
Chapter 12
Evolutionary Synchronization of Chaotic
Systems

Ivan Zelinka and Ales Raidl

Abstract. This chapter introduces a simple investigation on deterministic chaos
synchronization by means of selected evolutionary techniques. Five evolutionary
algorithms has been used for chaos synchronization here: differential evolution, self-
organizing migrating algorithm, genetic algorithm, simulated annealing and evolu-
tionary strategies in a total of 15 versions. Experiments in this chapter has been done
with two different coupled systems (master - slave) - Rössler-Lorenz and Lorenz-
Lorenz. The main aim of this chapter was to show that evolutionary algorithms,
under certain conditions, are capable of synchronization of, at least, simple chaotic
systems, when the cost function is properly defined as well as the parameters of
selected evolutionary algorithm.This chapter consists of two different case studies.
For all algorithms each simulation was 100 times repeated to show and check the
robustness of proposed methods and experiment configurations. All data were pro-
cessed to obtain summarized results and graphs.

12.1 Introduction

Synchronization is a dynamical process during which one system (synchronized,
slaved) is remoted by another (synchronizing, master) so that the synchronized
system is in a certain manner following the behavior of the master system. The
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word “synchronization” come from the Greek word “synchronos” (συνχρoνoς )
in which συν (syn) means the same (common,...) and χρoνoς (chronos) means
the “time”. Synchronization can be divided into the following classes [9], [4], [12]:

• Identical synchronization. This synchronization may occur when two iden-
tical chaotic oscillators are mutually coupled (unidirectional or bidirectional
coupling), or when one of them drives the other, which is the case of numerical
study A (Lorenz-Lorenz), reported in this chapter. Basically, if {x1,x2, ...xn}
is a set of state (dynamical) variables of the master system as well as
{x′1,x′2, ...x′n} of the slave system, then both systems are synchronized if under
certain initial conditions and t → ∞ is true that |x1 − x

′
1| → 0. This states that

nothing more than large time is enough for dynamics of both systems in a
good approximation. This kind of synchronization is usually called identical
synchronization.

• Generalized synchronization differ from the previous case by the fact that
coupled chaotic oscillators are different and that the dynamical state of one
of the oscillators is completely determined by the state of the other. This is a
case of numerical study B (Rössler-Lorenz), reported in this chapter.

• Phase synchronization is another case of synchronization which occurs when
the oscillators coupled are not totally identical and the amplitudes of the os-
cillator remain unsynchronized, while only oscillator phases evolve in syn-
chrony. There is a geometrical interpretation of this case of synchronization.
It is possible to find a so called plane in phase space in which the projection of
the trajectories of the oscillator follows a rotation around a well-defined cen-
ter. The phase is defined by the angle ϕ(t), described by the segment which
is joining the center of rotation and the projection of the trajectory point onto
the plane.

• Anticipated and lag synchronization. Lets say that we have a synchroniz-
ing system with state variables {x1,x2, ...xn} and a synchronized system with
state variables {x′1,x′2, ...x′n}. Anticipated and lag synchronization occurs when
x
′
1(t) = x1(t+ τ) holds true. This relation, in fact, states that the dynamics of

one of the systems follows, or anticipates, the dynamics of the other and whose
dynamics is described by delay differential equations.

• Amplitude envelope synchronization is a kind of synchronization which
may appear between two weakly coupled chaotic oscillators. Comparing with
another cases of synchronization, there is no correlation between phases or
amplitudes. One can observe a periodic envelope that has the same frequency
in the two systems. Magnitude of that envelope has the same order of the
difference between the average frequencies of oscillation of both systems. It
is important to note that phase synchronization can develops from amplitude
one, when the strength of the coupling force between two amplitude envelope
synchronized oscillators increases in time.

A rich amount of literature of working with synchronization exist. We can recom-
mend as a representative literature [9], [4] and [12]; all three books are well written
and highly readable. Other research works are [13], [2] (synchronization based on
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time series analysis), [11] (robustness of synchronized systems), and many others.
Avery good starting reference can be found in the above mentioned books [9], [4]
and [12].

The main aim of this research is to show that evolutionary algorithms (EA) are
capable of synchronizing simple chaotic systems, without the knowledge of internal
system structure. The ability of EAs to successfully work with black box type of
problems have been proven; see for example real-time control of plasma reactor
[7], [8], [20] or CML non real-time control by evolutionary algorithms [17], [18],
[21] and Chapter 6 in this book. This chapter is organized as follows. The first
part outlines the motivation of EAs use on synchronization. This is followed by a
very brief note about used evolutionary algorithms whose detailed description is
presented in Chapter 6. Evolutionary synchronization is then studied, and finally
experimental results are reported, followed by conclusion.

12.2 Motivation

Motivation of this research is quite simple. As mentioned in the introduction and
also in the previous chapters, evolutionary algorithms are capable of hard problem
solving. A lot of examples about evolutionary algorithms can be easily found like
their use in control, artificial intelligence, electronic devices design and setting etc.
For more, see for example mentioned references in Chapter 6, section Motivation.
The main question in the case of this chapter was if EAs are able to synchronize
simple chaotic systems. Main attention has been paid to continuous chaotic sys-
tems, i.e. to Rössler and Lorenz systems. All experiments here were designed to
confirm or reject this idea and were designed to be as simple as possible, to show
the methodology of evolutionary algorithms use.

12.3 Selected Evolutionary Algorithm – A Brief Introduction

For the numerical and symbolic experiments described here, stochastic optimiza-
tion algorithms such as Differential Evolution (DE) [10], Self Organizing Migrating
Algorithm (SOMA) [16], Genetic Algorithms (GA) [5], Simulated Annealing (SA)
[6], [3] and Evolutionary Strategies (ES) [1] were selected. Description of all these
algorithms can be found in mentioned references or in Chapter 6.

12.4 Evolutionary Synchronization

12.4.1 Used Hardware, Problem Selection and Case Studies

Synchronization in this case study has been done on a special grid computer, com-
paring to simple PC as in [19]. This grid computer consist of two special Ap-
ple servers (for pictures, see Chapter 6). In total 78 CPUs are available. Emanuel
has been used for calculations such that each CPU has been used like a single
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processor and thus a rich set of statistically repeated experiments was possible which
was not time consuming. Typical parallel computing has been avoided in experi-
ments described here.

Chaotic systems used in this chapter, has been selected from continuous domain,
especially the Rössler and Lorenz systems. This selection has been done because in
the remaining part of this book are used mostly discrete chaotic systems (1D as well
as CML systems) prior to continuous systems. We would like to show that EAs are
not restricted only to discrete domain, so this was the main reason of Rössler and
Lorenz system use.

Two case studies (A and B) were defined and used. In the first a coupled system
Lorenz-Lorenz (case A, eq. (12.1)) was used. Synchronization has been done via
parameter d and coupling “part” d (x1(t)− x2(t)) in eq. (12.1). The cost function in
this case has been calculated according to eq. (12.3), i.e. difference in master-slave
system in all three system variables.

In the second case study (B), Rössler-Lorenz system was used as described by
eq. (12.2). Synchronization has been done via parameter c and coupling “part”
c(y1(t)− y2(t)) in eq. (12.2). Cost function in this case has been calculated ac-
cording to eq. (12.4), i.e. only, comparing with eq. (12.3), for one system variable
difference in master-slave system.

12.4.2 Cost Function

The fitness (cost function) has been calculated, as mentioned in the last paragraph,
according to the distance between desired synchronizing system state and actual
synchronized system state. The minimal value of this cost function, guarantees the
best solution. The aim of all simulations was to find the best solution, i.e. a solution
that returns the cost value as small as possible. The difference between eq. (12.3)
and eq. (12.4) is in the number of used state variables. In the case of eq. (12.3)
it is logical to expect that all three state variables will be synchronized perfectly,
while in the case of the eq. (12.4) we expected that only synchronized variable,
in this case y2(t), will be synchronized in an acceptable manner. Results depicted
later in various figures has confirmed all these presumptions. The cost value was in
fact the absolute value of summarization of grey areas between synchronizing and
synchronized system output (time series) as demonstrated in Fig. 12.1.

Lorenz−Lorenz synchronization
Lorenz system (master) :
x′1(t) =−a(x1(t)− y1(t))
y′1(t) =−x1(t)z1(t)+bx1(t)− y1(t)
z′1(t) = x1(t)y1(t)− cz1(t)

Lorenz system (slave) :
x′2(t) =−a2 (x2(t)− y2(t))+d(x1(t)− x2(t))
y′2(t) =−x2(t)z2(t)+bx2(t)− y1(t)
z′2(t) = x2(t)y2(t)− z2(t)

(12.1)
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Rössler−Lorenz synchronization
Rössler system (master) :
x′1(t) =−y1(t)− z1(t)
y′1(t) =−x1(t)− y1(t)

5
z′1(t) = (x1(t)−5.7) z1(t)+0.2

Lorenz system (slave) :
x′2(t) =−a(x2(t)− y2(t))
y′2(t) =−x2(t)z2(t)+bx2(t)+ c(y1(t)− y2(t))
z′2(t) = x2(t)y2(t)− z2(t)

(12.2)

CFLL(a2,d) =
100∫
0

|x1(t)− x2(t)|+ |y1(t)− y2(t)|+ |z1(t)− z2(t)|dt (12.3)

CFRL(a,b,c) =
200∫
0

|(y1(t)− y2(t)|dt (12.4)
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Fig. 12.1 Principle of cost value calculation. For all three variables x(t), y(t) and z(t) has
been calculated difference between behavior of synchronizing and synchronized system (light
grey area).
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12.4.3 Parameter Setting

The control parameter settings have been found empirically and are given in Tables
12.1 - 12.6. The main criterion for this setting was to keep the same setting of param-
eters as much as possible alongside the same number of cost function evaluations
as well as the population size. Individual length represents the number of optimized
parameters (in this case coupling parameter d (L-L system) or c (R-L system)).

We would like to note that settings of all used algorithms has been based on our
preliminary experiences and certainly can be improved. However this topic is quite
numerically time consuming, so we let this topic open for future research.

All algorithms (SOMA, DE, SA, GA, ES) have been applied 100 times in order
to find the optimum of both case studies. The primary aim of this comparative study
is not to show which algorithm is better and worst, but to show that evolutionary
synchronization can be really used for chaotic systems. Outputs of all simulations
are depicted in Fig. 12.6 - 12.12, and Fig. 12.34 - 12.36, which shows results of all
100 simulations for each case study.

Table 12.1 Algorithms abbreviation

Table 12.2 DE setting for case studies A and B

Case Study A B
NP 100 100
F 0.9 0.9
CR 0.3 0.3
Generations 500 500
Individual Length 2 3

Algorithm Version Abbreviation
Differential Evolution DEBest1JIter D1

DEBest2Bin D2
DELocalToBest D3
DERand1Bin D4
DERand1DIter D5
DERand2Bin D6

Evolutionary strategies (μ ,λ ) ES1
Evolutionary strategies (μ+λ ) ES2
Genetic Algorithm G
Simulated annealing with elitism SA1
Simulated annealing without elitism SA2
SOMA AllToAllAdaptive S1

AllToAll S2
AllToOne S3
AllToOneRandomly S4
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Table 12.3 ES setting for case studies A and B

Case Study A B
μ ,λ 100 100
σ 1 1
Iterations 100 100
Individual Length 2 3

Table 12.4 GA setting for case studies A and A

Case Study A B
Population size 100 100
Mutation 0.4 0.4
Generations 500 500
Individual Length 2 3

Table 12.5 SA setting for case studies A and B

Case Study A B
No. of particles 100 100
σ 0.5 0.5
kmax 66 66
Tmin 0.0001 0.0001
Tmax 1000 1000
α 0.95 0.95
Individual Length 2 3

Table 12.6 SOMA setting for case studies A and B

Case Study A B
PathLength 3 3
Step .11 .11
PRT 0.1 0.1
PopSize 20 20
Migrations 10 10
MinDiv -0.1 -0.1
Individual Length 2 3

12.4.4 Experimental Results

Two main case studies has been done in this chapter. Case study A (synchroniza-
tion of Lorenz-Lorenz system), and B (synchronization of Rössler-Lorenz system).
In both cases attention was paid to parameter estimation, obtained cost value as
well as to cost function evaluations needed to reach acceptable setting of given syn-
chronization. All data has been processed in order to get viable statistics about the



390 I. Zelinka and A. Raidl

evolutionary dynamics behind these experiments. These statistics has been pro-
cessed into figures, which shows the performance of evolutionary techniques from
different point of views. Average values are depicted as horizontal line in each fig-
ure.

12.4.4.1 Case Study A: Lorenz - Lorenz Synchronization

In the first case study, we have used for synchronization two identical systems
Lorenz - Lorenz systems (eq. (12.1), Fig. 12.2). Synchronization has been done
by coupling of variables x1,2(t) via parameter d. The difference between them has

X1

y1 z1

X2

y2 z2

Drive / Lorenz Response / Lorenz

Fig. 12.2 Schematic of Lorenz-Lorenz synchronization. Variable x2 has been directly
synchronized.
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Fig. 12.3 Dependance of cost function value on coupling parameter d.
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Fig. 12.4 Dependance of cost function value on coupling parameter d and parameter a2.
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Fig. 12.5 Cost function evaluations...
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Fig. 12.6 ... and detail view; horizontal line
is an average value of all.

been calculated and multiplied by parameter d, see (d (x1(t)− x2(t))) in eq. (12.1).
In fact, the search for optimal parameter setting has been done with dependance on
two parameters: on parameter d and a2 in eq. (12.1).

Complexity of cost function landscape, is depicted on Fig. 12.3 for dependance
only on coupling parameter d and Fig. 12.4 for dependance at both parameters. All
parameters were varied around nominal values, as referred in the literature. Com-
plexity is very high, as anyone can easily see. In the chaotic landscape a linear-like
trend is visible. Thanks to this trend, it is visible that the minimum can be expected
at position {d, a2}= {8,10}.
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Fig. 12.7 Cost value...
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Fig. 12.8 ... and detail view; horizontal line
is an average value of all.
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Fig. 12.9 Estimation of parameter a ...
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Fig. 12.10 ... and detail view; horizontal
line is an average value of all.
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Fig. 12.11 Estimation of parameter d ...
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Fig. 12.12 ... and detail view; horizontal
line is an average value of all.

During this case study 5 algorithms has been used in 15 versions. Attention was
focused on quality from the cost function evaluations point of view, further on cost
value, parameter a2 setting as well as setting of the coupling parameter d. Parameters
a2 and d has been estimated simultaneously, i.e. individual dimension was 2. All
these results are reported in Figs. 12.5 - 12.12. Together with minimal, maximal
and average values, average vaue of all algorithms (horizontal line) is also depicted.
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Fig. 12.13 Difference between x1(t) and
x2(t).
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Fig. 12.14 Difference between z1(t) and
z2(t).
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Fig. 12.16 ...and total view on both vari-
ables x1(t) and x2(t). Both tme series are
almost identical.

On Fig. 12.5 and Fig. 12.6 the performance (how many cost function evaluations
was needed to find acceptable setting) of all algorithms is reported. Fig. 12.7 and
Fig. 12.8 show the same for cost value related to used estimated setting (i.e. how
much differs the behavior of both systems), Fig. 12.9 and Fig. 12.10 show how well
the parameter a2 has been estimated and Fig. 12.11 and Fig. 12.12 the give the same
for parameter d. Difference of estimated parameters is still in the range of acceptable
values (i.e. slaved system has been synchronized very well) ism shown in Fig. 12.14,
as it is visible in Fig. 12.13 and 12.14. Difference between the worst and the best
behavior of x1,2 and z1,2 is depicted there. The biggest impact on cost value come
from interval [0, 7s], before systems are well synchronized. Another anomaly is at
position 92s, which is just a sharp peak with little impact on cost value. Middle part
is depicted in Fig. 12.15 and related time series of both variables x1,2 is shown in
Fig. 12.16.

From all figures it is visible that all EAs has demonstrated almost the same perfor-
mance. Only a few differences has been recorded thanks to “outliers” (values “far”
away from average), probably caused by non-optimal setting of selected algorithm.
The problem of finding real optimal setting of used algorithms is quite complex and
time consuming process and it was not an objective of this study.
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Table 12.7 Experiment summarization, Lorenz - Lorenz, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Cost function evaluations
see Fig. 12.5
Minimum 2820 4588 4428 4240 8180 5150 401 237
Average 9828.24 10977.46 9386.76 10330.74 13300.32 13088.38 3702.85 1145.04
Maximum 15120 16020 12704 15356 17748 18714 11201 2055
Total for each algorithm 982824 1097746 938676 1033074 252706 1308838 370285 114504

Cost Values
see. Fig 12.7
Minimum 27.50 27.58 27.50 27.51 27.53 27.51 18.03 22.69
Average 27.82 27.82 27.82 27.83 27.82 27.81 24.98 26.13
Maximum 27.99 27.99 27.99 27.99 27.99 27.99 27.98 27.99

Parameter a setting
see. Fig 12.9
Minimum 9.9969 9.9969 9.9967 9.9968 9.9972 9.9967 9.8399 9.9376
Average 9.9988 9.9987 9.9987 9.9988 9.9987 9.9988 10.002 9.999
Maximum 9.9999 9.9999 9.9999 9.9999 9.9999 9.9999 10.081 10.055

Parameter d setting
see. Fig 12.11
Minimum 7.8500 7.8476 7.8553 7.8434 7.8911 7.8424 7.8772 7.9012
Average 7.9464 7.9482 7.9476 7.9430 7.9456 7.9464 11.589 9.8122
Maximum 7.9987 7.9992 7.9990 7.9991 7.9917 7.9979 23.048 13.365

Table 12.8 Experiment summarization, Lorenz - Lorenz, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Cost function evaluations
see Fig. 12.5
Minimum 32180 3844 1346 1508 26338 2458 4534
Average 48490.67 4972.66 4909.23 14908.32 58855.69 7371.88 10993.90
Maximum 50100 4984 4984 22006 83430 10794 11220
Total for each algorithm 872832 497260 412375 1490832 3766764 737188 1099390

Cost Values
see. Fig 12.7
Minimum 27.78 27.94 27.69 27.50 27.53 27.53 27.65
Average 28.93 32.89 33.15 27.86 27.84 27.85 31.36
Maximum 31.48 44.65 52.80 27.99 27.99 27.99 65.48

Parameter a setting
see. Fig 12.9
Minimum 9.9839 9.9225 9.8695 9.9966 9.9966 9.9968 9.7364
Average 9.9946 9.9757 9.9745 9.9985 9.9987 9.9986 9.9799
Maximum 9.9997 9.9997 9.9998 9.9999 9.9999 9.9999 9.9999

Parameter d setting
see. Fig 12.11
Minimum 7.5454 7.0813 7.2120 7.8497 7.8472 7.8618 7.1813
Average 7.8311 7.7000 7.6908 7.9442 7.9383 7.9450 7.8539
Maximum 7.9942 7.9929 7.9989 7.9995 7.9979 7.9997 7.9979



12 Evolutionary Synchronization of Chaotic Systems 395

Fig. 12.17 Schematic of Rössler-Lorenz synchronization. Variable y2 has been directly syn-
chronized.

12.4.4.2 Case study B: Rössler - Lorenz Synchronization

In this case study we have used the selected evolutionary algorithms on synchro-
nization of two different systems (Fig. 12.17), i.e. on synchronization of the Rössler
- Lorenz systems (see Fig. 12.18 and Fig. 12.19). Synchronization has been done
by the coupling of variables y1,2(t) so that the difference between them has been
calculated and multiplied by parameter c, see (c(y1(t)− y2(t))) in eq. (12.2). Typi-
cal difference between non-synchronized and synchronized behavior is depicted in
Fig. 12.20 - Fig. 12.25. The effect of synchronization on synchronized system is
depicted in Fig.12.26 and Fig. 12.27 (compare with Fig. 12.19).

To estimate the complexity of cost function landscape, a series of figures show-
ing dependance on three parameters a, b and c in eq. (12.2), has been generated.
All three parameters were varied around nominal values referred in the literature.
For each parameter change, the behavior of master-slave system has been generated
and the cost value calculated. In Fig. 12.28 and 12.29 dependance on various val-
ues of parameter a is depicted, in Fig. 12.30 and 12.31 on parameter b and in Fig.
12.32 and 12.33 on parameter c. It is clear that the cost function landscape (three
dimensional surface (three variables a, b and c) is in four dimensional space - fourth
dimension is cost value) is very complex, nonlinear and almost erratic. Thus the use
of evolutionary computation is again acceptable in this case.

Similarly, like in the previous case study, 5 algorithms in 15 versions have been
used. Attention, like in the previous case, was focused also on cost value, parameter
a, b setting as well as the setting of the coupling parameter c. All three parameters
has been estimated simultaneously, i.e. individual dimension was 3. All these results
are reported in Figs. 12.34 - 12.39. Together with minimal, maximal and average
values, the average vaue of all algorithms (horizontal line) is also depicted. Fig.
12.37 show the same for the cost value related to used estimated setting (i.e. how
much differs behavior of both systems), Fig. 12.34 show how well parameter a has
been estimated and the same is done in Fig. 12.35 for parameter b and Fig. 12.36
for parameter c. The number of cost function evaluations needed for each algorithm
is reported in Fig. 12.38 and 12.39. From all figures, it is visible that all EAs have
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Fig. 12.20 Rössler-Lorenz system for vari-
ables x1(t) and x2(t) (eq. (12.2)) with c = 0
(not synchronized)...
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Fig. 12.21 ... and under synchronization (c
= 69.4458). Lorenz system is dotted light
red curve.
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Fig. 12.22 Rössler-Lorenz system for vari-
ables y1(t) and y2(t) (eq. (12.2)) with c = 0
(not synchronized)...
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Fig. 12.23 ... and under synchronization (c
= 69.4458). Lorenz system is dotted light
red curve.
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Fig. 12.24 Rössler-Lorenz system for vari-
ables z1(t) and z2(t) (eq. (12.2)) with c = 0
(not synchronized)...
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Fig. 12.25 ... and under synchronization (c
= 69.4458). Lorenz system is dotted light
red curve.

Evolutionary Strategies (ES) [1] were selected. As a conclusion the following state-
ments are presented:

• Algorithm performance. Based on all informations and figures reported in
this chapter, it can be stated, that all EAs showed good performance. In both
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Fig. 12.28 Dependance of parameter a in
Rössler-Lorenz system (eq. (12.2))...

Fig. 12.29 ... and its detail.

Fig. 12.30 Dependance of parameter b in
Rössler-Lorenz system (eq. (12.2))...

Fig. 12.31 ... and its detail.
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Fig. 12.32 Dependance of parameter c in
Rössler-Lorenz system (eq. (12.2))...
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Fig. 12.33 ... and its detail.

of evolutionary (pseudorandom, etc...) nature; b) settings of algorithm control
parameters is not optimal; c) algorithms need longer time to get better values.
However the most simplest explanation is that all those extreme values are just
“outliers”, i.e. only a few values estimated not so optimally, due to random-
ness of evolutionary algorithms.Two randomly selected histograms showing
outliers are depicted in Fig. 12.45 and 12.46. From Fig. 12.45 it is clearly visi-
ble that cost function evaluation (approx. 30000, see Fig. 12.38, algorithm S4)
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Fig. 12.34 Estimation of parameter a ...
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Fig. 12.35 ... and of parameter b .
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Fig. 12.36 Estimation of parameter c ...
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Fig. 12.37 ... and summarization of cost
values.
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Fig. 12.38 Cost function evaluations...
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Fig. 12.39 ... and detail view.

is really not a rule, but an outlier. The same is visible in Fig. 12.46, compared
with Fig. 12.11, algorithm ES1.

• Statistical robustness. In the frame of this case study 30 (2×15) simulations
has been done, and each has been 100 × repeated. Thus the total number of
simulations was 3000 simulations equal to 14975294 / 4387854 (L-L / R-L)
cost function evaluations, see for more detailed description see Table 12.7 and
12.8 (L-L system) and Tables 12.9 - 12.10 (R-L system). All those calculations
led to positive results, i.e. systems have been synchronised succesfully. All
calculations has been done on a grid computer which consist of two special
Apple servers: 16 XServers, each 2x2 GHz Intel Xeon, 1 GB RAM, 80 GB
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Fig. 12.40 Total view of cost value dependance on parameter a
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Fig. 12.41 Synchronization of x1,2(t) ac-
cording to the best estimated setting.
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Fig. 12.42 Synchronization of y1,2(t) ac-
cording to the best estimated setting.

HD i.e. 64 CPUs) and 7 Apple Minimacs CoreDuo i.e. number of accessible
CPUs is 14. In total 78 CPUs there was available for computation.

• Results divergence. As mentioned before, results in both case studies are
slightly different. Obtained averages are mostly on the same level, however
their divergence is for algorithms like ES and SA is different. As mentioned
before, probably better setting should be applied. On the other side, there is
so called “No Free Lunch” theorem, see [14], according to which universal
algorithm does not exist, i.e. some of selected evolutionary algorithm is not
much suitable for this task. But this is probably not a case of the algorithms
used here.
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Fig. 12.43 Synchronization of z1,2(t) ac-
cording to the best estimated setting.
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Fig. 12.44 Synchronization: difference be-
tween y1(t)−y2(t).

Table 12.9 Experiment summarization, Rössler - Lorenz, part 1.

Algorithm D1 D2 D3 D4 D5 D6 ES1 ES2

Cost function evaluations
see Fig. 12.5
Minimum 54 19 11 7 6 8 36 1
Average 1500 1234 1589 1806 2013 1791 7376 1637
Maximum 4582 2832 3900 4644 4364 5744 38861 6477
Total for each algorithm 149963 56767 158851 180646 201257 179055 737582 158797

Cost Values
see. Fig 12.37
Minimum 4.5966 4.5531 4.5254 4.5314 4.7290 4.5533 4.0446 4.5991
Average 5.9067 6.0994 5.9115 5.9307 6.0956 6.0467 5.9568 6.2024
Maximum 6.9800 6.9453 6.9906 6.9888 6.9933 6.9855 6.9829 6.9992

Parameter a setting
see. Fig 12.34
Minimum 0.0063 0.0015 0.0018 0.0008 0.001 0.0008 -0.004 -0.003
Average 0.1001 0.1184 0.1033 0.1027 0.1062 0.1122 0.0975 0.0815
Maximum 0.2482 0.2304 0.2433 0.2328 0.2679 0.2658 0.2451 0.2548

Parameter b setting
see. Fig 12.35
Minimum 0.0534 0.3000 0.0416 0.0391 0.0313 0.0104 -3.257 -1.413
Average 2.0676 2.4464 2.1227 2.3213 2.1520 2.4390 1.9063 3.4911
Maximum 5.6232 11.309 7.2874 10.248 7.3880 19.717 19.221 18.584

Parameter c setting
see. Fig 12.36
Minimum 46.333 48.138 45.681 46.458 46.144 46.607 45.726 47.220
Average 61.686 61.474 62.077 61.985 60.619 61.969 62.397 62.576
Maximum 69.984 69.990 69.941 69.873 69.995 69.890 79.150 74.171
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Table 12.10 Experiment summarization, Rössler - Lorenz, part 2.

Algorithm G SA1 SA2 S1 S2 S3 S4

Cost function evaluations
see Fig. 12.5
Minimum 5 8 12 9 3 3 7
Average 1222 1188 989 923 11738 4588 5002
Maximum 5957 4984 4984 3008 26220 12656 28628
Total for each algorithm 122169 118765 98879 92258 1173843 458846 500176

Cost Values
see. Fig 12.37
Minimum 4.5533 4.6710 4.7431 4.7287 4.5311 4.6754 4.5709
Average 5.8689 6.0519 6.0542 6.0657 6.0624 6.0390 6.0297
Maximum 6.9866 7.1153 7.3234 6.9764 6.9965 6.9898 6.9938

Parameter a setting
see. Fig 12.34
Minimum 0.0053 0.0004 0.0004 0.0026 0. 0.0019 0.0001
Average 0.1083 0.1017 0.0971 0.1223 0.0914 0.1065 0.1009
Maximum 0.2586 0.2191 0.2602 0.2749 0.253 0.2533 0.2572

Parameter b setting
see. Fig 12.35
Minimum 0.0403 0.0617 0.1234 0.0261 0.0157 0.0167 0.0674
Average 1.9918 1.9770 2.2398 2.5879 2.9517 2.2215 2.637
Maximum 4.8671 16.629 7.4493 6.2005 22.604 6.0407 18.449

Parameter c setting
see. Fig 12.36
Minimum 47.188 45.505 45.489 48.398 45.961 46.766 46.868
Average 62.236 59.287 60.202 64.109 61.287 61.465 60.811
Maximum 69.834 69.892 69.797 69.996 69.920 69.911 69.864
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Fig. 12.45 Histogram of cost function eval-
uations; R-L system.
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Fig. 12.46 Histogram for parameter d; L-L
system.
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Fig. 12.47 Dependance of cost value on the
parameter b for a = 0.1 and c = 69.4458 ...
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Fig. 12.48 ... and detail view.
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Fig. 12.49 Dependance of cost value on the parameter b in very tiny region. Global extreme
is marked by red (light grey) circle. Its estimation is approximate, because this picture (and
dataset used for) has been calculated with certain, limiting accuracy.

• Algorithm settings. Algorithm setting has been established according to
heuristically known setting for each algorithm as well as on our own expe-
riences. We would like to remind that it does not mean that there is no better
settings for any of used algorithms. Main aim was not focused on speed of
used algorithms but on successful synchronization.

• Synchronization settings. During all simulations different setting for
estimated parameters has been found, comparing with literature and our
heuristically obtained setting (a = 3, for b = 26.5 and c = 70 for R-L sys-
tem). Compare Fig. 12.21 with Fig. 12.41, Fig. 12.23 with Fig. 12.42 and Fig.
12.25 with Fig. 12.43. Thus EAs have found better setting. Differences of
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Fig. 12.50 Difference between x2−best(t)
(solid line) and x2−worst(t) (dotted line).
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Fig. 12.51 Difference between z2−best(t)
(solid line) and z2−worst(t) (dotted line).

behavior between synchronizing and synchronized variables are also depicted
in Fig. 12.13, 12.14, 12.15 and Fig. 12.16.

• Problem complexity. Problem complexity, represented by the cost function
landscape, is depicted in Fig. 12.3, Fig. 12.4, Fig. 12.28 - 12.33 and Fig. 12.40.
It is clearly visible that cost function landscape is very erratic, nonlinear and
multimodal. Another view on its complexity is given in Fig. 12.47 - 12.49.
Compare Fig. 12.47 with Fig. 12.30. The extreme of parameter b dependance
has moved for different a and c from positions (approx.) 15 to 2.2785. In other
words, optimal setting cannot be found simply by visual checking of each
parameter dependance, due to their mutual influence. Thus naturally, problem
of synchronization, is suitable for evolutionary algorithms.

• Different results. When comparing R-L and L-L systems, then one can see,
that there is visible difference in the range of the parameter value estimation,
as well as in cost function evaluations and cost values. It is obvious because
a) both systems are different, b) in both systems is estimated by different
number of parameters, c) cost values are differently calculated, see eq. (12.3)
and (12.4). For L-L system the cost value (eq. (12.3)) is calculated in interval
t ∈ [0,100] like difference between all three variables, while in R-L system
(eq. (12.4)) for only y1,2(t) variable and t ∈ [0,200]. Another important point
is, that because in R-L system y1(t)−y2(t)− is minimized only, then the vari-
ables x2(t) and z2(t)were not pressed by evolution into exact values. Variables
x2(t) and z2(t) has thus a “freedom” to reach different values. It is visible in
Fig. 12.50 and 12.51. A difference between the best and the worst estimated
synchronization is depicted there for R-L system and variables x2(t) and z2(t).
Gray area represent “space” for all possible values of both variables.

• Estimated parameters. In the synchronization experiments coupling param-
eters are usually estimated. In this numerical study, the internal parameters
of chaotic systems has been selected for optimization are also estimated.
It can reflect, for certain systems, situation that some of physical parame-
ters (pressure, current, ...) can be remoted by an external observer. Because
the parameters has some certain physical meaning (they are not abstract
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numbers), one has to carefully work with them and sometimes this is sim-
ply not allowed. We did not follow this idea in numerical studies here.

• Negative values. In the reported results it can easily be found that for some
values, negative values are returned, especially for evolutionary strategies. It
was caused by the fact that in evolutionary strategies procedure “watching”
has not been applied whether evolutionary process overstepped the allowable
search space or not. Thus, evolutionary strategies, has also searched a little bit
behind of searchable space borders.

According to the author’s opinion, this is a promising area of evolutionary al-
gorithms use. Experiments designed, numerically simulated and reported here were
one of the most simplest. Based on results obtained here and also in other chapters,
it is possible to say that EAs are viable and should also work on more complicated
cases of synchronization, for example the CML systems.
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