
Chapter 2
Evolutionary Algorithms for Chaos Researchers

Ivan Zelinka and Hendrik Richter

Abstract. Evolutionary algorithms are search methods that can be used for solv-
ing optimization problems. They mimic working principles from natural evolution
by employing a population–based approach, labeling each individual of the popula-
tion with a fitness and including elements of random, albeit the random is directed
through a selection process. In this chapter, we review the basic principles of evo-
lutionary algorithms and discuss their purpose, structure and behavior. In doing so,
it is particularly shown how the fundamental understanding of natural evolution
processes has cleared the ground for the origin of evolutionary algorithms. Major
implementation variants and their structural as well as functional elements are dis-
cussed. We also give a brief overview on usability areas of the algorithm and end
with some general remarks of the limits of computing.

2.1 Historical Facts from a Slightly Different Point of View

Evolutionary algorithms, or better evolutionary computational techniques (ECT),
are based on principles of evolution which have been observed in nature long time
before they were applied to and transformed into algorithms to be executed on com-
puters. When next reviewing some historical facts that led to evolutionary compu-
tation as we know it now, we will mainly focus on the basic ideas, but will also

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Hendrik Richter
HTWK Leipzig, Fakultät Elektrotechnik und Informationstechnik,
D–04251 Leipzig, Germany
e-mail: richter@fbeit.htwk-leipzig.de

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 37–88.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

38 I. Zelinka and H. Richter

allow to glimpse at the people who did the pioneering work and established the
field. Maybe the two most significant persons whose research on evolution and ge-
netics had the biggest impact on modern understanding of evolution and its use for
computational purposes are Gregor Johann Mendel and Charles Darwin.

Gregor Johann Mendel (Fig. 2.1, July 20, 1822 - January 6, 1884) was an Augus-
tinian priest and scientist, and is often called the father of genetics for his study of
the inheritance of certain traits in pea plants. He was born in the family of farmers in
Hyncice (Heinzendorf bei Odrau) in Bohemia (that time part of Austrian - Hungary
empire, today Czech Republic). The most significant contribution of Mendel for sci-
ence was his discovery of genetic laws which showed that the inheritance of these
traits follows particular laws (published in [52]), which were later named after him.
All his discoveries were done in Abbey of St. Thomas in Brno (Bohemia). Mendel
published his research at two meetings of the Natural History Society of Brünn in
Moravia (east part of Bohemia) in 1865 [52]. When Mendel’s paper was published
in 1866 in Proceedings of the Natural History Society of Brünn, it had little impact
and was cited only about three times over the next thirty-five years. His paper was
criticized at the time, but is now considered a seminal work. The significance of
Mendel’s work was not recognized until the turn of the 20th century. Its rediscov-
ery (thanks to Hugo de Vries, Carl Correns and Erich von Tschermak) prompted the
foundation of the discipline of genetics. Very peculiar historical fact about Mendel’s
research is also that his letters about his discovery, sent to many of scientific soci-
eties, had been found after many years in their libraries unopened. Mendel died on
January 6, 1884, at age 61, soon after his death the succeeding abbot burned all
papers in Mendel’s collection, to mark an end to the disputes over taxation [10].

The other important (and much more well–known and therefore here only briefly
introduced) researcher whose discoveries founded the theory of evolution was the
British scientists Charles Darwin. Darwin (Fig. 2.2) published in his work [17] the

Fig. 2.1 Gregor Johann Mendel (July 20, 1822 - January 6, 1884)

2 Evolutionary Algorithms for Chaos Researchers 39

Fig. 2.2 Gregor Charles Darwin 12 February 1809 - 19 April 1882

main ideas of the evolutionary theory. The full and original title was ”On the Origin
of Species by Means of Natural Selection, or the Preservation of Favored Races in
the Struggle for Life”. Word ”races” refers here to biological varieties. The title has
been changed to [17] for the 6th edition of 1872. In Darwin’s book On the Origin of
Species (1859) established evolutionary descent with modification as the dominant
scientific explanation of diversification in the nature.

The above mentioned ideas of genetics and evolution have been formulated long
before the first computer experiments with evolutionary principles had been done.
The beginning of the ECT is officially dated to the 70s of the 20th century, when
famous genetic algorithms were introduced by J. Holland [37, 38] or to the late
60s with evolutionary strategies, introduced by Schwefel [64] and Rechenberg [60]
and evolutionary programming by L.J. Fogel [29]. However, when certain histori-
cal facts are taken into consideration, then one can see that the main principles and
ideas of ECT as well as its computer simulations had been done earlier than men-
tioned above. Conceptionally, ECT can be traced back to the famous A.M. Turing,
first numerical experiments to the (far less famous) N.A. Barricelli and others. Their
understanding and formulation of basic ideas of ECT was remarkably clear, see e.g.
Turing in his essay “Intelligent machinery” (1948) [67] where he say:

“...if the untrained infant’s mind is to become an intelligent one, it must acquire
both discipline and initiative... discipline is certainly not enough in itself to produce
intelligence. That which is required in addition we call initiative...our task is to
discover the nature of this residue as it occurs in man, and to try and copy it in
machines...”.

40 I. Zelinka and H. Richter

In other words he speaks about simulation of an intelligent creature. Turing con-
tinues in his text by

“...further research into intelligence of machinery will probably be very greatly
concerned with ’searches’...”,

and suggested that ’searches’ will be done probably in the space of numbers and
basically he describes the central idea of ECT by

“...there is the genetic or evolutionary search by which a combination of genes is
looked for, the criterion being the survival value”.

Turing further improved this idea in his article “Computing Machinery and Intel-
ligence” (1950) [67]:

“We cannot expect to find a good child-machine at the first attempt. One must
experiment with teaching one such machine and see how well it learns. One can
then try another and see if it is better or worse. There is an obvious connection
between this process and evolution, by the identifications”

• structure of child machine = hereditary material
• changes of the child machine = mutations
• natural selection = judgement of the experimenter”.

One of the first to transform Turing’s ideas into real computer numerical experi-
ments was N. Barricelli (1954) [4, 5]. Results were published in the journal ”Meth-
ods” with the title ”Esempi Numerici di processi di evoluzione” and consequently
repeated and improved in 1962 [6] when ECT numerical experiment with 500 of 8
bits strings had been successfully done. Based on this numerical simulations Barri-
celli reported that:

“we have created a class of numbers which are able to reproduce and to undergo
hereditary changes...the constitution for an evolutionary process according to the
principle of Darwins theory would appear to be present. The numbers which have
the greatest survival in their environment will survive. The other numbers will be
eliminated little by little. A process of adaptation to the environmental conditions,
that is, a process of Darwinian evolution, will take place”.

Barricelli’s early computer-assisted experiments, which were focused on sym-
biogenesis and evolution (based on Darwin’s ideas), can be accepted like pioneer-
ing experiments in artificial life research. Barricelli has been working in Institute for
Advanced Study in Princeton, New Jersey in 1953, 1954 and 1956. Later he worked
at the University of California, Los Angeles, at Vanderbilt University, in the Depart-
ment of Genetics of the University of Washington, Seattle and then at the Mathe-
matics Institute of the University of Oslo. He is also author of a variety of articles
in fields as different as theoretical physics and mathematical language, virus genet-
ics, DNA, theoretical biology, space flight, etc. Barricelli’s experiments are prob-
ably some of the first historically recorded numerical ECT experiments. Another

2 Evolutionary Algorithms for Chaos Researchers 41

interesting tread of ECT’s pre-history are the works of Box (1957) [7] and Fried-
berg (1958) [30]. Although the original papers are meanwhile hardly accessible, it
is in particular thanks to D.B. Fogel (son of evolutionary programming pioneer L.J.
Fogel), who edited some of these works [27] and recollected some technical details
and implications [26, 28], that this early history of ECT can now be rediscovered.
However, in some respect all these works were slightly ahead of time, as the re-
sults have clearly shown the potential of ECT methods, but the lack of computing
power at that time prevented to solve “real problems” and hence to widespread the

Evolutionary and genetic dynamics,
processes and laws

Fitness

Population
dynamic

Hereditability

Hereditability

DNA coding
(Schrodinger,

Watson and Creek)

Feature

Fitness

MEndelDarwin

Turing Baricceli
Modern computer

evolucionists:

Holland, Schwefel,
Rechenberg, Fogel,
Baeck, Price, Koza,
O'Neill, Ryan, ...

Fig. 2.3 Evolutionary theory and its historical relations

42 I. Zelinka and H. Richter

methods. So, the “golden era” of ECT began, when genetic algorithms by J. Hol-
land [37], evolutionary strategies, by Schwefel [64] and Rechenberg [60] and evo-
lutionary programming by Fogel [29] had been introduced. All these designs were
favored by the upcoming of more powerful and more easily programmable comput-
ers so that for the first time interesting problems could be tackled and ECT started
to compete with and became a serious alternative to other optimization methods.
Since that time other successful algorithms using ECT ideas have been developed,
for instance scatter search, particle swarm, memetic algorithms, differential evolu-
tion, ant colony optimization, and many others. Before their brief description it is
important to outline the main principle (lets call it central dogma) of evolutionary
computation in general. History of ECT is of course more rich and complex, than
described here. Main ideas and relations can be more clearly visible from Fig. 2.3.

2.2 Evolutionary Algorithms – Outline

In recent years, a broad class of algorithms has been developed for stochastic op-
timization, i.e. for optimizing systems where the functional relationship between
the independent input variables and the output (objective function) of a system is
not explicitly known. Using stochastic optimization algorithms such as Genetic Al-
gorithms, Simulated Annealing and Differential Evolution, a system is confronted
with a random input vector and its response is measured. This response is then used
by the algorithm to tune the input vector in such a way that the system produces
the desired output or target value in an iterative process. Most engineering problems
can be defined as optimization problems, e.g. the finding of an optimal trajectory
for a robot arm, the optimal thickness of steel in pressure vessels, the optimal set
of parameters for controllers, optimal relations or fuzzy sets in fuzzy models, etc.
Solutions to such problems are usually difficult to find as their parameters usually
include variables of different types, such as floating point or integer variables. Evo-
lutionary algorithms, such as the Genetic Algorithms, Particle Swarm, Ant Colony
Optimization, Scatter Search, Differential Evolution etc., have been successfully
used in the past for these engineering problems, because they can offer solutions to
almost any problem in a simplified manner: they are able to handle optimizing tasks
with mixed variables, including the appropriate constraints, and they do not rely
on the existence of derivatives or auxiliary information about the system, e.g. its
transfer function. This chapter is concerned with a brief introduction on so-called
evolutionary computational techniques (ECT). Although the editors of this book
assume that most of the readers will have at least basic knowledge of ECT, there
might be the wish for clarification and broadening. For this reason, this chapter was
also included to describe in simple terms what ECT actually means.

2.2.1 Central Dogma of Evolutionary Computational Techniques

The evolutionary computational techniques are numerical algorithms that are based
on the basic principles of Darwin’s theory of evolution and Mendel’s foundation of

2 Evolutionary Algorithms for Chaos Researchers 43

genetics. The main idea is that every individual of a species can be characterized
by its features and abilities that help it to cope with its environment in terms of
survival and reproduction. These features and abilities can be termed its fitness and
are inheritable via its genome. In the genome the features/abilities are encoded. The
code in the genome can be viewed as a kind of “blue–print” that allows to store,
process and transmit the information needed to build the individual. So, the fitness
coded in the parent’s genome can be handed over to new descendants and support
the descendants in performing in the environment. Darwinian participation to this
basic idea is the connection between fitness, population dynamics and inheritability
while the Mendelian input is the relationship between inheritability, feature/ability
and fitness. Both views have been brought together in molecular Darwinism with
the idea of a genetic code (first uttered in its full information–theoretical meaning
by Erwin Schrödinger in his 1944 book What is life?) and the discovery of the
structure of the DNA and its implications to genetic coding by James Watson and
Francis Crick in 1953.

By these principles and in connection with the occurrence of mutations that mod-
ify the genome and hence may produce inheritable traits that enhance fitness, a de-
velopment of individuals and species towards best adaption to the environment takes
place. Here, the multitude of individuals in a species serve two connected evolution-
ary aspects, (i.) provide the opportunity to “collect” mutations and pass traits that
are or are not fitness enhancing to descendants on an individual level and (ii.) allow
fitness enhancing genomes to spread in the species from one generation to the next
if the traits bring advantages in survival and reproduction.

However, it should be noted that Darwin or, as the case may be, Mendel, were
not the first. Already in the ancient era, there were thinkers who came with the
same idea as Darwin and Mendel. An outstanding thinker, who supported the idea of
evolution before Darwin, was Anaximander, a citizen from Miletus, an Ionian city of
Asia Minor. Anaximander’s philosophical ideas are summarized in his philosophical
tract “On nature”, however, this name is of a later date, because this book was not
preserved. According to Anaximander, the original principle of the world and the
cause of all being is “without a limit” (“apeiron” in Greek), from which cold and
warm and dry and wet is separated - essentially, one can imagine this principle in
the sense of unlimited and undifferentiated wetness, from which all other natural
substances and individual species of living creatures arise.

By his idea that the Earth, which he imagined as freely floating in space, was
initially in a liquid state and later, when it was drying, gradually gave rise to
animals, who at first lived in water and later migrated onto land, Anaximander
in part anticipates the modern theory of evolution.

The ECT technology stands or falls with the existence of the so-called evolution-
ary algorithms (EA) that in principle form the majority of ECT. Besides evolutionary
algorithms, there still exist other extensions, such as genetic programming, evolu-
tionary hardware, etc. With respect to the fact that evolutionary algorithms are the

44 I. Zelinka and H. Richter

backbone of ECT, attention will be paid in this chapter just to these algorithms,
whose understanding is absolutely necessary for understanding the rest of this
publication.

From the above mentioned main ideas of Darwin and Mendel theory of evolu-
tion, ECT uses some building blocks which the diagram in Fig. 2.4 illustrates. The
evolutionary principles are transferred into computational methods in a simplified
form that will be outlined now.

Initial population
setting

Control parameters
de�nition of the selected
evolutionary algorithm

Fitness evaluation
of each individual

(parent)

Parent selection
based on their

�tness

Offspring creation

Mutation of a new
offsprings

Fitness evaluation

Best individual
selection from

parents and
offsprings

New empty
population

occupation by
selected individuals

Old population is
replaced by new

one

Evolutionary loop

Fig. 2.4 General cycle of the evolutionary algorithm. The termination of the evolution after n
generations and the selection of the best individual are not indicated in this figure - solution
from the last population.

If the evolutionary principles are used for the purposes of complicated calcula-
tions (in accordance with Fig. 2.4), the following procedure is used:

1. Specification of the evolutionary parameters: For each algorithm, parameters
must be defined that control the run of the algorithm or terminate it regularly,
if the termination criterions defined in advance are fulfilled (for example, the
number of cycles - generations). Part of this point is the definition of the cost
function (objective function) or, as the case may be, what is called fitness - a
modified return value of the objective function). The objective function is usu-
ally a mathematical model of the problem, whose minimization or maximiza-
tion (generally therefore extremization) leads to the solution of the problem.

2 Evolutionary Algorithms for Chaos Researchers 45

This function with possible limiting conditions is some kind of “environmental
equivalent” in which the quality of current individuals is assessed.

2. Generation of the initial population (generally N ×M matrix, where N is the
number of parameters of an individual - D is used hereinafter in this publica-
tion - and M is the number of individuals in the population): Depending on the
number of optimized arguments of the objective function and the user’s criteri-
ons, the initial population of individuals is generated. An individual is a vector
of numbers having such a number of components as the number of optimized
parameters of the objective function. These components are set randomly and
each individual thus represents one possible specific solution of the problem.
The set of individuals is called population.

3. All the individuals are evaluated through a defined objective function and to
each of them is assigned a) Either a direct value of the return objective function,
or b) A fitness value, which is a modified (usually normalized) value of the
objective function.

4. Now parents are selected according to their quality (fitness, value of the objec-
tive function) or, as the case may be, also according to other criterions.

5. Descendants are created by crossbreeding the parents. The process of cross-
breeding is different for each algorithm. Parts of parents are changed in classic
genetic algorithms, in a differential evolution, crossbreeding is a certain vector
operation, etc.

6. Every descendant is mutated. In other words, a new individual is changed by
means of a suitable random process. This step is equivalent to the biological
mutation of the genes of an individual.

7. Every new individual is evaluated in the same manner as in step 3.
8. The best individuals are selected.
9. The selected individuals fill a new population.

10. The old population is forgotten (eliminated, deleted, dies,..) and is replaced by
a new population; step 4 represents further continuation.

Steps 4 - 10 are repeated until the number of evolution cycles specified before
by the user is reached or if the required quality of the solution is not achieved. The
principle of the evolutionary algorithm outlined above is general and may more or
less differ in specific cases. So, methods that work by an algorithmic structure as
outlined in the steps 1-10 share the following main evolutionary principles:

• Biological inspiration: The algorithms mimic and use in an abstracted way
working mechanisms of biological systems.

• Population–based calculations: By structuring data in the algorithm by the
individual–and–species model, individual search is coordinated to other indi-
viduals and so to the whole population. This has the effect of parallelism in
the search which is assumed to be the main reason for success of evolutionary
search.

• Repeated calculation of fitness for all individuals: This principles provides
a spectrum of fitness to the population from which search can be guided by
noticing and discriminating individuals of different fitness.

46 I. Zelinka and H. Richter

• Generational search: Repeated generational search guided by the fitness
spectra allows to accumulate individuals with high fitness.

• Stochastic and deterministic driving forces: Random influences, for in-
stance in form of mutations are balanced by the deterministic elements in
the flow of the algorithm.

• Coordination between individuals: Some kind of communication on (or
even in–between) the individuals of the population (e.g. in the selection
(crossover) or recombination process) allows to recognize and exploit indi-
vidual differences in fitness.

There are also exemptions that do not adhere to steps 1 - 10; in such a case,
the corresponding algorithms are not denoted as evolutionary algorithms, but usu-
ally as algorithms that belong to ECT. Some evolutionists exclude them completely
from the ECT class. The ACO algorithm (Ant Colony Optimization), see [21] and
[56] may be an example - it simulates the behavior of an ant colony and can solve
extremely complicated combinatory problems. It is based on the principles of coop-
eration of several individuals belonging to the same colony - in this case ants.

The evolution diagrams are not only popular because they are modern and differ
from classical algorithms, but mainly because of the fact that they are able to replace
a man in the event of a suitable application. This is illustrated in Fig. 2.5. There are
two methods of the problem solution illustrated in this figure. The first one repre-
sents steps of a human investigator, the second one represents the procedure if ECT
is used.

This publication thus deals with ECT’s that in most cases adhere to the above
indicated evolutionary scheme; nevertheless, exemptions are also indicated.

Fig. 2.5 Comparison of the problem solution by means of ECT and a man. Simplified illus-
tration.

2 Evolutionary Algorithms for Chaos Researchers 47

2.2.2 Evolutionary Algorithms and Importance of Their Use

Comparing to standard optimization techniques, evolutionary algorithms can be
used on almost arbitrary optimization problem, however, it is important to remem-
ber that with different performance. As mentioned in the section 2.5.2, there are
problems with different level of complexity, from the simplest (solvable by standard
techniques) to the most complex, whose solution would take much more longer
time, than our universe exist. Thus, some simple problems, that can be very easily
and quickly solved by gradient based techniques, should not be solved by heuristic
methods, because its use would be expensive, i.e. user would “pay” by big number
of cost function evaluations. Another important fact, having impact on EA use is
so called No Free Lunch Theorem (NFLT), see [70]. Main idea of this theorem is
that there is no ideal algorithm which would be able to solve any problem. Simply,
if there are for example two algorithms A and B, then for certain subset of possi-
ble problems is more suitable algorithms A and for another subset algorithm B. All
those subsets can be of course totally disconnected, or/and overlapped.

Based on those facts it is important to remember that evolutionary algorithms
are suitable for problems which are more complex rather simple, and also that their
selection and setting depend on user experiences, expertise etc. More exact classifi-
cation is mentioned in the section 2.4.

2.3 Selected Evolutionary Techniques

2.3.1 Overview

Optimization algorithms are a powerful tool for solving many problems of engi-
neering applications. They are usually used where the solution of a given problem
analytically is unsuitable or unrealistic. If implemented in a suitable manner, there
is no need for frequent user intervention into the actions of equipment in which they
are used.

The majority of the problems of engineering applications can be defined as op-
timization problems, for example, finding the optimum trajectory of a robot or the
optimum thickness of the wall of a pressure tank or the optimum setting of the reg-
ulator’s parameters. In other words, the problem solved can be transformed into a
mathematical problem defined by a suitable prescription, whose optimization leads
to finding the arguments of the objective function, which is its goal.

Countless examples can be found illustrating this problem. The solution of such
problems usually requires working with the arguments of optimized functions,
where the definition ranges of these arguments may be of a heterogeneous char-
acter, such as, for example, the range of integers, real or complex numbers, etc.
Moreover, it may happen (depending on the case) that for certain subintervals from
the permitted interval of values, the corresponding argument of the optimized func-
tion may assume values of various types (integers, real, complex,..). Besides this,
various penalizations and restrictions can play a role within optimization, not only

48 I. Zelinka and H. Richter

for given arguments, but also for the functional value of the optimized function.
In many cases, the analytical solution of such an optimization problem is possible,
nevertheless, considerably complicated and tedious.

A class of very efficient algorithms has been developed for the successful solu-
tion of such problems in the past two decades that make it possible to solve very
complicated problems efficiently. The algorithms of this class have their specific
name, namely “evolutionary algorithms”. They solve problems in such an elegant
manner that they became very popular and are used in many engineering fields.

From the point of view of the most general classification, the evolutionary algo-
rithms belong to heuristic algorithms. Heuristic algorithms are either deterministic
or stochastic. The algorithms of the second group differ in that their certain steps
use random operations, which means that the results of the solutions obtained with
their use may differ in the individual runs of the program. It is therefore meaningful
to run the program several times and select the best solution obtained.

Stochastic heuristic methods are sometimes called metaheuristics, because they
only provide a general framework and the algorithms of the operation itself must be
chosen (for example, by the operation of crossbreeding and mutation in genetic al-
gorithms, operation of neighborhood in simulated annealing, “tabu search”, etc.) in
dependence on the problem investigated. Because these methods are frequently in-
spired by natural processes, they are also called evolutionary algorithms. Depending
on their strategy, they can be divided in two classes:

1. Methods based on point-based strategy such as, for example, simulated anneal-
ing ([41], [13], [66]), hill-climbing algorithm [63] and tabu-search [31]. These
algorithms are based on the neighborhood operation of the current solution, in
which we are looking for a better solution.

2. Population-based strategy. Genetic algorithms [19], [33], [53], [14] are based
on population strategy.

These methods differ from classic gradient methods by admitting (with a cer-
tain probability) a worse solution into the next iteration; in this manner, they try to
avoid local minima. For more details, see, for example, books [31], [33],[53],[54]
and [61].

2.3.2 Current State

Evolutionary algorithms serve for finding the minima (or maxima) of a given objec-
tive function by looking for the optimum numerical combination of its arguments.
These algorithms can be divided according to the principles of their action, com-
plexity of the algorithm, etc. Of course, this classification is not the only possibility,
nevertheless, because it fits the current state rather well, it can be considered as one
of the possible views on the classical and modern optimization methods. There are
slight differences in opinions on their classification. One can encounter statements
that, for example, simulated annealing does not belong to evolutionary techniques,
which is true to some extent. On the other side, other “evolutionists” state that

2 Evolutionary Algorithms for Chaos Researchers 49

simulated annealing does belong to evolutionary techniques, at least as their direct
predecessor. It is true that if simulated annealing is taken into account with elitism,
then one could consider this alternative as an evolutionary algorithm.

2.3.2.1 Classes Optimization Approaches

Figs. 2.6 - 2.8 illustrate various views on the classification of evolutionary algo-
rithms that exhibit certain differences although they have a visible common line.
These differences may be caused not only by the classification of the algorithm ac-
cording to the principles by which it is controlled, but, for example, according to
the classes of problems for which it is “predestined”. The individual classes of algo-
rithms represent generally solutions of a given problem by the methods of various
degrees of efficiency and complexity. Depending on their properties, we classify
algorithms into the following categories:

Enumerative: The algorithm calculates all possible combinations of a given
problem. This approach is suitable for problems where the arguments of
the objective function have a discrete character and assume a small num-
ber of values. Should it be applied generally, it might need more time for
its successful termination than is the time of the existence of the universe.

Deterministic: This group of algorithms is based only on the rigorous methods
of classical mathematics. The algorithms of this character usually require
limiting assumptions that enable these methods to provide efficient results.
Usually, these assumptions are as follows:

• The problem is linear.
• The problem is convex.
• The space of the possible solutions is small.
• The space of the possible solutions is continuous.
• The objective function is unimodal (it has only one extreme).
• There are no nonlinear interactions between the parameters of the ob-

jective function.
• Information on the gradient is available, etc.
• The problem is defined in an analytical form.

The result of the deterministic algorithm is then only one solution.
Stochastic: The algorithms of this type are based on the use of chance. This is

essentially a purely random search of the values of the objective function;
the result is always the best solution that was found during the entire ran-
dom search. The algorithms of this type are usually;

• slow.
• suitable only for small spaces of possible solutions (small range of

arguments of the objective function),
• suitable for a rough estimation.

50 I. Zelinka and H. Richter

Fig. 2.6 Classification of the optimization methods according to [68]

Fig. 2.7 Classification of the optimization methods according to [22]

Mixed: The algorithms of this class represent a “sophisticated” mixture of deter-
ministic and stochastic methods that achieve surprisingly good results in
mutual cooperation. The evolutionary algorithms mentioned above are a

Optimization problems

Combinatoric

Exact

Continuous

Approximate Nonlinear (analytically unknown) Linear
(programming)

Approximate Nonlinear (analytically unknown)

Dif�cult to optimize

Global Local

Specialized
heuristics

Meta-heuristics Classical (gradient) Gradient
based

Not using gradient

DistributedSearching neighbourhood

Hybrid

Simple Complex

Searching
extremes

Identi�cation Inverse problems Control
Mechanical
engineering

Optimization methods

Traditional methods
(exact)

Direct analytical Constructive solution

Heuristic methods
(approximate)

Linear
programming

Local search

Newton’s method

Gradient methods

Divide and
conquer

Dynamic
programming

Branch and
Bound

Deterministic Probabilistic

Tabu Search

Individual
solutions

Simulated
annealing

Stochastic hill-
climbing

Population based

Evolutionary
algorithms

PSO

Genetic algorithms

Genetic programming

Evolutionary
programming

Evolutionary
strategies

2 Evolutionary Algorithms for Chaos Researchers 51

Fig. 2.8 Other possible organization of optimization algorithms [72]

relatively strong sub-set of these algorithms. The algorithms of the mixed
character are:

• Robust, which means that they very frequently find a quality solution
independently of the initial conditions; this solution is usually repre-
sented by one or several global extremes.

• Efficient and powerful. The terms “efficient and powerful” here mean
that they are able to find a quality solution during a relatively small
number of evaluations of the objective function.

• Differ from purely stochastic methods (thanks to the presence of de-
terministic approaches).

• Have minimum or no requirements for preliminary information.
• They are able to work with problems of the “black box” type, i.e., they

do not need an analytical description of the problem for their activity.
• Are able to find several solutions during one run.

We can briefly summarize these features as follows:

• The enumerative and stochastic optimization is not suitable for problems where
an extensive space of possible solutions must be searched.

• The deterministic optimization works well with problems where the space of
possible solutions is not too extensive.

• Mixed optimization is suitable for problems without limitations to the size of the
space of possible solutions.

Global search and optimization

Enumerative

Stochastic

Deterministic

Mixed

Random walk

Simulated annealing

Monte Carlo

Tabu Search

Stochastic hill-climbing

Greedy

Hill-climbing
algorithm

Branch and Bound

Depth First

Broadth First

Caclulus based

Mathematical
programming

ACO – ant colony
optimization

Methods of immune
system

Memetic
algorithms

Scatter Search

Particle Swarm

Genetic algorithmDifferential evolution

SOMA

52 I. Zelinka and H. Richter

In this book, selected algorithms are described with emphasis put on their ex-
planation and testing. The evolutionary algorithms are now very popular thanks to
properties that are characteristic for the entire class. However, before we start to dis-
cuss their details, it is suitable to mention both the generally known algorithms and
the newer algorithms in this field, which will be developed in more detail later in
this publication. From the well known algorithms, we have selected a few random–
driven algorithms:

• Stochastic Hill Climbing
• Tabu search

the “classic” evolutionary algorithm

• Genetic algorithms
• Genetic programming
• Evolutionary strategy
• Evolutionary programming

and from the newest ones, we will describe

• Learning classifier systems
• Population-based incremental learning
• Ant Colony Optimization
• Immunology System Method
• Memetic Algorithms
• Scatter Search
• Particle Swarm
• Differential Evolution
• SOMA

2.3.2.2 The Outline of the Principles of Action of Random–Driven Search
Algorithms

At the present time, there is a broad spectrum of publications dealing with opti-
mization algorithms, for example, [2]. The purpose of this chapter is to outline only
the principles of some selected algorithms for better information for the reader. The
discussed algorithms are:

Stochastic Hill-Climbing: (SHC) is a version of the hill-climbing mechanism
enriched by the stochastic component [40], [63]. It belongs among the
gradient methods, which means that it searches the space of possible solu-
tions in the direction of the steepest gradient. Thanks to its gradient nature,
it frequently gets stuck in a local extreme. The basic version functions so
that it always starts from the random point in the space of possible solu-
tions. For the momentary proposed solution, the certain neighborhood is
proposed by means of a final set of transformations (Figure 2.9) and the
given function is minimized only in this neighborhood. The local solution
obtained is then used as a start point for the calculation of the new neigh-
borhood. The entire process is then repeated iteratively. The best found

2 Evolutionary Algorithms for Chaos Researchers 53

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10

0

2

4

6

8

10

Fig. 2.9 Principle of the hill-climbing algorithm. The white dot is the starting point of the
algorithm. The set of red solutions is generated for this dot. The best solution is denoted by
the bold red dot that serves also as a new position for the generation of a new (yellow) set of
solutions. The best solution (bold yellow dot) is then used for the generation of the following
set of solutions (blue).

solution is recorded during the process that serves as the optimum found
after termination. The stochastic hill-climbing algorithm is basically only
the multiple repetition of the standard hill-climbing algorithm, each time
from another randomly selected position. The disadvantage of this algo-
rithm is that runaway may occur in it under certain conditions and the
solution gets stuck in a local extreme [40].

Tabu Search: (TS) (prohibited search,[31]) is the improved version of the hill-
climbing algorithm. This algorithm was created by Professor Fred Glover
from the University of Colorado. The improvement consists in introduc-
ing a “short-term memory” into the hill-climbing algorithm, whose task is
to remember those transformations by means of which the current median
was calculated. The final consequence is that runaway cannot occur due
to the forbidden use of these transformations. The name “Tabu Search”
originates from this feature. This method was improved by a “long term

54 I. Zelinka and H. Richter

memory” that includes transformations, which are not short term in the
memory, but have been used frequently. Their use is then penalized, which
decreases the frequency of their use. Contrary to the hill-climbing algo-
rithm, Tabu Search does not get stuck so easily in local extremes.

2.3.2.3 The Outline of the Principles of Action of Evolutionary Algorithms

Genetic algorithm: (GA) This algorithm is one of the first successful applied
ECT methods [37, 33]. In GAs the main principles of ECT are applied
in their purest form. The individuals are encoded as binary strings (mostly
over the alphabet [0,1]), which can be understood as a model of the biolog-
ical counterpart, the genome,1 and represent possible solutions to the opti-
mization problem under study. After initially a population of binary strings
is created randomly, the circle as given in Figure 2.4 is carried out with
the steps fitness evaluation, selection, offspring generation (crossover) and
mutation until the algorithm terminates. The application area of these al-
gorithms are wide and it seem particularly sensible to use them if the prob-
lem description allows a straightforward coding of the objects to optimize
as binary string over a finite alphabet, for instance in combinatorial opti-
mization problem timetabling and scheduling.

Evolutionary strategy: (ES) This algorithm also belongs to the first successful
stochastic algorithms in history. It was proposed at the beginning of the
sixties by Rechenberg [60] and Schwefel [64]. It is based on the princi-
ples of natural selection similarly as the genetic algorithms. Contrary to
genetic algorithms, the evolutionary strategy works directly with individ-
uals described by vectors of real values. Its core is to use candidate solu-
tions in the form of vectors of real numbers, which are recombined and
then mutated with the help of a vector of random numbers. The problem
of accepting a new solution is strictly deterministic. Another distinctive
feature is that ES use self-adaptation, that is the mutation strength for
each individual is variable over the generational run and subject to an own
evolutionary adaption and optimization process.

Evolutionary programming: (EP) EP algorithms [29] have much similarity to
ES in using vectors of real numbers as representation. The main operator
in the generational circle is mutation, in most (particularly early) imple-
mentations no recombination is carried out. In recent years, by adopting
elements of their algorithmic structure EP more and more tends to become
similar to ES.

Learning classifier systems: (LCS) LCS [9] are machine learning algorithms
which are based on GAs and reinforcement learning techniques. Inter-
estingly, LCS were introduced by Holland2 [37] and for a certain time

1 The genome is coded over the alphabet [A,C,G,T], which stand for the amino acids ade-
nine A, cytosine C, guanine G, thymine T.

2 Holland is also know as the father of GAs.

2 Evolutionary Algorithms for Chaos Researchers 55

regarded as a generalization of GAs. LCS optimize over a set of rules that
are intended to best–fit inputs to outputs. The rules are coded binary and
undergo an adaption using GA–like optimization that modifies and se-
lects the best rules. The fitting of the rules is determined by reinforcement
learning methods.

Population-based incremental learning: (PBIL) PBIL was proposed by Baluja
[3] and combines ideas from evolutionary computation with methods from
statistical learning [49]. It uses a real valued representation that is usually
restricted to the interval [0,1] and can be interpreted as the probability to
have a “1” - bit at a certain place in a binary string. From these probabil-
ities, a collection of binary strings is created. These strings are subjected
to a standard evolutionary circle with fitness evaluation, selection and dis-
carding of inferior samples. In addition, based on the evaluation of the
fitness, a deterministic statistical-learning-like updating of the probability
vector takes place, which afterwards is also altered by random mutation.

Ant Colony Optimization: (ACO), [21] This is an algorithm whose action simu-
lates the behavior of ants in a colony. It is based on the following principle.
Let there be a source of ants (colony) and the goal of their activity (food),
see Fig. 2.10. When they are released, all the ants move after some time
along the shorter (optimum) route between the source and goal. The effect
of finding the optimum route is given by the fact that the ants mark the
route with pheromones. If an ant arrives to the crossroads of two routes
that lead to the same goal, his decision along which route to go is random.
Those ants that found food start marking the route and when returning,
their decision is influenced thanks to these marks in favor of this route.
When returning, they mark it for the second time, which increases the
probability of the decision of further ants in its favor. These principles are
used in the ACO algorithm. Pheromone is here represented by the weight
that is assigned to a given route leading to the goal. This weight is addi-
tive, which makes it possible to add further “pheromones” from other ants.
The evaporation of pheromones is also taken into account in the ACO al-
gorithm in such a way that the weights fade away with time at individual
joints. This increases the robust character of the algorithm from the point
of view of finding the global extreme. ACO was successfully used to solve
optimization problems such as the travelling salesman problem or the de-
sign of telecommunication networks, see [56].

Immunology System Method: (ISM) This algorithm is unusual by its algorithm
based on the principles of functioning of the immunology system in liv-
ing organisms. As indicated in [56], there are several principles based on
this model. In this work, the immunology system is considered as a mul-
tivalent system, where individual agents have their specific tasks. These
agents have various competencies and ability to communicate with other
agents. On the basis of this communication and a certain “freedom” in
making decisions of individual agents, a hierarchic structure is formed
able to solve complicated problems. As an example of using this method,

56 I. Zelinka and H. Richter

Ant trajectory

Source

Destination

Fig. 2.10 Principle of the ACO algorithm

antivirus protection can be mentioned in large and extensive computer
systems [18], [12].

Memetic Algorithms: (MA) This term represents a broad class of metaheuris-
tic algorithms [56], [35], [32], [65]. The key characteristics of these al-
gorithms are the use of various approximation algorithms, local search
techniques, special recombination operators, etc. These metaheuristic al-
gorithms can be basically characterized as competitive-cooperative strate-
gies featuring attributes of synergy. As an example of memetic algorithms,
hybrid combinations of genetic algorithms and simulated annealing or a
parallel local search can be indicated. Memetic algorithms were success-
fully used for solving such problems as the traveling salesman problem,
learning of a neural multilayer network, maintenance planning, nonlinear
integer number programming and others (references see [56].

Scatter Search: (SS) This optimization algorithm differs by its nature from the
standard evolutionary diagrams. It is a vector oriented algorithm that
generates new vectors (solutions) on the basis of auxiliary heuristic tech-
niques. It starts from the solutions obtained by means of a suitable heuris-
tic technique. New solutions are then generated on the basis of a subset
of the best solutions obtained from the start. A set of the best solutions
is then selected from these newly found solutions and the entire process
is repeated. This algorithm was used for the solution of traffic problems,
such as traffic control, learning neural network, optimization without lim-
its and many other problems [56], [45].

Particle Swarm: (PSO) The “particle swarm” algorithm is based on work with
the population of individuals, whose position in the space of possible so-
lutions is changed by means of the so-called velocity vector. According
to the description in [56], [71] and [15], there is no mutual interaction
between individuals in the basic version. This is removed in the version
with the so-called neighborhood. In the framework of this neighborhood,
mutual interaction occurs in such a manner that individuals belonging to
one neighborhood migrate to the deepest extreme that was found in this
neighborhood.

2 Evolutionary Algorithms for Chaos Researchers 57

Differential Evolution: (DE) Differential Evolution [57] is a population-based
optimization method that works on real-number coded individuals. For
each individual −→x i,G in the current generation G, DE generates a new trial

individual
−→
x′ i,G by adding the weighted difference between two randomly

selected individuals −→x r1,G and −→x r2,G to a third randomly selected individ-

ual −→x r3,G . The resulting individual
−→
x′ i,G is crossed-over with the original

individual −→x i,G . The fitness of the resulting individual, referred to as per-
turbated vector −→u i,G+1 , is then compared with the fitness of −→x i,G . If the
fitness of −→u i,G+1 is greater than the fitness of −→x i,G , −→x i,G is replaced with
−→u i,G+1 , otherwise −→x i,G remains in the population as −→x i,G+1 . Differential
Evolution is robust, fast, and effective with global optimization ability. It
does not require that the objective function is differentiable , and it works
with noisy, epistatic and time-dependent objective functions.

SOMA: (Self-Organizing Migrating Algorithm) is a stochastic optimization al-
gorithm that is modeled on the social behavior of cooperating individuals
[73]. It was chosen because it has been proven that the algorithm has the
ability to converge towards the global optimum [73]. SOMA works on
a population of candidate solutions in loops called migration loops. The
population is initialized randomly distributed over the search space at the
beginning of the search. In each loop, the population is evaluated and the
solution with the highest fitness becomes the leader L. Apart from the
leader, in one migration loop, all individuals will traverse the input space
in the direction of the leader. Mutation, the random perturbation of indi-
viduals, is an important operation for evolutionary strategies (ES). It en-
sures the diversity amongst the individuals and it also provides the means
to restore lost information in a population. Mutation is different in SOMA
compared with other ES strategies. SOMA uses a parameter called PRT
to achieve perturbation. This parameter has the same effect for SOMA as
mutation has for GA. The novelty of this approach is that the PRT Vector
is created before an individual starts its journey over the search space. The
PRT Vector defines the final movement of an active individual in search
space. The randomly generated binary perturbation vector controls the al-
lowed dimensions for an individual. If an element of the perturbation vec-
tor is set to zero, then the individual is not allowed to change its position in
the corresponding dimension. An individual will travel a certain distance
(called the path length) towards the leader in n steps of defined length. If
the path length is chosen to be greater than one, then the individual will
overshoot the leader. This path is perturbed randomly.

The evolutionary algorithms can be essentially used for the solution of very het-
erogeneous problems. Of course, for the solution of the optimization problems, there
are many more algorithms than were indicated here. Because their description would
exceed the framework of this text, we can only refer to the corresponding literature,
where the algorithms indicated above are described in more details.

58 I. Zelinka and H. Richter

2.4 Selected Basic Terms from the Evolutionary Algorithms

For work with evolutionary diagrams (Figure 2.4), it is necessary to know the mean-
ing of certain terms that occur in the terminology of evolutionary algorithms and
optimization. Some of them will be explained in this section.

2.4.1 The Usability Areas of Evolutionary Algorithms

Until the present date, there are many algorithms that belong to the class of evolu-
tionary diagrams or can be included into this class under certain conditions. Typi-
cal examples are the already mentioned Ant Colony Optimization algorithms, Im-
munology System Method, Scatter Search or Particle Swarm. These algorithms, like
many others, are not universal, but from the principle of their action, they are always
suitable for solving certain classes of problems. The class of problem may be of var-
ious “size” for each algorithm. Genetic algorithms, for example, can be used for a
wide class of problems, while the ACO algorithm, acting on the principle of the
behavior of ants, is essentially predetermined for combinatoric problems of the type
of a traveling salesman, where its performance is excellent.

It is therefore obvious that it is not only sufficient to have a good algorithm, but it
is frequently of vital importance to know with what class of problems a given algo-
rithm can work. This means that it is therefore necessary to determine the usability
range of a given algorithm. In the case of evolution algorithms, we will understand
by this term the class of problems for which a given algorithm provides at least
satisfactory results.

Most optimization problem can be viewed as a geometrical problem, whose goal
is to the find the lowest (minimum) or highest point (maximum) on the N dimen-
sional surface. Such surfaces, defined usually by some functional prescription, may
suffer from various pathologies from the mathematical point of view. With respect to
the tests carried out on the functions tested, whose algorithms are described below,
one can state that the evolutionary algorithms are very efficient and usually suitable
for global optimization (see Fig. 2.11 and Fig.2.12). This set of test function can
be viewed as the usability range of the evolutionary diagrams. It holds for the test
functions mentioned above:

1. The graph of the function does not have a fractal character;
2. They are defined on real, integer or discrete arguments;
3. They are multimodal (one or several extremes);
4. They have various limits (imposed on the arguments or the value of the objective

function);
5. They are strongly nonlinear;
6. They represent problems of the type “needle in a haystack”;
7. Finding the global extreme with evolutionary algorithms is less or more com-

plicated;

2 Evolutionary Algorithms for Chaos Researchers 59

Fig. 2.11 Examples of functions that exhibit certain combinations of properties 1-7, a-c

Fig. 2.12 Examples of functions that exhibit certain combinations of properties 1-7, a-c

moreover, it may hold true that:

(a) The function is separable (non-separable), which means that it can be (cannot
be) decomposed into several simpler functions that can be optimized separately;

(b) The number of variables is high;
(c) The space of possible solutions may be large and discontinuous.

Generally speaking, evolutionary algorithms can be used to find the optima of
functions from a very large class. Other information such as gradient, etc., are usu-
ally not necessary.

2.4.2 Common Features

Evolutionary algorithms have certain common features.

1. Simplicity, because algorithms can usually be programmed in a simple manner.
2. Hybridity of numbers with which the algorithms work. Numbers of the integer,

real type, or, as the case may be, only selected sets of numbers (usually denoted
as discrete), such as, for example, -5, 2, 8, 55, 3, 100, can be combined without
any problem.

60 I. Zelinka and H. Richter

3. Use of decimal numbers - The individual need not be converted into the binary
code that is commonly used in genetic algorithms. By the conversion into a
binary code, a given number is distorted (the binary string has a limited length).
When binary recording is used, mutations may cause a sudden change of the
number, which may not have a good impact on the course of evolution. For
example, numbers 15, 16 and 17 are represented as 01111, 10000 and 10001.
The transition from 15 to 16 means the inversion of all five bits, i.e. a 100%
mutation. However, transition from 16 to 17 requires the mutation of only one
bit. Although this “unevenness” can be removed with what is called Gray coding
(see Section 4.5), work with real numbers is still more convenient.

4. Speed - Thanks to its relative simplicity, particularly in comparison with clas-
sical methods, one can say that the required solutions are found much faster.

5. The ability to find an extreme also for functions that are flat from the graph-
ical point of view and the extreme is just a “hole” in this plane. With some
exaggeration, searching the extreme in such a function can be denoted as “look-
ing for a needle in a haystack”. Unfortunately, the efficiency of any algorithms,
including evolutionary, is very low in these problems. If the surface around the
extreme is a plane, than finding the extreme is usually a matter of chance.

6. Ability to provide manifold solutions - The best individual is the result of
evolution - one solution. However, if, for example, the three best individuals are
selected from the last population, they represent three different solutions of the
problem. Of course, with graduated quality. If there are more global extremes in
a given problem, one can expect that they will also be found by the evolutionary
process. Therefore, there will be several solutions of the same quality available.
As an example, the design of the optimum geared transmission can be used
[47], [73], for which the method of differential evolution obtained four alterna-
tive solutions with the same value of objective function or a test function that
has two global extremes at different points. The majority of good evolutionary
techniques are able to localize these extremes.

In other words, the evolutionary algorithms are suitable for looking for extremes
of functions suffering from such pathologies, such as, for example, noise, a high
number of dimensions, “multi-modality” (several local extremes).

2.4.3 Population

A typical feature of the evolutionary algorithms is that they are based on work with
the population of individuals. Population can be represented as matrix NxM (Fig.
2.13), where the columns represent individuals. Each individual represents the cur-
rent solution of the problem. Essentially this is a set of arguments of the objective
function, whose optimum numerical combination is searched for gradually. More-
over, a value of the objective function is connected with each individual (sometimes
“fitness”) that tells how the individual is suitable for further evolution of the popu-
lation. This value does not participate in the evolution process itself. It only carries
information on the quality of the corresponding individual.

2 Evolutionary Algorithms for Chaos Researchers 61

I1 I2 I3 I4 IM

Fitness 55.2 68.3 5.36 9.5 0.89
P1 2.55 549.3 -55.36 896.5 1.89
P2 0.25 66.2 2 -10 -2.2
P3 -66.3 56 4 15.001 -83.66
..
PN 259.3 -10 22.22 536.22 -42.22

Fig. 2.13 Population (of the NM size), Jx is the x-th individual, Pi is the y-th individual Fitness
- individual quality measured by means of the objective function

For the generation of population, it is necessary to define a specimen, see (2.1),
according to which the entire initial population is generated. This sample individual
is also used for correcting the parameters of individuals, who exceed the boundaries
of the space searched.

Specimen= {{Real,{Lo,Hi}},{Integer,{Lo,Hi}}, . . . ,{Real,{Lo,Hi}}} (2.1)

In the sample, three constants are defined for each parameter of a specific in-
dividual from the population: The type of variable (i.e. integer, real, discrete, etc.)
and the boundaries of the interval in which the value of the parameter may be. For
example, {Integer, {Lo, Hi}} defines an integer parameter with the bottom limit Lo
and upper limit Hi. The choice of limits is a very important step, because if they
are chosen in an unsuitable manner, it may happen that solutions will be found that
are not physically real (for example, a negative thickness of the pressure vessel), or
will not be substantiated (for example, an airplane without wings, a pressure vessel
whose wall thickness equals its radius, etc.).

Another equally important meaning of the boundaries is related to the evolution-
ary process itself. It may happen that a given optimization problem will be repre-
sented by a surface, on which the local extremes will assume greater values with the
increasing distance from the origin (Fig. 2.14). This will cause that the evolution
will be finding new solutions until infinity. Of course, if termination is not specified
in dependence on the number of evolutionary cycles (generations, migrations, an-
nealing,). This is caused by the fact that the evolutionary process always proceeds
to deeper and more distant extremes on this (Schwefel’s) function.

Population is generated on the basis of the sample individual by means of 2.2,
see also [47]. P(0) represents the initial population, xi j is the j-th parameter of the
i-th individual.

P(0)i, j = x(0)i, j = rnd[0.1] · (x(Hi)
i, j − x(Lo)i, j)+ x(Lo)i, j

i= 1, . . . , M , j = 1, . . . , N
(2.2)

In Fig. 2.14 and Fig. 2.15, two randomly generated populations of ten individu-
als are represented. The individuals were two-dimensional in this case. It is obvious

62 I. Zelinka and H. Richter

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

�100 �50 0 50 100

�100

�50

0

50

100

1

2

34
5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

�100 �50 0 50 100

�100

�50

0

50

100

Fig. 2.14 Schwefel’s function [64] with the growing extremes in the direction from the origin
(a) and two randomly generated populations (b-c) on another function

I1 I2 I3 I4 I10

424 104 53.3 942.9 178.008
-1.8 -1 0.7 -1.25 -1.19
1.2 2 1.2 -1.5 0.1

Fig. 2.15 Numerical representation of two randomly generated populations from Fig. 2.14 b)

from both figures that the generation of population is essentially a random distribu-
tion of individuals in the space of possible solutions. It occurs during the run of a
given evolutionary algorithm that the individuals gather around one (usually global)
or more extremes, which is graphically illustrated in Fig. 2.17. Mapping of infor-
mation on how the evolution proceeded qualitatively is carried out by means of the
evolution history of the objective function value in form of a simple graph. The de-
pendence of the evolution of the value of the objective function on the evolution
cycle is illustrated in this figure (Fig. 2.16). This is the sequence of the worst (upper
curve) and best (bottom curve) solutions from individual populations. A mapping
more convenient than that described just now is plotting the dependence of the value
of the objective function on the current number of objective function evaluations.
This approach is suitable because during evolutionary cycles (generation, annealing
cycles, migration cycles, etc.), various numbers of evaluations of the profit function
are carried out in individual algorithms. In the first method of graphical mapping,
the slower convergence of the values of the objective function may be displayed
as the faster one and vice versa. The true information on the quality of evolution
may then be distorted. However, if we use the second method, it is then possible to
compare various types of algorithms irrespective of their inner structure.

Besides the evolution of the best individual (or the best individuals when repeat-
ing the simulation), it is also suitable to display the evolution of the worst individual
from the population in one graph. This reveals the overall convergence of the pop-
ulation as such. In a case where the courses of the best and worst individuals meet
soon in the same extreme, it is possible that this is the case of a local extreme. If the

2 Evolutionary Algorithms for Chaos Researchers 63

Fig. 2.16 Evolution of the value of the objective functions during evolution. This is a sequence
of the best solutions from individual populations in dependence on the evolution cycle (gen-
eration, migration cycle, etc.).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

�4 �2 0 2 4

�4

�2

0

2

4

(a) Generation 5

1

2
3

4

5

6

7

8

9

1011

12
13

14

15

16

17
18

19

20

�4 �2 0 2 4

�4

�2

0

2

4

(b) Generation 10

12
3
4

5

6

7

8 9

1011
12

13
14

15

16
17

18

19

20

�4 �2 0 2 4

�4

�2

0

2

4

(c) Generation 15

1
2

345

6

78 910 111213
1415 1617181920

�4 �2 0 2 4

�4

�2

0

2

4

(d) Generation 20

12345
6

7891011121314
15
1617181920

�4 �2 0 2 4

�4

�2

0

2

4

(e) Generation 25

1234567891011121314151617181920

�4 �2 0 2 4

�4

�2

0

2

4

(f) Generation 30

Fig. 2.17 Convergence of the population to the global extreme in individual evolutionary cy-
cles. The start display was omitted; individuals are uniformly distributed on the entire surface
during the start.

best and worst individuals have the same value of the objective function, then only
two explanations are possible:

1. The population is distributed in several extremes with the same value of the
objective function or

2. The entire population is in one extreme, which is more probable, because a lot
of problems are represented by a function with one global extreme.

64 I. Zelinka and H. Richter

In case No. 1, there is a chance that the evolution will proceed further, while in
case No. 2, the same value of both individuals shows that further evolution is use-
less. The evolution of the population must always converge to better values, which
means that it may never show divergence. If a minimum (maximum) is sought, the
evolution must converge to lower (higher) values. If this is not the case, then in a
given algorithm, “elitism” is somehow disrupted (elitism serves as some kind of a
one way filter, which transmits only such solutions that are better or equally good as
those from the old population). In the event of its dysfunction, the given algorithm
would degrade to merely a random search.

2.4.4 Individuals and Their Representation

Several methods are being used when representing individuals in the evolutionary
algorithms. The binary representation is historically the oldest one. In this case, the
individual is formed by a 0 and 1 sequence called a chromosome [53], [2]. This
representation of individuals has its historic roots and is being used in genetic al-
gorithms up to date. In spite of its extension, it has its disadvantages. The basic
disadvantage is the step change of the structure of chromosomes, the correspond-
ing real values during a continuous change. In order to prevent these undesirable
changes in the behavior of the binary code, the so-called Gray code is used. This
is again a binary code, however, completely without the step changes mentioned
above. The transformation of the standard binary code into the Gray binary code
and the inverse transformation are illustrated in Fig. 2.18. The accuracy with which
individuals are able to occur in the space of possible solutions is related to the bi-
nary representation of individuals. Basically, if the binary individual is short and
represents a number with a few digits behind the decimal point, then it will occur
only in certain positions of the real space of possible solutions. If its length and thus
also accuracy grow, then the density of the positions of possible occurrences will
grow. Nevertheless, one should note that the growing length of the individual causes
considerable problems during further operations in the corresponding evolutionary
algorithm (mutations, crossbreeding ...).

Furthermore, individuals can be represented in the form of real or integer num-
bers [57] or, as the case may be, their combinations, depending on the type of the
algorithm [73]. The individual that also contains non-numerical values is a special
representation. With the use of special techniques, it is possible to work numerically
also with this individual. The last special form of representation is the so-called
“tree”. This form of representation makes it possible to visualize the tree structure,
nevertheless, in the computer sense, the string of suitable symbols of a certain char-
acter is still the individual. This kind of visualization is is usually used in so called
genetic programming [48], which is advanced evolutionary technique, used to ma-
nipulate with symbolic structures and create in this way more complex structures.
Another similar approach is grammatical evolution [55], [20].

2 Evolutionary Algorithms for Chaos Researchers 65

Fig. 2.18 Generation of the Gray code - reflection method

2.4.4.1 Binary and Gray Code Representation

The binary code is formed over the alphabet [0,1] as a number representation sys-
tem with base–2. Any (integer) number n can be expressed by the binary string
(bNbN−1 . . .bi . . .b2b1b0) with all the bi ∈ [0,1]. The number n converts to the bi-
nary string by

n= bN2N+bN−12N−1+ . . .+ b222+b121+b0. (2.3)

Note that in the binary string every digit (bit) bi counts for a distinct numerical
value, 2bi . So if this bit changes, it depends on the exact bit position how big the
change in the represented numerical value is. Clearly, this change in represented
numerical value can be considerable if the bit is far left in the bit string. Next to
the binary code, the Gray code is frequently used for genetic algorithms. It is also
called the constant change code since when mutating a Gray–coded individual, the
real number that corresponds to the corresponding binary sequence does not change
much.

The Gray code was patented in 1947, when Frank Gray asked to register it under
the name of reflected binary code. However, users started using the name Gray code
according to its founder [34]. One of the alternatives of the construction of the Gray
code is described in Fig. 2.18. It is the so-called “reflection” method. It consists
in taking the n bit code, for example, for n = 2 code 00, 01, 11, 10. This is then
extended by its mirror copy 00, 01, 11, 10, 10, 11, 01, 00 and 0 is added to the
original part, while to the reflected 1: 000, 001, 011, 010, 110, 111, 101, 100. This
is repeated until we have the required m bit string of the Gray code.

Another method that can be easily implemented by a computer is using the XOR
operation. The principle of transformation of the Gray code into the binary code is
prescribed by relation (2.4) and illustrated in Fig. 2.19a. The inverse transformation,
i.e. from the binary into the Gray code is given by relation (2.5) and illustrated in

66 I. Zelinka and H. Richter

(a)

(b)

Fig. 2.19 Generation of the Gray code - XOR method, a) Conversion from the Gray code into
the binary code, b) Conversion from the binary code into the Gray code

Fig. 2.19b. Symbol bk and gk represents the k-th bit of the standard binary code or,
as the case may be, Gray code.

As mentioned above, the binary strings in the Gray code always differ only in
one bit when changing their decimal equivalent by one. The distances between indi-
vidual numbers have therefore the Hamming distance equal to one. The Hamming
distance is defined as the number of bites in which two binary strings differ. The
difference between the binary and Gray coding for numbers from zero to seven can
be seen in Table 2.1.

b1= g1
b2= g1⊕g2= b1⊕g2
b3= g1⊕g2⊕g3= b2⊕g3
b4= g1⊕g2⊕g3⊕g4= b3⊕g4
b5= g1⊕g2⊕g3⊕g4⊕g5= b4⊕g5

(2.4)

2 Evolutionary Algorithms for Chaos Researchers 67

g1= b1
g2= b1⊕b2
g3= b2⊕ b3
g4= b3⊕ b4
g5= b4⊕ b5

(2.5)

Table 2.1 Difference between the Gray and standard binary code

Decimal value Gray code Binary code

0 0 0
1 1 1
2 11 10
3 10 11
4 110 100
5 111 101
6 101 110
7 100 111

The advantage of the Gray code appears in the more uniform mutation of indi-
viduals and generally in faster convergence to the global optimum. However, there
are differences in opinions. Some authors insist that the Gray code slows down the
genetic algorithm (GA) due to the process of conversion [34]. On the contrary, other
authors prefer the use of the Gray code ([11], [36]).

When using genetic algorithms during mutation or crossbreeding of standard bi-
nary individuals, the argument (gen) may change considerably, see Fig. 2.20. Such
big changes do not occur in individuals in the Gray coding, Fig. 2.21.

Despite fact that evolutionary algorithms has very good performance, it is im-
portant to remember, that there are still problems, whose solution obtaining is still
impossible and also, that there are some limits given to the computation by quantum
physics. This is discussed in the following (last) section of this chapter.

Fig. 2.20 Crossbreeding of individuals in standard binary coding (R1, R2 - parents; P1, P2 -
descendants)

68 I. Zelinka and H. Richter

Fig. 2.21 Crossbreeding of individuals in Gray coding (R1, R2 - parents; P1, P2 - descen-
dants)

2.4.4.2 Real, Integer and Discrete

Another way of individual representation is, when individuals are represented not
only by by binary strings, as written above, but also in strings of real and integer
numbers. Special case of integer representation are so called discrete sets, as ex-
plained later.

In the real representation is individual represented by string of real numbers like
for example 2.3, 22.56, -569.2, Process of mutation, crossover, etc are then gov-
erned by used evolutionary algorithm.

In its canonical form, EAs are usually only capable of handling continuous vari-
ables. However, extending it for optimization of integer variables is rather easy.
Only a couple of simple modifications are required. First, for evaluation of the cost-
function, integer values should be used. Despite this, the EAs itself may still work
internally with continuous floating-point values. Thus,

fcost (yi) i= 1, ..,nparam
where :

yi =
{
xi for continuous variables
INT (xi) for integer variables

xi ∈ X

(2.6)

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here only for purposes of cost function value evaluation.
Truncated values are not assigned elsewhere. Thus, EA works with a population of
continuous variables regardless of the corresponding object variable type. This is
essential for maintaining the diversity of the population and the robustness of the
algorithm.

Secondly, in case of integer variables, the population should be initialized as
follows:

P(0) = x(0)i, j = ri, j
(
x(High)
j − x(Low)j +1

)
+ x(Low)j

i= 1, ...,npop, j = 1, ...,nparam
(2.7)

2 Evolutionary Algorithms for Chaos Researchers 69

Additionally, the boundary constraint handling for integer variables should be
performed as follows:

x(ML+1)
i, j =

⎧⎪⎪⎨⎪⎪⎩
ri, j
(
x(High)
j − x(Low)j +1

)
+ x(Low)j

i f INT
(
x(ML+1)
i, j

)
< x(Low)j ∨ INT

(
x(ML+1)
i, j

)
> x(High)

j

x(ML+1)
i, j otherwise

where,
i= 1, ...,npop, j = 1, ...,nparam

(2.8)

Discrete values can also be handled in a straight forward manner. Suppose that
the subset of discrete variables, X(d), contains i elements that can be assigned to
variable x:

X (d) = x(d)i i= 1, ..., l where x(d)i < x(d)i+1 (2.9)

Instead of the discrete value xi itself, its index, i, can be assigned to x. Now the
discrete variable can be handled as an integer variable that is boundary constrained
to range {1,2,3, ..,N}. In order to evaluate the objective function, the discrete value,
xi , is used instead of its index i. In other words, instead of optimizing the value
of the discrete variable directly, the value of its index i is optimized. Only during
evaluation is the indicated discrete value used. Once the discrete problem has been
converted into an integer one, the previously described methods for handling integer
variables can be applied. The principle of discrete parameter handling is depicted in
Fig 2.22. This technique is called discrete set handling (DSH), see [46].

Fig. 2.22 Discrete parameter handling

70 I. Zelinka and H. Richter

2.4.4.3 Tree Representation

The tree representation used by EAs, come from initial idea of so called symbolic
regression by means of a computer program. It was proposed in Genetic Program-
ming (GP), [43], [42]. Genetic programming was the first tool for symbolic regres-
sion carried out by means of computers instead of humans. The main idea comes
from genetic algorithms (GA), which was used in GP [43], [42]. Its ability to solve
very difficult problems is well proved; for example, GP performs so well that it can
be applied to synthesize highly sophisticated electronic circuits [44].

The main principle of GP is based on GA, which is working with populations of
individuals represented in LISP programming language. Individuals in a canonical
form of GP are not binary strings, different from GA, but consist of LISP symbolic
objects like sin, +, Exp, etc. These objects come from LISP, or they are simply user-
defined functions. Individuals in genetic programming, in its canonical form, are
thus commands of Lisp language. There are also another techniques like Read’s lin-
ear coding [59] and DSH technique. DSH technique mentioned above, allow EAs to
manipulate with such a structure also via integer index. Individual is in fact integer
string, which is converted into symbolic expression. Individuals can be then visual-
ized in the form of so called trees, which are graphical unfolding of nonnumerical
expressions, see Fig. 2.23. Individuals in this form can represent not only classi-
cal mathematical expressions, but also logical functions (Fig. 2.24 and Fig. 2.25),
or elements of electronics circuits (Fig. 2.26). Read’s linear code is representation
based on string of integer numbers, as shown on Fig. 2.27 and Fig. 2.28. In the case
of Read’s representation each vertex has associated number according to number of

Fig. 2.23 An example of tree representation. Individuals are represented graphically by trees.
Crossover is nothing more than cutting and exchange of randomly selected sub-trees.

2 Evolutionary Algorithms for Chaos Researchers 71

Or

And

A C

And

Not

A

Not

C

Fig. 2.24 Tree representation of logical function

Nand

Or

C A

Or

Nor

Nor

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

And

Or

B C

Nand

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

And

Nor

A And

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

Nor

Nor

Or

And

C A

And

Not

B

A

And

Not

C

Not

A

And

Not

C

Not

B

C

C

Fig. 2.25 Tree representation - more complicated example

outcomming vertexes. Code of arbitrary tree is obtained so that labels of vertexes
are “joined” (according to dotted line with arrows, see Fig. 2.28) into integer string
with a such condition that used vertex label is further ignored, to keep unicity of
description. There is more techniques of how to represent individuals for genetic
programming techniques, however above mentioned techniques (Lisp, Read’s lin-
ear code) are well known. DSH technique can be regarded like experimental novelty
technique, which is mostly used in this book.

72 I. Zelinka and H. Richter

Fig. 2.26 Electronic realization of evolutionary designed circuit via evolution with individuals
in DSH representation

2

1 3
0

1000

0

Fig. 2.27 Read’s tree. Each vertex has associated number according to edges coming out of
vertex. Unique code of tree is constructed according to dashed arrows.

2 Evolutionary Algorithms for Chaos Researchers 73

2

21 2103 210300100

21030010

21030021030210 2103001

Fig. 2.28 Code of Read’s Tree - 210300100

2.4.5 Evolutionary Operators: Selection, Recombination,
Mutation

The algorithmic cycle of evolutionary algorithms relies upon the working of three
main operators, selection, recombination and mutation. All three operators play a
distinctive role in solving the posed optimization problem. In general, during the
evolutionary run, we can separate two phases, exploring and exploiting. In the ex-
ploring the individuals should cover large (ideally all) parts of the search space in
order to find regions where optimal values are likely to be found. Hence, individ-
uals should be different, the diversity of the population should be high. After that
exploration phase, a promising region in the search space should be searched more
detailed, so exploiting the knowledge about the distribution of fitness in the search
space should set in. In this phase the individuals of the population should be pushed
towards the actual optima. Clearly, both phases are necessary for successful problem
solving. If the exploration phase is missing or too short, the individuals might settle
for local optima, missing the global optima in this process. Without exploitation,
the exact location of the best solution might not be found. Overlaying both phases is
the intention to exclude clearly inferior solutions from hindering the search process.
Against this background, the working of the evolutionary operators can be under-
stood.

Selection: The selection mechanism organizes that individuals with higher fitness
become the material from which the next generation is produced. In doing so, it is

74 I. Zelinka and H. Richter

important (particularly in the exploration phase) that not only the very best individu-
als are kept, but also “promising second-bests”. A good selection mechanism should
balance the selective pressure (that is only the best are to survive) with maintenance
of residual diversity in the population. For achieving this balance, different kinds of
selection schemes have been proposed. They can be roughly distinguished in purely
deterministic selection, where either based on ranking or by setting a fitness thresh-
old a certain percentage of the population is kept, and guided stochastic selection,
where samples of the population are randomly picked and based on the comparison
of their fitness values a decision is made to discard or keep them.

Recombination: In recombination (also called crossover, in particular for GAs) new
individuals are created based on those previously selected for their superior fitness.
In a first step, two (or sometimes even more) individuals are appointed to be par-
ents. This appointment can be either deterministic by working off the whole selected
population, or stochastic where the individuals are determined randomly. Then, the
schemes proposed for performing the step differ largely for different kinds of rep-
resentation. For evolutionary algorithms that use binary representation, we find that
both parents swap or shuffle (sometimes at more than one place) subsections of their
binary string. For real valued representation, a (sometimes weighted) arithmetic or
geometric mean between both parents yields the offspring.

Mutation: Following the recombination step, the produced offspring are altered
randomly by mutation, mostly in a marginal manner only. Therefore, mutation rate
(which defines the probability that the offspring are subjected to mutation) and the
mutation strength (which fixed the magnitude of the changes in the offspring) must
be set. Again, we find a difference between binary and real valued representation.
For binary stings, we have a flipping of a bit (0 → 1 or 1 → 0) at one or more places
in the binary string. For vectors of real numbers, realizations of a (mostly normally
distributed) random variable are added to the offspring.

The evolutionary operators just considered can be regarded as the backbone for
the majority of ECT methods, although not all of them must be part in a specific
implementation and also their respected role and importance might be largely dif-
ferent. In general, mutation is next to a sensible choice of the initial population the
source of random and diversity enhancement in the algorithm. It helps to explore
the search space. Selection, on the other hand, acts mainly as a filtering for supe-
rior solution candidates. In this, it exercises selection pressure on the population.
However, for a given type of ECT the same operator might have a different flavor.
So, in GAs mutation is a minor operator, while in ESs it is the main component.
Such differences depend frequently on the type of representation. For a binary rep-
resentation, as GAs use, a single bit change in the right place of the binary string,
as induced by mutation, can cause a very dramatic change of the encoded solution.
The very same bit flip can alter the string largely or a little, depending on where in
the string it happens. This is not the case for real value representation, where the
magnitude of the change caused by mutation can be closely controlled but mutation
rate and strength.

2 Evolutionary Algorithms for Chaos Researchers 75

2.5 Limits to Computation

Unfortunately, many people believe that everything can be computed if we have a
sufficiently powerful computer and elegant algorithm. The goal of this chapter is
to show that some problems cannot be solved algorithmically due to their nature.
Popularly speaking, there is not, has not been and will not be enough time for their
solution.

Part of these restrictions are also physical limits that follow from the material
nature of the universe, which restricts the output of every computer and algorithm
by its space-time and quantum-mechanical properties. These limits, of course, are
based on the contemporary state of our knowledge in physical sciences, which means
that they might be re-evaluated in the case of new experimentally confirmed theories
(strings, etc.). At this moment, however, this is only a speculation and we must adhere
to the generally accepted and confirmed facts from which these limits follow.

2.5.1 Searched Space and Its Complexity

The complexity of the optimization problems can be demonstrated by many exam-
ples. Let us follow examples from [54]. A typical representative is the so-called SAT
problem (boolean satisfiability problem). This is a problem from the field of logic
that is represented by a complex logical function with a great number of logical
variables. Relation 2.10 is an example from [54].

F(x) = (x17 ∨ x̄37 ∨ x73)∧ (x̄11 ∨ x̄56)∧ ...∧ (x2 ∨ x43 ∨ x̄77 ∨ x̄89 ∨ x̄97), (2.10)

that contains 100 variables and the objective is to find such values of individual
arguments of this function for which the resulting value of relation 2.10 is TRUE.
At first sight, this problem looks very trivial; nevertheless, it is a problem that cannot
be solved by classical methods. If we take into account that the expression contains
100 unknown variables that can assume two values (0,1), then the number of all
possible combinations is 2100, which is approximately 1030. In order to get a better
impression on the monstrous size of this number, it is sufficient to imagine how long
it would take to evaluate all the combinations, if 1013 of these combinations are
evaluated within one second (which is of course impossible on single processor).
The correct answer is 109 years. This essentially means that the solution of this
problem would take approximately the time of the existence of the universe.

Another complication related to this problem is the fact that function 2.10 as de-
fined does not make it possible to evaluate the quality of the current solution. This is
a substantial drawback, particularly if the evolutionary techniques are used, because
there is no possibility how to determine whether the qualities of two subsequently
found solutions are close or not. As will be shown further, when using the evolu-
tionary algorithms, it is of vital importance that the information on the quality of the
solution is available for the determination in which “direction” the optimum solu-
tion lays. This is not possible in the case of the SAT problem, because the function

76 I. Zelinka and H. Richter

(a) (b)

(c) (d)

Fig. 2.29 Connections in the traveling salesman problem that form n! possible trajectories
(see Fig. 2.32). We indicate the number of cities / number of connections between the cities
a) 4/6, b) 7/21, c) 10/45, d) 20/190.

only returns TRUE or FALSE, i.e. “good” or “bad”. It does not return how good or
bad a given solution is.

The SAT problem is more or less a scholastic problem. As a more practical prob-
lem from real life, one can use the well known traveling salesman problem. This is
a problem, in which a traveling salesman must visit a set of N cities in the shortest
possible time or with the smallest fuel consumption or, as the case may be, fulfill
other criteria. The traveling salesman problem can be visualized by means of graphs,
as demonstrated in Fig. 2.29 - 2.31.

2 Evolutionary Algorithms for Chaos Researchers 77

Fig. 2.30 Traveling salesman visiting seven cities: The best route is on the left and the worst
route is on the right

Fig. 2.31 Traveling salesman visiting ten cities: The best route is on the left and the worst
route is on the right

The condition is that each route must start and end in the same city and each
city should be visited only once. This is therefore a purely practical problem. The
trajectory of the traveling agent represents a sequence of dots, such as, for example,
“2 - 3 - ... - 7 - 26 ... ”. The number of all possible combinations is n!. In the case
of a symmetrical problem of a traveling salesman (the distance from city A to B is
the same as from city B to A), 2n routes repeats. In this case the final number of
all possible combinations is (n-1)!/2. However, this number is still large. As shown
in Fig. 2.33, the number of all possible combinations very quickly grows with the
number of cities. Already for n > 6, there are more combinations in the traveling
agent problem than in the SAT problem. Fig. 2.33 shows the growth of the number
of solutions of the SAT problem in comparison with the growth of the complexity
of the traveling salesman problem.

Let us look further. The traveling salesman problem has 181,440 possible solu-
tions for 10 cities. There are 1016 possible solutions for 20 cities and 1062 for 50
cities. If 60 cities is used, then there is 1079 of possible solutions. This number is
equal to the estimated number of protons in our universe, i.e. if one proton is used
like memory to store one possible solution, then all protons in universe can store
only TSP with size 60 cities. No more. It is worth mentioning that there is approx-
imately 1021 liters of water on our Planet [54]. It is a trivial task to calculate how
many globes could be covered with this volume of water had we used a reservoir

78 I. Zelinka and H. Richter

Trajectories

Roads

5 10 15
1

1000

106

109

1012

1015

1018

No. of towns

R
oa

d
an

d
tr

aj
ec

to
ri

es

Fig. 2.32 Visualization of the travelling salesman complexity. The difference is illustrated
between the number of roads (blue dots) and possible trajectories (red dots).

TSP

SAT

2 4 6 8 10

1

10

100

1000

104

105

n

SA
T

,
T

SP

(a)

TSP

SAT

0 20 40 60 80 100
1

1026

1052

1078

10104

10130

10156

n

SA
T

,
T

SP

(b)

Fig. 2.33 Growth of the problem complexity for SAT (blue curve) and traveling salesman
(red curve). Starting with seven cities (or variables in SAT), the traveling salesman problem
is more time consuming.

with a volume of 1062 liters water. It is therefore obvious that even from such a
trivial example as the optimum distribution of parcels, a problem may arise, whose
optimum solution is not known. It is worth mentioning that at the present time, there
are special types of evolutionary algorithms (ACO - Ant Colony Optimization) that
manage up to 10,000 cities satisfactorily. We leave it to the kind reader to calculate
what is the number of combinations (hint: 2.84625968091035659).

The third and last sample problem is the artificial testing function, depicted in Fig.
2.34 that is used as a testing function for various types of evolutionary techniques;

2 Evolutionary Algorithms for Chaos Researchers 79

Fig. 2.34 Graph of test fuction

(for another example see [54]). This function is strongly nonlinear (for another simi-
lar functions see Fig. 2.11 and Fig.2.12) and it is complicated. Although the function
in this example is artificial, one can encounter even “wilder” functions that represent
real physical problems. This type of function looks innocent, however, it is the con-
trary in this case. It is necessary to realize that everything is running in computers,
thus also the optimization of such a function, is digitized. If this would not be so,
then it would necessary to calculate the value of the function in an infinite amount
of points. Due to digitization, this infinity reduces to a set of values of the func-
tion, whose cardinality is finite, even though it is still immense. Let us assume that
the computational accuracy of the computer used is 6 decimals. In this case every
variable in a given function assumes real values. Through digitization, the infinity
mentioned above reduces to a set of possible solutions, however the cardinality of
this is still immense. Let us assume that variable in a given function Fig. 2.34 may
assume up to 107 different values. In general terms, this function will assume 107n

values (n is a number of variables here). This number is many times greater than the
number of solutions of the traveling salesman problem for n ≤ 107. For n = 50, there
are 10350 solutions. It is necessary to realize that the accuracy of present computers

80 I. Zelinka and H. Richter

is much higher and the problem therefore generates a gigantic number of possible
solutions.

Let us mention that the complexity of problems is not measured in theoretical
informatics by the time demand factor (even though it is so de facto in the result), but
primarily by the complexity or dependence of the capacity of the algorithm on the
growing number of input data. As was already mentioned, there are problems whose
complexity grows nonlinearly with the growing input (for example, the traveling
salesman problem, see Fig. 2.33). We then speak about algorithms with polynomial,
exponential, etc., complexity. The examples of the complexity of problems are in
Table 2.2 - 2.4 (taken from [51]). Table 2.2 gives the number of possible solutions
for n input parameters. If testing one solution takes the predefined time, the time
demand factor for searching all possible solutions is in Table 2.3. If faster computers
are used, the gross estimation of the acceleration of computation is in Table 2.4. It is
obvious from these tables that there are many problems that no computer can help
to solve.

Table 2.2 Estimation of the values of some functions

n 10 50 100 300 1,000
Function

Polynomial

5n 50 250 500 1,500 5,000
n log2 n 33 282 665 2,469 9,966

n2 100 2,500 10,000 90,000 1 million
(7 digits)

n3 1,000 125,000 1 million 27 million 1 billion
(7 digits) (8 digits) (10 digits)

Exponential

2” 1,024 16 digit 31 digit 91 digit 302 digit
number number number number

n! 3.6 million 65 digit 161 digit 623 digit giant
(7 digits) number number number number

nn 10 billion 85 digit 201digit 744 digit giant
(11 digits) number number number number

For comparison: The number of protons in the visible Universe has approxi-
mately 79 digits The number of microseconds from the “big bang” has 24 digits.

2 Evolutionary Algorithms for Chaos Researchers 81

Table 2.3 Estimation of the time of f(n) operations if 1 operation takes 1 μs

n 10 20 50 100 300
Function

Polynomial

n2 1/10,000 s 1/2,500 s 1/400 s 1/100 s 9/100 s
n5 1/10 s 3.2 s 5.2 s 2.8 hours 28.1 days

Exponential

2n 1/1,000 s 1 s 35.7 years 400 trillion 75 digit
centuries # of centuries

nn 2.8 days 3.3 trillion 70 digit 185 digit 728 digit
years # of centuries # of centuries # of centuries

Table 2.4 Estimation of the time of f(n) operations if 1 operation takes 1 μs

Maximum dimension of the input manageable in a reasonable time

Function Current computers 100 times 1,000 times
faster computers faster computers

n N1 100 N1 1,000 N1
n2 N2 10 N2 31.6 N2
2n N3 N3 + 6.64 N3 + 9.97
n! N4 N4 + 1 N4 + 2

2.5.2 Physical Limits of Computation

As was already mentioned, there are limits restricting the output of any computer
that follow from the quantum-mechanical nature of mass. These limits restrict both
the output of the computer and its memory. It is obvious from these restrictions that
there are many problems that no computer can help to solve.

Basic restriction in this direction is the so-called Bremermann’s limit [8], ac-
cording to which it is not possible to process more than 1051 bites per second in
every kilogram of matter. In the original work of this author [8], the value of 2x1047

bites per second in one gram of matter is indicated. At first sight, this limit does not
look frightening, but only until we take “elementary” real examples for comparison.
Let us consider chess-mate for illustration. For this game, the estimated number
of combinations is 10120. As another example, let us consider the lattice of cellu-
lar automata [39] of 100 x 100 cells that can only assume black and white values
that represents 210,000, which is approximately 103,000 combinations - images. The
current TV sets with a LCD monitor have approximately 1,300x700 pixels, which

82 I. Zelinka and H. Richter

can assume various colors and degrees of brightness. It is clear that the number of
combinations is much higher on an LCD monitor.

This limit can be derived in the following relatively simple manner: For making
it possible to measure, process and transfer information, it is necessary to store it
on some physical carrier. This information may be electromagnetic radiation, paper
tape, laser beam, etc., therefore always something material. Information alone, i.e.,
without a physical carrier, cannot exist. Because elementary particles and their en-
ergy states can also be used as a carrier of information, it is obvious that the limit
of how much information the matter can carry follows from the restriction that was
discovered at this physical level.

In order to make it possible to measure this information, it must be modulated on
the corresponding carrier to resolve the individual carrier’s states that represent the
value of the information. Von Neumann[69] called the resolvable states “markers”.
The lowest resolvable energy states are the quantum states of matter, whose resolv-
ability from the bottom is limited by Heisenberg’s uncertainty relation. When deriv-
ing the already mentioned limits, it does not matter whether mass or energy types
of carriers are considered. Both types are physically interchangeable. Therefore, if
quantum states are considered as the smallest resolvable energy states, which will be
considered as bits in this case, then the “energy-bit” resolution is given by Heisen-
berg’s uncertainty relation. Generally, one can say that according to the Heisenberg
principle of uncertainty it is possible to always identify the final number of states.
Because nobody can say which state will be observed, probability has to be used.
It is common to say that variable X will have n different values with probability
p1, p2, .., pn Based on information theory is clear that we can get

H (p1, p2, .., pn) =−
n

∑
i=1

pi log2 pi (2.11)

bits of information. This function has one global extreme only if it hold p1 = p2 =
...= pn = 1

/
n true. Then

H
(
1
/
n, ...,1

/
n
)
=−

n

∑
i=1

(
1
/
n
)

log2

(
1
/
n
)
= n
(
1
/
n
)

log2 n= log2 n. (2.12)

Such marker can carry maximally log2 n bits of information. Based on quantum
nature of our world it is clear that there is no better marker than marker repre-
sented by n states (i.e. energy levels) of selected quantum system. All levels have
to be in interval [0,Emax] where Emax is maximum of energy. If one can measure
energy with precision ΔE , then in the marker, can be distinguished maximally
n+ 1 =

(
Emax

/
ΔE
)
+ 1 energy levels. When one marker with n+1 energy lev-

els will be taken into consideration, then by this marker can be represented max-
imally log2 (n+1) of bits. On the contrary, when two markers will be used with

energy levels in
[
0,1
/

2Emax
]

it can represent 2 log2

(
n
/

2+1
)
= log2

(
n
/

2+1
)2

bits whereas n+1 <<
(
n
/

2+ 1
)2 =

(
n2
/

4
)
+n+1 and so on. Based on this, it is

clear that for representation of the maximal information carried by marker is opti-

2 Evolutionary Algorithms for Chaos Researchers 83

mal, when n different markers with energy levels in [0,ΔE] is used, i.e. with two
energy levels which represents 0 and 1. In total it is possible to represent maximally
n log2 (n/n+1) = n log2 (n/n+ 1) = n log2 2 i.e. n bits of information because clearly
log2 2= 1 hold.

Carrier with mass m is according to Einstein equation equal to Emax = mc2. It is
obvious that in such a carrier it is possible to maximally have

n=
Emax

ΔE
=

mc2

ΔE
(2.13)

bits of information. To calculate the exact amount of information stored by 2.13,
then we need to use Heisenberg principle of uncertainty

ΔEΔ t ≥ h̄
2

(2.14)

In which h̄ = h
/

2π (h is Planck constant, h̄ is Dirac constant). If in 2.14 the
equality is taken into consideration, then one obtains for the upper estimation

n=
mc2

h̄
2Δ t

= 4π
mc2

h
Δ t (2.15)

During time interval Δ t it is possible to process maximally 4π mc2

h Δ t bits of infor-
mation. When Δ t = 1s one can get maximal number of bits which can be processed
or stored in mass per 1s. For m= 1kg this number (lets call it BL) is

BL= 4π
c2

h
(2.16)

where [BL] = 1kg−1s−1

In this moment it is only a matter of simple calculation to get exact numerical
value of BL, lets: speed of light and Planck constant h= 6,62607 ·10−34J.s. Finally
we get

BL≈ 1,7045 ·1051kg−1 · s−1 (2.17)

This number, which we call BL here, is the so called Bremermann limit. It is
the definite limit which gives maximal number of bits which can be processed or /
and stored by an arbitrary matter. In the original paper Bremermann suggested 1047

which is caused by the use of nonstandard units (cm instead of m and grams instead
of kg, as already mentioned before).

Based on this, it is visible that in our universe the computational power is limited
by matter and basically there is no computer (existing or theoretical) which would
be able to solve arbitrary problems.

If the mass of the Earth (5.9742×1024 kg) is taken into account, then a computer
of such a mass might store (and subsequently also process) approximately 1076 bits
every second. During the life of Earth (109 years), a computer of its mass might
process maximally 1092 bits. If the output of a fictive computer is plotted against

84 I. Zelinka and H. Richter

its mass, it is obvious (Fig. 2.35) that its “computational capacity” is exceeded al-
ready during the solution of the traveling salesman problem for a small number of
cities/computer mass.

0 20 40 60 80 100
1

1026

1052

1078

10104

10130

10156

n �Kg, No. towns�

Q
ua

nt
um

lim
it,

T
SP

(a)

40 41 42 43 44 45
0

2.0�1051

4.0�1051

6.0�1051

8.0�1051

1.0�1052

1.2�1052

1.4�1052

n �Kg, No. towns�
Q

ua
nt

um
lim

it,
T

SP

(b) Detailed view

Fig. 2.35 Simultaneously plotted dependence of the number of possible solutions of the trav-
eling salesman problem on the number of cities n (red) and the number of bits processed in a
computer of mass m (blue). Let us add for more attentive readers that there is a logarithmic
scale in the left figure, while a “normal” in the right figure. This is the reason why the plots
appear considerably different in both figures.

It is clearly obvious from Fig. 2.35 that the break between the number of cities
and the computer mass occurs somewhere between 43 and 44. Perhaps it is not
necessary to mention that the output of our computer is illustrated in bits, which is
a little bit misleading, because one bit is not sufficient for storing information on
one possible solution of the traveling salesman problem. Had this been taken into
consideration during the computation, then the result would have been different,
nevertheless approximately the same as for the order of magnitude.

If we take into account the ACO (Ant Colony Optimization) algorithm that sat-
isfactorily solves the traveling salesman problem up to approximately 10,000 cities,
then we would need a computer of the mass of 1035608 kg for storing and processing
the information on all possible trajectories. In other words, 1035566 computers of the
mass of the Earth, should the computation be finished during the life of the universe
(1017 s). In a similar way [50], we would derive the shortest possible time during
which it is possible to process the stored information. This value is t = 10−12 s; the
current computers work in a region of 10−9 s.

In the publication [50], these considerations have been worked out in more details
and applied to the transfer of information through an information channel (compu-
tation can also be considered as a transfer of information through a special channel).
Beside other things, it was found that if a certain mass (or energy) of the transfer
medium is reached, further information cannot be transferred through the channel,
because the channel collapses into an astrophysical object called black hole. Accord-
ing to[50], the transfer of information is efficient (optimum, maximally usable), if
the information channel is on the brink of collapsing into a black hole.

2 Evolutionary Algorithms for Chaos Researchers 85

Independently of whether these calculations are accurate or only approximate, it
is obvious that physical limits restrict the possibilities of any computer and also of
the mathematical computational methods.

2.6 Conclusion

The principles of evolutionary techniques are described in many publications fo-
cused both on evolutionary diagrams and in publications “outside” the field, where
it is necessary to inform the corresponding community of experts about these tech-
niques. A representative example is [29]. In these and similar monographs, the
problems of evolutionary algorithms are introduced at a very vague level. However,
there are more suitable sources of literature intended for the needs of the technical
community. Here we mention several publications that are suitable for the possible
extension of knowledge on ECT. We can recommend the book [2], which is very
comprehensive. The book [53] is in principle sufficient for understanding the basic
principles; the paper [1] can also be recommended. Among many book monographs,
it is possible to mention [23] and also [54]. Both are written in a very understandable
manner and the reader will not get lost in theorems, definitions and proofs that do
not bring much information for practitioners and beginners. Description of special-
ized algorithms can be found in [53] and [38] (GA), [15] and [71] (PSO), [57], [56],
[58] and [24] (DE), [73] (SOMA), [35], [32] and [65] (MA), [41] and [13] (SA),
[45] (SS).

Popularly written books from the field of computers are much less represented
than specialized expert books. Much information can be found on the Internet, how-
ever, one should mention that this source of information is not always reliable and
one can also encounter untrue and misleading information.

There are many publications on the limits of computational technologies based
on quantum physics. However, these publications are relatively very demanding on
the knowledge from the field of quantum mechanics and mathematics. For extending
the information indicated in this chapter, we recommend the already mentioned pub-
lications [8] and [50]. The substantial part of limits imposed by mass on processing
and storing data is described in the first part [8]. The explanation is so understand-
able that even a reader at a high school level will understand it. In the paper [50],
the relation between transfer channels and black holes is discussed.

You can also read in [2] on the representation of individuals, basic concepts of
ETV and the properties of the test functions. Of course, there are other monographs
and Internet sources providing this information, but we consider publications men-
tioned above as sufficiently representative.

References

1. Babu, B.: Evolutionary Computation - At a Glance. NEXUS, Annual Magazine of Engi-
neering Technology Association, BITS, Pilani, 3–7 (2001)

2. Back, T., Fogel, B., Michalewicz, Z.: Handbook of Evolutionary Computation, Institute
of Physics, London (1997)

86 I. Zelinka and H. Richter

3. Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical Report CMU-
CS-94-163, Carnegie Mellon University, USA (1994)

4. Barricelli, N.A.: Esempi Numerici di processi di evoluzione. Methodos, 45–68 (1954)
5. Barricelli, N.A.: Symbiogenetic evolution processes realized by artificial methods.

Methodos 9(35-36), 143–182 (1957)
6. Barricelli, N.A.: Numerical testing of evolution theories: Part I: Theoretical introduction

and basic tests. Acta Biotheor. 16(1-2), 69–98 (1962)
7. Box, G.E.P.: Evolutionary Operation: A Method for Increasing Industrial Productivity.

Appl. Stat. 6(2), 81–101 (1957)
8. Bremermann, H.: Optimization through evolution and recombination Self- Organizing

Systems. In: Yovits, M., Jacobi, G., Goldstine, G. (eds.), pp. 93–106. Spartan Book,
Washington (1962)

9. Bull, L., Kovacs, T.: Foundations of Learning Classifier Systems. Springer, Heidelberg
(2005)

10. Carlson, E.: Doubts about Mendel’s integrity are exaggerated. In: Mendel’s Legacy, pp.
48–49. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)

11. Caruana, R., Schaffer, J.: Representation and hidden bias: Gray vs. binary coding for
genetic algorithms. In: Proc. 5th Int. Conf. on Machine Learning, Los Altos, pp. 153–
161. Morgan Kaufmann, San Francisco (1988)

12. Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence
Approach. Springer, Heidelberg (2002)

13. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)

14. Chu, P.: A Genetic Algorithm Approach for Combinatorial Optimisation Problems.
Ph.D. Thesis. The Management School Imperial College of Science, Technology and
Medicine, London, p. 181 (1997)

15. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2009)
16. Coveney, P., Highfield, R.: Mezi chaosem a radem, Mlada fronta (2003)
17. Darwin, C.: On the origin of species by means of natural selection, or the preservation

of favoured races in the struggle for life, 1st edn. John Murray, London (1859)
18. Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Berlin

(1999)
19. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Berlin (1996)
20. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dy-

namic Environments. Springer, Heidelberg (2009)
21. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
22. Dreo, J., Petrowski, A., Siarry, P., Tailard, E.: Metaheuristic for Hard Optimization:

Methods and Case Studies. Springer, Heidelberg (2005)
23. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg

(2007)
24. Feoktistov, V.: Differential Evolution - In Search of Solutions. Springer, Heidelberg

(2006)
25. Fogel, B., Corne, W.: Evolutionary Computation in Bioinformatics. Morgan Kaufmann,

San Francisco (2002)
26. Fogel, D.B.: Unearthing a Fossil from the History of Evolutionary Computation. Funda-

menta Informaticae 35(1-4), 1–16 (1998)
27. Fogel, D.B.: Evolutionary computation: the fossil record. IEEE Press, Piscataway (1998)
28. Fogel, D.B.: Nils Barricelli - Artificial Life, Coevolution, Self-Adaptation. IEEE Com-

put. Intell. Mag. 1(1), 41–45 (2006)

2 Evolutionary Algorithms for Chaos Researchers 87

29. Fogel, L., Owens, J., Walsh, J.: Artificial Intelligence through Simulated Evolution. John
Wiley, Chichester (1966)

30. Friedberg, R.M.: A learning machine: Part I. IBM Journal Research and Development 2,
2–13 (1958)

31. Glover, F., Laguna, M.: Tabu Search. Springer, Heidelberg (1997)
32. Goh, C., Ong, Y., Tan, K.: Multi-Objective Memetic Algorithms. Springer, Heidelberg

(2009)
33. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Publishing Company Inc., Reading (1989)
34. Haupt, R., Haupt, S.: Practical genetic algorithms, 2nd edn. John Wiley & Sons, USA

(2004)
35. Hart, W., Krasnogor, N., Smith, J.: Recent Advances in Memetic Algorithms. Springer,

Heidelberg (2005)
36. Hinterding, R., Gielewski, H., Peachey, T.: The nature of mutation in genetic algorithms.

In: Eshelman, L. (ed.) Proc. 6th Int. Conf. on Genetic Algorithms, Los Altos, pp. 70–79.
Morgan Kaufmann, San Francisco (1989)

37. Holland, J.: Adaptation in natural and artificial systems. Univ. of Michigan Press, Ann
Arbor (1975)

38. Holland, J.: Genetic Algorithms. Sci. Am., 44–50 (1992)
39. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific Publishing

Company, Singapore (2001)
40. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search, Ph.D. Thesis, Uni-

versity of New Mexico, Alburquerque (1995)
41. Kirkpatrick, S., Gelatt Jr., C., Vecchi, M.: Optimization by Simulated Annealing. Sci-

ence 220(4598), 671–680 (1983)
42. Koza, J.: Genetic Programming. MIT Press, Cambridge (1998)
43. Koza, J.: Genetic Programming: A paradigm for genetically breeding populations of

computer programs to solve problems. Stanford University, Computer Science Depart-
ment, Technical Report STAN-CS-90-1314 (1990)

44. Koza, J., Keane, M., Streeter, M.: Evolving inventions, pp. 40–47. Scientific American
(2003)

45. Laguna, M., Martı́, R.: Scatter Search - Methodology and Implementations in C.
Springer, Heidelberg (2003)

46. Lampinen, J., Zelinka, I.: Mechanical Engineering Design Optimization by Differential
Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp.
127–146. McGraw-Hill, London (1999)

47. Lampinen, J., Zelinka, I.: Mechanical Engineering Design Optimization by Differen-
tial Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization.
McGraw-Hill, London (1999)

48. Langdon, W.: Genetic Programming and Data Structures. Springer, Heidelberg (1998)
49. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evo-

lutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)
50. Lloyd, S., Giovannetti, V., Maccone, L.: Physical limits to communication. Phys. Rev.

Lett. 93, 100501 (2004)
51. Marik, V., Stepankova, O., Lazansky, J.: Artificial Intelligence III. Czech (ed.) Artificial

Intelligence III. Academia, Praha (2001)
52. Mendel, J.: Versuche über Plflanzenhybriden Verhandlungen des naturforschenden Vere-

ines in Brünn, Bd. IV für das Jahr. Abhandlungen, 3–47 (1865); For the English
translation, see: Druery, C.T., Bateson, W.: Experiments in plant hybridization. Jour-
nal of the Royal Horticultural Society 26, 1–32 (1901), http://www.esp.org/
foundations/genetics/classical/gm-65.pdf

88 I. Zelinka and H. Richter

53. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer,
Berlin (1996)

54. Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)
55. O’Neill, M., Ryan, C.: Grammatical Evolution - Evolutionary Automatic Programming

in an Arbitrary Language. Springer, Heidelberg (2003)
56. Onwubolu, G., Babu, B.: New Optimization Techniques in Engineering. Springer, New

York (2004)
57. Price, K.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F.

(eds.) New Ideas in Optimisation, pp. 79–108. McGraw Hill, International, UK (1999)
58. Price, K., Storn, R., et al.: Differential Evolution - A Practical Approach to Global Opti-

mization. Springer, Heidelberg (2005)
59. Read, R.C.: Coding of Unlabeled Trees. In: Read, R. (ed.) Graph Theory and Computing.

Academic Press, London (1972)
60. Rechenberg, I.: (1971) Evolutionsstrategie - Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution (PhD thesis), Printed in Fromman-Holzboog
(1973)

61. Reeves, C.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell Sci-
entific Publications, Oxford (1993)

62. Rego, C., Alidaee, B.: Metaheuristic Optimization via Memory and Evolution: Tabu
Search and Scatter Search. Springer, Heidelberg (2005)

63. Russell, Norvig, S.J., Peter: Artificial Intelligence: A Modern Approach, 2nd edn., pp.
111–114. Prentice Hall, Upper Saddle River (2003)

64. Schwefel, H.: Numerische Optimierung von Computer-Modellen, PhD thesis (1974);
Reprinted by Birkhäuser (1977)

65. Schönberger, J.: Operational Freight Carrier Planning, Basic Concepts. In: Optimization
Models and Advanced Memetic Algorithms. Springer, Heidelberg (2005)

66. Telfar, G.: Acceleration Techniques for Simulated Annealing. MSc Thesis. Victoria Uni-
versity of Wellington, New Zealand (1996)

67. Turing, A.: Intelligent machinery, unpublished report for National Physical Laboratory.
In: Michie, D. (ed.) Machine Intelligence, vol. 7 (1969); Turing, A.M. (ed.): The Col-
lected Works, vol. 3, Ince D. North-Holland, Amsterdam (1992)

68. Vesterstrom, J., Riget, J.: Particle Swarms (May 2002), Dostupny z
www.evalife.dk/publications/JSV_JR_thesis_2002.pdf
(cit.10.2.2007)

69. Von Neumann, J.: The computer and the brain. Yale University Press, New Haven (1958)
70. Wolpert, D., Macready, W.: No Free Lunch Theorems for Search, Technical Report SFI-

TR-95-02-010, Santa Fe Institute (1995)
71. Li, X.: Particle Swarm Optimization - An introduction and its recent develop-

ments (2006), www.nical.ustc.edu.cn/seal06/doc/tutorial_pso.pdf
(4.10.2006) (cit. 20. 2. 2007)

72. Zelinka, I.: Artificial Intelligence in problems of global optimization. Czech (ed.) BEN,
Praha (2002) ISBN 80-7300-069-5

73. Zelinka, I.: SOMA - Self Organizing Migrating Algorithm. In: Onwubolu, Babu, B.
(eds.) New Optimization Techniques in Engineering. Springer, New York (2004)

74. Zvelebil, M., Jeremy, B.: Understanding Bioinformatics. Garland Science (2007)

	Chapter 2 Evolutionary Algorithms for Chaos Researchers
	2.1 Historical Facts from a Slightly Different Point of View
	2.2 Evolutionary Algorithms – Outline
	2.2.1 Central Dogma of Evolutionary Computational Techniques
	2.2.2 Evolutionary Algorithms and Importance of Their Use

	2.3 Selected Evolutionary Techniques
	2.3.1 Overview
	2.3.2 Current State
	2.3.2.1 Classes Optimization Approaches
	2.3.2.2 The Outline of the Principles of Action of Random–Driven Search Algorithms
	2.3.2.3 The Outline of the Principles of Action of Evolutionary Algorithms

	2.4 Selected Basic Terms from the Evolutionary Algorithms
	2.4.1 The Usability Areas of Evolutionary Algorithms
	2.4.2 Common Features
	2.4.3 Population
	2.4.4 Individuals and Their Representation
	2.4.4.1 Binary and Gray Code Representation
	2.4.4.2 Real, Integer and Discrete
	2.4.4.3 Tree Representation

	2.4.5 Evolutionary Operators: Selection, Recombination, Mutation

	2.5 Limits to Computation
	2.5.1 Searched Space and Its Complexity
	2.5.2 Physical Limits of Computation

	2.6 Conclusion
	References

