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Chapter 4 
UVS Technology Issues 

The aspirational capability objectives for UVS in the air, land and maritime 
environments articulated by several national roadmap documents (e.g. [202] [205] 
[206] [267] [268] [278] [281]) may effectively be expressed as: 2008-10 conduct 
of ISR missions; 2015-2020 autonomous patrol; and, 2025-2030 strike capability 
and combat missions. This implies a need for persistent UVS autonomy40 in 
complex dynamic military environments and the automation of a range of higher 
order or ‘intelligent’ functions. As a result, the challenges discussed in this chapter 
pertain mainly to next-generation UVS and pre-empt any ‘validated’ current 
military requirements. The chapter focuses on the complexities of contextual 
decision-making, planning in dynamic environments, verification and validation, 
sensory deprivation and trust and reliability for autonomous military UVS. It is 
recognised that there are a large number of other technological challenges41 that 
may result in improved UVS, however, these have been covered by a range of 
other teams in studies cataloguing the state-of-the-art and projected requirements 
in each of these fields against various likely missions and applications (e.g. [44] 
[141] [202] [204] [205] [206] [230] [234] [237] [244] [245] [268] [276] [277] 
[278] [279] [280] [281] [282]).  

4.1   Technology Challenges 

UVS are subject to the laws of physics: they have mass and inertia, their moving 
parts wear, their electrical components emit heat, their sensors are corrupted by 
noise, no two systems are exactly alike, they fail and the environments into which 
militaries place them are complex, dynamic and unstructured. As a result, we 
cannot accurately predict their behaviour in advance and there are several factors 
that currently limit them from achieving their full potential. For example: 
                                                           
40 It should be noted that requirements such as ‘persistent surveillance’ specified in several 

of the same planning documents differs from ‘persistent autonomy’ as the former can be 
carried out by UVS in combination with humans, whereas the latter requires complete 
independence. 

41 Including communications, sensing, signal processing, data and information fusion, systems 
engineering and integration, launch and recovery, human factors, platform, aero/hydro-
dynamics, mobility, collision avoidance, mission planning/re-planning, propulsion, size, 
and energy storage. 
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The projected affordability of future autonomous and unmanned systems is 
higher than it needs to be. UVS do not require humans to be onboard and 
consequently do not need life support systems, space for the humans, special 
armour or protection, etc. As a result, UVS can theoretically be made smaller and 
lighter than their manned counterparts. As the procurement cost of vehicles is 
roughly proportional their mass (about US$3,300/kg) [141] [268] [278] a 
reduction in mass can be expected to translate into cost savings and a 
commensurate drop in the support required for the vehicle. However, current 
experience indicates that UVS and automation do yet exhibit a level of savings 
(say) enjoyed by computers. There is, of course, every reason to believe that as the 
technology matures, the costs will start to fall in line with the trends shown by 
manned vehicles, although further research into the hidden costs of operating UVS 
is also needed. For instance, at present, multiple operators are required for even 
single systems: a PackBot UGV may only require one operator, but it requires two 
people to transport it into the field and several more to protect the user. Similarly, 
Predator, Global Hawk and many other operational UAVs require a small number 
of people to operate the sensors and fly the vehicle, but significantly larger 
numbers to support it (planning, maintenance, image analysis, and so on).  

Related to cost are issues of UVS survivability. That is, to survive, a UVS must 
detect, identify, classify, plan and respond to a threat. If a high degree of 
automation is employed and the sensing modality mixed, the cost of designing and 
producing such a UVS will likely be high (and the UVS may also be physically 
large). It is then more difficult to justify the sacrificial use of such systems. 
Alternatively, if the system is inexpensive a human will likely be required to 
interpret some or all of the sensed data. As a result, response options will be 
delayed and the likelihood that the vehicle will be lost increases. The probability 
of losing UVS is also linked to the reliability of sub-systems, which tends to 
decrease with an increase in system complexity. A second order effect is that as 
system complexity increases so does the level of mission complexity in which the 
UVS is employed, which increases the likelihood of losing the asset. Another 
impact of increased autonomy is a reduction in the communications signature, 
which allows more covert operations to be undertaken, although this is often offset 
by an increase in the sensing modality required, which may lead to an increase in 
other signatures such as radar cross section or an emission signature in another 
band. 

Linked to cost and survivability are issues of affordability: the more survivable 
the UVS the fewer that need to be acquired. Although this needs to be balanced 
against the likely attrition rate that will come with the increased mission 
complexity and threat exposure that they will experience. Similarly, although an 
increase in the level of UVS autonomy theoretically leads to a reduction in the 
number of human supervisors required to operate it, there may be an increase in 
the maintenance and training requirements.  

Another key technology issue at present is that many EO sensors are able to 
detect almost all of the light entering the camera aperture, with sensor noise near 
the lower limits set by the laws of physics. Thus, the challenges for these cameras 
lie not in improving the sensitivity of the sensors to light, but in increasing the size 
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of their imaging array and hence the capacity of sensors to have sufficiently broad 
fields of view and resolution to allow detection of entities at long ranges so that 
sophisticated image interpretation techniques can perceive and ‘understand’ the 
key elements in their environments.  

These techniques and sensors then need to be combined with all-source data 
fusion and advanced machine learning or adaptation techniques to make the 
perception more robust and insensitive to environmental variations. This would 
allow mission and path planning beyond a platform’s organic sensor range and 
greater persistence in the battlespace through the provision of continuous, all-
weather, 3-D terrain and target classification, mapping and localisation. Such 
improvements would also allow detection, recognition and interpretation of 
human, vehicle and other threat activity such that the UVS could distinguish 
friend from foe and anticipated versus unanticipated movement, thereby 
improving survivability and their capacity to operate in shared environments. 

UVS also need IDT capable of making plans relative to a leader, manned 
vehicle or environmental changes so that they can adjust their resource usage or 
properties, join or leave teams (for example relative to communications, sensor 
scheduling, surveillance points, target kill, etc). Similarly, we need IDT that allow 
UVS to independently identify and make intelligent, complex operational and 
tactical decisions (e.g. self-concealment, lethal or non-lethal self-protection, 
avoidance of threats, and mimic leader action). 

Linked to this is the need for communications and image compression 
technologies to be developed that allow beyond line of sight (BLOS) transfer of 
high resolution imagery and sonar data between UVS and their manned 
counterparts. For example, the most capable underwater systems currently achieve 
around 10kbps, but have a high signature for detection. Alternatively, other, LPI 
systems are typically able to communicate at rates of only 2-3kbps over ranges of 
around 10km, although using larger arrays or techniques that predict propagation 
conditions longer ranges and larger bandwidths are possible. Similarly, while RF 
propagates freely in the earth’s atmosphere up to about 100GHz and it is possible 
for small directional antennas (~ 20cm) to be combined with low power (1W) 
amplifiers and then used to exchange data at rates approaching 10Gbits/sec 
between a UAV42 and its GCS more than 100km away, these systems are still far 
too heavy and large to be of use to UAVs in the small-medium sized class.  

Launch and recovery of UAVs and UUVs from ships is also a major issue. 
Fortunately, many longer endurance UAVs fly slowly so they can take off and 
land at speeds similar to those of ships at sea. As a result, it is necessary only to 
contribute to or absorb a small amount of the UAV’s energy if the vehicles are 
appropriately aligned. The same is true for UUVs, although many do not travel 
fast enough to keep up with operations at sea. Furthermore, most ships do not 
want to wait for sea state zero (or stop) before launching or recovering a UVS, and 
recovery of any UVS at sea is a hazardous undertaking – even if it were only 
damage to the UVS that were being considered. 

 
                                                           
42 This theoretical data rate will be reduced by a factor of up to 100 if anti-jam protection is 

afforded. 
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There is also a need to establish a clear product certification process for UVS 
that includes safety cases and regulatory regimes that address the very real dangers 
and the issues of public perception. Similarly, the application of autonomy to 
weaponisation and automatic target detection and recognition also needs to be 
addressed (this includes the related architectural designs). Related to both these 
issues are the use and safe manoeuvre of such UVS in the presence of people and 
other vehicles; the use and application of UVS within a human command and 
control network that changes; the level and modality of interoperability between 
different UVS and their control stations; developing flexibility in the levels of 
automation and adaptive interfaces; optimisation of vehicle-to-operator ratio for 
manned-unmanned collaboration; and, development of adaptive knowledge 
management systems for UVS.  

All these and many other deficiencies relating to component technologies43 of 
UVS are largely responsible for UVS not yet providing a persistent presence on 
our battlefields. However, as a number of highly qualified teams have published 
studies cataloguing the state-of-the-art and likely requirements in each of these 
fields against various capability projections, likely missions, and potential 
applications, and a full catalogue of the spectrum of technological challenges 
currently faced by UVS developers and programmers is simply beyond the scope 
of this book, this chapter focuses on the higher-order functions required to 
instantiate persistence rather than the physical ones.  

 
 Human-UVS Interaction: UVS currently lack the ability to interact with 

humans and other UVS in an efficient and naturalistic manner that 
enables the human-vehicle system to perform a full range of complex 
tasks in unstructured environments. This is largely covered in the 
previous chapter, but discussed throughout this section. 

 Contextual Decision-Making: Metrics for good decision-making, 
particularly for a context unspecified at mission commencement, are 
usually poorly defined. Understanding the basic patterns of stability and 
predictability for the decision-making paradigms is a pre-requisite for 
robust autonomy. 

 Verification & Validation: The integrated and polymorphic nature of 
the sub-systems that make up a UVS combined with the requirements for 
stand-alone operation in a broad spectrum of unpredictable environments, 
which may be critical to mission success means that V&V, poses a 
significant challenge.  

 Trust & Reliability: Trust and reliability are key issues that drive the 
levels of confidence and autonomy that we place in UVS. Currently UVS 
lack the capacity to understand their state such that they can predict their 
performance or detect functional or component failures autonomously, 
which affects our trust in them. 

 

                                                           
43 For example, communications, sensing, signal processing, data/information fusion, systems 

integration, launch and recovery, human factors, platform, aero/hydro-dynamics, mobility, 
collision avoidance, mission planning/re-planning, propulsion, size, and energy storage. 
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 Persistence: UVS need to achieve improved performance over time, 
particularly in regard to repeated operations in the same environment, 
while learning from their experiences. 

 Dynamic Environments: UVS frequently lack the ability to detect, 
locate and track moving objects while simultaneously accounting for 
longer-term changes in their environments. 

 Sensory Deprivation: UVS perceive their environment through a limited 
sensory perspective, which may “blind” their supervisors; or force them 
to attend to the demands of a particularly burdensome task. 

 Robustness: UVS lack robustness in the systems integration of their 
functional components and in the reliability of the system in dynamic 
environments. As a result, at some level UVS will malfunction and we 
are unlikely to be able to predict the specific nature or timing of these 
failures. Furthermore, UVS frequently fail, not through a manufacturing 
or design flaw but through routine dynamic loading, collision with an 
obstacle, or operators using them beyond their design limits. The 
operational need for cannibalisation of parts and specialist support has 
potential force implications. 

4.2   Contextual Decision-Making  

Reflecting on a widely used definition of intelligence [4], “the ability of a system 
to act appropriately in an uncertain environment, where appropriate action is that 
which increases the probability of success, and success is the achievement of 
behavioural sub-goals that supports the system’s ultimate aim,” we can see that 
intelligent autonomy is conceived within the context of a UVS within its 
environment rather than independent of it. As a result there are three aspects 
associated with testing such autonomous behaviour [6]: novelty in the 
environment or in the problem to be solved, uncertainty regarding what is to 
happen, and dealing with difficult situations.  

In this regard, the fundamental building block of good decision-making for 
automation is a high degree of Situational Awareness (SA),44 where SA is defined 
as having three levels [96]: perception of elements in the environment; 
comprehension of the current situation; and projection of the future status. Issues 
for each component of SA include: 

 

Perception - Humans rely upon their five senses (or combinations 
thereof) to perceive their environment across the application 
domains. Their degree of success is often linked to their capacity 
to “notice things” while other events are unfolding. Many UVS 
ignore certain events as they are programmed to detect or interpret 
only particular ones.  

                                                           
44 Here, for convenience, we include self awareness within the definition of situational 

awareness, although we shall return to discuss self-awareness in more detail in a later 
section (where we separate the two). 
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Comprehension - Humans comprehend a situation by fusing 
their environmental perceptions with relevant contextual 
information and mission goals. Most UVS rely upon their 
supervisors to prioritise the importance and meaning of 
information, except possibly in regard to aspects of their 
navigational aspirations. For instance, some autonomous UGV 
navigation systems have the capacity to compute solutions for 
almost every environmental situation [243].45  

 
Projection - Humans make predictions on the basis of their 
perception and comprehension of a situation. Projection is 
frequently the most highly demanding cognitive activity and 
various stressors (cognitive workload, fatigue, stress, etc) can 
affect a human’s capacity to fulfil this high-level task. 
Appropriate automation might ease this burden. 

 
Unfortunately, novelty and difficult situations may be indistinguishable to an 
autonomous UVS. As a result, humans and the UVS may need to share their 
individual perceptions of the environment by developing and maintaining a 
common situational awareness picture. Consequently, the UVS information 
must be filtered, manipulated, and then presented in such a way that a user can 
quickly assess the status of the UVS (or the cooperative) and the battlespace it 
observes. If the mental resources required to accomplish this exceed the task 
demand, system performance will remain above the required threshold. In a  
high workload environment, when the demand imposed by competing tasks 
exceeds a user’s capacity to process information, performance can be expected 
to suffer46 [110]. 

To this end, automation needs to be introduced primarily where it replaces the 
difficult or complex UVS task responsibilities and presents the residual cognitive 
or physical tasks to operators appropriately. The problem, of course, is identifying 
the difficult high priority tasks for what is a dynamic decision-making 
environment. Furthermore, this information must be collected, processed, stored, 
and disseminated appropriately to those who need it, whatever their geographic 
location. Additionally, the selection of these responsibilities is dependent upon a 
number of factors that include the nature and complexity of the task, operational 
tempo, levels of operator training, experience, and so on.  

In this regard, it is well-known that situational awareness has an effect on 
humans’ abilities to successfully complete missions [95]. However, at present 
most attempts at improvements in human situation awareness focus on providing 
better interfaces between the UVS and its supervisor, allowing the human to carry  
 

                                                           
45 If a UGV needs to traverse complex terrain a solution may or may not exist depending 

upon the width and mobility characteristics of the UGV. Alternatively, even if the terrain 
is traversable, the ease with which the UGV is able to execute its solution may vary. 

46 There is also a predicted drop-off in performance for low workload environments [295]. 
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out the processes of determining his situation awareness better rather than 
capturing the machine’s ability to observe, comprehend or make predictions (i.e. 
enhancing the UVS’ ability to develop its own self and situation awareness and 
indirectly and simultaneously enhancing that of the user). 

For decision-making to be distributed between the UVS and the human, a 
high degree of shared situational awareness is required. In a manned 
environment the devices that deliver shared situational awareness include 
spoken and non-verbal communications, visual and audio shared displays, and a 
shared environment [166]. Unfortunately, the bulk of these delivery mechanisms 
are not yet viable for a UVS and the sensed data must be pre-processed to 
convert it to a common reference frame, fused with state predictions based on 
historical observations, transmitted through communications interfaces, 
assimilated with other sensed data that have passed through a similar process to 
that described here, and then represented visually for interpretation and use by 
the cooperative’s supervisor.  

The degree of system automation required is fundamentally defined by the 
relationship between the human resource supplied and the situational awareness 
task demanded [251]. In this regard we must take account of several factors 
pertaining to a human’s capacity to appraise his situation [95], including the 
limited cognitive processing capabilities of the supervisors. Humans are able to 
divide, direct and select their attention capabilities, but their perception is limited 
by their capacity to parallel process sensory events, sensor modality and working 
memory constraints and by their sensory channels. Consequently, complex or 
dynamic environments can quickly overload a human’s attentive abilities such that 
they selectively sample their sensory channels. As a result, they typically manage 
their attention focus based on events, sensory updates, environmental conditions 
or task dynamics. Given that UVS frequently “ignore” information that would 
cause their supervisors to re-direct their attention, managing the attention 
requirements of supervisors such that they optimally sense and understand their 
environment is critical for environmental perception.  

Although significant advances have been made in this area [90] [160] [197] 
[266], most solutions treat the task allocation, decentralised data fusion, and 
sensor scheduling problems independently. For instance, the effective allocation 
of a particular UAV within a team at any instant may depend upon sensor 
scheduling constraints imposed upon the payload. Moreover, as the number of 
UVS in the cooperative increases determining the required behaviour becomes 
more computationally intensive and complex. Similarly, emergent behaviour and 
unforeseen circumstances also become more common [166].  

This means that due to the difficulty of forecasting the (probably emergent) 
behaviour of UVS, particularly within a networked or NCW environment, it may 
be very difficult to detect that something is going wrong. Consequently, another 
issue is how to provide diagnostic and feedback support to the UVS supervisors 
and their commanders, who may themselves be distributed over a wide geographic  
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area, particularly as many supervisory functions are cognitive, hard to monitor, 
and embedded as components of other operations. As a result, rather than being 
able to monitor the individual tasks directly, the commander or supervisor may 
only be able to assess the systems outcome (i.e. the result of the autonomous 
cooperative’s action). 

In the context of defined tasks such as detecting and identifying targets, 
controlling and aiming a weapon, landing an aircraft and so on it is easy to 
understand what we mean by the phrase ‘good’ relative to an autonomous UVS; it 
is measured against the specific purposes of the designers and users. When we 
consider how to quantify the effectiveness an autonomous UVS making decisions 
between fulfilling a mission objective set by its commander and delaying 
achievement of this goal to satisfy other objectives (e.g. attacking an adversary en 
route to this objective) it is much more difficult to understand what we mean by 
‘good’ as the metrics for such decision-making – particularly those pertinent to a 
context undefined at mission commencement – are usually poorly defined. The 
challenge for autonomous UVS is therefore as much based around the theory of 
work organisation as it is technical in nature; only after the basic patterns of 
stability and predictability have been thought through can UVS be productively 
applied.  

For instance, a UVS control system needs to perform three basic tasks: avoid 
obstacles; avoid other UVS; and, operate the UVS within its performance envelope. 
Once these priority tasks have been accommodated, higher order tasks such as 
mission planning, surveillance, reconnaissance, target location, sensor scheduling, 
coordination, communication, etc. may then be undertaken. As stand-alone actions, 
the priority tasks are accommodated relatively easily as their goals are both 
decomposable and quantifiable in terms of physical quantities and closed loop 
control laws that relate to physical parameters such as lift, drag, thrust and so on.  
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Fig. 4.1 Approach of linking perception to action through cognition (Adapted from [58]) 
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Fig. 4.2 Alternative decomposition of the perception-actuation problem (Adapted from [58]) 

 
Unfortunately, autonomous UVS also require the priority tasks to be closely 

integrated with the higher order tasks and there are at least two structural concepts 
for accommodating this integration. One in which perception is linked to action 
through cognition, where higher-level reasoning operates on the output of sensor-
based perception to provide the necessary motion planning for actuation (see 
Figure 4.1); and another, bottom-up behaviour-based strategy where perception 
and actuation are more directly linked, without the need for detailed intermediate 
world models that relate one to the other (see Figure 4.2) [58].  

There are several reasons why these higher order tasks are hard to instantiate:  
 

 Higher order tasks are frequently more difficult for both humans and 
UVS to deal with as the decisions that they involve rely upon reasoning 
and judgement that are linked to the execution of higher order military 
command and control obligations.  

 The problems are usually complex (for humans), which means that the 
problem is less well-understood and less structured and therefore harder 
to analyse or decompose into definable components. This means there is 
often a high likelihood of ambiguity, multiple possible courses of action, 
and/or the likelihood that one decision will impact a subsequent one. 

 There are usually significant amounts of uncertainty, possibly conflict, 
both in terms of what is known a priori to any mission and what is 
observed during it. This means that determining optimality in terms of 
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any decision-making – that is selecting a course of action that has the 
highest probability of meeting any defined objectives – is much harder to 
compute with a high degree of reliability. 

 It is difficult to accurately define suitable cost functions and metrics by 
which we quantify the benefit of applying one strategy or course of 
action over another. This adds to the complexity of the problem because 
we evaluate both the decision trade-offs and the quality of our decisions 
based on these.  

 In addition to any ‘decision cost’ (the determination of one course of 
action over another), there is also an opportunity cost (the determination 
of a known course of action over one not considered), which is usually 
unknown or in-calculable. 

 The prioritisation of goals is usually a subjective, contextual or 
interpretative task, for which it is not possible to anticipate all possible 
decisions and circumstances. Moreover, these tasks are often derived 
from direct or implied command and control strategies. 

 From time-to-time it is necessary to re-frame an existing problem rather 
than interpreting the situation within the existing problem frame. 
Recognising this and dealing effectively with complex novelty and 
maintaining information regarding any decisions we may wish to make in 
this space (and in a form that is readily usable when we need it) is 
extremely challenging.  

 Evolution has played a significant part in the development of human 
intelligence and its adaptation to the tasks to which it is suited. 

 Other challenges include constraints imposed upon the problem space, 
such as time and mission constraints/obligations, mission complexity, 
and/or supervisory, environmental or adversarial interventions. 

 

As [58] indicates, good decision-making agents reduce the complexity of the 
executive decision-making by breaking it down into component-decisions that are 
simpler to make. This also enables us to put greater structure into the verification 
problem (see Validation & Verification later) and to act on the sub-decisions and 
the information pertinent to each decision. It also aids in reducing the time it takes 
to make decisions by saving the UVS controller or the human supervisor from 
having to determine which information sources or sensors are relevant to any 
particular decision.  

It may also result in information being presented in a more organised fashion, 
thus saving the operator valuable time when interpreting what might otherwise be 
a complex display. For example, if a controller or supervisor is only presented 
with sub-decisions that are possible at any instant, in-feasible decisions are 
automatically eliminated. If we then order the sub-decisions according to the 
hierarchy in which they have been determined we also have a mechanism for 
achieving traceability. In this way we can ‘walk’ a UVS operator through any 
decisions he needs to make while simultaneously recording any decisions made. 
This also allows interruptions (e.g. communications outages) to occur by 
providing continuity for algorithms and supervisors that need to bridge any such 
outages as they can return to the last relevant decision at the end of any outage.  
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4.2.1   Planning in Dynamic Environments 

Military environments are inherently dynamic and if UVS are to maintain a 
persistent presence on the battlefield they must be able to adapt to their changing 
and often adversarial nature. In this autonomous UVS are no different from any 
other entities in the battlespace: they need to know what is going to happen next 
and what the best decision is now. Consequently, UVS require strategies not only 
for decomposing their missions into meaningful sub-tasks, but also for tracking 
progress towards mission goals and the changing nature of these tasks relative to 
the capabilities of the UVS. To do this they need to make plans and to establish a 
trade-off between the cost of any new plan (ideally compared to some global 
optimum) and the reaction time required to modify or repair any original plan 
given new information. 

In this regard, there are two major steps involved in translating the problem-
context into a solution framework, specification of the planning model and its 
evaluation function. In other words, the process of dynamic re-planning requires 
the creation of a model of the problem and use of that model to compute a 
solution. Consequently, when we solve a planning problem (or repair or modify a 
plan) we are actually only finding a solution to an approximation of the planning 
problem, which is a model of the real world. That is, we must find an incomplete 
solution to a problem that accurately represents physical processes, or a complete 
solution to a reduced (i.e. a simpler) problem [187].  

The (processor-hungry) solution to this problem is to treat it as one of dynamic, 
constrained optimisation set in a time-varying environment and continuously re-
compute and execute plans over some multi-objective cost function. Unfortunately, 
there are limits to the processing capability that most UVS can carry, tasks are time-
constrained, the constraints and the solutions to the cost functions are typically only 
those that provide good approximations to the parameters under consideration, and 
the optimisation is often application-specific and depends upon the real world 
variables being optimised. As a result, it is usually preferable to find an approximate 
solution to a precise model rather than a precise solution to an approximate model. 
This is because if our model has a high degree of fidelity we can have confidence 
that the solution will be meaningful [188]. 

A decision must also be made to structure the planning algorithms either as 
complete or partial solutions.47 The computational advantages of using partial 
solutions are attractive, but they are not without difficulties. For example, the 
problem must be organised so that the component problems can optimised 
efficiently and another evaluation function is required by which the relative value 
of the partial solutions can be determined. Furthermore, if the process is 
interrupted partial solution algorithms may not provide feasible planning 
strategies, whereas complete solution approaches should always be able to provide 

                                                           
47 In complete solutions, all decision variables are specified and evaluation takes place by 

comparing two complete solutions; better ones replacing previous ones. In incomplete 
solutions, a complex problem is simplified by decomposing it into smaller, discrete 
problems that are easier to solve. When the partial solutions are all solved, they may then 
be combined and used as building bocks for the solution of the original problem. 
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at least one feasible plan. Unfortunately, while usually relatively simple to 
implement, complete solutions tend to be computationally expensive, as their main 
requirement is that the problem space must be evaluated exhaustively [9].  

In this regard, there are many traditional approaches that can be applied to the 
problem, mainly because none is particularly robust to the broader problem space. 
In other words, if the problem space changes, so must the technique. As a result, 
many practical planning techniques tend to combine the benefits of reactive (local) 
and deliberative (exhaustive)48 techniques, creating hierarchal systems that engage 
the low-level reactive planners under higher-level deliberative ones (or 
parallelised versions of the same thing). Depending upon circumstance, however, 
some scenarios are better serviced by deliberative strategies that execute closer to 
global optimality, whereas others achieve mission success faster using the reactive 
ones [9]. As a result, reliance on either choice can be poor in certain 
circumstances. 

At a most basic level, a planner (e.g. for navigation) should prescribe a solution 
that is longer than the reaction distance of the UVS so that when new trajectories are 
computed it can avoid obstacles and other users of its environment. If this is 
achievable and the sensors onboard the UVS have sufficient range and resolution to 
perceive this environment then the UVS will at least operate safely within its 
environment while the higher level plans are computed. There are analogous safe 
planning solutions for other UVS behaviours such as weapons control, sensor 
scheduling and communications. For example, in regard to autonomous UVS 
weapons, we can postulate an acceptable generic architecture based on the major 
Principles of the Law of Armed Conflict (i.e. responsibility, military necessity, target 
discrimination and proportionality). This is discussed in greater depth in the section 
of Legal Issues, and in particular in the section on the Ethical Control of UVS. 

A fundamental operating condition for most military UVS is that, once 
operating, most UVS systems cannot simply stop to compute a new plan every 
time the environment or circumstances change. Consequently, planning must be 
performed concurrently with normal system operation. There are several 
requirements: 

 
 Robust plans are required to minimise the frequency with which 

successive calls are made to the planner 
 When a call must be made to the planner, the repaired plan should only 

differ from the original plan by a limited amount 
 In order to accommodate any limited deviation, the original plan should 

be readily adaptable to likely changes in the environment or mission 
 When a call must be made to the planner, adapting previous plans and/or 

making completely new ones should take as little time as possible 
 Despite the implied time pressures, the plans should be of a consistent 

quality 

                                                           
48 Reactive techniques consider only recent and/or current information and produce local or 

one step-ahead strategies based on conditional responses. Deliberative techniques derive 
their recommendations based on all available information and strive for global optimality 
or a complete mission plan. 
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It is, of course, difficult to know a priori what any update rate pertinent to the 
dynamic decision-making timescale should be. Additionally, therefore, we will 
need to incorporate a degree of adaptive or reinforced learning into the prediction 
component of the planning algorithms to allow them to determine their own 
update requirements. That is, we will want them to have the capacity to learn from 
task and environmental changes in order to accommodate a better sampling 
frequency of sensor inputs and prediction outputs.  

In this regard, evolutionary algorithms, which are essentially an adaptive 
combination of many techniques, show considerable promise. Regardless of the 
technique however most will compare newly generated solutions to existing ones 
and make some determination as to which solutions are feasible and/or preferred, 
and which need to be pruned or retained for further processing. This pruning 
process, however, is largely based on the evaluation function. Furthermore, it is 
usually assumed that the evaluation function is well-defined, whereas in reality 
problems are often set in noisy or uncertain environments. A key challenge in this 
regard, however, is whether to use an existing plan that is known to be sub-
optimal or to wait for a better solution to be computed (the obvious solution – 
‘wait and see’ – can lead to planning discontinuities). 

Furthermore, each element of a planner must also detect that it has failed and 
inform any other components. These requirements are strongly linked to the desire 
to achieve persistent autonomy; that is, for the UVS to be able to determine 
conditions under which the prescribed mission tasks are unachievable, either 
within a required time frame or the broader capability framework of the UVS. By 
having this level of self-awareness, and notifying users of such limitations, the 
human-UVS system can then adapt accordingly.  

For persistent autonomy, it is a fundamental requirement that the UVS be able 
to provide feasible solutions, and hence recognise those that are infeasible relative 
to mission time constraints, its own capabilities, etc. If the UVS determines to 
prosecute an infeasible plan, it has not really found a solution to its problems. That 
said it is acceptable for the UVS planner to work in infeasible space, defining 
solutions that it cannot achieve in order to determine those that it can perform. In 
this regard, however, there are some challenges for developers [187]:  

 

 How do we compare infeasible plans 
 Should we use an evaluation function for the feasible or the infeasible 

plans 
 Are (or should) these two evaluation functions be related to one another 
 Should we simply eliminate infeasible plans or attempt to repair them 
 If we attempt to repair the plans, should we “move” them by the least 

amount  
 Alternatively, is more radical “surgery” appropriate (i.e. more feasible 

solution) 
 Do we need to find the delineation between feasible and infeasible plans 
 Should we extract a set of constraints that define the feasible/infeasible 

boundary 
 Having determined the infeasible plans, how do we translate them to 

feasible ones 
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As implied above, most planners cast their predictions as a binary problem for 
which the solution is either feasible or infeasible. Relative to the capabilities of the 
UVS, however, there may be areas of grey where solutions are simply difficult 
rather than impossible, particularly in relation to UUV operations near the sea 
floor or UGVs attempting off-road navigation. For instance, a bridge that is too 
narrow for a UGV might be considered a hard obstacle, whereas a steep slope 
might be considered a soft one; where a soft obstacle is one that can be negotiated 
by adapting UVS behaviour (e.g. velocity or heading).  

One solution to such challenges is to explicitly compute cost functions that are 
defined in behaviour space (e.g. mobility maps)49 [144]. These plans may then be 
treated as input to reinforced learning techniques that then learn by physically 
interacting with the environment. At present, however, even though the behaviour 
bounds of the UVS are relatively straightforward and well-understood, complex 
UVS-environmental interactions still lead to unknown and un-modelled factors. 
This means that the evaluation function is not crisp and application of reinforced 
learning strategies can therefore be complex. 

4.3   Verification and Validation 

“We're sitting on four million pounds of fuel, one nuclear weapon and a thing that has 
270,000 moving parts built by the lowest bidder. Makes you feel good, doesn't it?” 

Alan Shepard (Astronaut) 
 

A number of studies have indicated that military personnel believe that only 
humans are capable of operating in a “free flowing environment of an offensive 
combat mission” [24]. However, trust and reliability really only guides rather than 
determines the reliance that humans put in automation and recent research has 
produced several seemingly conflicting findings [163].What is clear is that many 
military personnel do not want UVS operating in the same environment as manned 
platforms, particularly in hazardous environments. This is illustrated by the 
current need for a number of highly qualified humans to observe certain UVS and 
take control of them if they feel uncertain as to what they are doing. On the other 
hand, several studies [199] [26] [61] [86] [193] have demonstrated the human 
tendency to rely on computer-based recommendations, even though there may be 
contradictory (and correct) information readily available. This is usually referred 
to as decision bias [68] and typically results from the use of heuristics that people 
routinely use to reduce cognitive workload involved in problem-solving. It can 
result from errors of omission (where operators fail to notice a problem) to errors 
of commission (where people follow an automated directive that is wrong).50  

 

                                                           
49 Alternatively, the degree of terrain ruggedness might be monitored through feedback from 

onboard inertial sensors and the UGV behaviour then adaptively controlled, as appropriate. 
50 Paradoxically, for imperfect automation the greater its reliability the greater the chance of 

operator over-reliance; this is because of the rarity of incorrect automation advisories with 
the commensurate result that the operator uncritically follows unreliable advice [220]. 
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4.3.1   Trust and Reliability in UVS 

Ultimately, fully autonomous UVS will need to achieve higher levels of reliability 
due to the very nature of these systems (for example, there will be no-one to 
change the UGV’s flat tyre). Furthermore, the more a system is capable of doing 
autonomously the less human intervention is required and the greater the 
endurance requirements become. As a result, while endurance is typically 
measured in hours today, in ten years this may become weeks or even months. As 
a minimum, therefore, systems reliability must keep pace with mission endurance. 

Fundamentally, there is likely to be a minimum threshold for reliability and 
autonomous UVS will start to be adopted by defence forces when they are cost-
effective and have a proven, reliable track record. That said few technologies gain 
instant acceptance when introduced onto the modern battlefield as warfighters 
often inherently dislike or even distrust a new system. As experience is gained, 
however, reliable technology tends to earn the trust of its user community and the 
value of the capability enhancement is appreciated. Trust and reliability are 
therefore key issues that drive the level of confidence – and hence degree of 
automation – that we place in UVS. Moreover, trust in automation, and 
technology more generally, is a multi-dimensional construct that changes with 
time. It is influenced by the types and format of information received by humans, 
their individual approaches to developing and determining trust, and influences 
such as system capability and reliability. Moreover, users of UVS frequently trust 
malfunctioning equipment and/or mistrust equipment that is operating correctly.  

These imperfect relationships are described by [219] as the “disuse and misuse” 
of automation. Misuse refers to failures that occur as a result of humans 
inadvertently or inappropriately relying on automation, whereas disuse refers to 
failures that occur as a result of them rejecting the advice or capabilities of 
automation. The processes of disuse and misuse are often described as a binary 
process of engaging or disengaging in reliance, whereas the practice is often more 
gradual, complex, and the combination of multiple factors. Nevertheless, and even 
though many studies indicate that humans respond socially to technology (and 
computers in particular evoke similar reactions to human collaborators [201]), this 
simplification makes the topic easier to discuss and the modelling of key 
parameters more tractable.  

It is widely acknowledged that while humans are very good at issuing high-
level goals, managing uncertainty, and injecting a degree of creativity and 
flexibility into systems, they are also prone to disuse and misuse; where these 
biases are heavily influenced by experience, the framing of cues, and the 
presentation of information. To this end, UVS that provide inappropriately framed 
information may inadvertently reinforce the human tendency to use heuristics, and 
hence the potential for decision bias [201] [86]. Humans are also prone to physical 
and cognitive errors and it may be reasonably argued (see Legal Challenges) that 
any UVS sufficiently complex to take decisions on our behalf will likewise be 
prone to hardware, software and/or algorithmic errors, mistakes and failures. 
Humans often also become frustrated and confused when a machine does not do 
what they expect it to. Moreover, uncertainty in humans frequently manifests itself 
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as hesitation or failure to act. Nevertheless, during this process, humans usually 
continue to gather additional information to improve their awareness of their 
environment or their confidence in a particular line of action.  

UVS, on the other hand, rely upon their sensors, actuators and IDT to reduce 
uncertainty or improve their confidence levels. Unfortunately, their sensors can 
introduce or increase uncertainty as they often have narrow spectral or physical 
fields of view. Alternatively, the algorithms used by the UVS may employ 
heuristics to abstract data or events, which can introduce noise or erroneous data, 
thereby reducing confidence levels or introducing greater uncertainty [24]. As a 
result, algorithms are often fragile and variation in a sensor’s data stream can 
result in poor classification or processing results. 

Trust is essentially based upon a perception that is linked to organisational, 
sociological, interpersonal, psychological and neurological processes which 
should (but usually do not) influence the design, evaluation, and training 
approaches to UVS. Not surprisingly, therefore, the topic is complex and draws on 
a diverse range of research from a number of fields. Moreover, it has generated 
several definitions [69]. However, trust between humans and technology is 
essentially driven by a combination of the probability that humans can 
successfully predict the anticipated action of the technology before they can 
monitor such action and the reliance they have upon the technology [26]. There is 
a considerable body of work that shows that not only is trust important to 
mediating how people rely on each other in relation to task completion, but that 
this is also extended to the relationship between humans and automation. 
Furthermore, these studies also indicate that it can be observed and measured 
consistently [163].  

The relevance of this is that, if we can measure trust, we can use it as a 
framework by which we measure the level of ‘trust’ a UVS might have in a 
human. That is, the extent to which it might be able to reliably anticipate any 
likely human behaviour. One of the complexities in this regard relates to the 
unpredictability of autonomous UVS in unfamiliar environments. Often, when 
working with humans we can anticipate their actions by vicariously placing 
ourselves in their situation, or we have trained with them and have gained 
knowledge of their likely actions through experience, etc. Autonomous UVS have 
a tendency to surprise even their developers, although this is also one of their 
greatest assets as they can provide unexpected solutions to problems that could not 
be pre-programmed into them. In hazardous environments (i.e. ones in which UVS 
are likely to be used), however, these unexpected actions can be very 
disconcerting for humans. Nevertheless, just as we would attempt to develop an 
understanding of a human colleague in such circumstances, say, based on past 
performance in more familiar surroundings we should be able to develop an 
assessment of the perceived capabilities of UVS. 

Establishing reliable automation in UVS also brings with it the challenge of 
identifying tasks, task components, or periods for which leadership can (or 
perhaps should) be assumed by the UVS rather than the human. At the very least, 
given the high workload environment of the modern battlefield and the cognitive 
and processing limitations of humans, we will need to consider whether human 
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supervision of all tasks and at all times is optimal. In other words, should the 
supervision of specific tasks be replaced by a more equal relationship that reflects 
true human-UVS teaming, or (in certain circumstances) is it more appropriate for 
the UVS to write the human out of the decision-making loop entirely? 

To some the notion of shared leadership may seem a little far-fetched. 
However, let us consider a scenario in which a semi-autonomous UGV can vary 
the level of trust it places in its user based on the user’s level of attention, health, 
workload, etc, all measured by psycho-physical sensors embedded in the HMI. If 
we were able to observe these human states reliably, this would provide us with a 
mechanism for adapting the level of autonomy assumed by the UGV and thereby 
provide a means for varying its behaviour. Appropriately implemented, this would 
build increased trust into the relationship. In this regard [59] indicates that it is 
unlikely to be sufficient for humans to simply understand the UVS decision-
making; the UVS must also be given a means by which it can understand the 
(potentially dynamically changing) intentions of the human. Ideally, both elements 
of the team will then have the capacity to adapt to this mutual flow of information, 
thereby building greater levels of trust in each other.  

However, it is imperative that appropriate levels of mutual trust be established 
as any distrust will result in a ‘fight’ for control. In this regard the concept of 
understanding the limitations of the members of a team has been shown repeatedly 
to be more important than the establishment of a trust relationship per se; studies 
indicate that teams will often preferentially develop techniques for achieving 
outcomes with ‘faulty’ members they do understand over ‘high-performing’ 
members they are not familiar with. Consequently, it is more important for 
humans and UVS to understand each other’s goals and limitations than it is for 
each to know other’s capabilities and enjoy mutual trust. We will return to the 
topic of measuring UVS performance in the chapter on Force Integration of UVS. 

Measuring the level of trust in humans relative to their UVS is a major factor in 
training operators to develop advanced skills in collaborative activities as it allows 
initial biases to be reduced, provides knowledge about system capabilities, and 
applies a risk-assessment based on the behaviour of the automation. Moreover, 
human-UVS teams only become truly effective when humans know how to 
appropriately trust (and hence rely on) the automation as they can then use this 
trust to direct the UVS accordingly within the relevant context [111]. 

Unfortunately, different human roles (i.e. commander, user, team mate) require 
different types of interaction with the UVS and hence potentially different levels 
of trust (and hence ways of measuring it). Moreover, while many may wish to 
interact with UVS at a high level (e.g. “Are there any targets over there and, if so, 
engage them appropriately”) there will be many occasions when interaction is 
required at a lower level (i.e. a user wishes to control a specific payload on one 
UAV within a heterogeneous team). When this occurs the outcome can be either 
synergistic or counter-productive, depending upon the team relationship, the 
familiarity of the human with the UVS and their mutual understanding of the 
context. To this end, successful outcomes frequently depend upon the UVS (or 
teams thereof) to act predictably and to support varying levels and/or frequencies 
of user-UVS interaction.  
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Trust is ultimately built on system reliability and predictability, and to a very 
large extent it is the system’s architecture that combines and defines the 
interactions between the sub-systems – and in particular the system’s tolerance to 
faults and ‘erroneous’ data arising from real-world interactions. To this end, it is 
the architecture that drives our ability to define and grow our trust in UVS. In the 
cases where we are considering UVS carrying and using weapons the system must 
not only be trusted and safe, but enact behaviours that are seen to be safe and 
trustworthy. That is, users and observers must feel confident that the UVS will 
only use weapons within the constraints of the Laws of Armed Conflict. To 
accomplish this, the UVS will require a level of status reporting, the capacity to 
explain any ongoing or planned behaviour, and the ability to ‘ask for help’ when 
necessary. We return to this issue in greater depth in the section on Legal Issues. 

Technological reliability is also a key factor in the development of trust. For 
instance, if the systems reliability is relatively high users may come to rely on 
UVS so that the occasional failures do not substantially reduce the level of trust – 
unless the failures are sustained. Another factor might be the degree to which 
failures are detected or particular behaviours are more generally observed. 
Similarly, the ease with which manual over-ride can be enacted, the degree of user 
self-confidence, and the overall complexity of the task may also all prompt 
different task strategies from different users. 

One final note; and as a number of ‘controlled flight into terrain’ UAV 
accidents have demonstrated, human error is not usually a function of just the 
human, but of the system inaccurately or ineffectively facilitating user 
understanding of how the system actually works [4]. In other words, one cannot 
remove human error by simply increasing the level of automation and removing 
the human operator as the extent to which the UVS is made less vulnerable to 
operator error through increased automation makes it more vulnerable to designer 
error during the design and manufacturing processes. 

Clearly, training has the potential to minimise or mitigate some of this, 
although it has been shown that training alone cannot overcome issues of trust 
arising from many aspects of poor design. Providing the users with interaction 
paradigms that they are familiar with, for instance ‘natural’ (i.e. human-like) 
interaction through gestures and speech (or even UVS that have identifiable 
‘personality traits’) has been shown to improve trust between users and their 
technology [53]. Over-reliance on such technology, on the other hand, can also 
result in poor systems monitoring and a reduction in overall performance, just as 
too little trust can also lead to over-monitoring, which detracts from a user’s 
capacity to carry out other tasks.  

4.3.2   Systems V&V for Autonomous UVS 

Developers naturally strive to achieve ‘best practice’ by implementing basic rules 
of thumb, keeping their designs simple, providing suitable documentation and 
creating initially stable designs. Empirical evidence suggests, however, even using 
a combination of peer review, static code analysis, subroutine and algorithmic 
testing, unit testing, component testing, functional testing (including human, 
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hardware, and software-in-the-loop), integration testing, system testing and 
qualification and acceptance testing that it is practically impossible to provide 
bug-free software on an unblemished processor past a certain level of 
sophistication [145]. This is due to a number of reasons: 

 
 While the majority of production systems are built to a specified level of 

quality, they are also built to a budget and schedule;  
 The complex, cluttered, dynamic and unstructured operational domain 

into which they are inserted differs substantially from their military test 
environments;  

 The engineers and programmers cannot a priori anticipate all possible 
contingencies; and,  

 The software involved usually contains many lines of code.51  
 

Moreover, in a network of autonomous UVS we are considering the interaction 
between multiple software modules running on different processors, operating 
systems, and with architectures possibly unknown to each other in advance and in 
all probability across a range of UVS platforms and environments. In the final 
analysis, therefore, we can be reasonably sure that in addition to autonomous UVS 
operations entailing considerable fundamental uncertainty, at some level the 
system will probably malfunction and that we are unlikely to be able to predict the 
specific nature or timing of these failures.  

Nevertheless, UVS are non-unique in that there are several examples of 
intelligent systems whose malfunction may have severe consequences. Such 
systems require a great deal of care in regard to their design, operation, and 
maintenance. Moreover, increased safety in these safety-critical systems must 
typically be traded against criteria such as usability, cost and performance. In 
order that safety is not inappropriately compromised at the expense of one of these 
other criteria, sound ethical judgements must be made. Typically, these cost-
capability decisions are made on the basis of some statistically significant criteria 
such as “The life expectancy of a human shall not be altered by using such a 
system.” However, such criteria do not provide us with any absolute measure of 
what constitutes safe or known malfunction. Clearly the system will need to be 
designed to ‘world’s best practice’, but this on its own is probably insufficient; not 
least because such standards and practices are currently informal and therefore not 
legally binding (see Legal Issues). 

As previously indicated, the sum behaviour of an autonomous UVS is a 
function of the interactions between its multiple interacting and independent 
elements and its human supervisors. Furthermore, as the degree of autonomy 
increases it becomes increasingly difficult to predict the sum state of the system. 
Moreover, the system is actually a function of a number of linked processing 
elements (hardware and software) and humans (programmers, engineers and 
users) and becomes significantly more complex as these systems are networked 

                                                           
51 Standard V&V techniques usually deliver between 97%-99% (or higher) overall code-

defect removal for embedded systems if all steps are carried out correctly or perhaps 
85% for application and information systems software [93]. 



74 4   UVS Technology Issues
 

either to each other or other technologies. As there are multiplicities of 
architectures, data formats, operating systems, programming languages, compilers 
and communications protocols, not to mention an almost infinite variety of 
hardware combinations.  

From a technical perspective, however, we may consider two systems elements: 
hardware and software. Traditional hardware systems embody much of their 
functionality in the components that comprise them so they are relatively easy to 
model, they fail statistically through use or external damage, and their reliability is 
fairly predictable. Consequently, hardware systems can be analysed relatively 
simply and straight-forward tests can be formulated to prove their integrity before 
permitting their operational use. Furthermore, engineers can usually solve the 
problems of poor reliability with hardware redundancy. 

When functionality is instantiated in software, however, the sheer number of 
states and a lack of regularity usually makes it much harder to bound the possible 
failure modes, and hence to devise tests against them.52 Furthermore, there are 
frequently many subtle and often unexpected interactions between modules. As a 
result, a complete analysis of all possible failure modes and their potential impacts 
may not be practical. Furthermore, redundancy does not usually solve software 
reliability problems as software fails almost always as a result of some latent 
design error. Hence, failure of a critical sub-component is often highly correlated 
with the failure of a duplicate backup system, unless different software designs are 
used. As a result, while it will increase cost, building-in redundancy may not 
improve the reliability of UVS.  

An increase in the reliability of autonomous UVS will come from the 
development of affordable software Verification and Validation (V&V) strategies 
that reduce costs and compress production schedules. However, although there are 
a range of systems engineering and other analytical techniques available for 
evaluating the likely performance of software (e.g. [115] [186] [189] [167] [222] 
[223] [247]) and current certification practices have historically produced safe and 
reliable control software for many complex systems, verifying and validating 
software that controls the key functions of next-generation UVS poses significant 
challenges in terms of providing the requisite levels of confidence. As a result, 
current techniques are unlikely to be cost-effective for a number of reasons.  

 

 Application of existing V&V strategies is a non-trivial undertaking [222] 
[223], and it is highly likely that modelling and measuring the reliability, 
usability, testability, portability, and understand-ability of the critical 
elements of the UVS software will be a major undertaking in itself. This 
is because almost all of the ‘intelligent’ functions in a next generation, 
autonomous UVS will be software modules that are likely to be 
distributed across a number of programs and processors with no one 
processor, program or programmer knowing the full extent of individual 

                                                           
52 Using the ‘rule of thumb’ (see Footnote 27 in Looking Forward) this means that there 

will be around 91,000 test cases required for an embedded software system that has 
10,000 function points, although this number could be much higher (perhaps by a factor 
of ten) due to specific test-driven development [93]. 
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outcomes or determinations. Moreover, if the UVS forms part of an 
NCW environment, software modules originating at another node in the 
network could be executed within the UVS that has potentially formed on 
some ad hoc or other ‘unpredictable’ basis. 

 Although many of the functional components of an autonomous UVS are 
likely to be based on independently mature technologies, the sum 
behaviour of the UVS will be a function of the interactions between these 
components, the human supervisors (via an HMI), and a range of other 
external technologies that may include other UVS. 

 UVS are polymorphic because they interpret data from a number of 
different perspectives and manipulate information in accordance with 
environmental conditions, the nature of the mission, and the problem at 
hand.  

 Some sophisticated UVS may be designed to be intentionally 
unpredictable so as to inject a degree of creativity into the UVS mission, 
as predictable systems are not necessarily optimal for military operations. 
From a V&V perspective, consistency is obviously desirable, but in an 
adversarial context the capacity to predict exactly what the UVS will do 
may well be disadvantageous. Consequently, a balance will need to be 
struck between consistency and unpredictability that allows the 
programmers to understand, trust, and hence verify the software.  

 

Testing software will need to be geared toward the verification of four key, high-
level requirements: the loss of control, survivability, UVS performance, and safety 
(which includes compliance with the Laws of Armed Conflict). There are a 
number of issues: 

 
 The software designer is not usually an expert on sub-component 

design;53 
 Next-generation UVS may replace human ability and judgement and our 

comprehension of higher order cognitive functions is not yet well-
framed; 

 Improvements in automated testing regimes may reduce labour costs and 
testing hours, but may not reduce them sufficiently relative to the 
emerging requirements. 

 Most software requirements are incomplete (i.e. we will probably need to 
specify the unwanted as well as the desirable behaviour of the UVS and 
its intelligence); 

 UVS will often be used in contexts for which they were not designed (i.e. 
we need to understand how the software operates across a broad 
environmental spectrum); 

 Software is often changed (i.e. hardware fixes usually result in the 
recovery of a system’s functionality, but minor software ‘fixes’ may 
introduce new faults); 

                                                           
53 There is evidence to suggest that embedded software engineers attend domain-specific events 

rather than mainstream computer shows or software engineering conferences [93]. 
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 The impact of software changes are non-linear (i.e. a small modification 
may have significant – even catastrophic – results on system 
performance); 

 The state of the UVS often depends on its past history in intricate ways 
that may involve several components or other sources of a non-
deterministic nature; 

 Adaptive learning techniques can adjust their own logic during execution 
and some software techniques have the potential for self-healing. Both 
would render obsolete any certification process; 

 It may not be possible to exhaustively test the IDT software because the 
number of states is so large; 

 Reliability criteria may be driven by payload or may take on other forms 
to accommodate the functionality of the remote user; 

 
As pointed out in UVS Components, many of the functional elements of a UVS 
will be embedded software units with the potential for significant human impact. 
Consequently, the defect potential and removal needs to be monitored closely or 
there will be serious issues of liability (see Legal Issues). Furthermore, such 
quality control issues will clearly impact schedule, cost, and systems reliability. 
Finding and fixing bugs will therefore be the most expensive activity in UVS 
software development [93].  

Having said all this, let us now return to the notion that a UVS control system 
needs to perform a number of tasks: avoid obstacles, avoid other UVS, operate 
within its performance envelope and, once these priority tasks have been 
accommodated, undertake higher order tasks such as mission planning, navigation, 
surveillance, reconnaissance, target location, sensor scheduling, coordination, 
communication, executive decision-making, etc. Now, rather than attempting to 
consider the autonomous UVS at the system level, we can apply techniques 
employed by [115] [167] and [186] and divide it into its constituent autonomous 
functions or categories of autonomous software. Analysing the individual 
requirements of these constituent functions then reduces the complexity of the 
V&V task somewhat. 

 
Mission and Trajectory Planners  
Planners typically make decisions by projecting action into the future on the basis 
of a model of the UVS, its current and potential behaviour and the environment, 
and then evaluating the outcomes according to a cost function or some other 
selected criteria. The evaluation function then represents the UVS objectives and 
constraints through the return of high values for plans that meet mission goals 
without violating the performance envelope of the UVS. Typically, this involves 
some form of search through a set of potential plans until an acceptable or feasible 
plan is found. Consequently, the key is to apply pruning techniques so that only 
successful plans are likely to be generated. There are four major risks (listed in 
order of increasing severity) [167]:  

 
 The plan makes inefficient use of resources;  
 The plan could not be generated;  
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 The plan generated is not feasible; or  
 The plan places users of the environment, supervisors or the UVS at risk.  

 
Clearly, we need to worry most about the last one. However, to assure ourselves 
that safety is not an issue we do not need to verify the entire planner, only its 
evaluation function. If the evaluation function is correct then the UVS and/or users 
cannot be placed at risk. Fortuitously, the evaluation function is likely to be based 
on algebraic expressions or software techniques that rely on physical laws and/or 
techniques that have been used for decades. The main difference will be the 
absence of human oversight and ‘double-checking’ of results. As a result, we must 
hold the evaluation functions to higher standards of verification, but this is more a 
matter of degree, than novel concept [115]. 

The generation of infeasible plans is more serious than the absence of a plan as 
the latter is simply a fault. That is, the system should be able to detect that it has 
not generated a plan and can automatically invoke some sort of recovery 
procedure. The generation of infeasible plans requires the UVS to have an 
understanding of its state and may therefore be verified by evaluating some of self 
awareness criteria (see Dynamic Planning).  

The use of resources is context-dependent and should be evaluated thus. For 
example, an autonomous planner might propose to do something a human would 
not. However, in terms of verification, this situation should be considered against 
the case where the mission may not have taken place rather than against more 
absolute conditions. 

 
Navigation 
Verification of autonomous navigation software is very challenging as it is 
mission-critical and relies upon the complex integration of algorithms in the 
context of a system embedded in a complex environment. Furthermore, some 
navigation capabilities depend upon the self-awareness of the UVS and/or its 
capacity to cue sensors to maximise its potential for observing certain types of 
data and hence its ability to perceive and predict its environment in the presence of 
uncertainty.  

The inability to fully or exhaustively test software is not a concern in and of 
itself as many non-trivial systems cannot be exhaustively tested. Furthermore, 
exhaustive test is not required to produce reliable software. For example, UVS 
systems – like software programs – have structure and what often passes for 
exhaustive testing is in fact only sparse testing from the range of all possible 
states. In other words, the behaviour of the UVS in one state is not always 
independent of its behaviour in other states. As a result, testing the IDT in one 
state may provide information about other states, which can be grouped with 
respect to particular properties of concern. The key to making the IDT reliable is 
then to design it in such a way as to make its structure testable; or at least to allow 
its states to be decomposed into a tractable number of groups with respect to 
particular properties of interest. 
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Executive Decision Makers 
A key challenge for an autonomous UVS is the application of work organisation. 
In other words, only after the basic patterns of stability and predictability have 
been determined can the UVS be productively applied. Good decision-making 
agents are therefore analogous to sequencing engines as they reduce the 
complexity of the executive decision-making by breaking it down into component-
decisions that are simpler to make. This enables us to put greater structure into the 
verification problem and also to act on the sub-decisions and the information 
pertinent to each of them. However, such agents typically have complex semantics 
and comprise multi-threaded algorithms, which are prone to race conditions, 
deadlocks, and non-deterministic behaviour [115]. 

Another issue for V&V is that irrespective of the technologies used, the mere 
act of removing the human introduces risk because IDT, which have control over 
the UVS, can make errors that lead to mission termination or system failure. 
However, if we consider the problem in context, the autonomous function is likely 
to have been introduced because of some human failing: an inability to react 
quickly enough, the monotony of the observation task, etc. That is, the technology 
is embedded into the UVS because the processes involved are currently unreliable 
as a result of their involvement with humans. To design a robust IDT, therefore, 
we simply need to repeat the process and aim to design it with high levels of self-
awareness. In other words, when the software fails the IDT must never fail to 
recognise that one of its software components have failed. In this way, unreliable 
UVS components can be combined into an overall architecture that has a fall-back 
recovery procedure. Acting on the component decisions in this way also aids in 
reducing the time it takes to verify decision-making software by allowing the 
information to be presented in a more organised fashion, thus saving valuable time 
interpreting what might otherwise be a complex situation. For instance, a 
verification strategy might order sub-decisions according to a hierarchy in which 
they have been determined to achieve traceability. This allows us to ‘step’ through 
any decisions that might need to be made [222]. 

4.3.3   Simulation-Based V&V 

Simulation-based V&V is a flexible framework for simulating, analysing and 
verifying autonomous UVS. Essentially, an instrumented test-bed consisting of the 
actual control software and processors is embedded in a simulated operating 
environment. Conventional and model-based testing is then combined: the real 
software and hardware is executed and verified rather than an abstract model 
derived from the system; yet the simulated environment allows execution ranges 
over an entire graph of possible behaviours rather than a suite of linear test cases 
[115]. Ideally, each internal software state is marked to identify that it has been 
tested to avoid redundant testing or note any variation. 

Simulation-based V&V avoids the need for developing separate models for 
verification purposes and, more importantly, the need to scrutinise each violation 
against the real system to see whether it corresponds to a real or a modelling 
inaccuracy. On the other hand, while simulation-based verification provides 
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important potential gains in scalability, automation and flexibility, it is generally 
less efficient than model checking verification techniques [247]. 

To enable controlled execution, instrumentation must be introduced into both 
the software under scrutiny and the test environment. Furthermore, if the test-bed 
is capable of iterating over all alternate events at each state, back-tracking to 
previously visited states and detecting states that produce similar behaviour it will 
constitute a virtual machine with a fully controllable state space. To constrain the 
state space, however, the environmental component of the test-bed must usually 
be restricted to a well-defined set of vignettes or scenarios. We may then use such 
a tool in three ways: 

 
 By applying the simulation-based verification approaches described 

above; 
 As infrastructure for developing a program framework for autonomous 

UVS; and 
 As a framework for evaluating and diagnosing concepts of use. 

 
Aside from the system under test, the tool will require three components [223]: 

 
 A diagnostic component capable of interpreting the physical system; 
 A simulator for the physical system on which the diagnosis is performed; 

and 
 A driver for generating commands and faults according to user-provided 

scenarios 
 

To verify the system, the tool should then run through all conditions specified in the 
scenario, back-tracking as appropriate to explore alternate steps and executions. At 
each step, the tool should also check for error conditions and, if an error is reported, 
record and report the sequence of events that led to the current state. Verification of 
the diagnostic software is also required as the key to the voracity of such a test-bed 
is its ability to accurately observe or infer information on the behaviour of the 
system under test. This is contextually dependent and must take into account the 
run-time conditions under which it should be possible to acquire certain information.  

Finally, although not strictly the same as V&V, Accreditation must also be 
considered for autonomous systems. For example, how many hours and under 
what conditions should we test a UGV to ensure it does not lose control?54 
Furthermore, what protocols and safeguards must we instantiate and test to ensure 
that such systems cannot be intentionally or inadvertently subverted and do we 
even know whether this is a real issue, and if so, how to characterise this task? 
There are also issues of test infrastructure, such as whether or not the existing test 
facilities, designed mainly for manned systems, are adequate and (say) how test 
data will be collected when the instrumentation normally mounted on a vehicle is 
larger than the vehicle itself (e.g. a MAV or small UGV in a sewer).  
                                                           
54 During the 2005 DARPA Grand Challenge, and without warning, one UGV that was 

performing perfectly well suddenly left the course and almost hit a building, only missing it 
because the chase vehicle activated the UGV’s e-stop; not something that may be an option 
for vehicles engaged in combat. 
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4.3.4   Health and Usage Monitoring 

Persistent autonomous military UVS operations will place great emphasis on 
health, usage monitoring, and fault detection, isolation and recovery systems as 
such systems must not only recognise that something has gone wrong, but also 
determine what has gone wrong; and leave the UVS in a safe state by restoring its 
functionality in the face of failure. In any system that interfaces with humans, 
however, the overall output will be affected by the physical or cognitive workload 
of the human and the limited physical and processing abilities of the UVS. 
Moreover, a UVS that is able to perceive its environment through limited sensor 
modality may induce or suffer from ‘cognitive blindness’ [118] when the UVS or 
its supervisor focuses (or fails to focus) on a particular environmental event; or 
attends to the demands of a particularly onerous task triggered by such an episode. 

In other words, the separation between the operator and the UVS deprives the 
human of a range of sensory cues that are available to the pilot or driver of a similar 
manned vehicle. Furthermore, rather than receiving the sensory input directly from 
either the vehicle or the environment in which the vehicle is operating the UVS 
operator receives only that sensory information provided by onboard sensors via a 
data link. The sensory cues that are typically lost include visual, olfactory, auditory, 
kinaesthetic and vestibular input. For example, an actuator malfunction may be 
signalled to the pilot of an aircraft via visual, auditory, and haptic feedback. In 
contrast, for a UAV this failure may be indicated solely by perturbations of the 
camera image. This manifests itself in two ways. For tele-operated UVS this is felt 
in terms of the operator’s moment-to-moment control of the UVS; for more 
autonomous UVS, the vehicle’s health and status at any instant are unknown.  

The end result is that a considerable amount of data must be relayed from 
sensors and systems onboard the UVS to the operators at the GCS. This data must 
also be processed and presented to the users in such a way as to simultaneously 
minimise their workload in regard to monitoring it and maximising their capacity 
to interpret and understand it, which is in addition to any information needed to 
maintain task situational awareness, control the vehicle or progress towards 
mission objectives. Furthermore, the potential for controlling, coordinating and 
monitoring the states of multiple vehicles using a single operator diminishes 
exponentially with the increase in the number of vehicles, unless the vehicle’s 
situational awareness is determined autonomously. To avoid network latencies and 
communications scheduling problems (that are additional to any required for 
mission completion), this processing must take place onboard the UVS. 

As a result, the absence of an embedded pilot or driver promotes the need for a 
Health and Usage Monitoring System (HUMS) located onboard the UVS. Such 
systems must autonomously process, interpret, and deliver meaningful information 
about the status of the UVS platform, its sensors, and sub-systems. The key 
requirements are that it monitors the performance of UVS at both the holistic and 
functional component level in order to detect anomalous behaviour, characterise 
its nature, extent and seriousness, and report it to operators within useful 
timescales. Ideally a HUMS will also attempt to mitigate any potential damage, 
perhaps by affecting a repair.  
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Typically, HUMS will make use of analytical models of hardware sub-systems 
to provide estimates of the anticipated sensor observations and/or vehicle 
responses to actuator commands. They avoid the additional cost (and weight) of 
redundant hardware and can determine lost functionality at a sub-system level. 
They employ hypothesis-testing and robust estimation techniques to detect and 
isolate these failures, which can correspond to failed actuators, sensors or other 
systems failures that cannot be adequately assigned (e.g. a UGV has become 
bogged in wet mud). Typically, the statistical tests also look for changes in the 
statistical properties of any variables so that the HUMS can perform prognostic 
analysis on the likely failure trajectories or adapt maintenance regimes. 

The detection of anomalous events requires an array of suitably placed and 
networked sensors, a strategy for acquiring and then processing the data, 
knowledge of the operating environment of the UVS, and the potential impact of 
likely threats and stressors. Based on this schema any damage must then be 
characterised and prioritised in terms of the vehicle and/or its mission in order for 
the HUMS to autonomously determine the urgency with which a response needs 
to be mustered. In an ideal system, the HUMS will also use its array of sensors to 
deduce information relevant to events leading up to the anomaly to identify and 
possibly isolate its cause. Finally, the HUMS should formulate a response option 
in the form of a sequence of actions or recommendations to operators that are 
achievable within the window of opportunity pertinent to the seriousness of the 
anomaly. 

Clearly it helps to anticipate the type of events or anomalies that a UVS might 
experience, and these may be broken into two broad categories: external 
(environmental) anomalies and internal (vehicle-based) anomalies. External 
anomalies are likely to be dependent on the environment and therefore the type of 
platform or mission. For example, mud and water may enter the mechanical 
systems of UGVs and UAVs may suffer from icing on their wings. On the other 
hand, internal anomalies are likely to be broadly similar across UVS from each of 
the environmental domains even though their nature, frequency and severity are 
likely to be vehicle-specific and/or dependent upon operating conditions (and 
hence indirectly lined to their environments). Examples of internal anomalies 
include the failure of functional components (sensors, navigation/control systems, 
communications, propulsion, energy storage, etc) and the mechanical failure or 
degradation of materials, structures or interfaces. Clearly, in order to be of use a 
HUMS must measure a spectrum of mechanical, electrical, chemical and software-
execution properties over a wide range of temporal and spatial scales and adaptive 
and reinforced learning techniques are particularly useful in determining the 
frequency and location of any sampling regimes. 

Adaptive learning techniques are particularly useful for fault detection and 
diagnosis relative to unanticipated events. There are three primary categories of 
technique: model approximation, supervised learning and adaptation, and 
reinforced learning.55 The regression techniques typically employ the use of 

                                                           
55 These techniques have been used to model complex and non-linear systems such as aircraft 

flight dynamics, space vehicle control systems, jet-engine combustion, and helicopter 
gearboxes [202]. 
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networks of radial basis or other functions to represent complex physical 
processes that are otherwise hard to model. These are then used to generate 
models for hypothesis testing within state estimators. Frequently, these techniques 
are supported by simulation data to provide an initial training set, whereupon they 
are then supported by data collected during field trials and operations.  

The supervised learning techniques use a learning paradigm to select an optimal 
or good action to be implemented given the current state of the system. The 
learning is said to be supervised as the selection of a good action is based on a 
network of coefficients trained through human supervision or simulation. Once the 
system has been trained via this supervision, the system has the ability to generate 
‘good’ actions given an arbitrary system state. Reinforced learning techniques are 
currently immature, but are capable of learning without a priori knowledge of a 
value function; that is, the technique learns the value function and evaluates 
goodness ‘on the fly.’ Reinforcement learning techniques are typically 
computationally intensive and are not usually able to run in real time on PC-based 
architectures. One such technique might learn a model of the vehicle and run it 
‘backwards’ – i.e. take raw sensor data and commands sent to the hardware and 
find the most likely state of the given model that explains the observed 
measurements. However, in practice, the quality and robustness of this technique 
is likely to depend entirely on the accuracy of the model [291]. 

4.4   Multi-vehicle Systems 

While it is relatively easy to build larger UVS that operate long enough and can 
travel far enough to perform useful military functions, these UVS are usually very 
costly to acquire, run and operate. The development process for many of these 
larger military vehicles also parallels that of their manned counterparts, which 
stresses longer life, higher levels of maintainability, multi-role capability and high 
reliability. The resulting systems are therefore more expensive with life-cycle 
costs and logistic complexities approaching those of manned platforms. Moreover, 
the continued drive for cost effectiveness, stand-off weapons delivery, precision 
engagement, the pressure for smaller operator footprints and higher workload 
environments, and the capacity for cooperatives of multiple UVS to accomplish 
tasks that are difficult or impossible for single UVS have all combined to increase 
interest in networks of smaller unmanned vehicles with increased automation.  

As a result, Affordably Expendable56 multi-UVS cooperatives are gaining 
prominence as they can be developed to carry out high value, high risk missions 
that are beyond the capability or justifiability of larger, single-vehicle systems. 
There is, of course, no free lunch. Even though smaller, less expensive, lighter 
systems lend themselves to being placed in harm’s way, and their spatial benefits 
present opportunities not afforded single UVS, they are generally less capable than 

                                                           
56 The concept of affordable expendability relies upon the notion that the useful life of the 

capability is a function of its constituent payloads and technologies rather than the 
physical life of the airframe [267]. 
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their larger, more strategic counterparts, which tend to have longer ranges and 
carry more capable payloads.  

For example, to have a 90% confidence in the classification of a target it is 
generally accepted rule-of-thumb that an image must have 16 pixels across the 
narrowest relevant dimension of the target. Consequently, to (say) recognise facial 
features (1 cm resolution) from a range of 1km requires a camera aperture of about 
10cm. In other words, very small UAVs, which carry small sensors, need to 
approach their targets relatively closely, while larger UAVs are able to stand off 
considerably further and achieve the same end. Since the size of the camera 
aperture is proportional to the range to the target (for the same image resolution), 
to recognise faces from 10km requires a 1m aperture. As a result, if high-
resolution images of significant swathes of the earth’s surface are required, a high-
altitude reconnaissance UAV needs to be relatively large to accommodate the 
necessary camera. Alternatively, a number of much smaller and lower flying 
UAVs must cooperate to achieve the same end – and must fly much lower. Then 
again, another effective operational combination is to have larger, high altitude 
detector/classifier UAVs cross-cue smaller “examiner” UAVs. This combination 
also lends itself to lower resolution imaging radars that can probe clouds, working 
with higher resolution optical imagers that do better at lower altitudes in clearer, 
cloudless atmospheres.  

Furthermore, an equivalent problem to the above EO example exists for the 
acoustic sensors used on UUVs as the smaller UUVs cannot carry the larger, 
longer-range sensors. As with imaging radars, to some extent the physical laws 
limiting acoustic sensor resolution can be overcome by single or multi-vehicle 
Synthetic Aperture Sonar (SAS). Moreover, larger UUVs that cannot approach 
their targets closely enough to overcome the limited transparency of water can 
deploy smaller UUVs that carry optical sensors and can approach their targets 
more closely than their larger counterparts. 

This lack of individual capability may be offset by the increased affordability 
of the multi-vehicle systems, our ability to derive process gain by networking the 
UVS and sensors (potentially achieving multi-aspect SA across the environments) 
and our capacity to withstand losses due to conflict or malfunction. Furthermore, a 
distribution of autonomy throughout multi-UVS cooperatives provides 
redundancy through the system’s ability to re-allocate tasks and objectives, 
thereby increasing the number of objectives that can be met and the overall 
probability of mission success.  

The endurance of a UVS depends upon its stored energy divided by its 
minimum power requirements and energy storage density for any given material is 
fixed. As a result energy storage scales (approximately) according to volume. 
Consequently, the range of a UVS is roughly proportional to the cube of its 
characteristic dimension, limiting our capacity to build arbitrarily small UVS. This 
presents practical problems of getting the (usually) slower and lower altitude 
UAVs to their required locations if they are not launched locally. One attractive 
option in this regard is – when they work with larger UVS – to have the larger 
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ones deploy the smaller (usually expendable) ones, that can then be used for final 
target confirmation.57  

The development of arbitrarily large networks of small UVS, however, is 
constrained by the requirements of internal communications essential for UVS 
coordination and network functionality as these smaller UVS must also contend 
with the inverse square law for omni-directional communications range 
requirements, at least for signal acquisition. A range of other key considerations 
for multi-UVS cooperatives include [108] [151] [174]: 

 

 The number of assets in the cooperative could potentially be large 
 Scalability is desirable as UVS may leave or join the cooperative 
 Humans must be able to set goals for and interact with the UVS 
 The health of the UVS and their sub-systems need to be monitored 
 Each individual UV in a team needs to possess its own complex 

behaviour 
 Each team within the cooperative should possess its own complex 

behaviour 
 Humans can be supervisors as well as controllers of individual UVS or 

their payloads 
 Supervisors and UVS are potentially distributed over a wide geographic 

area 
 The integration may take place within a single environment or across 

them 
 The cooperative should exhibit a highly fluid team-tasking and structure 
 Operations occur in an environment that displays adversarial behaviour 
 Situational awareness events can require a high speed response 
 There may be various supervisors (of varying authority) 
 There is a high probability of losing resources 

 

Unfortunately, most UVS require the full attention of at least one and usually two 
or more skilled operators, and the ratio of personnel-to-vehicle rises to around 4:1 
for even the small tele-operated UGVs when maintenance is taken into account 
[234]. This ratio is significantly higher for larger UVS such as Global Hawk, 
where the ratio is closer to 20:1. Clearly, given that most humans cannot manage 
multiple high-speed cognitive tasks in parallel significant advances in automation 
are needed if multi-UVS cooperatives managed by a small number of humans are 
to become militarily and economically viable. 

To this end, there are a number of variables that must be considered when 
determining effective operator-to-vehicle ratios [108]:  

 
 The spatial and temporal complexity of the environment  
 The cognitive workload, training, experience, etc of the users 
 The level of trust exhibited by the users and the reliability of the UVS 
 The adversarial nature and/or temporal dynamics of any human tasking 

                                                           
57 An example of this concept is the Finder UAV, developed by the Naval Research Laboratory 

which can be deployed from a long-endurance Predator UAV. 
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 The low-level (“navigation and mapping”) capabilities exhibited by the 
UVS  

 The degree of high-level (“task-organisation”) automation exhibited by 
the UVS 

 The capacity of the UVS to dynamically adapt these levels of automation 
 The amount and nature of information passed between the user and the 

UVS 
 The extent to which any decision-making may be distributed and/or 

centralised 
 The capacity of the UVS to autonomously form into or dissolve from 

teams  
 The degree to which the UVS is able to monitor/adapt to its own state 

and health 
 The degree to which the UVS/humans are able to monitor systems 

performance 
 The degree of network and/or processing latency inherent in the system 

 
Multi-UVS research has its origins in the 1980’s and the field is still new enough 
for none of the topic areas to be considered mature, although some areas have 
been explored more extensively than others. Initially, a great deal of the research 
was based on the social characteristics and behaviour-based paradigms of 
biological systems such as ants, bees and birds. This early work demonstrated that 
the use of simple, local control rules allowed robots to mimic the foraging, 
flocking, aggregation and trail-following characteristics of these biological 
systems. Furthermore, the introduction of dynamics into the simulated eco-
systems allowed the multi-UVS teams to demonstrate emergent cooperation 
resulting from selfish interests.  

This work was then extended to incorporate studies in predator-prey systems, 
although much of this work was carried out in simulation and much of it focused 
on the development and evaluation of various pursuit policies. As a consequence, 
adversarial engagement between multi-UVS, such as that found in higher order 
biological systems, tends to have been studied in domains such as robot soccer 
(e.g. [153] [158]) or from the perspective of expected capture times and the 
sensing capabilities of the pursuers [152].  

Much of the early work also tended to focus on using reactive or deliberative 
techniques (see Planning in Dynamic Environments). More recent work has used 
the benefits of each, creating hierarchal systems that engage low-level reactive 
planners under higher-level deliberative ones. Using modern, powerful processors 
these hybrid techniques are now sufficient to provide dynamic planning solutions 
for single UVS, but not for multi-UVS cooperatives. In part this is because many 
techniques “repair” their previous plan by optimising against information 
observed in the vicinity of the UVS location; a condition violated when multiple 
UVS operate in a geographically dispersed formation. 

The challenges for multi-UVS arise predominantly out of determining the 
strategy that maximises overall systems performance, where such strategy 
decisions include whether the control should be explicit or implicit, whether the 
origin of the tasking should be distributed or centralised, the extent of the 
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communication, the complexity and power of heterogeneity versus the relative 
ease of homogeneity, and the nature of the individual motivation (i.e. selfish or 
socialised) [76].  

To achieve task and resource allocation in dynamic, adversarial environments a 
number of researchers have used free market economic theory, auction strategies 
and biological inspiration [116] [45] [84]. Another classical approach is to start by 
building terrain or world maps and then develop and execute the relevant 
strategies in known environments. There are several techniques available for 
building maps, but most of the common ones are based on Bayesian estimation 
and Extended Kalman Filters (e.g. [48]). Unfortunately, even two-dimensional 
map-building processes are time consuming and computationally intensive. 
Furthermore, many techniques assume accurate maps and worst-case motion for 
the adversary, which with noisy observations and inaccurate maps usually leads to 
overly conservative policies for pursuing the adversary.  

As a result, a number of researchers have now applied game theory to the 
problem and combined the map-building and pursuit-evasion policies into a single 
probabilistic framework, some with autonomous (UAV-based) supervisory UVS 
[283]. A number of researchers have also considered active evasion strategies 
based on partially observed Markov decision processes (POMDP’s), usually based 
on vision-based sensors and executed in simulated environments [129]. Others 
have used optic flow to determine the number of moving evaders as well as their 
position and orientation [284]. All of these approaches, however, designate the 
roles of the UVS prior to the commencement of the games as either pursuer or 
evader; they do not provide, for instance, the evader with the policy option of 
countering their pursuers by becoming the hunter. 

Game theory appears to provide this option, with another attraction being its 
capacity to model a multi-UVS task (such as search, surveillance and target 
tracking in an adversarial environment) within a framework that provides the 
flexibility to use different solutions or role-playing concepts: one based on the 
cooperative behaviour of the participants and another based on non-cooperation. 
Application of these concepts in the field of economics has accounted for the lack 
of altruism shown by participants, which has resulted in untenable cooperative 
frameworks – unless cooperation is enforced by a third entity. Additionally, as 
[263] has shown the non-cooperative Nash strategies perform better than the 
cooperative ones in the presence of noisy sensors, unreliable UVS or faulty 
communications. This is because the uncertainty maps derived from the 
contributions of each cooperating UVS changes with time in a manner unknown to 
the other agents. In such situations the cooperative decision-making breaks down. 

Many of the multi-UVS coordination issues such as task allocation, path and 
trajectory planning, formation optimisation and pursuit-evasion strategies are now 
becoming well understood, although demonstration of them using real UVS in 
outdoor and unstructured environments (i.e. as opposed to simulation) has been 
rather rare. More recent research has focused on motion coordination within the 
context of behaviour coordination such as target search and feature-tracking 
behaviours. As a result, research into path planning and control, multi-UVS 
task/resource allocation, behaviour coordination and communications has become 
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coupled. This is largely because the structure of the multi-UVS cooperative 
changes with time and the properties of the cooperative change with structure. 
That is, the position of a UVS within its cooperative’s structure and relative to its 
goals determines its projected sensing options, prospects for information gain, and 
capacity to (say) accurately explore, map and locate key features in its 
environment; just as its inherent capabilities, sensing options, scheduling of 
payloads, and so on impact the potential UVS trajectories, behaviours, feature 
tracking accuracy, communications strategies, etc.  

Recently several have researchers attempted to address these coupled tasks as a 
single technique (e.g. [197]), whereas previously the problems of and approaches 
to communications and sensor scheduling, feature tracking and trajectory control 
were largely de-coupled and addressed using independent algorithms and 
strategies and then combined using some form of executive controller or 
architecture. More recent work attempts to manipulate the sensing process in order 
to maximise the information gain and feature location estimation, without using 
any a priori information. When the sensors are passive, this introduces a number 
of aspects that are not under sensor control (i.e. when precisely observations are 
made and what the observations are of), both of which have an impact on the 
development of longer-term scheduling strategies for the sensors and UVS. 

Multi-UVS behaviour is often instantiated through the coordinated grouping of 
individual UVS into teams, the members of which take (or are instructed to take) a 
decision to commit to a particular task but who receive common reward for task 
achievement as a result of team decisions. The team members receive information 
about their environment and progress towards their task through observations and 
communications with each other, whereupon they take decisions based on their 
respective information. Teams can be self-organising or commanded through a 
centralised authority (and hybrid schemes exist also). In the case where the teams 
are self-organising, information may be explicitly or implicitly shared, where 
explicit communications is the specific act of conveying information from one 
UVS to another and implicit communications is the synchronism of UVS action 
through shared understanding.58  

4.4.1   Multi-UAV ISTAR Example 

For context, let us consider the case of a multi-UAV cooperative tasked with 
surveying a potentially hostile region of interest59. There are clearly a range of 
platform, mobility, propulsion, and energy issues that need to be addressed for 
such a system. As with the rest of this text, these are not dealt with here, except to 
note that the shortcomings and vulnerabilities of larger, slow-moving UAVs in 
this context are well known and have been described elsewhere (e.g. [102]). The 
cooperative must undertake a number of tasks: 

 

                                                           
58 A classic example of implicit communications is lions stalking their prey. They do not 

communicate yet still synchronise their actions on the basis of their perception of the 
environment and a knowledge of the other lion’s location, actions, etc. 

59 The example may be easily translated into a UUV, USV or UGV context. 
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 Based on a priori information about (say) target distribution and mission 
priorities allocated by a commander, the mission planning software must 
generate a series of near-optimal trajectories for each of the UAV to 
follow such that they visit as many regions of opportunity and interest as 
possible, while simultaneously avoiding as many hazards as possible.  

 The optimisation of these trajectories must be based on (potentially time-
varying) cost functions that allow for such things as: the distribution of 
payloads within the cooperative; the prioritisation of targets; the 
robustness of the proposed solution to operational and environmental 
uncertainties; the individual capabilities of the participating platforms; 
the benefits that derive from the association of the UAVs into teams; the 
communications and sensor scheduling requirements between the 
platforms to enable this cooperation, ‘no-go’ and ‘difficult-to-go’ zones 
and any UAV deconfliction requirements. 

 Once underway, based on a change in the environment observed by one 
or more sensors onboard each UAV, the system must respond by 
dynamically re-calculating trajectories, re-allocating task/team 
associations and enabling payload and/or platform actions (within the 
constraints outlined above) based on the manipulation and fusion of the 
new data. 

 Similarly, based on a change in the environment provoked by one or 
more of the UAV payloads or actions (e.g. jamming, UAVs joining the 
group), the system must dynamically re-calculate their trajectories, 
associations, etc. 

 Based on a change in an operator’s priorities or task objectives the 
system must respond by dynamically re-calculating their trajectories, 
associations, etc. 

 Finally, all of the computational processing and communication must be 
achieved within the physical and electrical resources of the UAV and in 
real time. 

 
In the mission-planning phases multi-UAV operations require multiple aircraft to be 
designated pre-defined flight paths, regardless of whether or not the UAVs have the 
ability to cooperate with one another. Irrespective of whether these pre-defined 
flight paths are generated using a route-planning algorithm or manually by an 
operator, the resultant trajectories must conform to acceptable levels of airspace 
deconfliction in terms of the temporal and spatial separation between the aircraft. 60 

If the UAVs are networked and can coordinate their efforts then after the 
mission plan is uploaded one or more of them may dynamically and continuously 

                                                           
60 Trajectory deconfliction and collision avoidance for multiple UAVs within a single 

environment implies similar route re-planning requirements separated mainly by their 
time scales Deconfliction is a medium-long range task that attempts to avoid a collision 
while still allowing the UVS to remain within some predetermined navigation corridor, 
maintain time-on-target, conserve fuel, etc. Collision avoidance is a last minute, 
emergency manoeuvre aimed solely at preventing vehicle loss or damage – and does not 
take mission completion into account [268]. 
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adapt their flight paths (e.g. in response to a target detection) to increase the 
effectiveness of their overall search strategy and/or capacity to prosecute the 
targets. Consequently, even if only one UAV needs to deviate from its pre-planned 
trajectory (autonomously or under the control of an operator), the rest of the 
cooperative must also have the capacity to dynamically adapt their trajectories 
safely. Additionally, constraints must also be placed upon the degree to which the 
manoeuvring UAVs are allowed to adapt their trajectories (for instance to fly 
within safe performance envelopes). 

The deconfliction algorithms must also be able to accommodate ‘blunders’, 
where one vehicle in a cooperative deviates from its intended path for unforeseen 
reasons. In this case, other UAVs must then manoeuvre to avoid collision and 
maintain adequate separation. Generalised solutions to coordinated airspace 
deconfliction control and assignment problems for UAVs are non-trivial, 
particularly when there are cooperation constraints imposed (e.g. communications 
ranges and schedules, minimum or maximum airspeed velocities, collision 
avoidance, sensor field of view, scheduling, etc). Moreover, these generalised 
solutions do not usually lend themselves to an extension of simple two-UAV 
control and assignment problems [156]. Regardless, the environment must be 
monitored and the appropriate state information collected and disseminated within 
the cooperative so that an estimate of the current situation (i.e. UAV position, 
velocity, and altitude) can be provided to evaluate the likelihood of conflict and 
guarantee a period of conflict-free trajectory for each UAV while it carries out its 
higher order tasks.  

Based on a priori knowledge an operator must also designate the location, 
dimensions, and orientation of an area of interest and whether or not it is known to 
contain objects of interest, targets, no-fly zones, communications dead-spots, areas 
of threat and/or terrain obscuration, etc. Thereafter, based on the payload 
configuration, target locations, priorities, etc flight trajectories for each UAV 
involved in the mission must be calculated such that (say) the probability of 
detecting the targets is maximised. Ideally, given an area of interest, an automatic 
route planning algorithm will calculate search patterns for the group (e.g. using 
probability maps divided into discrete cells [48]) optimised under constraints such 
as: maximise the probability of detection; minimise the time to detection, 
minimise the number of UAVs required; maximise the robustness of the search to 
aircraft loss; minimise the amount of network traffic required; and/or coordinate 
the timing of specific UAVs activities.  

There are several techniques designed to search spaces for optimum solutions 
under multiple constraints. Broadly, the techniques fall into two distinct classes: 
algorithms that only evaluate complete solutions and algorithms that evaluate 
partial or approximate solutions. However, most traditional approaches suffer 
from either being too time consuming or getting trapped in local minima. This is 
primarily an issue for the dynamically unfolding component of the UAV 
cooperative’s task as during the pre-mission planning phase, centralised and 
potentially even computationally intensive team-based coordination and decision-
making techniques can be employed. To this end, the required temporal and 
spatial allocation of payloads, tasks, and communications resources can be 
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computed and iterated using centralised optimisation techniques and hierarchal 
command structures (e.g. exhaustive search, local search, greedy algorithms, 
branch & bound, divide & conquer, taboo search, simulated annealing, A* 
algorithm, evolutionary algorithms, etc) [188]. 

As the mission data must also be conveyed to rear command echelons these 
optimisation algorithms can also be run continuously as a means of (latently) 
evaluating the progress of the UAV cooperative against the specified mission 
criteria. There is, of course, a danger that these algorithms will provide false 
insight into the UAV cooperative’s progress as the data observed by the UAVs in 
real time may only be shared locally (in real time) and a sanitised or processed 
version passed to the rear echelons. 

Once the UAVs have commenced moving along their pre-planned trajectories, 
they must then autonomously and dynamically respond to the detection of targets 
and threats that might ‘pop up’. These responses may be stimulated by either their 
own onboard sensors or those onboard other UAV within the cooperative. 
Alternatively, the UAV may need to respond to a change in priority imposed 
externally by the supervisors. In order to do this, each UAV must have goals and 
priorities assigned, which in turn requires a set of metrics that enables them 
(individually and collectively) to evaluate situations and events. These metrics 
enable the executive controllers to autonomously choose between competing 
goals, to assign resources to the task, and generate priorities that maximise pay-off 
and minimise cost. Ideally, both predicted and observed situations are evaluated so 
that resources can be allocated ahead of time and ‘stand-offs’ and conflicts can be 
avoided.  

One of the main concerns for the distributed instantiation of dynamic control is 
that the controllers can potentially implement different strategies for the same goal 
(based on different perceptions observed by UAVs in different environments). 
Another is that in a large cooperative, the controllers may implement multiple 
copies of the same plan [242]. The latter is usually due to an inability in large 
cooperatives to share all the information observed by each of the members of the 
UAV cooperative. However, strategies for identifying these duplicate plans within 
the network and then pruning them exist [166].  

In addition to the UAV responding dynamically (as individuals or collectively) 
within the wider cooperative to sensed opportunities and threats, in order to 
maximise the system’s effectiveness, the cooperative may also need the capacity 
to form teams. The motivation for team-formation (or more accurately temporal-
spatial task assignment) is to improve the probability of attaining specific goals – 
i.e. the detection or geolocation of an emitter or the capacity of another team 
member to carry out their intended function more easily. In order to keep the 
supervisory workload to a minimum, however, the team formation needs to be 
self-organising, such that the formation of a team is the result of forces acting 
within the cooperative and between the member UVS, as opposed to being 
imposed externally by an operator. Two other attractive properties of self-
organisation are that any formation can potentially perform self-repair and that it 
can respond appropriately when unusual events occur.  
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The fundamentals of team formation require decisions on which UAVs are 
associated with one another and which teams are allocated to which targets or 
missions. These team-level goals must then be mapped to individual UAV roles – 
and there may be more than one role for each UAV within each team. Moreover, 
as the processing capabilities of humans are limited, particularly in time critical 
environments, the instantiation of the teaming architectures may need to be 
adaptive to accommodate variations in the levels of automation. Finally, mission 
completion criteria must also be established.  

4.4.2   Multi-UVS Coordination 

At present, the algorithms that successfully support teaming activities are well 
suited to tasks such as search, locate, track, identify, and engage targets because 
these tasks are quantifiable in terms variables that can be maintained within 
certain bounds. The challenge is to adapt these team controllers – that are 
themselves often the superposition of multiple controllers – to variations in noise, 
dynamics that are inadequately modelled and incomplete or uncertain sensor 
feedback in order to minimise the deviation of the specified variables from some 
predicted trajectory or end-state [9].  

Additionally, given the number, variety and speed with which UVS are 
currently being introduced into capability around the world there is a need to 
extend our experimentally-derived understanding of operator-to-UVS control 
capacity to a more generalised theory or model. This will allow predictive 
modelling to take place within the relevant capability context and suitable 
architectures to be developed. However, if possible, we must attempt to do this by 
following the example of [76], [215] and [216] rather than just through the 
expensive and time-consuming use of technology-force insertion or human-in-the-
loop simulation-based experiments. That is, we must ensure that the predictive 
modelling and the observations match, not just in relation to decision speeds 
(which is a common metric currently used), but also in regard to decision quality. 

Most theoretical techniques for predicting cooperative behaviour depend on the 
expected time that a UVS may be ignored (know as Neglect Time) [73] before its 
performance drops below some acceptable threshold and the average time it takes 
to for a human to interact with the UVS to ensure it is still working towards its 
mission goals (commonly know as Interaction Time). Nevertheless, as the 
automation is not entirely reliable and failures do not occur at discrete, neatly 
designed intervals we must also account for the impact of the human decision-
making process on the overall system performance. In other words, as most 
humans can only process cognitive tasks serially we must also allow for the time it 
takes for the operators to appraise the general situation (i.e. to notice that there is a 
problem within the cooperative) and the time it takes for them to gain situational 
awareness by focusing their attention exclusively on the errant UVS to discern its 
specific problems. We must also account for any time spent on distractions 
generated by other incoming problems or cognitive demands. 
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For example, using techniques developed by [76] we can then model the 
latency of human interaction arising from the overlapping arrival of UVS-related 
problems using queuing theory and – assuming the human is a single-server 
network – determine capacity predictions for human-UVS interactions. We may 
also extend these techniques by applying optimisation strategies that allow multi-
constraint optimisation (e.g. evolutionary algorithms) and then use the outcomes 
of these computations to determine mission and cost-capability trade-offs between 
the larger, more sophisticated, platform-centric UVS options and the smaller, 
cheaper, distributed, network centric ones. 

A current limitation with the predictive modelling techniques is their reliance 
upon assumptions or estimates regarding the interaction, neglect and waiting 
times. There appears to be very little experimentally observed data as it is difficult 
to measure and interpret. In this regard technologies that measure the psycho-
physiologic relationships may be of use, but the techniques need further 
development and significantly more investigation is required [74]. 

One of key elements in realising the goal of multi-UVS coordination is the 
capacity of the cooperative to coordinate the actions of the different UVS that 
carry a heterogeneous mix of payloads; and a significant impediment here is that 
many existing multi-robot coordination algorithms elicit emergent behaviour such 
that the individual robots follow simple coordination rules rather than complex 
teamwork models or goals [211]. These techniques then break down because the 
UVS cannot explain their actions or role to other members of their team or the 
humans.  

The need for the warfighter to be retained within the decision-making cycle 
means that in addition to the integration of the sensors and platforms, the 
information must also be combined, suitably manipulated, and passed to a rear 
echelon, where it is further integrated with applications that are of service to the 
user, such as geospatial information, track data and imagery, and visualisation and 
document management tools. This fused, value-added product must then be 
disseminated to users in near real time to allow the monitoring and redirection of 
the UAV cooperative, as appropriate.  

In addition to this, there is also a need for multiple levels of feedback control 
[294], which in turn depend upon the capacity of individuals and the cooperative 
to measure and prioritise their performance and actions against a number of 
metrics (which need to be adequately defined in the first place), and their ability to 
communicate (in a meaningful fashion) the success of these endeavours, both 
internally within the group and externally to human operators, who may be 
geographically removed from their location and/or of a different command 
echelon.  

In other words, a critical supervisory element for an autonomous cooperative of 
UVS is the feedback mechanism that allows the human operators to understand 
what, how, and why the system behaves like it does. Furthermore, research 
indicates that when human decision-makers are put in the position of passively 
receiving interpretations generated by data fusion and hypothesis generation aid 
machines they are less able to recognise emergent problems [154]. Consequently, 
there is a need to represent a range of levels and types of feedback control, which 
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in turn depend upon the capacity of individuals and the UVS (or their 
cooperatives) to measure and prioritise their performance and actions against a 
number of metrics and their ability to communicate the success of these 
endeavours, both internally within any UVS groupings or externally to humans.  

In addition to the more easily identified end results, the quality of the system 
and the team processes (i.e. the performance of the UVS, their constituent 
components, and the human interactions with them) needs to be taken into 
account. In this regard, [138] has used metrics such as efficiency (the percentage 
of a task completed vs. the amount of resources required), stability (the variability 
between plans and the degree to which different operators respond to similar 
plans), the degree of user engagement, the level at which the user delegates 
control to the automation, the extent to which a user’s mental model of the system 
predicts the effect of adjusting the weight of a particular control loop, and 
comparative performance (how well does the fully automated system work against 
the human-automated system).  

Before leaving multi-UVS coordination, we return briefly to the concepts of 
mission complexity and scale (introduced earlier in the section on Human Systems 
Integration).61 Multi-scale Complex Systems Analysis (MCSA) [34] makes use of 
mission complexity profiles to specify the dependence of UVS mission 
complexity on the scale of action required. In other words, MCSA links the 
variety of possible ways in which multiple UVS (or their sub-systems) can act to 
the number of ways and the level of scale that a particular mission can be 
addressed. Thus, success of the UVS cooperative requires sufficient complexity at 
each required scale of action. In this regard, while high complexity in and of itself 
does not guarantee success, even well-designed UVS or their cooperatives will 
likely fail if they are insufficiently complex.  

This has implications for the command and control (C2) structures for multi-
vehicle cooperatives of UVS as it highlights the potential limitations of certain C2 
structures. For example, as [35] [36] point out if we assume that each individual 
has finite complexity62, in an idealised hierarchy only the leader can organise and 
coordinate the entire cooperative. As a result, the coordination between these UVS 
is limited by the overall complexity of the leader, which in turn means that 
organisational behaviours of the cooperative are limited by the complexity of an 
individual UVS. Since coordinated behaviours are relatively large scale 
behaviours, this implies that there is a limit to the complexity of larger scale 
behaviours of the cooperative, which means that hierarchal C2 is effective at 
amplifying the scale of behaviour, but not its complexity [34].  

By contrast, a distributed or networked C2 arrangement can have greater 
complexity than that of an individual element; although it should be noted that while 
such a network is not guaranteed to have greater complexity than its individual 

                                                           
61 Mission complexity is the ratio of the number of incorrect ways to perform a task relative 

to the number of correct ways to tackle it, where the more likely the wrong choice the 
higher the mission complexity. The scale of a task is the number of actions that need to 
be undertaken for successful completion. 

62 For example, in terms of their processing loads or capacity to communicate over fixed 
bandwidths. 
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components, it is possible for this complexity to exist. For high complexity tasks, 
therefore, we are likely to consider hierarchal C2 systems inadequate and will look 
towards more distributed structures. The recent tendency of military organisations 
towards more network centric operations and organisational structures and the 
evolution of massively parallel computing architectures also suggests recognition of 
the limitations of the hierarchal control structures. It should be recognised, however, 
that while distributed command and control is often discussed as a panacea for 
problems of hierarchal control, it does not actually correspond to a specific control 
structure. As a result, distributing control in and of itself does not lead to effective 
systems or the solution of identified problems: it is the instantiation of specific 
distributed architectures that are effective in addressing particular problems that 
provide functional advantage.  

4.4.3   Autonomous Multi-UVS Task Allocation 

Task allocation is the problem of committing finite resources to a number of 
coherent tasks based on the comparison and selection among a set of available 
alternatives. For military UVS cooperatives this must be attempted within 
dynamically changing and real-world constraints such as finite time or where the 
achievement of one task is a pre-condition for being able to undertake another. 
The tasking commitments may be temporal, spectral, or spatial in nature and while 
many constraints are usually understood a priori, the situational awareness of the 
environment at any instant or from any given perspective may only be partial or 
conflicted.  

In the context of multi-UVS cooperatives, the task allocation process attempts 
to address the fundamental question, “Which UVS-payload combination should 
execute which task when (and possibly how) in order for the cooperative to 
achieve its global goal?” Fortunately, this problem is also central to problems in 
economics, biology (e.g. the division of labour in insect colonies), network 
allocation strategies, and multi-processor scheduling design. As a result we may 
take comfort from the number, quality and variety of researchers in the field. 
Moreover, economics, game theory and operations research all use the concept of 
‘utility’ (also referred to as fitness, valuation or cost), which is based on the notion 
that each individual can estimate the value (or cost) of executing some action. 
Depending on the context, however, the utility may vary from simple directly-
observable metrics to sophisticated planning techniques. The only constraint on 
such measures seems to be that they must each produce a single scalar value that 
can be ordered for the purpose of sequencing the candidate tasks.  

For instance, in our multi-UAV case above, we might assume that each UAV is 
capable of estimating both the accuracy with which its payload is able to geolocate 
the targets and a resource cost (i.e. time of flight or the number of UAVs lost to 
enemy action). We may then combine these measures using an appropriate 
function. Regardless of the method of calculation, it is important to try to include 
all aspects of agent and payload state and their environment relevant to the utility 
function. Even so, the utility estimates will be inexact due to sensor noise, 
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trajectory and target uncertainty, environmental change, etc, all of which limit the 
efficiency with which coordination can be achieved.  

Many formal command and control models still tend to target medium to large 
scale systems composed of simple, homogeneous vehicles for use in relatively 
structured environments. Consequently, though simple and elegant, these models 
are insufficient for complex military tasks that require precise control. For 
instance, in our multi-UAV scenario, the UAVs will likely need to carry a 
heterogeneous mix of EW payloads; broadband ones to characterise the 
electromagnetic environment and cross-cue narrower band ones that are better 
able to provide high resolution spectral observations. The UAVs will also likely 
locate and track their targets using a number of different techniques, each 
requiring different observations (e.g. for geolocation of radar targets scan-ranging, 
triangulation through line-of-bearing, time difference of arrival, etc); they might 
also have different, but over-lapping, spectral views of the environment, different 
threshold sensitivities and so on. Similarly, if an enemy radar were to ‘light up’ 
unexpectedly and is identified as a missile control radar (a high priority threat) 
decisions must now be made about which UAVs or payloads must be tasked to 
work together to locate the radar as quickly as possible, but still taking into 
account their original tasking and objectives. What sensor scheduling strategies 
they should employ and what trajectories they should navigate (taking account of 
required accuracy, time on target, airspace deconfliction, no fly zones, etc) must 
also be accommodated.  

If the UAVs have the capacity to communicate then they can inform each other 
about the value that they each place on the task (relative to any cost they may 
incur) and thereby reach a consensus with one another about who is best placed to 
carry out the task. It is then a matter of allocating the mission and trajectory 
deviations accordingly. However, in certain situations it may be prohibitive or 
impossible for the UAVs to explicitly communicate their task evaluations with 
one another. Also complicating the situation is that a lack of situational awareness 
may result in the UAVs not knowing what tasks they are likely to confront in the 
future. For instance, the closest UAVs may have been autonomously tasked to 
locate the missile control radar only to find that another, even higher priority radar 
then lights up that matches the specific spectral characteristics of their payloads 
requiring them to ‘drop’ their mission control radar task. Other UAVs, now ill-
placed relative to their initial potential, must now take up the task of locating it.  

Ideally we will be able to treat task allocation as a problem in optimisation. 
However, we must first decide what exactly is to be optimised. Preferably this will 
be ‘system’ performance but this quantity can be difficult to define and measure at 
any time, let alone during the execution of a mission, particularly if we include 
humans in the system. Moreover, as outlined in a previous section, when we select 
between alternatives the impact of each option on system performance is not 
usually known. Consequently, some kind of unifying performance estimate is 
required. 

Clearly, the task allocation procedure must be adaptive, but under what 
conditions should a UAV take tasks when the opportunity arises and when should 
it ignore opportunities because experience has shown that a more appropriate 
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opportunity is likely to arise in the future? Does this affect the number or nature of 
UAVs required to undertake the task? Or should we use more intelligent task 
allocation processes to distribute ‘commitments’ to each UAV and their payloads 
within the cooperative. Finally, how much of this task allocation process should be 
handled by humans and how closely should it be integrated with higher level 
military command and control functions?  

A comprehensive review of task allocation procedures is beyond the scope of 
this text. Nevertheless, three key issues include: protocols, strategies and 
algorithms. At a protocol level we need to understand what type of transactions 
are possible and devise our message structures, communications scheduling and 
strategies accordingly. When designing the individual UVS we need to devise 
strategies that best exploit these protocols. This can include the provision of 
feedback to users or internally to the UVS cooperative in such a way as to provide 
incentives to the task allocation process to adopt a preferred profile of behaviour. 
At an algorithmic level, this means actually solving the computational problems 
faced by real UVS. In other words, algorithms that recognise that solutions are 
infeasible and call for simplifications of the task allocation strategies because a 
particular computational problem is too hard to solve within a finite amount of 
time. We also need to understand what commitments are to be distributed; how 
these are to be allocated (temporally and spatially); what procedure or mechanism 
should be used to distribute them; and, what the objectives are behind the 
distribution/allocation. 

Task allocation between multi-UVS cooperatives fall into one of two categories 
(three if we include hybrid cases): centralised or distributed. Centralised task 
allocation systems tend to be hierarchal in nature with computational loads that 
tend to be very high and that usually increase with team size: a single entity 
allocates the tasking commitments, possibly after negotiating over preferences 
with the UVS (the central entity often acting as an ‘auctioneer’ in a form of 
bidding, e.g. [45]). The biggest arguments against using centralised techniques are 
the potential for single-point failure, the necessary centralised computational 
capability for large numbers of UVS, and the difficulty of (dynamically) assigning 
the master-UVS. 

Fully decentralised systems have their computational loads spread across a 
number of geographically dispersed UVS, and tend to be communications-based. 
In these systems, tasking commitments tend to emerge as the result of locally 
negotiated steps, which are often restricted by bi-lateral communication (although 
systems that allow multi-lateral exchanges have been developed). Such systems 
also often suffer from a parochial view of their environment and tend not to be 
amenable to analysis so their precise behaviour is difficult, if not impossible, to 
predict.  

 

Resources: A central parameter in multi-UVS task allocation is the nature of the 
resources themselves: some are perishable (e.g. fuel, bombs, etc) while others are 
static (e.g. payloads). Of the perishable resources, some are continuous63 (fuel) 
while others discrete (bombs). This often influences how the resource can be 

                                                           
63 The allocation of continuous resources has been studied in depth in classical economics. 
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traded. We should also distinguish between different types of resource. For 
instance, they may or may not be divisible (network access) or indivisible 
(payloads); consumable (fuel) or perishable resources (time); and, resources that 
do not change their properties over time are usually referred to as static. Finally, 
some resources are better understood as part of the allocation process as whether 
they are sharable typically depends upon the tasking procedure rather than on the 
characteristics of the item itself (e.g. sensor scheduling). 
 

Priorities: Another key parameter in the task allocation process is the 
prioritisation of objectives, both in terms of how they are determined and then 
how they are represented and communicated between the UVS. Essentially, 
priorities express the relative or absolute concerns or precedence of an individual 
or group of UVS when confronted with a choice between alternatives. They are 
often closely tied to the context and hence the level of automation proscribed to 
the UVS. However, we need to understand how the priorities and objectives are 
determined and what techniques are suitable for coding and representing these 
priorities in terms of their expressive power, succinctness and suitability to task.  

There are several options for representing and mathematically modelling 
priorities: evaluation functions comprising an ordered scale of quantitative (or 
qualitative) values; an ordinal relationship between alternatives (X is preferred 
over Y for X<Y but not if X>Y); a binary set of good and bad states (i.e. 
reductionist ordinal representation); and, fuzzy expressions that articulate the 
degree to which X is preferred over Y. The second option allows comparison of 
the satisfaction between alternatives but does not express priority intensity. Nor 
does it allow intra-UVS comparison of priorities. Qualitative measures allow a 
weak form of intensity to be expressed, but are difficult for UVS to interpret 
autonomously. On the other hand, the set of alternatives for the first and last 
options is a possible value of a given set of variables. In these cases the 
alternatives are huge and it is not sensible to expect the humans or the UVS to be 
capable of ascribing priorities against such a set. For this reason, there is a need to 
develop strategies, protocols and languages that allow compact representation of 
priorities and preferences. 

Other key issues pertinent to complex task allocation include [174]: 
 

 Synchronisation: Which tasks require intentional (as opposed to 
emergent) cooperation? What are suitable measures of cooperative 
behaviour to assess the quality of a task allocation within a given 
context?  

 Complexity: What is the overall complexity of finding feasible and 
optimal solutions? How much of this process can be solved locally by 
each UVS and how much information needs to be exchanged between the 
UVS to achieve this? 

 Negotiation: For multi-UVS cooperatives that rely upon distributed 
processing, what are the appropriate negotiation protocols and what are 
the most suitable strategies for employing these protocols? For those that 
rely upon centralised techniques, how can we devise efficient algorithms 
to support complex negotiation strategies? 
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 Accuracy: How do we devise negotiation strategies that force the UVS 
to report their priorities truthfully, both to reduce global complexity and 
to enable a correct assessment of cooperative synchronisation? 

 Implementation: What are the best practices for rapid prototype 
development for specific applications? What constraints does the real 
world impose on theoretical models and how do different coordination 
strategies perform in practice? What is the practical impact of allocating 
infeasible task commitments and how computationally intensive are 
theoretically intractable results? 

 

Regardless of the task allocation policy, however, most multi-UVS research has 
focused on the construction, demonstration and validation of working systems 
rather than the more general analysis of problems and solutions. As a consequence 
there are now a large number of architectures, many tested in working systems or 
in simulation, but the field still lacks a theoretical foundation that can explain or 
predict coordinated multi-UVS behaviour. In this regard, [116] developed a 
taxonomy for robot task allocation: 

 

 Single-payload UVS (i.e. capable of executing only one task at a 
time) vs. multi-payload UVS (capable of executing multiple 
tasks simultaneously, but from a single location) 

 Single UVS tasks (i.e. each task requires exactly one UVS to 
achieve them) vs. multi-UVS tasks (i.e. tasks require more than 
one UVS to achieve them) 

 Instantaneous task assignment (i.e. the available information on 
UVS, tasks and the environment permits only instantaneous task 
allocation, with no planning for future allocations) vs. time-
extended assignment (i.e. more information or predictive models 
of what tasks may be expected to arrive in the future are available) 

 

This taxonomy allows more formal studies to be conducted as it characterises a 
range of multi-robot task allocation problems, providing the possibility of provably 
optimal solutions for the simpler cases and insight into the more complex cases.  

One final point regarding multi-UVS task allocation, the current approach to 
command and control is largely human and platform-centric. As a result, the 
scale and nature of interactions between warfighting entities has historically 
precluded an autonomous coordinated response to threats – except that 
instantiated through human-to-human interaction. This is particularly true for 
smaller defence forces, although the network-centric paradigm is changing this. 
In contrast, in an autonomous, multi-vehicle UVS environment, where each 
platform is potentially presented with an abundance of information derived from 
a range of external sensors, the assets must interpret, purify and apply this 
information in a manner that prevents rapid error propagation before allowing 
self-synchronisation of any response. Furthermore, this non-trivial undertaking 
must be achieved within a framework of finite resources so that the systems may 
autonomously coordinate their response options. It is reasonable to assume that 
the early instantiations of such enterprises may have a capability edge in data 
processing, fusion and even operational tempo, but they may not equate to the 
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levels of ingenuity, unpredictability and sophistication enjoyed by human-to-
human command and control structures used by adversaries. As a result, such 
systems may have vulnerabilities that are exploitable.  

4.4.4   Multi-UVS Navigation, Localisation and Mapping 

For UAVs, with the exception of taking-off, landing and manoeuvring on the 
ground, navigation is usually relatively straightforward, albeit subject to the 
requirements of ‘see-and-avoid64’. On the other hand, the navigation environments 
of military UGVs, USVs and even UUVs are usually unstructured and therefore 
much more complex and cluttered. Additionally, although many civilian UVS can 
theoretically navigate using EO sensors, battlespace environments can be expected 
to be opaque to such modalities (at least part of the time). As a result, all-source 
navigation estimators [11] that fuse multiple sensing modalities and, on the basis 
of those estimates, select sensing and navigation options that optimise information 
gain and UVS mission goals will be required. 

The basic navigation challenge is to determine the location and orientation 
estimates of the UVS relative to an unknown number of environmental features 
(usually without an initial estimate of either), the location estimates of these 
features relative to the UVS, and the observed variation of these features relative 
to aspect, occlusion, UVS motion, time, etc. As a result, translating sensor data 
into maps for the purposes of navigation and mission-execution is an absolute 
requirement of a persistently autonomous UVS. Furthermore, as it is an integral 
component of the UVS control system, any errors in the world map reduce the 
reliability and safe-operation of the UVS and hence its potential utility.  

There exists a large body of work that addresses these problems as they pertain 
to both single and multi-UVS navigation. One of the most successful techniques is 
Simultaneous Location & Mapping (SLAM) [166], which concurrently builds 
feature-based maps of UVS environments and obtains estimates of UVS location. 
These have been extended using machine-learning techniques for multi-agent 
systems, hybrid algorithms for multi-UVS control, multi-UVS localisation and 
map-building, and distributed sensor fusion [90] [238] [260] [266] [271].  

                                                           
64 There is a general need for UAVs to fly in civilian, uncontrolled airspace. In order to 

achieve this, they will need to meet the requirements for visual flight rules at an 
equivalent or higher level of safety comparable to the ‘see-and-avoid’ or ‘detect, see-
and-avoid’ requirements for manned aircraft (see Legal Issues). Detect, see-and-avoid is 
the process of trying to detect obstacles in the path of a UAV, determining whether or 
not they pose a threat, and, if necessary, taking measures to avoid them. There are a 
range of technologies (e.g. TCAS, ADS-B) that partially satisfy these requirements, but 
they only aid in avoiding cooperative aircraft. Other technologies (e.g. radar) are likely 
to be of use due to their all weather capabilities, but the weight, size cost and power of 
the equipment mean that they are unlikely to be considered practical solutions for small-
medium UAVs. Such a system has two basic requirements: an ability to detect objects 
early enough to avoid them and an extremely low false alarm rate. It is also probably a 
requirement that the system function at a level superior to that considered acceptable for 
a human being as we have a tendency to accept ‘human error’ as a reason for failure, but 
expect autonomous systems to have a much lower failure rate. 
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More recently, techniques have been developed that are truly distributed and 
some of these techniques now take advantage of the properties of the distributed 
cooperative to achieve mapping accuracies unachievable with single UVS [261]. 
The majority of the work, however, operates predominantly in two-dimensional 
environments and relies upon environmental perception based on EO and 
LADAR. Regardless of the implementation, however, for multi-UVS navigation 
there are two broad classes of algorithm (or three if hybrids are included): one in 
which every control input and observation is passed between the UVS within the 
cooperative, and another where all the information is sent to a central node or 
‘mothership’ running a single filter that estimates all the vehicle and feature 
locations [221].  

The first of these techniques places significant bandwidth and scheduling 
requirements on the system and individual vehicles, while the second requires the 
central node to be aware of its own parameters (i.e. speed, orientation and 
position), as well as those of its subordinate units. As the structure of the SLAM 
navigation problem is characterised by monotonically increasing correlations 
between landmark estimates [91] and decoupling the state space is non-trivial, this 
places considerable computational load on the central node as the full covariance 
matrix must typically be updated with each prediction and observation of each 
UVS. Nevertheless, even though the mothership philosophy suffers from a 
systems level vulnerability of having one node that can be targeted as a single-
point of failure, computationally effective algorithms capable of processing 
several thousand features in real time on high-end PC hardware have been 
developed [275].  

A better approach is for the individual vehicles to build independent maps of 
their environment and for these maps to be fused together to form an aggregate, 
global map [291]. In a patch-work fashion, each vehicle can then add the current 
estimate of its local environment. The map data must then be correctly associated, 
both map-to-map for individual and between vehicles. This is usually relatively 
straightforward, even if a UVS joins the cooperative [292] as long as the location 
of the UVS is known either in global coordinates or relative to the other UVS. 
Under these circumstances, any new maps can simply be correlated to the global 
map. Furthermore, even if the location of the UVS joining the cooperative is 
unknown, the process is still tractable by building a map of the local environment 
and using this information to determine the relationship between the global map 
and the new local map [30]. It is also possible for the UVS to build maps that 
include feature estimates of the other UVS in their state estimators if the UVS are 
in the appropriate sensor’s field of view. Once the correspondence has been 
established, the relative position between the reference frames may then be 
estimated. These techniques are also robust to communications that suffer from 
latencies or outages. 

It should be noted, however, that all measurements have uncertainties so the 
location of the UVS and targets are only estimated as probability density functions 
pertinent to the regions where they are expected to be. As a result, single and 
multi-UVS mapping and localisation techniques tend to rely on the recursive use 
of distinctive environmental features or landmarks that, when revisited, aid the 
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UVS localisation process. This in turn also helps to keep track of the location of 
all landmarks. In order for features to be used as landmarks, however, their 
location needs to be estimated reasonably accurately. Consequently, multi-UVS 
map correspondence and location uncertainties arise from the use of 
environmental features that move, noise on sensor observations, and observations 
of features from differing spectral, spatial or temporal perspectives [275].  

Motion tracking and estimation has been added to a number of mapping 
techniques [66] [197], although this is largely focused on sensors that provide both 
range and bearing information. For example, SLAM with Generic Objects (or 
SLAM with GO) [296] allows the addition of motion mode information 
(stationary, moving, move-stop-move, etc) for the landmark, although this has to 
be learned from the observations. The technique is straightforward, but 
computationally intense and not yet real-time. In another approach, called SLAM 
with Detection and Tracking of Moving Objects (DATMO) [66], each new 
moving object gets its own statistical estimator (typically a Kalman filter) and 
motion mode [109]. Vehicle state estimation then takes place separately and is 
used to update the Extended Kalman Filter (EKF) used for SLAM. This runs faster 
than SLAM with GO and is more suited to real-time implementation.  

As the research stands, using the appropriate sensor modalities, as well as 
moving object detection and track initiation, the more advanced navigation 
techniques are able to determine when moving objects have coalesced, moved 
outside a sensor’s field of view, or been temporarily occluded by a stationary 
object. They are also robust to long sequences of data and can adapt to false 
measurements and their extension to multiple vehicles has also been achieved (e.g. 
[273]). However, as yet, the techniques have not been extended to bearings only 
sensor modalities; are subject failure as a result of false observations arising from 
platform motion; and often struggle to accurately classify slow-moving objects or 
those that are temporarily stationary.  

Image-based navigation, and scene and structure estimation derived from it 
through the fusion of external sensor information (e.g. INS), is also now solvable 
in real time [79] [226]. However, environmental dynamics have a deleterious 
impact on these techniques. That said if the dynamic features are characterised 
correctly they can be used to aid the mapping and navigation process, and vice 
versa [66].65 When range observations and a priori information about the non-
stationary objects are not available, however, it is not possible to determine their 
trajectories uniquely unless two or more sensors are used. When such observations 
are made from multiple moving platforms that do not have other means of 
localisation, stationary environmental features must also be used [109]. 

At present, most maps are usually classified in terms of statistical estimates of 
features described by data clouds, geometric returns, RGB pixel intensities, or 
through the use of occupancy grid-maps that are regularly updated. A more 
condensed approach relies on classifiers that interpret multi-modal sensor data in 

                                                           
65 The algorithms must have already been initialised [81] and any recursive loop-closure 

already performed [81], which for bearings-only techniques is non-trivial. As a result, 
the mapping/localisation and motion-tracking problems have been currently only been 
solved separately and then integrated using range and bearing information. 
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terms of higher level descriptors such as ‘eucalypt tree’ or ‘bitumen road’. At 
present extracting such descriptors robustly and in outdoor environments is difficult 
and frequently dependent on aspect, background, lighting conditions, context, etc. 
Furthermore, the shear number and diversity of potential objects – and hence the 
resultant searching of any hypothesis trees – means that a priori knowledge is 
usually required in order to classify any objects swiftly and correctly. Additionally, 
high resolution observations of the objects, preferably at long range (and hence large 
quantities of data), are also a pre-requisite for most techniques. 

Currently, the error analyses associated with such feature-extraction techniques 
are also not well-understood. As a result, the efficient coding of these descriptor-
based maps and their integration with navigation estimators are yet to be achieved. 
Such techniques have been researched, but do not yet run in real time [117]. 
Furthermore, the techniques usually require spectral and geometric correspondences 
to be formed so the features can be ‘fingerprinted’. There is a difference, however, 
between the processing requirements of an algorithm that can (say) classify terrain 
that is sufficiently flat and devoid of obstacles for a UGV of specified mobility 
characteristics to traverse, versus one that can classify environmental features 
completely at the descriptor level. While the latter is possible on current PC-based 
architectures, there is a need to use 0.1-1.0TFlop processors if such operations are to 
be executed in real time [117].  

4.4.5   Capability and Systems Integration  

Multi-UVS integration – and particularly when it crosses environmental domains 
– has many technological impediments. Another challenge, however, is perhaps 
best illustrated using the following example.  

Many countries acquire their military capabilities from overseas. Typically, 
such acquisitions might include UAV-borne ISR or strike systems, which are 
effective at detecting and neutralising concentrations of enemy forces on the 
ground, but have much more limited effectiveness when an adversary blends with 
his surroundings. Hence, while major force concentrations might be eliminated, 
smaller enemy groups that can protract hostilities may remain. As a result, an 
acquisition focus might be given to the provision of theatre or tactical-level tools 
for optimally selecting, deploying and managing sensor assets or the development 
of onboard control, coordination and decision support mechanisms for multiple 
manned and unmanned force elements (e.g. autonomous UGVs integrated with the 
ISR output from the UAV feeds).  

Such technology would likely be one of the key outcomes of a control and 
coordination research program, which could have application across several major 
capability domains. Such developments would also probably involve information 
integration for manned and unmanned systems; a key element of sensing and data 
fusion research, again quite possibly applicable across several capability domains. 
The integration might also involve an analysis of the appropriate reliability and 
resource allocation issues pertinent to the provision of a persistent autonomous 
presence on the battlefield; the major focus of research in persistent autonomy.  
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The indigenous development or adaptation of such technologies and operational 
concepts to allow the integration of these unmanned and manned systems to support 
operations in complex, hazardous environments might be a national priority. 
However, it is unlikely that knowledge of the systems at the level required for close 
integration or multi-UVS cooperation would be shared between nations without 
significant risk or cost. Solutions may, of course, be available from other overseas 
vendors, or by integrating the systems less tightly, however, both these solutions are 
likely to be unpalatable for reasons of cost or sub-optimality.  

From the technology integration perspective, therefore, the designation of a 
single lead agency for UVS to oversee the general and cross-cutting matters 
pertaining to automation and introduction into capability could be beneficial. By 
way of example, such an agency might also oversee such matters as systems 
engineering, life-cycle cost management, software engineering, the development 
of an effective assessment methodology, and the use of modelling and simulation 
assessment tools as many of the lessons learnt in one environment will be directly 
translatable to others.  

Unfortunately, the likely acquisition strategies of many defence organisations, 
which are largely still platform and/or environmentally based, means that it is 
more likely that Navy will take a lead on UMVs, Army on UGVs, and Air Force 
on UAVs (and for some larger defence forces each agency will likely acquire its 
own UVS in each domain). Given the likely focus on operational exploitation and 
the individual agencies’ experience in each of these domains this is not a bad 
thing, it simply misses the opportunity to enforce a more cross-cutting systems 
discipline on the generic requirements of autonomous UVS.  

However, as these intra-service benefits are not yet well-articulated, it may 
reasonably be argued that these factors are trumped by the need to exploit the 
service-specific requirements of UVS; just as they are for other environmentally 
cross-cutting endeavours such as ISR and EW. Furthermore, without the clear and 
focused requirements advocated by the single-service or platform-focused capability 
initiatives, the process is likely to suffer from diffusion and incoherence. Clearly, it 
is likely to take a strong advocate in high office to advance any such notion. If such 
an agency were ever stood-up, it should take on the role of:  

 

 Identifying gaps in capability that can be filled by UVS,  
 Identifying technology shortfalls in autonomous systems and UVS,  
 Influencing the development and assessment of UVS-related operational 

concepts 
 Providing support to UVS planning, investment, and programs, 
 Influencing the direction and level of UVS-related technology effort, and 
 Developing and fostering cross-environmental UVS technologies and 

systems 
 

That said, the evolution of military systems towards high-tech networks of 
automated capabilities that are responsive to a range of information sources, and 
the commensurate move away from the use of humans as the command and 
control ‘glue’ traditionally used to instantiate such enterprises, will likely result in 
this systems integration becoming a problem common to many military 
technologies, not just autonomous UVS. 
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