
Chapter 11
Chaos Synthesis by Evolutionary Algorithms

Ivan Zelinka, Guanrong Chen, and Sergej Celikovsky

Abstract. This chapter introduces the notion of chaos synthesis by means of evolu-
tionary algorithms and develops a new method for chaotic systems synthesis. This
method is similar to genetic programming and grammatical evolution and is applied
alongside evolutionary algorithms: differential evolution, self-organizing migrating,
genetic algorithm, simulated annealing and evolutionary strategies. The aim of this
investigation is to synthesize new and “simple” chaotic systems based on some ele-
ments contained in a pre-chosen existing chaotic system and a properly defined cost
function. The investigation consists of two case studies based on the aforementioned
evolutionary algorithms in various versions. For all algorithms, 100 simulations of
chaos synthesis were repeated and then averaged to guarantee the reliability and ro-
bustness of the proposed method. The most significant results are carefully selected,
visualized and commented in this chapter.

Ivan Zelinka
Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
and
VSB-TUO, Faculty of Electrical Engineering and Computer Science, 17. listopadu 15,
708 33 Ostrava-Poruba, Czech Republic
e-mail: zelinka@fai.utb.cz

Guanrong Chen
Department of Electronic Engineering, City University of Hong Kong, Kowloon,
Hong Kong SAR, P.R. China
e-mail: eegchen@cityu.edu.hk

Sergej Celikovsky
Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, Faculty of Electrical Engineering,
Czech Technical University in Prague
e-mail: celikovs@utia.cas.cz

I. Zelinka et al. (Eds.): Evolutionary Algorithms and Chaotic Systems, SCI 267, pp. 345–382.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

346 I. Zelinka, G. Chen, and S. Celikovsky

11.1 Introduction

Deterministic chaos, discovered by E. Lorenz [26] is a fairly active area of research
in the last few decades. The Lorenz system produces a well-known chaotic attractor
in a simple three-dimensional autonomous system of ordinary differential equations
[26], [41]. For discrete chaos, there is another famous chaotic system, called logistic
equation [27], which was found based on a predator-prey model showing complex
dynamical behaviors. These simple models are widely used in the study of chaos
today, while other similar models exist (e.g., canonical logistic equation [14] and
1D or 2D coupled map lattices [40]). To date, a large set of nonlinear systems that
can produce chaotic behaviors have been observed and analyzed. Chaotic systems
thus have become a vitally important part of science and engineering at the theo-
retical as well as practical levels of research. The most interesting and applicable
notions are, for example, chaos control and chaos synchronization related to secure
communications, among others.

Recently, the study of chaos is focused not only along the traditional trends but
also on the understanding and analyzing principles, with the new intention of con-
trolling and utilizing chaos toward real-world applications as demonstrated in [6],
[45] and many references therein. The term chaos control was first used by Ott, Gre-
bogi and Yorke in 1990. It represents a process in which a control law is derived and
used such that the original chaotic behavior can be stabilized on a constant level of
output value or a periodic cycle. Since the first experimental report on chaos con-
trol, many control methods have been developed and some are based on the first
approach [33], including pole placement [15], [56] and delay feedback [36], [20],
[21], to name just a couple. Many methods were adapted to spatiotemporal chaos
represented by Coupled Map Lattices (CML). Control laws derived for CML are
usually based on existing system structures [40], or using an external observer [5],
etc. Evolutionary approach for control was also successfully developed in, for ex-
ample, [38], [37], [50].

Simultaneously with these research activities, some new chaotic systems were
found, like the chaotic Chen system [7], [42], which according to [44], [43] is a dual
system of the Lorenz system. Other well-known chaotic systems were discovered,
including dissipative ones like Lozi, Tinkerbell, Ikeda, Sinai, Burger, Duffing sys-
tems, and conservative ones like Chirikov, Arnold, Baker, Nose-Hoover and Henon-
Heiles systems. These chaotic systems were mostly derived from some known
physical systems. A typical example is the logistic equation obtained based on the
predator-prey system or the Lorenz system derived from an atmospheric model. On
the contrary, another direction of research was evolving about chaotic systems syn-
thesis. As a few representative examples, [55] investigated an algorithm for comput-
ing heteroclinic orbits with possible use in chaos synthesis. This investigation partly
used ideas on chaos synthesis and synchronization from [1]. In [12] there was an-
other investigation, which is based mostly on hardware to generate multiple-scroll
strange attractors. Basically very similar research was also carried out in [11], [10].

11 Chaos Synthesis by Evolutionary Algorithms 347

Methods used in generating new chaotic systems from physical systems or from
“manipulations” (e.g., control and parameter estimation [40], [18]) are based on
deterministic mathematical analysis. Along with these classical methods, there are
also numerical methods based partly on deterministic and partly on stochastic meth-
ods, called evolutionary algorithms (EAs) [2]. Evolutionary algorithms were used in
searching solutions in many computationally hard problems including classes of P
and NP problems [13]. In chaos studies, they have been used for chaos control [49],
[50], [37], among others.

The aim of this chapter is to show that EA-based symbolic regression (i.e., han-
dling with symbolic objects to create more complex structures) is capable of syn-
thesizing chaotic behavior in the sense that the mathematical descriptions of chaotic
systems are synthesized symbolically by means of evolutionary algorithms. The
ability of EAs to successfully solve this kind of black-box problems has been proven
(see, for example, [51], [28]), and is reinforced once again here in this chapter.

The paper is organized as follows. The first part outlines the motivation of the
research. This is followed by a brief survey of evolutionary algorithms, along with a
brief description of symbolic regression methods used with evolutionary algorithms.
Next, the method of symbolic regression, called analytic programming, is described
in more detail, which will be used in the rest experiments. Evolutionary synthesis of
chaos is then studied, and finally experimental results are reported, followed by the
conclusion.

11.2 Motivation

In recent years, interests in soft computing methods are increasing, including in par-
ticular evolutionary algorithms. These algorithms are based on similar principles of
biological evolution in the real world. The aim of EAs is to solve computationally
hard problems which are too complex to be solved by conventional methods. In its
canonical form, EAs can be used only for numerical estimation of parameters (usu-
ally, arguments of a given cost function). Together with EAs in the canonical form,
another modification allows to use EAs as a symbolic “constructors”, i.e., a pro-
cessor, for synthesizing complex structures in a symbolic way, based on some pre-
defined simple elements (mathematical operators or electronic elements like diode,
transistor, etc.). The term “symbolic way” stipulates that mathematical structures
and equations, electronic systems, etc., are generated from those simple elements
just mentioned.

Given the above background, the main motivation of this research was the ques-
tion “Is it possible to synthesize the mathematical description of a new chaotic
system, based on simple and elementary mathematical objects, by means of evo-
lutionary computation?” This question was also based partially on the fact that in
engineering applications, it is very often vitally important to know not only when
chaos can be generated but also how to generate it [6], [34]. This is extremely im-
portant in cryptography, for example, where chaotic systems are often used in the

348 I. Zelinka, G. Chen, and S. Celikovsky

design. From a mathematical point of view, it is quite clear that there are some
classes of chaotic systems which can be represented by one canonical form (one
class – one canonical form) [14]. However, generally speaking, it is not so easy to
exactly synthesize a chaotic system with specified features by means of classical
mathematical methods. A positive answer to the question mentioned above would
open possibilities to synthesize not only a set of not-yet-described chaotic systems,
but also some chaotic systems with predefined features. It is believed that such pos-
sibilities would have an important impact on engineering design of various complex
nonlinear systems, especially chaotic systems.

11.3 Brief Review of the Selected Evolutionary Algorithm

For both numerical and symbolic experiments described below, stochastic optimiza-
tion algorithms such as Differential Evolution (DE) [35], Self Organizing Migrating
Algorithm (SOMA) [48], Genetic Algorithms [17], [4] for Simulated Annealing
(SA) and [9] or [3] for Evolutionary Strategies (ES) are selected to use. For detail
description of selected evolutionary algorithms see Chapter 6.

11.4 Symbolic Regression – An Introduction

The term “symbolic regression” represents a process during which measured data
sets are fitted thereby a corresponding mathematical formula is obtained in an ana-

lytical way. An output of the symbolic expression could be, for example, N
√
x2+ y3

k ,
and the like. For a long time, symbolic regression was a domain of human calcula-
tions but in the last few decades computers as generally used for symbolic compu-
tation.

The initial idea of symbolic regression by means of a computer program was
proposed in Genetic Programming (GP) [22], [23]. The other approaches are Gram-
matical Evolution (GE) developed in [39] and Analytic Programming (AP) in [53].
Other interesting investigations using symbolic regression were carried out in [19]
on Artificial Immune Systems and Probabilistic Incremental Program Evolution
(PIPE), which generates functional programs from an adaptive probability distri-
bution over all possible programs. As an extension of GE to the another algorithms
is also [30], where DE was used with GE. Symbolic regression is schematically de-
picted in Fig. 11.1. Generally speaking, it is a process which combines, evaluates
and creates more complex structures based on some elementary and noncomplex ob-
jects, in an evolutionary way. Such elementary objects are usually simple mathemat-
ical operators (+,−,×, ...), simple functions (sin, cos, And, Not, ...), user-defined
functions (simple commands for robots – MoveLeft, TurnRight, ...), etc. An output
of symbolic regression is a more complex “object” (formula, function, command,...),
solving a given problem like data fitting of the so-called Sextic and Quintic prob-
lem described by eq. (11.1) [25], [52], randomly synthesized function by eq. (11.2)
[52], Boolean problems of parity and symmetry solution (basically logical circuits

11 Chaos Synthesis by Evolutionary Algorithms 349

Fig. 11.1 Symbolic regression - schematicall view

synthesis) by eq. (11.3) [24], [53], or synthesis of quite complex robot control com-
mand by eq. (11.4) [23], [32]. Equations (11.1)–(11.4) mentioned here are just a
few samples from numerous repeated experiments done by AP, which are used to
demonstrate how complex structures can be produced by symbolic regression in
general for different problems.

x

(
K1+

(
x2K3

)
K4 (K5+K6)

)
∗ (−1+K2+2x(−x−K7)) (11.1)

√
t

(
1

log(t)

)sec−1(1.28)

logsec−1(1.28) (sinh(sec(cos(1)))) (11.2)

Nor[(Nand[Nand[B||B,B&&A],B])&&C&&A&&B,
Nor[(!C&&B&&A||!A&&C&&B||!C&&!B&&!A)&&
(!C&&B&&A||!A&&C&&B||!C&&!B&&!A)||
A&&(!C&&B&&A||!A&&C&&B||!C&&!B&&!A),
(C||!C&&B&&A||!A&&C&&B||!C&&!B&&!A)&&A]]

(11.3)

Prog2[Prog3[Move,Right, IfFoodAhead[Left,Right]],
IfFoodAhead[IfFoodAhead[Left,Right],Prog2[IfFoodAhead[
IfFoodAhead[IfFoodAhead[Left,Right],Right],Right],
IfFoodAhead[Prog2[Move,Move],Right]]]]

(11.4)

11.4.1 Genetic Programming

Genetic programming was the first tool for symbolic regression carried out by means
of computers instead of humans. The main idea comes from genetic algorithms
(GA), which was used in GP [22], [23]. Its ability to solve very difficult problems is
well proven; for example, GP performs so well that it can be applied to synthesize
highly sophisticated electronic circuits [24].

The main principle of GP is based on GA, which is working with populations of
individuals represented in LISP programming language. Individuals in a canonical

350 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.2 Parental trees

form of GP are not binary strings, different from GA, but consist of LISP symbolic
objects (commands, functions, ...), etc. These objects come from LISP, or they are
simply user-defined functions. Symbolic objects are usually divided into two classes:
functions and terminals. Functions were previously explained and terminals repre-
sent a set of independent variables like x, y, and constants like π , 3.56, etc.

The main principle of GP is usually demonstrated by means of the so-called trees
(basically graphs with nodes and edges, as shown in Fig. 11.2 and Fig. 11.3, repre-
senting individuals in LISP symbolic syntax). Individuals in the shape of a tree, or
formula like 0.234Z+X−0.789, are called programs. Because GP is based on GA,
evolutionary steps (mutation, crossover, ...) in GP are in principle the same as GA.
As an example, GP can serve two artificial parents – trees on Fig. 11.2 and Fig. 11.3,
representing programs 0.234Z+X−0.789 and ZY (Y +0.314Z). When crossover is
applied, for example, subsets of trees are exchanged. Resulting offsprings of this
example are shown in Fig. 11.3.

Thereafter, offspring fitness is calculated such that the behavior of the just-
synthesized and evaluated individual-tree should be as much as possible similar to
the desired behavior. Here, desired behavior can be understood to be like a measured
data set from some process (a program that should fit them as well as possible) or
like an optimal robot trajectory, i.e., when the program is realizing a sequence of
robot commands (TurnLeft, Stop, MoveForward,...) leading as close as possible to
the final position. This is basically the same for GE.

11 Chaos Synthesis by Evolutionary Algorithms 351

Fig. 11.3 Offsprings

For detailed description of GP, see [23], [25] and for on-line working example,
visit [http://evonet.lri.fr/CIRCUS2/node.php?node=56].

11.4.2 Grammatical Evolution

Another method for the same task in view of the resulting program alike GP was
developed in [29] called grammatical evolution (GE). GE has one advantage com-
pared to GP and this is the ability to use arbitrary programming languages, not only
LISP as in the case of the canonical version of GP. In contrast to other evolution-
ary algorithms, GE was used only with a few search strategies, and with a binary
representation of the populations [29]. Last successful experiment with DE applied
on GE was also done in [30]. Grammatical evolution is in its canonical form based
on GA, thanks to a few important changes it has in comparison with GP. The main
difference is in individual coding.

While GP manipulates in LISP symbolic expressions, GE uses individuals based
on a binary strings. These are transformed into integer sequences and then mapped
into a final program in the Backus-Naur form (BNF) [29], as explained by the fol-
lowing artificial example. Let T = {+,−,×,/,x,y} be a set of operators and ter-
minals and let F = {epr, op, var} be the so-called nonterminals. In this case, the
grammar used for final program synthesis is given in Table 11.1. The rule used for
individuals transforming into a program is based on eq. (11.5) below. Grammatical

352 I. Zelinka, G. Chen, and S. Celikovsky

evolution is based on binary chromosome with a variable length, divided into the
so-called codons (range of integer values, 0-255), which is then transformed into an
integer domain according to Table 11.2.

unfolding = codon mod rules
where rules is number of rules for given nonterminal

(11.5)

Table 11.1 Grammatical evolution - rules

Nonterminals Unfolding Index
expr ::= op expr expr 0

var 1
op ::= + 0’

- 1’
* 2’
/ 3’

var :: X 0”
Y (1”)

Table 11.2 Grammatical evolution - codon

Synthesis of an actual program is described as the following: start with a non-
terminal object expr. Because the integer value of Codon 1 (see Table 11.2) is 40,
according to eq. (11.5) one has an unfolding of expr = op expr expr (40 mod 2,
2 rules for expr, i.e., 0 and 1). Consequently, Codon 2 is used for the unfolding
of op by * (162 mod 4), which is terminal and thus the unfolding for this part of
program is closed. Then, it continues in unfolding of the remaining nonterminals
(expr expr) till the final program is fully closed by terminals. If the program is
closed before the end of the chromosome is reached, then the remaining codons
are ignored; otherwise, it continues again from the beginning of the chromosome.
The final program based on the just-described example is in this case x · y (see
Fig. 11.4). For a fully detailed description of GE principles, see [29] or consult
[http://www.grammaticalevolution.org/].

Chromosome Binary Integer BNF index
Codon 1 101000 40 0
Codon 2 11000011 162 2’
Codon 3 1100 67 1
Codon 4 10100010 12 0”
Codon 5 1111101 125 1
Codon 6 11100111 231 1”
Codon 7 10010010 146 Unused
Codon 8 10001011 139 Unused

11 Chaos Synthesis by Evolutionary Algorithms 353

Fig. 11.4 Final program by GE

11.4.3 Analytic Programming

The final method described here and used for experiments in this chapter, is called
Analytic Programming (AP), which has been compared to GP with very good results
(see, for example, [52], [31], [53], [32]), [54] or visit the online university website
www.ivanzelinka.eu, subpage sites.

The basic principles of AP were developed in 2001 and first published in
[46],[47]. AP is also based on the set of functions, operators and terminals, which
are usually constants or independent variables alike, for example:

• functions: sin, tan, tanh, And, Or,...
• operators: +, -, ×, /, dt,...
• terminals: 2.73, 3.14, t,...

All these objects create a set, from which AP tries to synthesize an appropriate so-
lution. Because of the variability of the content of this set, it is called a general func-
tional set (GFS). The structure of GFS is nested, i.e., it is created by subsets of func-
tions according to the number of their arguments (Fig. 11.5). The content of GFS is
dependent only on the user. Various functions and terminals can be mixed together.
For example, GFSall is a set of all functions, operators and terminals, GFS3arg is
a subset containing functions with maximally three arguments, GFS0arg represents
only terminals, etc. (Fig. 11.5).

AP, as further described later, is a mapping from a set of individuals into a set
of possible programs. Individuals in population and used by AP consist of non-
numerical expressions (operators, functions,...), as described above, which are in
the evolutionary process represented by their integer position indexes (Fig. 11.6,
Fig. 11.7, see also Chapter 2). This index then serves as a pointer into the set of
expressions and AP uses it to synthesize the resulting function-program for cost
function evaluation.

354 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.5 Hierarchy in GFS

Fig. 11.6 DSH-Integer index, see Chapter 2

11 Chaos Synthesis by Evolutionary Algorithms 355

Fig. 11.7 Principle of mapping from GFS to programs

Fig. 11.7 demonstrates an artificial example as how a final function is created
from an integer individual via DSH. Number 1 in the position of the first parameter
means that the operator ”+” from GFSall is used (the end of the individual is far
enough). Because the operator “+” must have at least two arguments, the next two
index pointers 6 (sin from GFS) and 7 (cos from GFS) are dedicated to this operator
as its arguments. The two functions, sin and cos, are one-argument functions, so the
next unused pointers 8 (tan from GFS) and 9 (t from GFS) are dedicated to the sin
and cos functions. As an argument of cos, the variable t is used, so this part of the
resulting function is closed (t is zero-argument) in its AP development. The one-
argument function tan remains, and because there is one unused pointer 9, tan is
mapped on t which is on the 9th position in GFS.

To avoid synthesis of pathological functions, a few security “tricks” are used
in AP. The first one is that GFS consists of subsets containing functions with the
same or a smaller number of arguments. The nested structure (see also Fig. 11.5)
is used in the special security subroutine, which measures how far the end of an
individual is and, according to this, mathematical elements from different subsets
are selected to avoid pathological functions synthesis. More precisely, if more ar-
guments are desired then a possible function (the end of the individual is near) will
be replaced by another function with the same index pointer from the subset with
a smaller number of arguments. For example, it may happen that the last argument
for one function will not be a terminal (zero-argument function). If the pointer is
longer than the length of subset, e.g., a pointer is 5 and is used GFS0, then the
element is selected according to the “formula” element = pointer value mod num-
ber of elements in GFS0. In this example, the selected element would be the vari-
able t (see GFS0 in Fig. 11.5).

356 I. Zelinka, G. Chen, and S. Celikovsky

GFS doesn’t need to be constructed only from clear mathematical functions as
demonstrated above, but may also be constructed from other user-defined functions,
e.g., logical functions, functions which represent elements of electrical circuits or
robot movement commands, linguistic terms, etc.

During the evolution of a population, a different set of operators are used, such as
crossover and mutation. In comparison with GP or GE, evolutionary operators like
mutation, crossover, tournament, and selection are fully used in the competence of
the established evolutionary algorithm. AP does not contain them in any scale of its
internal structure. AP is created to be like a superstructure of EA for symbolic re-
gression independent of their algorithmic structures. Operations used in EA are not
influenced by AP and vice versa. For example, if DE is used for symbolic regression
in AP, then all evolutionary operations are completed according to the DE rules and
only by DE. AP just transforms individuals into formulas.

During the evolution, more or less appropriate individuals are synthesized. Some
of these individuals are used to reinforce the evolution towards a better solution
synthesis. The main idea of reinforcement is based on the addition of the just-
synthesized and partly successful program into an initial set of terminals. Reinforce-
ment is based on a user-defined criterion used in decision as to which individual will
be used as an addition into the initial set of terminals. A criterion for the decision
is in fact a threshold, i.e., by a user-defined cost value, under which conditions are
synthesized solutions added into GFS. For example, if the threshold is set to 5, and
if the fitness of all individuals (programs in the population) is bigger than 5, then
evolution is running on the basic, i.e., initially defined, GFS. When the best indi-
vidual in the actual population is less than 5, then it is entirely added into the initial
GFS and is marked as a terminal. Since this moment, evolution is running on the
enriched GFS containing a partially successful program. Thanks to this advantage,
evolution is able to synthesize the final solutions much faster than the AP without
reinforcement. This fact has been repeatedly verified by simulations on different
problems. When the program is added into GFS, the threshold is also set to its fit-
ness. If furthermore an individual with lower fitness than the just-reset threshold
is synthesized, then the old one is rewritten by the better one, and the threshold is
rewritten by a new fitness value again.

Adding a partially successful program as a terminal, just for simplicity, can avoid
programming difficulties if it would be added like a new function. It is quite simi-
lar to automatically defined functions (ADF) for GP; however, the set of functions
and terminals in GP can contain more than one ADF, which of course at least theo-
retically increases the complexity of the search space to the order of n!), including
properly defined arguments of these ADF and critical situation checking (selfcall-
ing,...). This is not a problem of AP reinforcement, because adding a program into
the initial GFS is regarded as a terminal (or a terminal structure), i.e., no function,
no arguments, no selfcalling, etc., and the cardinality of the initial GFS set increases
only by one.

For more exact description with more details, we recommend to read [54].

11 Chaos Synthesis by Evolutionary Algorithms 357

11.5 Experiment Design

11.5.1 Parameter Setting

The control parameter settings of used EAs (with abbreviation in Table 11.3) have
been found empirically and are given in Table 11.4 (SOMA), Table 11.5 (DE), Table
11.6 (GA), Table 11.7 (ES) and Table 11.8 (SA) respectively. The main criterion for
this setting is to keep the setting of parameters as much the same as possible for all
simulations and, of course, the same number of cost function evaluations as well as
the same population sizes (parameter PopSize for SOMA and GA, and NP for DE,
etc). Individual length represents the number of optimized parameters, i.e., in the
case of this research a maximal number of integer indexes will be used in evolution
in order to synthesize a new chaotic system.

AP, being applied on the evolutionary algorithms in 13 versions, was used for
the experimentation. Symbolic objects (e.g., variables, constants,...) for manipula-
tion and complex structure synthesis were selected from the well-known logistic
equation:

xn+1 = Ax(1− x) (11.6)

Table 11.3 Algorithms abbreviation

Table 11.4 SOMA setting for 4 basic search strategies: A, B, C, D

Algorithm A B C D
PathLength 3 3 3 3
Step 0.11 0.11 0.11 0.11
PRT 0.1 0.1 0.1 0.1
PopSize 200 200 200 200
Migrations 10 10 10 10
MinDiv -0.1 -0.1 -0.1 -0.1
Individual Length 50 50 50 50

Algorithm Version Abbreviation
SOMA AllToOne A

AllToOneRandomly B
AllToAll C
AllToAllAdaptive D

Differential Evolution DERand1Bin E
DERand2Bin F
DEBest2Bin G
DELocalToBest H
DEBest1JIter I
DERand1DIter J

Genetic Algorithm K
Evolutionary strategies (μ ,λ) L
Simulated annealing M

358 I. Zelinka, G. Chen, and S. Celikovsky

Table 11.5 DE setting for 6 basic search strategies: E, F, G, H, I, J

Table 11.6 GA setting for canonical version of GA: K

Algorithm K
PopSize 200
Mutation 0.4
Generations 100
Individual Length 50

Table 11.7 ES setting for search strategy: L

Algorithm L
μ ,λ 200
σ 0.8
Iterations 100
Individual Length 50

Table 11.8 SA setting for search strategy: M

Algorithm M
No. of particles 200
σ 0.5
kmax 66
Tmin 0.0001
Tmax 1000
α 0.95
Individual Length 50

This selection was based on the fact that the logistic equation is a well-known
simple system that can produce chaotic behavior. This equation is also well an-
alyzed. It was expected that evolutionary search would be able to synthesize the
logistic equation, which was in fact a source of elements for GFS. Evolutionary syn-
thesis of logistic equation was actually observed, as further discussed later. Another
reason behind the selection of the logistic equation is that results from designed
experiments can be easily compared, verified and analyzed.

Algorithm E F G H I J
NP 200 200 200 200 200 200
F 0.9 0.9 0.9 0.9 0.9 0.9
CR 0.3 0.3 0.3 0.3 0.3 0.3
Generations 200 200 200 200 200 200
Individual Length 50 50 50 50 50 50

11 Chaos Synthesis by Evolutionary Algorithms 359

The basic set of objects used in symbolic regression are {x, A, +, –, ×, /}. It is
also important to note that experiments provided here, i.e., evolutionary synthesis
of chaotic systems, are not restricted to one-dimensional chaotic maps but can be
applied in principle to synthesis of higher-dimensional and more complex chaotic
systems. This declaration is based on many other successful complex examples ac-
complished by GP, GE and AP in the past.

In this research, a total of 1300 independent simulations were completed, 100
trials by each of the 13 algorithms. Each simulation was started at randomly selected
initial conditions (i.e., each initial population was randomly generated).

11.5.2 Cost Function

The cost function was in fact a little bit complex decision function with multiple
“If” conditions.

The cost function used for chaos synthesis, comparing with other problems like
chaos control [49], [50] or black-box optimization [28], is quite a complex structure
which cannot be easily described by a few simple mathematical equations. Instead,
it is described by the following procedure:

1. Take a synthesized function and evaluate it for 500 iterations with a sampling
step of Δ A = 0.1.

2. Check if each value of A for all 500 iterations is unique or if some data are
repeated in the series (the first check for chaos, indirectly). If the data are not
unique, then go to step 5, else go to step 3.

3. Take the last 200 values, and for each value of A, calculate its Lyapunov expo-
nent.

4. Check the Lyapunov exponent: If the Lyapunov exponent is positive, write all
important data (synthesized functions, number of cost function evaluations, etc.)
into a file. Then, repeat the simulation for another synthesized system by going
to step 1.

5. If the data are not unique, i.e., if the Lyapunov exponent is not positive, return
an individual fitness, and sum all values whose occurrences in the dataset from
step 1 are more than 1 (simply, it returns the occurrences of periodicity, quasi-
periodicity – higher penalization of an individual in the evolution).

More brief and simple description of above algorithmically defined cost function
can be also done as in eq.11.7.

Data[fsynt, 1, ..., fsynt, 500] := fsynt, k+1 = fsynt, k(xstart), k ∈ [1, 500]⎧⎨⎩
i f Data[fsynt, 1] �= Data[fsynt, 2] �= �= Data[fsynt, 500]
then

{
calculate λ for Data[fsynt, 300, ... , fsynt, 500] , i f λ > 0 write all to file

else penalize individual
(11.7)

The input to this cost function is a synthesized function and the output is the
fitness (quality) of the synthesized function (i.e., the individual in the population).

360 I. Zelinka, G. Chen, and S. Celikovsky

In the cost function, it was tested twice to ensure that the behavior of the just-
synthesized formula is really chaotic. The first test was done in step 2 (unique
appearance in the data series) and the second one, in step 4, where the Lyapunov
exponent was tested numerically [16].

The reason as to why in step 5, the sum of the non-unique data appearances was
returned is based on the fact that the evolution is searching for minimal values. In
this case, the value 2 means that some data element appears in the 500-data series
twice, and 1 would means that there is no periodicity and thus synthesized system
is a possible candidate for chaos.

To ensure that the results obtained are correct, all written synthesized functions
were used for automatic generation of bifurcation diagrams and Lyapunov expo-
nents, as further discussed below.

11.5.3 Case Studies

Two case studies are presented in this chapter. The first and main one (discrete
systems) is the continuation of research done in [54]. Simulations has been enlarged
(compare with [54]) for other evolutionary algorithms (GA, SA, ES). The second
one is focused on how to synthesize simple discrete systems based on user demand.

11.5.3.1 Discrete Systems: Simulations and Results

All algorithms (SOMA, DE, GA, ES and SA) in 13 versions have been applied for
100 times in order to find artificially synthesized functions that can produce chaos.
All of these experiments were done using the Mathematica software. The primary
aim of this comparative study is not to show which algorithm is better or worst, but
to show that symbolic regression is able to synthesize some new (at least in the sense
of mathematical description and behavior) chaotic systems.

Based on the results from experiments, two different sets of figures were created.
The first set (Fig. 11.8 - Fig. 11.10) shows the performances of different algorithms
from different points of views, the second set (Fig. 11.13 - Fig. 11.88) shows be-
haviors of the selected synthesized programs, i.e., bifurcation diagrams. The syn-
thesized programs are also appended to each figure in the form of the mathematical
formula. Fig. 11.11 shows an example of the so-called program length histogram,
generated from 100 simulations. Program length (in Mathematica command: Leaf-
Count, denoted as LC) means a number of elements that create a mathematical for-
mula.

As an example, the logistic equation (11.6), for which LC = 8, seems at the first
glance to be false (equation contains A,x,1 and ×). However, with a closer look at
this equation via the Mathematica command TreeForm, one gets formula 11.8 (see
also Fig. 11.12), and LC = 8 is thus clear: (×, A, +, 1, ×, -1, x, x).

Times[A,Plus[1,Times[−1,x]],x] (11.8)

11 Chaos Synthesis by Evolutionary Algorithms 361

A B C D E F G H I J K L M
0

2000

4000

6000

8000

10000

12000

Algorithm

C
FE

Fig. 11.8 Mutual comparison of all algorithms

A B C D E F G H I J K L M

0

500

1000

1500

2000

2500

3000

Algorithm

C
FE

Fig. 11.9 Mutual comparison of all algorithms - detail

There is an explanation for the contradiction between the fact that the length of
an individual was set to 50 (Table 11.4 - Table 11.8) and Fig. 11.10, where one can
observe programs of lengths larger than 50. The explanation is that when a symbolic
string like “Ax(1−x)” is transformed into an expression, it becomes a formula 11.8,
i.e., it is “artificially” enhanced due to some Mathematica internal programming
reasons.

For a better overview of the performances of all such algorithms and the lengths
of the synthesized programs, Fig. 11.9 was generated and displayed, where for all 13
algorithms, the corresponding minimal, average and maximal values are depicted.
Almost the same quality in LC is observed for all of them.

When evolutionary techniques are used, usually their performances are evaluated
via cost function evaluations [2], [48], i.e., how many times the cost function has
to be re-calculated in order to reach a suitable solution. Fig. 11.8 and Fig. 11.9 are

362 I. Zelinka, G. Chen, and S. Celikovsky

A B C D E F G H I J K L M

10

20

30

40

50

60

Algorithm

L
C

Fig. 11.10 Mutual comparison of LC of all algorithms

10 20 30 40 50 60
LC

0

5

10

15

20

25

t
i

H

Fig. 11.11 Histogram of LC for DERand1Bin

displayed for this purpose. From both pictures, it appears that only algorithms C
and D have less performance. But this is not true, because the SOMA versions C
and D have larger numbers of cost function evaluations (see [48]). Because EA was
stopped only according to a defined number of cost function evaluations (see [48]
or Section 11.5.1 Parameter Setting), these two versions of SOMA logically differ
from each other, as shown in Fig. 11.9 .

For mutual comparisons of algorithm performances in successfully generating
chaotic systems, Fig. 11.13 - Fig. 11.88 and corresponding equations show selected
(visually the best) results of all 1300 simulations in all case studies. With each figure
is joined equations of the synthesized systems. To be “sure” that those bifurcation
diagrams are true, Lyapunov exponents were also generated for each bifurcation
diagram (not completely reported here).

11 Chaos Synthesis by Evolutionary Algorithms 363

Times

A Plus

1 Times

1 x

x

Fig. 11.12 Tree representation of eq. (11.8)

Fig. 11.13 Bifurcation diagram of
2A(2x−1)
A+x2 ...

Fig. 11.14 ... and its tree representation.

Fig. 11.15 Bifurcation diagram of
x

x3

2A3(x−A)(A+x)
+A

...
Fig. 11.16 ... and its tree representation.

364 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.17 Bifurcation diagram of
A− A

x
(
A(−x)+ A

x − x(Ax+A+x)+1
A +A

)
+A

...
Fig. 11.18 ... and its tree representation.

Fig. 11.19 Bifurcation diagram of
A(A+x

2A+1+2A)
1

x(A−2x) +A
...

Fig. 11.20 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 365

Fig. 11.21 Bifurcation diagram of
− x
(A+x)(A2+ x

A)(2(A−1)x+x2)−A
+A−x ...

Fig. 11.22 ... and its tree representation.

Fig. 11.23 Bifurcation diagram of
x(3Ax2−Ax+ A

x −2A−2x)
3A+x2 ...

Fig. 11.24 ... and its tree representation.

Fig. 11.25 Bifurcation diagram of
x

A(−x)+ x(−A−x+1)+A
A+x − 1

A(A−x) +4A−x
...

Fig. 11.26 ... and its tree representation.

366 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.27 Bifurcation diagram of
A(A(−x)−A−x)

A
x +

x
A+2x

...

Fig. 11.28 ... and its tree representation.

Fig. 11.29 Bifurcation diagram of 2x−
x(A+x) ...

Fig. 11.30 ... and its tree representation.

Fig. 11.31 Bifurcation diagram of
A

x

(
A2

x2
+Ax2

)
−x(A+x)+ x

A +2A−x
+x2

...
Fig. 11.32 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 367

Fig. 11.33 Bifurcation diagram of
A

− −A2+ 2A+x
A −x

x − x
3A−2x+A

A +Ax+A+x

...
Fig. 11.34 ... and its tree representation.

Fig. 11.35 Bifurcation diagram of
−A+3x− 1

x
A
x −A+x

...

Fig. 11.36 ... and its tree representation.

Fig. 11.37 Bifurcation diagram of
A2

− x2
A +

1
2x(x2−A)−

A
x −2x

+x ...
Fig. 11.38 ... and its tree representation.

368 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.39 Bifurcation diagram of
(A−x)

(
− Ax2

A+x+A−x2
)

(A+x)(2A+x) ...

Fig. 11.40 ... and its tree representation.

Fig. 11.41 Bifurcation diagram of
(−Ax−x)(Ax−2A+x)

Ax
A+x+x

2 ...

Fig. 11.42 ... and its tree representation.

Fig. 11.43 Bifurcation diagram of
A2(A−Ax)

x(− A
x +x+1)
A +A

+x ...

Fig. 11.44 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 369

Fig. 11.45 Bifurcation diagram of
A

x2
A −x(x

x−A+A−x)− 3x−A
A+2x+A

−x ...
Fig. 11.46 ... and its tree representation.

Fig. 11.47 Bifurcation diagram of
x

x((A−x)2−2x)
− 2A

x
A −1

−A
+A

−x ...
Fig. 11.48 ... and its tree representation.

370 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.49 Bifurcation diagram of
A+x

− A
x −x(3A+x

x +x) ...
Fig. 11.50 ... and its tree representation.

Fig. 11.51 Bifurcation diagram of
(Ax+ x

A+A+x
2)(− 2A

A+x+A+x)
x(Ax−x(A−x)+2A+x) −A ...

Fig. 11.52 ... and its tree representation.

Fig. 11.53 Bifurcation diagram of
A2(A−x)

x(A(−x)+A+2x)−2A+x−1
x ...

Fig. 11.54 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 371

Fig. 11.55 Bifurcation diagram of
A+ 1

2A−3x
A
2x− A

A+x−A−x
...

Fig. 11.56 ... and its tree representation.

Fig. 11.57 Bifurcation diagram of
− A

2x
(
− x3

A3 − A2
x +A

) ...
Fig. 11.58 ... and its tree representation.

Fig. 11.59 Bifurcation diagram of
A2x(A2+A+2x−1)

(−A−x+1)(Ax −A+x+ 1
x)

...

Fig. 11.60 ... and its tree representation.

372 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.61 Bifurcation diagram of

A− A(3A−x2)
A−2x(−A−x)

A +1
...

Fig. 11.62 ... and its tree representation.

Fig. 11.63 Bifurcation diagram of
A

A(A+x)
2x + A

Ax+1
1
x +1

−2A+x−1

...
Fig. 11.64 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 373

Fig. 11.65 Bifurcation diagram of

− 2A2x(A(−x)+A+x)
Ax2+2x+1 ...

Fig. 11.66 ... and its tree representation.

Fig. 11.67 Bifurcation diagram of
A
x +2A−x2

A+x
2Ax +x

...

Fig. 11.68 ... and its tree representation.

Fig. 11.69 Bifurcation diagram of
Ax−A−x

A
2x− A(A−x)

Ax+2A−x+1+A+x
...

Fig. 11.70 ... and its tree representation.

374 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.71 Bifurcation diagram of
A

x2(Ax+ x
A)

x−A − 4Ax
A+2x+2x− 1

x

...
Fig. 11.72 ... and its tree representation.

Fig. 11.73 Bifurcation diagram of

−A(A−x)(2x−A)
2A+ 1

A+x
2 −A+x ...

Fig. 11.74 ... and its tree representation.

Fig. 11.75 Bifurcation diagram of
x−Ax2(Ax+A+x)

x2
(
A+ 1

x2
−x
)
(x
A+x)

...

Fig. 11.76 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 375

Fig. 11.77 Bifurcation diagram of
A3

A2− A
x − (−A−x)(x−3A)

A −A−x
+x ...

Fig. 11.78 ... and its tree representation.

Fig. 11.79 Bifurcation diagram of
(x−A)(A(−x)− A

x −A+2x)

x

(
A

x2(Ax+ 2x
A +2A)+

x
2A

) ...

Fig. 11.80 ... and its tree representation.

Fig. 11.81 Bifurcation diagram of
A

A3x(A−x)+ x3

A2 +
A(A−x)

2x3

+A−x ...
Fig. 11.82 ... and its tree representation.

376 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.83 Bifurcation diagram of
Ax−2x+2

x2− A
x +x
A

...
Fig. 11.84 ... and its tree representation.

Fig. 11.85 Bifurcation diagram of
A−2A((A−x)2−x)
x(A−x)− 2(Ax+A+x)

A

+1 ...

Fig. 11.86 ... and its tree representation.

Fig. 11.87 Bifurcation diagram of
2Ax(−A2−2x)

A+x2 ...

Fig. 11.88 ... and its tree representation.

11 Chaos Synthesis by Evolutionary Algorithms 377

11.5.3.2 Engineering Design: Preliminary Study

The same principle has been used to synthesize discrete chaotic systems with user
defined conditions, i.e. simple engineering design of chaotic systems has been done
in this part. In this case study, systems with chaotic behavior in the interval [2, 3],
has been accepted while search has been running in interval [0, 4] (overlapping
during search was also allowed). In this preliminary study only DE and SOMA al-
gorithms have been used in 50 repeated simulations. Selected demonstrative results
are depicted on Fig. 11.89 - 11.96. Basic set of objects used in symbolic regression
was again {x,A,+,−,×,/}. Bifurcation diagrams of selected systems (Fig. 11.89 -
11.96) are in a few cases overlapping interval [2, 3] and are different in amplitude. It
is reasonable to expect that if restriction would be applied on amplitude, then such
defined systems would also be synthesized.

Fig. 11.89 Engineering design: bifurca-
tion diagram of

− A(A+2x)

2

(
A(Ax+ A

x)
(A2−A+1)(Ax+2x)(A(x−A)+A)

+x

) .

Fig. 11.90 Engineering design: bifurcation di-

agram of
A(−A2+A+x)+A2+A−x

A2(−x)+A(A2+x)− A+x
Ax −A−2x

.

Fig. 11.91 Engineering design: bifurca-

tion diagram of −Ax(Ax−A2(x−2A))
A(−A−x2+x)−x .

Fig. 11.92 Engineering design: bifurcation di-
agram of

Ax

((A+x)(−A2+A+x)+A+1)

⎛⎜⎜⎜⎜⎜⎜⎝A−
A

⎛⎝ x
2
(
− A

x +A−x
)
(A+x)

+ x+1
A

⎞⎠
2x

⎞⎟⎟⎟⎟⎟⎟⎠

.

378 I. Zelinka, G. Chen, and S. Celikovsky

Fig. 11.93 Engineering design: bifurcation

diagram of
A(2A(x−A)+ 1

A−x+A)
− 1

A2x2
+ 4x3

A −x(x−A)−x
.

Fig. 11.94 Engineering design: bifurcation
diagram of − Ax2

−A2+2A−x3+x .

Fig. 11.95 Engineering design: bifurca-
tion diagram of

A

x
(

A
−A2+Ax+A−x2+x

+Ax2−x
)
+ A

2x+A+x
.

Fig. 11.96 Engineering design: bifurca-
tion diagram of

A2(
Ax(A−x)+ x

A +A−3x
)⎛⎝(x

A+A−x2
)(

Ax2+x
)
+

Ax
(

x
2A+2x −Ax

)
A

x(A+x) −
x

A−x
−A

⎞⎠− A
A+x −A

.

11.6 Conclusion

The aim of this paper is to show how various chaotic systems can be synthesized
by means of evolutionary algorithms. Evolutionary synthesis of chaotic systems has
been applied to 13 basic comparative simulations in this chapter. Each compara-
tive simulation was repeated 100 times and all 1300 results (100 simulations for
each algorithm) were used to create Fig. 11.14 - Fig. 11.88 for overall performance
evaluation of evolutionary chaos synthesis. The results look quite promising and
convincing.

For comparative studies, five algorithms was used - Differential Evolution (DE)
[35], Self Organizing Migrating Algorithm (SOMA) [48], Genetic Algorithms [17],
[4], Simulated Annealing (SA) and [9] Evolutionary Strategies (ES) [3]. They were
chosen to show that evolutionary synthesis of chaos by AP can be implemented via
any evolutionary algorithm and that they all give reasonable results.

The method of symbolic regression described in this paper is relatively simple,
but feasible to implement and easy to use. Based on its principles and its possible

11 Chaos Synthesis by Evolutionary Algorithms 379

universality (as just mentioned, it was tested with 5 evolutionary algorithms –
SOMA, DE, GA, ES and SA in 13 versions), symbolic regression seems quite ca-
pable of synthesizing new dynamical systems for generating chaos.

As a summary, the following statements are presented:

• Result verification. To be sure that the results as presented in this chapter are
correct, all written synthesized functions were used for automatic generation
of bifurcation diagrams and Lyapunov exponents.

• Simulation results. Based on the results (Fig. 11.14 - Fig. 11.88) and the
selected bifurcation diagrams, it can be stated that all simulations give satis-
factory results and that evolutionary synthesis of chaos is capable of solving
this class of problems.

• Range of chaos and interval of observation. During evolutions, chaos was
searched by focusing on interval [0, 4], based on the a priori known behavior
of the logistic equation, whose elements were used in the evolution. Despite
the a priori known information, a few chaotic systems were located outside of
this interval. That was due to the fact that a part of the chaotic behavior was
inside the interval [0, 4] and thus EA was able to identify it. From these facts,
it is clear that EA are able to locate chaos in a wider range than those expected
from some textbook exemplary systems.

• Exemplary system synthesis. Based on the fact that the logistic equation (its
elements and range) is used for chaos synthesis, it is logical to expect that
during evolution (if repeated for many times) the original system should also
be synthesized. That event was also observed for a few times, exactly in the
mathematical form eq. (11.6).

• Mutual comparison. When comparing all algorithms, it is obvious that these
algorithms produced good results. Parameter setting for the algorithms was
based on a heuristic approach and thus there is a possibility that better set-
tings can be found there. Based on these results, it is clear that for symbolic
synthesis via analytic programming any evolutionary algorithm can be used.

• Engineering design. It is quite clear that evolutionary synthesis of chaos can
be applied to engineering design of devices based on chaos (signal transmis-
sion via chaos, chaos-based encryption, and so on). Based on principles and
results reported in this paper, it should be possible to synthesize systems with
some precisely defined chaotic features and attributes.

Future research is being carried on under the framework of evolutionary synthe-
sis of chaos. It is expected that all 13 EAs will also be used for synthesis of chaotic
systems that are not restricted to the simple logistic equation. Based on the results
reported in this chapter and our experience with EAs, it is believed that symbolic re-
gression based on EAs is also able to synthesize various chaotic systems according
to some predefined characteristics and conditions. It can be foreseeable that the pos-
sibility of synthesizing such artificial systems would have an impact on engineering
applications dealing with chaos (signal transmission, cryptography, etc.), which is
worth further investigation.

380 I. Zelinka, G. Chen, and S. Celikovsky

Acknowledgements. This work was supported by grant No. MSM 7088352101 of the Min-
istry of Education of the Czech Republic and by grants of the Grant Agency of the Czech
Republic GACR 102/09/1680.

References

1. Alvarez, J., Puebla, H., Cervantes, I.: Stability of observer-based chaotic communitcation
for a class of Lur’e systems. Int. J. Bifurcat Chaos Appl. Sci. Eng. 7, 1605–1618 (2002)

2. Back, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation, Institute
of Physics, London (1997)

3. Beyer, H.: Theory of Evolution Strategies. Springer, New York (2001)
4. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)
5. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca

Raton (2000)
6. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applica-

tions. World Scientific, Singapore (1998)
7. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat Chaos Appl. Sci. Eng. 9,

1465–1667 (1999)
8. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Berlin (1996)
9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chich-

ester (2001)
10. Dmitriev, A., Panas, A., Starkov, S.: Ring oscillating systems and their application to

the synthesis of chaos generators. Int. J. Bifurcat Chaos Appl. Sci. Eng. 6(5), 851–865
(1996)

11. Dmitriev, A., Efremova, E., Kuzmin, L., Anagnostopoulos, A.: High dimensional RC –
oscillators of chaos. In: International Symposium on Nonlinear Theory and its Applica-
tions, Miyagi, Japan (2001)

12. Eguchi, K., Inoue, T., Tsuneda, A.: Synthesis and analysis of a digital chaos circuit gener-
ating multiple-scroll strange attractors. IEICE Trans. Fundamentals E82-A(6), 965–972
(1999)

13. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York (1979)

14. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezeland.
Wiley Interscience, New York (2002)

15. Grebogi, C., Lai, Y.: Controlling chaos. In: Schuster, H. (ed.) Handbook of Chaos Con-
trol. Wiley-VCH, New York (1999)

16. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, UK (1994)
17. Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann

Arbor (1975)
18. Hu, G., Xie, F., Xiao, J., Yang, J., Qu, Z.: Control of patterns and spatiotemporal chaos

and its application. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New
York (1999)

19. Johnson, C.: Artificial immune systems programming for symbolic regression. In: Ryan,
C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS,
vol. 2610, pp. 345–353. Springer, Heidelberg (2003)

20. Just, W.: Principles of time delayed feedback control. In: Schuster, H. (ed.) Handbook of
Chaos Control. Wiley-VCH, New York (1999)

11 Chaos Synthesis by Evolutionary Algorithms 381

21. Just, W., Benner, H., Reibold, E.: Theoretical and experimental aspects of chaos control
by time-delayed feedback. Chaos 13, 259–266 (2003)

22. Koza, J.: Genetic Programming: A paradigm for genetically breeding populations of
computer programs to solve problems. Stanford University, Computer Science Depart-
ment, Technical Report STAN-CS-90-1314 (1990)

23. Koza, J.: Genetic Programming. MIT Press, Boston (1998)
24. Koza, J., Keane, M., Streeter, M.: Evolving inventions. Scientific American, 40–47

(2003)
25. Koza, J., Bennet, F., Andre, D., Keane, M.: Genetic Programming III. Morgan Kauf-

namm, New York (1999)
26. Lorenz, E.: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2),

130–141 (1963)
27. May, R.: Simple mathematical model with very complicated dynamics. Nature 261, 45–

67 (1976)
28. Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self organizing

migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)

29. O’Neill, M., Ryan, C.: Grammatical Evolution. In: Evolutionary Automatic Program-
ming in an Arbitrary Language. Springer, New York (2003)

30. O’Neill, M., Brabazon, A.: Grammatical Differential Evolution. In: Proc. International
Conference on Artificial Intelligence (ICAI 2006), pp. 231–236. CSEA Press (2006)

31. Oplatkova, Z.: Optimal trajectory of robots using symbolic regression. In: Proc. 56th
International Astronautics Congress 2005, Fukuoka, Japan, paper nr. IAC-05-C1.4.07
(2005)

32. Oplatkova, Z., Zelinka, I.: Investigation on artificial ant using analytic programming. In:
Proc. Genetic and Evolutionary Computation Conference 2006, Seattle, WA, pp. 949–
950 (2006)

33. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)
34. Perruquetti, W., Barbot, J.: Chaos in Automatic Control. CRC, Bota Raton (2005)
35. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover,

F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)
36. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170,

421–428 (1992)
37. Richter, H.: An evolutionary algorithm for controlling chaos: The use of multi-

objective fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317.
Springer, Heidelberg (2002)

38. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary
algorithm. Physica D 144, 309–334 (2000)

39. Ryan, C., Collins, J., O’Neill, M.: Grammatical evolution: Evolving programs for an ar-
bitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP
1998. LNCS, vol. 1391, p. 83. Springer, Heidelberg (1998)

40. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999)
41. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000)
42. Ueta, T., Chen, G.: Bifurcation analysis of Chen’s attractor. Int. J. Bifurcat Chaos Appl.

Sci. Eng. 10, 1917–1931 (2000)
43. Vanecek, A., Celikovsky, S.: Chaos synthesis via root locus. IEEE Trans. on Circ. and

Systems 41, 59–60 (1994)
44. Vanecek, A., Celikovsky, S.: Control Systems: From Linear Analysis to Synthesis of

Chaos. Prentice-Hall, London (1996)

382 I. Zelinka, G. Chen, and S. Celikovsky

45. Wang, X., Chen, G.: Chaotification via arbitrarily small feedback controls: Theory,
method, and applications. Int. J. Bifurcat Chaos Appl. Sci. Eng. 10, 549–570 (2000)

46. Zelinka, I.: Analytic programming by Means of new evolutionary algorithms. In: Proc.
1st International Conference on New Trends in Physics 2001, Brno, Czech Republic, pp.
210–214 (2001)

47. Zelinka, I.: Analytic programming by means of soma algorithm. In: ICICIS 2002, First
International Conference on Intelligent Computing and Information Systems, Cairo,
Egypt, pp. 148–154 (2002)

48. Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu,
G. (eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New
York (2004)

49. Zelinka, I.: Investigation on evolutionary deterministic chaos control. In: Proc. IFAC,
Prague, Czech Republic, paper No. 03187 (2005)

50. Zelinka, I.: Investigation on realtime deterministic chaos control by means of evolution-
ary algorithms. In: Proc. First IFAC Conference on Analysis and Control of Chaotic
Systems, Reims, France, pp. 211–217 (2006)

51. Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price,
K., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global
Optimization, pp. 499–512. Springer, New York (2005)

52. Zelinka, I., Oplatkova, Z.: Analytic programming – Comparative study. In: Proc. the Sec-
ond International Conference on Computational Intelligence, Robotics, and Autonomous
Systems, Singapore, paper No. PS04-2-04 (2003)

53. Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming – Symbolic regression by
means of arbitrary evolutionary algorithms. Int. J. of Simulation, Systems, Science and
Technology 6(9), 44–56 (2005)

54. Zelinka, I., Guanrong, C., Celikovsky, S.: Chaos Synthesis by Means of Evolutionary
algorithms. Int. J. Bifurcat Chaos Appl. Sci. Eng. 18(4), 911–942 (2008)

55. Zhou, T., Chen, G., Celikovský, S.: An algorithm for computing heteroclinic orbits and
its application to chaos synthesis in the generalized Lorenz system. In: Proc. 16th World
Congress of the International Federation of Automatic Control [CD-ROM], Praha, Czech
Republic (2005)

56. Zou, Y., Luo, X., Chen, G.: Pole placement method of controlling chaos in DC–DC buck
converters. Chinese Phys. 15, 1719–1724 (2006)

	Chapter 11 Chaos Synthesis by Evolutionary Algorithms
	11.1 Introduction
	11.2 Motivation
	11.3 Brief Review of the Selected Evolutionary Algorithm
	11.4 Symbolic Regression – An Introduction
	11.4.1 Genetic Programming
	11.4.2 Grammatical Evolution
	11.4.3 Analytic Programming

	11.5 Experiment Design
	11.5.1 Parameter Setting
	11.5.2 Cost Function
	11.5.3 Case Studies
	11.5.3.1 Discrete Systems: Simulations and Results
	11.5.3.2 Engineering Design: Preliminary Study

	11.6 Conclusion
	References

