|XI) represents a subject’s
behavioural dispositions about the gambles that depend on the outcome of the vari-
ables {Xk,k ∈O}, after coming to know the outcome of the variables {Xk,k ∈ I}. As
such, it is defined on the set of gambles that depend on the variables in O∪ I only,
i.e., on the set KO∪I of the XO∪I-measurable gambles on X n. Given such a gamble
f and x ∈XI , P( f |XI = x) represents a subject’s supremum acceptable buying price
for the gamble f , if he later came to know that the variable XI took the value x (and
nothing else). Under the notation we gave above for lower previsions conditional on
events and partitions, this would be P( f |B), where B := π−1

I (x). When there is no
possible confusion about the variables involved in the lower prevision, we shall use
the notation P( f |x) for P( f |XI = x). The sets {π−1

I (x) : x ∈XI} form a partition
of X n. Hence, we can define the gamble P( f |XI), which takes the value P( f |x) on
x ∈XI . This is a conditional lower prevision.

These assessments can be made for any disjoint subsets O, I of {1, . . . ,n}, and
therefore it is not uncommon to model a subject’s beliefs using a finite number
of different conditional previsions. We should verify then that all the assessments
modelled by these conditional previsions are coherent with each other. The first
requirement we make is that for any disjoint O, I ⊆ {1, . . . ,n}, the conditional lower
prevision P(XO|XI) defined on KO∪I should be separately coherent. In the context
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of this paper, where the domain is a linear set of gambles, separate coherence holds
if and only if the following conditions are satisfied for any x ∈XI , f ,g ∈KO∪I , and
λ > 0:

P( f |x)≥ min
ω∈π−1

I (x)
f (ω). (SC1)

P(λ f |x) = λ P( f |x). (SC2)

P( f + g|x)≥ P( f |x)+ P(g|x). (SC3)

It is also useful for this paper to consider the particular case where I = /0, that is,
when we have (unconditional) information about the variables XO. We have then an
(unconditional) lower prevision P(XO) on the set KO of XO-measurable gambles.
Separate coherence is called then simply coherence, and it holds if and only if the
following three conditions hold for any f ,g ∈KO, and λ > 0:

P( f )≥min f . (C1)

P(λ f ) = λ P( f ). (C2)

P( f + g)≥ P( f )+ P(g). (C3)

Separate coherence is a notion of internal consistency for the assessments rep-
resented by a lower prevision, which means that the acceptable buying prices do
not lead to a loss, no matter the outcome, and that the supremum acceptable buying
price cannot be raised using the other assessments.

In general, separate coherence is not enough to guarantee the consistency of the
lower previsions: conditional lower previsions can be conditional on the values of
many different variables, and still we should verify that the assessments they provide
are consistent not only separately, but also with each other. Formally, we are going
to consider what we shall call collections of conditional lower previsions.

Definition 2. Let {P1(XO1 |XI1), . . . ,Pm(XOm |XIm)} be conditional lower previsions
with respective domains K 1, . . . ,K m ⊆L (X n), where K j is the set of XOj∪Ij -
measurable gambles,1 for j = 1, . . . ,m. This is called a collection on Xn when for
each j1 �= j2 in {1, . . . ,m}, either Oj1 �= O j2 or Ij1 �= I j2 .

This means that we do not have two different conditional lower previsions giv-
ing information about the same set of variables XO, conditional on the same set
of variables XI . Indeed, since all these conditional lower previsions represent the
behavioural dispositions of the same subject, it does not make sense to consider
twice the same P(XO|XI).

Given a collection P1(XO1 |XI1), . . . ,Pm(XOm |XIm) of conditional lower previsions,
there are different ways in which we can guarantee their consistency2. The first one
is called avoiding partial loss.

1 We use K j instead of KOj∪I j in order to alleviate the notation when no confusion is
possible about the variables involved.

2 We give the particular definitions of these notions for finite spaces. See [12, 16] for the
general definitions of these notions on infinite spaces and non-linear domains.



A Comparison of Conditional Coherence Concepts for Finite Spaces 227

The XI-support S( f ) of a gamble f in KO∪I is given by

S( f ) := {π−1
I (x) : x ∈XI , f Iπ−1

I (x) �= 0}, (1)

i.e., it is the set of conditioning events for which the restriction of f is not identically
zero. Here, and in the rest of the paper, we use the notation IA to denote the indicator
function of a set A, i.e., the gamble whose value is 1 on the elements of A and 0
elsewhere. We shall also use the notations

G( f |x) = Ix( f −P( f |x)), G( f |XI) = ∑
x∈XI

G( f |x) = f −P( f |XI)

for any f ∈KO∪I and any x ∈XI .

Definition 3. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be separately coherent. We say that
they avoid partial loss when for any f j ∈K j , j = 1, . . . ,m,

max
ω∈S( f j)

[
m

∑
j=1

G j( f j|XIj )

]
(ω)≥ 0,

where S( f j) := {x ∈ X n : x ∈ B for some B ∈ ∪m
j=1S j( f j)} denotes the elements

x ∈X n in the union of the supports.

The idea behind this notion is that a combination of transactions that are acceptable
for our subject should not make him lose utiles. It is based on the rationality require-
ment that a gamble f ≤ 0 such that f < 0 on some set A should not be desirable.

Definition 4. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be separately coherent conditional
lower previsions. We say that they are weakly coherent when for any f j ∈ K j ,
j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, f0 ∈K j0 ,x0 ∈XIj0

,

max
ω∈X n

[
m

∑
j=1

G j( f j|XIj )−G j0( f0|x0)

]
(ω)≥ 0.

With this condition we require that our subject should not be able to raise his supre-
mum acceptable buying price P j0( f0|x0) for a gamble f0 contingent on x0 by taking
into account other conditional assessments. However, under the behavioural inter-
pretation, a number of weakly coherent conditional lower previsions can still present
some forms of inconsistency with each other; see [16, Example 7.3.5] for an exam-
ple and [16, Chapter 7] and [17] for some discussion. On the other hand, weak
coherence neither implies or is implied by the notion of avoiding partial loss. Be-
cause of these two facts, we consider another notion which is stronger than both,
and which is called (joint or strong) coherence:3

3 The distinction between this and the unconditional notion of coherence mentioned above
will always be clear from the context.
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Definition 5. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be separately coherent conditional
lower previsions. We say that they are coherent when for every f j ∈ K j , j =
1, . . . ,m, j0 ∈ {1, . . . ,m}, f0 ∈K j0 ,x0 ∈XIj0

,[
m

∑
j=1

G j( f j|XIj )−G j0( f0|x0)

]
(ω)≥ 0 (2)

for some ω ∈ π−1
Ij0

(x0)∪S( f j).

Because we are dealing with finite spaces, this notion coincides with the one given
by Williams in [18]. The coherence of a collection of conditional lower previsions
implies their weak coherence; although the converse does not hold in general, it
does in the particular case when we only have a conditional and an unconditional
lower prevision.

It is important at this point to introduce a particular case of conditional lower pre-
visions that will be of special interest for us: that of conditional linear previsions.
We say that a conditional lower prevision P(XO|XI) on the set KO∪I is linear if and
only if it is separately coherent and moreover P( f + g|x) = P( f |x)+ P(g|x) for any
x ∈XI and f ,g ∈KO∪I . Conditional linear previsions correspond to the case where
a subject’s supremum acceptable buying price (lower prevision) coincides with his
infimum acceptable selling price (upper prevision) for any gamble on the domain.
When a separately coherent conditional lower prevision P(XO|XI) is linear we shall
denote it by P(XO|XI); in the unconditional case, we shall use the notation P(XO). In
this paper, where all the referential spaces are finite, the model can be given a sensi-
tivity analysis interpretation: a coherent lower prevision P(XO) is always the lower
envelope of a closed and convex set of linear previsions P(XO), the ones dominating
it, in the sense that

P( f ) ≥ P( f ) ∀ f ∈KO.

Similarly, a separately coherent conditional lower prevision P(XO|XI) is the lower
envelope of the closed and convex set of conditional linear previsions P(XO|XI) that
dominate it.

One interesting particular case is that where we are given only an unconditional
lower prevision P on L (X n) and a conditional lower prevision P(XO|XI) on KO∪I .
Then weak and strong coherence are equivalent, and they both hold if and only if,
for any XO∪I-measurable f and any x ∈XI ,

P(G( f |x)) = 0. (GBR)

This is called the generalised Bayes rule (GBR). When P(x) > 0, GBR can be used
to determine the value P( f |x): it is then the unique value for which P(G( f |x)) =
P(Ix( f −P( f |x))) = 0 holds.

If P and P(XO|XI) are linear, they are coherent if and only if for any XO∪I-
measurable f , P( f ) = P(P( f |XI)). This is equivalent to requiring that P( f |x) =
P( f Ix)
P(x) for all f ∈KO∪I and all x ∈XI with P(x) > 0.
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3 Relationships between Weak and Strong Coherence

Let us study in more detail the notions of avoiding partial loss, weak coherence and
strong coherence. We start by recalling a recent characterisation of weak coherence:

Theorem 1. [13, Theorem 1] P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are weakly coherent if
and only if there is a lower prevision P on L (X n) that is pairwise coherent with
each conditional lower prevision P j(XOj |XIj ). In particular, given conditional linear
previsions Pj(XOj |XIj ) for j = 1, . . . ,m, they are weakly coherent if and only if there
is a linear prevision P which is coherent with each Pj(XOj |XIj ).

This theorem shows one of the differences between weak and strong coherence:
weak coherence is equivalent to the existence of a joint which is coherent with each
of the assessments, considered separately; coherence on the other hand is equivalent
to the existence of a joint which is coherent with all the assessments, taken together.

Weakly coherent conditional previsions can also be given a sensitivity analysis
interpretation as lower envelopes of precise models; a similar result for coherence
can be found in [16, Theorem 8.1.9].

Theorem 2. Any weakly coherent P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are the lower en-
velope of a family of weakly coherent conditional linear previsions.

Proof. From Theorem 1, there is a coherent lower prevision P on X n which is
coherent with P j(XOj |XIj ) for j = 1, . . . ,m. Consider j ∈ {1, . . . ,m}, x ∈XIj and
f ∈K j. If P(x) > 0, then P j( f |x) is uniquely determined by (GBR), and from [16,
Section 6.4.2], it coincides with the lower envelope of {P( f |x) : P ≥ P}. Hence,
for any ε > 0 there is some P ≥ P such that P(x) > 0 and P( f |x)−Pj( f |x) < ε .
Given this P, we can apply Lemma 2 further on4 to define conditional previsions
Pj(XOj |x′) for x′ ∈XIj ,x

′ �= x and Pi(XOi |XIi) for i �= j such that P and Pk(XOk |XIk )
are coherent for k = 1, . . . ,m.

If P(x) = 0, we consider some P ≥ P such that P(x) = 0, and take P(XOj |x) ∈
M (P j(XOj |x)) such that P( f |x) = P( f |x). For any other x′ we can apply Lemma 2
to define conditional previsions Pi(XOi |x′) for i �= j,x′ ∈ XIi and for i = j, x′ ∈
XIi ,x

′ �= x such that P and Pk(XOk |XIk ) are coherent for k = 1, . . . ,m.
In any of the two cases, we obtain a family of conditional previsions

P1(XO1 |XI1), . . . ,Pm(XOm |XIm) which are weakly coherent (P is a compatible joint),
dominate P1(XO1 |XI1), . . . ,Pm(XOm |XIm) and s.t. Pj( f |x)−P j( f |x) < ε . This shows
that P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are the lower envelope of a family of weakly co-
herent conditional previsions. �

This tells us that we could also establish our results assuming the existence of
precise models P1(XO1 |XI1), . . . ,Pm(XOm |XIm), for which our imprecise knowledge
makes us consider a set of possible candidates

4 We have put this lemma in Section 4.1 because we thought this helped to improve the
clarity of the paper; it is easy to see that none of the results established prior to it (and in
particular this one) are used in its proof, i.e., that there are no loops in our results.
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{Pλ
1 (XO1 |XI1), . . . ,P

λ
m (XOm |XIm) : λ ∈Λ}.

We see that the consistency requirements we make on this set of possible models
(weak or strong coherence) also hold for the conditional lower previsions that sum-
marise them by taking their lower envelopes.

From Theorem 1, weakly coherent conditional lower previsions always have a
compatible joint P. Our following result establishes the smallest such joint:

Theorem 3. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be weakly coherent conditional
lower previsions, and let E be given on L (X n) by

E( f ) := sup{α : ∃ f j ∈K j, j = 1, . . . ,m,s.t.

max
ω∈X n

[
m

∑
j=1

G( f j|XIj )− ( f −α)](ω) < 0}. (3)

E is the smallest coherent lower prevision which is coherent with each of the condi-
tional lower previsions P j(XOj |XIj ).

Proof. We prove in [13, Theorem 1] that E is a coherent lower prevision that is
also coherent with P j(XOj |XIj ) for j = 1, . . . ,m. Let F be another coherent lower
prevision with this property. Assume that there is some gamble f such that F( f ) =
E( f )−δ for some δ > 0. It follows from the definition of E that there are f j ∈K j

for j = 1, . . . ,m such that

max
ω∈X n

[
m

∑
j=1

G( f j|XIj )− ( f − (F( f )+
δ
2

))

]
(ω) < 0,

whence

max
ω∈X n

[
m

∑
j=1

G( f j|XIj )− ( f −F( f ))

]
(ω) <−δ

2
,

contradicting the weak coherence of F ,P j(XOj |XIj ), j = 1, . . . ,m. �

Using this result and Theorem 2, we can also give a sensitivity analysis interpreta-
tion to E in the precise case.

Corollary 1. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be weakly coherent conditional lin-
ear previsions. The lower prevision E defined in (3) is the lower envelope of the set
M of linear previsions which are coherent with each Pj(XOj |XIj ), j = 1, . . . ,m.

Proof. From Theorem 3, E is the smallest coherent lower prevision such that
E,P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are weakly coherent. From Theorem 2, the previ-
sions E,P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are the lower envelope of a class of dom-
inating weakly coherent linear previsions. But since our conditional previsions
are all linear, this means that E is the lower envelope of a class M of lin-
ear previsions P which are weakly coherent with the conditional previsions
P1(XO1 |XI1), . . . ,Pm(XOm |XIm).
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Assume the existence of a linear prevision P which is weakly coherent with
P1(XO1 |XI1), . . . ,Pm(XOm |XIm) and such that P( f ) < E( f ) for some gamble f . If
we define the coherent lower prevision P1 := min{P,E}, we would deduce that
P1,P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are also weakly coherent, because weak coherence
is closed under lower envelopes. This contradicts Theorem 3. Therefore, E is the
lower envelope of the set of linear previsions which are coherent with Pj(XOj |XIj )
for j = 1, . . . ,m. �

Let us focus now on the relationship between weak and strong coherence and avoid-
ing partial loss. We start by considering this problem in the precise case. In this case
coherence is equivalent to avoiding partial loss, and is in general greater than weak
coherence; see [16, Example 7.3.5] for an example of weakly coherent conditional
previsions that incur a partial loss. We are going to show next that when a number
of conditional previsions are weakly coherent but not coherent, this is due to the
definition of the conditional previsions on some sets of probability zero.

Theorem 4. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be weakly coherent conditional lin-
ear previsions with respective domains K 1, . . . ,K m, and let E be the conjugate
of the functional E defined in (3). They are coherent if and only if for all gambles
f j ∈K j , j = 1, . . . ,m with E(S( f j)) = 0, maxω∈S( f j) ∑m

j=1[ f j−Pj( f j|XIj )](ω)≥ 0.

Proof. Because we are dealing with conditional linear previsions, coherence is
equivalent to avoiding partial loss. Hence, we must verify whether for any f j ∈K j,
j = 1, . . . ,m,

max
ω∈S( f j)

m

∑
j=1

[ f j−Pj( f j|XIj )](ω)≥ 0. (4)

It is clear that if Equation (4) holds for any f j ∈K j, j = 1, . . . ,m, it also holds
for any gambles f1, . . . , fm satisfying E(S( f j)) = 0. Conversely, assume that this
condition holds. If P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are not coherent, there must be
f j ∈K j, j = 1, . . . ,m, such that E(S( f j)) > 0 and

max
ω∈S( f j)

m

∑
j=1

[ f j−Pj( f j|XIj )](ω)≤−δ < 0

for some δ > 0. Applying Corollary 1, there is some linear prevision P which is
coherent with Pj(XOj |XIj ) for j = 1, . . . ,m and such that P(S( f j)) > 0.

Let us define g := ∑m
j=1[ f j−Pj( f j|XIj )]. The coherence of P,Pj(XOj |XIj ) for j =

1, . . . ,m implies that P( f j) = P(Pj( f j|XIj )) for j = 1, . . . ,m, and the linearity of P
implies then that

P(g) =
m

∑
j=1

P( f j−Pj( f j|XIj )) = 0.

But on the other hand we have that

P(g) = P(gIS( f j))≤ P(−δ IS( f j)) =−δP(S( f j)) < 0.
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This is a contradiction. Therefore, it suffices to verify the coherence condition on
those gambles whose union of supports have upper probability zero under the upper
prevision E determined by Eq. (3). �

Taking into account this theorem and the envelope result established in Theorem 2,
we can characterise the difference between weak coherence and avoiding partial loss
for conditional lower previsions:

Corollary 2. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be weakly coherent conditional
lower previsions. They avoid partial loss if and only if for all f j ∈K j , j = 1, . . . ,m
with E(S( f j)) = 0, maxω∈S( f j) ∑m

j=1[ f j−Pj( f j|XIj )](ω)≥ 0, where E is the conju-
gate of the functional defined in (3).

Proof. P1(XO1 |XI1), . . . ,Pm(XOm |XIm) avoid partial loss if and only if for any f j ∈
K j, j = 1, . . . ,m,

max
ω∈S( f j)

m

∑
j=1

[ f j−Pj( f j|XIj )](ω)≥ 0.

It is clear that if this condition holds it also holds in particular for gambles f1, . . . , fm

with E(S( f j)) = 0. Conversely, assume that this holds but that there are f1, . . . , fm

such that E(S( f j)) > 0 and

max
ω∈S( f j)

m

∑
j=1

[ f j−Pj( f j|XIj )](ω)≤−δ < 0.

Let us define g := ∑m
j=1[ f j −P j( f j|XIj )]. Since E and P j(XOj |XIj ) are coherent

for j = 1, . . . ,m, we deduce that E( f j−Pj( f j|XIj ))≥ 0 for j = 1, . . . ,m. The super-
additivity (C3) of the coherent lower prevision E implies then that

E(g) = E

(
m

∑
j=1

[ f j−Pj( f j|XIj )]

)
≥

m

∑
j=1

E
(

f j−Pj( f j|XIj )
)≥ 0.

But on the other hand, we have that

E(g) = E(gIS( f j))≤ E(−δ IS( f j)) =−δE(S( f j)) < 0.

This is a contradiction. Therefore, it suffices to verify the avoiding partial loss con-
dition on those gambles whose union of supports has upper probability zero under
E . �

Hence, if a number of weakly coherent lower previsions incur sure loss, this inco-
herent behaviour is due to the definition of the conditional previsions on some sets
of zero upper probability. It may be argued, specially since we are dealing with finite
spaces, that we may modify the definition of these conditional lower previsions on
these sets in order to avoid partial loss without further consequences, in the sense
that this will not affect their weak coherence: they will still be weakly coherent with
the same unconditional P.
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So let us consider a number of weakly coherent conditional lower previsions that
avoid partial loss. Our next example shows that, unlike for precise previsions, this
is not sufficient for coherence. Hence, Theorem 4 does not extend to the imprecise
case. This is because the condition equivalent to avoiding partial loss in Corollary 2
is not in general equivalent to coherence, in the sense that the union of the supports
of a number of gambles producing incoherence may have positive upper probability:

Example 1. Consider two random variables X1,X2 taking values in the finite
space X := {1,2,3}, and let us define conditional lower previsions P(X2|X1) and
P(X1|X2) by

P( f |X1 = 1) = f (1,1)
P( f |X1 = 2) = f (2,3)
P( f |X1 = 3) = min{ f (3,2), f (3,3)}
P( f |X2 = 1) = f (2,1)
P( f |X2 = 2) = min{ f (1,2), f (2,2), f (3,2)}
P( f |X2 = 3) = min{ f (1,3), f (2,3), f (3,3)},

for any gamble f in L (X 2).
Let us consider the unconditional lower prevision P on L (X 2) given by P( f ) =

min{ f (3,2), f (3,3)}. Using Theorem 1, we can see that P,P(X1|X2) and P(X2|X1)
are weakly coherent.

To see that P(X1|X2) and P(X2|X1) avoid partial loss, we apply Corollary 2 and
consider f1, f2 ∈L (X 2) such that P(S( f j)) = 0. Let us prove that

max
ω∈S( f j)

[G( f1|X2)+ G( f2|X1)](ω)≥ 0. (5)

Assume f1 �= 0 �= f2; the other cases are similar (and easier). Since P(S( f j)) = 0 for
any coherent lower prevision that is weakly coherent with P(X1|X2) and P(X2|X1),
neither (3,2) nor (3,3) belong to S( f j), and consequently f1(x,2) = f1(x,3) = 0 for
x = 1,2,3. If (X1 = 2) ∈ S1( f2), then [G( f1|X2)+ G( f2|X1)](2,3) = 0 + 0 = 0, and
therefore Equation (5) holds. If (X1 = 2) /∈ S1( f2), then [G( f1|X2)+G( f2|X1)](2,1)
= 0 + 0 = 0.

Let us prove finally that P(X1|X2),P(X2|X1) are not coherent. Let f1=−I{(1,1),(3,1)},
f2 =−I{(1,2),(1,3),(2,1),(2,2)} and f3 = I{(2,3),(3,3)}, and let us show that

[G( f1|X2)+ G( f2|X1)−G( f3|X2 = 3)](ω) < 0

for all ω ∈ B := π−1
2 (3)∪S( f j). In this case S2( f1) = {X2 = 1} and S1( f2) = {X1 =

1,X1 = 2}, whence B = S2( f1)∪ S1( f2)∪{X2 = 3} = X 2 \ {(3,2)}. On the other
hand, the gamble g := G( f1|X2)+G( f2|X1)−G( f3|X2 = 3) satisfies g(ω) =−1 for
all ω ∈ B. This shows that P(X1|X2),P(X2|X1) are not coherent. However, E(B) = 1
because (3,3) ∈ B. �
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Hence, when a number of conditional lower previsions are weakly coherent but not
coherent, the behaviour causing a contradiction can be caused by conditioning on
sets of positive upper probability. It is interesting to look for conditions under which
it suffices to check the weak coherence of a number of previsions to be able to
deduce their coherence. One such condition was established, in a different context,
in [13]. In the case of conditional linear previsions, Theorem 4 allows us to derive
immediately the following result:

Lemma 1. Consider weakly coherent P1(XO1 |XI1), . . . ,Pm(XOm |XIm), and let P be a
coherent prevision such that P,Pj(XOj |XIj ) are coherent for j = 1, . . . ,m. If P(x) >
0 for any x ∈ XIj , j = 1, . . . ,m, then the conditional previsions P1(XO1 |XI1), . . . ,
Pm(XOm |XIm) are coherent.

Proof. Since all the conditional previsions are linear, Theorem 4 tells us that it
suffices to verify the avoiding partial loss condition on those gambles f1, . . . , fm

for which E(S( f j)) = 0. But the hypotheses of the lemma imply that the gambles
f1, . . . , fm only satisfy E(S( f j)) = 0 when S( f j) = /0, which in turn holds if and only
if they are all equal to 0, because E dominates P from Corollary 1. �

From this result, we can easily derive a similar condition for conditional lower pre-
visions.

Theorem 5. Let P1(XO1 |XI1), . . . ,Pm(XOm |XIm) be weakly coherent conditional
lower previsions, and let P be a coherent lower prevision such that P,P j(XOj |XIj )
are coherent for j = 1, . . . ,m. If P(x) > 0 for all x ∈XIj and all j = 1, . . . ,m, then
the conditional lower previsions P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are coherent.

Proof. Consider f j ∈K j for j = 1, . . . ,m, j0 ∈ {1, . . . ,m}, x0 ∈XIj0
and f0 ∈K j0 .

From Theorem 2, for any ε > 0 there are weakly coherent conditional previsions
P1(XO1 |XI1), . . . ,Pm(XOm |XIm) such that Pj(XOj |XIj ) ≥ P j(XOj |XIj ) for j = 1, . . . ,m
and moreover Pj0( f0|x0)−Pj0( f0|x0) < ε . As a consequence,

[
m

∑
j=1

( f j−Pj( f j|XIj ))−π−1
Ij0

(x0)( f0−Pj0( f0|x0))

]
(ω)

≥
[

m

∑
j=1

( f j−Pj( f j|XIj ))−π−1
Ij0

(x0)( f0−Pj0( f0|x0))

]
(ω)− ε.

for every ω ∈ X n. We also deduce from the proof of Theorem 2 that there is a
coherent prevision P≥ P such that P and Pj(XOj |XIj ) are coherent for j = 1, . . . ,m.
As a consequence, P(x) > 0 for all x ∈ XIj and for all j = 1, . . . ,m, and apply-
ing Lemma 1 we deduce that P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are coherent. Therefore,
there is some ω∗ ∈ π−1

Ij0
(x0)∪S( f j) such that

[
m

∑
j=1

( f j−Pj( f j|XIj ))−π−1
Ij0

(x0)( f0−Pj0( f0|x0))

]
(ω∗)≥ 0,
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whence also[
m

∑
j=1

( f j−Pj( f j|XIj ))−π−1
Ij0

(x0)( f0−Pj0( f0|x0))

]
(ω∗)≥−ε.

Since we can do this for any ε > 0, the conditional lower previsions
P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are coherent. �
The proof of this theorem shows that if a number of weakly coherent conditional
lower previsions avoid partial loss but are not coherent, for any gambles f0, . . . , fm

violating Eq. (2) it must be E(π−1
Ij0

(x0)∪S( f j)) = 0 (although, as Example 1 shows,

it can be E(π−1
Ij0

(x0)∪S( f j)) > 0).

Let us recall that when all the conditioning events have positive lower probabil-
ity, the conditional lower previsions are uniquely determined by the joint P and by
(GBR). Hence, in that case P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are the only conditional
previsions which are coherent with P.

4 Coherent Updating

Although our last result is interesting, it is fairly common in situations of impre-
cise information to be conditioning on events of lower probability zero and positive
upper probability. In that case, there is an infinite number of conditional lower pre-
visions which are coherent with the unconditional P. In this section, we characterise
them by determining the smallest and the greatest coherent extensions.

4.1 Updating with the Regular Extension

The first updating rule we consider is called the regular extension. Consider an un-
conditional lower prevision P and disjoint O, I in {1, . . . ,n}. The conditional lower
prevision R(XO|XI) defined by regular extension is given, for any f ∈KO∪I and any
x ∈XI , by

R( f |x) := inf

{
P( f Ix)
P(x)

: P≥ P,P(x) > 0

}
.

For this definition to be applicable, we need that P(x) > 0 for any x ∈XI . The reg-
ular extension is the lower envelope of the updated linear previsions using Bayes’s
rule.

Lemma 2. Let P,P(XO|XI) be coherent unconditional and conditional previsions,
with XI finite. Assume that P(x) > 0 for all x ∈XI , and define R(XO|XI) from P
using regular extension.

1. P,R(XO|XI) are coherent.
2. R(XO|XI)≥ P(XO|XI).
3. For any P≥ P, there is some P(XO|XI) which is coherent with P and dominates

P(XO|XI).
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Proof. Since we are dealing with finite spaces, the coherence of P,R(XO|XI) is
equivalent to P(Iπ−1

I (x)( f −R( f |x))) = 0 for all x ∈XI , and this condition holds

because of [16, Appendix (J3)].
For the second statement, consider some x in XI and f ∈ KO∪I . Assume ex-

absurdo that R( f |x) < P( f |x). It follows from the definition of the regular extension
that there is some P ≥ P such that P(x) > 0 and P( f |x) < P( f |x). Since P(x) > 0,
it follows from the generalised Bayes rule that P( f |x) is the unique value satisfying
0 = P(Iπ−1

I (x)( f −P( f |x))). As a consequence, given P( f |x) > P( f |x), we have that

Iπ−1
I (x)( f −P( f |x))≥ Iπ−1

I (x)( f −P( f |x)), whence

0 = P(Iπ−1
I (x)( f −P( f |x)))≥ P(Iπ−1

I (x)( f −P( f |x)))
≥ P(Iπ−1

I (x)( f −P( f |x))) = 0,

using the coherence of P,P(XO|XI). But this implies that P(Iπ−1
I (x)( f −P( f |x))) =

P(Iπ−1
I (x)( f −P( f |x))) = 0, and then there are two different values of μ for which

P(Iπ−1
I (x)( f − μ)) = 0. This is a contradiction.

Let us finally establish the third statement. Consider P≥ P, and x∈XI . If P(x) >
0, then for all f ∈KO∪I the value of P( f |x) is uniquely determined by (GBR) and
dominates the regular extension R( f |x). Hence, P( f |x) ≥ R( f |x) ≥ P( f |x), where
the last inequality follows from the second statement. Finally, if P(x) = 0, taking
any element P(XO|x) of M (P(XO|x)) we have that P(Iπ−1

I (x)( f −P( f |x))) = 0 for

all f ∈KO∪I . This completes the proof. �
From this lemma, we deduce that if we use regular extension to derive condi-
tional lower previsions R1(XO1 |XI1), . . . ,Rm(XOm |XIm) from an unconditional P, then
P,R1(XO1 |XI1), . . . ,Rm(XOm |XIm) are weakly coherent. Moreover, if we consider any
other weakly coherent conditional lower previsions P1(XO1 |XI1), . . . ,Pm(XOm |XIm),
it follows that R j(XOj |XIj ) ≥ Pj(XOj |XIj ) for j = 1, . . . ,m. Hence, the procedure of
regular extension provides the greatest, or more informative, updated lower previ-
sions that are weakly coherent with P. In the following theorem we prove that they
are also coherent.

Theorem 6. Let P be a coherent lower prevision on L (X n), and consider dis-
joint O j, I j for j = 1, . . . ,m. Assume that P(x) > 0 for all x ∈XIj , and let us de-
fine R j(XOj |XIj ) using regular extension for j = 1, . . . ,m. Then P,R1(XO1 |XI1), . . . ,
Rm(XOm |XIm) are coherent.

Proof. Each of the conditional previsions defined by regular extension is coherent
with P from Lemma 2, and therefore they are all weakly coherent. Consider f j ∈K j

for j = 1, . . . ,m, j0 ∈ {1, . . . ,m},x0 ∈XIj0
, f0 ∈K j0 , and let us prove that[

m

∑
j=1

( f j−Rj( f j|XIj ))−π−1
Ij0

(x0)( f0−Rj0( f0|x0))

]
(ω)≥ 0

for some ω ∈ π−1
Ij0

(x0)∪S( f j).
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Assume ex-absurdo that the sum above is smaller than −δ for some δ > 0 and
for all ω ∈ π−1

Ij0
(x0)∪ S( f j). It follows then from the definition of the regular ex-

tension that given δ
2 > 0 there is some P ≥ P such that P(x0) > 0 and Pj0( f0|x0)−

R j0( f0|x0)< δ
2 . From Lemma 2, we can consider P1(XO1 |XI1), . . . ,Pm(XOm |XIm) such

that Pj(XOj |XIj ) dominates R j(XOj |XIj ) and is coherent with P for all j, and such that

moreover Pj0( f |x0)−Rj0( f |x0) < δ
2 . As a consequence,

m

∑
j=1

( f j−Rj( f j|XIj ))−π−1
Ij0

(x0)( f0−Rj0( f0|x0))

≥
m

∑
j=1

( f j−Pj( f j|XIj ))−π−1
Ij0

(x0)( f0−Pj0( f0|x0))− δ
2

,

and if we let g := ∑m
j=1( f j −Pj( f j|XIj ))−π−1

Ij0
(x0)( f0−Pj0( f0|x0)) then it follows

from the coherence of P and Pj(XOj |XIj ) for all j that P(g) = 0.

On the other hand, the above equations imply that g(ω) < − δ
2 for all

ω ∈ π−1
Ij0

(x0)∪S( f j). The definition of the supports implies moreover that g(ω) = 0

for all ω /∈ π−1
Ij0

(x0)∪S( f j). Hence,

P(g) = P

(
gIπ−1

I j0
(x0)∪S( f j)

)
<−δ

2
P
(

π−1
Ij0

(x0)∪S( f j)
)

< 0,

because P(π−1
Ij0

(x0)∪S( f j)) ≥ P(x0) > 0. This is a contradiction. Hence, there is

some ω ∈ π−1
Ij0

(x0)∪S( f j) such that

[
m

∑
j=1

( f j−Rj( f j|XIj ))−π−1
Ij0

(x0)( f0−Rj0( f0|x0))

]
(ω)≥ 0,

and this implies that R1(XO1 |XI1), . . . ,Rm(XOm |XIm) are coherent. �

When P(x) = 0 for some x ∈XIj , j = 1, . . . ,m, we cannot use regular extension to
define Rj(XOj |x). It can be checked that in that case any separately coherent condi-
tional lower prevision is weakly coherent with P. However, we cannot guarantee the
strong coherence:

Example 2. Let X1 = X2 = {1,2,3}, and P(X1),P(X2|X1) determined by P(X1 =
3) = 1, and P(X2 = x|X1 = x) = 1 for x = 1,2,3. From [16, Theorem 6.7.2],
P(X1),P(X2|X1) are coherent. However, if we define arbitrarily P(X1|X2 = x) when
P(X2 = x) = 0 (that is, for x = 1,2), then P(X1|X2) and P(X2|X1) may not be coher-
ent: make it for instance P(X1 = 1|X2 = 2)= 1 = P(X1 = 2|X2 = 1)= P(X1 = 3|X2 =
3). Then [16, Example 7.3.5] shows that P(X1|X2) and P(X2|X1) are not coherent.�
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4.2 Updating with the Natural Extension

Next, we introduce the notion of natural extension. Let P be a coherent lower pre-
vision on L (X n). Consider disjoint subsets O j, I j of {1, . . . ,n} for j = 1, . . . ,m.
For each j = 1, . . . ,m, the natural extension E j(XOj |XIj ) is uniquely determined
by (GBR) when P(x) > 0 and is vacuous when P(x) = 0, being then defined by
E j( f |x) = minω∈π−1

I j
(x) f (ω) for every f ∈K j. Hence, in this respect the natural

extensions can be calculated more easily than the regular extensions.
This notion of natural extension is a particular case of the notion of natural ex-

tension of conditional lower previsions P1(XO1 |XI1), . . . ,Pm(XOm |XIm) which are de-
fined on linear spaces H 1, . . . ,H m and avoid partial loss. This notion is studied in
great detail in [16, Section 8.1]. It is proven in [16, Theorem 8.1.9] that if we use nat-
ural extension to obtain conditional lower previsions E1(XO1 |XI1), . . . ,Em(XOm |XIm),
then these are the smallest coherent conditional lower previsions to dominate
P1(XO1 |XI1), . . . ,Pm(XOm |XIm) on their domains.

Using this result with P1(XO1 |XI1), . . . ,Pm(XOm |XIm) defined on the constant gam-
bles only, it is immediate to establish the following theorem, whose proof is there-
fore omitted.

Theorem 7. Let P be a coherent lower prevision on L (X n). Consider disjoint
O j, I j for j = 1, . . . ,m, and let us define E j(XOj |Xj), j = 1, . . . ,m using natural
extension. Then P,E1(XO1 |XI1), . . . ,Em(XOm |XIm) are coherent.

The natural extension provides the smallest conditional lower previsions which are
coherent together with P. The previsions E j(XOj |XIj ) are uniquely determined by
(GBR) when P(x) > 0 and are vacuous when P(x) = 0, being then defined by
E j( f |x) = minω∈π−1

I j
(x) f (ω) for any f ∈ K j. Hence, in that respect the natural

extensions can be calculated more easily than the regular extensions.
We showed before that the conditional previsions defined by regular extension

were also the greatest conditional lower previsions that are weakly coherent with the
unconditional lower prevision P. Using Theorem 1 and the results in [16, Chapter 6],
it is not difficult to show that the natural extensions are the smallest weakly coherent
extensions:

Theorem 8. Let P be coherent on L (X n), and define conditional lower previsions
E1(XO1 |XI1), . . . ,
Em(XOm |XIm) using natural extension. Then E1(XO1 |XI1), . . . ,Em(XOm |XIm) are the
smallest conditional lower previsions which are weakly coherent with P.

Proof. Since P,E1(XO1 |XI1), . . . ,Em(XOm |XIm) are coherent because of Theorem 7,
they are also weakly coherent. Consider j ∈ {1, . . . ,m} and P j(XOj |XIj ) which is
coherent with P. For any x ∈XIj , there are two possibilities: either P(x) > 0, and
then P j(XOj |x) is uniquely determined by (GBR), whence Pj(XOj |x) = E j(XOj |x);
or P(x) = 0, and the separate coherence of P j(XOj |x) implies that
P j( f |x)≥minω∈π−1

I j
(x) f (ω) = E j( f |x) for any f ∈K j.
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Hence, for all j = 1, . . . ,m, any conditional lower prevision P j(XOj |XIj ) which is
coherent with P dominates the natural extension E j(XOj |XIj ). Applying Theorem 1,
E1(XO1 |XI1), . . . ,Em(XOm |XIm) are the smallest weakly coherent extensions. �

5 Additional Properties

Let us investigate a bit further the properties of weakly and strongly coherent mod-
els. Specifically, we are going to determine (i) if these models are closed under con-
vex combinations and point-wise limits and (ii) if the property of 2-monotonicity is
preserved by the coherent updating.

5.1 Convexity

We begin by studying the convexity of weakly coherent and coherent conditional
lower previsions. In the unconditional case, it is proven in [16, Thm. 2.6.4] that a
convex combination of coherent lower previsions produces again a coherent lower
prevision. Let us investigate whether such a property holds in the conditional case. In
this sense, it is easy to show that if we fix the subsets O, I of {1, . . . ,n} and consider
a finite number of separately coherent conditional lower previsions P(XO|XI), their
convex combination is also separately coherent.

We proved in Theorem 1 that weakly coherent conditional lower previsions are
always pairwise coherent with some coherent lower prevision P. Let us show that if
we fix this P, then the convex combination of the weakly coherent conditional lower
previsions is again weakly coherent:

Theorem 9. Let P be a coherent lower prevision on L (X n). Consider conditional
lower previsions Pj

1(XO1 |XI1), . . . ,P
j
m(XOm |XIm)with respective domainsK 1, . . . ,K m

and such that P,P j
1(XO1 |XI1), . . . ,P

j
m(XOm |XIm) are weakly coherent, for j = 1, . . . , �.

Let α1, . . . ,α� ∈ [0,1] be real numbers such that α1 + · · ·+ α� = 1, and define, for
k = 1, . . . ,m, Pk(XOk |XIk ) on K k by

Pk( f |XIk ) =
�

∑
i=1

αiP
i
k( f |XIk )

for every f ∈K k. Then P,P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are weakly coherent.

Proof. From Theorem 1, for every j = 1, . . . , � and every k = 1, . . . ,m, P,Pk
j(XOk |XIk )

are coherent, and consequently they satisfy (GBR). Hence, for every k = 1, . . . ,m
and every f ∈K k, Lemma 2 and Theorem 8 imply that

P�
k( f |XIk ) ∈ [Ek( f |XIk ),Rk( f |XIk )],

where Ek(XOk |XIk ),Rk(XOk |XIk ) are the natural and regular extensions derived from
P. As a consequence,
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Pk( f |XIk ) ∈ [Ek( f |XIk ),Rk( f |XIk )],

whence it also satisfies (GBR) (and consequently it is coherent) with P. Applying
again Theorem 1, P,P1(XO1 |XI1), . . . ,Pm(XOm |XIm) are weakly coherent. �
This shows that the class of weakly coherent models is made of convex layers, as-
sociated to the different unconditional lower previsions. However, when the condi-
tional lower previsions are not weakly coherent with the same unconditional lower
prevision, weak coherence is not preserved by taking convex combinations. This is
shown in the following example. Note that, because we are considering one condi-
tional and one unconditional lower prevision, the result is also valid for coherence:

Example 3. Let X1 = X2 = {1,2}. Let P1 be the vacuous lower prevision on X1×
X2, and P1(X1|X2) be the vacuous conditional lower prevision. It follows from
Theorem 7 that P1,P1(X1|X2) are coherent. Consider on the other hand the lin-
ear prevision P2 determined by a uniform probability distribution on X1 ×X2,
and P2(X1|X2) the conditional prevision determined from P2 by Bayes’ rule. Then
also P2,P2(X1|X2) are coherent. Take now the convex combinations P = P1+P2

2 ,

P(X1|X2) = P1(X1|X2)+P2(X1|X2)
2 , and let us show that P,P(X1|X2) do not satisfy (GBR)

and therefore are not coherent.
Let f ∈ L (X1 ×X2). Then P( f |X2 = 1) = f (1,1)+ f (2,1)

4 + min{ f (1,1), f (2,1)}
2 .

Hence,

G( f |X2 = 1)(1,1) =

{
f (1,1)− f (2,1)

4 if f (1,1) = min{ f (1,1), f (2,1)}
3( f (1,1)− f (2,1))

4 if f (2,1) = min{ f (1,1), f (2,1)},

and similarly

G( f |X2 = 1)(2,1) =

{
f (2,1)− f (1,1)

4 if f (2,1) = min{ f (1,1), f (2,1)}
3( f (2,1)− f (1,1))

4 if f (1,1) = min{ f (1,1), f (2,1)}.

As a consequence,

P(G( f |X2 = 1)) =
G( f |X2 = 1)(1,1)+ G( f |X2 = 1)(2,1)

8

+
min{G( f |X2 = 1)(1,1),G( f |X2 = 1)(2,1),0}

2

=
max{ f (1,1), f (2,1)}−min{ f (1,1), f (2,1)}

16

+
min{ f (1,1), f (2,1)}−max{ f (1,1), f (2,1)}

8
�= 0

unless f (1,1)= f (2,1). This shows that P,P(X1|X2) do not satisfy (GBR) and there-
fore are not coherent. �
Next, we consider a number of coherent conditional lower previsions, and inves-
tigate if their convex combinations are also coherent. We show in the following
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example that this is not the case. Note that, since the example involves conditional
linear previsions, the result also shows that the models that avoid partial loss are not
closed under convex combinations.

Example 4. Let X1,X2,X3 be binary random variables, and let us consider the con-
ditional linear previsions P1(X3|X1),P1(X3|X2) determined by{

P1(X3 = 1|X1 = 1) = 0.5, P1(X3 = 1|X1 = 0) = 0.3

P1(X3 = 1|X2 = 1) = 0.5, P1(X3 = 1|X2 = 0) = 0.5.

Let us show that P1(X3|X1),P1(X3|X2) are coherent. Since they are linear, coher-
ence is equivalent to avoiding partial loss. Consider f1 ∈K1,3, f2 ∈K2,3, and let us
show that

max
ω∈S( f j)

[G1( f1|X1)+ G1( f2|X2)](ω)≥ 0. (6)

Note first of all that they are weakly coherent: the linear prevision P1 determined
by a uniform probability distribution on {ω ∈ {0,1}3 : π1(ω) = 1} is coherent with
both P1(X3|X1),P1(X3|X2). Indeed, it follows from the definition of P1(X3|X2) that
any linear prevision P which is coherent with P1(X3|X2) must satisfy P(X3 = 1) =
0.5, and as a consequence, if P is also coherent with P1(X3|X1) it must satisfy P(X1 =
1) = 1. Applying Theorem 4, we can assume without loss of generality that f1 = 0
on π−1

1 (1).
Assume that f2 �= 0; otherwise, Eq. (6) follows from the separate coherence of

P1(X3|X1). Let x2 ∈ {0,1} be such that (X2 = x2) belongs to S2( f2). Then it follows
from the separate coherence of P2(X3|X2) that there is some x3 ∈ {0,1} such that
G1( f2|X2)(x1,x2,x3) ≥ 0 for every x1 ∈ {0,1}, also taking into account that f2 is
X2,3-measurable. As a consequence,

[G1( f1|X1)+ G1( f2|X2)](1,x2,x3) = 0 + G1( f2|X2)(1,x2,x3)≥ 0,

taking into account that X1 = 1 does not belong to S1( f1). Since (1,x2,x3) ∈ S( f j),
we see that Eq. (6) holds and P1(X3|X1),P1(X3|X2) are coherent.

Consider now the conditional linear previsions P2(X3|X1),P2(X3|X2) determined
by {

P2(X3 = 1|X1 = 1) = 0.3, P2(X3 = 1|X1 = 0) = 0.5

P2(X3 = 1|X2 = 1) = 0.5, P2(X3 = 1|X2 = 0) = 0.5.

Reasoning as in the above case, we conclude that P2(X3|X1),P2(X3|X2) are coherent
(and in particular also weakly coherent).

Consider now α = 0.5, and define{
P(X3|X1) = αP1(X3|X1)+ (1−α)P2(X3|X1)
P(X3|X2) = αP1(X3|X2)+ (1−α)P2(X3|X2).
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These conditional previsions are determined by{
P(X3 = 1|X1 = 1) = 0.4, P(X3 = 1|X1 = 0) = 0.4

P(X3 = 1|X2 = 1) = 0.5, P(X3 = 1|X2 = 0) = 0.5.

Let us show that P(X3|X1),P(X3|X2) are not weakly coherent. From Theorem 1,
if they were weakly coherent there would be a linear prevision P which would be
weakly coherent with them. But the coherence of P,P(X3|X1) implies that P(X3 =
1) = 0.4, while it follows from the coherence of P,P(X3|X2) that P(X3 = 1) = 0.5.
Hence, there is no such P and from Theorem 1 we conclude that P(X3|X1),P(X3|X2)
are not weakly coherent. �

5.2 Point-Wise Limits

We next investigate if weakly (resp., strongly) coherent models are closed under
point-wise limits. This property holds in the unconditional case, as proven in [16,
Thm. 2.6.5]. The following result shows that the same happens for conditional lower
previsions:

Theorem 10. [14, Lemma 4] Consider a sequence of conditional lower previsions
{Pk

1(XO1 |XI1), . . . ,P
k
m(XOm |XIm)}k∈N with domains K 1, . . . ,K m. Assume their

point-wise limits P1(XO1 |XI1), . . . ,Pm(XOm |XIm) exist.

1. If Pk
1(XO1 |XI1), . . . ,P

k
m(XOm |XIm) are weakly coherent for all k, then so are

P1(XO1 |XI1), . . . ,Pm(XOm |XIm).
2. If moreover Pk

1(XO1 |XI1), . . . ,P
k
m(XOm |XIm) are coherent for all k, then so are

P1(XO1 |XI1), . . . ,Pm(XOm |XIm).

5.3 n-Monotonicity

One interesting particular case of coherent lower previsions are the so-called n-
monotone lower previsions, which are those defined on a lattice of gambles and that
satisfy the following condition:

∑
I⊆{1,...,p}

(−1)|I|P

(
f ∧

∧
i∈I

fi

)
≥ 0

for every p ≤ n and gambles f , f1, . . . , fp on the domain, where f1 ∧ f2 denotes the
point-wise minimum of f1, f2. These previsions were investigated in some detail in
[15] and in [3, 4]. They have a number of interesting properties: for instance, they
are characterised by their restrictions to events, through the Choquet integral [1, 6];
moreover, the property of 2-monotonicity is equivalent [4, Theorem 15] to comono-
tonic additivity, which is of interest in economics. A coherent lower prevision which
is n-monotone for every natural number n is called completely monotone.
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The notion of n-monotonicity can be easily extended to conditional lower previ-
sions: given disjoint subsets O, I of {1, . . . ,n}, we say that a conditional lower pre-
vision P(XO|XI) with domain KO∪I is n-monotone when for every x ∈XI , P(·|x) is
an n-monotone lower prevision on its domain.

In this section, we are going to study if, given an unconditional 2-monotone lower
prevision, it is possible to define a conditional lower prevision which is coherent
with it and still satisfies the property of 2-monotonicity. There are a few examples
in the literature hinting that this is the case: since from [4, Theorem 11] a vacu-
ous lower prevision is completely monotone, it follows from [16, Sect. 6.6.1] that
the natural extension of the vacuous unconditional lower prevision is again vacuous
(and therefore completely monotone).This, together with the results in Sect. 4.2,
implies that the natural extension of a linear prevision (which is in particular com-
pletely monotone) is also completely monotone. That this is also the case for lower
previsions is established in the following theorem:

Theorem 11. [15, Theorem 7.2] Let P be a 2-monotone lower prevision on L (X n),
and let P(XO|XI) be defined from P by natural extension. Then P(XO|XI) is also 2-
monotone on events.

Note, however, that P(XO|XI) need not be the Choquet integral with respect to its
restriction to events, and as a consequence it is not 2-monotone in general.

It is an open problem at this stage whether this property generalises to
n-monotonicity, for n≥ 2, and whether we can also define n-monotone conditional
lower previsions by means of other procedures, such as regular extension.

6 Conclusions

In this paper we have studied the difference between the weak and strong coherence
of a number of conditional lower previsions when all the referential spaces are finite.
We have proven that one of the key points is the issue of conditioning on sets of
(lower) probability zero. This problem has been considered in some detail by a
number of authors (see for instance [16, Section 6.10] and [2, Chapter 12]).

On the other hand, we have also established the smallest (more conservative) and
greatest (more informative) conditional lower previsions that we can derive from an
unconditional lower prevision in a coherent way. Although weak and strong coher-
ence are not equivalent when we want to derive more than one conditional lower
prevision, we have proven that the smallest and greatest weakly coherent updated
previsions coincide with the smallest and greatest coherent updated previsions, and
are given by the natural and regular extensions, respectively. In this sense, it is in-
teresting to remark some recent work [14], based on earlier results in [17], where it
is established that the natural extension can be seen as a limit of conditional lower
previsions defined using regular extension.

We have shown that the classes of weakly and strongly coherent models are
closed by point-wise limits but not by convex combinations (although in the case
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of weak coherence we have convexity if we fix the compatible joint), and that we
can use the natural extension not only to propagate coherence, but also the stronger
notion of 2-monotonicity.

We would like to conclude remarking that most of the properties established in
this paper do not extend to conditional previsions on infinite spaces. This is studied
in detail in [11]. We also refer to this paper for a study of the coherent updating of
possibility measures. On the other hand, an open problem derived from this paper
would be to establish the results for previsions conditional on partitions, not nec-
essarily related to product spaces. This approach is used in [16, Chapter 6] and [8,
Chapter 4].

Acknowledgements. I would like to thank the financial support of the projects TIN2008-
06796-C04-01 and MTM2007-61193.
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On Evidential Markov Chains

Hélène Soubaras

Abstract. Evidential Markov chains (EMCs) are a generalization of classical
Markov chains to the Dempster-Shafer theory, replacing the involved states by sets
of states. They have been proposed recently in the particular field of an image seg-
mentation application, as hidden models. With the aim to propose them as a more
general tool, this paper explores new theoretical aspects about the conditioning of
belief functions and the comparison to classical Markov chains and HMMs will
be discussed. New computation tools based on matrices are proposed. The poten-
tial application domains seem promising in the information-based decision-support
systems and an example is given.

Keywords: Markov chains, belief functions, Dempster-Shafer theory, Hidden
Markov Models, evidential networks.

1 Introduction

Markov chains [4] are well-known statistical models for memoryless systems. They
are applied to a wide range of application domains, and they are a mathematically
powerful tool [19, 9].

But the parameters they involve are precise probabilities, which will not be avail-
able in a family of decision-making problems where the data are imprecise or in-
complete, or in systems whose behavior can be described only roughly. This is why
the generalization of Markov chains to belief functions has recently been proposed
in works around W. Pieczynski [3, 7]. This new model, called Evidential Markov
Chain (EMC), was used as hidden model in a particular application of image seg-
mentation. These works proposed an algorithm to solve the hidden model based on
HMM approaches, and examined the computational complexity.
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The objective of this paper is to explore some theoretical aspects about EMCs,
and to show their relevance to a wide panel of possible applications.

Basics of the Dempster-Shafer theory [13, 17] will first be reminded, then the
Markov chains and the EMC will be defined. Aspects about conditioning will be
discussed [15], and some possible applications will be proposed.

2 Basics of the Dempster-Shafer Theory

This section will remind the basics of the Dempster-Shafer theory and provide tools
to understand them (probabilistic point of view and matrix) that will be useful in the
sequel.

2.1 Basic Belief Assignment

One calls frame of discernment a set Ω of all possible hypotheses; Ω can be discrete
or continuous.

A mass function, also called BBA (Basic Belief Assignment) [13], is a mapping
m on the power set 2Ω , which is the set of all subsets of Ω , to [0;1] such that, if Ω
is finite:

∑
A⊆Ω

m(A) = 1

A subset A ⊂ Ω is called a focal set as soon as its mass is nonzero. If Ω is
countable or continuous, the above expression is still valid if there is a finite number
of focal sets.

If m(') �= 0, some belief on an hypothesis that would be outside Ω . This is the
Open World Assumption (OWA) [6]. Otherwise, the mass function is said normal-
ized. m becomes a classical probability when the focal sets are disjoint singletons.
F ⊆ 2Ω will denote the set of all focal sets.

2.2 Induced Probability Space

In this paragraph shows that the belief functions can be manipulated through a prob-
ability μ , as did Shafer [14].

The set 2F is then the set of all collections of focal sets. Note that 2F ⊆ 22Ω
,

which is the set of all collections of subsets of Ω . The elements of 2F are then of
the form:

A ∈ 2F ⇐⇒ A = {B1,B2...Bn}
with Bi ∈ F ∀i. So, 2F is a σ -algebra on F . Let’s define on 2F the following
function:

μ : 2F → [0;1]

such that ∀A ∈ 2F ,

μ (A = {B1,B2...Bn}) =
n

∑
i=1

m(Bi) (1)
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It is easy to see that μ is a measure, since μ(') = 0 and μ is additive, i.e.
μ(

⋃
i Ai) = ∑i μ(Ai) as soon as the Ai are pairwise disjoint. Furthermore, μ(F ) = 1.

Thus, (F ,2F ,μ) is a probability space. In other words, focal sets can be seen as
set-valued random variables. The probability μ(A = {B1,B2...Bn}) corresponds to
the fact that one of the focal sets Bi, 1≤ i≤ n occurs (thus the truth is in one of these
sets). At this stage one doesn’t take into account the fact that the Bi are disjoint or not.

One can define two functions that provide collections in 2F for any given A⊆Ω
(even if A is not in F ):

F (A) = {B ∈F/B∩A �='}
(these are the elements of F hitting the given subset A), and the dual collection,
which is:

F (A) = {B ∈F/B⊆ A}
Note that F (A) = F c(Ac).

F (A) and F (A) are called respectively the inner and the outer restriction of F
with respect to A [21].

2.3 Belief Function, Plausibility and Commonality

For a given mass function m a belief function Bel, a plausibility function Pl and a
commonality function q have been defined as follows [13] for all A⊆Ω :

Bel(A) = ∑
B⊆A,B �='

m(B) (2)

Pl(A) = ∑
B∩A �='

m(B) (3)

q(A) = ∑
B⊇A

m(B) (4)

They can also be written as:

Bel(A) = μ(S ⊆ A,S �=') = μ(A)

(probability that the truth is always in A),

Pl(A) = μ(S∩A �=') = μ(A)

(probability that the truth is possibly in A), and

q(A) = μ(A⊆ S).

One can remark that Bel and Pl can be written using the inner and the outer
extension of A in F∗ = F \ {'}, which denotes the set of nonempty focal sets of
the frame Ω . The belief function can be expressed as:

Bel(A) = μ (F∗(A))
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and the plausibility as:
Pl(A) = μ(F∗(A))

The two functions Bel and Pl are dual, related by:

Pl(A) = 1−m(')−Bel(Ac) (5)

where Ac denotes the complementary set of A in Ω .
Smets [17] introduced the pignistic probability Bet associated to m. When Ω is

discrete, it is defined ∀x ∈Ω by:

Bet(x) =
1

1−m(') ∑
A/x∈A

m(A)
|A| (6)

where |A| is the cardinality of A, i.e. the number of elements of A. Bel, Pl and Bet
are all equal to classical probabilities when the focal sets are disjoint singletons.

It is important to notice that the three functions (belief, plausibility and common-
ality) are not measures because they are not additive, but subadditive since:

Bel(A∪B)≥ Bel(A)+ Bel(B)

3 Matrix Tools

We consider a mass function on a finite discrete frame Ω . Nf is the number of focal
sets. One will define the mass vector M by its coordinates:

M( j) = m(A j) = m j (7)

for all focal set A j, 1≤ j ≤ Nf .

3.1 Matrix Tools for Belief Functions

It is known [5] that the relation between the mass function m and the belief function
Bel is a bijection. For a given discrete space Ω containing N elements and any func-
tion Bel defined on a set of subsets F ⊆ 2Ω , if Bel satisfies the three assumptions:

1. Bel(Ω)≤ 1

2. Bel is completely monotone, i.e. if A⊂ B then Bel(A)≤ Bel(B)

3. Bel is subadditive

then a mass function m can be deduced thanks to the so-called Möbius transform:

m(A) = ∑
B⊆A

(−1)|A\B|Bel(B) (8)
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If one denotes as M the column vector of the masses of all the subsets of Ω ,
its size will be 2N . The column vector Bel containing all the values of the belief
function on the nonempty subsets will also be of size 2N , and it can be calculated
from M thanks to a matrix product:

Bel = BfrM.M

and the Möbius transform is then performed by the inverse matrix BfrM−1. BfrM
is a 2N×2N generalization matrix G defined by Smets [16] as:

Definition 1. A generalization matrix of a collection of subsets Ai is a stochastic
matrix G satisfying G(i, j) = 0 if A j �⊆ Ai.

Smets [16] also defined, similarly:

Definition 2. A specialization matrix is a stochastic matrix S satisfying S(i, j) = 0 if
Ai �⊆ A j.

Those matrices are stochastic in Smets’s general definition, but in this case, there
nonzero elements are equal to 1.

In this paper we also propose a new matrix in order to compute the plausibility
function. It will be called the gauge matrix:

Definition 3. The gauge (pattern) matrix of a collection of subets Ai is defined by:

Ga(i, j) =
{

1 if Ai∩A j �='
0 otherwise

The 2N-size column vector Pl of the plausibility function is then defined by:

Pl = GaM

The commonality can also be computed through such a matrix product.

3.2 Markov Kernel Matrix

Definition 4. Let be X and Y two discrete random variables. A Markov kernel is a
matrix of the conditional probabilities p(i|k) of the occurrence Y = yi given X =
xk has occurred. (In Markov chains, as we shall see at paragraph 4.1, the state
transition matrix is a Markov kernel whose random variables are two successive
states of the system).

Let Ω be a frame of discernment. One supposes there is a finite partition H =
{Xi / 1 ≤ i ≤ Nc} ⊆ 2Ω on the frame Ω . The couple (Ω ,H ) is called a proposi-
tional space. Each subset Xi can be called a class. Let m be a mass function on Ω ,
with a finite set of focal sets F = {Ak/1≤ k ≤ Nf }. One would like to estimate in
which class X the truth is for a given mass function.
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Classes and focal sets can be viewed as random variables X and A., taking values
in H and F respectively. Each focal set Ak can occur with a probability mk.

The assumption that will be made now is that there exists a fixed Markov kernel
K defined by K(i,k) = p(i|k) such that

pi =
Nf

∑
k=1

p(i|k)mk (9)

where pi = Pr(Xi) and mk = m(Ak). This can also be written with P, the vector of
the probabilities of the classes:

P = KM (10)

As 0 ≤ p(i|k) ≤ 1 for all (i,k), one can notice from (2) and (3) that for all com-
patible kernel K,we get the following relation, for all set X = Xi:

Bel(X)≤ p(X)≤ Pl(X) (11)

Thus the probabilities pi(Xi) of each class Xi are imprecise probabilities since
they belong to an interval.

3.3 Matrix Representations for Classes

Let Nf be the number of focal sets and Nc the number of classes. One supposes that
Nf and Nc are finite. One can still define the gauge matrix Ga of size Nc×Nf by
Ga(i, j) = 1 if Xi∩A j �= ', and 0 otherwise, for all classes Xi and for all focal sets
A j. Any Markov kernel K compatible with the mass function is zero where Ga is
zero. The lines of the transposed matrix GT

a can be seen as base-2 representations of
the focal sets.

One can describe entirely a belief mass by its gauge matrix Ga and its mass
vector M.

When the classes are not singletons, the cardinality of a focal set can be defined
as the number of classes it meets. This number is obtained by

(11...1)Ga =

⎛
⎜⎜⎜⎝
|A1|
|A2|

...
|ANf |

⎞
⎟⎟⎟⎠

The computation of the belief function, the plausibility function, the common-
ality and the pignistic probability with matrix products is still possible, as it was
shown by Smets [16] and at paragraph 3, for the 2Nc subsets of Ω that are unions of
subsets Xi:

Bel = G.M (12)
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Pl = Ga.M (13)

q = S.M (14)

Bet = BetPfrM.M (15)

where G, Ga, S and BetPfrM are all 2Nc × Nf -sized matrices defined as in
paragraph 3.1.

4 Evidential Markov Chains

4.1 Definition

Let’s concider Ω = {a1,a2...aN} be the set of the possible random states xt of a
system for each time t.

Definition 5. The probability Pr for each state of the system satisfies the Markov
property if and only if:

Pr(xt |x0,x1,x2,x3, ...xt−1) = Pr(xt |xt−1)

The transition matrix of the system is the N ×N matrix Q of the probabilities of
transition from one state at a given time t to another state at the next time t + 1
defined by:

Q = (qi j)1≤i, j≤N

where
qi j = Pr(xt+1 = ai|xt = a j)

If a transition matrix exists, the Markov property is satisfied.

Proof. One can write:

Pr(xt ,xt−1...x0) = Pr(xt |xt−1...x0).Pr(xt−1...x0)
= Pr(x0).∏t

n=1 Pr(xn|xn−1)

by recurrence. So the conditional probability is, by applying Bayes’ formula:

Pr(xt |xt−1...x0) =
Pr(xt ,xt−1...x0)

Pr(xt−1,xt−2...x0)
= Pr(xt |xt−1)

If one denotes as Pt the vector of the probabilities of each state, one has the
following relation:

Pt = QPt−1 = QtP0

Definition 6. A Markov chain is a triple (Ω ,Q,P0) where P0 = Pr(x0) is the initial
probability vector.

Figure 1 shows the scheme (Bayesian Network) of a Markov chain.
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Fig. 1 Scheme of a Markov chain

An Evidential Markov Chain is a classical Markov chain where the random vari-
able representing the possible states of the system is replaced by random (focal)
sets [3, 10]:

Definition 7. Let Ω be a frame of discernment. An Evidential Markov Chain (EMC)
is a Markov chain (F ,Q,Mo) where F is a set of focal sets and M0 is the vector of
the initial masses of all the focal sets.

If the vector of masses at time t is denoted as Mt , one can write the following relation:

Mt = QMt−1 (16)
In the particular case where F is the set of the N singletons of Ω , the EMC

becomes a classical probabilistic Markov chain.
One can verify through equations 12, 13, 14 and 15 that the belief function, the

plausibility, the commonality and the pignistic probability of an EMC are Markov
chains whose transition matrices are of the form

Q′ = HQ(HT H)−1HT

where the matrix H represents G, Ga, S and BetPfrM respectively. Of course, if the
topology of the focal sets does not satisfy some conditions, the matrix HT H will not
be invertible. But otherwise, a transition matrix exists for these fuzzy measures, so
they are Markov chains as showed at paragraph 4.1.

The fact that theses functions are Markov chains is still true when the matrices H
are restricted to a subcollection of subsets, for example to singletons. If H is square,
it may be invertible, the resulting transition matrix will be:

Q′ = HQH−1

4.2 Conditioning and the Generalized Bayes Theorem

Some classical rules of conditioning have been proposed to take into account a
new piece of knowledge in one’s beliefs (i.e. a new observation). For example,
the famous Jeffrey’s rulefor statistical inference is inspired from Bayes formula.
Dubois [1] also proposed conbination and conditioning rules.

Our purpose here is not inference, but just to describe a system’s behavior. Ev-
idential Markov chains are particular cases of evidential networks [22] since they
rely on conditional masses. There have been some works about conditioning in the
Dempster-Shafer theory [1, 20].
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In probability theory the conditional probability of a subset A given a subset B is
the new probability defined on B as probability space, and it is given by the Bayes
formula:

Pr(A|B) =
Pr(A∩B)

Pr(B)
(17)

Such relations of conditioning have been proposed for belief masses [13]. Thanks
to the probability μ introduced at 2.2, there are four ways to express the conditional
probability that the truth is always / possibly in A given that it is always / possibly
in B:

μ(A|B) =
Bel(A∩B)

Bel(B)

μ(A|B) =
Bel(B)−Bel(B\A)

Bel(B)

μ(A|B) =
Pl(B)−Pl(B\A)

Pl(B)

(Dempster’s Bel(A|B) [17])

μ(A|B) =
Pl(A∩B)

Pl(B)

(Dempster’s Pl(A|B) [17]).
Dempster also defined the underlying conditional mass [17], which is equal to,

in the unnormalized case:

m(A *B) =
{

μ(S∩B = A) for A⊆ B
0 otherwise

and, in its normalized version: m(A|B) = m(A *B)/μ(Bc). Smets [15] proposes ex-
pressions for the generalization of the Bayes theorem to belief functions (GBT). In
this article, the expression proposed for the masses themselves is the Conjunctive
Rule of Combination [2], which is exactly the one expressed using m(A *B):

mt(A) = ∑
B

m(A *B)mt−1(B)

This is exactly the operation performed in the EMC transition matrix product 16.
Nevertheless, Smets’ expressions for the GBT for the belief and the plausibility

functions suppose that one of the two frames of discernment is a partition. To be
applied to a EMC, the GBT implies that F is a partition of Ω . This is a particular
case which is not very interesting since it corresponds to a classical probabilistic
case where the belief and the plausibility are all equal to a simple probability.

In conclusion, through its transition matrix, the EMC performs one form of con-
junctive rule of combination of Demspter’s unnormalized conditional masses.
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4.3 Associated Hidden Markov Model

Definition 8. A Hidden Markov Model (HMM) is a 5-uple (Ωx,Ωy,Q,K,P0) where
(Ωx,Q,P0) is a Markov chain, and the observation is a random variable y taking
values in Ωy and such that the matrix of the emission probabilities (Markov kernel
of y given x) is K.

The internal states x of the Markov chain are not known, except through the
knowledge of y. To estimate xt from an observed sequence yt (in particular when
|Ωy| < |Ωx|), algorithms have been proposed such as the Baum-Welch algorithm
and the Viterbi algorithm [11].

To compare a HMM and a EMC (see figures 2 and 3) let’s consider a given
HMM with transition matrix Q and whose observed varialbe Y is the random fo-
cal set. If there exists a compatible EMC with transition matrix Q′, the follow-
ing condition must be satisfied: (KQ−Q′K)P = 0 for all probability vector P. If
dim(M)≤ dim(P), one solution is

Q′ = KQKT (KKT )−1

(if K is not degenerated). Thus it is possible to find one EMC which is compatible
with a given HMM, but it is not so easy to find one HMM compatible with a given
EMC since KT K is not invertible in the general case.

Fig. 2 Scheme of a HMM

Now suppose we have a EMC, and let’s consider again the partition of Ω into
classes H = {Xi/i ≤ i ≤ Nc} ⊆ 2Ω ; one assumes that the conditional belief func-
tions Bel(Ai|Xk) are known, and that the mass function on H is normalized. The
GBT can then be applied [15]:

αBel(Xi|A j) = ∏
k �=i

Bel(Ac
j|Xk)−∏

k

Bel(Ac
j|Xk)

where α is the normalizing factor:

α = 1−∏
k

Bel(Ac
j|Xk)
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Fig. 3 Scheme of a EMC

Thus, thanks to the Möbius transform, a mass function can be calculated for the
classes. If this mass function were a classical probability, the classes Xi could be
seen as the hidden internal state of the Markov chain whose observations are the
(random) focal sets. Thus, an EMC can be viewed as a generalization of a classical
HMM.

In conclusion, we showed that it can be easy to find one EMC compatible with
a given HMM. For a given EMC, a family of compatible HMMs exists. When the
EMC observations are random focal sets, the EMC internal state can be solved as in
a HMM.

5 Applications

The EMC model has been proposed first to achieve image segmentation [7, 3]. It
was supposed to be hidden in those cases; this means the mass function could not be
observed directly, but through a measurement y such that the conditional probabili-
ties Pr(y|A) are fixed and known (or estimated) for each focal set A. An algorithm
derived from the classical HMM identification was proposed [7].

EMCs can be also interesting models for other uncertain systems, particularly if
they involve phenomena that are difficult to quantify, like human behaviors. Such
modelling can be applied to the forecasting of the future evolution of a system; it
can also be useful for simulations in order to measure the performances of other
algorithms. Techniques used in the classical statistics, such as Monte-Carlo or Im-
portance Sampling, could be generalized to EMCs.

As an example, an EMC can be used as a simulation model for the tenseness
between two countries that could lead to a conflict or a war. This will be detailed
here. The decision-making support tool is a situation understanding module.

5.1 Example: Simulation of a Geopolitical Crisis

The simulation of the sequence of events of a crisis is useful to improve tools and
algorithms for crisis management, such as the risk assessment module. Its prin-
ciple in such a situation understanding module for geopolitical crises consists in
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Fig. 4 Scheme of the decision-making support system involving a simulation

receiving events (with any type of sensor, even human observations such as phone
calls or texts), then classifying them in the knowledge base, and running the risk
measurement tools. The knowledge base is constituted prevously using experts opin-
ions. The simulation consists in replaceing the observation and classification of
events by an EMC-based generator, as shown in the diagram at figure 4.

The (political) tenseness is an underlying value that can be estimated only through
open sources of information (journal articles, television news...) and indirectly (e.g.
through symptomatic events such as demonstrations, declarations, political deci-
sions...). The system should be able to extract a mass function from these events.

5.2 Crisis Model

The EMC is the model proposed in this work to describe the behaviour of the crisis
situation. The focal sets are overlapping rough estimations of the tenseness, and the
tenseness itself is quantized on several values (5 in the example shown figure 5.
These intervals of tenseness are the classes Xi,1 ≤ i≤ 5.
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Fig. 5 Example with 13 focal sets over 5 levels of political tenseness between two countries

The observed data are the events. Each type of event corresponds to a gievn mass
function which expresses its possible impact on political tenseness, as shown in the
example at figure 6.

Fig. 6 Example of mass function of an event

A mass function is represented mathematically by a vector of size 13. Each of its
coeffficients is the mass of one of the 13 focal sets. The 13×13 transition matrix of
the EMC model for the crisis evolution is:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9999 0 0 0 0 0 0 0 0 0 0 0 0
0 0.8 0.2 0 0 0 0 0 0 0 0 0 0

0.0001 0 0.8 0 0 0 0 0 0 0 0 0 0
0 0.2 0 0.8 0 0 0 0 0 0 0 0 0
0 0 0 0.2 0.8 0 0 0 0 0 0 0 0
0 0 0 0 0.2 0.8 0 0 0 0 0 0 0
0 0 0 0 0 0 0.8 0 0 0.2 0 0 0
0 0 0 0 0 0 0 0.8 0.2 0 0 0 0
0 0 0 0 0 0 0.2 0 0.8 0 0 0 0
0 0 0 0 0 0.2 0 0 0 0.8 0 0 0
0 0 0 0 0 0 0 0.2 0 0 0.8 0 0
0 0 0 0 0 0 0 0 0 0 0 0.8 0.2
0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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It reflects the fact that when the tenseness begins to rise, it can easily rise more.
It shows for example that the tenseness can increase easily from medium to high,
but resolution of the crisis from high to medium is less likely to happen. The EMC
allows to translate such approximately described phenomena into a model that can
be implemented.

In addition to this EMC which models the evolution of the situation, one will
perform a kind of integration of the events, since they are random. Suppose that one
observes the events occurring during each time period. Of course, the length of the
time period is chosen to be adapted to the speed of the evolution of the situation,
depending on the nature of the crisis (i.e. minutes for humanitarian emergencies,
hours for destructions caused by a natural meteorological phenomenon, weeks for
pandemics, months for a political crisis). At each time period t a number Ne of
events have been detected and identified. This number Ne is not fixed, and it can be
modelled by a random draw. In the simulation, its probability law is uniform on a
given interval.

Each one of the events observed during the time period t is classified; it corre-
sponds to type i, which is one of the event types stored in the knowledge base. Thus
it receives the corresponding mass function Mi.

All the mass functions during the time period are then arithmetically averaged.
If there are no events (Ne = 0), the default mass function M0 corresponding to the
non-event case is attributed. The average is performed including the default mass
with a weight a0, as shown in the formula:

< M >=
a0M0 + ∑Ne

i=1 Mi

a0 + Ne

5.3 Simulation of the Average Mass Function by an EMC

This average mass function < M >= Mt is going to be modelled by the output of an
EMC. This is the model used to simulate the crisis, as illustrated on figure 7. The

Fig. 7 EMC as a generator of mass functions
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mass function obtained at the EMC output at time t − 1 is put again at the EMC
input to calculate the mass function at the following time t.

5.4 Generation of Events

The output of the EMC described in the previous paragraph represents a reference
mass function denoted as Mt . The idea is to choose, more or less randomly, a number
of event types (in the knowledge base) whose average mass function < M > is almost
equal to the reference mass function. As illustrated at figure 8, the Euclidian distance
is calculated between Mt and each one of the mass function vectors Mi belonging to
the knowledge base. A subset of the nearest mass functions of the knowledge base
is thus defined. Then, the number Ne of simulated events for the given time period is
generated randomly; and one event type is picked out of the subset, Ne times. This
operation is repeated for each time period t. Then we get two sequences: the sequence
of the number Ne for each t, and the sequence for all the event types.

Fig. 8 Scheme showing how event types are selected in the knowledge to generate a sequence
of simulated events.

5.5 The Knowledge Base

The knowledge base contains all the types of events that can occur in the studied
system. For each one of them, a mass function, defined by an expert, is given. In
the present example of geopolitical crisis, we shall use a classification of events that
has already been used in the literature [12], called WEIS (World Event Interaction
Survey) [8].

Figure 9 illustrates some of these WEIS classes of events. There mass function is
represented as imprecise probabilities; that means for each level of political tense-
ness, the intervals bounded by the minimum and the maximum probabilities (which
are equal to the belief and the plausibility functions of this given level of tenseness),
are filled with gray colour.
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Fig. 9 Scheme showing how event types are selected in the knowledge base to generate a
sequence of simulated events.

5.6 Results

An example obtained by running such an EMC is shown at figure 10. There, a mass
function is generated by the EMC model at each time. Previously, an expert had as-
signed a mass function to each one of the predefined possible classes of events. The
simulator computes then the Euclidian distance between the mass vector generated

Fig. 10 Random sequence of classes of geopolitical events following an evidential Markov-
modelled increase of tenseness
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by the EMC and the mass vectors of each class, and it chooses randomly one class
amongst the nearest ones.

Thus, one can see that an EMC can be usd to generate the realistic history of an
imaginary political crisis. What is displayed is a text: the list of the event descrip-
tions. But the simulator has also provided a sequence of numerical values: the mass
function for each generated event.

6 Conclusion

Evidential Markov chains (EMCs) are a generalization of the classical Markov
chains. They are Markov chains involving masses on focal sets instead of proba-
bilities on elementary states. They have been proposed in the image segmentation
model [3,7]. This paper examines some theoretical aspects of EMCs: it relates them
to the Dempster’s rules of conditioning and the Smets’ Generalized Bayes Theorem;
it points out that an EMC is a generalization of a HMM. Some computation tools
based on matrix are also proposed.

EMC models have potentially interesting pplications in the field of uncertain sys-
tems, particularly those involving human behaviors or imprecise data such as text.
An example is given for the simulation of the tenseness between two conflicting
countries. The author has developed this study and proposed an algorithm for risk
measurement in EMCs [18].
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