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Regression and Self-regression Models with
Fuzzy Variables

In 1989, based on the theory of Zadeh fuzzy sets [Zad65a], self-regression fore-
cast model with T-fuzzy variables was advanced [Cao89b],[Cao89c|,[Cao 90a],
and, again in 1992, a linearizable non-linear regression model with T-fuzzy
variables [Ca095c] was developed. The application appears vastly extensive
because of much wider information in models.

1) Make use of a fuzzy distance, follow the classic regression analytical
method with a beeline( or curve) imitation.

2) Ascertain the regression model with fuzzy variables under a cone and
platform index. Because fuzzy regression analysis is an interval estimation, a
kind of analytical methods become much useful.

This chapter introduces T-fuzzy variables, (-, ¢) fuzzy variables and flat (or
trapezoidal) fuzzy variables into regression models, and builds more practical
kinds of way to the model determination. Meanwhile, their application is
discussed.

3.1 Regression Model with T- Fuzzy Variables

3.1.1 Basic Property

As for definition and property of T-fuzzy number, we can read Ref. [TUAS82].
It is easy to prove that this kind of fuzzy numbers are regular and convex
fuzzy subsets.

Definition 3.1.1. Let Z = (m(x),c1),9 = (m(y),c2). Then the distance on
T(#), T-fuzzy number set (Z is a real number set), is defined as

d(,7)* = D2(Supp(z), Supp(§)) + (m (&) — m(7))?,

where Supp(-) denotes the support interval of () and m(-) denotes its modal
value.
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64 3 Regression and Self-regression Models with Fuzzy Variables

Lemma 3.1.1.

. ~ Uity
d(fi, §;)° = 2d(5;, ©)* + 2d(Z, §;)* — 4d(Z, ) 2.
Proof: From parallelogram rule, we can get:

20y — 2 + 2@ —y;)* =i —2) — (@ —y)* + (i — 2) + (x — ;)]?
= (yi —y;)° + 22 — (i + y;)]>

In addition, if we establish g; = (yi,ni,ni)T,gj = (yj,nj,nj)T,:i = (2,88,

and let
F:yi_ni_(x_f)a szf—f_(yj_nj)a
F=yi+n—(x+¢), G=r+{—(y;+ny)

Because

2AF2+ G +2(F° +G) = (F— G2+ (F— G2+ (F+G)? + (F + G)?
=2(F? + F*) +2(G? + G?) = 2fyi — = — (i — €)]> + 2[s — = + (n; — )2
+ 2z —yj — (€ —my)* + 2 —y; + (€ —ny))”
=2[(yi —m) — (& = O +2[(x — &) — (y; — n)]?
+2[(yi +m) — (+ P +2[(x + &) — (y; +my))?
=[(yi = i) = (5 —n))? + 2z = &) — (yi —mi +y; — )]
Hlwi+m) = (g — )P+ 2@+ — (yi —mi +y5 — )
= (i —y5) = (= m))” + [(vi = 93) + (0 + ;)]
=2[(yi — ) — (i — O + 2[(z —y;) — (€ —my))?
+2[(yi — @) + (0, = OF +2[(x —yy) + (€ —my))?

Yi + Y — M — 0 Yi+yY; —n; — 1,
— 4z —¢) - ) Pod@ro-"0 0 PR

ie.,

Do (Suppyi, Suppy;)* = 2D2(Suppyi, Suppz)*

+2D5(SuppZ, Suppg;)* — 4D2{Suppz, Supp vi yj 2.

Theorem 3.1.1. Let V be a closed cone in P(Z) (subspace of T(#)). Then
for any & in P(Z), there exists the unique T-fuzzy number 3y in V', such that
for all of g in V, we have d(Z,90) < d(Z,7), and a necessary and sufficient
condition where 1y being unique minimizing fuzzy number in V is that T is
yo—orthogonality to V.



3.1 Regression Model with T- Fuzzy Variables 65

Proof: Sufficiency. Because of

d@,9)° =l —y—E-nP+z—y+ €=+ @—-y)?

= [z —yo — (€ =m0)* + [£ —yo + (€ = 0)]* + (= — y0)?
+[yo =y — (mo =)+ o — y + (g — n))?
+ (yo —)* +2[yo — y — (m0 — [z —yo — (£ — )]
+2[yo —y + (o — Mz — yo + (£ = 10)] + 2(y0 — y)(z — yo)

> D(Z,90)* + D(90,9)° + (z — y0)* + (yo — y)*

= d(Z,90)* + d(40,9)°,

again because of d(yo,y)? > 0, hence d(7,9)? > d(Z,9o)? for § # o holds

true.
Necessity. If for some y in V', such that for A € (0, 1), we have

[yo —y — (1m0 —n)][z —yo — (§ —10)]
+[yo —y+ (o — )]z —yo + (£ = 19)] + (Yo — y)(x —yo) = —A.

Suppose d(y, 7o) = 1 and, in order not to lose generality, we consider 7 =
(1 = XN)yo + Ay; it is known in V' from the convex. Then

d(Z,9)% = d(Z,50)* + Ad(7,50)* + AM2(yo —y — (0 — m)(z — yo — (£ — m0))
+2(yo —y + (ng — ) (= —yo + (§ = 19)) + 2(y0 — y) (= — yo)]
=d(Z,90)° — X%,

hence gg is not a minimum element in V. Contradiction.

Therefore, unique, sufficient and necessary condition of yg-orthogonality
can get certificated.

The following proof exists in gy again.

If 7 € V, then existence is proved. If ¢ V', then define § = inf{d(7, )|y €
V'}. Suppose §; to be fuzzy sequence in V, such that d(Z,y;) — . From
equality

~ ~ ~ o~ - . 7. + "
A, 55)? = 200G, B + 2a(E, 55)° — 4d(, " L0,
and because Vi, j, Yty V, but cone V is convex, hence, d(7, v _; yj) >0,

then
d(gi,9;)? < 2d(gi, %) + 2d(Z, y;)* — 407,

and when i, j — oo, d(¥;,7;) — 0, {7} is a Cauchy sequence. Again, because
(T(#),d) is complete, and V is closure, o = limy; in V.

Corollary 3.1.1. Let N be a positive integer. If V is a close cone in
P(#Z)N, the measurement in P(Z)N is represented by dx, which is defined
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N
as dy(%,9)? = . d(Z4,9:)%, where Z;,9; € P(Z)(i = 1,2,--- ,N) are the
i=1
component in N—dimensional fuzzy vector T,5 € P(Z)N, then for arbitrary
T in P(Z)V, the unique vector 1jo ewists in 'V, such that

dn (7, 50)* < dn(&,9)°
is established for all y in V.

3.1.2 Regression Model with T-Fuzzy Variables

Consider

y=0Fo+ prx1+ -+ Buzn + ¢,
we call it a regression model, where E, B,(p = 0,1,--- ,n) are ordinary real
number, x,(p = 1,--- ,n) and y are ordinary real variables.

Definition 3.1.2. If

§ = Boe + f1Z1 + - + BuZn + &, (3.1.1)
Zp(p=1,2,---,n) is the T-fuzzy variable, § is T-fuzzy function variable, e is
n—vector represented by all e = (1,0,0), Bo, 51, , Bn € Z and ¢ is an error.

We call (3.1.1) a regression model with T-fuzzy variables.

The concept about T-fuzzy variable is shown as Section 1.7 in Chapter 1.

Definition 3.1.3. Assume that P(Z) is a subspace consisting of the support
T(Z#) of all non-negative elements. For each (z,¢,£) € P(#) and © — & >
0, P(Z#) is a cone in T(#) and also a closed convex subset of 7 (%) with
respect to the topology induced by d. Here

z—y—(E-—nP+z-—y+ -0+ (x—y)?

d(%, @2 = 3 )
%age P(%)Nviivgi S P(‘%)
Assume that the test of data sets Z1;, T2, - ,Zn; and y; are given by a

linear regression equation

Yi = Bo + P11+ + BnTni, (3.1.2)
Tpi = (mpi,fpi,fpi)(P =0,1,---,n;i = 1,--- | N) a fuzzy independent vari-
able, and §; = (y;,7,,7;) an affine function from P(#)N to T(Z). If again

N

(M) r(Bo, B) =Y _ d(Bo + S1Fri + -+ + Budinis i),

i=1

then B,(p = 0,1,---,n) is determined by applying the least square method,
it is a pity that income 3, are all T*- fuzzy numbers rather than real numbers,
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so that the classical least square method can not be directly applied, there-
fore conversion should be made. For this reason, we induce definitions and
properties first as follows.

Different expressions arise for r(f8o, 5) according as some of the [, are
positive and negative because 8,2z, = (Bpxp, ﬂpfp, Bpé,) if Bp = 0 and Byx), =
(Bpp, Bp€,, ﬁpﬁp) and when 3, < 0. So if negative 3 appears in (M), “mixed”
upper and lower spreads occur in each summand as can easily be seen from
above form. Consequently, in order to derive analogues of the normal equations

it is necessary to specify certain cones in which to seek minimizing solution
to (M). Then we define the following.

Definition 3.1.4. Assume that &; = (Z1;, Z2i, * ,Tni) (1 = 1,2,--- | N). If
partition the set of nature numbers {1, 2, - - -, n} into two exhaustive, mutually
exclusive subsets J(—), J(+), one of which may be empty. To each of such
partition associate a binary multi-index J = (J1, J2, -+ , J,,) defined by j, =

{ L if peJ(-). Denoted by the cone C(J) in T (%)

C(j) = {ﬂ()@"'_ﬂlxl + - +ﬂn1’n‘ﬂp 2 Ovlfjp = O;ﬂp < Oalfjp = 1}7
we call J a cone index, and C(J) is a cone determined by it.

Proposition 3.1.1. For a given cone index J, then the problem of minimizing
in cone (M(J))

N

(M(T)) r(Bo(T), B(T)) = Zd(ﬂo + B1T1i + -+ BuZni, Ui)? (3.1.3)

i=1
has a unique parameter solution Bo(J ), B1(T), -, Bu(T).

Definition 3.1.5. Assume fuzzy data to be Z1;, Toi, - , Tni; Yi, and we call
the system S(J) consisting of n 4+ 1 equations

or(Bo(T),B(T))

aﬂp =0 (pZO,l, ,Tl), (314)

and write it as

M=
2
S
=
=
3
S

N
N 5 ZE1 ) , N i=1 § ; goggg
S(j) i; l’l’b( ) Z; xlz( ) Z; "Eh( )xnz( ) i |
N S N B.()
;.’L‘nz(j) ;xm(j)x”(j) ;x%z(j)
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N
> yi(T)
i=1

N
;xli(j)yi(j)

N
;xm(j)yi(j)

If S(J) has a solution 5o(J), 51(T), - Bn(T), such that 5, > 0 at j, =
0; Bp < 0 at j, = 1, then we call (3.1.3) a J —compatible with the data.

If the unconstraint minimization of S(7) is compatible with Y; = Go& +
B1Z1i + - 4 Bnini in C(J), then the model is called compatibleness.

Theorem 3.1.2. Let the data Ty;,Toi, 4 Tni; Ui, (1 = 1,2,-+- | N) salisfy
both Equation (3.1.2), for all of cone index J, there exists a unique solution

Bo(T) B1(T)s -+ Bn(T) in system (3.1.4).

Proof: Catalogue {Z,;} by subscription.
For i = 1,2,--- ,N,w; = y; and for each p,z, = zp;, for i = N +
ZL’pi - gpi’ lf jp = 0)

o for
ZL’pi +€piv lf ]p = ]-v

L 2N, wi = yi — 1, and for each p, z, = {
Tpi + fpia if jp = 07
Tpi — §m_, if j, = 1.

Then it is not difficult to see that S(J) is the same system as the crisp
normal equations for the least squares fitting model

i=2N+1,--- 3N, w; =y; + 1, and for each p, z,; =

to the data w;, 214, 22i, -+ * 5 Zni-
By using the classical least square method, it is easier for us to find a unique
optimal solution G,(p = 0,1,---,n) in (3.1.5) concerning to a cone index J.

3.1.3 Regression Model with T-Fuzzy Data

We call (3.1.1) regression model with T-fuzzy parameters.
According to the theory above, the modeling steps in Model (3.1.1) can be
concluded as follows:

19 Work out a sequence table by observation data and classify the data by
Definition 3.1.4.

29 Change the observation date Zp; and the dependent variable g; into
nonfuzziness.

Then fuzzy data are changed into ordinary data before (3.1.1) is changed
into a classical linear regression model (3.1.5).
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SOAFr/gm the knowledge of Theorem 3.1.1, the model has a unique solu-
tion Bo, f1,- -+, B in it, replaced in (3.1.5), it can be testified by a classical
determination method.

Calculate rp(p = 1,--- ,n) and s:

N N N
N Z ZpiWi — Z Zpi Z w;
3 i=1 =1

i=1

. . . , (3.1.6)
\/[N > zp— (30 ) ?|IN ZZ wi = (3 wi)?]

i=1 i=1 =1 i=1
N 5 N 5 N N
Zzpi(zzpi) /N_(Zzpiwpi_( 2pi) (D wpi) /N)
g — | =t i=1 i=1 i=1 i=1
(N-2)
(p = 07 1’ 7n)

4% Decision.
If || > ro.05, then a test goes through.
59 A forecast model is obtained as follows,

w’ :Bé — 25+ Bz, W' :ﬁ3+25+3lz.

Example 3.1.1: The needed petroleum is arranged for a western developed
country during 1965 and 1981 as follows.

Table 3.1.1. Needed Arrangement of Petroleum in Developed Country

Years 1965 1967 1969
Demand(Ktoe) (8.05,0.020.03) (8.28,0.02,0.02) (8.5,0.02,0.01)
1971 1973 1975
(8.7,0.01,0.03) (8.94,0.05,0.03)  (9,0,0.01)
1977 1979 1981

(9.04,0.01,0.02) (9.18,0.02,0.03) (9.28,0.03,0.04)

Try to forecast the country’s petroleum demanded in 1998.

From the data in Table 3.1.1, we know that each datum represents a cone
and its figure constructed by its top and a linear distribution, therefore, ap-
plying the method above to it, we obtain the following:

19 Divide the T-fuzzy data annually into two, one is {65,69,73,75,81},
denoting J(—), and the other is {67,71,77,79}, denoting J(+).
20 Nonfuzzify it. Classify the data into three parts:
One is
(8.5,0.02,0.01), (9,0,0.01), (9.28,0.03,0.04),

to which the year corresponding is {69, 75, 81}.
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Another is

(8.28,0.01,0.02), (8.94,0.05, 0.03), (9.18,0.02, 0.03),

to which the year corresponding is {67,73,79};
and the other is

(8.05,0.02,0.03), (8.7,0.01,0.03), (9.04,0.01, 0.02),

to which the year corresponding is {65, 71, 77}.
By the expression of zp;, the needed petroleum in Table 3.1.1 can be turned

into
Table 3.1.2. Needed Petroleum Crisp Value

Years 1965 1967 1969 1971 1973 1975 1977 1979 1981
Demand(ktoe) 8.03 8.27 8.5 873 897 9 9.06 9.16 9.28

3% List Table

Table 3.1.3. Unary Regression Simplify Table

t 0 1 2 3 4 5 6 7 8 > =36

w 8.03 827 85 873 897 9 9.06 9.16 928 > =79

2 0 1 4 9 16 25 36 49 64 S =204

w? 64.48 68.39 72.25 76.21 80.46 81 82.08 83.9 86.1 > = 694.87

tw 0 827 17 26.19 35.88 45 54.36 63.42 74.24 >~ = 324.36
t=>"t/9=4, t?=16, w=)_ w/9 ~ 8.778

and estimate parameter ﬁo, Blz
o Z t,w; — ntw ~ B ~
= ~ 0.1392, By = w — (1t =~ 8.2212.
B 2 - fo=w — P

Substitute them for (3.1.5), then

w = 8.2212 + 0.1392¢.

49 Test
From (3.1.6), we calculate » = 1.652, at 19,05 = 0.666, we have r > 7 5.

Then, a test goes through.

1.426 — 0.1392 x 8.352
Again s = \/ . % ~ 0.194, then

w' = B} +0.1392t = 7.8332 + 0.1392t,
w'” = (2 +0.1392t = 8.6092 + 0.1392t.
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59 Forecast

Wgos = 7.8332 4 0.1392 x 16.5 = 10.13,
Wlgos = 8.6092 + 0.1392 x 16.5 = 10.906.

Such that

1 1 1 1
_ (w1998 T Wiggg 0.382 x Wiggg — Wiggg 0.618
b M b .

nooc
x 1998 5 1998 ) — (10,518, 0.1482, 0.2398),

i.e., the petroleum needed for the country in 1998 is a bit more than
10.518(ktoe), which tallies with practice.

3.2 Self-regression Model with T-Fuzzy Variables
If we modify (3.1.1) for

=fo+BiYic1 4+ BuYion + &1, (3.2.1)

then call (3.2.1) an n-order self-regression model with T-fuzzy variables, where
Bo, B, -+, Bn are awaiting-evaluation parameters, Y; is fuzzy correlated vari-
able, Yi_, = (Yi_,, My Ni—p)(p = 1,---,n) is an independent variable in p
period changed backward, with € being an error.

Theorem 3.2.1. Assume that the data set is }7@_1)“ e ,}7@_”)1 and }N/} is
given by model

Yio =B+ BiYu 1y, + 4 Bu¥imy, (i = 1,--- ,3N),

the system R N
0By

has a unique solution Eo(j),al(j), e ,En(j) for all cone indices.

—0(p=0.-.n)

Proof: Similar to the proof of Theorem 3.1.2, the formula corresponding to
(3.1.5) is

Zt = BO + /ﬂ\th,l + BQZt72 + -+ Bnthna (3.2.2)
then

r(Bo, 3 Zdﬁo+ﬁlz(t e+ BpZi—ny Zel?.

i=1
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The normal equation S(J7) is simplified into a classical form

N ~ N ~ N ~

ZlZu =nfo(J) + Z Z-1),(T) + -+ Z Z(t—n), Bn(T),

N N N

;Z(tlﬁo( )+zz(t1 (j)+--~+:1 (t=1): Z(t—n); Bn (T )

I
.MZ

©
I
—

ZiZ(t—1);5

=
N
i
S
ISSY

(7 >+zzal D)1 (T) + +zz(t ()

ZtZ(tf’rL)i .

I
.MZ

©
I
—

Equations contain a unique solution Bp(p =0,1,--+,n), and this theorem
is certified.

Hereby, the modeling steps in Model (3.2.1) can be concluded as follows.
1° Design a self-dependent sequence table by tested data Yi—p)y, = Ya—p,»
Mis—py,? Tl(t_p)i) and classify the data in the table by means of Definition 3.1.4.

Table 3.2.1. Self-related Sequence Table

1983 sale Sequence Y: move backward
Y: Yi1 Yi 2 e Yip
I (yufpnv71(},@1;77@7@1)
Yi—p,1
I e (Mt—p)zv 7](}7P>2,77(f,71;)2)
Yi—p,2
11 (Ye-2)1 "gt—zn’”u—zn) o W "Et,ma"(t—p)a)
Ye-2), Y-p)s
v (y(tfl)lvn(t71)177]((—1)1) (y(t72)21n(t72)277](£—2)2) (y(t*p)47n(t7p)47n(t—p)4)
/ / !
Y- Y-2), Yt-p)a
I (?Jhﬂ]t] ,ml) (y(t71)277](t71)277](t—1)2) (y(t72)3177@72)37/'](1—2)3)
yél yét—l)g 92172)3
I (Yeas 0 Mey) (Y1551, gy, Me-135) (Y2051, g+ Te-2))
yéz yzist l‘/Et—zn
I (yt;xﬂltaﬂhs) (?J(t—l)‘lﬂ](t_lh,77(#1)4)
Yty Yle—1)s
WV (Yeasm, 5 0y)
Y,
Q—Quarter.

20 Change fuzzy it,p)i and the dependent variable f@ into nonfuzziness
by the proof of Theorem 3.1.2.
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39 Calculate self-dependent coefficients, and let

N N N
N 21 Z(t—p); Z1; — 21 Ziv—py, 2. Zt,
1= 1= 1=1
(3.2.3)

’Yp - N N N N
\/ NS 25y, ~ (X Zen PN X 22— (X 20)7

Calculate quarterly self-related coefficients by moving backwardsi@=1,--- , N),

and, by taking yx = max{y,|p = 1,---,n}, it is proper to determine the

model set up on benchmark time series Z; by moving backwards n quarters.
4° B,(J)(p =0,1,--- ,n) is determined by S(J), planted into (3.2.2). Let

1 N~
e > (Zy, — Zy,)?
i=1
IC =

LS 2z
-+ ;
K& K&

If 0 < IC < 1, then it is an effective forecast, and IC — 0, Zt — Zy,
is a perfect case, while IC' = 1, the forecast is most uncorrect. Therefore,
when IC' is a smaller positive number, the fuzzy self-regression forecast model
determined by 5,(J)(p = 0,1,--- ,n) can be used in an actual forecast.

(Z2 + 72 =1). (3.2.4)

Example 3.2.1: If the candy sale quantity of 1980-1983 in certain place shows
below

Table 3.2.2. Candy Sale of 1980-1983 in Certain Place (10000/unit)

Quarters 1980 1981 1982 1983
I (23,0.1,0) (25,0.1,0.1) (26,0.1,0.2) (27,0.2,0.1)
II  (11,0.6,0.8) (11,0.8,0.5) (12,0.3,1) (13,1.2,0.3)
I (11,0.9,0.4) (12,1,0.5) (14,0.7,0.9) (15,1.1,0.8)
IV (15,0.8,1) (16,0.6,0.3) (18,0.1,0.4) (20,0.4,1)

Try to forecast the candy sale quantity of 1984 Quarter III.

1. Choose a l-order fuzzy self-regression model, and we list table according
to the data in Table 3.2.2.

Note. The ordinary real data under blanks are obtained by taking a main
value of fuzzy numbers in first quarter; at odd numbers, Z;_,, = Y;_p), +
N(t—p), 18 taken; at even numbers, Z; ), = Y p), — M) is taken, on

two diagonals of the former. Let Z_,y, = Y, — N at odd numbers

while Z;_p), = Y4—p), +7(4—p), at even numbers on the two diagonals of the
latter.
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Table 3.2.3. Self-related Sequence Table
Quar-| 1983 sale The sale sequence move backward
s Y: Yios Yios Yios Vi Yies
v (16,0.6,0.3)
15.4
I (26,0.1,0.2) (26,0.1,0.2)
26 26
11 (12,0.3,1) (12,0.3,1) (12,0.3,1)
11.7 11.7 13
111 (14,0.7,0.9) (14,0.7,0.9) (14,0.7,0.9) (14,0.7,0.9)
14.9 14.9 13.3 13.3
v (18,0.1,0.4) (18,0.1,0.4) (18,0.1,0.4) (18,0.1,0.4)
17.9 17.9 18.4 18.4
I (27,0.2,0.1)[(27,0.2,0.1) (27,0.2,0.1) (27,0.2,0.1)
27 27 27 27
I [(13,1.2,0.3)[(13,1.2,0.3) (13,1.2,0.3)
11.8 13.3 13.3
I |(15,1.1,0.8)[(15,1.1,0.8)
13.9 13.9
IV | (20,04,1)
21
Q The sale sequence move backward
Yie Yi 7 Yis Yio Yi—10 Yio11 Yio12
11 (23,0.1,0)
23
111 (11,0.6,0.8) (11,0.6,0.8)
10.4 10.4
v (11,0.9,0.4) (11,0.9,0.4) (11,0.9,0.4)
11.4 11.4 10.1
1 (15,0.8,1) (15,0.8,1) (15,0.8,1) (15,0.8,1)
14.2 14.2 16 16
11 (25,0.8,1) (25,0.8,1) (25,0.8,1) (25,0.8,1)
25 25 25 25
11 (11,0.8,0.5) (11,0.8,0.5) (11,0.8,0.5) (11,0.8,0.5)
10.2 10.2 11.5 11.5
IV| (12,1,05) (12,1,0.5) (12,1,0.5) (12,1,0.5)
12.5 12.5 11 11
I {(16,0.6,0.3) (16,0.6,0.3) (16,0.6,0.3)
15.4 16.3 16.3
1T {(26,0.1,0.2) (26,0.1,0.2)
26 26
11| (12,0.3,1)
13
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2. By means of (3.2.3):

4 4
4% Z(t—p) Lt — 21 Zt—pyi L
i=1 i=

i=1

Tp = A 4 A (p
¢ 43 2y, — (X Zap P Y 22— (X )1

the self-related coefficients calculated are:

R={v1,72, - ,y2} = {—0.378,—0.618, —0.088, —0.990, —0.506,
—0.601, —0.015, —0.980, —0.496, —0.595, —0.274, —0.802},

then 4 = max|R| = 0.990. Therefore, the sequence by moving 4 quarters
backwards as follows

Zy = Bo + B1Zs-a.
Through the normal equations S(J), we can get

4 4 4 4

Z Zt; Z Z(2t—4)1 - Z Z(t-a); Z 2t 21—,
Bo(7)=""" - ~ —0.059,
Z (t 4); (;Z(t74)i)z

4 4
43 21, Z gy, — Z Z—ay, > 2,
, 2 ,

K= """, = =~ —1.0675.
42 25y, — (X Za-a,)?
=1 i=1
Therefore K
Zi; = —0.059 + 1.0675Z; 4. (3.2.5)

3. Testification

Nonfuzzification sale data are Z;, = {27,11.8,13.9,21} in 1983 checked
in Table 3.2.2, replaced into (3.2.5), we obtain Z, = {27.6591,12.3939,
14.1019, 19. 5461} from (3.2.4), then

figen-nr
ﬁézﬁﬁﬁg%

so the forecast is very accurate. Therefore }/}t = Bo(j) + Bl(j)Yg,z; =
—0.059F + 1.0675Y;_4 can be used to forecast the sale in Quarter I, II in
1984, that is

~ 0.022,

Y;_1 = (28.7266,0.2135,0.10675),
Y;_o = (13.7816, 1.281, 0.03203).
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3.3 Regression Model with (-, ¢) Fuzzy Variables

3.3.1 Determination of the Modal with (-,¢) Fuzzy Variables

Consider
§ = Bo& + Bi¥1 + -+ Buln + €, (3.3.1)

where Z,(p = 1,2,---,n) is the (-, ¢) fuzzy variable, § is (-, ¢) fuzzy function
variable; & is n—vector represented by all E = (1,0), 5o, 51, ,0n € Z and
€ is an error.

Definition 3.3.1. We call (3.3.1) a regression model with (-, ¢) fuzzy variables.
If 2= (z,c1) and § = (y, c2), then their metric d on 7 (Z) is defined by

d(,§)? = (x—y—(c1—c2))?+ (x—gzﬂr (e1 =) + (@ —y)*

Certainty path is researched for Model (3.3.1) as follows.

Definition 3.3.2. Suppose that Z = (z,¢) € P(#) for each Z,x > ¢, then
P(Z) is one of the cone T (Z), and is a close convex subset of 7 (%) relevant
with topology induced by distance d.

Suppose test data to be Z1;, Tas, -+ , Tni; Ui, for the Model (3.3.1), B,(p =
1,2,---,n) to be an ordinary real number, Z,; a (-, ¢) fuzzy variable, and 7; a
(-, ¢) affine function from P(Z)N to T(#), where Zpi = (Tpi, cpi), Ji = (Yi, )
(i=1,2,--- ,N;p=1,2,--- ,n).

Let

N
(M) T(ﬁovﬁ) :Zd(ﬁO‘Fﬁljli+"'+ﬁ7Ljni7gi)2'
i=1
Then f; (where 8 = (61,02, ,3n)) determined by applying the least square
method is a (-, ¢) fuzzy number rather than a real number. Similarly to method
of Section 3.1, we induce definitions and properties first as follows.
Definition 3.3.3. Suppose &; = (Z14, Toi, -+ ,Tni) (i = 1,2,--- ,N). If par-
tition the set of nature numbers {1,2,---,n} into two exhaustive, mutually
exclusive subsets J(—), J(4), one of which may be empty set, and then con-
tacts a binary multi-index J = (Jy,Ja, -+, J,,) defined by 7; = {0, if i €
J(+); 1, if i € J(—)} for this division.
Especially, we write
Jo=1(0,0,---,0), J=(1,1,---,1).

Definition 3.3.4. Use

to represent a cone in 7 (%)™ and we call it a determined cone from the cone
index J.



3.3 Regression Model with (-, ¢) Fuzzy Variables 7

Proposition 3.3.1. For a given cone index J, the minimization model

N
r(Bo(J), B(J)) =D d(BoE + rdiri + - + Buni, i) (3.3.2)

i=1

has a unique parameter solution Bo(J),B(J) in cone C(J), where B(J) =
(ﬁl(J)vﬁQ(J)’ e aﬁn(‘]))-

Definition 3.3.5. Suppose fuzzy data to be Z1;, To;, - -+ , Tni; i, and we call
the system S(J) consisting of n + 1 equations

9r(o(J), B(J))
9B,

If S(J) has a solution Gy(J), B1(J), -, Bn(J), such that 3, > 0,when j, =
0; 8, < 0 when j, = 1, then we call (3.3.2) J—compatible with the data.

If the unconstraint minimization of S(J) is J—compatible with data. Then
a model is J—compatible if the formal equations S(J) for unconstrained min-
imization are compatible with 5o& + $1Z1 + - - - + Bn&y lying in C(J).

=0(p=0,1,--- ,n).

Theorem 3.3.1. Let the data sel T1;,Tai, -+ Tni; Giy (1 = 1,2, | N) salisfy
Equation (3.5.2), for all of cone indices J, there exists a unique solution

5O(J)aﬂ1(‘])a e aﬂn(J) in system S(J)

Proof: Catalogue {Z,;} by subscription: ¢ = 1,2,--- , N is one type; i =
N +1,---,3N the other type. Hence, when ¢ = 1,2,--- | N, w; = y; to each
Dy Zpi = Tpi; when ¢ = N + 1,--- 2N, we have w; = y; — ¢,. But when
i=2N+1,---,3N, we have w; = y; + ¢} to each p,

o xp,-—cp,-,ifjp:(),
P Tpi + Cpiy if Gp = 1.

From here we can get a classical regression model with cone index J corre-
sponding to (3.3.1), suitable to data w;, zp;(i = 1,2,--- ,3N). Now, mark it

By using the classical least square method, it is easier for us to find out
a unique optimal solution 5,(p = 0,1,---,n) in (3.3.3) concerning to a cone
index J.

Accordingly, it is of practical value for us to approach Model (3.3.1) by
using a crisp model in (3.3.3).

3.3.3 Obtaining (-, c¢) Fuzzy Data

Data in actuality are most random and fuzzy. The so-called “precision” data
are almost approximation of a true value. By using fuzzy data, we can obvi-
ously get more information in objects. Therefore, it is most important for us
to obtain fuzzy data by usual methods as follows.
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A. Direct obtainment.

Record experiments or the measurement data as fuzzy numbers according
to its character.

B. Fitting.

Fit the collected fuzzy data into a distributing function with the known
fuzzy numbers; the closed one is what we long for.

C. The assignment of information.

D. Structure method and etc.

Below is only the structure of the (-, ¢) fuzzy number to be introduced.
But historical data are fuzzy. Because of variety of reasons, suppose what we
record is a group of real numbers x1,xo, -+, 2, and (-, ¢) fuzzy number can
be constructed by the group of “accurate” number, then take fuzzy time series
analysis. Its steps as follows.

19 Let
M, = max{x;_1, &, Tiq1}, my = min{z, 12, Toq1 )

Suppose that the data are influenced by the front and back data each (or two
each) at ¢t period, then

Mt2mt, att:2,3,~-~,N—1

and
My = max{x1,z2}, my = min{xzq,z2}, at t = 1;
M; = max{zy_1,2n},m: = min{zn_1,2N}, at t = N.
20 Let
1
1— | — o], x € |my, M|,
py.(x) = |7 0t @ € lme, M)
0, x ¢ [mt,Mt].
Here

1 1
ar = 2(Mt+mt)’6t = 2(Mt_mt)’t: 1’27... 7N.

3% §: = (ay, c;) is composition by oy with ¢;, which is a (-, ¢) fuzzy number.

In the steps above, ¢; may be a fixed positive number. In application, as for
free-fixed t value within interval [1, N] according to practical situation, what
we seek after is to choose ¢; value corresponding to t.

According to the method discussed in this section, we can design a series
of systems such as breakdown diagnosis in computer, future forecasting and
recent identification with (-, ¢) fuzzy variables.

3.4 Self-regression with (-, c) Fuzzy Variables

Consider B B o o
Yi=A08 + 1Y 1+ + ApYi e (341)
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and N
U = fe(Gi—1,Ti—2," , Ji—n) + Et, (3.4.2)

where data f’t_p, Ji—p(p =1,--- ,n) and dependent sequence Y, gr are all (-, ¢)

fuzzy data, respectively. Y;, f; is a fuzzy linear function and a fuzzy nonlinear
function to be linearized, respectively, and ¢, is error.

We call (3.4.1) a linear self-regression model with (-, ¢) fuzzy variables and
(3.4.2) a nonlinear self-regression model with (-, ¢) fuzzy variables.

3.4.1 Linear Model

For a linear self-regression model with (-, ¢) fuzzy variables (3.4.1), we discuss
it determinedly.

Definition 3.4.1 Let P(Z#) be a subspace consisting of the support 7 (%)
of all non-negative elements. For each (Y;_p,n:—p) € P(Z),Yi—p — t—p =
0, P(Z) is a cone of T (), which is a closed convex subset corresponding to
topology induced by d. When ﬁ_p = (Yi—p, nt_p),fft = (Ye,mt),

d(ﬁ—zﬂ’i}t)g =

[Yiop = Ye = (m—p — 00))* + [Yeep = Ve + (h—p — ne)]* + (Yimp — V)
3 s

izi;t—p € P(%)Nvi;tmi;t—pi € P(%)v(p: 1a27"' ,Tl;’i = 172a"' aN)

Definition 3.4.2. Let Z_p = (i;t—p,l’ Z—pz, e ,Z_p,N). Then we partition
the set of natural numbers {1,2,-- - ,n} into two exhaustive, mutually exclusive
subsets J(—) and J(+), one of which may be empty. Each partition associates

. . B . _JO, ifpeJ(+),
a binary multi-index J = (Ji, Ja,- -+ , Jp) defined by j, = { 1L ifpe (o)
Especially, Jo = (0,0,---,0),J; = (1,1,---,1).
Denote by C(.J) the cone in T (%),
C(J): {AE + ALY,y + -+ AY,_n|A, > 0,if j, = 0; A, < 0,if j, = 1}
(p: 1723"' ,TL)

is the cone of 7(#)" and it is determined by cone index .J.

Proposition 3.4.1. For a given cone index J, the model of minimizing in the
cone C(J):
N ~ ~ ~
r(Ao(1), A(T)) =D d(Ag + AYm1), + -+ AnYony i Ye)? (34.3)

i=1

has a unique parameter set Ag(J), A1(J), -, An(J).
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Ir(Ao(J), A((]))
=0p=01,---,n

oA, (p )

written S(J). If S(J) has a solution A,, such that A,(J) > 0 at j, = 0; and
Ap(J) < 0 at j, = 1, then Model (3.4.3) is J—compatible with the data.
If the minimization of the unconstrained normal equations S(J) is compat-
ible with Ag& + A1Yie1 + -+ + A, Yion lying in C(J), we call the model
J—compatible.

Definition 3.4.3. Let the system

Theorem 3.4.1. Suppose that the data set f/(tfl)w"' ,ﬁt,n)i and Z 18
giwen by model f@ = Ay + > Apf/(t,p)i(i = 1,2,---,N), then S(J) has
p=1

unique solution Ay(J)(p=0,1,---,n) for all cone indexes.

Proof: Classify the observation data by subscripts and we might as
well let ¢ = 1,2,---, N corresponding to the small fluctuating data, and
the other data corresponding to ¢ = N + 1,--- ,3N. Then Wy, = Y;, to
each p, Z(y_p), = Yy—p), at i = 1,2,---  N; Wy, =Y, —n, to each p, at
i=N+1,--- 2N. But at it = 2N 4+ 1,--- 3N, we have Wy, = Y}, + 1, to
each p,

Z = {Y(t—P)i —&-p)o> i Jp =0,
(t—p)i Y—(t—p)qj + g(t_p)ﬂ if j, = 1.

Hence determining self- regresswn model is turned into determining one

Wi, —A0+A12(t 1+ + A, Z(t—n);-

Let
3N
r(Ag, A) =" d( AO+ZA Zt—p)is Wi,)?,
=1 p=1

Ir(Ao(J), A((J))
04,
unique solution to A,(J)(p =0,1,2,--- ,n) after solving the equations.

and = 0. Then we obtain the formal equations and the

So the modeling steps can be concluded as follows.

Step 1. Work out a self-dependent sequence table by observation data and
classify the data by Definition 3.4.2.

Step 2. Change the observation value ﬁt,p)i and the dependent variable f@
into nonfuzziness by the proof of Theorem 3.4.1.
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Step 3. Calculate

N N N
N Zl Z(4—p): W, — 21 Z(t—p); Zl Wi,
1= 1= 1=

Tp N N N N N
¢ NS 2, — (5 Zoop PN £ WE — (£ We)?)

(p:1’2’...’n)

and take |rx| = max{r,[p=1,2,---,n}, so the best model is determined as

W\t = 2{0 + ZA\PZt—p'

Step 4. Decision
Let

Then the forecast is an efficient one at IC' € (0,1), a perfect one at IC = 0
and an ineflicient one at I1C' = 1.

So Yy, = Ao+ ZA\th_(erq) is determined, and the state at ¢ moment
P

can be estimated as

Vi, € [Yieg —0.382n . Yiiq +0.6187,, ]

t+q’

We are satisfied with the result after forecasting the sale of candies with
Model (3.4.1) in some places in the first half year in 1984. The methods
mentioned above can be developed into complicated ones by computers.

3.4.2 Non-linear Model

In this section, non-fuzzifying problem of (3.4.2) is resolved under cone index
J, making it linearized with transformation.

Proposition 3.4.2. Suppose the model like (3.4.2), for a fix cone index J,
the minimized model in cone C(J)

N

T(BO(J)v E(J)) = Z d(ft(g(tfl)w U ’g(tfp)i)v ﬁ(gtl))z

i=1

has a unique parameter solution EU(J), El(J), e ,Bn(J).
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or(Go(1). B _ 0 On(Gh() B (D)

Definition 3.4.4. Like ~ = 0, the
0By o,

systems are written as S(J) and Sy (J).

Theorem 3.4.2. Suppose data sets Yu—_1y,, ** ,Yu—n),; Yt; are all given by

model Yt = ft(Y—1),> > Y—p),) (@ = 1,2,--- , N), for all cone index J, S(J)

has a unique solution By(J), B1(J), -, Bn(J).

Proof: Prove the following like Definition 3.1 in [Ca0o89b]. When data fluctu-
ate little, we take ¢ = 1,2,--- , N, at this time, wy, = y;,, to each p, z(,_p), =
Y—pys at i =N+1,--- 2N, wy, =y, — ;- But at i =2N +1,--- 3N, we
have wy, = yz, + n¢,, to each p,

Z(t— Vi = {y(tp)z - T](tfp),” lf j:p = 07
o Y(e—p): T Nt—p)i» i Jp=1.

Therefore, a deterministic self-regression model is gained as follows:
wy = fr(ze-1,2t-2," " Zt—n)-
By variable replacement, it is linearized, then
L(we) = L{ft(zt—1, 202, 2t—n)];

ie.,

n
Ur=Po(1)+ > Bi(])zp.
p=1
It is not difficult to get a conclusion by using least square principle for U;.

Proposition 3.4.3. As for fix cone index J, the minimum model in cone
c(J)
N

ri(By(0), B (1)) = > DA[fe(Fu—1ys Uie—p),)s Fe(T,))?

i=1
has a unique parameter solution B{)(J), B{(J), e ,B;L(J)

Theorem 3.4.3. Suppose a datum set yy_1),, s Y(t—n),} Yt; 15 all given
by Model (3.4.2), then to all cone indexes J,S1(J) has a unique solution

Bo(J), B1(T), -+, B ().
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Proof: Similarly to the proof of Theorem 3.4.1, we only notice Sy (J), i.e.,

N N N
N > D; > Dizg—vy, - > Diz—p),
N i=1 Zzl N i=1 /,@I)(J)
2 Dizg-n), ;Diz?t_m © L Dize-nze-n || A
N N N 5 (J)
> Dizi—p), 22 Dizg—1),%(t-p); > Diz?tfp)i
=1 =1 =1
N
> DUy,
%zl
D;z_1), Uy,
I (3.4.4)

N
Z Diz(t—p),,Uti
i=1

Obviously, (3.4.4) has a unique solution 34(.J), 3,(J),- -, B, (J).

It is also verified that, by adopting weight least square method to determine
fuzzy nonlinear self-regression model, the forecasting is more accurate.

The construction of models is induced as follows.

1. By observation data (y(;—p),,¢—p),), We authorize a table in fuzzy self-
related sequence table like Table 3.2.1.

2. Nonfuzzify (3.4.2) (or by variable replacement), and change it into de-
terministic nonlinear model (or linear fuzzy model).

3. By variable replacement (or fuzzfication), and change the corresponding
model into a classical self-regression model

Up = By(J) + ZE;(J)Zt—p
p=1

4. Determine r, by checking the table in critical value of related coefficient.

Suppose
N N N

N Zl Z(t—p) Uts = 22 2(t—p) Zl Ut,
i= =1 1=
rp =

N N N N
IN Y 22— (2 20 ))IIN X UR — (3 U2
i=1 i=1 i=1 i=1
and calculate the self-related coefficient in quarter by moving backwards p(p =
1,2,---,n).
If |rp| > 74, the linear relation is marked between p period backwards and
norm time sequence in building a self-regression model.
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Again take |rx| = max{r,|p=1,2,--- ,n}, and the model is best, which is
built on the norm time series U; backwards to K quarter.
The model is

U8, ) = By + Y Bizip. (34.5)
p=1

5. The parameter in (3.4.5) E{)(J), ﬁi(J), e ,@L(J) is determined by using
the classical least squares method, placed into (3.4.5). This is what we find.

6. Testify.
N o
\/Zl(U"_U )
U? +U? =1).

Let
Z Uz Z Uz,
i= 1}( +

It is an effective forecast at IC' € [0, 1), a prefect forecast at IC' = 0 and an
ineffective forecast at IC = 1.

7. Regeneration.

According to §,(p = 1,2,--- ,n) determine coefficient in (3.4.2) before sup-
posing the best model solved in nonlinear infinite regression problem to be

[/]\/t(géaﬁl) = ft(gt—la e 7gt—n)-
Given

U/tJrq(ﬂév ﬂ/) = ftJrq(gt—(l—&-q)v e vgt—(n+q))a

we can forecast the constant statement at g.

Example 3.4.1: Suppose U; = 5((J) + > E]’,(J)zt_p. Let U, = InU/. Then
p=1

Bo(N)+ 3 By( Dz

B+ 32 BNz

Therefore

is what we find.

If there exist parameters in the formula, the parameters need determining
by an optimization method.

8. Determine the region of forecasting evaluation [Cao89c].

Since U{,, = (U{; 40414 0t+4)7, the forecasting region is

Ufyg € U], —0.3820,, U, +0.6180;,].
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3.5 Nonlinear Regression with T-fuzzy Data to be
Linearized

3.5.1 Introduction

Consider a nonlinear model as follows:

y=f(Z1,Z2, - ,&p) + ¢, (3.5.1)

where fis a fuzzy nonlinear function to be linearized, ¢ is an error, § = (y,n, 1)
and %, = (:cp,fp,fp)(p = 1,2,---,n) denote T-fuzzy correlated variables
and independent variables, respectively. We call (3.5.1) a nonlinear regression
model with T-fuzzy variables. A classical model is regarded as its especial
example.

In this section, non-T-fuzzified problem of (3.5.1) is resolved under cone
index J, making it linearized with transformation. Meanwhile, the theories of
this model are demonstrated in confirmation and linearized, and a method is
advanced to this problem.

3.5.2 Prepare Theorem and Property

Seen in Section 1.7 is a fuzzy number of definition and property relevant to
T-fuzzy number. It is easy to certificate that this T-fuzzy datum & = (z, ¢, €)
is regular and convex fuzzy subset.

Definition 3.5.1.If & = (m(x), L1, R1),y = (m(y), L2, R2), then the distance
definition on the T-fuzzy number set 7 (Z) is

d(%,9)* = D2(Supp(@), Supp(§))? + (m(z) — m(§))?,

where Supp(-) denotes a support of (-), m(-) denotes a main value of (-).
Especially, when = = (z,&,£),9 = (y,n,n), then

(fﬂ—y—(ﬁ—n))2+(fﬂ—y+(f—n))“(w—y)?

d(z,7)? = 5

Lemma 3.5.1. d(§i,7;)% = 2d(§i, #)2 + 2d(%, ;)2 — 4d(z, @ ;yj) )2.

Proof: Similar to Lemma 3.1.1, this lemma can be proved.

Theorem 3.5.1. Let V be a closed cone in P(Z). Then for any T in P(%),
a unique T-fuzzy number ygy exists in 'V, such that d(z,yo) < d(z,y) for ally
in V. A necessary and sufficient condition, where g is the unique minimizing
fuzzy number in V', is that T is §jo— orthogonality to V.

Proof: Similar to Theorem 3.1.1, this theorem is not difficult to prove.
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3.5.3 Two Kinds of Non-T-Fuzzily Approach and Its Equivalence

Based on the above-mentioned theories, by taking Model (3.5.1) for example,
we inquire into a method to the conversion of a non-fuzzy linear model.
I. T-fuzzifying before making variable replacement linearized

Definition 3.5.2. For the given cone index J, the measurement is defined
between the fuzzy data and regression curve as

Q(Fo(T Zd (Tri, Taiy -+ i) U5) % (3.5.2)

Theorem 3.5.2. Suppose that T-fuzzy data T1;,Toi, -+, Tni,Yi are all given
from model y; = f(Z14,Tos, -+ ,Tpi)(i =1,2,--+ ,N) for all of cone index J,
there exists a unique solution 7o(J), 71 (T ), -, T (J) in a normal equations
907 ~
QTN _ g1 m.

orp
Proposition 3.5.1. For a given cone index J, the minimization Model (3.5.2)
has a unique parameter solution set 7o(J),71(T), - ,7n(JT) in cone C(J).

In fact,we can take a list of T-fuzzy samples
(21, 51’ 1) (Y1, LS M) (Tn, £n7 )y (Yn, UM Mn))s

for the smaller sample in fluctuation, let w; = y;, and to each p, z,; = x,,;, at
i=1,2,---,N; to the rest sample, it can be handled as follows.
On the one hand, let w; = y; — n,. To each p,

Tps — gma Zf jp =0,
Zpi = . .
xpi + gpi’ Zf jp - 1a
at i =N +1,N +2,---,2N. On the other hand, let w; = y; +n,. To each p,
P xpi + gpi’ Zf jp - Oa
P xpi - gpi’ Zf ]p = ]-a

at i =2N +1,2N +2,--- |3N.
Therefore (3.5.1) can be changed into a classically expressive type as follows:

wi:f(zli7z2i7"' azni)(i:1a27"' aN)

Through an appropriate linear transformation L, the linear regression model
is then acquired below:

=7o(J) + er (3.5.3)

Thereout, it is easy to obtain a result in Proposition 3.5.1 (or in Theorem
3.5.1)
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Corollary 3.5.1. Under the condition of Theorem 3.5.2, for a given cone
index J, (3.5.3) there exists a group of unique coefficients 7o(J),71(JT),

II. Variables replacement before non-T-fuzzified
Suppose ¥ like (3.5.1), it can be changed into a linear function with T-fuzzy
variables through an appropriate variable replacement:

n
S=T0+ D Ty (3.5.4)
p=1

Theorem 3.5.3. Under the condition of Theorem 3.5.2, for a given cone
index J, (8.5.4) has a unique coefficient 7,(J)(p = 0,1,--- ,n).

Proof: Because the coefficients in (3.5.4) 7,(p = 0,1,--- ,n) are all confirmed
by T-fuzzy data u,,, according to Theorem 3.5.2 and proof in Proposition
3.5.1, the theorem also gets true.

Thereout it is known that, (3.5.4) can be changed into a deterministic linear
model

V=70(T)+ ) 7). (3.5.5)

Theorem 3.5.4. Under the condition of Theorem 3.5.2, in the same fix cone
index J , the determined T-fuzzy data regression Equation (3.5.3) is equivalent
to (8.5.5).

Proof: Because under the same fix cone index J, original T-fuzzy datum
Zp is determined in cone C(J), hence first to (3.5.1), we implement non-
T-fuzzification: N(y); carry out again the linearized: L(W) (N, L mean the
implement of non-T-fuzzication and linearized, respectively) before getting z,.
Or towards (3.5.1) we carry out the linearized first, then non-T-fuzzification
and get z]/g. Acquisition of the independent variable sequence should be equal
accordingly, i.e., z, = z,. Again because, in the above cone C(J), normal
equations corresponding to (3.5.3) and (3.5.5)

0Q(ro(J), (T, -+, 7ulT)) _
o,

and QYT ), T (), Th (T
Gl >,né%>,~-»m< D op=01,,n)

contain a unique parameter solution, respectively, 7,(J) and 7,(J ), and again

according to z, = z,, we have 7,(J) = 7,(J)(p = 0,1,---,n). Hence,
(3.5.3) <= (3.5.5).



88 3 Regression and Self-regression Models with Fuzzy Variables

3.5.4 Weight of Linearized Nonlinear Regression with T-Fuzzy
Variables

T-fuzzy data reflect more objectively observation ones in different positions in
the whole test. In a convex cone, the center value is regarded as main value,
with the value distributed at both sides of left and right. Consider the influ-
ence degree of a data pair y; Ty, T2, -, Tn, it is effective for us to handle a
linear regression problem with T-fuzzy variables by adopting non-T-fuzzifying
[Ca093e]. But it is not necessarily the best to handle a non-linear regression
with T-fuzzy variables by adopting the above two replacements before deter-
mining regression coefficient with a least squares principle. Therefore, we need
fuzzy weight processing for the error item y; — ;. Because, at different points
gi(i = 1,--- ,N), when the similar deviation is transformed to the original
T-Fuzzy variables, the transform makes the direct proportion between par-
~_ 4y
dg)l' It
is known that the model handled by weight is more accurate than the non-
weighted one handled in a practical operation.

A
tial difference rate and fuzzy difference ( Ag)l or fuzzy derivative (
s

Ay

Assume that we write fuzzy difference or fuzzy derivative as D; = ( Ag)i
or D; = ((leg)Z Let
~ Sy o AT o =
Qo7 = Y1, G = BRI, G- FP)
b o N (3.5.6)
=D _IDi(Gi =) = 3 DiGi = (ro + 3_ 1y, )?
i=1 i=1 i=1

Then we discuss the following by using Method IT in 3.5.3 (If based on Method
I, we can get the similar result).

Proposition 3.5.2. For the given cone index J, in cone C(J), then

Ay Ay(z n z
Gli= (e (D= G,

N
Qi) = 3 DV = (o + 3 T ), (3.5.7)
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Proposition 3.5.3. For the given cone index [J, the minimized model in
C(T) (3.5.6) has a unique parameter solution 7o(JT), 71 (T ), -+ ,Tn(T).

Theorem 3.5.5. Let T-fuzzy data Z1;,To;, -+, Tnsi; Yy be all given by model
v = fi(@)(t = 1,2,--- |N), & = (T1,%2, - ,Zn). Then to the given cone
0Q1(7o,7)

o7 = 0 contains a unique solution
7
P

indexr J, a normal equations
ro(J), 11T ), T (T).

Proof: By following the proof of Proposition 3.5.1 and Theorem 3.5.4, (3.5.6)
can be changed into (3.5.7) and the normal equations with respect to (3.5.7)
into

N N N
N Z Dz Z DiZh Z Diznz
Nz:l 17\[1 ]\ijl fO(j)
Z D;z; Z .D7,Z122 Z Diz1i2n; 1 (\7)
=1 i=1 =1 .
N N N ™ (J)
> Dizni > Diznizai -+ y, Diz2;
=1 =1 =1
N
> Divi
%7,1
DZ1V
& (3.5.8)
N :
Z Diznzv;
i=1

ie.,

(DzT2)#(J) = D2TV.
Therefore a unique solution 7 (7 ),71(J), -+, (J) exists in (3.5.8).

Correspondingly, we can get a testifying formula related to the regression
equation [Guj86]

N
N N > DV = V)?
S IDiVi = VP = Y DRV - Vi1 -
i=1 i=1 Z DZZ(Vz _ V)2
i=1
Obviously,
N
> Di(Vi—V)?
p2 _ i=1
RS <1,
> DiVi—V)?

s
Il
—
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ie.,

N ~
DV, -~ V)?
Rl = |7 <1, (3.5.9)

N
>, Di(Vi—V)?
i=1

calling Ra weighted related-coefficient. At |]§| — 1, it represents more linear
related between V' and z. If R > R, (determined by checking related coeffi-

n
cient table), then the linear relation of regression equation V=179 + > 7,7,
p=1
is significant.
The test of significance in regression coefficients is shown as follows.

Let

SNk (3.5.10)

N .
> DF(Vi=Vi)?
i=1

N-K-1

Then negate Hy : 7; = 0 at FU) > F,(1, N — K — 1), where ¢, is p-element
on the main diagonal of matrix (Dz72)~!. If some p exists, such that F() <
Fo(1,N — K — 1), then it shows that z, influences V little, omitted here.

3.5.5 Numeric Example

Example 3.5.1: Suppose that a non-linear fuzzy regression model as follows:

c

g = AO +be = ’
where Ay, b, ¢ are all constants, and then, by its non-T-fuzzification, we have
W = Ao + be™ : .
. . . Rk+1
Besides, z is a geometrical sequence, and suppose A = , then
2k

Wi = Ao +be_zz7Wk+1 :AO_|_[)6721:¢—17

hence W — A
¢ _ 1
Wk+1=Ao+b€72kA=Ao+< kb 0) 2,

which can be turned into
v =Tr9+riu,
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where v = In(Wy41 — Ag), u = In(Wy, — Ag), 70 = i In|b| and ry = —i contain
parameters, which should be evaluated by an optimum seeking method.
Therefore, The modeling steps of (3.5.1) should be concluded as follows:

1) Replacement. (3.5.1) isreplaced variably (or dealing by non-T-fuzzification),
and it is linearized (or changed into deterministic non-linearity type).

2) Change. Non-T-fuzzify (or variable replacement), and the problem is
changed into a linear deterministic model:

V =70(T)+71(T)z1 + -+ (T )z (3.5.11)

3) Determination. Determine 7o(J),71(J), -, (J) by solving (3.5.8),
i.e., it is a regression coefficient of (3.5.11).

4) Calculation. Calculate (3.5.9) and (3.5.10), and testify (3.5.11) by an
ordinary method.

5) Forecast. Coefficient in (3.5.1) is determined by its solution 7,(J)(p =
0,1--,n), and then (3.5.1) can be used to forecast, the choice of ¢ moment
in forecasting region is similar to Ref.[Cao89c|. If y, = (vq, 1, n,), then yo €

[Yg — 0.328nq, yq +0.6187,].

3.5.6 Conclusion

The method can be programmed for operation on computers, thus the model
mentioned here is more accurate, more effective and better practical than the
models which clear and non-weight nonlinear.

3.6 Regression and Self-regression Models with Flat
Fuzzy Variables

3.6.1 Introduction

Because (-, ¢) fuzzy data contain L-R fuzzy variables, T-fuzzy variables and
the flat fuzzy variables (or trapezoid fuzzy variables), we can further more
apply the flat fuzzy variables Z.; = (z;, xji,f*i,f*i), U = (i, ¥ im,,m.) to
the regression and self-regression models in this section.

3.6.2 Determination of the Model with Flat Fuzzy Variables
Definition 3.6.1. Suppose that the models are

§ = BoE + B1Z1 + - + BnZn + € (3.6.1)

and
Ut = BoE + B1Ze—1 + -+ + BpnBr—n + €, (3.6.2)
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where Z,, Z1—p(p = 1,2, ..., n) are flat fuzzy variables, and g, g, are flat fuzzy
function variables. We call (3.6.1) and (3.6.2) a regression model and a self-
regression one with flat fuzzy variables, respectively, E is an n—vector repre-
sented by all £ = (1,1,0,0), and €, &, are errors, and ¢ is time.

Because the variables in (3.6.1) and (3.6.2) are fuzzy, it is impossible to
obtain a meaningful result by a classical least square method. Therefore, de-
termination path is researched to model (3.6.1)(3.6.2) as follows.

Definition 3.6.2. Let = (z7,27,£,€) € P(Z) for each &, 2~ > £, 2T > €.
Then P(Z) is one of the platform 7 (%), and is a convex close subset of 7 (%)
relevant with topology induced by distance d.

Suppose test data to be .1, Fua, - - -, TuN; Ju, Where Tu; = (2, 2, €. &)
(i = 1,2,....,N), 5. = (y;,yj,n*, 7,), and when the model is a regression
model with flat fuzzy variables, “«” is taken to p; when the model is a self-
regression model with flat fuzzy variables, “x” taken to ¢-p. Hence for the model
(3.6.1) and (3.6.2), B;(i = 1,2,...,N) is a ordinary real number, Z,; is a flat
fuzzy variable, 7. is a flat affine function from P(%Z)" to T (%).
Let
N N
T(ﬂOaﬂ) = Zdi(i*iag*)Q = Z[g* - (ﬂO + 1% + ..+ ﬂni'*N)}?
i=1 i=1
Then 3, determined by applying the least square method is a flat fuzzy num-
ber rather than a real number, where 8 = (51, (2, ..., On), so that a classical
least square method can’t be directly applied, and a conversion should be
made. Similarly to method of Section 3.1, we induce definitions and proper-
ties below.

Definition 3.6.3. Assume Z.; = (Tuiy Tuiy- .-, 24i) (0 = 1,2,...,N). If par-

tition the set of nature numbers {1,2,---,n} into two exhaustive, mutu-
ally exclusive subsets T'(—),T(+), one of which may be empty set ¢. Then
to each such partition associate a binary multi-index T =(77,732,...,7,)

defined by 7; = {0,ifi € T'(+);1,if i € T(—)}. Especially, we write 7y =
(0,0,---,0),77 = (1,1,---,1). Use

C(T) ={BoE + 121 + ... + BnZnlBp = 0,if j, = 0; 8, < 0,if j, =1}

to represent a platform in T(%)N, we call it a determined platform from the
platform index T'.

Proposition 3.6.1. For a given platform index T, there exists a unique pa-
rameter solution Bo(T), B1(T), ..., Bn(T) of minimum model

r(Bo(T), B(T)) =3 d(Bo + Brvri + ... + Buni, yi))? (3.6.3)

i=1

in platform C(T), where 5(T) = (51(T), 52(T), ..., Bn(T)).
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Definition 3.6.4. Suppose data to be T.1, T2, ..., Twn; Us, and we call the
system S(T') consisting of n + 1 equation

Or(Bo(T), B(T))
0By

If S(T') has a solution Go(T),51(T),...,Bn(T), such that 3, > 0 at j, =
0; 8, <0 at j, = 1, then we call (3.6.3) T-compatible with the data.

If un-constraints least value of S(T") is compatible with GoE + > 5,%, in
p=1

=0(p=0,1,...,n).

C(T), then this model is called compatibleness.

Theorem 3.6.1. Suppose that flat fuzzy data T1;, Toiy - - ., Tni, Ui satisfy (3.6.1)
and (3.6.2), respectively, then, for all of the platform index T, there exists a
unique solution Bo(T), B1(T),...,Bn(T) in system

Ir(Bo(T), 5(T))

=0(p=0,1,...,n).
a5, (p )

Proof: Suppose that flat fuzzy data are Z,; = (x;,x;,g*i,g*i),g* =

Wy

(y*_,yj,n*,n*), and “«” taken to p, or “x” taken to t-p. Catalogue {Z.;}
by subscription.
Fori=1,2,..., N, take
Yy 0yl 0. 0+,
Wy = + 5
n, + 1. 2

to each x,
ST e e
*T

fori=N+1,...,2N, let w, =y, —n_. To each x,

— +
g*ix*i + g*ix*i .

%i? ]* =0
D B VE 2 ’ ’
*7 —
g*ix*i +£*2x:z .
+€*iv Jx = ]-a

and for i = 2N +1,...,3N, let w, =y —n,. To each *,

S L +&,, de=1

- g*iv .7* = 0)

Zxi =
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3N o .
Under the given platform index T, let z,; = > ;;\Z/_
i=1

regression or self-regression model with flat fuzzy variables into a determined
one with platform index T":

and we can change the

w= o+ P21+ ...+ Bnzn, (3.6.4)

wy = Po+ Brzi—1+ ...+ Bnzi_n. (365)

From here we can get a classical regression and self-regression model with
platform index T' corresponding to (3.6.1) and (3.6.2). By using the classical
least square method, it is easier for us to find out an optimal solution to the
unique Sp(p =0,1,...,n) in (3.6.4) or (3.6.5).

Accordingly, it is of value for us to approach Model (3.6.1) and (3.6.2) by
using crisp models.

3.6.3 Conclusion

According to paper [Cao93e|, the model in this section can be generalized
into a model of nonlinear regression and time series. If we integrate the model
and method here with Data Mining, we can search for an easier acquisition of
fuzzy data in those characteristic problems, which are difficult to be described
by numerical value. At the same time, we can design a series of systems such
as fault diagnosis in computer, future forecasting, resent identification with
(+, ¢) fuzzy data [YL99] and as well.
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