
Chapter 7
Chaotic Systems Reconstruction

Mohammed Chadli

Abstract. This chapter deals with the multiple model approach based chaotic sys-
tems reconstruction. The approach is based on the design of unknown inputs mul-
tiple observers using Linear Matrix Inequalities (LMI) formulation. The objective
is to estimate state variables of a multiple model subject to unknown inputs affect-
ing both states and outputs of the system. Uncertainties affecting state matrices of
the system are also considered for both continuous-time and discrete-time multiple
models. In order to improve the performances of the observer, poles placement in
an LMI region is also studied. Numerical examples are given to illustrate the ef-
fectiveness the given results. Application dealing with chaotic synchronization and
message decoding are also given by considering chaotic multiple model subject to
hidden message. The proposed approach can be also used in a chaotic cryptosystem
procedure where the plaintext (message) is encrypted using chaotic signals at the
drive system side. The resulting ciphertext is embedded to the output and/or state of
the drive system and is sent via public channel to the response system. The plaintext
is retrieved via the synthesis approach, i.e. the designed unknown input multiple
observer.

7.1 Introduction

In last two decades, many studies concerning stability analysis and design of con-
trollers and observers for a class of systems described by multiple model approach
[20] are carried out. Such representation results from the interpolation of M local
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LTI (linear time invariant) models throughout convex functions. These functions can
be viewed as a weighted sum of local LTI models and quantify the relative contri-
bution of each local model to the global model. The choice of the number of local
models may be intuitively chosen by considering some operating regimes. Each
LTI model can be obtained by using a direct linearization of an a priori nonlinear
model around operating points, or alternatively by using an identification proce-
dure [20, 5]. From a practical point of view, LTI model describes the system’s local
behavior around the ith, i : 1...M regime. This approach includes Takagi-Sugeno
fuzzy models [23] and PLDI representation [4]. Based on the Lyapunov method
and Linear Matrix Inequalities (LMI) formulation, sufficient conditions have been
derived for stability analysis, controllers and observers design (see among others
[7, 15, 16, 26, 24]). Recently, systems subject to unknown inputs are extensively
considered in the literature. Unknown inputs can result either from model uncer-
tainty, faults or due to the presence of unknown external excitation. This problem,
usually referred as the unknown input observer design, has been considered actively
for linear systems [13, 12, 27, 10, 22], for descriptor and nonlinear systems (see
among other [19, 17, 14] and for multiple model approach (see for example [7, 6]
and references therein). Based on unknown inputs observer design, many works
have been carried out on secure communication and chaotic system reconstruction
problem. The increasing need of secure communications leads to the development
of many techniques which make difficult the detecting of transmitted message (see
for example [18, 8, 3, 2, 1]. Indeed, the problem we are faced with consists of
transmitting some coded message with a signal broadcasted by a communication
channel. At the receiver side, the hidden signal is recovered by a decoding system.
In this chapter, our goal is to show how to get chaotic multiple model from chaotic
nonlinear system and how to design the proposed structure of observer for chaotic
system reconstruction.

This chapter is organized as follows. In section 2, a considered unknown inputs
multiple model in continuous-time case and his corresponding observer are given.
Synthesis conditions for the proposed observer are given in LMI terms. Two cases
are considered. The case of output signal not depending on the unknown inputs
and the case when both state and output signal are affected by unknown inputs. To
improve the performances of the proposed observer, the pole assignment in a LMI
region is also studied. Unknown input estimation is given in section 3. Then these
design conditions are extended to unknown inputs discrete-time multiple model in
section 5. To illustrate the given synthesis LMI conditions, numerical examples
and applications dealing with the chaotic system reconstruction for both continuous-
time and discrete-time multiple model are proposed.

Throughout this chapter, Rn and Rn×m denote, respectively, the n dimensional
Euclidean space and the set of all n×m real matrices. Superscript “T” denotes ma-
trix transposition and the notation X > Y where X and Y are symmetric matrices,
means that X −Y is positive definite. ⊗ is the Kronecker product, I is the identity
matrix with compatible dimensions, the symbol (∗) denotes the transpose elements
in the symmetric positions and IM = {1,2, · · · ,M}.
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7.2 Unknown Inputs Multiple Observer Design

Consider a continuous-time multiple model with unknown inputs defined as follows⎧⎪⎨⎪⎩ẋ(t) =
M

∑
i=1

μi(ξ (t))(Âix(t)+Biu(t)+Di+Riū(t))

y(t) =Cx(t)+Fū(t)
(7.1)

with

μi(ξ (t))≥ 0,
M

∑
i=1
μi(ξ (t)) = 1 (7.2)

and
Âi = Ai+ΔAi(t) (7.3)

M being the number of local LTI models, x(t) ∈ Rn the state vector, u(t) ∈ Rm

the input vector, ū(t) ∈ Rq, the unknown input and y ∈ Rp the measured outputs.
Ai ∈Rn×n, Bi ∈Rn×m, Di ∈Rn andC∈Rp×n define the ith local LTI model. Matrices
Ri ∈ Rn×q and F ∈ Rp×q represent the influence of the unknown inputs. We assume
that q < p and, without loss of generality, that

Assumption 1: rank(F) = q and rank(Ri) = q, i.e. F and Ri are full column ranks.

Assumption 2: rank(C) = p, i.e. C is full row rank.

ΔAi(t) are time-varying matrices representing parametric uncertainties. These
uncertainties are admissibly norm-bounded, structured and satisfy: ΔAi=DAiFAiEAi
with DAi and EAi are known real matrices with appropriate dimensions and FAi sat-
isfies F�

Ai
FAi ≤ I, ∀ i ∈ IM. The activation functions μi(.) depend on the so-called

decision vector ξ (t) assumed to depend on measurable variables.
In this section, we are concerned by the reconstruction of state variable x(t) of

multiple model (7.1) subject to unknown inputs, using only the available informa-
tion, that is known input u(t) and measured output y(t).

The following lemma will be used in the rest of the paper.

Lemma 1. [28] : Let H and E be given matrices with appropriate dimensions and F
satisfying F�F ≤ I. Then, we have for any ε > 0,

HFE+E�F�H� ≤ εHH�+
1
ε
E�E. (7.4)

The considered unknown input multiple observer, for the unknown input multiple
model (7.1), has the following structure⎧⎨⎩ ż(t) =

M

∑
i=1
μi (ξ (t))

(
Niz(t)+Gi1u(t)+Gi2+Liy(t)

)
x̂(t) = z(t)−Ey(t)

(7.5)
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The considered observer only uses known variables (u(t) and y(t)) and the same
functions μi(.) as used for the multiple model (7.1). The unknown inputs ū(t) are
considered non available.

In order to estimate the state of the unknown input multiple model (7.1), the
variables Ni ∈ Rn×n, Gi1 ∈ Rn×m, Gi2 ∈ Rn, Li ∈ Rn×p and E ∈ Rn×p must be be
determined such that the state estimation error:

x̃(t) = x(t)− x̂(t) (7.6)

satisfies x̃(t)→ 0 when t → ∞. Multiple model subject to unknown inputs which
affect state and outputs variables of the system are then studied. Poles placement in
LMI region for the designed multiple observer is also considered.

7.2.1 Unknown Inputs Observer Design

This section addresses the case when only states are affected by unknown inputs
ū(t), i.e. the multiple model (7.1) with F = 0:⎧⎪⎨⎪⎩ẋ(t) =

M

∑
i=1
μi(ξ (t))(Âix(t)+Biu(t)+Di+Riū(t)),

y(t) =Cx(t)
(7.7)

The following result gives sufficient LMI conditions guaranteeing the global
asymptotic convergence of the state estimation error (7.6).

Theorem 7.1. The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.7) converges globally asymptotically towards zero,
if there exists matrices X > 0, S and Wi and scalars εi such that the following con-
ditions hold ∀ i ∈ IM:[

A�
i X+XAi+A�

i C
�S�+SCAi−WiC−C�W�

i + εiE�
Ai
EAi (X+SC)DAi

(∗) −εiI
]

< 0

(7.8a)

(X+SC)Ri = 0 (7.8b)

Then multiple observer (7.5) is completely defined by:

E = X−1S (7.9a)

Gi1 = (I+X−1SC)Bi (7.9b)

Gi2 = (I+X−1SC)Di (7.9c)

Ni = (I+X−1SC)Ai−X−1WiC (7.9d)

Li = X−1Wi−NiE (7.9e)
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Proof. From estimation error (7.6), the expression of x̂(t) given by multiple ob-
server (7.5) and x(t) given by (7.7), we get

x̃(t) = (I+EC)x(t)− z(t) (7.10)

The dynamic of state estimation error (7.10), taking account the expressions of
y(t) and z(t) given in (7.7) and (7.5), is given by

˙̃x(t) =
M

∑
i=1
μi (ξ )

(
Nix̃(t)+

(
TÂi−KiC−Ni

)
x(t)+ (TBi−Gi1)u(t)+

(TDi−Gi2)+TRiū(t)
)

(7.11)

with
Ki = NiE+Li, T = I+EC (7.12)

The following change of variables

Wi = XKi (7.13a)

S = XE (7.13b)

with X > 0 and (7.12) lead to the following expression

˙̃x(t) =
M

∑
i=1

μi (ξ )
(
Nix̃(t)+

(
T Âi−KiC−Ni

)
x(t)+

(
(I+X−1SC)Bi−Gi1

)
u(t)+(

(I+X−1SC)Di−Gi2
)
+X−1(X+SC)Riū(t)

)
(7.14)

Taking account (7.8b) and (7.9b-c), we get

˙̃x(t) =
M

∑
i=1

μi (ξ )Nix̃(t) (7.15)

with

Ni = T Âi−KiC (7.16)

Then, the state estimation error (7.15) converges asymptotically to zero if there exist
X > 0 such that ∀ i ∈ IM:

XNi+N�
i X < 0 (7.17)

With the same variable change (7.13), inequalities (7.17) are equivalent to

(X+SC)Âi−WiC+((X+SC)Âi−WiC)� < 0 (7.18)
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By applying Lemma 1, with Âi = Ai+ΔAi and ΔAi = DAiFAiEAi , the constraint
(7.18) is equivalent to the existence of scalars εi > 0 such that

(X+SC)Ai+A�
i (X+SC)�−WiC−C�W�

i + εiE�
AiEAi

+ ε−1
i (X+SC)DAiD

�
Ai(X+SC)� < 0

(7.19)

which is only the Schur complement of (7.8a). This completes the proof. ��
For multiple model (7.7) without uncertainties, i.e. Âi = Ai, the following corollary
gives sufficient LMI conditions for global asymptotic convergence of the state
estimation error (7.6).

Corollary 1: The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.7) with ΔAi = 0 converges globally asymptotically
towards zero, if there exists matrices X > 0, S andWi such that the following condi-
tions hold ∀ i ∈ IM:

(X +SC)Ai+A�
i (X +SC)�−WiC−C�W�

i < 0 (7.20a)

(X +SC)Ri = 0 (7.20b)

Then multiple observer (7.5) is defined by (7.9).

Proof. It suffices to substitute Âi by Ai in (7.18) to get (7.20a). The equalities con-
straints are not modified. ��
It is important to note that equalities (7.8b)/(7.20b), with X > 0 and the change
of variable (7.13), are equivalent to (I+ EC)Ri = 0, that is ECRi = −Ri ∀ i ∈
IM. Lets notice that this condition contains the one for linear systems (Ri = R)
where an solution E exits if and only if the rank constraint rank(CR) = rank(R)
holds (see for example [27, 10]). However, in contrast to linear systems, it is
important to note that the condition on the rank is only a necessary condition
for multiple model. Moreover, inequalities (7.20a) with X > 0 are equivalent to

X
(
(I+ EC)Ai −KiC

)
+
(
(I+ EC)Ai −KiC

)�
X < 0. It is easy to note that these

conditions contain the observability (detectability) conditions of
(
(I+EC)A,C

)
for

linear systems. Then, in order to assist the designer, the following procedure pro-
poses to check two necessary conditions before solving conditions (7.8) or (7.20):

Procedure 1:

i) Check if rank(CRi) = rank(Ri) ∀ i ∈ IM.
ii) Compute for each i ∈ IM, a solution E(i) = −Ri(CRi)+ and check the local

observability of each pair
(
(I+E(i)C)Ai,C

)
. Σ+ denotes any generalized inverse of

matrix Σ with ΣΣ+Σ = Σ [21].

If (i)-(ii) hold, then the designer can solve the sufficient LMI conditions
(7.8)/(7.20) to design multiple observer (7.5).
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7.2.2 LMI Design Conditions

This section considers the general structure of unknown inputs multiple model (7.1),
that is when both the state and the output signal are affected by unknown inputs
ū(t). The following result gives sufficient LMI conditions guaranteeing the global
asymptotic convergence of state estimation error (7.6).

Theorem 7.2. The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.1) converges globally asymptotically towards zero,
if there exists matrices X > 0, S and Wi and scalars εi such that the following con-
ditions hold ∀ i ∈ IM:[

A�
i X+XAi+A�

i C
�S�+SCAi−WiC−C�W�

i + εiE�
Ai
EAi (X+SC)DAi

(∗) −εiI
]

< 0

(7.21a)

(X+SC)Ri =WiF (7.21b)

SF = 0 (7.21c)

Then multiple observer (7.5) is completely defined by (7.9).

Proof. From estimation error (7.6) with the expression of x̂(t) given by observer
(7.5) and multiple model (7.1), we obtain the following expression:

x̃(t) = (I+EC)x(t)− z(t)+EFū(t) (7.22)

The dynamic of state estimation error is then given by

˙̃x(t) =
M

∑
i=1
μi (ξ (t))

(
T
(
Âix(t)+Biu(t)+Riū(t)+Di

)
−Niz(t)−

Gi1u(t)−Gi2 −Liy(t)
)
+EF ˙̄u(t)

(7.23)

where T is defined in (7.12). With the expressions of y(t), z(t) given in (7.1) and
(7.5), we obtain

˙̃x(t) =
M

∑
i=1

μi (ξ )
(
Nix̃(t)+

(
TÂi−KiC−Ni

)
x(t)+ (TBi−Gi1)u(t)+

(TDi−Gi2)+
(
TRi−KiF

)
ū(t)

)
+EF ˙̄u(t) (7.24)

with Ki defined in (7.12). Thus, using the same change of variable (7.13) with (7.9b-
c) and (7.21b-c), we get

˙̃x(t) =
M

∑
i=1
μi (ξ )Nix̃(t) (7.25)

where Ni is defined in (7.16). The rest of the proof is similar to the one of the
theorem 1. This completes the proof. ��
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The following corollary obtained directly from theorem 2, gives sufficient linear
conditions to design a multiple observer for multiple model (7.1) without uncertain-
ties.

Corollary 2: The state estimation error between multiple observer (7.5) and un-
known input multiple model (7.1) with ΔAi = 0 converges globally asymptotically
towards zero, if there exists matrices X > 0, S andWi such that the following condi-
tions hold ∀ i ∈ IM:

(X +SC)Ai+A�
i (X +SC)�−WiC−C�W�

i < 0 (7.26a)

(X +SC)Ri =WiF (7.26b)

SF = 0 (7.26c)

Then multiple observer (7.5) is defined by (7.9).

Remark 1. Classical numerical tools as the LMITOOL [25] may be used to solve
the linear problem (7.8) on variables X > 0, S,Wi and scalars εi.. Examples are given
in section 4 to illustrate the derived stability conditions.

Remark 2. Only uncertainties on matrices Ai are considered. Uncertainties on the
other matrices lead to equalities constraints impossible to satisfy and not considered
in this chapter.

Remark 3. The case of different multiple output matricesCi =C,∀i ∈ IM is not con-
sidered because it leads to non convex constraints not easy to resolve with existing
numerical tools.

7.2.3 Pole Placement

In this part, we investigate how to improve the performances of the proposed ob-
server (7.5) for multiple model (7.1). In order to achieve a desired transient per-
formance, a pole placement should be considered. For many problems, exact pole
assignment may not be necessary; it suffices to locate the pole in a sub-region of
the complex left half plane [9]. This section discusses a pole assignment in LMI
regions S(α,β ).

Theorem 7.3. A matrix A ∈ Rn×n is D-stable if and only if there exists a symmetric
positive definite matrix X > 0 such that

MD(A,D) = α⊗X+β ⊗ (AX)+β�⊗ (AX)� < 0 (7.27)

where α ∈ Rn×n and β ∈ Rn×n.

Since prescribed LMI region (7.27) will be added as supplementary constraint to
these of theorem 1 or theorem 2, it should be noted that it only suffices to locate the
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poles of matrix
M
∑
i=1
μi (ξ (t))Ni in prescribed LMI regions. Indeed, estimation error

(7.25) is D-stable if there exists a matrix X > 0 such that

MD(Ni,D) = α⊗X+β ⊗ (NiX)+β�⊗ (NiX)� < 0 (7.28)

With the same changes of variables (7.13) applied to inequalities (7.28), we obtain
the following result.

Corollary 3: If there exit matrices X > 0, S andWi such that the following conditions
hold ∀ i ∈ IM:

α⊗X+β ⊗ (XÂi+SCÂi−WiC)+β�⊗ (XÂi+SCÂi−WiC)� < 0 (7.29a)

(X+SC)Ri =WiF (7.29b)

SF = 0 (7.29c)

Then, multiple observer (7.5) is globally asymptotically convergent with the per-
formance defined by complex region S(α,β ). The multiple observer gains are as
defined by (7.9).

For example, to ensure a given performance of the state estimation error, we define
region Sr(α,β ) as the intersection between a circle, of center (0,0) and of radius
β , and the left half plane limited by a vertical straight line of x-coordinate equal to
−α < 0. The corresponding LMI formulation of the corollary 3 is given by the
following corollary.

Corollary 4: If there exit matrices X > 0, S, Wi and scalars εi1 and εi2 such that the
following LMI conditions hold ∀ i ∈ IM:

⎡⎣−βX XAi+SCAi−WiC (X+SC)DAi
(∗) −βX+ εi1E�

Ai
EAi 0

(∗) (∗) −εi1I

⎤⎦< 0 (7.30a)

[
A�
i X+XAi+A�

i C
�S�+SCAi−WiC−C�W�

i +2αX + εi2E�
Ai
EAi (X+SC)DAi

(∗) −εi2I

]
< 0

(7.30b)

(X+SC)Ri =WiF (7.30c)

SF = 0 (7.30d)

Then, multiple observer (7.5) is globally asymptotically convergent with the per-
formance defined by complex region Sr(α,β ). The multiple observer gains are as
defined by (7.9).
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Proof. For the defined region Sr(α,β ), constraints (7.29a) are equivalent to[−βX XÂi+SCÂi−WiC
(∗) −βX

]
< 0 (7.31a)

XÂi+SCÂi−WiC+(XÂi+SCÂi−WiC)�+2αX < 0 (7.31b)

Inequalities (7.31a) can be rewritten as follows[−βX XAi+SCAi−WiC
(∗) −βX

]
+
[
(X +SC)DAi

0

]
FAi
[
0 EAi

]
+[

0
E�
Ai

]
F�
Ai

[
D�
Ai
(X +SC)� 0

]
< 0 (7.32)

Applying Lemma 1 to (7.32) and Schur complement to the result, we get LMI
conditions (7.30a). LMI conditions (7.30b) are also obtained from (7.31b) using
lemma 1. This completes the proof. ��
Note that for the certain case, i.e. Âi = Ai, corollary 4 is rewritten as follows[−βX XAi+SCAi−WiC

(∗) −βX
]

< 0 (7.33a)

XAi+SCAi−WiC+(XAi+SCAi−WiC)�+2αX < 0 (7.33b)

(X+SC)Ri =WiF (7.33c)

SF = 0 (7.33d)

7.3 Unknown Inputs Estimation

A lot of works have been considered for the unknown input estimation problem
(see for example [7, 6, 11]). For example in [11], authors are proposed methods for
detecting and reconstructing sensor faults using sliding mode observers whereas in
[6] a method to simultaneously estimate unknown inputs and states for T-S fuzzy
models is proposed.

The method proposed in this chapter is based on the hypothesis of the good esti-
mation of the state variables [7]. Indeed, when the state estimation error is equal to
zero; by replacing x by x̂ in the equation (7.1) we obtain the following approxima-
tion:

ŷ=Cx̂+F ˆ̄u (7.34)

Since the assumption 1 holds, i.e. the matrix F is of full column rank, an estima-
tion of unknown inputs can be carried out in a simpler way by

ˆ̄u= (F�F)−1F�(y− ŷ) (7.35)
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7.4 Simulation Examples

To illustrate the validness of the proposed results, two examples will be proposed.
The first one illustrates the good estimation of both states and unknown input affect-
ing multiple model in different case (without poles placement, with poles placement
and uncertainties). The second one in section 4.2, deals with the chaotic system re-
construction. First by building chaotic multiple model. Then the design of a multi-
ple observer for such chaotic multiple model is given. Simulation shows the good
chaotic system reconstruction with the proposed design.

7.4.1 Academic Example

Now, consider the multiple model (7.1), where both the state and the output signal
are affected by unknown inputs, with M = 2 and the following data:

A1 =

⎡⎣−2 1 1
1 −3 0
2 1 −6

⎤⎦ A2 =

⎡⎣−3 2 2
5 −8 0

0.5 0.5 −4

⎤⎦

B1 =

⎡⎣ 1
−0.5
−0.5

⎤⎦ B2 =

⎡⎣ −0.5
1

−0.25

⎤⎦ F =
[

1
1

]

R1 =

⎡⎣ 1
−1
1

⎤⎦ R2 =

⎡⎣ 1
0.5
−2

⎤⎦ C =
[

1 1 1
1 0 1

]
and the functions ⎧⎪⎪⎨⎪⎪⎩

ξ (t) = y1(t)

μ1(ξ (t)) = 1
2 (1− tanh(ξ (t)))

μ2(ξ (t)) = 1− μ1(ξ (t))

The following subsections are dedicated to design a multiple observer of the form
(7.5), firstly without pole placement in subsection 4.1.1 and then with pole place-
ment in subsection 4.1.2. Uncertainties on state matrices are also studied in sec-
tion 4.1.3.

7.4.1.1 Observer Design without Pole Placement

The resolution of conditions (7.26) lead to the following result:

X=

⎡⎣ 0.1 0 0
0 0.1 0
0 0 0.1

⎤⎦ W1 =

⎡⎣ 0.22 −0.10
0.33 −0.37
0.30 −0.15

⎤⎦ W2 =

⎡⎣ 0.49 −0.40
0.17 −0.15
0.49 −0.72

⎤⎦
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From (7.9), we define completely multiple observer (7.5) as follows:

E=

⎡⎣−0.18 0.18
−0.66 0.66
−0.57 0.57

⎤⎦ L1 =

⎡⎣ 1.04 0.14
0.76 −1.09
−1.55 3.13

⎤⎦ L2 =

⎡⎣ 3.70 −2.8
−1.03 1.19
4.05 −6.34

⎤⎦

G11 =

⎡⎣ 1.09
−0.16
−0.21

⎤⎦ G21 =

⎡⎣−0.68
0.33
−0.82

⎤⎦
With known input u(t) and unknown input ū(t) given in figures 1 − 2 respec-

tively and initial conditions x0 = (1,0.5,0)� and z0 = (−2,2,−3)�, we obtain the
simulation results given in figures 3 − 5. As shown, the dynamic of the estimated
state tends globally asymptotically to the model sate in spite of the presence of un-
known input ū(t). This allows to illustrate the effectiveness of the derived synthesis
conditions.

Fig. 7.1 Known input u(t)
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Fig. 7.2 Unknown input
ū(t)
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Fig. 7.3 State estimation
without pole placement:
x1(t) and x̂1(t)
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Fig. 7.4 State estimation
without pole placement:
x2(t) and x̂2(t)
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Fig. 7.5 State estimation
without pole placement:
x3(t) and x̂3(t)
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Fig. 7.6 State estimation
with pole placement: x1(t)
and x̂1(t)
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7.4.1.2 Observer Design with Pole Placement

In order to improve performances of the above designed observer, the region
Sr(α,β ) defined in (7.33) is used. The considered region is an intersection between
a circle, of center (0,0) and of radius 10, and the left half plane limited by a vertical
line at −2. The resolution of conditions (7.33) corresponding to the region Sr(2,10)
give:

X=

⎡⎣ 4.15 0 −1.75
0 2.97 0

−1.75 0 1.94

⎤⎦ W1 =

⎡⎣ 0.88 1.01
13.41 −13.41
5.94 −3.84

⎤⎦ W2 =

⎡⎣ 3.38 4.53
13.41 −13.41
12.82 −19.41

⎤⎦
From (7.9), the corresponding multiple observer is given by

E =

⎡⎣−0.47 0.47
−1 1

−1.42 1.42

⎤⎦ L1 =

⎡⎣−0.13 1.6
0 0

−7.5 10

⎤⎦ L2 =

⎡⎣ 4.64 −3.88
0 0

8.17 −10.88

⎤⎦

G11 =

⎡⎣ 1.24
0

0.21

⎤⎦ G21 =

⎡⎣−0.97
0

−1.67

⎤⎦
With the same initial conditions, the known and unknown inputs given in figures

1−2, we obtain the simulation result given in figures 6−8. To show clearly the per-
formance improvements of the designed multiple observer, the simulation of state
estimation errors x̃(t) = x(t)− x̂(t) with and without pole assignment are presented
in figures 9−11.
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Fig. 7.7 State estimation
with pole placement: x2(t)
and x̂2(t)
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Fig. 7.8 State estimation
with pole placement: x3(t)
and x̂3(t)
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Fig. 7.9 Estimation errors
with and without (red line)
pole placement:x̃1(t) =
x1(t)− x̂1(t)
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Fig. 7.10 Estimation errors
with and without (red line)
pole placement:x̃2(t) =
x2(t)− x̂2(t)
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Fig. 7.11 Estimation errors
with and without (red line)
pole placement:x̃3(t) =
x3(t)− x̂3(t)
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7.4.1.3 Uncertainties on State Matrices

Now, to show the robustness of the proposed observer, consider the same example
with uncertainties on state matrices as follows

DA1 = DA2 =

⎡⎣ 0.2 0 0
0 0.2 0
0 0 0.2

⎤⎦ , EA1 =

⎡⎣ 0 1 1
1 0 0
2 1 −2

⎤⎦ , EA2 =

⎡⎣−2 2 2
5 −4 0

0.5 0.5 0

⎤⎦
The resolution of conditions (7.30) of corollary 4 corresponding to the same re-

gion Sr(2,10) leads to feasible problem and gives:

X =

⎡⎣ 26.9004 −0.4639 −8.7213
−0.4639 0.4138 0.0776
−8.7213 0.0776 6.9058

⎤⎦ , S=

⎡⎣−6.2098 6.2098
−0.1912 0.1912
−3.8747 3.8747

⎤⎦
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W1 =

⎡⎣ 38.0992 −13.2463
1.4271 −2.0360
9.3190 −7.3374

⎤⎦ , W2 =

⎡⎣ 101.1735 −60.1674
0.1294 −0.6374

16.3630 −40.7944

⎤⎦
ε11 = 0.9609, ε21 = 0.1024, ε12 = 1.2122, ε22 = 0.1808

Then from (7.9), multiple observer (7.5) is defined with the following parameters

E =

⎡⎣−0.7219 0.7219
−0.9972 0.9972
−1.4615 1.4615

⎤⎦ , G11 =

⎡⎣ 1.3609
−0.0014
0.2308

⎤⎦ , G21 =

⎡⎣−1.2219
0.0028
−1.7115

⎤⎦

N1 =

⎡⎣−4.4438 −0.1141 −0.7219
0.0057 −6.1171 0.0028
−1.9230 −0.0381 −8.4615

⎤⎦ , N2 =

⎡⎣−7.2484 −0.0510 1.3609
0.0128 −6.8255 −0.0014
−4.0768 0.0158 −1.2692

⎤⎦

L1 =

⎡⎣−1.0969 2.8188
0.0171 −0.0200
−8.3702 10.8317

⎤⎦ , L2 =

⎡⎣ 4.5317 −3.8926
0.0038 −0.0024
7.3941 −10.1249

⎤⎦
It is important to note that the derived results can tolerate some level of uncer-

tainties on the state matrices of the multiple model. The designed unknown input
observer is proved to be robust against state matrices uncertainties.

7.4.2 Application to Chaotic System Reconstruction

Results developed in section 7.2 can be applied to reconstruct states of chaotic sys-
tem in multiple model representation and also for a secure communication system.
Indeed, the problem we are faced with consists of transmitting some coded mes-
sage with a signal broadcasted by a communication channel. At the receiver side,
the hidden signal is recovered by a decoding system. The increasing need of secure
communications leads to the development of many techniques which make difficult
the detecting of transmitted message (se for example [18, 8, 3, 2, 1]). In this sec-
tion, our goal to show how the designed observer could be used in chaotic system
reconstruction and in a secure communication scheme. For this purpose we use the
nonlinear Lorenz model as chaotic systems represented by his equivalent chaotic
multiple model. Consider the non linear Lorenz equation [1]:⎧⎨⎩

ẋ1(t) =−ax1(t)+ax2(t)
ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t)
ẋ3(t) = x1(t)x2(t)−bx3(t)

(7.36)

Which can be rewritten as follows

ẋ(t) = A(x(t))x(t) (7.37)
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with:

x=

⎡⎣ x1

x2

x3

⎤⎦ , A(x(t)) =

⎡⎣−a a 0
c −1 −x1(t)
0 x1(t) −b

⎤⎦
and a, b, and c are constants. Assume that x1(t) ∈ [−d,d] with d > 0. Then, we
can write x1(t) =−d.μ1(x1(t))+d.μ2(x1(t)) with μ1(x1(t))+μ2(x1(t)) = 1 which
leads to the following multiple model:

ẋ(t) = (μ1(x1(t))A1+ μ2(x1(t))A2)x(t) (7.38)

where

A1 =

⎡⎣−a a 0
c −1 −d
0 d −b

⎤⎦ , A2 =

⎡⎣−a a 0
c −1 d
0 −d −b

⎤⎦
and

μ1(x1(t)) =
1
2

(
1+

x1(t)
d

)
μ2(x1(t)) =

1
2

(
1− x1(t)

d

)
Note that the obtained multiple model exactly represents the nonlinear Lorenz

model under x1(t) ∈ [−d,d].
In the following, we consider the chaotic multiple model (7.38) with a = 10,

b= 8/3, c= 28 and d = 30 in his general form:⎧⎪⎨⎪⎩ ẋ=
2

∑
i=1
μi (y1)

(
Aix+Riū

)
y=Cx+Fū

(7.39)

with:

A1 =

⎡⎣−10 10 0
28 −1 −30
0 30 −8/

3

⎤⎦ A2 =

⎡⎣−10 10 0
28 −1 30
0 −30 −8/

3

⎤⎦

B1 =

⎡⎣ 0
0
0

⎤⎦ B2 =

⎡⎣ 0
0
0

⎤⎦C =
[

1 0 0
0 1 0

]
F =

[
1
1

]

The simulation of multiple model (7.39) without the unknown input ū and with
the initial value x0 = (1 1 1)� shows the chaotic behavior of the example plotted in
the phase plan of the system (see figure 7.12).

The message to be encoded constitutes the so-called unknown input of the mul-
tiple model which plays the role of the encoder. The output of this model is trans-
mitted using a public channel. On the receiving side, an unknown input multiple
observer serves as a decoder in order to re-build the message. Clearly, the choice of
LTI local models, their number, as well as the nature of the function μi(ξ (t))) are
key elements for an external person to be able to decode the embodied crypted mes-
sage from only the signal y(t). The goal of the proposed example is only to show
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Fig. 7.12 Phase plan of
the chaotic multiple model
(7.38)
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the feasibility of the proposed design in chaotic system reconstruction and in secure
communication procedure.

Indeed, the unknown input can represent the hidden message to be transmit-
ted. Thus the transmitted signal y is embedded with the hidden message ū of the
figure 7.14 .

The considered multiple observer for this application is⎧⎪⎨⎪⎩ ż=
2

∑
i=1

μi (y1)
(
Niz+Liy

)
x̂= z−Ey

(7.40)

The resolution of conditions (7.26) with B1 =B2=(0,0,0)� lead to the following
result:

X =

⎡⎣ 1.750 1.650 −0.003
1.650 1.750 −0.003
−0.003 −0.003 0.195

⎤⎦ E =

⎡⎣ −3.05 3.05
3.99 −3.99

−0.004 0.004

⎤⎦
N1 =

⎡⎣ 33.66 47.89 −91.72
−36.18 −45.78 89.96
61.12 −32 −2.79

⎤⎦ L1 =

⎡⎣−16.44 17.44
−14.94 15.94
253.9 −252.9

⎤⎦

N2 =

⎡⎣ 35.06 49.54 91.72
−37.82 −47.14 −89.96
−62.08 31.20 −2.53

⎤⎦ L2 =

⎡⎣ −19.38 17.32
−13.67 17.67
−252.38 253.37

⎤⎦
Figure 7.13 represent the state estimation error with the initial conditions x0 =

(1 1 1)� and x̂0 = (0 0 0)�. It shows the good reconstruction of chaotic system
state. Figure 7.14 displays the hidden transmitted message and its estimate. Ex-
cepted around the time origin, the unknown input (transmitted message) is perfectly
estimated.
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Fig. 7.13 Estimation errors ei = xi− x̂i, i ∈ {1,2,3}
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Fig. 7.14 Hidden message ū and its estimate
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7.5 Extension to Discret-Time Multiple Model

Consider the class of a nonlinear discrete-time system subject to unknown inputs
represented by a discret-time multiple model:

⎧⎪⎨⎪⎩x(t+1) =
M

∑
i=1

μi(ξ (t))(Aix(t)+Biu(t)+Riū(t)+Di)

y(t) =Cx(t)+Fū(t)
(7.41)

where x(t)∈ Rn is the state vector, u(t)∈ Rm the input vector, ū(t)∈ Rq, q< n, con-
tains the unknown inputs and y ∈ Rp the measured outputs. Matrices Ai ∈ Rn×n and
Bi ∈ Rn×m. Matrices Ri ∈ Rn×q and F ∈ Rp×q are assumed to satisfy assumptions 1
and 2. The matrices Di ∈ Rn are introduced to take into account the operating point
of the system and C ∈ Rp×n is the output matrix. Functions μi(ξ (t)) are as defined
in (7.2).

The considered structure of the multiple observer is

⎧⎪⎨⎪⎩z(t+1) =
M

∑
i=1

μi(ξ (t))
(
Niz(t)+Gi1u(t)+Gi2+Liy(t)

x̂(t) = z(t)−Ey(t)
(7.42)

where Ni ∈ Rn×n, Gi1 ∈ Rn×m, Gi2 ∈ Rn, E ∈ Rn×p, Li ∈ Rn×p are the observer gains
to be determined. The considered problem concerns both the reconstruction of state
variable x(t) and unknown input u(t), using only the available signal, that is known
input u(t) and measured output y(t).

The following result gives sufficient conditions for the global asymptotic conver-
gence of the state estimation error (7.6).

Theorem 7.4. The state estimation error between multiple model (7.41) and un-
known input multiple observer (7.42) converges globally asymptotically towards
zero if there exists matrices X > 0, S andWi such that the following conditions hold
∀ i ∈ IM: [

X ∗
XAi+SCAi−WiC X

]
> 0 (7.43a)

(X+SC)Ri =WiF (7.43b)

SF = 0 (7.43c)

Multiple observer (7.42) is then completely defined by (7.9).

Proof. The prrof is obvious by using the same arguments used for proving theorem 1
and theorem 2. ��
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7.5.1 Pole Assignment

To improve performances of the multiple observer for better estimation of system
state, dynamics of the multiple observer are constrained to be faster than that of the
multiple model. As stated in section 2.3, it is possible to assign the poles to a specific
sub-region is the complex plane [9]. For example if the prescribed region Sr(σ ,r) is
a disk centered at (σ ,0) and radius r, the LMI formulation of the previous problem
is expressed by the following corollary.

Corollary 5: If there exist matrices X , S and Wi such that the following conditions
hold ∀ i ∈ IM: [

rX ∗
X(Ai−σI)+SC(Ai−σI)−WiC rX

]
> 0 (7.44a)

(X+SC)Ri =WiF (7.44b)

SF = 0 (7.44c)

then the multiple observer (7.42) is globally asymptotically convergent with the
performance defined by the complex region S(σ ,r). The observer parameters are as
defined by (7.9).

Remark 4. Note that the LMI constraints (7.44) can be obtained from (7.43) by
simply replacing the matrices Ai by (Ai −σI)/r. Moreover if we are interested by
the region S0(0,α) it suffices to chose σ = 0 and r = α .

Note that the LMI conditions (7.44) can be extended to incertain case, i.e. Âi =
Ai+ΔAi(t), as follows

Corollary 6: If there exit matrices X > 0, S, Wi and scalars εi1 and εi2 such that the
following LMI conditions hold ∀ i ∈ IM:⎡⎣rX −XAi−SCAi+WiC −(X+SC)DAi

(∗) rX − εi1E�
Ai
EAi 0

(∗) (∗) εi1I

⎤⎦> 0 (7.45a)

(X+SC)Ri =WiF (7.45b)

SF = 0 (7.45c)

Then, multiple observer (7.42) is globally asymptotically convergent with the
performance defined by complex region Sr(σ ,r). The multiple observer gains are as
defined by (7.9).

Summarizing the estimation procedure, the design of multiple observer and the es-
timation of unknown inputs can be implemented as follows:
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Procedure 2:
i) Solve the linear constraints (7.43) (or (7.45) for pole placement with uncertain-

ties) with numerical tools such as the LMITOOL software [25],
ii) Deduce the observer parametersNi, Gi1, Gi2, Li and E of the multiple observer

(7.42) using the equations (7.9).
iii) Under the assumption 1, estimate unknown input estimation using equation

(7.35).

7.6 Application to Chaotic System Reconstruction

In this section, the proposed multiple observer is used to reconstruct states of chaotic
systems and can be exploited in secure communication scheme. The message to be
encoded is the unknown input of the chaotic multiple model.

Consider a chaotic discrete-time multiple model that results from the interpola-
tion of two local models:⎧⎪⎨⎪⎩ x(t+1) =

2

∑
i=1

μi(ξ (t))
(
Aix(t)+Riū(t)

)
y(t) =Cx(t)+Fū(t)

(7.46)

The functions μi(.) depend on the multiple model output, ξ (t) = y(t), and ex-
pressed by ⎧⎪⎪⎨⎪⎪⎩

ξ (t) = y(t)

μ1(ξ (t)) = 1
2 (1− tanh(ξ (t)))

μ2(ξ (t)) = 1− μ1(ξ (t))

(7.47)

The numerical values of matrices are as follows:

A1 =
[−1.1 0.5

0.3 0.7

]
, A2 =

[
0.8 −0.1
1 1.1

]
, C =

[
0.5 0.5

]
, F = 5

From the structure of multiple model (7.46), we can deduce the following values:

S = 0, E = 0, Gi1 = 0, Gi2 = 0

For this example, since the encoding system (7.46) can be conceived at the same
time as the decoding system (observer), the computation matrices Ri is then free.
Thus, LMI (7.43a) can be solved without taking into account equalities (7.43b-c).
The resolution of LMI (7.43a) gives

X =
[

1.6718 −2.0563
−2.0563 7.7169

]
W1 =

[−3.9158
9.0362

]
W2 =

[−2.3610
13.5810

]
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Fig. 7.15 Phase plan of the
system
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Using equations (7.9d-e), we obtain

L1 =
[−1.3418

0.8134

]
L2 =

[
1.1192
2.0581

]
N1 =

[−0.4291 1.1709
−0.1067 0.2933

]
N2 =

[
0.2404 −0.6596
−0.0291 0.0709

]
from (7.46b) with Wi and X , we compute the values of R1 and R2 as follows

R1 =
[−6.7090

4.0671

]
, R2 =

[
5.5959

10.2906

]
The designed unknown multiple observer can be applied in chaotic system recon-

struction and also in a secure communication procedure. In this context, the problem
consists of transmitting a resulting ciphertext embedded to the output by a commu-
nication channel. At the receiver side, the hidden signal (plaintext) is retrieved via
the synthesis approach, i.e. the designed unknown input multiple. Concerning the
transmission of a crypted message on a public channel of communication, one can
wonder about the possibility of detecting and retrieving the message from the trans-
mitted signal. In literature, some answers are given and one of them is satisfied here
with a simple ”visual appreciation” (see for example [18, 8, 2]). So, figure 7.15,
plotted in the phase plan of the system, does not show any particular behavior of
periodic type or with commutation. Obviously, these observations can not establish
security on the inviolability of the transmitted signal. For simulation example, con-
sider the message to be transmitted given by figure 7.16 and the resulting output
(the encoded message) of the chaotic multiple model in figure 7.17. Figures 7.18
and 7.19 show the state variable of the chaotic system and its estimation which
are perfectly superposed. Finally, figure 7.20 presents the estimated unknown input
(message estimate) where the message is perfectly estimated except around the time
origin.
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Fig. 7.16 Message ū(t)
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Fig. 7.17 Output y(t)
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Fig. 7.18 x1(t) of chaotic
multiple model and its esti-
mate

0 50 100 150 200
−25

−20

−15

−10

−5

0

5

10



262 M. Chadli

Fig. 7.19 x2(t) of chaotic
multiple model and its esti-
mate
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Fig. 7.20 Estimated mes-
sage ˆ̄u(t)
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7.7 Conclusion

In this chapter we have shown how to use multiple model approach, multiple ob-
server and LMI formulation for chaotic system reconstruction. Indeed, an ap-
proach to design an observer for multiple models with unknown inputs affecting
both the state and the output of the system is proposed. Uncertainties on state ma-
trices are also considered. Sufficient conditions to design the proposed structure of
observer are given in LMI terms under linear equality constraints. To improve
the performances of the proposed unknown inputs multiple observer, poles assign-
ment in LMI regions is also addressed for continuous-time and discrete-time. It
is shown that this approach can be used in chaotic communications in the sense of
signal masking and encryption. Moreover, the hidden message may be embedded
in the state/output of the drive (chaotic) system which enhances the design flexibil-
ity. The designed unknown inputs multiple observer is shown to be satisfactory for
message (unknown input) estimation and for chaotic system reconstruction.
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