
Chapter 13
Evolutionary Optimization and Dynamic Fitness
Landscapes
From Reaction–Diffusion Systems to Chaotic CML

Hendrik Richter

Abstract. Evolutionary algorithms are a promising option for solving dynamic opti-
mization problems. These problems have fitness landscapes whose topological fea-
tures change dynamically with the run–time of the evolutionary algorithm. In this
chapter, we study these landscapes by analyzing and quantifying their properties
using topological and dynamical landscape measures such as modality, ruggedness,
information content, dynamic severity and two types of dynamic complexity mea-
sures, Lyapunov exponents and bred vector dimension. Here, our main focus is on
dynamic fitness landscapes that exhibit spatio–temporal chaotic behavior. We fur-
ther discuss evolutionary algorithms and modifications needed to make them fit to
perform in dynamic landscapes and present numerical experiments showing the al-
gorithms’ performances. These results allow us to link the landscape measures to
the behavior of the evolutionary algorithms.

13.1 Introduction

An evolutionary algorithm is a stochastically driven but systematic search method
for solving optimization problems. All of its three main operators, selection, recom-
bination and mutation, depend on random elements. In other words, an evolutionary
algorithm, just as its biological inspiration and namegiver natural evolution, is a
phenomenon of chance, albeit the effect of chance is directed, mainly as a result of
the selection process. However, due to the heavy influence of chance in the working
of the algorithm, it is a challenge to establish some sound theory of evolutionary
computation. A corner–stone in such a theory is the conceptional framework of fit-
ness landscapes. The concept of fitness landscapes was introduced in the context of
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theoretical biology by Wright in the early 1930s [65] and later became an impor-
tant tool in theoretical studies in evolutionary optimization [19, 27, 32, 55, 57]. A
fitness landscape combines a search space with a notation of fitness for every point
in it, which for instance can be obtained by a genotype–to–fitness mapping or more
generally by encoding the set of all possible solutions of an optimization problem
and assorting a fitness value each. So, the fitness landscape appears as a potential
function on which the individuals of the population may move. This permits to pose
the question of how properties of the fitness landscape reflect, explain and allow to
predict the behavior of the evolutionary algorithm, and vice versa [27]. It can also
be studied how the population dynamics of the search algorithm (that is, the flow
of the individuals of the evolutionary algorithm in the landscape) interrelate with
topological and dynamical features of the fitness landscape.

A traditional field of application and theoretical study for evolutionary algorithms
is to consider static optimization problems. These problems have a fitness landscape
that does not change its topological features while the evolutionary algorithm is run-
ning. In recent years, we saw an increasing interest in solving dynamic optimization
problems [9, 24, 37, 44, 69]. Here, the fitness landscape has topological features that
change dynamically with the run–time of the evolutionary algorithm. Hence, such
dynamic fitness landscapes can be viewed as spatially extended dynamical systems.
So, our main topics here are how dynamic fitness landscapes can be formulated
mathematically, how they relate to spatio–temporal dynamical systems considered
in nonlinear dynamics, what their properties are and how these properties corre-
spond to the behavior of evolutionary algorithms used to do optimization in these
landscapes.

In this chapter, we consider dynamic fitness landscapes and study their topolog-
ical and dynamical properties. We show in Sec. 13.2 how these landscapes can be
constructed from reaction–diffusion systems modelled by partial differential equa-
tions (PDE) and also from coupled map lattices (CML). With this we intend to
establish relationships between these different kinds of description. In this context,
our main emphasis is on dynamic fitness landscapes that exhibit spatio–temporal
chaotic behavior. In Sec. 13.3 the study of topological and dynamical properties of
fitness landscapes is formalized and we present different types of landscape mea-
sures. We consider the topological landscape measures modality, ruggedness and
information content and the dynamical landscape measure severity and two types
of dynamic complexity measures, Lyapunov exponents and bred vector dimensions.
The evolutionary algorithm and modifications needed to make them fit to perform
in dynamic landscapes are discussed in Sec. 13.4. Four types of implementation are
considered, hyper–mutation, self–adaption, and two types of memory schemes, di-
rect and abstract memory. We present numerical experiments with the evolutionary
algorithm implementations and the fitness landscapes in Sec. 13.5. We use these ex-
periments to evaluate the performance of the algorithms and to link these results to
the landscape measures studied before. The chapter ends with concluding remarks
and a pointer at further problems.
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Fig. 13.1 Static fitness land-
scape in R2 as mountainous
region with peaks, valleys,
ridges and plateaus.

13.2 Constructing Dynamic Fitness Landscapes from
Reaction–Diffusion Systems and CML

13.2.1 Static and Dynamic Fitness Landscapes

In this chapter we will define dynamic fitness landscapes and provide a framework
for posing dynamic optimization problems. According to [27, 57] a static fitness
landscapeΛS is given by

ΛS = (S,n, f ), (13.1)

where S is the search space that can be constructed from a genotype–to–fitness map-
ping1 or more generally from encoding the set of all possible solutions of an opti-
mization problem. The neighborhood structure n(x) is a function that assigns to
every x ∈ S a set of neighbors.2 The fitness function f (x) : S → R gives the fitness
value for every point in the search space. In Fig. 13.1 a typical fitness landscape is
shown over a two–dimensional search space. In this special case with S = R2 the
metaphorical meaning of a fitness landscape as a mountainous region with peaks,
valleys, ridges and plateaus becomes particularly apparent. As each point of the
search space is characterized by a unique fitness value, solving an optimization
problem translates into finding the highest peak (or lowest valley). Hence, a static
optimization problem is

1 In theoretical biology a finer distinction is drawn between genotype and phenotype,
e.g. [57], which leads to a genotype–to–phenotype–to–fitness mapping. Genotype here
stands for the genetic make–up of a generic individual, i.e. its total genetic information,
the sum of all (genetically) possible individuals of a species. The phenotype characterizes a
particular individual, i.e. a specific instance of the generic, genotypical individual. In biol-
ogy this distinction is necessary because genetic fluctuations by mutation can only happen
on the level of genotypes, while fitness can only be assigned to phenotypical individuals.
In evolutionary computation, genotype can be thought of as standing for the search space,
phenotype for the individuals of an evolutionary algorithm, and fitness remains the same.

2 If the search space is a metric space (for instance a Hilbert (or Banach) space which is fre-
quently taken to define spatially extended systems properly), this neighborhood structure
is inherent and there is no need to define it additionally.
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fS =max
x∈S

f (x), (13.2)

which is finding the maximal fitness value fS and its location xS = arg f (xS).3

If an evolutionary algorithm is employed to solve the problem, the fitness land-
scape concept becomes once more useful as a population intended to find the op-
timum can be viewed as though living on the landscape’s surface. Moreover, gen-
erational change in the population means movement on the surface with the aim to
ascent a peak. The picture furthermore illustrates a dynamic optimization problem
in that the landscape is to change dynamically beneath the individuals of the popu-
lation. To describe such a kind of problem, we need the concept of a dynamic fitness
landscape4 which we consider next.

A dynamic fitness landscape ΛD can be defined by

ΛD = (S,n,Γ ,F,φ), (13.3)

where S is the search space and again represents all possible solutions x ∈ S of the
optimization problem and n(x) is an equivalent neighborhood structure; footnote
2 applies likewise. Γ is a time set (transition semi–group) that defines a measur-
ing and ordering scale for the changes; F is the set of fitness functions and every
f ∈ F with f : S×Γ → R depends on time and provides a fitness value to ev-
ery point in the search space and any element of the time set Γ . The transition
map φ : F × S× Γ → F describes how the fitness function changes over time.
Further, the map must satisfy the temporal identity and composition conditions,
that is φ( f ,x,0) = f (x,0) and φ( f ,x, t1 + t2) = φ(φ( f ,x,t1),x,t2), ∀ f ∈ F , ∀x ∈ S,
∀t1,t2 ∈Γ and the spatial boundary conditions φ( f ,xbound ,t) = f (xbound ,t), ∀ f ∈ F ,
∀t ∈ Γ and xbound being the boundary set of search space S. The transition map
can depend on continuous and/or discrete values conditional to whether time and/or
space possess that property. So, we can put the continuous and discrete number sets,
R and Z, to the time sets and search spaces. For a discrete search space there is
S ⊆ Zn and for a continuous one S ⊆ Rn, where n is its dimensionality. We use
x ∈ S⊆Rn and i ∈ S ⊆ Zn to specify a point in continuous or discrete search space.
The time variables become Γ = Z for discrete and Γ =R for continuous, where we

3 Optimization problems can be either maximization or minimization problems. As shown
with (13.2), we only consider maximization problems here. Between maximization or min-
imization problems there is the relationship max f (x) =−min f (x), so this is without loss
of generality.

4 Instead of the term dynamic fitness landscape we also find dynamic environment or even
non–stationary environment in the literature. Environment and fitness landscape are rather
synonymous, but we prefer fitness landscape as there is a substantial mathematical the-
ory on fitness landscapes available, which appears to be useful in the context of dynamic
optimization. Statistically speaking, the term non–stationary implies more than dynamics,
namely that the dynamics is generated by a stochastic process and the expected value of
the process changes over time. Hence, it should only be used if this is indeed the focus of
the dynamics considered.
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use k ∈Z and t ∈R to label specific points in time. With these preliminaries, we can
formulate the dynamic optimization problem

fS(t) =max
x∈S

f (x, t), ∀t ≥ 0, (13.4)

which yields the temporarily highest fitness fS(t) and its solution trajectory5

xS(t) = arg fS(t), ∀t ≥ 0. (13.5)

For calculating the time evolution of all fitness values in the search landscape, it
can be convenient to have an iterative generation law describing how a fitness value
at f (x, t) evolves into f (x,t + δ t) with δ t a small time increment. In the dynamic
fitness landscape (13.3), this time evolution of a point x not only depends on time
and the fitness values of the point itself, but also on the fitness values of surrounding
points, that is f (x+δx, t) with δx= (δx1,δx2, . . . ,δxn). So, a general evolution law
becomes

f (x, t+ δ t) =Ψ ( f (x,t), f (x1+ δx1,t), f (x2+ δx2,t), . . . , f (xn+ δxn,t)) , (13.6)

withΨ being the generator mapping.
It is noteworthy that such a definition is closely related to the standard definition

for dynamical systems, see e.g. [1, 30], Ch. 1. In addition to the elements there, the
notation of a time–depended fitness function replaces the state space variables in
order to tackle the proposed dynamic optimization problem.

13.2.2 Hierarchy of Fitness Landscapes

For the class of spatially extended systems, a hierarchy of spatio–temporal dynam-
ics has been suggested [15, 26] which stems from the decision of discretization of
space and time. We adapt this hierarchy for discussing different kinds of static and
dynamic fitness landscapes, see Tab. 13.1.6 The given classes indicate an increasing
degree of complexity which relates to the amount of information required to specify
a unique fitness value and hence to one type of scale for the expected difficulty in
solving the posed optimization problem. The classes 1 and 2 are static combinatorial
and continuous optimization problems which are the topic of a widely ramified and
extensive literature in the context of evolutionary computation, e.g. [3, 16, 35]. The

5 For the dynamic optimization problem in discrete time, we replace formally k for t in
(13.4) and (13.5).

6 In addition to the discretization of space and time, for spatio–temporal dynamics a dis-
cretization of the local state variable has been suggested [15, 26], particularly to capture
dynamics where states can only have a finite number of different values as for instance de-
scribed by cellular automata. In our field of application, such a discretization would mean
to have discrete fitness values. Such discrete fitness values sometimes occur, for instance in
using surrogate models for the fitness function evaluation, but generally, fitness landscapes
have rarely this property and so we do not consider such a distinction here.
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Table 13.1 Hierarchy of fitness landscapes; S static, D discrete, C continuous

Class Space Time Model

1 D S Discrete fitness function
2 C S Continuous fitness function
3 D D Coupled map lattices (CML)
4 C D Continuous fitness function with external discrete dynamics
5 D C Lattice of coupled ordinary differential equation (ODE)
6 C C Partial differential equation (PDE)

classes 3 and 6 will be closer looked at below. The models in class 3 and 4 include
dynamic optimization problems that received much attention in form of continu-
ous or discrete fitness functions whose selected topological features change with a
discrete time regime, usually generated by some external source of dynamics.

A well–known example of a class 4 problem is the so–called moving peak bench-
mark [8, 38] which uses as fitness function f (x) : S→ R an n–dimensional “field of
cones on a zero plane”, where the cones have randomly chosen heights and slopes
and are distributed across the landscape. So, we write

f (x) =max
{

0 , max
1≤i≤N

[hi− si‖x− ci‖]
}

, (13.7)

where N is the number of cones in the landscape, ci are the coordinates of the i–th
cone, and hi, si specify its height and slope, see Fig. 13.2 for a typical landscape in
R2. The given specification of dynamics requires to move N cones in terms of co-
ordinates, heights and slopes. By defining dynamic sequences for coordinates c(k),
heights h(k) and slopes s(k), a dynamic fitness landscape

f (x,k) =max
{

0 , max
1≤i≤N

[hi(k)− si(k)‖x− ci(k)‖]
}

(13.8)

can be obtained. In studies of the dynamic fitness landscape (13.8) three main types
of dynamics regarding the coordinates ci(k), heights h(k) and slopes s(k) of the
cones have been considered: (i.) regular dynamics usually generated by analytic
coordinate transformations, for instance cyclic dynamics where each ci(k), h(k),
s(k) repeats itself after a certain period of time or translatory dynamics where the
quantities ascribe a pre–defined track or tour, (ii.) chaotic dynamics generated by a
chaotic discrete–time system, for instance the generalized Hénon map, see [44, 45]
for details of the generation process, and (iii.) random dynamics with each ci(k),
h(k), s(k) for each k being an independent realization of, for example, a normally or
uniformly distributed random variable.

A similar and also popular dynamic fitness landscape is the XOR-generator by
Yang [67, 69], which is a class 3 problem. This generator can be constructed from
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Fig. 13.2 Typical fitness
landscape (13.7) for n = 2
and N = 4.

any binary–encoded stationary function f (x) as follows. For each environment k, an
XORing mask M(k) is incrementally generated by

M(k) =M(k−1)⊕T(k), (13.9)

where “⊕” is a bitwise exclusive-or (XOR) operator (i.e., 1⊕1= 0, 1⊕0= 1, and
0⊕0= 0) and T (k) is an intermediate binary template generated for environment k.
T (k) is generated with ρ× l (ρ ∈ (0.0,1.0]) random loci set to 1 while the remaining
loci are set to 0. For the initial environment k = 1, M(1) is set to a zero vector, i.e.,
M(1) = 0.

To summarize, the majority of the literature on evolutionary computation in dy-
namic fitness landscapes focusses on class 3 and 4 landscapes. In contrast, the class
5 dynamic fitness landscape does not play a major role in studies. It corresponds to
a combinatorial optimization problem, where the fitness function changes with con-
tinuous time. Even if a practical optimization problem would have such features,
we would most likely model discrete time behavior in the dynamic landscape for
reasons discussed right afterwards.

A class 3 problem, a CML–based dynamic fitness landscape and its relationship
to both a class 4 and class 6 problem, the latter is PDE–based, is the main topic of this
chapter. In modelling physical systems, we usually consider continuous changes in
both space and time. So, a general dynamic fitness landscape may describe the evo-
lution of fitness values in a search space where the landscape may undergo changes
continuously in both space and time. Such a dynamic evolution has to be modelled
by a PDE. On the other hand, to facilitate efficient computing, an appropriate dis-
cretization is needed, the more so as numerical effort in solving the dynamic op-
timization problem by an evolutionary algorithm scales with the number of fitness
function evaluations. Such a discretization of space and time can be obtained by the
CML formalism, in particular for reaction–diffusion systems and surface growth. It
is important to note that by doing so essential features of the dynamics are preserved,
e.g. [25, 31, 42, 59]. Moreover, as we focus on dynamic fitness functions in which an
evolutionary algorithm is used for solving an optimization problem, and as in evo-
lutionary algorithms time is counted by generations and is hence discrete, it appears
to be sensible to have dynamic fitness landscapes that change at discrete points in
time, too. As mentioned before we put for the CML–based landscape S ⊆ Zn and
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Γ = Z and for the PDE–based S⊆Rn and Γ =R, where n is dimensionality of the
search space. Note that this implies i= (i1, i2, . . . , in) and x= (x1,x2, . . . ,xn) for the
discrete and continuous spatial variables and k and t for the discrete and continuous
temporal variables. So, from the generator mapping (13.6) we obtain for discrete
time and space the CML–like mapping

f (i,k+1) =Ψ

(
f (i,k),

J1

∑
j1=1

f ( j1, i2, . . . , in,k),
J2

∑
j2=1

f (i1, j2, . . . , in,k), . . .

)
(13.10)

and for continuous time and space the PDE7

∂ f (x, t)
∂ t

=Ψ
(
f (x, t),

∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

,
∂ f 2

∂x1x2
, . . . ,

∂ f 2

∂x1xn
, . . . ,

∂ f 2

∂x2
1

, . . .

)
.

(13.11)
With these mathematical descriptions, dynamic fitness landscapes of class 3 and 6
are specified in a very general way. In order to analyze both types and their relation-
ship, we next consider the 2D cases, that is n= 2.

13.2.3 Relationships between Coupled Map Lattices and
Reaction–Diffusion Systems

For a two–dimensional search space S a dynamic fitness landscape can be viewed
as the time evolution of the surface over a 2D plane at point x and time t. Such
a general dynamic 2D fitness landscape8 that describes the dynamics of the fitness
value f (x1,x2,t) with continuous spatial variables (x1,x2) and continuous time t can
be modelled by the parabolic PDE

∂ f
∂ t

= a1

(
∂ 2 f

∂x2
1

+
∂ 2 f

∂x2
2

)
−a2g1

(
∂ f
∂x1

,
∂ f
∂x2

)
+g2( f ), (13.12)

where a1,a2 are coefficients and g1,g2 are mappings. With (13.12), we describe a
class 6 dynamic fitness landscape. It can be interpreted as a reaction–diffusion sys-
tem with an additional nonlinear term and is a special case of the general descrip-
tion (13.11). This type of PDE has close resemblance to the Kardar–Parisi–Zhang
(KPZ) equation [29], which has been proposed to model surface growth. The main
difference is that the KPZ equation includes an explicit stochastic (Gaussian noise)
term. Recently, the KPZ equation has been intensively studied [31, 33, 36] while
particularly the relation to Coupled Map Lattices (CML) has been a central ques-
tion. Clearly, both are models of extended dynamical systems. Also and as men-
tioned before, a numerical solution of a PDE always requires to have some kind of

7 In doing so, we assume that the space S and the mapping φ enjoy properties that guarantee
existence and uniqueness of such a spatio–temporal evolution.

8 To emphasize that the dynamics of the fitness landscape is that of an extended dynamical
system, also the (synonymous) term spatio–temporal fitness landscape is used.
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Fig. 13.3 The coupled map
lattice (CML) (13.14) as
building block for class 3
and 4 fitness landscapes.

discretization of space and time. So, an alternative strategy to a study by any of
the methods for numerically solving the PDE, appears to consist of a study of the
corresponding CML and their mutual dynamical properties.

Recently, a fitness landscape based on a CML has been studied [46, 47], which is
of class 3. We will relate this fitness landscape to the PDE–based landscape (13.12).
For the CML, we lay out a lattice grid with I1× I2 equally sized cells, which builds a
2D–structure. For every discrete time step k, k= 0,1,2, . . ., each cell is characterized
by its height

f (i1, i2,k), i1 = 1,2, . . . , I1, i2 = 1,2, . . . , I2, (13.13)

where (i1, i2) denote the spatial indices in vertical and horizontal directions, re-
spectively, see Fig. 13.3. We interpret this height f (i1, i2,k) as fitness according to
the geometrical metaphor of a fitness landscape. It is subject to changes over time,
which are described by the two–dimensional CML with nearest–neighbor coupled
interaction [12, 25]

f (i1, i2,k+1) = (1− ε)g( f (i1, i2,k))+
ε
4

[
g( f (i1 −1, i2,k)) +g( f (i1+1, i2,k))

+g( f (i1, i2 −1,k)) +g( f (i1, i2+1,k))
]

, (13.14)

where g( f (i1, i2,k)) is a local mapping function and ε is the diffusion coupling
strength. As local mapping function we use the logistic map

g( f (i1, i2,k)) = α f (i1, i2,k)(1− f (i1, i2,k)). (13.15)

It is a nonlinear map with the parameter 0 < α < 4 which is defined for the unit
interval f ∈ [0,1]. For some parameter α , the map (13.15) exhibits chaotic behavior,
for instance in the parameter interval α ∈ [3.57,4]. This local chaotic behavior is
distributed to other areas of the lattice by coupling. So, it is the source of spatio–
temporal chaos in the extended dynamical system.

Finally, we need to set the period boundary conditions

f (I1+1, i2,k) = f (1, i2,k),
f (i1, I2+1,k) = f (i1,1,k). (13.16)
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Initialization of the CML is done by initial heights f (i1, i2,0) being realizations of a
random variable uniformly distributed on [0,1]. The spatio–temporal behavior of the
CML depends on the lattice size I1 × I2 and two parameters, the coupling strength
ε and the nonlinear parameter α . The CML (13.14) can be seen as a special case in
two dimensions of the general CML–like spatio–temporal mapping (13.10).

The CML are known to exhibit a rich spatio–temporal behavior, including dif-
ferent types of spatio–temporal periodicity and chaos, quasi–periodicity and pattern
formation. So, the CML are an instructive example for the principle of generat-
ing high–dimensional complex spatio–temporal dynamics by using local chaos cre-
ated by a low–dimensional mechanism that is transmitted to a spatial extension by
coupling.

We now link the discrete space and time fitness landscape f (i1, i2,k) to the land-
scape with continuous space and time f (x1,x2,t) according to eq. (13.12). We take
the continuum limit of the CML and employ the following discretizations: a forward
difference of the time derivative

∂ f (x1,x2,t)
∂ t

↔ f (i1, i2,k+1)− f (i1, i2,k)
δ t

(13.17)

and the central differences of the space derivatives

∂ f (x1,x2,t)
∂x1

↔ 1
2
f (i1+1, i2,k)− f (i1 −1, i2,k)

δx1
, (13.18)

∂ f (x1,x2,t)
∂x2

↔ 1
2
f (i1, i2+1,k)− f (i1, i2 −1,k)

δx2
(13.19)

and the second derivatives

∂ 2 f (x1,x2,t)
∂x2

1

↔ f (i1+1, i2,k)−2 f (i1, i2,k)+ f (i1 −1, i2,k)
(δx1)2

, (13.20)

∂ 2 f (x1,x2,t)
∂x2

2

↔ f (i1, i2+1,k)−2 f (i1, i2,k)+ f (i1, i2 −1,k)
(δx2)2

, (13.21)

with the time step δ t and the spatial steps δx1,δx2 being equal to one in the used
system of units. So, we obtain the PDE

∂ f
∂ t

=
αε
4

(
∂ 2 f

∂x2
1

+
∂ 2 f

∂x2
2

)
− αε

2

((
∂ f
∂x1

)2

+
(
∂ f
∂x2

)2
)
+(α−1) f −α f 2,

(13.22)
where kδ t → t, i1δx1 → x1, i2δx2 → x2 and f (i1, i2,k) → f (x1,x2, t). With eq.
(13.22), we have a parabolic PDE of the reaction–diffusion type (13.12).

As shown in [47] from the CML (13.14), a fitness landscape of class 4 with
continuous space and the search space variable x can been defined by setting scaling
factors s1,s2 ∈ R+ and by imposing a rounding condition, so that
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�s2x2�

)
=
(
i
j

)
. (13.23)

So, we obtain the dynamic fitness function for the two–dimensional CML (13.14)
as

f (x,k) =

⎧⎨⎩ f (�s1x1�,�s2x2�,k) for
1 ≤ �s1x1� ≤ I1
1 ≤ �s2x2� ≤ I2

0 otherwise

⎫⎬⎭ , k ≥ 0. (13.24)

This dynamic fitness landscape, see Fig. 13.4, will be the test bed for the numerical
experiments reported in Sec. 13.5. For (13.24), we can pose a dynamic optimization
problem

fS(k) =max
x∈R2

f (x,k) =

⎧⎨⎩ max
1≤�s1x1�≤I1
1≤�s2x2�≤I2

f (�s1x1�,�s2x2�,k)
⎫⎬⎭ , k≥ 0, (13.25)

which yields a sequence fS(k) of the highest fitness. Solving the dynamic optimiza-
tion problem defines a solution trajectory

xS(k) = argmax
x∈R2

f (x,k) = arg

⎧⎨⎩ max
1≤�s1x1�≤I1
1≤�s2x2�≤I2

f (�s1x1�,�s2x2�,k)
⎫⎬⎭ , k ≥ 0, (13.26)

which we intend to find by using an evolutionary algorithm.
To summarize, we have shown the mathematical relationship between a CML–

based dynamic fitness landscape and a class of parabolic PDEs. In doing so, we
have created a link between a computational efficient and hence numerically ex-
perimentable model and a description of real physical phenomena such as surface
growth and reaction–diffusion dynamics. So, the dynamic fitness landscape (13.24)
can be considered to be a more realistic description of real–world dynamic opti-
mization problems than the benchmarks such as (13.8) or (13.9).

Fig. 13.4 CML–based fit-
ness landscape (13.24)
for I1 = I2 = 9 and
s1 = s2 = 0.5.



420 H. Richter

13.3 Properties of Dynamic Fitness Landscapes

A main concern in evolutionary computation is developing, testing and applying
algorithms that solve optimization problems. From a theoretical perspective, it is
therefore desirable to classify the tackled optimization problems in order to com-
pare the approaches and also to suggest possibilities for improving the algorithms.
A first and rather structural classification is provided by the hierarchy of fitness land-
scapes given in Sec. 13.2.2. An important aspect of the concept of fitness landscapes
is that it provides a theoretical framework for describing, evaluating, comparing and
quantifying the difficulty of a given optimization problem. Based on this notation,
it is intended to obtain an estimation for the behavior an evolutionary algorithm is
expected to have. Within the conceptional framework this question is addressed by
concepts and quantifiers for measuring fitness landscapes [21, 27, 57, 62]. These
landscape measures can also be seen as an attempt to define some types of met-
ric for fitness landscapes. Some of these measures have been suggested for static
fitness landscapes and hence account for topological properties of the fitness land-
scape. Besides, for dynamic fitness landscape also dynamical properties have to be
considered.

13.3.1 Topological Properties and Topological Problem Difficulty

Unfortunately, even for a static fitness landscape the question of how difficult a cer-
tain optimization problem is for an evolutionary algorithm is not easy to answer.
If we view a fitness landscape as in the Figs. 13.1 or 13.2, we see a collection of
hills and valleys that can be accompanied by ridges, plateaus, etc. The optimization
task is constituted by finding the highest hill (or lowest valley). The evolutionary
algorithm puts individuals into these landscapes, while in the generational circle
they should trawl the search space and finally find the optimum. In this process, the
only feedback from the landscape comes from the fitness values of all member of
the population. Moreover, a movement towards an optimum can only be expected if
either an individual with high fitness pulls other individuals to itself in the recombi-
nation step or random fluctuations working on the individuals during the mutation
step put them nearer to the optimum. However, as both movements are censored by
the selection step, if either one or the other movement leads to a decreasing fitness,
it becomes futile. From these thoughts it is clear why a single sphere of ever increas-
ing fitness with a single highest value, see Fig. 13.5, is a particularly easy problem
to solve. There is no distraction for the evolutionary process. The individuals just
move up the single hill. However, in more complex landscapes with more than one
hill also their number, size, form and distribution constitute difficulty in the search
process of stochastically driven search procedures as evolutionary algorithms. In
terms of an optimization task these features correspond to the number of optima,
how they are distributed and what the space in–between the optima looks like.

It is easily understood and intuitively reasonable that the difficulty of finding the
global optimum among several local optima depends on their number; the larger the
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Fig. 13.5 Sphere–like fit-
ness landscape of contin-
uously increasing fitness
towards the single optimum.

Fig. 13.6 Different types of fitness landscapes: a) long–path problem, b) neutrality with
spike–like peaks.

number of local optima, the more difficult the problem is [27, 57]. Second, distribu-
tion of the optima relates to problem difficulty. The problem becomes different if the
optima are either grouped in one subset of the search space or if they are scattered
widely. In the former case, the population only has to find the area of the optima
and can then jump from lower optima to higher optima using the stochastic drive in
the algorithm. If the optima are distributed widely, the population might split and
some areas might not be searched at all. Furthermore, as pointed out above an evo-
lutionary algorithm is using differences in the fitness of individuals populating the
fitness landscape in its search process. That means not only the wider surrounding of
the optima counts, but also the nearer neighborhood is of interest. For instance, the
problem belongs to a different category, if the optima consist of peaks that gradually
slope down into all directions, see Fig. 13.5, or the peak can only be approached by
a narrow single path of monotonically increasing fitness (so–called long path prob-
lems [23]), see Fig. 13.6a, or there are slim and distant peaks on an otherwise plain
surface of equal or nearly equal fitness (so–called neutrality [55]), see Fig. 13.6b.
These geometrically motivated features are addressed by the notion of accessabil-
ity (or basin of attraction) of optima and they are a third major factor of landscape
topology that contributes to problem hardness.
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However, from these main ingredients of problem difficulty, it cannot be easily
deduced how in a certain landscape the number of local optima, their distribution
and their accessability balance each other in terms of problem difficulty [55, 62].
Clearly, modality, which expresses the number of local optima, is a primary factor
and might in addition have the advantage that it can be assigned rather straight-
forwardly by enumeration. However, apart from the sheer number of optima, it is
the interplay of all three aspects that defines hardness of optimizing in a fitness
landscape for an evolutionary algorithm. This is the reason why landscape measures
have been suggested that are aimed to catch problem hardness more generally rather
than just by accounting for a single aspect of the landscape topology. In addition,
these measures allow to weight the three factors.

For evaluating topological problem difficulty the topological landscape measures

• modality = number and distribution of local maxima,
• ruggedness = analysis of the static correlation structure,
• information content = an entropic landscape measure,
• epistasis = a Walsh analysis

have been suggested and for static landscapes, these measures have been studied
intensively [19, 57, 62]. In [22, 46, 47], these measures were applied to dynamic
fitness landscapes. It has been shown that dynamic fitness landscapes inherit topo-
logical aspects of problem difficulty from their static counterparts. On the other
hand, the features of the dynamics in the landscape contribute in their own way. The
definitions of the topological measures and the results obtained for the CML–based
dynamic fitness landscape (13.24) are briefly recalled in Sec. 13.3.3 to have a ref-
erence and comparison to the dynamical measures considered next. Only the Walsh
epistasis measure is omitted as it had been shown in [47] that it poorly reflects prob-
lem hardness for the CML–based dynamic landscape considered here.

13.3.2 Dynamical Properties and Dynamical Problem Difficulty

In a dynamic fitness landscape not only topological features constitute problem dif-
ficulty, there is also a contribution of features of the involved dynamics [9, 24, 37].
Similar to the situation with topological properties, there is no simple classification.
If we look at a dynamic fitness landscape (imagine a landscape as in the Figs. 13.1 or
13.2, where now the hills, valleys and plateaus are changing their position and shape
and move around the plane that forms the search space) then again some intuitively
comprehensible factors that make finding the moving optima easy or hard can be
seen. An evolutionary algorithm carries out a parallelized population–based search
in which detecting the optimum depends on improvements over a certain number
of generations; with the more generations available, the better for problem solving.
Therefore, finding the optimum in just one generation is highly improbable and gen-
erally speaking controverts the fundamental idea of evolutionary search. Dynamical
problems that can be solved robustly by an evolutionary algorithm should involve
a change pattern that allows the algorithm at least a certain number of generations.
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So, the speed at which the landscape changes must have some influence. Gener-
ally it must hold that the faster the speed (more changes per time interval) is, the
more complicated is the dynamical problem. In defining the speed of the landscape
changes, the time scale of the dynamic fitness landscape needs to be related to the
computation time of the evolutionary algorithm, which counts time by generations.
In general, a generation of the evolutionary algorithm results from the computation
time for the fitness evaluation, which needs to be carried out for all the individuals
of the population and usually is the main contribution, and the time needed for ex-
ecuting the evolutionary operators such as selection, recombination and mutation,
which is a minor part. This gives an estimate for the time required to calculate one
generation. Note that for a given implementation and hardware, this time can be
converted into real CPU time. So, for a population size that is constant over the evo-
lutionary run, for every generation the (approximately) same time interval should
go by. For a dynamic fitness landscape that also has a continual change pattern, this
means that both time scales relate linearly.

We can describe the dynamics of an evolutionary algorithm by the generation
transition function ψ , see e.g. [3], p. 64–65, which can be interpreted as a nonlin-
ear probabilistic dynamical system that maps and transforms a population P(τ) at
generation τ ∈ N0 into a population P(τ+1) at generation τ+1,

P(τ+ 1) = ψ (P(τ)) ,τ ≥ 0 (13.27)

by using the evolutionary operators selection, recombination and selection (and pos-
sibly some additional operators such as memory, hyper–mutation and so on). Start-
ing from an initial population P(0), eq. (13.27) describes the population dynamics
in the search space. With the proposed linear scale between both the time scales of
the evolutionary algorithm τ and the time scale of the dynamic fitness landscape k,
we obtain a relation by the change frequency γ ∈N.9 There is

τ = γk (13.28)

with γ being constant.10 The quantity γ can be interpreted as the computation time
that the algorithm needs to solve the problem and hence is an estimate of the required

9 Instead of the term change frequency, we can also find change period in the literature.
Change period is motivated by interpreting γ as time interval, change frequency because γ
indicates after how many generations the landscape changes. In the following, we prefer
the latter interpretation.

10 The relation (13.28) links the time scales for dynamic fitness landscapes of class 3 and
4 with discrete time as for instance given by (13.8) or (13.10). For dynamic fitness land-
scapes of class 6 as modelled by (13.11) and (13.12) the changes happen continuously.
This means changes in the dynamic fitness landscape occur in–between generations or
several (in theory an infinite number of) times within one generation. But as fitness eval-
uation in an evolutionary algorithm usually takes place just once in a generation, these
changes would probably not come into effect before the next generation, that is the next
synchronization point between t ∈R and γ−1τ . Therefore, the discussion above applies to
continuous dynamic fitness landscapes in the same way.
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time between changes of the fitness landscape.11 However, numerical experiments
in evolutionary computation of dynamic fitness landscapes usually view the change
frequency γ slightly differently. They consider γ an adjustable parameter that can be
used to evaluate and compare different types and implementations of evolutionary
algorithms. This view is justified by the fact that γ can indeed be adjusted by modi-
fications done on the parameters and implementation of the evolutionary algorithm
and the hardware on which the algorithm runs. Note that this view also means that
the change frequency is no longer a property of the dynamic fitness landscape but
is seen to be independent of it. In the numerical experiments, we will adopt this
view and consider change frequency as something that can be adjusted. Note further
that by doing so, change frequency has a unique role among all other topological
and dynamical properties defining problem hardness. While all the other properties
belong to the dynamic fitness landscape considered, change frequency is defined by
the evolutionary algorithm and hence assumed to be freely settable (at least within
certain limits).

Aside from the (relative) speed of the landscape changes, a second major dy-
namical influence on problem hardness addresses the spatial distance that the opti-
mum moves if the landscape changes, that is the (relative) strength of the landscape
changes. As optimum finding for an evolutionary algorithm implies to trawl the
search space for a certain time, time restrictions as those coming from a chang-
ing landscape mean that the average distance between subsequent optima is a good
measure for problem hardness. This dynamical property is called dynamic severity
for which there are several notations [9, 45, 63]. They all have in common that they
measure the (relative) magnitude of the changes by comparing the landscape at sub-
sequent points in time, for instance between k to k+ 1 or t to t + δ t. In terms of
the dynamic fitness landscapes of class 3 and 4, dynamic severity means to evaluate
the (average) distance from the highest peak’s coordinates xS(k) = arg fS(k) before
and after a change, as given by (13.5).12 With eq. (13.44), this is applied to the
CML–based dynamic fitness landscape considered here.

In dynamic optimization, we sometimes find a discrimination between gradual
and abrupt changes. What distinguishes gradual from abrupt changes is basically
understood as different degrees of dynamic severity, but somehow change frequency
also contributes and is intertwined with it. Our view is this. For landscapes with
discrete time the situation is rather straightforward. As in discrete time the changes
happen one after the other to distinct points in time, an abrupt change is one with a
large severity, a gradual one has a low severity, no matter what the change frequency
is. For discrete time dynamic fitness landscape of class 3 and 4, the landscape has

11 Usually, γ is considered to be constant for all generations τ , but it might also be a function
of k and even be different (for instance a positive integer realization of a random process)
for every k.

12 Using a similar argumentation as for change frequency, see footnote 10, dynamic severity
can be defined for class 6 dynamic fitness landscapes as for instance (13.11) in the likewise
fashion. Therefore, the highest peak’s coordinates as given from the solution trajectory of
the dynamic optimization problem (13.4) must be compared for a time lapse between t and
t+δ t.
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no speed by itself, the only base for comparison is the generational dynamics of
the evolutionary algorithm linearly linked via the change frequency (13.28). For
changes in the fitness landscape in continuous time, a more elaborated discussion is
necessary; for those dynamic fitness landscapes we need a notation of speed on its
own. The (direction–less) speed vS(t) of the optimum xS(t) at time t can be defined
by

vS(t) = lim
δ t→0

‖x(t+δ t)− x(t)‖
δ t

. (13.29)

For δ t being small and constant, the average speed of the optimum 〈vS(t)〉 can be
calculated by

〈vS(t)〉= 1
K

K−1

∑
k=0

‖x(t+(k+ 1)δ t)− x(t+ kδ t)‖
δ t

(13.30)

with K sufficiently large. The nominator term is dynamic severity (cf. eq. (13.44) so
that for continuous time dynamic fitness landscape an abrupt change is indicated by
a 〈vS(t)〉δ t above a certain limit, while a gradual change is characterized by a small
value of this quantity.

Dynamic severity is an intrinsic property of the fitness landscape. This also ap-
plies to a third dynamical property of fitness landscapes that tries to capture the
complexity of the dynamics. In this context, complexity refers to limits in the long–
term predictability of the spatio–temporal evolution, even if explicit stochastic ele-
ments in the describing equations are absent. So, studying dynamic complexity is
highly linked to and conceptionally as well as methodically overlapping with the
study of deterministic chaos.13 A first and again rather structural classification of
dynamic complexity is to categorize dynamics as either regular, chaotic or random.
Here, regular dynamics is completely predictable and usually generated by analytic
coordinate transformations. It might, for instance, be cyclic, where we have a pe-
riodic recurrence of all topological features of the landscape after a certain time
interval or translatory, where the topological features follow a pre–defined track or
tour. Chaotic dynamics is generated by deterministic chaotic systems (that might be
locally interacting with the spatially distributed landscape) and is predictable only
for a short term. Random dynamics stems from a stochastic process, that is from
realizations of a random variable, and is unpredictable even for short terms.

Apart from this verbal assignment and in order to have a quantification, we can
resort to quantifiers of dynamics used and established in the field of nonlinear dy-
namics, such as Lyapunov exponents and vectors, different types of entropies and

13 An alternative (and complimentary to the degree of predictability) approach to define
complexity is by using concepts from algorithmic information theory, e.g. [5, 14]. Ac-
cordingly, algorithmic complexity of a spatio–temporal evolution is defined by the length
of the smallest algorithm capable of specifying the evolution. As chaotic evolutions are
nonperiodic and oscillatory, their algorithmic complexity is large. However, algorithmic
complexity only superficially allows to separate chaos and random, as all chaotic behav-
ior is algorithmically complex, but not all evolutions that are algorithmically complex, are
chaotic, too.
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information flows, correlations and related quantities as bred vector dimensions,
or fractal dimensions. All these quantities are widely used as an analyzing tool in
nonlinear dynamical systems theory. However, they were developed to deal with
low–dimensional nonlinear (possibly chaotic) dynamical systems described by or-
dinary differential equations (ODEs). Only for such systems, these quantities are
unambiguously meaningful and the relationships between the quantities are largely
understood.14 In recent years, several attempts have been made to extend the theory
of low–dimensional dynamical systems to (infinite–dimensional) spatio–temporal
systems and by doing so to establish quantities similar to the conventional Lyapunov
exponents, dimensions and entropies. Still, this work is in its infancy and the power
of the theory is confined to certain limits. Also, while some quantities as Lyapunov
exponents or bred vector dimensions have shown to be meaningful in quantifying
patterns of space–time dynamics, others are rather ambiguous and allusive. More-
over, the relationships between the quantities are still far from being clear.

In the following, we consider the dynamic landscape measures

• change frequency = speed of fitness landscape changes relative to EA,
• dynamic severity = distance between subsequent optima,
• dynamic complexity = predicability of spatio–temporal evolution:

– Lyapunov exponents = divergence rate between nearby evolutions,
– bred vector dimensions = analysis of the dynamic correlation structure.

In the next section, we will study dynamical landscape measures for the CML–based
fitness landscape. As discussed above, change frequency is here considered as a pa-
rameter to be set. On the other hand, dynamic severity and the quantities to measure
dynamic complexity, that are Lyapunov exponents and bred vector dimensions, will
be looked at as depending on the dynamic landscape.

13.3.3 Topological and Dynamical Landscape Measures for the
CML–Based Landscape

13.3.3.1 Topological Measures

Topological landscape measures have been intensively studied for the CML–based
dynamic fitness landscape (13.24) in [46, 47] and we therefore only briefly recall
the definitions and some of the results.

Modality. For the fitness landscape (13.24), the topological landscape measure
modality accounts for the average number of local maxima and can be assigned
by enumeration. We consider as neighborhood structure the surrounding heights.
That means the neighborhood structure N±1(i1, i2) of the (i1, i2)–cell is

N±1(i1, i2) = (i1+ δ1, i2+ δ2), (13.31)

14 For instance, there are the relationships between Lyapunov exponents and fractal dimen-
sions via the Kaplan–Yorke dimension [13, 18, 49] or between Lyapunov exponents and
entropies via the Kolmogovov–Sinai entropy and the Pesin entropy formula, see e.g. [4].
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where (δ1,δ2) are taken as disjunction of the permutations over the set S= {−1,0,1}
that is

(δ1,δ2) = (−1,−1)∧ (−1,0)∧ (−1,1)∧ (0,−1)
∧ (0,1)∧ (1,−1)∧ (1,0)∧ (1,1). (13.32)

Additionally, the cell specified by (δ1,δ2) = (0,0) is excluded from the neighbor-
hood structure N±1(i1, i2). Here, (i1, i2)T = (�s1x1�,�s2x2�)T . Hence, the fitness
function possesses a local maximum at point (i1, i2) and time k if

f (i1, i2,k)≥ f (N(i1, i2),k). (13.33)

We denote #LM(k) the number of local maxima at time k. As this quantity may
change over time, we consider its time average 〈#LM(k)〉, which is

〈#LM(k)〉 = lim
K→∞

1
K

K−1

∑
k=0

#LM(k). (13.34)

For computing an approximate value of the time average number of local maxima,

the 〈#LM(k)〉 is replaced by #LM = 1
K

K−1
∑
k=0

#LM(k) with K sufficiently large.

Ruggedness. The topological landscape measure ruggedness can be analyzed by
the static correlation structure. This method works by performing a random walk on
the landscape and calculating its random walk correlation function. For the dynamic
fitness landscape (13.24), this begins with generating a time series

f (τs,k) = f (i1(τs), i2(τs),k), τs = 1,2, . . . ,T (13.35)

of the heights f (�s1x1�,�s2x2�,k) with (i1, i2)T = (�s1x1�,�s2x2�)T . For doing the
random walk, we create 2×T independent realizations (ti1 ,ti2) of an integer random
variable uniformly distributed on the set S= {−1,0,1}. Starting from an initial cell
(i1(1), i2(1))T , the next cell indices (i1(τs+1), i2(τs+1))T on the walk are obtained
by adding the two independent realizations of the random variable to the current cell
indices:

(i1(τs+1), i2(τs+1))T = (i1(τs)+ ti1 , i2(τs)+ ti2)
T . (13.36)

In addition, the boundary condition (13.16) is observed. From the random walk
in the two spatial dimensions that is specified by (i1(τs), i2(τs))T , we obtain the
needed time series on the dynamic fitness landscape by recording the heights
f (τs,k) = f (i1(τs), i2(τs),k) at time k. For this time series, the spatial correlation
can be calculated. The spatial correlation is widely used in determining ruggedness
of static landscape [19, 56, 64]. It is an estimate r(tL,k) of the autocorrelation func-
tion of the time series with time lag tL, also called random walk correlation function:
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r(tL,k) =

T−tL
∑
τ=1

(
f (τs,k)− f̄ (k)

)(
f (τs+ tL,k)− f̄ (k)

)
T
∑
τs=1

(
f (τs,k)− f̄ (k)

)2
, (13.37)

where f̄ (k) = 1
T

T
∑
τs=1

f (τs,k) and T � tL > 0. The spatial random walk correlation

function measures the correlation between different regions of the fitness landscape
for a fixed k. As r(tL,k) changes over time, we consider its time average 〈r(tL,k)〉,
for which we calculate numerically an approximated value r(tL) similarly as for the
average number of maxima. From this quantity, the correlation of the lag tL

λR(tL) =− 1
ln(|r(tL)|) (13.38)

can be obtained. Among the correlations of the lag tL, it has been shown that rugged-
ness is best expressed by the correlation length [56]

λR =− 1
ln(|r(1)|) , (13.39)

which is the correlation of the lag tL = 1. The lower the value of λR, the more
rugged is the landscape. This kind of evaluating fitness landscapes relies upon the
assumption that the landscape is statistically isotropic [19, 20]. This means that the
value of r(tL,k) obtained from the random walk does not depend on the specific
random walk used and particularly not on the chosen initial cell. Our numerical
results have shown that this holds for the landscapes considered here.

Information content. The topological landscape measure information content can
be accounted for by entropic measures [58, 61, 62]. Starting point for this method
to evaluate landscapes is again, as for the correlation structure considered above, a
time series (13.35), f (τs,k), which is generated by a random walk on the dynamic
landscape for a fixed time k. From this time series, we code the difference in fitness
between two consecutive walking steps by the symbols sτs ∈ S, τs = 1,2, . . . ,T −1,
taken from the set S= {−1,0,1}. These symbols are calculated by

sτ (e,k) =

⎧⎨⎩
−1, if f (τs+1,k)− f (τs,k) < e

0, if | f (τs+1,k)− f (τs,k)| ≤ e
1, if f (τs+1,k)−h(τs,k) > e

(13.40)

for a fixed e∈ [0,L], where L is the maximum difference between two fitness values.
The obtained symbols are concatenated to a string

S(e,k) = s1s2 . . .sT−1. (13.41)

The parameter e defines the sensitivity by which the string S(e,k) accounts for dif-
ferences in the fitness values. For e= 0, the string S(e,k) contains the symbol zero
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only if the random walk has reached a strictly flat area. It hence discriminates very
sensitively between increasing and decreasing fitness values. On the other hand, for
e = L, the string only contains the symbol zero, which makes evaluating the struc-
ture of the landscape pointless. In this way, a fixed value of e with 0 < e < L defines
a level of detail of information about the landscape’s structure. The string (13.41)
represents this information depending on e and codes it by subblocks over the set S.
In other words, varying e allows to zoom in on or to zoom out of the information
structure of the landscape.

For defining entropic measures of the landscape, we look at the distribution of
subblocks of length two, sτs sτs+1, τs= 1,2, . . .T−2, within the string (13.41). These
subblocks stand for local patterns in the landscape. We denote the probability of the
occurrence of the pattern δ1δ2 with δ1,δ2 ∈ S and δ1 �= δ2 by pδ1δ2

. For numerical
calculation, we approximate this probability by the relative frequency of the patterns
within the string S(e,k). As the set S consists of three elements, we find six different
kinds of subblock sτs sτs+1 = δ1δ2 with δ1 �= δ2 within the string. From their prob-
abilities at a fixed time k and a given sensitivity level e we calculate the entropic
measure [62]

HIC(e,k) =− ∑
δ1,δ2∈S
δ1 �=δ2

pδ1δ2
(e,k) log6

(
pδ1δ2

(e,k)
)

, (13.42)

which is called information content of the fitness landscape. Note that by taking the
logarithm in Eq. (13.42) with the base 6, the information content is scaled to the
interval [0,1]. As for the other landscape measures, for evaluating dynamic fitness
landscapes, we consider the time average 〈HIC(e,k)〉 for which we numerically cal-
culate an approximated value HIC(e). In the numerical calculation, we set the value
e = 0, that is we consider the information content of highest sensitivity. As was
shown in [47], epistasis measured by Walsh analysis is not a particularly meaning-
ful quantity for the CML–based fitness landscape with chaotic behavior. Therefore,
we do not consider it here.

Fig. 13.7 shows the topological landscape measures modality #LM, ruggedness
λR and information content HIC for varying ε , α = 3.999, s1 = s2 = 1 and constant
lattice sizes. We see that in large areas of the parameter space of ε there are similar
characteristics, which in the case of λR scales in an inverse manner. Further, there
are rarely intervals in ε where the measures remain constant. Also, only for the
modality measure #LM we find real differences for varying lattice sizes. The other
two measures are very similar no matter if the quadratic lattice size is I1 = I2 =
12 or I1 = I2 = 20. Moreover, for 0.1 ≤ ε ≤ 0.3, all topological measures behave
differently from the other parameter values; we find a rather erratic characteristic.
These results can be understood by considering the spatio–temporal behavior of the
CML that defines the fitness landscape. In this parameter range, the CML are known
to possess spatio–temporal periodic patterns, while elsewhere the system exhibits
spatio–temporal chaos [66].
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Fig. 13.7 The topological landscape measures for varying ε , α = 3.999 and constant lattice
sizes: a) modality #LM , b) ruggedness λR and c) information content HIC .

13.3.3.2 Dynamical Measures

We next consider dynamic landscape measures and start with dynamic severity as
change frequency is treated as a property of the evolutionary algorithms, but not of
the dynamic fitness landscape.

Dynamic severity. As discussed above, dynamic severity accounts for the average
distance from the highest peak’s coordinates xS(k) = arg fS(k) before and after a
change.

Hence, dynamic severity σ can be calculated for the CML–based fitness land-
scape (13.24) by

σ(k+1) = ‖xS(k+1)− xS(k)‖ (13.43)

with

xS(k) = arg

⎧⎨⎩ max
1≤�s1x1�≤I1
1≤�s2x2�≤I2

f (�s1x1�,�s2x2�,k)
⎫⎬⎭
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being the solution of the dynamic optimization problem (13.26). As this quantity
may vary with time k, we consider the time average severity

〈σ(k)〉= lim
K→∞

1
K

K−1

∑
k=0

σ(k) (13.44)

and calculate an approximative value σ similarly as done for the other measures.

Dynamic complexity measure: Lyapunov exponents. A first method to measure
dynamic complexity is by using the concept of Lyapunov exponents. The Lya-
punov exponents give the divergence or convergence rates between a time evo-
lution of the system and its nearby evolution that results from being displaced
from the original one by an infinitesimal perturbation [28, 40]. For calculating
the (largest) Lyapunov exponent for the CML–based fitness landscape (13.24), we
therefore consider the time evolution itself, f (�s1x1�,�s2x2�,k) and its neighbor-
ing evolution Δ f (�s1x1�,�s2x2�,k), which is obtained by linearizing the system
along the evolution f (�s1x1�,�s2x2�,k). The linearized system determined along
f (�s1x1�,�s2x2�,k) describes exactly the result of an infinitesimal displacement and
allows to observe if both time evolutions diverge (positive Lyapunov exponent) or
converge (negative Lyapunov exponent). A positive Lyapunov exponent generally
indicates chaos, and the magnitude of the positive Lyapunov exponent can be seen
as a dynamic complexity measure.

We write the linearization of the CML–based fitness landscape (13.24) as fol-
lows:

Δ f̃ (i1, i2,k) =
d
d f

g( f (i1, i2,k))

Δ f (i1, i2,k+1) = (1− ε) f̃ (i1, i2,k)+
ε
4

[
f̃ (i1 −1, i2,k)+ f̃ (i1+1, i2,k)

+ f̃ (i1, i2 −1,k)+ f̃ (i1, i2+1,k)
]

, (13.45)

where (i1, i2)T = (�s1x1�,�s2x2�)T . This linearization is the tangential system to the
2D CML and has dimension I1 × I2. For its calculation, the boundary conditions
(13.16) have to be taken into account. From the linearization (13.45), we can define
the (largest) Lyapunov exponent λL as

λL = lim
k→∞

1
k

ln
‖Δ f (i1, i2,k)‖
‖Δ f (i1, i2,0)‖ , ∀ 1 ≤ i1 ≤ I1,1 ≤ i2 ≤ I2. (13.46)

Calculation of the Lyapunov exponent can be done using standard methods, for
instance using QR–factorization, which is known to be computationally efficient,
reliable and robust, see e.g. [11].

Dynamic complexity measure: bred vector dimension. As a second measure for
dynamic complexity, we consider bred vector dimensions. Bred vector dimensions
are a concept for evaluating the dynamic correlation structure of spatially extended
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systems [17, 41, 43]. It has been used to identify local regions where this correlation
is high and which can therefore be used for prediction and short term forecast. Here,
we will use bred vector dimensions as a general measure for the dynamic correlation
structure of fitness landscapes and so as another dynamic landscape measure.

For calculating the bred vector dimension, we again consider a neighborhood
structure as in (13.31), but with a difference: N±�(i1, i2) is now the disjunction of the
permutations over the set S = {−�,−�+ 1, . . . ,−1,0,1, . . . , �−1, �} and (δ1,δ2) =
(0,0) remains included. So, we specify (2�+1)2 cells around and including the cell
(i1, i2) by this neighborhood structure. For doing so around every (i1, i2), again the
boundary conditions (13.16) need to be satisfied. As there are maximally I1 × I2
cells with (possibly) different fitness values in the CML–based fitness landscape
and because taking into account the same spatial subsection twice would bias the
results, we need to limit � ≤ 1

2 (
√
I1I2 − 1). We now calculate the dynamic fitness

landscape for a point in time k, which should be large enough so that the transients
starting from f (i1, i2,0) are removed. At this point in time, we disturb κ times the
fitness landscape f (i1, i2,k) within the neighborhood structure N±�(i1, i2) by a small
Gaussian noise with mean zero and standard deviation std, that is

f j(N±�(i1, i2),k) := f j(N±�(i1, i2),k)+N (0,std), j = 1,2, . . . ,κ . (13.47)

Then, we define a time lag kL and calculate the time evolution of all κ disturbed
landscapes for further kL iterations. The obtained f j(N±�(i1, i2),k+ kL) are formed
into a vector f̂ j of length (2�+1)2, which is called the bred vector. It is normalized
to unity and hence contains the normalized fitness values for the entire neighbor-
hood structure of the disturbed landscape. From the κ bred vectors f̂ j as columns,
we build a matrix B, which is of dimension (2�+ 1)2 × κ . The matrix BTB can
be regarded as its corresponding covariance matrix. It expresses the local linear in-
dependence of the κ local bred vectors. A measure for this independence can be
obtained from the singular values σi of the matrix B, which are the roots of the
eigenvalues of the covariance matrix BTB, σi =

√
eigi(BTB). These singular values

are a measure for the amount of variance in the set of bred vectors. In other words,
they account for the degree of difference imposed by the disturbances applied to
the fitness landscape kL time steps before. From these singular values we finally
calculate the quantity

ψB =
(∑κi=1σi)

2

∑κi=1σ2
i

, (13.48)

which is called the bred vector dimension [41]. As each bred vector, which forms
one of the columns of the matrix B, is normalized to unit length, ψB can have values
1 ≤ψB ≤ κ . The value ψB = 1 indicates that all bred vectors are equal, meaning that
the correlation between them is maximal. Any 1 < ψB ≤ κ expresses differences in
the bred vectors with the magnitude of ψB being a measure of the amount of dif-
ference. An integer ψB can even be interpreted as to relate to the dimensionality of
the subspace spanned by the bred vectors. So, by fixing a time lag kL, we obtain
a quantity for the degree of temporal divergence and correlation that disturbances
in the fitness landscape cause and hence a dynamic correlation structure related to
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Fig. 13.8 The dynamical landscape measures for varying ε , α = 3.999 and constant lattice
sizes: a) dynamic severity σ , b) Lyapunov exponent λL and c) bred vector dimension ψB.

dynamic complexity. Note also that the bred vector dimension is a measure that is
conceptionally similar to the Lyapunov exponents and Lyapunov vectors considered
above. The main difference is that Lyapunov vectors account for the effect of in-
finitesimal perturbations to the time evolution, while bred vectors evaluate the result
of finite perturbations. In the numerical calculation, the values kL = 25, κ = 5 and
std = 0.0001 have been taken. As reference cell in the center of the neighborhood
structure, the cell with the maximum fitness value at time k was used.

Fig. 13.8 shows the dynamical landscape measures dynamic severity σ and the
dynamic complexity measures Lyapunov exponent λL and bred vector dimension
ψB for varying ε , α = 3.999, s1 = s2 = 1 and constant lattice sizes. The most strik-
ing feature is that all three dynamical landscape measures show large parameter
intervals in ε , particularly for ε > 0.3 where the values vary only slightly. This is
a characteristic not found in the topological measures, see Fig. 13.7. Also, only
dynamic severity shows a strong dependency on the lattice size. Again, as for the
topological measures, the parameter interval with spatio–temporal periodic patterns
is clearly visible. For the Lyapunov exponents, we obtain negative values, indicating
an absence of chaos.

The dynamical measure severity not only depends on the lattice size but also
on the scaling factors s1 and s2. As shown in Fig. 13.8a, the quantity σ obtained
for the quadratic lattice and (i1, i2)T = (�x1�,�x2�)T (that is s1 = s2 = 1) can be
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regarded as constant for a given lattice size and a large majority of values of ε . So,
dynamic severity of the CML–based fitness landscape with s1 = s2 = 1 is a dynamic
property depending on the choice of α , ε and I1 × I2. This property can be linearly
scaled and adjusted by s1 and s2. In general, for quadratic lattices with I1 = I2,

dynamic severity scales as σ ∼
√
(s2

1+ s2
2) · I1, while for rectangular lattices, we

have σ ∼
√
s2

1I
2
1 + s2

2I
2
2 .

13.4 Evolutionary Optimization

As we have discussed in the previous section, problem hardness in a dynamic opti-
mization problem not only depends on topological features of the associated fitness
landscape, but also on its dynamical properties. In this context, it is interesting to
note that one of the driving forces behind the development of evolutionary algo-
rithms was exactly to have search methods for topological difficult problems. So,
it has been shown that evolutionary algorithms are remarkably successful in solv-
ing static optimization problems with a high degree of problem difficulty. In recent
years it has further been shown that these problem solving abilities can also be used
to tackle dynamic optimization problems. However, certain modifications in the al-
gorithmic structure of the evolutionary algorithm are necessary to make it work in
dynamic fitness landscapes. The working principle of evolutionary algorithms is to
maintain and evolve a population of candidate solutions through selection, recombi-
nation and mutation. The next generation’s population is generated by first selecting
relatively fitter individuals from the current population and then applying changes
to the selected individuals. This is sequentially done by either more deterministic
means (recombination) and or more stochastic (mutation). With these steps the new
off–spring of the next generation are created. In the normal working mode the indi-
viduals in the population will eventually converge to the optimal solution due to the
selection pressure. This convergence property, when happening at a proper pace, is
intended and expected from the evolutionary algorithm in order to locate the optimal
solution of the static problems.

For solving dynamic optimization problems, however, this convergence property
causes big problems for the evolutionary algorithm because it deprives the popula-
tion of genetic diversity. Dynamic optimization means not longer to find one optimal
solution, but to track the movement of the optimal solution with time. Consequently,
when the fitness landscape changes, it is hard for the population to escape from the
old optimal solution in order to search for the new one, if its diversity is low. The
algorithm’s convergence is simultaneously corroding its genetic diversity that after
a change is exactly needed to explore the search space and to find the optimum
again. This situation means that the algorithm must be equipped with some addi-
tional schemes which can control, maintain and occasionally enhance the popula-
tion’s diversity.15 For achieving this goal, several approaches have been suggested.

15 This often requires to detect the point in time where a change in the landscape occurs,
see [48] for a discussion of the involved problems.
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One way to classify them is by looking at what element of the evolutionary algo-
rithm is modified and if therefore rather stochastic or deterministic means are used.
With this classification, there are four groups of schemes for diversity management
to make evolutionary algorithms fit to perform in dynamic fitness landscapes:

• on the level of the algorithm’s individuals by mainly stochastic means, as for
instance hyper–mutation [39] or random immigrants [60],

• on the level of the algorithm’s population by mainly deterministic means,
as for instance with different types of memory [8, 50, 53, 68] and multi–
population approaches [10],

• on the level of the algorithm’s parameters, as for instance by stochastic self–
adaption of the mutation [2, 7],

• on the level of the algorithm’s operators with additional and completely dif-
ferent operators, as for instance for anticipating and predicting the dynam-
ics [6, 51, 54].

In a specific implementation, there can be hybrid types of the above mentioned
schemes. One of those is an abstract memory scheme [50, 51], which combines a
memory with a prediction of dynamics. Apart from the abstract memory scheme,
we will consider a hyper–mutation scheme, a standard direct memory and a self–
adaptive mutation scheme in the numerical experiments with the CML–based dy-
namic fitness landscape.

The considered schemes work as follows, see Tab. 13.2 for details of the pa-
rameter settings. With the hyper–mutation scheme, we have a standard evolutionary
algorithm with selection, recombination and mutation. In the implementation here,
we use a population size μ , a tournament selection of tournament size 2, a fitness–
related intermediate sexual recombination (which is operated μ times and for each
recombination two individuals are chosen randomly to produce offspring that is the
fitness–weighted arithmetic mean of both parents), and a standard mutation with
mutation probability pm and base mutation rate bm (that means a mutated individ-
ual x′ differs from an un–mutated individual x by (x′ − x) ∼ bm ·N (0,1)). For the
initial population, individuals are generated whose elements are realizations of a
random variable normally distributed on [0,ω2]. The hyper–mutation now increases
the mutation strength if a change in the fitness landscape has occurred for a limited
number of generations (usually one or two). Therefore, the base mutation rate is
multiplied by the hyper–mutation rate hm, so that the hyper–mutated individuals are
(x′ − x) ∼ bm ·hm ·N (0,1). In this way, for a certain generational lag, the need for
an abrupt increase in genetic diversity is satisfied.

In self–adaption, we use the standard operators of an evolutionary algorithm and
have used the same implementation as for hyper–mutation, that is population size
μ , tournament selection and fitness–related intermediate sexual recombination. In
contrast, the mutation rate itself is a parameter that undergoes a permanent op-
timization and adaption process. Therefore, the mutation rate is considered as an
additional subject to optimize. For every individual in the population, its mutation
rate becomes an extra component. In other words, the mutation rate becomes an
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additional dimension in the fitness landscape. So, the mutation rates mr are sub-
ject to the selection process and are continuously changed by an own mutation (and
hence adaption) process, see e.g. [2, 3, 34]. They are adapted every generation with
mr(τ+1) =mr(τ) ·exp(τAN (0,1)), where τA is an adaption rate and for generation
τ = 0, mr(0) = mr0. Based on this self–adapting rate, the individuals are mutated
according to the magnitude that the quantity has in a particular generation, that is
(x′ −x)∼mr(τ+1) ·N (0,1). With such a design of the mutation process, the muta-
tion rate is no longer a parameter to be set before the evolutionary run and controlled
by the experimenter. So, the mutation rates might converge to some (optimal) values
or might be oscillating between certain values. As the rates are subject to the internal
optimization and adaption process, they often have well–fitting values. On the other
hand, this may also mean that the rates take values that are poorly suited. To counter
this effect, in the mutation step, which follows the adaption of the mutation rates,
the number λ of individuals generated by mutation, called offspring candidates, ex-
ceeds the population size of the parents. In a second selection process only the best
offspring candidates are picked, eliminating ill–fitting mutation rates in the process.

The principle of memory schemes is to store useful information from the old
fitness landscape and reuse it later in a new one. Therefore, a memory with the
same representation as the population is set up that splits an extra storage space to
explicitly store information from a current generation. This information is employed
later, for instance by merging the stored individuals with the population at that time.
This is known as direct memory [8, 53, 68]. The memory has the size μmem and is
feeded by individuals selected for their high fitness. If a change in the landscape
occurs, the stored individuals are inserted in the population, replacing individuals
with low fitness. Since memory space is usually limited, we need to update the
information stored in the memory. A general strategy is to select one memory space
to be replaced by the best individual of the population.

A second example for a memory that additionally realizes some elements of pre-
dicting the dynamics of the landscape is the abstract memory scheme [50, 51]. The
basic idea of abstract memory is that the solutions are not stored directly, that is
as individuals representing points in search space, but as their abstraction. We un-
derstand as an abstraction of a good solution its approximate location in the search
space, which is therefore partitioned with a grid of size εG. In an abstract storage
process, μstor individuals with high fitness are taken and sorted according to the
partition in the search space which they represent. Each individual sorted increases
a counter belonging to that partition and indicates how often a good solution has
occurred in exactly this subsection of the search space. In the abstract retrieval pro-
cess, we fix a number of individuals to be inserted in the population by μretr and
create these individuals randomly such that their statistical distribution regarding
the partition matches that stored in the memory. Hence, abstract memory combines
ideas from memory such as saving individuals for future re–insertion with attempts
to predict the time evolution of the dynamic fitness landscape: storing the abstrac-
tion of good solutions, that is to use their approximate location in the search space,
allows to deduce a probabilistic model for the spatial distribution of future solutions
of the problem.
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Table 13.2 Parameter of the tested evolutionary algorithms

Considered Scheme Design parameter Symbol Value
All schemes Population size μ 50

Initial population width ω2 5
Hyper–mutation Base–mutation rate bm 0.1

Hyper–mutation rate hm 30
Mutation probability pm 0.25

Self–adaption Offspring size λ 50
Initial mutation rates mr0 1.5
Adaption rate τA 1.25

Direct memory Memory size μmem 10
Abstract memory Grid size εG 1.0

Individuals to memory μstor 3
Individuals from memory μretr 20

The parameters used in the implementations that are the subjects of the numerical
experiments reported in the next section, are summarized in Tab. 13.2.

13.5 Numerical Experiments

The performance of the algorithms is measured by the Mean Fitness Error (MFE),
defined as below:

MFE =
1
R

R

∑
r=1

[
1
T

T

∑
τ=1

(
f (xs(k),k)− max

x j(τ)∈P(τ)
f (x j(τ),k)

)]
k= γ−1τ!

, (13.49)

where max
x j(τ)∈P(τ)

f
(
x j(τ), γ−1τ!) is the fitness value of the best–in–generation indi-

vidual x j(τ) ∈ P(τ) at generation τ , f
(
xS( γ−1τ!), γ−1τ!) is the maximum fitness

value at generation τ , T is the number of generations used in the run, and R is the
number of consecutive runs. We set R= 150 and T = 1500 in all experiments. Note
that f

(
xs( γ−1τ!), γ−1τ!) and max

x j(τ)∈P(τ)
f
(
x j(τ), γ−1τ!) change every γ gener-

ations according to Eq. (13.28). The MFE serves as a performance criterion and
as behavior data for the evolutionary optimization in the dynamic fitness landscape
(13.24). Fig. 13.9 show the MFE for the four considered evolutionary algorithm im-
plementations hyper–mutation, self–adaption, direct and abstract memory and the
landscape parameters α = 3.999, I1 = I2 = 16, s1 = s2 = 1 and different values of
ε . For these values the dynamic fitness landscape shows mostly spatio–temporal
chaotic behavior, but also spatio–temporal periodic patterns. The figures give the
MFE and its 95% confidence interval for the change frequencies γ = 10, γ = 20
and γ = 30. We observe that for most values of ε , the curves for each γ are distinct
with the smallest γ leading to the largest MFE , and vice versa.
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Fig. 13.9 Behavior of different implementations of the evolutionary algorithm expressed as
the mean fitness error MFE (13.49) for the CML–based fitness landscape (13.24) with I1 =
I2 = 16 and α = 3.999: a) hyper-mutation, b) self–adaption, c) direct memory, d) abstract
memory.

Looking the results, we see some differences between the four implementations.
Although all results are for 150 runs, the confidence intervals that reflect to what
degree the given mean value can be expected to be indeed the mean value if an
infinite number of runs would have been carried out, are much higher for self–
adaption and direct memory than for hyper–mutation and abstract memory. This
means that for both implementations, for self–adaption even to a larger degree than
for direct memory, some performance results are much better than the mean, but
others are much worse. This result may possibly be explained for self–adaption by
the fact that the mutation rates evolve towards optimal values after a change, but
sometimes exactly these optimal values become unfavorable after the next change.
As there is only the feedback via the individuals’ fitness and the selection process
(including potentially ill–posed mutation rates), it might take a certain time until
optimal mutation rates are obtained again. This point of view seems to be confirmed
by the observation that the confidence intervals are particularly large for small γ ,
that is for a landscape that changes fast. For direct memory, the effect might be
that the stored individuals inserted after a change do not help in that particular new
environment. The retrieved individuals might be favorable after another change, but
not after the given one. Also, it is interesting to note that some implementations,
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particularly hyper–mutation, but to some extent also abstract memory, react on the
presence of spatio–temporal periodic patterns at 0.1 ≤ ε ≤ 0.3 with a drop in the
MFE .

However, our interest here is neither to discuss possible performance enhancing
alterations in the algorithms’ parameters or implementation details or more gener-
ally the optimal design of the algorithms, nor to argue about which implementation
is superior over another. To do so, the extent of the presented results is much to
small, and also we find it more illuminating to study the underlying working prin-
ciples of the algorithms. In other words, in theoretical studies the behavior of the
evolutionary algorithm is sometimes much more interesting than the actual perfor-
mance record. Therefore, we next approach the question of which implementation
fulfils the expectations with respect to the landscape measures consider above. To
get a metric of the strength of the relationship between landscape measures and
the algorithms’ behavior, we apply a parametric and a nonparametric correlation
analysis, e.g. [52]. In particular, we study the Pearson product–moment correlation
and the Kendall rank–order correlation. So, we run tests for relationships between
these quantities, these are linear relation (Pearson) and piecewise linear relation
(Kendall). With this, we intend to establish how reliable a linear or a piecewise lin-
ear relation between the landscape measures and the algorithms’ behavior is. We
would like to stress that this correlation analysis cannot imply any simple causation
between landscape properties and the algorithm’s behavior. As frequently in corre-
lation analysis, to claim causation from observed correlation can be questionable
or even misleading. Clearly, the landscape measures reflect different aspects of the
landscape’s problem difficulty, and this problem difficulty, in turn, must affect the
flow of individuals in the landscape and hence the behavior of the evolutionary al-
gorithm. However, each topological and dynamical measure emphasizes a specific
aspect in problem hardness and there is no guarantee that the considered measures
do not ignore properties that are important for details of the algorithms’ behavior in
exactly that landscape.

In the Figs. 13.10 and 13.11, the Pearson correlation coefficientρ2
P (also known as

”Pearson’s r”) and the Kendall correlation coefficient ρ2
K (also known as ”Kendall’s

τ”) are given. We write ρ2
P(MFE,#LM) for the squared Pearson correlation between

MFE and #LM, ρ2
K(MFE,#LM) for the squared Kendall correlation and so on. The

square of the correlation coefficients ρ2
P is also known as the coefficient of determi-

nation and can be interpreted as follows. The squared correlation coefficient repre-
sents the fraction of variance that is expressed by the fit between the MFE and the
landscape measures. If the data from the landscape measures and the behavior data
from the evolutionary algorithm were used in a statistical model, the quantity ρ2

P
would be a metric of how well this model is able to predict further data. Hence, we
view ρ2

P as a measure of reliability, strength and predictive power of the relationship
between the landscape measures and the evolutionary algorithms’ behavior. For the
correlation coefficient ρ2

K a likewise interpretation is possible.
The results in the Figs. 13.10 and 13.11 show some clear trends. A first is that the

topological landscape measures modality, ruggedness and information content have
a stronger correlation with the behavior of the evolutionary algorithm expressed by
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Fig. 13.10 Correlation analysis using Pearson product–moment correlation between topolog-
ical and dynamical landscape measures and the behavior of the evolutionary algorithm ex-
pressed by the mean fitness error MFE for different implementations: a) hyper-mutation, b)
self–adaption, c) direct memory, d) abstract memory. A - ρ2

P(MFE,#LM), B - ρ2
P(MFE,λR),

C - ρ2
P(MFE,HIC), D - ρ2

P(MFE,σ), E - ρ2
P(MFE,λL), F - ρ2

P(MFE,ψB).

the performance measure MFE , as compared to the dynamical landscape measures.
A second trend is that the correlation of the topological measures decrease with in-
creasing change frequency γ . A possible explanation is that change frequency seems
to be the fundamental factor determining the MFE , see Fig. 13.9, where γ seems to
set the level of the curves but not their form, which is done by ε and so by the other
landscape measures. If γ gets larger, that is, the evolutionary algorithm has more
generations to find the optimum, then the algorithms’ performance is no longer so
heavily influenced by topological problem hardness. The performance of an evolu-
tionary algorithm having enough time to search for the maxima is weaker affected
by the difficulties that are accounted for by the topological landscape measures. For
the dynamical landscape measures severity, Lyapunov exponents and bred vector di-
mensions the correlations are generally much weaker but such a ceasing relationship
for increasing γ is also not obtained. On the contrary, in some cases these measures
seem to predict the algorithms’ behavior even stronger for larger γ than for smaller
ones. A comparison between the two types of correlation coefficients considered
here yields rather equivocal results, although Pearson correlation ρ2

P seems to give
slightly stronger indications, particularly for the topological landscape measures.
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Fig. 13.11 Correlation analysis using Kendall rank–order correlation between topological
and dynamical landscape measures and the behavior of the evolutionary algorithm expressed
by the mean fitness error MFE for different implementations: a) hyper-mutation, b) self–
adaption, c) direct memory, d) abstract memory. A - ρ2

K(MFE,#LM), B - ρ2
K(MFE,λR), C -

ρ2
K(MFE,HIC), D - ρ2

K(MFE,σ), E - ρ2
K(MFE,λL), F - ρ2

K(MFE,ψB).

So, the question if linear relationships (Pearson) are to prefer over piecewise linear
(Kendall) is not definitely answerable.

A general exception to these rules are the results for self–adaption. Here, an im-
plementation detail might offer some clues. Self–adaption is the only of the four im-
plementations that does not directly and externally–triggered react on a landscape
change. The other three implementations detect a change and immediately response
with diversity enhancing actions such as hyper–mutation or inserting individuals
from the memory. Self–adaption, on the other hand, relies upon the mutation rates
to adjust themselves over a certain number of generations as the result of the self–
adaption process. This might be a reason why the problem solving abilities of the
self–adaption scheme, particularly for small γ , are less determined by the problem
hardness accounted for by the landscape measures, while the actual performance
results are comparable to the other implementations. For self–adaption this seems
to mean that the population’s diversity is high enough all the time. So, while the
other three schemes experience jump–like increases in their diversity as a result of
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the actions carried out after a detected change, but also a rapidly deterioration of di-
versity afterwards, self–adaption includes a continuing and not dwindling diversity
management that makes it more independent from the landscape properties.

13.6 Concluding Remarks

In this chapter of the book, we have considered the behavior of evolutionary al-
gorithms in dynamic fitness landscapes that exhibit spatio–temporal chaos. These
landscapes can be constructed from reaction–diffusion systems or from coupled map
lattices (CML) and both kinds of description are related to each other. We have an-
alyzed and quantified their properties using topological and dynamical landscape
measures such as modality, ruggedness, information content, dynamic severity and
two types of dynamic complexity measures, Lyapunov exponents and bred vector
dimension. Four types of evolutionary algorithm implementations, hyper–mutation,
self–adaption, and two kinds of memory schemes, direct and abstract memory, were
studied and their performance in the spatio–temporal chaotic fitness landscapes was
recorded. We used these performance data to relate the algorithms’ behavior to the
landscape measures using a correlation analysis. So, it was shown that the topologi-
cal landscape measures correlate stronger with the algorithms’ behavior, particularly
for landscapes that change frequently. This correlation tends to cease for landscapes
with a slower change pattern. Albeit dynamical landscape measures do show weaker
correlations, they tend to remain preserved for varying change frequency.

As initially stated, a main point in a theoretical approach to evolutionary compu-
tation is to study how properties of the fitness landscape reflect, explain and allow
to predict the behavior of the evolutionary algorithm, and vice versa. This question
was posed here specifically for dynamical fitness landscapes and our hope is that
the given approach might be useful as a starting point for a more general theory
of dynamic fitness landscapes, which still is in its infancy. For further developing
such a theory it might be helpful to go on taking inspiration from both the theory of
static fitness landscapes and of spatially extended dynamical systems. We believe
that only by bringing these fields together (which is a variation of the overall topic
of the present book) substantial progress can be achieved.
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