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Fuzzy Linear Programming

In this chapter, based on the general fuzzy linear programming, we first aim at
discussing how to solve an optimal judge problem of Zimmermann arithmetic;
then we put forward “the more-for-less paradox” of fuzzy linear programming,
inquiry into the one with various fuzzy coefficients, and study a new linear
programming model with T - fuzzy variables. Finally we make some extension
to fuzzy line programming.

6.1 Fuzzy Linear Programming and Its Algorithm

Suppose that x = (x1, x2, · · · , xn)T is an n-dimensional decision vector,
c = (c1, c2, · · · , cn) is an n-dimensional objective coefficient vector, A =
(aij)(1 � i � m; 1 � j � n) is an m × n-dimensional constraint coeffi-
cient matrix, b = (b1, b2, · · · , bm)T is an m-dimensional constant vector, and
fuzzify objective and constraint function in the ordinary linear programming,
then

m̃ax (or m̃in) z = cx

s.t. Ax � b,

x � 0,

(6.1.1)

we call it a fuzzy linear programming. Let the rank(A)=m. “�” denotes the
fuzzy version of “�” and has the linguistic interaction “essentially smaller
than or equal to” [Zim76][LL01]. m̃ax represents fuzzy maximizing, written

as cx =
n∑

j=1

cjxj , Ax = (
n∑

j=1

aijxj)m×n(1 � i � m).
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140 6 Fuzzy Linear Programming

The membership function of fuzzy objective g̃(x) is

μG̃(x) = g̃(
n∑

j=1

cjxj)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, when
n∑

j=1

cjxj � z0,

1
d0

(
n∑

j=1

cjxj − z0), when z0 <
n∑

j=1

cjxj � z0 + d0,

1, when
n∑

j=1

cjxj > z0 + d0,

(6.1.2)

written as t0 =
n∑

j=1

cjxj , the image of g̃(t0) is shown as Figure 6.1.1.
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The membership functions of fuzzy constraints f(x) are:

μS̃i
(x) = f̃(

n∑
j=1

aijxj)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, when
n∑

j=1

aijxj � bi,

1− 1
di

(
n∑

j=1

aijxj − bi), when bi <
n∑

j=1

aijxj � bi + di,

0, when
n∑

j=1

cjxj > bi + di,

(6.1.3)

written as ti =
n∑

j=1

aijxj , the image of f̃(ti) is shown as Figure 6.1.2, where

di � 0(0 � i � m) is a flexible index by an appropriate choice.
Consider a symmetric form fuzzy linear programming (6.1.1), written as

μS̃ = S̃f and μG̃ = M̃f , and we call it condition and unconditional fuzzy
superiority set of f concerning constraint S̃, respectively.
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6.1.1 Replacement Solution Method in Fuzzy Linear Programming

Theorem 6.1.1. For a symmetric type programming, we have

max
x∈X

μD̃(x) = max
α∈[0,1]

(α ∧ max
x∈Sα

μG̃(x)). (6.1.4)

Proof: From Decomposition Theorem, we denote fuzzy constraint S̃ for
μS̃(x) =

∨
α∈[0,1]

α
∧

Sα(x), then

μD̃(x) = μG̃(x)

∧
μS̃(x) = μG̃(x)

∧
[
∨

α∈[0,1]

(α
∧

Sα(x))]

=
∨

α∈[0,1]

[μG̃(x)
∧

(α
∧

Sα(x))],

where Sα(x) =
{

1, x ∈ Sα,

0, x /∈ Sα.
Hence

max
x∈X

μD̃(x) =
∨

x∈X

∨
α∈[0,1]

[μG̃(x)
∧

(α
∧

Sα(x))]

=
∨

α∈[0,1]

{α
∧

[
∨

x∈X

(μG̃(x)
∧

Sα(x))]},

while∨
x∈X

[μG̃(x)
∧

Sα(x)] = {
∨

x∈Sα

[μG̃(x)
∧

Sα(x)]}
∨
{
∨

x/∈Sα

[μG̃(x)
∧

Sα(x)]}

=
∨

x∈Sα

μG̃(x).

Therefore, (6.1.4) is certificated.

For the sake of the convenience, let

(1) ϕ : [0, 1]→ [0, 1], ϕ(α) = max
x∈Sα

μG̃(x);

(2) ψ : [0, 1]→ [0, 1], ψ(α) = α
∧

ϕ(α).

Obviously, ϕ has the properties:

10 ϕ(0) = max
x∈X

μG̃(x);

20 ϕ is a gradually decreasing function.

Asai, Tanaka et al have given ϕ a sufficiency condition of continuity [TOA73]:
If fuzzy constraint S̃ is a strict convex fuzzy set, then function ϕ is a

continuous function in [0,1].

Theorem 6.1.2. If ϕ continues in [0,1], then ϕ has a unique fixed point.

Proof: If f(α) = α − ϕ(α), we know ϕ(α) is a continuous function in [0,1],
f(α) also is a continuous function in [0,1].
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Because f(1) = 1 − ϕ(1) � 0, which comes from value region of ϕ(α)
decision at [0,1], similarly, we have f(0) = 0− ϕ(0) < 0.

Therefore, point α∗ at least exists in the continuous function ϕ(α) in [0,1],
such that f(α∗) = 0, i.e., α∗ = ϕ(α∗).

Now prove uniqueness. In reverse suppose of α∗
1, α

∗
2, all satisfy ϕ(α∗

1) =
α∗

1, ϕ(α∗
2) = α∗

2, when α∗
1 � α∗

2, then ϕ(α∗
1) � ϕ(α∗

2). This is impossible,
and because of ϕ(α) definition, we have α∗

1 � α∗
2 ⇐⇒ ϕ(α∗

1) � ϕ(α∗
2); hence

α∗
1 = α∗

2.

Theorem 6.1.3. The fixed point α∗ of the continuous function ϕ(α) is all the
fixed point of the function ψ(α), i.e., ψ(α) = α∗.

Proof: ψ(α∗) = α∗∧ϕ(α∗) = α∗∧α∗ = α∗.

Theorem 6.1.4. If ϕ is continuous, then

max
x∈X

μD̃(x) = ψ(α∗) = α∗

to fuzzy adjudge μD̃(x), where α∗ is the fixed point in ϕ.

Proof: Because max
x∈X

μD̃(x) = max
α∈[0,1]

ψ(α), ψ(α∗) = α∗ ∧ϕ(α∗) = α∗, it only

proves max
α∈[0,1]

ψ(α) = ψ(α∗).

(1) When α � α∗, ϕ(α) � ϕ(α∗) = α∗ � α, then

ψ(α) = α
∧

ϕ(α) = α � α∗ = ψ(α∗).

(2) When α � α∗, ϕ(α) � ϕ(α∗) = α∗ � α, then

ψ(α) = α
∧

ϕ(α) = ϕ(α) � α∗∧ϕ(α∗) = ψ(α∗).

Therefore,
∀α ∈ [0, 1], ψ(α) � ψ(α∗),

i.e.,
ψ(α∗) = max

α∈[0,1]
ψ(α).

Theorem 6.1.5. If α∗ is a fixed point of the continuous function ψ(α), then
α∗ = max

x∈X
μD̃(x), that is, the fixed point α∗ of ψ(α) is a determination optimal

judgment value x∗.

From Theorem 6.1.4, it easily gets α∗ = max
x∈Sα

μÃ0
(x) = max

x∈X
μD̃(x).

Thus, we converse fuzzy linear programming into a process to solve an
ordinary linear programming.

In (6.1.1), we only discuss finding maximum problem in objective function
f(x) (to find a fuzzy minimum problem, we can convert it into finding a fuzzy
maximum of −f(x)).
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Concrete steps of solution to (6.1.1) shown follows.
10 Solve two linear programmings

(I) min cx

s.t. Ax � b,

x � 0,

(II) max cx

s.t. Ax � b,

x � 0.

Find the minimum m = min cx and maximum M = max cx are obtained,
respectively. If zero stays in the feasible region of Problem (I), and coefficient
c is all not negative, then m = 0 can be got directly.

20 Determine replacement accuracy ε > 0.
According to Theorem 6.1.1, we take α1 ∈ (0, 1), suppose k = 1, and change

the problem into finding a linear programming

maxμÃ0
(x)

s.t. Ax � bαk
,

x � 0,

where μÃ0
(x) =

cx−m

M −m
, bαk

= {(1 − αk)p1 + b1, (1 − αk)p2 + b2, · · · , (1 −
αk)pm + bm}.

We can get a maximum gk = max
x∈Sαk

μÃ0
(x).

30 A calculation error: εk = gk − αk.
If |εk| < ε, then to Step 40. Otherwise, suppose αk+1 = αk +γkεk, where γk

is a replacement modifying coefficient, it needs appropriately selecting, such
that 0 � αk+1 � 1. Then, we change k into k + 1, and turn to Step 20.

40 Let α∗ = αk. Then solve the linear programming

max μÃ0
(x)

s.t. Ax � bα,

x � 0.

From the knowledge of Theorem 6.1.5, the obtained optimal solution sets is
an optimal solution to (6.1.1)(determination judgement).

Theoretically, there exists uncountably infinite α in Step 30 at [0,1]. In
fact, it can’t be compared with one by one calculation. In order to solve the
problem, we shall apply the concept and theory of a fixed point.

6.1.2 Zimmermann Algorithm to Fuzzy Linear Programming

Reconsider problem in (6.1.1). In order to find an optimal solution to a fuzzy
objective function under the fuzzy constraint, we can convert a fuzzy objective
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function into a fuzzy constraint condition cx � z0, correspondingly, it has a
fuzzy set G̃ ∈ F (x) (the fuzzy objective set) in X , its membership function

is (6.1.2), and for every constraint condition
n∑

j=1

ajxj � bj, a fuzzy set S̃i in

X corresponds to it and its membership function is (6.1.3).
Let S̃ = S̃1

⋂
S̃2

⋂
· · ·

⋂
S̃m ∈ F (X). Then we call it fuzzy constraint set

corresponding to constraint condition Ax � b, x � 0, when di = 0(1 � i � m),
S̃ is changed into an ordinarily constraint set S, and at this time, “�” is
changed into “�” in constraint equations.

Definition 6.1.1. Suppose μG̃(x), μS̃i
(x) is in turns the membership function

of fuzzy objective and i-th fuzzy constraint, then we call fuzzy set D̃ satisfying

μD̃(x) = μG̃(x)
∧

(
n∧

i=1

μS̃i
(x)), x � 0 is fuzzy decision in (6.1.1), but point x∗

satisfying μD̃(x∗) =
∨

x∈X

μD̃(x) is an optimal solution in (6.1.1).

Fuzzy programming (6.1.1) can be written as⎧⎨⎩
−cx � −z0,

Ax � b,

x � 0,

(6.1.5)

where z0 is an expecting value for objective and it is a constant. We can see it
easily at μS̃(x) = 1, μG̃(x) = 0, and hope to make the objective value bigger
than z0, but must be lower than μS̃(x), caring for fuzzy constraint set S̃ with
a fuzzy objective set G̃ at both sides, according to the definition we can use
fuzzy judgement D̃ = G̃

⋂
S̃, i.e.,

μD̃(x) = μG̃(x)
∧

μS̃(x) = μG̃(x)
∧

[
m∧

i=1

μS̃i
(x)]

=
m∧

i=0

[μS̃i
(Bx)] = min

0�i�m
(
b′i − (Bx)i

di
),

(6.1.6)

where (Bx)i denotes an element of matrix (Bx) in i-th row. B = (−c, A)T ,

b′ = (−z0, b)T .

Let α = min
0�i�m

(
b′i − (Bx)i

di
), then μD̃(x) = α, hence we can get the follow-

ing.

Theorem 6.1.6. Maximization μD̃(x) is equivalent to linear programming

max G = α

s.t. 1− 1
di

(
n∑

j=1

aijxj − bj) � α (1 � i � m),

1
d0

(
n∑

j=1

cjxj − z0) � α,

0 � α � 1, x1, · · · , xn � 0.

(6.1.7)
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Again according to Definition 6.1.1 and Theorem 6.1.6, and obviously.

Theorem 6.1.7. Suppose x̄∗ = (x∗
1, x

∗
2, · · · , x∗

n; α∗)T is an optimal solution
in (6.1.7), then x∗ = (x∗

1, x
∗
2, · · · , x∗

n)T is an optimal solution in (6.1.1), and
they have constraint and optimization level of α.

Zimmermann initiated an arithmetic to Problem (6.1.1)[Zim78]. Here we
introduce its solution as follows:

10 First find an ordinary linear programming

max z = cx

s.t. Ax � b

x � 0

and
max z = cx

s.t. Ax � b + d,

x � 0,

we obtain a maximum value z0 and z0 + d0, where b + d = (b1 + d1, · · · , bm +
dm)T . Here, z0 is an object function maximum under the constraint condition
Ax � b obeyed strictly (the membership degree is μS̃(x) = 1 at this time).
z0 + d0 is an object function maximum when the constraint condition to be
relaxed as Ax � b+d (the membership degree μS̃(x) = 0 at this time). z0 and
z0 + d0 corresponds to two extreme cases μS̃(x) = 1 and μS̃(x) = 0, which
can adequate lowers membership degree μS̃(x), such that the optimal value is
improved, lying between z0 and z0 + d0.

20 Construct a fuzzy object set G̃ ∈ F (x), its membership function is like
(6.1.2), hence, fuzzy judgement in (6.1.5) is that in (6.1.6). Then finding the
optimal point x∗, such that

μD̃(x∗) = μG̃(x∗)
∧

μS̃(x∗) =
∨

x∈X

μG̃(x)
∧

μS̃(x)).

30 Let

G̃ ◦ S̃ =
∨

x∈X

(μG̃(x)
∧

μS̃(x))

=
∨
{α|μG̃(x) � α, μS̃(x) � α, (0 � α � 1)}

=
∨

x∈X

{α|μG̃(x) � α; μS̃1
(x) � α, · · · , μS̃m

(x) � α, (0 � α � 1)}.

According to Theorem 6.1.6, this is the ordinarily linear programming with
the parameter
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max G = α

s.t.
n∑

j=1

aijxj + diα � bi + di, (1 � i � m),

n∑
j=1

cjxj − d0α � z0,

0 � α � 1, x1, · · · , xn � 0.

We find its optimal solution x∗ = (x∗
1, x

∗
2, · · · , x∗

n; α∗)T by use of a simplex
method, thus optimal point x∗ = (x∗

1, x
∗
2, · · · , x∗

n)T in (6.1.1) is obtained by
Theorem 6.1.7; corresponding, the objective function value is z∗ = cx∗, the
optimal level is μD̃(x∗) = α∗.

6.2 Expansion on Optimal Solution of Fuzzy Linear
Programming

6.2.1 Introduction

We consider a form of linear programming with fuzzy constraint in (6.1.1)
being

(L̃P ) max z = cx

s.t. Ax � b,

x � 0,

its corresponding parameter linear programming presents as follows:

(LPα) max cT x

s.t. Ax � b + (1− α)d,

x � 0,

where α ∈ [0, 1]. Let x(α), α ∈ [0, 1] denotes an optimal solution to linear
programming (LPα), and Bα denotes an optimal basis, zα denotes an optimal
value.

After Zimmermann’s algorithm [Zim78] has been given, people always sim-
plify it and obtain the optimal value at α∗ = 0.5 [Fu90], [Pan87], [LL97].
However, the above results hold in the case that the optimal basis of (LP0)
is identical to that of (LP1). If the optimal basis of (LP0) is not identical to
that of (LP1), what is the value of α∗ when its optimal solution is obtained?

6.2.2 Relevant Theorems of Parameter Linear Programming (LPα)

Lemma 6.2.1. Assume x(1) = (x(1)
1 , · · · , x(1)

m , 0, · · · , 0)T , its corresponding
optimal basis is B1, consisting of the first m columns of A. If B−1

1 (b + d) � 0

does not hold, there will be
(

B1 N

0 I

)
x(0) 
=

(
b + d

0

)
.



6.2 Expansion on Optimal Solution of Fuzzy Linear Programming 147

Corollary 6.2.1. Suppose 0 � α1 < α2 � 1, without loss of generality, let
x(α2) = (x(α2)

1 , · · · , x(α2)
m , 0, · · · , 0)T . Its corresponding optimal basis is Bα2 ,

which consists of the first m columns of A. If B−1
α2

(b+(1−α2)d) � 0 does not

hold, there will be
(

Bα1 N

0 I

)
x(α1) 
=

(
b + (1− α1)d

0

)
.

Theorem 6.2.1. Let 0 � α1 < α2 � 1. Suppose that the optimal solution
to linear programming (Lα2) is x(α2) = (x(α2)

1 , · · · , x(α2)
m , 0, · · · , 0)T , and the

corresponding optimal basis is Bα2 , there exits

(1) If B−1
α2

(b + (1 − α2)d) � 0, then x =
(

B−1
α2

(b + (1− α1)d)
0

)
is the

optimal solution to (Lα1).
(2) If B−1

α2
(b + (1− α2)d) � 0 does not hold, there is cT x > zα1 .

Proof:

(1) It can be immediately proved by a simplex method of the linear
programming.

(2) Without loss of generality, we only consider α1 = 0, α2 = 1, that is, we
only prove that if B−1

1 (b + d) � 0 does not hold, there exists

cT

(
B−1

1 (b + d)
0

)
> z0 = cT x(0).

Transforming x by

ξ =
(

B1 N

0 I

)
x =

⎧⎨⎩
n∑

j=1

aijxj , (1 � i � m),

0, (m + 1 � i � n).

Since B1 is a feasible basis of (LP1), this transformation is full rank. There-
fore, objective function can be transformed into function with respect to ξ as
follows:

f(x) = cT x = cT

(
B−1

1 −B−1
1 N

0 I

)
ξ = c1ξ1 + · · ·+ cnξn.

According to the Theorem 2 of [Fu90], we have

ci � 0, (1 � i � m), ci � 0, (m + 1 � i � n).

Now we consider linear programming (LP0).
By Lemma 6.2.1, we obtain(

B1 N

0 I

)
x(0) 
=

(
b + d

0

)
.

Since x(0) is the optimal solution to (LP0), there is Ax(0) � b + d.
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We obtain it because, at least, one of the following inequality holds,

ξ
(0)
i =

n∑
j=1

aijx
(0)
j < bi + di (1 � i � m);

ξ
(0)
i = x

(0)
i > 0 (m + 1 � i � n).

Such that we have

f(x(0)) =
n∑

i=1

ciξ
(0)
i <

m∑
i=1

ci(bi + di) +
n∑

i=m+1

ci 0

= cT

(
B−1

1 −B−1
1 N

0 I

)(
b + d

0

)
= cT

(
B−1

1 (b + d)
0

)
.

Therefore,

z0 = f(x(0)) = cT x(0) < cT

(
B−1

1 (b + d)
0

)
,

the proof is completed.

Theorem 6.2.2. The optimal value zα of the linear programming (LPα) has
a linear relation with α and the slope increases with the decrease of α.

Proof: It follows from Theorem 6.2.1 that

cT
B1

B−1
1 b � cT

Bα
B−1

α b

and
cT
Bα

B−1
α (b + (1 − α)d) � cT

B1
B−1

1 (b + (1− α)d),

so that
−cT

B1
B−1

1 d � −cT
Bα

B−1
α d.

Similarly, if 0 � α1 < α2 � 1, then

−cT
Bα2

B−1
α2

d � −cT
Bα1

B−1
α1

d.

Furthermore, the optimal value Zα of (LPα) with respect to parameter, α is

zα = cT
Bα

B−1
α (b + (1− α)d) = cT

Bα
B−1

α (b + d)− αcT
Bα

B−1
α d.

Therefore, the results hold, which completes the proof.

From the theorems we can get the zα diagram as Figure 6.2.1 and Figure
6.2.2.
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Fig. 6.2.2. B−1
1 (b + d) � 0 or B−1

0 b � 0

6.2.3 Optimal Solution and Algorithm for Fuzzy Linear
Programming

From the methods of Zimmermann, its representative method is to transform
fuzzy linear programming (L̃P ) into general linear programming as follows:

(LP )

max α

s.t. Ax + dα � b + d

cT x− d0α � z1,

x � 0, 0 � α � 1,

where d0 = z0 − z1.
Suppose (α∗, x∗) denotes an optimal solution to (LP), we discuss the rela-

tion between (α∗, x∗) and (LPα∗), then the results are obtained as follows.

Theorem 6.2.3. If (α∗, x∗) is the optimal solution to (LP), then x∗ is the
optimal solution to (LPα∗).

Proof: Disproof. Suppose x∗ is not an optimal solution to (LPα∗). Since it is
a feasible solution, we have cT x∗ < zα. By Theorem 6.2.1 and Theorem 6.2.2,
there exists α1 ∈ [α∗, 1] such that

cT x∗ < zα1 = cT x(α1) < zα∗
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and
Ax(α1) = b + (1 − α1)d.

Let d0 = z0 − z1. Since z0, z1 is the optimal solution to (LP0) and (LP1),
respectively, we have d0 > 0, then

cT x(α1) − z1

d0
>

cT x∗ − z1

d0
� α∗,

zα∗ − z1

d0
>

cT x∗ − z1

d0
� α∗.

Let α2 =
zα∗ − z1

d0
, and take ᾱ = min(α1, α2). Then

Ax(α1) = b + (1− α1)d � b + (1− ᾱ)d

and
cT x(α1) − z1

d0
� ᾱ > α∗,

i.e., Ax(α1) + ᾱd � b + d, cT x(α1) − d0ᾱ � z1.

So (ᾱ, x(α1)) is a feasible solution, but ᾱ > α∗, which contradicts with the
conditions in this theorem, which completes the proof.

Therefore, we only consider the optimal solution α and optimal value zα to
the linear programming (LPα) for the fuzzy linear programming. That is, we
only consider the function zα.

Moreover, a membership function of fuzzy objective sets is defined as Cα :
zα = z1 + d0α, where d0 = z0 − z1, which is a simple fuzzy number, and its
image is a straight line. Therefore, for the fuzzy linear programming, when
the ‘intersection’ operations denote the fuzzy decision, their optimal solution
equals the intersection point of Figure 6.2.1 (or Figure 6.2.2) and the straight
line. It is the intersection point of object function Sα : zα = z1 + d0α and the
constraint function

zα = cT
Bα

B−1
α (b + (1 − α)d).

From above results, we have the following conclusions.

Theorem 6.2.4. Suppose that the B0 and B1 are optimal basis of (LP0) and
(LP1), respectively.

1) If B−1
0 b � 0, or B−1

1 (b+d) � 0, then fuzzy decision of (L̃P ) is α = 0.5.
2) If B−1

0 b � 0 and B−1
1 (b+d) � 0, then fuzzy decision of (L̃P ) is α > 0.5.

Proof: 1) When B−1
0 b � 0, from the Theorem 6.2.2, the relation between

zα and α in linear programming (LPα) presents as follows:

zα = cT
Bα

B−1
α (b + d)− αcT

Bα
B−1

α d = cT
B1

B−1
1 (b + d)− αcT

B1
B−1

1 d.
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Its intersect with the object set

Sα : zα = z1 + d0α =⇒ zα = cT
B1

B−1
1 b + αcT

B1
B−1

1 d

is α = 0.5, zα = cT
B1

B−1
1 (b + 0.5d).

As a similar argument,we can prove that the optimal solution is α = 0.5
when B−1

1 (b + d) � 0.
2) When the two conditions in 1) are dissatisfied, from the Theorem 6.2.2,

the function
zα = cT

Bα
B−1

α (b + d)− αcT
Bα

B−1
α d

is a fold line whose slope increases with α decreases.
Moreover, it is a cave function and the membership function of fuzzy ob-

jective sets is a monotonously increased line segment whose slope is d0, i.e.,
the line segment AB in the Figure 6.2.3. Therefore, zα intersection with mem-
bership function of objective set is shown in Figure 6.2.3

�

�

α

zα

z1

z0

10

��������

�
�

�
�

�

���������������
���

���
���

D

A
C

B

E

Fig. 6.2.3. B−1
1 (b + d) � 0 and B−1

0 b � 0

Link (0, z0) and (1, z1), its line segment CD stands under the fold line ĈD.

Obviously, CD intersect AB in the point E(0.5,
z0 + z1

2
). Therefore, when α �

0.5,we have thatAB and fold line ĈD haveno intersection joint.Otherwise, con-
tradict with the concave property of zα. It follows that their intersection point
satisfies α > 0.5, i.e., fuzzy decision α > 0.5. So the proof is complete.

It is easy to know from Theorem 6.2.1 and Theorem 6.2.2 that the function

zα = cT
Bα

B−1
α (b + d)− αcT

Bα
B−1

α d

is a sectional function. Then the function can be expressed as

zα = cT
B1

B−1
1 (b + d)− αcT

B1
B−1

1 d (6.2.1)

and
zα = cT

B0
B−1

0 (b + d)− αcT
B0

B−1
0 d, (6.2.2)

when the function zα cross through (0, z0) and (1, z1), respectively. The inter-
section point of the above straight line is
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α′ =
cT
B1

B−1
1 (b + d)− cT

B0
B−1

0 (b + d)

cT
B0

B−1
0 d− cT

B1
B−1

1 d
.

Suppose that B−1
0 (b + (1− α′)d) � 0, then we have B−1

1 (b + (1 − α′)d) � 0.

In fact, if B−1
1 (b + (1− α′)d) � 0, and since B−1

0 (b + (1 − α′)d) � 0, zα′ is
an optimal solution to (LPα′).

By Theorem 6.2.1 and Theorem 6.2.2, we obtain cT x̄ > zα′ , i.e.,

zα′ = cBT
1
(B−1

1 (b + (1− α′)d) > zα′ ,

which self-contradicts, so

B−1
1 (b + (1− α′)d) � 0.

Therefore, the function zα is subsection function below:

zα =

{
cT
B0

B−1
0 (b + d)− αcT

B0
B−1

0 d, 0 � α � α′,
cT
B1

B−1
1 (b + d)− αcT

B1
B−1

1 d, α′ � α � 1.

It follows from the above theorems that the optimal solution is the inter-
section point of Sα: zα = z1 + d0α and zα.

However, when B−1
0 (b+(1−α′)d) � 0, the method to (L̃P ) represents very

complicated. We can obtain the optimal solution to fuzzy linear programming
by solving the corresponding linear programming (LP ).

We suggest the algorithm to (L̃P ) below:

10 Obtain the optimal solution x(0), x(1) to linear programming (LP0),
(LP1). We denote their corresponding optimal basis as B0, B1, its correspond-
ing objective function coefficient as cB0 , cB1 and its optimal value as z0, z1,
respectively.

20 Compute the intersection point of two straight lines zα crossing through
(0, z0) and (1, z1), respectively, denoted by α′.

30 Determination. If B−1
0 (b+(1−α′)d) � 0, go to 40; otherwise, go to 70.

40 Compute the intersection point of the function zα and Sα, we obtain
(α1, zα1). If α′ � α1, go to 50; if α′ < α1, then go to 60.

50 Write α =
z0 − z1

z0 − z1 + cT
B0

B−1
0 d

, the optimal solution to programming

(L̃P ) is x =
(

B−1
0 (b + (1− α)d)

0

)
, the optimal value equals to zα1 =

cT
B0

B−1
0 (b + (1 − α)d). It ends.

60 Write α =
cT
B1

B−1
1 d

z0 − z1 + cT
B1

B−1
1 d

, the optimal solution to programming

(L̃P ) is x =
(

B−1
1 (b + (1 − α)d)

0

)
, the optimal value is zα1 = cT

B1
B−1

1 (b +

(1− α)d). It ends.
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70 Solve linear programming (L̃P ) and we obtain optimal solution x of the
(L̃P ) and the optimal value z. It ends.

If the intersection point α′ satisfies the condition B−1
0 (b + (1 − α′)d) � 0,

it is easy to get a conclusion as follows.

Theorem 6.2.5. Assumption condition of 2) holds in Theorem 6.2.4, α′ is
an intersection point of (6.2.1) and (6.2.2). If B−1

0 (b + (1 − α′)d) � 0, then
the linear programming (LPα′) is degenerative [Cao91c], and that is the basic
variable B−1

0 (b + (1− α′)d) in optimal basic solution with a zero value.

6.2.4 Example

Example 6.2.1: Find
max x1 + x2

s.t. x1 + 2x2 � 100,

x1 � 50,

x2 � 20,

x1 � 0, x2 � 0.

(6.2.3)

Step 1. Let d = (0, 5, 5)T . Then optimal basic of corresponding (LP1) is B1,

and B−1
1 =

⎛⎝ 1 −1 −2
0 1 0
0 0 1

⎞⎠ , cB−1
1

= (0, 1, 1).

Solve linear programming
max x1 + x2

s.t. x1 + 2x2 � 100
x1 � 55
x2 � 25
x1 � 0, x2 � 0

and we get an optimal solution x(1) = (x(1)
1 , x

(2)
2 , y3) = (55, 22.5, 2.5) as well

as an optimal value z1 = 77.5.
Let d = (0, 2, 2)T . Then optimal basic of corresponding (LP0) is B0, and

B−1
0 =

⎛⎝0.5 −0.5 0
0 1 0

0.5 0.5 1

⎞⎠ , cB−1
0

= (1, 1, 0),

and optimal value is z0 = 70.

Step 2. Solve

α1 =
cT
B1

B−1
1 (b + d)− cT

B0
B−1

0 (b + d)

cT
B0

B−1
0 d− cT

B1
B−1

1 d
,

we get α1 =
1
3
.
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Step 3. Since

B−1(b + (1 − α1)d) =

⎛⎝ 1 −1 −2
0 1 0
0 0 1

⎞⎠⎛⎝ 100
50 + 5

3
20 + 5

3

⎞⎠ =

⎛⎝ 0
50 + 5

3
20 + 5

3

⎞⎠ ,

we turn to Step 4.

Step 4. Given the optimal value zα in parametric linear programming (LPα)
with respect to the function of parameter α as follows:

zα =
{ 80− 10α, 1

3 � α � 1
77.5− 2.5α, 0 � α � 1

3

and the objective function is Sα = 70+7.5α. Solve the intersection of the two
functions, we obtain the interaction point (4

7 , 520
7 ). Since 4

7 ≥
1
3 , we have

xB1 = B−1
1 (b + (1− α)d) = (

365
7

,
155
7

,
25
7

).

Therefore, the optimal solution in fuzzy linear programming (6.2.3) is ob-

tained as α =
4
7
, x1 =

365
7

, x2 =
155
7

, and optimal value denotes z =
520
7

.

6.2.5 Conclusion
From the relation between linear programming (L̃P ) and parameter α, we
know that optimal problem (L̃P ) can be transformed into solving the inter-
section of two linear functions. It is a fuzzy optimal solution obtained directly
from the optimal solutions x(1), x(0) of programmings (LP1) and (LP0) and
optimal basis B1 and B0, so that it is unnecessary to calculate the more
complex linear programming than (LP1) and (LP0).

6.3 Discussion of Optimal Solution to Fuzzy
Constraints Linear Programming

6.3.1 Introduction

In this section, we focus on the fuzzy constraint linear programming. First
we discuss the properties of an optimal solution vector and of an optimal
value in the corresponding parametric programming, and propose a method
to the critical values. Then we present a new algorithm to the fuzzy constraint
linear programming by associating an object function with an optimal value
of parametric programming.

The normal form of a linear programming with fuzzy constraint is (L̃P ) as
Section 6.2.1
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(L̃P ) max z = cx

s.t. Ax � b,

x � 0,

the representative method to (L̃P ) is to turn it into a classical linear pro-
gramming [Cao02a]. We will try to explain the number that its fuzzy decision
usually is 0.5 found by Researchers [Cao02a][Fu90][LC02][Pan87]. Here we
shall propose another algorithm to (L̃P ).

6.3.2 Analysis of Fuzzy Linear Programming

Suppose xα denotes an optimal solution to (LPα), Bα and zα an optimal basis
matrix and an optimal value of (LPα), respectively, and then we consider

(LPα) max z = cT x

s.t. Ax � b + (1 − α)d,

x � 0,

where α is a parameter on the interval [0,1], d � 0, b + (1 − α)d will vary
with parameter α. Its optimal solution is B−1

α (b+(1−α)d). If we solve (LPα)
by using a simplex method, there is no relationship between discriminate
number σ = cN − cBB−1N and parameter α, so the variation of an optimal
basis matrix is decided only by xα.

6.3.2.1 Properties of the Parametric Linear Programming

Definition 6.3.1. Let B be one of the optimal basic matrix of (LPα). If
an interval [α1, α2] exists, satisfying that B is an optimal basic matrix of
(LPα)(∀α ∈ [α1, α2]) while B is not an optimal matrix for each α∈[α1, α2],
we call that α1 and α2 critical values of (LPα) and [α1, α2] a characteristic
interval.

Theorem 6.3.1. (LPα) has a finite characteristic interval on the interval
[0,1].

Proof: Let us assume B is an optimal basis matrix of (LPα), and there are two
characteristic intervals [αi−1, αi] and [αi+1, αi+2], (αi < αi+1) corresponding
to B. The optimal solution to (LPα) is (xB , xN )T , where

xB = B−1(b + (1− α)d) � 0, α ∈ [αi−1, αi] ∪ [αi+1, αi+2],
xN = 0, αi < αi+1.

So xB = B−1(b + (1 − α)d) � 0 when α ∈ [αi, αi+1], this means an optimal
matrix of (LPα) is also B on the interval [αi, αi+1]. Therefore the character-
istic interval where the optimal matrix keeps invariant is [αi−1, αi+2]. So the
optimal matrix has only one corresponding characteristic interval. Because
the coefficient matrix of (LPα) keeps invariant on the interval [0,1], and an
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optimal matrix is finite, the number of characteristic intervals is finite. This
means (LPα) has finite characteristic interval on the interval [0,1].

Theorem 6.3.2. Let B be an optimal basis matrix of (LPα) on a character-
istic interval [α1, α2]. If (B−1b)i 
= 0(1 � i � m), then

α1 = max
[ [B−1(b + d)]i

(B−1d)i
, 0 | (B−1d)i < 0(1 � i � m)

]
, (6.3.1)

α2 = min
[ [B−1(b + d)]i

(B−1d)i
, 0 | (B−1d)i > 0(1 � i � m)

]
(6.3.2)

is derived, where (B−1(b+d))i and (B−1d)i are the i-th components of B−1(b+
d) and B−1d, respectively.

Proof: We can use partitioned matrices to represent the simplex method to
a linear programming [LL97]. Since(

B N b + (1− α)d
cB cN z

)
=⇒

(
I B−1N B−1(b + (1− α)d)
cB cN z

)

=⇒
(

I B−1N B−1(b + (1− α)d)
0 cN − cBB−1N z − cBB−1(b + (1− α)d)

)
,

where N is a non-basis matrix corresponding to B, there is no relationship
between variable α and the discriminate number. B−1(b + (1 − α)d) � 0 is
only required in order to make the optimal matrix of (LPα) invariant. This
means

∀ i, [B−1(b + (1− α)d)]i � 0,

i.e.,
∀ i, [B−1(b + d)]i − α(B−1d)i � 0.

By solving this inequality, we can obtain α ∈ [α1, α2], where α1 and α2 are
represented with (6.3.1) and (6.3.2). It is obvious that the optimal matrix of
(LPα) will change at α > α2 or α < α1. Therefore the characteristic interval,
corresponding to the optimal basis matrix B, is [α1, α2].

Based on the above conclusion, we can easily get the properties of optimal
value function Zα as follows.

Property 6.3.1. Let B be an optimal matrix of (LPα) on the characteristic
interval [αi, αj]. Then xα = B−1(b+(1−α)d)(αi � α � αj) is a linear vector
function about variable α. The optimal value function zα = cBB−1(b + (1 −
α)d) is a linear function about variable α and decreases with the increase of
variable α.

Property 6.3.2. The optimal value function zα of (LPα) continues on the
interval [0,1].
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6.3.2.2 Optimal Solution to Fuzzy Linear Programming

Theorem 6.3.3. Let S̃ be the fuzzy constraint, G̃ the fuzzy objective function
on domain X, then the optimal solution x∗ to the fuzzy optimal set D̃ = G̃∧ S̃

satisfies
μD̃(x∗) = max

x∈X
μD̃(x)

= max
0�α�1

{α ∧ max
x∈Sα

μS̃(x)},

where Sα = {x|x ∈ X, μG̃(x) � α} [Cao02a].

The fuzzy objective function can be defined as Gα : zα = z1 + d0α, we can
use the intersection of the fuzzy objective function Gα : zα = z1 + d0α and
fuzzy constraints Sα : zα = cBαB−1

α (b + (1−α)d) to find an optimal decision
of (L̃P ), shown as in Figure 6.3.1.
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Fig. 6.3.1. The Intersection of Gα and Sα

6.3.3 Algorithm to Fuzzy Linear Programming

Let z1 be an optimal value of (LP1), and z0 be an optimal value of (LP0),
d0 = z0− z1 > 0. Based on the above conclusions, we give a new algorithm to
fuzzy linear programming as follows.

Step 1. Solve linear programmings (LP0) and (LP1).
Let the optimal solutions be x0, x1, the optimal values be z0, z1, and the

optimal matrix of (LP0) be B0.

Step 2. Solve
[B0

−1(b + (1 − α)d)]i = 0.

Assume the solutions as

α1, · · · , αn−1, (0 < α1 < · · · < αn−1 < 1).

Let α0 = 0, αn = 1, α = α1, k = 1.

Step 3. Solve (LPα).
Let the optimal value be zα. If zα � z1 + d0α, turn to Step 4, otherwise let

k = k + 1, α = αk, turn to Step 3.
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Step 4. Solve the optimal decision

α∗ =
z1αk

− z1αk−1 − zαk−1αk
+ zαkαk−1

zαk
− zαk−1 − αkd0 + αk−1d0

.

Step 5. Solve linear programming (LPα∗), and we can obtain an optimal so-
lution xα∗ and an optimal value zα∗ .

Example 6.3.1: Calculate

max 3x1 + 5x2

s.t. 7x1 + 2x2 � 66,

5x1 + 3x2 � 61,

x1 + x2 � 16,

x1 � 8,

x2 � 5,

xi � 0(i = 1, 2),

(6.3.3)

where d1 = d2 = d3 = d4 = 0, d5 = 7 is a flexible value of a object and
constraint function, respectively.

We obtain z0 = 72, z1 = 49, d0 = 23 by calculating (LP0) and (LP1) corre-
sponding to (6.3.3), respectively. The inverse matrix of the optimal matrix in
(LP0) is B−1

0 = (b1, · · · , b5), where

b1 = (1, 0, 0, 0, 0)T , b2 = (0, 1, 0, 0, 0)T , b3 = (−7,−5, 1,−1, 0)T ,

b4 = (0, 0, 0, 1, 0)T , b5 = (5, 2,−1, 1, 1)T .

By calculating the equations

[B−1
0 (66, 61, 16, 8, 12− 7α)T ]i = 0, (i = 1, · · · , 5),

respectively, we obtain α1 =
5
14

, α2 =
2
5
, α3 =

4
7
.

Assume α0 = 0, α4 = 1, and we use Lindo software to solve the linear
programming (LPα1) before we obtain an optimal value zα1 = z 5

14
=67.

Because Z 5
14

> Z1+ 5
14d0, we must continue to solve the linear programming

(LPα2).
By calculating linear programming (LPα2), we obtain an optimal value

zα2 = z 2
5
=66.04. Because z 2

5
> z1 + 2

5d0, we must continue to solve the linear
programming (LPα3).

By calculating linear programming (LPα3), we gain an access to an optimal
value zα3 = z 4

7
=61.429. Because z 4

7
< z1 + 4

7d0, the optimal decision is α∗ =
0.557.

By calculating (LP0.557), we obtain

x0.557 = (6.8606, 8.8990)T
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and
Z0.557 = 65.0768.

So the optimal solution to the example is x∗ = (6.8606, 8.8990)T and the
optimal value is z∗ = 65.078.

6.3.4 Conclusion

We know that optimal decision of the fuzzy constraint linear programming does
not necessarily equal 0.5, and the optimal value function figure of (L̃P ) is not
necessarily a segment. Based on the properties of the optimal value function, we
have proposed a new algorithm to fuzzy constraint linear programming.

6.4 Relation between Fuzzy Linear Programming and
Its Dual One

6.4.1 Introduction

Let a linear programming primal problem like

min z = cx

s.t. Ax = b,

x � 0,

(6.4.1)

while
max yb

s.t. yA � c

y � 0
(6.4.2)

is a dual linear programming in (6.4.1)[Dan63], where x = (x1, x2, · · · , xn)T,

y = (y1, y2, · · · , ym), c = (c1, c2, · · · , cn), b = (b1, b2, · · · , bm)T is a variable
and constant vector, respectively, A = (aij)m×n is an m× n matrix.

We discuss relation between them as follow.

6.4.2 Case with Fuzzy Coefficients

Consider a linear programming with fuzzy coefficient to be

min z̃ = c̃x

s.t. Ax = b,

x � 0,

(6.4.3)

where c̃ is a fuzzy coefficient; its dual form is

max w = ỹb

s.t. ỹA � c̃,

ỹ � 0,

(6.4.4)

where ỹ denotes a fuzzy variable vector.
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Lemma 6.4.1. The dual form of (6.4.3) is (6.4.4). If there exists an optimum
solution in one, then there exists an optimum solution in the other, with there
existing the same fuzzy optimum value in (6.4.3) and (6.4.4) for a continuous
and strictly monotone function φ̃.

Proof: According to formula (1.5.3) in Section 1.5, (6.4.1) is turned into the
following problem for solution:

min cx,

s.t. μφ̃(c) � 1− α, α ∈ [0, 1],
Ax = b, c ∈ Rn,

x � 0.

If we define [Ver84]: ∀c ∈ Rn, μφ̃(c) = inf
j

μφ̃j
(cj)(1 � i � l, l � n), c =

(c1, c2, · · · , cn). But if μφ̃(c) � 1− α, then

inf
j

μφ̃j
(cj) � 1− α⇐⇒ μφ̃j

(cj) � 1− α(1 � j � l)

⇐⇒ cj � μφ̃−1
j

(1− α).

Therefore, we have

min
n∑

j=1

cjxj

s.t. cj � μφ̃−1
j

(1− α) (1 � j � n),
Ax = b, α ∈ [0, 1],
x � 0.

This problem is equivalent to

min
n∑

j=1

cjxj

s.t. cj = μφ̃−1
j

(1− α)
Ax = b, α ∈ [0, 1]
x � 0

⇐⇒ min μφ̃−1(β)x
s.t. Ax = b, β ∈ [0, 1],

x � 0,

(6.4.5)

where β = 1− α; the dual form of (6.4.5) is

max yb

s.t. yA = μφ̃−1(β), β ∈ [0, 1]
y � 0

(6.4.6)
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⇐⇒ max yb

s.t. μφ̃(c) � β

yA = c

y � 0, β ∈ [0, 1]
⇐⇒ (6.4.4).

We can see that the lemma holds because of the same parameter solutions
to (6.4.4) as well as to (6.4.6), by the equivalence of (6.4.5) with (6.4.3), and
(6.4.6) with (6.4.4), and by the mutual dual problems of (6.4.3) and (6.4.4).

6.4.3 Case with Fuzzy Variables

Consider fuzzification of linear programming

min z̃ = cx̃

s.t. Ax̃ � b̃,

x̃ � 0,

(6.4.7)

called a linear programming with fuzzy variable [AMA93], where x̃ = (x̃1, x̃2,

· · · , x̃n)T an n−dimensional fuzzy variable vector, 0 � c ∈ Rn, b̃ ∈ (F (R))m

a fuzzy vector, respectively, and A ∈ Rm×n represents an m× n matrix.
The dual problem of (6.4.7) is denoted by

max w̃ = yb̃

s.t. yA � c,

y � 0,

(6.4.8)

where c ∈ Rn, A ∈ Rm×n, y ∈ Rm, b̃ ∈ (F (R))m.
x̃ is said to be a fuzzy feasible solution to (6.4.7) if and only if x̃ satisfies

the constraints of the problem. By an optimal fuzzy solution to (6.4.7) we
denote a fuzzy feasible solution, say x̃0, such that cx̃0 � cx̃ for all x̃ belong
to the set of all fuzzy feasible solutions to (6.4.7).

The relation between fuzzy linear programming (6.4.7) and its dual pro-
gramming (6.4.8) is as follow.

In order to solve programming (6.4.7), we shall find an optimal solution to
problem (6.4.8). However (6.4.8) is, in fact, a linear programming with fuzzy
coefficient, and we already know how to solve this. It follows that we shall
discuss the relationships between the primary and dual programmings.

Lemma 6.4.2. If x̃ is any fuzzy feasible solution to (6.4.7) and y is any
feasible one to (6.4.8), then yb̃ � cx̃.

Proof: Straightforward.

Lemma 6.4.3. If x̃0 is a fuzzy feasible solution to (6.4.7) and y0 is a feasible
one to (6.4.8), such that y0b̃ = cx̃0, then y0 is an optimal solution to (6.4.8)
and x̃0 is a fuzzy optimal one to (6.4.7).
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Proof: Straightforward.

Theorem 6.4.1. If the dual problem (6.4.8) has an optimal solution, then
problem (6.4.7) has a fuzzy optimal solution.

Proof: We first transform (6.4.7) into the form

max w̃ = yb̃

s.t. yA + ysI = c,

y, ys � 0,

(6.4.9)

where w̃ = (w̃1, w̃2, · · · , w̃n), ys represents a slack variable and I is a unit
matrix.

Let A′ = (A, I)T, y′ = (y, ys), c′ = (c, 0)T. Formula (6.4.9) is simplified as
follows:

min w̃′ = y′b̃
s.t. y′A′ = c′,

y′ � 0.

(6.4.10)

Let y′
B be an optimal basic solution to (6.4.10). Such that w̃j − b̃j � 0 for

all j; thus, b̃BB−1A � b̃, where B is a basic matrix corresponding to A.
If we write x̃ = b̃BB−1, we can see that x̃ is a fuzzy feasible solution to

(6.4.7). On the other hand, we have

z̃ = cx̃ = b̃BB−1c = yB b̃B = w̃.

Hence, x̃ is an optimal solution to (6.4.7).

Lemma 6.4.4. If problem (6.4.8) has an unbounded solution, then problem
(6.4.7) has no fuzzy feasible solution.

Proof: Straightforward.

We conclude that, in order to solve a linear programming with fuzzy vari-
ables, it is sufficient to solve its dual problem. We can then obtain the fuzzy
optimal solution to our problem by using the theorem and lemmas of this
section, and vice versa.

Let μφ̃ be (1.5.3) in Section 1.5. If a fuzzified form of (6.4.1) is (6.4.3), its
primal programming with parameter is

min (m + βdn−1)x
s.t. Ax = b, β ∈ [0, 1],

x � 0,

(6.4.11)

where m, n are real numbers, with c � m + βdn−1 ⇐⇒ c = m + βdn−1, d

denoting a flexible index, β = 1 − α, c is freely fixed in the value interval
[m, n], while the dual problem in (6.4.11) is

max yb

s.t. yA = m + βdn−1, β ∈ [0, 1],
y � 0.

(6.4.12)
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Theorem 6.4.2. Let μφ̃ : R → [0, 1] be a continuous and strictly monotone
membership function. x0 is a unique solution to (6.4.1) if and only if x0

remains a parameter solution to (6.4.5) ∀β ∈ [0, 1](β = 1− α).

Proof: Similar to the proof of Ref.[Man79], then
x0 is a unique solution to (6.4.1)

⇐⇒ ∀d/n ∈ Rn, ∃x, y, α ∈ Rn+m+1

Ax − bα � 0,−yA + cα = 0, y � 0
yb− cx � 0,−dn−1x + dn−1x0α > 0, α > 0

⇐⇒ ∀dn−1 ∈ Rn, ∃x, u, y, κ, r ∈ Rn+m+k+2

−Ax + bκ + u = 0
yA− (κc + βdn−1) = 0,−yb + cx + dn−1x0β + r = 0
u, κ, r � 0, β ∈ [0, 1], β + r > 0

⇐⇒ ∀dn−1 ∈ Rn, ∃x, y, κ ∈ Rn+m+1

Ax � bκ, cx = κcx0, κ � 0
yA = κc + βdn−1, yb � (κc + βdn−1)x0, β ∈ [0, 1]

⇐⇒ ∀dn−1 ∈ Rn, ∃y, κ ∈ Rm+1

yA = κc + βdn−1, yb = (κc + βdn−1)x0

κ � 0, β ∈ [0, 1]
(cx + βdn−1x0 � yb � yAx0 = (κc + βdn−1)x0)

⇐⇒ ∀dn−1 ∈ Rn, ∃y ∈ Rm

yA = c + βdn−1, yb = (c + βdn−1)x0

β ∈ [0, 1], and let κ = 1
⇐⇒ ∀dn−1 ∈ Rn, ∃β ∈ [0, 1],

so a solution to (6.4.5) is found to be x0.
Because x0 denotes a feasible solution to (6.4.5), ȳ is a feasible one to

dual problem (6.4.6) coming from (6.4.5), with ȳb = (m + βdn−1)x0, where
ȳ = y(β).

But, the fuzzy solution to (6.4.7) is given by an optimal solution to the
parametric linear problem [Ver84], therefore, the theorem holds.

Similar to a corollary in Ref.[Man79], we can confirm the following.

Corollary 6.4.1. The dual optimal solution y is unique to (6.4.2) associated
with a primal optimal solution x0 to (6.4.1), if and only if, for a continuous
and strictly monotone membership function μφ̃ : R → [0, 1], such that ∀β ∈
[0, 1], y remains a dual optimal parameter solution to the perturbed linear
programming (6.4.12).

Theorem 6.4.3. Let μφ̃ : R → [0, 1] be a continuous and strictly monotone
membership function. A solution x0 is unique to linear programming (6.4.1) if
only if x0 is still a fuzzy optimal solution to fuzzy linear programming (6.4.7).

Proof: From Lemma 6.4.1, we know (6.4.7) ⇐⇒ (6.4.5), so, from the result
where Theorem 6.4.2 is applied to (6.4.5), x0 is a unique solution to (6.4.1)
if and only if x0 remains a parameter optimal solution to (6.4.5). But the
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minimization in (6.4.7) is equivalent to that in (6.4.5), and x0 is a parameter
optimum solution to (6.4.5) if and only if x0 is a fuzzy optimal solution to
(6.4.4).

Corollary 6.4.2. The dual optimal solution y to (6.4.2) corresponding to
the primal optimum solution x0 to (6.4.1) is unique, if and only if, for a
continuous and strictly monotone membership function μφ̃ : R → [0, 1], ỹ is
still a dual optimum solution to the programming (6.4.3).

Proof: Let μφ̃ be Formula (1.5.3) in Section 1.5. Then we have

(6.4.3)⇐⇒ min z = cx

s.t. Ax = b, μφ̃(c) � β, β ∈ [0, 1]
x � 0

⇐⇒ (6.4.11)

by Ref. [Ver84]. Apply Corollary 6.4.1 to (6.4.11) and the conclusion holds.

Definition 6.4.1. Let μÃ0
(x), μF̃ (x) be membership functions of fuzzy ob-

jection and fuzzy constraint. Then we call a fuzzy set D̃ satisfying μD̃(x) =
μÃ0

(x) ∧ μF̃ (x), x � 0 a fuzzy decision for the programming

c̃x � b0

s.t. Ax � b,

x � 0,

(6.4.13)

while we call a point x satisfying μD̃(x∗) = max
x�0
{(1 − μÃ0

(x)) ∧ μF̃ (x)} an

optimal solution to (6.4.13).

Theorem 6.4.4. The maximization of μD̃(x) is equivalent to linear
programming

min (m + βM0n
−1)x

s.t. Ax � b1 + Bβb−1
2 + dα, α, β ∈ [0, 1],

x � 0,

(6.4.14)

d denoting a flexible index; M0 and B representing the length in intervals
[m, n] and [b1, b2], respectively.

Proof: From Formulas (1.5.3) (1.5.4) and (1.5.5) in Section 1.5, we have

maxμD̃(x)⇐⇒ max (−c̃)x
s.t. Ax � b̃

x � 0
⇐⇒ min c̃x

s.t. μφ̃(c) � β

Ax � b + dα, μφ̃(b) � β

β ∈ [0, 1]
x � 0

⇐⇒ (6.4.14),
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where c̃, b̃ can be freely fixed in the close value interval [m, n] and [b1, b2], its
degree of accomplishment is determined by Formula (1.5.3).

6.4.4 Conclusion

The method in this chapter indicates that we can change a linear program-
ming with fuzzy variables into a dual programming with fuzzy coefficients for
solution, such that the problem is solved easily.

6.5 Antinomy in Fuzzy Linear Programming

6.5.1 Introduction

In 1971, Charnes and Klingman initiated the more-for-less paradox or the less-
for-more paradox of the allotment model [Ck71]. If a constant b in (6.4.1) in-
creases by d(> 0), then an objective value z decreases instead. If constant c in
(6.4.2) decreases by d(> 0), then an objective value yb increases instead. Such
a strange phenomenon is called “antinomy” in mathematics. Again in 1986,
Lin discussed antinomy of the general linear programming [Lin86] by taking its
expansion. In 1987, Charnes, Duffuaa and Ryan also discussed “more-for-less
paradox” of the general linear programming [CDR87]. In 1991, Yang and Jing
again put forward another sufficiency and necessary condition in antinomy of
the general linear programming and condition of the non-linear programming,
where antinomy appeared [YJ91]. In 1991, author initially used the method
of fuzzy sets to study antinomy of the linear programming [Cao91c].

We introduce antinomy problem in fuzzy linear programming, and present
a fuzzy set method for its investigation.

6.5.2 Reason for Antinomy Emergence

Definition 6.5.1. Suppose x0 is a basic feasible solution to (6.4.1). If its basic
variable value are all positive, then we call x0 a nondegeneration basic feasible
solution; if there are some basic variable value equalling to zero, then we call
x0 a degeneration basic feasible solution.

If all basic feasible solutions in the linear programming are nondegeneration,
we call them nondegeneration.

Example 6.5.1: Consider finding

min z = 2x1 + 3x2 + x3 + 2x4

s.t. x1 + x2 + x3 + x4 = b′1,
4x2 + 2x3 + 6x4 = b′2,
5x1 + 6x2 + 5x3 + 4x4 = b′3,
x1, x2, x3, x4 � 0,

where b′i = bi + di(i = 1, 2, 3).
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If we suppose x1, x2, x3 to be basic variables, accordingly, a basis matrix B

as well as an inverse matrix B−1 is denoted respectively by

B =

⎛⎝1 1 1
0 4 2
5 6 5

⎞⎠
and

B−1 =

⎛⎜⎜⎝
−4
−1
2

1
−5 0 1

10
1
2
−2

⎞⎟⎟⎠ .

When assignment volume of three products b = (9, 12, 46)T is increases to
b′ = (10, 18, 50)T, the minimum cost z = cBxB decreases from z = 15 to
z = 11. Why? If the problem nondegenerates and when a negative component
exists in y = cBB−1 or in a certain evaluation coefficient zs < 0, then the
objective function is

cBB−1b′ = yb′ = yb + yd

< yb = cx∗

or
cBxB = cBB−1b′ = cBB−1b + cBB−1Ps

= cx∗ + δzs < cx∗,

so that antinomy appears.
Therefore, we have a discussion as follows [CDR87][Lin86]:

Corollary 6.5.1. Let a basic solution x∗ = (xB , xN ) in (6.4.1) be a nonde-
generation optimum solution. If ∃j0 : zj0 < 0, then antinomy takes shape in
(6.4.1).

Proposition 6.5.1. Let a basic solution x∗ = (xB , xN ) in (6.4.1) be a nonde-
generation optimum solution. Antinomy arises if and only if a negative com-
ponent exists in y = cBB−1.

Does the conclusion above hold if programming (6.4.1) degenerates?

Proposition 6.5.2. If definition (6.4.1) denotes a degeneration linear pro-
gramming, then

min{cx|Ax = b +
n∑

j=1

εjPj = b(ε), x � 0, ε > 0 sufficiently small} (6.5.1)

is a linear programming of nondegeneration.

Theorem 6.5.1. If any basic feasible solution is ε = 0 in (6.5.1) when ε is
sufficiently small, a basic feasible solution can be obtained to a degenerated
linear programming (6.4.1).
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Proposition 6.5.3. If a basic solution x∗(0) = (xB(0), xN ) denotes a de-
generation optimum solution to linear programming (6.4.1), then there exists
antinomy if and only if a negative component exists in y = cBB−1.

Proof: Take a basic solution x∗(ε) = (xB(ε), xN ) in (6.5.1) into consideration,
where

xB(ε) = B−1b0 + εB + B−1NεN −B−1NxN = B−1b(ε)−B−1NxN

is nondegeneration. According to Proposition 6.5.1, if xB(ε) is a nondegener-
ation optimum solution, then there appears antinomy if and only if a negative
component exists in y = cBB−1. When ε is sufficiently small and if we suppose
ε = 0 in any basic feasible solution to (6.5.1), we can obtain a basic feasible
solution to (6.4.1). If (6.5.1) is solved when ε is sufficiently small, we can get
a list of basic feasible solutions x(ε) = {x0(ε), x1(ε), · · · } until we have an
optimal solution x∗(ε). If ε = 0, we also have a list of basic feasible solutions
x(0) = {x0(0), x1(0), · · · } to (6.4.1). Since the coefficient matrices and the
objective functions are all equal in (6.5.1) and (6.4.1), accordingly, the test
numbers are identical in basic feasible solutions xi(ε) and xi(0). Therefore,
x∗(0) is also an optimal solution to (6.4.1). This demonstrates that x∗(ε) serv-
ing as a nondegeneration optimum solution to (6.5.1) is equivalent to x∗(0)
serving as a degeneration optimum one to (6.4.1). At this time, the objective
function denoted by

cBB−1b′(ε) = yb′(ε)− yNxN

= yb0(ε) + δyT − yNxN

< yb0(ε) = cx∗(ε)

holds when a negative component exists in y and there exists cBB−1b′(0) <

cx∗(0) for ε = 0. Therefore the proposition holds.

Corollary 6.5.2. Antinomy arises in (6.4.1) under the condition of Proposi-
tion 6.5.3 and in the event of ∃j0 : zj0 < 0.

Proof: Because they have identical coefficient matrices and objective func-
tions, and (6.4.1) and (6.5.1) have the same test numbers in their basic feasible
solutions xi(ε) as well as xi(0), we know a negative component must exist in
y, in the event of zj0 = cBB−1Pj = yPj < 0, with

cBxB(ε) = cBB−1b0(ε) + δcBB−1Ps − cBB−1NxN

= cx∗(ε) + δzs < cx∗(ε)

(δ > 0 sufficiently small), so, cBxB(0) < cx∗(0) for ε = 0. Therefore, the
corollary holds.

In conclusion, whether a classical linear programming degenerates or not
results in the fact that antinomy comes into being. If we try to keep antinomy
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from being contrary, we only change the equal-sign into an inequality sign in
constraint condition.

Proposition 6.5.4. Let μφ̃ be a continuous and strictly monotone function. If
a basic solution x∗ = (xB , xN )T nondegenerates in fuzzy linear programming

min z̃ = c̃x

s.t. Ax = b,

x � 0,

(6.5.2)

then antinomy arises if and only if a negative component exists in a fuzzy
shadow price ỹ = c̃BB−1.

Proof: Necessity. Since (6.5.2)⇐⇒(6.4.5) and (6.4.4) ⇐⇒(6.4.6), if ỹ =
c̃BB−1 � 0̃ ⇐⇒ y(β) = (μφ̃−1(β))BB−1 � 0, and then to ∀T � 0, when
b→ b + T , for any feasible solution in this problem with a soft constraint, we
know

μD̃(x) = μφ̃−1(β)x � y(b + T )

� yb = μφ̃−1(β)x∗ = μD̃(x∗)

from a dual theorem of ordinary parameter linear programming, such that
c̃x � ỹb = c̃x∗.

Sufficiency. If there exists a negative component in ỹ, then ∃T � 0,
m∑

i=1

ti > 0,

such that
ỹT<0⇐⇒ μφ̃−1(β)B−1T � 0.

Let b′ = b + δT (δ > 0). Then the problem with a soft constraint concerning a
basic solution in basis B is

xB = B−1b′ = B−1b + δB−1T,

xN = 0.

x∗ nondegenerates on the proposition assumption, xB � 0 means a basic
feasible solution having test numbers unchangeable when δ > 0 is sufficiently
small. Therefore it also belongs to an optimal solution with soft constraints
and ỹ = c̃BB−1 is still a fuzzy optimal solution to the dual problem. But the
objective value ∀β ∈ [0, 1] is denoted by formula below, i.e.,

(μφ̃−1(β))BB−1b′ = y(β)b′ = y(β)b + δy(β)T
< y(β)b = cx∗

⇐⇒ c̃BB−1b′ = ỹb′ = ỹb + δỹT

< ỹb = c̃x∗,

such that antinomy arises in (6.5.2).
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Corollary 6.5.3. Let μφ̃ be a continuous and strictly monotone function. If
a basic solution x∗ = (xB , xN ) to (6.5.2) denotes a nondegeneration optimum
solution, then the condition where antinomy arises is ∃j0, such that z̃j0 < 0̃.

Proof: From the proof of Proposition 6.5.4, we know

sup
Ax=b

μφ̃0
(x) = sup μφ̃0

(xB)

= sup
β∈[0,1]

(μφ̃−1(β))BxB

= sup
β∈[0,1]

{(μφ̃−1(β))BB−1b + Pjδ(μφ̃−1(β))BB−1PjT }

< sup
β∈[0,1]

(μφ̃−1(β))BB−1bPj .

(Because zj = (μφ̃−1(β))BB−1Pj < 0, where xB = B−1b + δB−1T, xN = 0,
we know there must exist a negative component in y(β) = (μφ̃−1(β))BB−1).

It is equivalent that there must be a fuzzy negative component in ỹ from
the knowledge of z̃j = c̃BB−1Pj = ỹPj < 0̃, such that we have

c̃BxB = c̃x∗ + δz̃j < c̃x∗.

Proposition 6.5.5. If definition (6.5.2) serves as a degeneration fuzzy linear
programming, then

min z̃ = c̃x

s.t. Ax = b +
n∑

j=1

εjPj = b(ε)

x � 0

(6.5.3)

serves as a nondegeneration fuzzy linear programming, where εj is a suffi-
ciently small positive number.

Proposition 6.5.6. Let μφ̃ be a continuous and strictly monotone function.
If a basic solution x∗(0) = (xB(0), xN ) to (6.5.2) denotes a degeneration opti-
mum solution, then antinomy appears if and only if a fuzzy negative component
exists in ỹ = c̃BB−1.

Corollary 6.5.4. Let μφ̃ be a continuous and strictly monotone function.
Suppose that a basic solution x∗(0) = (xB(0), xN ) to (6.5.2) is a degeneration
optimum solution, then the condition where antinomy arises is ∃j0, such that
z̃j0 < 0̃.

In fact, because
min c̃x

s.t. Ax = b(ε)
x � 0

(6.5.4)

is equivalent to
min μφ̃−1(β)x

s.t. Ax = b(ε), β ∈ [0, 1],
x � 0,

(6.5.5)
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the dual form of (6.5.5) is

max yb(ε)
s.t. yA = μφ̃−1(β), β ∈ [0, 1],

y � 0.

Therefore, (6.5.4) is equivalent to

max ỹb(ε)
s.t. ỹA = c̃,

ỹ � 0̃.

From Proposition 6.5.3 and Corollary 6.5.1, we know properties as follows:
a. If there exists a degeneration optimum basic solution x∗(0, β) in the clas-

sical linear programming (6.5.5) with parameter variable β, then the antinomy
appears if and only if a negative component exists in ỹ = c̃BB−1.

b. Under the condition of a, if ∃j0 < 0, then antinomy appears in (6.5.5).

6.5.3 Example

Example 6.5.2: The fuzzy linear programming corresponding to Example
6.5.1 in this section is

min z = 2x1 + 3x2 + x3 + 2x4

s.t. x1 + x2 + x3 + x4 � 9,

4x2 + 2x3 + 6x4 � 12,

5x1 + 6x2 + 5x3 + 4x4 � 46,

xi � 0(i = 1, · · · , 4).

(6.5.6)

Assume d1 = 1, d2 = 6, d3 = 4 and we make a parameter programming, then
(6.5.6) is turned into

min z = 2x1 + 3x2 + x3 + 2x4

s.t. x1 + x2 + x3 + x4 + x5 = 10,

4x2 + 2x3 + 6x4 + x6 = 18,

5x1 + 6x2 + 5x3 + 4x4 + x7 = 50,

xi � 0(i = 1, · · · , 7).

Under the unchangeable condition of basis matrix B, an optimal parameter
solution denotes

x = B−1b(α) = (4 − 3
1
2
α, 1− 4α, 4 + 8

1
2
α)T,

and optimal value is

z = 15− 10
1
2
α.
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When b is added from b = (9, 12, 46)T to b′ = (10, 18, 50)T, z decreases from
z = 15 to 11. Therefore, antinomy comes into being because negative compo-

nents exist in a solution vector for α >
1
4
.

6.5.4 Conclusion

On the whole, no matter whether (6.5.2) is a generation or nongeneration
fuzzy linear programming, antinomy appears in both of them. If we prevent
antinomy in fuzzy linear programming from being contrary, the constraint
equal-sign can be turned into a soft constraint.

Overall, if antinomy is changed into formula (6.4.12) for solution, the anti-
nomy of a fuzzy linear programming is not contrary. If the optimal solution in
a primal linear programming is unique, then antinomy does not exist, which
can be concluded as solutions to fuzzy linear programming (6.5.2). In the
light of Theorem 6.4.4, an ordinary linear programming is only a particular
example of fuzzy linear programming (6.4.12) for di = 0. Therefore, it can be
changed into finding solutions by a fuzzy set method no matter whether it is
antinomy of linear programming or fuzzy linear programming.

6.6 Fuzzy Linear Programming Based on Fuzzy
Numbers Distance

6.6.1 Introduction

In the section, we discuss the constraint conditions with fuzzy coefficients,
whose standard form is:

max z = cx

s.t. Ãx � b̃,

x � 0,

where c = (c1, c2, · · · , cn) is an n-dimensional clear row vector, Ã = (ãij) is
an m × n fuzzy number matrix, b̃ = (̃b1, b̃2, · · · , b̃m)T is an m-dimensional
fuzzy line vector and x = (x1, x2, · · · , xn)T is a decisive vector. Solving this
kind of fuzzy linear programming is based on an order relation between fuzzy
numbers, by which we can transform fuzzy linear programming into clear
linear programming.

6.6.2 Distance

A. Distance between Interval Numbers

Assume a = [a1, a2] and b = [b1, b2] to be two interval numbers, a = b ⇐⇒
a1 = b1 and a2 = b2.
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Similarly to Ref. [LiuH04], we also consider the different value between
corresponding point and point in the intervals, giving a new definition on the
distance between interval numbers.

Definition 6.6.1. Let a = [a1, a2] and b = [b1, b2] be two interval numbers.
Then define

d(a, b) =
∫ 1

2

− 1
2

|[ a1 + a2

2
+ x(a2 − a1)]− [

b1 + b2

2
+ x(b2 − b1)]|dx (6.6.1)

as the distance between a and b.
Regarding the distance d(a, b) between interval numbers as a proposition,

we can verify satisfaction of the three conditions in distance.
In fact, let

f(x) = |[ a1 + a2

2
+ x(a2 − a1)]− [

b1 + b2

2
+ x(b2 − b1)]|.

Since f(x) is a simple function about x, it concludes that f(x) is continuous,
so d(a, b) is integrable.

(1) Since f(x) � 0, also by the continuity and integrable character of f(x),
we have d(a, b) � 0. If d(a, b) = 0, then f(x) = 0.

When f(x) = 0, we have [
a1 + a2

2
+x(a2−a1)]− [

b1 + b2

2
+x(b2−b1)] = 0,

i.e., (
a1 + a2

2
− b1 + b2

2
) + x[(a2 − a1)− (b2 − b1)] = 0 (∀x ∈ [−1

2
,
1
2
]), which

satisfies a1 = b1, a2 = b2, hence a = b.
On the contrary, when a = b, i.e., a1 = b1, a2 = b2, we have f(x) = 0. Thus

d(a, b) =
∫ 1

2

− 1
2

f(x)dx = 0.

(2) d(a, b) = d(b, a) holds obviously.

(3) For any interval number c, where c = [c1, c2], denote ax =
a1 + a2

2
+

x(a2 − a1), bx =
b1 + b2

2
+ x(b2 − b1), cx =

c1 + c2

2
+ x(c2 − c1). Then 0 �

|ax − bx| � |ax − cx|+ |cx − bx| satisfies∫ 1
2

− 1
2

|ax − bx|dx �
∫ 1

2

− 1
2

|ax − cx|dx +
∫ 1

2

− 1
2

|cx − bx|dx.

It follows that d(a, b) � d(a, c) + d(c, b) holds.

In the distance formula, the integralled function f(x) = |[ a1 + a2

2
+x(a2−

a1)]− [
b1 + b2

2
+ x(b2 − b1)]| is the distance function between corresponding

point and point in two intervals. At x = −1
2
, f(−1

2
) is the distance between
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left endpoints of the two interval numbers; at x =
1
2
, f(

1
2
) is the distance

between right endpoints of the two interval numbers.

B. Distance between Fuzzy Numbers

Definition 6.6.2 [TD02]. The fuzzy set Ã in the real number set is called
an L-R fuzzy number. If its membership function is:

μÃ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L(

a2 − x

a2 − a1
), a1 � x � a2,

1, a2 � x � a3,

R(
x− a3

a4 − a3
), a3 � x � a4,

0, x < a1, x > a4,

(6.6.2)

where L, R are strictly decreasing functions in [0, 1], and satisfy

L(x) = R(x) = 1(x � 0); L(x) = R(x) = 0(x � 1),

the fuzzy number is denoted by Ã = (a1, a2, a3, a4)LR.

Especially, when L(x) = R(x) = 1 − x, fuzzy number defined in (6.6.2) is
a trapeziform fuzzy number, denoted by Ã = (a1, a2, a3, a4); when L(x) =
R(x) = 1 − x and a2 = a3, fuzzy number defined in (6.6.2) is a triangular
fuzzy number, denoted by Ã = (a1, a2, a3).

∀α ∈ [0, 1], α-level curve of fuzzy number Ã denotes an interval number:

Ãα = [AL(α), AR(α)],

where AL(α) = a2 − (a2 − a1)L−1
A (α); AR(α) = a3 + (a4 − a3)R−1

A (α).
By the distance between interval numbers, we define the distance between

fuzzy numbers as follows.

Definition 6.6.3. Let Ã and B̃ be two fuzzy numbers, and

Ãα = [AL(α), AR(α)] = [a2 − (a2 − a1)L−1
A (α), a3 + (a4 − a3)R−1

A (α)],

B̃α = [BL(α), BR(α)] = [b2 − (b2 − b1)L−1
B (α), b3 + (b4 − b3)R−1

B (α)].

Then we define the distance between Ã and B̃ by

D(Ã, B̃) =
∫ 1

0

d(Ãα, B̃α)dα, (6.6.3)

where

d(Ãα, B̃α) =
∫ 1

2

− 1
2

|[aL(α) + aR(α)
2

+ x(aR(α)− aL(α))]

−[
bL(α) + bR(α)

2
+ x(bR(α) − bL(α)]|dx.



174 6 Fuzzy Linear Programming

In fact, let

f(x, α) = |[aL(α) + aR(α)
2

+ x(aR(α) − aL(α))]

−[
bL(α) + bR(α)

2
+ x(bR(α)− bL(α)]|.

Since f(x, α) is a simple function about x, f(x, α) is continues; it concludes
that d(Ãα, B̃α) is also continuous, so D(Ã, B̃) is integrable.

(1) Since d(Ãα, B̃α) � 0, also by the continuity and integrable character of
d(Ãα, B̃α), we have D(Ã, B̃) � 0. If D(Ã, B̃) = 0, it satisfies d(Ãα, B̃α) = 0.

When d(Ãα, B̃α) = 0, by the distance definition between interval numbers,
we know aL(α) = bL(α), aR(α) = bR(α), then Ã = B̃.

On the contrary, when Ã = B̃, i.e., aL(α) = bL(α), aR(α) = bR(α).
d(Ãα B̃α) = 0, the result holds clearly true. So D(Ã, B̃) =

∫ 1

0
d(Ãα, B̃α)dα =

0.
(2) D(Ã, B̃) = D(B̃, Ã) holds obviously.
(3) For any fuzzy number C̃, by the distance definition between interval

numbers:
0 � d(Ãα, B̃α) � d(Ãα, C̃α) + d(B̃α, C̃α),

where C̃α = [CL(α), CR(α)] = [C2− (C2−C1)L−1
C (α), C3 +(C4−C3)R−1

C (α)],
so ∫ 1

0

d(Ãα, B̃α)dα �
∫ 1

0

d(Ãα, C̃α)dα +
∫ 1

0

d(C̃α, B̃α)dα

holds.

6.6.3 Ranking Fuzzy Numbers

Here, we present a ranking idea about fuzzy numbers: before ranking fuzzy
numbers, we fix a real number M as refereing object (M is supremum about
support set of Ã and support set of B̃). The nearer a fuzzy number to M , the
larger it is; that is, the smaller the distance to M , the larger a fuzzy number
is.

Definition 6.6.4. If M = sup(s(A) ∪ s(B)), we call M the supremum of Ã

and B̃, where s(A) and s(B) are the support sets of Ã and B̃, respectively.
By Definition 6.6.3, we can obtain the distance from fuzzy number Ã to M:

D(Ã, M) =
∫ 1

0

{
∫ 1

2

− 1
2

{M − [
aL(α) + aR(α)

2
+ x(aR(α)− aL(α))]}dx}dα,

∀α ∈ [0, 1]. Coordinate:

D(Ã, M) = M− a2 + a3

2
+

a2 − a1

2

∫ 1

0

L−1
A (α)− a4 − a3

2

∫ 1

0

R−1
A (α). (6.6.4)
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Similarly

D(B̃, M) = M − b2 + b3

2
+

b2 − b1

2

∫ 1

0

L−1
B (α)− b4 − b3

2

∫ 1

0

R−1
B (α). (6.6.5)

Thus, we can obtain the definition of ranking fuzzy numbers as follows in light
of this.

Definition 6.6.5. Let Ã and B̃ be two fuzzy numbers, and M be the supre-
mum of Ã and B̃. Then

(1) When D(Ã, M) < D(B̃, M), we call Ã > B̃;
(2) When D(Ã, M) = D(B̃, M), we call Ã = B̃;
(3) When D(Ã, M) > D(B̃, M), we call Ã < B̃.

Especially, when Ã and B̃ are trapeziform fuzzy numbers or triangular
numbers, respectively, we can get concrete expressions:

10 When Ã and B̃ are trapeziform fuzzy numbers Ã = (a1, a2, a3, a4), B̃ =
(b1, b2, b3, b4), then

D(Ã, M) = M − a1 + a2 + a3 + a4

4
; D(B̃, M) = M − b1 + b2 + b3 + b4

4
.

By Definition 6.6.5:

(1) a1 + a2 + a3 + a4 > b1 + b2 + b3 + b4 ⇔ Ã > B̃;
(2) a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4 ⇔ Ã = B̃;
(3) a1 + a2 + a3 + a4 < b1 + b2 + b3 + b4 ⇔ Ã < B̃.

20 When Ã and B̃ are triangular numbers Ã = (a1, a2, a3), B̃ = (b1, b2, b3),
then

D(Ã, M) = M − a1 + 2a2 + a3

4
; D(B̃, M) = M − b1 + 2b2 + b3

4
.

By Definition 6.6.5:

(1) a1 + 2a2 + a3 > b1 + 2b2 + b3 ⇔ Ã > B̃;
(2) a1 + 2a2 + a3 = b1 + 2b2 + b3 ⇔ Ã = B̃;
(3) a1 + 2a2 + a3 < b1 + 2b2 + b3 ⇔ Ã < B̃.

6.6.4 Linear Programming in Constraint with Fuzzy Coefficients

Assume that the linear programming in constraint with fuzzy coefficient is
defined as follows:

max z = cx

s.t. Ãx � b̃,

x � 0,

(6.6.6)
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denoted as:
max z = c1x1 + c2x2 + · · ·+ cnxn

s.t. ãi1x1 + ãi2x2 + · · ·+ ãinxn � b̃i,

x1,x2, · · · ,xn � 0 i = 1, 2, · · · , m,

(6.6.7)

where fuzzy numbers are triangular fuzzy ones, i.e.,

ãi1 = (ai11, ai12, ai13), ãi2 = (ai21, ai22, ai23), · · · ,
ãin = (ain1, ain2, ain3); b̃i = (bi1, bi2, bi3).

By Zadeh’s extension principle, the sum of any triangular fuzzy numbers is
still a triangular one. Formula (6.6.7) is equivalent to the format as follows:

max z = c1x1 + c2x2 + · · ·+ cnxn

s.t. (ai11x1 + ai21x2 + · · ·+ ain1xn, ai12x1 + ai22x2 + · · ·+ ain2xn,

ai13x1 + ai23x2 + · · ·+ ain3xn) � (bi1, bi2, bi3),
x1,x2, · · · ,xn � 0 i = 1, 2, · · · , m.

(6.6.8)

By Definition 6.6.5 and the method to ranking triangular fuzzy numbers,
we transform Formula (6.6.8) into a linear programming as follows:

max z = c1x1 + c2x2 + · · ·+ cnxn

s.t. (ai11x1 + ai21x2 + · · ·+ ain1xn)
+2(ai12x1 + ai22x2 + · · ·+ ain2xn)
+(ai13x1 + ai23x2 + · · ·+ ain3xn) � bi1 + 2bi2 + bi3,

x1,x2, · · · ,xn � 0 i = 1, 2, · · · , m.

(6.6.9)

6.6.5 Numerical Example

Example 6.6.1: Find solution to the linear programming in constraint with
fuzzy coefficients:

max z = 3x1 + 4x2

s.t. ã11x1 + ã12x2 � b̃1,

ã21x1 + ã22x2 � b̃2,

x1, x2 � 0,

where ã11 = (3, 4, 4), ã12 = (20, 20, 21), ã21 = (11, 12, 13), ã22 = (5.4, 6.4, 7.4),
b̃1 = (4500, 4600, 4800), b̃2 = (4600, 4800, 5250).

Solution: By Formula (6.6.9), transform the fuzzy linear programming into
a clear linear programming

max z = 3x1 + 4x2

s.t. (3x1 + 20x2) + 2(4x1 + 20x2) + (4x1 + 21x2)
� 4500 + 2× 4600 + 4800,

(11x1 + 5.4x2) + 2(12x1 + 6.4x2) + (13x1 + 7.4x2)
� 4600 + 2× 4800 + 5250,

x1, x2 � 0,

(6.6.10)

we obtain x∗
1 = 315 x∗

2 = 170 z∗1 = 1625.
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By the ranking idea from Ref. [LiR02], we transform the fuzzy linear pro-
gramming into a clear linear programming as follow:

max z = 3x1 + 4x2

s.t. 3x1 + 20x2 � 4500,

4x1 + 20x2 � 4600,

4x1 + 21x2 � 4800,

11x1 + 5.4x2 � 4600,

12x1 + 6.4x2 � 4800,

13x1 + 7.4x2 � 5250,

x1, x2 � 0,

(6.6.11)

and we obtain x∗
1 = 308 x∗

2 = 168 z∗2 = 1598.
Obviously z∗1 > z∗2 , at the same time, the number of constraint conditions

in (6.6.10) reduces by four times compared to the numbers in (6.6.11), which
indicates the ranking rule in the paper is superior to the ranking rule in Ref.
[LiR02], consequently we gain a better optimal value of the linear program-
ming in constraint with fuzzy coefficients.

6.6.6 Conclusion

We propose a new distance between fuzzy numbers based on the distance
between interval numbers. In sighting the ranking idea, we get a ranking rule
about fuzzy numbers. On the basis of the ranking rule, we gain a new approach
to linear programming in triangular fuzzy numbers with coefficients. At the
same time, we use the simplicity of triangular fuzzy numbers in solving the
problem. But it remains to research the linear programming in general fuzzy
coefficients.

6.7 Linear Programming with L-R Coefficients

6.7.1 Introduction

Consider linear programming

m̃ax z̃ = c̃x

s.t. Ãx � b̃,

x � 0,

(6.7.1)

where c̃ = (c̃1, · · · , c̃n), b̃ = (b̃1, · · · , b̃m)T are L-R vectors, Ã = (ãij)m×n an
L-R matrix, c̃j = (cj , cj , cj)LR, b̃i = (bi, bi, bi)LR and ãij = (aij , aij , aij)LR

L-R numbers, and x = (x1, x2, · · · , xn)T an ordinarily variable vector.
Now two kinds of situations are discussed as follows respectively.
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6.7.2 Linear Programming in Constraints with L-R Coefficients

Consider
max z = cx

s.t. Ãx � b̃,

x � 0.

(6.7.2)

Because ãij , b̃i(1 � i � m, 1 � j � n) are all L-R numbers, and xj � 0, then

n∑
j=1

ãijxj = (
n∑

j=1

aijxj ,

n∑
j=1

aijxj ,

n∑
j=1

aijxj)LR

is still an L-R number, hence

n∑
j=1

ãijxj � b̃i

⇐⇒
n∑

j=1

aijxj � bi,

n∑
j=1

aijxj � bi,

n∑
j=1

aijxj � bi,

(6.7.3)

written down as A = (aij), A = (aij), A = (aij), b = (b1, b2, · · · , bm)T , b =
(b1, b2, · · · , bm)T , b = (b1, b2, · · · , bm)T . Therefore (6.7.2) can be rewritten
as the following ordinary linear programming with 3m linear inequality con-
straints, i.e.,

max z = cx

s.t. Ax � b,

Ax � b,

Ax � b,

x � 0.

(6.7.4)

It is worthwhile to point out that turning (6.7.2) into (6.7.4) is irrelevant
with choice of concrete appearance in reference function L and R in L-R
number.

We only consider two variable linear programming, and illustrate a method
to it (may also use a simplex method to it).

Example 6.7.1: A person on a business trip, needs to take two kinds of
goods, each wrapped heavy by “6 kg possibility more” of Goods A (denoted
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as 6̃ = (6, 0, 1)LR), worth 20 dollars. Goods B wrapped heavy by “2 kg or
so” (denoted as 2̃ = (2, 1, 1)LR), worth 10 dollars. This person wishes to take
“about 21 kg” at most once (it can be denoted as 2̃1 = (21, 1, 5)LR), hoping
the total value of goods he takes is the greatest.

Solution: Suppose that Goods A he takes is package x1, and B is package
x2, then the problem involves finding a solution to linear programming in
constraints with fuzzy coefficients as follows:

max z = 20x1 + 10x2

s.t. 6̃x1 + 2̃x2 � 2̃1,
x1 � 0,

x2 � 0.

(6.7.5)

It is equivalent to a solution to an ordinary linear programming

max z = 20x1 + 10x2

s.t. 6x1 + 2x2 � 21,

x2 � 1,

x1 + x2 � 5
x1 � 0,

x2 � 0.

Use an illustrating method to the problem (see Figure 6.7.1), the optimal

solution is to get x∗
1 =

11
4

, x∗
2 =

9
4
, the optimal value is z∗ =

310
4

= 77
1
2
.

�

Fig. 6.7.1. Illustrating Method to (6.7.5)
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6x1 + 2x2 = 21�
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20x1 + 10x2 = 77.5

(11
4 , 9

4 )

If the goods allow to be torn open, then Goods A he takes can be 2
3
4

packages, B 2
1
4

packages, total worth 77.5 dollars. If the goods must be taken
by whole packages, it needs taking an integral for the restrict x1, x2, and that
is, to solve it with an integral programming method. The result is that Goods
A he would take is 2 packages, B is 3 packages (or A is 3, B is 1), the total
value amounting to 70 dollars.
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6.7.3 Linear Programming in Object with L-R Coefficient

Consider the problem as follows:

m̃ax z̃ = c̃x

s.t. Ax � b,

x � 0.

(6.7.6)

Because
c̃ = (c̃1, · · · , c̃n), c̃j = (cj , cj , cj)LR,

z̃ = (z, z, z)LR = (
n∑

j=1

cjxj ,

n∑
j=1

cjxj ,

n∑
j=1

cjxj)LR

are all L-R numbers, and according to approximately formula of m̃ax, (6.7.6)
is approximately equivalent to a linear programming with 3 objectives

max(z =
n∑

j=1

cjxj = cx)

min(z =
n∑

j=1

cjxj = cx)

max(z =
n∑

j=1

cjxj = cx)

s.t. Ax � b,

x � 0.

Example 6.7.2: Find fuzzy linear programming as follow:

m̃ax z̃ = 2̃0x1 + 1̃0x2

s.t. 6x1 + 2x2 � 21,

x1 � 0,

x2 � 0,

where 2̃0 = (20, 3, 4)LR, 1̃0 = (10, 2, 1)LR.
This problem is approximately equivalent to

max z = 20x1 + 10x2

min Z = 3x1 + 2x2

maxZ = 4x1 + x2

s.t. 6x1 + 2x2 � 21,

x1 � 0,

x2 � 0.
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Find an optimal solution to each objective respectively

x
(1)
1 = 0, x

(1)
2 = 10.5, Z(1) = 105, when Z(1) = 21, Z

(1)
= 10.5.

x
(2)
1 = 0, x

(2)
2 = 0, Z(2) = 0, when Z(2) = Z

(2)
= 0.

x
(3)
1 = 3.5, x

(3)
2 = 0, Z(3) = 14, when Z(3) = 70, Z

(3)
= 10.5.

Subjectively give a flex index for d1 = 5, d2 = 20, d3 = 4, and we construct
three fuzzy objective sets M̃1, M̃2, M̃3: M̃1, M̃2, M̃3:

μM̃1
(x) = f1(20x1 + 10x2)

=

⎧⎪⎨⎪⎩
0, 20x1 + 10x2 < 100,

1− 1
5
(105− 20x1 − 10x2), 100 � 20x1 + 10x2 < 105,

1, 20x1 + 10x2 � 105;

μM̃2
(x) = f2(3x1 + 2x2)

=

{
0, 3x1 + 2x2 � 20,

1− 1
20

(3x1 + 2x2), 0 < 3x1 + 2x2 < 20;

μM̃3
(x) = f3(4x1 + x2)

=

⎧⎪⎨⎪⎩
0, 4x1 + x2 < 10,

1− 1
4
(14− 4x1 − x2), 10 � 4x1 + x2 < 14,

1, 4x1 + x2 � 14.

Let M̃ = M̃1

⋂
M̃2

⋂
M̃3. Then the problem is changed into an ordinarily

linear programming

max α

s.t. 1− 1
5
(105− 20x1 − 10x2) � α,

1− 1
20

(3x1 + 2x2) � α,

1− 1
4
(14− 4x1 − x2) � α,

6x1 + 2x2 � 21,

0 � α � 1,

x1 � 0,

x2 � 0,
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i.e.,
max α

s.t. 20x1 + 10x2 − 5α � 100,

3x1 + 2x2 + 20α � 20,

4x1 + x2 − 4α � 10,

6x1 + 2x2 � 21,

0 � α � 1,

x1, x2 � 0.

The optimal solution

x∗
1 = 0.488, x∗

2 = 9.035, α∗ = 0.022

is obtained, correspondingly,

z∗ = 100.11, z∗ = 19.534, z∗ = 10.987.

And then the approximately fuzzy optimal value is

z̃∗ = (100.11, 19.534, 10.987)LR.

6.7.4 Conclusion

As for the object and constraint with L-R coefficient in the linear program-
ming, we integrate the method above, which can also be changed into to a
fuzzy optimal solution to multi-object linear programming.

Meanwhile, determination of this model may cause the constraint field of
linear programming to be empty sets after subjectively the flexible indexes
d1, d2, d3 are given. At this time, the problem has no optimal solution in
them, so this needs to be adjusted appropriately to a flexible index, in order
to guarantee the existence of an optimal solution.

6.8 Linear Programming Model with T -Fuzzy Variables

6.8.1 Introduction

Theoretically, we build a new linear programming model on the basis of T -
fuzzy numbers, study its dual form, nonfuzzify it under a cone index J , and
turn a linear programming with T -fuzzy variables into a linear programming
depending on a cone index J . In such a theoretical framework, we can trans-
plant many results of the linear programming into a linear programming with
T -fuzzy variables [Cao96a].



6.8 Linear Programming Model with T -Fuzzy Variables 183

6.8.2 Linear Programming with T -Fuzzy Variables

Definition 6.8.1. Let fuzzy linear programming be

(L̃P ) m̃in cx̃

s.t. Ax̃ � b̃,

x̃ � 0,

(6.8.1)

where c is a real 1×n matrix, A a real m×n matrix, x̃ a real n−dimensional T -
fuzzy variable vector, and b̃ = (b̃1, b̃2, · · · , b̃m)T a real m−dimensional T -fuzzy
vector.

If x̃ and b̃ are T -fuzzy data defined as in Ref. [Cao89b,c],[Dia87] and
[DPr80], i.e., x̃ = (x̃1, x̃2, · · · , x̃n)T; here x̃l = (xl, ξl

, ξl)(1 � l � n), 1̃ =
(1, 1, 1) and (6.8.1) is called a linear programming with T -fuzzy variables.

But we call

(LP (J )) min
n∑

l=1

clUl

s.t.
n∑

l=1

ailUl � bi(J )(1 � i � m),

U � 0

a linear programmingdepending ona cone indexJ ,whereU = (U1, U2, · · · , Un)T

is an n−dimensional vector, Ul =
3M∑
i=1

Uil

3M
and bi(J ) is a number depending on

a cone index J .

Theorem 6.8.1. Let the linear programming be given from T -fuzzy variables
as (L̃P ). Then (L̃P ) is equivalent to (LP (J )) for a given cone index J , and
(LP (J )) has an optimal solution depending on a cone index J , equivalent to
(L̃P ) with a T -fuzzy optimal one.

Proof: Let {x̃il} be a column T -fuzzy variable satisfying (L̃P ), where x̃il =
(xl, ξil

, ξil)T (1 � i � m; 1 � l � n). We classify vectors of the column by
subscripts, and might as well let l = 1, · · · , N correspond to a smaller fluc-
tuating variable, and the other variables correspond to l = N + 1, · · · , 3N .

Then for i = 1, · · · , M and each l, Uil = xi +
ξ

il
+ ξil

2
; for i = M +1, · · · , 2M

and each l, Uil =

{
xl − ξ

il
, jl = 0,

xl + ξil, jl = 1;
for i = 2M + 1, · · · , 3M and each l,

Uil =

{
xl + ξil, jl = 0,

xl − ξ
il
, jl = 1.

So, under a given cone index J , (L̃P ) is changed

into LP (J )).



184 6 Fuzzy Linear Programming

From the equivalence of (L̃P ) and (LP (J )), we know that (LP (J )) has an
optimal solution depending on a cone index J , which is equivalent to (L̃P )
with an optimal T -fuzzy solution. Therefore, the theorem holds.

Theorem 6.8.1 shows us that (L̃P ) can be turned into an ordinary para-
metric linear programming (LP (J )) depending on a cone index J , where
(LP (J )) has many methods and an optimal one to it can be found in any
literature on linear programming.

6.8.3 Dual Problem

For the linear programming with T -fuzzy variables, there always exits a dual
linear programming with T -fuzzy parameter corresponding to it.

Let Ul = xl +
3M∑
i=1

ξ′il
3M

. Then

(LP (J )) ⇔

min
n∑

l=1

cl

(
xl +

3M∑
i=1

ξ′il
3M

)
s.t.

n∑
l=1

ail

(
xl +

3M∑
i=1

ξ′il
3M

)
� bi(J ),

xl � 0 (1 � i � m; 1 � l � n),

(6.8.2)

where ξ′il is ξ′
il

(resp. −ξ′
il
) or ξ

′
il (resp. −ξ

′
il).

Substitute x′
l = xl +

3M∑
i=1

ξ′il
3M

, and then we might as well let xl �
3M∑
i=1

ξ′il
3M

,

and turn (6.8.2) into

min
n∑

l=1

clx
′
l

s.t.
n∑

l=1

ailx
′
l � bi(J ),

x′
l � 0 (1 � i � m; 1 � l � n),

(6.8.3)

i.e.,
min cx′

s.t. Ax′ � b(J ),
x′ � 0,

while the dual form of (6.8.3) is

max yb(J )
s.t. ATy � c,

y � 0.

(6.8.4)

Theorem 6.8.2. Suppose linear programming (L̃P ) is deduced from T -fuzzy
variables. Its dual form is
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m̃ax yb̃

s.t. ATy � c

y � 0
(6.8.5)

and (L̃P ) has an optimal T -fuzzy solution equivalent to (6.8.5) having an
optimal solution, and (L̃P ) has the same optimal T -fuzzy values as (6.8.5).

Proof: As (L̃P ) can be changed into (LP (J )) under above cone index J ,
and the dual form of (LP (J )) is equivalent to (6.8.4), then (6.8.5) can be
changed into (6.8.4) under the cone index J above. Again, (L̃P ) is known to
be mutually dual with (6.8.5) due to the equivalence of (L̃P ) with (LP (J )),
and (6.8.5) with (6.8.4), and the mutual duality of (LP (J )) and (6.8.4).

Again, (LP (J )) and (6.8.4) are, respectively, an ordinary primal linear
programming and a dual linear programming depending on the same cone
index J . As for (LP (J )) and (6.8.4), applying Theorem 2 in Section 4.2 in
Ref. [GZ83], we know that if one of them has an optimal solution, so has
the other. They contain the same optimal values, therefore the theorem holds
from the arbitrariness of the cone index J .

Theorem 6.8.3. Suppose that (L̃P ) is deduced from T -fuzzy variables, then
dual programming (L̃P ) and (6.8.5) have optimal T -fuzzy solutions and opti-
mal solutions, respectively, if and only if they have T -fuzzy feasible ones and
feasible ones, respectively, at the same time.

Proof: Necessity is apparent and sufficiency is proved as follows.
(L̃P ) can be changed into (LP (J )) and (6.8.5) into (6.8.4) under the given

cone index J . Meanwhile (LP (J )) with (6.8.4) is mutually dual under the same
cone index J . In a similar way to the proof of Theorem 1 in Section 4.2 in Ref.
[GZ83],we canprove that (LP(J )) and (6.8.4)have feasible solutions depending
on a cone index J if and only if they contain optimal solutions depending on a
cone index J . Again, we know the theorem holds because of the equivalence of
(L̃P ) and (LP (J )), and (6.8.5) and (6.8.4), and the duality of (L̃P ) and (6.8.5).

Corollary 6.8.1. If x̃0 is a feasible T -fuzzy solution to (L̃P ) and y0 is a
feasible solution to (6.8.5), with cx̃0 = y0b̃, then x̃0 is an optimal T -fuzzy
solution to (L̃P ) and y0 is an optimal solution to (6.8.5).

Proof: Straightforward.

6.8.4 Numerical Example

Example 6.8.1: Find

m̃ax (3x̃1 − x̃2)

s.t. 2x̃1 − x̃2 � 2̃, where 2̃ = (2, 0, 0),

x̃1 � 4̃, where 4̃ = (4, 0, 0),
x̃1, x̃2 � 0, where 0 = (0, 0, 0),
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and give a column of T -fuzzy data:

x̃1 : 1. (x1, 0.5, 1.2), 2. (x1, 0.8, 1), 3. (x1, 1, 1.4);
x̃2 : 4. (x2, 0, 0.4), 5. (x2, 0.6, 1), 6. (x2, 1.5, 0.9).

Solution:

(i) Number the data by means of 1–6
Group the data into three parts from Definition 3.1.4: I, No. 1,4; II, No. 2,5;

j2 = 0, j5 = 1; and III. No. 3,6; j3 = 1, j6 = 0, here jl = 1 for odd numbers
and jl = 0 for even numbers.

(ii) Nonfuzzification
Let x1, x2 be

(x1 + 0.85) + (x1 − 0.8) + (x1 + 1.4)
3

= x1 + 0.483,

(x2 + 0.2) + (x2 + 1) + (x2 − 1.5)
3

= x2 − 0.1.

(iii) Obtain a linear programming corresponding to (6.8.2) as follows:

max (3x1 − x2 + 1.55)
s.t. 2x1 − x2 + 1.07 � 2

x1 + 0.483 � 4
x1, x2 � 0

⇒max (3x1 − x2 + 1.55)
s.t. 2x1 − x2 � 0.93,

x1 � 3.52,

x1, x2 � 0.

The optimal solution depending on a cone index J is x1 = 3.52, x2 = 6.11,
and the optimal value is 6.00. If x1 stands for an expensive resource, then
x2 stands for a cheap resource. Decrease x1 and increase x2 properly and we
obtain the same optimal value as in the non-crisp case. Obviously it decreases
its cost.

6.8.5 Conclusion

The linear programming with T-fuzzy variables can always be turned into
a parameter programming for solution, which is called a prime problem for
fuzzy linear programming.

Since a close connection exists between the prime problem and the dual
one, we can find an answer to the latter more easily than the former.
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6.9 Multi-Objective Linear Programming with T -Fuzzy
Variables

6.9.1 Introduction

There are a lot of fuzzy and undetermined phenomena in the realistic world.
If we describe such phenomena with T -fuzzy numbers [Cao90][Dia87], we can
get more information. Here we will extend the model in [Cao96a] into a multi-
objective linear programming with T -fuzzy variables, and discuss its algo-
rithm, which tests the effectiveness of the model and method by a numerical
example.

6.9.2 Building of Model

Consider an ordinary multi-objective linear programming:

V −max c(j)x (1 � j � r)
s.t. Ax � b,

x > 0,

(6.9.1)

where, x = (x1, x2, · · · , xn)T is an n dimension vector, b = (b1, b2, · · · , bm)T

an m dimension constant vector, c(j) and A denote r × n and m× n matrix,
respectively.

Because of practical problems, we extend (6.9.1) into the problem of a linear
programming with T -fuzzy variables. Introducing T-fuzzy data into (6.9.1),
then

V −max c(j)x̃ (1 � j � r)

s.t. Ax̃ � b̃,

x̃ � 0,

(6.9.2)

we call (6.9.2) a multi-objective linear programming model with T -fuzzy
variables, where, x̃ = (x̃1, x̃2, · · · , x̃n)T is an n dimension T -fuzzy vector,
b̃ = (b̃1, b̃2, · · · , b̃m)T an m dimension T -fuzzy constant vector, x̃l = (xl, ξl

, ξl)
a T -fuzzy variable, and b̃i = (b, bi, bi) a T -fuzzy number.

6.9.3 Non Fuzzification of Model

Theorem 6.9.1. If (6.9.2) is given by T -fuzzy variables, then, to the given
cone index J , (6.9.2) can be turned into

V −max c(j)U(J )(1 � j � r)
s.t. AU(J ) � b(J ),

U(J ) > 0,

(6.9.3)
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where

c(j)U(J ) =
n∑

l=1

c
(j)
l Ul(1 � j � r);

AU(J ) =
n∑

l=1

ailUl(1 � i � m);

U(J ) = (U1(J ), U2(J ), · · · , Un(J ))T

and Uil(J ) =
∑3M

i=1 Uil(J )
3M

are a vector and a variable with cone index J ,

respectively. b(J ) = (b1(J ), b2(J ), · · · , bm(J ))T and bi(J ) are a constant
vector and a constant with cone index J . And (6.9.3) has a satisfactory solu-
tion depending on cone index J , which is equivalent that (6.9.2) has a fuzzy
satisfactory one.

Proof: Let {x̃il} be a column T -fuzzy variables tallying with (6.9.2), where
x̃il = (xil, ξil

, ξil)(1 � i � m; 1 � l � n). We classify vectors of the column by
subscripts, and might as well let l = 1, 2, · · · , N correspond to smaller fluc-
tuating variables, while the other variables correspond to l = N + 1, · · · , 3N ,
then to i = 1, 2, · · · , M and each l,

Uil = xil +
ξ

il
+ ξil

2
;

to i = M + 1, · · · , 2M and each l,

Uil =
{

xil + ξ
il
, if jl = 0,

xil − ξil, if jl = 1,

to i = 2M + 1, · · · , 3M, and each l,

Uil =
{

xil − ξ
il
, if jl = 0,

xil + ξil, if jl = 1.

Then, under the given cone index J , (6.9.2) is turned into (6.9.3), such
that (6.9.3) can be found out.

Since (6.9.2) is equivalent to (6.9.3), a parameter optimal solution in (6.9.3)
depending on cone index J is equivalent to an optimal T - fuzzy one in (6.9.2).

We conclude the solutions to Model (6.9.2) as follows.
10 To the given T -fuzzy variables x̃l, we partition natural number set

{1, 2, · · · , n} into three parts by subscription.

I: Uil = xil +
ξ

il
+ ξil

2
, i = 1, 2, · · · , M and each l,

II:

Uil =
{

xil − ξ
il
, if jl = 0,

xil + ξil, if jl = 1,

i = M + 1, · · · , 2M and each l.
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III:

Uil =
{

xil + ξil, if jl = 0,

xil − ξ
il
, if jl = 1,

i = 2M + 1, · · · , 3M, and each l.
20 Nonfuzzified x̃l.
We take

Uil = xil +
3N∑
l=1

ξ∗il
3N

,

where ξ∗il be (ξ
il

+
ξil

2
), or ± ξ

il
, or ±ξil.

30 Substitute Uil for x̃l in (6.9.2) and we can get (6.9.3).
40 Determine a satisfactory (or effective) solution to problem (6.9.3) by the

aid of solution to an ordinary multi-objective linear programming and we can
get a fuzzy satisfactory solution to (6.9.2).

There are a lot of methods to finding satisfactory (effective) solutions to
programming (6.9.3). Here, we advance two ways to nonfuzzification (6.9.2):

1) Nonfuzzification before a weighted method
Turn (6.9.2) into a linear programming (6.9.3) with cone index J .
Give weight to r objective functions

fj(U) =
n∑

l=1

c
(j)
l (

3M∑
i=1

Uil(J )
3M

),

we have

f(U) = γ1f1(U) + γ2f2(U) + · · ·+ γrfr(U),

where γj(j = 1, · · · , r) is a factor of weight, satisfying with 0 � γj � 1 and
γ1 + γ2 + · · ·+ γr = 1.

Turn (6.9.3) into a single objective linear programming

max f(U(J ))
s.t. AU(J ) � b(J),

U(J ) � 0.

(6.9.4)

2) By a weighted method before nonfuzzification
Consider (6.9.2), and r fuzzy objective functions to (6.9.2) are weighted:

f(x̃) = γ1f1(x̃) + γ2f2(x̃) + · · ·+ γrfr(x̃),

Programming (6.9.2) is changed into

max f(x̃)

s.t. Ax̃ � b̃,

x̃ � 0.

(6.9.5)

Now nonfuzzify (6.9.5) by the method mentioned, and we can obtain (6.9.4).
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6.9.4 Finding Solution

We have many algorithms, such as genetic and simulated annealing algorithm
(algorithm process is omitted) by which, to single objective linear program-
mings (6.9.4) and (6.9.5), we can finally get a satisfactory solution with prac-
tical value. Now we are searching for a better algorithm since the overall
optimum constraint by a single algorithm code fails to show the result and to
ensure its convergence for the optimum solution.

Assume that there are computer programmings for solution in (6.9.2) or
(6.9.3) in order to discuss theoretically the searching (omitted here), we con-
sider the following example.

Example 6.9.1: Find

max (z̃1, z̃2)
z̃1 = 5x̃1 + x̃2

z̃2 = x̃1 + x̃2

s.t. x̃1 + x̃2 � 6̃,

0̃ � x̃1 � 5̃, x̃2 � 0,

where 5̃ = (5, 0, 0), 6̃ = (6, 00).
We take T -fuzzy variables as follows:

x̃1 : 1. (x1, 1, 0), 2. (x1, 0, 1), 3. (x1, 2, 1).
x̃2 : 4. (x2, 0, 1); 5. (x2, 1, 0); 6. (x2, 2, 2).

Now, divide the data into there groups including No.1,4; No.2,5 and No.3,6.
As for data No.1,4, we get a value by Formula I. For the rest, we use the
formulas corresponding to jp = 1 and jp = 0 in Formula II and III, when odd
numbers and even numbers appear, respectively.

So, we can nonfuzzified x̃1, x̃2

x̃1 : [(x1 + 0.5) + (x1 − 0) + (x1 + 1)]/3 = x1 + 0.5,

x̃2 : [(x2 + 0.5) + (x2 − 0) + (x3 − 2)]/3 = x2 − 0.5,

f(x̃) = γ1z̃1 + γ2z̃2 : f(U(J)) = 6x1 + 5x2 when γ1 = γ2 = 1.

Such that, a linear programming corresponding to (6.9.5) appears as follows:

max z = 6x1 + 5x2

s.t. x1 + x2 � 6,

0 � x1 � 5, x2 � 0.

Its corresponding superior solution is x1 = 5, x2 = 1, z1 = 26, z2 = 9.



6.9 Multi-Objective Linear Programming with T -Fuzzy Variables 191

6.9.5 Conclusion

Therefore, we know that we can turn (6.9.2) into an ordinary multi-objective
parameter linear programming (6.9.3) depending on cone index J . And as
to (6.9.3), we adopt the methods to multi-objective programming, such as
methods by which we change a multi-objective majorized problem into a single
one or series of single ones.
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