
Chapter 8
Evolutionary Reconstruction of Chaotic Systems

Ivan Zelinka and Ales Raidl

Abstract. This chapter discusses the possibility of using evolutionary algorithms
for the reconstruction of chaotic systems. The main aim is to show that evolutionary
algorithms are capable of the reconstruction of chaotic systems without any partial
knowledge of internal structure, i.e. based only on measured data. Five different
evolutionary algorithms are presented and tested in a total of 13 and 12 versions in
two different versions of experiments. System selected for numerical experiments
here is the well-known logistic equation. For each algorithm and its version, 100
repeated simulations were conducted. According to obtained results it can be stated
that evolutionary reconstruction is an alternative and a promising way as to how to
identify chaotic systems.

8.1 Introduction

Identification of various dynamical systems is vitally important in theory and in
practical applications. A rich set of various methods for dynamical system iden-
tification has been developed. In the case of chaotic dynamics, an example is the
well-known reconstruction of chaotic attractor based on research of [35] who has
shown that, after the transients have died out, one can reconstruct the trajectory on
the attractor from the measurement of a single component. Because, the entire tra-
jectory contains too much information, a series of papers by [12], [8] is introduced
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to show a set of averaged coordinate invariant numbers (generalized dimensions,
entropies, and scaling indices) by which different strange attractors can be distin-
guished. The method presented here is based on evolutionary algorithms (EAs), see
[1], which allows the reconstruction not only of chaotic attractors as a geometri-
cal object, but also their mathematical description. All those techniques belong to
the class of genetic programming techniques; see [17],[18]. Generally, when it is
used on data fitting, these techniques are called symbolic regression (SR). The term
symbolic regression (SR) represents a process, by which measured data is fitted
by a suitable mathematical formula such as x2+C, sin(x)+ 1/ex, etc., Mathemat-
ically, this process is quite well known and can be used when data of an unknown
process is obtained. Historically, SR has been in the preview of manual manipu-
lation, however during the recent past, a large inroad has been made through the
use of computers. Generally, there are two well-known methods, which can be used
for SR by means of computers. The first one is called genetic programming (GP),
[17], [18] and the other is grammatical evolution, [22], [31]. The idea as to how to
solve various problems using SR by means of EA was introduced by John Koza,
who used genetic algorithms (GA) for GP. Genetic programming is basically a sym-
bolic regression, which is done by the use of evolutionary algorithms, instead of a
human brain. The ability to solve very difficult problems is now well established,
and hence, GP today performs so well that it can be applied, for example to syn-
thesize highly sophisticated electronic circuits, [19]. In the last decade of the 20th
century, C. Ryan developed a novel method for SR, called grammatical evolution
(GE). Grammatical evolution can be regarded as an unfolding of GP due to some
common principles, which are the same for both algorithms. One important char-
acteristic of GE is that it can be implemented in any arbitrary computer language
compared with GP, which is usually done (in its canonical form) in LISP. In contrast
to other evolutionary algorithms, GE was used only with a few search strategies, for
example with a binary representation of the populations in [23]. Another interesting
investigation using symbolic regression was carried out by [14] working on Arti-
ficial Immune Systems or/and systems which are not using tree structures like lin-
ear genetic programming (full text is at https://eldorado.uni-dortmund.de/bitstream
/2003/20098/2/Brameierunt.pdf) and another similar algorithm to AP, Multi Expres-
sion Programming (see http://www.mep.cs.ubbcluj.ro/). Simply put, evolutionary
algorithm simulates Darwinian evolution of individuals (solutions of given prob-
lem) on a computer and are used to estimate-optimize numerical values of defined
cost function. Methods of GP are able to synthesize in an evolutionary way com-
plex structures like electronic circuits, mathematical formulas etc. from basic set
of symbolic (nonnumeric) elements. In this chapter, analytic programming (AP) is
applied, see [43], [36], [37], [41], [42] for the identification of selected chaotic sys-
tem. Identification is not done on the “level” of strange attractor reconstruction, but
it produces a symbolic-mathematical description of the identified system. Investi-
gation reported here is a continuation of research done in [43] or extended study
reported in Chapter 11.
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Synthesis, identification and control of complex dynamical systems are usually
extremely complicated. When classics methods are used, some simplification is re-
quired which tends to lead to idealized solutions that are far from reality. In contrast,
the class of methods based on evolutionary principles is successfully used to solve
this kind of problems with a high level of precision. In this chapter an alternative
method of evolutionary algorithms, which has been successfully proven by many
experiments like chaotic systems synthesis, neural network synthesis or electrical
circuit synthesis. This chapter discusses the possibility of using evolutionary algo-
rithms for the identification (reconstruction) of chaotic systems. The main aim of
this work is to show that evolutionary algorithms are capable of reconstruction of
chaotic systems without any partial knowledge of internal structure, i.e. based only
on measured data. Five different evolutionary algorithms are presented and tested
here in a total of 13 and 12 versions. The system selected for numerical experiments
here is the well-known logistic equation for discrete systems and Lorenz attractor
for continuous systems. For each algorithm and its version, 100 repeated simula-
tions were conducted. According to obtained results it can be stated that evolution-
ary reconstruction is an alternative and promising way as to how to identify chaotic
systems.

8.2 Motivation

Motivation of this investigation is quite simple. As mentioned in the introduction,
evolutionary algorithms are capable of hard problem solving. Numerous examples
on evolutionary algorithms can be easily found. Evolutionary algorithms use with
chaotic systems is done for example in [30] where EAs has been used on local
optimization of chaos, [27] for chaos control with use of the multi-objective cost
function or in [28] and [29], where evolutionary algorithms have been studied on
chaotic landscapes. A slightly different approach of evolutionary algorithms is pre-
sented in [43], where selected algorithms were used to synthesize artificial chaotic
systems. In [39], [40], EAs has been successfully used for real-time chaos control
and in [34] and [44] EAs was used for the optimization of Chaos Control. Other
examples of evolutionary algorithms usage can be found in [6] which developed
statistically robust evolutionary algorithms, and on the opposite side [11] used evo-
lutionary algorithms for fuzzy power system stabilizer which has been applied on
single-machine infinite bus system and multi-machine power system. Other research
was done by [20]. Parameters of permanent magnet synchronous motors has been
optimized by particle swarm algorithm and experimentally validated on the servo-
motor. In [5], swarm intelligence has been used for IIR filter synthesis and [26] ap-
plied co-evolutionary particle swarm optimization (CoPSO) approach for the design
of constrained engineering problems, particularly for pressure vessel, compression
spring and welded beam. The main question in the case of this chapter is if EAs are
able to identify chaos in symbolic i.e. mathematical description. All experiments
here were designed to check and either affirm or negate this idea.
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8.3 Chaos System Reconstruction – Classical Methods

8.3.1 Reconstruction Based on Time Series Analysis

Control of chaos, calculation of quantifiers of chaos etc. requires the trajectories of
the dynamic system in the phase space to be examined. This does not pose a serious
problem if the control equations of the system are explicitly given. In actual experi-
mental practice, however, one is often faced with the fact that the time sequence of
one or, more favorably, more than one variable is measured while the equations of
the system are unknown. For instance, only air temperature or air pressure is mea-
sured. Such a time series can be interpreted as a projection of the trajectory into one
of the axes of the phase space. The task is then to reconstruct the trajectory in the
phase space based on the measured time series of the scalar quantity. Under some
assumptions, we are really able to reconstruct substantial properties of the system
dynamics. The process of estimation of the chaos quantifier values thus separates
into two main steps, i.e.:

• reconstruction of the trajectory in the phase space on a chaotic attractor, and
• calculation of the chaos descriptors itself.

Both steps can be subsequently used for additional modeling of the system, such
as nonlinear prediction or reduction of noise in a signal, etc. For those purposes the
so called reconstruction of the trajectory in the phase space is used. This will be,
although a little bit imprecisely, abbreviated to “phase space reconstruction”.

Time delay method is the approach to phase space reconstruction which is most
frequently used. Let us start from a situation where a scalar quantity x(ti), i= 1, ...,N
is measured at uniformly distributed time moments t1,t2 = t1+Δ t, ...,ti = t1+(i−
1)Δ t, ...,tN . In the early 1980s, Pakard, Crutchfield, Farmer and Shaw [24], Takens
[35] and, according to [7], also Ruelle independently proposed constructing an m-
dimensional signal as follows:

X(t1) = [x(t1),x(t1+ τ),x(t1+2τ), ...,x(t1+(m−1)τ)]
X(t2) = [x(t2),x(t2+ τ),x(t2+2τ), ...,x(t2+(m−1)τ)]
...

...
X(ti) = [x(ti),x(ti+ τ),x(ti+2τ), ...,x(ti+(m−1)τ)], i= 1, ...,M

(8.1)

where m is the dimension of immersion, τ is a suitable time delay and M =
N − (m− 1)τ . The quantities m and τ together are called immersion parameters.
Under rather general assumptions, dynamics reconstructed through the system of
eq. (8.1) is equivalent to the system dynamics on the attractor in the initial phase
space. This equivalence is understood as the identity of characteristic invariants be-
tween the initial and reconstructed attractors. As regards to the full formulation of
the immersion theorem, on which the reconstruction eq.(8.1) is based, the interested
reader is referred to the original Takens’ paper [35] or its extension presented by
Sauer, York and Casdagli [33].
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Unknown parameters in eq. (8.1) include time delay τ and immersion dimension
m. For the latter it has been proven [35] that it is sufficient if m ≥ 2D+ 1 and if
the attractor is a smooth compact manifold of dimension D; in this case, D takes
integer values. However, it is typical where an attractor which has no manifold and
has a fractal structure is to be reconstructed. For such situations, Takens’ theorem
was generalized by the above authors - Sauer, York and Casdagli [33]. According
to them, it is sufficient if m > 2dc where dc is the capacity of the attractor. In some
special cases, the condition for the immersion dimension can be made even less
stringent. For the calculation of the correlation dimension d2 it is even sufficient
that m > d2 [32]. As regards to the time delay τ , the immersion theorem does not
put any special requirement on its choice, except for the necessity to exclude cases
with periodic orbits with periods of τ , 2τ ... etc.

It should be noted that the immersion theorem works absolutely precisely with
infinitely long time series. The above requirements for the time delay and for the
immersion dimension apply to such cases. In reality, however, a researcher works
with a finite volume of data involving some error - error of measurement and/or
rounding error introduced by the computer. This should be borne in mind when
determining immersion parameters based on experimental data. In fact, it appears
that an inappropriate choice of the immersion parameters can affect the result of
the reconstruction of the system dynamics substantially and can result in a wrong
interpretation of the results of estimation of the attractor’s characteristic invariants.

The time delay method represented by Scheme (8.1) is not the only way to con-
struct a multidimensional signal from a one-dimensional time series. Immersion
theorems [35], [32] enable us, within trajectory reconstruction in a phase space, to
select from a wide choice of operations including a number of smooth transforma-
tions, both with the initial time series and with the reconstructed states. This allows
a number of techniques to be used, such as principal component analysis, signal dif-
ferentiation and integration, linear combination of time delayed coordinates or their
filtration or utilization of variables simultaneously measured at different sites.

Let us describe the application of differentiated coordinates, which have a sim-
ple physical interpretation. For the Lorenz system [21] the system of 3 differential
equations (8.2) for the 3 variables x,y,z could be replaced by a single differential
equation for a single variable, x, which, however, is a 3rd order quantity. In this
way it is possible to pass from the phase space formed by the coordinates (x,y,z)
to new coordinates, viz. (x, dxdt ,

∂ 2x
∂ t2 ). When working with a scalar time series x(ti),

i= 1, ...,N recorded in equidistant time intervals Δ t, the 1st, 2nd, ... derivatives have
to be estimated numerically, e.g.

dx
dt (t)i ≈ 1

2Δ t [x(ti+Δ t)− x(ti−Δ t)]
d2x
dt2
(t)i ≈ 1

Δ t2 [x(ti+Δ t)+ x(ti−Δ t)− 2x(ti)]
d3x
dt3
(t)i ≈ 1

2Δ t3 [x(ti+2Δ t)−2x(ti+Δ t)+2x(ti−Δ t)− x(ti−2Δ t)]
...

(8.2)
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or, alternatively, higher order formulas have to be used. The coordinates of point
X(ti) in the phase space will then be

X(ti) = [x(t)i,
dx
dt
(t)i,

d2x
dt2

(t)i,
d3x
dt3

(t)i], (8.3)

where m is, as usual, the dimension of the reconstructed phase space satisfying the
condition m > dc.

Fig. 8.1 Reconstruction of the Lorenz attractor by using differentiated coordinates.

Comparing the position of the point in the phase space so constructed with the
reconstruction which was based on the time delay method (eq. (8.1)) and recalling
that time delay τ is an integer multiple of the sampling step Δ t, one can see that the
differentiated coordinates are nothing more than a linear combination of coordinates
obtained from the time delay method.

A different method of constructing the phase space, which obviates some prob-
lems encountered with differentiated coordinates and creates an orthogonal base
of this space, is based on the principal component analysis approach. In the con-
text of dynamic system analysis, this method was first used in the mid-1980s [3],
[9], although its mathematical basis dates back to the early 20th century [10]. Cur-
rently, this method can be encountered under various names. Apart from the prin-
cipal component analysis they include, for instance: decomposition into singular
values, empirical orthogonal function, singular spectrum analysis and the Karhunen
Loeve transformation [10], [15]. The different names given to the method actually
reflect the different methods of covariant matrix estimation from relatively short
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Fig. 8.2 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

Fig. 8.3 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

Fig. 8.4 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

Fig. 8.5 Time development of the first
four coordinates during reconstruction of the
Lorenz system by using differentiated coor-
dinates.

time series. The differences, however, are not appreciable provided that the immer-
sion dimension m is substantially shorter than the length of the time series [15].

8.4 Evolutionary Reconstruction of Chaotic Systems

Another approach entirely different from classical methods (see previous section
or Chapter 7), which is demonstrated in this chapter, is the use of evolutionary al-
gorithms. They are applied on selected examples to demonstrate how evolutionary
algorithms can be applied to the reconstruction of chaotic systems. The first exam-
ple uses data from bifurcation diagram (discrete systems) to synthesize a suitable
solution and the second one is using measured time series to partially reconstruct
the mathematical description of the Lorenz attractor.
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8.4.1 Problem Selection, Used Algorithms and Computer
Technology

Based on previous successful experiments of [43], the well-known logistic equation
(8.4) has been selected for experiments.

xn+1 = Axn(1− xn) (8.4)

The selection has been made because its structure is simple, well studied and
analyzed, however, this does not imply that other systems cannot be used. Main
idea was to reconstruct mathematical description as described in detail in the Chap-
ter 11, so that two bifurcation diagrams (original and synthesized solution) has been
compared. The difference between them (see next section) is calculated like fitness
and “says” of what quality the synthesized system is. For the experiments described
here, stochastic optimization algorithms (see also Chapter 6), such as Differential
Evolution (DE) [25], Self Organizing Migrating Algorithm (SOMA) [38], Genetic
Algorithms (GA) [13], Simulated Annealing (SA) [16], [4] and Evolutionary Strate-
gies (ES) [2] were selected. All experiments have been done on a special server con-
sisting of 16 Apple XServer (2 x 2 GHz Intel Xeon, 1 GB RAM,), each with 4 CPU,
so in total 64 CPUs were available for calculations. It is important to note here, that
such technology was used to save time due to a large number of calculations (1300
simulations), however it must be stated that evolutionary reconstruction described
here, is also solvable on a single PC. For all calculations and data processing, Math-
ematica version 7 was used.

8.4.2 The Cost Function

The cost function 8.5 has been designed so that its minimization should lead to the
reconstruction of a system with the same behavior as the original system.

CV =
400

∑
i=300

300

∑
j=200

∣∣∣dataLi, j −dataidenti, j

∣∣∣ (8.5)

The cost function consists of two sums calculating the difference between two
datasets. The first one, dataLi, j, represents sorted data of the behavior of the logistic

equation and the second one, dataidenti, j , represent sorted data of the behavior of the
identified system. The first sum (i ∈ [300,400]) represents the fact that the synthe-
sized systems has to be identified for the interval of the control parameter A ∈ [3,4]
in which chaos is by eq. (8.4) generated. Parameter A has been changed by step
0.01, so 100 different time series was recorded. For each setting of A, 300 iterations
has been done. Last 100 data-points (from 300 in total) were taken into calculation
from each time series to calculate the final sum (or create bifurcation diagrams)
- this is represented by the second sum ( j ∈ [200,300]). Based on previous facts,
there were generated for each system, 100 × 300 = 30 000 values and for cost value
calculation, 100 × 100 = 10 000 values were used. The minimal value that can be
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achieved by eq. (8.5) is 0, i.e. system with this cost value is probably an exact re-
construction of the original system. For all experiments a threshold has been set,
which has been used for decision making, whether the identified system belongs to
similar or exotic class of systems. System with cost value equal to 0 which were the
exact reconstruction of the original system, with cost value ∈ (0, 1500] are reported
as similar reconstruction and with cost value > 1500 as exotic reconstruction.

8.4.3 Experiment Setup

Four versions of SOMA, six versions of DE, one version of GA, SA and ES have
been applied in order with AP and were used for all simulations in this chapter.
In Table 8.1 - Table 8.6 abbreviations of used algorithms and their setting is de-
scribed. Parameters for the optimizing algorithm were set up in such a way as to
reach approximately the same value of maximal cost function evaluations for all
used versions. Each version of EAs has been applied 100× in order to synthesize

Table 8.1 Algorithms abbreviation

Algorithm Version Abbreviation
SOMA AllToOne S1

AllToOneRandomly S2
AllToAll S3
AllToAllAdaptive S4

Differential Evolution DERand1Bin D1
DERand2Bin D2
DEBest2Bin D3
DELocalToBest D4
DEBest1JIter D5
DERand1DIter D6

Genetic Algorithm G
Evolutionary strategies (μ ,λ ) ES
Simulated annealing SA

Table 8.2 SOMA setting for 4 basic search strategies: S1, S2, S3 and S4

Algorithm S1 S2 S3 S4
PathLength 3 3 3 3
Step 0.11 0.11 0.11 0.11
PRT 0.1 0.1 0.1 0.1
PopSize 200 200 40 40
Migrations 8 8 4 4
MinDiv -0.1 -0.1 -0.1 -0.1
Individual Length 50 50 50 50
Max. CF Evaluations 42984 42984 42120 42120
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Table 8.3 DE setting for 6 basic search strategies: D1, D2, D3, D4, D5 and D6

Algorithm D1 - D6
NP 200
F 0.9
CR 0.3
Generations 200
Individual Length 50
Max. CF Evaluations 40000

Table 8.4 GA setting for canonical version of GA: G

Algorithm G
PopSize 200
Mutation 0.4
Generations 100
Individual Length 50
Max. CF Evaluations 40000

Table 8.5 ES setting for search strategy: ES

Algorithm ES
μ ,λ 200
σ 0.8
Iterations 200
Individual Length 50
Max. CF Evaluations 40000

Table 8.6 SA setting for search strategy: SA

Algorithm SA
No. of particles 200
σ 0.5
kmax 66
Tmin 0.0001
Tmax 1000
α 0.93
Individual Length 50
Max. CF Evaluations 44600

an appropriate structure which can serve as models of the observed chaotic system.
The primary aim here is not to show which version is better or worse, but to show
that the EA can in reality be used for the reconstruction of chaotic systems with-
out knowledge of internal structure or/and auxiliary information. The basic set of
symbolic element (GFS) used for synthesis consist of : A,x,+,−,∗,/.
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Results from all experiments are reported in detail in the following sections. In
totality, it can be stated that during all 1300 simulations (100%), original logistic
equation has been identified on 73 occasions (5.6% from all simulations) and similar
systems that less or more fit the behavior of the logistic equation on 186 occasions
(14.3%). Therefore, in total 259 identified cases (19.92%), as given in Table 8.7.

Table 8.7 Experiment summarization

Note Total value %
Total number of simulations 1300 100
Exact reconstruction 73 5.6
Similar reconstruction 186 14.3
Total number of acceptable reconstruction 259 19.92

8.4.4 Experimental Results

8.4.4.1 Exact Reconstruction

During all simulations, the canonical version of the logistic equation has been syn-
thesized 73× in total, (see Table 8.8). Logistic equation has been identified in 7
various versions which are clearly algebraic variation of its canonical version, i.e.
after simple algebraic manipulations we get eq. 8.4, see eq. (8.6) - (8.10).

Table 8.8 Summarization of canonical version synthesis

Equation No. Synthesized
(8.6) 14×
(8.7) 25×
(8.8) 9×
(8.9) 8×
(8.10) 11×
(8.11) 5×
(8.12) 2×
Total 73×

A(x− x2) (8.6)

x(A−Ax) (8.7)

Ax−Ax2 (8.8)



276 I. Zelinka and A. Raidl

A(1− x)x (8.9)

−x(−A+Ax) (8.10)

x(1− x)A (8.11)

x2(1/x−1)A (8.12)

8.4.5 Reconstruction of Similar Systems

Beside the canonical version of the logistic equation, there has also been synthesized
systems, which less or more fit the behavior of the original system. Selected exam-
ples of very good approximation of eq. (8.4) are for example systems eq. (8.13) and
eq. (8.14), see for example Fig. 8.6. Significantly “worst” approximations are for
example eq. 8.15 and 8.16, see Fig. 8.7. and Fig. 8.8. Corresponding cost values are
given in Table 8.9 and 8.10. Minimal, maximal and average cost values of accepted
similar systems (according to threshold) in this “category” are reported there. Be-
havior of other similar systems is reported in Fig. 8.9 - Fig. 8.16. From the given
figures, it is visible that evolution has found really similar systems and their precise
“evolutionary adjustment” to the logistic equation is probably only a question of
better setting of evolutionary algorithm parameters.

Table 8.9 Similar systems – an overview

Cost Value
Minimum 117.538
Average 1053.92
Maximum 1487.85

x

(
A−Ax+

(1−A)x
A2 (2A− x+Ax)

)
(8.13)

x

(
A−Ax+

x2

A
( 1
A +A+ A

x +Ax(A+ x)
)) (8.14)

A(1− x)x(x+(−A+ x)(A+ x))
−A2 − x

(8.15)

x

(
A− A3x

A+A2+ x
− A2 −2A(A− x)

−A2

x +2x

)
(8.16)
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Fig. 8.6 The best synthesized solution, see eq. (8.13) and eq. (8.14). Red (thin) points repre-
sent the canonical logistic equation; black (thick) points represent the synthesized system.

Fig. 8.7 Another solution, basically the same behavior of eq. (8.4), only shifted along axis x,
see eq. (8.15). Red (thin) points represent the canonical logistic equation; black (thick) points
represent the synthesized system.
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Table 8.10 Cost values of similar systems

Equation No. Cost Value
(8.13) 129.549
(8.14) 136.706
(8.15) 1048.72
(8.16) 993.346

Fig. 8.8 Basically the same case as in Fig. 8.6, see eq. (8.16). Red (thin) points represent the
canonical logistic equation; black (thick) points represent the synthesized system.

Fig. 8.9 Another similar solution. Fig. 8.10 Another similar solution.
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Fig. 8.11 Another similar solution. Fig. 8.12 Another similar solution.

Fig. 8.13 Another similar solution. Fig. 8.14 Another similar solution.

Fig. 8.15 Another similar solution. Fig. 8.16 Another similar solution.

8.4.6 Unfinished Evolution

During all simulations conducted, it been observed, that in many cases evolution
would certainly need longer time to finish successfully the evolutionary reconstruc-
tion, like exact or similar reconstruction. Lets take a look on Fig. 8.17 - 8.24, or/and
on eq. 8.17 - eq. 8.22. On the figures are depicted bifurcation diagrams, which are
very similar to diagrams from logistic equation, they are only shifted along the x
or/and y axes. It is clear that if evolution would run for a longer time, then the bifur-
cation diagrams (or better, the mathematical description in the background), like on
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Fig. 8.17 Unfinished solution, eq. 8.17. Fig. 8.18 Unfinished solution, eq. 8.18.

Fig. 8.19 Unfinished solution, eq. 8.19. Fig. 8.20 Unfinished solution, eq. 8.20.

Fig. 8.21 Unfinished solution, eq. 8.21. Fig. 8.22 Unfinished solution, eq. 8.22.

Fig. 8.23 Unfinished solution. Fig. 8.24 Unfinished solution.
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Fig. 8.17 - 8.24, would be better adapted to the identified one. Based on this, one can
say that the above mentioned “similar” reconstruction are unfinished reconstruction
with possibly very good quality (i.e. with low cost value).

x
(
−x(A− x)+

x
A
+A− x

)
(8.17)

x
(
x− (Ax −A

)
(x−A)

)(
x

(x−A)(−A+x2−4x) + x

)
A

(8.18)

x

(
−x

(
− 2x−Ax
A(A2 −A+ x)

+A− x

)
+A− x

)
(8.19)

A
(
A
x + x

)
A

⎛⎜⎜⎜⎝ A

A−x

⎛⎝ x( x
A+A)

2A+x +A+x

⎞⎠+x
⎞⎟⎟⎟⎠

x2 + x

(8.20)

−
x(A+ 2x)

( x
A−A−x
x
A+A

+ x
)

x
A +

1
A +1

(8.21)

x

((−Ax− x−A
A −A+ x2+ x− 1

)
(A(Ax+ x)+A)

2A2 +A

)
(8.22)

8.4.7 Exotic Solutions

Together with acceptable systems, other systems were also synthesized, which did
not fit the threshold, mentioned in the section Cost function, i.e. its cost value was
> 1500. This category is termed “exotic”, i.e. systems that are very different from
the logistic equation (by behavior and mathematical description), however, there
is still visible a similar structure to the logistic equation. An example can be the
systems given by eq. (8.23) and eq. (8.24), which had been synthesized during all
1300 experiments. For behavior of systems eq. (8.23) see Fig. 8.25, and for eq.
(8.23) see Fig. 8.26. Another selected example is depicted in Fig. 8.27.

A− x+ x2− (A−x)x3(−x+x2)(x+A(2A+A2+x))
A(1− A

x )
A

(8.23)

x

(
2A−A

(
−x− x2

A

)(
−2x+ x

A− 1+2x
x2

))
A

(8.24)
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Fig. 8.25 Example of “exotic” solution, see eq. (8.23)

Fig. 8.26 Another “exotic” solution, see eq.
(8.24).

Fig. 8.27 Bifurcation diagram of Another
“exotic” solution.

8.4.8 Continuous Systems: Preliminary Study

Evolutionary reconstruction of chaotic systems is certainly not restricted only to
discrete systems. Methods of symbolic regression is general enough to be used
also on reconstruction of continuous chaotic systems. To check this idea, the well
known chaotic system has been selected - Lorenz equation, see eq. (8.25). To sim-
plify this experiment for the first time, the third equation ż has been selected to be
synthesized, see eq. (8.25). Basic set of objects used in symbolic regression was
{x(t),y(t),z(t),+,−,×,/}. Total number of simulation has been set to 100 and 5
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algorithms (DE, SOMA, GA, SA, ES) in all 12 versions were used in order to iden-
tify (reconstruct) by synthesis suitable solutions. In many cases the exact form of
eq. ż(t) = (x(t)y(t)− z(t)) has been synthesized, see eq. 8.25. The remaining syn-
thesized forms were of different form, see Table 8.18. Cost function was defined by
eq. (8.26), as the difference between behavior of the original and identified system
been calculated in the interval t ∈ [0, 20] with randomly selected initial conditions.
Cost value has been calculated in the interval t ∈ [5, 20]. Objective was to minimize
this function to 0.

8.4.8.1 Experiment Setup

Four versions of SOMA, six versions of DE, one version of GA, and one of ES have
been applied in order with AP and were used for all simulations. In Table 8.11 - Ta-
ble 8.15 abbreviations of used algorithms and their setting is described. Parameters
for the optimizing algorithm were set up in such a way as to reach approximately the
same value of maximal cost function evaluations for all used versions. Each version
of EAs has been applied 100× in order to synthesize an appropriate structure which
can serve as models of the observed chaotic system.

Table 8.11 Algorithms abbreviation

Algorithm Version Abbreviation
SOMA AllToAllAdaptive S1

AllToAll S2
AllToOne S3
AllToOneRandomly S4

Differential Evolution DERand1Bin D1
DERand2Bin D2
DEBest2Bin D3
DELocalToBest D4
DEBest1JIter D5
DERand1DIter D6

Genetic Algorithm G
Evolutionary strategies (μ + λ ) ES2

Table 8.12 SOMA setting for 4 basic search strategies: S1, S2, S3 and S4

Algorithm S1 S2 S3 S4
PathLength 3 3 3 3
Step 0.11 0.11 0.11 0.11
PRT 0.1 0.1 0.1 0.1
PopSize 100 100 100 100
Migrations 8 8 4 4
MinDiv -0.1 -0.1 -0.1 -0.1
Individual Length 20 20 20 20
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Table 8.13 DE setting for 6 basic search strategies: D1, D2, D3, D4, D5 and D6

Algorithm D1 - D6
NP 100
F 0.9
CR 0.3
Generations 500
Individual Length 20

Table 8.14 GA setting for canonical version of GA: G

Algorithm G
PopSize 100
Mutation 0.4
Generations 500
Individual Length 20

Table 8.15 ES setting for search strategies: ES

Algorithm ES2
μ ,λ 100
σ 0.8
Iterations 500
Individual Length 20

8.4.8.2 Continuous Systems: Results

Results of this case study are depicted in Fig. 8.28 - 8.31 and Tables 8.16 - 8.18.
Tables 8.16 - 8.17 refer to the number of cost function evaluations that has been used
by EAs to obtain suitable solution. It is graphically reported in Fig. 8.28. Fig. 8.29
and 8.30 depicts two selected histograms of 15 in total to show typical performance
of selected algorithms. The last figure 8.31 depict the success of used algorithms,
i.e. how many times each algorithm fails or succeeds.

ẋ(t) =−a(x(t)− y(t))
ẏ(t) = bx(t)− x(t)z(t)− y(t)
ż(t) = identi f ied part by EAs, see Table 8.18

(8.25)

CV =
t=20

∑
t=0

∣∣xt,Lorenz − xt,Sythesized
∣∣+ ∣∣yt,Lorenz− yt,Sythesized

∣∣+ ∣∣zt,Lorenz − zt,Sythesized
∣∣

(8.26)
It is clear that this approach is also usable, i.e. it can be used to synthesize con-

tinuous systems, however more extensive study is needed.
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Table 8.16 Experiment summarization, continuous case, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES2

Cost function evaluations
see Fig. 8.28
Minimum 25 16 14 74 35 11 32
Average 8601 8791 12010 13718 11787 11413 10516
Maximum 50870 39752 98324 57256 44956 50274 39602

Table 8.17 Experiment summarization, continuous case, part 2.

Algorithm G S1 S2 S3 S4

Cost function evaluations
see Fig. 8.28
Minimum 1 9 1048 61 59
Average 6516 11513 63907 12272 13246
Maximum 39043 79014 349478 51672 43202

Table 8.18 Exact / non-exact reconstruction.

Solution No. ż(t) reconstruction Exact Non-exact

1 x(t)y(t)− z(t) 1090 -

2 y(t)
(
x(t)− z(t)

y(t)

)
- 58

3 y(t)
(
x(t)− x(t)

y(t)

)
+x(t)− z(t) - 2

4 y(t)(x(t)+ z(t))−y(t)z(t)− z(t) - 4
5 x(t)(x(t)+y(t))−x(t)2 − z(t) - 3
6 x(t)(y(t)−x(t))+x(t)2 − z(t) - 2

7 −y(t)
(
z(t)
y(t) −x(t)

)
- 5

8 y(t)
(
x(t)− x(t)+z(t)

y(t)

)
+x(t) - 2

9 −y(t)
(
z(t)−x(t)

y(t) −x(t)
)
−x(t) - 1

10 y(t)
(
x(t)
y(t) +x(t)

)
−x(t)− z(t) - 2

11 y(t)(x(t)−y(t))+y(t)2 − z(t) - 1
12 (x(t)−1)y(t)+y(t)− z(t) - 3
13 x(t)(y(t)−1)+x(t)− z(t) - 2
14 −(1−x(t))y(t)+y(t)− z(t) - 1

15 y(t)
(
x(t)− y(t)+z(t)

y(t)

)
+y(t) - 1

16 (1−x(t))y(t)+2x(t)y(t)−y(t)− z(t) - 1
17 (x(t)+1)y(t)−y(t)− z(t) - 3
18 y(t)(x(t)− z(t))+y(t)z(t)− z(t) - 1
19 x(t)(y(t)+ z(t))−x(t)z(t)− z(t) - 1
20 x(t)(y(t)+1)−x(t)− z(t) - 1
21 y(t)(x(t)−y(t)− z(t))+y(t)(y(t)+ z(t))− z(t) - 1

Total 1080 95
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Fig. 8.28 Cost function evaluations. Thick dots are average values for each algorithm, hori-
zontal line is average of all.

Fig. 8.29 Histogram for differential evolu-
tion algorithm, version DEBest2Bin.

Fig. 8.30 Histogram for genetic algorithm.

Fig. 8.31 No. of successful/non-successful reconstruction. Each bar is divided into two parts.
The upper part represent number of non-successful reconstruction, the lower one successful
reconstruction.
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Fig. 8.32 Graph of the first part of
eq. (8.27).

Fig. 8.33 Graph of the second part of
eq. (8.27).

8.5 Conclusion

Based on recorded data and results, it may be stated that the simulations provided
promising results, which shows that EAs are capable of model reconstruction of
chaotic systems. In this chapter, five evolutionary algorithms in 13 (12 for continu-
ous case) versions were used and tested. Exact descriptions of the identified systems
(logistic equation, Lorenz system) as well as its variations have been identified from
the results (see for example eq. (8.13), or Table 8.18). The question is why such
complex equation like eq. (8.13) have similar behavior to eq. (8.4). The answer is
simple. After expansion of eq. (8.13), equation (8.27) is obtained. The first part is
basically the logistic equation (see Fig. 8.32). The remaining part participates on the
final behavior without significant impact (see Fig. 8.33).

Ax−Ax2+
x2

A2 (2A− x−Ax)
− x2

A(2A− x−Ax)
(8.27)

Based on previously mentioned facts and all experimental results, conclusions
and statements can be made for discrete system reconstruction as follows:

• Experiment overview. The cost function (8.5) consist of two sums where the
total number of synthesized data-points was 10 000 from 30 000 (see section
“Cost Function”). Based on the fact that 1300 experiments were conducted, 39
000 000 data-points and 13 000 000 of these points were used for the evalua-
tion of all synthesized systems. The continuous case has similar behavior, see
8.26. This cost function calculates the difference between original behavior of
Lorenz system and the just identified one in the time interval [0,20].

• Number of successful reconstruction. The results were divided into three
categories for discrete system: exact, similar and exotic reconstructions. The
representation is as follows: exact implies that logistic equation has been re-
covered in its canonical version (or its algorithmic variations), similar means
that behavior of the synthesized systems was visually the same (or same and
shifted along x axis) like that of the logistic equation, however with different
mathematical description (see eq. (8.13), (8.14), (8.15) and eq. (8.16)). Exotic
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reconstruction is partially similar to the original one. Based on all data analy-
sis, it can be stated that a) exact form of logistic equation has been synthesized
73 times (see Table 8.8). Number of synthesized similar systems was 186. For
general overview see Table 8.8.

In Table 8.18 results from continuous case are displayed. Exact description
has been identified 1090× (see solution 1), another, say equivalent descrip-
tions 58× (solution 2) etc. It is important to note that the behavior of Lorenz
attractor was identical only in the interval t ∈ [0,20]. Outside this interval be-
havior of synthesized “Lorenz system” has been less or more divergent, which
is of course obvious.

• Used algorithms and experiment settings. All algorithms has been initial-
ized so that a) population size remained the same, b) cost function evaluations
was similar amongst algorithms as much as possible. The first “condition” has
not been followed for algorithms S3 and S4 compared to S1 and S2 (see Table
8.2). It is caused by the different internal algorithm structure for new individ-
uals calculations. Due to this fact, condition b) has been kept with the highest
priority for the chaotic discrete system identification. In the case of the Lorenz
system we were interested mainly whether this idea will work or not.

• Behavior preciseness. It should be noted here that reconstruction has not
been focused on exact behavior reconstruction for each time development of
logistic equation, but on similarity of behavior via data used later for bifur-
cation diagrams, i.e. difference between bifurcation diagrams has been cal-
culated for discrete systems. Despite the fact that some of them were pre-
cisely estimated, it is our duty to say that sometimes, very rarely and only
for special setting of parameter A, trajectories of synthesized systems were
running to infinity. To avoid this “side effect” the above-mentioned cost func-
tion should contain in future a penalization for such kinds of effects. From
Fig. 8.9 - 8.16, it is also visible that a little bit longer time is needed for
better estimation of system description. For some identified systems it has
been observed that while A ∈ [3,4] the behavior is identical or very simi-
lar with that of logistic equation was produced, whereas other values of A
(for example negative) other chaotic behavior were generated, see for exam-
ple −A+(−(1/A)+A/x−2x)x+(A− x)x with A ∈ [0,1]. Concerning to the
identified Lorenz system, as mentioned before, in the time interval t ∈ [0,20]
the difference between original and identified Lorenz was minimal.

• Problem complexity and algorithm performance. Lets take into consider-
ation only discrete system. Based on the fact that individual can consist of
50 symbolic elements, there are 3.04×1064 possible combinations of synthe-
sized structures - systems, including senseless combinations. This is of course
only the theoretical number, because some combinations will be avoided due
to the process of synthesis (only mathematically acceptable functions with
appropriate number of arguments, ... structures are synthesized). However, in
layman’s terms, it can be stated that all 259 synthesized solutions (from 1300
in total) represents 8.51×10−61% of such defined searched space. If we will
follow maximal allowed number of cost function evaluations (see Table 8.2 -
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Table 8.6, 534 808 cost function evaluations, i.e. tested solutions) then evolu-
tion searched maximally 1.74×10−57% of the search space. Lets take a sim-
plified time point of view. When for example MacBook, 2.33 MHz Intel Core
Duo with 3 GB RAM is used, then one cost function evaluation needs (if we
omit time needed for formula synthesis) approx. 0.3659 s. Then to evaluate all
possible combinations by simple enumeration would take approx. 3.52×1056

years. This is 2.35× 1046 longer than the expected lifespan of our universe.
All those numbers clearly shows that EAs are powerful enough to handle such
tasks and obtained results are not simply a matter of randomness.

• Other evolutionary techniques. In this chapter, the so-called analytic pro-
gramming has been used, however we have to say that another and more well
known techniques like genetic programming, see [17], [18] or grammatical
evolution, see [22], should give similar results as reported here.

Conclusions about preliminary and simplified study of reconstruction of Lorenz
system is:

• Number of successful reconstruction. The number of the same reconstructed
form of the ż(t) is reported in the Table 8.18 and is quite large. It shows that
EAs were able to reconstruct ż(t) in its exact form. On the other side, in Table
8.18 it is visible that EAs also has found another similar solutions, which,
in the interval t ∈ [0, 20] has fit the behavior of reconstructed system very
well. Behind this interval, the trajectories of such systems usually runs out of
attractor domain.

• Simplifications. For preliminary study on continuous system, such simplifi-
cation that only ż(t) has to be reconstructed has been used. Based on the per-
formance of used algorithms in this and other chapters, it is logical to expect,
that EAs should be able to identify all three part of Lorenz system. To confirm
such statement, it is however necessary to do more extensive research.

In conclusion, it has to be stated that, a) EAs use on chaos identification is a
promising direction of research; b) to increase the number of successful identifica-
tions (see Table 8.7, Table 8.8) the cost function or/and algorithm settings should be
improved.
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