
Chapter 9
On Similarity-Based Surrogate Models for
Expensive Single- and Multi-objective
Evolutionary Optimization

L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge

Abstract. In this chapter we propose a surrogate-assisted framework for expen-
sive single- and multi-objective evolutionary optimization, under a fixed budget of
computationally intensive evaluations. The framework uses similarity-based surro-
gate models and an individual-based model management with pre-selection. Instead
of existing frameworks where the surrogates are used to improve the performance
of evolutionary operators or as local search tools, here we use them to allow for an
augmented number of generations to evolve solutions. The introduction of the surro-
gates into the evolutionary cycle is controlled by a single parameter, which is related
with the number of generations performed by the evolutionary algorithm. Numerical
experiments are conducted in order to assess the applicability and the performance
in constrained and unconstrained, single- and multi-objective optimization prob-
lems. The results show that the present framework arises as an attractive alternative
to improve the final solutions with a fixed budget of expensive evaluations.

9.1 Introduction

Several problems of interest in science and engineering are or can be advanta-
geously formulated as optimization problems. However, modern problems have lead
to the development of increasingly complex and computationally expensive simula-
tion models. When the optimization algorithm involves the repeated use of expen-
sive simulations to evaluate the candidate solutions, the computational cost of such
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applications can be excessively high. A trade-off between the number of calls to
the expensive simulation model and the quality of the final solutions must often be
established. As result, an improvement of the optimization process is necessary.

A possible solution to this problem is the use of a surrogate model, or metamodel.
In this case, when evaluating candidate solutions in the optimization cycle, the com-
putationally intensive simulation model is substituted by the surrogate model, which
should be a relatively inexpensive approximation of the original model [24].

Genetic Algorithms (GAs) [21], inspired by Darwin’s theory of evolution by nat-
ural selection, are powerful and versatile tools in difficult search and optimization
problems. They do not require differentiability or continuity of the objective func-
tion, are less sensitive to the initialization procedures, and less prone to entrapment
in local optima. However, they usually require a large number of evaluations in
order to reach a satisfactory solution, and when expensive simulations are involved,
that can become a serious drawback to their application.

The idea of reducing the computation time or improving the solutions per-
forming less computationally expensive function evaluations, appeared early in the
evolutionary computation literature [22]. It should be mentioned also that there are
additional reasons for using surrogate models in evolutionary algorithms: (a) to re-
duce complexity [37], (b) to smooth the fitness landscape [61], (c) when there is no
explicit fitness available, and (d) in noisy environments [25].

Several surrogate models, of varying cost and accuracy, can be found in the lit-
erature, such as polynomial models [36], artificial neural networks [17], Kriging or
Gaussian processes [15], radial basis functions [30, 31], and support vector machines
[27]. Of course such techniques can also be combined and used as an ensemble
[32, 41].

Research in surrogate-assisted frameworks for solving problems with computa-
tionally expensive objective functions has been receiving increasing attention in the
last few years [7, 14, 16, 18, 26, 43, 64].

In the evolutionary optimization context, the surrogate model is constructed from
previously obtained solutions and used to evaluate new candidate solutions, avoiding
expensive simulations. An interesting strategy, when a given budget of expensive
evaluations is assumed, is to combine both exact and surrogate evaluations along the
evolutionary process in order to allow for an extension in the number of generations,
which can have a positive impact in the final result.

This chapter is focused on the use of a similarity-based surrogate model (SBSM)
to assist evolutionary algorithms in solving single- and multi-objective optimiza-
tion problems with a limited computational budget. Examples of similarity-based
surrogate models are fitness inheritance [56], fitness imitation [24], and the nearest
neighbor approximation model [4, 54].

In the surrogate-assisted optimization presented here, the individuals in the parent
population (evaluated by the original function) are sequentially stored in a database,
and then they are used to construct a surrogate model, based on similarity, which
is used along the optimization procedure to perform extra (surrogate) evaluations,
resulting in a larger number of generations.
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This chapter is organized as follows. The optimization problem is described in
Section 9.2. Section 9.3 presents the similarity-based surrogate models and the sur-
rogate assisted evolutionary optimization algorithm, for single- and multi-objective
optimization. The numerical experiments conducted are presented and discussed in
Section 9.4, and finally the concluding remarks are given in Section 9.5.

9.2 The Optimization Problem

The optimization problems considered here can be written as

minimize f1(x), f2(x), . . . , fnob j (x)
with x = (x1, . . . ,xn) ∈S

subject to g j(x)≤ 0, j = 1, . . . ,ni

xL
i ≤ xi ≤ xU

i

(9.1)

where fi(x) is the ith objective function to be minimized, nob j is the number of
objectives, n is the number of design variables, S is the search space bounded by
xL ≤ x ≤ xU , and ni is the number of inequality constraints. The feasible region is
defined by S and the ni inequality constraints g j(x).

We have multi-objective (MO) optimization when nob j ≥ 2. Single-objective
(SO) optimization (nob j = 1) is a special case of the formulation above. Also,
in the absence of constraints (ni = 0) we have the single- and multi-objective
unconstrained optimization problems.

In MO optimization a set of solutions representing the tradeoff among the differ-
ent objectives rather than an unique optimal solution is sought. This set of solutions
is also known as the Pareto optimal set and these solutions are also termed noninfe-
rior, admissible, or efficient solutions [20]. The corresponding objective vectors of
these solutions are termed nondominated and each objective component of any non-
dominated solution in the Pareto optimal set can only be improved by degrading at
least one of its other objective components [58]. The concept of Pareto dominance
and Pareto optimality will form the basis of solution quality. Pareto dominance is
defined by

x1 ≺P x2 (x1 Pareto-dominates x2) :⇔ (9.2)

∀i ∈ {1, . . . ,nob j} : fi(x1)≤ fi(x2)∧
∃ j ∈ {1, . . . ,nob j} : f j(x1) < f j(x2).

The Pareto optimal front (PFT ) is the set of nondominated solutions such that
PFT = { fi(x∗)|� f j(x)≺P fi(x∗), j ∈ {1, . . . ,nob j}}.

9.3 Surrogate-Assisted Evolutionary Optimization

Surrogate modeling, or metamodeling, can be viewed as the process of capturing the
essential features of a complex computer simulation (original evaluation function)
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in a simpler, analytical model by providing an approximation of the input/output
relation of the original model. The surrogate model should be simple, general, and
keep the number of control parameters as small as possible [5]. Examples of such
surrogates are the similarity-based surrogate models.

In this section we describe the similarity-based models, and the surrogate-assisted
evolutionary algorithms for single- and multi-objective optimization.

9.3.1 Similarity-Based Surrogate Models (SBSMs)

Similarity-based surrogate models (SBSMs) can be classified as lazy learners [2]
(and also memory-based learners) since that, in contrast to eager learning algorithms
such as Neural Networks, Polynomial Response Surfaces, and Support Vector Ma-
chines, which generate a model and then discard the inputs, SBSMs simply store
their inputs and defer processing until a prediction of the fitness value of a new
individual is requested. Then they reply by combining their stored data (previous
samples) using a similarity measure, and discard the constructed answer as well as
any intermediate results.

Among the SBSMs one can find the Fitness Inheritance procedure, Fitness Im-
itation, and the nearest neighbors method. In the following subsections we present
those approaches, and describe with details the nearest neighbor method, used here
as a surrogate model.

9.3.1.1 Fitness Inheritance

The fitness inheritance procedure was first proposed by Smith et al [56], and since
then has been applied in several problems [6, 12, 13, 49, 52, 63] and algorithms
[38, 45]. In fitness inheritance, all the individuals in the initial population have their
fitness value obtained via fitness function. Thereafter, the fitness of a fraction of
the individuals in the subsequent populations is inherited from their parents. The
remaining individuals are evaluated using the original fitness function (referred to
as simulation model).

The inheritance procedure is described as follows. Given an individual xh gener-
ated by evolutionary operators (crossover and mutation), from the parents xp1 and
xp2 . The surrogate evaluation is given by:

̂f (xh) =

⎧

⎪

⎨

⎪

⎩

f (xpi) if d(xh,xpi) = 0, i = 1 or 2

s(xh,xp1 ) f (xp1 )+s(xh,xp2 ) f (xp2 )
s(xh,xp1 )+s(xh,xp2 ) otherwise

(9.3)

where s(xh,xpi) is the similarity between xh and xpi . The assumption is that an off-
spring is similar to its parents and thus its fitness is assigned as the weighted average
of the parents fitness.

In the inheritance procedure an entire simulation is replaced by a procedure with
negligible computational cost, which may lead to great computational savings that
grow with the rate of application of the inheritance technique and the cost of the



9 On Similarity-Based Surrogate Models 223

x
2

1
x

Fig. 9.1 Illustration of the Fitness Imitation procedure. The individuals inside the dotted
circles belong to the same group. The representative individual, denoted by a black square,
is evaluated by the exact function. The remaining individuals are evaluated by a surrogate
model, their predicted fitness being calculated according to the distance to the representative
individual

fitness function evaluation [8, 51]. In fact, the inheritance procedure may be orders
of magnitude less expensive than the standard fitness evaluation. However, this ap-
proach introduces some noise in the search process and may adversely affect the
final solution found [13].

9.3.1.2 Fitness Imitation

In Fitness Imitation [24], the individuals are clustered into several groups. Several
clustering techniques can be used to perform this task [28]. Then, only the individ-
ual that represents its cluster is evaluated using the fitness function. The choice of
the representative individual can be made either deterministically or randomly [35].
The fitness value of other individuals in the same cluster will be estimated from the
representative individual based on a similarity measure. If a new individual to be
evaluated does not belong to any cluster, it is evaluated by the original function. The
term Fitness Imitation is used in contrast to Fitness Inheritance.

An illustration of the Fitness Imitation procedure is depicted in Figure 9.1.
Examples of applications of this procedure can be found in [3, 28, 35].

9.3.1.3 Nearest Neighbors

The nearest neighbors surrogate model (k-NN) is a simple and transparent surro-
gate model where the approximations are built based on a set D , which stores η
individuals (samples).

The idea of using k-NN to assist an evolutionary algorithm was explored in [46,
47], where the aim was to reduce the number of exact function evaluations needed
during the search. Here we use the surrogate to extend the generations, and to guide
the search towards improved solutions.

Given an offspring xh, the corresponding value ̂f (xh) ≈ f (xh), to be assigned to
xh is
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̂f (xh) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

f (xI j ) if xh = xI j , for some j = 1, . . . ,η

∑k
j=1 s(xh,xI j )u f (xI j )

∑k
j=1 s(xh,xI j )u

otherwise
(9.4)

where s(xh,xi) is a similarity measure between xh and xi, I j, j = 1, . . . ,η is a
list that stores the individuals in the set D most similar to xh, k is the number of
neighbors used to build the surrogate and u is set to 2.

The main advantages of the k-NN technique are that it is flexible, does not have
severe restrictions, does not require any predefined functional form nor rely on
any probability distribution, and the variables can be either continuous or discrete.
Databases are also easy to maintain and updated when it is necessary to add or
remove samples. Indeed, k-NN does not require a training procedure, and in each
surrogate evaluation the database D must be ranked in order to determine the nearest
neighbors.

The similarity measure used here is based on the Euclidean distance and it is
given by

s(xh,xi) = 1− dE(xh,xi)
dE(xU ,xL)

where dE(x,y) is the Euclidean distance between x and y.
The nearest neighbors (and its variations) have been applied in two-dimensional

interpolation [54], supervised learning [62], and recently in forest management
planning [55].

9.3.2 Surrogate-Assisted Framework

Once a surrogate model has been chosen, there are many ways of introducing it into
the evolutionary process. Some of them include: integrating GAs with surrogate ap-
proximations [40, 44] or landscape approximations [29], the use of surrogate-guided
evolutionary operators [42], surrogate-assisted local search [33, 60], accelerating
the optimization process using surrogates, pre-selection approaches [19, 39],
multiple surrogates [1, 33, 50], and coevolution of fitness predictors [53].

In this chapter we introduce the surrogate models into the evolutionary cycle by
means of a model management procedure [24] which, in each generation, uses in
a cooperative way both surrogate and exact models, so that the evaluation of the
population does not rely entirely on the surrogate model.

Maintaining a total of Nf ,max exact evaluations, surrogate model evaluations are
introduced in the GA in increasing levels, by decreasing the parameter psm. The
number of generations performed by the GA is given by NG = Nf ,max

psmλ . When psm = 1,
all individuals are evaluated by the exact function, one has NG = Nf ,max/λ , and the
standard GA is recovered. Indeed, as psm decreases, more surrogate evaluations are
introduced into the evolutionary optimization process.
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1: procedure Pre-selection (PS)
2: if psm �= 1 then
3: repeat
4: Evaluate individual using ̂f
5: N

̂f = N
̂f +1

6: until all individuals in Gt evaluated
7: Rank Gt according to the surrogate model
8: end if
9: repeat

10: Evaluate individual using f
11: Nf = Nf +1
12: until all psm best individuals in Gt evaluated

Fig. 9.2 Pre-selection (PS) management procedure. psm is the fraction of individuals eval-
uated by the original model, λ is the population size, f and ̂f are the original and surro-
gate functions, Nf the current number of exact evaluations and N

̂f is the current number of
surrogate evaluations

In the model management used here, only a fraction 0 < psm≤ 1 of the population
is evaluated by the time-consuming original model. We implement a pre-selection
(PS) [19] strategy, where the surrogate model is used to decide which individuals
will be evaluated by the original function. This procedure is described as follows:
first, using evolutionary operators, λ individuals in the offspring population Gt are
generated from λ parents in the parent population Pt . Then the offspring population
Gt is entirely evaluated by the surrogate model and then ranked in decreasing order
of quality. Based upon this rank, the psmλ highest ranked individuals (according to
the surrogate model ̂f ) are evaluated by the original model, and the remaining λ −
psmλ individuals in Gt maintain their objective function predicted by the surrogate
model ̂f . The PS model management procedure is shown in Figure 9.2.

In the PS model management it is not necessary that the surrogate model approxi-
mates the objective function closely. It is sufficient that the ranking of the individuals
in the offspring population be similar to the ranking that would be obtained using
the simulation model.

9.3.3 The Surrogate-Assisted Evolutionary Algorithm

The similarity-based surrogate-assisted GA for computationally expensive opti-
mization problems, is shown in Figure 9.3. The developed algorithm will be referred
to as SBSM-GA. The variant developed for single-objective optimization is named
SBSM-SOGA while the multi-objective one is referred to as SBSM-MOGA. The
differences between them are (i) the ranking procedures (line 5 and 12) and (ii) the
parent population update procedure (line 13).

In the presented algorithm, we adopted the standard floating-point coding: each
variable is encoded as a real number and concatenated to form a vector which is
an individual in the population of candidate solutions. The following step is to ran-
domly generate an initial population. Each individual has then one or more objec-
tive function values assigned to it and, in cases of constrained optimization, also a
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1: procedure SBSM-GA
2: t← 0; Nf ← 0; N

̂f ← 0; D ← /0

3: Generate an initial population Pt with λ individuals
4: Evaluate Pt using the simulation model f
5: Rank Pt in decreasing order of quality
6: Initialize the set D ← Pt

7: while Nf ≤ Nf ,max do
8: Select parents from Pt

9: Generate a population Gt from Pt

10: Apply the model management (Figure 9.2).
11: Update the set D
12: Rank Pt in decreasing order of quality
13: Update parent population Pt+1 from Pt and Gt

14: t← t +1
15: end while

Fig. 9.3 Similarity-based surrogate-assisted GA (SBSM-GA). Pseudo-code for single-
(SBSM-SOGA) or multi-objective (SBSM-MOGA) optimization. Pt is the parent population,
Gt is the offspring population, λ is the population size, f and ̂f are the original and surrogate
functions. Nf ,max is maximum number of exact evaluations, Nf is the current number of exact
evaluations and N

̂f is the number of surrogate evaluations

measure of constraint violation associated with it. The population is sorted in or-
der to establish a “ranking”. Individuals are then selected for reproduction in a way
that better performing solutions have a higher probability of being selected. The
genetic material contained in the chromosome of such “parent” individuals is then
recombined and mutated, by means of crossover and mutation operators, giving rise
to offspring which will form a new generation of individuals. Finally, the whole
process is repeated until a termination criterion is attained.

Elitism is applied in the parent population update procedure (line 13): some in-
dividuals of the parent population are saved to the offspring population before the
new parent population is created. In the single-objective version (SBSM-SOGA),
the best ranked individual of the parent population Pt is copied to the offspring
population Gt .

In single-objective constrained optimization (ni = 0), we use a constraint han-
dling technique presented in [10] to guide the search toward the (feasible) optimum.
The individuals are ranked according to a pair-wise comparison procedure, where
the following criteria are enforced:

1. when two feasible solutions are compared, the one with better objective function
value is chosen,

2. when one feasible and one infeasible solutions are compared, the feasible
solution is chosen, and

3. when two infeasible solutions are compared, the one with smaller constraint
violation is chosen.

The constraint violation is given by ∑ni
j=1 max(0,g j(x))2.
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The surrogate-assisted multi-objective GA (SBSM-MOGA) uses the operators
from the Non-dominated Sorting Genetic Algorithm (NSGA-II) [11]. The multi-
objective version of the algorithm differs from the single-objective version in the
following aspects: (i) the ranking procedure, which uses the fast non-dominated
sorting algorithm and the crowding comparison operator, and (ii) the elitism mech-
anism used in the parent population update procedure.

The ranking procedure that appears in lines 5 and 12 of the Figure 9.3 is re-
placed by the non-dominated sorting procedure [11], where the population is first
partitioned by means of nondominated sorting and, then, a crowding comparison op-
erator is employed by considering distances between individuals of the same rank.
The update procedure shown in line 13 is performed over the union of the parent and
offspring populations. The offspring population Gt is added to the parent population
Pt and the combined population (of size 2λ ) is ranked according to non-domination,
then the highest ranked individuals are copied to the next generation.

The constraint handling technique for multi-objective optimization problems is
based on the constraint-domination criteria [11], where feasible solutions have a
better non-domination rank than any infeasible solution. A solution i is said to
constraint-dominate a solution j, if any of the following conditions is true:

1. Solution i is feasible and solution j is not.
2. Solution i and solution j are both infeasible, but solution i has a smaller overall

constraint violation.
3. Solution i dominates solution j

To improve the quality of the approximations in Eq. (9.4) the surrogate models are
updated along the optimization process, by updating the set D . In the SBSM-GA, all
individuals exactly evaluated are recorded into the set D , and when the maximum
size η of the set is reached, the oldest individual is chosen to be replaced. As a result,
one has a relatively small and updated sample set, as older individuals are discarded
from D as the population evolves. The set size is equal to λ in the first generation
(line 6 of the algorithm 9.3) and limited to η individuals along the evolutionary
process.

In order to avoid convergence to false optima, and the need to re-evaluate the best
solutions in each generation, after the ranking procedure (either for single- or multi-
objective version), a sorting algorithm is applied in order to ensure that individuals
evaluated by the original function are ranked highest in the population.

9.4 Computational Experiments

The algorithmic parameters for both SBSM-SOGA and SBSM-MOGA are
summarized in Table 9.1.

We remark that, as described in Table 9.1, we have set a lower bound psm = 1/λ .
For single-objective problems, we must have psm≥ 1/λ = 1/40 = 0.025, and psm≥
1/λ = 1/50 = 0.02 for multi-objective problems. In the computational experiments
of this section, we have set psm ≥ 0.05.
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Table 9.1 Algorithmic parameters setting for SBSM-GA (single- and multi-objective
optimization)

Algorithmic Parameters

Population size (λ )
Single-obj. optimization problems: λ = 40
Multi-obj. optimization problems: λ = 50

Representation Floating-point coding: vectors of real numbers.

Operators

Single-obj. opt. problems: Uniform mutation, [34], Heuristic,
One- and Two-point crossover, [23], Rank-based selection [57]
and Elitism (best individual copied to the next generation)
Multi-obj. opt. problems: Uniform mutation, Heuristic, One- and
Two-point crossover, Rank-based selection (fast-non-dominated
sorting and crowding distance [11]), and Elitism (parent and off-
spring population mixed and sorted in order to create the next
generation)

Stop criterium Maximum number of exact evaluations, given by Nf ,max.

Crossover Probability (pc)
pc,heu = 0.54 (Heuristic), pc,1p = 0.18 (One-point) and pc,2p =
0.18 (Two-Point)

Mutation Rate (pm) pm = 0.02
Database size (η) η = {λ , 2λ , 5λ , 15λ} or DPR=(η/λ ) = {1, 2, 5, 15}
Database update

Replace the oldest individual. Only individuals evaluated by the
original function can replace individuals in the database D .

Surrogate Model Nearest Neighbors (k-NN)
Number of Neighbors (k) k ∈ {1,2,5,10,15}

Model Management

Individual-based Pre-Selection (PS) [19]. At each generation, the
offspring population Gt is entirely evaluated by the surrogate
model and ranked in decreasing order of quality. The psmλ high-
est ranked individuals (according to the surrogate model ̂f ) are
evaluated by the original model, and the remaining λ − psmλ in-
dividuals in Gt maintain their objective function predicted by the
surrogate model ̂f .

Fraction psm

psm ∈ [0.05,1.00]. The parameter psm defines the fraction of indi-
viduals evaluated by the original model: psm = 1 means the stan-
dard GA (no surrogates) with NG = Nf ,max/λ generations. As
we must ensure at least one individual evaluated by the original
model in each generation, we have psm ≥ 1/λ .

Performance Measures

The performance of the SBSM-GA is to be compared to the Stan-
dard GA (psm = 1).
Single-obj. opt. problems: The value of the objective function.
For constrained problems, also the number of runs leading to fea-
sible final solutions.
Multi-obj. opt. problems: Generational Distance [59], Maximum
Spread [33] and Spacing [20].

Number of runs 50

DPR: Database size Population size Ratio, with DPR = Database size
Population size = η

λ
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As the surrogate evaluations are introduced into the Standard GA, errors due
the surrogate model evaluations are also introduced, which may adversely affect the
quality of the final solutions. On the other hand, the extra surrogate evaluations allow
for a longer period to search for improved solutions. There is a trade-off beetwen the
noise introduced by the surrogate models and the beneficial impact in increasing the
number of generations. We recall that, given a budget of Nf ,max exact evaluations,
as the parameter psm decreases, the number of generations increases according to
NG = Nf ,max/psmλ .

It is assumed that for complex real-world applications the cost of a surrogate model
evaluation is negligible when compared to that of a simulation, hence total compu-
tational time will be only slightly increased due to the extra surrogate evaluations.

9.4.1 Single-Objective Optimization

In this section we show the results obtained for unconstrained and constrained
problems, using the GA assisted with the k-NN surrogate model.

The single-objective minimization problems are shown in Table 9.2, and the con-
strained optimization problems considered are shown in the Table 9.3. For the con-
strained problems, the bounds for each parameter, in each function, are defined in
the Table 9.4. More details of this set of constrained problems can be found in [48].

In problems with a large number of constraints (ni), similarity-based surrogate
models are computationally interesting, since they do not require a training pro-
cedure, leading to a simple and inexpensive way to estimate the constraints of the
individuals in the population.

9.4.1.1 Effects of the Number of Neighbors

In this first experiment, we study the impact of increasing the number of neigh-
bors, given a fixed database size (fixed DPR), in order to choose an appropriate
neighborhood size. Under a fixed DPR=η/λ = 2. the experiments were conducted

Table 9.2 Single-objective minimization problems. The maximum number of simulations is
Nf ,max, the lower and upper bounds are respectively xU and xL, n is the number of design
variables, and f ∗ is the optimal objective function value

# Objective function Nf ,max n [xL,xU ] f ∗
F01 ∑n

i=1 x2
i 1000 10 [−5.12,5.12] 0

F02 ∑n
i=1(�xi +0.5�)2 1000 10 [−100,100] 0

F03 ∑n
i=1

x2
i

4000 −∏n
i=1

cosxi√
i

+1 1600 10 [−600,600] 0

F04 −20e
−0.2

√

∑n
i=1 x2

i
n −e

∑n
i=1 cos(2πxi )

n +20+e 1000 10 [−32.768,32.768] 0
F05 ∑n−1

i=1 100(xi+1−x2
i )

2 +(1−xi)2 2000 10 [−5.12,5.12] 0
F06 ∑n

i=1 ix4
i +U(0,1) 1000 10 [−4.28,4.28] 0

F07 ∑n
i=1(x

2
i −10cos (2πxi)+10) 2000 10 [−10,10] 0

F08 ∑n
i=1−xi sin(

√|xi|)−418.982887272433n 1000 10 [−500,500] 0
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Table 9.3 Constrained minimization problems – The number of design variables is n. The
constraints read g j = g j(x)≤ 0, j = 1, . . . ,ni

# Objective function Constraints n

G01 5∑4
i=1 xi−5∑4

i=1 x2
i −∑13

i=5 xi

g1 = 2x1 +2x2 +x10 +x11−10
g2 = 2x1 +2x3 +x10 +x12−10
g3 = 2x3 +2x2 +x12 +x11−10
g4 =−8x1 +x10
g5 =−8x2 +x11
g6 =−8x3 +x12
g7 =−2x4−x5 +x10
g8 =−2x6−x7 +x11
g9 =−2x8−x9 +x12

13

G02
∑n

i=1 cos4(xi)−2∏n
i=1 cos2(xi)√

∑n
i=1 ix2

i

g1 = 0.75−∏n
i=1 xi

g2 = ∑n
i=1 xi−7.5n

20

G04
5.3578547x2

3 +0.8356891x1
+x237.293239x1−40792.141

g1 = 85.334407+0.0056858x2 x5+
0.0006262x1x4 −0.0022053x3x5−92

g2 = −85.334407−0.0056858x2 x5−
0.0006262x1x4 +0.0022053x3x50

g3 = 80.51249+0.0071317x2 x5+
0.0029955x1x2 +0.0021813x2

3 −110
g4 = −80.51249−0.0071317x2 x5−

0.0029955x1x2−0.0021813x2
390

g5 = 9.300961+0.0047026x3 x5+
0.0012547x1x3 +0.0019085x3x4−25

g6 = −9.300961−0.0047026x3 x5−
0.0012547x1x3−0.0019085x3x420

5

G06 (x1−10)3 +(x2−20)3 g1 =−(x1−5)2− (x2−5)2 +100
g2 = (x1−6)2− (x2−5)2 +82.81

2

G07

x2
1 +x2

2 +x1x2−14x1−16x2+
(x3−10)2 +4(x4−5)2+
(x5−3)2 +2(x6−1)2+
5x2

7 +7(x8−11)2+
2(x9−10)2 +(x10−7)2 +45

g1 =−105+4x1 +5x2 +3x7 +9x8
g2 = 10x1−8x2−17x7 +2x8
g3 =−8x1 +2x2 +5x9−2x10−12
g4 = 3(x1−2)2 +4(x2−3)2 +2x2

3−7x4−120
g5 = 5x2

1 +8x2 +(x3−6)2−2x4−40
g6 = x2

1 +2(x2−2)2−2x1x2 +14x5−6x6
g7 = 0.5(x1−8)2 +2(x2−4)2 +3x2

5−x6−30
g8 =−3x1 +6x2 +12(x9−8)2−7x10

10

G08
sin(2πx1)sin(2πx2)

x3
1(x1+x2)

g1 = x2
1−x2 +1

g2 = 1−x1 +(x2−4)2 2

G09

(x1−10)2 +5(x2−12)2+
xqb4

3 +3(x4−11)2+
10x5

6 +x2
6 +x4

7−
4x6x7−10x6−8x7

g1 =−127+2x2
1 +3x4

2 +x3 +4x2
4 +5x5

g2 =−282+7x1 +3x2 +10x2
3 +x4−x5

g3 =−196+23x1 +x2
2 +6x2

6−8x7
g4 = 4x2

1 +x2
2−3x1x2 +2x2

3 +5x6−11x7

7

G10 x1 +x2 +x3

g1 =−1+0.0025(x4 +x6)
g2 =−1+0.0025(x5 +x7−x4)
g3 =−1+0.01(x8−x5)
g4 =−x1x6 +833.33252x4 +100x1−83333.333
g5 =−x2x7 +1250x5 +x2x4−1250x4
g6 =−x3x8 +1250000+x3x5−2500x5

8
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Table 9.4 Bound constraints for single-objective constrained optimization problems. The
maximum number of simulations is Nf ,max and f ∗ is the optimal objective function value

Function Bound constraints Nf ,max f ∗

G01

0≤ xi ≤ 1 (i = 1, . . . ,9),
0≤ xi ≤ 100 (i = 10,11,12),
0≤ x13 ≤ 1

600 −15

G02 0≤ xi ≤ 10 (i = 1, . . . ,n) n = 20 1200 −0.80355

G04

78≤ x1 ≤ 102,
33≤ x2 ≤ 45,
27≤ xi ≤ 45(i = 3,4,5)

6000 −30665.539

G06
13 ≤ x1 ≤ 100,
0≤ x2 ≤ 100

2400 −6961.81388

G07 −10 ≤ xi ≤ 10(i = 1, . . . ,10) 1000 24.3062091
G08 0≤ x1,x2 ≤ 10 8000 −0.095825
G09 −10≤ xi ≤ 10(i = 1, . . . ,7) 800 680.6300573

G10

100 ≤ x1 ≤ 10000,
1000 ≤ xi ≤ 10000(i = 2,3),
10 ≤ xi ≤ 1000(i = 4, ...,8)

3000 7049.3307

for k = {1,2,5,15} neighbors and the averaged fitness in 50 runs was used as
performance measure.

The neighborhood size affects the surrogate model in a way that small neigh-
borhood leads to estimates very close to the data in the database D , while a larger
neighborhood tends to smooth the surrogate output, resulting in estimates close to
the mean of the data in D [4].

The results for the SBSM-SOGA applied to the single objective optimization
problems in Tables 9.2 and 9.3 for different values of psm, and using 1, 2, 5, 10, and
15 neighbors are shown in Figures 9.4 and 9.5. In Figure 9.5, for each test-problem,
the average of the objective function in 50 runs is displayed. The average was
calculated considering only the feasible runs, i.e. those producing a final solution
which does not violate the constraints in Eq. (9.1).

For the all unconstrained functions, except for F08, as psm decreases, increasingly
better results are obtained. For those functions, it is possible to use very small values
of psm. In this set of experiments we set psm = 0.05, although we may use psm >
1/40 = 0.025, as described in Table 9.1. The results obtained for function F08, show
that improvements with respect to the Standard GA are obtained for psm values
below a certain threshold value, and the maximum improvement (compared to the
Standard GA) were obtained when psm > 0.20.

The same trend with respect to the number of neighbors and the parameter psm

is observed for all unconstrained functions. We observe that the extra evaluations
performed by the surrogate are beneficial to the evolutionary search, and improved
results are obtained when the number of generations increases.

From the results obtained for function G08, we can see that reducing psm, no
longer improves the final results, which means that the noise introduced by the
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Fig. 9.4 Averaged Fitness for different values of psm, with DPR=2, using 1, 2, 5, 10, and 15
neighbors in the surrogate model shown in Eq. (9.4)
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Fig. 9.5 Averaged Fitness for different values of psm, with DPR=2, using 1, 2, 5, 10, and 15
neighbors in the surrogate model shown in Eq. (9.4)



234 L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge

surrogate model affects the search in a negative way. Function G08, corresponds to a
complex landscape which could not be well approximated by the surrogate model.
Although faster and simple, the k-NN surrogate model has limited capabilities to
approximate complex mapping in ℜn, which, as an inner-product space, allows for
other calculus-based approximation. However, when the search occurs in a metric
space, k-NN may be one of the few available alternatives.

As observed in function G08, the constraints make the problem harder for the
SBSM-SOGA, since more approximations are involved (objective functions and
constraints) and the use of surrogates may lead the evolutionary process to poorer
regions of the search space.

The results displayed in Figure 9.5, except for function G06, and for G08 (where
no improvements were obtained), show that the number of neighbors does not sig-
nificantly affect the performance of the SBSM-SOGA for the set of functions con-
sidered here.

Table 9.5 shows the number of feasible runs for the SBSM-GA. The results were
obtained using k = 2 neighbors and DPR=2 to build the surrogate in Eq. (9.4). We
observe that the introduction of the surrogate does not affect the number of feasible
runs, except in test-problem G06, where a slightly decrease occurs. In G01 and G10,
the SBSM-GA increased the number of feasible runs.

Table 9.5 Constrained optimization problems – Number of runs that produce a final feasible
solution with respect to the parameter psm. The results were obtained using 2 neighbors and
DPR=2 to build the surrogate in Eq. (9.1)

psm G01 G02 G04 G06 G07 G08 G09 G10

1 12 50 50 50 46 50 50 20
0.9 13 50 50 49 42 50 50 15
0.8 25 50 50 49 45 50 50 20
0.7 29 50 50 47 49 50 50 20
0.6 43 50 50 48 50 50 50 15
0.5 48 50 50 49 49 50 50 27
0.4 50 50 50 47 50 50 50 28
0.3 50 50 50 47 50 50 50 33
0.2 50 50 50 48 50 50 50 39
0.1 50 50 50 46 50 50 50 41
0.05 50 50 50 47 50 50 50 40

In frameworks that use surrogates as a local search tools or to enhance oper-
ators, the improvements are directly related to the surrogate models. In this set of
experiments, the contribution of the surrogates to the evolutionary search is indirect:
the surrogates allow for an extended number of generations (although with inexact
evaluations), which provided the GA a longer period to evolve solutions.

9.4.1.2 Effects of the Database Size

In this section, a study of the impact of the database size on the evolutionary process
is performed. Based on the experiments presented in the previous section, we set
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the neighborhood size to k = 2 and we perform experiments for DPR={1,2,5,15},
corresponding to η = {1λ , 2λ , 5λ , 10λ , 15λ} where η = |D |.

Figures 9.6 and 9.7 display the results obtained by the SBSM-SOGA. We observe
that for G06 larger values of η improve the results for smaller psm. The remaining
test-problems are not affected by the database size. Except for G06, we observe
the same trend for all unconstrained and constrained functions, independent of the
database size.

One can verify that the negative impact of the surrogate model persists for test
problem G08: the average results become worse as psm decreases, independently of
the size of D .

The results suggest that, for single-objective problems, a smaller database D ,
combined with smaller values of psm are enough to improve the final solutions found
by the SBSM-SOGA (when compared to the Standard GA, where psm = 1). How-
ever as the ruggedness/complexity of the optimization problem increases, and when
constraints are involved (requiring more surrogate approximations), the performance
may be not satisfactory, leading in some cases to deteriorated final solutions.

The results presented in sections 9.4.1.1 and 9.4.1.2 suggest to use a small value
of the parameter psm. For SO problems, where one has no previous knowledge,
we suggest as an initial trial psm = 0.20. Indeed, the results are indifferent to the
database size, and we sugest a database size η = 2λ (DPR=2).

9.4.2 Multi-objective Optimization

In this section we present and discuss the performance of the SBSM-MOGA when
applied to constrained and unconstrained multi-objective problems.

A total of 14 MO problems (8 unconstrained and 6 constrained) were collected
[9] to study the impact of the surrogates into the SBSM-MOGA. Tables 9.6 and 9.7
show respectively the multi-objective unconstrained and constrained optimization
problems, the bounds for each parameter, the constraints (for the constrained ones),
the number of variables, and the maximum number of evaluations. Details can be
found in [9].

In order to investigate the impact of the surrogate models in multi-objective opti-
mization, we use as performance metrics the Generational Distance indicator (GD)
[59], the Maximum Spread [33] and Spacing [20].

The GD indicator measures the gap between the evolved Pareto front (PFE) and
the true Pareto front (PFT ), given by

GD =

√

√

√

√

1
NPF

NPF

∑
j=1

d2
j (9.5)

where NPF is the number of individuals in PFT , d j is the Euclidean distance (in the
objective space) beetwen an individual j in PFE and its nearest individual in PFT .
The generational distance in Eq. (9.5) measures the convergence to the true Pareto
front, and lower values of GD are better.
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Fig. 9.6 Surrogate-assisted single-objective evolutionary unconstrained optimization
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Fig. 9.7 Surrogate-assisted single-objective evolutionary constrained optimization
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Table 9.6 Unconstrained multi-objective optimization problems. The maximum number of
simulations is Nf ,max, the lower and upper bounds are respectively xU and xL, and n is the
number of design variables

# Objective Functions n [xL,xU ] Nf ,max

MF01

f1(x) = x1

f2(x) = 1−√

f1(x)/g(x)
g(x) = 1+9(∑n

i=2 xi)/(n−1)
30 [0,1] 1000

MF02

f1(x) = x1
f2(x) = g(x)

[

1− ( f1(x)/g(x))2
]

g(x) = 1+9(∑n
i=2 xi)/(n−1)

30 [0,1] 1000

MF03

f1(x) = x1

f2(x) = g(x)
[

1−√

f1(x)/g(x)− ( f1(x)/g(x))sin 10π f1

]

g(x) = 1+9(∑n
i=2 xi)/(n−1)

30 [0,1] 1000

MF04

f1(x) = x1

f2(x) = 1−√

f1(x)/g(x)
g(x) = 1+10(n−1)+9(∑n

i=2(x
2
i −10cos 4πxi)

10
x1 ∈ [0,1],
xi ∈ [−5,5]
i = 2, . . . ,10

1000

MF05

f1(x) = 0.5x1x2(1+g(x))
f2(x) = 0.5(1−x2)(1+g(x))
f3(x) = 0.5(1−x1)(1+g(x))

g(x) = 1000+100∑n
i=3[(xi−0.5)2−cos20π(xi−0.5)]

12 [0,1] 2000

MF06

f1(x) = 1−exp (−4x1)sin6(6πx1)
f2(x) = g(x)[1− f1(x)/g(x)2]

g(x) = 1+9[∑n
i=2 xi/(n−1)]0.25

10 [0,1] 1000

MF07

f1(x) = cos π
2 x1 cos π

2 x2(1+g(x))
f2(x) = cos π

2 x1 sin π
2 x2(1+g(x))

f3(x) = sin π
2 x1(1+g(x))

g(x) = ∑n
i=3(xi−0.5)2

12 [0,1] 1000

MF08

f1(x) = cos π
2 x1 cos π

2 x2(1+g(x))
f2(x) = cos π

2 x1 sin π
2 x2(1+g(x))

f3(x) = sin π
2 x1(1+g(x))

g(x) = 1000+100∑n
i=3[(xi−0.5)2−cos20π(xi−0.5)]

12 [0,1] 1400

The Maximum Spread (MS) is used to measure how well the true Pareto front
PFT is covered by the evolved Pareto front PFE . A larger value of MS reflects that
a larger area of the PFT is covered by PFE . The MS is given as

MS =

√

√

√

√

1
nob j

nob j

∑
i=1

[

min( f max
i ,Fmax

i )−max( f min
i ,Fmin

i )
Fmax

i −Fmin
i

]2

(9.6)

where f max
i and f min

i are the maximum and minimum of the ith objective in the
evolved Pareto front, respectively, and Fmax

i and Fmin
i the maximum and minimum

of the ith objective in the true Pareto front, respectively.
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Table 9.7 Constrained multi-objective optimization problems. The maximum number of
simulations is Nf ,max, the lower and upper bounds are respectively xU and xL, and n is the
number of design variables. The constraints are g j = g j(x)≤ 0, j = 1, . . . ,ni

# Objective functions Constraints n Domain Nf ,max

MG01
f1 =−2x1 +x2
f2 = +2x1 +x2

g1 =−x1 +x2−1
g2 = +x1 +x2−7

2
0≤ x1 ≤ 5
0≤ x2 ≤ 3

1000

MG02
f1 = (x1−2)2 +(x2−1)2−2
f2 = 9x1 +(x2−1)2

g1 = x2
1 +x2

2−225
g2 = x1−3x2 +10

2 [−20,20] 800

MG03
f1 = x1
f2 = x2

g1 = 1−x2
1−x2

2+
0.1cos (16arctan x1

x2
)

g2 = (x1−0.5)2+
(x2−0.5)2−0.5

2 [0,π] 4000

MG04

f1 = −25(x1−2)2 +(x2−2)2+
(x3−1)2 +(x4−4)2+
(x5−1)2

f2 = ∑n
i=1 x2

i

g1 = x1 +x2−2
g2 = 6−x1−x2
g3 = 2−x2 +x1
g4 = 2−x1 +3∗x2
g5 = 4− (x3−3)2−x4
g6 = (x5−3)2 +x6−4

6

0≤ x1 ≤ 10
0≤ x2 ≤ 10
1≤ x3 ≤ 5
0≤ x4 ≤ 6
1≤ x5 ≤ 5
0≤ x6 ≤ 10

800

MG05

f1 =−x1
f2 =−x2
f2 =−x3

g1 =−1+∑n
i=1 x2

i 3 [0,1] 1200

MG06

f1 = 1
10 ∑10

i=1 xi

f2 = 1
10 ∑20

i=11 xi

f3 = 1
10 ∑30

i=11 xi

g1 = 1− f3−4 f1
g2 = 1− f3−4 f2
g3 = 1−2 f3− f1− f2

30 [0,1] 2000

The metric of Spacing (S) shows how the nondominated solutions are distributed
along the evolved Pareto front and is given as

S =
1

d̂

√

√

√

√

1
NPF

NPF

∑
j=1

(d̂−d j)2, d̂ =
1

NPF

NPF

∑
k=1

dk (9.7)

where NPF is the number of individuals in PFT and di is the Euclidean distance (in
the objective space) beetwen an individual i in the evolved Pareto front PFE and its
nearest individual in the true Pareto front PFT .

9.4.2.1 Effects of the Number of Neighbors

In this section we analyze the impact of the number of neighbors to the evolutionary
search, given a fixed database size. According to the database replacement policy,
the oldest individual is always chosen to be replaced. However, by removing so-
lutions according to age, we may inevitably remove some important information.
In order to alleviate this effect, we enlarge the training size for MO problems, and
set the database size to η = 15λ , which corresponds to DPR=15. This value of
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Fig. 9.8 Generational Distance (GD) indicator: surrogate-assisted multi-objective optimiza-
tion using DPR=15 and k = {1, 2, 5, 10, 15} neighbors



9 On Similarity-Based Surrogate Models 241

DPR= 15

psm

G
en

 D
is

ta
nc

e

5e
−0

5
2e

−0
4

5e
−0

4

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(a) MG01

DPR= 15

psm

G
en

 D
is

ta
nc

e

0.
02

0.
05

0.
10

0.
20

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(b) MG02

DPR= 15

psm

G
en

 D
is

ta
nc

e

5e
−0

4
2e

−0
3

1e
−0

2

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(c) MG03

DPR= 15

psm

G
en

 D
is

ta
nc

e

0.
4

0.
5

0.
6

0.
8

1.
0

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(d) MG04

DPR= 15

psm

G
en

 D
is

ta
nc

e

6e
−0

4
8e

−0
4

1e
−0

3

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(e) MG05

DPR= 15

psm

G
en

 D
is

ta
nc

e

0.
00

15
0.

00
25

0.
00

35

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(f) MG06

Fig. 9.9 Generational Distance (GD) indicator: surrogate-assisted multi-objective optimiza-
tion using DPR=15 and k = {1, 2, 5, 10, 15} neighbors
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Fig. 9.10 Maximum Spread (MS): surrogate-assisted multi-objective optimization using
DPR=15 and k = {1, 2, 5, 10, 15} neighbors
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Fig. 9.11 Spacing (S): surrogate-assisted multi-objective optimization using DPR=15 and
k = {1, 2, 5, 10, 15} neighbors
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DPR results in storing information of at least 15 past generations, considering only
individuals evaluated by the simulation model are stored in D .

Figures 9.8 and 9.9 show the Generational Distance (GD) values, calculated for
the (final) population at the end of the evolutionary process.

We observe that the SBSM-MOGA produced better results (compared to the
Standard GA) depending on the values of the parameter psm. Except for the test-
problems MF05, MF07, and MF08, we observe that lower values of psm allow for
final solutions closer to the true Pareto front. Also, the performance does not vary
significantly as we change the number of neighbors used in the surrogate model. For
function MG06 we observe that the surrogate model is not able to consistently help
the GA in searching for improved solutions.

Figures 9.10 and 9.11 show the values of the Maximum Spread (MS) and
Spacing (S) metrics, respectively, for a group of functions from those shown in
Tables 9.6 and 9.7. From the results presented in Figure 9.10, we observe that, in-
dependently of the number of neighbors, smaller values of psm improve the perfor-
mance of the SBSM-MOGA in the MS metric for MF01, MF03, MG01 and MG06,
and for MF05, MF08, MG02, MG03 the MS is slightly affected when decreasing
the parameter psm. Considering the Spacing metric, decreasing psm consistently im-
proves the solutions in test-problems MF01, MF03, and MG01.

9.5 Concluding Remarks

In this chapter we have proposed the introduction of a similarity-based surrogate
model into a real-coded GA to assist the optimization of single- and multi-objective,
constrained and unconstrained optimization problems, under a fixed computational
budget.

We used the nearest neighbor approximation as a surrogate model, which is inte-
grated into the evolutionary cycle by means of an individual-based evolution control
where the surrogate is used to select individuals to be evaluated by the exact function
according to a single parameter psm.

Instead of existing frameworks where the surrogates are used to improve the per-
formance of evolutionary operators or as local search tools, here we use them to
allow for an augmented number of generations to evolve solutions.

The tests performed so far support the following general conclusions:

Single-objective optimization: The augmented number of generations leads to
improved solutions, when compared to the standard GA with the same number of
expensive evaluations. Also, the number of neighbors does not affect in a signifi-
cant way the final results, and a uniform trend is observed for unconstrained and
constrained problems, as the parameter psm decreases. Also, the final results are
not affected by the database size, which stores individuals previously evaluated
by the simulation model.

Multi-objective optimization: For the set of multi-objective unconstrained opti-
mization problems considered, small values of the parameter psm help to achieve
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a better convergence to the true Pareto front, according to the performance met-
rics, and the results are not significantly affected by the number of neighbors
used.

In the nearest neighbor approximation model no training procedure is required and
the prediction involves finding the nearest neighbors in an archive of previously
evaluated individuals. Under a fixed number of expensive simulations, the cost of
the surrogate-assisted procedure is only slightly increased due to the negligible com-
putational cost of the extra surrogate evaluations as the cost of the expensive simu-
lation increases.

The framework presented here seems to be a simple and effective way to tackle
single- and multi-objective unconstrained or constrained expensive optimization
problems. Additionally, the proposed framework can be easily extended to other
population-based metaheuristics, such as Differential Evolution, Ant Colony
Optimization and Particle Swarm Optimization.
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40. Queipo, N., Arévalo, C., Pintos, S.: The integration of design of experiments, sur-
rogate modeling, and optimization for thermoscience research. Engineering with
Computers 20, 309–315 (2005)

41. Queipo, N.V., Haftka, R.T., Shyy, W., Goela, T., Vaidyanathana, R., Tucker, P.K.:
Surrogate-based analysis and optimization. Progress in Aerospace Sciences 41(1), 1–28
(2005)

42. Rasheed, K., Vattam, S., Ni, X.: Comparison of methods for using reduced models to
speed up design optimization. In: Proceedings of Genetic and Evolutionary Computation
Conference, pp. 1180–1187. Morgan Kaufmann, New York (2002)

43. Rasheed, K., Ni, X., Vattam, S.: Comparison of methods for developing dynamic
reduced models for design optimization. Soft Computing Journal 9, 29–37 (2005)

44. Regis, R.G., Shoemaker, C.A.: Local function approximation in evolutionary algorithms
for the optimization of costly functions. IEEE Trans. Evolutionary Computation 8(5),
490–505 (2004)

45. Reyes-Sierra, M., Coello, C.A.C.: A study of fitness inheritance and approximation tech-
niques for multi-objective particle swarm optimization. In: The 2005 IEEE Congress on
Evolutionary Computation, vol. 1, pp. 65–72 (2005)

46. Runarsson, T.: Approximate evolution strategy using stochastic ranking. In: Yen, G.G.,
Wang, L., Bonissone, P., Lucas, S.M. (eds.) IEEE World Congress on Computational
Intelligence, Vancouver, Canada (2006)

47. Runarsson, T.P.: Constrained Evolutionary Optimization by Approximate Ranking and
Surrogate Models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós,
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