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Preface

Optimization is an essential part of research, both in science and in engi-
neering. In many cases the research goal is an outcome of an optimization
problem, for example, improving a vehicle’s aerodynamics or a metal alloy’s
tensile strength.

Motivated by industrial demands, the process of design in science and en-
gineering has undergone a major transformation. The advances in the fields
of intelligent computing paradigm and the introduction of massive comput-
ing power have facilitated a move away from paper-based analytical systems
towards digital models and computer simulations. Computer-aided design
optimization is now involved in a wide range of design applications, ranging
from large transatlantic airplanes to micro electro mechanical systems.

With the development of more powerful optimization techniques, the re-
search community is continually seeking new optimization challenges and
to solve increasingly more complicated problems. An emerging class of such
challenging problems is known as the ‘expensive optimization problems’. High
computational cost can arise due to:

• Resource-intensive evaluations of the objective function: such problems
arise when using ‘computer-experiments’, i.e., when a computer simula-
tion replaces a real-world laboratory experiment during the optimization
process. Such simulations can be prohibitory expensive (require anywhere
from minutes to hours of evaluation time for each candidate solution). Also,
there is no analytic expression for the objective function or its derivatives,
requiring optimization algorithms which are derivative-free. Examples in-
clude wing shape optimization and electronic circuit design.

• Very high dimensional problems: in problems with hundreds or thousands
of variables the ‘curse of dimensionality’ implies locating an optimum
can be intractable due to the size of the search space. Examples include
scheduling problems and image analysis.

On top of these difficulties, real-world optimization problems may ex-
hibit additional challenges such as a complicated and non-smooth landscape,
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multiple optima and discontinuities. Under these difficulties classical opti-
mization methods may perform poorly or may even fail to obtain a satis-
factory solution within the allocated resources (such as computer time). To
circumvent this, researchers turn to computational intelligence methods such
as agent-based algorithms, fuzzy logic and artificial neural networks. Such
methods have shown to perform well in challenging scenarios and they can
often handle a wide variety of problems when little or no-apriori knowledge
is available. These nature- and biologically-inspired techniques are capable of
‘learning’ the problem features during the optimization and this can improve
their performance and provide a better final solution.

However, the application of computational intelligence methods to expen-
sive optimization problems is not straightforward. Their robustness, also re-
ferred to as the ‘exploration-exploitation trade-off’, implies they do not ex-
ploit domain knowledge efficiently and this can impair their convergence. For
example, an evolutionary algorithm may require many thousands of function
evaluations to obtain a satisfactory solution, which is unacceptable when
each function evaluation requires hours of computer run-time. This necessi-
tates the need to explore various methods to bridge the missing gaps before
computational intelligence can be applied effectively to expensive problems.

Computational intelligence in Expensive Optimization Problems is a re-
cent and emerging field which has received increasing attention in the last
decade. This edited book represents the first endeavor to provide a snapshot
of the current state-of-the-art in the field, covering both theory and prac-
tice. This edition consists of chapters contributed by leading researchers in
the field, demonstrating the different methodology and practice to handle
high computational cost of today’s applications. This book is intended for
wide readership and can be read by engineers, researchers, senior undergrad-
uates and graduates who are interested in the development of computational
intelligence techniques for expensive optimization problems.

This book is divided into 3 parts:

I Techniques for resource-intensive problems
II Techniques for high-dimensional problems
III Real-world applications

Part I considers the various methods to reduce the evaluation time, such as
using models (also known as surrogate-models or meta-models, which are
computationally cheaper approximations of the true expensive function) and
parallelization. This section starts with two surveys on the current state-of-
the-art. Shi and Rasheed survey a wide range of model-assisted algorithms,
including frameworks for model-management in single objective optimiza-
tion while Santana-Quintero et al. survey fitness approximations in multi-
objective algorithms. Giannakoglou and Kampolis propose a flexible parallel
multilevel evolutionary algorithm (EA) framework where each level can em-
ploy a different model, different search algorithm or different parametrization.
They describe the performance of their approach with real-world expensive
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aerodynamic shape optimization problems. Koziel and Bandler describe an-
other approach which uses models of different fidelity, the ‘space-mapping’
method, to accelerate the optimization search. They apply their method to
electronic circuit design. In another related study, Takahama and Sakai pro-
pose methods for model management which assesses the model accuracy and
decides when a model needs to be improved. They implement their method
in a differential evolution framework. Ginsbourger et al. parallelize the Effi-
cient Global Optimization (EGO) algorithm which uses Kriging models and
the expected improvement criterion. They propose statistical criteria for se-
lecting multiple sites to evaluate for each iteration. Guimarães et al. propose
a memetic algorithm for expensive design optimization problems. Their al-
gorithm identifies promising regions and candidates from these regions are
identified with a higher fidelity model and are given more weight by the algo-
rithm. Ochoa also employs statistical criteria and proposes using Estimation
of Distribution Algorithms (EDAs) to reduce the number of function evalua-
tions. The study describes several approaches such as Boltzmann estimation
and the Shrinkage EDAs. Also within the evolutionary computing framework,
Fonseca et al. explore the use of similarity-based models (a nearest-neighbour
approach) to extend the number of generations of an evolutionary algorithm
in expensive optimization problems. Nakayama et al. and Bird and Li ad-
dress the issues of expensive dynamic optimization problems. Nakayama et
al. describe a model-predictive control algorithm for dynamic and expensive
multiobjective optimization problems where they use a support-vector re-
gression model. On the other hand, Bird and Li suggest a specialized particle
swarm optimization (PSO) algorithm with least-squares regressors. The re-
gressors locally approximate the objective function landscape and accelerate
the convergence of the PSO to local optima.

In Part II, researchers explore sophisticated operators, such as those uti-
lizing domain knowledge or which self-adapt during the search to combat
the ‘curse of dimensionality’. Caponio et al. implement a memetic algorithm
which combines differential evolution (DE) with an adaptive local search
which scales the DE vector, along with other algorithmic enhancements. Car-
valho and Ferreira tackle the electric network distribution problem, which is
a large scale combinatorial problem. They propose several hybrid Lamarckian
evolutionary algorithms with specialized operators. dos Santos et al. tackle
the traveling salesman problem (TSP) and propose a reinforcement learning
metaheuristic for a specialized parallel hybrid EA. They show performance
can be improved by using multiple search trajectories. Süral et al. also focus
on the TSP and the TSP with back hauls problem and propose several evo-
lutionary algorithms with specialized crossover and mutation and operators.
They show that utilizing domain knowledge improves the algorithms perfor-
mance. Cococcioni et al. study multiobjective genetic Takagi-Sugeno fuzzy
systems in high-dimensional problems, which pose a challenge to such mul-
tiobjective EAs. They propose two enhancements to the multiobjective EA
to accelerate the search. Davis-Moradkhan and Browne propose a specialized
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evolutionary algorithm to tackle the multicriterion minimum spanning tree
problem, a challenging combinatorial problem. They suggest several special-
ized operators as well as several algorithm variants to improve the spread of
solutions along the Pareto front. Lastly, Shilane et al. present a specialized
evolutionary algorithm to tackle the problem of risk-minimization in statis-
tical parameter estimation, a multimodal high-dimensional problem. They
demonstrate that their algorithm compares well with existing parameter-
estimation methods while having the advantage that it can run in parallel.

Part III focuses on real-world applications. Successful application of com-
putational intelligence methods to real-world problems is non-trivial and
there are important insights and lessons to be learned from researchers’ ex-
perience. Chen et al. use a particle swarm optimization algorithm for an
expensive optimization problem of a transceiver design. They study a semi-
blind joint maximum likelihood channel estimation and data detection for
a receiver and the minimum bit-error-rate multiuser transmission. Results
show their algorithm outperforms existing approaches. Donateo describes
a multiobjective optimization of a diesel engine piston. The study used a
multiobjective evolutionary algorithm which is parallelized over a cluster to
reduce evaluation time. They obtained a more efficient engine with lower
pollution level. Vasile and Croisard study the robust planning of a space mis-
sion, where the computational time grows exponentially with the number of
uncertain variables. They use a multiobjective EA and apply the Evidence
theory and an indirect approach to estimate the belief and plausibility func-
tions. Kumar and Bauer propose a methodology to manage an expensive
design process from the conceptual stage to a final design. They apply the
methodology to the design of electrical drives and electrical circuits. Won et
al. consider the problem of reliable network design and proposed a hybrid
EA-ant colony system algorithm. They propose a multiring encoding scheme
to combine the two and apply their algorithm to a variety of network design
problems. Yamada and Berger describe the optimization of neural network
for speech recognition using an EA. The structure of the EA changes from
a random search to a steady state EA and finally to an elitist EA during
the optimization. The algorithm reduces the high computational cost of the
optimization by identifying a promising subset of variables and concentrat-
ing on it. Guichón and Castro tackle the expensive optimization problem of
automatic image registration optimization by using a parallel evolutionary
algorithm. The study describes an implementation of a fast and robust In-
ternet subtraction service using a distributed evolutionary algorithm and a
service-oriented architecture. Finally, Pilato et al. describe an expensive mul-
tiobjective optimization digital circuits, where the proposed algorithm uses
fitness inheritance and approximation models to reduce the number of calls
to the expensive simulation.
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Overall, the chapters in this volume discuss a wide range of topics which
reflect the broad spectrum of computational intelligence in expensive opti-
mization problems. The chapters highlight both the current achievements
and challenges and point to promising future research venues in this exciting
field.

September 2009 Yoel Tenne
Chi-Keong Goh
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Chapter 1
A Survey of Fitness Approximation Methods
Applied in Evolutionary Algorithms

L. Shi and K. Rasheed

Abstract. Evolutionary algorithms (EAs) used in complex optimization domains
usually need to perform a large number of fitness function evaluations in order to
get near-optimal solutions. In real world application domains such as engineering
design problems, such evaluations can be extremely computationally expensive. In
some extreme cases there is no clear definition of the fitness function or the fitness
function is too ambiguous to be deterministically evaluated. It is therefore common
to estimate or approximate the fitness. A popular method is to construct a so-called
surrogate or meta-model, which can simulate the behavior of the original fitness
function, but can be evaluated much faster. An interesting trend is to use multiple
surrogates to gain better performance in fitness approximation. In this chapter, an
up-to-date survey of fitness approximation applied in evolutionary algorithms is pre-
sented. The main focus areas are the methods of fitness approximation, the working
styles of fitness approximation, and the management of the approximation during the
optimization process. To conclude, some open questions in this area are discussed.

1.1 Introduction

In recent years, EAs have been applied to many real-world application domains and
gained much research interest. EAs proved to be powerful tools for optimization
problems and were therefore used in a wide range of real-world applications, espe-
cially for engineering design domains. In such domains, the so-called fitness func-
tions are sometimes discontinuous, non-differential, with many local optima, noisy
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and ambiguous. It was found that EAs perform better than the conventional optimiz-
ers such as sequential quadratic programming and Simulated Annealing [2, 3, 4, 73].

Many challenges still arise in the application of EAs to real-world domains.
For engineering design problems, a large number of objective evaluations may be
required in order to obtain near-optimal solutions. Moreover, the search space can be
complex, with many constraints and a small feasible region. However, determining
the fitness of each point may involve the use of a simulator or analysis code that takes
an extremely long time to execute. Therefore it would be difficult to be cavalier about
the number of objective evaluations used for an optimization [5, 6]. For tasks like
art design and music composition, no explicit fitness function exists; experienced
human users are needed to do the evaluation. A human’s ability to deal with a large
number of evaluations is limited as humans easily get tired. Another challenge is that
the environment of an EA can be noisy, which means that the exact fitness cannot be
determined, and an approximate fitness must be assigned to each individual. An av-
erage fitness solution to the noise problem requires even more evaluations. For such
problems surrogate-assisted evolution methods based on fitness approximation are
preferable, as they can simulate the exact fitness at a much lower computational cost.
A good fitness approximation method can still lead the EA process to find optimal
or near-optimal solutions and is also tolerant to noise [7, 71].

In this chapter we further extend the discussion about fitness approximation by
introducing more concepts in this area and by presenting new developments in re-
cent years. Three main aspects of fitness approximation are our main focus areas.
Those are the different types of fitness approximation methods, the working styles
and the management schemes of the fitness approximation.

For the methods of fitness approximation, instance-based learning methods, ma-
chine learning methods and statistical learning methods are the most popular ones.
Instance-based and machine learning methods include fitness inheritance, radial ba-
sis function models, the K-nearest-neighbor method, clustering techniques, and neu-
ral network methods. Statistical learning methods also known as functional models
such as the polynomial models, the Kriging models, and the support vector ma-
chines are all widely used for fitness approximation in EAs. Comparative studies
among these methods are presented in this chapter.

For the working styles of the fitness approximation, we discuss both direct and
indirect fitness replacement strategies. The direct fitness replacement method is to
use the approximate fitness to directly replace the original exact fitness during the
course of the EA process. Thus individuals mostly have the approximate fitness
during the optimization. The indirect fitness replacement method is to use the ap-
proximate fitness only for some but not all processes in the EA, such as population
initialization and EA operators. Individuals have the exact fitness during most if not
all of the optimization process.

With fitness approximation in EAs, the quality of an approximate model is
always a concern for lack of training data and the often high dimensionality
of the problem. Obtaining a perfect approximate model is not possible in such
cases. Usually the original fitness function is used with the approximate method
to solve this problem. The original fitness function can either correct some/all
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individuals’ fitness in some generations or improve the approximate model by giv-
ing the exact fitness. This is called the management of the fitness approximation
or evolution control. In this chapter, different management methods of approximate
fitness are presented, including online fitness update, offline model training, online
model update, hierarchical models, and model migration. At the end of this charter,
two real-world expensive optimizations by surrogate-assisted EAs are given.

1.2 Fitness Approximation Methods

The optimization problem usually deals with non-linear functions. There are some
classic approximation methods, such as transforming the original function to a sim-
pler one. This method entails transforming the original functions to linear ones, and
then using a linear programming technique, such as the Frank-Wolfe method [8]
or Powell’s quadratic approximation [9]. Other classical methods like the Fourier
approximation and Walsh function approximation use a set of basis functions and
find a weighted sum of such basis functions to use as an approximation. These tech-
niques have been used to first transform the original problem into an easy one, and
then apply the EA to find the optima of the easier version of the original fitness
function [10, 11].

Another class of methods determines a function’s approximation using a chosen
set of evaluated points extracted from the whole design space or from the evalua-
tion history. This class includes in-stance-based learning methods (also known as
lazy learning methods), machine learning methods and statistical learning methods.
The relationships between the different types of fitness approximation methods are
shown in Fig. 1.1. Many instancebased learning and other machine learning meth-
ods have been used for fitness approximation in EAs. Several of the most popular of
these methods are reviewed next.

1.2.1 Instance-Based Learning Methods

1.2.1.1 Fitness Inheritance (FI)

Fitness inheritance techniques are one of the main subclasses of fitness approxima-
tion techniques. One such technique simply assigns the fitness of a new solution
(child) based on the average fitness of its parents or a weighted average based on
how similar the child is to each parent [12]. To deal with a noisy fitness function,
a resampling method combined with a simple average fitness inheritance method is
used to reduce the computational cost in [15]. Another approach is to divide the pop-
ulation into building blocks according to certain schemata. Under this approach, an
individual obtains its fitness from the average fitness of all the members in its build-
ing block [13]. More sophisticated methods such as conditional probability tables
and decision trees are used in [14] for fitness inheritance.
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Fig. 1.1 Fitness approximation methods, FI: Fitness Inheritance KNN: K-Nearest Neigh-
bors RBF: Radial Basis Functions NN: Neural Networks DT: Decision Tree PM: Polynomial
Model SVM: Support Vector Machines

1.2.1.2 Radial Basis Function Model (RBF)

The Radial Basis Function (RBF) model is another instance-based learning method.
RBF networks can also be viewed as a type of neural networks. Since it is a very
popular technique for fitness approximation in EAs [3, 19, 31], it is worthy of being
introduced independently from the normal multilayer neural networks.

An RBF network consists of an input layer with the same number of input units
as the problem dimension, a single hidden layer of k nonlinear processing units and
an output layer of linear weights wI (Fig. 1.2). The size of the hidden layer (k) can
be equal to the sample size if the sample size is small. In the case of a larger sample
size, k is usually smaller than the sample size to avoid excessive calculations. This
RBF network is called the generalized RBF network. The output y(x) of the RBF
network is given as a linear combination of a set of radial basis functions expressed
in the following way:

y(x) = w0 +
k

∑
i=1

wiφi (‖x − ci‖) (1.1)

where w0 and wi are the unknown coefficients to be learned. The term φi (‖x − ci‖),
also called the kernel, represents the ith radial basis function. It evaluates the dis-
tance between the input x and the center ci. For the generalized RBF network, the



1 A Survey of Fitness Approximation Methods 7

Fig. 1.2 Structure of RBF network models

centers ci are also unknown and have to be learned by other methods such as the
k-means method.

Typical choices for the kernel include linear splines, cubic splines, multi-
quadratics, thin-plate splines, and Gaussian kernels. A Gaussian kernel is the most
commonly used in practice, having the form:

φi (‖x − ci‖) = exp

(
−‖x − ci‖

2σ2

)
(1.2)

A detailed comprehensive description of RBF networks can be found in [32].

1.2.2 Machine Learning Methods

1.2.2.1 Clustering Techniques

Clustering algorithms include hierarchical clustering (such as single-linkage,
complete-linkage, average-linkage and Ward’s method), partition clustering (such
as Hard C-Means and K-Means algorithm), and overlapping clustering (such as
Fuzzy C-Means and B-Clump algorithm). Among them, the K-Means algorithm ap-
pears to be the most popular one for application to EAs due to its relative simplicity
and low computational cost. In [16, 17], the entire population is divided into many
clusters, and only the center of each cluster is evaluated. Other individuals’ fitness
values in the clusters are computed using their distance from these centers. Another
approach is to build an approximate model based on sample points composed of
the cluster centers. Every other individual’s fitness is estimated by this approximate
model, which may be a neural network model [18] or an RBF model [19]. An-
other interesting clustering approach applied in EAs is to divide the population into
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several clusters and then build an approximate model for each cluster. The motiva-
tion is that multiple approximate models are believed to utilize more local informa-
tion about the search space and fit the original fitness function better than a single
model [5, 20, 21].

1.2.2.2 Multilayer Perceptron Neural Networks (MLPNNs)

Multilayer Perceptron Neural Networks (MLPNNs) usually utilize the back-
propagation algorithm. MLPNNs have been proven to be powerful tools for fitness
approximation. A MLPNN model is generally used to accelerate the convergence by
replacing the original fitness function [34, 36]. In engineering design domains and
drug design, MLPNNs have been used to reduce the evaluation times of complex
fitness functions [35, 37, 38]. In [68], MLPNNs are used as surrogates to speed-up
the process of an expensive blade design problem.

Fig. 1.3 Structure of the feed-forward MLPNN model

A simple feed-forward MLPNN with one input layer, one hidden layer and one
output layer can be expressed as:

y(x) =
K

∑
j=1

wj f

(
n

∑
i=1

wi jxi +θ j

)
+θ0 (1.3)

where n is the number of input neurons (which is usually equal to the problem
dimension), K is the number of nodes of the hidden layer, and the function f is
called the activation function. The structure of a feed-forward MLPNN is shown in
Fig. 1.3. W and θ are the unknown weights to be learned. The most commonly used
activation function is the logistic function, which has the form:

f (x) =
1

1 + exp(−cx)
(1.4)

where c is a constant. A comprehensive study can be found in [32].
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1.2.2.3 Other Machine Learning Techniques

Other machine learning techniques were also applied for fitness approximation in
EAs. An individual’s fitness can be estimated by its neighbors using the K-nearest-
neighbor algorithm [22]. The screening technique has been used for pre-selection
[2, 5]. Decision Tree (DT) is another machine learning technique which has been
used in [14].

1.2.3 Statistical Learning Methods

Statistical Learning methods for fitness approximation (basically statistical learning
models) as applied to EAs have gained much interest among researchers, and have
been used in several successful GA packages. In these methods, single or multiple
models are built during the optimization process to approximate the original fit-
ness function. These models are also referred to as approximate models, surrogates
or meta-models. Among these models, Polynomial Models, Kriging Models, and
Support Vector Machines (SVM) are the most commonly used.

1.2.3.1 Polynomial Models

Polynomial models (PM) are sometimes called Response Surfaces. Commonly used
quadratic polynomial models have the form:

F̂(X) = a0 +
n

∑
i=1

aixi +
n,n

∑
i=1, j=1

ai jxix j (1.5)

Where a0, ai and ai j are the coefficients to be fitted, n is the dimension of the
problem and xi is design variable number i.

Usually the least-squares approximation method is used to fit the unknown co-
efficients a0, ai and ai j. The main limitation of the least-squares method is that the
number of sample points (N) must exceed (n+1)(n+2)/2 for a second-order polyno-
mial model. Even if this condition is satisfied, the fitting cannot be guaranteed be-
cause the singularity problem may still arise. Another drawback of the least-squares
method is that its computational complexity grows quickly with the problem’s di-
mension which can be unacceptable. The gradient method is introduced to address
the problems of the least-squares method. More implementation details for using
these two methods to fit a polynomial model can be found in [23]. Polynomial
models are widely used as surrogates. One application can be found in [69], which
uses a response surface method to approximate the Pareto front in NSGA-II for an
expensive liquid-rocket engine design problem.

1.2.3.2 Kriging Models

The Kriging model consists of two component models which can be mathematically
expressed as:
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y(x) = f (x)+ Z(x) (1.6)

Where f (x) represents a global model and Z(x) is the realization of a stationary
Gaussian random function that creates a localized deviation from the global model.
Typically f (x) is a polynomial and can be as simple as an underlying constant β in
many cases, and then equation (1.6) becomes:

y(x) = β + Z(x) (1.7)

The estimated model of equation (1.7) is given as:

ŷ = β̂ + rT (x)R−1(y − f β̂) (1.8)

Where y is a vector of length N as defined in equation (1.8), ŷ is the estimated
value of y given the current input x, f is a column vector which is filled with ones,
and R is the correlation matrix which can be obtained by computing the correlation
function between any two sampled data points. The form of the correlation function
is specified by the user. Gaussian exponential correlation functions are commonly
used, which is why the Kriging model is also sometimes called a Gaussian process:

R(xi,x j) = exp

[
−

n

∑
k=1

θk

∣∣∣xi
k − x j

k

∣∣∣2] (1.9)

The correlation vector between x and the sampled data points is expressed as:

rT (x) =
[
R(x,x1),R(x,x2), . . . ,R(x,xn)

]T
(1.10)

Estimation of the parameters is often carried out using the generalized least squares
method or the maximum likelihood method. Detailed implementations can be found
in [24, 25].

In addition to the approximate values, the Kriging method can also provide accu-
racy information about the fitting in the form of confidence intervals for the estimated
values without additional computational cost. In [6, 28], a Kriging model is used to
build the global models because it is believed to be a good solution for fitting com-
plex surfaces. A Kriging model is used to pre-select the most promising solutions in
[29]. In [26, 27, 30], a Kriging model is used to accelerate the optimization or reduce
the expensive computational cost of the original fitness function. In [67], a Kriging
model with a pattern search technique is used to approximate the original expen-
sive function. In [70], a Gaussian process method is used for landscape search in a
multi-objective optimization problem that gives promising performance. One disad-
vantage of the Kriging method is that it is sensitive to the problem’s dimension. The
computational cost is unacceptable when the dimension of the problem is high.

1.2.3.3 Support Vector Machines (SVM)

The SVM model is primarily a classifier that performs classification tasks by con-
structing hyper-planes in a multidimensional space to separate cases with different
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class labels. Contemporary SVM models support both regression and classification
tasks and can handle multiple continuous and categorical variables. A detailed de-
scription of SVM models can be found in [40, 41]. SVM models compare favorably
to many other approximation models because they are not sensitive to local optima,
their optimization process does not depend on the problem dimensions, and over-
fitting is seldom an issue. Applications of SVM for fitness approximation can be
found in [42]. The regression SVM is used for constructing approximate models.
There are two types of regression SVMs: epsilon-SVM regression and nu-SVM re-
gression. The epsilon-SVM regression model is more commonly used for fitness
approximation, where the linear epsilon-insensitive loss function is defined by:

Lε(x,y, f ) = |y − f (x)| = max(0, |y − f (x)|− ε) (1.11)

The sum of the linear epsilon-insensitive losses must be minimized:

1
2

wT w+C
N

∑
i=1

Lε(xi,yi, f ) (1.12)

This is equivalent to a constrained minimization problem having the form:

1
2

wT w+C
N

∑
i=1

ζi +C
N

∑
i=1

ζ ∗
i (1.13)

Subject to the following constraints:

wTφ(xi)+ b − yi ≤ ε + ζ ∗
i (1.14)

yi − wTφ(xi)− bi ≤ ε + ζi (1.15)

ζi,ζ ∗
i ≥ 0, i = 1, . . . ,N (1.16)

Where φ(x) is called the kernel function. It may have the forms of linear, polyno-
mial, Gaussian, RBF and sigmoid functions. The RBF is by far the most popular
choice of kernel type used in SVMs. This is mainly because of their localized and
finite responses across the entire range of the real x-axis. This optimization problem
can be solved by using quadratic programming techniques.

1.2.4 Existing Research in Multi-surrogate Assisted EAs

For some real world applications, special approximation methods have been used.
For example, a one dimensional approximation of the Kubelka Munk model is used
to replace the expensive Monte Carlo method in an EA for analyzing colon tissue
structure [55]. In [58], a classifier with confidence information is evolved to replace
time consuming evaluations during tournament selection.



12 L. Shi and K. Rasheed

Fig. 1.4 A multiple surrogate model structure used in [18, 33]

Fig. 1.5 A multiple surrogate model structure used in [5]

In some applications, several approximation methods have been combined to
construct a type of fitness approximation model known as a Multi-surrogate. In
[18, 33] the MLPNN model was combined with clustering methods for construct-
ing approximate models (shown in Fig. 1.4). Fig. 1.5 shows another strategy using
clustering techniques and polynomial models together [5]. A trained RBF model
was used to generate sample points for the construction of polynomial models for
fitness approximation in [39]. In [28, 51], the Kriging method was used to construct
a global approximate model for pre-selection then RBF models were built using
those pre-selected sample points for further fitness approximation. Fig. 1.6 shows
the structure of this model. Multiple approximate models formed in a hierarchical
structure have been used to assist the fitness evaluations in 1.11. In [59, 62], multiple
local approximate models are built for each individual, and then these local models
are aggregated into an average or weighted average of all approximate models. In
[64, 65], multiple surrogates are built, and then the best surrogate is used [64] or
the weighted sum of all surrogates is used, where the weights associated with each
surrogate are determined based on the accuracy of the surrogate [65]. Fig. 1.7 shows
this model in detail.



1 A Survey of Fitness Approximation Methods 13

Fig. 1.6 A multiple surrogate model structure used in [51]

Fig. 1.7 A multiple surrogate model structure used in [59]

Multi-surrogates are also used for multi-objective optimization problems. In
[63], the NSGA-II algorithm, a multi-objective EA using PM and RBF surro-
gates together is presented. A local surrogate-assisted evolution strategy using KNN
and RBF models is introduced in [61]. For each new offspring in this strategy, a cu-
bic RBF surrogate is built using the k-nearest previously evaluated points. This local
RBF surrogate is then used to estimate the new off-spring’s fitness. Fig. 1.8 shows
the model structure used in [61]. In [66], Polynomial Models are used to estimate
the coefficients of the fitness surrogate. Thus the surrogate is made adaptive to char-
acteristics of the specific optimization problems.

A recent trend is to use multiple approximate models adaptively. In [60], both
global and local (for each cluster) surrogate models are used. The global model
adaptively evolves from a simple average of the fitness of all individuals in a pop-
ulation, all the way to a Support Vector Machine (SVM) model. The local models
follow a similar path but do not exceed quadratic polynomials. The model evolu-
tion depends on the time complexity as well as model accuracy for each model. A
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Fig. 1.8 A Multiple surrogates structure used in [61]

Fig. 1.9 Global approximate model evolution path in [60]

formula is used to decide whether to continue using the same type of model or
switch to the next at any time. Fig. 1.9 shows the evolution path.

1.3 Comparative Studies for Different Approximate Models

Many approximation methods have been introduced for special problem domains.
Even though these methods are claimed to save many function evaluations and to
be nearly as good as the original fitness function, they are bound to their special
domains, and thus no comparative studies have been conducted on them. On the
other hand, the performance of many general-purpose approximation methods has
been compared in early papers, especially for popular methods such as statistical
learning methods.
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The neural network model and the polynomial model were compared in [46, 72].
The study concluded that the performance of the two types of approximation was
comparable in terms of the number of function evaluations required to build the
approximations and the number of undetermined parameters associated with the ap-
proximations. However, the polynomial model had a much lower construction cost.
In [72], after evaluating both methods in several applications, the authors concluded
that both of them can perform comparably for modest data. In [43], a quadratic poly-
nomial model was found to be the best method among the polynomial model, RBF
network, and the Quick-prop neural network when the models were built for regions
created by clustering techniques. The authors were in favor of the polynomial model
because they found that it formed approximations more than an order of magnitude
faster than the other methods and did not require any tuning of parameters. The
authors also pointed out that the polynomial approximation was in a mathemati-
cal form which could be algebraically analyzed and manipulated, as opposed to the
black-box results that neural networks give.

The Kriging model and the neural network model were compared using bench-
mark problems in [47]. However, no clear conclusion was drawn about which model
is better. Instead, the author showed that optimization with a meta-model could lead
to degraded performance. Another comparison was presented in [45] between the
polynomial model and the Kriging model. By testing these two models on a real-
world engineering design problem, the author found that the polynomial and Kriging
approximations yielded comparable results with minimal difference in predictive ca-
pability. Comparisons between several approximate models were presented in [44],
which compared the performance of the polynomial model, the multivariate adaptive
splines’ model, the RBF model, and the Kriging model using 14 test problems with
different scales and nonlinearities. Their conclusion was that the polynomial model
is the best for low-order nonlinear problems, and the RBF model is the best for deal-
ing with high-order nonlinear problems (details shown in Table 1.1). In [59], four
types of approximate models - Gaussian Process (Kriging), RBF, Polynomial model
and Extreme Learning Machine Neural Network (ELMNN) - were compared on
artificial unconstrained benchmark domains. Polynomial Models (PM) were found
to be the best for final solution quality and RBF was found to be the best when
considering correlation coefficients between the exact fitness and estimated fitness.
Table 1.2 shows the performance ranks of these four models in terms of the quality
of the final solution.

So far different approximate models have been compared based on their perfor-
mance, but the word performance itself has not been clearly defined. This is because
the definition of performance may depend on the problem to be addressed, and mul-
tiple criteria need to be considered. Model accuracy is probably the most important
criterion, since approximate models with a low accuracy may lead the optimization
process to local optima. Model accuracy also should be based on new sample points
instead of the training data set points. The reason for this is that for some models
such as the neural network, overfitting is a common problem. In the case of over-
fitting, the model works very well on training data, yielding good model accuracy,
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Table 1.1 Summary of best methods in [44]

Low-order High-order
Nonlinearity Nonlinearity

Small Scale Polynomial RBF
Large Scale Kriging RBF
Overall Polynomial RBF

Table 1.2 Final quality measures for Kriging, PM. RBF and ELMNN approximate models
in [59]

Benchmark
domain

Method
Kriging PM RBF ELMNN

Ackley 2 1 4 3
Griewank 3 1 2 4

Rosenbrock 1 3 2 4
Step 3 1 2 4

but may perform poorly on new sample points. The optimization process could
easily go in the wrong direction if it is assisted by a model suffering from overfit-
ting. There are other important criteria to be considered, including robustness, effi-
ciency, and time spent on model construction and updating. A fair comparison would
consider the model accuracy as well as all of these criteria.

It is difficult to draw a clear conclusion on which model is the best for the reasons
stated above, though the polynomial model seems to be the best choice for a local
model when dealing with local regions or clusters and enough sample points are
available [43]. In such cases, the fitting problem usually has low-order nonlinearity
and the polynomial model is the best candidate according to [44]. The polynomial
model is also believed to perform the best for problems with noise [44]. As for high-
order nonlinear problems the RBF model is believed to be the best and it is the least
sensitive to the sample size and has the most robustness [44]. So the RBF model is a
good choice for a global model with or without many samples. In [72], NN is found
to perform significantly better than PM when search space is very complex and the
parameters are correctly set.

The SVM model is a powerful fitting tool that belongs to the class of kernel
methods. Because of the beneficial features of SVMs stated above, the SVM model
becomes a good choice for constructing a global model, especially for problems
with high dimension and many local optima, provided that a large sample of points
exists.
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1.4 The Working Styles of Fitness Approximation

There are two categories of surrogate incorporation mechanisms in EAs, as shown
in Fig. 1.10. In one category the original fitness is directly replaced by the estimated
fitness when the individual is evaluated throughout the optimization. Only a few
individuals have their exact fitness calculated for control purposes. In the other cat-
egory, the original fitness is kept for each individual and the approximate fitness is
not used to directly replace the original fitness. These two methods are reviewed
next.

Fig. 1.10 Working styles of fitness approximation

1.4.1 Direct Fitness Replacement Methods

Direct fitness replacement is straightforward. Individuals are evaluated by surro-
gates and then the estimated fitness is assigned to each individual. During the course
of the EA process, the approximate fitness assumes the role of the original fitness.
This method has been used in numerous research efforts [6, 12, 13, 14, 15, 16, 18,
19, 22, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 42, 48, 56]. The obvious draw-back
is that the inaccuracy of the approximate fitness may lead the EA to inferior local
optima. Consequently, the direct fitness replacement method needs a continuous cal-
ibration process called Evolution Control (described below). Even with Evolution
Control, convergence to true optima cannot be guaranteed.

1.4.2 Indirect Fitness Approximation Methods

The indirect surrogate method computes the exact fitness for each individual during
an EA process and the approximate fitness is used in other ways. For example, the
approximate fitness can be used for population pre-selection. In this method, instead
of generating a random initial population, an individual for the initial population
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can be generated by selecting the best individual from a number of uniformly dis-
tributed random individuals in the design space according to the approximate fitness
[5, 43, 49].

Approximate fitness can also be used for crossover or mutation in a similar man-
ner, through a technique known as Informed Operators [5, 17, 43, 49]. Under this
approach, the approximate models are used to evaluate candidates only during the
crossover and/or mutation process. After the crossover and/or mutation process,
the exact fitness is still computed for the newly created candidate solutions. Using
the approximate fitness indirectly in the form of Informed Operators - rather than di-
rect evaluation - is expected to keep the optimization moving toward the true global
optima and to reduce the risk of convergence to suboptimal solutions because each
individual in the population is still assigned its exact fitness [49]. Experimental re-
sults have shown that a surrogate-assisted informed operator-based multi objective
GA can outperform state-of-art multi objective GAs for several benchmark prob-
lems [5]. Informed Operators also make it easy to use surrogates adaptively, as the
number of candidates can be adaptively determined. Some of the informed operators
used in [49] are explained as follows:

• Informed initialization: Approximate fitness is used for population pre-selection.
Instead of generating a random initial population, an individual for the initial
population can be generated by selecting the best individuals from a number of
uniformly distributed random individuals in the design space according to the
approximate fitness.

• Informed mutation: To perform informed mutation, several random mutations
of the base point are generated. The mutation with the best approximate fitness
value is returned as the result.

• Informed crossover: Two parents are selected at random according to the usual
selection strategy. These two parents are not changed in the course of the
informed crossover operation. Several crossovers are conducted by randomly
selecting a crossover method, randomly selecting its internal parameters and
applying it to the two parents to generate a potential child. The surrogate is used
to evaluate every potential child, and the best child is selected as the outcome.

1.5 The Management of Fitness Approximation

For direct fitness replacement methods the management of the fitness approximation
is necessary to drive the EA to converge to global optima with the cost reduced as
much as possible. There are several ways to conduct the model management, as
shown in Fig. 1.11.

1.5.1 Evolution Control

Evolution Control uses surrogates together with original fitness functions in an
EA process where the original fitness functions are used to evaluate some/all
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Fig. 1.11 Management of fitness approximation

individuals in some/all generations. There are two categories of Evolution Con-
trol methods: Fixed Evolution Control and Adaptive Evolution Control. For fixed
evolution control, there are individual-based and generation-based methods. In in-
dividual-based evolution control, only some selected individuals are evaluated by
the exact fitness function. The individual selection can be random or using some
strategy, e.g., selecting the best individual (according to the surrogate) for evolution
control. In generation-based Evolution Control, all individuals in a selected gener-
ation will be evaluated by the original fitness function, the generation selection can
be random or with a fixed frequency. The adaptive Evolution Control adjusts the
frequency of control according to the fidelity of the surrogates.

1.5.2 Offline Model Training

Offline model training constructs surrogates based on human evaluation or previous
optimization history data. In this case, either the approximate model is of high fi-
delity or the original fitness cannot be easily evaluated during an EA process such
as evolutionary art, so the original fitness is never used. An example of this method
can be found in [50].

1.5.3 Online Model Updating

Fitness approximation may be constructed at an early stage of the EA process.
Because of the limited sample points, a surrogate may concentrate on the region
spanned by the existing sample points and not cover the rest of the search space
well. As the EA continues and new individuals enter into the population, the ac-
curacy of the previously built surrogate model will decrease. Thus the surrogate
model needs to be reformed using the old sample points together with the new sam-
ple points. This technique is known as online surrogate up-dating. There has been
considerable research with this method [3, 5, 6, 16, 19, 20, 26, 27, 28, 29, 30, 31].
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1.5.4 Hierarchical Approximate Models and Model Migration

The hierarchical surrogates’ method builds multiple models with a hierarchical
structure during the course of an EA process [51, 52]. In [51], a Gaussian process
model is built for the so-called global model. A user-specified percentage of the best
individuals according to the global model are selected to form a local search space.
Then Lamarckian evolution is performed involving a trust region-enabled gradient-
based search strategy that employs RBF local approximate models to accelerate
convergence in the local search space. In [52] the whole population is divided into
several sub-populations. Each sub-population constructs its own surrogate. At a cer-
tain interval, the individuals in the different sub-populations can migrate into other
sub-populations. This is called an Island Model. To gain a balance between the
model performance and the population diversity, the selection of migration size and
migration interval is important. It has been found that the migration interval plays a
more dominant role than migration size [58].

1.6 Case Studies: Two Surrogate-Assisted EA Real-World
Applications

1.6.1 The Welded Beam Design Domain

The Welded Beam Design problem is illustrated in Fig. 1.12. The goal for this design
is to use the least material to sustain a certain weight. It has four design variables
x = (h, l,t,b); the definition of Welded Beam Design problem can be found in the
appendix. The known optimal solution is 2.38116 with h = 0.2444, l = 6.2187,
t = 8.2915, and b = 0.2444.

We demonstrate it with three GA methods, GADO, GADO-R and ASAGA. GADO
[2] stands for Genetic Algorithm for Design Optimization, a GA that has proved to

Fig. 1.12 Welded Beam Structure
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Fig. 1.13 Welded Beam design with global optima 2.38116

be powerful for solving engineering design problems. GADO-R is based on GADO,
and includes global and local polynomial surrogate models structured by clustering
techniques. ASAGA [60] is an adaptive multi-surrogate assisted EA with a backbone
of a GADO. GADO was used with no approximate model assistance. GADO-R incor-
porates fixed quadratic polynomial surrogates through Informed Operators [45, 59].
All three methods ran 30 times with different random starting populations. The av-
erage best fitness values of the 30 runs with corresponding number of actual fitness
evaluations are shown in Fig. 1.13. The figure shows that the surrogate-assisted GA
outperforms the GA with no surrogate assistance and the adaptive surrogate-assisted
GA further outperforms the non-adaptive surrogate-assisted GA.

1.6.2 Supersonic Aircraft Design Domain

This domain concerns the conceptual design of supersonic transport aircraft. It is
summarized briefly here and is described in more detail in [74]. Fig. 1.14 shows a
diagram of a typical airplane automatically designed by the software system. The
GA attempts to find a good design for a particular mission by varying twelve of
the aircraft conceptual design parameters over a continuous range of values. An
optimizer evaluates candidate designs using a multidisciplinary simulator. The op-
timizer’s goal is to minimize the takeoff mass of the aircraft, a measure of merit
commonly used in the aircraft industry at the conceptual design stage. Takeoff mass
is the sum of fuel mass, which provides a rough approximation of the operating cost
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Fig. 1.14 Supersonic aircraft design problem

of the aircraft, and “dry”mass, which provides a rough approximation of the cost of
building the aircraft. In summary, the problem has 12 parameters and 37 inequality
constraints and only 0.6% of the search space is evaluable.

Fig. 1.15 shows a performance comparison in this domain. Each curve in the fig-
ure shows the average of 15 runs of GADO starting from random initial populations.
The experiments were done once for each surrogate: Least Square PM (LS), Quick-
Prop NN (QP) and RBF in addition to one without the surrogate-assisted informed
operators altogether, with all other parameters kept the same. Fig. 1.15 demonstrates
the performance with each of the three surrogate-assisted methods as well as per-
formance with no approximation at all (the solid line). The figure plots the average
(over the 15 runs) of the best measure of merit found so far in the optimization as
a function of the number of iterations. The figure shows that all surrogate-assisted
methods are better than the plain GADO and the LS approximation method gave the
best performance in all stages of the search in this domain.
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1.7 Final Remarks

Using fitness approximation methods to assist GAs and other Evolutionary Algo-
rithms has gained increasing popularity in recent years. This chapter presented a
survey of the popular and recent trends in approximation methods, control strate-
gies and management approaches. An interesting question in this area is: what is
the best model for fitness approximation? Though the answer depends on the prob-
lem and user requirements, we propose an interesting generic solution, which is
to try the simplest model first. If the performance is not satisfactory or degrades
with time, more sophisticated models can be used. So far many researchers use only
one type of approximation model, as in [26]. Some researchers use multiple mod-
els for different levels of approximation, but the approximate model itself is still
fixed [18, 33, 51]. An interesting new direction [60] is to use an adaptive model-
ing method. In this method, first a simple approximation can be used such as the
fitness inheritance or K-nearest neighbor method. If the fitting is not satisfactory,
a more sophisticated model can be used such as the polynomial model. There are
several levels inside the polynomial model method itself from the linear polyno-
mial model to cubic polynomial model. They can be applied following a simple to
complex direction. If this level of approximation is still inadequate, more complex
models should be introduced such as the RBF, Kriging or SVM models. Usually the
more complex models give better fitting accuracy but need more construction time.
This adaptive method can provide the best trade-off between model performance
and efficiency by adaptively adjusting the fitness approximation.
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Appendix: Definitions of Welded Beam Design

Minimize fwieldedbeam(x) = 1.10471h2l + 0.04811tb(14 + l) (1.17)

Subject to13600 − τ(x) ≥ 0 (1.18)

30000 −σ(x) ≥ 0 (1.19)

b − h ≥ 0 (1.20)

Pc(x)− 6000 ≥ 0 (1.21)

0.25 − δ (x) ≥ 0 (1.22)

0.125 ≤ h ≤ 10 (1.23)

0.1 ≤ l, t,b ≤ 10 (1.24)

The terms τ(x), σ(x), and δ (x) are given below:

τ(x) =

√
τ ′(x)2 + τ ′′(x)2 + lτ ′(x)τ ′′(x)/

√
0.24(l2 +(h + t)2) (1.25)

σ(x) = 504000/(t2b) (1.26)

Pc(x) = 64746.022(1 − 0.0282346t)tb3 (1.27)

δ (x) = 2.1952/(t3b) (1.28)

where

τ ′(x) = 6000/(
√

2hl) (1.29)

τ ′′(x) =
6000(14 + 0.5l)

√
0.25(lw +(h + t)2)

2(0.707hl(l2/12 + 0.25(h + t)2))
(1.30)

References

[1] Abuthinien, M., Chen, S., Hanzo, L.: Semi-blind joint maximum likelihood channel
estimation and data detection for MIMO systems. IEEE Signal Processing Letters 15,
202–205 (2008)

[2] Rasheed, K.: GADO: A genetic algorithm for continuous design optimization. Techni-
cal Report DCS-TR-352, Department of Computer Science, Rutgers University. Ph.D.
Thesis (1998)

[3] Ong, Y.S., Nair, P.B., Keane, A.J., Wong, K.W.: Surrogate-Assisted Evolutionary Opti-
mization Frameworks for High-Fidelity Engineering Design Problems. In: Jin, Y. (ed.)
Knowledge Incorporation in Evolutionary Computation. Studies in Fuzziness and Soft
Computing, pp. 307–332. Springer, Heidelberg (2004)

[4] Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, Chichester (1995)
[5] Chafekar, D., Shi, L., Rasheed, K., Xuan, J.: Multi-objective GA optimization using

reduced models. IEEE Trans. on Systems, Man, and Cybernetics: Part C 9(2), 261–265
(2005)

[6] Chung, H.-S., Alonso, J.J.: Multi-objective optimization using approximation model-
based genetic algorithms. Technical report 2004-4325, AIAA (2004)



1 A Survey of Fitness Approximation Methods 25

[7] Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing Journal 9(1), 3–12 (2005)

[8] Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization Methods and
Application. Wiley, New York (1983)

[9] Deb, K.: Optimization for Engineering Design: Algorithms and Examples. Prentice-
Hall, New Delhi (1995)

[10] Weinberger, E.D.: Fourier and Taylor series on fitness landscapes. Biological Cybernet-
ics 65(55), 321–330 (1991)

[11] Hordijk, W., Stadler, P.F.: Amplitude Spectra of Fitness Landscapes. J. Complex Sys-
tems 1, 39–66 (1998)

[12] Smith, R., Dike, B., Stegmann, S.: Fitness inheritance in genetic algorithms. In: Pro-
ceedings of ACM Symposiums on Applied Computing, pp. 345–350. ACM, New York
(1995)

[13] Sastry, K., Goldberg, D.E., Pelikan, M.: Don’t evaluate, inherit. In: Proceedings of Ge-
netic and Evolutionary Computation Conference, pp. 551–558. Morgan Kaufmann, San
Francisco (2001)

[14] Pelikan, M., Sastry, K.: Fitness Inheritance in the Bayesian Optimization Algorithm. In:
Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 48–59. Springer, Heidelberg
(2004)

[15] Bui, L.T., Abbass, H.A., Essam, D.: Fitness inheritance for noisy evolutionary multi-
objective optimization. In: Proceedings of the 2005 conference on Genetic and evolu-
tionary computation, pp. 779–785 (2005)

[16] Kim, H.-S., Cho, S.-B.: An efficient genetic algorithm with less fitness evaluation by
clustering. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 887–
894. IEEE, Los Alamitos (2001)

[17] Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.:
An informed operator based genetic algorithm for tuning the reaction rate parame-
ters of chemical kinetics mechanisms. In: Deb, K., et al. (eds.) GECCO 2004. LNCS,
vol. 3103, pp. 945–956. Springer, Heidelberg (2004)

[18] Jin, Y., Sendhoff, B.: Reducing Fitness Evaluations Using Clustering Techniques and
Neural Network Ensembles. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102,
pp. 688–699. Springer, Heidelberg (2004)

[19] Ong, Y.S., Keane, A.J., Nair, P.B.: Surrogate-Assisted Coevolutionary Search. In: 9th
International Conference on Neural Information Processing, Special Session on Trends
in Global Optimization, Singapore, pp. 2195–2199 (2002)

[20] Rasheed, K.: An incremental-approximate-clustering approach for developing dynamic
reduced models for design optimization. In: Proceedings of the Congress on Evolution-
ary Computation (CEC 2002), pp. 986–993 (2000)

[21] Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective hBOA, clustering, and scalabil-
ity. In: Proceedings of the 2005 conference on Genetic and evolutionary computation,
Washington DC, USA, pp. 663–670 (2005)

[22] Takagi, H.: Interactive evolutionary computation. Fusion of the capabilities of EC opti-
mization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296 (2001)

[23] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in
C: the Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge
(1992)

[24] Gibbs, M., MacKay, D.J.C.: Efficient Implementation of Gaussian Processes. Cavendish
Laboratory, Cambridge (1997) (unpublished manuscript)



26 L. Shi and K. Rasheed

[25] Williams, C.K.I., Rasmussen, C.E.: Gaussian Processes for regression. In: Touretzky,
D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing
Systems, vol. 8. MIT Press, Cambridge (1996)
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[36] Jin, Y., Hüsken, M., Olhofer, M., Sendhoff, B.: Neural networks for fitness approxima-
tion in evolutionary optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolu-
tionary Computation, pp. 281–305. Springer, Berlin (2004)

[37] Papadrakakis, M., Lagaros, N., Tsompanakis, Y.: Optimization of large-scale 3D trusses
using Evolution Strategies and Neural Networks. Int. J. Space Structures 14(3), 211–223
(1999)

[38] Schneider, G.: Neural networks are useful tools for drug design. Neural Networks 13,
15–16 (2000)

[39] Shyy, W., Tucker, P.K., Vaidyanathan, R.: Response surface and neural network tech-
niques for rocket engine injector optimization. Technical report 99-2455, AIAA (1999)

[40] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cam-
bridge Press (2000)

[41] Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Patter Analysis. Cambridge Press
(2004)



1 A Survey of Fitness Approximation Methods 27
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Chapter 2
A Review of Techniques for Handling Expensive
Functions in Evolutionary
Multi-Objective Optimization

Luis V. Santana-Quintero, Alfredo Arias Montaño,
and Carlos A. Coello Coello∗

Abstract. Evolutionary algorithms have been very popular for solving multi-
objective optimization problems, mainly because of their ease of use, and their wide
applicability. However, multi-objective evolutionary algorithms (MOEAs) tend to
consume an important number of objective function evaluations, in order to achieve
a reasonably good approximation of the Pareto front. This is a major concern when
attempting to use MOEAs for real-world applications, since we can normally af-
ford only a fairly limited number of fitness function evaluations in such cases. De-
spite these concerns, relatively few efforts have been reported in the literature to
reduce the computational cost of MOEAs. It has been until relatively recently, that
researchers have developed techniques to achieve an effective reduction of fitness
function evaluations by exploiting knowledge acquired during the search. In this
chapter, we analyze different proposals currently available in the specialized litera-
ture to deal with expensive functions in evolutionary multi-objective optimization.
Additionally, we review some real-world applications of these methods, which can
be seen as case studies in which such techniques led to a substantial reduction in
the computational cost of the MOEA adopted. Finally, we also indicate some of the
potential paths for future research in this area.

2.1 Introduction

In many disciplines, optimization problems have, in a natural form, two or more
objectives that we aim to minimize simultaneously, and which are normally in con-
flict with each other. These problems are called “multi-objective”, and their solution
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gives rise not to one, but to a set of solutions representing the best possible trade-
offs among the objectives (the so-called Pareto optimal set). In the absence of user’s
preferences, all the solutions contained in the Pareto optimal set are equally good.
When plotted in objective function space, the contents of the Pareto optimal set
produces the so-called Pareto front.

Evolutionary algorithms (EAs) have become a popular search engine for solving
multi-objective optimization problems [17, 21], mainly because they are very easy
to use and have a wide applicability. However, multi-objective evolutionary algo-
rithms (MOEAs) normally require a significant number of objective function eval-
uations, in order to achieve a reasonably good approximation of the Pareto front,
even when dealing with problems of low dimensionality. This is a major concern
when attempting to use MOEAs for real-world applications, since in many of them,
we can only afford a fairly limited number of fitness function evaluations.

Despite these concerns, relatively little efforts have been reported in the litera-
ture to reduce the computational cost of MOEAs, and several of them only focus
on algorithmic complexity (see for example [36]), in which little else can be done
because of the theoretical bounds related to nondominance checking [45].

It has been until relatively recently, that researchers have developed techniques
to achieve a reduction of fitness function evaluations by exploiting knowledge ac-
quired during the search [42]. Knowledge of past evaluations can also be used to
build an empirical model that approximates the fitness function to optimize. This
approximation can then be used to predict promising new solutions at a smaller eval-
uation cost than that of the original problem [40, 42]. Current functional approxima-
tion models include Polynomials (response surface methodologies [30, 65]), neural
networks (e.g., multi-layer perceptrons (MLPs) [33, 34, 62]), radial-basis function
(RBF) networks [60, 77, 83], support vector machines (SVMs) [4, 71], Gaussian
processes [6, 78], and Kriging [24, 66] models. Other authors have adopted fitness
inheritance [67] or cultural algorithms [46] for the same purposes.

In this chapter several possible schemes are described, in which the use of the
knowledge from past solutions can help to guide the search of the new solutions, with
particular emphasis on MOEAs. The remainder of this chapter is organized as fol-
lows. In Section 2.2, we present basic concepts related to multi-objective optimiza-
tion. Then, in Section 2.3 we discuss several schemes that incorporate knowledge
into the fitness evaluations of an evolutionary algorithm, providing a brief explana-
tion of the surrogate models that have been used to approximate the fitness function.
Next in Section 2.4 some selected research works are discussed. Such works are
related to real–world engineering optimization problems, and can be considered as
case studies in which the use of the described techniques led to a substantial reduc-
tion in the computational cost of the MOEA adopted. Finally, in Section 2.5, our
conclusions and some potential paths for future research in this area are indicated.

2.2 Basic Concepts

The general multi-objective optimization problem (MOP) can be formally defined
as the problem of finding:
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x∗ = (x∗
1,x

∗
2, . . . ,x

∗
n)

T which satisfies the m inequality constraints:

gi(−→x ) ≤ 0; i = 1, . . . ,m

the p equality constraints:

h j(−→x ) = 0; j = 1, . . . , p

and optimizes the vector function:

f(x) = [ f1(−→x ), f2(−→x ), . . . , fk(−→x )]T

In other words, we aim to determine from among the set S of all vectors (points)
which satisfy the constraints those that yield the optimum values for all the k
objective functions simultaneously. The constraints define the feasible region S and
any point −→x in the feasible region is called a feasible point.

2.2.1 Pareto Dominance

Pareto dominance is formally defined as follows:

A vector −→u = (u1, . . . ,uk) is said to dominate a vector −→v = (v1, . . . ,vk) if and
only if −→u is partially less than −→v , i.e., ∀i ∈ {1, . . . ,k},ui ≤ vi ∧∃i ∈ {1, . . . ,k} : ui <
vi (assuming minimization).

In order to say that a solution dominates another one, it needs to be strictly better
in at least one objective, and not worse in any of them. So, when we are comparing
two different solutions A and B, there are 3 possible outcomes:

• A dominates B.
• A is dominated by B.
• A and B are incomparable.

2.2.2 Pareto Optimality

The formal definition of Pareto optimality is provided next:

A solution −→xu ∈ S (where S is the feasible region) is said to be Pareto optimal
if and only if there is no −→xv ∈ S for which v = f (xv) = (v1, . . . ,vk) dominates u =
f (xu) = (u1, . . . ,uk), where k is the number of objectives.

In words, this definition says that xu is Pareto optimal if there exists no feasible
vector xv which would decrease some objective without causing a simultaneous
increase in at least one other objective (assuming minimization).

This definition does not provide us a single solution (in decision variable space),
but a set of solutions which form the so-called Pareto Optimal Set (P∗). The vectors
that correspond to the solutions included in the Pareto optimal set are nondominated.
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Fig. 2.1 Mapping of the Pareto optimal solutions to the objective function space

2.2.3 Pareto Front

When all nondominated solutions are plotted in objective function space, the
nondominated vectors are collectively known as the Pareto Front (PF∗). Formally:

PF∗ := {−→
f (x) = [ f1(x), . . . , fk(x)]T |x ∈ P∗}

It is, in general, impossible to find an analytical expression that defines the Pareto
front of a MOP, so the most common way to get the Pareto front is to compute a suf-
ficient number of points in the feasible region, and then filter out the nondominated
vectors from them.

The previous definitions are graphically depicted in Figure 2.1, showing the
Pareto front, the Pareto optimal set and the dominance relations among solutions.

2.3 Knowledge Incorporation

From the many techniques adopted to solve such multi-objective optimization prob-
lems, evolutionary algorithms are among the most popular mainly because of their
population-based nature, which is very useful to generate several nondominated
solutions in a single run. However, dealing with a large population size and a
large number of generations make MOEAs an unaffordable choice (computation-
ally speaking) in certain applications, even when parallelism is adopted. In general,
MOEAs can be unaffordable for an application when:

• The evaluation of the fitness functions is computationally expensive (i.e., it takes
from minutes to hours).

• The fitness functions cannot be defined in an algebraic form (e.g., when the
fitness functions are generated by a simulator).

• The total number of evaluations of the fitness functions is limited by financial con-
straints (i.e., there is a financial cost involved in computing the fitness functions).
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Fig. 2.2 A taxonomy of approaches for incorporating knowledge into evolutionary
algorithms

Jin et al. [40] presented a taxonomy of approaches which incorporate knowledege
into EAs (see Figure 2.2). From this taxonomy, we can distinguish three main types
of strategies or approaches to deal with expensive fitness functions:

Problem Approximation: Tries to replace the original statement of the problem
by one which is approximately the same as the original problem but which is
easier to solve. To save the cost of the experiments, numerical simulations instead
of physical experiments are used to pseudo-evaluate the performance of a design.

Functional Approximation: In this case, a new expression is constructed for
the objective function based on previous data obtained from the real objec-
tive functions. The models obtained from the available data are often known as
meta-models or surrogates (see Section 2.3.1).

Evolutionary Approximation: This approximation is specific for EAs and tries to
save function evaluations by estimating an individual’s fitness from other similar
individuals. Two popular subclasses in this category are fitness inheritance and
clustering.

2.3.1 Surrogates

In many practical engineering problems, we have black-box objective functions
whose algebraic definitions are not known. In order to construct an approxima-
tion function, it is required to have a set of sample points that help us to build a
meta-model of the problem. The objective of such meta-model is to reduce the total
number of evaluations performed on the real objective functions, while maintaining
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a reasonably good quality of the results obtained. Thus, such meta-model is used to
predict promising new solutions at a smaller evaluation cost than that of the original
problem.

The accuracy of the surrogate model relies on the number of samples provided
in the search space, as well as on the selection of the appropriate model to represent
the objective functions. There exist a variety of techniques for constructing surrogate
models (see for example [79]). One example is least-square regression using low-
order polynomials, also known as response surface methods. Comparisons of several
surrogate modeling techniques have been presented by Giunta and Watson [27] and
by Jin et al. [39].

A surrogate model is built when the objective functions are to be estimated. This
local model is built using a set of data points that lie on the local neighborhood of
the design. Since surrogate models will probably be built thousands of times during
the search, computational efficiency becomes a major issue of their construction
process.

In [43], Knowles and Nakayama present a survey of meta-modeling approaches
to solve specific problems. The authors discuss the problem on how to model each
objective function and how to improve the Pareto approximation set using a trade-
off method proposed by Nakayama et al. [56]. In multi-objective optimization prob-
lems, the trade-off method tries to satisfy an aspiration level at the k-th iteration, with
the help of a trade-off operator which changes the k-th level if the decision maker
(DM) is not satisfied with the solution. So, they combine the satisficing trade-off
method and meta-modeling for supporting the DM to get a final solution with a low
number of fitness function evaluations. They use the µ − v Support Vector Regres-
sion method [57] as their meta-model and include two real-world multi-objective
optimization problems, using also a Radial Basis Function Network with a Genetic
Algorithm in searching the optimal value of the predicted objective function [58].
The proposed approach obtains good solutions within 1/10 or less analysis time
than a conventional optimization approach based on a quasi-Newton method with
approximated differentials.

2.3.2 Polynomials: Response Surface Methods (RSM)

The response surface methodology comprises three main components: (1) regres-
sion surface fitting, in order to obtain approximate responses, (2) design of experi-
ments in order to obtain minimum variances of the responses and (3) optimizations
using the approximated responses.

An advantage of this technique is that the fitness of the approximated response
surfaces can be evaluated using powerful statistical tools. Additionally, the mini-
mum variances of the response surfaces can be obtained using design of experiments
with a small number of experiments.

For most response surfaces, the functions adopted for the approximations are
polynomials because of their simplicity, although other types of functions are, of
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course, possible. For the cases of quadratic polynomials, the response surface is
described as follows:

ŷ = (β0)+
n

∑
i=1

(βi ·xi)+
n

∑
i, j=1,i≤ j

(βi, j ·xi ·x j) (2.1)

where n is the number of variables, and β0 and βi are the coefficients to be calcu-
lated. To estimate the unknown coefficients of the polynomial model, both the least
squares method (LSM) and the gradient method can be used, but either of them re-
quires at least the same number of samples of the real objective function than the βi

coefficients in order to obtain good results.

2.3.3 Gaussian Process or Kriging
An alternative approach for constructing surrogate models is to use a Gaussian Pro-
cess Model (also known as Kriging), which is also referred to as “Design and Analy-
sis of Computer Experiments” (DACE) model [68] and Gaussian process regression
[82]. This approach builds probability models through sample data and estimates
the function values at every untested point with a Gaussian distribution.

In Kriging, the meta-model prediction is formed by adding up two different
models as follows:

y(−→x ) = a(−→x )+ b(−→x )

where a(−→x ) represents the “average” long-term range behavior and the expected
value of the true function. This function can be modeled in various ways, such as
with polynomials or with trigonometric series as:

a(−→x ) = a0 +
L

∑
i=1

R

∑
j=1

ai j(xi) j

where: R is the polynomial order with L dimensions and b(−→x ) stands for a local
deviation term. b(−→x ) is a Gaussian random function with zero mean and non-zero
covariance that represents a localized deviation from the global model. This function
represents a short-distance influence of every data point over the global model. The
general formulation for b(−→x ) is a weighted sum of N functions, Kn(x) that represent
the covariance functions between the nth data point and any point x:

b(−→x ) =
N

∑
n=1

bnK(h(x,xn)) and h(x,xn) =

√
L

∑
i=1

(
xi − xin

xmax
i − xmin

i

2
)

where xmin
i and xmax

i are the lower an upper bounds of the search space and xin

denotes the i − th component of the data point xn. However, the shape of K(h) has
a strong influence on the resulting aspect of the statistical model. That is the reason
why it is said that Kriging is used as an estimator or an interpolator.
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Table 2.1 Radial basis functions

Type of Radial Function
LS linear splines |r|
CS cubic splines |r|3

MQS multiquadrics splines
√

1+(εr)2

TPS thin plate splines |r|2m+1 ln |r|
GA Gaussian e−(εr)2

2.3.4 Radial Basis Functions

Radial Basis Functions (RBFs) were first introduced by R. Hardy in 1971 [32].
Let’s suppose we have certain points (called centers) −→x 1, . . . ,

−→x n ∈ Rd . The linear
combination of the function g centered at the points −→x is given by:

f : Rd 
→ R : −→x 
→
n

∑
i=1

λig(−→x −−→xi ) =
n

∑
i=1

λiφ(‖−→x −−→xi ‖) (2.2)

where ‖−→x − −→xi ‖ is the Euclidean distance between the points −→x and −→x i. So, f
becomes a function which is in the finite dimensional space spanned by the basis
functions:

gi : −→x 
→ g(‖−→x −−→xi ‖)

Now, let’s suppose that we already know the values of a certain function H : Rd 
→ R
at a set of fixed locations −→xi , . . . ,

−→xn . These values are named f j = H(−→x j ), so we try
to use the −→x j as centers in the equation 2.2. If we want to force the function f to take
the values f j at the different points −→x j , then we have to put some conditions on the
λi. This implies the following:

∀ j ∈ {1, . . . ,n} f j = f (−→x j ) =
n

∑
i=1

(λi ·φ(‖−→x j −−→xi ‖))

In these equations, only the λi are unknown, and the equations are linear in their
unknowns. Therefore, we can write these equations in matrix form:

⎡⎢⎢⎢⎣
φ(0) φ(‖x1 − x2‖) . . . φ(‖x1 − xn‖)

φ(‖x2 − x1‖) φ(0) . . . φ(‖x2 − xn‖)
...

...
...

φ(‖xn − x1‖) φ(‖xn − x2‖) . . . φ(0)

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
λ1

λ2
...
λn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f1

f2
...
fn

⎤⎥⎥⎥⎦ (2.3)

Typical choices for the basis function g(x) include linear splines, cubic splines,
multiquadrics, thin-plate splines and Gaussian functions as shown in Table 2.1.



2 A Review of Techniques for Handling Expensive Functions 37

W W W

W = hidden layer

Y = output layer

Y Y Y Y

X X

X = input layer

Fig. 2.3 A graphical representation of an MLP network with one hidden layer

2.3.5 Artificial Neural Networks

An ANN basically builds a map between a set of inputs and the corresponding
outputs, and are good to deal with nonlinear regression analysis with noisy signals
[5]. A multilayer feedforward neural network consists of an array of input nodes
connected to an array of output nodes through successive intermediate layers. Each
connection between nodes has a weight, which initially has a random value, and that
is adjusted during a training process. The output of each node of a specific layer is
a function of the sum on the weighted signals coming from the previous layer. The
crucial points in the construction of an ANN are the selection of inputs and outputs,
the architecture of the ANN, that is, the number of layers and the number of nodes
in each layer, and finally, the training algorithm.

The multi-layer perceptron (MLP) is a multilayered feedforward network that
has been widely used in function approximation problems, because it has been often
found to provide compact representations of mappings in real-world problems. An
MLP is composed of neurons and the output (y) of each neuron is thus:

y = φ

(
n

∑
i=1

wi ·ai + b

)
where ai are the inputs of the neuron, and wi is the weight associated with the ith

input. The nonlinear function φ is called the activation function as it determines the
activation level of the neuron.

In Figure 2.3, we show an MLP network with one layer of linear output neu-
rons and one layer of nonlinear neurons between the input and output neurons. The
middle layers are usually called hidden layers.

To learn a mapping Rn → Rm by an MLP, its architecture should be the following:
it should have n input nodes and m output nodes with a single or multiple hidden
layer. The number of nodes in each hidden layer is generally a design decision.
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2.3.5.1 Training an ANN

In general terms, supervised training consists of presenting to the network patterns
whose output we know (the training set) finding the output of the net and adjusting
the weights so as to make the actual output more like the desired (or teaching signal).
The two most useful training protocols are: off-line and on-line. In off-line learning,
all the data are stored and can be accessed repeatedly. In on-line learning, each case
is discarded after it is processed and the weights are updated. With off-line learning,
we can compute the objective function for any fixed set of weights, so we can see
whether or not we are making progress in training.

Error backpropagation is the simplest and most widely used algorithm to train
feedforward neural networks. In this algorithm the training is performed by mini-
mizing a loss function, usually the sum of square errors over the N elements of the
training set. In this case, it is adopted a generalization of the square error function
given by:

J(W ) =
1
2

N

∑
i=1

c

∑
k=1

(tki − zki)
2 =

1
2

N

∑
i=1

||−→ti −−→zi ||2

where ti and zi are the ith-target and the ith-network output vectors of length c, re-
spectively; W represents all the weights in the network. The backpropagation learn-
ing rule is based on a gradient descent. The weights are initialized with random
values, and are changed in a direction to reduce the error following the next rule:

Wnew = Wold −η
∂J
∂W

The weight update for the hidden-output weights is given by:

∂Wk j = η(tk − zk) f ′(netk)y j

and the input-to-hidden weights learning rule is:

∂Wji = η ·xi · f ′(net j)
n

∑
k=1

wk j∂k

where η is the learning rate, i, j,k are the corresponding node indexes for each layer
and net j is the inner product of the input layer with the weights wji at the hidden unit.

2.3.6 Support Vector Machines

Support vector machines (SVM) have become popular in recent years for solving
problems in classification, regression and novelty detection. An important property
of support vector machines is that the determination of the model parameters cor-
responds to a convex optimization problem, and thus, any local solution found is
also a global optimum. In SVM regression, our goal is to find a function f (x) that
has at most an ε deviation from the obtained targets yi for all the training data, and
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at the same time is as flat as possible. Let’s suppose we are given training data
χ = (xt ,yt)N

t=1 where yt ∈ R. Then, the f (x) is given by:

f (x) = 〈w,x〉+ b with w ∈ Rd ,x ∈ Rd ,b ∈ R

where 〈 · , ·〉 denotes the dot product in χ. A small w means that the regression is
flat. One way to ensure this, is to minimize the norm, ||w||2 = 〈w,w〉. The problem
can be written as a convex optimization problem:

minimize 1
2 ||w||2 (2.4)

sub ject to

{
yi −〈w,xi〉− b ≤ ε
〈w,xi〉+ b − yi ≤ ε

And one can introduce two slack variables ξi,ξ∗
i , for positive and negative devia-

tions, ξi ≥ 0 and ξ∗
i ≥ 0, where ξi > 0 corresponds to a point for which 〈w,xi〉+b >

yi + ε and ξ∗
i > 0 corresponds to a point for which 〈w,xi〉+ b < yi − ε (as in Fig-

ure 2.4):

minimize C∑l
i=1(ξi + ξ∗

i )+ 1
2 ||w||2 (2.5)

sub ject to

⎧⎨⎩
yi −〈w,xi〉− b ≤ ε+ ξi

〈w,xi〉+ b − yi ≤ ε+ ξ∗
i

ξi,ξ∗
i ≥ 0

The constant C > 0 determines the trade-off between the flatness of f and the
amount up to which deviations larger than ε are tolerated. The ε-insensitive loss
function [80] (see equation (2.6)) means that we tolerate errors up to ε and also
that errors beyond that value have a linear rather than a quadratic effect. This error
function is therefore more tolerant to noise and is thus, more robust.

|ξ|ε =
{

0, if |ξ| ≤ ε;
|ξ|− ε, otherwise.

(2.6)

Figure 2.4, shows a plot of the ε-insensitive loss function. Note that only the points
outside the shaded region contribute to the cost of the function. It turns out that in
most cases, the optimization problem defined by equation (2.5) can be solved more
easily in its dual formulation. The dual formulation also provides the capability for
extending SVM to nonlinear functions using a standard dualization method based on
Lagrange multipliers, as described by Fletcher [25]. So, optimizing the Lagrangian
and substituting ti = 〈w,xi〉 for simplicity, we have:

L = C
N

∑
i=1

(ξi + ξ∗
i )+

1
2
||w||2 −

N

∑
i=1

(µiξi + µ∗
i ξ∗

i )

−
N

∑
i=1

αi(ε+ ξi + yn − tn)−
N

∑
i=1

α∗
i (ε+ ξ∗

i + yn − tn) (2.7)
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Then, we can substitute for y(x) using the linear model equation: y(x) = wTφ(x)+b
and set the derivatives of the Lagrangian with respect to 1) w, 2) b, 3) ξi and 4) ξ∗

i
to zero, giving:

∂L
∂w

= 0 ⇒ w =
N

∑
i=1

(αi −α∗
i )φ(xi) (2.8)

∂L
∂b

= 0 ⇒
N

∑
i=1

(αi −α∗
i ) = 0 (2.9)

∂L
∂ξi

= 0 ⇒ αi + µi = C (2.10)

∂L
∂ξi

= 0 ⇒ α∗
i + µ∗

i = C (2.11)

Using these results to eliminate the corresponding variables from the Lagrangian,
we see that the dual problem involves maximizing:

L′(a,a∗)=−1
2

N

∑
i=1

N

∑
j=1

(αi −α∗
i )(α j −α∗

j)k(xi,x j)− ε
N

∑
i=1

(αi +α∗
i )+

N

∑
i=1

(αi −α∗
i )tn

(2.12)
with respect to αi and α∗

i , where k(xi,x j) = φ(xi)T ·φ(x j) is the kernel function. So,
the problem becomes a constrained maximization problem with the box constraints:

0 ≤ αi ≤ C

0 ≤ α∗
i ≤ C

And the predictions for new inputs can be made using:

y(x) =
N

∑
i=1

(αi −α∗
i )k(x,xi)+ b (2.13)

The support vectors are those data points that contribute to predictions given by
equation 2.13, in other words those for which either αi �= 0 or α∗

i �= 0. These are
points that lie on the boundary of the ε-tube or outside the tube. All points within
the tube have αi = α∗

i = 0.

2.3.7 Clustering

Clustering is the unsupervised classification of patterns into groups (or clusters).
The clustering problem has been addressed in many contexts and by researchers in
many disciplines [35].



2 A Review of Techniques for Handling Expensive Functions 41

Fig. 2.4 ε-insensitive loss function for SVM

Typical pattern clustering involves the following steps:

(1)Pattern Representation: it refers to the number of classes, number of patterns,
and features available to the clustering algorithm.

(2)Definition of a Pattern Proximity: it is usually measured by a distance function
defined on pairs. A simple distance measure such as the Euclidean distance can
often be used to reflect dissimilarity between two patterns.

(3)Clustering or Grouping: it can usually be hard (a partition of the data into well-
defined groups) or fuzzy (where each pattern belongs in certain degree to each of
the output clusters).

(4)Data Abstraction (if necessary): it is the process of extracting a simple repre-
sentation of a data set, and a compact description of each cluster, such as the
centroid.

(5)Assessment of Output (if necessary): it distinguishes a good clustering result
from a poor one, it attempts to study the cluster tendency, and it analyzes the
clustering result with a specific criterion of optimality.

Although, there is no specific approach that uses only clustering to deal with the
problem of reducing the number of objective function evaluations of a problem,
clustering techniques are commonly used in combination with surrogates. The com-
putational cost of a surrogate method can become prohibitively high when the size
of the training data set is very large, because of the time that it could require to
process the data set. In such cases, it is common to cluster the whole data set into
several small clusters and then try to build an independent local model from them.

2.3.8 Fitness Inheritance

Fitness Inheritance is a technique that was introduced by Smith et al. [72], whose
main motivation is to reduce the total number of fitness function evaluations per-
formed by an evolutionary algorithm. The mechanism works as follows: when as-
signing the fitness to an individual, some times we evaluate the objective function
as usual, but the rest of the time, we assign fitness as an average of the fitness of the
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parents. This saves one fitness function evaluation, and is based on the assumption
of similarity of an offspring to its parents.

Fitness inheritance must not be always applied, since the algorithm needs to use
the true fitness function several times, in order to obtain enough information to guide
the search. The percentage of time in which fitness inheritance is applied is called
inheritance proportion. If this inheritance proportion is 1, the algorithm is most
likely to prematurely converge [8].

It is important to mention that some researchers consider this mechanism not
so useful in complex or real world problems, under the argument that it has been
only applied in “easy” problems. For example, Ducheyne et al. [23] tested the orig-
inal scheme of fitness inheritance on a standard binary genetic algorithm and the
Zitzler-Deb-Thiele (ZDT) [84] multiobjective test problems, concluding that fitness
inheritance was not useful when dealing with difficult shapes of the Pareto front.
Other authors, however, have successfully applied fitness inheritance to the ZDT
and other (more complicated) test problems (see for example [67]).

2.4 Real-World Applications

In this section, we present some selected research work in which a real-world multi-
objective engineering optimization problem was solved using a MOEA coupled to
a technique for reducing the computational cost involved. There are many engineer-
ing disciplines which require expensive function evaluations. From them, we chose
aeronautical/aerospace engineering, because it presents problems having high CPU
time demand, high nonlinearity and, some times, also high dimensionality. All of
these features are also common in other engineering optimization problems, and we
consider them representative of the main sources of difficulty in engineering opti-
mization in general.

Aeronautical and aerospace engineering are disciplines in which the solution of
multi-objective/multi-disciplinary problems is a standard practice. During the last
three decades, the process of engineering design in these industries has been revo-
lutionized as computational simulation has come to play an increasingly dominant
role. The increasing demand of optimal and robust designs, driven by time to mar-
ket, economics and environmental constraints, along with the increasing computing
power available, has changed the role of computational simulations from being used
only as analysis tools to be used as design optimization tools.

Among the problems with expensive evaluations identified in these
disciplines are the following:

• Aerodynamic Shape Optimization: This type of optimization problem ranges
from 2D to complex 3D shapes. Typical optimization applications for 2D prob-
lems comprise Wing and Turbine Airfoil Shape Optimization as well as In-
let/Nozzle design optimization, whereas for 3D problems, turbine blade, Wing
Shape and Wing-Body configuration design optimizations are typical example
applications.
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• Structural Optimization: The aeronautical/aerospace design philosophy fo-
cuses on the design of structures with minimum weight that are strong enough
to withstand certain design loads. These two objectives are conflicting in na-
ture and, therefore, the aim of structural optimization is to find the best possible
compromise between them. Typical applications for this type of problems com-
prise structural shape and topology optimization, robust structural design and
structural weight optimization.

• Multidisciplinary Design Optimization: aeronautical/aerospace design has a
multidisciplinary nature, since in many practical design applications, two or more
disciplines are involved, each one with specific performances to accomplish.
Typical applications for this type of problems are the aeroelastic applications
in which aerodynamics and structural engineering are the interacting disciplines.

For all the optimization problems indicated above, the objective function evalu-
ations are routinarily done by using complex computational simulations such as
CFD (Computational Fluid Dynamics) in the case of aerodynamic problems, CAA
(Computational Aero-Acoustics) for aero-acoustic problems, CSM (Computational
Structural Mechanics, by means of Finite Element Method software) for Structural
Optimization Problems, or a combination of them in the case of multidisciplinary
design optimization problems. Because of their nature, any of these computational
simulations have a high computational cost (since they solve, in an iterative man-
ner, the set of partial differential equation governing the physics of the problem) and
evaluating the objective functions for the kind of problems indicated above, can take
from minutes to hours for a single candidate solution, depending on the fidelity of
the simulation.

Nowadays in aeronautical/aerospace industries, MOEAs have gained popular-
ity and are considered as a mature and reliable numerical optimization tool, since
they provide to the designers not only with one design solution, but with a set of
them from which the tradeoff between the competing objectives can be assessed.
This last situation can help decision makers to select a compromise design accord-
ing to his/her own preferences. Given the high computational cost required for the
computational simulations and the population based nature of MOEAs, the use of
hybrid methods or meta-models is a natural choice in order to reduce the computa-
tional cost of the design optimization process, as indicated by some representative
research works that will be described next.

2.4.1 Use of Problem Approximation

As indicated in Section 2.3, this approach tries to replace the original problem by
one which is approximately the same as the original one but which is easier to
solve. In the context of aeronautical/aerospace engineering problems, where com-
plex CFD, CAA and CSD are employed, the problem can be approximated by using
different resolutions in the flow or structural simulation by using either coarse or
fine grids. In the case of CFD simulations another level of approximation can be
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obtained by solving Euler flows or potential flows instead of Navier-Stokes flow
simulations. Some of these techniques are used in the following research works.

Chiba et al. [9, 10] addressed the problem of multidisciplinary wing shape op-
timization using the ARMOGA (Adaptive Range Multi-Objective Genetic Algo-
rithm) [69] and CFD and CSD Simulations. Three objective functions are
minimized: (i) Block Fuel, (ii) Maximum takeoff weight, and (iii) Difference in
the drag coefficient between transonic and subsonic flight conditions. In this work,
and during the optimization process, an iterative aeroelastic solution is performed in
order to minimize the wing weight, with constraints on flutter and strength require-
ments. For this iterative process, Euler flow solutions (instead of Navier-Stokes flow
solutions) are used as a problem approximation in order to reduce the computational
cost. Also, a flight envelope analysis is done, which uses high-fidelity CFD Navier-
Stokes flow solutions for various flight conditions. The whole optimization process
evolves a population of 8 individuals during 16 generations. Authors indicate that
they use on the order of 70 Euler and 90 Navier-Stokes simulations per generation
of their MOEA.

Sasaki et al. [69, 70] and Obayashi and Sasaki [59], solved a supersonic wing
shape optimization problem minimizing four objective functions: (i) drag coefficient
at transonic cruise, (ii) drag coefficient at supersonic cruise, (iii) bending moment at
the wing root at supersonic cruise condition, and (iv) pitching moment at supersonic
cruise condition. In this research study, which also makes use of the ARMOGA al-
gorithm, no iterative aeroelastic analysis is performed, aiming at reducing the as-
sociated computational cost. The objective associated with the bending moment at
wing root, is approximated by numerical integration of the pressure distribution over
the wing surface, as obtained by the CFD analysis.

Lee et al. [48, 51] presented the application of the HAPMOEA (Hierarchical
Asynchronous Parallel Multi-Objective Evolutionary Algorithm) [31] to the robust
design optimization of an ONERA M6 wing shape. The optimization problem is
solved considering uncertainties in the design environment, related to the flow Mach
number. The Taguchi method is employed to transform the problem into one with
two objectives: (i) minimization of the mean value of an objective function with
respect to variability of the operating conditions, and (ii) minimization of the vari-
ance of the objective function of each solution candidate, with respect to its mean
value. HAPMOEA is based on evolution strategies, incorporating the concept of the
Covariance Matrix Adaptation (CMA). It also incorporates a Distance Dependent
Mutation (DDM) operator, and a hierarchical set of CFD models (varying the grid
resolution of the solver) and populations; small populations are evolved using fine
mesh CFD solutions (exploitation of solutions) while large populations are evolved
with coarse mesh CFD solutions (exploration of solutions). Good solutions from the
coarse mesh populations are transferred to the fine mesh populations. The use of a
hierarchical set of CFD models can be seen as different levels of fitness approxima-
tion; low-quality fitness approximations are obtained by using coarse mesh grids at
low computational cost, while high-quality fitness approximations are obtained by
using a fine mesh grid with its associated higher computational cost.
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Lee et al. [49, 50] made use of a generic framework for multidisciplinary design
and optimization [31] to explore the application of a robust MOEA-based algorithm
for improving the aerodynamic and radar cross section characteristics of an UCAV
(Unmanned Combat Aerial Vehicle). In both applications, two disciplines are con-
sidered, the first concerning the aerodynamic efficiency and the second one dealing
with the visual and radar signature of an UCAV airplane. The evolutionary Algo-
rithm employed corresponds to the HAPMOEA indicated above. In this case, the
minimization of three objective functions is considered: (i) inverse of the lift/drag
ratio at ingress condition, (ii) inverse of the lift/drag ratio at cruise condition, and
(iii) frontal area. The problem has, approximately, 100 decision variables, and the
first two objective functions are evaluated using a potential flow solver (FLO22)
coupled to FRICTION code for obtaining the viscous drag. The use of these last
two codes approximates the Navier-Stokes flow solution, considerably reducing the
computational cost. The evolutionary system evaluates a total of 1600 solution can-
didates from which, a Pareto set containing 30 members is obtained. From these
nondominated solutions, a single compromise solution is obtained. The authors
reported a solution time of 200 hours on a single processor.

2.4.2 Use of RSM by Polynomial Approximation

Lian and Liou [52] used a multi-objective genetic algorithm coupled to a second-
order polynomial response surface model for the multiobjective optimization of a
three-dimensional rotor blade. The optimization problem consisted of the redesign
of the NASA rotor 67 compressor blade, a transonic axial-flow fan rotor which acts
as the first stage of a two-stage compressor fan. Two objectives are considered: (i)
maximization of the stage pressure raise, and (ii) minimization of the entropy gen-
eration. A constraint is imposed on the mass flow rate to have a difference less
than 0.1% between the new and the reference design. Blade geometry is constructed
from airfoil shapes defined at four span stations, with 32 total design variables. The
quadratic response surface model is constructed with 1,024 sampling design candi-
dates and using the IHS (Improved Hypercube Sampling) algorithm [3]. The authors
noted that the evaluation of the 1,024 sampling individuals took approximately 128
hours (5.3 days) using eight processors and a Reynolds-Averaged Navier-Stokes
CFD simulation. The optimization process for this application is done for 200 gen-
erations with a population size of 320 individuals, where objective functions are
obtained from the approximation model. Following the optimization process, 12
design solutions are selected from the obtained response surface method Pareto
front, and verified with the high fidelity CFD simulation. Objective functions dif-
fer slightly from those obtained using the approximation model, and all selected
solutions are better in both objective functions than the reference design. A simi-
lar research work is presented by Lian and Liou [53, 54], but minimizing the blade
weight instead of entropy generation.

Goel et al. [29] used a quintic polynomial response surface method for
solving a liquid-rocket injector multiobjective optimization design problem. Four
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competing objectives are considered: i) combustion length, ii) injector face temper-
ature, iii) injector wall temperature, and iv) injector tip temperature. In this research,
the NSGA-IIa (referred to as archiving NSGA-II [22]), and a local search strategy
called “ε− constraint” are adopted to generate a solution set that is used for ap-
proximating the Pareto optimal front by a response surface method (RSM). Once
the Pareto optimal solutions are obtained, a clustering technique is used to select
representative tradeoff design solutions.

Pagano et al. [61] presented an application for three-dimensional aerodynamic
shape optimization, particularly the aerodynamic shape of an aircraft propeller. The
aim of this multiobjective optimization is to improve an actual propeller perfor-
mance. The authors considered two conflicting objectives: (i) minimize noise emis-
sion level, and (ii) maximize aerodynamic propeller efficiency. For this industrial
problem, several disciplines are considered and, therefore the objective function
evaluations consider: (a) aerodynamics, (b) structural behavior, and (c) aeroacus-
tics. For each of these, specialized computer simulation codes are employed. Every
calculation comprises an iterative coupling procedure (fluids-structures-acoustics)
among these simulation codes in order to evaluate a more realistic operating con-
dition. As a consequence, the optimization process becomes computationally de-
manding. In order to reduce the burden of this high computational cost, the authors
made use of design of experiment techniques (DOE), and a quadratic response sur-
face method (RSM) for efficiently exploring the design space. The geometry for the
propeller blade is parameterized using a total of 14 design variables. The optimiza-
tion problem contains constraints on the geometry design variables and on propeller
shaft power at two flight conditions; takeoff and cruise, respectively. The evolution-
ary algorithm employed corresponds to the NSEA+ (Nondominated Sorting Evo-
lutionary Algorithm) as implemented in the OPTIMUS commercial code which is
adopted by the authors. The population size for the evolutionary algorithm is set
to 20 individuals, and the optimization is run using the DOE and RSM methods.
Afterwards, the Pareto front solutions obtained are evaluated using the high fidelity
simulation codes. The authors indicated that a total of 340 designs were evaluated
using high fidelity simulations. From them, approximately 20 Pareto solutions were
obtained, all of them being better than the reference design in the two objectives
considered.

2.4.3 Use of Artificial Neural Networks

Rai [64] addressed the problem of multiobjective robust design of a turbine blade air-
foil, considering performance degradation due to manufacturing uncertainties. For
this problem, the objectives are: (i) minimize the variance of the pressure distribution
over the airfoil’s surface, and (ii) maximize the wedge angle at the trailing edge. Both
objectives must be met subject to the constraint that the required flow turning angle
is achieved. Objectives are evaluated by means of a model that modifies the geome-
try of the airfoil surface following a probability density function that is observed for
manufacturing tolerances, and with a CFD simulation for obtaining the flow pressure
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distribution. The blade geometry is defined by eight design parameters, but only two
of them are varied during the optimization process. The evolutionary algorithm used
in this research correspond to a multiobjective version of the differential evolution
algorithm previously implemented by the same author and described in [63]. In order
to cope with the associated calculation time of the CFD simulations required to eval-
uate the objective functions, the authors used a hybrid neural network comprised of
10 individual single–hidden–layer feed forward networks. The optimization is run
with a small population size of 10 individuals and during 25 generations.

Arabnia and Ghaly [2] presented a strategy that makes use of multi-objective
evolutionary algorithms for aerodynamic shape optimization of turbine stages in
three-dimensional fluid flow. The NSGA [74] is used and coupled to an artificial
neural network (ANN) based response surface method (RSM) in order to reduce the
overall computational cost. The blade geometry, both for rotor and stator blades, is
based on the E/TU-3 turbine which is used as a reference design to compare the
optimization results to. The multi-objective optimization consists of finding the best
distribution of 2D blade sections in the radial and circumferential directions. For
this, a quadratic rational Bèzier curve, with 5 control points, is used for each of the
two blades. The objective functions to be optimized include: (i) maximization of
isentropic efficiency for the stage, and (ii) minimization of the streamwise vorticity.
Both objective functions are evaluated using a 3D CFD flow simulation with con-
straints on: (1) inlet total pressure and temperature, (2) exit pressure, (3) axial chord
and spacing, (4) inlet and exit flow angles, and (5) mass flow rate. The authors noted
that one CFD simulation took approximately 10 hours. Therefore they resorted to an
ANN based RSM. The ANN model with backpropagation, containing a single hid-
den layer with 50 nodes, was trained and tested with 23 CFD simulations, sampling
the design space using the latin hypercubes sampling technique. The optimization
process used the ANN model to estimate the objective functions, and the constraints
values as well. The population size used in the NSGA was set to 50 individuals, and
was run for 150 generations. Finally, the Pareto solutions were evaluated with the
CFD flow simulation. From their results, the authors indicated that they obtained
design solutions which were better in comparison to the reference turbine design.
Indeed, they attained a 1.2% improvement in stage efficiency, which is remarkable
considering the small number of design variables used in the optimization process.

Alonso et al. [1] described a procedure for the multi-objective optimization
design of a generic supersonic aircraft. The competing design objectives consid-
ered were two: i) maximization of aircraft range, and ii) minimization of the per-
ceived loudness of the ground boom signature. Constraints were set for aircraft’s
structural integrity, take-off field length and landing field length. The objective
functions were evaluated using CFD with various fidelity (approximation) lev-
els. In this work, the authors made use of a neural network (NN) based response
surface method. The prototype for the NN is a single hidden layer perceptron
with sigmoid activation functions, providing a general nonlinear model, which is
useful for the high non-linearities present in the objective functions landscapes
associated to this problem. The neural network was trained with 300 sampling
design solutions, obtained with low fidelity simulations in order to reduce the
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computational cost. In their optimization cycle, authors used high fidelity simula-
tions only in promising regions of the design space to do a local exploration. The
problem comprised 10 design variables and the NSGA-II [22] was used as the search
engine with a population size of 64 and was run for 1000 generations using the
surrogate-based objective function.

2.4.4 Use of a Gaussian Process or Kriging

D’Angelo and Minisci [20] used an evolutionary algorithm based on MOPED [19],
which is a multi-objective optimization algorithm for continuous problems that uses
the Parzen method to build a probabilistic representation of Pareto solutions, with
multivariate dependencies among variables. The authors included three modifica-
tions to improve a previous implementation of MOPED: (a) use of a kriging model
by which solutions are evaluated without resorting to costly computational sim-
ulations, (b) use of evolution control, which is adopted to avoid the evolution to
converge to a false minima; the mechanism of this technique is to evaluate a sub-
set of individuals or the whole actual generation, with the real simulation model,
for a continuous kriging model update, and (c) hybridization of the algorithm; in
this case, the selection and ranking of the individuals is different from the orig-
inal algorithm and some mechanisms borrowed from the NSGA-II algorithm are
adopted as well. In their optimization examples, subsonic airfoil shape optimization
was performed. The optimization problem considered two objective functions: (i)
drag force coefficient, and (ii) lift force coefficient difference with respect to a refer-
ence value. Both objectives were minimized. The airfoil geometry is parameterized
using Bèzier curves both for its camber line and thickness distribution. In total, 5
design variables were used and constraints were imposed on the objective functions
extreme values. The authors indicated that the subsonic airfoil shape optimization
presented several difficulties. For example, the true Pareto front was discontinuous
and partially converged solutions from the aerodynamic simulation code introduced
irregularities in the objective function. It is important to note that the approximation
model used (kriging) reduced the number of real evaluations to only 2300, consid-
ering that the evolution system comprised a population size of 100 individuals and
a total of 150 generations.

Song and Keane [73] applied a multi-objective genetic algorithm for studying
the shape optimization of a civil aircraft engine nacelle. The primary goal of the
study was to identify the tradeoff between aerodynamic performance and noise ef-
fects associated with various geometric features for the nacelle. The geometry was
parameterized using 40 parameters, 33 of which were considered as design vari-
ables. In their study, the authors used NSGA-II [22] as the multi-objective search
engine, while a commercial software was used for the CFD evaluations of the three-
dimensional flow. Due to the large size of the design space to be explored, as well as
the simulations being very time consuming, a kriging surrogate model was adopted
in order to keep to a minimum the number of designs being evaluated with the
CFD tool. The kriging model was continuosly updated, adding sampling solutions
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from the Pareto front obtained using the kriging model and evaluated with the CFD
tool. In their research, the authors reported difficulties in obtaining a converged
Pareto front (there exist large discrepancies between the approximated and the real
Pareto fronts). They attributed this behavior to the large number of variables in the
design problem, and to the associated difficulties in obtaining an accurate kriging
model for these situations. In order to alleviate this situation, they performed an
ANOVA (Analysis of Variance) test to find the variables that contributed the most
to the objective function values. After this test, they presented results with a reduced
kriging surrogate model, employing only 7 variables. The authors argued that they
obtained a similar design with this reduced kriging model at a considerably lower
computational effort.

Jeong et al. [38] investigated the improvement of the lateral dynamic characteris-
tics of a lifting-body type re-entry vehicle in transonic flight condition. The problem
was posed as a multi-objective optimization problem in which two objectives were
minimized: (i) derivative of the yawing moment, and (ii) derivative of the rolling
moment. Due to the geometry of the lifting body and the operating flow condition
of interest, namely high Mach number and strong vortex formation, the evaluation of
the objectives was done by means of a full Navier-Stokes CFD simulation. Since the
objectives were derivatives, multiple flow solutions were required to determine their
values in a discrete manner through the use of finite differencing techniques. This
considerably increased the total computational time due to a large number of calls
for the CFD code. The optimization problem considered 4 design variables, and two
solutions were sought: the first one without constraints, and the second one con-
straining the L/D ratio for the lifting-body type reentry vehicle. the authors used the
EGOMOP (Efficient Global Optimization for Multi-Objective Problems) algorithm
developed by Jeong et al. [37]. Such algorithm was built upon the ideas borrowed
from the EGO and ParEGO algorithms from Jone et al. [41] and Knowles et al. [42],
respectively. EGOMOP adopts the use of the kriging model as a response surface
model, for predicting the function value and its uncertainty. For the exploration of
the Pareto solutions, Fonseca’s MOGA [26] was used. The initial kriging model
was built by using the latin hypercube sampling method for uniformly covering the
design space, and the model was continuosly updated.

Voutchkov et al. [81] used the NSGA-II [22] to perform a robust structural design
of a simplified FEM jet engine model. This application aimed at finding the best jet
engine structural configuration minimizing: the variation of reacting forces under a
range of external loads, the mass for the engine and the engine’s fuel consumption.
These objectives are competing with each other and, therefore, the authors used a
multi-objective optimization technique to explore the design space looking for trade-
offs among them. The evaluation of the structural response was done in parallel by
means of finite element simulations. The FEM model comprised a set of 22 groups
of shell elements. The thickness for 15 of these groups were considered as the de-
sign variables. Computational time was reduced by using a kriging based response
surface method. The optimization problem was posed as a MOP, comprising four ob-
jectives (all to be minimized): (i) standard deviation of the internal reaction forces,
(ii) mean value of the internal reaction forces, (iii) engine’s mass, and (iv) mean value
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of the specific fuel consumption. The first two objectives were computed over 200
external load variations. The authors noted that for this class of problem which com-
prises huge combinations of loads and finite element thicknesses, the multiobjective
optimization problem would take on the order of one year of computational time on
a single 1 GHZ CPU. Also, they indicated that by using the surrogate model and
parallel processing, the optimization time was reduced to about 26 hours in a cluster
with 30 PEs (processing elements).

Todoroki and Sekishiro [75, 76] proposed a new optimization method for com-
posite structural components. This approach is based on the use of a multi-objective
genetic algorithm coupled to a kriging model, in order to reduce the number of
objective function evaluations, and to a FBB (Fractal Branch and Bound) method
for the stacking sequence optimization needed in laminar composite structures. The
problem consisted of two objectives: (i) minimize the structural weight of a hat-
stiffened wing panel, subject to buckling load constraints, and (ii) maximize the
probability of satisfying a predefined buckling load. The variables for the problem
are a set of mixed real/discrete variables. Real variables correspond to the stiffener
geometry definition, while discrete variables correspond to the number of plies for
the composite panel. Constraints were imposed on the dimensions of the stiffener,
but they were automatically satisfied in the definition of the variables ranges. The
authors noted that the buckling load constraint demanded a large computational cost,
since it needed a FEM (Finite Element Analysis). For this reason a kriging model
was adopted and initialized with sampling points obtained by the LHS (Latin Hy-
percube Sampling) technique. The optimization cycle consisted of two layers. The
upper one driven by the multi-objective genetic algorithm and the kriging model,
in which the optimization of the structural dimensions was performed. In the lower
layer, the stacking sequences of the stiffener and panels were optimized by means
of the FBB method. The evolutionary algorithm was run for 300 generations with
a population of 100 individuals, and every 50 generations some nondominated so-
lutions were evaluated with the FEM model, in order to update the kriging model.
The authors obtained a Pareto Front that was discontinuous. Also, from the results
obtained, a comparison of different designs was made. The solution obtained with
the evolutionary algorithm was 3% heavier than a previous design obtained with
a conventional method (deterministic), but obtained after only 301 FEM analyses
compared to the tens of thousands required by the conventional method.

Choi et al. [11] used the NSGA-II [22] in the solution of a multidisciplinary
supersonic business jet design. In this case, the disciplines involved were (i) aero-
dynamics and, (ii) aeroacoustics. The main objective of this particular problem was
to obtain a compromise design having good aerodynamic performance while min-
imizing the intensity of the sonic boom signature at the ground level. Multiobjec-
tive optimization was used to obtain tradeoffs among the following objectives: (i)
the aircraft drag coefficient, (ii) initial pressure raise (boom overpressure), and (iii)
ground perceived noise level. All the objectives were minimized. The geometry of
the aircraft was defined by 17 design variables, involving the modification of the
wing platform, its position along the fuselage, and some cross sections and cam-
ber for the fuselage. For evaluating the objective functions, a high fidelity Euler
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solution was obtained with a very fine grid close to the aircraft’s surface. In order to
reduce the computational time required for the optimization cycle, a kriging model
was employed. Its initial definition was formed with a latin hypercube sampling of
the design space with 232 initial solutions, including both feasible and infeasible
candidates. Following a kriging based optimization cycle, the Pareto optimal so-
lutions were evaluated with high fidelity simulation tools and used to update the
kriging model. In the example, constraints were imposed on some geometry param-
eters, and on the aircrfat’s operational conditions. No special constraint-handling
mechanism was adopted other than discarding the solution candidates that did not
satisfy the constraints, which were mostly geometrical. From their results, the au-
thors noted that after the first design cycle using the kriging based NSGA-II, 59
feasible solutions were obtained. It is important to note that all the solutions ob-
tained were better in both objectives compared to a base design. Another important
issue in this particular application was that the kriging model did not perform as
well as in other applications. The reason for this behavior was the high nonlinear
physics involved in the two disciplines considered, which required, in consequence,
more design cycles in the optimization.

In related work, Chung and Alonso [12] and Chung et al. [13] solved the same
previously defined multidisciplinary problem, but using the µ-GA Algorithm, from
Coello Coello and Toscano Pulido [15, 16]. This change was aimed at reducing
the total number of function evaluations during the optimization process. This µ-
GA algorithm used a population size of 3 to 6 individuals and an external file to
keep track of the nondominated solutions obtained so far. In the study reported in
[12], the design cycles were performed using a kriging model. Two design cycles
were executed, each one consisting of 150 solution candidates using the latin hy-
percube sampling technique applied around a base design in the first cycle. For the
second cycle, the sampling was applied around the best solution obtained in the
previous cycle. The authors reported that they obtained a very promising Pareto
front estimation with only 300 functions evaluations. In the second study, reported
in [13], the authors proposed an tested the GEMOGA (Gradient Enhanced Multiob-
jective Genetic Algorithm). The basic idea of this algorithm is to enhance the Pareto
solutions with a gradient based search. One important feature of the algorithm
is that gradient information is obtained from the kriging model. With this, the
computational cost is not considerably increased.

Kumano et al. [44] used Fonseca’s MOGA [26] for the multidisciplinary design
optimization of wing shape for a small jet aircraft. In this study, four objectives
were considered: (i) drag at the cruise condition, (ii) drag divergence between cruis-
ing and off-design condition, (iii) pitching moment at the cruising condition, and
(iv) structural weight of the main wing. All these objectives were minimized. In this
study, the optimization process was also performed by means of a kriging model,
and such model was continuosly updated after a certain prescribed number of it-
erations (defined by the user), adding new nondominated points obtained from the
optimization steps.
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2.4.5 Use of Clustering

Langer et al. [47] applied an integrated approach using CAD (Computer Aided
Design) modeling with a MOEA for structural shape and topology optimization
problems. The application presented in this research, dealt with the structural opti-
mization of a typical instrument panel of a satellite, and considered two objectives:
(i) minimize the instrument panel mass, and (ii) maximize the first eigenfrecuency.
The problem contained a mixed continuous/discrete set of variables. 17 design vari-
ables were used, from which 3 were discrete, which consider the number of stringers
to use in the panel, as well as the plate and stringer materials. The authors solved
the optimization problem for three shape and topology optimization cases: (a) a
panel without instruments, (b) a panel with instruments at fixed positions, and (c)
a panel with instrumental placing. They made use of polynomial based response
surface methods in order to reduce the computational cost. Multiple local approx-
imation models were constructed using a clustering technique. In all the examples
included, the population size was set to 200 and was evolved for 20 generations.
The evaluation of the objective functions comprised four load cases: (a) quasi-static
acceleration, (b) modal analysis, (c) sinusoidal vibration loads, and (d) ‘pseudo tem-
perature’ load. This latter load case, constrained the positioning of the instruments
on the panel, since it imposed a limiting operating temperature for a specific in-
strument. The first three load cases were evaluated in parallel using FEM (Finite
Element Method) simulations on a cluster of 32 workstations.

2.4.6 Use of Radial Basis Functions

Cinnella et al. [14] presented the airfoil shape optimization for transonic flows of
BZT (Bethe-Zel’dovich-Thompson) fluids, by using a multi-objective genetic al-
gorithm. This application explored the design of airfoil shapes in turbine cascades
which could exploit the benefits of BZT transonic flows past airfoils. In the ap-
plication, the authors proposed two optimization problems which aimed at finding
optimal airfoil geometries both for (i) non–lifting airfoils, and (ii) lifting airfoils. In
both cases GA-Based approaches were used as search engines. In the second case,
the optimization problem considered two design objectives: (i) maximize lift at BZT
subcritical conditions, and (ii) Minimize wave drag while maximizing lift for super-
critical BZT flow conditions. Therefore, a bi-objective problem was solved, and
the evolutionary algorithm helped the designers to find trade-off solutions between
these two design points. The multi-objective genetic algorithm used in the second
case was the NSGA [74]. In previous related work [18], a population size of 36 and
24 generations were used (totaling 864 objective function evaluations obtained from
CFD), based on the constraint that the whole CFD calculation time had to be kept
inferior to one week (the evaluation time for each individual varied from 5 to 10 min
in a PC equipped with a Pentium Processor). In order to reduce the computational
cost, the authors included an ANN (Artificial Neural Network) based on radial ba-
sis functions, formed by an input layer, an intermediate layer, and an output layer.
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The weights of the linear combinations were determined through a training proce-
dure. The number of neurons involved was taken as the number of individuals in
the training set. The first training set was formed with all the solutions obtained
from the first two generations. Afterwards, the objective functions were approxi-
mated with the ANN-RBF model, and the training set was updated by adding a 30%
of “exactly evalauted” individuals per generation. With this technique the authors
obtained similar design solutions with approximately 60% less computational cost.

Kampolis and Giannakoglou [7] solved the inverse design of an isolated airfoil at
two operating conditions. For this design problem, two reference airfoil and operat-
ing conditions were defined (these solutions could be seen as the extreme portions of
the Pareto front), and a MOEA was used to find the tradeoff solutions between them.
The MOEA adopted was SPEA-2 [85]. In their approach, the authors proposed the
use of a radial basis function meta-model.

2.5 Conclusions and Future Research Paths

We have described several techniques which have been coupled to MOEAs, aim-
ing to reduce the computational cost of evaluating the objective functions of a
multi-objective optimization problem. Additionally, some selected real-world ap-
plications of such techniques were also presented as case studies in which these
hybrid schemes led to substantial reductions in the computational cost. The main
aim of this review was to provide a general overview of this area, which we believe
that may be of interest both for MOEA researchers who may be looking for new
algorithmic design challenges, and for practitioners, who may benefit from com-
bining MOEAs with surrogate methods or any other approximation techniques that
they normally use to reduce the computational cost of their simulations.

From the application examples reviewed here, we observed that the most pre-
ferred methods seem to be problem approximation, kriging and polynomial interpo-
lation, followed by the use of neural networks and radial basis functions. Our study
of the small sample of real-world applications presented here, also led us to outline
some of the future research paths that seem promising within this area:

• Model Selection Guidelines: Since the high computational cost involved in ap-
plications such as those described here preclude us from any exhaustive exper-
imentation, the existence of guidelines that allow us to identify which sort of
method could be a good choice for a given problem would be of great help. To
the authors’ best knowledge no guidelines of this sort have even been reported in
the specialized literature.

• Hybridization: Approximation models can be used not only to replace the
objective function evaluations, but also to estimate first-order information
(e.g., gradient information). This could lead to the use of hybrids of MOEAs
with gradient-based methods. An example of this type of approach is presented
in Chung et al. [13], where solutions are improved by the use of gradient
information obtained from a kriging model. This sort of hybridization scheme
is, however, relatively scarce in the literature until now.
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• Use of Multiple Approximation Models: Most authors report the use of a sin-
gle approximation model. However, it may be worth exploring the combination
of several of them for exploiting either their global or their local nature. This
idea has been explored in the past, for example, by Mack et al. [55], by using a
combination of polynomial respose surface methods and radial basis functions,
for performing global sensitivity analysis and shape optimization of bluff bodies.
Also, Glaz et al. [28] adopted three approximation models, namely polynomial,
kriging, and radial basis functions. This combined approach, adopted a weighted
estimation from the different models, which was used to reduce the vibration for
a helicopter rotor blade. To the authors’ best knowledge, no similar combination
of approaches has ever been reported when using MOEAs.

• Automatic Switching: Considering that every approximation model has partic-
ular properties in terms of global or local accuracy, and that the selection of the
“best” approximation method to use for a particular application can also be con-
sidered a difficult task, one promising research area is to develop mechanisms
allowing to automatically switch from one approximation method to a different
one, as the optimization process is being executed. For example, a global approx-
imation method (i.e., coarse-grained) could be used for exploration of the design
space, while a more locally accurate method (i.e., fine-grained) might be used for
solution exploitation.

• Sampling Techniques: The accuracy of the approximation highly depends on
the sampling and updating technique used. In most cases, the initial sampling is
defined by a latin hypercube sampling, aiming at covering as much as possible the
design space. This can be considered as a general technique. Another possibility
is to use application-dependent sampling techniques, where the initial sampling
design points are selected on the basis of reference or similar solutions. One
example of this sort of situation is reported by Chung et al. [13] and by Chung and
Alonso [12], where the initial approximation models are built around a reference
design in decision variable space.
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Chapter 3
Multilevel Optimization Algorithms Based on
Metamodel- and Fitness Inheritance-Assisted
Evolutionary Algorithms

Kyriakos C. Giannakoglou and Ioannis C. Kampolis

Abstract. This chapter is concerned with the efficient use of metamodel–assisted
evolutionary algorithms built in multilevel or hierarchical schemes for the solution
of computationally expensive optimization problems. Existing methods developed
by other researchers or the authors’ group are overviewed and a new enhancement
based on fitness inheritance is proposed. Whereas conventional evolutionary algo-
rithms require a great number of calls to the evaluation software, the use of low
cost surrogates or metamodels, trained on the fly on previously evaluated individ-
uals for pre–evaluating the evolving populations, reduce noticeably the CPU cost of
an optimization. Since, the metamodel training requires a minimum amount of previ-
ous evaluations, the starting population is evaluated on the problem–specific model.
Fitness inheritance is introduced in this context so as to approximate the objective
function values in place of metamodels. In addition, to profit of the availability of
evaluation or parameterization models of lower fidelity and CPU cost and/or refine-
ment methods, a multilevel search algorithm relying also on the use of metamodels is
presented. The algorithm may optionally operate as hierarchical–distributed (many
levels performing distributed optimization) or distributed–hierarchical (more than
one sub–populations undergoing their own hierarchical optimizations) to further re-
duce the design cycle time. The proposed algorithms are generic and can be used
to solve any kind of optimization problems. Here, aerodynamic shape optimization
problems, including turbomachinery applications, are used to demonstrate the ef-
ficiency of the proposed methods. A new computationally demanding application,
namely the optimization of a 3D compressor blade is also shown.
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3.1 Introduction

The term computationally expensive optimization problems is referred to design or
optimization applications requiring an excessive number of calls to the costly eval-
uation software for locating the optimal solution(s). Typical examples are optimiza-
tions in which the evaluation of candidate solutions calls for the numerical solution
of p.d.e.’s or is based on Monte–Carlo techniques to account for uncertainties. With-
out loss in generality, we will restrict ourselves to design–optimization problems
with aerodynamic performance criteria. Therefore, the evaluation software might
be any Computational Fluid Dynamics (CFD) code. Depending on the selected flow
model, the problem dimension (2D or 3D) and the complexity of the flow domain
(affecting the computational grid size, if such a grid is needed), the cost of running
the CFD code may range from a couple of minutes to some hours on many CPUs.

In aerodynamic shape optimization, the use of either gradient–based methods or
global search metaheuristics is steadily increasing, [48, 82]. Though they usually
appear as “rival” methods, they can be hybridized to create more efficient optimiza-
tion methods (see also [58], chapter 16). In the present chapter, an evolutionary
algorithm (EA, [4, 34, 57]) is the key search method. EAs are assisted by metamod-
els and fitness inheritance, hybridized with gradient–based methods and structured
as multilevel search algorithms. They are also used in distributed search schemes,
properly adapted for use on multiprocessor platforms and may become Grid
enabled.

EAs are gradient–free methods that may accommodate any ready-to-use analysis
software, even a commercial–off–the–shelf one without having access to its source
code. In aerodynamic optimization problems, they unfortunately become compu-
tationally demanding if (some, at least, of) the add–on features discussed in this
chapter or elsewhere in this book are not used. This is due to the high number of
candidate solutions that must be evaluated. For EAs to become routine industrial
tools, much focus has been placed on methods reducing the number of evalua-
tions required and, thus, their CPU cost. To this end, most of the existing papers
rely on surrogate evaluation models or metamodels. The latter stand for evaluation
methods of lower accuracy and CPU cost. The so–called metamodel–assisted EAs
(MAEAs, [26, 67]) use both the exact and costly problem–specific evaluation model
and the approximate and computationally cheap metamodel), according to coupling
schemes to be discussed below.

In the so–called MAEAs with off–line trained metamodels [7, 8, 20, 25, 35, 38, 41,
62, 71, 73], the metamodel is trained in advance, i.e. separately from the evolution
which is exclusively based on them. The problem–specific tool is used to evaluate
a number of selected samples which the metamodel should be trained on and for
cross–checking the outcome of the metamodel–based optimization.

In MAEAs with on–line trained metamodels [6, 18, 19, 26, 33, 38, 44, 66, 77, 83]
the metamodel(s) and the problem–specific model are used in an interleaving way
during the evolution. The metamodels may be local (valid over a part only of the
design space) or global (valid over the entire design space). The more frequently
metamodels are used (in place of the exact model), the greater the gain in CPU cost.
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Another interesting alternative, regarding the possible coupling of metamodels
and stochastic search techniques, lies in the so–called metamodel–assisted memetic
algorithms (MAMAs) [24, 28, 68, 84]. In [24], the metamodels are (also) used for the
refinement (local search) of selected population members in the spirit of Lamarckian
learning. The hierarchical and/or distributed optimization schemes presented in this
chapter can certainly accommodate metamodel–based local search processes but
this is beyond the scope of this chapter.

The method discussed in this chapter is an extension of the MAEA originally pro-
posed in [26, 29, 32], for single– (SOO) and multi–objective optimization (MOO)
problems, [44]. A key feature of this method is the inexact pre-evaluation (IPE)
technique. Apart from the starting population which is evaluated on the problem–
specific model, the subsequent generations use local metamodels. These are trained
on the fly on a subset of previously evaluated neighbors of each new population
member. MAEAs can also be configured as distributed search methods (DMAEA),
by handling intercommunicating sub–populations or demes, [45].

The evolutionary search can also be carried out via hierarchical or multilevel
schemes, [39, 43, 46], by incorporating more than one optimization levels associ-
ated with different evaluation software, [17, 37, 39, 43, 46, 78], different search
techniques, [49, 61, 76], and different chromosome sizes, [54], or numbers of de-
sign variables, [12, 16]. The communication between subsequent levels (one– or
two–way migrations of individuals) is important. Gains from using the multilevel
algorithm and the underlying hierarchy or EAs with improved evolution operators
and/or metamodels are superimposed.

This chapter reviews the aforementioned hierarchical methods. Over and above,
fitness inheritance is introduced so as to reduce the number of offspring that un-
dergo exact evaluation during the first generations of a MAEA. In those generations
the archived data are inadequate to train metamodels that generalize well. As a rem-
edy fitness inheritance is employed and only the top approximately evaluated pop-
ulation members must be re–evaluated on the problem–specific model, according
to the IPE concept. According to the method presented in [39, 43, 46], the dis-
tributed search of optimal solutions is structured in levels, each of which employs a
MAEA or a gradient–based method; such a scheme will be referred to as a hierar-
chical distributed MAEA (HDMAEA, even if a gradient–based method is employed
on the higher level). In a HDMAEA, the number of demes may differ from level
to level, inter–level migrations do not depend on levels’ partition into demes and
intra–level (inter–deme) migrations also occur. Apart from MAEAs, gradient–based
methods can also be used on any level but none of the levels is associated with a
metamodel only. On the other hand, distributed hierarchical EAs (DHEAs) where
the hierarchical search is carried out within each deme (this is why this is called
distributed hierarchical, rather than the other way round), have also been devised.
The lower pass evaluations rely on metamodels, so the abbreviation DHEA can be
replaced by DHMAEA. Only a few best performing individuals migrate upwards,
where problem–specific evaluations of increasing fidelity and CPU cost take place.
The DHMAEA demes communicate regularly by exchanging top individuals.
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3.2 Metamodel–Assisted EAs and Distributed MAEAs

This section presents a MAEA, [26, 31] and its distributed variant (DMAEA, [45]).
Note that at least one of the levels of the multilevel algorithms presented below
relies on either a MAEA or a DMAEA.

In a conventional (μ ,λ ) EA, with μ parents and λ offspring, each generation
costs as many as λ calls to the problem–specific evaluation software. A metamodel–
assisted variant (MAEA; see also [29] for SOO and [44] for MOO problems) starts
exactly as the conventional EA by evaluating the first random population on the
problem–specific tool and archiving paired inputs–outputs in a database. In all
subsequent generations, the population members are inexactly pre–evaluated (IPE)
using either fitness inheritance or local metamodels. More precisely, a few next gen-
erations employ fitness inheritance. Once the database exceeds a user–defined min-
imum number of entries, local metamodels are used in place of fitness inheritance.
These are trained on the fly, separately for each new individual, on a small num-
ber of neighboring database entries. As with fitness inheritance, the most promising
members are re–evaluated. Note that, to create the next generation, the evolution
operators use mixed exact and approximate scores.

For the re–evaluation, the σλ top pre–evaluated population members are se-
lected. The σ value may vary between user–defined lower and upper bounds,
0 < σmin ≤ σ ≤ σmax < 1. In each generation, the σminλ top individuals are un-
conditionally re–evaluated. Up to (σmax−σmin)λ more offspring which take on
better fitness values (on the metamodel) than the current optimal solution can be
re–evaluated, too.

In Pareto front seeking EAs for MOO problems, a scalar fitness value must be
computed for each population member, based on dominance, niching etc criteria
(NSGA, [10], NSGA–2, [11], SPEA, [85], SPEA–2, [86] to mention a few of them).
The σ value is determined as in SOO problems. However, as explained in [44], the
use of the IPE technique in MOO problems may become less efficient than in SOO.
In SOO, the database of previously evaluated solutions (among which the train-
ing patterns are selected) becomes well populated close to the optimal solution and
the metamodels give progressively better predictions. This is not the case in MOO,
where the trained local metamodel must predict well along a front of solutions. In
[44], the replacement of the conventional radial-basis function (RBF) network (used
as metamodel) by its generalized counterpart, using less centers than training pat-
terns and acting as approximation, rather than interpolation, method, greatly im-
proves the performance of the IPE technique in MOO. The RBF centers are selected
as described in section 3.3.2.

On the other hand, distributed EAs (DEAs), which handle a small number
of medium–sized sub–populations (the so–called demes or islands), outperform
single–population EAs. The evolution operators are restricted within each deme and
inter–deme exchanges of promising individuals take place. Different evolution poli-
cies over different demes can be used, [13]. DEA variants can be devised by chang-
ing the communication topology (ring, grid, etc.), the migration frequency and/or
the selection and replacement policies, [1]. The IPE algorithm is directly applicable
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Fig. 3.1 Metamodel–assisted EA (MAEA), with the —IPE technique

to DEAs, as described in [45] where a distributed MAEA (DMAEA) was proposed.
In non–hierarchical optimization, all demes share a single database archiving previ-
ously evaluated individuals.

DEAs belong to the class of multi–population parallel EAs, [1, 9, 52, 64], ex-
hibiting high parallel efficiency. Each deme may use a cluster of processors for the
concurrent evaluation of its offspring and different demes can be evaluated concur-
rently. EAs (in either conventional or distributed or even hierarchical form) are also
enabled for deployment in the Grid environment, [53]. The present method, [27], is
also Grid–enabled, using a middleware allowing concurrent offspring evaluations,
[52]. Evaluation requests are queued to the Gridway metascheduler, [59], using the
DRMAA library API. Passing through different layers of middleware from the Grid
level down to the execution host, each job is executed on a remote resource. The
Globus Toolkit, [21], and Ganglia, [55], are employed for discovery, user authenti-
cation and inter–connection of remote resources. Local resource management (sub-
mission and execution of jobs within the cluster) is accomplished using Condor, [81].

3.3 Surrogate Evaluation Models for MAEAs

Fitness inheritance, [15, 79], and the RBF networks, [36, 74], which are used herein
as surrogate evaluation models, are discussed. We assume an optimization problem
with N design variables and M objectives. Let x∈RN and y∈RM denote the design
variable array and the corresponding array of fitness or cost values.

3.3.1 Fitness Inheritance

Fitness inheritance, as originally proposed in [79], computes the fitness of any
offspring x∗ from the fitness values of its parents x(∗,p), p = 1, . . . ,ρ using either
average inheritance (setting y∗ equal to the average value of y(∗,p)) or proportional
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inheritance (setting y∗ equal to the weighted average of y(∗,p), depending on the
degree of similarity between x∗ and x(∗,p)). In the present method, each offspring
inherits an approximate fitness value from its parents according to their distance in
the design space. In specific, y∗ =∑ρ

p=1 wpy(∗,p), where

wi = 1 −

∥∥∥x(∗,i) − x∗
∥∥∥

∑ρ
p=1

∥∥x(∗,p) − x∗∥∥ (3.1)

3.3.2 Radial Basis Function (RBF) Networks

An RBF network, [36, 74], performs the mapping RN →RM using three layers of
processing units: the input with N nodes where the input vectors are applied to, the
hidden with K processing nodes and the output layer with M nodes where responses
emerge. Signals propagate through the network in the forward direction. The K
links connecting the hidden nodes to the output one (assume M =1) are associated
with synaptic weights w to be computed during the training process. The K hidden
layer units are associated with the so–called RBF centers, c(k) ∈RN , k = 1, . . . ,K,
which are the centers of the neuron’s nonlinear radial-basis activation function G :

RN 
→ R. Here, the Gaussian function G (‖x − c(k)‖2,rk) = exp

(
−‖x−c(k)‖2

2
r2
k

)
is

used, where rk are the RBF radii. The network response is

y(x∗) =
K

∑
k=1

wkG (‖x∗ − c(k)‖2,rk) (3.2)

Therefore, assuming K centers c(k) and T > K training patterns x(t), the network
training requires the solution of the following system of linear equations

K

∑
k=1

wtG (‖x(t) − c(k)‖2,rk) = y(t) , t = 1,T

(where y(t) are the known responses) using the least squares algorithm.
The selection of the RBF centers is carried out as in [44]. It is based on self–

organizing maps (SOMs, [22, 36] and an iterative scheme with both unsupervised
and supervised learning. During the unsupervised learning, the SOMs classify the
training patterns into K clusters. Each cluster gives a single RBF center c(k) and
the corresponding radius rk, through heuristics based on distances between the cen-
ters, [5, 23, 36, 47, 60]. During the supervised learning, the synaptic weights are
calculated by minimizing the approximation error over the training set.

Herein, a variant of RBF networks enhanced by Importance Factors (IFs, denoted
by In, n = 1, . . . ,N), as proposed in [29], is used. The modified network incorporates
the In factors which quantify how much the network response is affected by each
design variable. The higher the In value the higher the response sensitivity with
respect to the n–th input variable. A weighted norm defined by
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∥∥∥x∗ − c(k)
∥∥∥

wei
=

√
N

∑
n=1

In

(
x∗

n − c(k)
n

)2
, In =

∣∣∣ ∂y(b)

∂xn

∣∣∣
∑N

i=1

∣∣∣ ∂y(b)

∂xi

∣∣∣ (3.3)

is used instead of eq. 3.2. The computation of In is based on analytically computed
derivatives according to the RBF network signal propagation formulas, [29] and the
current best solution (index b) and must be updated whenever a new optimal solution
is found.

The use of RBF networks trained on both fitness values and gradients is an
interesting alternative, [30, 42, 65]; their presentation is beyond the scope of this
chapter.

3.4 Assessment of MAEA and DMAEA

To justify the need for using MAEAs or DMAEAs, instead of conventional EAs, two
examples follow. More examples can be found in [19, 26, 29, 44, 45].

The first case is concerned with the optimization of the RAE2822 (reference, ref )
airfoil, at M∞ = 0.73 and a∞= 3.19o (inviscid flow), for minimum drag coefficient
CD while maintaining the same lift (CL). Thus, the cost function to be minimized
was F =(CL,re f −CL)2 + 5·CD. A (15,60) EA and a 3×(5,20) DEA (i.e. with three
demes) were used, with and without metamodels. In the DEA, the demes were fully
connected and the migration operator was employed every four generations; two top
members migrated from each deme to all the rest. In both MAEA and DMAEA, σ
was fixed to 0.1. So, in each generation, six offspring were re–evaluated on the CFD
software per generation. In fig. 3.2, the convergence histories of the four algorithms
in terms of the number of evaluations on the CFD model are shown. It is evident
that the DMAEA outperforms all other algorithmic variants. In the same figure, the
pressure coefficient CP distribution over the optimal airfoil shows that the shock
wave formed over the reference RAE2822 airfoil has been eliminated.

The second case demonstrates the gain expected in MOO problems using MAEAs
instead of EAs. This problem is concerned with the design of an axial compressor
cascade airfoil for αin = 47o, Min = 0.6, Reynolds number based on chord ReC =
8.5 ·105 and inlet turbulence intensity τu = 2.0%. The axial velocity density ratio
was 1.1325 and the stagger angle 30o. The two objectives were (a) minimization
of the cascade total pressure loss coefficient ω and (b) maximization of the static
pressure rise pout/pin. The airfoil was parameterized using Bézier curves and the
control point coordinates were the design variables. The optimization was carried
out using a (60,15) EA, a (60,15) MAEA using RBF networks for the IPE phase
and the same MAEA using the enhanced RBF networks (i.e. the ones using IFs),
both with σ =0.10. The three methods are compared in fig. 3.3, illustrating Pareto
front approximations computed at the same CPU cost. The MAEA using the RBF
networks and the IFs provides the best approximation to the Pareto front.
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Fig. 3.2 Redesign of the RAE2822 airfoil. Convergence history plotted in terms of the num-
ber of evaluations on the problem–specific model (left). CP distribution on the optimal airfoil
(right)

A

Fig. 3.3 Design of an axial compressor cascade airfoil. Pareto front approximations using a
conventional EA and two MAEAs. The contour and pressure coefficient (CP) distribution on
the Pareto front member marked with A (right)

3.5 Multilevel Search Algorithms and the Underlying
Hierarchy

In this section, the structure of an optimization algorithm in more than one levels,
which is the backbone of the present method, is described. Three different ways
of employing hierarchy within the multilevel scheme, fig. 3.4, are presented. These
modes can be used either separately or in combination. Two level schemes (L=2)
are described since expansion to L>2 is straightforward.

3.5.1 The Three Multilevel Modes – Defining a HDMAEA

(a) Multilevel Evaluation: In this mode, a different evaluation software is assigned
to each level. Since the low level undertakes the detection of near–optimal solutions
and delivers them to the high level for refinement, evaluation models of low cost



3 Multilevel Optimization Algorithms 69

Low Fidelity S/W

High Fidelity S/W
Detailed

Parameterization

Parameterization
Rough

Multilevel
Evaluation Search

Multilevel
Parameterization

Multilevel

Gradient−based

Global
Metaheuristics

Fig. 3.4 The three modes of the multilevel (herein L=2) algorithm at a glance: (a) Multilevel
Evaluation (b) Multilevel Search and (c) Multilevel Parameterization

and fidelity are associated with it. The problem–specific (high fidelity) evaluation
model is employed on the high level. One– or two–way inter–level migrations can
be used. In one–way migrations, a small number of best performing individuals is
directed upwards, with no feedback at all. On the high level, immigrants replace
badly performing and/or randomly selected population members (assume that an
EA or a MAEA is used on both levels). In the two–way migration scheme, promising
individuals from the high level may also move downwards to stimulate better search
in their neighborhood.

The multilevel evaluation algorithm is often configured with different population
sizes per level, usually a large population on the low level and a small one on the
high level to compensate for the high CPU cost per evaluation and synchronize
better with the low level. The latter certainly depends on the CPU cost ratio and the
number of processors used.

The multilevel evaluation mode is appropriate for use in aerodynamic shape op-
timization problems. For instance, in flows dominated by viscous effects, either a
Navier–Stokes solver coupled with wall–functions on a coarse grid or an integral
boundary layer method can be employed on the low level. The high level must
rely on a model with the desired accuracy, such as a Navier–Stokes solver with
a low–Reynolds number turbulence model and a much finer grid. Alternatively, the
same CFD tool running with different grids and/or employing different convergence
criteria can be used on the two levels.

(b) Multilevel Search: In this mode, each level is associated with a different
search technique (EA, conjugate gradient, Sequential Quadratic Programming SQP,
etc., [63]). Stochastic search techniques, such as EAs, are preferably used on the
low level to adequately explore the design space. On the high level, the refine-
ment of promising solutions can be carried out through gradient–based methods or
stochastic, individual–based methods (such as simulated annealing). The migration
of promising solutions is, preferably, bi–directional to accentuate the exploration
capabilities of low level EAs.

The coupling of stochastic, population–based methods and gradient–based algo-
rithms is not new. In the literature, hybrid optimization methods are mostly restricted
to SOO problems or MOO ones where the objectives are concatenated in a single
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function. In [39], a “genuine” multilevel search methods for MOO problems was
proposed. In this method, on the low level, the EA or MAEA computes approxima-
tions to the Pareto front using a known scalar utility assignment (SPEA–2, [86]).
On the high level, the scalar utility gradient is computed for a few selected non–
dominated solutions and a descent algorithm is used to improve them with respect
to all objectives. This is carried out using the chain rule after replacing the deriva-
tive (delta function) of the non–differentiable SPEA–2 utility function (terms that
involve the Heaviside function) with a differentiable approximation.

In case a gradient–based search is used on the high level, the gradient of the
objective function must be computed or approximated. To this end, in aerodynamic
optimization, the adjoint approach can be used at about the cost of an additional
flow solution, [2, 69, 70].

(c) Multilevel Parameterization: The third mode associates a different set of design
variables with each level. On the low level, a problem with just a few design vari-
ables is solved. On the high level, the detailed problem parameterization is used.
To support migrations, (exact or approximate) transformations between different
parameterizations must be available. All immigrants must be transformed to the
parameterization scheme of the destination level. Working with NURBS curves or
surfaces, knot insertion and removal properties and formulas [72] must be used to
switch between levels with different parameterizations.

In constrained problems, the term different parameterization may also imply
that the constraints are handled differently on each level. For instance, on the low
level, constraints may be relaxed or even ignored, allowing thus even infeasible but
promising solutions to be sent to the high level.

The three modes can be used either separately or altogether. As mentioned above,
the term HDMAEA is used to denote an optimization method of multilevel structure
which may accommodate distributed search on all or some of its levels. In a HD-
MAEA, all levels using DEAs or DMAEAs regularly perform intra–level (i.e. inter–
deme) migrations, over and above to the inter–level ones. In case a level has not yet
reached the generation (or iteration, in gradient–based methods) marked for inter–
level migration whereas the other did, the one ahead suspends evolution, waiting for
synchronization. This is also valid for the intra–level migration between demes.

When ineffective inter–level migrations occur (i.e. when all immigrants perform
worse than the destination level individuals) for a user–defined number of consecutive
generations/iterations, the evolution on the lower level terminates.

3.5.2 Distributed Hierarchical Search – DHMAEA vs.
HDMAEA

Apart from the previous HDMAEA modes, a distributed hierarchical EA (fig. 3.5)
can also be devised using the same ingredients. Since metamodels can optionally be
used during the lower pass, this will also be referred to as distributed hierarchical
metamodel–assisted EA (DHMAEA). DHMAEAs clearly distinguish fromHDMAEAs
since, in the former, hierarchy is employed within each deme, [40].
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Fig. 3.5 The distributed hierarchical EA (DHEAm) with one metamodel (E0) and two
problem–specific tools (E1, E2)

Let Es (s = 0, ...,S) denote the S+1 evaluation tools. By convention, E0 is the
metamodel and ES the high fidelity evaluation model. In the sake of simplicity, all
of them use the same number of design variables. Schemes that use different (coarse
and fine) parameterizations on each level have also been devised, see [39], but these
will not be discussed further. The maximum number of offspring per generations and
deme to be evaluated on Es is λs = λ ∏S

i=0πi. The user–defined parameters πi ∈[0,1]
determine the percentage of individuals evaluated on Ei−1 to be re–evaluated on Ei.
The πi values decrease with i, starting from π0 ≡1 (i.e. λ0 ≡λ ).

The only non–problem–specific evaluation model is E0 (i.e. the metamodel).
Training the metamodels requires a database of samples, shared among all demes.
So, evaluations on E0 are postponed until the database of previously evaluated in-
dividuals (using the low fidelity problem–specific model) exceeds a user–defined
minimum number of entries. Upon completion of a few starting generations (dur-
ing which π1 = 1), metamodels are separately trained and used to approximate the
objective vector value(s) of each new offspring.

3.6 Assessment of Multilevel–Hierarchical Optimization

All four multilevel schemes have been assessed on a number of applications. For
some standard benchmarks as well as information on detailed parameter settings, the
reader should refer to [39, 40, 43]. In what follows four of them are presented here.
The first three demonstrate the expected gain from separately using the multilevel
evaluation, search and parameterization algorithms whereas the last one demon-
strates the use of DHMAEA.

The first study is concerned with the design of a 2D transonic compressor cascade
airfoil with minimum total pressure losses and maximum static pressure rise (i.e.
two objectives), as originally presented in [43]. The optimization was carried out
for isentropic exit Mach number equal to Mout,is=0.6, ain=55.4o and ReC=1.7 ·105.
Constraints were imposed on the minimum airfoil thickness at various chordwise
positions, not allowing the airfoil to become unrealistically thin.

The multilevel evaluation mode, with two levels, was used. On the high level,
a (5,20) MAEA (0.05 ≤σ ≤ 0.15) and a Navier–Stokes equation solver with the
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Fig. 3.6 Design of a 2D transonic compressor cascade using a HDMAEA (multilevel evalua-
tion): Pareto front obtained at the cost of 311 cost units; airfoil shapes and iso–Mach number
contours for three Pareto members. From [43]

Spalart–Allmaras turbulence model, [80], on a fine unstructured mesh were used.
On the low level, search was carried out using a 3×(5,20) DMAEA with the same
σ bounds. Each evaluation on the low level (E1) was based on an integral boundary
layer method, [14] with CPU cost about 30 times less than that of an E2–based
evaluation. So the overall CPU cost of the optimization was k2+k1/30, where k1

and k2 are the numbers of evaluations on E1 and E2, respectively. On both levels,
the fronts were populated with up to 35 non–dominated solutions, by screening out
excess front members from overcrowded front parts. The IPE phase started after
each level database archived 150 (on E1) and 130 (on E2) evaluated individuals. The
inter–level migrations (with 6 individuals moving upwards and 5 downwards) were
performed every 5 (high) and 20 (low level) generations. In addition, for the low
level DMAEA, the inter–deme migration occurred every 4 generations. The Pareto
front approximation shown in fig. 3.6 was obtained at the cost of 311 cost units.
This corresponds to 209 and 1778 evaluations on E2 and E1, respectively.

The multilevel search HDMAEA mode (with two levels) is demonstrated on the
second case where an isolated airfoil with optimal performance at two operating
points: [O.P.1: α∞=1.0◦,M∞=0.5] and [O.P.2: α∞=5.0o,M∞=0.2], was designed,
[39]. The integrals of the deviation of the static pressure distribution along the air-
foil contour from two target distributions were used as objectives. On the high level,
the optimization used a gradient–based method (SQP) whereas a 3×(5,20) DMAEA
was employed on the low level. 10 individuals were simultaneously improved during
one SQP iteration (or equivalent “high level generation”). Every 10 SQP iterations
and 30 DMAEA generations, 10 promising individuals migrated upwards and incor-
porated into the high level on condition that they performed better than the current
SQP “population”. Simultaneously, 5 individuals migrated downwards to join the
DMAEA. On the low level, the IPE phase (with 0.05 ≤σ≤ 0.20) started once 150
evaluated individuals have been archived.

The same Euler equations solver was used on both levels. On the high level,
the objective function gradients were computed by the adjoint method, [69]; thus,
the cost per high level evaluation was twice as much as a low level one (i.e. two
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Fig. 3.7 Design of an isolated airfoil at two
operating points. With the same CPU cost,
the multilevel search variant of the HD-
MAEA outperforms a single level MAEA.
From [39]

Fig. 3.8 Design of a compressor stator cas-
cade. Convergence plot of a multilevel pa-
rameterization algorithm and a single–level
MAEA. From [39]

equivalent flow solutions). As mentioned in a previous section, the gradient of the
SPEA–2 fitness assignment technique with respect to the design variables was com-
puted and used by the descent method on the high level. Fig. 3.7 presents the com-
puted Pareto front approximation at the cost of 1000 equivalent flow solutions and
compares it with that computed by a single level MAEA at the same cost.

The third case demonstrates the gain achieved by the multilevel parameteriza-
tion mode during the design of a compressor stator cascade. The objective was to
minimize the total pressure loss coefficientω , [39], with four constraints on the min-
imum allowed airfoil thickness. The flow conditions were Mout,is =0.65, αin =57o

and ReC =6.0 ·105. The axial velocity density ratio was equal to 1.124 and the stag-
ger angle was 35o. The airfoil pressure and suction sides were parameterized using
Bézier curves with 7 and 17 control points, respectively.

New control points (knots) were inserted to the existing parametrization of in-
dividuals migrating upwards without changing their shape. Unfortunately, this was
not the case of knot removal. The incremental knot insertion formula (from N+1 to
N+2) used for the internal control points of a Bézier curve is

Ri =
i

N + 1
ri−1 +

(
1 − i

N + 1

)
ri, 0< i<N+1 (3.4)

where r and R are the position vectors of the control points before and after the
insertion, respectively. It is evident that R0=r0, RN+1=rN .

In this case, (40,8) and (25,5) MAEAs were used on the high and low levels, re-
spectively, with the same CFD software. Fig. 3.8 presents the convergence behavior
of the high level MAEA and compares it with a single level MAEA. The best solution
achieved using the two–level parameterization algorithm had ω=1.895% whereas
the single level MAEA led to ω=2.14%, both at the same CPU cost.

The last case in this section stands for the two–objective design of a compres-
sor cascade airfoil, aiming at minimum total pressure losses and maximum static
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pressure rise, subject to airfoil thickness related constraints. The flow conditions
were Mout,is=0.45,αin=47o,ReC=8.41·105. Local metamodels (E0), a high fidelity
CFD model (E2) and a low fidelity one (E1 based on the same iterative solution
methods with relaxed convergence criteria) were used. The CPU cost ratio of E1

and E2 was about 0.1:1,
In this case, three algorithms are compared:

1. A single–level (15,60) EA using E2–based evaluations.
2. A DHEA with three (5,20) demes and two evaluation passes (on E1 and E2)

within each deme. During the first pass, the 20 offspring were evaluated on E1

and only the top two of them were re–evaluated on E2.
3. A 3 × (5,20) DHMAEA and three evaluation passes per deme. Upon completion

of the 20 E0–based evaluations, the 10 best among them were re–evaluated on
E1 and the 3 best of them on E2. All metamodels were trained on the fly, using
previously evaluated (on E1) neighbors.

In both distributed algorithms, the migration operator was employed every 8 gen-
erations by exchanging two individuals between any pair of demes. The two emi-
grants of each deme were selected after ranking the 20 population members in terms
of their fitness, irrespective of the evaluation tool used. In each destination deme,
the immigrants replaced the worst performing members evaluated on the same or a
lower fidelity model.

The three algorithms are compared in terms of the hypervolume indicator, [87],
fig. 3.9, which quantifies the part of the objective space (up to a user–defined point)
dominated by the front; larger indicator values correspond to better Pareto front ap-
proximations. The combined use of metamodels and hierarchical schemes achieves
better performance. The same figure also shows the Pareto front approximation (at
the cost of 1000 CPU cost units) computed by the DHMAEA.

Fig. 3.9 Two–objective compressor cascade airfoil design: Evolution of the hypervolume
indicator for the three tested algorithms (left) and the Pareto front approximation computed
by the DHMAEA (right)
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3.7 Optimization of an Annular Cascade

This section is dedicated to a real engineering application, with high CPU cost per
evaluation. This new case is concerned with the optimization of a 3D annular com-
pressor cascade. An existing cascade with 19 straight blades (chord length equal to
C=0.1 m, stagger angle equal to 51.4o) was used as the reference one. The blades
were mounted on the casing by forming a 2.0 mm clearance with the stationary or
rotating hub with radius equal to 0.244 m. This study was concerned only with the
stationary hub. The facility layout and experimental measurements can be found in
[56] and a numerical flow study in [75]. The inlet total pressure/temperature and
peripheral/radial flow angle distributions at the cascade inlet were given. The cas-
cade mass flow rate was 13.2 kg/s and the maximum inlet Mach number was about
0.6. The purpose of this study was to redesign the airfoil of the straight blade so as
to achieve minimum mass-averaged pressure loss coefficient PLCave. PLCave results
from the radial distribution of the circumferentially averaged pressure loss coeffi-

cient PLC(r)= pt,inl−pt(r)
pt,inl−pinl

.

Each airfoil side was parameterized using 15 NURBS control points, 5 of which
were allowed to vary. So the design variables were 20 in total (two coordinates per
design variable). Geometrical constraints were imposed to ensure that the optimal
airfoil would not become thinner than the reference one by more than 90%. In addi-
tion, the mean exit flow angle ᾱout was not allowed to exceed 53o.

The CFD software used was a Navier–Stokes solver employing a time–marching,
vertex–centered, finite volume formulation for unstructured grids, [50]. Turbulence
is modeled using the Spalart–Allmaras model, [80]. The inlet turbulence intensity
was set to 1.5%.

The hierarchical optimization algorithm described in section 3.5.2 with a sin-
gle deme was used. The two problem–specific evaluation models were both based
on the aforementioned CFD software, using different turbulence modeling and
grid sizes. The high fidelity model (E2) used the low–Reynolds number Spalart–
Allmaras model on a hybrid–unstructured grid of about 1.000.000 nodes, fig. 3.11.
Hexahedral and prismatic elements were generated over the blade surface 400×95
structured–like grid and the casing; the distance of the first layer of nodes off the

Fig. 3.10 Optimization of an annular cascade: Reference airfoil (continuous line), its control
points’ polygon (dashed line) and the design variables’ bounds (left). Reference (dashed) and
optimal (continuous) blade airfoil contours (right)
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Fig. 3.11 Optimization of an annular cascade: Views of the hybrid fine grid used for
E2–based evaluations (left) and view of the surface grid over the reference blade (right)

walls satisfied the usual constraint on the nondimensional distance y+ from the wall
(y+ <1). All subsequent layers of elements were arranged using a geometrical pro-
gression law with ratio ω . A layer of pyramids was used to interface the hexahedral
structured–like layers and the tetrahedra filling the inner part of the domain. The
same grid generation procedure was also used to support the low fidelity tool E1,
with different, however, parameters. E1 used the Spalart–Allmaras turbulence model
with wall functions and a coarser hybrid–unstructured grid of about 600.000 nodes.
The blade surface was discretized using a 400×85 grid; larger ω and distances of
the first layer of nodes off the wall were used. Table 3.1 compares the basic features
of the fine (for E2) and coarse (for E1) grids.

This optimization was carried out on a cluster of 25 nodes (2×Quad Core Xeon,
2.0Ghz, with 16 GB RAM each). Each population member was evaluated in paral-
lel on a single node. The wall clock time required for a single E2–based evaluation
was about 6 hours. The same evaluation on E1 required about 1.2 hours. Below, one
CPU cost unit is assigned to each evaluation on E2 and 0.2 units to each on E1. It
should become clear that even if an evaluation failed quite early (during grid
generation), this was assigned the full CPU cost. These are also summarized in
table 3.1.

To compare the modeling accuracy of E1 and E2, the reference cascade was
firstly analyzed using both tools. The computed radial distributions of the circum-
ferentially mass–averaged total pressure on the (same) exit plane are compared in
fig. 3.12, left. Differences between the two models reflect on the PLCave values
which were equal to 0.1498 (based on E1) and 0.1189 (on E2).

A (20,60) hierarchical EA, with a single population was used. Fitness inheritance
and RBF networks supported the IPE process. During the first generation, all indi-
viduals were evaluated on E1 and only the 6 top of them were re–evaluated on E2.
On the second generation, the fitness inheritance technique was activated. The most
promising (between 5 and 10 of them) members in the population were re–evaluated
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Fig. 3.12 Optimization of an annular cascade: Comparison of E1, E2–based predictions
and measurements on the reference blade (left). Radial distributions of the circumferentially
mass–averaged total pressure on the exit plane; the tip clearance is located at zero span per-
centage (left). Convergence of the hierarchical EA (right)

Table 3.1 Optimization of an annular cascade: Basic features of the E1 (low–fidelity) and E2
(high–fidelity) problem–specific evaluation software

E1 E2

Turbulence model Spalart–Allmaras with
wall functions

Spalart–Allmaras,
low–Reynolds model

Number of grid nodes � 600k � 1.000k
Number of tetrahedra � 225k � 280k
Number of pyramids � 6k � 10k

Number of prisms � 205k � 300k
Number of hexahedra � 475k � 820k
Average wall distance 5×10−5m 3×10−5m

Stretching close to wall (ω) 1.20 1.15
Blade surface grid 400×85 400×95

Viscous layers 21 27
Grid generation: Wall clock time � 11min � 18min

Flow solution: Wall clock time � 1.2h � 6h
CPU cost units 0.2 1

on E1 and only the best of them on E2. Once 100 previously evaluated individuals
on E1 were archived in the database, RBF networks were used in place of fitness
inheritance. The hierarchical EA was stopped at 80 CPU cost units.

Fig. 3.12 (right) illustrates the convergence of the optimization algorithm. The
mass–averaged PLC values of the reference and optimal airfoils were found equal
to 0.1189 and 0.0843, respectively. The gain using the hierarchical algorithm is
absolutely clear since, by merely using a MAEA based on E2, it would be impossible
to locate the optimal solution at the cost of 80 CPU cost units.
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Fig. 3.13 Optimization of an annular cascade: Comparison of objective function values of
individuals evaluated on both E1 and E2 (left) and RBF networks. For the latter, the relative
prediction error with respect to E1 are shown (right)

Table 3.2 Optimization of an annular cascade: Analysis of the overall CPU cost

E1 E2

CPU cost units 33 47
Total evaluations 165 47

Failed evaluations 54 19
Infeasible evaluations 35 3

Table 3.2 summarizes statistics of the optimization run. An extremely low
number of evaluations on E2 (only 47) were carried out. Recall that any candidate
solution evaluated on E2 should have previously been evaluated on E1; the two ob-
jective function values these individuals take on by the two models are compared in
fig. 3.13. However, 19 of them were assigned a “death penalty” (i.e. an almost infi-
nite objective function value) since E2 failed to converge. So, fig. 3.13 compares the
performance of the 28 remaining individuals, only. The average deviation of PLCave

predictions on E1 and E2 (for these 28 individuals) was about 29%. The same figure
presents the prediction error of the RBF networks with respect to E1 (rank sorted).
The metamodel prediction accuracy seems very satisfactory since, 34 out of the 39
approximate predictions had a relative error less than 5%.

In fig. 3.14, iso–contours of the total pressure loss coefficient Cpt = p̄t,inl−pt
p̄t,inl− p̄inl

are plotted on two transversal cross–sections located 0.782Cax and 1.145Cax down-
stream of the blade leading edge, for both reference and optimal blades. It is clearly
shown that, with the redesigned blade, the losses induced by the tip clearance vortex
are much lower and this causes a much lower PLCave value.
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Fig. 3.14 Optimization of an annular cascade: Total pressure loss fields transversal cross–
sections located at 0.782Cax (top) and 1.145Cax (bottom) downstream of the blade leading
edge. Reference (left) and optimal (right) blade are included

3.8 Conclusions

Several algorithms capable to reduce the number of evaluations and the wall clock
time of EA–based optimization were presented. They were based on:

• Metamodels, which replace as many calls to the problem–specific evaluation
model as possible. RBF networks have been used, assisted by fitness inheri-
tance during the first few generations. However, any other artificial neural net-
work, such as a multilayer perceptron, Gaussian processes or even polynomial
regression, could have been used instead, [18, 19, 25].

• Distributed search, in the form of intercommunicating demes, being advanta-
geous if, particularly, the design is carried out on multiprocessor platforms.

• Hierarchical schemes, splitting the search into levels based on evaluation tools
of different fidelity and CPU cost, different coarse and fine parameterizations or
involving gradient–based search for refinement.
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Their combination is possible and very efficient indeed. It can be performed in var-
ious ways. In this chapter we presented hierarchical distributed (where the levels
are independently structured in demes) and distributed hierarchical search (where
the hierarchy is implicit to each deme). It was beyond the scope of this chapter to
compare the two aforementioned schemes; from several tests, it has been seen that
such a conclusion is case dependent. However, it was clearly demonstrated that the
combination of the above schemes leads to a considerable economy in the CPU
cost. Over and above, in this work, an EA served as the base search method. The
presented hierarchical framework as well as the IPE technique is directly extended
to any other stochastic search technique, such as evolution strategies with covariant
matrix adaptation [3] or particle swarm optimization [51].
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13. Doorly, D.J., Peiró, J.: Supervised parallel genetic algorithms in aerodynamic optimisa-
tion. AIAA Paper 1997-1852 (1997)

14. Drela, M., Giles, M.: Viscous-inviscid analysis of transonic and low Reynolds number
airfoils. AIAA J. 25(10), 1347–1355 (1987)



3 Multilevel Optimization Algorithms 81

15. Ducheyne, E., De Baets, B., De Wulf, R.: Fitness inheritance in multiple objective evo-
lutionary algorithms: A test bench and real-world evaluation. Applied Soft Comput-
ing 8(1), 337–349 (2008)

16. Duvigneau, R., Chaigne, B., Désidéri, J.: Multi-level parameterization for shape opti-
mization in aerodynamics and electromagnetics using a particle swarm optimization al-
gorithm. Tech. Rep. RR-6003, INRIA, France (2006)

17. Eby, D., Averill, R., Punch III, W., Goodman, E.: Evaluation of injection island GA per-
formance on flywheel design optimization. In: Proceedings of the 3rd Conf. on Adaptive
Computing in Design & Manufacturing, pp. 121–136. Springer, Heidelberg (1998)
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82. Thévenin, D., Janiga, G.: Optimization and Computational Fluid Dynamics. Springer,
Heidelberg (2008)

83. Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by Gaussian processes
with improved pre-selection criterion. In: CEC 2003, Canberra, vol. 1, pp. 692–699
(2003)

84. Zhou, Z., Ong, Y.S., Lim, M., Lee, B.: Memetic algorithm using multi–surrogates
for computational expensive optimization problems. Soft Computing 11(10), 957–971
(2007)

85. Zitzler, E., Laumans, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary
algorithm. Tech. Rep. 103, ETH, Computer Engineering & Communication Networks
Lab. (TIK), Zurich (2001)

86. Zitzler, E., Laumans, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary
algorithm for multiobjective optimization. In: EUROGEN 2001, CIMNE, Barcelona, pp.
19–26 (2001)

87. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the de-
sign of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K.,
Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876.
Springer, Heidelberg (2007)



Chapter 4
Knowledge-Based Variable-Fidelity
Optimization of Expensive Objective Functions
through Space Mapping

Slawomir Koziel and John W. Bandler

Abstract. The growing complexity of engineering modeling and design prob-
lems demands effective strategies for optimization of computationally expensive
objective functions. To this end, we focus on knowledge-based, variable-fidelity
optimization of expensive functions through a tried and tested, yet still rapidly
evolving art called space mapping optimization. Fitting into the arena of surrogate-
based optimization, space-mapping optimization is a model-driven optimization
process where the model is an iteratively updated surrogate derived from a valid,
low-fidelity or physics-based coarse model. Space mapping takes several forms.
Here, we present and formulate the original input space mapping concept, as well as
the more recent implicit and output space mapping concepts. Corresponding surro-
gate models are presented, classified, and discussed. A proposed optimization flow
is explained. Then we illustrate both input space mapping and implicit space map-
ping through the space mapping optimization of a simple, technology-free wedge-
cutting problem. We also present tuning space mapping, a powerful methodology,
but one that requires extra engineering knowledge of the problem under investi-
gation. To confirm our work, we select representative examples from the fields of
microwave and antenna engineering, including filter and antenna designs.

4.1 Introduction

True of all branches of engineering, the escalating complexity of modeling and
design problems drives today’s demand for effective strategies for optimization
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of computationally expensive objective functions. Challenging as the issue is for
medium or large problems involving single disciplines, only the engineer’s imagina-
tion limits the scope of possibilities for multidisciplinary optimization. It is timely,
therefore, to consider methodologies capable of spanning many fields of design
optimization endeavour.

This chapter focuses on knowledge-based variable-fidelity optimization of ex-
pensive functions through space mapping. The work fits into the arena of surrogate-
based optimization (SBO). The work-horse for our specific approach to SBO is a
surrogate model derived from a valid, low-fidelity or physics-based coarse model.
Occasional and appropriate recourse to the problem’s high-fidelity model keeps our
surrogate updated. Often the coarse model is a lower fidelity version of the high-
fidelity or fine model. In any case, the cost of computing the surrogate is assumed
to be little more than that of any underlying coarse model.

In the following paragraphs, we introduce some important contributions to the
field from a literature rich with contributions. Our brief review is intended to be
representative and influential rather than exhaustive.

Space mapping procedures iteratively update and optimize surrogates based on
fast physically based “coarse” models. Early approaches include the original al-
gorithm by Bandler et al. [9], and the Broyden-based aggressive space mapping
algorithm by Bandler et al. [10]. Dennis and Torczon [18] exploit trust-region tech-
niques and pattern search methods to manage what they call the interplay between
the optimization method and the fidelity of the approximation model. Alexandrov et
al. [2] present an approach to managing the use of approximation models of various
fidelity. Their approach is based on the idea of trust regions from nonlinear pro-
gramming. They demonstrate convergence to a solution of the original high-fidelity
problem. Their method suggests ways of deciding when the fidelity, hence cost, of
the approximations can be increased or decreased during the optimization iterations.
More recently, Alexandrov et al. [3] provide a rigorous methodology for solving
high-fidelity optimization problems using derivative-based optimization algorithms
and any combination of high-fidelity and low-fidelity models. The paper considers
both variable-resolution models and variable-fidelity physics models.

A benchmark paper by Booker et al. [14] treats problems for which traditional
optimization approaches are not practical. It offers a framework for generating a
sequence of approximations to an expensive objective function and managing the
use of these approximations as surrogates. The authors’ approach does not require
or involve derivatives of the objective function. Simpson et al. [45] review the re-
sponse surface method then present kriging as an alternative approximation method
for the design and analysis of computer experiments. They apply both methods to a
multidisciplinary design problem involving a computational fluid dynamics model
and a finite-element model. Marsden et al. [36] apply shape optimization to time-
dependent trailing-edge flow so as to minimize aerodynamic noise. They use the sur-
rogate management framework (SMF), a non-gradient based pattern search method,
to explore the design space with an inexpensive surrogate function.
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Within the sphere of space mapping, Robinson et al. [44] treat design prob-
lems when the coarse and fine models are defined over different design spaces and
mappings are required over these spaces.

In a related field, Rayas-Sánchez [41] reviews the state-of-the-art in electro-
magnetics-based design and optimization using artificial neural networks. He
surveys conventional modeling approaches along with typical enhancing and know-
ledge-based techniques. Rayas-Sánchez reviews strategies for design exploiting
knowledge, including neural space-mapping methods.

Space mapping technology emerged in 1994 [9] out of competitive necessity.
Full-wave electromagnetic solvers had long been accepted for validating microwave
designs obtained through equivalent circuit models. While the idea of employing
electromagnetic solvers for direct optimal design attracted microwave
engineers, electromagnetic solvers are notoriously CPU-intensive. As originally
construed, they also suffered from non-differentiable response evaluation and non-
parameterized design variables that were often discrete in the parameter space,
etc. Such characteristics are unfriendly to classical gradient optimization algo-
rithms. Thus, state-of-the-art successful interconnection of electromagnetic solvers
with powerful optimization techniques still insufficiently addressed the microwave
community’s ambitions for automated electromagnetics-based design optimization.

The original idea of space mapping [9] was to map designs from optimized cir-
cuit models to corresponding electromagnetic models. A “parameter extraction”
step calibrated the circuit solver against the electromagnetic simulator in order to
minimize observed discrepancies between the two simulations. The circuit model
(surrogate) was then updated through extracted parameters and made ready for
subsequent classical optimization.

Bandler et al. [11] reviewed the space mapping and the space-mapping-based sur-
rogate modeling concepts and applications in various engineering design optimiza-
tion problems. They present a mathematical motivation and place space mapping
into the context of classical optimization. Recent work in space mapping includes a
trust-region approach [5], neural space mapping [6] and implicit space mapping [12].
Parameter extraction is an essential sub-problem used to align the surrogate—an en-
hanced coarse model—with the fine model. In a 2006 review, Bandler et al. [13] show
that all the existing space mapping approaches can be viewed as particular cases of
one, generic formulation of space mapping.

Space mapping demonstrably addresses the engineer’s need for validated, high-
fidelity designs when classical optimization algorithms threaten hundreds of costly
simulations, and perhaps days or weeks of CPU time. The methodology exploits
underlying fast-to-compute, low-fidelity surrogate models, which are ubiquitous
in engineering practice. Space mapping takes the high-fidelity simulator out of
the classical optimization loop, instead exploiting the iterative enhancement of the
available low-fidelity surrogates. Space mapping optimization algorithms enjoy a
desirable feature: they usually provide excellent designs after only a handful of
high-fidelity simulations. The methodology follows the traditional experience and
intuition of the engineer, yet is amenable to mathematical treatment. It enjoys
immediate recognition by the experienced engineering designer.
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A key to the success of space mapping, i.e., that it yields satisfactory solutions
after a few fine model evaluations, is the recommended physical nature of the coarse
model. Other surrogate-model-based methods [14, 18, 24, 39, 46] exploit functional
surrogates obtained from direct approximation of the available fine model data and,
therefore, cannot compete with space mapping in terms of computational efficiency.

In “implicit” space mapping, preassigned parameters not used in the optimization
process can change in the coarse model. In “output” space mapping, we transform
the response of the coarse model. Other exciting developments include surrogates
that interpolate fine models simulated on a structured grid, frequency mappings; and
the recent concept of “tuning” space mapping. The latest review by Koziel et al. [32]
places various related concepts contextually into the history of design optimization
and modeling of microwave circuits.

Space mapping optimization [21, 29] belongs to the class of surrogate-based opti-
mization methods [14] that generates a sequence of approximations to the objective
function and manages the use of these approximations as surrogates for optimization.

Space mapping methodology continues to provide success in diverse areas [4, 17,
20, 22, 25, 27, 28, 33, 42, 43, 49, 50, 51]: electronic, photonic, radio frequency, an-
tenna, microwave, and magnetic systems; civil, mechanical, and aerospace
engineering structures, including automotive crashworthiness design [43].

In this chapter, we present and formulate the original input space mapping
concept, as well as the more recent implicit and output space mapping concepts.
We present, classify and discuss corresponding surrogate models. A proposed op-
timization flow is explained. Then we illustrate both input space mapping and
implicit space mapping through the space mapping optimization of a simple wedge-
cutting problem. We also present tuning space mapping, a powerful methodology,
but one that requires extra engineering knowledge of the problem under investiga-
tion. Throughout, we select representative examples from the fields of microwave
and antenna engineering, including filter and antenna designs.

4.2 Space Mapping Optimization

In this section we formulate the space mapping (SM) optimization algorithm, dis-
cuss some popular SM approaches, and provide a simple example that explains the
operation of space mapping. Some practical issues of SM optimization as well as
desirable features of the models involved in the SM process are also indicated.

4.2.1 Formulation of the Space Mapping Algorithm

Let f : Ω f → ℜm, Ω f ⊆ ℜn, denote the high-fidelity (or fine) model of the
engineering device. The goal is to solve

x∗
f ∈ arg min

x∈Ω f
H( f (x)) (4.1)
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where H : ℜm → ℜ is a given merit function, e.g., a norm. H ◦ f is the objective
function.

We consider the fine model to be expensive to compute and solving (4.1) by
direct optimization to be impractical. Instead, we use surrogate models, i.e., models
that are not as accurate as the fine model but are computationally cheap, hence
suitable for iterative optimization. We consider a general optimization algorithm
that generates a sequence of points x(i) ∈ Ω f , i = 1,2, . . ., and a family of surrogate

models s(i) : Ω (i)
s → ℜm, i = 0,1, . . ., so that

x(i+1) ∈ arg min
x∈Ω f ∩Ω (i)

s

H(s(i)(x)) (4.2)

If the solution to (4.2) is non-unique we may impose regularization.
Space mapping (SM) assumes the existence of a so called coarse model, c :Ωc →

ℜm, Ωc ⊆ ℜn, that describes the same object as the fine model: less accurate but
much faster to evaluate. The family of surrogate models is constructed from the
coarse model in such a way that s(i) is a suitable distortion of c, such that the mis-
alignment between the fine and the surrogate models is reduced as much as possible
(cf. (4.4)).

Let s̄ : Ωs → ℜm be a generic SM surrogate model which is the coarse model
composed with some suitable space mapping transformations, where Ωs ⊂ Ωc ×
Ωp, with Ωp being the parameter space of these transformations. We call Ωp a SM
parameter domain. The surrogate model s(i) is defined as

s(i)(x) = s̄(x, p(i)) (4.3)

where

p(i) ∈ arg min
p∈Ω (i)

p

( i

∑
k=0

wi.k|| f (x(k))− s̄(x(k), p)||
)

(4.4)

where Ω (i)
p = {p ∈ Ωp : (x(k), p) ∈ Ωs for k = 0,1, . . . , i} and wi.k are weighting

factors. Two typical weight settings are: (i) wi.k = 1 for k = 0,1, . . . , i (all points x(k),
k = 0,1, . . . , i, have the same contribution to the parameter extraction process) and
(ii) wi.k = 1 for i = k, and wi.k = 0 otherwise (only the last iteration point is used in

(4.4)). The domainΩ (i)
s of the surrogate model s(i) is Ω (i)

s = {x ∈Ωc : (x, p(i))∈Ωs}.
The space-mapping optimization algorithm flow can be described as follows:

1. Set i = 0; choose the initial solution x(0);
2. Evaluate the fine model to find f (x(i));
3. Obtain the surrogate model s(i) using (4.3) and (4.4);
4. Given x(i) and s(i), obtain x(i+1) using (4.2);
5. If the termination condition is not satisfied go to 2; else terminate the algorithm.

Typically, x(0) = argmin{x : H(c(x))}, i.e., it is the optimal solution of the coarse
model, which is the best initial design we normally have at our disposal.
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Usually, the algorithm is terminated when it converges (i.e., ||x(i) −x(i−1)|| and/or
|| f (x(i))− f (x(i−1))|| are smaller than user-defined values) or when the maximum
number of iterations (or fine model evaluations) is exceeded.

4.2.2 Space Mapping Surrogate Models

There is a variety of space mapping surrogate models available [9, 10, 11, 12, 13,
29, 32]. They can be roughly categorized into four groups (here, n is the number of
the design variables, m is the number of components of the high- and low-fidelity
model response vectors):

• Models based on a (usually linear) distortion of the coarse model parameter
space, e.g., input space mapping of the form s̄(x, p) = s̄(x,B,q) = c(B ·x + q)
[11], where B is an n × n matrix and q is an n × 1 vector;

• Models based on distortion of the coarse model response, e.g., output space map-
ping of the form s̄(x, p) = s̄(x,d) = c(x)+ d (additive output SM; d is an m × 1
vector) or s̄(x, p) = s̄(x,a) = a ·c(x) (multiplicative output SM; a is usually a
diagonal m× m matrix) [11, 29];

• Implicit space mapping, where the parameters used to align the surrogate with
the fine model are separate from the design variables, i.e., s̄(x, p) = s̄(x,xp) =
ci(x,xp), with ci being the coarse model dependent on both design variables x and
so-called preassigned parameters xp (e.g., electric permittivity and
the height of the dielectric substrate of a microstrip device [12]) that are
normally fixed in the fine model but can be freely changed in the coarse model
[12, 32];

• Custom models exploiting problem-specific parameters. For example, in mi-
crowave engineering, components of the coarse model vector c(x) depend on
a certain free parameter, usually the frequency ω of the input signal. In such a
case we have c(x) = [c̄(x,ω1) . . . c̄(x,ωm)]T , where c̄ is the frequency-dependent
model and ω j, j = 1, . . . ,m, are frequency samples at which the model is eval-
uated. Often, the fine and coarse model responses considered as functions of
frequency have a similar “shape” and so-called frequency SM [11, 32] can
be useful to reduce their misalignment. The surrogate model has the form of
s̄(x, p) = s̄(x,F) = c f (x,F) = [c̄(x, fs(ω1,F)) . . . c̄(x, fs(ωm,F))]T , where the
scaling function fs is usually defined as fs(ω ,F) = fs(ω , f1, f2) = f1 + f2ω , i.e.,
F = [ f1 f2]T .

It is a common practice that basic space mapping types are combined together, e.g.,
the model using both input, output and frequency space mapping would as fol-
lows: s̄(x, p) = s̄(x,B,q,d,F) = c f (B ·x+q,F)+d. The rationale behind it is that a
properly chosen mapping may significantly improve the performance of the space
mapping algorithm, however, the optimal selection of the mapping type for a given
design problem is not a trivial task [32].
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4.2.3 Characterization of Space Mapping

It is critical to the performance of the SM algorithm that the coarse model is
physically-based, i.e., it describes the same physical phenomena as the fine model
but is not necessarily as accurate as f [32]. On the other hand, the coarse model
should be computationally much cheaper than the fine model because both parame-
ter extraction (4.4) and surrogate optimization (4.2) involve multiple evaluations of
the coarse model. Having this in mind, SM can be considered as both a variable-
fidelity and knowledge-based approach because c is a low-fidelity representation
of f and encodes—sometimes substantial—knowledge about the latter. In the mi-
crowave engineering area, where space mapping originated, the fine model is usu-
ally evaluated using CPU intensive full-wave electromagnetic simulators, while the
coarse model is a circuit-equivalent of the microwave structure in question or is
based on analytical formulas [11, 32].

If the surrogate model is a sufficiently good representation of the fine model [29],
the space-mapping algorithm (4.2) is likely to produce a sequence of vectors x(i) that
quickly approach a satisfactory design, however, we cannot expect the final solution
to be a local optimum of the fine model in general, unless, for example, first-order
consistency conditions between the surrogate and the fine model are ensured (which
requires exploiting fine model sensitivity data [29]) and convergence safeguards
such as trust region methods are used [16].

Usually, the fine model is only evaluated once per iteration (at every new design
x(i+1)) for verification purposes and to obtain the data necessary to update the sur-
rogate model. Because of the low computational cost of the surrogate model, its
optimization cost (cf. (4.2)) as well as the cost of parameter extraction (4.4) can
usually be neglected and the total optimization cost is determined by the evaluation
of f . The key point here is that the number of evaluations of the fine model for a
well performing surrogate-based algorithm is substantially smaller than for any di-
rect optimization method (e.g., gradient-based) [29]. A typical number of fine model
evaluations reported in the literature (e.g., [4, 5, 9, 10, 11, 12, 32]) for space map-
ping algorithms range between three and ten and is hardly dependent on the problem
size n.

It should be noted that a similar idea is shared by other surrogate-based opti-
mization (SBO) methods [2, 3, 14, 18, 36, 45], however, many of them do not use a
simplified physically based coarse model: a functional surrogate is created by direct
approximation of the available fine model data. There is a large group of functional
approximation techniques that can be used to create fast surrogate models, includ-
ing radial basis functions [15], kriging [48], fuzzy systems [38], and neural networks
[19]. In order to achieve reasonable accuracy, all of these methods require, however,
a large amount of data. Moreover, the number of data pairs necessary to ensure suffi-
cient accuracy grows exponentially with the number of design variables. Therefore,
SBO techniques using functional surrogate models cannot achieve space mapping
efficiency in terms of the number of high-fidelity model evaluations required to find
satisfactory solutions.
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4.2.4 Practical Issues and Open Problems

It is easy to notice that the space mapping algorithm (4.2)-(4.4) has the follow-
ing two features. First of all, consistency conditions between the fine and surrogate
models are not necessarily satisfied. In particular, it is not required that the surro-
gate model matches the fine model with respect to value and first-order derivative
at any of the iteration points. Second, subsequent iterations are accepted regardless
of the objective function improvement. As a consequence, convergence of the SM
algorithm is not guaranteed in general, and the choice of an optimal space mapping
approach for a given problem is not obvious [31].

Several methods for assessing the quality of the coarse/surrogate model have
been proposed that are based on information obtained from the fine model at a set
of test points [30, 31]. This information is used to estimate certain conditions in
the convergence results and allows us to predict whether a given model might be
successfully used in space mapping optimization. Using these methods one can also
compare the quality of different coarse models, or choose the proper type of space
mapping which would suit a given optimization problem [31]. Assessment methods
can also be embedded into the space mapping optimization algorithm so that the
most suitable surrogate model is selected in each iteration of the algorithm out of a
given candidate model set [30].

Convergence properties of the space mapping algorithm can be improved by us-
ing the trust region method [16, 32], in which the surrogate model optimization is
restricted to a neighborhood of the point x(i) so that we have

x(i+1) ∈ arg min
x∈Ω f ∩Ω (i)

s , ||x−x(i)||≤δ (i)
H(s(i)(x)) (4.5)

where δ (i) denotes the trust region radius at iteration i, which is updated at every
iteration using classical rules [16].

It should be emphasized that space mapping is not a general-purpose approach.
The existence of the computationally cheap and sufficiently accurate coarse model
is an important prerequisite of our technique. If such a coarse model does exist, the
space mapping method is able to yield a satisfactory design after a few evaluations
of the high-fidelity model, which is a dramatic reduction of the computational cost
of the optimization compared to other methods. Otherwise, space mapping cannot
be used or will not be efficient.

4.2.5 Space Mapping Illustration

In order to illustrate the operation of basic space mapping algorithm we consider
the so-called wedge-cutting problem [11] formulated as follows. Given a wedge as
shown in Fig. 4.1(a), cut a piece of length x so that the corresponding area, f (x) is
equal to f0 = 100. Our fine model is f , which, for the sake of example, is assumed to
be given by f (x) = x(5+ x/16). We also consider a simplified representation of the
wedge, a rectangle of height H shown in Fig. 4.1(b). The coarse model is the area
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(a) (b)

Fig. 4.1 Wedge-cutting problem [11]: (a) the fine model, and (b) the coarse model

of a piece of this rectangle, determined by the length x, so that we have c(x) = Hx.
Here, we assume that H = 5.

The starting point of SM optimization is a coarse model optimal solution x(0) =
20. The fine model at x(0) is f (x(0)) = 125. For illustration purposes we will solve
our problem using the simplest version of the input space mapping and then using
implicit space mapping.

4.2.5.1 Wedge Cutting Problem Solved Using Input Space Mapping

We use the following setup for the input space mapping approach. The generic
surrogate model is given by s̄(x, p) = s̄(x,q) = c(x + q). The weighting factors in
the parameter extraction process (4.4) are given by wi.k = 1 for k = i and wi.k = 0
otherwise. Thus, the surrogate model can be written in short as:

s(i)(x) = c(x + q(i)) (4.6)

where
q(i) = argmin

q
|| f (x(i))− c(x(i) + q)|| (4.7)

In this simple case, (4.7) has an analytical solution given by q(i) = f (x(i))/H − x(i).
Figure 4.2 shows the first four iterations of the SM algorithm solving the wedge
cutting problem. This particular input space mapping approach is both simple and
direct, yet it converges to an acceptable result (from an engineering point of view)
in a remarkably small number of iterations. It is clearly knowledge-based, since
the coarse model is a physical approximation to the fine model, and the iteratively
updated coarse model attempts to align itself with the fine model. The optimization
process mimics a learning process derived from intuition.

4.2.5.2 Wedge Cutting Problem Solved Using Implicit Space Mapping

We use the following setup for the implicit space mapping approach. The generic
surrogate model is given by s̄(x, p) = s̄(x,H) = ci(x,H), where ci(x,H) = Hx. The
weighting factors in the parameter extraction process (4.4) are, as before, wi.k = 1
for k = i and wi.k = 0 otherwise. The surrogate model can be restated as:

s(i)(x) = ci(x,H(i)) = H(i)x (4.8)
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x(0) x(0)

x(0) = 20 =>  f(x(0)) = 125
               =>  q(0) = 5  
               =>  s(0)(x) = c(x+5)

x(1)

x(1) = 15 =>  f(x(1)) = 89.06
               =>  q(1) = 2.81  
               =>  s(1)(x) = c(x+2.81)

Surrogate model           Fine model

x(1)

x(2) x(2)

x(3) x(3)

x(2) = 17.19 => f(x(2)) = 104.4
                    =>  q(2) = 3.69  
                    =>  s(2)(x) = c(x+3.69)

x(4) q(3) x(4)

x(3) = 16.31 => f(x(3)) = 98.16
                    =>  q(3) = 3.32  
                    =>  s(3)(x) = c(x+3.32)

x(4) = 16.68 => f(x(4)) = 100.76

q(0)

q(1)

q(2)

q(3)

Fig. 4.2 Input space mapping solving the wedge cutting problem [11]

x(0) x(0)

x(0) = 20 =>  f(x(0)) = 125
=> H(0) = 6.25
=> s(0)(x) = 6.25·x

x(1)

x(1) = 16 =>  f(x(1)) = 96.0
=> H(1) = 6.00
=> s(1)(x) = 6.00·x

Surrogate model Fine model

x(1)

x(2) x(2)

x(3) x(3)

x(2) = 16.67 =>  f(x(2)) = 100.69
=> H(2) = 6.04
=> s(2)(x) = 6.04·x

x(4) x(4)

x(3) = 16.55 =>  f(x(3)) = 99.88
=> H(3) = 6.03
=> s(3)(x) = 6.03·x

x(4) = 16.57 =>  f(x(4)) = 100.02

H(0)

H(1)

H(2)

H(3)

Fig. 4.3 Implicit space mapping solving the wedge cutting problem
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where

H(i) = argmin
H

|| f (x(i))− ci(x(i),H)|| = argmin
H

|| f (x(i))− Hx(i)|| (4.9)

In this simple case, (4.9) has an analytical solution H(i) = f (x(i))/x(i). Figure 4.3
shows the first four iterations of the SM algorithm solving the wedge cutting problem.

This indirect, implicit space mapping approach is as simple as input space map-
ping and also converges to an acceptable result (from an engineering point of view)
in few iterations. Since our target is area, the H and the x in the Hx of the rectangle
are of equal significance as design parameters in the coarse model. The physical ap-
proximation remains valid and this optimization process also mimics a learning pro-
cess derived from intuition. In effect, we are recalibrating the coarse model against
measurements of the fine model after each change to the fine model.

4.3 Space Mapping Efficiency

Here, we present two examples to illustrate the efficacy of space mapping technol-
ogy as applied to microwave design. Specifically, we address filter-like structures
operating in the frequency domain. Such problems have a long history of interest
to the microwave community. Classically, filters are designed through optimally ob-
tained transfer functions that need to be realized by practical or manufacturable cir-
cuit components and structures, whether by lumped elements, waveguide structures,
integrated circuits, etc.

The field of filter design is too vast to review in detail here. For our purposes,
we assume that useful structures and topologies have already been selected by ex-
perts, both the high-fidelity and lower-fidelity models. Typically the high-fidelity
models are simulated by full wave electromagnetic simulators that are CPU inten-
sive. By this we mean that a single function evaluation of the high-fidelity model
can take minutes, hours, days, or much longer to evaluate. On the other hand,
empirical models might be connected together though circuit theory that permits
many function evaluations (of the low-fidelity model) in just seconds. Alternatively,
the high-fidelity simulator may feature lower resolution simulations that are both
sufficient for a coarse model and affordable in CPU time.

4.3.1 Example 1: Microstrip Bandpass Filter

Consider a second-order capacitively-coupled dual-behavior resonator (CCDBR)
microstrip filter [35] shown in Fig. 4.4. The filter consists of conductor (metal)
(micro)strips put on a dielectric substrate. Properties of the filter, here, the relative
amount of the input signal passed to the filter’s output expressed using so-called
transmission coefficients, depend on the filter geometry. For this example, the de-
sign parameters are the lengths of the microstrips as well as the spacing between
the lines so that the design variable vector is x = [L1 L2 L3 S]T . The fine model is
simulated by the commercial electromagnetic simulator FEKO [23]. The response
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Fig. 4.4 Second-order CCDBR filter: geometry [35]

Fig. 4.5 Second-order CCDBR filter: coarse model (Agilent ADS)

f (x) of the fine model is the modulus of the so-called transmission coefficient, |S21|,
evaluated at 41 frequency points equally spaced over the frequency band 2 GHz to
6 GHz. Evaluation time on a Pentium D 3.4 GHz processor is about 14 minutes.

Empirical modeling is central to engineering theory and practice. Electrical and
electronics engineers, in particular, have a strong tradition of developing libraries of
fast models already validated by electromagnetic analysis or physical experiment.
Thus, users of commercial circuit solvers such as Agilent ADS [1] enjoy a rich and
vast library of empirical elements that they can call upon in their quest to formulate
suitable coarse models.

Here, a suitable coarse model, Fig. 4.5, is a circuit equivalent of the structure
in Fig. 4.4, consisting of circuit-theory-based models of microstrips. The coarse
model is implemented in Agilent ADS. Evaluation of the coarse model takes a few
milliseconds. It should be noted that both fine and coarse models describe basically
the same physical phenomena.

The design specifications are |S21| ≥ −3 dB for 3.8 GHz ≤ ω ≤ 4.2 GHz,
and |S21| ≤ −20 dB for 2.0 GHz ≤ ω ≤ 3.2 GHz and 4.8 GHz ≤ ω ≤ 6.0
GHz. Thus, the merit function H in this case is a minimax function defined as
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Fig. 4.6 Second-order CCDBR filter: fine model (solid line) and coarse model response
(dashed line) at the starting point x(0). Design specifications are marked using horizontal
lines

H = max{max{3.8 GHz ≤ω ≤ 4.2 GHz : −3 dB−|S21(ω)|},max{2.0 GHz ≤ω ≤
3.2 GHz : |S21(ω)|+ 20 dB},max{4.8 GHz ≤ ω ≤ 6.0 GHz : |S21(ω)|+ 20 dB}}.
Note that H is defined as the maximum of the difference between the model response
and the specification value over the frequency range of interest, i.e., it describes the
maximum violation of the design specifications. In particular, the positive value of
H indicates that the specifications are violated at least for one frequency sample.
The negative value of H indicates, on the other hand, that the response of the model
satisfies the specifications. A graphical interpretation (cf. Fig. 6-9) is that a posi-
tive value of H corresponds to the response plot crossing the specifications lines,
whereas a negative value of H corresponds to the response plot fitting between the
specification lines.

For this problem we used input SM and output SM with the surrogate model de-
fined as s̄(x, p) = s̄(x,q,d) = c(x+q)+d. Parameter extraction uses only the current
iteration point so that the surrogate model has the form of s(i)(x) = c(x+q(i))+d(i)

with q(i) = argmin{q : || f (x(i))− c(x(i) + q)||}. Vector d(i) is calculated as d(i) =
f (x(i)) − c(x + q(i)) after vector q(i) is already known [29]. Due to this, the pa-
rameter extraction process is simplified: since vector d contains m components and
usually m is much larger than the number of design variables n (for the CCDBR
filter we have m = 41 and n = 4), having both q(i) and d(i) extracted in a nonlin-
ear minimization process (4.4) would be much more complicated and time con-
suming than just extracting q(i). Also, having d(i) calculated as above allows us
to satisfy the zero-order consistency condition between the fine model and the
surrogate [3].

The starting point for SM optimization is the optimal solution of the coarse
model, x(0) = [2.415 6.093 1.167 0.082]T mm. Figure 4.6 shows the responses
of the fine and coarse models at x(0). The fine model specification error (i.e., min-
imax objective function value) at initial design is +7.8 dB. Figure 4.7 shows the
fine model response and the response of the surrogate model c(x + q(0)), i.e., the
coarse model with the input SM vector q realizing argminq : || f (x(0))− c(x(0) + q)||
(the response of the surrogate model s(0)(x(0)) is identical to f (x(0))). Note that the
match between the input SM surrogate and the fine model is very good. What is
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Fig. 4.7 Second-order CCDBR filter: fine model response (solid line) and the response of the
surrogate model c(x+q(0)) (dashed line) at the starting point x(0)
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Fig. 4.8 Second-order CCDBR filter: fine model response (solid line) and the response of the
surrogate model c(x+q(0)) (dashed line) at x(1), the optimum of the surrogate model s(0)

even more important, this good match is maintained away from x(0), as illustrated
in Fig. 4.8, which shows the fine model response and the response of the surrogate
model c(x + q(0)) at x(1), the optimum of the surrogate model s(0). This means that
the space mapping surrogate not only exhibits good approximation capability but
also has excellent generalization (prediction) capability. It should be emphasized
that the space mapping surrogate is established using fine model data at just a single
point (design). This is only possible because the coarse model encodes substantial
knowledge about the physical phenomena described by the fine model.

SM optimization is accomplished after five iterations. Fig. 4.9 shows the fine
model response at the final solution, x(5) = [3.344 4.820 1.092 0.052]T mm; the
corresponding minimax objective function value is −1.4 dB. Table 4.1 compares
the computational efficiency of the SM algorithm and direct optimization using
Matlab’s fminimax routine [37]. SM optimization is about 16 times faster than di-
rect optimization. Note that the SM optimization time is slightly larger than the
total fine model evaluation time (6 ·14 min = 84 min), which is because of some
overhead related to multiple evaluations of the surrogate model (cf. (4.2) and
(4.4)).
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Fig. 4.9 Second-order CCDBR filter: optimized fine model response. Design specifications
are marked using horizontal lines

Table 4.1 Second-order CCDBR filter: SM optimization versus direct optimization

Optimization Final Minimax Objective Number of Fine Model Total Optimization
Procedure Function Value Evaluations Time

Direct Optimization −1.3 dB 106 24 h 45 min
SM Optimization −1.4 dB 6 1 h 31 min

4.3.2 Example 2: Ring Antenna [51]

As a second example [51], consider the stacked probe-fed printed annular ring an-
tenna shown in Fig. 4.10 [26]. The antenna is printed on a printed circuit board
(PCB) with electrical permittivity εr1 = 2.2, and height d1 = 6.096 mm for the
lower substrate, and εr2 = 1.07, d2 = 8.0 mm for the upper substrate. The radius
of the feed pin is r0 = 0.325 mm. The design parameters are the outer and inner
radius of each ring and the feed position, namely x = [a1 a2 b1 b2 ρ1]T .

The fine model is evaluated using the electromagnetic simulator FEKO [23]. Re-
sponse f (x) of the fine model is the modulus of the transmission coefficient, |S11|,
evaluated at 9 frequency points equally spaced over the frequency band 1.75 GHz to
2.15 GHz. The coarse model is also simulated in FEKO. The difference between the
fine and coarse model is in the simulation mesh density. The number of triangular
meshes for the fine model is 2661, whereas the coarse model has only 83 meshes.
The simulation time for the fine and coarse model is 1 hour 18 minutes and 8.7
seconds, respectively. The design specification is |S11| ≤ −10 dB for 1.75 GHz ≤
ω ≤ 2.15 GHz.

This problem has been solved using implicit and output SM. The relative permit-
tivities of the two layers, εr1 and εr2, are used as preassigned parameters (cf. Section
4.2.2). The generic surrogate model takes the form of s̄(x, p) = s̄(x, [εr1 εr2]T ,d) =
c(x, [εr1,εr2]T ) + d. As in the previous example, parameter extraction uses only
the current iteration point so that the surrogate model has the form of s(i)(x) =
c(x, [ε(i)

r1 ε(i)
r2 ]T ) + d(i) with [ε(i)

r1 ε(i)
r2 ]T = argmin{[εr1 εr2]T : || f (x(i)) − c(x(i),
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Fig. 4.10 Geometry of a stacked probe-fed printed double annular ring antenna [26]
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Fig. 4.11 Double annular ring antenna: fine model (solid line) and coarse model response
(dashed line) at the starting point x(0). Design specifications are marked using a horizontal
line

[εr1 εr2]T )||} . Vector d(i) is calculated as d(i) = f (x(i))− c(x(i), [ε(i)
r1 ε(i)

r2 ]T ) after

vector [ε(i)
r1 ε(i)

r2 ]T is known.
The starting point for SM optimization is the optimal solution of the coarse

model, x((0) = [9.228 8.722 30.723 34.127 18.211]T mm. Figure 4.11 shows the
responses of the fine and coarse models at x(0). The fine model minimax objective
function value at the initial design is +8.2 dB.

SM optimization is accomplished after three iterations (four fine model evalua-
tions). Fig. 4.12 shows the fine model response at the final solution, x(3) = [10.674
7.809 28.462 32.504 19.682]T mm as well as the response of the surrogate model
s(2)(x(3)); the fine model minimax objective function value is −0.2 dB. Note that
the fine model response in Fig. 4.12 corresponds to an almost optimum design in a
minimax sense. The SM optimization time is 5 hours 58 minutes and is larger than
the total fine model evaluation time (4 ·78 minutes = 5 hours 12 minutes), which is
because of the overhead related to multiple evaluations of the surrogate model.



4 Knowledge-Based Optimization of Expensive Functions 101

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15
−30

−25

−20

−15

−10

−5

frequency [GHz]

|S
11

|

Fig. 4.12 Double annular ring antenna: fine model (solid line) and surrogate model response
(dashed line) at the final design x(3). Design specifications are marked using a horizontal line

Direct optimization of the fine model in this example was not attempted. With a
simulation time of 1 hour and 18 minutes per system analysis, direct optimization
would require about a week, which is not acceptable.

4.3.3 Discussion

In this section we have studied two representative examples taken from electro-
magnetics-based microwave engineering design. We see that a major obstacle in
executing the optimizations include the high computational cost of full wave elec-
tromagnetic simulation by commercial solvers. Space mapping effectively replaces
the direct optimization of the high-fidelity model by iterative re-optimization and
updating of the faster surrogate based on the problem-specific knowledge embed-
ded in the underlying coarse model. Thus, space mapping optimization shifts the
CPU burden from the slower simulator to the faster simulator.

4.4 Exploiting Extra Knowledge: Tuning Space Mapping

Tuning is ubiquitous in engineering practice. It is usually associated with the pro-
cess of manipulating free or tunable parameters of a device or system after that
device or system has been manufactured. The traditional purpose of permitting tun-
able elements is (1) to facilitate user-flexibility in achieving a desired response or
behavior from a manufactured outcome during its operation, or (2) to correct in-
evitable postproduction manufacturing defects, small due perhaps to tolerances, or
large due perhaps to faults in the manufacturing process [7, 8]. Tuning of an en-
gineering design can be seen, in essence, as a user- or robot-directed optimization
process.

The tuning space mapping approach is an iterative optimization procedure that
assumes the existence of a so-called tuning model which is less accurate but com-
putationally much cheaper than the fine model. The model incorporates relevant data
from the fine model (typically fine model responses, in a manner of a device under
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Fig. 4.13 The concept of the tuning model

test) at the current iteration point, and tuning parameters (typically implemented
through circuit elements inserted into tuning ports). The tunable parameters are ad-
justed so that the model satisfies the original design specifications. The conceptual
illustration of the tuning model is shown in Fig. 4.13. The procedure is invasive in
the sense that the structure may need to be cut. The fine model simulator must allow
such cuts and allow tuning elements to be inserted.

A certain relation (not necessarily analytical) between the parameters of the tun-
ing model and the design variables is assumed, so that the new design is obtained
by translating the adjusted parameters into the corresponding design variable values
using this very relation.

4.4.1 Tuning Space Mapping Formulation

The TSM algorithm produces a sequence of points (design variable vectors) x(i),
i = 0,1, . . . . The iteration of the algorithm consists of two steps: optimization of the
tuning model and a calibration procedure. First, the current tuning model t(i) is built
using fine model data at point x(i). In general, because the fine model has undergone
a disturbance, the tuning model response may not agree with the response of the
fine model at x(i) even if the values of the tuning parameters xt are zero, so that

these values must be adjusted to, say, x(i)
t.0 in order to obtain alignment:

x(i)
t.0 = argmin

xt
|| f (x(i))− t(i)(xt)|| (4.10)

In the next step, we optimize t(i) to have it meet the design specifications. We obtain

the optimal values of the tuning parameters x(i)
t as follows:

x(i)
t.1 = argmin

xt
H(t(i)(xt)) (4.11)

Having x(i)
t.1 we perform the calibration procedure to determine changes in the design

variables that yield the same change in the calibration model response as that caused
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by x(i)
t.1 − x(i)

t.0, where xt.0 are initial values of the tuning parameters (normally zero).
We first adjust the SM parameters p(i) of the calibration model c to obtain a match
with the fine model response at x(i)

p(i) = argmin
p

|| f (x(i))− c(x(i), p,x(i)
t.0)|| (4.12)

The calibration model is then optimized with respect to the design variables in order
to obtain the next iteration point x(i+1)

x(i+1) = argmin
x

||t(i)(x(i)
t.1)− c(x, p(i),x(i)

t.0)|| (4.13)

Note that we use x(i)
t.0 in (4.12), which corresponds to the state of the tuning model af-

ter performing the alignment procedure (4.10), and x(i)
t.1 in (4.13), which corresponds

to the optimized tuning model (cf. (4.11)). Thus, (4.12) and (4.13) allow us to find
the change of design variable values x(i+1) − x(i) necessary to compensate the effect

of changing the tuning parameters from x(i)
t.0 to x(i)

t.1.
TSM exploits the standard SM optimization, classical circuit and electromagnetic

(EM) theory, as well as the engineer’s expertise. For example, in a physics-based
simulation according to classical EM theory, design parameters such as physical
length and width of a microstrip line can be mapped to a ”tuning component” such as
a capacitor. The calibration process then transfers the tuning parameters to physical
design parameters, which can be achieved by taking advantage of classical theory
and engineering experience. Still, the TSM algorithm can be seen as a specialized
case of a standard SM. On the other hand, TSM allows greater flexibility in terms of
the surrogate model which may, in general, involve any relation between the tuning
parameters and design variables.

4.4.2 TSM Optimization of Chebyshev Bandpass Filter

Consider the box-section Chebyshev microstrip bandpass filter [34] shown in
Fig. 4.14. The design parameters are x = [L1 L2 L3 L4 L5 S1 S2]T . The fine model is
evaluated using the full-wave electromagnetic simulator Sonnet em [47]. The width
parameters are W = 40 mil (1 mil = 0.001 inch) and W1 = 150 mil. Substrate pa-
rameters are: relative permittivity εr = 3.63, and height H = 20 mil. The design
specifications are |S21| ≤ −20 dB for 1.8 GHz ≤ ω ≤ 2.15 GHz and 2.65 GHz
≤ ω ≤ 3.0 GHz, and |S21| ≤ −3 dB for 2.4 GHz ≤ ω ≤ 2.5 GHz.

The idea of inserting tuning elements between so-called ”co-calibrated” ports
[40] has opened the door to successful commercial exploitation of tuning space
mapping. The Sonnet em system [47] has been enhanced to permit tuning elements
to be easily inserted into infinitesimal gaps between designated tuning ports. In ef-
fect, Sonnet em can represent the cut fine model by response data placed into a
so-called multi-port S-parameter matrix which may be loaded into the Agilent ADS
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Fig. 4.14 Box-section Chebyshev bandpass filter: geometry [34], and places for inserting
the tuning ports (denoted as white rectangles; the numbers correspond to the terminals of
S-parameter component S28P of the tuning model shown in Fig. 4.15)
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Fig. 4.15 Box-section Chebyshev bandpass filter: tuning model (Agilent ADS)

circuit simulator [1]. Tuning elements connected to the appropriate ports complete
the tuning model within the ADS simulator.

Specifically in our example, the tuning model is constructed by dividing the poly-
gons corresponding to the length parameters L1 to L5 in the middle and inserting the
tuning ports at the new cut edges. Its S28P data file (a 28-port S-parameter matrix) is
then loaded into the S-parameter component in Agilent ADS [1]. The circuit-theory
coupled-line components and capacitor components are designated as tuning ele-
ments and are inserted into each pair of tuning ports (Fig. 4.15). The lengths of the
imposed coupled-lines and the capacitances of the capacitors are assigned to be the
tuning parameters, so that we have xt = [Lt1 Lt2 Lt3 Lt4 Lt5 Ct1 Ct2]T (Ltk are in
mil, Ctk in pF).

The calibration model is a circuit equivalent model implemented in ADS and
shown in Fig. 4.16. It contains the same tuning elements as the tuning model. It
basically mimics the division of the coupled-lines performed while preparing t. The
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Fig. 4.16 Box-section Chebyshev bandpass filter: calibration model (Agilent ADS)
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Fig. 4.17 Box-section Chebyshev bandpass filter: the coarse (dashed line) and fine (solid
line) model response at the initial design. Design specifications are marked using horizontal
lines

calibration model also contains six (implicit) SM parameters that will be used as
parameters p in the calibration process (4.12), (4.13). These parameters are p =
[εr1 εr2 εr3 εr4 εr5 H]T , where εrk is the dielectric constant of the microstrip line
segment of length Lk (cf. Fig. 4.14), and H is the substrate height of the filter. Initial
values of these parameters are [3.63 3.63 3.63 3.63 3.63 20]T .

The misalignment between the fine and tuning model responses with the tun-

ing elements set to zero is negligible so that x(0)
t.0 = [0 0 0 0 0 0 0]T was used

throughout. The values of the tuning parameters at the optimal design of the tun-

ing model are x(0)
t.1 = [−85.2 132.5 5.24 1.13 − 15.24 0.169 − 0.290]T . Note

that some of the parameters take negative values, which is permitted in ADS. The
values of the preassigned parameters obtained in the first calibration phase (4.12)
are p(0) = [3.10 6.98 4.29 7.00 6.05 17.41]T .

Figure 4.17 shows the coarse and fine model responses at the initial design,
whereas Fig. 4.18 shows the fine model response after just one TSM iteration with
x(1) = [1022 398 46 56 235 4 10]T mil (the corresponding minimax objective
function value is −1.8 dB).
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Fig. 4.18 Box-section Chebyshev bandpass filter: fine model response at the design found
after one iteration of the TSM algorithm. Design specifications are marked using horizontal
lines

4.4.3 Summary

We have considered simulation-based tuning within the scope of space mapping. In
our TSM approach, which is significantly more knowledge-intensive than regular
space mapping, we construct a tuning model directly by cutting into the fine model
and connecting tuning elements to the resulting internal ports of the structure. Rele-
vant parameters or preassigned parameters of these auxiliary elements are chosen to
be tunable and are varied to match the tuning model to the fine model. This process
takes little CPU effort as the tuning model is typically implemented within a circuit
simulator. An updated tuning model is then available for design prediction. The pre-
diction is fed back to fine model simulator after simple calibration. The process is
repeated until the fine model response is sufficiently close to the design target.

4.5 Conclusions

Ultimately, every engineer seeks high-fidelity, but cheap, solutions to computation-
ally expensive design problems. So much the better if, without loss of fidelity or
sacrifice of optimality, the design process can be cast as a simple nonlinear opti-
mization of black-box functions. However, to ensure low cost, a tight limit on the
number of high-fidelity simulation runs to evaluate expensive objective functions
and constraints is mandatory, otherwise such optimization problems can become
computationally intractable. In our situation, pure classical methods of optimiza-
tion are likely to perform poorly or fail since we limit the number of high-fidelity
function simulations to only a handful. However, space mapping heavily exploits
classical methods in the optimization of the underlying surrogates.

Input space mapping requires expert knowledge, usually deals with relatively
few free optimization variables, but the parameter extraction step can be a diffi-
cult nonlinear optimization problem to solve. Expertise is helpful in implicit space
mapping because of the many possibly available pre-assigned parameters. In out-
put space mapping, engineering expertise may by somewhat less necessary, but the



4 Knowledge-Based Optimization of Expensive Functions 107

process can involve a large number of variables. However, the parameter extraction
step might not require coarse model re-simulation. The new tuning space mapping
approach is an effective simulator-based approach but requires significantly more
expertise to execute.

Essential to overall success, we believe, is a suitable combination of (1) classi-
cal optimization algorithms, (2) computational intelligence, (3) fast physics-based
surrogates, and (4) the designer’s engineering expertise. Our contribution to space
mapping exploits these necessary ingredients.
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Chapter 5
Reducing Function Evaluations Using
Adaptively Controlled Differential Evolution
with Rough Approximation Model

Tetsuyuki Takahama and Setsuko Sakai

Abstract. In this chapter, a rough approximation model, which is an approxima-
tion model with low accuracy and without learning process, is presented in order to
reduce the number of function evaluations effectively. Although the approximation
errors between the true function values and the approximation values are not small,
the rough model can estimate the order relation of solutions with fair accuracy. By
utilizing this nature of the rough model, we have proposed estimated comparison
method, in which function evaluations are omitted when the order relation of solu-
tions can be judged by approximation values. In the method, a parameter for error
margin is introduced to avoid incorrect judgment. Also, a parameter for utilizing
congestion of solutions is introduced to avoid omitting promising solutions. In order
to improve the stability and efficiency of the method, we propose adaptive control
of the margin parameter and the congestion parameter according to the success rate
of the judgment. The advantage of these improvements is shown by comparing the
results obtained by Differential Evolution (DE), DE with the estimated compari-
son method, adaptively controlled DE with the estimated comparison method and
particle swarm optimization in various types of benchmark functions.

5.1 Introduction

Evolutionary computation has been successfully applied to various fields of science
and engineering. Evolutionary algorithms (EAs) have been proved to be powerful
function optimization algorithms. However, EAs need a large number of function
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evaluations before a well acceptable solution can be found. Recently, the size of
optimization problems tends to become large, and the cost of function evaluation
becomes high. It is necessary to develop more efficient optimization algorithms in
order to reduce the number of function evaluations.

An effective method for reducing function evaluations is to build an approxima-
tion model for the objective function and to solve the optimization problems using
the approximation values [6]. However, building the high-quality approximation
model is very difficult and time-consuming. Also, a proper approximation model
depends on the problems to be optimized. It is difficult to design a general-purpose
approximation model with high accuracy.

In order to solve these difficulties, we have proposed estimated comparison
method [17, 20]. In the method, an approximation model with low accuracy and
without learning process, or a rough approximation model, is utilized to reduce the
number of function evaluations effectively. The approximation errors between the
true function values and the approximation values estimated by the rough approxi-
mation model will not be small. However, the rough model can estimate whether the
function value of a solution is smaller than that of the other solution or not with fair
accuracy, and can be used to compare solutions. Thus, the estimated comparison,
which compares solutions using the rough approximation values, can be defined.

In the estimated comparison, the approximation values are compared first. When
a value is judged to be worse enough than the other value, the estimated compari-
son returns the estimated result without evaluating the objective function. When it is
difficult to judge the result of comparison from the approximation values, true val-
ues are obtained by evaluating the objective function and the estimated comparison
returns the true result based on the true values. By using the estimated comparison,
the evaluation of the objective function is sometimes omitted and the number of
function evaluations can be reduced.

Two parameters, an error margin parameter and a congestion parameter, are in-
troduced in the estimated comparison. The error margin parameter is used to allow
approximation error and avoid incorrect judgment. If the error margin is too large,
cautious judgment is made and the objective function is often evaluated to obtain
true values. As the result, the efficiency of optimization could not be improved
much. If the margin parameter is too small, the evaluation of the objective func-
tion is often omitted, but the judgment would often be incorrect. As the result, the
optimization process might be led to a wrong direction. In this study, we propose to
control the margin parameter adaptively based on success rate of the comparison.
The congestion parameter is used not to block the search for new direction. If the
congestion of a solution is low, the solution exists in new or not-yet-visited area and
it is difficult to estimate the true function value of the solution. It is important to
evaluate the function and confirm whether the solution is good or not. If the con-
gestion parameter is too large, the solution in new area will always be evaluated. As
the result, the efficiency of optimization could not be improved much. If the con-
gestion parameter is too small, the search for new area would often be blocked. As
the result, the speed of optimization process might be slow down. In this study, we
propose to control the congestion parameter adaptively based on the success rate.
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In this chapter, potential model is used as a rough approximation model. The po-
tential model can estimate a function value of a point based on some other points
without learning process and can be used as a general-purpose rough approximation
model. Differential Evolution (DE) [2, 13, 14, 15, 19] is used as an optimization al-
gorithm and the estimated comparison is introduced in the survivor selection phase
of DE. The advantage of these improvements is shown by comparing the results ob-
tained by DE, DE with the estimated comparison method, adaptively controlled DE
with the estimated comparison method and particle swarm optimization in various
types of benchmark functions.

The rest of this chapter is organized as follows: Section 2 describes evolutionary
algorithms using approximation models briefly. Section 3 describes the potential
model as a rough approximation model. The estimated comparison is defined using
the potential model and the adaptive control of parameters is proposed. The adap-
tive DE with the estimated comparison method is proposed in Section 4. Section 5
presents experimental results on various benchmark problems. Section 6 describes
a comparative study between the adaptive method and particle swarm optimization.
Finally, Section 7 concludes with a brief summary of this chapter and a few remarks.

5.2 Optimization and Approximation Models

5.2.1 Optimization Problems

In this study, the following optimization problem (P) with upper bound constraints
and lower bound constraints will be discussed.

(P) minimize f (x)
subject to li ≤ xi ≤ ui, i = 1, . . . ,n,

(5.1)

where x = (x1,x2, · · · ,xn) is an n dimensional vector, f (x) is an objective function.
Values ui and li are the upper bound and the lower bound of xi, respectively. Also, let
the search space in which every point satisfies the upper and lower bound constraints
be denoted by S .

The objective function f (x) will be approximated using a rough approximation
model.

5.2.2 Evolutionary Algorithms Using Approximation Models

In this section, evolutionary algorithms using approximation models are briefly
reviewed.

Various approximation models are utilized to approximate the objective function.
For example, quadratic model is used as a simple case of polynomial models [4].
Kriging models [4, 12] approximate the function by a global model and a localized
deviation. Also, multi-layered neural networks in neural network models [11] and
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Radial Basis Function (RBF) network models [5, 7, 8, 9] are often used. In most ap-
proximation models, model parameters are learned by least square method, gradient
method, maximum likelihood method and so on. In general, learning model param-
eters is time-consuming process, especially in order to obtain a model with higher
accuracy or a model of a large function such as a function with large dimensions.

Evolutionary algorithms with approximation models can be classified into some
types:

• All individuals have only approximation values. Very high quality approximation
model is built and the objective function is optimized using approximation values
only. It is possible to reduce function evaluations greatly. However, these meth-
ods can be applied to well-informed objective function and cannot be applied to
general problems.

• Some individuals have approximation values and others have true values. Meth-
ods in this type are called evolution control approaches and can be classified into
individual-based and generation-based control [6]. The individual-based control
means that good individuals (or randomly selected individuals) use true values
and others use approximation values in each generation [7, 8]. The generation-
based control means that all individuals use true values once in a fixed number
of generations and use approximation values in other generations [8, 9]. In the
approaches, the approximation model should be accurate because approxima-
tion values are compared with true values. Also, it is known that approximation
models with high accuracy sometimes generate a false optimum or hide a true op-
timum. Individuals may converge into a false optimum while they are optimized
using the approximation models in some generations. Thus, these approaches are
much affected by the quality of approximation models. It is difficult to utilize
rough approximation models.

• All individuals have true values. Some methods in this type are called surrogate
approaches. In the surrogate approaches, an estimated optimum is searched using
an approximation model that is usually a local model. The estimated optimum is
evaluated to obtain the true value and also to improve the approximation model
[1, 5, 10]. If the true value is good, the value is included as an individual. In
the approaches, rough approximation models might be used because approxima-
tion values are compared with other approximation values. These approaches are
less affected by the approximation model than the evolution control approaches.
However, they have the process of optimization using the approximation model
only. If the process is repeated many times, they are much affected by the quality
of approximation models.

5.2.3 Estimated Comparison Method

The estimated comparison method is classified into the category where all indi-
viduals have true values. However, the method is different from the surrogate ap-
proaches. It uses a global approximation model of current individuals using a rough
approximation model. It does not search for an estimated optimum, but it judges
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whether a new individual is worth evaluating its true value or not. Also, it can spec-
ify the error margin parameter for allowing approximation error and the conges-
tion parameter for accepting the promising solutions in a new direction when the
comparison is carried out. Thus, it is not affected by the approximation model much.

The reduction of function evaluations by the estimated comparison method is not
larger than that by other optimization methods using approximation models with
high accuracy. However, the estimated comparison method does not need the learn-
ing process of the approximation model which is often time-consuming and needs
much effort to tune the learning parameters. The estimated comparison method is
fast and easy-to-use approach and can be applied to wide range of problems includ-
ing from low or medium computation cost to high computation cost problems. It is
thought that the estimated comparison method is a more general-purpose method
than other methods with high-quality approximation models.

5.3 Rough Approximation Model

In this study, potential model is used as a rough approximation model.

5.3.1 Potential Model

Potential energy is stored energy that depends on the relative position of various
parts of a system. The gravity potential energy is an example of potential energy.
If there is an object of which mass is m, there exists gravity potential energy Eg

around the object. If there is another object of which mass is m′ at a distance r from
the object, there exists the attractive force Fg between two objects.

Eg = −G
m
r

, Fg = G
mm′

r2 (5.2)

where G is a proportional constant or the gravitational constant.
In this study, it is supposed that when a solution x exists, there are potential for

objective Uo and potential for congestion Uc at a distance r from the solution as
follows:

Uo =
f (x)
rp (5.3)

Uc =
1
rp (5.4)

where p is a positive number and usually 1 or 2. The proportional constant is 1 for
simplicity.

When a set of solutions X = {x1,x2, · · · ,xN} are given and the objective values
f (xi), i = 1,2, · · · ,N are known, two potential functions at a point y can be defined
as follows:
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Uo(y) = ∑
i

f (xi)
d(xi,y)p (5.5)

Uc(y) = ∑
i

1
d(xi,y)p (5.6)

where d(x,y) is a distance between points x and y.
It is obvious that Uo shows a measure of the function value at y and Uc shows the

congestion of the point y. If Uo is large, the function value tends to be large. If Uc is
large, there are many points near the point.

The approximation value f̂ (y) at the point y can be defined as follows:

f̂ (y) = Uo(y)/Uc(y) (5.7)

For example, if y is same as xi, f̂ (y) becomes f (xi).

5.3.2 Estimated Comparison

When the true function values of all points in X = {xi|i = 1,2, · · · ,N} are known and
a new child point x′

i is generated from a parent point xi, the approximation values at
points x′

i and xi are given as follows:

Uo(x
(′)
i ) = ∑

j �=i

f (x j)

d(x j,x
(′)
i )p

(5.8)

Uc(x
(′)
i ) = ∑

j �=i

1

d(x j,x
(′)
i )p

(5.9)

f̂ (x(′)
i ) = Uo(x

(′)
i )/Uc(x

(′)
i ) (5.10)

It should be noted that the parent point x j( j = i) is omitted in the right side of Uo

and Uc. If the parent point is not omitted, the approximation value of the parent
point becomes the true value. As the result, the difference between the precision of
approximation at the parent point and that at the child point becomes large, and it is
difficult to compare the approximation values.

The estimated comparison judges whether the child point is better than the par-
ent point. In the comparison, a reference value z for indicating accuracy level of
the approximation model, the error margin parameter δ(δ ≥ 0) and the congestion
parameter λ(0 ≤ λ ≤ 1) are introduced. The estimated comparison can be defined
as follows:

better(x′
i, xi, z) {

if(Uc(x′
i) ≤ λUc(xi) || f̂ (x′

i) ≤ f̂ (xi)+ δz) {
Evaluate x′

i;
if( f (x′

i) < f (xi)) return yes;
}
return no;

}
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When λ is 0, the congestion is not considered because Uc is positive. Otherwise, if
the congestion of child point is much less than that of parent point, the child point
is evaluated. The recommended value of λ is [ 1

5 , 1
2 ].

When δ is 0, the estimated comparison can reject many children and omit a large
number of function evaluations. However, the possibility of rejecting good child
becomes high and a true optimum sometimes might be skipped. When δ is large, the
possibility of rejecting good child becomes low. However, the estimated comparison
can reject fewer children and omit a small number of function evaluations. Thus, δ
should have a proper value.

In this study, the reference value z is given by the standard deviation of approxi-
mation values, σ:

σ =

√
1
N

N

∑
i=1

( f̂ (xi)− f̄ )2
(5.11)

f̄ =
1
N

N

∑
i=1

f̂ (xi) (5.12)

In this case, the recommended value of the margin parameter δ is [0.05,0.5].

5.3.3 Adaptive Control

In this study, a simple adaptive control schema of δ and λ, which is derived from
Rechenberg’s 1/5 success rule, is adopted as shown in Table 5.1. The accuracy of
the approximation model is classified into 5 categories, Very Bad, Bad, Normal,
Good, and Very Good, according to the success rate of the comparison between
the child and the parent. The success rate is given by the ratio between the number
of successful evaluations, or the number of cases when the child is better than the
parent and the parent is replaced by the child, and the total number of evaluations in
one generation.

If the success rate is large, the accuracy of the approximation model is high and
the parameters δ and λ can be decreased. Thus, when the success rate is Good, δ
and λ are decreased by a factor of 0.9. When the rate is Very Good, δ and λ have the

Table 5.1 Rules of adaptive control

Category Success Rate δ(t +1) λ(t +1)
Very Bad [0,0.1] δmax λmax

Bad (0.1,0.2] 1.5δ(t) 1.5λ(t)
Normal (0.2,0.3] δ(t) λ(t)
Good (0.3,0.4] 0.9δ(t) 0.9λ(t)

Very Good (0.4,∞) δmin λmin

where δ(t) ∈ [δmin,δmax] = [10−5,0.2],
λ(t) ∈ [λmin,λmax] = [10−3,0.4].
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minimum value δmin and λmin, respectively. If the success rate is small, the accuracy
is low and the margin parameter and the congestion parameter should be increased.
Thus, when the rate is Bad, δ and λ are increased by a factor of 1.5. When the rate
is Very Bad, δ and λ have the maximum value δmax and λmax, respectively.

5.4 Differential Evolution with the Estimated Comparison
Method

In this section, Differential Evolution and DE with the estimated comparison method
are described.

5.4.1 Differential Evolution

Differential evolution is a variant of ES proposed by Storn and Price [13, 14]. DE is
a stochastic direct search method using population or multiple search points. DE has
been successfully applied to the optimization problems including non-linear, non-
differentiable, non-convex and multi-modal functions. It has been shown that DE is
fast and robust to these functions [2].

There are some variants of DE that have been proposed, such as DE/best/1/bin
and DE/rand/1/exp. The variants are classified using the notation DE/base/num/
cross. “base” indicates the method of selecting a parent that will form the base
vector. For example, DE/rand/num/cross selects the parent for the base vector at
random from the population. DE/best/num/cross selects the best individual in the
population. “num” indicates the number of difference vectors used to perturb the
base vector. “cross” indicates the crossover mechanism used to create a child. For
example, DE/base/num/bin shows that crossover is controlled by binomial crossover
using constant crossover rate. DE/base/num/exp shows that crossover is controlled
by a two-point crossover with exponentially decreasing crossover rate.

In DE, initial individuals are randomly generated within the search space and
form an initial population. Each individual contains n genes as decision variables or
a decision vector. At each generation or iteration, all individuals are selected as par-
ents. Each parent is processed as follows: The mutation process begins by choosing
1 + 2 num individuals from all individuals except for the parent in the processing.
The first individual is a base vector. All subsequent individuals are paired to create
num difference vectors. The difference vectors are scaled by a scaling factor F and
added to the base vector. The resulting vector is then recombined with the parent.
The probability of recombination at an element is controlled by the crossover rate
CR. This crossover process produces a trial vector. Finally, for survivor selection,
the trial vector is accepted for the next generation if the trial vector is better than the
parent.

In this study, DE/rand/1/exp variant, where the number of difference vector is 1
or num = 1, is used.
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5.4.2 Adaptive DE with the Estimated Comparison Method

The algorithm of the adaptive DE with the estimated comparison method based on
DE/rand/1/exp variant, which is used in this study, is as follows:

Step 0: Initialization. Initial N individuals xi are generated randomly in the search
space S and form an initial population P = {xi|i = 1,2, · · · ,N}. The parameters
of the estimated comparison method are initialized as δ= δmax and λ = λmax.

Step 1: Termination condition. If predefined condition, such that the number of
generations (iterations) exceeds the maximum generation (iteration) Tmax, is
satisfied, the algorithm is terminated.

Step 2: Mutation. For each individual xi, three individuals xp1, xp2 and xp3 are
chosen from the population without overlapping xi and each other. A new vector
x′ is generated by the base vector xp1 and the difference vector xp2 − xp3 as
follows:

x′ = xp1 + F(xp2 − xp3) (5.13)

where F is a scaling factor.
Step 3: Crossover. The vector x′ is recombined with the parent xi. A crossover

point j is chosen randomly from all dimensions [1,n]. The element at the j-th di-
mension of the trial vector xnew is inherited from the j-th element of the vector x′.
The elements of subsequent dimensions are inherited from x′ with exponentially
decreasing probability defined by a crossover rate CR. Otherwise, the elements
are inherited from the parent xi. In real processing, Step2 and Step3 are integrated
as one operation.

Step 4: Survivor selection. The estimated comparison is used for comparing the
trial vector and the parent. The trial vector xnew is accepted for the next generation
if the trial vector is better than the parent xi by using the estimated comparison.

Step 5: Adaptive Control of the parameters. The success rate is calculated and the
parameters δ and λ are updated according to Table 5.1.

Step 6: Go back to Step1.

The pseudo-code of the adaptive DE/rand/1/exp with the estimated comparison
method is as follows:

Adaptive DE/rand/1/exp with estimated comparison()
{

P=Generate N individuals {xi} randomly;
Evaluate xi, i = 1,2, · · · ,N;
Initialize δ = δmax and λ = λmax;
for(t=1; termination condition is not satisfied; t++) {
σ=the standard deviation of approximation values in P;
for(i=1; i ≤ N; i++) {

(p1, p2, p3)=select randomly in [1,N]\{i}
s.t. p j �= pk( j,k = 1,2,3, j �= k);

xnew
i =xi ∈ P;

j=select randomly from [1,n];
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k=1;
do {

xnew
i j =xp1, j+F(xp2, j − xp3, j);

j=( j + 1)%n;
k++;

} while(k ≤ n && u(0,1) < CR);
// estimated comparison

if(better(xnew, xi, σ)) xi=xnew;
}
Update δ and λ adaptively;

}
}
where u(0,1) is a uniform random variable generator between [0,1].

In this study, current population P is used as the set of solutions which have
known objective values. As the search process progresses, the area where individ-
uals exist may become elliptical. In order to handle such a case, the normalized
distance is introduced, in which the distance is normalized by the width of each
dimension in the current population P.

d(x,y) =

√√√√∑
j

(
x j − y j

maxxi∈P xi j − minxi∈P xi j

)2

(5.14)

5.5 Numerical Experiments

5.5.1 Test Problems

In this section, the estimated comparison method is applied to sphere function,
Rosenbrock function, Rastrigin function, Ackley function and Griewank function.
These functions have various surfaces such as unimodal, multimodal, smooth,
bumpy, or steep surfaces. Table 5.2 shows features of the functions.

The function definitions and their search spaces, where n is the dimension of the
decision vector, are as follows:

• f1: Sphere function

f (x) =
n

∑
i=1

x2
i , −5.12 ≤ xi ≤ 5.12 (5.15)

This function is a unimodal function and has the minimum value 0 at (0,0, · · · ,0).
• f2: Generalized Rosenbrock (Star type) function

f (x) =
n

∑
i=2

{100(x1 − x2
i )

2 +(xi − 1)2}, −2.048 ≤ xi ≤ 2.048



5 Reducing Function Evaluations Using Adaptively Controlled DE 121

This function is a unimodal function with a steep surface and has the minimum
value 0 at (1,1, · · · ,1).

• f3: Ill-scaled generalized Rosenbrock (Star type) function

f (x) =
n

∑
i=2

{100(x1 − (ixi)2)2 +(ixi − 1)2}, −2.048/i ≤ xi ≤ 2.048/i

This function is a unimodal and ill-scaled function with a steep surface and has
the minimum value 0 at (1, 1

2 , · · · , 1
n ).

• f4: Generalized Rastrigin function

f (x) = 10n +
n

∑
i=1

{x2
i − 10cos(2πxi)}, −5.12 ≤ xi ≤ 5.12

This function is a multimodal function with a very bumpy surface and has the
minimum value 0 at (0,0, · · · ,0).

• f5: Ackley function

f (x) = 20 + exp(1)− 20exp

(
−0.2

1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(2πxi)

)
,

−32 ≤ xi ≤ 32

This function is a multimodal function with a bumpy surface and has the mini-
mum value 0 at (0,0, · · · ,0).

• f6: Griewank function

f (x) =
1

4000

n

∑
i=1

x2
i −Πn

i=1 cos

(
xi√

i

)
+ 1, −600 ≤ xi ≤ 600

This function is a multimodal function with a less bumpy surface and has the
minimum value 0 at (0,0, · · · ,0).

Figure 5.1 shows the graphs of functions f2, f4, f5 and f6 in case of n = 2.

Table 5.2 Features of test functions

Function modality surface dependency of variables ill-scale
f1 unimodal smooth — —
f2 unimodal steep strong —
f3 unimodal steep strong strong
f4 multimodal bumpy (large bumps) — —
f5 multimodal bumpy — —
f6 multimodal bumpy (small bumps) — —
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Fig. 5.1 Graphs of f2, f4, f5 and f6

5.5.2 Conditions of Experiments

All functions are optimized with a fairly large number of decision variables n = 50.
Experimental conditions for DE, potential model and the estimated comparison are
as follows: Parameters for DE are population size N = 80, scaling factor F = 0.6
and crossover rate CR = 0.95. DE/rand/1/exp is adopted in DE with the estimation
comparison method. The parameter p for Uo and Uc in Eqs. (5.5) and (5.6) is 2. In
the estimated comparison method, the initial value of the margin parameter δ(0) =
δmax = 0.4 and the initial value of the congestion parameter λ(0) = λmax = 0.2, and
the parameters are adaptively controlled according to Table 5.1. The fixed values
of the margin parameter and the congestion parameter, (0.2,0.4) and (0.1,0.2), are
also examined for comparison.

In this study, 25 independent runs are performed. In each run, the optimization
is terminated when a near optimal solution of which function value is less than or
equal to 1 × 10−3 is found.

5.5.3 Experimental Results

Table 5.3 shows the results of optimization. The column labeled “Func.” shows
the function name optimized, and “Method” shows optimization method where
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Table 5.3 Comparison among adaptive DE with the estimated comparison method, DE with
the estimated comparison method, and DE

Func. Method eval success fail rate(%) reduce(%)
f1 adaptive 36,256.68 13,224.08 22,950.88 36.56 57.67

(0.2, 0.4) 46,324.32 14,649.48 31,592.96 31.68 45.92
(0.1, 0.2) 41,344.04 14,157.88 27,104.32 34.31 51.73

DE 85,656.16 15,357.96 70,216.20 17.95 0
f2 adaptive 586,018.92 65,552.36 520,384.56 11.19 25.85

(0.2, 0.4) 578,136.68 58,460.00 519,594.72 10.11 26.84
(0.1, 0.2) 617,305.88 87,315.84 529,908.20 14.15 21.89

DE 790,263.36 45,467.08 744,714.28 5.75 0
f3 adaptive 586,919.64 66,579.04 520,258.72 11.35 28.23

(0.2, 0.4) 582,880.12 59,880.64 522,917.60 10.27 28.73
(0.1, 0.2) 620,157.24 86,223.28 533,852.04 13.91 24.17

DE 817,802.48 45,482.80 772,237.68 5.56 0
f4 adaptive 304,002.68 22,342.08 281,578.76 7.35 45.42

(0.2, 0.4) 313,046.68 23,243.68 289,721.12 7.43 43.79
(0.1, 0.2) 295,009.04 22,895.68 272,031.48 7.76 47.03

DE 556,960.80 24,504.44 532,374.36 4.40 0
f5 adaptive 69,175.84 23,521.36 45,572.80 34.04 55.61

(0.2, 0.4) 83,019.20 25,245.48 57,691.84 30.44 46.72
(0.1, 0.2) 75,401.76 24,669.00 50,651.08 32.75 51.61

DE 155,823.64 26,636.68 129,104.96 17.10 0
f6 adaptive 56,982.00 19,982.08 36,918.08 35.12 56.05

(0.2, 0.4) 71,336.48 21,822.72 49,431.88 30.63 44.98
(0.1, 0.2) 63,453.12 21,104.56 42,266.72 33.30 51.06

DE 129,658.04 22,888.72 106,687.32 17.66 0

“adaptive” means the adaptive DE with the estimated comparison method using
potential model, “DE” means original DE/rand/1/exp, and others mean DE with the
estimated comparison method using fixed parameter values (δ, λ) specified in the
table. The columns labeled “eval”, “success”, “fail” and “rate” show the total num-
ber of evaluation until a near optimal solution is found, the number of successful
evaluations where the child solution is better than the parent solution, the number
of failure evaluations and the success rate on average, respectively. The column “re-
duce” shows the ratio of how many times function evaluations is reduced compared
with DE.

The function f1 is a unimodal and smooth function. It is easy to approximate the
function. The adaptive DE with the estimated comparison method achieved the best
result and reduced 57.67% of function evaluations compared with DE.

The functions f2 and f3 are unimodal but steep functions. It is difficult to ap-
proximate the functions. The DE with the estimated comparison method using
(δ,λ) = (0.2,0.4) reduced 26.84% ( f2) and 28.73% ( f3) of function evaluations
compared with DE and achieved the best result. The adaptive DE with estimated
comparison method reduced 25.85% ( f2) and 28.23% ( f3) of function evaluations.
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It achieved the second best result and the reduction rate is almost same as the best
result.

The function f4 is a multimodal and very bumpy function. It is difficult to
approximate the function. The DE with the estimated comparison method using
(δ,λ) = (0.1,0.2) reduced 47.03% of function evaluations compared with DE and
achieved the best result. The adaptive DE with the estimated comparison method
reduced 45.42% of function evaluations. It achieved the second best result and the
reduction rate is almost same as the best result.

The function f5 is a multimodal and bumpy function. It is not so difficult to
approximate the function. The adaptive DE with the estimated comparison method
reduced 55.61% of function evaluations compared with DE and achieved the best
result.

The function f6 is a multimodal and less bumpy function. It is fairly easy to
approximate the function. The adaptive DE with the estimated comparison method
reduced 56.05% of function evaluations compared with DE and achieved the best
result.

It is shown that the adaptive and original DE with the estimated comparison
method are far better than original DE in all problems. Also, it is shown that the
adaptive DE with the estimated comparison method could reduce from 25% to 57%
function evaluations without hand-tuning the parameters δ and λ and achieved bet-
ter or almost same results compared with the estimated comparison method with
hand-tuning the parameters.

Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 show single logarithmic plots of the best
function values (left figures) and adaptively controlled parameter values of δ and
λ (right figures) over the number of function evaluations for function f1, f2, f3,
f4, f5 and f6, respectively. Note that the ends of graphs are violated because some
runs are terminated earlier than some other runs when the near optimal solution is
found. In the figures of the best values, thick solid lines, thin solid lines and dotted
lines show optimization process by adaptive, (0.2,0.4) and (0.1,0.2) DE with the
estimated comparison method, and chain lines show that by DE. In the figures of the
parameter values, solid lines and dotted lines show the values of δ and λ controlled
by the adaptive DE with the estimated comparison method.

It is clear that the adaptive and original DE with the estimated comparison method
can find better solutions faster than DE. Also, it is clear that the adaptive control
can adjust the parameter values properly and dynamically. The function f1 can be
approximated easily. As shown in the right of Fig. 5.2, the parameter values of δ
and λ are small and are often decreased to the minimum values. The approximation
of the functions f2 and f3 is very difficult. As shown in the right of Figs. 5.3 and
5.4, the parameter values are large and are often increased to the maximum values.
The approximation of f4 is difficult because the function is multimodal. However,
after the valley of the function surface including the minimum value has found, f4

becomes unimodal and the approximation becomes easy. As shown in the right of
Fig. 5.5, the parameter values are large in the early stage of the search process and
become small in the last stage. The approximation of f5 and f6 is not so difficult.
As shown in the right of Figs. 5.6 and 5.7, the parameter values are almost in the
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Fig. 5.4 Optimization of f3

lower range of [0.01,0.1] than the fixed case of (δ,λ) = (0.2,0.1) and more number
of function evaluations can be skipped than the fixed case. The parameter values in
f6 are often lower than those in f5, because f6 is less bumpy than f5. Thus, it is
thought that the parameter values are properly controlled according to the difficulty
of approximation for the objective functions.
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5.6 Discussion

In this section, the adaptive DE with the estimated comparison is compared with
particle swarm optimization (PSO), because PSO is known as a fast and efficient op-
timization algorithm. In this study, the standard Particle Swarm Optimization 2007
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(SPSO-07) [3], which is a recent standard PSO acknowledged by PSO community,
is used for the comparison.

Searching procedures by PSO can be described as follows: A group of parti-
cles optimizes the objective function. At any time t, each particle i knows its po-
sition xi(t) and the velocity vi(t). It remembers its best previous position pbi(t). It
also knows the best position of the best particle among its neighbors, nbi(t). The
neighbors are defined by the topology of the particles.

Initial positions are generated randomly inside the search space. In SPSO-07, ini-
tial velocity is defined as the half-difference of two random positions. The particles
are updated as follows:

vi j(t + 1) = wvi j(t)+ u(0,c1)(pbi j(t)− xi j(t))+ u(0,c2)(nbi j(t)− xi j(t)), (5.16)

xi j(t + 1) = xi j(t)+ vi j(t + 1), (5.17)

where w is an inertia weight, c1 is a cognitive parameter, c2 is a social parameter,
and u(0,c) returns a random value in [0,c] according to the uniform distribution. In
SPSO-07, random topology is employed: Each particle chooses a few informants (K
informants) at random, selects the best one from them as the best particle. If it finds
no particle better than itself, it becomes the best particle.

In the experiment, 25 independent runs are performed. In each run, the optimiza-
tion is terminated when a near optimal solution of which function value is less than
or equal to 1×10−3 is found. Also, the run is terminated when the number of func-
tion evaluations exceeds 1,000,000. The default parameter settings for SPSO-07 are
as follows: The swarm size that is the number of particles is �10+2

√
n� = 24, K = 3,

w = 1/(2ln2) ≈ 0.721348 and c1 = c2 = 0.5 + ln2 ≈ 1.193147. The swarm size is
changed to 100, because the swarm size 100 attained most stable result among the
swarm sizes 24, 50, 80 and 100.

Table 5.4 shows the experimental results of the adaptive DE and SPSO-07. The
column labeled “success” shows the ratio of successful runs when the near optimal
value was found over 25 runs, “eval” shows the average number of function eval-
uations in the successful runs, and “best” shows the average of the best objective
values over 25 runs.

As for the functions f2, f3 and f4, SPSO-07 can not find the near optimal solution
within 1,000,000 function evaluations. On the contrary, the adaptive DE can find the
near optimal solutions in all runs. As for the functions f1 and f5, the both methods
can find the near optimal solutions stably. The adaptive DE can find the solutions
with fewer number of function evaluations than SPSO-07. As for the function f6,
SPSO-07 failed to find the near optimal solution in two runs. On the contrary, the
adaptive DE can find the near optimal solutions in all runs. Also, the adaptive DE can
find the solution with fewer number of function evaluations than SPSO-07. Thus, it
is thought that the adaptive DE can find the near optimal solutions more stably and
faster than SPSO-07.
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Table 5.4 Comparison between adaptive DE with the estimated comparison method and
SPSO-07

Func. Method success eval best
f1 adaptive 100% 36,256.68 0.001

SPSO-07 100% 38,956.00 0.001
f2 adaptive 100% 586,018.92 0.001

SPSO-07 0% — 2.528
f3 adaptive 100% 586,919.64 0.001

SPSO-07 0% — 2.534
f4 adaptive 100% 304,002.68 0.001

SPSO-07 0% — 67.059
f5 adaptive 100% 69,175.84 0.001

SPSO-07 100% 72,016.00 0.001
f6 adaptive 100% 56,982.00 0.001

SPSO-07 92% 61,721.74 0.002

5.7 Conclusions

We proposed to utilize a rough approximation model, which is an approximation
model with low accuracy and without learning process, in order to reduce the num-
ber of function evaluations in wide range of problems including from low or medium
computation cost to high computation cost problems. We proposed the estimated
comparison method, in which the function evaluation of a solution is skipped when
the goodness of the solution can be judged from the approximation value of it. Also,
we proposed to control the margin parameter and the congestion parameter adap-
tively in the estimated comparison method. Through the optimization of various
types of test problems, it is shown that the estimated comparison method is very
effective to reduce function evaluations. Also, it is shown that without tuning the
parameters the adaptive DE with the estimated comparison method can improve
the optimization process and reduce about from 25% to 57% function evaluations
compared with DE.

In the future, we will apply the estimated comparison method into constrained op-
timization problems using the ε constrained Differential Evolution (εDE) [16, 19].
We have shown some results of constrained optmization using the estimated com-
parison method and εDE in [18]. We plan to apply the estimated comparison method
into other evolutionary algorithms such as particle swarm optimization. Also, we
will apply the estimated comparison method to real world problems, and test the
performance of the method.
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Chapter 6
Kriging Is Well-Suited to Parallelize
Optimization

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro

Abstract. The optimization of expensive-to-evaluate functions generally relies on
metamodel-based exploration strategies. Many deterministic global optimization al-
gorithms used in the field of computer experiments are based on Kriging (Gaussian
process regression). Starting with a spatial predictor including a measure of uncer-
tainty, they proceed by iteratively choosing the point maximizing a criterion which
is a compromise between predicted performance and uncertainty. Distributing the
evaluation of such numerically expensive objective functions on many processors
is an appealing idea. Here we investigate a multi-points optimization criterion, the
multipoints expected improvement (q-EI), aimed at choosing several points at the
same time. An analytical expression of the q-EI is given when q = 2, and a consis-
tent statistical estimate is given for the general case. We then propose two classes
of heuristic strategies meant to approximately optimize the q-EI, and apply them
to the classical Branin-Hoo test-case function. It is finally demonstrated within the
covered example that the latter strategies perform as good as the best Latin Hy-
percubes and Uniform Designs ever found by simulation (2000 designs drawn at
random for every q ∈ [1,10]).
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6.1 Introduction

6.1.1 Motivations: Efficient Optimization Algorithms for
Expensive Computer Experiments

Beyond both estalished frameworks of derivative-based descent and stochastic
search algorithms, the rise of expensive optimization problems creates the need for
new specific approaches and procedures. The word ”expensive” —which refers to
price and/or time issues— implies severely restricted budgets in terms of objec-
tive function evaluations. Such limitations contrast with the computational burden
typically associated with stochastic search techniques, like genetic algorithms. Fur-
thermore, the latter evaluations provide no differential information in a majority
of expensive optimization problems, whether the objective function originate from
physical or from simulated experiments. Hence there exists a strong motivation for
developing derivative-free algorithms, with a particular focus on their optimization
performances in a drastically limited number of evaluations. Investigating and im-
plementing adequate strategies constitute a contemporary challenge at the interface
between Applied Mathematics and Computational Intelligence, especially when it
comes to reducing optimization durations by efficiently taking advantage of parallel
computation facilities.

The primary aim of this chapter is to address parallelization issues for the opti-
mization of expensive-to-evaluate simulators, such as increasingly encountered in
engineering applications like car crash tests, nuclear safety, or reservoir forecasting.
More specifically, the work presented here takes place in the frame of metamodel-
based design of computer experiments, in the sense of [42]. Even though the results
and discussions might be extended to a more general scope, we restrict ourself here
for clarity to single-objective optimization problems for deterministic codes. The
simulator is seen as black-box function y with d-dimensional vector of inputs and
scalar output, the latter being often obtained as combination of several responses.
Metamodels, also called surrogate models, are simplified representations of y. They
can be used for predicting values of y outside the initial design, or visualizing the
influence of each variable on y [27, 43]. They may also guide further sampling de-
cisions for various purposes, such as refining the exploration of the input space in
preferential zones or optimizing the function y [22]. Classical surrogates include
radial basis functions [37], interpolation splines [52], neural nets [8] (deterministic
metamodels), or linear and non-linear regression [2], and Kriging [7] (probabilistic
metamodels). We concentrate here on the advantages of probabilistic metamodels
for parallel exploration and optimization, with a particular focus on the virtues of
Kriging.

6.1.2 Where Computational Intelligence and Kriging Meet

Computational intelligence (CI) methods share, in various proportions, four
features:
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An History Going from Experiments to Theory: CI methods very often origi-
nate from empirical computing experiments, in particular from experiments that
mimick natural processes (e.g., neural networks [4], ant colony optimization [5],
simulated annealing [25]). Later on, as researchers use and analyze them, the-
ory develops and their mathematical content grows. A good example is provided
by the evolutionary algorithms [9] which have progressively mixed the genetic
metaphor and stochastic optimization theory.

An Indirect Problem Representation: In standard evolutionary optimization
methods, knowledge about the cost function takes the indirect form of a set of
well-performing points, known as “current population”. Such set of points is an
implicit, partial, representation of a function. In fuzzy methods, the probabil-
ity density functions of the uncertain variables are averaged out. Such indirect
representations enable to work with few mathematical assumptions and have
broadened the range of applicability of CI methods.

Parallelized Decision Process: Most CI approaches are inherently parallel. For
example, the evolutionary or particle swarm optimization [24] methods process
sets of points in parallel. Neural networks have an internal parallel structure.
Today, parallelism is crucial for taking advantage of the increasingly distributed
computing capacity. The parallel decision making possibilities are related to the
indirect problem representations (through set of points, distributions) and to the
use of randomness in the decision process.

Heuristics: Implicit problem representations and the empirical genesis of the CI
methods rarely allow mathematical proofs of the methods properties. Most CI
methods are thus heuristics.

Kriging has recently gained popularity among several research communities related
to CI, ranging from Data Mining [16] and Bayesian Statistics [34, 48] to Machine
Learning [39], where it is linked to Gaussian Process Regression [53] and Kernel
Methods [12]. Recent works [17, 30, 31] illustrate the practical relevance of Kriging
to approximate computer codes in application areas such as aerospace engineer-
ing or materials science. Indeed, probabilistic metamodels like Kriging seem to be
particularly adapted for the optimization of black-box functions, as analyzed and
illustrated in the excellent article [20]. The current Chapter is devoted to the opti-
mization of black-box functions using a Kriging metamodel [14, 22, 49, 51]. Let
us now stress some essential relationships between Kriging and CI by revisiting the
above list of features.

A History from Field Studies to Mathematical Statistics: Kriging comes from
the earth sciences [29, 33], and has been progressively developed since the 1950’s
along with the discipline called geostatistics [23, 32]. Originally aimed at esti-
mating natural ressources in mining applications, it has later been adapted to ad-
dress very general interpolation and approximation problems [42, 43]. The word
“Kriging” comes from the name of a mining engineer, Prof. Daniel G. Krige,
who was a pioneer in the application of mathematical statistics to the study of
new gold mines using a limited number of boreholes [29].
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An Indirect Representation of the Problem: As will be detailed later in the
text, the Kriging metamodel has a powerful interpretation in terms of stochastic
process conditioned by observed data points. The optimized functions are thus
indirectly represented by stochastic processes.

Parallelized Decision Process: The central contribution of this chapter is to pro-
pose tools enabling parallelized versions of state-of-the art Kriging-based
optimization algorithms.

Heuristics: Although the methods discussed here are mathematically founded on
the multipoints expected improvement, the maximization of this criterion is not
mathematically tractable beyond a few dimensions. In the last part of the chapter,
it is replaced by the “Kriging believer” and the “constant liar” heuristics.

Through their indirect problem representation, their parallelism and their
heuristical nature, the Kriging-based optimization methods presented hereafter are
Computational Intelligence methods.

6.1.3 Towards Kriging-Based Parallel Optimization: Summary of
Obtained Results and Outline of the Chapter

This chapter is a follow-up to [14]. It proposes metamodel-based optimization cri-
teria and related algorithms that are well-suited to parallelization since they yield
several points at each iteration. The simulations associated with these points can be
distributed on different processors, which helps performing the optimization when
the simulations are calculation intensive. The algorithms are derived from a multi-
points optimization criterion, the multi-points or q-points expected improvement
(q-EI). In particular, an analytic expression is derived for the 2-EI, and consistent
statistical estimates relying on Monte-Carlo methods are provided for the general
case. All calculations are performed in the framework of Gaussian processes (GP).
Two classes of heuristic strategies, the Kriging Believer (KB) and Constant Liar
(CL), are subsequently introduced to obtain approximately q-EI-optimal designs.
The latter strategies are tested and compared on a classical test case, where the Con-
stant Liar appears to constitute a legitimate heuristic optimizer of the q-EI criterion.
Without too much loss of generality, the probabilistic metamodel considered is Ordi-
nary Kriging (OK, see eqs. 6.1,6.2,6.35), like in the founder work [22] introducing
the now famous EGO algorithm. In order to make this document self-contained,
non-specialist readers may find an overview of existing criteria for Kriging-based
sequential optimization in the next pages, as well as a short but dense introduction
to GP and OK in the body of the chapter, with complements in appendix. The outline
of the chapter is as follows:

• Section 6.2 (Background in Kriging for Sequential Optimization) recalls the OK
equations, with a focus on the joint conditional distributions associated with this
probabilistic metamodel. A progressive introduction to Kriging-based criteria for
sequential optimization is then proposed, culminating with the presentation of the
EGO algorithm and its obvious limitations in a context of distributed computing.
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• Section 6.3 (The Multi-points Expected Improvement) consists in the presenta-
tion of the q-EI criterion —continuing the work initiated in [47]—, its explicit
calculation when q = 2, and the derivation of estimates of the latter criterion in
the general case, relying on Monte-Carlo simulations of gaussian vectors.

• Section 6.4 (Approximated q-EI maximization) introduces two heuristic strate-
gies, KB and CL, to circumvent the computational complexity of a direct q-EI
maximization. These strategies are tested on a classical test-case, and CL is found
to be a very promizing competitor for approximated q-EI maximization

• Section 6.5 (Towards Kriging-based Parallel Optimization: Conclusion and Per-
spectives) gives a summary of obtained results as well as some related practical
recommendations, and finally suggests what the authors think are perspectives of
research to address the most urgently in order to extend this work.

• The appendix 6.6 is a short but dense introduction to GP for machine learn-
ing, with an emphasis on the foundations of both Simple Kriging and Ordinary
Kriging by GP conditioning.

Some Notations: y : x ∈ D ⊂ Rd → y(x) ∈ R refers to the objective function, where
d ∈ N\{0} is the number of input variables and D is the set in which the inputs vary,
most of the time assumed to be a compact and connex1 subset of Rd . At first, y is
known at a Design of Experiments X = {x1, ...,xn} , where n ∈ N is the number of
initial runs or experiments, and each xi (1 ≤ i ≤ n) is hence a d-dimensional vector
(xi

1, . . . ,x
i
d). We denote by Y = {y(x1), ...,y(xn)} the set of observations made by

evaluating y at the points of X. The data (X,Y) provides information on which is
initially based the metamodeling of y, with an accuracy that depends on n, the geom-
etry of X, and the regularity of y. The OK mean predictor and prediction variance
are denoted by the functions mOK(.) and s2

OK(.). The random process implicitely
underlying OK is denoted by Y (.), in accordance with the notations of eq. (6.35)
presented in appendix. The symbol ”|” is used for conditioning, together with the
classical symbols for probability and expectation, respectively P and E.

6.2 Background in Kriging for Sequential Optimization

6.2.1 The Ordinary Kriging Metamodel and Its Gaussian Process
Interpretation

OK is the most popular Kriging metamodel, simultaneously due to its great versa-
tility and applicability. It provides a mean predictor of spatial phenomena, with a
quantification of the expected prediction accuracy at each site. A full derivation of
the OK mean predictor and variance in a GP setting is proposed in the appendix.
The corresponding OK mean and variance functions are given by the following
formulae:

1 Connexity is sometimes untenable in practical applications, see e.g. [46] for a treatment of
disconnected feasible regions.
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where c(x) :=
(
c(Y (x),Y (x1)), ...,c(Y (x),Y (xn))

)T
, and Σ and σ2 are defined fol-

lowing the assumptions2 and notations given in appendix 6.6. Classical proper-
ties of OK include that ∀i ∈ [1,n] mOK(xi) = y(xi) and s2

OK(xi) = 0, therefore
[Y (x)|Y (X) = Y] is interpolating. Note that [Y (xa)|Y (X) = Y] and [Y (xb)|Y (X) = Y]
are dependent random variables, where xa and xb are arbitrary points of D, as we
will develop later.

The OK metamodel of the Branin-Hoo function (Cf. eq. 6.25) is plotted on fig.
6.2.1. The OK interpolation (upper middle) is based only on 9 observations. Even if
the shape is reasonably respected (lower middle), the contour of the mean shows an
artificial optimal zone (upper middle, around the point (6,2)). In other respects, the
variance is not depending on the observations3 (eq. 6.2). Note its particular shape,
due to the anisotropy of the covariance kernel estimated by likelihood maximization.
In modern interpretations [39], deriving OK equations is often based on the assump-
tion that y is a realization of a random process Y with unknown constant mean and
known covariance (see [1] or [12] for a review of classical covariance kernels). Here
we follow the derivation of 6.6.4, which has the advantage of delivering a gaussian
posterior distribution:

Note that both a structure selection and a parametric estimation are made in prac-
tice: one often chooses a generalized exponential kernel with plugged-in maximum
likelihood covariance hyperparameters, i.e. without taking the estimation variance
into account [22]. This issue is sometimes addressed using a full bayesian treat-
ment, as can be found in [43], or more recently in [15, 34, 39]. Rephrasing eq. 6.3,
under the latter GP assumptions, the random variable Y (x) knowing the values
of {y(x1), ...,y(xn)} follows a gaussian distribution which mean and variance are
respectively E[Y (x)|Y (X) = Y] = mOK(x) and Var[Y (x)|Y (X) = Y] = s2

OK(x). In
fact, as shown in appendix (Cf. eq. 6.38), one can even get much more than these
marginal conditional distributions; Y (.)|Y (X) = Y constitutes a random process

2 An extension of the Kriging equations to the framework of covariance non-stationary pro-
cesses [35] is straightforward but beyond the scope of the present work.

3 Phenomenon known as homoskedasticity of the Kriging variance with respect to the
observations [7].
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Fig. 6.1 Ordinary Kriging of the Branin-Hoo function (function, Kriging mean value and
variance, from left to right). The design of experiments is a 3×3 factorial design. The covari-
ance is an anisotropic squared exponential with parameters estimated by gaussian likelihood
maximization [7]

which is itself gaussian, and as such completely characterized by its conditional
mean, mOK , and conditional covariance kernel cOK explicited herunder:

This new kernel cOK is not stationary, even if c is. In other respects, the knowledge
of mOK and cOK is the first step to performing conditional simulations of Y knowing
the observations Y (X) = Y, which is easily feasible at any new finite design of
experiments, whatever the dimension of inputs. This will enable the computation
of any multi-points sampling criterion, such as proposed in the forthcoming section
about parallelization.

6.2.2 Kriging-Based Optimization Criteria

GP metamodels [39, 53] such as OK has been used for optimization (minimiza-
tion, by default). There is a detailed review of optimization methods relying on a

[Y (.)|Y (X) = Y] ∼ GP(mOK(.),cOK(., .)), (6.4)

where cOK(x,x′)= c(x−x′)−c(x)T Σ−1c(x′)+σ2
[
(1−1T

n Σ−1c(x))(1−1T
n Σ−1c(x′))

1T
n Σ−11n

]
.

(6.5)
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metamodel in [44, 45] or [20]. The latter analyzes why directly optimizing a deter-
ministic metamodel (like a spline, a polynomial, or the Kriging mean) is dangerous,
and does not even necessarily lead to a local optimum. Kriging-based sequential
optimization strategies (as developed in [22], and commented in [20]) address the
issue of converging to non (locally) optimal points, by taking the Kriging variance
term into account (hence encouraging the algorithms to explore outside the already
visited zones). Such algorithms produce one point at each iteration that maximizes a
figure of merit based upon [Y (x)|Y (X) = Y]. In essence, the criteria balance Kriging
mean prediction and uncertainty.

6.2.2.1 Visiting the Point with Most Promizing Mean: Minizing mOK

When approximating y by mOK , it might seem natural to hope that minimizing
mOK instead of y brings satisfying results. However, a function and its approxi-
mation (mOK or other) can show substantial differences in terms of optimal values
and optimizers. More specifically, depending on the kind of covariance kernel used
in OK, the minimizer of mOK is susceptible to lie at (or near to) the design point
with minimal y value. Taking the geometry of the design of experiments and space-
filling considerations into account within exploration criteria then makes sense. The
Kriging variance can be of providential help for this purpose.

6.2.2.2 Visiting the Point with Highest Uncertainty: Maximizing sOK

A fundamental mistake of minimizing mOK is that no account is done of the un-
certainty associated with it. At the extreme inverse, it is possible to define the next
optimization iterate as the least known point in D,

x′ = argmaxx∈D sOK(x) (6.6)

This procedure defines a series of x′s which will fill the space D and hence ulti-
mately locate a global optimum. Yet, since no use is made of previously obtained
Y information —look at formula 6.2 for s2

OK—, there is no bias in favor of high
performance regions. Maximizing the uncertainty is inefficient in practice.

6.2.2.3 Compromizing between mOK and sOK

The most general formulation for compromizing between the exploitation of previ-
ous simulations brought by mOK and the exploration based on sOK is the multicriteria
problem {

minx∈D mOK(x)
maxx∈D sOK(x) (6.7)

Let P denote the Pareto set of solutions4. Finding one (or many) elements in P
remains a difficult problem since P typically contains an infinite number of points.
A comparable approach called direct, although not based on OK, is described in

4 Definition of the Pareto front of (sOK ,−mOK): ∀x ∈ P ,� z ∈ D : (mOK(z) <
mOK(x) and sOK(z) ≥ sOK(x)) or (mOK(z) ≤ mOK(x) and sOK(z) > sOK(x)).
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[21]: the metamodel is piecewise linear and the uncertainty measure is a distance to
already known points. The space D is discretized and the Pareto optimal set defines
areas where discretization is refined. The method becomes computationally expen-
sive as the number of iterations and dimensions increase. Note that [3] proposes
several parallelized versions of direct.

6.2.2.4 Maximizing the Probability of Improvement

Among the numerous criteria presented in [20], the probability of getting an im-
provement of the function with respect to the past evaluations seems to be one
of the most fundamental. This function is defined for every x ∈ D as the prob-
ability for the random variable Y (x) to be below the currently known minimum
min(Y) = min{y(x1), ...,y(xn)} conditional on the observations at the design of
experiments:

PI(x) := P(Y (x) ≤ min(Y (X))|Y (X) = Y) (6.8)

= E
[
1Y(x)≤min(Y (X))|Y (X) = Y

]
= Φ

(
min(Y)− mOK(x)

sOK(x)

)
, (6.9)

where Φ is the gaussian cumulative distribution function, and the last equality fol-
lows eq. 6.3. The threshold min(Y) is sometimes replaced by some arbitrary target
T ∈ R, as evokated in [38]. PI is known to provide a very local search whenever
the value of T is equal or close to min(Y). Taking several T ’s is a remedy proposed
by [20] to force global exploration. Of course, this new degree of freedom is also
one more parameter to fit. In other respects, PI has also been succesfully used as
pre-selection criterion in GP-assisted evolution strategies [49], where it was pointed
out that PI is performant but has a tendency to sample in unexplored areas. We argue
that the chosen covariance structure plays a capital role in such matters, depending
whether the Kriging mean is overshooting the observations or not. The next pre-
sented criterion, the expected improvement, is less sensitive to such issues since it
explicitly integrates both Kriging mean and variance.

6.2.2.5 Maximizing the Expected Improvement

An alternative solution is to maximize the expected improvement (EI),

(6.10)
that additionally takes into account the magnitude of the improvements. EI measures
how much improvement is expected by sampling at x. In fine, the improvement
will be 0 if y(x) is above min(Y) and min(Y)− y(x) else. Knowing the conditional
distribution of Y (x), it is possible to calculate EI in closed form:



140 D. Ginsbourger, R.L. Riche, and L. Carraro

EI(x) = (min(Y)−mOK(x))Φ
(

min(Y)−mOK(x)
sOK(x)

)
+ sOK(x)φ

(
min(Y)−mOK(x)

sOK(x)

)
(6.11)

where φ stands for the probability density function of the standard normal law
N (0,1).

Proof of 6.11: EI(x) = E[(min(Y)−Y(x)) Y(x)≤min(Y)|Y(X) = Y]

=
∫ min(Y)

−∞
(min(Y)− t) f

N (mKO (x),s2
KO(x))(t)dt =

∫ min(Y)−mKO(x)
sKO(x)

−∞
(min(Y)−mKO(x)− sKO(x)×u) fN (0,1)(u)du

= (min(Y)−mKO(x))
∫ min(Y)−mKO(x)

sKO(x)

−∞
fN (0,1)(u)du− sKO(x)

∫ min(Y)−mKO(x)
sKO(x)

−∞
u× fN (0,1)(u)du

= (min(Y)−mKO(x))Φ
(

min(Y)−mKO(x)
sKO(x)

)
+ sKO(x)φ

(
min(Y)−mKO(x)

sKO(x)

)

EI represents a trade-off between promising and uncertain zones. This criterion has
important properties for sequential exploration: it is null at the already visited sites,
and positive everywhere else with a magnitude that is increasing with the Kriging
variance and with the decreasing Kriging mean (EI maximizers are indeed part of the
Pareto front of (sOK ,−mOK)). Such features are usually demanded from global opti-
mization procedures (see [21] for instance). EI and the probability of improvement
are compared in fig. (2).

6.2.2.6 The Stepwise Uncertainty Reduction (SUR) Strategy

SUR has been introduced in [11] and extended to global optimization in [50, 51].
By modeling y using the process Y ’s conditional law Y (x)|Y, it is possible to define
x∗|Y, the conditional law of Y ’s global minimizer x∗, and its density px∗|Y(x). The
uncertainty about the location of x∗ is measured as the entropy of px∗|Y(x), H(x∗|Y).
H(x∗|Y) diminishes as the distribution of x∗|Y gets more peaked. Conceptually, the
SUR strategy for global optimization chooses as next iterate the point that specifies
the most the location of the optimum,

x′ = argminx∈DH(x∗|Y,Y (x)) (6.12)

In practice, px∗|Y(x) is estimated by Monte-Carlo sampling of Y (x)|Y at a finite
number of locations in D, which may become a problem in high dimensional D’s
as the number of locations must geometrically increase with d to properly fill the
space. The SUR criterion is different in nature from the criteria presented so far in
that it does not maximize an immediate (i.e. at the next iteration) payoff but rather
lays the foundation of a delayed payoff by gaining a more global knowledge on Y
(reduce the entropy of its optima). The multi-points EI criterion we are focusing on
in the present chapter also uses a delayed payoff measure.
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Fig. 6.2 PI and EI surfaces of the Branin-Hoo function (same design of experiments, Kriging
model, and covariance parameters as in fig. 6.2.1). Maximizing PI leads to sample near the
good points (associated with low observations) whereas maximizing EI leads here to sample
between the good points. By construction, both criteria are null at the design of experiments,
but the probability of improvement is very close to 1

2 in a neighborhood of the point(s) where
the function takes its current minimum

6.2.2.7 The Efficient Global Optimization (EGO) Algorithm

EGO [22] relies on the EI criterion. Starting with an initial Design X (typically a
Latin Hypercube), EGO sequentially visits the current global maximizer of EI (say
the first visited one if there is more than one global maximizer) and updates the OK
metamodel at each iteration, including hyperparameters re-estimation:

1. Evaluate y at X, set Y = y(X) and estimate covariance parameters
of Y by MLE (Maximum Likelihood Estimation)

2. While stopping criterion not met

a. Compute x′ = argmaxx∈DEI(x), set X = X∪{x′} and Y = Y∪{y(x′)}
b. Re-estimate covariance parameters by MLE
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After having been developed in [22, 47], EGO has inspired contemporary works
in optimization of expensive-to-evaluate functions. For instance, [19] exposes some
EGO-based methods for the optimization of noisy black-box functions like stochas-
tic simulators. [18] focuses on multiple numerical simulators with different levels
of fidelity, and introduces the so-called augmented EI criterion, integrating possi-
ble heterogeneity in the simulation times. Moreover, [26] proposes an adaptation to
multi-objective optimization, [17] proposes an original multi-objective adaptation of
EGO for physical experiments, and [28] focuses on robust criteria for multiobjective
constrained optimization with applications to laminating processes.

In all, one major drawback of the EGO-like algorithms discussed so far is that
they do not allow parallel evaluations of y, which is desirable for costly simulators
(e.g. a crash-test simulation run typically lasts 24 hours). This was already pointed
out in [47], where the multi-points EI was defined but not further developed. Here
we continue this work by expliciting the latter multi-points EI (q-EI), and by propos-
ing two classes of heuristics strategies meant to approximatly optimize the q-EI, and
hence (almost) simultaneously deliver an arbitrary number of points without inter-
mediate evaluations of y. In particular, we analytically derive the 2-EI, and explain
in detail how to take advantage of statistical interpretations of Kriging to consis-
tently compute q-EI by simulation when q > 2, which happens to provide quite a
general template for desiging Kriging-based parallel evaluation strategies dedicated
to optimization or other purposes.

6.3 The Multi-points Expected Improvement (q-EI) Criterion

The main objective of the present work is to analyze and then approximately opti-
mize a global optimization criterion, the q-EI, that yields q points. Since q-EI is an
extension of EI, all derivations are performed within the framework of OK. Such
criterion is the first step towards a parallelized version of the EGO algorithm [22].
It also departs, like the SUR criterion, from other criteria that look for an immediate
payoff. We now propose a progressive construction of the q-EI, by coming back to
the random variable improvement.

Both criteria of PI and EI that we have previously recalled share indeed the fea-
ture of being conditional expectations of quantities involving the improvement. The
improvement brought by sampling at some x ∈ D is indeed defined by I(x) :=
(min(Y (X)) −Y (x))+, and is positive whenever the value sampled at x, Y (x), is
below the current minimum min(Y (X)). Now, if we sample Y at q new locations
xn+1, . . . ,xn+q ∈ D simultaneously, it seems quite natural to define the joint —or
multipoints— improvement as follows:

∀xn+1, . . . ,xn+q ∈ D, I(xn+1, . . . ,xn+q) : = max
(
I(xn+1), . . . , I(xn+q)

)
= max

(
(min(Y (X))−Y (xn+1))+, . . . ,(min(Y (X))−Y (xn+q))+

)
=
(
min(Y (X))−min(Y (xn+1), . . . ,Y (xn+q))

)+
,

(6.13)
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where we used the fact that ∀a,b,c ∈ R, max((a−b)+,(a− c)+) = (a−b)+ if b ≤
c and (a − c)+ else. The way of unifying the q criteria of (1-point) improvements
used in eq. 6.13 deserves to be called elitist: one juges the quality of the set of q-
points as a function only of the one that performs the best. This is to be compared
for instance to the weighted sums of criteria encountered in many political science
applications.

The q-points EI criterion (as already defined but not developed in [47] under the
name ”q-step EI”) is then straightforwardly defined as conditional expectation of
the improvement brought by the q considered points:

Hence, the q-EI may be seen as the regular EI applied to the random variable
min(Y (xn+1), ...,Y (xn+q)). We thus have to deal with a minimum of dependent ran-
dom variables. Fortunately, eq. 6.4 provides us with the exact joint distribution of
the q unknown responses conditional on the observations:

[(Y (xn+1), ...,Y (xn+q))|Y (X) = Y] ∼ N ((mOK(xn+1), ...,mOK(xn+q)),Sq) (6.15)

where the elements of the conditional covariance matrix Sq are (Sq)i, j = cOK(xn+i,
xn+ j) (See eq. 6.5). We now propose two different ways to evaluate the criterion
eq. 6.14, depending whether q = 2 or q ≥ 3.

6.3.1 Analytical Calculation of 2-EI

We first focus on the calculation of the 2-EI associated with two arbitrary points
xn+1,xn+2 ∈ D, defined as

EI(xn+1,xn+2) := E[(min(Y (X))− min(Y(xn+1),Y (xn+2)))+|Y (X) = Y],

Let us remark that in reformulating the positive part function, the expression above
can also be written:

.

We will now show that the 2-EI can be developed as a sum of two 1-EI’s, plus a
correction term involving 1- and 2-dimensional gaussian cumulative distributions.

EI(xn+1, ...,xn+q) : = E[max{(min(Y (X))−Y (xn+1))+, ...,(min(Y)−Y (xn+q))+}|Y (X) = Y]

= E
[
(min(Y (X))−min

(
Y (xn+1), ...,Y (xn+q)

)
)+|Y (X) = Y

]
= E

[
(min(Y)−min

(
Y (xn+1), ...,Y (xn+q)

)
)+|Y (X) = Y

]
(6.14)

.
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Fig. 6.3 1-EI (lower left) and 2-EI (right) functions associated with a monodimensional
quadratic function (y(x) = 4× (x−0.45)2 known at X = {−1,−0.5,0,0.5,1}. The OK meta-
model has here a cubic covariance with parameters σ2 = 10, scale = 0.9)

Before all, some classical results of conditional calculus allow us to precise the
dependence between Y (xn+1) and Y (xn+2) conditional on Y (X) = Y, and to fix some
additional notations. ∀i, j ∈ {1,2} (i �= j), we note:
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mi := mKO(xi) = E[Y (xn+i)|Y (X) = Y],

σi := sKO(xn+i) =
√

Var[Y (xn+i)|Y (X) = Y],

c1,2 := ρ1,2σ1σ2 := cov[Y (xn+1),Y (xn+2)|Y (X) = Y],

mi| j = E[Y (xn+i)|Y (X) = Y,Y (xn+ j))] = mi + c1,2σ−2
i (Y (xn+ j)− m j),

σ2
i| j = σ2

i − c2
1,2σ

−2
j = σ2

i (1 −ρ2
12).

(6.16)

At this stage we are in position to compute EI(xn+1,xn+2) in four steps. From now
on, we replace the complete notation Y (xn+i) by Yi and forget the conditioning on
Y (X) = Y for the sake of clarity.

Step 1

EI(xn+1,xn+2) = E[(min(Y)−min(Y1,Y2))1min(Y1,Y2)≤min(Y)]

= E[(min(Y)−min(Y1,Y2))1min(Y1,Y2)≤min(Y)(1Y1≤Y2 +1Y2≤Y1)]

= E[(min(Y)−Y1)1Y1≤min(Y)1Y1≤Y2 ]+E[(min(Y)−Y2)1Y2≤min(Y)1Y2≤Y1 ]

Since both terms of the last sum are similar (up to a permutation between xn+1 and
xn+2), we will restrict our attention to the first one. Using 1Y1≤Y2 = 1 − 1Y2≤Y1

5 , we
get:

E[(min(Y)−Y1)1Y1≤min(Y)1Y1≤Y2 ] = E[(min(Y)−Y1)1Y1≤min(Y)(1−1Y2≤Y1)]

= EI(xn+1)−E[(min(Y)−Y1)1Y1≤min(Y)1Y2≤Y1 ]

= EI(xn+1)+B(xn+1,xn+2)

where B(xn+1,xn+2) = E[(Y1 −min(Y))1Y1≤min(Y)1Y2≤Y1 ]. Informally, B(xn+1,xn+2)
is the opposite of the improvement brought by Y1 when Y2 ≤ Y1 and hence that
doesn’t contribute to the 2-points improvement. Our aim in the next steps will be to
give an explicit expression for B(xn+1,xn+2).

Step 2

B(xn+1,xn+2) = E[Y11Y1≤min(Y)1Y2≤Y1 ]−min(Y)E[1Y1≤min(Y)1Y2≤Y1 ]

At this point, it is worth noticing that Y1
L= m1 +σ1N1 (always conditional on Y (X) =

Y) with N1 ∼ N (0,1). Substituing this decomposition in the last expression of
B(xn+1,xn+2) delivers:

B(xn+1,xn+2) = σ1E[N11Y1≤min(Y)1Y2≤Y1 ]+(m1 −min(Y))E[1Y1≤min(Y)1Y2≤Y1 ]

5 This expression should be noted 1 − 1Y2<Y1 , but since we work with continous random
variables, it sufficies that their correlation is �= 1 for the expression to be exact ({Y1 = Y2}
is then neglectable). We implicitely do this assumption in the following.
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The two terms of this sum require some attention. We compute them in detail in the
two next steps.

Step 3. Using a key property of conditional calculus6, we obtain

E[N11Y1≤min(Y)1Y2≤Y1 ] = E[N11Y1≤min(Y)E[1Y2≤Y1 |Y1]],

and the fact that Y2|Y1 ∼ N (m2|1(Y1),s2
2|1(Y1)) (all conditional on the observations)

leads to the following:

E[1Y2≤Y1 |Y1] = Φ

(
Y1 −m2|1

s2|1

)
=Φ

⎛⎝Y1 −m2 − c1,2

σ2
1
(Y1 −m1)

σ2

√
1−ρ2

12

⎞⎠
Back to the main term and using again the normal decomposition of Y1, we get:

E
[
N11Y1≤min(Y)1Y2≤Y1

]
=

⎡⎣N11
N1≤ min(Y)−m1

σ1

Φ

⎛⎝m1 −m2 +(σ1 −ρ12σ2)N1

σ2

√
1−ρ2

12

⎞⎠⎤⎦ = E
[
N11N1≤γ1Φ(α1N1 +β1)

]

where γ1 =
min(Y)− m1

σ1
, β1 =

m1 − m2

σ2

√
1 −ρ2

12

and α1 =
σ1 −ρ12σ2

σ2

√
1 −ρ2

12

(6.17)

E[N11N1≤γ1Φ(α1N1 +β1)] can be computed applying an integration by parts:∫ γ1

−∞
uφ(u)Φ(α1u+β1)du = −φ(γ1)Φ(α1γ1 +β1)+

α1

2π

∫ γ1

−∞
e

−u2−(α1u+β1)2

2 du

And since u2 +(α1u +β1)2 =
(√

(1 +α2
1)u + α1β1√

1+α2
1

)2

+ β 2
1

1+α2
1

, the last integral

reduces to:

√
2πφ

(√
β2

1

1+α2
1

)∫ γ1

−∞
e

−
⎛⎝√(1+α2

1)u+
α1β1√

1+α2
1

⎞⎠2

2 du =
2πφ

(√
β2

1
1+α2

1

)
√

(1+α2
1)

∫ √
(1+α2

1)γ1+ α1β1√
1+α2

1

−∞
e
−v2

2√
2π

dv

We conclude in using the definition of the cumulative distribution function:

E[N11Y1≤min(Y)1Y2≤Y1 ] = −φ(γ1)Φ(α1γ1 +β1)+
α1φ

(√
β2

1
1+α2

1

)
√

(1+α2
1)

Φ

⎛⎝√
(1+α2

1)γ1 +
α1β1√
1+α2

1

⎞⎠

6 For all function φ in L 2(R,R), E[Xφ(Y )] = E[E[X |Y ]φ(Y )].
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Step 4. We then compute the term E[1Y1≤min(Y)1Y2≤Y1 ] = E[1X≤min(Y)1Z≤0], where
(X ,Z) := (Y1,Y2 −Y1) follows a 2-dimensional gaussian distribution with expecta-

tion M = (m1,m2 − m1), and covariance matrix Γ :=
(

σ2
1 c1,2 −σ2

1
c1,2 −σ2

1 σ2
2 +σ2

1 −2c1,2

)
.

The final results rely on the fact that: E[1X≤min(Y)1Z≤0] = CDF(M,Γ )(min(Y),0),
where CDF stands for the bi-gaussian cumulative distribution function:

Figure 6.3.1 represents the 1-EI and the 2-EI contour plots associated with a de-
terministic polynomial function known at 5 points. 1-EI advises here to sample be-
tween the ”good points” of X. The 2-EI contour illustrates some general properties:
2-EI is symmetric and its diagonal equals 1-EI, what can be easily seen by coming
back to the definitions. Roughly said, 2-EI is high whenever the 2 points have high
1-EI and are reasonably distant from another (precisely, in the sense of the metric
used in OK). Additionally, maximizing 2-EI selects here the two best local optima
of 1-EI (x1 = 0.3 and x2 = 0.7). This is not a general fact. The next example illus-
trates for instance how 2-EI maximization can yield two points located around (but
different from) 1-EI’s global optimum whenever 1-EI has one single peak of great
magnitude (see fig. 6.4).

6.3.2 q-EI Computation by Monte Carlo Simulations

Extrapolating the calculation of 2-EI to the general case gives complex expressions
depending on q-dimensional gaussian cumulative distribution functions. Hence, it
seems that the computation of q-EI when q is large would have to rely on numerical
multivariate integral approximation techniques anyway. Therefore, directly evaluat-
ing q-EI by Monte-Carlo Simulation makes sense. Thanks to eq. 6.15, the random
vector (Y (xn+1), ...,Y (xn+q)) can be simulated conditional on Y (X) = Y using a
decomposition (e.g. Mahalanobis) of the covariance matrix Sq:

∀k ∈ [1,nsim], Mk = (mOK(xn+1), ...,mOK(xn+q))+ [S
1
2
q Nk]T ,Nk ∼ N (0q,Iq) i.i.d.

(6.19)
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Fig. 6.4 1-point EI (lower left) and 2-points EI (right) functions associated with a monodi-
mensional linear function (y(x) = 3× x) known at X = {−1,−0.5,0,0.5,1}. The OK meta-
model has here a cubic covariance with parameters σ2 = 10, scale = 1.4)

Computing the conditional expectation of any function (not necessarily linearly) of
the conditioned random vector (Y (xn+1), ...,Y (xn+q)) knowing Y (X) = Y can then
be done in averaging the images of the simulated vectors by the considered function:
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6: qIsim(i)=[min(Y)−min(Mi)]+ {Simulating the improvement at Xnew}
7: end for
8: qEIsim = 1

nsim
∑nsim

i=1 qIsim(i) {Estimation of q-E I}

A straightforward application of the Law of Large Numbers (LLN) yields indeed

qEIsim =
nsim

∑
i=1

[min(Y)− min(Mi)]+

nsim
−−−−−→
nsim→+∞

EI(x1, ...,xq) a.s., (6.20)

and the Central Limit Theorem (CLT) can finally be used to control the precision of
the Monte Carlo approximation as a function of nsim (see [40] for details concerning
the variance estimation):

√
nsim

(
qEIsim − EI(x1, ...,xq)√

Var[I(x1, ...,xq)]

)
−−−−−→
nsim→+∞

N (0,1) in law. (6.21)

6.4 Approximated q-EI Maximization

The multi-points criterion that we have presented in the last section can poten-
tially be used to deliver an additional design of experiments in one step through the
resolution of the optimization problem

(x
′n+1,x

′n+2, ...,x
′n+q) = argmaxX′∈Dq [EI(X′)] (6.22)

However, the computation of q-EI becomes intensive as q increases. Moreover, the
optimization problem (6.22) is of dimension d ×q, and with a noisy and derivative-
free objective function in the case where the criterion is estimated by Monte-Carlo.
Here we try to find pseudo-sequential greedy strategies that approach the result of
problem 6.22 while avoiding its numerical cost, hence circumventing the curse of
dimensionality.
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6.4.1 A First Greedy Strategy to Build a q-Points Design with the
1-Point EI

Instead of searching for the globally optimal vector (x
′n+1,x

′n+2, ...,x
′n+q), an in-

tuitive way of replacing it by a sequential approach is the following: first look for
the next best single point xn+1 = argmaxx∈DEI(x), then feed the model and look
for xn+2 = argmaxx∈DEI(x), and so on. Of course, the value y(xn+1) is not known
at the second step (else we would be in a real sequential algorithm, like EGO).
Nevertheless, we dispose of two pieces of information: the site xn+1 is assumed
to have already been visited at the previous iteration, and [Y (xn+1)|Y = Y (X)]
has a known distribution. More precisely, the latter is [Y (xn+1)|Y (X) = Y] ∼
N (mOK(xn+1),s2

OK(xn+1)). Hence, the second site xn+2 can be computed as:

xn+2 = argmaxx∈DE
[
E
[
(Y (x)− min(Y (X)))+|Y (X) = Y,Y (xn+1)

]]
, (6.23)

and the same procedure can be applied iteratively to deliver q points, computing
∀ j ∈ [1,q − 1]:

(6.24)
where fY (X1: j)|Y (X)=Y is the multivariate gaussian density of the OK conditional

distribution at (xn+1, ...,xn+ j). Although eq. 6.24 is a sequentialized version of the
q-points expected improvement maximization, it doesn’t completely fulfill our ob-
jectives. There is still a multivariate gaussian density to integrate, which seems to be
a typical curse in such problems dealing with dependent random vectors. We now
present two classes of heuristic strategies meant to circumvent the computational
complexity encountered in eq. 6.24.

6.4.2 The Kriging Believer (KB) and Constant Liar (CL)
Strategies

Lying to escape intractable calculations: Starting from the principle of eq. 6.24,
we propose to weaken the conditional knowledge taken into account at each itera-
tion. This very elementary idea inspired two heuristic strategies that we expose and
test in the next two subsections: the Kriging Believer and the Constant Liar.

6.4.2.1 Believing the OK Predictor: The KB Heuristic Strategy

The Kriging Believer strategy replaces the conditional knowledge about the re-
sponses at the sites chosen within the last iterations by deterministic values equal to
the expectation of the Kriging predictor. Keeping the same notations as previously,
the strategy can be summed up as follows:

xn+ j+1 = argmaxx∈D

∫
u∈R j

[
E
[
(Y (x)−min(Y (X)))+|Y (X) = Y,Y (xn+1), ...,Y (xn+ j−1)

]]
fY (X1: j)|Y (X)=Y(u)du,
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Algorithm 1. The Kriging Believer algorithm: a first approximate solution of the
multipoints problem (x

′n+1,x
′n+2, ...,x

′n+q) = argmaxX′∈Dq [EI(X′)]
1: Function KB(X, Y, q)
2: for i ← 1,q do
3: xn+i = argmaxx∈DEI(x)
4: mOK(xn+i) = E[Y (xn+i)|Y (X) = Y]
5: X = X

⋃{xn+i}
6: Y = Y

⋃{mOK(xn+i)}
7: end for

This sequential strategy delivers a q-points design and is computationally affordable
since it relies on the analytically known EI, optimized in d dimensions. However,
there is a risk of failure, since believing an OK predictor that overshoots the ob-
served data may lead to a sequence that gets trapped in a non-optimal region for
many iterations (see 4.3). We now propose a second strategy that reduces this risk.

6.4.2.2 Updating the OK Metamodel with Fake Observations: The CL
Heuristic Strategy

Let us now consider a sequential strategy in which the metamodel is updated (still
without hyperparameter re-estimation) at each iteration with a value L exogenously
fixed by the user, here called a ”lie”. The strategy referred to as the Constant Liar
consists in lying with the same value L at every iteration: maximize EI (i.e. find
xn+1), actualize the model as if y(xn+1) = L, and so on always with the same L ∈ R:

Algorithm 2. The Constant Liar algorithm: another approximate solution of the
multipoints problem (x

′n+1,x
′n+2, ...,x

′n+q) = argmaxX′∈Dq [EI(X′)]
1: Function CL(X, Y, L, q)
2: for i ← 1,q do
3: xn+i = argmaxx∈DEI(x)
4: X = X

⋃{xn+i}
5: Y = Y

⋃{L}
6: end for

The effect of L on the performance of the resulting optimizer is investigated in the
next section. L should logically be determined on the basis of the values taken by y
at X. Three values, min{Y}, mean{Y}, and max{Y} are considered here. The larger
L is, the more explorative the algorithm will be, and vice versa.

6.4.3 Empirical Comparisons with the Branin-Hoo Function

The four optimization strategies presented in the last section are now compared
on the Branin-Hoo function which is a classical test-case in global optimization
[22, 38, 47]:
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yBH(x1,x2) = (x2 − 5.1

4π2 x2
1 + 5

π x1 − 6)2 + 10(1 − 1
8π )cos(x1)+ 10

x1 ∈ [−5,10], x2 ∈ [0,15]
(6.25)

yBH has three global minimizers (−3.14,12.27), (3.14,2.27), (9.42,2.47), and the
global minimum is approximately equal to 0.4. The variables are normalized by
the transformation x

′
1 = x1+5

15 and x
′
2 = x2

15 . The initial design of experiments is a
3 × 3 complete factorial design X9 (see 6.5 ), thus Y = yBH(X9). Ordinary Kriging
is applied with a stationary, anisotropic, gaussian covariance function

∀h = (h1,h2) ∈ R2, c(h) = σ2e−θ1h2
1−θ2h2

2 (6.26)

where the parameters (θ1,θ2) are fixed to their Maximum Likelihood Estimate
(5.27,0.26), and σ2 is estimated within Kriging, as an implicit function of (θ1,θ2)
(like in [22]). We built a 10-points optimization design with each strategy, and ad-
ditionally estimated by Monte Carlo simulations (nsim = 104) the PI and EI values
brought by the q first points of each strategy (here q ∈ {2,6,10}). The results are
gathered in Tab. 6.4.3.

The four strategies (KB and the three variants of CL) gave clearly different de-
signs and optimization performances. In the first case, Constant Liar (CL) sequences
behaved as if the already visited points generated a repulsion, with a magnitude in-
creasing with L. The tested values L = max(Y) and L = mean(Y) forced the explo-
ration designs to fill the space by avoiding X9. Both strategies provided space-filling,
exploratory designs with high probabilities of improvement (10-PI near 100%)
and promising q-EI values (see Table 1). In fine, they brought respective actual
improvements of 7.86 and 6.25.

Of all the tested strategies, CL[min(Y)] gave here the best results. In 6 itera-
tions, it visited the three locally optimal zones of yBH . In 10 iterations, it gave the
best actual improvement among the considered strategies, which is furthermore in
agreement with the 10-points EI values simulated by Monte-Carlo. It seems in fact
that the soft repulsion when L = min(Y) is the right tuning for the optimization of
the Branin-Hoo function, with the initial design X9.

In the second case, the KB has yielded here disappointing results. All the points
(except one) were clustered around the first visited point xn+1 (the same as in CL,
by construction). This can be explained by the exaggeratedly low prediction given
by Kriging at this very point: the mean predictor overshoots the data (because of the
Gaussian covariance), and the expected improvement becomes abusively large in
the neighborhood of xn+1. Then xn+2 is chosen near xn+1, and so on. The algorithm
gets temporarily trapped at the first visited point. KB behaves in the same way as CL
would do with a constant L below min(Y). As can be seen in Table 1 (last column),
the phenomenon is visible on both the q-PI and q-EI criteria: they remain almost
constant when q increases. This illustrates in particular how q-points criteria can
help in rejecting unappropriate strategies.

In other respects, the results shown in Tab. 6.4.3 highlight a major drawback of
the q-PI criterion. When q increases, the PI values associated with all 3 CL strate-
gies quickly converge to 100%, such that it is not possible to discriminate between
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Fig. 6.5 (Left) contour of the yBH function with the design X9 (small black points) and
the 6 first points given by the heuristic strategy CL[min(yBH(X9))] (large bullets). (Right)
Histogram of 104 Monte Carlo simulated values of the improvement brought by the 6-points
CL[min(yBH(X9))] strategy. The corresponding estimates of 6-points PI and EI are given
above

the good and the very good designs. The q-EI is a more selective measure thanks
to taking the magnitude of possible improvements into account. Nevertheless, q-EI
overevaluates the improvement associated with all designs considered here. This
effect (already pointed out in [47]) can be explained by considering both the high
value of σ2 estimated from Y and the small difference between the minimal value
reached at X9 (9.5) and the actual minimum of yBH (0.4).

We finally compared CL[min], CL[max], latin hypercubes (LHS) and uniform
random designs (UNIF) in terms of q-EI values, with q ∈ [1,10]. For every q ∈
[1,10], we sampled 2000 q-elements designs of each type (LHS and UNIF) and
compared the obtained empirical distributions of q-points Expected Improvement
to the q-points Expected Improvement estimates associated with the q first points of
both CL strategies.
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Table 6.1 Multipoints PI, EI, and actual improvements for the 2, 6, and 10 first iterations
of the heuristic strategies CL[min(Y)], CL[mean(Y)], CL[max(Y)], and Kriging Believer
(here min(Y) = min(yBH(X9))). q−PI and q−EI are evaluated by Monte-Carlo simulations
(Eq. 6.20, nsim = 104)

CL[min(Y)] CL[mean(Y)] CL[max(Y)] KB
PI (first 2 points) 87.7% 87% 88.9% 65%
EI (first 2 points) 114.3 114 113.5 82.9
PI (first 6 points) 94.6% 95.5% 92.7% 65.5%
EI (first 6 points) 117.4 115.6 115.1 85.2
PI (first 10 points) 99.8% 99.9% 99.9% 66.5%
EI (first 10 points) 122.6 118.4 117 85.86

Improvement (first 6 points) 7.4 6.25 7.86 0
Improvement (first 10 points) 8.37 6.25 7.86 0

Fig. 6.6 Comparaison of the q-EI associated with the q first points (q ∈ [1,10]) given by the
constant liar strategies (min and max), 2000 q-points designs uniformly drawn for every q,
and 2000 q-points LHS designs taken at random for every q

As can be seen on fig. 6.6, CL[max] (light bullets) and CL[min] (dark squares)
offer very good q-EI results compared to random designs, especially for small val-
ues of q. By definition, the two of them start with the 1-EI global maximizer, which
ensures a q-EI at least equal to 83 for all q ≥ 1. Both associated q-EI series then
seem to converge to threshold values, almost reached for q ≥ 2 by CL[max] (which
dominates CL[min] when q = 2 and q = 3) and for q ≥ 4 by CL[min] (which dom-
inates CL[max] for all q s.t. 4 ≤ q ≤ 10). The random designs have less promizing
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q-EI expected values. Their q-EI distributions are quite dispersed, which can be
seen for instance by looking at the 10% − 90% interpercentiles represented on fig.
6.6 by thin full lines (respectively dark and light for UNIF and LHS designs). Note
in particular that the q-EI distribution of the LHS designs seem globally better than
the one of the uniform designs. Interestingly, the best designs ever found among the
UNIF designs (dark dotted lines) and among the LHS designs (light dotted lines)
almost match with CL[max] when q ∈ {2,3} and CL[min] when 4 ≤ q ≤ 10. We
haven’t yet observed a design sampled at random that clearly provides better q-EI
values than the proposed heuristic strategies.

6.5 Towards Kriging-Based Parallel Optimization: Conclusion
and Perspectives

Optimization problems with objective functions stemming from expensive computer
simulations strongly motivate the use of data-driven simplified mathematical repre-
sentations of the simulator, or metamodels. An increasing number of optimization
algorithms developed for such problems rely on metamodels, competing with and/or
complementing population-based Computational Intelligence methods. A represen-
tative example is given by the EGO algorithm [22], a sequential black-box opti-
mization procedure, which has gained popularity during the last decade and inspired
numerous recent works in the field [10, 17, 18, 19, 20, 26, 28, 36, 44, 50]. EGO re-
lies on a Kriging-based criterion, the expected improvement (EI), accounting for
the exploration-exploitation trade-off7. The latter algorithm unfortunately produces
only one point at each iteration, which prevents the user from taking advantage of
parallel computation facilities. In the present work, we came back to the interpreta-
tion of Kriging in terms of Gaussian Process[39] in order to propose a framework
for Kriging-based parallel optimization, and to prepare the work for parallel variants
of EGO.

The probabilistic nature of the Kriging metamodel allowed us to calculate the
joint probability distribution associated with the predictions at any set of points,
upon which we could rediscover (see [47]) and characterize a criterion named here
multi-points expected improvement, or q-EI. The q-EI criterion makes it possible to
get an evaluation of the ”optimization potential” given by any set of q new experi-
ments. An analytical derivation of 2-EI was performed, providing a good example
of how to manipulate joint Kriging distributions for choosing additional designs of
experiments, and enabling us to shed more light on the nature of the q-EI thanks
to selected figures. For the computation of q-EI in the general case, an alternative
computation method relying on Monte-Carlo simulations was proposed. As pointed
out and illustrated in the chapter, Monte-Carlo simulations offer indeed the opportu-
nity to evaluate the q-EI associated with any given design of experiments, whatever
its size n, and whatever the dimension of inputs d. However, deriving q-EI-optimal

7 Other computational intelligence optimizers, e.g. evolutionary algorithms [9], address the
exploration/exploitation trade-off implicitely through the choice of parameters such as the
population size and the mutation probability.
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designs on the basis of such estimates is not straightforward, and crucially depend-
ing on both n and d. Hence some greedy alternative problems were considered:
four heuristic strategies, the ”Kriging Believer” and three ”Constant Liars” have
been proposed and compared that aim at maximizing q-EI while being numerically
tractable. It has been verified in the frame of a classical test case that the CL strate-
gies provide q-EI values comparable with the best Latin Hypercubes and uniform
designs of experiments found by simulation. This simple application illustrated a
central practical conclusion of this work: considering a set of candidate designs of
experiments, provided for instance by heuristic strategies, it is always possible —
whatever n and d— to evaluate and rank them using estimates of q-EI or related
criteria, thanks to conditional Monte-Carlo simulation.

Perspectives include of course the development of synchronous parallel EGO
variants delivering a set of q points at each iteration. The tools presented in the
chapter may constitute bricks of these algorithms, as it has very recently been il-
lustrated on a succesful 6-dimensional test-case in the thesis [13]. An R package
covering that subject is in an advanced stage of preparation and should be released
soon [41]. On a longer term, the scope of the work presented in this chapter, and not
only its modest original contributions, could be broaden. If the considered methods
could seem essentially restricted to the Ordinary Kriging metamodel and concern
the use of an optimization criterion meant to obtain q points in parallel, several de-
grees of freedom can be played on in order to address more general problems. First,
any probabilistic metamodel potentially providing joint distributions could do well
(regression models, smoothing splines, etc.). Second, the final goal of the new gen-
erated design might be to improve the global accuracy of the metamodel, to learn
a quantile, to fill the space, etc : the work done here with the q-EI and associate
strategies is just a particular case of what one can do with the flexibility offered by
probabilistic metamodels and all possible decision-theoretic criteria. To finish with
two challenging issues of Computationnal Intelligence, the following perspectives
seem particularly relevant at both sides of the interface with this work:

• CI methods are needed to maximize the q-EI criterion, which inputs live in a
(n × d)-dimensional space, and which evaluation is noisy, with tunable fidelity
depending on the chosen nsim values,

• q-EI and related criteria are now at disposal to help pre-selecting good points in
metamodel-assisted evolution strategies, in the flavour of [10].
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6.6 Appendix

6.6.1 Gaussian Processes for Machine Learning

A real-valued random process (Y (x))x∈D is called a Gaussian Process (GP) when-
ever all its finite-dimensional distributions are gaussian. Consequently, for all n ∈ N
and for all set X = {x1, ...,xn} of n points of D, there exists a vector m ∈ Rn and
a symmetric positive semi-definite matrix Σ ∈ Mn(R) such that (Y (x1), ...,Y (xn))
is a gaussian Vector, following a multigaussian probability distribution N (m,Σ).
More specifically, for all i ∈ [1,n], Y (xi) ∼ N (E[Y (xi)],Var[Y (xi)]) where E[Y (xi)]
is the ith coordinate of m and Var[Y (xi)] is the ith diagonal term of Σ . Further-
more, all couples (Y (xi),Y (x j)) i, j ∈ [1,n], i �= j are multigaussian with a covari-
ance Cov[Y (xi),Y (x j)] equal to the non-diagonal term of Σ indexed by i and j.

A Random Process Y is said to be first order stationary if its mean is a constant,
i.e. if ∃μ ∈ R| ∀x ∈ D, E[Y (x)] = μ . A first order stationary process Y is said to
be second order stationary if there exists furthermore a function of positive type,
c : D − D −→ R, such that for all pairs (x,x′) ∈ D2, Cov[Y (x),Y (x′)] = c(x − x′).
We then have the following expression for the covariance matrix of the observations
at X:

(6.27)
where σ2 := c(0). Second order stationary processes are sometimes called weakly
stationary. A major feature of GPs is that their weak stationarity is equivalent to
strong stationarity: if Y is a weakly stationary GP, the law of probability of the ran-
dom variableY (x) doesn’t depend on x, and the joint distribution of (Y (x1), ...,Y (xn))
is the same as the distribution of (Y (x1 +h), ...,Y (xn +h)) whatever the set of points
{x1, ...,xn} ∈ Dn and the vector h ∈ Rn such that {x1 + h, ...,xn + h} ∈ Dn. To sum
up, a stationary GP is entirely defined by its mean μ and its covariance function
c(.). The classical framework of Kriging for Computer Experiments is to make pre-
dictions of a costly simulator y at a new set of sites Xnew = {xn+1, ...,xn+q} (most
of the time, q = 1), on the basis of the collected observations at the initial design
X = {x1, ...,xn}, and under the assumption that y is one realization of a stationary
GP Y with known covariance function c (in theory). Simple Kriging (SK) assumes
a known mean, μ ∈ R. In Ordinary Kriging (OK), μ is estimated.

6.6.2 Conditioning Gaussian Vectors

Let us consider a centered Gaussian vector V = (V1,V2) with covariance matrix

ΣV = E[VV T ] =
(

ΣV1 ΣT
cross

Σcross ΣV2

)
(6.28)

Σ := (Cov[Y (xi),Y (x j)])i, j∈[1,n] = (c(xi −x j))i, j∈[1,n] =

⎛⎜⎜⎝
σ2 c(x1 −x2) ... c(x1 −xn)

c(x2 −x1) σ2 ... c(x2 −xn)
... ... ... ...

c(xn −x1) c(xn −x2) ... σ2

⎞⎟⎟⎠
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Key properties of Gaussian vectors include that the orthogonal projection of a Gaus-
sian vector onto a linear subspace is still a Gaussian vector, and that the orthogo-
nality of two subvectors V1,V2 of a Gaussian vector V (i.e. Σcross = E[V2V T

1 ] = 0)
is equivalent to their independence. We now express the conditional expectation
E[V1|V2]. E[V1|V2] is by definition such that V1 − E[V1|V2] is independent of V2.
E[V1|V2] is thus fully characterized as orthogonal projection on the vector space
spanned by the components of V2, solving the so called normal equations:

E[(V1 −E[V1|V2])V T
2 ] = 0 (6.29)

Assuming linearity of E[V1|V2] in V2, i.e. E[V1|V2] = AV2 (A ∈ Mn(R)), a straightfor-
ward development of (eq.6.29) gives the matrix equation ΣT

cross = AΣV2 , and hence
ΣT

crossΣ
−1
V2

V2 is a suitable solution provided ΣV2 is full ranked8. We conclude that

E[V1|V2] = ΣT
crossΣ

−1
V2

V2 (6.30)

by uniqueness of the orthogonal projection onto a closed linear subspace in a Hilbert
space. Using the independence between (V1 − E[V1|V2]) and V2, one can calculate
the conditional covariance matrix ΣV1|V2

:

ΣV1|V2
= E[(V1 −E[V1|V2])(V1 −E[V1|V2])T |V2] = E[(V1 − AV2)(V1 − AV2)T ]

= ΣV1 − AΣcross −ΣT
crossA

T + AΣV2AT = ΣV1 −ΣT
crossΣ

−1
V2

Σcross

(6.31)

Now consider the case of a non-centered random vector V = (V1,V2) with mean
m = (m1,m2). The conditional distribution V1|V2 can be obtained by coming back
to the centered random vector V − m. We then find that E[V1 − m1|V2 − m2] =
ΣT

crossΣ−1
V2

(V2 − m2) and hence E[V1|V2] = m1 +ΣT
crossΣ−1

V2
(V2 − m2).

6.6.3 Simple Kriging Equations

Let us come back to our metamodeling problem and assume that y is one realization
of a Gaussian Process Y , defined as follows:{

Y (x) = μ+ ε(x)
ε(x) centered stationary GP with covariance function c(.) (6.32)

where μ ∈ R is known. Now say that Y has already been observed at n locations
X = {x1, ...,xn} (Y (X) = Y) and that we wish to predict Y a q new locations Xnew =
{xn+1, ...,xn+q}. Since (Y (x1), ...,Y (xn),Y (xn+1), ...,Y (xn+q)) is a Gaussian Vector
with mean μ1n+q and covariance matrix

8 If ΣV2 is not invertible, the equation holds in replacing Σ−1
V2

by the pseudo-inverse Σ †
V2

.
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Σtot =
(

Σ ΣT
cross

Σcross Σnew

)
=

⎛⎜⎜⎝
σ2 c(x1 − x2) ... c(x1 − xn+q)

c(x2 − x1) σ2 ... c(x2 − xn+q)
... ... ... ...

c(xn+q − x1) c(xn+q − x2) ... σ2

⎞⎟⎟⎠ (6.33)

We can directly apply eq. (6.30) and eq. (6.31) to derive the Simple Kriging Equa-
tions:

[Y (Xnew)|Y (X) = Y] ∼ N (mSK(Xnew),ΣSK(Xnew)) (6.34)

with mSK(Xnew) = E[Y (Xnew)|Y (X) = Y] = μ1q + ΣT
crossΣ−1(Y − μ1q)

and ΣSK(Xnew) = Σnew − ΣT
crossΣ−1Σcross. When q = 1, Σcross = c(xn+1) =

Cov[Y (xn+1),Y (X)] and the covariance matrix reduces to s2
SK(x) =

σ2 − c(xn+1)TΣ−1c(xn+1), which is called the Kriging Variance. Note that
when μ is constant but not known in advance, it is not mathematically correct to
sequentially estimate μ and plug in the estimate in the Simple Kriging equations.
Ordinary Kriging addresses this issue.

6.6.4 Ordinary Kriging Equations

Compared to Simple Kriging, Ordinary Kriging (OK) is used when the mean of
the underlying random process is constant and unknown. We give here a derivation
of OK in a Bayesian framework, assuming that μ has an improper uniform prior
distribution μ ∼ U (R). y is thus seen as a realization of a random process Y , defined
as the sum of μ and a centered GP9:⎧⎨⎩ Y (x) = μ+ ε(x)

ε(x) centered stationary GP with covariance function c(.)
μ ∼ U (R) (prior), independent of ε

(6.35)

Note that conditioning with respect to μ actually provides SK equations. Letting μ
vary, we aim to find the law of [Y (Xnew)|Y (X) = Y]. Starting with [Y (X) = Y|μ ] ∼
N (μ1n,Σ), we get μ’s posterior distribution:

[μ |Y (X) = Y] ∼ N
(
μ̂ ,σ2

μ
)

= N

(
1TΣ−1Y
1TΣ−11

,
1

1T
qΣ−11q

)
(posterior) (6.36)

We can re-write the SK equations [Y (Xnew)|Y (X) = Y,μ ] ∼
N (mSK(Xnew),ΣSK(Xnew)). Now it is very useful to notice that the random
vector (Y (Xnew),μ) is Gaussian conditional on Y (X) = Y.10. It follows that
[Y (Xnew)|Y (X) = Y] is Gaussian, and its mean and covariance matrix can finally
be calculated with the help of classical conditional calculus results. Hence using
mOK(Xnew) = E[Y (Xnew)|Y (X) = Y] = Eμ [E[Y (Xnew)|Y (X) = Y,μ ]], we find that
mOK(Xnew) = μ̂+ΣT

crossΣ−1(Y− μ̂1n). Similarly, ΣOK(Xnew) can be obtained using
that Cov[A,B] = Cov[E[A|C],E[B|C]] + E[Cov[A,B|C]] for all random variables

9 The resulting random process Y is not Gaussian.
10 Which can be proved by considering its Fourier transform.
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(6.38)

References

1. Abrahamsen, P.: A review of gaussian random fields and correlation functions, 2nd edn.
Tech. Rep. 917, Norwegian Computing Center, Olso (1997)

2. Antoniadis, A., Berruyer, J., Carmona, R.: Régression non linéaire et applications. Eco-
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Chapter 7
Analysis of Approximation-Based Memetic
Algorithms for Engineering Optimization

Frederico Gadelha Guimarães, David Alister Lowther, and Jaime Arturo Ramı́rez

Abstract. This chapter discusses the treatment of expensive optimization problems
in Computer-Aided Design (CAD) problems by combining two strategies. First, we
perform the whole optimization varying the accuracy with which a given candi-
date solution is evaluated by the expensive black-box function, rather than using
the same accuracy for all evaluations. This idea follows from the fact that evolu-
tionary algorithms, in general, employ more searching effort on the most promising
regions of the search domain. We can adopt the same principles for allocating more
computational effort when evaluating candidate solutions within these regions. The
second strategy is the employment of local approximations within the local search
operator of memetic algorithms. Since the points in the data are evaluated with dif-
ferent accuracies, the approximation methodology should give greater weight to
samples evaluated with higher precision. The chapter proceeds to the formal analy-
sis of approximation-based memetic algorithms, in which we investigate the effect
of the local search operators on the global convergence properties of evolutionary
algorithms via Markov chain theory, and also study the computational complexity of
the approximation-based local search operator. The chapter concludes with the illus-
tration of the methodology in the design of electromagnetic devices, as an example
of an expensive optimization problem.
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7.1 Memetic Algorithms and Computer-Aided Design

In a more general context, computer-aided design (CAD) refers to the application
of computers to the design process. In this sense, a CAD system is a computational
system used in engineering, geology, and architecture for technical designs. Here,
we refer to CAD processes in a more strict sense, intending to refer in a special man-
ner to the contexts of systems engineering and engineering optimization, in which
the CAD process is viewed as an automated process involving the association of
a mathematical and computational model of the device to be designed and an ad-
equate optimization method for finding the optimal values of the design variables
[21, 31]. In the context of this chapter, the device represents an electromagnetic
device such as an electrical motor, a transformer, an antenna, a wave guide, etc.,
but the methodology presented is general enough to be applied to computationally
intensive optimization problems in other contexts. Figure 7.1 presents a flowchart
description of the basic design process. In this flowchart, we can identify the funda-
mental blocks of a complete design process. The process starts with the establish-
ment of specifications and requirements, which leads to the definition of a prototype,
a first design model to solve the problem at hand. These initial steps depend on the
knowledge and intervention of a human designer, or a team of designers. The main
purpose of the prototype, and its associated computational model, is to provide a
parameterized search space, and a set of objective and constraint functions for the
optimization process. The goal of the optimization process is to find the solution,
in the given search space, that moves the current design to a prototype which will
satisfy the requirements as closely as possible. Finally, if the optimized prototype
satisfies the specifications and requirements defined by the designer, then the design
process stops and the final solution is achieved.

The product specifications and requirements are translated into objective and con-
straint functions, and the design variables into optimization variables with their re-
spective ranges. In mathematical terms, the design problem can be defined as an
optimization problem of the form

min
x

f(x) ∈ Rn f

subject to: x ∈ Fx ⊂ Rnx
(7.1)

in which x is the vector of optimization variables, f(·) : Rnx �→ Rn f are the objec-
tive functions and Fx is the feasible set, mathematically defined by the constraint
functions. This optimization problem requires an adequate optimization algorithm
to search for the best solutions. During the search process, the evaluation of each
possible design demands the solution of partial differential equations that describe
the laws that physically govern its behavior. When nonlinearities and accuracy re-
quirements are incorporated, the computational cost becomes even more relevant.
In coupled problems, the analysis step may also involve the association of different
analysis softwares as in [2, 41], which further increases the computational cost. This
synthesis-analysis cycle is shown in the inner loop of the flowchart in Figure 7.1.
When the prototype is optimized, its performance is evaluated to verify if it meets
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Fig. 7.1 Flowchart description of the computer-aided design process

the requirements defined in the beginning of the CAD process. If it does not meet
the requirements, we can either give up, due to lack of resources and rethink the
design specifications, or return to step 2 to modify the prototype, hence modifying
the objective and contraint functions and the search space.

For the sake of simplicity, the software responsible for solving the analysis prob-
lem will be treated as an expensive “black-box”, of which we know only the outputs
- the behavior it produces - due to different inputs. From the optimization point of
view, it does not matter what is inside this black-box, as long as it provides consis-
tent outputs. In some problems, all objective and constraint functions are functions
of the black-box output value. In this case, the time to evaluate one individual in a
population-based evolutionary algorithm is simply the time consumed by the black-
box. In other cases, only some of these functions depend on the black-box software,
while the others are analytically defined and usually inexpensive.

Evolutionary Algorithms (EAs) play an important role in the solution of
complex CAD problems [10, 17, 31], because they can deal with problems that are
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discontinuous, nonconvex, multimodal, noisy, and present correlations or higher-
order dependencies among variables. Moreover, these algorithms can explore si-
multaneous regions of the search space in a single run and evolve a population of
candidate solutions that represent sub-optimal solutions or trade-off solutions in the
context of multiobjective problems. The bottom line is that the same principles in
nature that are responsible for the diversity and complexity of biological systems
can be applied to the solution of complex design problems in engineering. Thanks
to the work of many researchers since the 1950’s, and contributions of the last two
decades that helped to popularize and mature these techniques, evolutionary algo-
rithms are today an important computational intelligence methodology for complex
designs and an established field of research [4, 6, 9].

Memetic Algorithms (MAs) [24, 25], a term initially coined by Pablo Moscato
in 19891, represent a particular class of EAs that employ local search methods
inside their cycle. MAs first appeared for combinatorial optimization problems
[14, 23, 25], but it did not take long for continuous search space versions of such
algorithms to appear [18, 22, 27]. MAs for multiobjective problems have also been
proposed, see [19, 39]. Any successful global search meta-heuristic method, includ-
ing evolutionary techniques, should find a good balance between its exploitation
and exploration components2. MAs approach the exploration-exploitation balance
by trying to find a good association of global search mechanisms and local search
operators, which can favor the optimization process as a whole. In fact, some de-
terministic search methods, although capable of local search only, present fast and
precise convergence properties that surpass the properties of EAs, which, in contrast,
have poorer convergence and accuracy. There are very specialized methods for treat-
ing constraints in optimization problems, including equality constraints, that rely on
assumptions that favor their utilization as local search techniques [5, 37]. All these
characteristics suggest the use of hybrid strategies, in order to enhance the local
search properties of typical EAs.

In the first versions of MAs, the local search method is applied to each indi-
vidual generated by the reproductive operators, leading this offspring to its clos-
est local optimum. Such MAs have presented good performance in some contexts,
since the search space to be explored by the global search side of the hybrid algo-
rithm is then greatly reduced. This reduction has a price to be paid, which is the
computational cost of the local search, limiting the application of MAs in many
expensive-to-evaluate CAD problems involving continuous-variable search spaces.
Later versions of MAs have relaxed this definition, by not applying the local search
to all individuals and sometimes not applying the local search in all generations.
The specification of the local search intensity and frequency is referred to as the
balance between global and local search [15]. Some approaches relax the accuracy
of the local optimizer [18] and other strategies relax the requirement that the local
search is applied up to local optimality, only a local enhancement is required [20]. In

1 Moscato was inspired by the concept of memes as proposed by Richard Dawkins in 1976
[7].

2 Exploration is related to the global search capability of the algorithm, while Exploitation
means spending more searching effort in the most promising regions.
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this chapter, we follow the taxonomy presented by Krasnogor in [20], and adopt the
term Memetic Algorithm for evolutionary algorithms that employ any local search
method to some or all individuals of the population, but this is not a consensus, and
different opinions exist [27, 29].

This chapter deals with Approximation-Based Memetic Algorithms (A -MAs),
which is a category of MAs that employ approximation techniques within the
local search phase, using samples produced by the algorithm itself in previous gen-
erations. These A -MAs have arisen recently to deal specifically with expensive-
to-evaluate black-box functions in continuous-variable search spaces, in order to
reduce the computational overhead of the local search phase while still benefitting
from the principles of MAs [11, 12, 28, 38, 39, 42]. The use of approximations,
or surrogate models, in evolutionary optimization is well discussed in the literature
[16], but the employment of local approximations, specially in the context of MAs
is rather recent [36]. The algorithms in this particular class of MAs rely strongly on
the sampling properties of population-based EAs, whose heuristic operators tend to
concentrate more samples in the most promising regions of the search space. Given
the computational effort spent to obtain each of these samples, it is a good idea to
store them and use some of this information to build local approximations of these
black-box functions for the local search operator. With these computationally less
expensive-to-evaluate local approximations in hand, the local search can be used
to enhance some individuals of the population. By using approximations, the local
search is not exact, but this local search engine can potentially increase the con-
vergence properties of typical EAs without the high computational cost in terms of
function evaluations required when applying the local search method directly to the
real functions. Note that, unlike usual MAs, the local search phase in A -MAs is
intended to be as inexpensive as possible, considering the number of function eval-
uations, usually not requiring any additional evaluation of the black-box functions.

We propose a methodology for the local search in A -MAs that is based on Ra-
dial Basis Function (RBF) approximations [13, 30] of the expensive black-box func-
tions. The auxiliary local search problem based on these RBF approximations is then
solved by the Sequential Quadratic Programming (SQP) method [8], which is a fast
and accurate method for constrained mono-objective problems, having a quite pre-
dictable behavior. This procedure locally enhances one individual of the population,
making it an MA according to [20].

Adittionally, we combine this framework of A -MAs with another strategy for
treating expensive optimization problems: we perform the whole optimization vary-
ing the accuracy with which a given candidate solution is evaluated by the expensive
black-box function, rather than using the same accuracy for all evaluations. We al-
locate more computational effort for evaluating the candidate solutions around the
best regions and also as the evolutionary search converges. When high accuracy
is required for the final solution of the CAD problem, we can reduce the overall
computational cost by varying the accuracy (and thus the computational cost) of the
objective function when analyzing points tested by the algorithm during the opti-
mization process. This has an impact in the approximation methodology used in the
local search.
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The chapter proceeds to the formal analysis of A -MAs. This analysis is divided
in two main parts. The first part investigates the effect of the local search oper-
ators on the global convergence properties of evolutionary algorithms via Markov
chain theory [26]. The second part studies the computational cost of A -MAs. In this
second part, the computational complexity of the approximation-based local search
operators is derived and expressions for the overhead of the local search are pre-
sented. The chapter concludes with the illustration of the methodology in the design
of electromagnetic devices, in which the evaluation of candidate solutions requires
the numerical solution of partial differential equations, making it an expensive
optimization problem.

7.2 Approximation-Based Memetic Algorithms

The general structure of instances of A -MAs is detailed in Algorithm 7.1. This
structure is very general and can accomodate many well-known evolutionary
algorithms. Pk is the online (or parent) population of size μ , Qk is the offspring
population of size λ . For instance, genetic algorithms have μ = λ , while evolution
strategies usually have μ < λ . Qk is produced after the application of the reproduc-
tion operators on Pk, see lines 6 and 17. The reproduction procedure makes reference
to rather general procedures in EAs. In genetic algorithms, reproduction comprises
fitness-proportional selection, crossover and mutation operators. In other EAs, dif-
ferent specific operators apply. The search space is defined by the lower and upper
bounds of each variable such as

S = {x ∈ Rnx : x−
i ≤ xi ≤ x+

i } (7.2)

The inequality constraints g(·) : Rnx �→ Rng and the equality constraints h(·) : Rnx �→
Rnh define the feasible region:

Fx = S
⋂( ng⋂

i=1

Gi

)⋂(
nh⋂
j=1

H j

)
(7.3)

where Gi = {x ∈ Rnx : gi(x) ≤ 0} and H j = {x ∈ Rnx : h j(x) = 0}.
The archive or offline population Ak stores the best solution set found by the

algorithm. Usually, in mono-objective optimization problems, Ak has size ξ = 1,
that is, only the global best solution found to date is stored and maintained. When
we are interested in finding not only the global one but also a set of optima, Ak may
store more than one solution, as is the case in some niching evolutionary algorithms
or multimodal immune-based algorithms. The update method, see lines 5 and 18, is
slightly more complicated, since some diversity mechanism should be imposed on
the solution set. In multi-objective problems, we have ξ > 1 and the update method
is also more complicated, since we need to consider dominance relations and a good
representation of the Pareto front.
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Algorithm 7.1. Generic structure of an approximation-based MA.
Data: population size μ , offspring size λ , maximum archive size ξ , search space S ,

objective and constraint functions f(·), g(·), h(·).
Result: Estimate(s) of S ∗ in the archive population Ak.
k ← 0 /* Generation counter */1

Pk =
{

p(1)
k , . . . ,p(μ)

k

}
← Initialize population(μ , S );2

Ak = ∅ ← Initialize archive /* Keep the best solution(s) */3

ΦPk ← Evaluate fitness(Pk, f,g,h);4

Ak ← Update(Ak,Pk,ξ );5

// Reproduction comprises selection and variation

Qk =
{

q(1)
k , . . . ,q(λ )

k

}
← Reproduction(Pk,Ak,ΦPk );6

D ← Update data({Pk; f(Pk);g(Pk);h(Pk)}) /* Global data set */7

while ¬ stop criteria do8

ΦQk ← Evaluate fitness(Qk, f,g,h);9

D ← Update data({Qk; f(Qk);g(Qk);h(Qk)}) ;10

if mod (k,nL) = 0 then11

for each of the σ best individuals do12

Approximation-based local search operator /* See Algorithm 7.313

*/
end14

end15

Pk+1 ← Substitution(Pk,Qk);16

Qk+1 ← Reproduction(Pk+1);17

Ak+1 ← Update(Ak,Pk ∪Qk,ξ );18

k ← k +1;19

end20

The substitution operator creates the next parent population. In genetic algo-
rithms, the offspring simply substitutes for the previous parent population. In
evolution strategies, substitution schemes such as the ES(μ + λ ) or ES(μ ,λ ) are
employed [4]. Other deterministic substitution schemes are used in differential evo-
lution and evolutionary programming algorithms.

The main point that is expressed in this general structure is that the basic evo-
lutionary operators, as well as the generic evolutionary structure, are essentially
preserved in the structure of A -MAs. The local search phase is described in lines
11–15, after the fitness assignment of the offspring population Qk. It introduces the
following parameters:

• the interval of generations in which the local search is to be applied, denoted by
nL ≥ 0. For example, if nL = 0, the local search operator is applied at every gen-
eration. If nL = 4, the local search operator is applied at every four generations.

• the number of individuals in the Qk population that will be subject to local search,
denoted by 0 ≤ σ ≤ μ .
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There is no general rule for choosing the values of these parameters. They are related
to the frequency and the intensity of the local search in the memetic algorithm. The
value of nL cannot be too small, because the local search is more efficient when new
information is available, that is, when new samples are generated. It cannot be too
big either, because the local search has to be applied in a number of generations
that is enough for producing some effect on the performance of the algorithm. The
value of σ should be less than μ . An intuitive argument is that the approximation-
based local search operators rely on the samples available, and therefore they would
not work properly if applied to all individuals, simply because there are not enough
samples to generate local approximations around each individual. Therefore, the
local search in A -MAs should be applied to few individuals. In the next section we
provide a formal argument based on convergence properties.

In this section, we discuss the treatment of expensive optimization problems by
combining two strategies. First, we do not perform the whole optimization with
great accuracy for all evaluations, but only for some of them. The black-box func-
tions are evaluated with varying accuracy instead of using a fixed accuracy in the
whole process. The second strategy is the employment of local RBF approximations
within the local search operator of A -MAs. The approximations should be flexible
given that the points in the data were not evaluated with the same accuracy.

7.2.1 Varying Accuracy in Black-Box Functions

In general, expensive black-box functions have a computational cost that is approx-
imately constant for a given accuracy requirement. In this section, we propose an
adaptive variation of the accuracy when evaluating candidate solutions. We argue
that, when high accuracy solutions are required to a given problem, one does not
need to perform the whole evolutionary search making all evaluations at this high
accuracy level, but only for some of them, thus saving computational effort. This
idea follows from the key observation that EAs in general employ more searching
effort on the most promising regions of the search domain. We can adopt the same
principles of the exploration-exploitation balance to allocate more computational
effort when evaluating candidate solutions within these most promising regions.

The parameters that define the accuracy, and hence the computational cost, of
the objective function are provided together with the evaluation point x. We assume
that some accuracy parameters are available to the user of the black-box in the form
of the vector ε . These parameters that define the accuracy of the numerical method
used in the analysis problem may include the mesh density, the order of the finite
elements, the number of iterations of a nonlinear method, etc.

Each individual in the parent population Pk has an associated accuracy, which
can take any value within a list of discrete values provided by the designer within
the range [ε−,ε+], related to the maximum and minimum accuracies acceptable for
the problem. Suppose there are two functions available: the function next(ε), which
returns the next value in the list, and prev(ε), which returns the previous value in
the list. Also, next(ε+) = ε+ and prev(ε−) = ε−.
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In this way, the evolutionary algorithm can specify the values of ε . The searching
process can then dedicate more computational effort when evaluating some solu-
tions in the search space S . The parameters ε may vary with time and/or within the
population at a given generation. For example, as the time increases the parameters
ε are selected in order to increase the accuracy of the numerical method. Moreover,
in a given generation, we can dedicate more effort and time to those solutions in
the most promising regions, and solutions generated by exploratory mutations are
evaluated with less computational effort. These general ideas in the utilization of
varying accuracy cost functions lead to the specification of the following general
rules or heuristics:

1. Initially, the basis value ε assumes the first value in the list, i.e., ε−.
2. During the first generations, the algorithm is in its exploration phase, sampling

the search space in a more exploratory way and the diversity of the population
is high. As the number of generations increases, we expect the population have
converged toward a given optimum, and we can therefore increase the accuracy
for the evaluation of the population. Therefore, after Tε successive generations,
we change the base value to next(ε).

3. Individuals in better regions of the search space should be evaluated with higher
accuracy, while we should not spend much computational effort evaluating indi-
viduals in poor regions. In this case, we use the fitness values to decide which
individuals are evaluated with higher accuracy. The offspring of the Nε best indi-
viduals are evaluated using next(ε), while the remaining ones are evaluated using
the current base value ε . This follows from the principle of heredity, which states
that the offspring tend to be similar to their parents.

4. Each offspring individual changed by mutation is evaluated using prev(ε), thus
with less effort.

This approach does give rise to some noise in the objective function, but evolu-
tionary algorithms are relatively robust in the presence of noise. Moreover, as the
algorithm converges towards a given optimum, this noise is reduced because more
and more points around this optimum are evaluated with the same accuracy.

7.2.2 Approximation-Based Local Search

Considering the class of expensive optimization problems, the accumulated infor-
mation represented by the samples gathered by the algorithm is very valuable. We
can progressively reconstruct the black-box input-output relationship to an arbitrar-
ily high precision, which in turn may be exploited to speed up the searching process
via local search operators.

By viewing the evolutionary process as an intelligent sampling process, we note
that there will be more samples in the most promising regions of the search space.
In these regions, the evolutionary convergence is slow, with poor precision due to
genetic drift caused by the variation operators. As the generations advance, we ob-
tain more samples in these regions, making the approximations more accurate. It is
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reasonable to believe that the local approximations will improve as the search pro-
gresses, making the solutions achieved by indirect (i.e., using approximations) local
search arbitrarily close to the ones that would be obtained by direct local search.

In the context of CAD optimization problems using A -MAs, we point out some
important requirements [11]:

• The time spent in the evaluation step is dominant in the whole process;
• The time spent to generate the approximations should be as small as possible;
• The total time spent in the optimization process when using the hybrid algorithm

with approximation-based local search must be less than that spent when using
the standard algorithm.

The first observation is often true in complex CAD problems. It implies that some
additional complexity in the algorithm operations is justifiable. The second require-
ment is important because the time needed to generate and evaluate the approxi-
mations must be small in comparison to the time consumed in evaluating solutions
directly. Finally, the third requirement means that the hybrid algorithm must con-
verge with less evaluations than the standard algorithm, or at least provide a better
solution for the same number of evaluations. We detail next how the approxima-
tions are generated and how the local search is performed. We consider constrained
mono-objective problems only.

All evaluations performed by the evolutionary algorithm are stored in a global
data set:

Dk =
{

x(i); f (x(i));g1(x(i)), . . . ,gng(x
(i));h1(x(i)), . . . ,hnh(x

(i))
}Nk

i=1
(7.4)

where Nk is the total number of samples collected by the algorithm at iteration k.
Dk contains each solution x(i) in the search space tested by the algorithm and its
respective values for the objective and constraint functions. Only nonlinear func-
tions are stored. Linear constraints are explicitly provided by the user and are not
approximated. Additionally, the value of the accuracy parameter used to evaluate
x(i) is also stored. Dk is the global data set representing all information acquired by
the algorithm until time k. Part of this information, the data within the neighborhood
of the individual, is used for building the local approximations, specifically the RBF
approximation.

Define z as the solution represented by the individual p(i)
k ∈ Pk selected for local

search. The neighborhood region is centered at z and is generally defined as follows:

V (z,ρ) = {x : ‖x− z‖ ≤ R(ρ)} (7.5)

where R(ρ) is a region whose size is parameterized by ρ . Considering ‖ · ‖∞, we
have a rectangular neighborhood:

V (z,ρ) =
{

x : zi −ρ(x+
i − x−

i ) ≤ xi ≤ zi +ρ(x+
i − x−

i ), i = 1, . . . ,nx
}

(7.6)

and considering ‖ · ‖2, we have an ellipsoidal neighborhood
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V (z,ρ) =
{

x : (x− z)TΔΔΔ(x − z) ≤ 1
}

(7.7)

in which the matrix ΔΔΔ is given by:

Δi j =

{
[ρ(x+

i − x−
i )]−1, i = j

0, i �= j
(7.8)

The parameter 0 < ρ < 1 defines the size of the local neighborhood with respect to
the parameter range. This parameter is usually set to a small value, typically 0.1.

Algorithm 7.2 shows how the local data set L is assembled from D . Identical
points and points closer than a threshold ζ do not enter the local data set. The elim-
ination of similar points is important, because they cause numerical ill-conditioning
in approximation techniques such as neural networks and RBF models.

Algorithm 7.2. Building local data set

L = ∅ /* Stores local data set */1
for i = 1 k do2

if x(i) ∈ V (z ) then3

calculate the distance between x(i) and each data point in L ;4

if x(i) is at least an amount ζ distant from all points in L then5

put x(i) and their respective evaluations in L ;6
else7

keep the point evaluated with the greater accuracy in L ;8
end9

end10

end11
return L ;12

. . . ,N,
,ρ

The approximations are generated to fit data in L . We employ RBF approxima-
tions of the form:

p(x) =
m

∑
i=1

viri (‖x− ci‖) = rT v (7.9)

where x is the vector of optimization variables, ci is the center of the radial basis
function ri (‖x− ci‖) : Rnx �→ R, and v is the vector of parameters of the RBF model.
There are many types of RBF available [13, 30], we have selected the multiquadric
function in the methodology. For training the RBF approximation, we adopt the
following error cost function:

C(v) = ∑
i=1

wiie
2
i = eT We (7.10)

where ei is the error between the RBF model and the desired value in the local
data set L . The weighted squared error is used because some points in the data
are evaluated with more accuracy than others. Therefore, these points should have
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a greater weight in the RBF model. This problem can be solved with the Weighted
Least Squares (WLS) method:

v̂ =
[
RT WR

]−1
RT Wy (7.11)

where R is the matrix with the values of the radial basis functions and y is the vector
with the desired outputs.

Each nonlinear expensive-to-evaluate function in the optimization problem is lo-
cally approximated using the RBF model trained with the WLS method. One advan-
tage of this approach is that it is a fast way to obtain the approximations, as required
by the observations made before. With the approximations in hand, we can define
the local search problem as:

min
x

f̃ (x)

subject to: x ∈ F̃x ∩V (z,ρ)
(7.12)

in which V (z,ρ) is the local neighborhood, f̃ (·) is the approximation for the objec-
tive function, and F̃x is the approximated feasible set generated by the approximated
constraints.

Observe that the local search problem, see (7.12), has an additional constraint
in comparison to the original optimization problem: the local problem is restricted
to the region V (z,ρ), that is, the neighborhood of the individual selected for local
search. This problem can be easily and directly solved by employing the Sequen-
tial Quadratic Programming (SQP) method [8]. The SQP method is an extension
of the Newton’s method for unconstrained optimization to constrained problems.
The method replaces the objective function with its quadratic approximation and
replaces the constraint functions by linear approximations. A nonlinear problem in
which the objective function is quadratic and the constraints are linear is called
a Quadratic Program (QP). The SQP method solves a QP at each iteration until
a satisfactory solution is found. The local convergence properties of the SQP are
well understood. Therefore, although the solution of the problem (7.12) is obtained
numerically, it is found by a fast and accurate method, allowing us to call it a semi-
analitycal solution. Furthermore, since the expressions of the RBF approximations
are known, their quadratic and linear models are easily and analytically obtained
and used within the SQP procedure. We summarize the local search operator in
Algorithm 7.3.

Algorithm 7.3. Approximation-based local search operator
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This section presented the approximation-based local search operator and its use
in evolutionary algorithms. The local enhancement of some individuals in A -MAs
can be achieved in an indirect way, by using a local representation of the problem,
based on the knowledge acquired by the algorithm along successive generations.
This indirect local search via local approximations reduces the computational cost
associated with the exploitation component of memetic algorithms. However, it is
important to analyze the theoretical effects of the proposed local search on the global
convergence properties of evolutionary algorithms. This issue is addressed in the
next section. We also discuss the computional cost of the proposed methodology.

7.3 Analysis of Memetic Algorithms

In the previous section we discussed A -MAs in general and presented the approxi-
mation-based local search methodology, which can be coupled with usual evolution-
ary algorithms following the generic structure in Algorithm 7.1. In this section, we
employ the Markov chain theory, which is a popular theoretical tool for analyzing
EAs [1, 32], to analyze the effect of the local search operators on global convergence
properties of memetic algorithms. We also present the computational cost analysis
of memetic algorithms, especially those employing the local search methodology in
the context of CAD optimization problems.

7.3.1 Convergence Analysis

Let X be a finite set of states with cardinality |X | and {Xn ∈ X : n ∈ N} a random
sequence or stochastic process. Xn is a Markov chain if it is a stochastic process in
which the future state depends only on the present state, and it is independent of
the past states. Observe that the sequence of populations of an evolutionary algo-
rithm falls in this definition, since the transitions from one population to another is
stochastic and independent of previous populations3. We can write transition prob-
abilities as P{Xn+1 = s j|Xn = si} = τi j, with i, j ∈ {1, . . . , |X |} and si,s j ∈ X ,
where |X | is the number of states. Since the state space is finite, we can conve-
niently represent the transition probabilities in a |X |× |X | matrix T. Each entry of
the stochastic transition matrix T gives the probability that the next state is s j given
that the current state is si.

The state of an algorithm in the time step n is represented by the population at
time n. The operations in the algorithm define its transition matrix T. The state space
X is the set of all possible populations with size μ for the search space S .

The generic structure presented in Algorithm 7.1 has an archive population An,
with size ξ ≥ 1. Considering this population, the state representation changes to

3 In general, adaptive evolutionary algorithms cannot be analyzed by Markov chain theory
because their transition matrices are time-dependent. In these situations, we need to reccur
to other analysis methods. Adaptive memetic algorithms are analyzed with Markov chains
in [29] but assuming that the transition matrix produced by the genetic operators is positive.
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si =
(
sA

i ;sP
i

)
, where sA

i is the part of the state associated with An, and sP
i is the part

associated with Pn. After the archive update function, we can say that the individuals
represented by sA

i are the best individuals in the state si.
Before proceeding, we give some useful definitions:

Definition 1. A state s j is said to be accesible from the state si if ∃k < ∞ such that:

P{Xn+k = s j|Xn = si} = τ(k)
i j > 0, where τ(k)

i j is the element i j of the matrix Tk, and
we write si → s j .

Definition 2. A state s j is said to be a communicating state with the state si if si → s j

and s j → si, and we write si ↔ s j .

Definition 3. A Markov chain {Xn ∈ X : n ∈ N} is irreducible if its state space is
a communicating class, that is, all its states are communicating states.

The last definition means that it is possible to get to any state from any state in
an irreducible Markov chain. Therefore, every state will be visited in finite time
regardless of the initial state [26]. Due to the use of the archive population An,
some states are not communicating states, because of elitism. Thus, states containing
worse solutions in An cannot be reached from states containing better solutions in
An. These intermediate states in the search process are called transient states, since
si → s j, but s j �→ si.

Let S ∗ be the set of optimal solutions for the optimization problem. It can repre-
sent: (i) all the global optima if there are more than one; (ii) all the global and local
optima (if the algorithm is designed to find them); or (iii) all global Pareto-optimal
solutions in a multi-objective context. We adopt the following notation:

Definition 4. Those states that represent an An whose elements belong to S ∗ are
called essential states. They form the set E . Those states that represent an An

whose elements do not belong to S ∗ are called inessential states, hence they are
intermediate states. They form the set I .

From [33], we know that P{Xn ∈ I } → 0, when n → ∞. Since all essential
states represent archive populations that are optimal, whose meaning depends on the
context, the algorithm will finally converge to one of the essential states:

P{XA
n ⊆ X ∗} = P{Xn ∈ E } = 1 −P{Xn ∈ I } (7.13)

which becomes equal to one, when n →∞, and we say that the algorithm is globally
convergent. The probability that the archive population An has converged to a subset
of the optimal solution set is equal to one when time goes to infinity. Therefore,
we say that the online population Pn locates the optimal solution, while the offline
population An converges to the optimal solution.

All essential states should be accessible from any inessential state. So, to improve
the solutions in A(n), the following transition must be possible:(

sA
i ;sP

i

) → (
sA

i ;sP
j

) → (
sA

j ;sP
j

)
(7.14)

where sP
j represents a population with better solutions than those in sA

i .
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Observe that the archive population does not undergo the selection and variation
steps, and the last transition is performed by the update operator. Therefore, sP

j must
be accessible from sP

i , in order to validate the complete transition. Thus, although the
complete transition matrix is not irreducible, the transition matrix associated with
the online population Pn must be irreducible, in order to guarantee that the online
population will visit all states in the search space with finite time.

Let G be the transition matrix for Pn. It is a function of the operators of the al-
gorithm during one iteration, i.e., it is obtained by the product of transition matrices
associated with the selection and variation steps (crossover and mutation in the case
of genetic algorithms, for instance). Since we will analyze the product of stochastic
matrices, it is important to provide some helpful definitions and properties.

Definition 5. A matrix A is said to be positive4 if ai j > 0, ∀i, j.

Definition 6. A matrix A is said to be non-negative if ai j ≥ 0, ∀i, j.

Definition 7. A square matrix A is said to be diagonal positive if all elements of its
diagonal are positive.

Definition 8. A stochastic square matrix A, representing the transition probabilities
of a Markov chain process with state space X , is said to be irreducible if ∀si,s j ∈
X , ∃n ∈ N such that a(n)

i j > 0.

A positive matrix A is hence irreducible since it satisfies a(n)
i j > 0, with n = 1. The

converse is not necessarily true.

Definition 9. A matrix is said to be column-allowable (row-allowable) if each
column (row) contains at least one positive entry. A matrix that is both
column-allowable and row-allowable is an allowable matrix.

From the definition above, we see that a diagonal positive matrix is both column-
allowable and row-allowable. Also, the product of two diagonal positive matrices is
also a diagonal positive matrix.

Let us consider a standard genetic algorithm, using selection, crossover, and mu-
tation operators in the evolutionary iteration. In this case, the transition matrix G is:

G = SCM (7.15)

where S, C, and M are respectively the transition matrices of selection, crossover,
and mutation steps.

We know from [32] that this transition matrix is positive if the mutation operator
produces a positive transition matrix. There are mutation operators whose transition
matrices are not positive, but they are irreducible. Since there is a positive proba-
bility that the selection and crossover operators do not change the individual, then
there is a positive probability that any point in the search space be attained in n > 1

steps, by consecutive mutations. Hence ∃n > 0 such that τ(n)
i j > 0 and the transition

matrix is irreducible. In this case, it is possible to show that if M is irreducible and
the product SC is diagonal positive, then G is also an irreducible matrix [1].

4 Do not confuse with the concept of positive (or negative) definiteness.
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7.3.1.1 Analyzing the Local Search Operator

In this section, we analyze the case when a local search is explicitly used in the
evolutionary cycle. In the canonical hybrid algorithm, see Algorithm 7.1, the local
search is performed before the selection and variation steps. Thus, assuming that the
product SCM is irreducible, we need to analyze what happens with the product:

H = LG = L(SCM) (7.16)

where L is the transition matrix associated with the local search phase, G is the
transition matrix associated with the global search algorithm, and H is the transi-
tion matrix associated with the hybrid algorihm, which results from the global-local
search interaction.

Considering the Lamarckian approach for hybrid evolutionary algorithms, the
population is modified by the local search. If the local search operator is determin-
istic, we can say that L is at least row-allowable. Based on these characteristics, we
can state the following:

Theorem 1. If SCM is positive and the local search is deterministic, L is at least
row-allowable, then H is also positive and thus irreducible. Therefore, the archive
population will converge to the solution set and the hybrid algorithm is globally
convergent.

Proof. Let D = SCM. Since L is row-allowable, there is at least one k such that lik
is positive, then:

hi j =∑
k

likdk j > 0

∀i, j. Thus, H is positive and, following the Definition 8, it is irreducible. ��
However, when G = SCM is irreducible, due to a mutation operator that pro-
duces a non-positive but irreducible transition matrix, and L is row-allowable,
we cannot state that H is irreducible. Therefore, we cannot prove global conver-
gence in general. This situation can be understood with an illustrative example, see
Figure 7.2. In this Figure, we consider that the population is concentrated in the
region of attraction of a local optimum, which is not the global optimum. Using
a mutation with compact support, the population is able to escape from the local
minimum in n > 1 steps. But if the local search is applied to all individuals at ev-
ery generation, the population will never escape from the local minimum in this
situation.

Nevertheless, it is possible to guarantee convergence if the number of individuals
selected for local search σ is smaller than the population size μ . The result is stated
in the following theorem:

Theorem 2. If σ < μ , SCM is irreducible and L is at least row-allowable, then H
is also irreducible (but not positive in general). Therefore, the archive population
will converge to the solution set and the hybrid algorithm is globally convergent.
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Fig. 7.2 (A) The population of an evolutionary algorithm at a given iteration is stuck in
the region of attraction of a local minimum. (B) A mutation operator with compact support
produces new solutions inside the same region of attraction, as shown in the figure. In the next
evolutionary cycle, the local search will concentrate the population, including the mutated
individuals, around the local minimum. The population has no chance of escaping the local
minimum in this situation

Proof. In this case, there is a positive probability that the individual(s) not selected
for local search is(are) able to escape from the local minimum in n > 1 steps due

to the irreducible mutation. Therefore, ∃n such that h(n)
i j > 0 and hence the product

H = L(SCM) will be irreducible when σ < μ . ��
Finally, we need to analyze the situation when the local search operator is not ap-
plied at every generation, but at every constant number of generations, let us say, at
every nL generations. The transition matrix becomes:

H = LSCM× SCM×·· ·× SCM︸ ︷︷ ︸
nL times

(7.17)

then:
Hn = (LGnL)n (7.18)

For this situation, we have the following result:

Theorem 3. If σ < μ , G = SCM is irreducible, L is at least row-allowable, and the
local search is applied at every nL generations, then H is also irreducible (but not
positive in general). Therefore, the archive population will converge to the solution
set and the hybrid algorithm is still globally convergent.

Proof. The hybrid algorithm using local search at every nL generations can be seen
as a hybrid algorithm with an extended generation, that is, one in which the local
search is applied first and then the selection, crossover and mutation operators are
applied nL times. Since G is irreducible, the sequence of nL iterations of G is also
irreducible, i.e., GnL is irreducible. Consequently, H = LGnL remains irreducible
from Theorem 2. ��
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Therefore, given the considerations above, the hybrid algorithm using an explicit
local search phase is also globally convergent as long as the non-hybrid algo-
rithm is globally convergent. The local search phase will not affect this property
except when the mutation is irreducible and the local search is applied to all
individuals.

This global convergence analysis by means of Markov chain theory allows us
to state only if the algorithm is globally convergent or not under the very general
criterion considered previously. The analysis does not say anything about the con-
vergence rate of the algorithm. For example, the random search algorithm, using
uniform sampling in the search space, is globally convergent under the Markov
chain analysis, because its transition matrix is positive. As long as we use an archive
population to store the best solutions, the random search is globally convergent.
Nonetheless, assessing the global convergence property of an algorithm is an ob-
vious requirement to calculate its convergence rate. Moreover, strategies like the
random search and simple enumeration are very inefficient in practice. The tran-
sition matrices L, S, and C do not affect the global convergence of the algorithm,
which stands on the transition matrix M. This is important, but they may affect its
convergence time. As a consequence of the No Free Lunch theorems [40], an evo-
lutionary algorithm can outperfom the random search for a given class of problems,
when the local search and crossover operators exploit some knowledge of that class
of problems, or implicitly rely on some common structure of these problems. On
the other hand, simple random search does not exploit any structure at all. Evolu-
tionary algorithms are far from being random search methods, because the matrices
L, S, and C can improve the performance of the algorithm in comparison to simple
random search for a specific class of problems.

7.3.2 Computational Cost
The MA has the potential of converging in less generations, because reaching any
of the basins around the global optima gives more chance of achieving the optimal
solutions through local search. Of course, that comes at the price of a more expen-
sive generation. Consequently, even though the hybrid algorithm converges in less
iterations, on average, it is not useful in practice if it takes more time than the con-
ventional one does. For practical purposes, we require that the total optimization
time, on average, by using the hybrid algorithm be smaller than the total time, on
average, needed when using the non-hybrid algorithm. We discuss this relation in
this section.

Before proceeding, we turn to computational complexity issues first. The quantity
〈N〉 is hereafter termed the averaged number of generations. We introduce 〈T 〉 as
the averaged total optimization time, which is of more practical interest. We can
estimate the time complexity of an evolutionary algorithm to converge in a given
problem as:

O(μ ,λ ,ξ ,nx)〈N〉 = [Or(μ ,λ ,ξ ,nx)+ Oe(ε)] 〈N〉 (7.19)
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where Or(·) is the number of operations in the reproduction step and Oe(·) is the
number of operations in the evaluation step. They are related to parameters of
the algorithm and the number of variables nx. The complexity of the reproduction
operators of EAs is polynomial.

The number of solutions generated by Algorithm 7.1 at generation k is μ +λk.
The operation of building the local data has a worst case complexity of O((μ +
λk)NLnx), where NL is the maximum number of points allowed in the local data
set L . The cost of the generation of each approximation by the multiquadric RBF
technique is dominated by the assembling of the R matrix, which is of O(nxNLm)
because we need to calculate the pairwise distances of NL points and m centers.
Of course, many local approximations are generated with less than NL points. The
computation of the pseudo-inverse has complexity of O(m2). Finally, considering
all objective and constraint functions, we get O((1 + ng + nh)(nxNLm+ m2)).

Finally, the cost of the solution of the auxiliary problem by the SQP method
can be roughly estimated as follows. The cost of evaluating the multiquadric model
is of O(nxm). The computation of the gradients of all functions in the auxiliary
problem requires (1+ng+nh) evaluations of the multiquadric approximations, since
the gradients can be obtained inexpensively together with the evaluations of the
approximations. Therefore, we can estimate a complexity of O((1 + ng + nh)n2

xm)
for solving the local search problem.

We can see that the complexity of the approximation-based local search is small
and the polynomial complexity of usual EAs is preserved in the A -MA. The
approximation-based local search adds the operations associated with local data
assembling and approximation building, which have polynomial complexity, and
increase storage requirements, but this increase in storage is linear. The computa-
tional complexity of the evaluation step depends on the calculations made by the
black-box function. The overall cost of this step is reduced in our framework by
evaluating some individuals with low accuracy and thus less computational effort.

The complexity analysis is important but limited because the complexity of the
evaluation step is unknown. The overhead of the local search can be quantified as
follows:

〈TG〉 = (μte + tr)〈NG〉 (7.20)

〈TH〉 =
(
μte + tr +

σ
nL

tls

)
〈NH〉 (7.21)

where 〈TG〉 and 〈TH〉 are, respectively, the averaged total time consumed by the stan-
dard EA and the MA to converge to the solution within a given accuracy; 〈NG〉 and
〈NH〉 are, respectively, the averaged number of generations required by the standard
EA and the MA to converge5; te is the time consumed to evaluate one solution; tr is
the time consumed by the reproduction step; tls is the computational time consumed
by the local search of one individual.

5 〈NG〉 and 〈NH〉 can represent the theoretical mean time in the Markov chain or the sample
mean over a given number of independent runs.



182 F.G. Guimarães, D.A. Lowther, and J.A. Ramı́rez

By imposing the condition 〈TH〉 < 〈TG〉 and assuming te >> tr, which is usually
the case in CAD problems, we have

〈NH〉 < 〈NG〉 μte(
μte + σ

nL
tls
) = 〈NG〉 1(

1 + σ
μnL

tls
te

) (7.22)

Based on this relation, we observe that even if the hybrid algorithm converges in
less generations (on average) compared to the basic algorithm, 〈TH〉 can be greater.
The more significant the amount (σ/nL)tls, compared to μte, the smaller the value
〈NH〉 should be in comparison to 〈NG〉 to satisfy the initial condition 〈TH〉 < 〈TG〉.

When using an indirect local search, by means of approximated functions, we can
have tls << te, that is, the time to evaluate a solution is dominant in the problem. In
this case, if 〈NH〉 is slightly smaller than 〈NG〉, then the initial condition will be sat-
isfied and thus the additional complexity introduced by the methodology would be
justifiable. This relation emphasizes the context of problems in which the proposed
methodology can be considered helpful.

This section showed that as long as we can say that the EA is globally convergent
under Markov chain analysis, the local search operator preserves this characteristic.
Moreover, the approximation-based local search operator preserves the polynomial
complexity of standard evolutionary algorithms, and the additional complexity in
the memetic algorithm is not dramatic and would be acceptable in some applica-
tions. The final relations developed show under which conditions the hybrid algo-
rithm is advantageous. These relations show that the proposed methodology can be
very interesting for expensive optimization problems, in which the evaluation time
te of a single solution is very big in comparison to the time required for performing
the normal operations of the algorithm, including the local search. This scenario,
commonly found in CAD problems, is the one in which the additional complexity
of the memetic algorithm is justifiable.

7.4 Numerical Results

7.4.1 Analytical Problems

In this first experiment we apply a typical genetic algorithm configuration, from the
framework discussed in Section 2, to analytical unconstrained optimization prob-
lems. The goal here is to observe the effect of the local search on the convergence
speed of the evolutionary algorithm in terms of the number of generations. For this
purpose, we consider the minimization of the following functions:

f1(x) =
nx−1

∑
i=1

100
(
x2

i − xi+1
)2

+(1 − xi)2 , − 2 ≤ xk ≤ 2, ∀k (7.23)

f2(x) = 2.6164+
1
nx

nx

∑
i=1

0.01
[
(xi + 0.5)4 − 30x2

i − 20xi
]
, −6 ≤ xk ≤ 6, ∀k (7.24)
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f3(x) = 10nx +
nx

∑
i=1

[
x2

i − 10cos(2πxi)
]
, − 5 ≤ xk ≤ 5, ∀k (7.25)

The function f1 is the Rosenbrock function, which is a unimodal and non-convex
function. Despite the apparent simplicity of this function, it is notoriously hard for
evolutionary algorithms in general. The function f2 is a multimodal function with
a moderate degree of multimodality, with local minima located at the corners of
the hypercube C = [±4.4538 . . . ± 4.4538]. The function f3 is the Rastrigin func-
tion, with a high degree of multimodality. The Rastrigin function is another difficult
problem as it defines a search space with many local optima, due to the combination
of a sinusoidal and a quadratic function. All problems were solved with nx = 4.

Both the GA and the A -MA shared the following setup: μ = λ = 50 and ξ =
1; ES(μ ,μ) for the substitution; roulette wheel as selection operator; real-biased
convex crossover; Gaussian mutation with ρm = 0.1. The only stop criterion is the
maximum number of generations, set as 200. For the A -MA, the maximum number
of points used to build the local approximation is NL = 200. The local search was
applied to the best individual in the offspring at every generation, hence σ = 1 and
nL = 1.

Due to the stochastic behavior of both algorithms, we need to perform a given
number of runs to draw meaningful conclusions. Therefore, each algorithm was
executed 40 times on each problem. Figure 7.3 shows the mean convergence of
the GA and the A -MA on each problem. As we can see, the memetic algorithm
converged faster than the typical GA on these problems. These results confirm the
hypothesis that the local search speeds up the convergence of the genetic algorithm.

Table 7.1 shows the success rate of both algorithms on all problems, as well as
an estimate of the average number of generations to converge 〈N〉. The maximum
number 200 is used for those runs in which the algorithm has not converged. This
Table shows that the local search not only has improved the convergence speed of
the algorithm but also it has increased the success rate.

The smallest difference in 〈N〉 is observed in the Rastrigin function, while the
biggest difference appears in the minimization of f2. The Rastrigin function is
highly multimodal, therefore one would expect that the local search would not
present a great impact on the performance. The observed effect on the performance
may be understood by noting that the Rastrigin function is in fact a quadratic func-
tion plus noise. The local approximation is not capable of modeling this noise, due
to undersampling, specially in the first generations, but can capture the global trend
of the quadratic component in the objective function. The mean curves in Figure 7.3
clearly show a fast decrease in the first 15 generations. After that, the slopes of the
mean convergence velocity curves for both algorithms are similar. After some gen-
erations, the noise component was also “learned” during the evolutionary process,
then reducing the impact of the local search because the basins of attraction become
small. That is an interesting side effect of the approximation-based local search: it
can filter a highly multimodal function, capturing the global trend in the objective
function.
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Fig. 7.3 Mean convergence for the GA and its memetic version for (A) f1(x), (B) f2(x), and
(C) f3(x)

Table 7.1 Results for the analytical functions

Problem Algorithm Success rate 〈N〉
f1(x) GA 22.5% 171.9

A -MA 67.5% 105.0
f2(x) GA 67.5% 106.8

A -MA 95.0% 21.5
f3(x) GA 7.5% 186.9

A -MA 20.0% 166.5

The mean velocities for f1 and f2 present different slopes for a wider range of
generations, showing that the local search is having an important impact in the
search process. This is because f1 is unimodal and f2, although multimodal, has
a low to medium degree of multimodality. The basins of attractions in f2 are fairly
convex and present no obstacle for a gradient-based local search. This is why the
performance in f2 is even better than in f1. The non-convexity of f1 poses some
difficulty for the approximation, due to the gradual slope of the “banana” region,
and also for the local search.
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In these analytical problems, the local search was the most time-consuming step.
The overhead of the local search is in this case very high, because the evaluation
of the objective functions is very fast. Therefore, in these problems, although the
memetic algorithms converged in less iterations, they took much more time to do so.
Nonetheless, we can estimate the minimal value for te that would make the memetic
algorithms converge in less time using the relation in (7.22). For each analytical
problem, we have monitored the mean times in seconds taken to perform the local
search of one individual tls and we can use the values in Table 7.1 as rough es-
timates of 〈NH〉 and 〈NG〉. Using these values in (7.22), we get te,min = 71ms for
f1(x), te,min = 12ms for f1(x), and te,min = 310ms for f1(x). Therefore, if the time to
evaluate f1, f2, and f3 was at least some tenths of a second, the memetic algorithm
would have converged in less time than the genetic algorithm (on average), showing
that the overhead of the local search is not that significant in expensive optimization
problems.

7.4.2 Electromagnetic Benchmark Problem

The TEAM Workshop problem 22 was proposed in [3] and is known as a bench-
mark optimization problem in electromagnetics. The problem consists in optimizing
the dimensions of a super-conducting magnetic energy storage (SMES) device with
two solenoids. Such a device has many relevant applications and an optimal con-
figuration for it is an important issue to resolve. This problem has three distinct
objectives:

• The stray field, evaluated 10m away from the device, must be as small as possible;
• The stored energy must be equal to 180 MJ (50 kWh);
• The physical condition that guarantees the superconductivity, named the quench

condition, must not be violated.

Figure 7.4 shows the geometry of the problem for the computational model. The
stray field is evaluated at 21 points along the lines (y = 10m;0 ≤ z ≤ 10m) and
(z = 10m;0 ≤ y ≤ 10m). This radiated field by the SMES may be formulated as
the summation of the contributions of each of the two loops, given by the numeric
solution of integrals derived from the Biot-Savart law. We may evaluate the energy
through the Finite Element Method (FEM), using a magneto-static formulation with
magnetic vector potential A, considering the axis-symmetry to simplify it into a 2D
problem, as shown in Figure 7.4.

The full-version of the problem has eight optimization variables: the current
density in both coils and the coil shapes, defined by the radius, height and width
of their 2D cuts. Nonetheless, a simplified version with only three variables can
also be defined, in which the dimensions of the outer coil are optimized. The vari-
ables r1 = 2.0m, h1 = 1.6m, d1 = 0.27m are respectively the radius, the height and
the width of the inner coil. The variables 2.6m ≤ r2 ≤ 3.4m, 0.4m ≤ h2 ≤ 2.2m,
0.1m ≤ d2 ≤ 0.4m represent the same for the outer coil. J1 and J2 are respectively
the current density in the inner and outer coil, both equal to 22.5MA/m2.
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Fig. 7.4 Finite Element Method (FEM) model of the SMES device

The specifications above are translated into the optimization problem6:

min f (x) =
√

1
21 ∑

21
i=1

∣∣Bstrayi

∣∣2
subject to:

⎧⎨⎩
x ∈ S
g(x) = Bmax − 4.92T ≤ 0
h(x) = |E − 180MJ|/180MJ = 0

(7.26)

where Bstrayi is the value for the magnetic flux density evaluated in one of the 21
points, Bmax is the biggest value for the flux density and is related to the quench
condition, it cannot be greater than the value of 4.92T , and E is the energy value
obtained by the FEM.

The accuracy parameter is the mesh density, and thus the number of nodes
in the mesh, for the FEM. Fig. 7.5 shows the convergence of the energy value
with the number of nodes. The list of values for the accuracy parameter is ε =
{1.0,0.5,0.2,0.1}. Table 7.2 shows how the number of nodes and the computation
time vary with ε .

In order to compare instances of EAs and MAs in this problem, we use the mean
convergence given by

c(n) = log

(√
f (x ∈ Ak)
f (x ∈ A1)

)
We applied two instances of the generic structure in Algorithm 7.1 with and
without the approximation-based local search. The parameters of the local search
are σ = 5, nL = 4, NL = 400. One instance is a Genetic Algorithm (GA) with

6 The square root is not present in the original formulation [3]. We use it here just to make
the objective function smoother.
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Fig. 7.5 Convergence with respect to the mesh density (energy value)

Table 7.2 Varying the mesh density

ε nodes te(s)a t̄e

1.0 1024 0.7 1
0.5 3777 1.0 ≈ 1.5
0.2 22998 3.6 ≈ 5
0.1 91246 16.0 ≈ 23

a Running on a Windows computer, Intel Core 2 Duo, 2 GB RAM.

real-biased crossover [35], Gaussian mutation, and mutation rate of 0.1. The other is
a Differential Evolution Algorithm (DEA) [34], with convex crossover for the mu-
tant vectors, Gaussian mutation, and mutation rate of 0.1. In Fig. 7.6 we illustrate
the mean convergence of GA, DEA, and their memetic versions. One can see that
DEA performed better than the GA in this problem. Also, both algorithms presented
higher convergence rate when using the approximation-based local search.

In the experiments in Fig. 7.6, all evaluations were performed with the same
accuracy for all individuals (ε = 0.2 and te = 3.6s). Also, tls was about 1.4s on
average and tr was less than 1ms on average, making te >> tr. Using these values
in (7.22), we get 〈NH〉 < 0.988〈NG〉, showing a negligible overhead for the local
search. Therefore, if the hybrid algorithm takes less generations, it will take less time
to converge in this problem. Using direct local search, i.e. without approximations,
the time to perform the local search of one individual tls becomes two times greater
than the time to evaluate the whole population in this problem, greatly increasing the
overhead of the local search phase. Although the MA with direct local search usually
converges in less generations than the A -MA, its local search is very expensive,
increasing the total time for the optimization process.
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Fig. 7.6 (A) Mean convergence for the GA and its memetic version. (B) Mean convergence
for the DEA and its memetic version

Finally, we introduce the varying accuracy approach with the parameters Tε = 20
and Nε = 40%. The mean convergence curves and the mean number of evaluations
were similar, but the overall optimization time was greater when using fixed accu-
racy. By comparing the memetic version of DEA using fixed accuracy (ε = 0.1)
all the way and using the varying accuracy approach, we observe that the latter
takes only 9% of the computational time consumed by the former to achieve the
same level of solution quality – the level c(n) = −1 in the graph. Using the list
ε = {1.0,0.5,0.2} and comparing again the fixed approach (ε = 0.2) and the vary-
ing approach, the latter still takes about 70% of the computational time consumed
by the former. This illustrates how the combination of varying accuracy in the eval-
uation of candidate solutions and approximation-based local search operators can
save computational effort in expensive CAD problems, while achieving solutions of
good quality.

7.5 Final Remarks

This chapter described a framework for expensive optimization that is based on the
combination of A -MAs and varying the accuracy of the black-box functions during
the optimization. The approximation-based local search should take into account the
fact that some evaluations are performed with greater accuracy than others, when
building the local approximations. The methodology described in this chapter has
the following benefits:

• It can tackle constrained mono-objective optimization problems with any number
of inequality and equality constraints. The approximation-based local search can
be seen as a constraint-handling technique for expensive problems;

• Different approximation techniques can be combined, such as quadratic mod-
els and neural networks, but the WLS method should be incorporated into the
generation of these models;
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• It is possible to choose which nonlinear functions are approximated. If there
are analytical or fast-to-evaluate functions in the problem, they do not need to
be approximated. Situations like this are easily accomodated by the framework
described in this chapter.

Finally, it is worth noting that even though the problem studied here is relatively fast
to evaluate, the overhead of the local search is still negligible. More complex real-
world CAD problems, ranging from medium to large scale applications, could take
minutes to hours to complete one evaluation, specially when dealing with nonlinear
and transient 3D problems. In this scenario, any new approach for saving compu-
tational effort is welcome, and MAs employing approximation-based local search
operators are very promising. Also, we illustrate that high accuracy evaluations are
not needed throughout the whole optimization process, saving additional effort. It is
reasonable to conjecture that other complex problems in engineering optimization
will benefit even more from the proposed methodology.
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39. Wanner, E.F., Guimarães, F.G., Takahashi, R.H.C., Fleming, P.J.: Local search with
quadratic approximations into memetic algorithms for optimization with multiple cri-
teria. Evolutionary Computation Journal 16(2), 185–224 (2008)

40. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (1997)

41. Zhou, P., Fu, W.N., Lin, D., Stanton, S., Cendes, Z.J.: Numerical modeling of magnetic
devices. IEEE Transactions on Magnetics 40(4), 1803–1809 (2004)

42. Zhou, Z., Ong, Y.S., Lim, M.H.: Memetic algorithm using multi-surrogates for compu-
tationally expensive optimization problems. Soft Computing (11), 957–971 (2007)



Chapter 8
Opportunities for Expensive Optimization with
Estimation of Distribution Algorithms

Alberto Ochoa

Abstract. The chapter claims that the search distributions of Estimation of Distri-
bution Algorithms (EDAs) contain much information that can be obtained with the
help of modern statistical techniques to create powerful strategies for expensive op-
timization. For example, it shows how the regularization of some parameters of the
EDAs probabilistic models can yield dramatic improvements in efficiency. In this
context a new class, Shrinkage EDAs, based on shrinkage estimation is presented.
Also, a novel mutation operator based on a regularization of the entropy is discussed.
Another key contribution of the chapter is the development of a new surrogate fit-
ness model based on the search distributions. With this method the evolution starts
in the fitness landscape, switches to the log-probability landscape of the model and
then backtracks to continue in the original landscape if the optimum is not found.
For the sake of completeness the chapter reviews other techniques for improving
the sampling efficiency of EDAs. The theoretical presentation is accompanied by
numerical simulations that support the main claims of the chapter.

8.1 Introduction

Nowadays, the optimization of computationally expensive black-box functions has
become a task of great practical importance that requires new theoretical develop-
ments. In particular, in the area of evolutionary algorithms (EAs) several approaches
have been studied so as to reduce the number of function evaluations.

The main message of this chapter is: the area of Estimation of Distribution Al-
gorithms (EDAs) [12, 18, 26, 27, 37], a state-of-the-art branch of EAs, can play a
leadership role in expensive optimization. However, it is important to recognize that
dealing with expensive optimization problems within the framework of EDAs is
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a very complex issue that has to be attacked from several different directions at
the same time. Therefore, our main point is the following affirmation: the search
distributions contain a lot of information that can be extracted with the help of mod-
ern statistical techniques to be used to elaborate powerful strategies for expensive
optimization.

To begin with, it is crucial to understand that in EDAs the distribution is the
central concept, as opposed to populations and individuals. We believe that it is
from this understanding that these new research opportunities will arise.

In [32] several developments of this idea related to both the entropy of the search
distributions and the entropy of the optimization problems were presented. Two
interesting issues were raised: maximum entropy and entropic mutation, and the
important role of the Boltzmann distribution in the theory of EDAs was stressed.

The influence of the quality of the utilized probabilistic model in the performance
of an EDA algorithm was another issue investigated in [32]. It was made clear that
building a ”good” model is important, but at the same time it was recognized that
”good” does not always point out the model with the most information.

Throughout the chapter the above-mentioned issues are revisited and other un-
published or published elsewhere are presented. Our goal is to highlight the main
directions that can be taken today to boost the capabilities of current EDAs to cope
with expensive problems.

The outline of the chapter is as follows. To begin with, a brief introduction on Es-
timation of Distribution Algorithms (EDAs) is given in Sect. 8.2. Then, we review
three different perspectives on a basic problem: enhancing the sampling efficiency
of EDAs. This occurs in Sect. 8.3, which is divided in three subsections: improv-
ing selection methods (Sect. 8.3.1), accelerating the convergence (Sect. 8.3.2) and
building statistically efficient sampling distributions (Sect. 8.3.3).

Section 8.4 presents the first of the two main contributions of this chapter: a method
and an algorithm that do not evaluate all visited search points. The evolution occurs
in two different landscapes, in one of them the fitness is estimated. The method is
called Partial Evaluation with Backtracking from Log-Probability Landscapes.

Section 8.5 is devoted to regularization, a new important area of research
in EDAs. We will show how the regularization of the probabilistic models used in
EDAs can yield dramatic improvements in efficiency. In Sect. 8.5.1 we show how
to design mutation operators that do not destroy the learned distributions. This tech-
nique, called Linear Entropic Mutation (LEM), increases the entropy of
the probabilistic models and produces higher percentage of success rates and fewer
function evaluations. It is a natural operator for EDAs because it mutates distribu-
tions instead of single individuals. Finally, in Sect. 8.5.2 the second main contribu-
tion of our work is presented: an efficient technique for accurate model building with
small populations. With this we are opening the doors of EDAs research to a new
class of efficient algorithms based on shrinkage estimation. We propose the name
Shrinkage Estimation of Distribution Algorithms (SEDA) for
the whole class. We give a brief introduction of the SEDAs by means of a detailed
discussion of one of its members: SEDAmn (an algorithm that uses the multivariate
normal distribution).
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The chapter includes an appendix dedicated to the B-functions -a new bench-
mark function model especially designed for EDAs. Some of the functions used in
our simulations are of this type. Finally, the conclusions of the chapter are given.

8.2 Estimation of Distribution Algorithms

A fundamental concept in the field of EDAs is that of search distribution,
which is the distribution from where new points are sampled at every evolutionary
step. In this chapter we are interested in EDAs that construct Bayesian network
models of the search distributions.

The basic evolutionary cycle of an EDA is as follows. The algorithm uni-
formly samples the solution space to create an initial population. The population
is then updated for a number of generations. First, a set of promising solutions
(the selected set) is chosen using truncation, tournament or Boltzmann se-
lection. A Bayesian network that captures the correlations of the selected set is
constructed and new solutions are simulated from it. Finally, the new solutions
are combined with the old ones and a new population – with better properties – is
constructed. The algorithm iterates until some termination criteria are met.

Learning the Bayesian network is the critical step. Some algoritms use a greedy
procedure that, starting from an empty (complete) graph, at each step adds (deletes)
the edge that improve a certain metric, which is defined over the set of all acyclic
graphs. Other algorithms, like the one we shall present in Sect. 8.4.3, use statistical
tests instead.

After more than ten years of research there exists a tremendous amount of liter-
ature about EDAs. The interested reader can easily find many detailed presentatios
on the topic. The references of this chapter might be good starting points.

The Boltzmann distribution has been recognized by some authors [22, 25, 27,
32] as a crucial ingredient of EDAs. In Sect. 8.4.2 it will play an important role.
Therefore, in the following section we give a brief introduction to a Bayesian EDA
that uses Boltzmann selection.

8.2.1 Boltzmann Estimation of Distribution Algorithms

Hereafter, Xi represents a scalar random variable and p(xi) = p(Xi = xi) its prob-
ability mass function with xi ∈ X = {0,1, . . . ,K}, Note that p(xi) and p(x j) refer
to two different random variables, and have in fact different probability mass func-
tions, p(Xi = xi) and p(Xj = x j), respectively. Similarly, X = (X1,X2, · · · ,Xn) de-
notes a n-dimensional random variable, x = (x1,x2, · · · ,xn) is a configuration and
p(x1,x2, · · · ,xn) represents a joint probability mass.

Definition 1. For β ≥ 0 define the Boltzmann distribution of a function f (x) as

pβ , f (x) :=
eβ f (x)

∑y eβ f (y) =
eβ f (x)

Zf (β )

where Z f (β ) is the partition function.
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We also use Zβ , f , but to simplify the notation β and f can be omitted. If we follow
the usual definition of the Boltzmann distribution, then − f (x) is called the free
energy and 1/β the temperature of the distribution. The parameter β is usually
called the inverse temperature.

Closely related to the Boltzmann distribution is Boltzmann selection:

Definition 2. Given a distribution p(x) and a selection parameter γ , Boltzmann
selection calculates a new distribution according to

ps(x) =
p(x)eγ f (x)

∑y p(y)eγ f (y)

Boltzmann selection is important because the following holds [27]:

Theorem 1. Let pβ , f (x) be a Boltzmann distribution. If Boltzmann selection is used
with parameter γ , then the distribution of the selected points is again a Boltzmann
distribution with

ps(x) =
e(β+γ) f (x)

∑y e(β+γ) f (y)

On the basis of the above, in [27] the Boltzmann Estimation of Distribution Al-
gorithm (BEDA) was introduced. It is an EDA with Boltzmann selection and an
annealing schedule for the temperature [22].

Lemma 1. Δβ (t) = c/
√

Var f (β (t)) leads to an annealing schedule where the av-
erage fitness, Wf (β (t)), increases approximatively proportional to the standard
deviation:

Wf (β (t + 1))−Wf (β (t)) ≈ c
√

Var f (β (t))

where c is a constant and Var f (β (t)) = σ2
f (β (t)) is the variance of the fitness func-

tion. This annealing schedule has been called Standard Deviation Schedule (SDS).

The exponential complexity of computing the partition function can be avoided
if the Boltzmann distribution is approximated with a tractable distribution. There
are several ways of accomplishing this approximation, However, for the purposes
of this chapter we restrict ourselves to the special case covered by the Factoriza-
tion Theorem [27], for dealing with additively decomposable functions of bounded
complexity. This theorem defines how and under what conditions the search distri-
butions associated to discrete functions can be factorized. The factorization follows
the structure of the function and is only exact if the function obeys certain struc-
tural constraints known as the running intersection property [14]. Besides, we shall
assume that we have a good Bayesian-network-learning algorithm capable of dis-
covering the underlying function’s structure, which is not distorted (under the above
conditions) by Boltzmann selection. A BEDA with a Bayesian network probabilistic
model is a Bayesian BEDA algorithm. One example is given in Sect. 8.4.3.
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8.3 Three Opportunities for Enhancing the Efficiency of EDAs

The main contributions of this chapter will be presented in Sect. 8.4 and in Sect. 8.5.
In one case we build an accurate approximation of the search distribution to con-
struct a surrogate model for the fitness function. In the other case, the challenge is
to build accurate models of the search distributions from small samples.

For the sake of completeness, in this section, we want to discuss briefly three
others techniques aimed to increase the sampling efficiency of EDAs. The central
concept is again the probability distribution. We believe that all these methods de-
serve more attention from those scientists interested in experimenting with EDAs in
the area of expensive optimization.

8.3.1 Right-Sized Selection

What are the correct number of points that the selected set should have?
The answer that one can give to this question based on the current practice

depends on the selection method used. For truncation selection a fraction of the
population size (often 30%) is the popular choice, whereas for tournament and
Boltzmann selection the widely accepted practice is to create selected sets as large
as the corresponding populations.

The experiment shown in Table 8.1 and the discussion of this section is taken
from [44]. An EDA with Boltzmann selection that learns a Bayesian network by
optimizing the BDe scoring metric is investigated with the DeceptiveK1 function of
order three. The size of the selected set is equal to f ∗ N, where N is the population
size.

To improve the 83% success rate (%Success) found in the table we have two op-
tions: we can increase the population size or the size of the selected set. The later
gives the best result: a success rate of 96% is obtained without making any additional
function evaluation. In fact, the number of evaluations drops. The alternative pro-
duces an increase of the number of function evaluations. Note that according to the
experiment, the increase of f does not seem to influence the convergence time, Gc.

Table 8.1 A Boltzmann EDA with Bayesian learning and the DeceptiveK (K = 3). The cell
triplets mean %Success, Gc (convergence time), #Evaluations (number of function evalua-
tions). The sizes of the population and selected set are N and f ∗N respectively

N f = 1 f = 4 f = 12

400 83,7,2689 93,6,2546 96,6,2408
450 94,6,2844 99,6,2645 99,6,2614
500 99,6,3025 100,6,2920 100,6,2750

1 Müehlenbein’s K-Deceptive function, which is easier than Goldberg’s Deceptive3.
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Table 8.2 Probabilistic Elitism. PADA with Goldberg’s Deceptive3. (See [42] page 94)

Elit-size Prob-Elit-size Gc %Success #Evaluations

0 0 6.75 ± 1.43 79 3375
150 0 7.04 ± 1.46 100 2614
300 0 9.07 ± 2.29 100 2114
450 0 14.90 ± 4.91 20 -
300 5 8.05 ± 1.60 96 1945
300 10 7.36 ± 1.68 98 1835

An important equation in EDAs is the following:

p(x, t + 1) ≈ ps (x, t) . (8.1)

We call this equation hypothesis of similarity, others authors refer to it indirectly
by claiming that EDAs do the search in promising zones of the space. Note that
the symbol ≈ means there are two distributions, that despite their similarity, are not
the same. This subtle detail seems to be ignored by most of the papers on EDAs.
Some of them usually claim that the distribution of the selected set ps (x,t) is the
one that is used as the distribution p(x, t + 1); but is this really so? Actually, what
EDA does is to construct the distribution p(x, t + 1) from a sample, the selected set,
which comes from the distribution ps (x, t). This implementation has the following
important problem: if the sample size is reasonably smaller than the size determined
by the sample complexity of ps (x,t), then p(x,t + 1) ≈ ps (x, t) will no longer hold.
It does not matter how well we know ps (x,t); if there are not enough points in the
sample, the equation will not be correct. Let us recall that the sample complexity
is defined as the minimum sample size needed in order to recover the distribution
where the sample comes from.

Fortunately, it is possible to improve the quality of the selected set, so that it al-
lows a better estimation of p(x, t + 1), without increasing the number of functions
evaluations. In Boltzmann selection, for example, it is enough to increase the num-
ber of points sampled by selection. All this means that, in principle, we have the
capability of increasing the efficiency of the EDA algorithm without affecting its
efficacy. Another much more important fact is that this gives the possibility of using
EDAs with small populations.

The right-sized selection may create favorable conditions for the technique we
will introduce in Sect. 8.4 because it allows a better estimation of the distribution
p(x,t + 1).

8.3.2 Probabilistic Elitism

Even a simple evolutionary operator like elitism can profit from the EDA emphasis
on distributions. If we can compute the modes of the search distribution why do not



8 Opportunities for Expensive Optimization with EDAs 199

Table 8.3 The impact of using maximum-entropy search distributions. (See [34])

N %Success Gc %SuccessME GcME

200 0 - 2 8.5 ± 0.7
600 8 9.7 ± 1.5 69 7.4 ± 1.1
800 10 8.7 ± 3.2 90 7.0 ± 1.2
5000 92 7.2 ± 1.2 100 5.8 ± 0.9

ME Results when maximum-entropy search distributions are used.

grant them the right to be in the next population as it is done with the best current
individuals? The term probabilistic elitism was chosen for this method in [42].

Table 8.2, shows an interesting experiment about the synergy between traditional
and probabilistic elitism. The algorithm used is PADA, the Polytree Approxima-
tion Distribution Algorithm [43], one of the pioner EDAs. The algorithm learns
polytree Bayesian networks from the selected populations. It makes independence
tests to construct the skeleton and to orient some edges, then a BIC score guides a
hillclimbing local search to orient the remainder edges.

Notice that increasing the classic elitism decreases the number of function eval-
uations, but this has an upper bound beyond which the efficacy (%Success) of the
algorithm drops (see Elitism = 450). Adding the five or ten best configurations of
the search distributions accelerates the convergence of the algorithm and produces
an additional reduction of the number of evaluations. As a result of the combined
use of the methods 1540 function evaluations were saved. Simple, but effective! It
is worth noting from the point of view of expensive optimization (see Sect. 8.4.2),
that the probabilistic elite can be included in the new population without being
evaluated.

When it is possible to build a junction tree for a discrete problem, the probabilistic
elite –the M most probable configurations– can be computed with the Nilsson’s
algorithm [28]. Alternatively, the algorithm introduced in [45], which uses max-
marginals instead of a junction tree, can be used for arbitrary discrete graphical
models. For some continuos problems it is also possible to sample zones of high
probability with similar results, for example, around the mean of the multivariate
normal distribution.

We look at the probabilistic elitism as an acceleration method that compensates
for the delay introduced by classic elitism and the regularization techniques that will
be discussed later in this chapter.

8.3.3 Maximum Entropy

In EDAs, two good reasons for building a sampling distribution of maximum en-
tropy are: 1) the sample size is limited and we know that we will not be able to
estimate correctly marginals of order larger than a given low integer K; 2) a model
of higher order has been estimated with statistics of lower order. The first scenario
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corresponds to a common situation in expensive optimization. An example of the
second is shown in Table 8.3.

Two EDAs use the same structure learning algorithm, which only makes indepen-
dence tests of order two to approximate a polytree distribution. The point is that the
estimation of the conditional probability associated to a variable with more than one
parent involves marginal distributions of order larger than two. Therefore, although
the structure can be obtained with a small population the sampling distribution may
need a larger population size to learn its parameters.

Parameter learning at the simulation step is different for each EDA. The first
algorithm does probabilistic logic sampling with the maximum likelihood (MLE)
estimates of the conditional probabilities. The second algorithm, builds a junction
tree, fixes the second order marginals and for each clique computes the maximum
entropy distribution that is consistent with the fixed marginals. Note that without
maximum-entropy (second and third columns in Table 8.3) the algorithm needs six
times more function evaluations to achieve a 90% success. For details see page 29
in [32].

If we have the joint distribution with the maximum-entropy among all the joints
that fulfill a given collection of marginals, choosing a joint with less entropy amounts
to adding some information that is not justified by the marginal constraints. The Iter-
ative Proportional Fitting (IPF) algorithm can be used to find the maximum-entropy
distribution [8, 9, 16, 40]. For large distributions, an efficient implementation of the
maximum-entropy algorithm was developed in [10, 23]. The general idea is to im-
prove the performance of IPF by combining it with the junction tree technique. It
consists of performing IPF locally on the nodes and passing messages to the neigh-
boring nodes. It has been proved that this converges to the unique maximum-entropy
solution, so it is equivalent to IPF. The reader is referred to [34] for details on the im-
plementation of the method for computing maximum-entropy distributions of poly-
trees.

8.4 Evolutionary Backtracking from Log-Probability
Landscapes

In this section we present a novel computational scheme for decreasing the number
of function evaluations of an EDA algorithm without harming, or even improving
its convergence properties.

At every generation, if the EDA does not find the optimum it restarts the search
in the logarithmic space of the probabilities assigned to every configuration by the
current model of the selected set. If after searching for some generations in the log-
space the optimum is not found, the algorithm backtracks to its previous state in the
fitness function space.

Among other things, we will show that the success of the method depends on
the quality of the probability model built by the EDA algorithm. Therefore, as a
first step, we must choose an algorithm capable of building accurate models of the
search distributions.
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8.4.1 Selecting a Bayesian EDA Algorithm

Powerful Bayesian EDA algorithms for integer and real valued optimization were
introduced in [20] and [21] (two of them, MMHC-EDA and TPDA-EDA, are shown
in bold in Table 8.4). Unlike most of the existing approaches these methods are
mainly based on tests of (in)dependence, in contrast to other well-known algorithms
like BOA [36] and EBNA [2] that only use scoring metrics. In the new algorithms,
the structure of the search distribution is learned with a modification of the algo-
rithms reported in [3, 7]. The interested reader is refered to [19] for a detailed dis-
cusion of sequential and parallel versions of these algorithms. The presentation that
follows is partially adapted from [20] and [21].

The experiments of this section use the class of random B-functions that was
introduced in [32], later extended in [33] and further investigated in [30]. We have
included a short introduction to this benchmark in the appendix. We recommend
reading it before the remainder of this section.

Table 8.4 shows that MMHC-EDA and TPDA-EDA do many fewer function eval-
uations than BOA and EBNA in a collection of ease uncorrelated problems. The
UMDA is the best, which is not a surprise because it knows the problem structure.

Table 8.5 presents the success rates the MMHC-EDA and other algorithms
achieved with the hard random polytree B-function class: BF2B30s4-1245, for dif-
ferent population sizes. Notice the high value of the univariate entropies. As far as
the pairwise mutual informations belong to the interval [0.1,0.2] we can conclude
that the bivariate entropies are also high. Therefore, the algorithm must discover the
conditional higher order dependence structure of the problem to be able to find the
optimum.

The results are conclusive. UMDA does nothing due to the high univariate en-
tropies. BOA with k = 1 deals with bivariate marginals, which also have high en-
tropy. Interestingly, neither EBNA nor the other BOA behave better than BOA with
k = 1. The MMHC-EDA algorithm is the winner, it succesfully learns the problem
structure although it needs a large population due to the high entropy.

Table 8.4 Average results on 10 instances of a random class BF2B100s0-0012

N∗a %Success Gc
b %Evaluations

UMDA 100 98.70 11.98 1198.78±3.01
MMHC-EDA 250 95.30 10.97 2742.65±9.61
TPDA-EDA 250 98.60 10.54 2635.65±8.64
BOA(k=1) 280 97.80 10.83 3034.19±11.48
BOA(k=3) 700 97.80 11.09 7765.13±27.16
EBNA 150 97.10 28.85 4328.53±36.37

a critical population size - Minimum size to achieve 95% success rate.
b generation where the optimum is found.
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Table 8.5 Minimization in the hard class of random polytree B-functions, BF2B30s4-1245.
The cells contain the succcess rate

N UMDA BOA
k=1

BOA
k=2

BOA
k=3 EBNA MMHC

EDA

300 3.33 46.67 23.33 13.33 30.00 40.00
500 3.33 50 56.67 43.33 26.67 53.33
1000 3.33 43.33 50 50 40.00 73.33
2000 3.33 43.33 50 53.33 43.33 100

In summary, we believe that MMHC-EDA is the best candidate for our purposes.
It seems to obtain accurate approximations of the search distributions, which is
highly convenient for the technique we will introduce in the next section.

8.4.2 Partial Evaluation in Boltzmann EDAs

The term Partial Evaluation (PE) was introduced in evolutionary compu-
tation to deal with the problem of evaluating evolutionary algorithms with expen-
sive fitness functions [31]. Some related techniques are fitness inheritance [11, 41],
variable-fidelity [6] and surrogate models [4, 17, 35, 47].

The name partial evaluation, which was borrowed from the literature on logic
programming, emphasizes the fact that a certain amount of individuals and/or pop-
ulations are not completely evaluated during the execution of the algorithm. In [31]
the authors explored the feasibility of building a neural network model to predict
the fitness of individuals, based on information of the genotypes and fitness values
of their parents and the genetic operations performed.

Many PE strategies can be and have been implemented with genetic algorithms.
However, although there have been some interesting works with EDAs too, we
believe that there are still many research opportunities in this area.

In EDAs, a basic idea underlies the method: building a fitness surrogate model
using the probability distribution of the selected set. This has been called Partial
Evaluation of an EDA algorithm in [42].

In what follows, we will discuss an experiment presented in [42]. The results are
shown in Table 8.6.

The Onemax function counts the number of 1s in its input variable. The Boltz-
mann Univariate Marginal Distribution Algorithm (BUMDA) is an EDA that as-
sumes probability independence among the variables and uses Boltzmann selection.
In the experiment the fitness function is evaluated during the first few (first col-
umn in the table) generations. Afterwards, the fitness surrogate model that will be
presented below is used to evaluate the population.

The table presents average results for 100 runs. The last row is left for the
case when no partial evaluation is used: convergence time Gc = 7.86 (the count
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Table 8.6 Partial Evaluation of the OneMax function with the Boltzmann Univariate
Marginal Distribution Algorithm (BUMDA). (See [42], page 83)

GPE Gc %Success #Evaluations %Estimated

1 4.77 48 5770 83
2 4.95 80 5950 66
3 5.47 95 6470 54
4 5.97 100 6070 43
- 7.86 100 8860 0

starts at 0), number of function evaluations #Evals = 8860, percentage of times
the function’s model was used %Estimated = 0 and the percentage of success
%Success = 100. The problem and population sizes were set at n = 60 and N = 1000
respectively. We used no elitism.

The third row, shows the results when the estimation starts at the fourth genera-
tion. This time the algorithm made 6470 function calls, but only 46% of them were
actual fitness evaluations. Therefore, 5883 functions evaluations were saved and still
we got a high percentage of success, 95%. Another interesting observation is that
with PE the algorithm converged faster. The reduction in the number of evaluations
is the result of the combination of a faster convergence and the use of the fitness
model. Notice, that in this case the algorithm converged two and a half generations
after the start of PE, but still before than the required number of generations without
PE.

It is worth noting that this example is just an academic illustration of the PE idea.
In reality, the function is easy and without PE such a large population size is not
needed. The point is that the quality of the PE fitness function model depends on the
quality of the search distribution as it will be shown below. As far as the structure
of the model is known, a large population size guarantees and adequate estimation
of its parameters.

We now introduce the used surrogate model. From Definition 1, it is easy to
see that with BEDA, the optimization of f (x) amounts to the optimization of the

function
log(pβ , f (x))

β . The computation of the standard deviation annealing schedule
now should be carried out with the formula:

�β =
c.β√

σ2
log(pβ , f (x))

The problem with the above is that in general we do not know the distribution
p f ,β (x). However, we do know that the Factorization Theorem [27] tells us that
under certain mild conditions the Boltzmann distribution of additively decompons-
able functions has a computable Bayesian factorization. Denoting it by pa

f ,β (x), we
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propose to use the function
log

(
pa
β , f (x)

)
β as a PE model of f (x). This was the model

used in the experiment.
In practice, we deal with finite populations and therefore BEDA approximates the

Boltzmann distribution gradually. This is why better results are obtained when this
strategy of partial evaluation starts at the latter generations. There exist other PE
strategies. For example, it can be shown that for high probable configurations the
approximation is better. Thus, one could estimate a fraction of the most probable
configurations at the earlier generations.

We now try to quantify the magnitude of the error. Denoting � f ,β (x) = f a (x)−
f (x) and f a (x) = log

(
pa
β , f (x)

)
/β + log

(
Zf (β )

)
/β , we obtain

� f ,β (x) =
log

(
pa
β , f (x)

pβ , f (x)

)
β

and taking the expectation with respect to the approximating distribution, we get

〈� f ,β (x)
〉

pa
β , f (x)

=
D
(

pa
β , f (x)

∥∥pβ , f (x)
∣∣)

β
(8.2)

The error expectation equals the product of the temperature times the Kullback-
Liebler divergence between the two distributions. Notice that the last two equations
further explain why the function approximation is better toward the end of the run:
β is larger.

One interesting observation, which deserves more study, is the fact that for this
function the search in the log-probability space seems easier than in the original
fitness landscape. In [24] the authors reported a similar behaviour of the UMDA
with the Saw function. According to these authors, the rugged fitness landscape
of the function is implicitly transformed into a fairly smooth landscape in a space
whose coordinates are the univariate probabilities. The algorithm performs a gra-
dient ascent on the transformed landscape and easily gets to the optimum. In this
regard the apparent merit of our PE technique is that it explicitly performs the
optimization in the probability space. These issues are the subject of ongoing
research.

Now the obvious question is whether or not the method can be applied to cases
different from those covered by the Factorization theorem. Equation 8.2 drops us a
hint. We can apply the PE method if our approximating distribution is close enough
to the Boltzmann distribution. This is valid for both discrete and real valued prob-
lems. In [46] a variant of Boltzmann selection with an annealing schedule for real
variables was reported. The algorithm proposed by these authors computes the mul-
tivariate normal distribution that minimizes the Kullback-Liebler distance to the
Boltzmann search distribution.



8 Opportunities for Expensive Optimization with EDAs 205

8.4.3 A Simple Algorithm for Partial Evaluation with
Backtracking

We begin this section with a similar experiment to the one commented in the pre-
vious section. However, there are important differences: 1) truncation selection is

used instead of Boltzmann selection; 2) the fitness model is log
(

pa
β , f (x)

)
; and 3)

the fitness function has proven to be quite challenging even when its dependence
structure is known.

It is interesting to explore the feasibility of using truncation selection with PE
because it is much faster than Boltzmann selection.

The function used in the experiment was designed in [19] using the B-function
formalism developed by the present author and outlined in the appendix. It is called
Ten Little Niggers (TLN) because its dependence structure is composed of disjoint
groups of 10 variables. The distribution is given by:

p(x) = p(x10 | x1,x2 · · · ,x9) · p(x20 | x11,x12 · · · ,x19) · · · p(x50 | x41,x42 · · · ,x49)

In [19] this function was proved to be very difficult for the well-known state-of-
the-art Bayesian EDAs: BOA and EMNA, which were not able to optimize (95%
success) the function with a population size of 10000 points. The MMHC-EDA,
however has a critical population size of 3000 points and makes about 19990
function evaluations2.

Table 8.7 presents the numerical results. The first column is the generation where
the PE starts from. For example, the first row shows the case when the fitness func-
tion is evaluated in two generations and the model is applied from the third until
convergence (second column). Under this conditions the algorithm converges as
average nine times in 100 runs. This is not too much, but when the PE starts at
generation five the success rate is already 83%.

The results of Table 8.7 suggest the following simple algorithm. At every gen-
eration, if EDA does not find the optimum it restarts the search in the logarithmic
space of the probabilities assigned to every configuration by the current model of
the selected set. In other words, the fitness model is used instead of the fitness func-
tion. Now, if after searching until Gmax in the log-space the optimum is not found
neither, the algorithm backtracks to its previous state in the fitness function space.
We can easily obtain an estimate of the average number of function evaluations that
this algorithm would make according to the results of the table. Taking the forth
column of the table as the percentage of times the algorithm converges in K runs,
we obtain after simple arithmetic operations an estimate of about 11000 evaluations
which amount to a saving of 45%.

We extended the MMHC-EDA with the described PE algorithm and produce
Algorithm 1. Only one new parameter has to be added: GPE , the generation where

2 The TLN function and C code to work with it is available from the author.
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Table 8.7 Optimization of the B-function TLN with 50 variables. The reported averages are
computed over 100 runs. Algorithm: MMHC, N=3000, Elit=0, Gmax=20, τ=0.3

PEstart Mean Genc #Evaluations %Success

3 6.77 6005.8 9
4 6.45 9004.5 42
5 6.66 12003.7 83
6 6.59 15002.5 93
7 6.49 17937.7 94

Table 8.8 Optimization of the function Trap5 with 30 variables. The reported averages are
computed over 20 successfuls runs. Algorithm: MMHC, N=4000, Elit=0, Gmax=12, GPE =2

Selection Partial Evaluation #Evaluations %Success

τ = 0.3 yes 19360 60
τ = 0.3 no 21201 100
Boltzmann (N = Ns) yes 11611 100
Boltzmann (N = Ns) no 16401 100

the application of the method starts from. Using this algorithm, we have confirmed
the predictions made in the previous paragraph.

At this point we conclude that the log-probability fitness model can be effective
with truncation selection at least for the investigated function. Unfortunately, this is
not always the case as the following example shows.

We investigate our method with the Trap function. It is a separable deceptive
problem proposed in [5]. Its global maximum is located at the point (1,1, . . . ,1).
Given the function

trap(u) =
{

k, f or u = k
k − 1 − u, otherwise

The function (we use k = 5) is defined as follows:

Trap(−→x ) =
m

∑
i=1

trap(xki−k+1 + xki−k+2 + . . .+ xki) (8.3)

This function has been used extensively in testing of EDAs and genetic algorithms,
and solving them has proven to be quite challenging in the absence of a correct
knowledge of its dependence structure.

Table 8.8 reveals several interesting issues. The first thing to notice is the sig-
nificant reduction in the success rate when PE is applied with truncation selection.
Besides, the decrease in the number of function evaluations is smaller than the one
obtained with Boltzmann selection. In the later case, a reduction of about 5000
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evaluations is achieved with the same 100% success. Notice that the best value is
about 46% of the maximum number of function evaluations for truncation selection.

It is worth noting, that the results shown in Table 8.8 were computed for a pop-
ulation size less than the critical value for 30 variables. For truncation selection the
critical value (97% success in 100 runs) is equal to 5000 and the average number
of function evaluations in this case is 23042. We have found that with Boltzmann
selection and PE we get a 100% success and an average of 11500 function evalu-
ations. This means that the average saving is of 51%. We also present, in Fig. 8.1,
the histograms of the number of function evaluations per optimization run. As it
can be seen near 90% of the runs are below 15000 function evaluations when PE is
combined with Boltzmann selection. In contrast, more than 95% of the runs without
PE require more than 20000 function evaluations and 70% of the PE runs need only
half of this amount.

Algorithm 1. MMHC-EDA + Partial Evaluation with Backtracking from Log-
Probability Landscapes (PEBLPL)

Set t ← 1
Randomly generate N 	 0 configurations
while stop criteria are not valid do
one-MMHC-EDA-step( f (x)) {// Evolution in fitness landscape}
if stop criteria are not valid AND (t ≥ GPE ) then

save(t, current Population)
while stop criteria are not valid do
one-MMHC-EDA-step(log p(x)) {// Evolution in log-probability landscape}

end while
if optima are not found then

restore(t, Population) {// Backtracking}
end if

end if
end while
———————–
function one-MMHC-EDA-step(g(x))

Evaluate the current population with the input function g(x)
According to a selection method build the selected set SS
Find the structure of the probability model BN = MMHC(SS)
Estimate the parameters of pss(x,t) using BN and SS
Generate N new configurations from p(x,t +1) ≈ pss(x,t)
Set t ← t +1

endfunction

According to the results shown in this section we cannot still say under what
conditions it is possible to use truncation selection with the PE scheme proposed
here. We only know so far that for some functions this is posible. Obviously, this
topic needs more research. At this point, it is important to say that with the TLN
function the PE also works with Boltzmann selection. This is another confirmation
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Fig. 8.1 Histograms of the number of function evaluations per optimization run of the Trap
function. N = 5000. top) Truncation selection without PE. bottom) Boltzmann selection with
PE

of the theoretical ideas developed in Sect. 8.4.2 and of the important role of the
Boltzmann distribution in the theory/practice of EDAs.

It is worth noting, that the proposed Partial Evaluation scheme is beneficial when
the actual fitness evaluation is expensive, in which case the above costs are indeed
negligible and the model developed in this section valid.

8.5 Regularization in Estimation of Distribution Algorithms

In this section we present theoretical and empirical evidences supporting the follow-
ing claim:

The regularization of the parameters of the search distributions can bring enor-
mous savings with respect to the number of function evaluations.

We discuss two examples. In the first one the entropy of the search distribution
is the parameter to regularize. Due to space constraints, we give just a small in-
troduction to the topic and leave the details for a forthcoming publication. In the
second example, the covariance matrix of a multivariate normal search distribution
is regularized. In this case we give more details and introduce a new EDA algorithm.

8.5.1 Entropic Mutation

Thinking of distributions when talking about mutation suggest mutating distribu-
tions instead of individuals. In [32] we proposed a method for doing so. The ap-
proach changes linearly the entropy of the distribution to achieve the amount of
disorder usually understood as mutation.
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Table 8.9 Entropic mutation of the search distributions. UMDA with OneMax function for
fixed population size

α 0 0.05 0.1 0.125 0.2

%Success 17 74 97 100 99
#Evaluations 300 465 425 412 450

Table 8.10 A Bayesian EDA and the LEM mutation for the Goldberg’s Deceptive 3 function,
n = 18

N %Success #Evaluations

500 (α = 0) 86 2211
600 (α = 0) 88 2815
700 (α = 0) 96 3186
800 (α = 0) 100 3306
420 (α = 0.08) 100 2600
420 (α = 0.10) 100 2450
420 (α = 0.12) 100 2400
420 (α = 0.14) 100 2300
420 (α = 0.20) 100 2200

Table 8.9 presents the results of a small experiment. For a fixed small popula-
tion size, which is not enough to obtain a good success rate without mutation, it is
possible to boost the efficacy of the Univariate Marginal Distribution Algorithm by
increasing the mutation intensity, α .

The approach was called linear entropic mutation (LEM) in [32]. The LEM acts
as a regularizer of the entropy of the system and computes a convex sum of the
current and the maximum entropy with the regularization parameter α . In this way
the distribution is shrunk toward the maximum entropy distribution. It turns out that
this process can be interpreted as a mutation process as far as it increases the level
of uncertainty or randomness in the system. For multivariate discrete systems the
following definition introduces the LEM.

Definition 3. Let p(x1,x2, · · · ,xn) and pα (x1,x2, · · · ,xn) denote a discrete joint
probability mass and its LEM-mutation with mutation intensity α . If H (X) and
Hα (X) are their respective entropy values, then the following holds:

δH (X) = (n − H (X))α and Hα (X) = (1 −α)H (X)+ nα (8.4)

The computation of pα (x1,x2, · · · ,xn) given p(x1,x2, · · · ,xn) is challenging. Notice
that the distributions must be similar, which means that the mutation does not de-
stroy the learned distributions. For n = 1 it is easy. It was explained in [32]. In [29]
we report a method for the case n > 1. Here we use it in a very simple example,
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just to show that the LEM is another regularization technique that can reduce the
number of function evaluations.

The Goldberg’s Deceptive3 function with 18 variables is optimized with an EDA
that learns a Bayesian network using a scoring metric. All the results are averages
over 30 runs.

Table 8.10 shows that without mutation to achieve a success rate larger than 95%
more than 3000 function evaluations are needed. In contrast, for a fixed population
size equal to 420 and for all the mutation intensities shown (starting at 0.08) a 100%
success is obtained with many fewer function evaluations. For α = 0.2, the table
shows a saving of more than 30%!

8.5.2 Shrinkage Estimation of Distribution Algorithms

In this section we propose a new class of EDAs that we believe will soon find its
place in the arsenal of tools for expensive optimization problems.

Equation (8.4) was to the best of our knowledege the first attempt to regularize
the entropy in such a way, i.e. shrinking it toward the maximum entropy. It is also
the only attempt so far to model mutation as an entropic variation in the area of
evolutionary algorithms. In this approach the entropy is first shrunk linearly and
then the probabilities are computed. An alternative could be a linear shrink of the
probabilities followed by the computation of the new value of entropy.

The equation underlying the idea of modelling mutation with the concept of en-
tropy was derived based only on evolutionary arguments [32]. However, there is a
strong connection between Linear Entropic Mutation and the general principles be-
hind shrinkage estimation and the analytic approach by Ledoit and Wolf [15] for
determining the optimal shrinkage level.

The connection between shrinkage estimation (SE) and LEM have suggested us
the existence of a general class of EDAs based on the many different aspects of
SE. We have called the new class Shrinkage Estimation of Distribution Algorithms
(SEDAs).

Shrinkage Estimation gives EDAs the ability of building better models of the
search distributions under small populations. Having better models is impor-
tant for implementing partial evaluation strategies.

Our main claim is that the synergy between shrinkage estimation, small
populations and partial evaluation offers a great research opportunity with
regard to expensive optimization problems.

Due to space constraints the complex issues of the combination of the above men-
tioned methods are not discussed in the chapter. We recall that the material presented
in Sect. 8.3 is relevant to the small population issue. Hereafter, we concentrate our-
selves on the impact of shrinkage estimation alone.
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The now well-known ”Small n, Large p” problem of machine learning can be
mapped to the ”small population” problem of EDAs. The direct link between the
later and the optimization of expensive functions is obvious. Therefore, most of the
developments in one of the fields must be useful in the other.

The class of SEDAs is large because almost any EDA algorithm can be improved
by shrinking some of its distribution parameters. As far as, in this chapter we have
focused so far in discrete optimization problems, we decided to introduce in this
section a continuos member of the SEDA class: an algorithm that estimates the
multivariate normal distribution: SEDAmn.

The excellent work by Schäfer and Korbinian [39] gave us the tools to initiate the
work.

At each generation the algorithm estimates the vector of means and the variance-
covariance matrix. This means that the number of parameters to estimate is quadratic

in the problem size: p = 2n+
(

n − 1
2

)
. Thus, it is easy to get to the ”small n, large

p” scenario. The EMNAglobal algorithm [13] computes the MLE estimates of these
parameters. Another possibility is to use the unbiased estimator of the covariance
matrix. However, it is well-known that both are statistically inefficient, because for
medium to small sample sizes they are far from being optimal estimators for recov-
ering the population covariance.

The merit of the shrinkage method is that it improves the efficiency and accuracy
of the estimation and yields a covariance matrix that is well-conditioned and positive
definite, which is importante to compute its inverse.

The idea of the shrinkage estimation is simple. We now follow [39]. Assume
we have an unrestricted high-dimensional model and a lower dimensional restricted
submodel. By fitting each of the two different models to the observed data associated
estimates are obtained. Clearly, the unconstrained estimate will exhibit a compara-
tively high variance due to the larger number of parameters that need to be fitted,
whereas its low-dimensional counterpart will have lower variance but potentially
also considerable bias as an estimator of the true unrestricted model.

Instead of choosing between one of these two extremes, the linear shrinkage
approach suggests combining both estimators in a weighted average

U∗ = λR +(1 −λ )U

Compare this equation with (8.4)!
In addition, it is possible to choose the parameter λ in a data-driven fashion by

explicitly minimizing a risk function.
SEDAmn uses the shrinkage estimates based on the optimal λ . From an evolu-

tionary point of view it is a simple algorithm. The current implementation uses
truncation selection and elitism. It is like the EMNAglobal [13], but with a differ-
ent method for variance and covariance estimation. A simplified pseudo-code of the
current implementation is shown in Algorithm 2.

In what follows we present some experimental results to illustrate the power of
SEDAmn for expensive optimization.
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Algorithm 2. SEDAmn - Srinkage Estimation of Distribution Algorithm for the
Multivariate Normal (current implementation).

Set t ← 1
Randomly generate N 	 0 configurations
while stop criteria are not valid do

- Evaluate the population with the fitness function f (x)
- Using truncation selection construct the selected set, SS.
- Compute the mean, μ , and the covariance matrix, S, of SS:

s∗
ii = smλ ∗

var +(1−λ ∗
var)sii

s∗
i j = ri jmin(1,max(0,1−λ ∗))√siis j j

where:
λ ∗

var = (∑p
k=1 V̂ar(skk))/∑

p
k=1(skk − sm)2,

λ ∗ = ∑k �=l V̂ar(rkl)/∑k �=l r2
kl

{sm denotes the median of the empirical variances and the coefficients sii and ri j

denote the empirical variance (unbiased) and correlation, respectively. See [39] for the
computation of V̂ar(si j).}

- Generate N new configurations (the new population) from the multivariate normal
with parameters μ and S.

- Set t ← t +1
end while

We study our algorithm with the well-known benchmark functions: Sphere,
Rosenbrock, Ackley, Griewangk and Rastrigin. The authors of [13] (page 183) use
these functions to investigate the EMNAglobal and six other EDA algorithms. They
present results for n = 10 and n = 50.

Table 8.11 shows impressive results for 50 variables. For SEDAmn we set a pop-
ulation size equal to 25 and present averages over 30 runs. The best fitness value
reported in [13] for each function is shown in the second column whereas the third
column shows a lower bound in the number of function evaluations. The next two
columns contain the same information for SEDAmn. Finally, the last column is the
best fitness value obtained with the very same SEDAmn algorithm, but with MLE

Table 8.11 Comparison of SEDAmn with EMNAglobal and the other algorithms reported in
[13]

F(x) Best Fva #Evalsa Best Fvb #Evalsb Best Fvc

Sphere 10−6 > 200000 10−8 < 3000 > 1000
Rosenbrock 48.7 > 270000 48.5 < 1500 > 150
Ackley 10−6 > 280000 10−8 < 2500 > 1.2
Griewangk 10−6 > 170000 10−8 < 2500 > 6x105

a Best result from [13]. (EMNAglobal and others); b SEDAmn with shrinkage; c SEDAmn with
MLE covariance estimation.
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Table 8.12 Scaling of SEDAmn. Averages over 20 runs. N = 50 and error = 10−6

F(x) n = 50 n = 100 n = 500

Ackley 5060±96 6720±103.2 11880±97.7
Griewangk 5525±110 8140±251.4 14050±282.8
Rastrigin 6575±761.4 8500±1149 13540±1069

covariance estimation and the maximum number of function evaluations that ap-
pears in the corresponding fifth column.

Now, and just to get an idea of the scaling of SEDAmn, we fix the population
size N = 50 and report in Table 8.12 the average number of function evaluations
needed for getting an error of 10−6 in 20 runs. We show the results for 50, 100 and
500 variables and the functions: Ackley, Griewangk and Rastrigin. Note the linear
dependence.

In our opinion, the experiments of this section clearly show that SEDAmn is a
new powerful EDA algorithm that offers us a significant reduction in the number of
function evaluations with respect to existing EDAs.

8.6 Summary and Conclusions

We have presented a collection of methods that utilize the probabilistic models built
by the EDAs for enhancing the efficiency of these algorithms. These methods make
EDAs more suitable for expensive black-box optimization. Our main goal was to
send two messages to those scientists in the expensive optimization research com-
munity who are interested in experimenting with EDAs: 1) EDAs have an enormous
potential to become a powerful tool for this kind of problems. 2) There are many
research opportunities for improving current EDAs most of which depend on our
ability to use the huge and increasing set of methods of modern statistical sciences
and machine learning.

We have shown how the regularization of the parameters of the probabilistic mod-
els used in EDAs can yield dramatic improvements in efficiency. We presented the
design of the Linear Entropic Mutation, which is a mutation operator that do not
destroy the learned distributions and is based on global information. This technique,
increases the entropy of the probabilistic models and produces higher percentage of
success rates and fewer function evaluations.

Of particular interest is the proposal of a new class of EDAs based on shrinkage
estimation, SEDAs, which is capable of an efficient and accurate model building
with small populations. We presented a brief introduction of the SEDAs by means
of a detailed discussion of one of its members: SEDAmn (an algorithm that uses the
multivariate normal distribution). We have presented numerical simulations with
popular benchmark functions that show impressive results for the new algorithm.
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Another key contribution of the chapter is the development of a new surrogate
fitness model based on the search distributions. With this method the evolution starts
in the fitness landscape, switches to the log-probability landscape of the model and
then backtracks to continue in the original landscape if the optimum is not found.
We have presented numerical results that show a reduction in the number of fitness
evaluations of about 45%.

For the sake of completeness the chapter reviews other techniques for improving
the sampling efficiency of EDAs. In all cases the theoretical presentation is accom-
panied by numerical simulations that support the main claims of the chapter.

At this point it is worth noting that the main goal of the chapter is similar to that
of the work [38]. Both highlight the role of the search distributions as an important
source of information for developing EDAs-efficiency-enhancement strategies. The
authors of that chapter presented a classification of these strategies into four cat-
egories: hibridization, parallelization, time continuation/utilization and evaluation-
relaxation. However, their main contribution was the provision of examples of two
principled efficiency-enhancement techniques (1) An evaluation-relaxation scheme
where they build an endogenous fitness-estimate model using the probabilistic mod-
els built by the Bayesian optimization algorithm, and (2) a time-continuation scheme
where they develop a scalable mutation operator in the extended compact GA.

Our work is different from [38] in several aspects. We just mention four of them.

1. We include a new category into the classification: Regularization.
2. Our PE (evaluation-relaxation) scheme is different. The evolution in log-proba-

bility landscapes with backtracking is introduced. The computation of the fitness
surrogate is straightforward and inexpensive.

3. Linear Entropic Mutation is presented as a global mutation operator. This is in
contrast with other approaches that rely on local information.

4. The new class of Shrinkage EDAs, and one of its members SEDAmn are
introduced.
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Appendix

B-Functions: A Random Class of Benchmark Functions

The random Boltzmann function model was introduced in [32] and later extended in
[33] and investigated in [30], where it is called B-function model. The model allows
the explicit codification of probabilistic information, which is very convenient for
the study of Estimation of Distribution Algorithms.
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The following definition formally introduces the B-functions.

Definition 4. (B-functions). Assume η > 0. Let p(x) be any unimodal probability
mass function and let xmpc be its most probable configuration (mpc). The parametric
function

BFp,η (x) =
1
η

log

(
p(xmpc)

p(x)

)
, (8.5)

called here B-function, is an additively decomposable unimodal non-negative func-
tion with minimum at xmpc.

The above definition can be modified to the deal with multimodal and real valued
problems. It also says that whenever we have a distribution we can construct a B-
function. For example, the Alarm B-function is built by using as p(x) the famous
ALARM Bayesian network [1]. We also have shown elsewhere how to build such a
distribution given collections of certain types of probabilistic constraints.

The following properties tell us why B-functions are an excellent benchmark for
evolutionary optimization.

• The minimum of a B-function is always zero, thus the stopping criterion of the
optimization algorithm is easy to implement.

• The computation of the most probable configuration (discrete variables), which
is necessary for the definition of the function, can be accomplished in polynomial
time for a large class of distributions [28, 45].

• The random generation of B-function instances (graph and parameters) can be
accomplished efficiently [32].

• A naming convention to facilitate referencing of some B-function instances and
subclasses can be easily implemented. Alternatively, less standard B-functions
instances and subclasses can be distributed as files.

• It is straightforward to control problem size, structural and parametric complexity
to test scalability.

• There is no need to construct functions by concatenating small subfunctions.

In [33] we introduced a naming mechanism (and a program available from the au-
thor) to facilitate working with and referencing to certain subclasses of B-functions.
We show it here for the case of boolean polytree B-functions.

BF2Bn2sn3 − d1d2d3d4[n4] (8.6)

The above notation stands for a function with n2 boolean variables. The depen-
dence structure is given by a polytree (restricted Bayesian network) with maximum
number of parents equal to n3. The digits d1, . . . ,d4 have the following meaning.
The mutual information of any pair of adjacent variables in the dependency graph
of the function lies on the interval 0.1 ∗ [d1,d2]. The digits d3 and d4 constraint
the univariate entropies. In fact, the univariate probabilities lie in the interval
[pmin, pmax] = 0.1∗ [d3,d4]+0.05 or in [1 − pmax,1 − pmin]. Finally, the optional pa-
rameter n4, which is a natural number not exceding

(
109 − 1

)
, is a random seed that
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determines a unique B-function instance. In other words, if n4 is given it determines
a random function instance, otherwise the expression denotes a random subclass.

To clarify the above statements, consider the following examples of B-functions
definitions.

BF2B30s4-1245. the random subclass of binary polytree functions that have 30
variables, each with a maximum of four parents. Besides, each pair of adja-
cent variables has mutual information in the interval [0.1,0.2] and the univariate
probabilities are bounded by [0.45,0.55].

BF2B30s4-124595012929. this is an instance of the above class.
BF2B100s0-1301. the graph has no edges. The fields containing the mutual

information bounds are senseless, thus their values are ignored.
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Chapter 9
On Similarity-Based Surrogate Models for
Expensive Single- and Multi-objective
Evolutionary Optimization

L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge

Abstract. In this chapter we propose a surrogate-assisted framework for expen-
sive single- and multi-objective evolutionary optimization, under a fixed budget of
computationally intensive evaluations. The framework uses similarity-based surro-
gate models and an individual-based model management with pre-selection. Instead
of existing frameworks where the surrogates are used to improve the performance
of evolutionary operators or as local search tools, here we use them to allow for an
augmented number of generations to evolve solutions. The introduction of the surro-
gates into the evolutionary cycle is controlled by a single parameter, which is related
with the number of generations performed by the evolutionary algorithm. Numerical
experiments are conducted in order to assess the applicability and the performance
in constrained and unconstrained, single- and multi-objective optimization prob-
lems. The results show that the present framework arises as an attractive alternative
to improve the final solutions with a fixed budget of expensive evaluations.

9.1 Introduction

Several problems of interest in science and engineering are or can be advanta-
geously formulated as optimization problems. However, modern problems have lead
to the development of increasingly complex and computationally expensive simula-
tion models. When the optimization algorithm involves the repeated use of expen-
sive simulations to evaluate the candidate solutions, the computational cost of such
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applications can be excessively high. A trade-off between the number of calls to
the expensive simulation model and the quality of the final solutions must often be
established. As result, an improvement of the optimization process is necessary.

A possible solution to this problem is the use of a surrogate model, or metamodel.
In this case, when evaluating candidate solutions in the optimization cycle, the com-
putationally intensive simulation model is substituted by the surrogate model, which
should be a relatively inexpensive approximation of the original model [24].

Genetic Algorithms (GAs) [21], inspired by Darwin’s theory of evolution by nat-
ural selection, are powerful and versatile tools in difficult search and optimization
problems. They do not require differentiability or continuity of the objective func-
tion, are less sensitive to the initialization procedures, and less prone to entrapment
in local optima. However, they usually require a large number of evaluations in
order to reach a satisfactory solution, and when expensive simulations are involved,
that can become a serious drawback to their application.

The idea of reducing the computation time or improving the solutions per-
forming less computationally expensive function evaluations, appeared early in the
evolutionary computation literature [22]. It should be mentioned also that there are
additional reasons for using surrogate models in evolutionary algorithms: (a) to re-
duce complexity [37], (b) to smooth the fitness landscape [61], (c) when there is no
explicit fitness available, and (d) in noisy environments [25].

Several surrogate models, of varying cost and accuracy, can be found in the lit-
erature, such as polynomial models [36], artificial neural networks [17], Kriging or
Gaussian processes [15], radial basis functions [30, 31], and support vector machines
[27]. Of course such techniques can also be combined and used as an ensemble
[32, 41].

Research in surrogate-assisted frameworks for solving problems with computa-
tionally expensive objective functions has been receiving increasing attention in the
last few years [7, 14, 16, 18, 26, 43, 64].

In the evolutionary optimization context, the surrogate model is constructed from
previously obtained solutions and used to evaluate new candidate solutions, avoiding
expensive simulations. An interesting strategy, when a given budget of expensive
evaluations is assumed, is to combine both exact and surrogate evaluations along the
evolutionary process in order to allow for an extension in the number of generations,
which can have a positive impact in the final result.

This chapter is focused on the use of a similarity-based surrogate model (SBSM)
to assist evolutionary algorithms in solving single- and multi-objective optimiza-
tion problems with a limited computational budget. Examples of similarity-based
surrogate models are fitness inheritance [56], fitness imitation [24], and the nearest
neighbor approximation model [4, 54].

In the surrogate-assisted optimization presented here, the individuals in the parent
population (evaluated by the original function) are sequentially stored in a database,
and then they are used to construct a surrogate model, based on similarity, which
is used along the optimization procedure to perform extra (surrogate) evaluations,
resulting in a larger number of generations.
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This chapter is organized as follows. The optimization problem is described in
Section 9.2. Section 9.3 presents the similarity-based surrogate models and the sur-
rogate assisted evolutionary optimization algorithm, for single- and multi-objective
optimization. The numerical experiments conducted are presented and discussed in
Section 9.4, and finally the concluding remarks are given in Section 9.5.

9.2 The Optimization Problem

The optimization problems considered here can be written as

minimize f1(x), f2(x), . . . , fnob j (x)
with x = (x1, . . . ,xn) ∈ S

subject to g j(x) ≤ 0, j = 1, . . . ,ni

xL
i ≤ xi ≤ xU

i

(9.1)

where fi(x) is the ith objective function to be minimized, nob j is the number of
objectives, n is the number of design variables, S is the search space bounded by
xL ≤ x ≤ xU , and ni is the number of inequality constraints. The feasible region is
defined by S and the ni inequality constraints g j(x).

We have multi-objective (MO) optimization when nob j ≥ 2. Single-objective
(SO) optimization (nob j = 1) is a special case of the formulation above. Also,
in the absence of constraints (ni = 0) we have the single- and multi-objective
unconstrained optimization problems.

In MO optimization a set of solutions representing the tradeoff among the differ-
ent objectives rather than an unique optimal solution is sought. This set of solutions
is also known as the Pareto optimal set and these solutions are also termed noninfe-
rior, admissible, or efficient solutions [20]. The corresponding objective vectors of
these solutions are termed nondominated and each objective component of any non-
dominated solution in the Pareto optimal set can only be improved by degrading at
least one of its other objective components [58]. The concept of Pareto dominance
and Pareto optimality will form the basis of solution quality. Pareto dominance is
defined by

x1 ≺P x2 (x1 Pareto-dominates x2) :⇔ (9.2)

∀i ∈ {1, . . . ,nob j} : fi(x1) ≤ fi(x2)∧
∃ j ∈ {1, . . . ,nob j} : f j(x1) < f j(x2).

The Pareto optimal front (PFT ) is the set of nondominated solutions such that
PFT = { fi(x∗)|� f j(x) ≺P fi(x∗), j ∈ {1, . . . ,nob j}}.

9.3 Surrogate-Assisted Evolutionary Optimization

Surrogate modeling, or metamodeling, can be viewed as the process of capturing the
essential features of a complex computer simulation (original evaluation function)
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in a simpler, analytical model by providing an approximation of the input/output
relation of the original model. The surrogate model should be simple, general, and
keep the number of control parameters as small as possible [5]. Examples of such
surrogates are the similarity-based surrogate models.

In this section we describe the similarity-based models, and the surrogate-assisted
evolutionary algorithms for single- and multi-objective optimization.

9.3.1 Similarity-Based Surrogate Models (SBSMs)

Similarity-based surrogate models (SBSMs) can be classified as lazy learners [2]
(and also memory-based learners) since that, in contrast to eager learning algorithms
such as Neural Networks, Polynomial Response Surfaces, and Support Vector Ma-
chines, which generate a model and then discard the inputs, SBSMs simply store
their inputs and defer processing until a prediction of the fitness value of a new
individual is requested. Then they reply by combining their stored data (previous
samples) using a similarity measure, and discard the constructed answer as well as
any intermediate results.

Among the SBSMs one can find the Fitness Inheritance procedure, Fitness Im-
itation, and the nearest neighbors method. In the following subsections we present
those approaches, and describe with details the nearest neighbor method, used here
as a surrogate model.

9.3.1.1 Fitness Inheritance

The fitness inheritance procedure was first proposed by Smith et al [56], and since
then has been applied in several problems [6, 12, 13, 49, 52, 63] and algorithms
[38, 45]. In fitness inheritance, all the individuals in the initial population have their
fitness value obtained via fitness function. Thereafter, the fitness of a fraction of
the individuals in the subsequent populations is inherited from their parents. The
remaining individuals are evaluated using the original fitness function (referred to
as simulation model).

The inheritance procedure is described as follows. Given an individual xh gener-
ated by evolutionary operators (crossover and mutation), from the parents xp1 and
xp2 . The surrogate evaluation is given by:

f̂ (xh) =

⎧⎪⎨⎪⎩
f (xpi) if d(xh,xpi) = 0, i = 1 or 2

s(xh,xp1 ) f (xp1 )+s(xh,xp2 ) f (xp2 )
s(xh,xp1 )+s(xh,xp2 ) otherwise

(9.3)

where s(xh,xpi) is the similarity between xh and xpi . The assumption is that an off-
spring is similar to its parents and thus its fitness is assigned as the weighted average
of the parents fitness.

In the inheritance procedure an entire simulation is replaced by a procedure with
negligible computational cost, which may lead to great computational savings that
grow with the rate of application of the inheritance technique and the cost of the
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x
2

1
x

Fig. 9.1 Illustration of the Fitness Imitation procedure. The individuals inside the dotted
circles belong to the same group. The representative individual, denoted by a black square,
is evaluated by the exact function. The remaining individuals are evaluated by a surrogate
model, their predicted fitness being calculated according to the distance to the representative
individual

fitness function evaluation [8, 51]. In fact, the inheritance procedure may be orders
of magnitude less expensive than the standard fitness evaluation. However, this ap-
proach introduces some noise in the search process and may adversely affect the
final solution found [13].

9.3.1.2 Fitness Imitation

In Fitness Imitation [24], the individuals are clustered into several groups. Several
clustering techniques can be used to perform this task [28]. Then, only the individ-
ual that represents its cluster is evaluated using the fitness function. The choice of
the representative individual can be made either deterministically or randomly [35].
The fitness value of other individuals in the same cluster will be estimated from the
representative individual based on a similarity measure. If a new individual to be
evaluated does not belong to any cluster, it is evaluated by the original function. The
term Fitness Imitation is used in contrast to Fitness Inheritance.

An illustration of the Fitness Imitation procedure is depicted in Figure 9.1.
Examples of applications of this procedure can be found in [3, 28, 35].

9.3.1.3 Nearest Neighbors

The nearest neighbors surrogate model (k-NN) is a simple and transparent surro-
gate model where the approximations are built based on a set D , which stores η
individuals (samples).

The idea of using k-NN to assist an evolutionary algorithm was explored in [46,
47], where the aim was to reduce the number of exact function evaluations needed
during the search. Here we use the surrogate to extend the generations, and to guide
the search towards improved solutions.

Given an offspring xh, the corresponding value f̂ (xh) ≈ f (xh), to be assigned to
xh is
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f̂ (xh) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (xI j ) if xh = xI j , for some j = 1, . . . ,η

∑k
j=1 s(xh,xI j )u f (xI j )

∑k
j=1 s(xh,xI j )u

otherwise
(9.4)

where s(xh,xi) is a similarity measure between xh and xi, I j, j = 1, . . . ,η is a
list that stores the individuals in the set D most similar to xh, k is the number of
neighbors used to build the surrogate and u is set to 2.

The main advantages of the k-NN technique are that it is flexible, does not have
severe restrictions, does not require any predefined functional form nor rely on
any probability distribution, and the variables can be either continuous or discrete.
Databases are also easy to maintain and updated when it is necessary to add or
remove samples. Indeed, k-NN does not require a training procedure, and in each
surrogate evaluation the database D must be ranked in order to determine the nearest
neighbors.

The similarity measure used here is based on the Euclidean distance and it is
given by

s(xh,xi) = 1 − dE(xh,xi)
dE(xU ,xL)

where dE(x,y) is the Euclidean distance between x and y.
The nearest neighbors (and its variations) have been applied in two-dimensional

interpolation [54], supervised learning [62], and recently in forest management
planning [55].

9.3.2 Surrogate-Assisted Framework

Once a surrogate model has been chosen, there are many ways of introducing it into
the evolutionary process. Some of them include: integrating GAs with surrogate ap-
proximations [40, 44] or landscape approximations [29], the use of surrogate-guided
evolutionary operators [42], surrogate-assisted local search [33, 60], accelerating
the optimization process using surrogates, pre-selection approaches [19, 39],
multiple surrogates [1, 33, 50], and coevolution of fitness predictors [53].

In this chapter we introduce the surrogate models into the evolutionary cycle by
means of a model management procedure [24] which, in each generation, uses in
a cooperative way both surrogate and exact models, so that the evaluation of the
population does not rely entirely on the surrogate model.

Maintaining a total of Nf ,max exact evaluations, surrogate model evaluations are
introduced in the GA in increasing levels, by decreasing the parameter psm. The
number of generations performed by the GA is given by NG = Nf ,max

psmλ . When psm = 1,
all individuals are evaluated by the exact function, one has NG = Nf ,max/λ , and the
standard GA is recovered. Indeed, as psm decreases, more surrogate evaluations are
introduced into the evolutionary optimization process.
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1: procedure Pre-selection (PS)
2: if psm �= 1 then
3: repeat
4: Evaluate individual using f̂
5: Nf̂ = Nf̂ +1
6: until all individuals in Gt evaluated
7: Rank Gt according to the surrogate model
8: end if
9: repeat

10: Evaluate individual using f
11: Nf = Nf +1
12: until all psm best individuals in Gt evaluated

Fig. 9.2 Pre-selection (PS) management procedure. psm is the fraction of individuals eval-
uated by the original model, λ is the population size, f and f̂ are the original and surro-
gate functions, Nf the current number of exact evaluations and Nf̂ is the current number of
surrogate evaluations

In the model management used here, only a fraction 0 < psm ≤ 1 of the population
is evaluated by the time-consuming original model. We implement a pre-selection
(PS) [19] strategy, where the surrogate model is used to decide which individuals
will be evaluated by the original function. This procedure is described as follows:
first, using evolutionary operators, λ individuals in the offspring population Gt are
generated from λ parents in the parent population Pt . Then the offspring population
Gt is entirely evaluated by the surrogate model and then ranked in decreasing order
of quality. Based upon this rank, the psmλ highest ranked individuals (according to
the surrogate model f̂ ) are evaluated by the original model, and the remaining λ −
psmλ individuals in Gt maintain their objective function predicted by the surrogate
model f̂ . The PS model management procedure is shown in Figure 9.2.

In the PS model management it is not necessary that the surrogate model approxi-
mates the objective function closely. It is sufficient that the ranking of the individuals
in the offspring population be similar to the ranking that would be obtained using
the simulation model.

9.3.3 The Surrogate-Assisted Evolutionary Algorithm

The similarity-based surrogate-assisted GA for computationally expensive opti-
mization problems, is shown in Figure 9.3. The developed algorithm will be referred
to as SBSM-GA. The variant developed for single-objective optimization is named
SBSM-SOGA while the multi-objective one is referred to as SBSM-MOGA. The
differences between them are (i) the ranking procedures (line 5 and 12) and (ii) the
parent population update procedure (line 13).

In the presented algorithm, we adopted the standard floating-point coding: each
variable is encoded as a real number and concatenated to form a vector which is
an individual in the population of candidate solutions. The following step is to ran-
domly generate an initial population. Each individual has then one or more objec-
tive function values assigned to it and, in cases of constrained optimization, also a
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1: procedure SBSM-GA
2: t ← 0; Nf ← 0; Nf̂ ← 0; D ← /0

3: Generate an initial population Pt with λ individuals
4: Evaluate Pt using the simulation model f
5: Rank Pt in decreasing order of quality
6: Initialize the set D ← Pt

7: while Nf ≤ Nf ,max do
8: Select parents from Pt

9: Generate a population Gt from Pt

10: Apply the model management (Figure 9.2).
11: Update the set D
12: Rank Pt in decreasing order of quality
13: Update parent population Pt+1 from Pt and Gt

14: t ← t +1
15: end while

Fig. 9.3 Similarity-based surrogate-assisted GA (SBSM-GA). Pseudo-code for single-
(SBSM-SOGA) or multi-objective (SBSM-MOGA) optimization. Pt is the parent population,
Gt is the offspring population, λ is the population size, f and f̂ are the original and surrogate
functions. Nf ,max is maximum number of exact evaluations, Nf is the current number of exact
evaluations and Nf̂ is the number of surrogate evaluations

measure of constraint violation associated with it. The population is sorted in or-
der to establish a “ranking”. Individuals are then selected for reproduction in a way
that better performing solutions have a higher probability of being selected. The
genetic material contained in the chromosome of such “parent” individuals is then
recombined and mutated, by means of crossover and mutation operators, giving rise
to offspring which will form a new generation of individuals. Finally, the whole
process is repeated until a termination criterion is attained.

Elitism is applied in the parent population update procedure (line 13): some in-
dividuals of the parent population are saved to the offspring population before the
new parent population is created. In the single-objective version (SBSM-SOGA),
the best ranked individual of the parent population Pt is copied to the offspring
population Gt .

In single-objective constrained optimization (ni �= 0), we use a constraint han-
dling technique presented in [10] to guide the search toward the (feasible) optimum.
The individuals are ranked according to a pair-wise comparison procedure, where
the following criteria are enforced:

1. when two feasible solutions are compared, the one with better objective function
value is chosen,

2. when one feasible and one infeasible solutions are compared, the feasible
solution is chosen, and

3. when two infeasible solutions are compared, the one with smaller constraint
violation is chosen.

The constraint violation is given by ∑ni
j=1 max(0,g j(x))2.
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The surrogate-assisted multi-objective GA (SBSM-MOGA) uses the operators
from the Non-dominated Sorting Genetic Algorithm (NSGA-II) [11]. The multi-
objective version of the algorithm differs from the single-objective version in the
following aspects: (i) the ranking procedure, which uses the fast non-dominated
sorting algorithm and the crowding comparison operator, and (ii) the elitism mech-
anism used in the parent population update procedure.

The ranking procedure that appears in lines 5 and 12 of the Figure 9.3 is re-
placed by the non-dominated sorting procedure [11], where the population is first
partitioned by means of nondominated sorting and, then, a crowding comparison op-
erator is employed by considering distances between individuals of the same rank.
The update procedure shown in line 13 is performed over the union of the parent and
offspring populations. The offspring population Gt is added to the parent population
Pt and the combined population (of size 2λ ) is ranked according to non-domination,
then the highest ranked individuals are copied to the next generation.

The constraint handling technique for multi-objective optimization problems is
based on the constraint-domination criteria [11], where feasible solutions have a
better non-domination rank than any infeasible solution. A solution i is said to
constraint-dominate a solution j, if any of the following conditions is true:

1. Solution i is feasible and solution j is not.
2. Solution i and solution j are both infeasible, but solution i has a smaller overall

constraint violation.
3. Solution i dominates solution j

To improve the quality of the approximations in Eq. (9.4) the surrogate models are
updated along the optimization process, by updating the set D . In the SBSM-GA, all
individuals exactly evaluated are recorded into the set D , and when the maximum
size η of the set is reached, the oldest individual is chosen to be replaced. As a result,
one has a relatively small and updated sample set, as older individuals are discarded
from D as the population evolves. The set size is equal to λ in the first generation
(line 6 of the algorithm 9.3) and limited to η individuals along the evolutionary
process.

In order to avoid convergence to false optima, and the need to re-evaluate the best
solutions in each generation, after the ranking procedure (either for single- or multi-
objective version), a sorting algorithm is applied in order to ensure that individuals
evaluated by the original function are ranked highest in the population.

9.4 Computational Experiments

The algorithmic parameters for both SBSM-SOGA and SBSM-MOGA are
summarized in Table 9.1.

We remark that, as described in Table 9.1, we have set a lower bound psm = 1/λ .
For single-objective problems, we must have psm ≥ 1/λ = 1/40 = 0.025, and psm ≥
1/λ = 1/50 = 0.02 for multi-objective problems. In the computational experiments
of this section, we have set psm ≥ 0.05.
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Table 9.1 Algorithmic parameters setting for SBSM-GA (single- and multi-objective
optimization)

Algorithmic Parameters

Population size (λ )
Single-obj. optimization problems: λ = 40
Multi-obj. optimization problems: λ = 50

Representation Floating-point coding: vectors of real numbers.

Operators

Single-obj. opt. problems: Uniform mutation, [34], Heuristic,
One- and Two-point crossover, [23], Rank-based selection [57]
and Elitism (best individual copied to the next generation)
Multi-obj. opt. problems: Uniform mutation, Heuristic, One- and
Two-point crossover, Rank-based selection (fast-non-dominated
sorting and crowding distance [11]), and Elitism (parent and off-
spring population mixed and sorted in order to create the next
generation)

Stop criterium Maximum number of exact evaluations, given by Nf ,max.

Crossover Probability (pc)
pc,heu = 0.54 (Heuristic), pc,1p = 0.18 (One-point) and pc,2p =
0.18 (Two-Point)

Mutation Rate (pm) pm = 0.02
Database size (η) η = {λ , 2λ , 5λ , 15λ} or DPR=(η/λ ) = {1, 2, 5, 15}
Database update

Replace the oldest individual. Only individuals evaluated by the
original function can replace individuals in the database D .

Surrogate Model Nearest Neighbors (k-NN)
Number of Neighbors (k) k ∈ {1,2,5,10,15}

Model Management

Individual-based Pre-Selection (PS) [19]. At each generation, the
offspring population Gt is entirely evaluated by the surrogate
model and ranked in decreasing order of quality. The psmλ high-
est ranked individuals (according to the surrogate model f̂ ) are
evaluated by the original model, and the remaining λ − psmλ in-
dividuals in Gt maintain their objective function predicted by the
surrogate model f̂ .

Fraction psm

psm ∈ [0.05,1.00]. The parameter psm defines the fraction of indi-
viduals evaluated by the original model: psm = 1 means the stan-
dard GA (no surrogates) with NG = Nf ,max/λ generations. As
we must ensure at least one individual evaluated by the original
model in each generation, we have psm ≥ 1/λ .

Performance Measures

The performance of the SBSM-GA is to be compared to the Stan-
dard GA (psm = 1).
Single-obj. opt. problems: The value of the objective function.
For constrained problems, also the number of runs leading to fea-
sible final solutions.
Multi-obj. opt. problems: Generational Distance [59], Maximum
Spread [33] and Spacing [20].

Number of runs 50

DPR: Database size Population size Ratio, with DPR = Database size
Population size = η

λ
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As the surrogate evaluations are introduced into the Standard GA, errors due
the surrogate model evaluations are also introduced, which may adversely affect the
quality of the final solutions. On the other hand, the extra surrogate evaluations allow
for a longer period to search for improved solutions. There is a trade-off beetwen the
noise introduced by the surrogate models and the beneficial impact in increasing the
number of generations. We recall that, given a budget of Nf ,max exact evaluations,
as the parameter psm decreases, the number of generations increases according to
NG = Nf ,max/psmλ .

It is assumed that for complex real-world applications the cost of a surrogate model
evaluation is negligible when compared to that of a simulation, hence total compu-
tational time will be only slightly increased due to the extra surrogate evaluations.

9.4.1 Single-Objective Optimization

In this section we show the results obtained for unconstrained and constrained
problems, using the GA assisted with the k-NN surrogate model.

The single-objective minimization problems are shown in Table 9.2, and the con-
strained optimization problems considered are shown in the Table 9.3. For the con-
strained problems, the bounds for each parameter, in each function, are defined in
the Table 9.4. More details of this set of constrained problems can be found in [48].

In problems with a large number of constraints (ni), similarity-based surrogate
models are computationally interesting, since they do not require a training pro-
cedure, leading to a simple and inexpensive way to estimate the constraints of the
individuals in the population.

9.4.1.1 Effects of the Number of Neighbors

In this first experiment, we study the impact of increasing the number of neigh-
bors, given a fixed database size (fixed DPR), in order to choose an appropriate
neighborhood size. Under a fixed DPR=η/λ = 2. the experiments were conducted

Table 9.2 Single-objective minimization problems. The maximum number of simulations is
Nf ,max, the lower and upper bounds are respectively xU and xL, n is the number of design
variables, and f ∗ is the optimal objective function value

# Objective function Nf ,max n [xL,xU ] f ∗
F01 ∑n

i=1 x2
i 1000 10 [−5.12,5.12] 0

F02 ∑n
i=1(�xi +0.5�)2 1000 10 [−100,100] 0

F03 ∑n
i=1

x2
i

4000 −∏n
i=1

cosxi√
i

+1 1600 10 [−600,600] 0

F04 −20e
−0.2

√
∑n

i=1 x2
i

n −e
∑n

i=1 cos(2πxi )
n +20+e 1000 10 [−32.768,32.768] 0

F05 ∑n−1
i=1 100(xi+1 −x2

i )
2 +(1−xi)2 2000 10 [−5.12,5.12] 0

F06 ∑n
i=1 ix4

i +U(0,1) 1000 10 [−4.28,4.28] 0
F07 ∑n

i=1(x
2
i −10cos (2πxi)+10) 2000 10 [−10,10] 0

F08 ∑n
i=1 −xi sin(

√|xi|)−418.982887272433n 1000 10 [−500,500] 0
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Table 9.3 Constrained minimization problems – The number of design variables is n. The
constraints read g j = g j(x) ≤ 0, j = 1, . . . ,ni

# Objective function Constraints n

G01 5∑4
i=1 xi −5∑4

i=1 x2
i −∑13

i=5 xi

g1 = 2x1 +2x2 +x10 +x11 −10
g2 = 2x1 +2x3 +x10 +x12 −10
g3 = 2x3 +2x2 +x12 +x11 −10
g4 = −8x1 +x10
g5 = −8x2 +x11
g6 = −8x3 +x12
g7 = −2x4 −x5 +x10
g8 = −2x6 −x7 +x11
g9 = −2x8 −x9 +x12

13

G02
∑n

i=1 cos4(xi)−2∏n
i=1 cos2(xi)√

∑n
i=1 ix2

i

g1 = 0.75−∏n
i=1 xi

g2 = ∑n
i=1 xi −7.5n

20

G04
5.3578547x2

3 +0.8356891x1
+x237.293239x1 −40792.141

g1 = 85.334407+0.0056858x2 x5+
0.0006262x1x4 −0.0022053x3x5 −92

g2 = −85.334407−0.0056858x2 x5−
0.0006262x1x4 +0.0022053x3x50

g3 = 80.51249+0.0071317x2 x5+
0.0029955x1x2 +0.0021813x2

3 −110
g4 = −80.51249−0.0071317x2 x5−

0.0029955x1x2 −0.0021813x2
390

g5 = 9.300961+0.0047026x3 x5+
0.0012547x1x3 +0.0019085x3x4 −25

g6 = −9.300961−0.0047026x3 x5−
0.0012547x1x3 −0.0019085x3x420

5

G06 (x1 −10)3 +(x2 −20)3 g1 = −(x1 −5)2 − (x2 −5)2 +100
g2 = (x1 −6)2 − (x2 −5)2 +82.81

2

G07

x2
1 +x2

2 +x1x2 −14x1 −16x2+
(x3 −10)2 +4(x4 −5)2+
(x5 −3)2 +2(x6 −1)2+
5x2

7 +7(x8 −11)2+
2(x9 −10)2 +(x10 −7)2 +45

g1 = −105+4x1 +5x2 +3x7 +9x8
g2 = 10x1 −8x2 −17x7 +2x8
g3 = −8x1 +2x2 +5x9 −2x10 −12
g4 = 3(x1 −2)2 +4(x2 −3)2 +2x2

3 −7x4 −120
g5 = 5x2

1 +8x2 +(x3 −6)2 −2x4 −40
g6 = x2

1 +2(x2 −2)2 −2x1x2 +14x5 −6x6
g7 = 0.5(x1 −8)2 +2(x2 −4)2 +3x2

5 −x6 −30
g8 = −3x1 +6x2 +12(x9 −8)2 −7x10

10

G08
sin(2πx1)sin(2πx2)

x3
1(x1+x2)

g1 = x2
1 −x2 +1

g2 = 1−x1 +(x2 −4)2 2

G09

(x1 −10)2 +5(x2 −12)2+
xqb4

3 +3(x4 −11)2+
10x5

6 +x2
6 +x4

7−
4x6x7 −10x6 −8x7

g1 = −127+2x2
1 +3x4

2 +x3 +4x2
4 +5x5

g2 = −282+7x1 +3x2 +10x2
3 +x4 −x5

g3 = −196+23x1 +x2
2 +6x2

6 −8x7
g4 = 4x2

1 +x2
2 −3x1x2 +2x2

3 +5x6 −11x7

7

G10 x1 +x2 +x3

g1 = −1+0.0025(x4 +x6)
g2 = −1+0.0025(x5 +x7 −x4)
g3 = −1+0.01(x8 −x5)
g4 = −x1x6 +833.33252x4 +100x1 −83333.333
g5 = −x2x7 +1250x5 +x2x4 −1250x4
g6 = −x3x8 +1250000+x3x5 −2500x5

8
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Table 9.4 Bound constraints for single-objective constrained optimization problems. The
maximum number of simulations is Nf ,max and f ∗ is the optimal objective function value

Function Bound constraints Nf ,max f ∗

G01

0 ≤ xi ≤ 1 (i = 1, . . . ,9),
0 ≤ xi ≤ 100 (i = 10,11,12),
0 ≤ x13 ≤ 1

600 −15

G02 0 ≤ xi ≤ 10 (i = 1, . . . ,n) n = 20 1200 −0.80355

G04

78 ≤ x1 ≤ 102,
33 ≤ x2 ≤ 45,
27 ≤ xi ≤ 45(i = 3,4,5)

6000 −30665.539

G06
13 ≤ x1 ≤ 100,
0 ≤ x2 ≤ 100

2400 −6961.81388

G07 −10 ≤ xi ≤ 10(i = 1, . . . ,10) 1000 24.3062091
G08 0 ≤ x1,x2 ≤ 10 8000 −0.095825
G09 −10 ≤ xi ≤ 10(i = 1, . . . ,7) 800 680.6300573

G10

100 ≤ x1 ≤ 10000,
1000 ≤ xi ≤ 10000(i = 2,3),
10 ≤ xi ≤ 1000(i = 4, ...,8)

3000 7049.3307

for k = {1,2,5,15} neighbors and the averaged fitness in 50 runs was used as
performance measure.

The neighborhood size affects the surrogate model in a way that small neigh-
borhood leads to estimates very close to the data in the database D , while a larger
neighborhood tends to smooth the surrogate output, resulting in estimates close to
the mean of the data in D [4].

The results for the SBSM-SOGA applied to the single objective optimization
problems in Tables 9.2 and 9.3 for different values of psm, and using 1, 2, 5, 10, and
15 neighbors are shown in Figures 9.4 and 9.5. In Figure 9.5, for each test-problem,
the average of the objective function in 50 runs is displayed. The average was
calculated considering only the feasible runs, i.e. those producing a final solution
which does not violate the constraints in Eq. (9.1).

For the all unconstrained functions, except for F08, as psm decreases, increasingly
better results are obtained. For those functions, it is possible to use very small values
of psm. In this set of experiments we set psm = 0.05, although we may use psm >
1/40 = 0.025, as described in Table 9.1. The results obtained for function F08, show
that improvements with respect to the Standard GA are obtained for psm values
below a certain threshold value, and the maximum improvement (compared to the
Standard GA) were obtained when psm > 0.20.

The same trend with respect to the number of neighbors and the parameter psm

is observed for all unconstrained functions. We observe that the extra evaluations
performed by the surrogate are beneficial to the evolutionary search, and improved
results are obtained when the number of generations increases.

From the results obtained for function G08, we can see that reducing psm, no
longer improves the final results, which means that the noise introduced by the



232 L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

0
50

10
0

15
0

20
0

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(a) F01

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

0.0
0.2

0.4
0.6

0.8

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(b) F02

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

1.5
2.0

2.5

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(c) F03

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

4
5

6
7

8

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(d) F04

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

50
10

0
15

0
20

0
25

0

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(e) F05

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

5
10

20
30

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(f) F06

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

20
25

30
35

40

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(g) F07

DPR= 2

psm

Av
er

ag
ed

 F
itn

es
s

80
0

10
00

12
00

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(h) F08

Fig. 9.4 Averaged Fitness for different values of psm, with DPR=2, using 1, 2, 5, 10, and 15
neighbors in the surrogate model shown in Eq. (9.4)
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Fig. 9.5 Averaged Fitness for different values of psm, with DPR=2, using 1, 2, 5, 10, and 15
neighbors in the surrogate model shown in Eq. (9.4)
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surrogate model affects the search in a negative way. Function G08, corresponds to a
complex landscape which could not be well approximated by the surrogate model.
Although faster and simple, the k-NN surrogate model has limited capabilities to
approximate complex mapping in ℜn, which, as an inner-product space, allows for
other calculus-based approximation. However, when the search occurs in a metric
space, k-NN may be one of the few available alternatives.

As observed in function G08, the constraints make the problem harder for the
SBSM-SOGA, since more approximations are involved (objective functions and
constraints) and the use of surrogates may lead the evolutionary process to poorer
regions of the search space.

The results displayed in Figure 9.5, except for function G06, and for G08 (where
no improvements were obtained), show that the number of neighbors does not sig-
nificantly affect the performance of the SBSM-SOGA for the set of functions con-
sidered here.

Table 9.5 shows the number of feasible runs for the SBSM-GA. The results were
obtained using k = 2 neighbors and DPR=2 to build the surrogate in Eq. (9.4). We
observe that the introduction of the surrogate does not affect the number of feasible
runs, except in test-problem G06, where a slightly decrease occurs. In G01 and G10,
the SBSM-GA increased the number of feasible runs.

Table 9.5 Constrained optimization problems – Number of runs that produce a final feasible
solution with respect to the parameter psm. The results were obtained using 2 neighbors and
DPR=2 to build the surrogate in Eq. (9.1)

psm G01 G02 G04 G06 G07 G08 G09 G10

1 12 50 50 50 46 50 50 20
0.9 13 50 50 49 42 50 50 15
0.8 25 50 50 49 45 50 50 20
0.7 29 50 50 47 49 50 50 20
0.6 43 50 50 48 50 50 50 15
0.5 48 50 50 49 49 50 50 27
0.4 50 50 50 47 50 50 50 28
0.3 50 50 50 47 50 50 50 33
0.2 50 50 50 48 50 50 50 39
0.1 50 50 50 46 50 50 50 41
0.05 50 50 50 47 50 50 50 40

In frameworks that use surrogates as a local search tools or to enhance oper-
ators, the improvements are directly related to the surrogate models. In this set of
experiments, the contribution of the surrogates to the evolutionary search is indirect:
the surrogates allow for an extended number of generations (although with inexact
evaluations), which provided the GA a longer period to evolve solutions.

9.4.1.2 Effects of the Database Size

In this section, a study of the impact of the database size on the evolutionary process
is performed. Based on the experiments presented in the previous section, we set
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the neighborhood size to k = 2 and we perform experiments for DPR={1,2,5,15},
corresponding to η = {1λ , 2λ , 5λ , 10λ , 15λ} where η = |D |.

Figures 9.6 and 9.7 display the results obtained by the SBSM-SOGA. We observe
that for G06 larger values of η improve the results for smaller psm. The remaining
test-problems are not affected by the database size. Except for G06, we observe
the same trend for all unconstrained and constrained functions, independent of the
database size.

One can verify that the negative impact of the surrogate model persists for test
problem G08: the average results become worse as psm decreases, independently of
the size of D .

The results suggest that, for single-objective problems, a smaller database D ,
combined with smaller values of psm are enough to improve the final solutions found
by the SBSM-SOGA (when compared to the Standard GA, where psm = 1). How-
ever as the ruggedness/complexity of the optimization problem increases, and when
constraints are involved (requiring more surrogate approximations), the performance
may be not satisfactory, leading in some cases to deteriorated final solutions.

The results presented in sections 9.4.1.1 and 9.4.1.2 suggest to use a small value
of the parameter psm. For SO problems, where one has no previous knowledge,
we suggest as an initial trial psm = 0.20. Indeed, the results are indifferent to the
database size, and we sugest a database size η = 2λ (DPR=2).

9.4.2 Multi-objective Optimization

In this section we present and discuss the performance of the SBSM-MOGA when
applied to constrained and unconstrained multi-objective problems.

A total of 14 MO problems (8 unconstrained and 6 constrained) were collected
[9] to study the impact of the surrogates into the SBSM-MOGA. Tables 9.6 and 9.7
show respectively the multi-objective unconstrained and constrained optimization
problems, the bounds for each parameter, the constraints (for the constrained ones),
the number of variables, and the maximum number of evaluations. Details can be
found in [9].

In order to investigate the impact of the surrogate models in multi-objective opti-
mization, we use as performance metrics the Generational Distance indicator (GD)
[59], the Maximum Spread [33] and Spacing [20].

The GD indicator measures the gap between the evolved Pareto front (PFE) and
the true Pareto front (PFT ), given by

GD =

√√√√ 1
NPF

NPF

∑
j=1

d2
j (9.5)

where NPF is the number of individuals in PFT , d j is the Euclidean distance (in the
objective space) beetwen an individual j in PFE and its nearest individual in PFT .
The generational distance in Eq. (9.5) measures the convergence to the true Pareto
front, and lower values of GD are better.
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Fig. 9.6 Surrogate-assisted single-objective evolutionary unconstrained optimization
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Fig. 9.7 Surrogate-assisted single-objective evolutionary constrained optimization
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Table 9.6 Unconstrained multi-objective optimization problems. The maximum number of
simulations is Nf ,max, the lower and upper bounds are respectively xU and xL, and n is the
number of design variables

# Objective Functions n [xL,xU ] Nf ,max

MF01

f1(x) = x1

f2(x) = 1−√
f1(x)/g(x)

g(x) = 1+9(∑n
i=2 xi)/(n−1)

30 [0,1] 1000

MF02

f1(x) = x1
f2(x) = g(x)

[
1− ( f1(x)/g(x))2

]
g(x) = 1+9(∑n

i=2 xi)/(n−1)
30 [0,1] 1000

MF03

f1(x) = x1

f2(x) = g(x)
[
1−√

f1(x)/g(x)− ( f1(x)/g(x))sin 10π f1

]
g(x) = 1+9(∑n

i=2 xi)/(n−1)
30 [0,1] 1000

MF04

f1(x) = x1

f2(x) = 1−√
f1(x)/g(x)

g(x) = 1+10(n−1)+9(∑n
i=2(x

2
i −10cos 4πxi)

10
x1 ∈ [0,1],
xi ∈ [−5,5]
i = 2, . . . ,10

1000

MF05

f1(x) = 0.5x1x2(1+g(x))
f2(x) = 0.5(1−x2)(1+g(x))
f3(x) = 0.5(1−x1)(1+g(x))

g(x) = 1000+100∑n
i=3[(xi −0.5)2 −cos20π(xi −0.5)]

12 [0,1] 2000

MF06

f1(x) = 1−exp (−4x1)sin6(6πx1)
f2(x) = g(x)[1− f1(x)/g(x)2]

g(x) = 1+9[∑n
i=2 xi/(n−1)]0.25

10 [0,1] 1000

MF07

f1(x) = cos π
2 x1 cos π

2 x2(1+g(x))
f2(x) = cos π

2 x1 sin π
2 x2(1+g(x))

f3(x) = sin π
2 x1(1+g(x))

g(x) = ∑n
i=3(xi −0.5)2

12 [0,1] 1000

MF08

f1(x) = cos π
2 x1 cos π

2 x2(1+g(x))
f2(x) = cos π

2 x1 sin π
2 x2(1+g(x))

f3(x) = sin π
2 x1(1+g(x))

g(x) = 1000+100∑n
i=3[(xi −0.5)2 −cos20π(xi −0.5)]

12 [0,1] 1400

The Maximum Spread (MS) is used to measure how well the true Pareto front
PFT is covered by the evolved Pareto front PFE . A larger value of MS reflects that
a larger area of the PFT is covered by PFE . The MS is given as

MS =

√√√√ 1
nob j

nob j

∑
i=1

[
min( f max

i ,Fmax
i )− max( f min

i ,Fmin
i )

Fmax
i − Fmin

i

]2

(9.6)

where f max
i and f min

i are the maximum and minimum of the ith objective in the
evolved Pareto front, respectively, and Fmax

i and Fmin
i the maximum and minimum

of the ith objective in the true Pareto front, respectively.
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Table 9.7 Constrained multi-objective optimization problems. The maximum number of
simulations is Nf ,max, the lower and upper bounds are respectively xU and xL, and n is the
number of design variables. The constraints are g j = g j(x) ≤ 0, j = 1, . . . ,ni

# Objective functions Constraints n Domain Nf ,max

MG01
f1 = −2x1 +x2
f2 = +2x1 +x2

g1 = −x1 +x2 −1
g2 = +x1 +x2 −7

2
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 3

1000

MG02
f1 = (x1 −2)2 +(x2 −1)2 −2
f2 = 9x1 +(x2 −1)2

g1 = x2
1 +x2

2 −225
g2 = x1 −3x2 +10

2 [−20,20] 800

MG03
f1 = x1
f2 = x2

g1 = 1−x2
1 −x2

2+
0.1cos (16arctan x1

x2
)

g2 = (x1 −0.5)2+
(x2 −0.5)2 −0.5

2 [0,π] 4000

MG04

f1 = −25(x1 −2)2 +(x2 −2)2+
(x3 −1)2 +(x4 −4)2+
(x5 −1)2

f2 = ∑n
i=1 x2

i

g1 = x1 +x2 −2
g2 = 6−x1 −x2
g3 = 2−x2 +x1
g4 = 2−x1 +3∗x2
g5 = 4− (x3 −3)2 −x4
g6 = (x5 −3)2 +x6 −4

6

0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 10
1 ≤ x3 ≤ 5
0 ≤ x4 ≤ 6
1 ≤ x5 ≤ 5
0 ≤ x6 ≤ 10

800

MG05

f1 = −x1
f2 = −x2
f2 = −x3

g1 = −1+∑n
i=1 x2

i 3 [0,1] 1200

MG06

f1 = 1
10 ∑

10
i=1 xi

f2 = 1
10 ∑

20
i=11 xi

f3 = 1
10 ∑

30
i=11 xi

g1 = 1− f3 −4 f1
g2 = 1− f3 −4 f2
g3 = 1−2 f3 − f1 − f2

30 [0,1] 2000

The metric of Spacing (S) shows how the nondominated solutions are distributed
along the evolved Pareto front and is given as

S =
1

d̂

√√√√ 1
NPF

NPF

∑
j=1

(d̂ − d j)2, d̂ =
1

NPF

NPF

∑
k=1

dk (9.7)

where NPF is the number of individuals in PFT and di is the Euclidean distance (in
the objective space) beetwen an individual i in the evolved Pareto front PFE and its
nearest individual in the true Pareto front PFT .

9.4.2.1 Effects of the Number of Neighbors

In this section we analyze the impact of the number of neighbors to the evolutionary
search, given a fixed database size. According to the database replacement policy,
the oldest individual is always chosen to be replaced. However, by removing so-
lutions according to age, we may inevitably remove some important information.
In order to alleviate this effect, we enlarge the training size for MO problems, and
set the database size to η = 15λ , which corresponds to DPR=15. This value of
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Fig. 9.8 Generational Distance (GD) indicator: surrogate-assisted multi-objective optimiza-
tion using DPR=15 and k = {1, 2, 5, 10, 15} neighbors
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Fig. 9.9 Generational Distance (GD) indicator: surrogate-assisted multi-objective optimiza-
tion using DPR=15 and k = {1, 2, 5, 10, 15} neighbors
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Fig. 9.10 Maximum Spread (MS): surrogate-assisted multi-objective optimization using
DPR=15 and k = {1, 2, 5, 10, 15} neighbors



9 On Similarity-Based Surrogate Models 243

DPR= 15

psm

Sp
ac

in
g

0.4
0.5

0.6
0.7

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(a) MF01

DPR= 15

psm

Sp
ac

in
g

0.6
0.7

0.8
1.0

1.2

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(b) MF03

DPR= 15

psm

Sp
ac

in
g

0.5
0

0.5
5

0.6
0

0.6
5

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(c) MF05

DPR= 15

psm

Sp
ac

in
g

0.4
8

0.5
2

0.5
6

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(d) MF08

DPR= 15

psm

Sp
ac

in
g

0.5
2.0

5.0
20

.0

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(e) MG01

DPR= 15

psm

Sp
ac

in
g

1.5
2.0

2.5
3.0

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(f) MG02

DPR= 15

psm

Sp
ac

in
g

2
3

4
5

7

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(g) MG03

DPR= 15

psm

Sp
ac

in
g

0.8
0.9

1.0
1.1

1.00 0.80 0.60 0.40 0.20 0.05

k = 1
k = 2
k = 5
k = 10
k = 15

(h) MG06

Fig. 9.11 Spacing (S): surrogate-assisted multi-objective optimization using DPR=15 and
k = {1, 2, 5, 10, 15} neighbors
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DPR results in storing information of at least 15 past generations, considering only
individuals evaluated by the simulation model are stored in D .

Figures 9.8 and 9.9 show the Generational Distance (GD) values, calculated for
the (final) population at the end of the evolutionary process.

We observe that the SBSM-MOGA produced better results (compared to the
Standard GA) depending on the values of the parameter psm. Except for the test-
problems MF05, MF07, and MF08, we observe that lower values of psm allow for
final solutions closer to the true Pareto front. Also, the performance does not vary
significantly as we change the number of neighbors used in the surrogate model. For
function MG06 we observe that the surrogate model is not able to consistently help
the GA in searching for improved solutions.

Figures 9.10 and 9.11 show the values of the Maximum Spread (MS) and
Spacing (S) metrics, respectively, for a group of functions from those shown in
Tables 9.6 and 9.7. From the results presented in Figure 9.10, we observe that, in-
dependently of the number of neighbors, smaller values of psm improve the perfor-
mance of the SBSM-MOGA in the MS metric for MF01, MF03, MG01 and MG06,
and for MF05, MF08, MG02, MG03 the MS is slightly affected when decreasing
the parameter psm. Considering the Spacing metric, decreasing psm consistently im-
proves the solutions in test-problems MF01, MF03, and MG01.

9.5 Concluding Remarks

In this chapter we have proposed the introduction of a similarity-based surrogate
model into a real-coded GA to assist the optimization of single- and multi-objective,
constrained and unconstrained optimization problems, under a fixed computational
budget.

We used the nearest neighbor approximation as a surrogate model, which is inte-
grated into the evolutionary cycle by means of an individual-based evolution control
where the surrogate is used to select individuals to be evaluated by the exact function
according to a single parameter psm.

Instead of existing frameworks where the surrogates are used to improve the per-
formance of evolutionary operators or as local search tools, here we use them to
allow for an augmented number of generations to evolve solutions.

The tests performed so far support the following general conclusions:

Single-objective optimization: The augmented number of generations leads to
improved solutions, when compared to the standard GA with the same number of
expensive evaluations. Also, the number of neighbors does not affect in a signifi-
cant way the final results, and a uniform trend is observed for unconstrained and
constrained problems, as the parameter psm decreases. Also, the final results are
not affected by the database size, which stores individuals previously evaluated
by the simulation model.

Multi-objective optimization: For the set of multi-objective unconstrained opti-
mization problems considered, small values of the parameter psm help to achieve
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a better convergence to the true Pareto front, according to the performance met-
rics, and the results are not significantly affected by the number of neighbors
used.

In the nearest neighbor approximation model no training procedure is required and
the prediction involves finding the nearest neighbors in an archive of previously
evaluated individuals. Under a fixed number of expensive simulations, the cost of
the surrogate-assisted procedure is only slightly increased due to the negligible com-
putational cost of the extra surrogate evaluations as the cost of the expensive simu-
lation increases.

The framework presented here seems to be a simple and effective way to tackle
single- and multi-objective unconstrained or constrained expensive optimization
problems. Additionally, the proposed framework can be easily extended to other
population-based metaheuristics, such as Differential Evolution, Ant Colony
Optimization and Particle Swarm Optimization.
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40. Queipo, N., Arévalo, C., Pintos, S.: The integration of design of experiments, sur-
rogate modeling, and optimization for thermoscience research. Engineering with
Computers 20, 309–315 (2005)

41. Queipo, N.V., Haftka, R.T., Shyy, W., Goela, T., Vaidyanathana, R., Tucker, P.K.:
Surrogate-based analysis and optimization. Progress in Aerospace Sciences 41(1), 1–28
(2005)

42. Rasheed, K., Vattam, S., Ni, X.: Comparison of methods for using reduced models to
speed up design optimization. In: Proceedings of Genetic and Evolutionary Computation
Conference, pp. 1180–1187. Morgan Kaufmann, New York (2002)

43. Rasheed, K., Ni, X., Vattam, S.: Comparison of methods for developing dynamic
reduced models for design optimization. Soft Computing Journal 9, 29–37 (2005)

44. Regis, R.G., Shoemaker, C.A.: Local function approximation in evolutionary algorithms
for the optimization of costly functions. IEEE Trans. Evolutionary Computation 8(5),
490–505 (2004)

45. Reyes-Sierra, M., Coello, C.A.C.: A study of fitness inheritance and approximation tech-
niques for multi-objective particle swarm optimization. In: The 2005 IEEE Congress on
Evolutionary Computation, vol. 1, pp. 65–72 (2005)

46. Runarsson, T.: Approximate evolution strategy using stochastic ranking. In: Yen, G.G.,
Wang, L., Bonissone, P., Lucas, S.M. (eds.) IEEE World Congress on Computational
Intelligence, Vancouver, Canada (2006)

47. Runarsson, T.P.: Constrained Evolutionary Optimization by Approximate Ranking and
Surrogate Models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós,
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Chapter 10
Multi-objective Model Predictive Control Using
Computational Intelligence

Hirotaka Nakayama, Yeboon Yun, and Masakazu Shirakawa

Abstract. When function forms in mathematical models can not be given explicitly
in terms of design variables, the values of functions are usually given by numeri-
cal/real experiments. Since those experiments are often expensive, it is important to
develop techniques for finding a solution with as less number of experiments as pos-
sible. To this end, the model predictive optimization methods aim to find an optimal
solution in parallel with predicting the function forms in mathematical models. Suc-
cessive approximate optimization or metamodeling are of the same terminology. So
far, several kinds of methods have been developed for this purpose. Among them,
response surface method, design of experiments, Kriging method, active learning
methods and methods using computational intelligence are well known. However,
the subject of those methods is mainly static optimization. For dynamic optimiza-
tion problems, the model predictive control has been developed along a similar idea
to the above. This chapter discusses multi-objective model predictive control prob-
lems and proposes a method using computational intelligence such as support vector
regression.
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10.1 Introduction
In many practical problems such as engineering design, function forms in math-
ematical models can not be given explicitly in terms of design variables, but the
values of functions are usually given by numerical/real experiments. Since those
experiments are often expensive, it is important to develop techniques for finding
a solution with as less number of experiments as possible. Model predictive opti-
mization (or sequential approximate optimization: SAO depending on literatures)
has been developed to this aim extensively in recent years [13, 18, 19, 22].

In this chapter, we consider model predictive optimization problems under a dy-
namic environment with multiple objectives. For prediction of function forms, we
apply some techniques of computational intelligence such as support vector regres-
sion or radial basis function networks. For optimization with multiple objectives, the
satisficing trade-off method, which was developed by one of authors in ’80s, is applied
along with some meta-heuristic optimization method such as genetic algorithms. It
will be shown how model prediction using computational intelligence combined with
an interactive multi-objective optimization technique works well for multi-objective
model predictive control problems.

10.2 Meta-modeling Using Computational Intelligence

Letting the design variables x be a vector of Rn, optimization problems can be
formulated as

minimize
x

f (x) over x ∈ X ⊂ Rn,

where the constraint set X may be represented by gi(x) � 0, i = 1, . . . ,m. The iden-
tification of f and X (or gi, i = 1, . . . ,m) is called “modeling”. We assume that those
functions exist due to some physical rule, although their explicit function forms
can not be known in terms of design variables x. Those situations are common in
particular in engineering design problems. Under the circumstance, we try to get
approximate functions f̂ (and ĝi, i = 1, . . . ,m, if necessary). The approximation of
objective/constraint functions based on several observations is called “metamodel-
ing” in the sense of making a model of the model.

Now, our aim is to construct a good metamodel in the sense that

i) we can obtain an approximate optimal solution x̂∗ through the
metamodel with the property

| f̂ (x̂∗)− f (x∗)| � ε1,

where x̂∗ and x∗ minimize f̂ and f , respectively, and ε1 is a given small
positive number,

ii) the total number of observations is as small as possible,
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iii) the metamodel f̂ approximates well f entirely, if possible. Namely

‖ f̂ − f‖ � ε2,

where ε2 is a given small positive number.

If our aim is merely to find the optimal solution minimizing f (x), the above require-
ment iii) is not necessary, but the metamodel f̂ approximates f sufficiently well at
least in a neighborhood of the optimal solution x∗. Depending on practical problems,
however, one may want to see the global behavior of the model f .

For metamodeling, several kinds of methods for regression can be available.
Among them, Response Surface Method (RSM), Design of Experiments (DOE)
and Kriging method are well known as methods for getting a well predicted model
with less number of experiments. On the other hand, methods using computational
intelligence such as Radial Basis Function Networks (RBFN) and Support Vector
Regression (SVR) have been widely recognized to be effective for general nonlinear
models.

Support Vector Regression (SVR) means the regression by Support Vector Ma-
chine (SVM). SVM was originally developed for pattern classification and later
extended to regression (Vapnik et al. [3, 29]), and now is widely recognized as a
powerful machine learning technique. Recently, Nakayama-Yun [21] claimed that
several variants of SVM are possible from linear classifiers using goal program-
ming, which was researched extensively in 1980’s [8]. Consider several kinds of
objectives in goal programming using both the exterior deviation and the interior
deviation:

(i) minimize the maximum exterior deviation
(decrease errors as much as possible),

(ii) maximize the minimum interior deviation
(i.e., maximize the margin),

(iii) maximize the weighted sum of interior deviation,

(iv) minimize the weighted sum of exterior deviation.

Introducing the objective (iv) above leads to the soft margin SVM with slack vari-
ables (or, exterior deviations) which allow classification errors to some extent. Tak-
ing into account the objectives (ii) and (iv) above, we have ν−SVM which was
originally proposed from a different viewpoint by Schölkopf et al. [25]. On the
other hand, using the objectives (i) and (ii) we have μ−ν−SVM [21], which seems
attractive since they provide less support vectors than other SVM models.

Those SVM models can be applied to regression by introducing ε-insensitive loss
function by Vapnik [29]. Denote the given training data set by (xi,yi) ,
i = 1, . . . , �. Suppose that the regression function f on the feature space Z = Φ(x),
where the map Φ is defined implicitly by using the kernel function K(x,x′) = zT z =
Φ(x)TΦ(x′), is expressed by
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f (z) =
�

∑
i=1

wizi + b,

and the linear ε insensitive loss function is defined by

Lε (z,y, f ) = |y − f (z)|ε = max(0, |y − f (z)|− ε).

For a given insensitivity parameter ε , C−SVR considering exterior
deviations ξi, i = 1, . . . , � is formulated as follows:

minimize
w,b,ξ ,ξ́

1
2
‖w‖2

2 +C

(
1
�

�

∑
i=1

(ξi + ξ́i)

)
(C−SVR)P

subject to
(
wT zi + b

)− yi � ε + ξi, i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́i, i = 1, . . . , �,

ξi, ξ́i � 0,

where C is a trade-off parameter between the norm of w and ξi (ξ́i).
The dual formulation to the problem (C−SVR)P using the kernel function

K(x,x′) = zT z = Φ(x)TΦ(x′) is given by

maximize
α ,ά

− 1
2

�

∑
i, j=1

(άi −αi) (ά j −α j)K (xi,x j) (C−SVR)

+
�

∑
i=1

(άi −αi)yi − ε
�

∑
i=1

(άi +αi)

subject to
�

∑
i=1

(άi −αi) = 0,

0 � άi � C
�
, 0 � αi � C

�
, i = 1, . . . , �.

In order to decide the insensitivity parameter ε automatically, Schölkopf and Smola
proposed ν−SVR which is formulated by the following [25]:

minimize
w,b,ε,ξ ,ξ́

1
2
‖w‖2

2 +C

(
νε +

1
�

�

∑
i=1

(ξi + ξ́i)

)
(ν−SVR)P

subject to
(
wT zi + b

)− yi � ε + ξi, i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́i, i = 1, . . . , �,

ε, ξi, ξ́i � 0,

where C and 0 < ν � 1 are trade-off parameters between the norm of w and ε and
ξi (ξ́i).
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The dual formulation to the problem (ν−SVR)P is given by

maximize
α ,ά

− 1
2

�

∑
i, j=1

(άi −αi)(ά j −α j)K (xi,x j) (ν−SVR)

+
�

∑
i=1

(άi −αi)yi

subject to
�

∑
i=1

(άi −αi) = 0,

�

∑
i=1

(άi +αi) � Cν,

0 � άi � C
�
, 0 � αi � C

�
, i = 1, . . . , �.

In a similar fashion to classification, C−SVR can be extended to μ−SVR aiming to
minimize the maximum exterior deviation ξ as follows:

For a given insensitivity parameter ε ,

minimize
w,b,ξ ,ξ́

1
2
‖w‖2

2 + μ(ξ + ξ́ ) (μ−SVR)P

subject to
(
wT zi + b

)− yi � ε + ξ , i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́ , i = 1, . . . , �,

ξ , ξ́ � 0,

where μ is a trade-off parameter between the norm of w and ξ (ξ́ ).
The dual formulation to the problem (μ−SVR)P is given by

maximize
α ,ά

− 1
2

�

∑
i, j=1

(άi −αi) (ά j −α j)K (xi,x j) (μ−SVR)

+
�

∑
i=1

(άi −αi)yi − ε
�

∑
i=1

(άi +αi)

subject to
�

∑
i=1

(άi −αi) = 0,

�

∑
i=1

άi � μ ,
�

∑
i=1

αi � μ ,

άi � 0, αi � 0, i = 1, . . . , �.

Combining μ−SVR and ν−SVR, we can derive another formulation which may be
defined as μ−ν−SVR:
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minimize
w,b,ε,ξ ,ξ́

1
2
‖w‖2

2 +νε+ μ(ξ + ξ́ ) (μ −ν−SVR)P

subject to
(
wT zi + b

)− yi � ε + ξ , i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́ , i = 1, . . . , �,

ε, ξ , ξ́ � 0,

where ξ (ξ́ ) denotes the maximum outer deviation from the ε band, and ν and μ
are trade-off parameters between the norm of w and ε and ξ (ξ́ ) respectively.

In this formulation, however, at least either ε or ξ (or ξ́ ) vanishes at the solution
according to ν � 2μ or ν � 2μ . Therefore, μ − ν−SVR may be reduced to the
following formulation simply called νε−SVR (or similarly μξ−SVR replacing ε
by ξ (ξ́ ) and νε by μ(ξ + ξ́ )):

minimize
w,b,ε

1
2
‖w‖2

2 +νε (νε − SVR)P

subject to
(
wT zi + b

)− yi � ε, i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε, i = 1, . . . , �,

ε � 0,

where ν is a trade-off parameter between the norm of w and ε .
This formulation can be regarded as a kind of Tchebyshev approximation in the

feature space.
The dual formulation of (νε − SVR)P is given by

maximize
α ,ά

− 1
2

�

∑
i, j=1

(άi −αi) (ά j −α j)K (xi,x j) (νε−SVR)

+
�

∑
i=1

(άi −αi)yi

subject to
�

∑
i=1

(άi −αi) = 0,

�

∑
i=1

(άi +αi) � ν,

άi � 0, αi � 0, i = 1, . . . , �.

It has been observed that μ−SVR and νε−SVR provide the least number of support
vectors while keeping a reasonable error rate, compared with C−SVR and ν−SVR.
That is, μ−SVR and νε−SVR is promising for sparse approximation which means
the computation is less expensive. The fact that μ−SVR and νε−SVR yields good
function approximation with reasonable accuracy and with less support vectors, is
important in practice in engineering design.
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10.3 Aspiration Level Approach to Interactive Multi-objective
Optimization

Suppose that we have several (usually conflicting) objective functions f1(x),
. . . , fr(x) to be minimized. In such a multi-objective optimization, in general, there
is no solution minimizing all objective functions simultaneously. A Pareto solution
x̂ is defined as a solution for which in order to improve some objectives we have to
sacrifice some of other objectives (see Fig. 10.1).

)(Xf

2f

1f

)ˆ(xf

Fig. 10.1 Pareto solution in the objective space

Since there may be many Pareto solutions in practice, the final decision should
be made among them taking the total balance over all criteria into account. This
is a problem of value judgment of decision maker (DM). The balancing over cri-
teria is usually called trade-off. The set of Pareto values (namely, the values of
objective functions corresponding to Pareto solutions) is called Pareto frontier. If
we can visualize the Pareto frontier, DM can easily make his trade-off analysis on
the basis of the shown Pareto frontier. In recent years, studies aimed at generating
Pareto frontier have been developed with a help of meta-heuristic algorithms such as
evolutionary algorithms and particle swarm optimization (see, for example, [1, 2, 5,
11, 12]).

On the other hand, it is not so easy to understand the trade-off relation of Pareto
frontier with more than 3 dimensions. Since 1970’s, interactive multi-objective pro-
gramming techniques have been developed in order to overcome this difficulty:
those methods search a solution in an interactive way with DM while making trade-
off analysis on the basis of DM’s value judgment (see, for example, [1]). Among
them, the aspiration level approach is now recognized to be effective in many prac-
tical problems. As one of aspiration level approaches, one of authors proposed the
satisficing trade-off method [20].

Suppose that we have objective functions f (x) := ( f1(x), . . . , fr(x))T to be min-
imized over x ∈ X ⊂ Rn. In the satisficing trade-off method, the aspiration level at

the k-th iteration f
k

is modified as follows:

f
k+1 = T ◦ P( f

k).
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Here, the operator P selects the Pareto solution nearest in some sense to the given

aspiration level f
k
. The operator T is the trade-off operator which changes the k-

th aspiration level f
k

if DM does not compromise with the shown solution P( f
k).

Of course, since P( f
k) is a Pareto solution, there exists no feasible solution which

makes all criteria better than P( f
k), and thus DM has to trade-off among criteria if

he wants to improve some of criteria. Based on this trade-off, a new aspiration level

is decided as T ◦P( f
k). Similar process is continued until DM obtains an agreeable

solution.
The operation which gives a Pareto solution P( f

k) nearest to f
k

is performed by
some auxiliary scalar optimization:

minimize
x

max
1�i�r

{
ωi
(

fi(x)− f i

)}
+α

r

∑
i=1

ωi fi(x),

where α is usually set a sufficiently small positive number, say 10−6.
The weight ωi is usually given as follows: Let f ∗

i be an ideal value which is
usually given in such a way that f ∗

i < min{ fi(x) | x ∈ X}. For this
circumstance, we set

ωk
i =

1

f
k
i − f ∗

i

.

With this weight, Fig. 10.2 illustrates the operation P (namely, finding the nearest
Pareto solution to the given aspiration level) and T (namely, revising the aspiration
level).

1�k

f

k

f

*f

1f

2f

Fig. 10.2 Satisificing Trade-off Method

For more details of nonlinear interactive methods for multiobjective optimization,
the readers should refer Branke et al. [1], Gal et al. [9], Miettinen [15], Sawaragi
et al. [24], Steuer [27], Wierzbicki et al. [30], etc. In particular, Nakayama [17]
emphasizes why the weighting method using linearly weighted sum of objective
functions does not work so well.
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10.4 Multi-objective Model Predictive Control

Consider dynamic optimization problems in this section. Along optimal control the-
ory, let u(t), x(t) denote the control (input) vector and the state vector at the time t,
respectively, and T the terminal time. The theory assumes the mathematical model
as follows:

minimize
u, x

J = φ [x(T )]+
∫ T

0
F(x(t),u(t), t)dt

subject to ẋ = f (x(t),u(t), t), x(0) = x0. (10.1)

If the function form in the above model is explicitly given, then we can apply some
techniques on the basis of optimal control theory. However, we assume that some of
function forms, in particular the dynamic system equation (10.1), can not explicitly
be given. Under this circumstance, we predict some of future state x(t +1), . . . ,x(t +
p1) for given u(t + 1), . . . ,u(t + p2), where the prediction period p1 and the control
period p2 are given (p1 � p2). Our aim is to decide the optimal control sequence
u(t) over [0,T ].

Suppose that our problem to be considered in this section has multiple objectives

J = (J1, . . . ,Jr)T .

For example, those objectives are the energy consumption, constraints of terminal
state, the terminal time (T ) itself and so on.

For predicting the future state, we apply a support vector regression technique,
namely μ−SVR which was introduced in the previous section. It has been observed
that μ−SVR provides less support vectors than other SVRs.

In order to get the final decision for these multi-objective problems, applying
the satisficing trade-off method [20] which is an aspiration level based method, we
summarize the algorithms as belows:

Step 1. Predict the model f by using μ−SVR based on the past state and control
(x(k−q),x(k−q+1), . . . ,x(k),u(k−q),u(k−q+1), . . . ,u(k−1)), k = q, . . . ,t,
where q represents a depth of sampling training data and x(0) = x0 (denote f̂ as
the predicted function of f ).

Step 2. Decide a control u∗(t) at the time t by using genetic algorithm:

(i) Generate randomly N individuals of control sequence:

u j(t), uj(t + 1), . . . ,u j(t + p2 − 1), j = 1,2, . . . ,N,

and set uj(t + i) = u j(t + p2 − 1) for i � p2, generally.
(ii) Predict the next state vector x j(k + 1) for each control sequence from the

present time t to the time t + p1:

x j(k + 1)− xj(k) := f̂ (x j(k),u j(k)), k = t, t + 1, . . . ,t + p1 − 1.
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(iii)For x j = (x(0),x(1), . . . ,x(t),x j(t +1), . . . ,x j(t + p1)) and uj = (u(0),u(1), . . . ,
u(t),u j(t +1), . . . ,x j(t + p1 −1)), calculate the value of auxiliary scalar function
of satisficing trade-off method: for the aspiration level J = (J1, . . . ,Jr)T given
by a decision maker2,

z j = max
1�i�r

{
wi
(
Ji(u j,x j)− Ji

)}
+α

r

∑
i=1

wi
(
Ji(u j,x j)− Ji

)
,

where wi = 1
Ji−J∗

i
and J∗

i is an ideal value of i-th objective function.

(vi) Evaluating the individuals of control sequence by the value of z j, generate new
individuals of control sequence through natural selection and genetic operators
(for details, see [5]).

(v)Repeat (ii)–(iv) until a stop condition, for example the number of iteration,
holds.

Step 3. Decide the best control sequence u∗ such that min
j=1,...,N

z j, and

observe the real value x(t + 1) using u(t) = u∗(t).
Step 4. Stop if t = T , otherwise update t ← t + 1 and go to Step 1.

In order to show the effectiveness of the stated method, we shall apply our method
to an example of flight control of an aircraft described in [14].

Let x1 be the angle of attack, x2 the pitch angle, x3 the pitch rate and x4 the
altitude. In addition, let the output be the pitch angle y1 (rad), the altitude y2 (m) and
the altitude rate y3 (m/sec). Suppose that the elevator angle u (rad) is just an input
(controller), and the aircraft flies with a constant velocity 128.2 m/sec at the altitude
5000 m. Then the linearized dynamic equation is given by

ẋ = Ax + Bu, y = Cx + Du. (10.2)

The above equation (10.2) for the discrete time can be represented by

x(t + 1) = Ax(t)+ Bu(t), y(t) = Cx(t)+ Du(t), (10.3)

where

A =

⎡⎢⎢⎣
− 1.2822 0 0.98 0

0 0 1 0
−5.4293 0 − 1.8366 0
−128.2 128.2 0 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
−0.3

0
−17

0

⎤⎥⎥⎦ ,

C =

⎡⎣ 0 1 0 0
0 0 0 1

− 128.2 128.2 0 0

⎤⎦ , D =

⎡⎣ 0
0
0

⎤⎦ .

2 A decision maker may change her/his aspiration level from the one at the previous time
t −1.
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We have the following structural constraints

|u| � 0.262 rad (15◦), |u̇| � 0.524 rad/sec (30◦/sec),

and in addition, for the comfortability of passengers we impose the following
constraint

|y1| � 0.349 rad (20◦).

Our aim is to get up to the target altitude H as soon as possible, and as comfortable
for passengers as possible within the given time T . Therefore, our objective at the
present time t is given by

minimize J1 =
t+p1

∑
k=0

(
1 − y2(k)

H

)2

minimize J2 =
t+p1

∑
k=0

(
y1(k)
0.349

)2

Now, we optimize the input (i.e., the elevator angle) without knowing the explicit
form of dynamic equation (10.3), and set the target altitude H = 400 m. Both the
prediction period p1 and the control period p2 are 5 sec and 1.5 sec, respectively,
and the depth of sampling training data q = 1. The terminal time T is given by 20
sec, and the sampling period for discretization of dynamics is 0.5 sec. In GA, we use
BLXα , α = 0.25 (blend crossover, BLX) which is well known as a real-coded GA
[6]. The size N of individuals is 100 and the iteration number is 100. Each constraint
is treated by the penalty method (other techniques to deal with constraints in GA can
be referred to [2, 28]).

Case 1

Suppose that we are at the time t = 5, and consider two situations without/with
turbulence for 5 seconds from the present time t = 5 (the observed altitude may be
considerably different with the predicted one by turbulence). The aspiration level is
given by J1 = 6.0, J2 = 10.0, and the ideal point J∗

1 = 3.0, J∗
2 = 5.0.

Fig. 10.3 shows the solutions by using the satisficing trade-off method with the
predicted model. Here, the symbol 	 represents the aspiration level, the symbol
� the solution without turbulence and the symbol ◦ the solution with turbulence.
Fig. 10.4 and Fig. 10.5 show each response corresponding to the obtained solution.
Compared Fig. 10.5 with Fig. 10.4, because of turbulence, there are relatively strong
fluctuations in controlling the elavator angle u.

In this case, one may see that the time in which the increase of altitude attains
400 m becomes longer because the comfortability of passengers is considered rel-
atively more important. However, since the upper bound of the altitude rate y3 is
not constrained, the pitch angle y1 may take the value of the upper bound during
the transient state. Thus, in the following case 2, we consider the case in which the
upper bound of the altitude rate y3 is 30 m/sec.
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Fig. 10.3 Solution by using the aspiration level method (case 1)

Fig. 10.4 Responses without turbulence (case 1)

Case 2

The aspiration level is given by J1 = 8.0, J2 = 8.0, and the ideal point J∗
1 = 4.0, J∗

2 =
4.0. We show the solutions by using the satisficing trade-off method with the pre-
dicted model in Fig. 10.6. Fig. 10.7 and Fig. 10.8 show each corresponding response
to the obtained solution.
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Fig. 10.5 Responses with turbulence (case 1)
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Fig. 10.6 Solution by using the aspiration level method (case 2)

Comparing the results of case 1 and case 2, it is seen in case 2 that the pitch angle
y1 during the transient state is smaller than its upper bound due to the limitation of
the altitude rate y3. As seen from Fig. 10.7 and Fig. 10.8, consequently, there are
strong fluctuations in controlling the elavator angle u from t = 10 to t = 15, in order
to attain the target altitude 400 m as fast as possible. Moreover, the curve of the
pitch angle y1 in Fig. 10.8 is not as smooth as the one in Fig. 10.7.
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Fig. 10.7 Responses without turbulence (case 2)

Fig. 10.8 Responses with turbulence (case 2)
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10.5 Concluding Remarks

We discussed a method for multi-objective model predictive control. μ−SVR is ap-
plied for model prediction, while the satisficing trade-off method for solving multi-
objective optimization. It has been observed that the proposed method works well
through our several experiments. A difficulty in the problems stated in this chapter
is that the terminal time is variable. In this chapter, for a fixed terminal time, firstly,
we find a sequence of optimal control. Next, we vary the terminal time. This proce-
dure requires a lot of iterations for optimization. It is desirable to reduce the number
of iterations for optimization from this viewpoint in the future.

Another difficulty occurs in finding optimal solutions to predicted models by
using genetic algorithms (GAs): In general, GAs are not good at treating constraints.
As can be seen in our numerical example, it is difficult to obtain optimal solutions
for constrained optimization problems in a reasonable precision by GAs such as
BLXα used in this chapter. It seems better to apply usual gradient-based methods for
treating simple constraints such as linear forms. In addition, since there have been
developed some methods for treating constraints in a framework of evolutionary
algorithms [2, 11, 12], comparative studies on the performance of those methods
should be further research topics.
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Chapter 11
Improving Local Convergence in Particle
Swarms by Fitness Approximation Using
Regression

Stefan Bird and Xiaodong Li�

Abstract. In this chapter we present a technique that helps Particle Swarm Optimis-
ers (PSOs) locate an optimum more quickly, through fitness approximation using
regression. A least-squares regression is used to estimate the shape of the local fit-
ness landscape. From this shape, the expected location of the peak is calculated and
the information given to the PSO. By guiding the PSO to the optimum, the local con-
vergence speed can be vastly improved. We demonstrate the effectiveness of using
regression on several static multimodal test functions as well as dynamic multimodal
test scenarios (Moving Peaks). This chapter also extends the Moving Peaks test suite
by enhancing the standard conic peak function to allow the creation of asymmetri-
cal and additional multiple local peaks. The combination of this technique and a
speciation-based PSO compares favourably to another multi-swarm PSO algorithm
that has proven to be working well on the Moving peaks test functions.

Keywords: Particle Swarm Optimization, Swarm Intelligence, Optimization in
Dynamic Environments, Regression Techniques, Numerical Optimization.

11.1 Introduction

Local search methods are known for their extremely fast convergence, however they
are also highly susceptible to becoming trapped in the first optimum they find. Many
real world problems are far too complex to be solvable by these methods. Evolution-
ary Algorithms (EAs) and Particle Swarm Optimisation (PSO) have been proved
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to be effective search strategies. Both algorithms are able to converge on an op-
timum even when the catchment area occupies only a small portion of the search
space. These algorithms are far less likely to become trapped in a local peak than
local search, especially when combined with a diversification measure. This prop-
erty comes at a cost though, as they take far more evaluations to locate an optimum
than local search methods.

Combining local search with an EA (or PSO) can provide the best of both worlds,
as we gain the robustness of the population-based algorithms as well as the local
search’s convergence speed [26]. This hybrid approach is quite common, for ex-
ample [24, 34, 36]. However, using the local search requires extra fitness evalua-
tions to be performed; when considered over the entire optimisation process, these
evaluations can be very costly.

To overcome the issue associated with high computational cost, several fitness
approximation techniques have been developed (see also Section 11.2.1). For ex-
ample, in aerodynamic structure optimization, since simulations for computational
fluid dynamics are usually very expensive, approximate models were developed
[1, 16]. Fitness approximation was also used in conjunction with an evolution-
ary algorithm for protein structure prediction to cut down the computational cost
[27]. Another interesting study in [23] shows the benefits of approximating fitness
landscape using a polynomial regression model.

This chapter presents a fitness approximation technique that helps Particle Swarm
Optimisers (PSOs) locate an optimum more quickly, without requiring any extra
fitness evaluations. Rather than performing a local search, we use the candidate
solutions already tested by a PSO to create a surface that best fits the peak. We
then attempt to calculate the highest point of this surface. Provided that the local
features of the fitness landscape roughly match our surface, the optimum should be
very close to the computed highest point. This allows us to very quickly hone in on
the actual maximum point – with each successive attempt we know more and more
about the landscape, improving our estimation further.

Our early study in [7] suggested that regression was able to improve efficiency in
handling some dynamic optimization functions (ie., Moving peaks scenario 2). Ex-
tending the early findings, this chapter provides several new investigations on using
regression. Firstly, we identified similarities and differences between our regression
method and other existing works in literature. Secondly, we included several widely
used static multimodal test functions to further verify if regression is effective in im-
proving local convergence for solving static multimodal problems in general. In ad-
dition, we also adopted a Generic Hump function (which is tunable with the number
of peaks and the number of dimensions) to study especially if regression is effec-
tive in reducing the number of evaluations for high dimensional multimodal prob-
lems. Furthermore, we extended the Moving Peaks test functions to allow creation
of asymmetrical and additional multiple local peaks. The effectiveness of regression
on these more complex peak shapes was examined.

Although fitness approximation using regression has been developed for EAs
[23], this study represents a first attempt to integrate regression with a PSO for im-
proving local convergence. This paper is organised as follows. Section 11.2 provides
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the background of this technique and the algorithms we have used to test it. A de-
tailed explanation of the method follows in Section 11.3. Sections 11.4 and 11.5
show the experimental setup and results. Our conclusions will be presented in
Section 11.6, as well as some further research directions.

11.2 Background

Local search methods are typically designed to rapidly locate an optimum once its
general area has been found. These methods are susceptible to becoming trapped
in a local optimum, meaning that they are most effectively used once the peak’s
location is already approximately known. The most intuitive local search method
is hill climbing. This method works by continually sampling the decision space
around the best point found so far [26]. At each iteration, a point somewhere near the
current best is selected and evaluated. If the new point is better than the current best
it replaces it, otherwise the new point is discarded. By repeating this process many
times we “climb” the peak of the initial starting point, usually chosen randomly. One
variant of hill climbing is gradient ascent, which works by using the derivative of the
fitness function to guide the search direction [14]. The next point chosen to search
is one that is close to the last point evaluated, but in the direction of the steepest
ascent. However, this technique can only be used with fitness functions where the
gradient can be computed.

To improve the local convergence of a PSO on a multimodal fitness landscape we
are incorporating a method that approximates the fitness landscape using regression.
This chapter will demonstrate that the use of regression and a convergence enhancer
can dramatically improve local convergence while saving computational cost. This
section provides the background for these techniques.

11.2.1 Fitness Approximation

In recent years, several studies have proposed EAs incorporating fitness approxima-
tion with an aim to improve performance while not incurring expensive computa-
tional cost [15, 23, 28]. Typically these EAs employ a surrogate model in place of
the expensive original function evaluations. The surrogate model is used to approx-
imate the original fitness function by using a small set of evaluated search points
chosen from the EA population. The goal is to reduce the number of expensive orig-
inal function evaluations while retaining an accurate approximation of the original
function. The most commonly used techniques for constructing surrogate models
include Kriging [31], neural networks [17], and polynomial regression [23, 32, 37].
A recent survey on fitness approximation in EAs can be found in [15].

One particularly interesting EA combining fitness approximation and local search
is EANA (Evolutionary Algorithms with N-dimensional Approximation) [23], where
polynomial regression was used to approximate fitness landscape. The experiments
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of EANA on a wide range of test functions have demonstrated the effectiveness of
this approach. Nevertheless, EANA was designed to locate a single global optimum
(not multiple global optima), and test functions were all static test functions. To the
best of our knowledge, no EAs using fitness approximation and local search have
been tested for locating multiple global optima. It is even more difficult when track-
ing multiple moving peaks in a dynamic environment. This paper aims to develop a
PSO incorporating fitness approximation and local search methods, and evaluate the
effectiveness of the hybrid PSO using multimodal test functions in both static and
dynamic environments.

11.2.2 Particle Swarms

Particle Swarm Optimisation (PSO) is an evolutionary algorithm that mimics a flock
of birds [18]. As birds move throughout a territory, they are all simultaneously
watching for both food and predators. In addition they are monitoring the behaviour
of the birds around them. A change in a neighbour’s behaviour usually indicates
there is some new information available, for example a food source or predator has
been seen. By copying the behaviour of its neighbours each bird is able to benefit
from the discovery, even before it has the information itself. In PSO, each bird is
represented by a particle. It maintains its current location and velocity, as well as
a memory of the best location it has seen so far, known as the personal best. Each
particle also has a number of neighbours with whom it can share its personal best.
At every timestep each particle chooses a random point between its personal best
location and the fittest personal best of any of its neighbours. It then steers towards
that point, but does not travel there directly. The particles have momentum, meaning
that if the chosen point is in the opposite direction to where they’re travelling it may
take a number of timesteps to turn around. This ensures the particles thoroughly
explore the area surrounding the fittest known point, and are able to jump to a better
peak if one is discovered nearby.

To guarantee convergence, we have used Clerc’s constriction coefficient PSO [11,
18]. This is described by Equations (11.1) and (11.2), which are run for every
timestep t.

v(i, j,t+1) = χ(v(i, j,t) +ϕ1(p(i, j,t) − x(i, j,t)) +ϕ2(p(g, j,t) − x(i, j,t))) (11.1)

x(i, j,t+1) = x(i, j,t) + v(i, j,t+1) (11.2)

where:

ϕ1 = c1r1, ϕ2 = c2r2, χ =
2κ∣∣∣2 − c −√

c2 − 4c
∣∣∣ (11.3)

The current location of particle i in dimension j at time t is represented as x(i, j,t),
with the current velocity v(i, j,t). ϕ1 and ϕ2 act as random weightings for the
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personal and neighbourhood bests, represented as p(i, j,t) and p(g, j,t) respectively. c1

and c2 are constants, usually set at 2.05, with c = c1 +c2. r1 and r2 are uniform ran-
dom numbers in the range [0,1]. Equation (11.3) calculates χ , a constant friction on
the particles that prevents them from oscillating violently around an optimum. κ is
usually set at 1.

11.2.3 Speciated Particle Swarms

Most PSO algorithms are limited in that they will only converge on a single solution,
even when there are many global optima. Locating several solutions is beneficial in
several ways. Firstly, it provides the user with a choice. While to the algorithm it
may appear that two optima are of equal fitness, in reality it may be preferable to
choose one over the other. In many environments there are factors that are too com-
plex to incorporate into the fitness function. These factors are nevertheless present
and may lead an expert user to choose one solution over another. Secondly, by
simultaneously locating multiple solutions we reduce the risk of premature
convergence, that is where the entire population becomes trapped in a local
optimum.

Speciation, also known as niching, is one way to achieve this. The population is
divided into species, which are groups of particles that are close to each other in the
decision space. Communication between species is either severely limited or non-
existant, allowing them to each explore their local area without interference from
particles on distant peaks.

We have used SPSO [21] as our base algorithm to test the regression method.
To determine the effectiveness on dynamic environments we will be using Moving
Peaks, a well-known dynamic test function generator (see section 11.4.2). SPSO is
an ideal candidate for this function for two reasons. Not only does it perform well on
dynamic multimodal functions [29], its performance is also strongly correlated with
its local convergence speed [6]. This shows that by increasing the local convergence
speed, we should see a marked improvement in overall performance.

In SPSO, each species is defined by a hyper-spherical area of radius r. This area
is centred on the locally-fittest particle, called the species seed. Any particles within
the species area are considered to belong to that species, although they are free
to leave should they move away. The particles within each species are connected
using the global neighbourhood topology [19]. There is no communication between
particles of different species. To allocate the particles to species, they are first sorted
from fittest to least-fit. The list is then iterated through; for each particle, if there is
a species seed within r of its location it joins that species. Otherwise it becomes the
seed particle of a new species. If a particle is within r of two or more species seeds
it is allocated to the species of the fittest seed, as shown in Fig. 11.1.

In the original SPSO algorithm [21], particles were allocated to species based on
their current location. To improve species stability we have used the personal best
location and fitness, as was done in [5].
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Fig. 11.1 The species seeds are the fittest particles in their area of the decision space. The
middle seed is fitter than the one on the left, so its species area takes precedence where they
overlap

11.2.4 Guaranteed Convergence PSO

The basic PSO model has an inefficiency, in that the velocity of the fittest particle
will quickly drop to zero. This is caused by its personal and neighbourhood bests
being on the same point. While this is not a big problem in the standard imple-
mentation, it can become noticeable when using speciated algorithms because the
population of each species is often very low. Having an idle particle in a population
of 20 is far less noticeable than in a population of 4. In order for the particle to start
moving again, one of its neighbours must locate a better point. If there are only 2 or
3 particles this can take a long time, if it happens at all.

Guaranteed Convergence PSO [30] was developed to overcome this problem. In-
stead of travelling around like the rest of the population, the fittest particle randomly
tries points within a distance d of its personal best location. GCPSO adaptively de-
termines the value of d for each particle by tracking how many consecutive suc-
cessful or unsuccessful tries there were. An attempt is considered successful if it
improves on the personal best, otherwise it is a failure. If the number of consec-
utive successes exceeds a threshold, the algorithm searches more aggressively by
doubling d. Likewise if the number of consecutive failures becomes too large d is
halved so as to search in a smaller area. Combining SPSO with GCPSO means that
the species seed will follow the GCPSO rules, ensuring that it never stops searching.
The other particles follow the standard PSO implementation.

11.2.5 mQSO

To provide a benchmark to test SPSO’s performance against, we have used one
of the most effective PSO-based algorithms on Moving Peaks, mQSO [8]. mQSO
modifies the standard PSO in several ways to improve performance on this function.
These improvements are discussed below.



11 Improving Local Convergence in Particle Swarms 271

To track as many peaks as possible, mQSO divides the population into sub-
swarms. These are equivalent to species in SPSO, except that particles are not free
to join or leave a subswarm. If two subswarms become too close to each other, the
weaker one will have its particles reinitialised. This prevents duplication and en-
courages the swarm to explore new areas. Stagnation is prevented by means of an
anticonvergence measure. If all of the subswarms have converged to small areas, the
weakest one is reinitialised in the same way as a duplicate subswarm. This prevents
the system from wasting its resources on peaks of low fitness.

mQSO is used to increase the swarm’s responsiveness to a peak movement.
Rather than letting all of the particles tightly converge on the optimum, half of
the particles are reserved as quantum particles. These particles do not follow the
standard PSO movement equations; instead at each timestep they are placed ran-
domly within a hypersphere of radius rcloud using a uniform volume distribution.
This technique is similar in some respects to GCPSO mentioned above.

11.3 Using Regression to Locate Optima

On a multimodal fitness landscape, around each peak there is a catchment area.
Within this area, fitness generally improves as you get closer to the peak. If we
can model the overall shape of the peak while ignoring the local features, we can
calculate the highest point of that shape. Assuming that our model is reasonably
accurate, the top of our shape should be close to the optimum. We can use regres-
sion to approximate the shape of the peak. Polynomial regression with least-squares
approximation has been used to improve traditional optimisation methods [12, 35].
And more recently, regression was also employed to improve the performance of
EAs [23, 32, 37].

In our proposed hybrid PSO using regression, we maintain a separate memory
to the base algorithm, storing only the best locations and their fitnesses. If the base
algorithm’s memory was used, points would only remain known as long as there is
an individual there. The regression needs to know the locations of the fittest points,
regardless of the population’s current state.

A minimum number of points is needed in order to calculate the regression –
below this there will be more than one shape that fits the data. As the algorithm con-
tinues sampling the fitness landscape, the regression may keep some excess points to
help reduce the effect of any local landscape features. The number of excess points
e is a tunable, although robust, parameter.

By performing a linear least-squares regression on the known points and their
fitnesses, we are able to estimate the peak’s shape. From the regression we obtain
a set of equations, one for each decision variable, that defines the shape that best
fits our known points. Although more complex and flexible equations can be used
if desired, for simplicity and efficiency we have used quadratic equations to rep-
resent the shape. This results in a set of simultaneous equations in the form of
Equation (11.4) to be solved for a1,a2, ...,a2n and c, where n is the number of deci-
sion variables.
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f (x1,x2, ...,xn) = a1x2
1 + a2x1 + a3x2

2 + a4x2 + . . .

+a(2n−1)x
2
n + a(2n)xn + c (11.4)

In matrix form, the simultaneous equations look like:

A =

⎡⎢⎢⎢⎣
f1

f2
...

fm

⎤⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎣
x2

1,1 x1,1 x2
1,2 x1,2 . . . x2

1,n x1,n 1
x2

2,1 x2,1 x2
2,2 x2,2 . . . x2

2,n x2,n 1
...

...
...

...
. . .

...
...

...
x2

m,1 xm,1 x2
m,2 xm,2 . . . x2

m,n xm,n 1

⎤⎥⎥⎥⎦ C =

⎡⎢⎢⎢⎢⎢⎣
a1

a2
...

a2n

c

⎤⎥⎥⎥⎥⎥⎦
where there is an equation for each of the m known points. To solve the simultaneous
equations, we manipulate the matrices as in Equation (11.5):

A = BC

B+A = B+BC

B+A = C (11.5)

where B+ is the pseudoinverse of B [3]. If we only use the minimum number of
points, B will be square and we can use the inverse B−1 instead. The minimum
number of points required to perform an approximation is 2n + 1, according to
Equation (11.4) (see also [23]). The coefficients that make our equation best match
the known points are found by computing C. We then find the turning point for the
equation in each dimension i = [1,n] by taking the partial derivative, as in Equation
(11.6):

∂
∂xi

f (x1,x2, . . . ,xn) = 2xia(2i−1) + a(2i) (11.6)

The turning point in dimension i is where ∂
∂xi

f (x1,x2, . . . ,xn) = 0. To find out
whether it is a maximum or minimum point, we take the second derivative. When
using quadratic equations, we can simply look at the sign of a(2i−1); a negative num-
ber indicates that it is a maximum. If this is a maximisation problem and one of the
equations has only a minimum turning point, we abort the regression and wait for
better data. Similarly, if it is a minimisation problem we abort if any of the equations
has no minimum turning point.

The global maximum point of the shape will be at the location of the turning
point in each decision variable. Even though we were able to compute a maximum,
we still need to check that it is valid. If the points do not give a good representation
of the peak, for example they are all on one side, the regression will not be accurate.
If the computed point is outside the expected area, or even the entire decision space,
it is discarded. We will try the regression again when we have more data.

To test the calculated position, we replace the least-fit individual with a new in-
dividual at the shape’s highest point. This avoids using an extra evaluation, and it
is unlikely that the individual’s next movement would have contributed much to
the search. If the regression was successful, the new point will be used to further
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Fig. 11.2 a) Trying to find the highest point of the peak. We currently know the fitnesses
of 4 points: 3, 6, 15 and 20. The right side of the peak is less steep than the left. b) The
regression curve has a maximum at x = 10.926, considerably closer to the peak than any of
the previously known points

refine the shape when it is next performed, hopefully improving the fitness still fur-
ther. When using this technique with dynamic environments, we clear the memory
whenever a peak movement is detected. This prevents the regression from being
performed on stale data.

The main cost of this method is in performing the matrix inversion. Assuming
the minimum number of points are used, this has a complexity of O(n3). As n is
dependent only on the number of decision variables and complexity of the equa-
tions used, the cost is usually quite low. The CPU cost can be further reduced by
only performing the regression at certain intervals or only for the most promising
peaks. In many environments, fitness evaluations are the most expensive aspect.
The regression’s minimal CPU overhead is usually far outweighed by the number
of evaluations saved.

As an example we will try to solve a 1-dimensional triangular function, as shown
in Fig. 11.2 a). Currently we know the fitnesses of 4 points:

f (3) = 2

f (6) = 5

f (15) = 5

f (20) = 1

We place these values into B and C:⎡⎢⎢⎣
2
5
5
1

⎤⎥⎥⎦=

⎡⎢⎢⎣
32 3 1
62 6 1
152 15 1
202 20 1

⎤⎥⎥⎦
⎡⎣a1

a2

c

⎤⎦
Multiplying both sides by B+ gives:
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⎡⎣ 0.01 −0.01 −0.01 0.01
−0.24 0.12 0.30 −0.17
1.46 0.02 −1.01 0.54

⎤⎦
⎡⎢⎢⎣

2
5
5
1

⎤⎥⎥⎦ =

⎡⎣a1

a2

c

⎤⎦
⎡⎣−0.065

1.430
−1.516

⎤⎦ =

⎡⎣a1

a2

c

⎤⎦
This gives us the best-fitting quadratic curve, Equation (11.7).

f (x) = −0.065x2 + 1.430x − 1.516 (11.7)

To find the turning point, we differentiate it:

d f (x)
dx

= (−0.065)2x + 1.430 (11.8)

Solving Equation (11.8) gives a turning point of x = 10.926. We know this point
is the maximum because the x2 coefficient is negative. The fitness at x = 10.926 is
8.2592. As can be seen from Fig. 11.2 b), this is not the location of the actual peak,
however it is considerably closer than any of the points known so far.

There are similarities between EANA [23] and the technique presented here. Both
methods use a polynomial regression to estimate the location of a peak. However
there are also important differences, including the focus of the algorithms. EANA
is designed to estimate the area of the global optimum, whereupon local search is
used to refine its guess. As with all local search algorithms, premature convergence
can be a problem. Our technique takes advantage of the fact that modern EAs are
already very effective at locating the area of a peak. Instead we use the regression as
a heuristic, guiding the base algorithm towards its goal as it explores the surrounding
areas. This gives us the best of both worlds – substantially improving performance
while only minimally increasing the risk of premature convergence.

Another important difference is the way the two techniques obtain an accurate
model of the landscape. EANA assumes that the height of the local optima is corre-
lated with their distance from the global optimum, and so spends evaluations search-
ing for the local peaks. Our technique makes no such assumption, instead using
more than the required number of points to compute its model. This allows it to bet-
ter reflect the general trends of the landscape and discourages overfitting, without
needing additional evaluations.

11.4 Experimental Setup

To determine whether performing the regression is effective, we compared the per-
formance of SPSO and GCPSO with and without the regression. For the rest of
the paper, we will use SPSO to mean SPSO + GCPSO, and rSPSO to mean SPSO +
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GCPSO + regression. The regression has been implemented so as to discard any cal-
culated solutions that are outside the species boundary, as described in Section 11.3.

For the purposes of the regression, we consider each species to be an individual
subpopulation with its own memory. This means that for every timestep, there is a
regression run for each species.

The regression will be tested on both static and dynamic multimodal test func-
tions; we will describe our procedure below. For all of the tests, each species is
limited to Pmax = 6 particles; any excess particles are reinitialised elsewhere in the
decision space. This is the same method as was used in [29] to avoid having too
many individuals crowd an optimum. The success and failure thresholds for GCPSO
have been set to the values recommended in [4], that is sc = 15 and fc = 5. Unless
otherwise stated, the regression stores a maximum of e = 10 excess points. Each
experiment was performed 50 times and the results have been averaged.

11.4.1 Static Functions

To test general performance in a static multimodal environment, we chose functions
that represents several different landscape features. These functions are described
below; the mathematical definitions are shown in Table 11.1.

• Inverted Branin RCOS (F1) and Himmelblau (F4) both have peaks with large
catchment areas.

• Six-Hump Camel Back (F2) has two global optima with relatively large catch-
ment areas, however there are also 4 local optima for the particles to become
trapped in.

• Deb’s 1st Function (F3) has 5 narrow narrow peaks; even though it is only 1
dimensional, it can be difficult to locate all of the optima.

Table 11.1 Static multimodal test functions

Function r Comments

Inverted Branin RCOS [9]: F1(x,y) = −[(y −
5x2

4π2 + 5x
π −6)2 +10(1− 1

8π )cos(x)+10], where
−5 ≤ x ≤ 10; 0 ≤ y ≤ 15

4 3 global optima

Six-Hump Camel Back [25]: F2(x,y) =
−4[(4 − 2.1x2 + x4

3 )x2 + xy + (−4 + 4y2)y2],
where −1.9 ≤ x ≤ 1.9; −1.1 ≤ y ≤ 1.1

1 2 global optima and 4 local
optima

Deb’s 1st Function [13]: F3(x) = sin6(5πx),
where 0 ≤ x ≤ 1

0.15 5 equally spaced global
optima

Himmelblau [2]: F4(x,y) = 200 − (x2 + y −
11)2 − (x+y2 −7)2, where −6 ≤ x,y ≤ 6

3 4 global optima

Inverted Shubert 2D [20]: F5(x,y) =
−∑5

i=1 icos[(i + 1)x + i]∑5
i=1 icos[(i + 1)y + i],

where −10 ≤ x,y ≤ 10

0.75 18 global optima in 9 clus-
ters, many local optima
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Fig. 11.3 The inverted Shubert 2D test function has 18 global optima located in 9 pairs, as
well as many local optima

• Inverted Shubert 2D (F5) is the most difficult as it is highly multimodal. There are
18 global optima, all of which have extremely small catchment areas. In addition,
there are numerous local optima as shown in Fig. 11.3.

A run is only considered successful if the algorithm locates all of the optima to
within a fitness of ε = 0.00001 within 2000 timesteps.

For F1 through F4, a population size of 50 has been used. To reliably solve F5,
SPSO requires at least 500 particles. With the exception of Deb’s First function, all
of these are two dimensional functions.

In addition to the test functions in Table 11.1, we also used a modified version of
the Generic Hump Function proposed by Singh and Deb [33], to test the regression’s
performance in environments where there are a larger number of decision variables.
The Hump function allows us to independently control the number of dimensions,
the number of humps and the size and shape of those humps, making it ideal for our
testing.

The Humps function consists of K humps rising from a flat surface. The height
of the hump k at a given point X is shown in Equation (11.9):

f (x,k) =

{
hk

[
1 −

(
d(X ,k)αk

rk

)]
, if d(X ,k) < rk

0, otherwise
(11.9)

The distance from the centre of the hump k to X is denoted by d(X ,k). In Singh’s
testing, all of the humps have the same height, radius and shape; hk = 1,αk = 1 for
all k. The radius rk was varied with the number of dimensions. The humps are placed
so that they do not intersect, meaning that the distance between any two humps j
and k is at least r j + rk. For our testing, we have removed the function’s flat base so
as to allow SPSO to more easily find the peaks, as shown in Equation (11.10):
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Fig. 11.4 An example of the Modified Humps landscape using 3 humps in two dimensions

f (x,k) = hk

[
1 −

(
d(X ,k)αk

rk

)]
(11.10)

The height of any given point in the decision space is the height of the tallest hump
at that point, as in Equation (11.11):

f (x) = MaxK
k=1 f (x,k) (11.11)

An example of a landscape with 3 humps in two dimensions is shown in Fig. 11.4.
We have tested this function with 20 peaks and 5, 10, 15 and 20 decision variables,
with rk set to 0.27, 0.37, 0.41 and 0.43 respectively. All of the tests used 300 particles
and SPSO’s r parameter was set to 2rk, that is twice the hump radius.

11.4.2 Moving Peaks

Moving Peaks is a highly configurable dynamic test function suite, and is a common
benchmark for dynamic optimisation algorithms [10]. Moving Peaks is very similar
to the Humps function described above, except that the peaks periodically move and
change size. The peaks are usually conic, however in this paper we will be testing
with other shapes as well.

The algorithm must track the peaks as they move around the fitness landscape. As
the peaks move they also change height; this means that the globally optimal peak
changes over time, as in Fig. 11.5. For this reason, algorithms that only track one
or a few peaks tend to perform poorly; the results of a particular run depend more
on the peak’s average height than the algorithm’s performance [6]. To achieve good
performance it is critical that an algorithm tracks as many peaks as possible. It is
too expensive to locate the new optimum from scratch after every landscape change.
Following this rationale, it is expected that the good performance of an optimiser for
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Fig. 11.5 The difficulty of tracking peaks: Peak 2 used to be the global optimum however it
is now covered by Peak 3. At some point in the future Peak 2 may re-emerge and become the
highest again; algorithms with insufficient population diversity are unlikely to rediscover this
peak

a static multimodal environment should be transferable to the dynamic multimodal
environment.

Unless otherwise stated, all Moving Peaks parameters are set as specified by
scenario 2; please refer to Table 11.2 for details1.

The most widely-used performance metric on Moving Peaks function is offline
error [10]. Offline error is the difference in fitness between the best-known point
and the global optimum, averaged over the entire run. All of our results on Moving
Peaks will be presented in terms of offline error after 500,000 evaluations.

Both the PSO and regression algorithms need to be informed when the landscape
changes. To detect these changes, at the end of each timestep we check the fitness
of the top 5 species seeds. If any of the fitnesses differ from the recorded value, the
particles’ personal best memories and the memory used for the regression are both
cleared.

To determine the robustness of the regression under different circumstances, we
tested:

• The number of peaks between 1 and 200
• The severity of each peak movement, between 0 and 6
• The number of decision variables between 5 and 10

11.4.2.1 Creating Varying Peak Shapes

Extending our preliminary work in [7], we will fully analyse the regression’s per-
formance, including on more complex peak shapes, as defined in this section. We
wanted to see whether the regression was still effective with other peak shapes. The
standard conic shape used by Moving Peaks is produced by Equation (11.12):

f (x) = h − w

√
D

∑
d=1

(xd − pd)
2 (11.12)

1 See also: http://www.aifb.uni-karlsruhe.de/∼jbr/MovPeaks/
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Table 11.2 Moving Peaks Scenario 2 parameters

Parameter Setting

Random seed 1

Dimensions 5

Peaks 10

Minimum peak height 30

Maximum peak height 70

Standard peak height 50

Minimum peak width 1

Maximum peak width 12

Standard peak width 0

Coordinate range [0, 100]

Peak movement severity 1

Peak height severity 7

Peak width severity 1

Basis function None

Movement correlation λ 0

Peak movement interval 5000 evaluations

Peak shape Conic

Change stepsize Constant

where w and h specify the width and height of the peak respectively, xd is the loca-
tion of the point in dimension d and pd is the tip of the peak in dimension d. We
have extended this equation in several ways:

• The relationship between height and distance from the peak’s centre in dimension
d is now controlled by αd . αd = 1 will produce the conic shape used by the
standard Moving Peaks scenarios. Using αd > 1 will produce a mound shape,
with steepness increasing as the αd gets bigger. Setting αd ∈ (0,1) produces a
spike shape, as depicted in Fig. 11.6.

• To create asymmetric peaks, for each decision variable we divide the peak into
2 halves, left and right. The value of αd used for the left and right halves are
denoted αd0 and αd1 respectively. Fig. 11.7 shows an asymmetric peak.

• Local optima have been added by superimposing a cosine wave over the peak.
The amplitude and frequency of the wave are specified by βd and γd respectively.
All γ values used in this paper are in radians. Fig. 11.8 shows a cosine wave
superimposed on Fig. 11.7. By adjusting βd and γd we can specify the number
and severity of local peaks in variable d.

The new peak function is defined in Equation (11.13). The standard conic peak
shape can be achieved by setting αd = 1,βd = 0,γd = 0 for all d.
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f (x) = h − w

√
D

∑
d=1

(|xd − pd|αd + ud
)2

(11.13)

where

To determine the regression’s performance on varying peak types, the following
tests were carried out:

• Symmetric peaks where all αd0 and αd1 values are equal. We tested with the
following setting: αd ∈ {

1
3 , 1

2 ,1,2,3
}

,β = γ = 0.
• Asymmetric peaks where all αd values are randomly generated within the range

[ 1
3 ,3], and β = γ = 0.

• Conic peaks with a superimposed wave:αd = 1,Maxβ ∈ [2,10] ,Maxγ ∈ [20,100].
• Asymmetric peaks with a superimposed wave: αd0,αd1 ∈ [ 1

3 ,3], Maxβ ∈ [2,10],
Maxγ ∈ [20,100].

Maxβ indicates that each peak’s values for βd are randomly chosen in the range
[0,Maxβ ]. Maxγ indicates the same thing for γ .

We also tested the regression’s sensitivity to e, both on the standard scenario 2
problem and with the modified peak function, using αd ∈ [ 1

3 ,3],Maxβ = 10,Maxγ =
100. The latter is designed to show whether using a larger e value improves
performance on functions with many local optima.

Finally we compared our results to mQSO, one of the best performing algorithms
on Moving Peaks scenario 2. We have compared our results to the 10(5 + 5q) con-
figuration that Blackwell showed to be optimal on this problem. All experiments
were run with 100 particles and with SPSO’s r parameter set to 30. These were the
settings used in [22].

11.5 Results

This section is divided into two main parts. We will first look at the regression’s
performance on static multimodal functions. Secondly we will analyse its behaviour
on the Moving Peaks test suite.

11.5.1 Static Functions

Even with static environments, it is still very important to reduce the number of
evaluations. Each evaluation costs CPU time, often well in excess of the time used
by the optimiser itself. In this part we will report on the regression’s performance on
static problems, both in low dimensional and high dimensional environments. The

αd =
{

αd0, if xd < pd

αd1, otherwise
,ud = βd (cos [γd (xd − pd)]−1) ,αd0,αd1 ∈ (0,∞),βd ,γd ∈ [0,∞)
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Table 11.3 Regression performance on low dimensional static functions. Mean, standard
error and improvement over SPSO are shown

Table 11.4 Regression performance on the high dimensional Humps function. d is the num-
ber of decision variables

d rSPSO SPSO

. .

. .

. .

. .

third part of this section will investigate how the number of excess points affects
performance.

11.5.1.1 Low Dimensional Landscapes

Table 11.3 shows that using the regression dramatically increased performance on
all of the low dimensional functions we tested. The largest improvement was on
Branin RCOS, where the number of evaluations required was reduced by more than
80%. Even on Deb’s First Function (F3), the regression still reduced the number of
evaluations by nearly a third. This is a significant improvement.

Inverted Shubert 2D (depicted in Fig. 11.3) was by far the hardest 2 dimensional
function we tested, normally requiring 160,000 evaluations for SPSO to locate all
of the optima. Adding the regression reduced this to just 50,000. We suspect that
one of the reasons the regression performed so well is that the peak tips resemble a
parabola, allowing it to be accurately modelled.

11.5.1.2 High Dimensional Landscapes

The number of dimensions does not appear to affect the regression’s effective-
ness. Table 11.4 shows that using the regression reduced the number of evaluations
by about 30%. This becomes especially signficant as the number of dimensions

Function rSPSO SPSO Improvement

F1 6254.54 (±298.59) 9552.86 (±216.98) 35%

F2 1489.63 (±53.90) 8934.58 (±304.97) 83%

F3 5306.60 (±225.23) 7613.16 (±271.40) 30%

F4 4963.74 (±277.75) 11069.68 (±299.91) 55%

F5 50511.46 (±794.94) 164360.00 (±2912.89) 69%
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Fig. 11.9 Number of evaluations needed for Humps 5D with different numbers of excess
points. The vertical bars show one standard error

increases; for the 20 dimensional function using the regression saved over 160,000
evaluations.

11.5.1.3 Sensitivity to e

As Fig. 11.9 shows, the best performance was obtained by setting e to between
10 and 30. Although it still beat SPSO, the regression performed relatively poorly
when excess points were not kept. The Humps function’s peaks are conic, making
them difficult to model when only using the minimum number of points. The excess
points help to define the surface better, improving the regression’s guess.

Using too many points also decreased performance. The regression does not per-
form any weighting – it tries to match all of the points regardless of their fitness.
By storing too much data, we allow the memory to become polluted with distant
and poor quality points. Instead of just modelling the tip, the peak’s overall shape is
matched. We are then unable to accurately determine the tip’s location as our model
is not specific to that area.

We recommend that e be set to 10 for all problems. This value represents a good
tradeoff; it provides excellent performance without creating too much CPU or mem-
ory overhead. We have also tested this on the Moving Peaks problem and found the
same ideal value. This is discussed in the next section.

11.5.2 Moving Peaks

Reducing the number of evaluations is critical when working with dynamic envi-
ronments. If the environment is changing every 2 minutes, an algorithm that takes
3 minutes to find an adequate solution is useless. By adding the regression we are
able to significantly reduce the number of evaluations needed; this section details
the performance on Moving Peaks under different situations.
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Fig. 11.10 Current error over time on Moving Peaks scenario 2; a) showing the effect of
adding the regression; b) the same as a) but without the first 5000 evaluations

11.5.2.1 Increasing Convergence Speed

Fig. 11.10 a) compares the current error over time for SPSO and rSPSO. Current er-
ror is the difference in fitness between the best known point and the global optimum.
Offline error is calculated by averaging the current error over an entire run.

In scenario 2, the peaks move every 5000 evaluations, as can be seen by the
upwards jumps in the graphs. The regression is inactive for at least the first 200
evaluations after a peak movement. As the population size is 100, this represents
only two timesteps; improvements here are mostly due to the fortunate placement
and existing momentum of the particles. The regression cannot be used yet because
there are insufficient points for it to be computed. For a 5-dimensional function, 11
points are needed. Since each species is limited to 6 particles, at least two timesteps
needed to collect the required data.

Fig. 11.10 b) is the same as a), but without the first 5000 evaluations. This gives
a better indication of the regression’s performance helping to track the peaks. Af-
ter a peak movement the PSO requires 100 evaluations to re-evaluate the particles,
one for each individual. Thus the indicated error immediately after a change is not
representative of the individuals’ true fitnesses.

At 300 evaluations after a peak movement the regression’s effect becomes obvi-
ous. The curve for rSPSO drops quickly as the algorithm hones in on the optimum.
After a landscape change, a normal PSO must wait for the particles to accelerate
towards the new peak, then wait for them to converge again once the peak has been
located. The combination of GCPSO and the regression reduces the time spent do-
ing this: the regression moves the worst particle close to the peak while GCPSO’s
rules set the velocity to 0 and force it to explore the local area.

At 1200 evaluations after a peak movement rSPSO has already achieved the same
error as SPSO does after 4900 evaluations. Even at this point, the curve has a fairly
steep gradient; substantial improvements are being made each timestep. The graph
plateaus around 3000 evaluations; the error at this point is very small. The curve
does not converge to 0 because SPSO is usually unable to maintain species on all of
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Fig. 11.11 Adding the regression substantially reduced offline error

the optima [6]; the residual error is from the times that the algorithm is not tracking
the highest peak.

Please note that to ensure a smooth curve for Fig. 11.10, we have performed 1000
runs for each of the algorithms. All other results presented in this paper are based
on experiments of 50 runs.

11.5.2.2 Number of Peaks

Adding the regression reduced offline error by between 1 and 1.5, as shown in
Fig. 11.11. The settings of SPSO (r = 30,Pmax = 6) are optimised for 10 peaks,
which explains the sweet spot at that point. Below this, there are too many par-
ticles for the number of peaks. Since only 6 particles are allowed on each peak,
when there are too few peaks most of the particles are continually reinitialised. This
wastes evaluations, resulting in a larger offline error.

At the other end of the graph it becomes impossible for the algorithm to track
all of the peaks. Having neither enough particles nor a small enough r value, the
algorithm must rely on the particles to jump between peaks, hopefully to the globally
optimal one. The increased error is caused by the times the algorithm is unable to
discover the best peak.

11.5.2.3 Peak Movement Severity

The peak movement severity controls how far the peak moves each time. Larger
severities increase the time needed to re-find the peak. The further the peaks move,
the faster the particles will be travelling when they reach it. In a standard PSO
they will then take longer to slow down and reconverge. Using the regression in
combination with GCPSO helps this process; whenever the regression’s guess is
successful, the worst particle will become the species seed as the regression’s guess
was better than any of the existing solutions. Since the species seed follows the
GCPSO movement rules, it immediately loses the momentum it previously had.
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Fig. 11.12 The benefit of the regression increases with severity
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Fig. 11.13 The regression reduced the offline error by around 1.5 for all of the dimension
values tested

As this happens to successive particles, the average velocity is quickly reduced,
allowing the particles to reconverge.

Fig. 11.12 shows how SPSO’s error increases linearly with severity. rSPSO’s
error also increases, but at a much lower rate. At a severity of 0 the peaks do not
move at all, they only change height. In this situation the error achieved depends
almost entirely on being able to track all of the peaks. As the peaks are not moving,
once the optima have been initially located the regression is not needed to track
them, thus the performances of SPSO and rSPSO are very similar.

11.5.2.4 Dimensionality

As with the results shown in Table 11.4 for the Hump function, performance im-
provement provided by the regression on the Moving Peaks is fairly constant.
The error increases linearly as the number of dimensions increases, however the
difference between rSPSO and SPSO remains about 1.5, as shown in Fig. 11.13.
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Fig. 11.14 Offline error for different peak shapes

11.5.2.5 Peak Shape

For this experiment, all of the αd values have been set identically, making the shapes
tested symmetrical. A one dimensional peak for each value of αd is depicted in
Fig. 11.6.

The most obvious feature of Fig. 11.14 is that outside the range αd ∈ [1,2] there
is a large increase in offline error.

For αd > 2, the areas away from the optima are exceptionally steep. Performance
depends almost entirely on how quickly the algorithm can locate the general area
of the tip, rather than its exact location. Guiding the PSO’s search, the regression is
able to reduce the offline error from 35 to 30.

When αd < 1, the penalty for being far away from the peak’s tip is relatively
small, however to achieve a small error it is extremely important to precisely locate
the optimum. The difference between a point 0.1 units away from the peak and 0.2
units away can be substantial. Again, using the regression reduced the offline error
by about 1. This is quite impressive as the actual peak shape is the opposite of the
regression’s model – the fitness landscape does not fit a parabola at all. This result
suggests the parabolic model works well even on difficult peak shapes, and that
more elaborate models are generally unnecessary. Further testing would be required
to confirm this though.

11.5.2.6 Asymmetric Peaks

In the real world, many fitness landscapes have asymmetrical peaks. The peak may
be very steep on one or more sides, or be at the edge of the feasible region. For
these experiments, we have used random peak shapes. The αd values for each side
of every peak in each dimension are chosen randomly within a specified range. For
example, in a run with only two peaks, the following values may be chosen:

α00 = 0.40,α01 = 0.94,α10 = 2.64,α11 = 0.58
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Table 11.5 Regression performance on asymmetric peaks

αd rSPSO SPSO Improvement

[0.33,3] 1.82 (±0.07) 2.59 (±0.09) 30%

[0.4,2.5] 1.70 (±0.07) 2.46 (±0.07) 31%

[0.5,2] 1.66 (±0.06) 2.67 (±0.07) 38%

[0.67,1.5] 1.58 (±0.05) 2.66 (±0.09) 41%

[1,1] 1.45 (±0.05) 2.90 (±0.08) 50%

As Table 11.5 shows, the regression is most effective when the range of αd is small.
The regression works better on peaks that are roughly symmetrical as they more
closely match the parabolic shape used. However even when highly asymmetrical
peaks are created, the regression still achieved a 30% improvement over SPSO.
This shows again that the regression’s guesses are still accurate enough to aid the
optimisation, even when it cannot closely model the peak.

11.5.2.7 Adding Local Optima

By comparing Fig. 11.15 a) and b) we can see that the wave’s amplitude had a
much greater effect on performance than its frequency. The flatness of Fig. 11.15
b) suggests that the swarm is able to jump from peak to peak with relative ease.
The amplitude’s effect is far greater because each new candidate solution is just as
likely to be at the bottom of the wave as the top. On average each new point will
be halfway down a wave, increasing the overall error incurred. The local optima
decrease the accuracy of the regression’s model, reducing its effectiveness. Even so,
it still managed to reduce the offline error by around 1 in all of the runs.
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Fig. 11.15 Performance on symmetric peaks for different values of: a) Maxβ (αd =
1,Maxγ = 100); b) different values of Maxγ (αd = 1,Maxβ = 10)
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Fig. 11.16 Performance on asymmetric peaks for different values of: a) Maxβ (αd ∈ [0.33,3],
Maxγ = 100); b) Maxγ (αd ∈ [0.33,3], Maxβ = 10)
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Fig. 11.17 a) Offline error for Moving Peaks Scenario 2 for different values of e. b) Of-
fline error for asymmetric peaks with waves for different values of e (αd ∈ [0.33,3],Maxβ =
10,Maxγ = 100)

11.5.2.8 Asymmetric Peaks with Local Optima

This is the most challenging landscape for the PSO; we are creating peaks that look
similar to the one shown in Fig. 11.8. In all of the experiments the regression reduced
the offline error by between 1.5 and 2. As can be seen by comparing Fig. 11.16 a)
and b) with the results for the asymmetric peaks and local optima individually, the
local optima are the primary cause of the large offline error - the asymmetric peaks
are not a significant component. As would be expected, the results here are very
similar to the results for the local optima tests.

11.5.2.9 Sensitivity to e

On scenario 2 the value of e does not greatly affect the regression’s performance.
Low, nonzero values provided slightly better results for the same reason as before,
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Table 11.6 Comparing against mQSO: Severity

s mQSO rSPSO SPSO

0 1.18 (±0.07) 0.49 (±0.06) 0.60 (±0.04)

1 1.75 (±0.06) 1.41 (±0.04) 3.02 (±0.07)

2 2.40 (±0.06) 2.10 (±0.06) 4.49 (±0.09)

3 3.00 (±0.06) 2.79 (±0.07) 5.65 (±0.09)

4 3.59 (±0.10) 3.33 (±0.07) 7.02 (±0.14)

5 4.24 (±0.10) 3.85 (±0.08) 8.32 (±0.14)

6 4.79 (±0.10) 4.25 (±0.08) 9.59 (±0.15)

Table 11.7 Comparing against mQSO: Number of peaks

Peaks mQSO rSPSO SPSO

1 5.07 (±0.17) 1.91 (±0.09) 3.79 (±0.18)

2 3.47 (±0.23) 1.62 (±0.04) 3.14 (±0.10)

5 1.81 (±0.07) 1.42 (±0.06) 2.88 (±0.07)

7 1.77 (±0.07) 1.38 (±0.04) 2.82 (±0.07)

10 1.80 (±0.06) 1.47 (±0.07) 2.78 (±0.06)

20 2.42 (±0.07) 1.80 (±0.04) 2.99 (±0.05)

30 2.48 (±0.07) 2.07 (±0.05) 3.21 (±0.06)

40 2.55 (±0.07) 2.30 (±0.06) 3.52 (±0.06)

50 2.50 (±0.06) 2.30 (±0.04) 3.52 (±0.05)

100 2.36 (±0.04) 2.51 (±0.04) 3.73 (±0.06)

200 2.26 (±0.03) 2.57 (±0.03) 3.77 (±0.06)

by allowing the regression to concentrate on the best information. In all cases the
regression outperformed SPSO by a significant margin, as shown in Fig. 11.17 a).

When optimising the most complex function, Moving Peaks with αd ∈ [0.33,3],
β = 10,γ = 100, the value of e played a larger role in performance (Fig. 11.17 b)).
As would be expected, increasing e slightly helped the regression ignore the local
optima. Values larger than 20 gave no extra advantage however, showing that even
for difficult problems only a few excess points are needed.

11.5.2.10 Comparing to mQSO

In Table 11.6 we compare the performance against mQSO (with the anticonver-
gence measure) for differing movement severities. As can be seen, rSPSO exceeds
mQSO’s performance for all of the severities tested. This is even more impres-
sive considering that for most of the experiments SPSO had far worse performance
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than mQSO. It should also be noted that both mQSO and SPSO have been tuned
for this benchmark - the parameters chosen by Blackwell were optimised for each
severity setting. SPSO’s r has been set to the standard value for the Moving Peaks
benchmark. The only parameter specifically related to the regression, e, requires
very little tuning. The value of 10 was shown to be either optimal or near-optimal
for all of the tests we conducted.

Table 11.7 compares mQSO’s performance against both SPSO and rSPSO for
differing numbers of peaks. It can be seen that rSPSO is highly competitive with
mQSO; offering better performance for all but the 100 and 200 peak runs. It should
be remembered that the regression can be added to most numerical optimisation
algorithms; it is highly likely that it could be used to improve mQSO’s performance
even further.

11.6 Conclusion

In this chapter we have presented a technique to incorporate regression into a PSO
algorithm, in order to improve local convergence. We have provided experimental
studies and analysis of results using several multimodal test functions with varying
difficulty. We have also extended the Moving Peaks test suite with more complex
peak shapes, and carried out experimental studies on these newly defined test func-
tions. Our results show that the performance of the regression-based SPSO (rSPSO)
compares favorably against two existing multimodal PSOs (SPSO and mQSO). In
particular, adding the regression significantly improved the performance of an ex-
isting multimodal PSO algorithm (SPSO) on a range of fitness landscapes in both
static and dynamic environments. By using the existing population members, the
regression technique does not require any additional evaluations, but only a modest
amount of memory and CPU time depending on the number of decision variables
and excess points.

As a future research direction it may be worthwhile exploring other deterministic
techniques that could be combined with a PSO. Currently much of the available
information is thrown away as the population moves each generation. By retaining
and analysing this data, it is likely that further improvements in performance can be
found.
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Chapter 12
Differential Evolution with Scale Factor Local
Search for Large Scale Problems

Andrea Caponio, Anna V. Kononova, and Ferrante Neri

Abstract. This chapter proposes a novel algorithm for handling high dimensional-
ity in large scale problems. The proposed algorithm, here indicated with Differential
Evolution for Large Scale problems (DELS) is a Differential Evolution (DE) based
Memetic Algorithm with self-adaptive control parameters and automatic popula-
tion size reduction, which employs within its framework a variation operator local
search. The local search algorithm is applied to the scale factor in order to generate
high quality solutions. Due to its structure, the computational cost of the local search
is independent on the number of dimensions characterizing the problem and thus is
a suitable component for large scale problems. The proposed algorithm has been
compared with a standard DE and two other modern DE based metaheuristics for
a varied set of test problems. Numerical results show that the DELS is an efficient
and robust algorithm for highly multivariate optimization, and the employment of
the local search to the scale factor is beneficial in order to detect solutions with a
high quality, convergence speed and algorithmic robustness.

12.1 Introduction

Computationally expensive optimization problems can be classified into two cate-
gories: problems which require a long calculation time for each objective function
evaluation and problems which require a very high amount of objective function
evaluations for detecting a reasonably good candidate solution. The problems be-
longing to the latter category, which are the focus of this chapter, are usually
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characterized by a vast decision space which is strictly related to the high dimen-
sionality of the function. Optimization problems characterized by a high number
of variables are also known as large scale optimization problems, or briefly Large
Scale Problems (LSPs).

The detection of an efficient solver for LSPs can be a very valuable achievement
in applied science and engineering since in many applications a high number of de-
sign variables may be of interest for an accurate problem description. For example,
in structural optimization an accurate description of complex spatial objects might
require the formulation of a LSP; similarly such a situation also occurs in schedul-
ing problems, see [19]. Another important example of a class of real-world LSPs is
the inverse problem chemical kinetics studied in [13] and [14].

Unfortunately, when an exact method cannot be applied, LSPs can turn out to be
very difficult to solve. As a matter of fact, due to high dimensionality, algorithms
which perform a neighborhood search (e.g. Hooke-Jeeves Algorithm) might require
an unreasonably high number of fitness evaluations at each step of the search while
population based algorithms are likely to either prematurely converge to suboptimal
solutions, or stagnate due to an inability to generate new promising search direc-
tions. In other words, many metaheuristics that perform well for problems charac-
terized by a low dimensionality, e.g. Evolutionary Algorithms (EAs), can often fail
to find good near optimal solutions to high-dimensional problems. The deterioration
in the algorithmic performance, as the dimensionality of the search space increases
is commonly known as a ”curse of dimensionality”, see [38].

Since the employment of optimization algorithms can lead to a prohibitively high
computational cost of the optimization run without the detection of a satisfactory
result, it is crucially important to detect an algorithmic solution that allows good
results by performing a relatively low amount of objective function evaluations. In
the literature various studies have been carried out and several algorithmic solutions
have been proposed. In [15], a modified Ant Colony Optimizer (ACO) has been
proposed for large scale optimization problems. Some other papers propose a tech-
nique, namely cooperative coevolution, originally defined in [27] and subsequently
developed in other works, see e.g. [17] and [36]. The concept of the cooperative
coevolution is to decompose a LSP in a set of low dimension problems which can
be separately solved and then recombined in order to compose the solution of the
original problem. It is obvious that if the objective function (fitness function) is sep-
arable then the problem decomposition can be trivial while for nonseparable func-
tions the problem decomposition can turn out to be a very difficult task. However,
some techniques for performing the decomposition of nonseparable functions have
been developed, see [26]. Recently, cooperative coevolution procedures have been
successfully integrated within Differential Evolution (DE) frameworks for solving
LSPs, see [35], [39], [41], [24] and [40].

It should be remarked that a standard DE can be inefficient for solving LSPs, see
[6]. However, DE framework, thanks to its simple structure and flexibility, can be eas-
ily modified and become an efficient solver of high dimensional problems. Besides
the examples of DE integrating cooperative coevolution, other DE based algorithms
for LSPs have been proposed. In [30] the opposition based technique is proposed for
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handling the high dimensionality. This technique consists of generating extra points,
that are symmetric to those belonging to the original population, see details in [31].
In [22] a Memetic Algorithm (MA) (see for the definitions e.g. [20], [12], and [25])
which integrates a simplex crossover within the DE framework has been proposed
in order to solve LSPs, see also [23]. In [5], on the basis of the studies carried out
in [1], [4], and [2], a DE for LSPs has proposed. The algorithm proposed in [5] per-
forms a probabilistic update of the control parameter of DE variation operators and
a progressive size reduction of the population size. Although the theoretical justifi-
cations of the success of this algorithm are not fully clear, the proposed approach
seems to be extremely promising for various problems. In [21], a memetic algorithm
which hybridizes the self-adaptive DE described in [2] and a local search applied
to the scale factor in order to generate candidate solutions with a high performance
has been proposed. Since the local search on the scale factor (or scale factor local
search) is independent on the dimensionality of the problem, the resulting memetic
algorithm offered a good performance for relatively large scale problems, see [21].

This chapter proposes a novel memetic algorithm which integrates the potential
of the scale factor local search within the self-adaptive DE with automatic reduc-
tion of the population size in order to guarantee a high performance, in terms of
convergence speed and solution detection, for large scale problems.

The rest of this chapter is organized in the following way. Section 12.2 describes
the algorithmic components characterizing the proposed algorithm. Section 12.3
shows the numerical results and highlights the performance of the proposed algo-
rithm with respect to a standard DE and two modern DE variants. Section 12.4 gives
the conclusion of this work.

12.2 Differential Evolution for Large Scale Problems

This section describes the algorithmic components composing the proposed algo-
rithm, namely Differential Evolution for Large Scale Problems (DELS), and their
combination.

In order to clarify notation used throughout this article we refer to the minimiza-
tion problem of an objective function f (x), where x is a vector of n design variables
in a decision space D.

12.2.1 Differential Evolution

According to its original definition given in [37], the DE consists of the following
steps. An initial sampling of Spop individuals is executed pseudo-randomly with a
uniform distribution function within the decision space D. At each generation, for
each individual xi of the Spop available, three individuals xr, xs and xt are randomly
extracted from the population. According to DE logic, a provisional offspring x′

o f f
is generated by mutation as:

x′
o f f = xt + F(xr − xs) (12.1)

where F ∈ [0,1+[ is a scale factor which controls the length of the exploration
vector (xr − xs) and thus determines how far from point xi the offspring should be
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generated. With F ∈ [0,1+[, it is here meant that the scale factor should be a positive
value which cannot be much greater than 1, see [28]. While there is no theoretical
upper limit for F , effective values are rarely greater than 1.0. The mutation scheme
shown in eq. (12.1) is also known as DE/rand/1. Although the DE/rand/1 mutation
have been employed in this chapter, it’s important to mention that other variants of
the mutation rule have been proposed in literature, see [29]:

DE/best/1: x′
o f f = xbest + F (xs − xt)

DE/cur-to-best/1: x′
o f f = xi + F (xbest − xi)+ F (xs − xt)

DE/best/2: x′
o f f = xbest + F (xs − xt)+ F (xu − xv)

DE/rand/2: x′
o f f = xr + F (xs − xt)+ F (xu − xv)

where xbest is the solution with the best performance among the individuals of the
population, xu and xv are two additional randomly selected individuals.

Then, to increase exploration, each gene of the new individual x′
o f f is switched

with the corresponding gene of xi with a uniform probability CR ∈ [0,1] and the
final offspring xo f f is generated:

xo f f , j =

{
xi, j if rand (0,1) < CR

x′
o f f , j otherwise

(12.2)

where rand (0,1) is a random number between 0 and 1; j is the index of the gene
under examination, from 1 to n, n the length of each individual.

generate Spop individuals of the initial population randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
for i = 1 : Spop

**mutation**
select three individuals xr, xs, and xt ;
compute x′

o f f = xt +F(xr −xs);
**crossover**
xo f f = x′

o f f ;
for j = 1 : n

generate rand(0,1);
if rand(0,1) < CR

xo f f , j = xi, j;
end-if

end-for
**selection**
if f

(
xo f f

) ≤ f (xi)
xi = xo f f ;

end-if
end-for

end-while

Fig. 12.1 DE pseudocode
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The resulting offspring xo f f is evaluated and, according to a steady-state strategy,
it replaces xi if and only if f (xo f f ) ≤ f (xi); otherwise no replacement occurs. For
the sake of clarity, the pseudo-code highlighting working principles of the DE is
shown in Fig. 12.1.

12.2.2 Self-Adaptive Control Parameter Update

The standard DE described in Subsection 12.2.1 has been modified according to
the work proposed in [2] and its enhancement proposed in [41]. When the initial
population is generated, two extra values between 0 and 1 are also generated per
each individual. These values represent F and CR related to the individual under
analysis. Each individual is thus composed (in a self-adaptive logic) of its genotype
and its control parameters:

xi =
〈
xi,1,xi,2, ...,xi, j, ...xi,n,Fi,CRi

〉
. (12.3)

In accordance with a self-adaptive logic, see e.g. [32], the variation operations are
preceded by the parameter update. More specifically when, at each generation, the
ith individual xi is taken into account and three other individuals are extracted ran-
domly, its parameters Fi and CRi are updated according to the following scheme:

Fi =

{
Fl + Furand1, if rand2 < τ1

Fi, otherwise
(12.4)

Fi = −Fi if rand5 < τ3 AND f (xs) > f (xt) (12.5)

CRi =

{
rand3, if rand4 < τ2

CRi, otherwise
(12.6)

where rand j, j ∈ {1,2,3,4,5,6}, are uniform random values between 0 and 1; τ1,
τ2, and τ3 are constant values which represent the probabilities that parameters are
updated, Fl and Fu are constant values which represent the minimum value that
Fi could take and the maximum variable contribution to Fi, respectively. The sign
inversion in the scale factor described in eq. (12.5) can be seen as the exploitation
of a crude approximation of the gradient information in order to generate offspring
along the most promising search directions. The newly calculated values of Fi and
CRi are then used for generating the offspring. Mutation, crossover, and selection
scheme are performed as shown in Subsection 12.2.1 for a standard DE.

12.2.3 Population Size Reduction

Taking into account the studies given in [1] and [3] a population size reduction has
been integrated within the proposed algorithm. This algorithmic component requires
that initial population size S1

pop, total budget Tb, in terms of fitness evaluations, and
number of stages Ns, i.e. the number of population sizes, employed during the algo-
rithm’s run are prearranged.
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Thus, the total budget of the algorithm is divided into Ns periods, each period
being characterized by a population size value Sk

pop (for k = 1 we obtain the initial
population size). Each period is composed of Nk

g generations which are calculated
in the following way:

Nk
g =

⌊
Tb

NsSk
pop

⌋
+ rk (12.7)

where rk is a constant non-negative value which takes a positive value when Tb is
not divisible by Ns. In this case rk extra generations are performed. The population
reduction is simply carried out by halving the population size at the beginning of

the new stage, see [1]. In other words, for k = 1,2, ...,Ns − 1, Sk+1
pop =

Sk
pop
2 .

In this way, the population size is progressively reduced during the optimization
process until the final budget is reached. The concept behind this strategy can be
explained as the satisfaction of the necessity of focusing the search in progressively
smaller search spaces in order to inhibit the DE stagnation in the environment with
high dimensionality. During the early stages of the optimization process, the search
requires a highly explorative search rule, i.e. a large population size, in order to ex-
plore a large portion of the decision space. During the optimization, the search space
is progressively narrowed by decreasing the population size and thus exploiting the
promising search directions previously detected. Although the number of stages and
the population size values remain arbitrary issues defined by the algorithmic de-
signer, the idea seems to lead to a fairly robust algorithmic behavior for the setting
proposed in [41] and seems to be very promising for LSPs, as highlighted in [1].

The last topic to be clarified is the selection rule employed every time a pop-
ulation reduction occurs. At the end of each stage, i.e. at each Nk

g generation for
k = 2,3, ...,Ns, the population is divided into two sub-populations on the basis of

the position index i of the individuals. Each sub-population encounters
Sk

pop
2 in-

dividuals. Thus, the first sub-population is composed of the candidate solutions
x1,x2, ...,x Spopk

2
while the second sub-population is composed of the candidate so-

lutions x Spopk
2 +1

,x Spopk
2 +2

, ...,xSk
pop

. The selection occurs by applying the one-to-one

spawning, typical of the DE logic, to the two sub-populations analogous to the se-
lection among parent and offspring individuals in a standard DE scheme. In other

words, the individuals xi and x Spopk
2 +i

are pairwise compared, for i = 1,2, ..
Sk

pop
2 , and

the individuals having the most promising fitness value are retained for the subse-
quent generation.

For the sake of clarity, it should be remarked that in order to guarantee a proper
functioning of the population reduction mechanism, populations should never un-
dergo sorting of any kind.

12.2.4 Scale Factor Local Search

At each generation, with a certain probability pls, the individual with the best per-
formance undergoes local search while its offspring is generated. However, the local
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search is not applied to all the coordinates of the individual but on its scale factor Fi.
The main idea is that the update of the scale factor and thus generation of the off-
spring is, with a certain probability, controlled in order to guarantee a high quality
solution which can take on a key role in subsequent generations, see also [18].

Local search in the scale factor space can be seen as the minimization over the
variable Fi of fitness function f in the direction given by xr and xs and modified by
the crossover. More specifically, at first the scale factor local search determines those
genes which are undergoing crossover by means of the standard criterion explained
in eq. (12.2), then it attempts to find the scale factor value which guarantees an
offspring with the best performance. Thus, for given values of xt , xr, xs, and the set
of design variables to be swapped during the crossover operation, the scale factor
local search attempts to solve the following minimization problem:

min
Fi

f (Fi) in [−1,1] . (12.8)

For sake of clarity, the procedure describing the fitness function is shown in
Fig. 12.2.

insert Fi;
compute x′

o f f = xt +Fi (xr −xs);
perform the swapping of the genes
and generate in a crossover fashion xo f f ;
compute f (Fi) = f

(
xo f f

)
;

return f (Fi);

Fig. 12.2 Local search fitness function, f (Fi) pseudocode

It must be remarked that each scale factor Fi corresponds to an offspring solution
xo f f during the local search and thus the proposed local search can be seen as an
instrument for detecting solutions with a high quality over the directions suggested
by a DE scheme. At the end of the local search process, newly generated design
variables xi, j with corresponding scale factor Fi within the candidate solution xi, see
eq. (12.3), compose the offspring solution. In addition, it is fundamental to observe
that negative values of Fi are admitted up to −1. The meaning of the negative scale
factor is obviously, in this context, the inversion of the search direction. If this search
in the negative direction succeeds, the corresponding positive value (the absolute
value |Fi|) is assigned to the offspring solution which has been generated by a local
search. In order to perform this minimization, a simple uni-dimensional hill-climb
(see any book on optimization, e.g. [33]) local search has been employed.

The algorithm uses the current value of Fi as a starting point and is com-
posed of an exploratory move and a decisional move. The exploratory move sam-
ples Fi − h and Fi + h where h is a step size. The decisional move computes the
min{ f (Fi − h) , f (Fi) , f (Fi + h)} and selects the corresponding point as the center
of the next exploratory move. If the center of the new exploratory move is still Fi,
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the step size h is halved. The local search is stopped when a budget condition is
exceeded. For the sake of completeness the pseudo-code of the Scale Factor Hill-
Climb (SFHC) is shown in Fig. 12.3.

insert Fi;
initialize h;
while budget condition

compute f (Fi −h), f (Fi), and f (Fi +h);
select the point with the best performance F∗

i ;
if F∗

i == Fi
h = h/2;

end-if
Fi = F∗

i ;
end-while

Fig. 12.3 SFHC pseudocode

It should be remarked that the SFHC is a local search algorithm characterized by
a steepest descent pivot rule, see [12], i.e. an algorithm which explores the whole
neighborhood of the candidate solution before making a decision on the search di-
rection. This property makes, in general, the local search accurate and thus relatively
computationally expensive. The computational cost of the search in one dimension
cannot, in any case, be very high.

It is interesting to visualize the functioning of this local searcher in terms of
generation of an offspring within a DE for a multi-dimensional problem. Given
that the scale factor is related to the modulus of a moving vector (xr − xs) in the
generation of the preliminary offspring, the SFHC in operation can be seen as a
pulsing vector in a multi-dimensional space which tunes to the best offspring and
then generates this offspring.

Regarding the probability for the local search activation, the initial value of pls is
set equal to 1. Subsequently, pls is progressively halved every time the population
size is reduced. The main idea is that at the beginning of the optimization process
the global search due to large population size is balanced by the application of the
SFHC on the individual with the best performance and therefore, offers promising
search directions to the algorithm. During the subsequent stages of the optimization
process, the DELS tends, due to the population reduction, to focus its search in a
smaller portion of the decision space. In these conditions a lower intensity of the
local search is needed. It should be remarked that the reduction in the probability
pls means, on one hand, a reduction in the local search with respect to the occurrence
within the generations and, on the other hand, a constant employment of global and
local components in terms of fitness evaluations. In other words, the reduction rule
related to pls assures that the ratio between the amount of fitness evaluations devoted
to the local search with respect to the ones devoted global search is kept constant
throughout the entire optimization process.
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Table 12.1 Test Problems

Test Problem Analytic Expression Decision Space

Ackley −20+ e+20exp

(
− 0.2

n

√
∑n

i=1 x2
i

)
[−1,1]n

−exp
(

1
n ∑

n
i=1 cos(2π ·xi)xi

)
Ellipsoid ∑n

i=1

(
∑i

j=1 x j
)2 [−65.536,65.536]n

Griewangk ||x||2
4000 −∏n

i=0 cos xi√
i
+1 [−600,600]n

Michalewicz −∑n
i=1 sinxi

(
sin

(
i ·x2

i
π

))20

[0,π]n

Parallel Axis ∑n
i=1 i · x2

i [−5.12,5.12]n

Rastrigin 10n+∑n
i=0

(
x2

i −10cos(2πxi)
)

[−5.12,5.12]n

Rosenbrock ∑n−1
i=1

((
xn+1 − x2

i

)2 +(1− x)2
)

[−2.048,2.048]n

Schwefel ∑n
i=1 xi sin

(√|xi|
)

[−500,500]n

Tirronen 3exp
(
− ||x||2

10n

)
−10exp

(−8||x||2) [−10,5]n

+ 2.5
n ∑n

i=1 cos(5xi(1+ i mod 2)cos(||x||))

For the sake of clarity, the pseudocode highlighting the working principle of the
DELS integrating the scale factor local search is given in Fig. 12.4.

12.3 Numerical Results

The DELS has been tested on a set of benchmark problems. The problems considered
in this study are listed in Table 12.1. The amount of variables is indicated with n.

In addition to the problems listed in Table 12.1, one rotated problem for each
test problem has been added to the benchmark set. The rotated problems are ob-
tained by means of multiplication of the vector of variables to a randomly generated
orthogonal rotation matrix.

The performance of the DELS has been compared with the performance obtained
by the self-adaptive Differential Evolution with dynamic population size and inver-
sion of the scale factor (jDEdynNP-F) proposed in [1] for LSPs, the Differential
Evolution with Self-adaptive Control Parameters proposed in [2] and with a stan-
dard DE. The algorithms involved in this study ad their parameter settings are listed
below.

1. The DE has been run with F = 0.7, and CR = 0.7 in accordance to the sugges-
tions given in [42].

2. Regarding the SACPDE, the constant values in formulas (12.4) and (12.6) have
been set, respectively, Fl = 0.1, Fu = 0.9, τ1 = 0.1, and τ2 = 0.1 as suggested
in [2].

3. Regarding the jDEdynNP-F, it employs the scale factor inversion shown in for-
mula (12.5) with τ3 = 0.75, as suggested in [1] and the population size reduc-
tion described in Subsection 12.2.3 with Ns = 4 in accordance with the results
in [41]. The control parameters vary with the same rules given in formulas 12.4
and 12.6 and the related parameter setting (Fl, Fu, τ1 and τ2) has been performed
as for the SACPDE.
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generate Spop individuals of the initial population with related
parameters randomly;
while budget condition

for i = 1 : Spop

compute f (xi);
end-for
for i = 1 : Spop

generate rand j for j = 1 to 5;
randomly select three individuals xr , xs, and xt ;
if xi is the best AND rand6 < pls

*Scale Factor Hill-Climb*
randomly select genes undergoing crossover;
apply SFHC using Fi as the starting point;
save the resulting offspring xo f f ;

else
**Fi update**

Fi =

{
Fl +Furand1, if rand2 < τ1

Fi, otherwise
;

if rand5 < τ3 AND f (xs) > f (xt)
Fi = −Fi;

end-if
**CRi update**
generate rand3 and rand4;

CRi =

{
rand3, if rand4 < τ2

CRi, otherwise
**mutation**
compute x′o f f = xt +Fi(xr − xs);
**crossover**
xo f f = x′o f f ;
for j = 1 : n

generate rand(0,1);
if rand(0,1) < CRi

xo f f , j = xi, j;
end-if

end-for
end-if
**selection**
if f (xo f f ) < f (xi)

xi = xo f f ;
end-if
end-for
**population size and local search probability reduction**

if Ng ==
⌊

Tb
NsSpop

⌋
+ rk

for i = 1 : Spop
2

if f

(
x Spop

2 +i

)
< f (xi)

xi = x Spop
2 +i

;

end-if
end-for
halve Spop and pls;
update Ng;

end-if
end-while

−

−

Fig. 12.4 DELS pseudocode
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4. The proposed DELS has the same parameter setting of the jDEdynNP-F. In
addition, the SFHC has been run with a budget of 40 fitness evaluations and an
initial step size h = 0.1.

The experiments have been performed for n = 100, n = 500, and n = 1000. The
total budget for all the algorithms has been set equal to 1.5 × 105, 3 × 106, and 6 ×
106 fitness evaluations, respectively. Regarding jDEdynNP-F and DELS, the initial
population size S1

pop is set equal to n. Regarding DE and SACPDE the population
size Spop has been set in order to keep constant the amount of generations for all the
algorithms considered in this study. More specifically, DE and SACPDE have been
run with a population size Spop = 27 for the 100 dimension case, Spop = 134 for the
500 dimension case, and Spop = 267 for the 1000 dimension case.

For each test problem, each algorithm performed the optimization process on 30
independent runs.

Regarding the rotated test problems, in order to perform a fair comparison and an
analysis on the robustness, a rotation matrix has been generated for each problem
and for each run. Then, all the algorithms considered in this study have been run
with the same set of rotated problems.

12.3.1 Results in 100 Dimensions

Table 12.2 shows the final average detected results by each algorithm ± the standard
deviations for the 100 dimension case.

Table 12.2 Average final fitness values ± standard deviations in 100 dimensions

Test Problem DE SACPDE jDEdynNP-F DELS

Ackley 9.41E+00±1.26E+00 4.54E+00±1.14E+00 8.87E-05±8.97E-05 3.21E-05±4.56E-05

Rotated Ackley 7.87E+00±1.67E+00 5.83E+00±1.50E+00 6.49E-01±6.04E-01 3.57E-01±5.77E-01

Ellipsoid 1.02E+03±4.20E+02 3.81E+03±1.87E+03 4.37E+03±9.65E+02 3.91E+03±9.11E+02

Rotated Ellipsoid 8.86E+02±3.90E+02 3.80E+03±1.32E+03 4.07E+03±7.58E+02 3.98E+03±9.97E+02

Griewangk 1.02E-01±1.74E-01 2.76E-01±6.66E-01 1.21E-02±2.12E-02 2.18E-02±4.05E-02

Rotated Griewangk 2.24E-02±3.31E-02 7.45E-4±2.34E-03 6.85E-03±8.11E-03 2.45E-03±2.42E-03

Michalewicz -4.60E+01±5.86E+00 -8.99E+01±1.13E+00 -8.86E+01±1.15E+00 -9.16E+01±2.49E+00

Rotated Michalewicz -8.16E+00±6.48E-01 -7.98E+00±4.31E-01 -8.28E+00±9.11E-01 -1.09E+01±1.37E+00

Parallel 2.74E-04±6.36E-04 4.39E-18±6.96E-18 3.76E-08±4.92E-08 2.13E-08±3.05E-08

Rotated Parallel 5.13E+00±3.82E+00 1.50E+00±8.23E-01 6.44E+00±3.98E+00 3.40E+00±2.10E+00

Rastrigin 2.28E+02±8.02E+01 3.74E+01±8.29E+00 1.28E+01±5.39E+00 1.27E+01±4.92E+00

Rotated Rastrigin 1.64E+02±5.15E+01 1.89E+02±4.76E+01 3.05E+02±7.78E+01 1.96E+02±6.22E+01

Rosenbrock 2.24E+02±5.59E+01 1.82E+02±5.26E+01 1.15E+02±2.72E+01 1.45E+02±4.55E+01

Rotated Rosenbrock 1.34E+02±5.59E+01 1.25E+02±5.52E+01 9.71E+01±1.30E+00 9.69E+01±1.43E+00

Schwefel 1.60E+04±2.19E+03 4.46E+03±1.27E+03 1.10E+03±3.03E+02 9.76E+02±4.30E+02

Rotated Schwefel 1.99E+04±3.78E+03 1.64E+04±1.03E+03 1.74E+04±1.21E+03 1.59E+04±2.00E+03

Tirronen -1.75E+00±1.17E-01 -2.48E+00±1.32E-02 -2.47E+00±7.98E-03 -2.49E+00±6.16E-03

Rotated Tirronen -7.82E-01±6.42E-02 -1.03E+00±1.00E-01 -1.01E+00±1.57E-01 -1.61E+00±2.08E-01
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Results in Table 12.2 show that the proposed DELS obtained the best results for
10 problems out of the 18 considered in the 100 dimension benchmark. Thus, the
DELS seems clearly to be the most efficient algorithm in terms of final solutions.

In the remaining 8 test problems the DELS, in any case is never by far outper-
formed by other algorithms and still demonstrates a competitive performance. For
example, with the Griewangk function, although the DELS does not seem to have a
very promising behavior, reaches satisfactory results anyway.

In order to prove the statistical significance of the results, the Student’s t-test
has been applied according to the description given in [34] for a confidence level
of 0.95. Final values obtained by the DELS have been compared to the final value
returned by each algorithm used as a benchmark. Table 12.3 shows the results of
the test. Indicated with ”+” is the case when the DELS statistically outperforms, for
the corresponding test problem, the algorithm mentioned in the column; indicated
with ”=” is the case when pairwise comparison leads to success of the t-test i.e. the
two algorithms have the same performance; indicated with ”-” is the case when the
DELS is outperformed.

Table 12.3 Results of the Student’s t-test in 100 dimensions

Test Problem DE SACPDE jDEdynNP-F

Ackley + + =
Rotated Ackley + + =
Ellipsoid − = =
Rotated Ellipsoid − = =
Griewangk = = =
Rotated Griewangk = = =
Michalewicz + = +
Rotated Michalewicz + + +
Parallel = − =
Rotated Parallel = − +
Rastrigin + + =
Rotated Rastrigin = = +
Rosenbrock + = =
Rotated Rosenbrock = = =
Schwefel + + =
Rotated Schwefel + = =
Tirronen + + +
Rotated Tirronen + + +

The t-test results listed in Table 12.3 show that the DELS loses the comparison in
only 4 cases out of the 54 comparisons carried out i.e. the DELS loses in only 7.4%
of the pairwise comparisons. In addition, it should be remarked that the scale factor
local search never reduces the performance of the jDEdynNP-F framework, as the
right hand column of Table 12.3 proves.

In addition to the t-test also the Friedman test has been performed, see [34]. In a
nutshell, Friedman test is a non-parametric test equivalent of the repeated-measures
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ANOVA. Under the null-hypothesis, it states that all the algorithms are equivalent. If
the hypothesis is rejected, the algorithms have a different performance. Details of the
test can be found in [34] and the application of this test in the context of algorithm
comparisons is described in [11]. In this study, rotated and non-rotated problems
have been treated separately and in both cases level of significance has been set to
0.05. We can conclude that the probability that the algorithms under analysis have
the same performance for non-rotated problems is 0 while the probability that this
events happens for rotated problems is 1.4618 × 10−8, i.e. this event is very unlike.

In order to carry out a numerical comparison of the convergence speed perfor-
mance, for each test problem, the average final fitness value returned by the best per-
forming algorithm G has been considered. Subsequently, the average fitness value at
the beginning of the optimization process J has also been computed. The threshold
value THR = J − 0.95(G− J) has then been calculated. The value T HR represents
95% of the decay in the fitness value of the algorithm with the best performance. If
an algorithm succeeds during a certain run to reach the value T HR, the run is said
to be successful. For each test problem, the average amount of fitness evaluations
n̄e required, for each algorithm, to reach T HR has been computed. Subsequently,
the Q-test (Q stands for Quality) described in [10] has been applied. For each test
problem and each algorithm, the Q measure is computed as:

Q =
n̄e
R

(12.9)

where the robustness R is the percentage of successful runs. It is clear that, for each
test problem, the smallest value equals the best performance in terms of convergence
speed.The value ”Inf” means that R = 0, i.e. the algorithm never reached the T HR.

Table 12.4 shows the Q values in 100 dimensions. The best results are highlighted
in bold face.

Results in Table 12.4 show that the best performance values in terms of Q-
measure are distributed among the considered algorithms. In other words, there is
not a clear best algorithm in terms of Q-measure. The jDEdynNP-F seems to have
a slightly lower performance than the other algorithms. It is important to notice that
the DELS has a very robust behaviour compared to the other algorithms considered
in this study. As a matter of fact, as shown in Table 12.4, the DELS is the only al-
gorithm whose Q-measure never takes the ”Inf” value. This means that the DELS is
always able to detect candidate solutions with a high performance and is never out-
performed consistently by other algorithms. We can conclude that in 100 dimension
case the proposed DELS tends either to have an excellent performance with respect
to the other algorithms (e.g. Rotated Schwefel) or is anyway competitive with the
other algorithms (e.g. Rastrigin).

In order to graphically show the behaviour of the algorithms, some examples of
the average performance are plotted against the number of fitness evaluations (for
some of the test problems listed in Table 12.1) and represented in Figure 12.5.
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Table 12.4 Results of the Q-test in 100 dimensions

Test Problem DE SACPDE jDEdynNP-F DELS

Ackley Inf Inf 3.27E+02 4.61E+02

Rotated Ackley Inf Inf 6.83E+02 6.51E+02

Ellipsoid 9.94E+01 1.43E+02 3.90E+02 5.40E+02

Rotated Ellipsoid 1.16E+02 1.79E+02 4.09E+02 5.92E+02

Griewangk 7.35E+01 3.96E+01 1.39E+02 1.99E+02

Rotated Griewangk 6.58E+01 4.04E+01 1.39E+02 1.92E+02

Michalewicz Inf 3.19E+03 Inf 1.80E+03

Rotated Michalewicz Inf Inf Inf 1.45E+04

Parallel 6.67E+01 3.63E+01 1.39E+02 1.83E+02

Rotated Parallel 6.39E+01 3.94E+01 1.72E+02 2.22E+02

Rastrigin Inf 3.40E+02 6.61E+02 8.63E+02

Rotated Rastrigin 5.09E+02 2.06E+03 9.94E+03 1.74E+03

Rosenbrock 1.96E+01 2.07E+01 1.06E+02 1.34E+02

Rotated Rosenbrock 1.45E+01 2.12E+01 1.04E+02 1.35E+02

Schwefel Inf Inf 7.38E+02 9.57E+02

Rotated Schwefel Inf Inf Inf 4.53E+03

Tirronen Inf 3.88E+02 7.13E+02 7.84E+02

Rotated Tirronen Inf Inf Inf 1.49E+04

12.3.2 Results in 500 Dimensions

The experiments performed in 100 dimensions have been repeated for the test prob-
lem listed in Table 12.1 for 500 dimensions. Numerical results in terms of final so-
lutions, t-test, and Q-measure are shown in Table 12.5, 12.6, and 12.7, respectively.

The Friedman test in 500 variables shows that the probability that the algorithms
have the same performance for non-rotated problems is 3.3307 × 10−16 and for ro-
tated problems 7.0201 × 10−7. Also in this case the probability is lower then con-
sidered level of significance α= 0.05, therefore we can conclude that we are almost
sure that the algorithms have a different performance.

Numerical results in the 500 dimension case (see Table 12.5) show that the pro-
posed DELS reaches the best results for 50% of the best functions. The results re-
lated to the t-test, listed in Table 12.6, show that the DELS loses only 3 pairwise
comparisons out of the 54 carried out and wins 26 comparisons. In other words, re-
garding the final solution, the DELS significantly outperforms the other algorithms
in 48.1% of the comparisons, is outperformed in 5.5% of the comparisons and has
the same performance for 44.4% of the comparisons. Concerning the convergence
speed performance, Table 12.7 shows that it is impossible to identify clearly the
overall best algorithm in terms of Q-measure values. Nevertheless, the SACPDE
seems to have a convergence speed performance slightly superior with respect to the
other algorithms. On the other hand, the DELS clearly has the best performance in
terms of algorithmic robustness since it is the only algorithm which always succeeds
at detecting a competitive value (there are no ”Inf” values in the DELS column).

Some examples of the average performance are shown in Figures 12.6.
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Fig. 12.5 Performance trends in 100 dimensions
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Table 12.5 Average final fitness values ± standard deviations in 500 dimensions

Test Problem DE SACPDE jDEdynNP-F DELS

Ackley 5.02E+00±5.56E-01 2.09E+00±3.75E-01 1.11E-12±8.86E-13 6.01E-13±5.64E-14

Rotated Ackley 3.97E+00±3.58E-01 2.88E+00±2.44E-01 7.85E-13±1.08E-13 7.13E-13±5.08E-14

Ellipsoid 6.14E+04±5.47E+03 1.12E+04±1.35E+03 8.06E+03±5.77E+02 8.86E+03±1.10E+03

Rotated Ellipsoid 6.18E+04±1.66E+04 1.04E+04±1.03E+03 7.42E+03±1.09E+03 9.50E+03±1.07E+03

Griewangk 3.58E-02±4.08E-02 1.72E-02±3.44E-02 4.97E-15±2.03E-15 5.52E-15±1.78E-15

Rotated Griewangk 2.31E-02±2.01E-02 1.84E-10±7.26E-11 2.57E-09±2.60E-09 1.40E-08±1.33E-08

Michalewicz -2.42E+02±8.51E+00 -4.57E+02±2.66E+00 -4.46E+02±2.65E+00 -4.69E+02±8.75E-01

Rotated Michalewicz -1.24E+01±8.41E-01 -1.21E+01±5.86E-01 -1.21E+01±4.41E-01 -1.44E+01±2.74E+00

Parallel 3.18E-03±1.53E-03 4.67E-52±7.24E-53 3.95E-42±5.64E-42 2.87E-38±2.79E-38

Rotated Parallel 5.58E+01±2.11E+01 4.22E+00±3.69E+00 3.94E+00±1.59E+00 2.95E+00±1.14E+00

Rastrigin 4.50E+02±6.74E+01 9.95E-01±1.41E+00 1.27E+00±2.54E+00 5.60E+00±4.63E+00

Rotated Rastrigin 3.67E+02±3.56E+01 7.59E+02±3.26E+01 7.14E+02±5.32E+01 9.21E+02±1.76E+02

Rosenbrock 6.14E+02±5.40E+01 6.16E+02±8.47E+01 4.91E+02±3.25E+01 4.97E+02±3.17E+01

Rotated Rosenbrock 5.08E+02±2.82E+01 5.17E+02±2.96E+01 4.91E+02±3.57E-01 4.92E+02±5.15E-01

Schwefel 9.23E+04±3.21E+03 3.26E+02±1.78E+02 8.88E+01±5.92E+01 6.36E-03±2.84E-07

Rotated Schwefel 1.79E+05±1.55E+03 9.60E+04±5.26E+02 9.14E+04±1.52E+03 8.77E+04±4.66E+03

Tirronen -1.78E+00±4.99E-02 -2.49E+00±1.96E-03 -2.49E+00±3.91E-03 -2.50E+00±1.86E-03

Rotated Tirronen -4.06E-01±2.42E-02 -8.72E-01±4.14E-02 -9.57E-01±4.99E-02 -1.41E+00±1.64E-01

Table 12.6 Results of the Student’s t-test in 500 dimensions

Function DE SACPDE jDEdynNP-F

Ackley + + =
Rotated Ackley + + =
Ellipsoid + + =
Rotated Ellipsoid + = −
Griewangk = = =
Rotated Griewangk = = =
Michalewicz + + +
Rotated Michalewicz = = =
Parallel + = =
Rotated Parallel + = =
Rastrigin + = =
Rotated Rastrigin − = −
Rosenbrock + + =
Rotated Rosenbrock = = =
Schwefel + + +
Rotated Schwefel + + =
Tirronen + + +
Rotated Tirronen + + +
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Table 12.7 Results of the Q-test in 500 dimensions

Test Problem DE SACPDE jDEdynNP-F DELS

Ackley Inf Inf 5.00E+03 5.33E+03

Rotated Ackley Inf Inf 5.73E+03 6.22E+03

Ellipsoid 8.50E+03 1.46E+03 6.63E+03 7.05E+03

Rotated Ellipsoid 9.46E+03 1.46E+03 6.59E+03 7.00E+03

Griewangk 8.92E+02 4.01E+02 1.56E+03 1.71E+03

Rotated Griewangk 9.64E+02 3.73E+02 1.64E+03 1.66E+03

Michalewicz Inf 2.84E+04 4.86E+04 2.29E+04

Rotated Michalewicz Inf Inf Inf 9.55E+04

Parallel 8.96E+02 3.83E+02 1.50E+03 1.65E+03

Rotated Parallel 8.98E+02 4.01E+02 1.76E+03 1.91E+03

Rastrigin 2.30E+04 1.08E+04 1.85E+04 1.67E+04

Rotated Rastrigin 8.48E+03 2.98E+04 2.73E+04 9.42E+04

Rosenbrock 2.01E+02 2.17E+02 1.11E+03 1.17E+03

Rotated Rosenbrock 1.79E+02 1.99E+02 1.10E+03 1.09E+03

Schwefel Inf 1.45E+04 1.96E+04 2.07E+04

Rotated Schwefel Inf Inf Inf 5.21E+04

Tirronen Inf 1.51E+04 1.98E+04 1.64E+04

Rotated Tirronen Inf Inf Inf 5.38E+04

12.3.3 Results in 1000 Dimensions

The same experiments carried out in 100 and 500 dimensions have also been per-
formed in 1000 dimensions. Numerical results in in 1000 dimensions are shown in
Table 12.8, 12.9, and 12.10. Some performance trends are given in Figures 12.7.

The Friedman test in 1000 variables shows that the probability that the algorithms
have the same performance for non-rotated problems is 0 and for rotated problems
2.4636 × 10−8. Also for 1000 variables the probability is very low and we can con-
clude that we are almost sure that the algorithms have a different performance.

Results in Table 12.8 show that the proposed DELS has the best performance in
terms of final solution since it converged to the best solutions in 50% of the test
problems analyzed. Regarding the t-test shown in Table 12.9, it can be observed
that the DELS significantly outperforms the other algorithms for the 55.5% of the
pairwise comparisons while is outperformed for only the 3.7% of the comparisons.
Most importantly, it must be remarked that, as shown in Table 12.10, also for the
1000 dimension case, the Q-test shows that the DELS is the only algorithm which
does not displays ”Inf” values. Thus, the DELS confirms its high performance in
terms of robustness despite the high dimensionality of this set of experiments. In
summary, the DELS seems to be less affected than the other algorithms from the
curse of dimensionality.
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Fig. 12.6 Performance trends in 500 dimensions
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Table 12.8 Average final fitness values ± standard deviations in 1000 dimensions

Test Problem DE SACPDE jDEdynNP-F DELS

Ackley 4.47E+00±3.10E-01 1.47E+00±3.38E-01 5.41E-12±4.99E-12 1.80E-12±8.74E-14

Rotated Ackley 4.01E+00±5.22E-02 3.24E+00±2.62E-01 1.14E-11±1.82E-11 2.67E-12±1.11E-12

Ellipsoid 2.31E+06±6.82E+05 4.19E+04±6.78E+03 2.94E+04±4.37E+03 3.11E+04±3.64E+03

Rotated Ellipsoid 2.39E+06±5.79E+05 4.26E+04±2.93E+03 3.32E+04±4.55E+03 2.86E+04±4.39E+03

Griewangk 1.86E+00±1.24E-01 3.83E-02±7.67E-02 1.93E-14±1.05E-14 1.58E-14±7.79E-15

Rotated Griewangk 2.40E+00±4.95E-01 2.47E-03±4.93E-03 3.39E-06±1.12E-06 8.66E-06±5.27E-06

Michalewicz -2.20E+02±6.37E+00 -4.26E+02±1.17E+01 -7.51E+02±4.31E+00 -8.23E+02±2.50E+01

Rotated Michalewicz -1.49E+01±4.88E-01 -1.46E+01±1.66E-01 -1.46E+01±6.53E-01 -1.63E+01±3.06E+00

Parallel 2.18E+02±8.66E+01 6.24E-36±7.30E-36 5.75E-29±6.28E-29 2.17E-27±2.92E-27

Rotated Parallel 8.98E+02±1.71E+02 2.31E+01±8.83E+01 2.55E+01±1.08E+02 2.41E+01±5.65E+01

Rastrigin 5.62E+02±1.53E+01 3.05E+02±5.20E+01 2.29E+00±7.56E-01 8.95E+01±6.31E+01

Rotated Rastrigin 5.82E+02±8.38E+01 1.45E+03±2.32E+02 1.49E+03±2.51E+02 1.59E+03±2.35E+02

Rosenbrock 1.39E+03±1.88E+02 1.29E+03±1.61E+02 9.94E+02±3.90E+01 1.05E+03±1.02E+02

Rotated Rosenbrock 1.34E+03±9.43E+01 1.05E+03±7.29E+01 9.87E+02±4.67E-01 1.00E+03±2.62E+01

Schwefel 2.30E+05±1.30E+03 1.86E+04±1.86E+03 1.48E+02±1.14E+02 2.18E+02±2.57E+02

Rotated Schwefel 3.75E+05±1.50E+03 2.27E+05±2.78E+03 2.14E+05±5.24E+03 2.07E+05±1.25E+03

Tirronen -1.47E+00±2.96E-02 -2.36E+00±8.76E-03 -2.46E+00±1.32E-03 -2.49E+00±2.12E-03

Rotated Tirronen -2.87E-01±2.01E-02 -6.96E-01±4.56E-02 -7.86E-01±2.88E-02 -1.15E+00±6.71E-02

Table 12.9 Results of the Student’s t-test in 1000 dimensions

Test Problem DE SACPDE jDEdynNP-F

Ackley + + =
Rotated Ackley + + =
Ellipsoid + + =
Rotated Ellipsoid + + =
Griewangk + = =
Rotated Griewangk + = =
Michalewicz + + +
Rotated Michalewicz = = =
Parallel + = =
Rotated Parallel + = =
Rastrigin + + −
Rotated Rastrigin − = =
Rosenbrock + + =
Rotated Rosenbrock + = =
Schwefel + + =
Rotated Schwefel + + +
Tirronen + + +
Rotated Tirronen + + +
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Table 12.10 Results of the Q-test in 1000 dimensions

Test Problem DE SACPDE jDEdynNP-F DELS

Ackley Inf Inf 1.35E+04 1.41E+04

Rotated Ackley Inf Inf 1.54E+04 1.62E+04

Ellipsoid 2.25E+05 4.09E+03 1.36E+04 1.42E+04

Rotated Ellipsoid Inf 4.13E+04 1.41E+04 1.39E+04

Griewangk 2.53E+03 1.04E+03 4.39E+03 4.54E+03

Rotated Griewangk 2.54E+03 1.08E+03 4.33E+03 4.64E+03

Michalewicz Inf Inf Inf 1.16E+05

Rotated Michalewicz Inf Inf Inf 2.17E+05

Parallel 2.33E+03 9.83E+02 4.00E+03 4.32E+03

Rotated Parallel 2.49E+03 1.06E+03 4.69E+03 1.79E+03

Rastrigin 3.14E+04 4.32E+04 4.71E+04 4.39E+04

Rotated Rastrigin 3.77E+04 1.89E+05 9.00E+04 1.22E+05

Rosenbrock 7.76E+02 5.65E+02 3.10E+03 3.11E+03

Rotated Rosenbrock 5.50E+02 4.85E+02 2.49E+03 2.64E+03

Schwefel Inf 7.91E+04 5.12E+04 4.98E+04

Rotated Schwefel Inf Inf 7.76E+04 5.40E+04

Tirronen Inf Inf 5.10E+04 4.65E+04

Rotated Tirronen Inf Inf Inf 1.66E+05

12.3.4 Discussion about the Algorithmic Components

This subsection gives an explanation and an interpretation of the results on the basis
of the algorithmic components employed.

As highlighted in [10], the success of the DE is due to an implicit self-adaptation
contained within the algorithmic structure. More specifically, since, for each candi-
date solution, the search rule depends on other solutions belonging to the population
(e.g. xt , xr, and xs), the capability of detecting new promising offspring solutions de-
pends on the current distribution of the solutions within the decision space. During
the early stages of the optimization process, the solutions tend to be spread out
within the decision space. For a given scale factor value, this implies that the muta-
tion appears to generate new solutions by exploring the space by means of a large
step size (if xr and xs are distant solutions, F (xr − xs) is a vector characterized by
a large modulus). During the optimization process, the solutions of the population
tend to concentrate in specific parts of the decision space. Therefore, the step size
in the mutation is progressively reduced and the search is performed in the neigh-
borhood of the solutions. In other words, due to its structure, a DE scheme is highly
explorative at the beginning of the evolution and subsequently becomes more ex-
ploitative during the optimization.

Although this mechanism seems, at the first glance, very efficient, it hides a lim-
itation. If for some reasons, the algorithm does not succeed at generating offspring
solutions which outperform the corresponding parent, the search is repeated again
with the similar step size values and likely fails by falling into the undesired stag-
nation condition (see [16]). In other words, the main drawback of the DE is that
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Fig. 12.7 Performance trends in 1000 dimensions
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Fig. 12.7 (continued)
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the scheme has, for each stage of the optimization process, a limited amount of
exploratory moves and if these moves are not enough for generating new promising
solutions, the search can be heavily compromised. Clearly, the risk of the DE stag-
nation is higher for larger decision spaces and worsens as number of the dimensions
of the problem increases. A large decision space (in terms of dimensions) requires a
wide range of possible moves to enhance the capability of detecting new promising
solutions.

Experimental observations from Fig 5(c), 6(b), and 7(b) show that for a com-
plex fitness landscape (Rotated Schwefel) the DE is heavily influenced by curse of
dimensionality. It can be observed that for 100 dimensions the DE performance is
competitive compared to the other algorithms, for 500 variables the performance is
poor and for 1000 variables stagnates early and detects a completely unsatisfactory
solutions.

In order to enhance the performance of the DE by widening the range of its search
moves, in [7], [8], and [9], a randomization of the scale factor is proposed. Although
this operation seems to be beneficial for the DE in some specific cases (noisy prob-
lems), according to our opinion, it leads to excessive random search within the de-
cision space possibly leading to a significant slowing down of the optimization in
high dimensional problems. Conversely, the probabilistic update of the scale factor
proposed in [2] seems to be an effective alternative to handle complex and multi-
variate functions. As a matter of fact the SACPDE tends to outperform, on a regular
basis, the standard DE for most of the test problems analyzed in this chapter.

The inversion of the scale factor described in equation (12.5) and proposed in [5]
can be seen as a single step local search which detects the most promising search
directions on the basis of an estimation of the gradient. Thus, for high dimensional
problems, the limited amount of moves of the DE is increased by means of a ran-
domized update of the scale factor and on a knowledge based correction of this
parameter during the algorithmic search. The scale factor local search, originally
proposed in [21] and here proposed for LSPs is a further step in this direction. As
mentioned above, the scale factor local search is independent of the amount of vari-
ables and is thus suitable for highly multivariate problems. In addition, the SFHC
integrated into the framework has the crucial role of offering an alternative move
to the DE which is the selection of the most suitable scale factor for a specific off-
spring generation. This move should lead towards the generation of promising off-
spring, significantly contributing to the search of more promising solutions during
the subsequent generations. This effect can be easily visualized in Fig. 6(c) where
the improvements appear to be not only due to the application of the local search but
also (and mainly) due to the presence of the individuals generated during the local
search while the global search is performed.

Finally, the population size reduction proposed in [1] plays a different, but never-
theless important role. Although this component does not explicitly offers alterna-
tive search moves, it progressively narrows the space where the search is performed
by eliminating the individuals characterized by a poor performance. This makes
the algorithm more exploitative and thus reduces the risk of stagnation. In other
words, this component does not help to detect the global optimum in a LSP but is
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fundamental in order to quickly improve upon the obtained results after complet-
ing the exploratory procedure. To give an analogy, the progressive reduction in the
population size is similar to progressive increase in selection pressure in Genetic
Algorithms. Following a different analogy, this mechanism is similar to a cascade
algorithm composed of as many algorithms as the amount of stages Ns, see equation
(12.7). The search by each algorithm is progressively focused in smaller decision
space after that promising search directions are detected.

The combination of these algorithmic components appears to be very beneficial
for LSPs and helpful in improving the performance of a standard DE.

12.4 Conclusion

This chapter proposes a novel Computational Intelligence algorithm for real-valued
parameter optimization in high dimensions. The proposed algorithm employs a local
search on the scale factor of a DE framework in order to control generation of high
performance offspring solutions. The DE framework also includes self-adaptive pa-
rameter control and automatic re-sizing of the population.

It should be remarked that the proposed memetic algorithm performs the local
search on the scale factor and thus on one parameter, regardless of the dimensional-
ity of the problem. This kind of hybridization seems to be very efficient in enhancing
the offspring generation and have a dramatic impact on stagnation prevention in the
Differential Evolution framework. More specifically, these improved solutions seem
to be beneficial in ”refreshing” the genotypes and assisting the global search in the
optimization process.

Numerical results show that the algorithmic behaviour in 100 dimensions is very
promising and the scale factor local search leads to good results in terms of robust-
ness over various optimization problems. The results in 500 and 1000 dimensions
show that the standard DE is much affected but the curse of dimensionality. The
SACPDE and the jDEdynNP-F can have, in various cases good performance but in
some test problems, fail to detect competitive solutions. On the contrary, the pro-
posed DELS appears to be competitive in all the problems analyzed in this chapter,
as the Q-tests prove. To be specific, for some test problems the DELS displays per-
formance competitive to other algorithms considered in this study while in other
cases significantly outperforms them.

In summary, the scale factor local search in DE frameworks seems to be a pow-
erful component for handling LSPs and appears to be very promising in terms of
robustness notwithstanding the complexity of the fitness landscape and high di-
mensionality characterizing the problem. In this sense, the proposed logic can be
potentially be very useful for various real-world applications.
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Chapter 13
Large-Scale Network Optimization with
Evolutionary Hybrid Algorithms: Ten Years’
Experience with the Electric Power Distribution
Industry

Pedro M.S. Carvalho and Luis A.F.M. Ferreira

Abstract. Electric power distribution networks are large-scale infrastructures that
need to be planned regularly and operated continuously. The planning and oper-
ation tasks involve difficult decision-making processes that can be formulated as
optimization problems: large-scale combinatorial optimization problems. These
problems have been addressed successfully with specially designed evolutionary
hybrid approaches. Such approaches rely upon Lamarckian evolutionary hybrid al-
gorithms. In this chapter, we present the most successful implementations of such
algorithms and discuss such implementations based on our experience in the de-
velopment of industrial applications for planning and operation of electric power
distribution networks for a period of over ten years.

13.1 Introduction

Electric power distribution network planning and operation is the subject matter
of most of the research conducted in network optimization in power systems since
the 90’s. The problem has been formulated in many different ways but its solution
always relies on computationally expensive optimization approaches [1]–[6]. Re-
alistic formulations lead to large-scale combinatorial problems where the objective
function and constraints are not possible to express analytically. We have been work-
ing on several instances of the problem since the early 90’s and succeed to deploy
industrial applications to solve such problems with evolutionary based algorithms
since 1997 [7]–[10]. In the following we state the network planning and opera-
tion problems focusing on the problem aspects that lead to the main optimization
difficulties.

Pedro M.S. Carvalho · Luis A.F.M. Ferreira
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Both network planning and operation problems are hard optimization problems
but for different reasons. Distribution network planning consists in choosing a new
distribution system from a set of possible distribution systems so as to meet the
expected load profile in a better way, more reliably, and with fewer losses. The new
distribution system is a plan, a plan to be carried out by project services if the plan
comprises acquisition or installation of new equipment or a plan to be carried out
by dispatch services if the plan involves only changes in the network configuration
(i.e., switching operations). If one can define criteria to measure the goodness of a
plan, then there will be one plan that ranks higher than others; that plan will be the
optimal distribution plan. Finding such plan is computationally difficult because:

1. The number of possible plans is very large, as distribution networks have thou-
sands of nodes and thousands of branches and new investments in one network
area impact considerably in neighbor areas (see Fig. 13.1 for an illustration of a
medium voltage distribution network);

2. The criterion to measure the goodness of a plan is complex. Plan analysis in-
volves complex judgment usually impossible to express analytically, e.g., criteria
involve reliability and security analysis which must be carried out by simulation
for each candidate plan.

Distribution network operation consists in several different network dispatch activ-
ities. The most computationally demanding activity is to follow contingency con-
ditions by attenuating the effects of the contingency and leading the distribution
system to a satisfactory point of operation (when possible). For a given contin-
gency, the problem consists in selecting and sequencing a set of switching oper-
ations to restore power in a secure and prompt manner. The problem is dynamic.
The switching operations require a substantial cumputational effort to be sequenced
in a securely and optimal manner. The sequence must be investigated in order to
keep the network radial, minimize customer outage costs and not violate voltage
and branch capacity constraints during the several reconfiguration stages [11]–[12].
The dynamic restoration problem can be addressed in two phases: (i) in the first
phase a network optimization approach finds the post-contingency final configura-
tion; and (ii) in the second phase an optimal sequencing approach finds the order of
the switching operations that better changes the original network configuration into
the post-contingency final configuration. Finding the post-contingency final config-
uration is a hard optimization problem because the network optimization objective
is twofold: finding a secure configuration is not enough - one must find one that does
not involve many switching operations in order to be able to promptly restore power
to the maximum number of customers [1].

Both planning and operation problem solutions rely upon network optimization.
Network optimization is a broad area of research. In this chapter we address a par-
ticular type of network optimization - radial network optimization. The chapter is
organized as follows. In Sect. 13.2 we formulate the planning and operation prob-
lems as network optimization problems. In Sect. 13.3 we present the evolutionary
solution approach together with the necessary framework to deal effectively with the
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Fig. 13.1 Geographic representation of a medium-voltage distribution network. Circles rep-
resent substations (feeding points) and triangles low-voltage transformation stations (load
points)

network topology constraints. In Sect. 13.4 we present application examples and use
these to discuss implementation practicalities. Section 13.5 concludes the chapter.

13.2 Optimization of Electric Power Distribution Networks

Electrical power distribution networks are composed of thousands of nodes, most
of which correspond to power delivery points or load points, and thousands of
branches, most of which correspond to electrical cables or lines. The other nodes
correspond to connecting points, and the other branches correspond to switching
busbars. From the topology perspective the physical network infra-structure can be
represented by a graph G.
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In normal operation, each node of the graph is connected to a single power deliv-
ery point through a single path. The operating network configuration is radial and
connected. Thus, from the topology perspective the operating configuration of the
network can be represented by a spanning-tree T of the graph G. See Fig. 13.2 for
an illustration of the relationship between the electrical network topology and the
graph concepts.
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Fig. 13.2 Schematic representation of an electrical network (upper diagram), and its corre-
spondent graph and spanning tree solution (lower diagram). The figure shows a small-scale
network with two power delivery points (busbars a and i), six load points (busbars b,c,d,e,g,
and h), and a connecting point (busbar f ). The dashed lines identify the network branches
not used by power flow purposes. In the graph representation, the two delivery points are
represented by a single node (the tree root a ≡ i), the spanning-tree arcs are represented by
solid lines, and the co-tree arcs are represented by dashed lines

Many operating configurations can be found for the same network infra-structure.
The co-tree arcs of the graph can be used to change the operating topology so as
to improve its performance. It may also happen that even the optimal operating
topology will not be satisfactory. In such case, the network infra-structure must be
upgraded or expanded, thus leading to investment costs in new cables and switching
busbars. The problem of finding the optimal operating network configuration can be
formulated as in the following:

(P) Minimize f (T) over all T ∈ G
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Where,

f : Operating cost and investment cost function;
T: Spanning tree of G;
G: Graph of the physical network infra-structure.

Problem (P) falls into general network problem formulations. It can be stated as
connecting all nodes by selecting a spanning-tree T (out of graph G) to minimize
f . The specificities of this problem are that the objective function is non-analytical.
The operating costs must involve at least efficiency and reliability costs.

Efficiency is determined by computing the electrical losses in the network cables
(Joule losses) and transformers (Joule, Foulcault and hysteresis losses), which must
be obtained after finding the network node voltages and branch currents. The volt-
ages and currents depend on loads and are obtained by running an AC power flow
given the network configuration. The AC power flow problem is non-linear and is
usually solved by Newton-like algorithms.

Reliability must be obtained by simulation analysis of possible faults [2, 3].
Faults in distribution networks cause the trigger of one or more breakers upstream
the fault. The opening of a breaker is followed by a sequence of switching actions to
isolate the fault and restore power to the downstream load points (customers). Some
switching actions are automatic others are manual; the manual switching can be
remote-controlled or operated in site. Some switching actions may cause additional
customer interruptions. Reliability is a measure of the interruption impact. Several
reliability indices can be defined. A popular index is the value of the expected En-
ergy Not Supplied (ENS). Such value is a function of (i) the number of faults, (ii)
the chosen sequence of switching actions and their operating times, and (iii) the load
demand of the customers interrupted during the sequence. The function is complex.
Instead of expressing it analytically or even formulating it mathematically, we de-
scribe it as follows.

A fault in a line-section leads to the automatic opening of the feeder breaker. If
the fault is fugitive, the feeder is usually reclosed successfully in very short time and,
therefore, the energy that is not supplied is negligible (very short interruptions are
usually not included in system average reliability indices). If the fault is persistent,
then either the breaker reopens the feeder or some line-section upstream automatic
device isolates the fault from the feeder, in which case the breaker recloses. The
breaker or the automatic device stays opened until the faulted line-section is isolated.
After fault isolation, the breaker or the automatic device may be closed so as to
supply the customers upstream from the fault.

After fault isolation, the network may be reconfigured to feed the customers
downstream the fault. When normally opened devices exist, (one of) these may be
closed to feed the downstream customers. However, if the downstream demand is
high, the backup circuit prompted by closing the normally opened device may not
be able to feed all customers without circuit overloads. If overloads appear, some
demand must be discarded. If the backup circuit cannot feed all customers, the dis-
carded demand stays out of service during fault repair time. After repairing the
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cable or line, the network may return to its original configuration without additional
interruptions.

The expected value of the ENS is obtained by summing the contributions of every
switching step, for every possible line-section fault, and multiplying the result by the
line-section fault probability.

Synthetically, the objective function f can be defined by the sum:

f (T) = i(T)+ e(T)+ r(T) (13.1)

Where,

i: Investment cost
e: Efficiency cost (from AC power flow losses)
r: Reliability cost (from fault simulation)

Both e and r are strongly dependent on the configuration T as losses are quadratic
functions of branch-currents and ENS is strongly dependent on branch failure rates
and neighbor switching capabilities.

Problem (P) can get more complex [6]. Increased complexity results from: (i)
node information (load, for instance) being considered as a stage dependent vari-
able. In that case the problem becomes dynamic, as decisions must be scheduled to
gather a sequence of network solutions, and (ii) information for future stages be-
ing considered uncertain. This happens when important future investments stand a
chance of being impossible to realize, or some important future information is un-
known. If uncertainty is also considered, the problem becomes a stochastic-dynamic
problem.

The more complex versions of the network optimization problem can however
be decoupled into sequences of (P)-like problems [13]. Here, we will address the
solution of (P)-like problems with evolutionary algorithms.

13.3 Evolutionary Approach

Evolutionary algorithms (EA) are algorithms that manage the survival of a set of
solutions based on the principles of natural selection (neo-Darwinian evolution).
Such principles are: (i) generation sequencing, (ii) survival of the fittest, and (iii)
genetic exchange [14].

Evolution takes place in time (generation sequence) if only the fittest get a chance
(competition) to combine their genes (mating), and this way contributing to the sub-
sequent generation. Such an evolutionary process can be synthetically presented as
the following algorithm.

Evolutionary Algorithm

Make t = 0;
Initialize the population p(0), at random.
Evaluate p(0)
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Repeat Steps 1 to 4 (until close to genetic saturation)
Step 1 t ← t + 1
Step 2 Select the fittest from p(t −1) to build p(t)
Step 3 Change p(t)
Step 4 Evaluate p(t)

The algorithm ends when the genetic material represented by the solutions of the
population is no longer diverse enough, i.e., when close to the so-called genetic
saturation.

The change in Step 3 is a crucial process of any evolutionary algorithm. Usually,
it is undertaken in two independent processes:

1. A solution-pair recombination process where information between solutions is
exchanged (this process is usually denoted by crossover); the exchange should
be designed to be a solution-pair neighborhood variation that explores the differ-
ences and (more important) keeps the likenesses of pairs; and

2. an individual solution arbitrary information change (usually denoted by muta-
tion); these changes are usually designed to be local and rare.

Evolutionary algorithms that use these two processes are usually called Genetic
Algorithms (GA).

13.3.1 Working within the Feasibility Domain

The problem (P) requires satisfaction of nontrivial constraints. Feasible solutions
of (P) must be spanning-trees of a graph. The canonical recombination operators
can hardly transmit radiality and connectivity to the offspring. Even when they do
so, important similarities about solutions can hardly propagate genetically. We will
explain why in the following.

A trivial representation of a spanning tree of a graph consists in identifying the
arcs from G that belong to the tree. That could be done by defining an array of
the graph arcs and by using a binary array of the same size to identify the ones
that belong to the tree. Canonical recombination operators could then be defined as
variants of the one point crossover operator that we state in the following.

Canonical Recombination. Let A be the array of all arcs, e.g., [(a-b); (b-c); . . .
(e-f)]. Let Bi and Bii be binary arrays (strings), e.g., [1;0 . . . 1] if (a-b) and (e-f) are
tree arcs, and (b-c) is a co-tree arc.

Step 1: Randomly select a position p in the string A.
Step 2: Swap the first p binary information between solutions, i.e., substitute Bi

[1:p] by Bii [1:p], and Bii [1:p] by Bi [1:p].

The binary array representation is very poor as it defines a solution domain much
larger than the space of spanning trees. Note that the domain of the binary array
representation is 2m where m is the number of graph arcs and the space of spanning-
trees is much smaller than that [15]. In such circumstances, the canonical recombi-
nation operators would hardly find a feasible solution in the binary string domain.
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Another popular operator that has been proposed by several under different
names is the so-called edge-set encoding [16]–[18] that consists in superimposing
both parents to create a subgraph of G and then randomly generating two spanning
trees of such subgraph as possible offspring. This is a simple idea that guarantees
offspring feasibility but the result it is not effective. The tree generating process
(Prim-like) is time consuming and too much random, which leads to slow conver-
gence to the optimum. We state such operator in the following under the name of
Tree Generation.

TG Recombination. Let H, Ti and Tii be subgraphs of G and G be defined by the
pair (A, N) where A is the set of arcs and N is the ser of nodes N.

Step 1: Built H = Ti∪ Tii = (Ai∪ Aii, N) as the subgraph of G with the arcs of the
two spanning-trees only.

Step 2: Randomly generate the offspring trees Ti and Tii as spanning-trees of H.

In the following we propose a more natural problem-related representation of span-
ning trees. In our approach we propose to recombine by interchanging paths be-
tween solutions. The idea is to take the information to be interchanged between
solutions as sub-networks of each solution. As sub-networks, connectivity and ra-
diality can be ensured and meaningful information gets propagated along genera-
tions [5].

The main idea behind our recombination approach will be presented together
with the theoretical results that allow going into the implementation details. We
start by defining the spanning tree genotype space as a partially ordered set of nodes
(A,≤), i.e., a set where:

(i) a ≤ a;
(ii) a ≤ b and b ≤ a implies a = b;

(iii) a ≤ b and b ≤ c implies a ≤ c, for every a,b,c ∈ A [20].

An element a is called the direct precedent of the element b in A, iff: (i) a �= b; (ii)
a≤ b; (iii) there is no element c∈A such that a≤ c and c≤ b. The relation is denoted
by b ←↩ a. Similarly, an element b is denoted the direct follower of an element a in
A, iff a is one of its direct precedents. The elements of the set are the nodes of the
spanning-tree, and the order relation a ≤ b denotes that node a precedes node b on
the path from a to b. Spanning trees have a specific property as partially ordered
sets: each tree element is preceded directly by one and just one single element; an
exception is made for the first element (the root), which is not preceded.

Then, we define possible changes as changes that do not violate order as defined
in properties (i)-(ii)-(iii). We call these consistent changes. Take Lemma 1 to identify
non-consistent changes.

Lemma 1. A b direct-precedence change b ←↩ a taken over a tree ordered set T
violates order (i)-(ii)-(iii) iff b ≤ a.

Proof. Sufficiency – If b ≤ a there exists in T a direct ordered sequence like a ←↩
x ←↩ y ←↩ . . .←↩ b. A change b ←↩ a forces a circulation a ←↩ x ←↩ y ←↩ . . .←↩ b ←↩ a,
and thus an order violation (property-ii).
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Necessity – If b≤ a does not apply, either (1) a≤ v, or (2) no order exists between
a and b. In case (1), a change b ←↩ a eliminates the order relationship between every
x : a ≤ x ≤ b and y : b ≤ y by eliminating the existent b-precedence. The order of
the x-elements is not changed: the x-elements remain as followers of a. The same
applies for the y-elements, they remain as followers of b, and by change b ←↩ a,
also followers of a. In case (2), a change b ←↩ a forces b to become a follower of a,
and thus every y : b ≤ y becomes a follower of a, instead of being a follower of the
existing p(b). �	
Lemma 1 allows classifying direct precedence changes as consistent or nonconsis-
tent. When consistent, direct precedence changing is a simple way to change tree
information, guaranteeing network radiality and connectivity. Simplicity is impor-
tant but is not enough. Information to be interchanged should also be meaningful.
One simple and meaningful information structure of a network is a path between
two nodes of the spanning-tree. We propose to interchange path information be-
tween solutions as a recombination operator.

Paths can be interchanged between spanning trees if they do not enclose incon-
sistencies. A path is not just a set – it is a partially ordered set – and thus precedence
change consistency must be tested orderly. Path precedence relationships must be
submitted and tested, starting from the path’s smallest element to the largest one,
by the order defined in the path itself. The following algorithms summarize the path
interchange approach:

Path Interchange Algorithm. (Submit a path P to a tree T)
Name a as the path’s smallest element. Denote by F(x) the set of direct followers of
x in the path P. Consider a set E of tree elements, and start by setting it to E = F(a).

Step 1: Change T by changing every precedence relation x ←↩ y of T to x ←↩ z of
P, iff (i) x ∈ E , and (ii) x ←↩ z is consistent in T.

Step 2: Update T, set E = ∪F(x ∈E), and repeat Step 1 until E= φ .

Recombination Algorithm. (Interchange paths between solutions Ti and Tii)

Step 1: Randomly select two nodes, a and b.
Step 2: Find the paths Pi and Pii between a and b: Pi in Ti and Pii in Tii.
Step 3: If possible, submit Pi to Tii, and Pii to Ti. If not possible, go to Step 1.

Recombination Example. (Recombine solutions Ti and Tii) Solutions Ti and Tii

are represented in Fig. 13.3. The descendants are represented in Fig. 13.4. P is the
path between the two randomly selected nodes, say 1 and 6. Consider 1 as the path’s
smallest element. The procedure is summarized in the following:

Step 1: Represent the solutions as tree ordered sets Ti = {2 ←↩ 1,5 ←↩ 1,4 ←↩
2,3 ←↩ 5,6 ←↩ 2,7 ←↩ 3,8 ←↩ 7} and Tii = {5 ←↩ 1,8 ←↩ 1,4 ←↩ 5,6 ←↩
8,7 ←↩ 8,2 ←↩ 6,3 ←↩ 7} and the paths Pi in Ti and Pii in Tii as Pi = {2 ←↩
1,6 ←↩ 2} and Pii = {8 ←↩ 1,6 ←↩ 8}
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Fig. 13.3 Two spanning trees Ti and Tii (upper and lower figures) and the complementary
paths between nodes 1 and 6, respectively Pii and Pi (in dashed line)

Step 2: Submit Pi = {2 ←↩ 1,6 ←↩ 2} to Tii = {5 ←↩ 1,8 ←↩ 1,4 ←↩ 5,6 ←↩ 8,7 ←↩
8,2←↩ 6,3←↩ 7} Node 1 is the path Pi smallest element. F(1) = {2}. The
change 2 ←↩ 1 is a consistent change in Tii as node 2 is also a descendent
of node 1 in Tii. Note that 6 ←↩ 2 is not consistent in Tii at this stage. By
updating the tree with 2 ←↩ 1 (in bold) one gets Tii = {5←↩ 1,8←↩ 1,4 ←↩
5,6 ←↩ 2,7 ←↩ 8,2 ←↩ 1,3 ←↩ 7}, in which 2 ←↩ 6 changes to 6 ←↩ 2. So,
the change of the second element of the path is no longer necessary. The
result of the path submission in shown in Fig. 13.4.

Now submit Pii = {8←↩ 1,6←↩ 8} to Ti = {2←↩ 1,5←↩ 1,4←↩ 2,3←↩
5,6 ←↩ 2,7 ←↩ 3,8 ←↩ 7}. Element 1 is the smallest element of the path
Pii. F(1) = {8}. 8←↩ 1 is a consistent change as 8≤ 2 in Ti. Changing the
precedence results in the tree update {2 ←↩ 1,5 ←↩ 1,4 ←↩ 2,3 ←↩ 5,6 ←↩
2,7←↩ 3,8←↩ 1}. The follower of 8 in Pii is 6,F(8) = 6. The change 6 ←↩
8 is again a consistent one as there is not an order relationship between
node 6 and node 8 in Ti. The change results in the spanning-tree {2 ←↩
1,5 ←↩ 1,4 ←↩ 2,3 ←↩ 5,6 ←↩ 8,7 ←↩ 3,8 ←↩ 1}. The result of the path
submission in shown in Fig. 13.4.
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Fig. 13.4 Two descendant spanning trees that result from path interchange between node 1
and node 6 and the branches that were lost in each spanning tree (dotted line). The figures
represent the changed spanning trees Ti and Tii (upper and lower figures). The originals are
represented in Fig. 13.3

13.3.2 Lamarckian Hybridization

GAs abstract the fundamental process of neo-Darwinian evolution, namely selection
and genetic variation through crossover and mutation. According to neo-Darwinian
evolution, these are the unique processes that change genotype information. How-
ever, in the early nineteenth century, Lamarck suggested that characteristics of or-
ganisms acquired during lifetime could be inherited by their descendants. Despite
this theory being discredited nowadays, the idea of modifying genotypes during the
individual lifetime and allowing the modification to be transmitted to the offspring
is a very interesting idea (in what concerns optimization).The lifetime modification
can be understood as lifetime learning and be implemented by undertaking indi-
vidual local improvements. This is the central idea of most hybridization processes
and is known as Lamarckian learning. Such an evolutionary hybrid process can be
written as an algorithm like the following:
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Lamarckian Hybrid

Make t = 0;
Initialize the population p(0), at random.
Evaluate p(0)
Repeat Steps 1 to 5 (until close to genetic saturation)

Step 1 t ← t + 1
Step 2 Select the fittest from p(t −1) to build p(t)
Step 3 Recombine p(t) and mutate p(t)
Step 4 Improve p(t) with local heuristics
Step 5 Evaluate p(t)

Some implementation difficulties spring out when trying to implement Step 4. The
difficulties rely upon deciding what solutions will be improved and in what extent
they will be improved. To answer this, note that: (i) if too many solutions are to
be improved, the GA process will become too slow – and would be the merit of
improving very bad solutions if they will barely survive after all, and (ii) if solutions
are to be improved in a high extent, population will lose diversity as solutions will
tend to be very much alike (each one similar to its “closer” local optimum).

Some authors have proposed empirical rules for undertaking Lamarckian steps
(e.g., the Rule of 10); others have proposed theories for coordinating global and lo-
cal search [19]. Here, we present a very simple but effective approach to coordinate
local search effort with global search effort. We call it Diversity Driven hybridiza-
tion. Despite being very simple to implement, the presented coordination approach
observes population diversity and solution relative quality. The approach is summa-
rized in the following two steps.

Diversity Driven Hybridization

Step 1: Given a population of solutions to be improved (Step 4), identify the sub-
set of solutions that have at least one clone (a copy) in p(t). Name this
set q(t) and remark that p(t)\ q(t) has the same genetic material as p(t).

Step 2: Use local search to improve some solutions of q(t). Randomly choose (i)
the solutions of q(t) to be improved, e.g., with a fixed probability, as well
as (ii) the number of local improvement to make in each solution.

The coordination process just presented is made dependent on diversity as local
improvements are rare in the GA insipient generations (where populations are much
diverse) but frequent for the ending generations (where populations are close to
genetic saturation).

Moreover, the coordination process is also made dependent on the solution qual-
ity as local search does not spend considerable effort in locally improving bad so-
lution as these do not get many chances of having a significant number of copies in
future generations.

But what would be the definition of local neighborhood in the context of network
optimization? In the context of network optimization, local improvements can be
seen as any optimization subproblem in a small neighborhood. We propose that the
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neighborhood is defined as a fundamental cycle of the graph and the subproblem be
formulated as a (Q)-like problem.

(Q) Minimize f (y) over all y ∈ Y

Where,

f : Operating and investment cost function
y : Co-tree arc of Y
Y : Fundamental cycle of the graph G
G : Graph of the physical network infra-structure

Problem (Q) is very simple when compared to (P). The fundamental cycles of the
graph G with respect of a spanning tree T defined by co-tree arcs represent the
operating network open-loops. For a single of such cycles, the subproblem objective
function is often convex in the space of possible co-tree arcs [20], and can be solved
approximately very easily.

Two questions seem pertinent about the proposed hybridization procedure: (i)
what should be the number of fundamental cycle changes to be operated in each
solution, a single one, y ∈ Y , or a generalized operation, y ∈ G \ T (single vs. mul-
tiple changes), and (ii) why should local optimization be performed on non-diverse
solutions only. The rationale is the following:

1. Local optimization must not perform exhaustive modifications on each solution
– that would lead to a dramatic diversity lack

2. Above average solutions are more likely to get copies in the descendant’s gener-
ation – selection is a competitive mechanism

3. Local modifications performed at above average solutions are more likely to
propagate to the descendants.

The proposed hybridization has the additional advantage of guaranteeing local opti-
mality, which is a very important aspect for industry applications. See the following
result where optimality is related to genetic saturation.

Lemma 2. Genetic convergence guarantees (Q)-optimality.

Proof. Genetic convergence presumes the stable absence of diversity, i.e., p(t) ≡
q(t). If a solution is not (Q)-optimal, then it is possible to perform a single loop
reconfiguration to improve such solution, and as improved, selection will guarantee
its propagation to the descendants. So, for a non empty random subset q, (Q) sub-
optimal solutions are unstable. �	

13.4 Application Examples and Illustration

In this section we present two application examples that illustrate the main difficul-
ties in addressing large-scale distribution optimization problems. Scale influences
algorithm robustness if genetic operators and parameters do not change accordingly.
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Knowing how to change is not an easy task. We present the results of our experience
and discuss their limitations.

We start by solving a network operation problem. We chose to optimize the oper-
ating configuration of the distribution network represented in Fig. 13.1. The network
has nine substations, 1613 nodes from which 768 are load points and 1667 branches,
which are connected through 35 different feeders (sub-trees). The network has a
300 MVA installed capacity for a peak load of 185 MVA. High-voltage losses are
1 GWh /year and medium-voltage losses are 6 GWh /year. Yearly operational costs
include losses costs and reliability costs amounting to about 1 MC /year.

We start from the actual configuration and generate a population of 120 random
solutions by undertaking a random number of fundamental cycle changes over the
actual spanning-tree configuration. Changes are made sequentially for each indi-
vidual configuration. The generated population has a cost distribution that varies
between 0.9 MC and 3.4 MC (see Fig. 13.5).

100 101 102

10
-0.1

100

100.1

No. of individuals

O
pe

ra
tin

g 
co

st
 [M

€]

gn = 1

gn = 5

gn = 10

  
 Fig. 13.5 Operating cost distribution for generations 1, 5, and 10. In generation number 1

most of the individuals have costs around 1 MC, in generation number 5 there is already a
large distribution of the costs, some still have high values but many are already below 800 kC,
and after 10 generations most are already below 650 kC. The initial cost that corresponds to
the actual configuration is shown in the figure as a circle

Then, we select the better solutions from this population with binary tournaments
without elitism and recombine 80% of the selected configurations by interchanging
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paths between spanning-trees. We do not mutate. From the set of recombined con-
figurations we find out clones (repeated solutions) and modify these by undertaking
fundamental cycle changes to solve (Q)-like subproblems. The modified population
is then evaluated by computing f before going again into the selection process.

This sequence continues for 20 generations until genetic saturation is achieved
(see Fig. 13.6). The result obtained has a total operating cost of 650 kC, which
represent a cost reduction of 35%. This has been possible in such few generations
because the operators are very effective for the problem at hand. Parameters are
also important for effectiveness. How many paths did we submitted when recom-
bining? How many cycle changes did we undertake when improving clones? These
are important questions that experience can answer.

 
 
 

 

Fig. 13.6 Generation evolution of the operating cost and the corresponding number of re-
peated individuals that are locally optimized by solving Q-subproblems

Before answering the questions on parameters used, let us solve a network plan-
ning problem, i.e., an optimization problem that also involves investment possi-
bilities. That problem is similar to the operation problem but harder. It is harder
because the investment costs increase significantly the spanning-tree building block
cost variance, the so-called collateral noise [21]. A small change either in a path or
in a cycle might be responsible for a big difference in performance. That makes the
evolutionary algorithm job much more difficult.

For the planning problem, we use the same distribution network as before (the
network represented in Fig. 13.1) but now with some of the nodes and some of
branches as new possible investments. The starting investment plan involves in-
vestment costs of 330 kC, high-voltage losses of 1 GWh /year and medium-voltage
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losses 8 GWh /year. Part of the network shows serious under-voltage and over-
current problems, which are penalized. Penalties related to electrical constraints
amount to 315 kC. Yearly operational costs include losses costs and reliability costs
amounting to about 2 MC /year.

Like before, we start from the actual configuration plan and generate a pop-
ulation of 120 random solutions. The generated population has a cost distribu-
tion that varies between 1.6 MC and 7.2 MC (see Fig. 13.7). The evolutionary
algorithm evolves now for 37 generations until genetic saturation is achieved (see
Fig. 13.8). The process is now longer than before (for the operation problem) and
also more sensitive to the algorithm parameters. We will address this problem in the
following.

The evolution of the process depends on the classical GA parameters, such as
crossover probability, population size, etc., but also on other parameters that are
required by our specific approach. These parameters are (i) the number of paths
exchanged, np, at the recombination of two individuals, and (ii) the number of cycle
changes, nc, undertaken in each repeated solution (for each clone).
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Fig. 13.7 Operating and investment cost distribution for generations 1, 10, and 20 and 35. In
generation number 1 most of the individuals have costs around 2 MC, in generation number
10 there is already a large number of individuals with costs around 1.6 MC, and after 20
generations most are already around 1.35 MC. The population saturates for an optimum cost
is below 1.2 MC after generation number 33
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Fig. 13.8 Generation evolution of the investment and operating cost and the corresponding
number of repeated individuals that are locally optimized by solving Q-subproblems

Our experience with distribution networks lead to the conclusion that these num-
bers should be random but bounded. Upper and lower bounds can be defined for the
number of paths to be exchanged, say npU and npL, and for the number of cycles to
be changed, say ncU and ncL. The bounds can be defined as a function of the num-
ber of feeders, n f (independent sub-trees). Simple functions can be used with good
results. In the cases presented previously we used the bounds given in Table 13.1.

Table 13.1 Bounds for the number of paths to be exchanged and the number of cycles to be
changed

Name npL npU ncL ncU

Value 1 
0.2n f � 0 
0.15n f �

In Table 13.1, the function 
·� is the floor function that maps a real number to the
next smallest integer. In the example above, the network had 35 feeders, for which
the upper bounds were set to npU = 7 and ncU = 5. Increasing the upper bounds
leads to a decrease in the algorithm performance, e.g., if one sets npU ≈ n f the cost
of the final solution yielded for the planning problem would become 10% higher.
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13.5 Summary

In this chapter we have presented an evolutionary approach to the electric power
distribution network planning and operation problems. The problems have been for-
mulated as large-scale optimization problems and addressed by especially designed
evolutionary hybrids. The designed evolutionary operators and hybridization process
have been presented and their role in optimality discussed. Application examples
have been provided to support the discussion and illustrate critical implementation
practicalities.
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Chapter 14
A Parallel Hybrid Implementation Using
Genetic Algorithms, GRASP and Reinforcement
Learning for the Salesman Traveling Problem

João Paulo Queiroz dos Santos, Francisco Chagas de Lima Júnior,
Rafael Marrocos Magalhães, Jorge Dantas de Melo, and Adrião Duarte Doria Neto

Abstract. Many problems formerly considered intractable have been satisfacto-
rily resolved using approximate optimization methods called metaheuristics. These
methods use a non-deterministic approach that finds good solutions, despite not en-
suring the determination of the overall optimum. The success of a metaheuristic is
conditioned on its capacity of alternating properly between the exploration and ex-
ploitation of solution spaces. During the process of searching for better solutions,
a metaheuristic can be guided to regions of promising solutions using the acquisi-
tion of information on the problem under study. In this study this is done through
the use of reinforcement learning. The performance of a metaheuristic can also be
improved using multiple search trajectories, which act competitively and/or coop-
eratively. This can be accomplished using parallel processing. Thus, in this paper
we propose a hybrid parallel implementation for the GRASP metaheuristics and the
genetic al gorithm, using reinforcement learning, applied to the symmetric traveling
salesman problem.

14.1 Introduction

Modeling and resolving complex problems in the world we live in is not an easy
task, given that there are some situations in which it is impossible to build a detailed
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model for the problem, owing to its high complexity. On the other hand, a process of
simplifying this model leads to loss of relevant information that may compromise its
quality. In addition to the inherent difficulty in building models for these problems,
a characteristic during the resolution phase is the need for large scale computa-
tional processing, which, in most cases, leads to these problems being considered
intractable. In this context researchers have dedicated themselves to the develop-
ment of techniques aimed at facilitating modeling and, mainly, at resolving these
problems [13], [11] and [10].

A widely used approach for solving intractable problems has been the usage of
so-called metaheuristics, which are strategies based on heuristic procedures, mainly
applicable to optimization problems and which produce a simplified process of a
stochastic search in the solution space [12]. Despite achieving good results without
an exhaustive search, metaheuristics do not ensure obtaining the optimal solution of
the problem.

The great challenge of a metaheuristic is to maintain the equilibrium between
exploration and exploitation processes. Exploration (or diversification) is used to
allow the solution to escape from the so-called local minima, whereas exploitation
(or intensification) is used to improve the quality of the solution locally, in search of
the overall optimum.

Resolving the dilemma of when to “explore” and when to “exploit” is not an easy
task. Thus, many researchers have been involved in seeking improvements that help
the metaheuristics in the exploration and/or exploitation process. In this context a
very interesting study [7] was conducted using reinforcement learning, but specifi-
cally the Q-learning algorithm, as an exploration/exploitation strategy for GRASP
metaheuristics and the genetic algorithm, applied to the traveling salesman problem
- T SP. In addition to the “explore or exploit” dilemma, another aspect to consider is
the large number of possible solutions that problems such as T SP present.

This high dimension of the universe of solutions of problems like TSP generates a
large processing demand, which may be met by the use of architectures with parallel
processing capacity, able to increase, by some orders of magnitude, the processing
power available in monoprocessed architectures.

The use of parallel processing promotes the development of new algorithms and
opens possibilities for the exploration of aspects of the problem not approached in
the usual architectures such as competition and cooperation [5].

Based on the success obtained by the aforementioned techniques and motivated
by the difficulties of complex problems in the real world, this study proposes the de-
velopment of hybrid parallel methods, using reinforcement learning, GRASP meta-
heuristic and genetic algorithms.

With the use of these techniques together, better efficiency in obtaining solutions
is expected. In this case, instead of using the Q-learning algorithm of reinforce-
ment learning only as a technique to generate the initial metaheuristic solution, we
intend to use it cooperatively/competitively with the other strategies in a parallel
implementation, which will be described in detail in the continuation of the text.
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14.2 Theoretical Foundation

A brief theoretical foundation, required for a better understanding of the rest of the
text, will be presented in this section.

14.2.1 GRASP Metaheuristic

The Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic [4]
is a multi-start iterative process, in which each iteration consists of two phases:
construction and local search. The construction phase generates a viable solution,
whose neighborhood will be investigated until a local minimum is found during the
local search phase. The best solution among these is used as the result.

In each iteration of the constructive phase, the set of candidate elements is formed
by all the elements that can be incorporated into the partial solution under construc-
tion without compromising viability.

The selection of the following element to be incorporated is determined by the
assessment of all the candidate elements, according to a function of greedy as-
sessment. This greedy function generally represents the incremental increase in
the cost function, owing to the incorporation of this element in the solution under
construction.

The assessment of the elements for this function leads to the creation of a re-
stricted candidate list (RCL) formed by the best elements, that is, those whose in-
corporation into the current partial solution results in lower incremental costs (this
is the greedy aspect of the algorithm). Once the selected element is incorporated
into the partial solution, the candidate list is updated and the incremental costs are
reassessed (this is the adaptable aspect of the heuristic).

The probabilistic aspect of GRASP is due to the fact of randomly choosing one
of the RCL elements and not necessarily the best, except when the RCL is of unitary
size, where the selection criterion is reduced to the greedy option.

The improvement phase consists typically of a local search procedure aimed at
enhancing the solution obtained in the construction phase, given that the construc-
tion phase solution may not represent an overall optimum. In GRASP metaheuristic
it is always beneficial to use a local search to improve the solutions obtained in
the constructive phase. Additional information on the GRASP metaheuristic can be
found in [4], [8].

14.2.2 Genetic Algorithm

Genetic Algorithms (GA) are based on a biological metaphor. They ”visualize” the
resolution of a problem as competition between a population of candidate solutions
that evolve. A function of fitness assesses each solution and decides if it will con-
tribute to the evolution of the population in the next generation. Thus, using opera-
tors analogous to the genetic transfer in sexual reproduction, the algorithm creates
a new generation of candidate solutions.



348 J.P.Q. dos Santos et al.

At the start of the execution of a genetic algorithm, a population of chromosomes
is generated. Each of these chromosomes, when decoded, will represent a different
solution to the problem. Considering that there are N chromosomes in the initial
population, the following steps will be repeated until a stop criterion is reached:

1. Assess each chromosome to determine how good it is in resolving the problem,
associating a score to each chromosome according to the function of ”fitness”.

2. Select two members of the current population. The selection probability must be
proportional to the fitness function value.

3. Depending on the crossover rate, cross the genes of the selected chromosomes at
a randomly chosen point.

4. Depending on the mutation rate, exchange the genes of one selected chromo-
some. Repeat steps 2, 3 and 4, until a new population of N chromosomes has
been generated.

Genetic algorithms are very efficient in the search of optimal or nearly optimal so-
lutions, in a wide variety of problems, such as: network project optimization [1],
vehicle routing [15], timetable problem [3], task grouping [16], among others. Ad-
ditional information on genetic algorithms can be found in [2] and [9].

14.2.3 Reinforcement Learning: Q-Learning Algorithm

Not all reinforcement learning algorithms need a complete modeling of the environ-
ment; that is, it is not necessary to know the matrix of transition probabilities or the
expected values of the reinforcement signal for all the possible states actions in the
environment. This is the case, among others, for reinforcement learning techniques
based on temporal differences [14].

One of these techniques is the Q-learning algorithm (Watkins, 1989), which is
considered one of the most important contributions in reinforcement learning, given
that its convergence to optimal Q values does not depend on the policy that is being
used. The updated expression of the Q value in the Q-learning algorithm is the
following:

Q(s,a) = (1−α)Q(s,a)+α[r + γmax
a∈A

Q(s′,a)] (14.1)

where st is the current state, at is the action performed in the st state, rt is the re-
inforcement signal received after executing at in st , st+1 is the next state, γ is the
discount factor (0 ≤ γ < 1) and α (0 < α < 1) is the learning coefficient. The func-
tion Q(s,a) is the value associated to the state-action pair (s,a) and represents how
good the choice of this action is in minimizing the accumulated reward function,
designated by:

R =
n

∑
k=0

γk
t+k+1 (14.2)

One important characteristic of this algorithm is that the choice of actions to be
executed during the process of iterative approximation of the Q function can be
made using any exploration/exploitation criterion, including in a random manner. A
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widely used technique for this choice is the so-called ε-greedy exploration, which
consists of choosing the action associated to the highest Q-value with probability
1− ε + ε‖A(s)|, where |A(s)| corresponds to the number of possible actions to be
executed starting from s. Q-learning was the first reinforcement learning method
to display strong evidence of convergence. Watkins [17] showed that if each pair
(s,a) is visited an infinite number of times, the Q-value function Q(s,a) will con-
verge with probability one for Q∗, with α sufficiently small. As long as the opti-
mal Q-value is known, an optimal choice of actions can be made according to the
expression:

a∗(s) = max
a

Q(s,a) (14.3)

The pseudocode for the Q-learning algorithm is:

Q-learning Procedure(r,α , ε , γ)
Initialize Q(s,a)
Repeat for each episode

Initialize s
Repeat for each state of the episode

Select a in accordance with the rule ε-greedy
Observe the values of r and s′
Q(s,a) ← Q(s,a)+α[r + γ max

a
Q(s′,a)−Q(s,a)]

s ← s′
Until a final state is reached

Until the convergence is gotten
End-Q-Learning.

The convergence criteria for the Q-learning algorithm are:

1. The model of the system is a deterministic MDP.
2. The immediate reward values are bounded by some constant.
3. The agent visits every possible state-action pair infinitely often.

Additional information on the Q-learning algorithm can be found in [17]

14.3 Hybrid Methods Using Metaheuristic and Reinforcement
Learning

The hybrid parallel implementation proposed in this paper is based on work orig-
inally published by [7]. In the paper the authors propose the use of Q-learning
algorithm as a intelligent strategy for exploitation and/or exploitation for GRASP
metaheuristics and Genetic Algorithm. For better understanding of the hybrid par-
allel method proposed here, the Sec. 14.3.1 and 14.3.2 describe of brief way, the
sequential implementations proposals by previously cited authors.
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14.3.1 GRASP-Learning

The GRASP metaheuristic need to work with good initial solution. Considering this
dependence, the use of the Q-learning algorithm is here proposed as a construc-
tor of initial solutions, in substitution to the partially greedy algorithm generally
used.

The Q-learning algorithm use as rule of state transition will use ε−greedy strat-
egy, mentioned previously, defined by:

π(s′) =
{

arandom if v < ε
argmaxa′Q(s′,a′) otherwise

(14.4)

where: v is a random value with uniform probability distribution between [0,1], ε
(0 ≤ ε ≤ 1) is the parameter that defines the exploration rate so that, the lesser the
value of ε , the lesser the probability of making a random choice of the action will
be, and arandom is an action randomly chosen amongst the possible actions to be
executed in the state s′.

As already mentioned, the Q-learning algorithm will be used as a constructor
of initial solutions for GRASP metaheuristics. Therefore, each iteration of the al-
gorithm intends to construct a solution of good quality, since the Q-learning will
explore the knowledge of the environment (solution space of the problem) through
the use of the matrix of rewards. The matrix of rewards is generating using the
matrix of distance of each instance do TSP, and is computed of the following
form:

r(s′,a′) =
Mi

di j
(14.5)

where, di j corresponds to the distance between cities i and j that compose a route
and are represented in the model by the states s and s′, respectively, while Mi is the
distance average of the city i for all another cities.

The control between “exploitation” and “exploration” will be made by the pa-
rameter of the transition rule described in (14.4). Higher the value of ε , more rarely
the Q-learning algorithm will make use of the knowledge of the environment, while,
lower value of ε , means more random choice of actions.

The basic idea of the GRASP-Learning method is to make use of the information
contained in the matrix of Q-values as a kind of adaptive memory, that allows repeat
the good decisions made in previous iterations, and avoid those that were not inter-
esting. Thus, considering for example the traveling salesman problem, the method
used in each GRASP iteration, the state-action pairs Q(s,a) stored in the matrix of
the Q-values, to decide which visits are promising for the traveling salesman.

The policy ε− greedy is used with the objective guarantee certain level of ran-
domness, thus avoiding the construction of locally optimal solutions. The Fig. 14.1
presents an overview of the GRASP-Learning metaheuristic.
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Fig. 14.1 Framework of GRASP-Learning Metaheuristic

14.3.2 Genetic-Learning

The Genetic-Learning algorithm use the idea of introducing knowledge of the en-
vironment through the Reinforcement Learning. The main focus of this method is
to explore of efficient way the space of search through the learning of the environ-
ment of the problem, using the Q-learning algorithm with a genetic algorithm - GA.
Making use of a genetic algorithm, the solution search space of a problem can be
explored adequately through the generation of an initial population of high fitness in

Fig. 14.2 Framework of Cooperative Genetic-Learning Algorithm
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relation to the objective function. Therefore, the genetic algorithm considered here
has its generated initial population through the Q-learning algorithm.

Another modification in this method occurs in the crossover operator of the GA.
In this operator, one of the parents will be taken from the improved population for
the action of the operators of the current generation, as in the traditional GA, while
the other will be generated by the Q-learning algorithm without any action from the
genetic operators. The other operators (selection and mutation) are implemented in
the traditional way. The Fig. 14.2 presents an overview of the Cooptative Genetic-
Learning algorithm.

The following Section describe the parallel hybrid implementation of the GRASP-
Learning and Genetic-Learning metaheuristics.

14.4 Parallel Hybrid Implementation Proposed

This study proposes the development and implementation of a cooperative and/or
competitive parallel strategy of Q-learning, genetic and GRASP algorithms, to re-
solve the traveling salesman problem (TSP). The basic idea is to collectively use
the solutions found for each algorithm and with this make up the deficiencies
they exhibit when used separately. For this interaction to be effective, one must
establish the communication interfaces that enable the exchange of information.
Similarly, the existence of multiple processing elements will allow different algo-
rithm parameterizations to be used, as described below.

14.4.1 Methodology

As explained in section 14.2, the genetic algorithms work with populations of solu-
tions, GRASP provides a local optimal solution and Q-learning a table of Q-values
that enables the building of solutions starting from any point on the table. All the al-
gorithms involved are iterative; that is, the quality of their solutions tends to improve
with an increase in the number of iterations.

For a better understanding of the proposal, consider the schematic diagram in
Figure 14.3, which shows the interaction structure between the algorithms. In this
scheme the critical has the task of managing the quality of solutions generated by
each of the algorithms, i.e., when necessary it replace a bad solution by another best.

14.4.1.1 Communication Sent by Q-Learning Algorithm

Using the table of Q-values, one or more solutions are generated as follows: Choose
a starting city s0 for T SP and refer to the table of values Q(s,a), obtaining the best
value Q∗ (s0,a) = max

a
Q(s0,a), ∀a ∈ A(s0), where A(s0) are all the possible actions

from the s0 state.
Choose the city indicated by the choice of action a as being the next in the

T SP route. Repeat the process until all the cities have been visited a single time,
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Fig. 14.3 Cooperation scheme between the Q-learning, GRASP and Genetic algorithms

generating thus a solution Sq for T SP. For simplicity, consider that only one solu-
tion is generated.

For GRASP, solution Sq will be used as the initial solution instead of that obtained
in the construction phase and will be improved using local search in a new iteration
of the algorithm.

14.4.1.2 Communication Sent by Genetic Algorithm

At each iteration of the algorithm, choose the individual of the population with the
highest suitability value (best fitness); this individual will be a solution Sg. Let Rg

be the cost of the route associated to Sg.
For GRASP, solution Sg will be used as the initial solution, substituting the solu-

tion that would be generated in the construction phase, in the same way that this
solution will be improved before using local search in the next iteration of the
algorithm.

For Q-learning, the Q-values table must be updated based on information avail-
able in solution Sg. Therefore, it should be remembered that a value Q(s,a) repre-
sents an estimate of the total expected return that will be obtained when in state s
and choosing action a. In the case of T SP this value represents a cost estimate of the
cycle starting from s and having as the next city visited the one indicated by action
a. Similarly, solution Sg has a cost associated to the cycle, that is, Rg. Thus, a series
of pairs (s, a) can be established from this solution, corresponding to the order in
which the cities were visited and the values Q(s,a) can be updated as follows:

Q(s,a) = β .(Q(s,a)+ Rg), (0 < β < 1) (14.6)
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14.4.1.3 Communication Sent by GRASP

At each iteration of the algorithm, take the solution obtained using the GRASP local
search, SG. Let RG be the cycle cost associated to SG.

For Q-learning, use the same procedure described in the previous item and rep-
resented by equation 14.6, replacing Rg by RG.

It is important to observe that in a parallel application, each of the algorithms
will constitute an independent task that will be executed at its own pace. This means
that communication between tasks cannot be synchronous; otherwise the execution
of one of the tasks will be blocked while it waits for results from another to be sent.
Therefore, asynchronous communications could be avoided with a specific param-
eters settings. It is done in a fashion that each algorithm execute a number of steps
that is approximately proportional of others algorithms. For example, if the GRASP
algorithm run ten times faster than genetic algorithm for one step, so the number
of steps for that algorithm will be adjusted proportionally greater than another. This
solution reduce problems with asynchronous communications and avoid idleness
time of tasks.

Since there are three algorithms involved in the parallel implementation, it can be
supposed that three distinct tasks are needed for such a purpose. If we consider that
a parallel architecture has considerably more than 3 processing elements, it follows
that the efficiency of the implementation will be compromised, given that several of
these elements will be idle during the execution of the application.

To avoid this idleness and to make use of the entire potential of parallel archi-
tecture, multiple parameterizations of the algorithms will be used in this study. We
understand multiple parameterizations as being the execution of a same algorithm
with different behaviors.

In the case of genetic algorithms, this corresponds to associating to some parallel
tasks, instances of genetic algorithms with different population behaviors; that is,
different mutation rates, crossover and selection mechanisms.

For GRASP, different lengths can be used for the restricted list of candidates and
different local search mechanisms.

In the case of Q-Learning, the possibilities of multiple parameterizations are as-
sociated to the choices of the parameters involved in updating Q-values. These val-
ues are the α and the γ presented in equation 14.1.

It should be pointed out that the occurrence of multiple parameterizations, in
addition to allowing a more efficient use of parallel architecture, will make the
communication structure between the tasks more complex, given that two differ-
ent instances of a same algorithm will be able to exchange information. The cost
of these communications, in terms of processing time, will be analyzed during the
implementation to avoid compromising performance.

14.5 Experimental Results

In this section all the experiments done in this work are explained and their re-
sults are presented and compared. The proposed methods in the Sec. 14.4 use the
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Q-learning algorithm, GRASP metaheuristic and Genetic Algorithm in a parallel
hybrid implementation. Therefore, to evaluate the proposed method the well known
traveling salesman problem was utilized. To use the proposed method in resolution
of the T SP is necessary an adequate modeling of the problem. To do that, the section
14.5.1 presents the T SP modeled as a Reinforcement Learning problem.

The section 14.5.2 shows how the computational tests were conducted, the
first sub section introduces the utilized methodology. The sub sections 14.5.2.2 to
14.5.2.5 explain the four different setups developed and their individual results,
namely Serial execution, Parallel execution, Parallel limited execution, and Paral-
lel Group execution respectively. Therefore, to conclude the section, in sub section
14.5.2.6 was conducted the performance analysis and in 14.5.2.7 was done a collec-
tive analysis of all the experiments.

14.5.1 The Traveling Salesman Problem

The traveling salesman problem (TSP) is a classical problem of combinatorial op-
timization that consists of determining a minimum-cost Hamiltonian cycle on a
weighted graph. The TSP is classified as NP-complete [6], which means that re-
solving this problem by examining all the possible solutions is computationally im-
practicable.

The problem can be formally defined as follows: Consider a set V of vertices,
representing cities, and a set A of arches totally connecting the V vertices. Let di j be
the length of the arch (i, j) ∈ A, which is, the distance between cities i and j, with
i, j ∈ V . Resolving T SP is finding a minimum-length Hamiltonian circuit on graph
G(V,A), a Hamiltonian circuit being a closed pathway visiting once and only once
all the n = |V | vertices of G, and the circuit length is given by the sum of the length
of all the arches that it is made up of. In this work the T SP will be modeled as a
reinforcement learning task.

In this work the environment for the traveling salesman problem can be seen as
a system whose dynamics can be represented by a Markovian decision process of
finite horizon time, characterized as follows:

• The environment evolves probabilistically occupying a finite set of discrete
states. This evolution is episodic where, to each episode, one of the states of
the system is chosen as the final one, i.e., the final state is not known a priori.
The state of the system is completely observable and the transition probabilities,
in each discrete time t, can assume two distinct values:

Pr = {st+1 = j|st = i,at = a} = pi j(a) =
{

0
1

(14.7)

It must be observed that, if Pi j(a) = 0 then j = i;
• For each state of the environment there is a finite set of possible actions that can

be carried through. This set of actions is invariant in time, being represented by
A(st , i) = A(i);

• Every time the agent carries through an action, it causes certain rewards that can
assume two distinct values in each discrete time:
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ri j(a) =

{
−γmax

a′
Q(i,a′)+Q(i,a) if pi j = 0

ri j if pi j(a) = 1
(14.8)

As previously established, if Pi j(a) = 0 then j = i. Soon, the Q(i,a) associated to
state i and the action a must not be updated, which justifies the choice of expres-
sion for rewards ri j(a) in (14.8) when Pi j(a) = 0. The observation of the states, the
accomplishment of the actions and the incidence of the reward occur in discrete
time. Considering the description of the environment for the T SP made here, the
modeling process as a reinforcement learning problem can be made in the following
way:

• States: S = {s ∈ N|N is the set of the cities that compose a route for the TSP};
• Actions: A = {a ∈ A(i)|A(i) is the set of all possible options of cities to be added

in the route, from a city i},
• Rewards: r(s,a) is the expected return in state s to decide for the action a.

In practice, the rewards can be seen as the prize (or save) of choosing the short-
est distance of the current city in the route, and can also be trivially seen by
Equation 14.5.

14.5.2 Computational Test

This section evaluates the potential use of parallel processing approach for the co-
operative and competitive algorithms for integration of (GRASP, and Genetic Q-
learning), aimed to observe the best type of parallel configuration for the three
algorithms involved. With these goals, a programming environment has been de-
veloped to allows the parallel evaluation of the performance in terms of speedup
and efficiency parameters, and also the quality of results.

14.5.2.1 Methodology

The computer architecture was used as a dedicated network of computers that form
a cluster system of Beowulf type. This architecture is composed of nine computers
that have the following configuration: Intel Core 2 Duo processor with 2.33GHz
of clock, 2GB of RAM, 80GB hard disk and Gigabit Ethernet network card. The
operating system used on the machines is GNU/Linux Ubuntu version 8.04. The
library for parallel programming used was OpenMPI version 1.2.5, that is an imple-
mentation of a message passing interface library. The MPI is based on simulating
of the existence of many different programs exchange information simultaneously.
The Zabbix software version 1.4.2 was used as monitoring performance. The imple-
mentation of the algorithms were developed with the programming language C++
and analysis using MATLAB.

For the Traveling Salesman Problem (TSP) was used the TSPLIB1 repository,
this library presents various instances for many different variants of TSP. Eight TSP

1 The instances of the TSP problem used were obtained from TSPLIB site, hosted under the
domain http://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
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instances were evaluated in this parallel implementation, they are: gr17, bays29,
gr48, berlin52, eil76 and a280. The information about the instances used in the
experiment are presented in Table 14.1.

Table 14.1 Information about the TSPLIB instances

Instance Name Description Best value

gr17 City problem (Groetschel) 2085.00
bays29 Bavaria (street distance) 2020.00
gr48 City problem (Groetschel) 5046.00
berlin52 Locations in Berlin (Germany) 7542.00
eil76 city problem (Christofides/Eilon) 538.00
a280 Drilling problem (Ludwig) 2579.00

14.5.2.2 Serial Execution

This experiment makes the implementation of the serialized algorithm, where all
algorithms were implemented on the same machine, that is in the same processing
node. Table 14.2 presents the results of serial execution in each of eight instances
evaluated. This experiment was conducted comparing purposes with the parallel
implementation and measurement of speedup gain and efficiency in terms of time
and quality of results.

Table 14.2 Serial execution time and Objective Function values for each instance

Instance bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

Objective Function 2020 1284 7705 591 8789 9163 23795 4682
Time in seconds 220 577 952 1390 3308 7082 9975 20300

14.5.2.3 Parallel Execution

The parallel implementation has been done distributing the algorithm parts over the
nodes of the cluster. One node with genetic algorithm, other with GRASP algorithm,
and another focused on the reinforcement learning. The communication between
algorithms nodes was done as showed in Figure 14.3. For each evaluated instance
was generated thirty executions for a statistical analysis of implementation.

Table 14.3 shows the parameters used for implementation of algorithms for this
set of experiments. The number of individuals in the population for genetic algo-
rithm was one hundred (100) elements, the crossover rate equals to 0.7, the muta-
tion rate equal to 0.2, while for Q-learning algorithm the parameters were adjusted
as follows, α = 0.8, ε = 0.01, γ = 1 and β = 0.2, which is the actualization parameter
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of Q-values with solutions from the GRASP and Genetic Algorithm. Considering
the fact that the execution time of Genetic Algorithm (GA) is slower than others
algorithms, the number of executions of the GRASP and the Q-Learning are higher
than the Genetic Algorithm, this quantity is expressed in columns (QL/GA) and
(GRASP/GA) mean that the number of executions of the algorithm Q-Learning per
Genetic Algorithm iteration and the GRASP execution per GA iteration. The Rand
index means an exchan ge of position in the current solution in order to avoid a
local minimum or to diversify the current solution, the Communication index is the
number of iterations that the algorithms exchange information.

Table 14.3 Parameters for algorithms executions

Instance iterations (QL/GA) (GRASP/GA) Rand Communications

bays29 20.00 8.00 28.00 5.00 10.00
swiss42 40.00 7.00 18.00 5.00 20.00
berlin52 50.00 7.00 18.00 5.00 20.00
eil76 50.00 8.00 10.00 5.00 20.00
gr120 70.00 8.00 7.00 5.00 30.00
ch150 100.00 10.00 6.00 6.00 50.00
si175 100.00 12.00 5.00 5.00 50.00
a280 100.00 12.00 5.00 6.00 50.00

The graphs shown in Figures from 14.4 to 14.11 presents for each instance the
behavior of the value of objective function achieved by each test in comparison with
the best known normalized value of the objective function, in addition are plotted
the tracks of superior and inferior standard deviation for a better visual perception
of the quality of solution. The limits of the plot area were chosen in a range of 20%
around the value of the average objective function in each experiment.

Figure 14.4 shows homogeneous result in all executions, in this case the objec-
tive function reached the optimal value known in thirty executions. Figures 14.5 to
14.10 have a very stable behavior in all executions, it can be confirmed by the value
of standard deviations that in all case were less than 2%. The less homogeneous be-
havior and more proportional variance was in Figure 14.11, this is probably caused
by the complexity of this instance and the parameters of execution that was selected
empirically for this implementation.

Table 14.4 presents a compilation of statistical data for this experiments. The first
line shows the average values for the objective function obtained with thirty runs in
each instance studied. The second line shows the standard deviation of each instance
in relation to mean value of objective function obtained, the third line presents the
same information about standard deviation but in percentage value for better un-
derstanding of the data. The fourth line shows the optimal value (better value) of
the objective function found in literature and TSPLIB database for each instance.
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Fig. 14.4 Standard Deviation of bays29 test
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Fig. 14.5 Standard Deviation of swiss42 test
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Fig. 14.6 Standard Deviation of berlin52
test

5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

76 Instance

Number of Runs

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

 

 
Standard Deviation
Objective Function

Fig. 14.7 Standard Deviation of eil76 test

The fifth line shows the distance between the mean value and the known optimum
values, which is shown again in the last line in percentages.

It is possible to interpret from the last row of table 14.4 that result from the
execution of the bayes29 instance in average 100% near (in a proximity way) of
the best objective function value known, for instance 42 is 99.45% near of better
value known and so on, as shown in the graph of the Figure 14.12 and Table 14.5,
where the values closer to 100% represent better solutions. The average distance
of maximum and minimum proximity are obtained through the standard deviation
percentage value shown in Table 14.4, which indicates in average, more than half
of the instances have an proximity of objective function a value greater than 90%
closer to the optimal function value.
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Fig. 14.8 Standard Deviation of gr120 test

5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

150 Instance

Number of Runs

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

 

 
Standard Deviation
Objective Function

Fig. 14.9 Standard Deviation of ch150 test

5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

175 Instance

Number of Runs

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

 

 
Standard Deviation
Objective Function

Fig. 14.10 Standard Deviation of si175 test

5 10 15 20 25 30
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

280 Instance

Number of Runs

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

 

 
Standard Deviation
Objective Function

Fig. 14.11 Standard Deviation of a280 test

Table 14.4 Statistical data about parallel experiments

Instances bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

O.F. Mean Value O.F. 2020.00 1280.00 7678.70 590.80 8638.50 8723.10 23936.90 4608.70
Standard Deviation 0.00 8.70 52.10 6.30 168.60 164.70 240.60 183.40
Standard Deviation (%) 0.68 0.00 0.67 1.07 1.95 1.88 1.00 3.90
Optimal O.F. 2020.00 1273.00 7542.00 538.00 6942.00 6528.00 21407.00 2579.00
O.F. Mean Dist 0.00 7.10 136.70 52.80 1696.5 2195.17 2529.90 2029.70
O.F. Mean Dist. (%) 0.00 0.50 1.80 9.80 24.40 33.60 11.80 78.70

O.F. Objective Function.
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Table 14.5 Mean percentage distance of best objective value evaluated

Instance mean proximity(%) max prox. value(%) min prox. value(%)

bays29 100.00 100.00 100.00
swiss42 99.44 100.00 98.77
berlin52 98.19 98.87 97.51
eil76 90.19 91.26 97.51
gr120 75.56 77.51 73.62
ch150 66.37 68.26 64.48
si175 88.18 89.19 87.18
a280 21.30 25.28 17.32
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Fig. 14.12 Mean percentage distance of optimal objective function value for each instance

14.5.2.4 Parallel Limited Time Execution

In this experiment the procedure adopted for implementation of algorithms in the
cluster was the same as the parallel experiment previously described, the difference
was in limit the execution time that was chosen as half of the average time spent
with the standard parallel implementation, the algorithm was stopped independent
of the iteration it has achieved. To obtain statistical data each instance was run thirty
(30) times.

Table 14.6 shows the values obtained with the experiments. Comparing them
with the results of execution without the limitation of time, it is observed that the
results although they are lower in quality, are very close to the values found in
experiment. This behavior was expected because the time to search for the minimum
was reduced.
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Table 14.6 Statistical data about limited time parallel experiments

Instances bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

Mean O.F. O.F. 2020.00 1273.00 7695.90 589.40 8560.00 8674.30 23789.00 4519.00
Standard Deviation 0.00 11.00 92.80 6.40 175.40 222.50 179.60 138.30
Standard Deviation (%) 0.00 0.80 1.20 1.10 2.00 2.50 0.70 2.90
Optimal O.F. 2020.00 1273.00 7542.00 538.00 6942.00 6528.00 21407.00 2579.00
O.F. Optimal Dist. 0.00 12.90 209.90 60.90 1793.70 2368.10 2683.80 2153.90
O.F. Optimal Dist. (%) 0.00 1.01 2.80 11.30 25.90 36.20 12.50 83.50

O.F. Objective Function.

Figure 14.13 shows the normalized distances between the values obtained with
the experiment and the optimum values found in literature, where can be visualized
a similar behavior to the parallel experiment without time limitation.
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Fig. 14.13 Normalized distance between the mean Objective Functions evaluated and the
optimal Object Function known

14.5.2.5 Parallel Group Execution

This experiment deals with a cooperative and competitive in a bigger hierarchy.
That was done ten (10) executions for each experiment. Each experiment was done
with collaboration of two parallel groups, each group consisting of components
with Genetic Algorithms, Q-learning and GRASP. The architecture is similar to the
grouping of multiple executions of the structure shown in Figure 14.3 doing com-
munication through the critical. The aim was to assess if the collaboration would
lead Objective Function value better than those obtained with previous approaches.
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Table 14.7 shows the settings parameters for algorithms implementation in this set of
experiments. For both Genetic Algorithm and Q-learning the same parameters were
used rather than in the previous experiment, except for β value, that was set with
different values (multiparameterized) because of the changes in values of param-
eters have fundamental importance for initial solutions provided from Q-learning,
making possible to continue the produce of good solutions and further enhance these
solutions. Two groups of structures were created, for Group 1, β = 0.2 and for Group
2, the β = 0.3.

Table 14.7 Parameters for algorithms executions in groups parallel experiments

Instance iterations (QL/GA) (GRASP/GA) Rand Communications

bays29 20.000 5.00 20.00 5.00 10.00
swiss42 40.00 5.00 16.00 5.00 20.00
berlin52 50.00 5.00 13.00 5.00 20.00
eil76 50.00 6.00 8.00 5.00 20.00
gr120 70.00 7.00 7.00 5.00 30.00
ch150 100.00 8.00 6.00 6.00 50.00
si175 100.00 8.00 5.00 5.00 50.00

When comparing the table 14.3 with the table 14.7, there is a decrease of the
values in columns (QL/GA) or (GRASP/GA). This is due to cooperation and com-
petition between the groups, because it can get the same solution quality of the
previous architecture with less iterations due to greater diversity.

Table 14.8 presents the results obtained in this application. As previous tables are
presented in table 14.8 data with statistical values about achieved objective function
values, their absolute and percentage standard deviations, the best known optimal
value and the distance between the optimum values known and the obtained absolute
and percentage values.

Table 14.8 Statistical data about Group parallel experiments

Instances bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

Mean O.F.O.F. 2020.00 1273.00 7695.90 589.40 8560.00 8674.30 23789.00 4519.00
Standard Deviation 0.00 0.00 43.05 5.80 157.08 181.30 202.30 131.80
Standard Deviation (%) 0.00 0.00 0.56 0.98 1.81 2.10 0.85 2.90
Optimal O.F. 2020.00 1273.00 7542.00 538.00 6942.00 6528.00 21407.00 2579
O.F. Optimal Dist. 0.00 0.00 153.90 51.40 1618.00 2146.30 2381.70 1940.00
O.F. Optimal Dist. (%). 0.00 0.00 2.10 9.50 23.30 32.80 11.10 75.20

O.F. Objective Function.
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From the table 14.8 is observed that in addition to instance bays29 the instance
swiss42 also gets the average value for Objective Function with a zero % distance
on the optimal value, i.e., all executions of the experiment reach the best value of
solution.

14.5.2.6 Analysis of Performance

The performance analysis achieved in this section relates only to data processing
and time, not including the quality of results information. A final consideration on
the results is presented in the following subsection (collective analysis). The com-
parison of the results include data of execution time of the serial experiments (us-
ing only one machine), parallel experiments (using three machines per experiment)
and in parallel groups (using six machines per experiment). Table 14.9 contains the
values of the time in seconds of execution for each instance in each type of tests
serial, parallel and in groups. The same information are expressed graphically in the
Figure 14.14 included here for better visual perception.

Table 14.9 Execution time for each experiment

Instances bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

Serial Time (sec.) 220.00 577.00 952.00 1390.00 3308.00 7082.00 9975.00 20300
Parallel Time (sec.) 112.00 302.00 470.00 790.00 2030.00 4500.00 6660.00 13050.00
Group Time (sec.) 115.00 307.00 464.00 750.00 2041.00 4237.00 5487.00 13413.00

In all cases, the serial execution time is longer than the parallel execution time
and parallel group time. The experimental of parallel group, has a similar time to
the simple parallel implementation, a less time if readily apparent at the eil76, ch150
and si175 instances, while the simple parallel implementation time only highlights
in a280 instance.

The statistical measures commonly used for evaluating performance in paral-
lel software are the speedup and efficiency [5]. The speedup is obtained by the
expression 14.9.

speedup =
Ts

Tp
(14.9)

where Ts is the best time of serial algorithm execution and Tp the best parallel time
execution, this analysis uses the average time for parallel execution as Ts . The effi-
ciency can be calculated as shown in expression 14.10.

e f f icency =
Ts

pTp
(14.10)
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Fig. 14.14 Time for execution of experiments

where again Ts is the serial time, Tp parallel time and p is the number of processors
used in the experiment. Thus the value of p is equals three in parallel experiments
and equals six in group parallel experiments.

Table 14.10 gives the values of speedup and efficiency for each experiment in
each instance examined. Since it is not possible to evaluate the characteristics of a
instance only by its number of cities, can not be regarded as increasing the num-
ber of cities produces a linear increase in processing time, several factors must be
considered, such as the value parameters of each algorithm and distribution of cities
(the distance between them).

Table 14.10 Speedup and Efficiency of implementations

Instances bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

Parallel Speedup 1.96 1.91 2.02 1.73 1.62 1.57 1.49 1.55
Parallel Efficiency 0.65 0.63 0.67 0.57 0.54 0.52 0.49 0.51
Group Speedup 1.91 1.87 2.05 1.85 1.62 1.67 1.81 1.51
Group Efficiency 0.31 0.31 0.34 0.30 0.27 0.27 0.30 0.25

Figure 14.15 shows the curves that represent the speedup for parallel and par-
allel group implamentations for purposes of comparison. Figure 14.16 shows the
efficiency curves of the parallel and parallel group experiments. That is possible to
observe that the cost to maintain a good speedup for all the instances, which shows
almost constant, there is just a slight reduction in efficiency, seen in Figure 14.16
because of the addition of node processors in parallel group experiment.
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Fig. 14.15 Speedup of implementations
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Fig. 14.16 Efficiency of implementations

14.5.2.7 Collective Analysis

Tables 14.11 and 14.12 present a qualitative comparison among all experiments in
this work. In the first table are presented for each experiment: serial, parallel, time
limited parallel and in group parallel, the best average values for objective function.
In the last line there is the best objective function value known.

In Table 14.12 is presented the percentage distance among the average O.F. values
obtained in each experiment and the known optimal value. From these tables 14.11
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Table 14.11 Comparison between obtained values of objective function in all implementa-
tions

Instances bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

Serial 2020.00 284.00 7705.00 591.00 8789.00 9163.00 23795.00 4682.00
Parallel 2020.00 1280.00 7678.00 590.00 8638.00 8723.00 23936.00 4608.00
Limited Parallel 2020.00 1285.00 7751.00 598.00 8735.00 8896.00 24090.00 4732.00
Parallel Group 2020.00 1273.00 7695.00 589.00 8560.00 8674.00 23788.00 4519
Optimal O.F. Value 2020.00 1273.00 7542.00 538.00 6942.00 6528.00 21407.00 2579.00

Table 14.12 Percentage distance between the average values of objective function achieved
by implementations

Instances bays29 swiss42 berlin52 eil76 gr120 ch150 si175 a280

Serial (%) 0.00 0.86 2.16 9.85 26.60 40.36 11.15 81.54
Parallel (%) 0.00 0.55 1.80 9.66 24.43 33.62 11.81 78.67
Limited Parallel (%) 0.00 0.94 2.77 11.15 25.82 36.27 12.53 83.48
Group Parallel (%) 0.00 0.00 2.02 9.47 23.30 32.87 11.12 75.22
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Fig. 14.17 Distance between avarege values of O.F. obtained in each experiment and the best
O.F. value

and 14.12 can be seen that there is some proximity between the data obtained in each
type of experiment per instance evaluated. As expected the values of the time limited
parallel execution were a slight reduction in quality results when compared to other
executions, but in the worst case the difference is about 8% for another instance
when compared to the known optimal value, this is the case of a280 instance.
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The graph of Figure 14.17 was created from these data. In this chart the values
closer to zero are better because they correspond to shorter distances between the
values obtained and the optimum values known. Its possible to see that the exper-
iment that better contribute to the average solution in all instances is the parallel
group communication, being the only exception the berlin52 instance, where paral-
lel execution without time limitation has a slightly higher performance.

14.6 Conclusions

The computational results presented in this work show that the cooperative and com-
petitive approaches achieved satisfactory results in both of cooperation and compe-
tition between them (algorithms), and cooperation and competition between groups,
which in both instances tested, the bays29 and swiss42, was found the global opti-
mum in all executions, the rest of the instances get good results as presented.

Furthermore, an performance analysis was made from the proposed approach and
there was a good performance on questions that prove the efficiency and speedup
of performed implementations. The new parallel implementation developed here re-
duced the execution time by increasing the number of processor nodes. The modular
form of implementation of algorithms and communication infrastructure enables to
create differentiated and good adaptability to high scalability, which can be used for
problems of high dimensionality.
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Chapter 15
An Evolutionary Approach for the TSP and the
TSP with Backhauls

Haldun Süral, Nur Evin Özdemirel, İlter Önder, and Meltem Sönmez Turan

Abstract. This chapter presents an evolutionary approach for solving the travel-
ing salesman problem (TSP) and the TSP with backhauls (TSPB). We propose two
evolutionary algorithms for solving the difficult TSPs. Our focus is on developing
evolutionary operators based on conventional heuristics. We rely on a set of de-
tailed computational experiments and statistical tests for developing an effective
algorithm.

The chapter starts with a careful survey of the algorithms for the TSP and the
TSPB, with a special emphasis on crossover and mutation operators and applica-
tions on benchmark test instances. The second part addresses our first evolutionary
algorithm. We explore the use of two tour construction heuristics, nearest neigh-
bor and greedy, in developing new crossover operators. We focus on preserving the
edges in the union graph constructed by edges of the parent tours. We let the heuris-
tics exploit the building blocks found in this graph. This way, new solutions can
inherit good blocks from both parents. We also combine the two crossover opera-
tors together in generating offspring to explore the potential gain due to synergy.
In addition, we make use of 2-edge exchange moves as the mutation operator to
incorporate more problem specific information in the evolution process. Our repro-
duction strategy is based on the generational approach. Experimental results indicate
that our operators are promising in terms of both solution quality and computation
time.

In the third part of the chapter, we present the second evolutionary algorithm de-
veloped. This part can be thought of as an enhancement of the first algorithm. A
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common practice with such algorithms is to generate one child or two children from
two parents. In the second implementation, we investigate the preservation of good
edges available in more than two parents and generate multiple children. We use the
steady-state evolution as a reproduction strategy this time and test the replacement
of the worst parent or the worst population member to find the better replacement
strategy. Our two mutation operators try to eliminate the longest and randomly se-
lected edges and a third operator makes use of the cheapest insertion heuristic. The
algorithm is finalized after conducting a set of experiments for best parameter set-
tings and testing on larger TSPLIB instances. The second evolutionary algorithm is
also implemented for solving randomly generated instances of the TSPB. Our ex-
periments reveal that the algorithm is significantly better than the competitors in the
literature. The last part concludes the chapter.

Keywords: Networks-Graphs, Traveling Salesman Problems, Evolutionary Algo-
rithms, Crossover Operator, Mutation Operator, Heuristics.

15.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well-known NP-hard problem widely
investigated in combinatorial optimization. Given a set of n cities, the TSP seeks
the shortest tour that visits every city once. The problem definition is very sim-
ple in words but finding its optimal solution is very difficult and computationally
expensive. In 2006 a TSP instance with 85,900 cities was solved to optimality.
The total computation time was equivalent to 136 CPU years, scaled to a 2.4 GHz
AMD Opteron 250 compute node. As of July 2009 finding an optimal solution to an
100,000-city problem instance would set a new world record for the TSP [1]. Gutin
and Punnen [2] provide an up-to-date coverage of the TSP literature in their recent
book.

Various methods for solving the TSP to optimality have been proposed so far.
Branch-and-cut algorithms have given the most effective results in general. Solution
quality guarantees of 5% are obtained quickly, but it takes a very long time to get
close to 1% [3]. As Rego and Glover [2] state, exact solution procedures for the
TSP seem to “require computational effort that exceeds the realm of practicality”.
There exist heuristics that provide near optimal solutions in reasonable computation
time. The collection of these heuristics provides a wide range of tradeoffs between
solution quality and computation time. However, there is not a perfect correlation
between increased computation time and improved quality.

In this chapter, we represent the TSP on a graph. Consider a complete graph
where the node set denotes the cities and the edge set represents the arcs between
them. There is a cost (or distance) for traversing each arc. The problem is to find the
cheapest (shortest) tour that visits every node once on the graph.
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15.1.1 Conventional TSP Heuristics

In general, conventional TSP heuristics can be classified into two categories: tour
construction and tour improvement heuristics.

Construction heuristics generate a solution from scratch by a growth process that
selects and inserts a node or an edge iteratively into a partial tour until a complete
feasible tour is constructed. They typically get within roughly 10-15% of optimal
solution in relatively short time [4]. Among the numerous procedures, we review
the two that we use in this study, namely nearest neighbor and greedy.

The nearest neighbor is perhaps the most natural and simplest construction
heuristic. It starts by choosing an initial node randomly, then the nearest unvis-
ited node is added to the partial tour until a complete tour containing all nodes is
constructed. The algorithm produces connections with short edges in the beginning.
However, some of the nodes are “forgotten” during the process. These nodes are
inserted at a high cost in the end, decreasing the tour quality. Nevertheless, near-
est neighbor tours contain only a few severe mistakes, and there are several long
segments connecting nodes with short edges. Therefore, these tours can serve as a
good starting point for improvement heuristics. Nearest neighbor tours appear to be
roughly 25% longer than the Held-Karp bound for Euclidean instances [2].

Greedy heuristic starts by sorting all of the edges in the order of increasing length.
Then, a tour is generated by inserting the shortest edges in turn as long as no node
has a degree greater than two, and an insertion does not result in a subtour. The tours
obtained by greedy are about 17% longer than the optimal [2].

Tour improvement heuristics start with a feasible tour and try to improve it it-
eratively by making incremental changes on the tour. These procedures are called
local search methods because they only consider tours that are the neighbors of the
current tour. If a neighbor is better than the current tour, the current tour is replaced
with this neighbor. This process is repeated until there are no better neighbors. Per-
haps the most commonly used search technique is based on k-edge exchanges. The
2-edge exchange heuristic systematically checks each pair of nonadjacent edges of
the tour and determines whether the tour length decreases by removing these two
edges and adding a new pair of edges that would result in a tour. If the tour length
is shortened, the exchange is performed and the search for another continues. The
2-opt examines all such exchanges for the current tour and chooses the best improv-
ing one. Average tour length with 2-opt is about 5% above the Held-Karp bound for
Euclidean instances [2].

Conventional local search methods have the ability to find good, sometimes even
optimal, solutions. However, because of their limited modification capabilities, they
are able to find only a local minimum most of the time. Starting the search many
times with different initial tours increases the chance of finding better local minima.
Metaheuristics, on the other hand, try to escape from local minima in a more sys-
tematic way so as to explore the solution space methodically. Several metaheuristics
such as neural networks, simulated annealing, tabu search, and evolutionary algo-
rithms are used to solve the TSP.
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15.1.2 Metaheuristics for the TSP

Leung et al. [5] propose a neural network (ESOM) that solves the TSP with reason-
able quality. DePuy et al. [6] introduce a metaheuristic (Meta-RaPS) that modifies
conventional heuristics by allowing randomness in construction rules. Considering
nearest neighbor and cheapest insertion heuristics, [6] solves the TSP with very
good results. Based on their survey, Johnson and McGeoch [4] state that simple
tabu search is not very effective compared to local search heuristics such as 2-opt.
Their experimentation with simulated annealing shows that the resulting solution
quality is comparable to that of 2-opt. Variations of simulated annealing can catch
up to multi-start Lin-Kernighan with 1% deviation, but they still have longer com-
putation times. The evolutionary approaches Johnson and McGeoch discuss seem
to be promising in solution quality.

15.1.3 Evolutionary TSP Algorithms

In Evolutionary Algorithms (EAs), crossover is a genetic operator that typically
combines two parent solutions to produce new offspring, carrying solution compo-
nents from one generation to the next through the evolution process. The idea is that
a new offspring may be better than both of its parents if it inherits their best charac-
teristics. The strength of crossover comes from its ability to preserve and recombine
the “building blocks” when assembling new solutions. It is widely recognized that
the crossover operator has a great influence on performance of EAs, since it rapidly
explores the search space and exploits good solutions.

Crossover operators for the TSP can be classified by their preservation capabil-
ities. The three main classes are position, order, and edge preserving operators [7].
Position preserving operators interpret a tour as a series of independent slots, as if
the cost of assigning a node to a given position is independent of the nodes assigned
to neighboring positions. Typical examples are partially mapped crossover-PMX,
cycle crossover-CX, and position based crossover. Order preserving operators aim
at preserving relative position of nodes. PMX tries to preserve order as well as posi-
tion of nodes. Other examples of this class are order crossover-OX and order based
crossover. Edge preserving operators interpret the sequence of nodes as a series
of adjacency relations. Heuristic crossover, edge recombination-ER, and edge as-
sembly crossover-EAX by [8] are examples of this class. An experimental study to
compare various operators is presented by Schmitt and Amini [9].

The objective of the TSP is primarily related with the edges in the tour and sec-
ondarily with the order of nodes. According to [7] Homaifar and Guan argue that
basic building blocks of the TSP are the edges as opposed to the nodes, and a good
crossover operator should extract edge information from parents as much as possi-
ble. This argument is partially supported by Oliver’s findings given in [7] that OX
does 11% better than PMX and 15% better than CX. Xiaoming et al. [10] argue that
crossovers that preserve the order or position of cities are redundant in optimiza-
tion. Potvin [11] reports a similar conclusion in a survey of genetic algorithms for
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the TSP. It seems that the idea of using edges rather than position or order of nodes
is more promising.

Among the edge preserving operators, EAX proposed by Nagata and Kobayashi
[8] seems to be particularly promising. Deviation from optimal is less than 0.03% in
21 instances from the TSPLIB [12] with 100≤ n≤ 3000. In generating an offspring,
[8] starts with the union graph constructed with all the edges from two parents. They
preserve edges from the union graph, but their detection of good edges or segments
in the graph seems to be limited. Chen [13], on the other hand, assumes that the
edges that are common to the parents lead to good solutions and concentrates on the
intersection graph of parental edges.

Jung and Moon [14] devise natural crossover-NX where the parent tours are par-
titioned randomly, and partitions from different parents are merged to give partial
tours. The partial tours are then merged using the shortest edges. They argue that
the results they present are better than EAX and faster than distance preserving
crossover-DPX. They also report that EAX “showed poorer performance than the
original paper [8]”. Lin-Kernighan heuristic is used to improve the results of NX,
and a deviation of 0.085% is obtained for a problem instance with 11849 cities.

Merz [15] proposes a new edge recombination-NEX operator where the probabil-
ities of inheriting an edge from the parents and selecting an edge from the complete
graph can be adjusted. The results are comparable with the results of EAX for small
problems. Ray et al. [16] present a crossover to improve the tours generated with
the nearest neighbor heuristic. They propose fragmentation of tours generated with
the heuristic and connecting the fragments using the shortest possible edges.

Considering conventional heuristics as hill climbing methods, the combination
of conventional heuristics and EA seems a promising approach for solving the TSP,
since EAs are also able to find the “hills” for the conventional heuristics to “climb”.

15.1.4 The TSP with Backhauls

The TSP with backhauls (TSPB) is a TSP with precedence constraints, where the
cities are grouped as linehauls and backhauls such that all linehauls must precede
all backhauls on the tour. The TSPB arises from three different routing applications.
It is a strictly constrained version of the TSP with pickup and delivery, and a special
case of the vehicle routing with backhauls. Moreover, the TSPB is a three-cluster
version of the clustered TSP, where one cluster contains only the depot and two
others contain linehauls and backhauls [17].

Chisman [17] transforms the clustered TSP into a TSP, by adding large numbers
to the inter-cluster distances, and reports that the transformed problems are solved
to optimality without exception.

Gendreau et al. [18] use GENIUS heuristic [19], which basically consists of two
parts. GENI tries to insert a city v between two cities, each of which becomes
adjacent to v after insertion; US tries to improve the tour by using GENI opera-
tions. Gendreau et al. [18] conduct experiments with six different heuristics to solve
the TSPB. The first heuristic, GENIUS, solves the TSPB using the modified cost
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matrix in which large numbers are added to the inter-cluster distances. In the second
heuristic, GENIUS constructs linehaul and backhaul tours separately, and then con-
nects these tours. The third heuristic is similar to the second one except the depot
is not included in the beginning. The fourth heuristic is cheapest insertion coupled
with US for improving the solutions, and the fifth one is GENI coupled with Or-
opt improvement moves. The last heuristic uses cheapest insertion that incorporates
Or-opt. [18] reports that the first heuristic is the best, and the best results are 3-
4% larger than the lower bound on average. Mladenoviċ and Hansen [20] improve
GENIUS for solving the TSPB, incorporating variable neighborhood search (VNS).
VNS is a random neighborhood search mechanism in which the neighborhood size
is increased until an improving move has been found. [20] reports that GENIUS
coupled with VNS, G+VNS, is better than the original GENIUS by an average of
0.40% with an increase of 30% in computation time.

Ghaziri and Osman [21] use an artificial neural network (SOFM) and demonstrate
that SOFM coupled with 2-opt (SOFM*) can improve the solution quality. Their test
results are comparable to those of the methods that transform TSPB to TSP.

The only EA to solve the clustered TSP, developed by Potvin and Guertin [22],
use the edge recombination crossover-ER and 2-opt as a mutation operator. ER is
used to preserve the inter-cluster edges in the first phase and the intra-cluster edges
in the second phase. The 2-opt mutation operator is applied within clusters. The
results are better than those of GENIUS.

15.1.5 Outline

Our aim in this chapter is to illustrate that conventional TSP heuristics can be used
as effective crossover and mutation operators. We restrict the use of crossover op-
erators on the union graph of parents in an attempt to preserve parental edges. We
describe two EAs and report their computational results in Sect. 15.2 and Sect. 15.3.
The first EA uses nearest neighbor and greedy heuristics for crossover and 2-edge
exchange for mutation. We choose these heuristics for illustrative purposes, but oth-
ers can also be considered. We also explore combined use of multiple crossovers
operators and make use of generational evolution approach. The second EA focuses
on nearest neighbor crossover and explores generation of multiple offspring from
more than two parents. Mutation operators used are 2-edge exchange to eliminate
the longest or random edges and node insertion. The second EA takes a steady-
state evolution approach. Considering the TSP materializes with side constraints in
practice, we implement the second EA to solve the TSP with backhauls using the
modified cost matrix and report our computational results. Sect. 15.4 concludes the
chapter.

15.2 The First Evolutionary Algorithm for the TSP

In an EA, an initial population of solutions is generated either randomly or by
using some heuristics. This population evolves through a number of generations
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until stopping conditions are satisfied to indicate convergence. In each generation,
some members of the population are placed in a mating pool as potential parents.
Crossover operator is applied to selected pairs of parents and new offspring are gen-
erated. Mutation is applied to offspring mainly for diversification. These offspring
replace either their parents or other members of the population, resulting in a new
generation.

15.2.1 Generating Offspring from the Union Graph

The basic building blocks of the TSP are the edges. Therefore, we concentrate on
preserving edges from the parents. Edges of two parents are combined to form a
union graph where the degree of each node is at most four. Proposed crossover
operators use this union graph while generating new tours.

In the TSP literature, heuristics are often applied on a graph of k-nearest neigh-
bors of each node, rather than the complete graph, because most of the edges in an
optimal tour appear in the reduced search space, and it brings significant savings in
computation time. Our operators also use a kind of reduction, as the union graph
has at most four neighbors for each node. However, it is not always possible to find
a feasible edge in the union graph for constructing a complete tour. When this hap-
pens, the restriction is relaxed and all edges on the complete graph become eligible
to construct a valid tour.

15.2.2 Nearest Neighbor Crossover (NNX)

Nearest neighbor takes O(n2) time [23]. Its solutions have long segments contain-
ing short edges, and it is possible to exploit these segments in the union graph and
transfer them from parents to offspring. Therefore, nearest neighbor is an appro-
priate choice for use in a crossover operator. NNX randomly selects a node as the
starting point. A single offspring is generated by visiting the nearest unvisited node,
using only the edges in the union graph. In general, if we construct the union graph
using edges of k parents, each node in the graph has at most 2k neighbors. As one
of these neighbors is used to arrive at the current node, NNX constructs a tour in
n(2k− 1) steps, provided that it always finds a feasible edge in the union graph.
Otherwise, NNX resorts to the complete graph to search for the nearest unvisited
node.

Suppose we have parent A (1 2 4 7 5 9 8 6 3 14 15 11 12 13 10) and parent B
(1 5 4 8 7 3 2 6 9 10 11 15 13 12 14), where the numbers represent the cities in
the order they are visited. Fitness values of parent tours are 43 and 51 according to
the distance matrix given in Table 15.1. With the random starting node 11, NNX
generates offspring (11 12 13 15 14 3 2 1 10 9 8 6 7 5 4) depicted in Figure 15.1.a.
The nodes adjacent to 11 are 12, 15 and 10 with distances 2, 4 and 2, respectively.
There is a tie between 12 and 10, and 12 is chosen randomly. Now the unvisited
nodes adjacent to 12 are 13 and 14. The distance from 12 to 13 is the shortest; hence
node 13 is added to the tour. Nodes 15, 14, 3, 2, 1, 10, 9, 8 and 6 are also added
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to the tour in this manner. The nodes adjacent to 6 are 8, 3, 2 and 9, all of which
are already in the tour. In this case, from the complete graph, we choose 7 among
the unvisited nodes 4, 5 and 7. Then, 5 and 4 are added to the tour. Note that all
edges except 6-7 and 4-11 are taken from the union graph. Fitness value of the new
tour is 31, which is less than fitness values of both parents. In Figure 15.1.a, most
of the edges in the tour are short except the lastly inserted edge 4-11. Notice that,
for instance, removing edges 4-11 and 1-2, and inserting edges 1-11 and 2-4 would
improve the tour, which can be achieved with 2-edge exchange.

Fig. 15.1 Offspring generated by the two crossover operators

Table 15.1 Distance matrix for the example problem

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 3
3 4 2
4 3 4 1
5 5 5 4 1
6 4 6 5 2 2
7 7 8 7 5 2 2
8 5 7 5 4 4 1 1
9 1 4 6 5 5 3 1 2
10 3 6 7 6 6 4 4 5 2
11 3 4 4 5 7 5 6 7 4 2
12 6 3 6 7 10 8 7 8 6 3 2
13 5 2 4 7 8 8 12 8 6 3 2 1
14 6 2 2 4 6 6 12 6 6 6 4 4 3
15 6 3 4 7 9 9 11 7 7 7 6 3 1 1

Given a starting node, there is only one tour a deterministic NNX can gener-
ate unless there is a tie in selection. We have also tried a stochastic version of
NNX where one of the edges incident to the current node is selected probabilis-
tically. The selection probability is inversely proportional with the length of the
edge. Edge selection in this version of NNX is similar to the heuristic crossover
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[7], which preserves 60% of parental edges. Stochastic NNX has a potential advan-
tage over deterministic NNX. Given two parents and a starting node, it can pro-
duce different offspring because of randomization. Hence, it is possible to increase
the population diversity and portion of search space covered. Our pilot run results
have shown that stochastic NNX indeed provides higher diversification, resulting in
slower population convergence at the expense of longer computation times. In solu-
tion quality, however, stochastic NNX has proven to be significantly inferior to the
deterministic version. Therefore we used only the deterministic version in further
experimentation.

15.2.3 Greedy Crossover (GX)

Greedy heuristic constructs a tour by adding edges one at a time, starting from the
shortest edge. Every time a new edge is added to the partial tour, the algorithm
checks if there exists a node with a degree higher than two or a cycle with fewer
than n nodes. Greedy algorithm runs in O(n2logn) time [23].

We have tried two versions of the greedy crossover. GX1 is the same as the greedy
heuristic but restricted to the union graph. Edge preservation percentage is very high
with GX1 since it is usually possible to generate feasible tours by taking only the
last few edges from the complete graph. Edge preservation is mainly related with
the exploitation aspect of crossover. However, a desirable property of a crossover
operator is to have a balance between exploration and exploitation. GX1, with ex-
tremely high edge preservation, misses the exploration aspect, which comes from
inserting new edges to the offspring. This results in premature convergence of the
EA with low quality solutions. To overcome lack of exploration, in GX2, we place
an upper bound on the number of edges taken from the union graph. The bound is
taken as the problem size n. The edges that are present in both parents are counted
as two. Whenever the number of edges from the union graph reaches the bound, the
union graph restriction is relaxed.

In applying GX1, the edges in the union graph are first sorted according to edge
length. In our example, after inserting edges from the union graph sequentially, we
see that the edges in this graph are sufficient to generate a feasible path but not a
tour. Therefore, the edge 1-4 is taken from the complete graph to obtain a feasible
tour. The resulting tour is offspring (11 12 13 15 14 3 2 1 4 5 7 8 6 9 10) shown in
Figure 15.1.b. Fitness value of this solution is 28. For this example, GX2 also re-
sults in the same tour. Although only the first half of the edges are intentionally taken
from the union graph, the second half that come from the complete graph happen to
be in the union graph with the exception of edge 1-4. If two parents are identical,
the offspring generated by GX1 is the same as the parents with 100% edge preserva-
tion (note that it is also true for NNX). With GX2, however, half of the edges come
from the complete graph and edge preservation can be as low as 50%. In our pi-
lot runs, GX2 has yielded much better solution quality with only a slight increase in
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the computation time. Therefore, we have decided to continue our experimentation
only with GX2, referring to it as GX.

15.2.4 Combined Use of the Crossover Operators

Potvin and Bengio [22] used a mixture of two crossover operators for a routing
problem and found that combined use of operators performed better than a sin-
gle operator alone. In our multi-crossover approach, we use NNX and GX to-
gether in the same EA. Although both operators are designed to preserve short
parental edges, they are different in nature. NNX selects the shortest edge among
at most three edges going out of the current node in the union graph; hence the
choice is myopic. GX, on the other hand, considers the union graph as a whole,
resulting in less myopic behavior. Our experimentation with the two operators in-
dividually shows that they also differ in solution quality, percent edge preserva-
tion, population diversity, and computation time. NNX can find good solutions in
short times whereas GX searches different parts of the solution space. Our multi-
crossover approach works as follows. After a pair of parents is selected from the
mating pool, one of the crossover operators is chosen probabilistically. Hence, on
average, a certain fraction of offspring is generated using NNX and the remain-
ing fraction by GX. We have tried giving different weights to two operators in our
experimentation.

15.2.5 Proposed Mutation Operators

Ordinarily, mutation is a genetic operator that prevents an EA from premature
convergence to a suboptimal solution. In combinatorial optimization improvement
heuristics are frequently used as some sort of Lamarckian mutation (see [4]) to ob-
tain competitive results for the TSP. To incorporate problem specific information in
our EA, we use 2-edge exchange heuristic as a mutation operator.

A 2-edge exchange move is equivalent to removing a subpath from the tour and
swapping it. In applying the move, we start with a randomly selected node and pro-
ceed clockwise. We consider removing the edge incident to the selected node and
each of the remaining n− 2 nonadjacent edges in the order they are given in the
tour. One of the two subpaths is swapped and the tour is reconnected, introducing
two new edges. The move is accepted immediately if it brings improvement. We
then restart with a new randomly selected node. The total number of improvement
checks is (n− 1)(n− 2)/2. Because an improving move is implemented immedi-
ately, resulting tours are not necessarily locally 2-opt. Given a tour and a starting
node, this mutation is deterministic.

We have two versions of mutation. M1 applies 2-edge exchange only to the best
offspring produced in every generation. In M2 all the offspring produced undergo
mutation. Mutation operators are reported to have great influence on convergence
behavior. Xiaoming et al. [10] prove that their genetic algorithm converges to global
optima when only mutation operators are applied.
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15.2.6 Other Settings of the First Evolutionary Algorithm

Our EA settings include chromosome representation, fitness function, initial popu-
lation generation, parent selection and replacement, and stopping conditions.

1. Chromosome representation: Our literature review reveals various forms of vec-
tor representation such as path, adjacency, ordinal, and rank representations [7].
Among them, we choose the path representation for the TSP, which is the most
natural and common one. In this representation, a number is assigned to every
node and solutions are represented by the ordered sequence of nodes, as in our
example. Unless the initial position is fixed, path representation of a given tour is
not unique. Classical EA operators are not suitable for path representation, but a
large number of operators are developed for this representation including PMX,
CX, ER and EAX.

2. Fitness function: A TSP solution has a widely used fitness value, which is the
tour length.

3. Population size: EAs converge more rapidly with smaller populations, but bet-
ter results are obtained with larger populations. On the other hand, for large in-
stances, the search space is so huge that increasing the population size further
does not improve the solution quality significantly. We investigated the effect of
the population size on solution quality and computation time and decided to use
the population sizes of 50 and 100.

4. Initial population generation: Schmitt and Amini [9] report that, for various
problem classes and sizes, a hybrid initial population tends to give superior re-
sults over a pure random initial population. We tried two settings to see the effect
of initial population quality. In the first setting, the whole population is gener-
ated randomly. In the second one, about half of the population is still randomly
generated and the other half is generated by using nearest neighbor, greedy and
insertion heuristics with or without improvement heuristic 3-edge exchange. The
percentages of different heuristics in the hybrid initial population are given in
Table 15.2.

In generating the hybrid population, insertion heuristic starts with a partial
tour containing a few nodes (tour nodes), selects a non-tour node according to a
particular criterion and then inserts that node in the tour. Selection and insertion
are repeated until a tour containing all nodes is constructed. Nearest (farthest)
insertion chooses the non-tour node whose minimal distance to the closest tour
node is minimum (maximum). Both insert the selected node in the tour such
that the increase in tour length is minimized. They run in O(n2) time. Cheapest
insertion chooses the non-tour node to be inserted with the minimal increase in
tour length and runs in O(n2logn) time [23].

5. Parent selection: Parent selection, together with crossover and mutation opera-
tors, evolves the population toward higher fitness. If the selection pressure is too
high, EA may converge to a local optimum since genetic diversity rapidly de-
creases. Our selection method, which is borrowed from [8], first forms a mating
pool from the current population by replicating each chromosome twice. Then, it
selects random pairs of parents from the pool without replacement. The crossover
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operator generates one offspring from each pair. We use this method because we
wish to isolate the effect of our evolutionary operators. We do not want the se-
lection pressure to interfere with this effect, therefore, we prefer to use a neutral
selection scheme.

6. Replacement: With newly generated offspring, the population size is temporarily
doubled. For replacement, we sort parents and offspring together according to
their fitness values. We then carry the best half of these chromosomes to the next
generation.

7. Stopping conditions: We stop our EA if average fitness is exactly the same in
two consecutive generations. In addition to this condition, we also use an upper
bound of 500 on the number of generations, which is large enough when we
consider convergence behavior of our EA in Figure 15.2 for an instance with 52
cities.

Fig. 15.2 Convergence behavior of the EA

Table 15.2 Share of different heuristics in hybrid initial population

Heuristic %
Random 45

Nearest neighbor 10
Nearest neighbor + 3-edge exchange 10

Greedy + 3-edge exchange 5
Nearest insertion 5

Nearest insertion + 3-edge exchange 5
Cheapest insertion 5

Cheapest insertion + 3-edge exchange 5
Farthest insertion 5

Farthest insertion + 3-edge exchange 5

There is no one best configuration in terms of initial population generation, parent
selection and parent replacement strategies. For instance, studies such as [8] and
[24] report impressive results when the initial population is generated randomly. On
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the other hand, [25], [26], and [27] are some of the studies who come up with very
good solutions when the initial population is generated using a heuristic.

15.2.7 Computational Results for the TSP

Below we first describe our experimental settings including performance measures
and test problems used. Then we discuss computational results for our operators
with a focus on the effects due to conventional heuristics.

Our experimentation with the EA involves the following settings, which result in
18 combinations.

• Crossover operator: NNX, GX and combined use of the two.
• Mutation operator: No mutation (NoM), M1 and M2.
• Initial population (IP): Random (R) and hybrid (H).

We use the performance measures listed below in evaluating the EA.

• DB: Percent deviation of final population best from optimal solution.
• DA: Percent deviation of final population average from optimal solution.
• CT: Computation (or elapsed) time in seconds.
• NG: Number of generations until convergence.

DB is the percent deviation of the best solution found throughout the evolution in a
single EA run. We also use DA to see whether or not the population has converged
at the end of the run; if DB and DA are close, then convergence has been achieved.
CT includes the initial population generation time. NG gives us an idea about con-
vergence behavior of the EA. We can observe, for instance, if GX leads to faster
convergence than NNX in terms of the number of generations.

We test 25 problem instances in total. They range in size from 52 to 1748. 24
problem instances selected from the TSPLIB have symmetric integer Euclidean dis-
tances. The additional problem tr81 includes the cities in Turkey. Note that only an
upper bound is available for tr81, and therefore the percent deviation of its EA so-
lutions is computed using this bound. We replicate our EA runs 30 times for small
problems with n ≤ 226 and 10 times for larger problems. The algorithm is coded in
ANSI C and runs on a Pentium IV 1600 MHz machine with 256 MB RAM running
RedHat Linux 8.0.

Table 15.3 includes the averages of performance measures over 30 replications
of 10 problem instances with n ≤ 226, where the initial population size p is 50.
When we compare two crossovers, NNX yields better solution quality than GX and
takes much shorter CT. Both M1 and M2 improve solution quality over no mutation
case. M2 mutating all offspring improves NNX better compared to M1 mutating
only the best. For GX, M2 performs only slightly better than M1. M2 coupled with
NNX takes longer time than M1 as expected. With GX, however, M1 results in
longer CT than M2 because of slower convergence of GX-M1 combination. Hybrid
initial population leads to slightly better solution quality than random population.
Edge preservation from the union graph is 97% for NNX and 92% for GX without
mutation. Mutation reduces these figures by 2-5%. The largest NG values are
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Table 15.3 Average results over 30 replications of the 10 small problem instances† where
p = 50

Crossover Mutation IP DB DA NG CT

NNX

NoM
R 3.10 5.71 45.39 0.38
H 4.82 5.74 33.52 2.95

M1
R 1.67 2.30 40.21 0.62
H 1.57 2.13 36.09 3.55

M2
R 0.55 0.67 53.37 5.52
H 0.55 0.73 43.53 8.11

GX

NoM
R 12.54 15.54 17.35 48.23
H 7.19 12.58 16.37 54.27

M1
R 4.36 7.48 60.44 208.70
H 3.67 7.04 48.44 178.65

M2
R 3.30 4.91 26.30 82.79
H 3.01 4.80 25.83 90.58

50% NNX 50% GX

NoM
R 8.15 8.86 42.50 73.25
H 5.53 7.99 38.47 75.67

M1
R 1.92 2.90 66.04 113.81
H 1.68 3.06 61.21 112.77

M2
R 1.76 4.32 19.25 26.40
H 1.61 4.16 20.68 34.19

90% NNX 10% GX

NoM
R 7.23 7.44 41.16 13.39
H 5.19 6.03 34.93 14.95

M1
R 1.84 2.35 55.60 19.14
H 1.67 2.38 46.93 20.16

M2
R 0.51 0.67 37.13 19.26
H 0.48 0.63 37.24 21.95

95% NNX 5% GX

NoM
R 6.69 7.03 41.23 6.74
H 5.06 5.98 33.04 8.93

M1
R 1.77 2.39 52.62 10.03
H 1.41 2.43 44.33 11.30

M2
R 0.49 0.62 37.15 11.58
H 0.44 0.58 36.19 14.88

† Problem instances: berlin52, tr81, eil101, bier127, ch130, pr136, ch150, u159, kroa200, and
pr226.

observed when mutating only the best offspring. As expected, NG is higher for
random initial population compared to hybrid one.

In implementing our multi-crossover approach, we tried mixing NNX and GX
with various ratios. We started with 50% NNX and 50% GX and observed that both
the solution quality and the computation time are in between those obtained with in-
dividual operators. As NNX yields better solution quality in shorter time compared
to GX, we decided to increase the contribution of NNX. After experimenting with
90% and 95% NNX, we found that best results are obtained with the latter. With
95% NNX and 5% GX, M2, and hybrid initial population, the EA’s results deviate
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from the optimal by only 0.44%. The same figure is 0.55% with only NNX. This
shows that using multiple crossover operators instead of a single one can indeed
bring advantages in terms of solution quality. Our observation is also consistent
with the results reported by Potvin and Bengio [22]. The results for the 10 instances
are given in Table 15.4 for the best mixture of crossovers with p = 100. When p is
increased from 50 to 100, the average deviation reduces to 0.34%, which is quite a
satisfactory result in 25 seconds.

Table 15.4 Average results over 30 replications of the 10 small problem instances with 95%
NNX and 5% GX where p = 100

Problem
NoM M1 M2

IP DB DA NG CT DB DA NG CT DB DA NG CT

berlin52
R 1.22 1.91 35.9 0.7 0.07 0.45 39.0 0.8 0.00 0.00 14.6 0.8
H 0.92 1.61 27.5 0.7 0.00 0.00 32.3 0.7 0.00 0.00 13.2 0.8

tr81
R 3.35 3.57 42.5 2.5 0.97 1.45 51.7 3.1 0.48 0.53 34.5 4.6
H 3.48 3.80 34.2 2.7 0.84 1.21 50.6 3.6 0.47 0.48 37.7 5.8

eil101
R 6.60 6.75 62.1 12.5 2.10 2.64 83.8 9.0 0.93 1.06 69.9 15.6
H 3.78 3.93 63.0 10.3 0.93 1.37 81.1 8.7 0.82 0.92 60.9 14.3

bier127
R 3.15 3.25 60.2 10.7 0.77 1.14 73.6 13.4 0.26 0.28 28.5 9.6
H 3.72 3.81 53.0 12.1 0.62 0.93 71.5 15.3 0.28 0.28 27.9 12.0

ch130
R 5.49 5.68 45.8 20.0 2.14 2.49 69.0 23.8 0.76 0.90 53.4 22.6
H 6.16 6.19 41.2 12.7 2.39 2.50 51.7 18.6 0.85 0.99 47.0 22.3

pr136
R 11.09 11.20 42.9 11.8 4.85 5.78 68.6 19.2 0.41 0.46 64.0 24.6
H 5.92 5.92 40.4 14.2 2.87 3.52 55.3 18.4 0.37 0.49 67.1 35.2

ch150
R 3.18 3.26 44.0 15.3 0.28 0.42 58.8 21.1 0.26 0.40 26.3 15.8
H 3.44 3.51 36.3 19.0 0.37 0.44 51.9 23.5 0.24 0.35 26.9 20.7

u159
R 6.45 6.80 42.6 14.9 0.81 0.97 6.5 23.5 0.04 0.14 31.6 19.6
H 6.95 6.98 33.5 17.8 1.03 1.28 53.0 2.2 0.00 0.04 25.4 21.1

kroa200
R 8.37 8.43 42.6 33.3 1.68 1.78 85.7 72.4 0.33 0.43 64.1 84.3
H 9.12 9.27 41.2 45.8 1.78 2.23 89.6 87.3 0.32 0.43 65.6 98.6

pr226
R 5.06 5.14 60.6 62.4 0.72 1.10 72.8 77.3 0.01 0.01 40.5 64.8
H 4.26 4.27 54.4 76.4 0.79 1.21 70.5 93.0 0.01 0.07 40.2 21.6

Average
R 5.40 5.60 47.9 18.4 1.44 1.82 61.0 26.4 0.35 0.42 42.7 26.2
H 4.78 4.93 42.5 21.2 1.16 1.47 60.8 27.1 0.34 0.41 41.2 25.2

To investigate performance of the EA for larger problems, we made a preliminary
comparison test on four more problems from the TSPLIB, where 318≤ n≤ 442, us-
ing the best mixture of crossovers and only NNX. We also limit this test with random
initial population since Table 15.4 shows that hybrid initial population does not im-
prove consistently and brings unnecessary computational burden. Table 15.5 shows
the averages of performance measures over 10 replications of these four problem in-
stances, where p is 100. We observe that the deviation from the optimal solution and
CT increase as n increases. The average deviations for the best mixture of crossovers
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Table 15.5 Average results over 10 replications of the four larger problem instances† where
p = 100

Crossover Mutation DB DA NG CT

95% NNX 5% GX
NoM 8.43 8.46 74.5 494.0
M1 3.90 4.66 120.9 972.4
M2 2.01 2.74 105.2 964.0

100% NNX
NoM 4.73 7.03 92.4 4.5
M1 3.25 4.61 133.8 11.7
M2 2.13 3.05 102.1 206.3

† Problem instances: lin318, fl417, pr439 and pcb442.

are quite comparable with those for NNX only. Besides, the multi-crossover ap-
proach requires significantly longer computation times than NNX. Therefore, we
decided to run the EA using only NNX and random initial population for solving
larger test problems.

The final test bed includes 15 instances, where 318 ≤ n ≤ 1748, including the
four instances in the preliminary test. The average results over 10 replications are
given in Table 15.6. Coupled with M1, NNX achieves an average deviation of 4.9%
from the optimal in about 65 seconds. M2 requires more CT and slightly improves
this deviation.

Table 15.6 Average results over 10 replications of the 15 larger problem instances with NNX
only where p = 100

Problem
NoM M1 M2

DB DA CT DB DA CT DB DA CT
lin318 4.44 6.67 3 1.87 2.60 8 2.01 2.93 105
fl417 4.93 6.67 5 2.93 4.73 14 1.83 3.34 210
pr439 4.38 6.76 4 3.44 3.68 10 1.48 1.56 240

pcb442 5.15 8.00 6 4.75 7.42 15 3.18 4.37 270
rat575 5.30 7.94 11 5.16 7.15 21 4.07 6.03 345
p654 7.47 10.50 11 3.09 7.68 27 2.22 4.70 360
d657 7.95 10.03 12 5.16 7.35 39 4.70 6.57 390
u724 6.35 8.29 15 5.14 6.64 39 3.87 5.42 720

rat783 8.40 10.38 21 5.84 6.75 46 5.33 7.46 480
u1060 9.56 13.81 38 6.68 9.06 93 7.44 10.19 1080

vm1084 10.01 12.55 24 5.77 10.58 65 6.52 9.19 1470
pcb1173 9.47 13.26 36 3.00 5.52 97 8.01 10.27 1230
nrw1379 10.60 13.26 63 7.35 10.41 181 6.65 9.09 1800

u1432 10.79 13.08 65 6.89 9.95 117 6.08 8.12 3030
vm1748 9.31 11.16 65 7.05 9.99 203 7.09 9.78 4215

Average 7.61 10.16 25.3 4.94 7.30 65.0 4.70 6.60 1063.0
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Finally, we present Table 15.7 for the comparison of the EA with the two meta-
heuristics in the literature, Meta-RaPS [6] and ESOM [5]. It can be seen from the
table that the EA outperforms both heuristics on the 10 benchmark TSPs. The table
also reports CPU times for each competitor.

Table 15.7 Results for the first EA and two metaheuristics in the literature†

Problem
EA-M1 EA-M2 Meta-RaPS ESOM3
DB CT1 DB CT1 DB CT2 DB CT3

eil101 0.93 8.7 0.82 14.3 NA NA 3.43 NA
bier127 0.62 15.3 0.28 12.0 0.90 48 1.70 NA
pr136 2.87 18.4 0.37 35.2 0.39 73 4.31 NA

kroa200 1.78 87.3 0.32 98.6 1.07 190 2.91 NA
pr226 0.79 93 0.01 21.6 0.23 357 NA NA
lin318 1.87 8 2.01 105 NA NA 2.89 NA
pr439 3.44 10 1.48 240 3.30 2265 NA NA

pcb442 4.75 15 3.18 270 NA NA 7.43 NA
pcb1173 3.00 97 8.01 1230 NA NA 9.87 200
vm1748 7.05 203 7.09 4215 NA NA 7.27 475
1 Pentium 4 1.6 GHz.
2 AMD Athlon 900 MHz.
3 SUN Ultra 5/270.

† NA: Not available. EA results are the best results given in Table 15.4 (15.6) for small (larger)
problem instances.

15.3 The Second Evolutionary Algorithm for the TSP and the
TSPB

The second EA can be perceived as an enhancement of the first algorithm based
on our previous experimental results. Combined use of NNX and GX slightly im-
proves the solution quality, but NNX is much faster than GX. Hence, we focus on
NNX and want to explore generating multiple offspring from more than two par-
ents in an attempt to preserve parental edges while keeping the population diverse.
Also, considering that the 2-edge exchange mutation limits diversity and takes sig-
nificant computation time, we propose faster mutation operators that will increase
population diversity.

15.3.1 More Than Two Parents and Multiple Offspring

Mühlenbein [28] introduces more than a pair of parents to EAs. Although his voting
recombination operator does not resemble NNX, the idea of multi-sexual crossover
is applicable with NNX, as there is no limitation on the number of edges included
in the union graph. Using more than two parents can increase edge variety and
improve solution quality. However, the effect of more than two parents cannot be
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easily judged, because the performance of NNX is determined by the number of
good or optimal edges acquired from the complete graph as opposed to the union
graph.

In an attempt to explore this idea, we form the union graph using the edges of
more than two parents. We generate multiple offspring by applying NNX to this
union graph. Each offspring is generated by randomly choosing a different node as
the starting point of NNX. The number of offspring is expected to play an impor-
tant role in exploring the search space. [8] reports favorable results with multiple
offspring.

In our initial experiments with multiple parents and offspring, we use eight small
instances with n≤ 226. Population size is set to n and initial population is generated
randomly. We employ steady-state evolution instead of a generational approach.
We try random and rank based parent selection with low and high selection pres-
sures. Rank based parent selection is implemented as follows. Population members
are ranked according to fitness such that the best member has rank i = 1 and the
worst has i = p where p is the population size. Then, parent selection probabilities
are assigned as pri = 1

p [η − 2(η − 1)( i−1
p−1)] for i = 1, . . . , p. Parameter η defines

the selection pressure. We use η = 1.5 (η = 2.0) for low (high) selection pressure,
where η = 1 implies random selection. The best offspring replaces either the worst
population member (RM) or the worst parent (RP) if it has better fitness. Other-
wise it is discarded. The stopping condition is 10,000 generations for small problem
instances.

We experimented with four parameters of the algorithm.

• Number of parents (P): 2, 3, 6.
• Number of offspring (C): 1, 10.
• Parent selection: Random, low selection pressure, high selection pressure.
• Parent replacement: RM, RP.

All combinations of the above parameters are replicated 30 times for each prob-
lem. Analysis of variance results show that all parameters and two-way interactions
(except PxC interaction) have a significant effect at α = 0.05. According to the two-
way interaction plots, the best settings are P=2, C=10, random parent selection and
RP replacement. It is interesting that, although generating multiple offspring brings
a significant improvement, using more than two parents has an adverse effect. This
is probably because as the number of parents increases the union graph resembles
the complete graph. The tours NNX generates on this graph become similar to those
that would be generated with the deterministic nearest neighbor heuristic, resulting
in premature convergence. For generating diversified offspring, using two parents
seems to provide a good balance between the edges inherited from the parents and
the edges borrowed from the complete graph.

We have also tried generating initial population with the nearest neighbor heuris-
tic and selecting edges in NNX by alternating between the parents (similar to the
AB cycles used in EAX [8]) with no further improvements.
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15.3.2 Improved Mutation Operators

NNX is useful for exploiting the edges in the union graph, but it is limited in in-
troducing new edges from the complete graph. Three new mutation operators are
developed to increase the exploration power of the second EA. These operators are
based on edge exchange and node insertion, as these are the two fundamental im-
provement moves for the TSP.

Longest edge mutation (LEM) aims at eliminating the longest edges in an off-
spring based on 2-edge exchange moves. LEM exchanges the longest edge and one
of the remaining nonadjacent edges with two new edges if the exchange brings an
improvement. It then tries to remove the next longest edge. The motivation behind
LEM is that nearest neighbor tours contain a few long edges due to “forgotten”
nodes and eliminating them may bring significant savings. LEM runs in O(n) time
for a single move. To reduce the computation time, the number of edge exchange
moves is limited by 15. LEM1 is applied until the first improvement is found within
the limit of 15 moves, LEM2 examines all 15 longest edges.

We have also tried random edge mutation (REM), which is similar to LEM with
the exception that the edges to be exchanged are selected at random. REM also runs
in O(n) time for a single move and has REM1 and REM2 versions. This operator
does not improve the solution quality for small problem instances, but proves to be
useful for larger ones.

Node insertion mutation (NIM) selects a node randomly and inserts it at the point
that provides the maximum saving in the tour length. NIM that runs in O(n) time
for an insertion move is also limited by 15 insertion moves. NIM1 stops at the first
improvement, NIM2 attempts all 15 insertions. NIM is used in order to introduce
new edges to the offspring generated by NNX.

In our experiments with mutation, we use eight small instances with n ≤ 226.
Population size is set to n and initial population is generated randomly. Parents are
selected at random. Four combinations of LEM and NIM operators are tried. For ex-
ample, for LEM1 and NIM2 combination, an offspring is mutated with either LEM1
or NIM2 with equal probabilities. Best half of offspring replace worst half of parents
(RH) or offspring may replace more than half of parents as long as they have better
fitness than parents (RMH). The stopping condition is again 10,000 generations.

We have experimented with four parameters of the algorithm.

• Number of parents and offspring (P=C): 2, 4, 6, 12.
• LEM operator: LEM1, LEM2.
• NIM operator: NIM1, NIM2.
• Parent replacement: RH, RMH.

Analysis of variance results indicate that P=C and LEM have significant effect on
solution quality as well as their two-way interaction at α = 0.01. According to the
two-way interaction plots, the best settings are P=C=2, LEM2/NIM2 combination,
and RMH replacement. Note that RMH with two parents is equivalent to RP with
two parents given in Sect. 15.3.1.
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15.3.3 Computational Results for the TSP

Results of the best settings in Sect. 15.3.1 (before mutation) and Sect. 15.3.2 (af-
ter mutation) are given in Table 15.8 for small problems. DBR used in the table is
the percent deviation of the best of 30 replications from the optimal solution, and
DAR is the average percent deviation of the best of each replication over 30 repli-
cations. Solution quality is significantly improved with the settings of Sect. 15.3.2
after incorporating the mutation operators. We can conclude that mutation operators
are very effective even when only two offspring are generated. CTs for the small
problem instances vary between 6.0 and 39.0 seconds before mutation, and between
3.7 and 16.8 seconds after mutation.

We have conducted a comprehensive convergence analysis for larger problems
and experimented further with parameter settings. Using more than two parents at
a time does not pay. Therefore, we construct the union graph using P=2, but re-
peat this with up to 10 different pairs of parents in the final algorithm. Accepting
offspring that bring no improvement over their parents does not have a significant
contribution to diversity. Therefore, we generate a maximum of 10 offspring until
finding an improved offspring. Mutating only those offspring that are better than
their parents saves CT. For larger problems, using REM2 instead of LEM2 proves
to be useful in preserving population diversity. Therefore, if an offspring is better
than its worse parent, then either REM2 or NIM2 is applied at random. The final
form of the algorithm, reached after these experiments, is given in Figure 15.3.

Set population size to n for small problems, to 200 for larger problems
Generate initial population randomly
for generation = 1 to NG

for parent = 1 to 10
Select two parents at random
for o f f spring = 1 to 10

Generate an offspring using NNX on union graph of parents
If the offspring is better than its worse parent, go to M

end for
end for

M Apply REM2 or NIM2 with equal probabilities to the offspring
Replace the worse parent with the mutated offspring

end for

Fig. 15.3 The pseudocode of the second EA

This algorithm is run for larger problem instances and their average results
over 10 (5) replications for instances with n ≤ 2000 (n > 2000) are summarized
in Table 15.9. The algorithm achieves an average deviation of 2.3% from the opti-
mal. As expected, CT increases as n increases. However, DBR and DAR values do
not increase monotonously. Instance characteristics seem to make a difference, and
problems nrw1379, u2152 and pr2392 prove to be more difficult to solve.
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Table 15.8 Results of the second EA over 30 replications for the eight small problem
instances

Problem
NoM with RP LEM2/NIM2 with RMH
DBR DAR DBR DAR

berlin52 0.00 1.24 0.00 0.10
eil101 0.79 4.32 0.00 1.60

bier127 0.61 1.74 0.28 0.43
ch130 1.64 3.12 0.49 1.08
ch150 1.23 1.95 0.32 0.46
u159 1.30 5.09 0.00 0.15

kroa200 1.25 1.83 0.14 0.63
pr226 0.86 1.44 0.35 0.79

Average 0.96 2.59 0.20 0.65

Table 15.9 Results of the second EA for the 17 larger problem instances†

Problem NG DBR DAR CT
lin318 10,000 0.92 1.36 33.1
fl417 10,000 0.95 2.03 43.0
pr439 10,000 1.33 1.48 33.9

pcb442 10,000 2.58 3.44 66.7
rat575 10,000 1.64 2.23 93.4
p654 10,000 0.91 1.19 92.7
d657 10,000 3.32 5.17 127.5
u724 10,000 2.33 3.52 118.8

rat783 10,000 2.07 3.35 140.7
u1060 40,000 1.92 2.78 1333.8

vm1084 40,000 2.53 3.29 993.2
pcb1173 40,000 3.88 4.48 1191.9
nrw1379 40,000 3.81 6.63 4775.3

u1432 40,000 2.25 3.17 1999.7
vm1748 40,000 3.13 3.59 1710.4
u2152 60,000 1.52 1.98 7623.5
pr2392 60,000 4.67 7.31 13242.6

Average 26471 2.34 3.35 1977.7

† Over 10 (5) replications for instances with n ≤ 2000 (n > 2000).

15.3.4 Computational Results for the TSPB

The TSPB does not have a well-defined benchmark problem set. Therefore, we gen-
erate the TSPB instances randomly using the method proposed by Gendreau et al.
[18]. The same method is also used by Mladenoviċ and Hansen [20] and Ghaziri
and Osman [21], thus all these results are comparable in terms of average results
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of the test instances. We generate 30 instances for each (n,r) pair, where r is the
backhaul fraction. Note that r = 0.1 indicates an instance with 10% backhauls.

We follow [17] to ensure that all linehauls precede all backhauls. In transform-
ing TSPB to TSP we add a very large value to the distances between each pair of
linehaul and backhaul customers. Using the modified distance matrix enforces the
second EA to visit all linehauls prior to all backhauls.

Table 15.10 presents the averages over 30 randomly generated instances. Col-
umn GENI gives the results of the construction heuristic, column GENIUS presents

Table 15.10 Average results of the second EA over five replications and various metaheuris-
tics in the literature†

n r GENI GENIUS G+VNS SOFM SOFM* EA DBR EA DAR
100 0.1 1012.5 994.12 987.11 1043.56 996.13 994.18 994.57

0.2 1068.7 1047.01 1044.66 1072.3 1052.71 1052.06 1052.30
0.3 1109.66 1088.09 1085.34 1108.54 1092.07 1089.04 1089.85
0.4 1125.63 1106.69 1102.29 1131.83 1106.97 1100.51 1101.02
0.5 1133.87 1114.34 1108.68 1123.29 1112.37 1103.16 1104.31

Average 1090.07 1070.05 1065.62 1095.90 1072.05 1067.79 1068.41
200 0.1 1418.63 1387.22 1378.8 1436.12 1381.15 1381.17 1381.85

0.2 1498.83 1470.95 1464.88 1489.91 1462.32 1467.57 1467.85
0.3 1550.52 1525.26 1519.93 1545 1523.71 1502.41 1502.99
0.4 1585.76 1555.26 1548.73 1554.69 1551.48 1521.97 1522.78
0.5 1586.93 1554.13 1546.97 1553.9 1549.61 1534.64 1535.90

Average 1528.13 1498.56 1491.86 1515.92 1493.65 1481.55 1482.27
300 0.1 1720.82 1683.76 1675.82 1702.6 1680.93 1668.96 1671.28

0.2 1824.62 1784.8 1782.62 1787.14 1784.9 1773.81 1774.43
0.3 1886.48 1854.86 1849.05 1877.15 1854.3 1830.29 1832.32
0.4 1903.29 1874.43 1865.75 1876.49 1866.84 1868.45 1869.54
0.5 1927.34 1892.2 1887.35 1891.39 1888.92 1873.38 1874.08

Average 1852.51 1818.01 1812.12 1826.95 1815.18 1802.98 1804.33
500 0.1 2197.16 2158.79 2156.61 2168.59 2161.07 2139.06 2142.44

0.2 2342.99 2297.11 2292.04 2310.7 2297.35 2279.95 2285.57
0.3 2409.8 2370.45 2363.16 2398.49 2376.73 2342.80 2347.55
0.4 2443.12 2399.35 2388.07 2441.94 2397.06 2392.52 2398.11
0.5 2464.11 2418.2 2405.55 2428.72 2410.81 2405.93 2411.29

Average 2371.44 2328.78 2321.09 2349.69 2328.60 2312.05 2316.99
1000 0.1 3099.17 3042.6 3029.76 3083.59 3048.69 3035.92 3044.57

0.2 3281.34 3232.65 3213.61 3279.02 3228.44 3212.79 3216.77
0.3 3366.07 3314.8 3302.93 3327.04 3312.38 3323.03 3328.28
0.4 3451.02 3387.43 3366.23 3392.17 3371.28 3358.36 3366.75
0.5 3455.69 3388.16 3379.67 3408.41 3386.50 3398.27 3403.74

Average 3330.66 3273.13 3258.44 3298.05 3269.46 3265.67 3272.02

Overall 2034.56 1997.71 1989.83 2017.30 1995.79 1986.01 1988.81

† Over 30 instances for each (n,r) pair.
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Table 15.11 Average CPU times in seconds for the second EA and various metaheuristics in
the literature†

n r GENIUS1 G+VNS1 SOFM2 SOFM*2 EA3

100 0.1 4.7 5.4 23.5 23.7 20.5
0.2 4.8 5.8 22.1 22.8 18.5
0.3 4.8 5.5 21.2 21.6 17.9
0.4 5.1 5.4 27.6 28.0 17.3
0.5 4.4 5.6 23.1 23.8 17.2

Average 4.8 5.5 23.5 24.0 18.3
200 0.1 36.3 31.6 61.1 61.7 38.0

0.2 32.4 35.9 63.6 64.3 38.7
0.3 31.7 30.7 71.3 71.9 35.8
0.4 31.2 38.8 72.9 73.8 35.6
0.5 39.6 43.1 62.1 62.6 35.2

Average 34.2 36.0 66.2 66.9 36.7
300 0.1 106.4 109.3 237.9 239.2 68.5

0.2 105.9 87.2 278.3 283.6 65.4
0.3 70.9 100.1 286.3 287.8 68.8
0.4 69.6 105.6 365.0 371.0 68.7
0.5 72.3 101.1 354.0 360.3 66.2

Average 85.0 100.7 304.3 308.4 67.5
500 0.1 325.6 343.6 732.0 749.7 317.4

0.2 289.5 248.1 729.0 751.9 300.5
0.3 317.7 383.3 798.0 821.5 321.4
0.4 374.0 326.1 802.0 834.2 343.1
0.5 405.9 472.2 852.0 872.0 295.4

Average 342.5 354.7 782.6 805.9 315.6
1000 0.1 1130.3 1417.9 1398 1428.1 1933.7

0.2 1211.1 1637.2 1423 1495.3 1921.4
0.3 1019.8 1643.1 1412 1432.1 1829.1
0.4 1302.8 1898.3 1435 1470.5 1776.9
0.5 1324.6 1762.6 1402 1440 1832.9

Average 1197.7 1671.8 1414 1453.2 1858.8

Overall 332.9 433.7 518.1 531.7 459.4
1 SUN SPARC 10.
2 Pentium MMX 233 MHz.
3 AMD Turion 64 1.6 GHz.

† Over 30 instances for each (n,r) pair.

the results when US improvement is applied after GENI, and column G+VNS is
for the variable neighborhood search applied on GENIUS [20]. The neighborhood
is formed by node exchange moves, a node is deleted from the tour and inserted
at a point that improves the tour length. Columns SOFM and SOFM* display the
results of self-organizing feature map type neural network algorithms in [21].
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SOFM* corresponds to the procedure where the SOFM solutions are improved with
2-opt.

The last two columns represent the results of our second EA in its final form.
The EA is run for 10,000 generations for problem instances n =100, 200, 300, and
for 20,000 (30,000) generations for instances with n = 500 (1000). Column EA
DBR in Table 15.10 presents the average of the best of five replications over 30
problem instances, and EA DAR is the average of the best of each replication over
five replications of 30 instances.

A paired t-test on the difference between EA DAR versus GENI, GENIUS,
SOFM, SOFM* and G+VNS indicates that EA is better than the first four com-
petitors at α = 0.01. The overall average is better than that of G+VNS, but the dif-
ference is relatively small to derive a statistically significant result (p-value 0.122).
When n ≤ 500, the test on the difference between EA DAR versus GENI, GENIUS,
SOFM, SOFM* and G+VNS indicates that EA is statistically the best algorithm
among all alternatives. The p-value for G+VNS versus EA DAR comparison is
0.011.

The results of the random TSPB instances indicate that our second algorithm
with REM2/NIM2 mutation is better than the three competitors and is comparable to
G+VNS. The application of EA is simple and the constraint handling is eliminated
as the algorithm can effectively find good solutions just by making the necessary
modifications in the distance matrix.

Table 15.11 reports CPU times for various metaheuristics. Although each com-
petitor uses a different machine, there are no significant differences in CPU times
for problems of certain size.

15.4 Conclusion

We presented two EAs using conventional heuristics to solve TSPs. The first EA
uses nearest neighbor and greedy heuristics as crossover operators. Their application
on the union graph resembles the implementation of classical heuristics on a candi-
date graph of k-nearest neighbors of each node. The mutation operator makes use
of the well known 2-edge exchange heuristic. The two crossovers are also used in
a combined manner and performed better than a single operator alone, but required
more computation time for larger problems. The EA solutions are significantly bet-
ter than those obtained by conventional heuristics and by some recent metaheuristics
in the literature. The second EA uses only NNX and three new mutation operators
based on longest or random edge elimination and node insertion. Solution quality is
further improved with this EA in reasonable computation times.

Considering the TSP materializes with complicating side constraints in practice,
we tested our second EA on TSPB benchmark sets generated randomly. To the best
of our knowledge there is no published results on the TSPB solved using an EA.
Our EA in general outperforms other metaheuristics for the TSPB. Our experience
shows that it might be easier to incorporate constraint handling into this form of
EAs than the specialized and sophisticated classical TSP algorithms.



15 An Evolutionary Approach for the TSP and the TSP with Backhauls 395

For future research, NNX can be further improved to become faster in solving
large problems in shorter time. When offspring construction on the union graph
fails, search of the complete graph for the shortest edge can be improved. A k-
nearest neighbor candidate graph can be used to speed up the search as suggested
by Yang [26]. We believe that these efforts will take us one step closer to bridging the
gap between operations research and EAs because the proposed approach can also
be generalized for solving other expensive combinatorial optimization problems.
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Chapter 16
Towards Efficient Multi-objective Genetic
Takagi-Sugeno Fuzzy Systems for High
Dimensional Problems

Marco Cococcioni, Beatrice Lazzerini, and Francesco Marcelloni

Abstract. Multi-objective genetic Takagi-Sugeno (TS) fuzzy systems use multi-
objective evolutionary algorithms to generate a set of fuzzy rule-based systems of
the TS type with different trade-offs between, generally, complexity/interpretability
and accuracy. The application of these algorithms requires a large number of TS
system generations and evaluations. When we deal with high dimensional data sets,
these tasks can be very time-consuming, thus making an adequate exploration of the
search space very problematic. In this chapter, we propose two techniques to speed
up generation and evaluation of TS systems. The first technique aims to speed up the
identification of the consequent parameters of the TS rules, one of the most time-
consuming phases in TS generation. The application of this technique produces as a
side-effect a decoupling of the rules in the TS system. Thus, modifications in a rule
do not affect the other rules. Exploiting this property, the second technique proposes
to store specific values used in the parents, so as to reuse them in the offspring and
to avoid wasting time. We show the advantages of the proposed method in terms
of computing time saving and improved search space exploration through two ex-
amples of multi-objective genetic learning of compact and accurate TS-type fuzzy
systems for a high dimensional data set in the regression and time series forecasting
domains.

16.1 Introduction

Multi-objective Genetic Fuzzy Systems (MGFSs) [18] are interesting multi-objective
computational intelligent methods successfully employed in regression [3, 4, 8, 9,
10], classification [19, 20, 21], data mining [7, 22] and control [32], which are re-
ceiving increasing attention in the research community [12]. MGFSs extend Genetic
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Fuzzy Systems (GFSs) [16] in that more than one objective can be optimized; this
provides a set of equally optimal solutions which approximate the Pareto optimal
front. By visually inspecting the obtained front the user can select his preferred
trade-off among the different objectives (an example of a typically used pair of ob-
jectives is complexity/interpretability and accuracy).

In most existing MGFSs, Fuzzy Rule-Based Systems (FRBSs) are optimized
through a multi-objective evolutionary algorithm. While such systems have been
widely studied and applied to low dimensional data sets, more research is still re-
quired to make them practical for high dimensional data sets [16, 25]. By High
Dimensional Data Sets (HDDSs) we mean data sets having a high number of in-
put features and, sometimes, a huge number of training data. In this study we will
consider only FRBSs of the Takagi-Sugeno (TS) type (denoted TS systems in the
following), since they are known to be very powerful in regression and control tasks.
However, their use is particularly time consuming, since they consist of if-then rules
where the consequent parts involve crisp functions (typically linear), whose param-
eters have to be estimated through a sequence of pseudoinversions. When dealing
with HDDSs, the most time consuming task in the evolutionary multi-objective op-
timization of TS systems resides in the fitness evaluation, and, in particular, in con-
sequent parameters estimation [11].

Most available designing methods of TS-type MGFSs are impractical for HDDSs.
Moreover, it is very unlikely that a single strategy can make the optimization effi-
cient. Conversely, we think that only a combination of different methods can over-
come computational bottlenecks. In the following we list some of the methods that,
once appropriately combined, can achieve significant improvements in the efficient
implementation of TS-type MGFSs for HDDSs: i) fast identification of the TS
systems [11] through fitness approximation [26], ii) reuse of previously computed
quantities in evaluating the fitness of a TS system (activation degrees, etc . . . ), iii)
fitness inheritance [6, 14], iv) landscape modeling to reduce the number of fitness
evaluations [27], v) parallel Multi-Objective Evolutionary Algorithms (MOEAs) on
parallel/multicore/distributed machines [5, 33, 34, 35].

This work aims to extend the results obtained in [11] by considering the inte-
gration of the first two methods among those listed above: a fast identification of
consequents of the TS systems and the reuse of previously computed quantities.
The first technique is described in [11] and will be briefly discussed in this chap-
ter. As regards the reuse of previously computed quantities, our simple idea is to
store, for all the rules in the current population, their activation degrees and their
unnormalized weighted outputs. Since fast identification of consequents is based
on a decoupling of rules, modifications in a rule do not affect the consequents of
the other rules. Thus, thanks to the fast identification, we can avoid re-estimating
consequent parameters for all the rules that are not modified. For instance, the re-
estimation can be avoided when we apply crossover followed by no mutation: if the
crossover point is between rules and not within rules, no re-estimation of consequent
parameters is needed for the offspring. Similarly to crossover, we can completely
avoid re-estimation when we apply mutation operators which remove rules from the
rule base. Further, we can limit the re-estimation only to the added or modified rules
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when we apply mutation operators which, respectively, add or modify rules. Finally,
we also discuss how the reuse of previously computed parameters can speed up the
evaluation phase of the TS systems.

In the experimental part, we show the benefits of the combined use of the two
methods through two examples of multi-objective genetic learning of compact and
accurate TS systems for HDDSs in a regression problem and a chaotic time series
forecasting problem, respectively. We evaluate the saved time with respect to the
application of the MGFS without the adoption of the two methods and discuss the
advantages that this saved time provides in terms of search space exploration.

The rest of the chapter is organized as follows. Section 16.2 introduces the TS
systems. In Section 16.3, we compute the asymptotical time complexity associated
with the identification of the consequent parameters, and with the evaluation of the
TS systems. Section 16.4 introduces the technique of the fast identification of con-
sequents. In Section 16.5, we discuss how the reuse of computed parameters can
speed up both the identification and the evaluation of the TS systems. Section 16.6
describes the MOEA used in the experiments, which are shown in Section 16.7.
Finally, Section 16.8 draws some conclusions.

16.2 The Takagi-Sugeno Fuzzy Systems

Let {X1, . . . ,XF} be a set of variables and x = [x1, . . . ,xF ]T a generic input vector,
with x1,. . ., xF ∈ ℜ. Let Uf , f = 1, . . . ,F, be the universe of variable Xf and let

Pf =
{

A f ,1, . . . ,A f ,Qf

}
, f = 1, . . . ,F, be a fuzzy partition of Uf made of Q f fuzzy

sets. To simplify the discussion, in the following we will use Q f = Q, i.e., the same
granularity for all inputs. The mth rule of a first-order TS-type FRBS [2] has the
form:

rm : IF X1 is A1, jm,1 AND . . . AND XF is AF, jm,F THEN
ym = pm,0 + pm,1 · x1 + . . .+ pm,F · xF ,

where the generic element jm, f indicates that the jthm, f fuzzy set of partition Pf has
been selected for variable Xf in rule rm, with m = 1, . . . ,M. Indexes jm, f can be
viewed as entries of a matrix J of natural numbers having size M ×F . The (F +
1) parameters constituting the THEN part, called consequent parameters, can be
stored in a column vector pm = [pm,0, pm,1, . . . , pm,F ]T . The output of the mth rule

can thus be computed as: ym(x) = x̂T ·pm, where x̂ =
[
1,xT

]T
. Once a pattern x is

fed to a TS system, the activation degrees wm(x), m = 1, . . . ,M, are computed for
each rule as: wm(x) =∏F

f=1 A f , jm, f (x f ). Then, the output of the system is calculated
as the weighted average of the outputs of each rule weighted by the corresponding
activation degree: y(x) = ∑M

m=1

(
wm(x)

/
∑M

h=1 wh(x)
) · ym(x). By defining

vm(x) = wm(x)
/
∑M

h=1 wh(x) (16.1)
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we can also express the output as:

y(x) =∑M
m=1 vm(x) · x̂T ·pm. (16.2)

All the M consequent vectors pm can be stored in a matrix P ∈ ℜ(F+1)×M : P =
[p1, . . . ,pM]. It is now clear that under our assumption of static (not tuned during
the optimization process) membership functions (MFs), the identification of a TS
system reduces to the choice of the number of rules M and the identification of
matrices J and P.

A simple way to obtain M and J is to adopt grid partitioning, i.e., all possible rules
obtained by all combinations of fuzzy sets belonging to different input variables. In
this case M = Q · . . . ·Q︸ ︷︷ ︸

F times

= QF . Alternatively, matrix J can be evolved by a single

or multiple objective evolutionary algorithm, with variable length integer encoding
(matrix J is coded row by row). In this case, the number of rules M corresponds to
the number of rows in J. As regards the estimation of consequent parameters pm,
they can be estimated in different ways once matrix J has been provided.

Given a set of N input-output data pairs {xn,on}N
n=1 (xn ∈ ℜF , on ∈ ℜ) consti-

tuting the training set, the optimal estimation of the consequent parameters can be
done either locally or globally [1, 36]. However, local learning gives more locally
meaningful consequent parameters and leads to better conditioned least squares es-
timations. In the local estimation approach, the optimal consequent parameters can
be found using pseudoinversion [1]:

pm = [X̂T ·Vm · X̂]−1 · X̂T ·Vm ·o, m = 1, . . . ,M, (16.3)

where X̂ ∈ ℜN×(F+1) is the matrix defined as X̂ = [x̂1, . . . , x̂N ]T , x̂n =
[1,xn,1, . . . ,xn,F ]T , n = 1, . . . ,N , Vm ∈ ℜN×N is a diagonal matrix hav-
ing zeros in non-diagonal entries and vm(xn) along the diagonal (Vm =
diag{vm(x1), . . . ,vm(xN)}), and o is the column vector with the desired outputs:
o = [o1, . . . ,oN ]T .

16.3 Time Complexity

To determine the fitness of each solution, we have first to identify the consequent
parameters of each rule and then to evaluate the output of the corresponding TS sys-
tem for each pattern in the training set. In [11], we have already discussed how the
asymptotical time complexity associated with both the identification of the conse-
quent parameters and the TS system evaluation can be determined by using the big O
notation. All the computations were performed by assuming that the complexity of
multiplying two matrices Z1 and Z2, (Z1 ∈ℜN1×N2 , Z2 ∈ℜN2×N3 ) is O(N1 ·N2 ·N3).
Actually, this is the number of operations needed in a straightforward implementa-
tion in Fortran or C/C++ using “for” loops. In [11], we highlighted that, although
more efficient algorithms exist for computing the product between square [13] and
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rectangular [17] matrices, they are generally faster only asymptotically and quite
difficult to implement. On the other hand, the formulas in [11] are still valid even
when using fast multiplication algorithms, but with a lower impact.

In the following, we will briefly recall the procedure and the results shown in
[11]. Without considering the time required to compute Vm (which will be analyzed
later), it is well known that the time complexity, independently of the technique used
to solve the weighted least squares problem, associated with each pseudoinversion
is O(N · (F + 1)2). Estimating the consequent parameters of a rule base made of M
rules will therefore require O(M ·N · (F + 1)2) operations.

As regards the time complexity associated with the evaluation of a TS sys-
tem, assuming that J and P are already known, we first compute the M vec-
tors of activation degrees wm, (wm = [wm(x1), . . . ,wm(xN)]T , m = 1, . . . ,M), and
then we derive the normalized vectors vm. Often, it might be more efficient to
work with vectors and matrices instead of using scalar quantities (for instance,
when adopting Matlab [15]). To this aim, it is helpful to first define vectors a f ,q,
(a f ,q = [A f ,q(x1, f ), . . . ,A f ,q(xN, f )]T , f = 1, . . . ,F , q = 1, . . . ,Q), to represent the
membership degrees of each input variable to the pertinent fuzzy set for the whole
training set. Then we compute all the wm from a f ,q using the vectorized form:

wm =∏F
f=1 a f , jm, f . (16.4)

The complexity for computing each a f ,q is O(N), assuming that the complexity for
computing each A f ,q(xn, f ) is constant, i.e., O(1). For instance, the latter assump-
tion is true when using triangular, trapezoidal or generalized Bellman MFs. The
use of gaussian MFs may require significantly higher computations [30], since it
is not a rational function. Nevertheless, even for this case, efficient approximated
algorithms exist, which exploit the internal representation of floating point numbers
[31]. In the considered application, the evaluation of the MFs will never be a bot-
tleneck, since in Multi-objective Genetic Rule Learning (MGRL) each a f ,q can be
computed just once at the beginning and reused during the optimization process. We
can observe now that computing each wm from a f ,q takes O(N ·F) time. As regards
vm, an efficient way to compute them in a vectorized form from wm can be obtained
by first building the new matrix W = [w1, . . . ,wM] (W ∈ ℜN×M) and then com-
puting the vector s = [s1, . . . ,sN ]T , in O(M ·N) time, where sn = 1

/
∑M

m=1 wm(xn).
Second, we build matrix S̃ = [s, . . . ,s]︸ ︷︷ ︸

M times

∈ ℜN×M and finally compute V = W ◦ S̃

in O(M ·N) time, V ∈ ℜN×M , where ◦ is the entrywise product and vm coincide
with columns of V. In summary, computing all the M normalized activation de-
grees vm takes O(M ·N) time. We can address now the complexity of computing
the output vector and the Mean Squared Error (MSE). First note that the vectorized
output ym = [ym(x1), . . . ,ym(xN)]T of the mth rule can be written in matrix form as:
ym = X̂ ·pm. The complexity of computing each ym is therefore O(N · (F +1)) start-
ing from pm and X̂. The complexity for computing all the M outputs ym is therefore
O(M ·N · (F + 1)).
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The computation of y = ∑M
m=1 vm ◦ ym first requires to compute each vm ◦ ym,

which has complexity O(N) when starting from vm and ym. Thus y is just the sum
of the M vectors vm ◦ ym and has complexity O(M ·N). Globally, the complexity
to evaluate the output vector y starting from a f ,q (without considering the time for
computing pm) is O(M ·N · (F + 1)). Finally, we observe how computing the MSE
between y and o has complexity O(N), since MSE = mean(e), and computing e =
(y−o)◦ (y−o) has complexity O(N).

16.4 Fast Identification of Consequent Parameters

In the previous section we have found out that the most time-consuming task con-
cerns the estimation of the M consequent vectors pm (O(M ·N · (F + 1)2), while
the TS system evaluation requires O(M ·N · (F + 1)) operations. In [11] we have
proposed an approach to speed up the identification of consequent parameters. The
approach is based on the following observation: since gaussian functions have thin
tails and are multiplied by each other, it is likely that most of the patterns
involved in each pseudoinversion receive a low weight and thus they loosely affect
the estimation of consequent parameters. From this observation we have
introduced the simple idea of giving maximum weights only to patterns belong-
ing to the specific cell of the grid associated with the mth rule and zero weights to
all the others. We have implemented this solution by defining, for each input vari-
able, a new partition P̄f =

{
Ā f ,1, . . . , Ā f ,Q

}
built upon the original gaussian partition

Pf and made of non overlapping and adjacent rectangular MFs. Each rectangular
MF begins and ends, respectively, at the consecutive intersections of two consec-
utive gaussian functions. The new MF vectors and the new weighting vectors are
therefore ā f ,q = [Ā f ,q(x1, f ), . . . , Ā f ,q(xN, f )]T , f = 1, . . . ,F , and w̄m = ∏F

f=1 ā f , jm, f ,
m = 1, . . . ,M, respectively.

It is straightforward to note that in this case v̄m = w̄m, i.e., weights w̄m result to
be already normalized. We wish to point out that we use v̄m in place of vm only
for estimating consequents, while in evaluating the output of the TS system we
continue to use vm, since gaussian MFs assure better approximation capabilities
than rectangular ones. The new formula for computing the consequent parameters
is (m = 1, . . . ,M):

pm = [X̂
T · V̄m · X̂]−1 · X̂T · V̄m ·o, (16.5)

where V̄m = diag{v̄(x1), . . . , v̄(xN)}. Formula (5) is identical to formula (3), but
formula (5) can be implemented in a faster way. Let im be the vector containing
the indexes of non-zero entries in v̄m. Consequent parameters can now be computed
using unweighted least squares on a subset of training data (m = 1, . . . ,M):

pm = [X̂T
im · X̂im ]−1 · X̂T

im ·oim , (16.6)

where X̂im represents the matrix extracted from X̂ by considering only rows having
indexes im, and oim represents the entries im of the output vector o. It is now evi-
dent how the new complexity is Nm · (F +1)2, Nm being the length of vector im. The
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complexity associated with the estimation of all the consequent parameters, there-
fore, is ∑M

m=1 Nm · (F +1)2. Observe that now ∑M
m=1 Nm ≤ N, and thus the new com-

plexity ∑M
m=1 Nm · (F + 1)2 is lower than, or equal to, N · (F + 1)2, which is, on its

turn, lower than M ·N ·(F +1)2. However, we have to include the complexity associ-
ated with computing the vectors im, which consists of M ·N ·F operations. Globally,
the complexity associated with the estimation of consequent parameters in the fast
approach is: M ·N ·F +∑M

m=1 Nm · (F + 1)2, which is lower than M ·N · (F + 1)2.
Real data patterns are not uniformly distributed over the input space; as a conse-

quence, some cells could receive fewer training data points than others or no training
points at all. However, this situation can be managed by removing rules with insuf-
ficient number of patterns (for each cell we need to estimate (F +1) parameters and
thus we could require at least a number of patterns equal to 4 · (F + 1) ). In MGRL
it can be meaningful not to consider a rule if few data points are directly related
to it. We have already shown in [11] that this approach considerably speeds up the
identification of the consequent parameters, without particularly deteriorating the
modeling capabilities of the TS system.

16.5 Reuse of Computed Parameters

In this section, we will discuss how the reuse of previously computed parameters
can further reduce the time complexity of the identification of the consequent pa-
rameters when we apply the mating operators during the evolutionary process. Then,
we focus on speeding up the evaluation of the outputs. Indeed, when we apply the
fast identification of the consequent parameters and the reuse of components during
the evolutionary process, the complexity of the identification of consequent param-
eters could considerably diminish, thus making the search for reduction of the time
needed for output evaluation attractive. Finally, we focus on speeding up the com-
putation of the activation degrees by using reuse.

All the time complexity reduction techniques proposed in this section are based
on storing and reusing previously computed parameters and therefore can suffer
from the drawback of memory occupation. However, the constant increase of the
available physical memory even in desktop computers makes this drawback less rel-
evant than time complexity in many applications. The choice of the best trade-off be-
tween time complexity and memory occupation is obviously application-dependent.

16.5.1 Reuse in the Application of Mating Operators

We will take into account different scenarios which typically occur when we apply
an MOEA to generate a set of TS systems with a good trade-off between complexity
and accuracy. The first scenario considers the application of a crossover operator
during the evolutionary process. The second, third and fourth scenarios consider the
application of generic mutation operators, which can add, remove and modify rules,
respectively.
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16.5.1.1 Application of the Crossover Operator

We focus on no specific crossover operator. Actually, the scenario is suitable for
any crossover operator which acts at the rule level, that is, does not exchange parts
of rules, but rather exchanges only rules. For instance, if we apply the one-point
crossover, one of the most used crossover operators, the crossover point has to be
chosen between two rules and not within a rule. When we apply the crossover opera-
tor, the offspring generated from the two parents inherit rules from both the parents.
In the case of the classical approach, the matrix P of the consequent parameters has
to be recomputed for both the offspring. Indeed, the values of the vectors Vm used in
the computation of the pseudoinversion (see formula 16.3) depend on the activation
degrees of all the rules contained in the rule base (see formula 16.1).

On the contrary, in the fast method, rules do not depend on each other. Indeed,
indexes im used in the computation of the pseudoinversion (see formula 16.6) do
not depend on the activations of the other rules, but only on the activation of the
mth rule. Thus, in the fast method, no computation of the consequent parameters is
needed after applying a crossover operator. This allows considerably speeding up
the evolutionary process. We recall that the estimation of the consequent parameters
of a rule base composed of M rules requires O(M ·N · (F + 1)2) operations. Thus,
due to an interesting property of the fast identification method, the application of
the crossover operator does not require the execution of the most time consuming
task in TS identification.

16.5.1.2 Removing Rules by Mutation

As we have already discussed above, when we apply an operator which changes the
rule base, the overall matrix P of the consequent parameters has to be recomputed.
This occurs also when we apply a mutation operator which removes one or more
rules from the rule base. In the case of the fast identification method, since rules
are independent of each other, no computation is needed. Indeed, the consequent
parts of the survived rules have not to be updated. Thus, also the application of the
mutation operator, which removes rules, does not require the execution of the most
time consuming task in TS identification.

16.5.1.3 Adding Rules by Mutation

When we apply a mutation operator which adds rules to the rule base, the overall
matrix P of the consequent parameters has to be recomputed in the classical ap-
proach. Indeed, since the rule base is changed, the consequent parameters of all the
rules have to be updated. On the contrary, when we adopt the fast identification
method, only the consequent parameters of the added rules have to be computed.
Indeed, the rules already existing in the rule base have not to be updated. Thus, the
application of the mutation operator, which adds rules, requires the execution of the
most time consuming task in TS identification only for the added rules.
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16.5.1.4 Modifying Rules by Mutation

When we apply a mutation operator, which modifies some rules in the rule base, the
overall matrix P of the consequent parameters has to be recomputed in the classical
approach. Indeed, since the rule base is changed, the consequent parameters of all
the rules have to be updated. On the contrary, when we adopt the fast identification
method, only the consequent parameters of the modified rules have to be computed.
Indeed, the unmodified rules have not to be updated. Thus, the application of the
mutation operator, which modifies rules, requires the execution of the most time
consuming task in TS identification only for the modified rules.

16.5.2 Speeding Up the Calculus of the Output through Reuse

The fast identification of the consequent parameters and the reuse of these param-
eters during the application of the mating operators significantly reduce the time
spent to estimate the consequent parameters during the evolutionary process, thus
making the analysis of the complexity reduction for other computations attractive.
In particular, the computation of the output y, which had been judged to be negligi-
ble and therefore not deserving attention, can now represent a significant fraction of
the overall fitness evaluation time.

In Section 16.3, we have determined that, once computed the vm vectors, the
time complexity needed to calculate the output y of the system is O(M ·N · (F +
1)). Unfortunately, since we use directly the vm vectors to compute y, no reuse of
previously computed parameters is possible. Indeed, as described in the previous
subsections, vectors vm have to be recomputed whenever the rule base changes. On
the other hand, we decided to use vectors vm in place of vectors v̄m because vectors
vm guarantee a better fitting.

Nevertheless, by introducing a different method to compute y, we can exploit
reuse also in the output evaluation. Such new expression for y is based on the com-
putation of vectors um ∈ ℜN , defined as um = wm ◦ (X̂ · pm), which can be com-
puted in O(N · (F + 1)) time, once wm and pm are available (please notice that um

is the unnormalized weighted output of rule rm). The output y can be calculated
as y =

(
∑M

m=1 um
) ◦ s in O(M ·N) time, starting from um and s, where s is defined

in Section 16.3 as the element-wise inverse of the sum of wm vectors. Computing
vector s has complexity O(M ·N) when starting from wm, and O(M ·N ·F) when
starting from a f ,q. Thus, the complexity associated with computing y by starting
from vm and pm, or from um and s is the same and equal to O(M ·N · (F + 1)).

However, in the latter case, the um vectors do not depend on each other, and thus
they can be stored and reused. Reusing the um allows saving computational time,
since the complexity for computing um is N · (F + 1). In the best case, when 100%
of the um are reused (in case of crossover followed by no mutation and crossover
followed by mutation that removes rules), the complexity of computing y descreases
to O(M ·N), once the wm are available. Since wm can be stored and reused as well
(as discussed in the next subsection), this is also the total complexity. This means
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that in such cases we can save a factor (F +1) of time, which can be very important
for high dimensional problems.

16.5.3 Speeding Up the Calculus of the Activation Degrees
through Reuse

After speeding up also the computation of output y, the time required to compute
the degrees of activation wm might not be negligible at all. Again, we can think to
adopt the same trick used in the previous subsections: vectors wm of the parents can
be stored and reused in the offspring. Thus, we could save N ·F operations for each
reused wm.

When we generate a TS fuzzy system, rules could have some don’t care
conditions in the antecedent part. These conditions reduce the complexity for esti-
mating the vectors wm when they cannot be reused. In particular, if we fix the max-
imum possible number of conditions different from don’t care conditions to a value
Γmax ≤ F , then the complexity associated with the calculus of wm is O(M ·N ·Γmax).
The same complexity reduction occurs for indexes im.

On the other hand, the authors in [23] had already observed that, fixed the num-
ber of rules, the introduction of the don’t care conditions allows covering a larger
portion of the input space. Indeed, when no don’t care conditions are included, the
fraction covered by each fuzzy rule is exponentially decreased by the increase in
the dimensionality of the input space. Since fuzzy rules with several don’t care con-
ditions can cover a large portion of the input space, the overall input space can be
covered by a small number of general fuzzy rules. When we fix Γmax to small values,
we force the identification of TS rules with a high number of don’t care conditions.
Thus, we achieve a higher coverage of the input space, which also corresponds to a
lower MSE.

16.6 The Used MOEA to Learn TS Rules

We performed multi-objective genetic rule learning by using the (2+2)M-PAES, a
modified version of the classical (2+2)PAES proposed in [28]. We have successfully
used (2+2)M-PAES in several studies [9, 10], and we have shown its good behavior
if compared with classical PAES and NSGA-II [10]. Unlike classical (2+2)PAES,
which uses only mutation to generate new candidate solutions, (2+2)M-PAES ex-
ploits the one-point crossover and three appropriately defined mutation operators.
We experimentally verified that crossover helps create an approximation of the
Pareto front where solutions are uniformly distributed along the front [10]. Each
solution is described through a chromosome composed of M ·F natural numbers,
obtained by concatenating rows of matrix J (consequent parameters are not included
in the chromosome, since they are optimized on the fly).

Let c1 and c2 be two solutions. The one-point crossover operator cuts the chro-
mosomes c1 and c2 at some chosen common gene and swaps the resulting sub-
chromosomes. The common gene is chosen by extracting randomly a number in
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[Mmin,ρmin], where Mmin is the minimum number of rules, which must be present in
a rule base, and ρmin is the minimum number of rules in c1 and c2, and multiplying
this number by (F + 1).

The first mutation operator adds γ rules to the rule base, where γ is randomly
chosen in [1,γmax]. The upper bound γmax is fixed by the user. If γ + M > Mmax,
where Mmax is the maximum possible number of rules in a generated TS system,
then γ = Mmax −M . For each rule rm added to the chromosome, we generate a
random number t, t ∈ [1,Γmax], which indicates the number of input variables used
in the antecedent of the rule. Then, we generate t natural random numbers between
1 and F to determine the input variables which compose the antecedent part of
the rule. Finally, for each selected input variable f , we generate a random natural
number jm, f between 1 and Q f , which determines the fuzzy set A f , jm, f

to be used
in the antecedent of rule rm.

The second mutation operator randomly changes δ elements of matrix J. The
number δ is randomly generated in [1,δmax]. The upper bound δmax is fixed by the
user. For each element to be modified, a number is randomly generated in [0,Q f ],
where f is the input variable corresponding to the selected matrix element (when
the element 0 is selected, the condition corresponds to don’t care). The element is
modified only if the constraint on the maximum number of input variables Γmax for
each rule is satisfied; otherwise, the element maintains its original value.

The mutation operator removes κ rules from the rule base, where κ is randomly
chosen in [1,κmax]. In the experiments, we used κmax = min(φmax,M−Mmin), where
φmax is fixed by the user, and M and Mmin are, respectively, the number of rules of
the individual and the minimum number of rules allowed for all individuals.

We start with two randomly generated solutions. At each iteration, the applica-
tion of crossover and mutation operators produces two new solutions z1 and z2 from
two solutions c1 and c2 randomly picked from the archive. If the archive contains
a unique solution, c1 and c2 correspond to this unique solution. We experimentally
verified that the random extraction of the current solutions from the archive allows
us to extend the set of non-dominated solutions contained in the archive so as to
obtain a better approximation of the Pareto front. In this paper, we have used two
alternative stopping criteria, based on the number of epochs G and on elapsed time
ETtot , respectively. Figure 16.1 shows the flow-chart of the (2+2)M-PAES which
uses the fast identification of TS-type FRBSs and the reuse. Sometimes in the fol-
lowing we will shortly call the fast method with reuse as “fast” method. When the
reuse is not exploited, we will always refer to it as “fast with no reuse” method.

16.7 Experimental Results

We have compared the proposed technique on two datasets, namely, a regression
problem and a chaotic time series forecasting problem. On each dataset, we have
compared the performance of the classical identification, the fast identification with
no reuse and the fast identification (with reuse) carrying out two experiments: the
first was on equal execution times basis, while the second on equal optimization
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Choose the number Qf  of fuzzy sets for each input variable Xf and the
membership function type. Then compute all vectors af,q and  af,q

Randomly generate two antecedent parts J of two initial solutions. Then for  each
solution, compute indexes  im from  af,q, and perform a fast estimatation of

consequents  pm using formula (6). Compute wm, um, s, y, MSE and complexity. Store
vectors  wm and um for possible reuse. Update the archive with the two solutions

Randomly pick two solutions c1 and c2 from the archive
(they could be the same solution when the archive size < 2 )

For each solution z1 and z2, let zold  and znew  be the set of rules
inherithed from the parents and the set of new rules, respectively

Stop

Start

Generate solutions  z1 and z2 by
applying crossover and/or mutation

Has the termination
 condition been reached?

Yes

No

w

Update the archive with the new candidate solutions z1 and z2

For each solution  z1 and z2: for rules in zold, reuse  wm and um; for rules in
znew, compute indexes im  from  af,q , fast estimate consequents  pm

  using
formula (6), compute vectors  wm and um and store  wm and um for possible

reuse. For each solution z1 and z2, compute s, y, MSE and complexity

Fig. 16.1 Flow-chart of the (2+2)M-PAES which uses fast identification and reuse
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epochs basis. Each of the four experiments has been repeated for eight times, chang-
ing the seed of the random number generator, thus causing the generation of differ-
ent random training and test sets and different evolutions of the MOEA.

16.7.1 Regression Problem

As regards the regression problem, we have considered an artificial dataset, based on
a benchmark used in [24]. Such benchmark is a three-variable real function defined
as: o =

(
1 + X1

0.5 + X2
−1 + X3

−1.5
)2

. The training data are generated by uniformly
sampling the input variables in [1,6]3, while the testing data points are generated by
uniformly sampling the input variables in [1.5,5.5]3. In our experiments, we have
added 7 input variables X4, . . . ,X10, uniformly sampled in the domains [1,6]7 and
[1.5,5.5]7 for the training and test sets, respectively. Obviously, the seven added
input variables constitute, to some extent, a sort of noise with respect to the function
since the output o does not depend on them. We have generated N = 50,000 and
5,000 training and test data patterns, respectively. We have used a number of fuzzy
sets equal to 4 for all inputs (Q f = Q = 4) and uniform partitions composed by
gaussian membership functions.

We observe that for this dataset we are able to generate the most complete and
non-redundant achievable TS system. The rule base of this TS system consists of
all combinations of fuzzy sets belonging to the partitions of the only three input
variables X1,X2,X3 which influence the output. Let us denote such rule base as J64.
J64 is composed of 43 = 64 rules, with don’t care conditions for all variables except
for X1,X2,X3. Obviously, the MSE computed for this TS system can be consid-
ered as a sort of lower bound, at least for the training set, and can provide us with
some indication on how much the evolutionary process is far from optimal solutions.
Table 16.1 shows the MSEs computed on the training and test sets on J64 rule base.
In the following, we will show that the fast method is able to achieve very accurate
solutions much faster than the classical method.

In the first experiment for the dataset at hand, we show how, on equal execution
time, the fast method obtains Pareto fronts which dominate the ones obtained by the
classical method. In the second experiment, we point out how, on equal number of
epochs, the fast method achieves Pareto fronts comparable with the ones obtained
by the classical method, but saving approximately 90% of time.

In both the experiments we have used, as objectives, the total number of condi-
tions different from don’t care conditions as a measure of complexity, and the MSE

Table 16.1 MSE for J64 rule base

MSE

Training set 0.117
Test set 0.084
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Table 16.2 Parameters used in the (2+2)M-PAES execution for the regression problem

Parameter Value

archive size 50
δmax 10
γmax 20
Mmin 1
Mmax 64
Γmax 3
φmax 5
crossover probability 1
mutation probability 0.4

as a measure of accuracy. Table 16.2 summarizes the parameters used for the exe-
cution of the (2+2)M-PAES. As regards mutation probability, the first, second and
third mutation operators are applied with 0.8, 0.05 and 0.15 probabilities, when the
mutation is applied. Here, there is a bias towards rule adding, since the probability
to generate a solution which will be added to the archive is higher when removing
than when adding rules.

16.7.1.1 Comparisons under Equal Execution Times on the Regression
Problem

In the first experiment, we have used the execution time as stopping criterion. We
have set the maximum amount of time to 1800 sec (30 min). We have repeated
the experiment for eight trials using different randomly extracted training and test
sets and different MOEA evolutions. Figures 16.2 and 16.3 show the trend of the
Pareto fronts after approximately 450, 900, 1350, and 1800 seconds on the training
set for the classical (figure on the left) and fast (figure on the right) methods for two
randomly selected trials.

For the sake of brevity, we do not show the trends for all the trials. On the other
hand, these trends are similar to the ones reported in Figs. 16.2 and 16.3. First of
all, we can observe that, independently of the trial, the fast method executes a much
higher number of epochs on equal time, thus achieving good Pareto fronts. Actually,
at each epoch considered in the figures, the approximated Pareto fronts obtained by
the fast method dominate the ones achieved by the classical approach. Further, the
MSEs of the most accurate solutions generated by the fast method are quite close to
the MSEs shown in Table 16.1, thus suggesting that the fast method achieves very
good MSEs just after 1800 seconds. On the other hand, the MSEs of the most accu-
rate solutions generated by the classical method are quite far from the MSEs shown
in Table 16.1. Finally, we observe that the intervals of complexity of the Pareto
fronts generated by the classical method are much wider than the ones generated
by the fast method. This is quite normal since we start the execution of the (2+2)M-
PAES from two solutions that contain the maximum number of rules and conditions.
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epoch 42, elapsed time: 453.9531 (sec)
epoch 125, elapsed time: 900.0313 (sec)
epoch 304, elapsed time: 1351.5781 (sec)
epoch 468, elapsed time: 1803.2656 (sec)

epoch 1585, elapsed time: 450.1172 (sec)
epoch 3152, elapsed time: 900.1094 (sec)
epoch 4794, elapsed time: 1350.0313 (sec)
epoch 6517, elapsed time: 1800.0313 (sec)

Fig. 16.2 Trends of the approximated Pareto fronts obtained within 30 minutes on the train-
ing set using classical (left) and fast (right) methods for a sample trial (regression problem)
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epoch 27, elapsed time: 452.1485 (sec)
epoch 80, elapsed time: 903.4531 (sec)
epoch 218, elapsed time: 1351.375 (sec)
epoch 367, elapsed time: 1800.9531 (sec)

epoch 1497, elapsed time: 450.8047 (sec)
epoch 3009, elapsed time: 900.0625 (sec)
epoch 4470, elapsed time: 1350.3281 (sec)
epoch 5977, elapsed time: 1800.0781 (sec)

Fig. 16.3 Trends of the approximated Pareto fronts obtained within 30 minutes on the train-
ing set using classical (left) and fast (right) methods for another sample trial (regression
problem)

During the evolutionary process, the complexity of the rules decreases, as testified
by the fast method and by the second experiment on the dataset at hand. Figure 16.4
shows the final Pareto fronts achieved on the test set by the classical (figure on the
left) and fast (figure on the right) methods on all the eight trials. We can observe that
the Pareto fronts obtained by the fast method outperform the Pareto fronts obtained
by the classical method, thus testifying the good generalization properties of the TS
systems generated by the fast method.

Table 16.3 shows the average results obtained by the classical method and the
fast method executed both without exploiting and by exploiting reuse. Here, G is
the average number of epochs on the eight trials, Mtot is the average total number
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Fig. 16.4 Final Pareto fronts for each trial on the test set obtained using classical (left) and
fast (right) methods after 30 minutes (regression problem)

Table 16.3 Results averaged on the eight trials after 30 minutes on the regression problem

G Mtot ET rule(sec) MSE
best
T R MSE

best
T S

Classical 466.0 10,309.5 0.17475 0.43340 0.16404
Fast with no reuse 1,950.5 45,566.4 0.03777 0.28819 0.08163
Fast (with reuse) 6,066.6 115,390.4 0.01375 0.25273 0.07209

of evaluated rules (which corresponds to the total number of consequent parameters
estimated) on the eight trials, ET rule is the average elapsed time per rule, computed
as the total elapsed time divided by the total number of rules (and averaged over

the eight trials), MSE
best
T R and MSE

best
T S are, respectively, the average lowest MSEs

obtained in the final fronts on training and test sets, respectively. We can observe that
the fast identification of the consequent parameters allows increasing the average
number of rules generated and evaluated during the 30 minutes from 10,309.5 of the
classical method to 45,566.4 of the fast method. Further, the adoption of the reuse
increases this average number of rules until 115,390.4. The tangible result of this
decrease in time needed to generate and evaluate the rules is the increase in accuracy
achieved by the fast method thanks to the higher number of epochs. Concluding, this
experiment has pointed out how speeding up the generation and evaluation of the
TS systems allows executing a larger number of epochs, thus improving accuracy
of the solutions.

16.7.1.2 Comparisons under Equal Number of Epochs on the Regression
Problem

In the second experiment on the regression dataset, we have used the number of
epochs as stopping criterion. We have set the maximum number G of epochs to 2500
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and have repeated the experiment for eight trials using different randomly extracted
training and test sets. Figures 16.5 and 16.6 show the trend of the Pareto fronts
after 625, 1250, 1875, and 2500 epochs on the training set for the classical (figure
on the left) and fast (figure on the right) methods and for two randomly selected
trials, respectively. We can observe that, independently of the trial, the accuracies
of the solutions in the Pareto fronts obtained by the classical and the fast methods
are quite similar. This points out that the use of the fast method does not affect the
performance of the generated TS. After the same number of epochs the solutions
in the corresponding Pareto fronts do not differ from each other considerably. Of
course, the Pareto fronts of the fast method have been obtained in a much shorter
time.

Figure 16.7 shows the final Pareto fronts achieved on the test sets of the eight
trials by the classical (figure on the left) and fast (figure on the right) methods. We
can observe that the Pareto fronts obtained by the fast method and by the classical
method are comparable, thus again testifying the good generalization properties of
the TS systems generated by the fast method.

Table 16.4 shows the average results obtained by the classical method and the
fast method executed both without exploiting and by exploiting reuse. Here, ETtot

is the average elapsed time after 2500 epochs. We can observe that the fast iden-
tification of the consequent parameters allows considerably reducing the average
elapsed times from 6580 seconds of the classical method to 2166 seconds of the
fast method with no reuse. Further, the adoption of the reuse decreases the average
elapsed time until 643. It is interesting to observe that the average MSE of the best
solutions achieved by the fast method is lower than the average MSE of the best so-
lutions generated by the classical method, thus further testifying that the techniques
proposed to speed up the fitness computation do not affect the accuracies of the final
solutions. Concluding, this second experiment has pointed out how speeding up the
generation and evaluation of the TS systems allows reducing the execution times
without deteriorating the accuracy of the solutions of an amount of ∼= 90%.

16.7.2 Time Series Forecasting Problem

As regards the time series forecasting problem we have generated a chaotic time
series by the Mackey-Glass delayed differential equation [29]:

dx(t)
dt

=
a · x(t − τ)

1 + x(t− τ)10 −b · x(t).

In our experiments, we used a = 0.2, b = 0.1 and τ = 17, as generally done (see,
e.g., [24]). We considered the time series at discrete temporal times, with time step
Δ t = 0.01 (x[k] = x(t = k ·Δ t)), for 67,499 integration steps (k = 1, . . . ,67,499).
The value of the discrete series has been obtained by using the 4th order Runge-
Kutta method:

x[k + 1] = x[k]+
K1

6
+

K2

3
+

K3

6
+

K4

6
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epoch 625, elapsed time: 2095.1563 (sec)
epoch 1250, elapsed time: 3723.4532 (sec)
epoch 1875, elapsed time: 5351.75 (sec)
epoch 2500, elapsed time: 7011.7813 (sec)

epoch 625, elapsed time: 189.3438 (sec)
epoch 1250, elapsed time: 375.9688 (sec)
epoch 1875, elapsed time: 562.5938 (sec)
epoch 2500, elapsed time: 745.9219 (sec)

Fig. 16.5 Approximated Pareto fronts obtained on the training set using classical (left) and
fast (right) methods after 625, 1250, 1875, and 2500 epochs for a sample trial (regression
problem)
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epoch 625, elapsed time: 1508.7813 (sec)
epoch 1250, elapsed time: 2876.7032 (sec)
epoch 1875, elapsed time: 4244.625 (sec)
epoch 2500, elapsed time: 5744.1875 (sec)

epoch 625, elapsed time: 179.2031 (sec)
epoch 1250, elapsed time: 368.0781 (sec)
epoch 1875, elapsed time: 556.9531 (sec)
epoch 2500, elapsed time: 733.1094 (sec)

Fig. 16.6 Approximated Pareto fronts obtained on the training set using classical (left) and
fast (right) methods after 625, 1250, 1875, and 2500 epochs for another sample trial (regres-
sion problem)

where K1, K2, K3 and K4 are the Runge-Kutta coefficients. The method has been
applied starting from an initial condition x[0] randomly generated within the interval
[0, 1] and considering x(t) = 0 for all t < 0.

Once the 67,499 samples have been generated, according to [24] we have re-
moved the first 10,099 data points to avoid the transient portion of the data, thus
obtaining 57,400 values. From these values, we have generated a dataset of 55,000
samples of the format (x[k−1800],x[k−1200],x[k−600],x[k],x[k + 600]) in order
to predict x[k + 600] from the past values x[k− 1800], x[k− 1200], x[k− 600], and
x[k] (2400 samples have been discarded to completely separate the test set from
the training set). The first 50,000 samples have been used for training while the
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Fig. 16.7 Final Pareto fronts for each trial on the test set obtained using classical (left) and
fast (right) methods after 2500 epochs (regression problem)

Table 16.4 Results averaged on the eight trials after 2500 epochs on the regression problem

Method ET tot(sec) Mtot ET rule(sec) MSE
best
T R MSE

best
T S

Classical 6,580 40,359 0.16306 0.3346 0.1180
Fast with no reuse 2,166 55,497 0.03904 0.2753 0.0762
Fast (with reuse) 643 55,497 0.01159 0.2753 0.0762

remaining 5,000 for test. The problem at hand can be viewed as a regression prob-
lem of the form o = f (X1,X2,X3,X4), where X1 = x[k − 1800], X2 = x[k − 1200],
X3 = x[k−600], X4 = x[k], and o = x[k + 600].

Unlike in [24], we have added six more input variables X5, . . . ,X10, uniformly
sampled in the domains [0,1]6 for the training and test sets, in order to make the
dataset more difficult to deal with, thus obtaining the problem: o = f (X1, . . . ,X10).

Again, the six added input variables constitute a sort of noise with respect to
the function since the output does not depend on them. We have used a number of
fuzzy sets equal to seven for all inputs (Q f = 7) and uniform partitions composed by
gaussian membership functions. Such dataset is similar to the one used in [24], but
with some differences, namely: a higher sampling rate (1 instead of 0.01), a smaller
integration step (0.01 instead of 0.1), a higher number of fuzzy sets on each input
variable (7 instead of 2) and the presence of the six added fictitious input variables.
As shown in the following, we have achieved good MSEs, though higher than that
found in [24] by Jang using the well-known ANFIS neuro-fuzzy system with 4
inputs, 2 fuzzy sets per input, 16 rules and 64 conditions (don’t care is not used
therein). The reasons are the following: i) we used a bigger dataset (and thus more
difficult to deal with), having both a higher number of samples and a higher number
of inputs, ii) we limit ourselves to consider systems with lower complexity (only one
condition per rule instead of four and a maximum of 30 conditions in total instead of
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64), iii) we do not perform membership functions optimization. On the other hand,
it has to be said that it would require too much time to run the ANFIS system with
membership function optimization on the problem at hand even to perform only one
iteration step.

Above we have explained how to generate training and test sets for the time series
forecasting problem. Thus, we are now ready to carry out experiments. Here we have
repeated the two experiments carried out on the regression dataset on the problem at
hand. Again, in the first experiment, we show how, on equal execution time, the fast
method with reuse obtains Pareto fronts which dominate the ones obtained by the
classical method. In the second experiment, we point out how, on equal number of
epochs, the fast method with reuse achieves Pareto fronts comparable with the ones
obtained by the classical method, but saving approximately 96.5% of time.

The objective functions used here are the same as those used for the regression
problem (number of conditions and MSE). The parameters used for the execution
of the (2+2)M-PAES are the same as those shown in Table 16.2, with the exception
of the maximum number of rules Mmax, which has been set to 30 instead of 64,
and the maximum number of conditions per rule Γmax (1 instead of 3). As regards
mutation probability, we used the same used for the regression problem on both the
experiments.

16.7.2.1 Comparisons under Equal Execution Times on the Time Series
Forecasting Problem

Here we repeated the first experiment carried out on the regression problem. Thus
we have used the execution time as stopping criterion and we have set the maxi-
mum amount of time to 1800 sec. We have repeated the experiment for eight times
using different randomly extracted training and test sets (by using a different start-
ing point x[0]). Figures 16.8 and 16.9 show the trend of the Pareto fronts after
approximately 450, 900, 1350, and 1800 seconds on the training set for the classical
(figure on the left) and fast (figure on the right) methods and for two out of the eight
trials, randomly selected. We can observe that, independently of the trial, the fast
method executes a much higher number of epochs on equal time, thus achieving
better Pareto fronts even for this problem.

Figure 16.10 shows the final Pareto fronts achieved on the test set by the classical
(figure on the left) and fast (figure on the right) methods. We can observe that the
Pareto fronts obtained by the fast method outperform the Pareto fronts obtained by
the classical method, thus testifying the good generalization properties of the TS
systems generated by the fast method.

Table 16.5 shows the average results obtained by the classical method and the fast
method executed both without exploiting and by exploiting reuse. We can observe
that the fast identification of the consequent parameters allows increasing the aver-
age number of rules generated and evaluated during the 30 minutes from 10,706.9
of the classical method to 38,337.3 of the fast method. Further, the adoption of the
reuse increases this average number of rules until 76,670.9. The tangible result of
this decrease in time needed to generate and evaluate the rules is the increase in
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epoch 154, elapsed time: 450.9531 (sec)
epoch 340, elapsed time: 900.25 (sec)
epoch 547, elapsed time: 1350.6563 (sec)
epoch 788, elapsed time: 1800.8281 (sec)

epoch 1375, elapsed time: 450.3047 (sec)
epoch 2740, elapsed time: 900.0625 (sec)
epoch 4107, elapsed time: 1350.0625 (sec)
epoch 5451, elapsed time: 1800.3906 (sec)

Fig. 16.8 Trends of the approximated Pareto fronts obtained within 30 minutes on the train-
ing set using classical (left) and fast (right) methods for a sample trial (time series forecasting
problem)
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epoch 121, elapsed time: 450.4531 (sec)
epoch 277, elapsed time: 901.7031 (sec)
epoch 494, elapsed time: 1352.2656 (sec)
epoch 725, elapsed time: 1800.0156 (sec)

epoch 1307, elapsed time: 450.3828 (sec)
epoch 2568, elapsed time: 900.0156 (sec)
epoch 3959, elapsed time: 1350.1406 (sec)
epoch 5247, elapsed time: 1800.2656 (sec)

Fig. 16.9 Trends of the approximated Pareto fronts obtained within 30 minutes on the train-
ing set using classical (left) and fast (right) methods for another sample trial (time series
forecasting problem)

accuracy achieved by the fast method thanks to the higher number of epochs. Con-
cluding, this experiment has pointed out how speeding up the generation and evalu-
ation of the TS systems allows executing a larger number of epochs, thus improving
accuracy of the solutions.

16.7.2.2 Comparisons under Equal Number of Epochs on the Time Series
Forecasting Problem

In this experiment, we have used the number of epochs as stopping criterion.
We have set the maximum number G of epochs to 2500 and have repeated the
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Fig. 16.10 Final Pareto fronts for each trial on the test set obtained using classical (left) and
fast (right) methods after 30 minutes (time series forecasting problem)

Table 16.5 Results averaged on the eight trials after 30 minutes on the time series forecasting
problem

G Mtot ET rule(sec) MSE
best
T R MSE

best
T S

Classical 837.3 10,706.9 0.16503 0.487 ·10−3 0.577 ·10−3

Fast with no reuse 2,638.4 38,337.3 0.04387 0.288 ·10−3 0.383 ·10−3

Fast (with reuse) 5,265.3 76,670.9 0.02076 0.239 ·10−3 0.350 ·10−3
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epoch 625, elapsed time: 500.7422 (sec)
epoch 1250, elapsed time: 995.0781 (sec)
epoch 1875, elapsed time: 1482.1875 (sec)
epoch 2500, elapsed time: 2155.75 (sec)

epoch 625, elapsed time: 42.8750 (sec)
epoch 1250, elapsed time: 82.6406 (sec)
epoch 1875, elapsed time: 124.0313 (sec)
epoch 2500, elapsed time: 165.125 (sec)

Fig. 16.11 Approximated Pareto fronts obtained on the training set using classical (left) and
fast (right) methods after 625, 1250, 1875, and 2500 epochs for a sample trial (time series
forecasting problem)
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epoch 625, elapsed time: 613.7500 (sec)
epoch 1250, elapsed time: 1222.9219 (sec)
epoch 1875, elapsed time: 1842.6719 (sec)
epoch 2500, elapsed time: 2495.6563 (sec)

epoch 625, elapsed time: 50.2422 (sec)
epoch 1250, elapsed time: 100.0625 (sec)
epoch 1875, elapsed time: 153.6563 (sec)
epoch 2500, elapsed time: 206.9844 (sec)

Fig. 16.12 Approximated Pareto fronts obtained on the training set using classical (left) and
fast (right) methods after 625, 1250, 1875, and 2500 epochs for another sample trial (time
series forecasting problem)
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Fig. 16.13 Final Pareto fronts for each trial on the test set obtained using classical (left) and
fast (right) methods after 2500 epochs (time series forecasting problem)

Table 16.6 Results averaged on the eight trials after 2500 epochs on the time series forecast-
ing problem

Method ET tot(sec) Mtot ET rule(sec) MSE
best
T R MSE

best
T S

Classical 2,562.7 15,837.5 0.16181 0.241 ·10−3 0.247 ·10−3

Fast with no reuse 1,682.0 38,337.3 0.04387 0.288 ·10−3 0.383 ·10−3

Fast (with reuse) 89.1 17,286.6 0.00515 0.189 ·10−3 0.285 ·10−3
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experiment for eight trials using different randomly extracted training and test sets
and different MOEA evolutions. Figures 16.11 and 16.12 show the trend of the
Pareto fronts after 625, 1250, 1875, and 2500 epochs on the training set for the clas-
sical (figure on the left) and fast (figure on the right) methods and for two out of the
eight trials.

In Fig. 16.13 (which provides the final Pareto fronts achieved in the test set on
each of the eight trials for classical and fast methods) we can observe that, even
if the classical method seems slightly better, we can consider the average Pareto
fronts approximatively equivalent. Of course, the Pareto fronts of the fast method
have been obtained in a much shorter time even in this case.

Table 16.6 shows the average results obtained by the classical method and the
fast method executed both without exploiting and by exploiting reuse. We can ob-
serve that the fast identification of the consequent parameters allows considerably
reducing the average elapsed times from 2562.7 seconds of the classical method to
1682.0 seconds of the fast method with no reuse. Moreover, the adoption of the reuse
further decreases the average elapsed time until 89.1. Thus, using the fast method
we have been able to save ∼= 96.5% of the time. It is interesting to observe that the
average MSE of the best solutions achieved by the fast method is lower than the
average MSE of the best solutions generated by the classical method on the training
set, while they are comparable on the test set.

Even for the time series forecasting problem we can conclude that speeding up
the generation and evaluation of the TS systems allows reducing the execution times
without significantly deteriorating the accuracy of the solutions.

16.8 Conclusions

In this chapter, we have shown a possible roadmap towards the efficient design of
multi-objective genetic Takagi-Sugeno fuzzy systems for high dimensional prob-
lems. We have proposed a method to speed up the identification of the consequent
parameters of the TS rules. This method produces as a side-effect a decoupling of the
rules. Thus, during the evolutionary process possible modifications in a rule do not
affect the other rules and therefore we can avoid re-estimating parameters for all the
rules which are not modified. Exploiting this observation, we have discussed how
simply storing and reusing previously computed parameters we can further speed
up the evolutionary process. In the experimental part we have shown the advantages
of applying the efficient approach proposed in this chapter by using both regression
and time series forecasting problems. Results have highlighted that, on average, the
approach allowed saving approximately 90% and 96.5% of the execution times, re-
spectively. When the execution times are the same, the proposed approach performs
a significantly higher number of epochs and thus it better explores the search space,
providing better Pareto fronts.
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Chapter 17
Evolutionary Algorithms for the Multi Criterion
Minimum Spanning Tree Problem

Madeleine Davis-Moradkhan and Will Browne

Abstract. In many real world network problems several objectives have to be op-
timized simultaneously. To solve such problems, it is often appropriate to use the
multi-criterion minimum spanning tree (MCMST) model, a combinatorial opti-
mization problem that has been shown to be NP-Hard. In Pareto Optimization of
the model no polynomial time algorithm is known to find the Pareto front for all
instances of the MCMST problem. Researchers have therefore developed deter-
ministic and evolutionary algorithms. However, these exhibit a number of short-
comings such as lack of scalability and large CPU times. Therefore, the hybridised
Knowledge-based Evolutionary Algorithm (KEA) has been proposed, which does
not have the limitations of previous algorithms because of its speed, its scalabil-
ity to more than 500 nodes in the bi-criterion case and scalability to the multi-
criterion case, and its ability to find both the supported and non-supported optimal
solutions. KEA is faster and more efficient than NSGA-II in terms of spread and
number of solutions found. The only weakness of KEA is the dominated middle of
its Pareto front. In order to overcome this deficiency, a number of modifications have
been tested including KEA-M, KEA-G and KEA-W. Experimental results show that
when time is expensive KEA is preferable to all other algorithms tested.

17.1 Introduction

The multi-criterion minimum spanning tree (MCMST) problem is a combinatorial
optimization problem that has attracted attention in recent years due to its applica-
tions in many real world problems, in particular in designing networks (computer,
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communication, electrical, pipeline, etc). This problem is also interesting for theo-
retical reasons, as it has been shown to be NP-Hard [1]. Existing algorithms applied
to this problem exhibit a number of shortcomings such as lack of scalability and
large CPU times. A 500-node MCMST problem has a search space of 500498 feasi-
ble solutions, which account for the difficulty of finding good solutions in a practical
time.

17.1.1 Problem Definition

Given a connected, undirected and labeled graph G = (N,E), where N is the fi-
nite set of n labeled nodes and E is the finite set of m edges linking the nodes,
suppose there are p positive real numbers associated with each edge representing
costs denoted by c=(c1 j,c2 j, · · · ,cp j), for j = 1,2, · · · ,m. Thus ci j, represents the ith.

cost associated with edge j for i = 1,2, · · · , p, and C = [ci j] is the associated costs
matrix.

A spanning tree T = (N,B) is a connected sub graph on the n nodes of G with no
cycles, where B ⊂ E and |B| = n−1. Adding one more edge of G to B creates one
and only one cycle; and removing any one edge causes disconnection. G has nn−2

spanning trees if it is complete.
Let x = (x1,x2, · · · ,xm), where x j = 1 if edge e j is present in a given spanning

tree (ST), and x j = 0 otherwise. The vector x is the characteristic vector, and each
spanning tree on G can be expressed by one such vector x. Let X be the set of
characteristic vectors corresponding to all the spanning trees in G. The MCMST
problem can be represented by the following model [50], where zi(x) is the ith.

objective to be minimized and is expressed as the sum of the corresponding costs of
the edges forming the spanning tree.

minz1(x) =
m

∑
j=1

c1 jx j,

minz2(x) =
m

∑
j=1

c2 jx j,

· · · ,

minzp(x) =
m

∑
j=1

cp jx j

subject to x ∈ X .
Figure 17.1 shows the evaluated graph G on five nodes and two of its spanning

trees, each minimizing one of the criteria. The numbers in brackets indicate the
values of the two costs (criteria) corresponding to each edge of G.
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Fig. 17.1 Graph G and two of its spanning trees, which are the extreme points of the Pareto
front, each minimizing one of the criteria

17.1.2 Solution Approaches

The MCMST problem admits very rarely a single solution particularly when ob-
jectives are conflicting. It is possible to determine and assign a weight wi to every
objective function zi(x)∀i, where the weights reflect the preferences of the decision
maker on each objective. Although the problem can be reduced to minimizing a
scalarized objective function, this approach has certain drawbacks and limitations
[9], such as the need to fix the relative importance of the objective functions [43].

In Pareto Optimization, also called vector optimization, all criteria are considered
equally important. A solution x∗ is efficient, non-dominated or Pareto optimal if
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there does not exist another solution x such that: zi(x) ≤ zi(x∗),∀i = 1, · · · , p, and
zk(x) < zk(x∗), for at least one k.

The set of all Pareto optimal solutions is called the efficient set or the Pareto front
(PF) [9]. There are two types of efficient solution [42], as shown in Figure 17.2.
Formally ’the supported efficient solutions are minima for a convex combination of
criteria. The non-supported efficient solutions cannot be computed by minimizing
a convex combination of criteria, whatever the considered strictly positive weights’
[14]. The supported efficient solutions are situated on the convex hull of the fea-
sible region, and are relatively easy to find. The non-supported efficient solutions,
situated in the segment formed by two consecutive supported solutions and the cor-
responding local nadir point , are difficult to discover and most algorithms do not
find them. This is the case in the weighted-sum methods where the optimal solu-
tions found by varying the weights associated with each criterion are all supported
efficient solutions.

Fig. 17.2 Points A, B, C, D and E are the supported efficient solutions. H is the local nadir
point corresponding to D and E. All the points situated inside a segment, for example segment
DEH, are non-supported efficient solutions. Thus, points F and G are non-supported efficient
solutions

No polynomial time algorithm is known to find the PF for all instances of the
MCMST problem. For small complete graphs (n ≤ 10) exhaustive search has been
used to find the true PF [25]. However, the exhaustive search is impractical with
the present speed of computers for complete graphs having more than 10 or 11
nodes. Authors have therefore turned to deterministic heuristics and evolutionary
algorithms that succeed only in calculating an approximate Pareto set (APS). Most
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of the existing algorithms are applicable to the bi-objective case and have been tested
using simple or planar graphs with few edges.

A number of deterministic algorithms for the bi-criterion case have been pro-
posed for use in decision aid or for validating evolutionary algorithms , all of which
are restricted to two criteria, have been tested on small instances and have not been
validated with an exhaustive search. Hamacher and Ruhe [21] are among the pio-
neers to propose an approximate algorithm for the bi-criterion MST that consists of
two phases. Although their algorithm has been criticized as inefficient and incapable
of producing the true PF [42], their 2-phase methodology has been adopted suc-
cessfully by many researchers not only for the MCMST problem, but also in other
problems such as the Traveling Salesman Problem [39], the Quadratic Assignment
Problem [23] and the max-ordering problem [15]. Other 2-phase heuristics have
been proposed for the MCMST problem by Anderson et al. [1], Ramos et al. [42],
Steiner and Radzik [47].

In order to measure the efficacy of their evolutionary algorithm, some authors
have proposed simple deterministic heuristics, based on Kruskals algorithm [31] or
on Prims algorithm [40]. These algorithms, applicable to two criteria, include the
Enumeration method of Zhou and Gen [50], which was shown to be incorrect [25],
the mc-Prim proposed by Knowles [25], and the mc-Kruskal by Arroyo et al. [2]. In
both mc-Prim and mc-Kruskal a parameter controls the number of solutions that will
be calculated; thus they will not produce all the supported Pareto optimal solutions
if their number exceeds this parameter.

Recently the Extreme Point Deterministic Algorithm (EPDA) has been proposed
[10] that improves upon previous algorithms as it finds both supported and non-
supported efficient solutions for more than two criteria. EPDA is validated against
the exhaustive search algorithm EXS, based on the method proposed by Christofides
[8], using benchmark instances generated by algorithms suggested by Knowles [25]
which consist of complete graphs having three different cost functions.

When the number of nodes is large, and deterministic algorithms are slow to
converge and become impractical; probabilistic algorithms can be used to find a
near-optimal solution in less time. The few evolutionary algorithms proposed in
literature have been tested on small instances on two criteria and the majority find
only the supported efficient solutions.

Zhou and Gen [50] appear to have been the first to suggest applying, the first ver-
sion of Non-dominated Sorting Genetic Algorithm (NSGA) [46], to the bi-criterion
MST problem. This algorithm was criticized [25] for failing to calculate non-
dominated solutions.

The first Evolution Strategy (ES) for the bi-criterion MST is proposed by Knowles
and Corne [28] and Knowles [25] called Archived Elitist Steady-State EA (AESSEA),
which is a (μ + 1)-ES and a population-based variant of Pareto-Archived ES
(PAES) [27].

Bosman and Tierens [5] have proposed and tested the Multi-objective Mixture-
based Iterated Density Estimation Evolutionary Algorithm (MIDEA) in two differ-
ent multi-objective problem domains, real-valued continuous and binary combina-
torial problems. The second domain includes the MCMST problem. Experimental
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results, presented in [5] and [6], comparing MIDEA with Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [13] and Strength Pareto Evolutionary Algorithm
(SPEA) [48] show that MIDEA is at least comparable with the other two. NSGA-II
is shown to be the most competitive in terms of front occupation and the Average
Front Distance, whereas SPEA has a better spread than NSGA-II.

An algorithm applying the Greedy Randomized Adaptive Search Procedure (mc-
GRASP) has been suggested by Arroyo et al. [2], who argue that the randomization
helps to obtain non-supported efficient solutions as well as supported ones.

More recently, other genetic algorithms have been proposed by Han and Wang
[22] and by Chen et al. [7], which have been tested on small graphs in two criteria.

Gue et al. [20] have presented a particle swarm algorithm that is expected to work
for more than two criteria, but no results have been reported for the multi-criterion
case.

Evolutionary algorithms [29], [30] and particle swarm algorithms [19] have been
suggested for the bi-objective degree-constrained MCMST problem. Moreover, spe-
cial types of bi-objective MST problems have been addressed [33], [36], where a
constraint in a single objective MST has been transformed into a second objective.

In order to overcome the limitations of previous algorithms the novel, fast and
scalable Knowledge-based Evolutionary Algorithm (KEA) is proposed. KEA is de-
signed to achieve all of the following unlike its predecessors.

• To be applicable to more than two criteria.
• To calculate both the supported and the non-supported Pareto optimal solutions.
• To be fast so that it can be used for large graphs with more than 500 nodes.

The main features of KEA include:

• The application of deterministic approaches to calculate the extreme points of
the Pareto front. These are used to produce the initial population comprising of
an elite set of parents.

• An elitist evolutionary search attempts to find the remaining Pareto optimal
points by applying a knowledge-based mutation operator. The domain knowl-
edge is based on the k-best approaches in deterministic methods.

• Marking schemes that reduce the re-evaluation of solutions; and cut-off points
that eliminate the dominated regions of the search space are applied.

Experimental results are obtained from hard benchmark instances of the problem
that are generated using the algorithms proposed by Knowles [25] for complete
graphs. KEA is verified and validated against the exhaustive search algorithm EXS,
based on the method suggested by Christofides [8]. Comparative results with an
adapted version of Non-dominated Sorting Genetic Algorithm (NSGA-II) [13] and
with the Extreme Point Deterministic Algorithm (EPDA) [10] are reported. It is
shown that the strength and superiority of KEA is due to the domain knowledge
that is autonomously incorporated, making it efficient, fast and scalable.

Because of its speed and efficiency, KEA has much potential for rendering the
MCMST model applicable to real world problems arising in diverse systems:
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1. Analysis and design of various networks [3], for example, large scale telecom-
munication networks [16], distributed computing networks [38], spatial networks
for commodity distribution (gas pipelines or train tracks) [18] and processor net-
works [32].

2. Hardware design [17], for example, connectionist architectures for analog and
VLSI circuits [37].

3. Data collection and information retrieval, for example, file mirroring/transfer,
bit-compression for information retrieval and minimizing message passing [4].

17.2 Knowledge-Based Evolutionary Algorithm (KEA)

To represent the spanning trees (STs), the edge-set encoding suggested by Raidl
and Julstrom [41] is used with the difference that each edge (gene) is represented by
only one integer, which is the index of the corresponding Edge List. As a result each
edge-set (Genotype) requires n− 1 integers, i.e. half the space used in [41], where
each edge was represented by two integers: the end nodes. Recently an efficient
representation has been proposed by Soak et al. [45]; however, when used in con-
junction with Kruskals algorithm ’it does not guarantee to obtain a valid tree’ [45]
and supporting heuristics have to be applied to ensure validity. The edge-set repre-
sentation ensures that each ST is represented by a unique encoding as discussed and
demonstrated by Raidl and Julstrom [41].

The Fitness function is a fitness vector defined to be the vector of Total Costs,
calculated by summing the costs of the edges forming the ST with respect to each
criterion.

Each solution on the approximate Pareto set(APS) is comprised of the Genotype,
the Total Costs, and the Origin of the ST. Origin is an integer equal to i for i =
1, · · · , p and represents the Edge List from which the ST was calculated. Each edge
has a flag used in phases 2 and 3 of KEA. The size of the APS is flexible.

The Population size is not fixed, because it is not possible to calculate a pri-
ori how many STs will be created. Although KEA is similar to a (μ +λ )-ES with
ρ = 1 (cloning), neither μ nor λ is fixed a priori, where μ is the number of parents,
λ the number of children and ρ is the number of parents involved in the reproduc-
tion process. Michalewicz [35] discusses GAs with varying population size some
of which introduce the concept of age. In KEA, an individual does not age and is
eligible to be selected provided it has not been selected previously.

At each iteration, Mutation is the only genetic operator applied. Preliminary tests
showed that the crossover operator increased CPU time without increasing perfor-
mance. Given the inheritance of the characteristic genes (defined in section B be-
low), an ordinary crossover operator would be impractical. It is possible to use a
sophisticated crossover operator; however, it was found that that the resulting off-
spring were usually dominated even if the parents were non-dominated.

The Parameters: Two parameters that depend on the size of the graph are: n =
number of the nodes and m = number of the edges in the graph being considered.
The latter is derived from n by the following formula which applies only to complete
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graphs: m = (n× (n−1))/2 and p is the number of criteria. Eps is the domain de-
pendent precision parameter. Two cost values are considered equal if their absolute
difference is less than Eps. The size of the PF is controlled by varying the value of
Eps. The crossover and mutation probabilities are equal to zero and one respectively.
Finally, g is the number of generations.

17.2.1 Phases of KEA

KEA consists of three phases as summarized in Figure 17.3.
In phase 1, p lists of edges are created, where EdgeList[i] is ordered with respect

to the ith. criterion. Then the extreme minimum spanning trees MSTs are found,
each of which minimizes one of the criteria, applying Kruskals algorithm [31] to
the corresponding EdgeList. Kruskals algorithm was selected because its ordered
edge list based approach was suited to the data structures used in KEA.

To each edge a Boolean flag is assigned called InTree, which is initialized to
zero. Once an MST is calculated, the InTree flags of its edges are set to one in the
corresponding EdgeList.

If the p extreme MSTs are identical, then the APS is reduced to a single solution
and the algorithm stops.

Phase 2 corresponds to the creation of the initial population of spanning trees STs
by elementary tree transformations [8]. This consists of mutating only one edge of
the extreme MST s at a time for each ST . These STs are the genotypic neighbours of
the MST s, because they differ in only one edge, called the Characteristic edge. The
use of two flags related to the Characteristic and InTree edges is similar to methods
used by Gabow [17] and Katoh et al. [24] in order to avoid re-evaluation of solutions
that have already been discovered. The Characteristic flags are initialized to -1.

All the non-dominated genotypic neighbours of MSTi, for i = 1, · · · , p, are calcu-
lated as follows. For each edge (u,v) in MSTi that is removed, the algorithm scans
EdgeList[i] for as many as possible feasible edges (r,s) to replace (u,v). Each edge
that satisfies these three conditions is used as a replacement for edge (u,v):

a) (r,s) �∈ InTree,
b) The inclusion of edge (r,s) will not create a cycle,
c) Cj(r,s) < Cj(u,v) for at least one j, where j = 1, · · · , p, j �= i.

Condition (c) constitutes further domain knowledge that is incorporated in KEA,
which improves performance as subsequently it does not evaluate a large number
of STs that will be dominated. This condition is similar to that used in the k-best
approaches. A similar method has been applied by Raidle and Julstrom [41] so that
the offspring is at least as good as its parent.

If the edge (r,s) satisfies the above conditions, it is marked as Characteristic
by setting its characteristic flag equal to the index of the edge (u,v). Next the To-
tal Costs (TC) of the new ST (child) are calculated from the following relation:
∀i,TCi(Child) = TCi(Parent)−Ci(u,v)+Ci(r,s).
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Fig. 17.3 The code of KEA

The Total Costs of the new ST are compared with the Total Costs of non-
dominated STs on the APS. If the new ST is not dominated it is added to the APS. If
the new ST dominates one or more STs on the APS, then they are discarded from it.

Once all the possible edges (r,s) have been found to replace the edge (u,v) and
the corresponding STs are created, MSTi is restored by inserting the edge (u,v).
Then another edge of MSTi is considered to be replaced. The procedure is repeated
until all edges of MSTi are mutated one by one.

The advantage of KEA constructing the APS from all the extreme points is three-
fold:

a) Genotypic neighbours of the extreme MSTs are more likely to be non-dominated
than other solutions. Therefore, they form an elite initial population superior to a
randomly generated population.
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b) The algorithm converges more rapidly.
c) It guarantees diversification.

The inconvenience of this strategy is that despite the marking scheme some re-
evaluation of solutions is unavoidable as a few of the STs created from one end
may also be created from another end. Therefore, if the fitness function of a new
ST is equal to that of an ST in the APS, the new ST is considered a duplicate and
discarded without comparing the edges to determine whether they are the same.
The policy of having one representative genotype for all those that map to the same
fitness function has been adopted by previous authors [47], [34].

Phase 3 corresponds to the actual evolutionary algorithm in which the first gen-
eration STs, calculated in phase 2, are treated as parents. This phase, which is re-
cursive and repeated g times, is comprised of selection and reproduction. The APS
serves as the pool of potential parents. One individual from the APS is selected
randomly in each generation and used to create as many STs as possible. Only the
non-characteristic edges can be mutated. Thus the selected parent will have none,
one or several children, all in the course of one generation. The characteristic edges
of a parent are passed down to its offspring. Each selected parent, if non-dominated
throughout the algorithm, will remain on the APS, but will now be excluded from
the pool of potential parents. Non-dominated STs will be added to the APS to be-
come parents if selected. The same procedure, as in Phase 2, is used for reproduction
except that in condition (c) above, the clause j �= i is removed. The final stopping
criterion is the user specified number of generations.

17.3 Experimental Results

17.3.1 Benchmark Data Sets

Three types of hard benchmark instances are generated using algorithms suggested
by Knowles [25], which consist of real-valued costs, imposing the additional diffi-
culty of comparing real numbers.

Random Costs when used in the bi-objective case are uniformly distributed on
the closed interval [10.0,100.0], and [10.0,50.0]. In order to test scalability of KEA,
this benchmark also considers the tri-criterion case where random costs are uni-
formly distributed on closed intervals [10.0,50.0× p], for p =1 to 3. Correlated
and Anti-Correlated Costs set the coefficient of correlation equal to 0.7 and −0.7,
respectively, for all the instances.

17.3.2 Benchmark Algorithms

In order to compare KEA with existing evolutionary algorithms, Non-dominated
Sorting Genetic Algorithm, NSGA-II was investigated as it is commonly applied to
multi-criterion optimization problems. NSGA-II is a fast elitist multi-objective ge-
netic algorithm, proposed by Deb et al. [13], [12] based on the first version proposed
by Srinivas and Deb [46], which was applied to the MCMST problem [50] and to
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related problems [16]. As highlighted earlier, comparative experimental results on
the MCMST problem presented by Bosman and Thierens [5], [6], have shown
NSGA-II to be the most competitive in terms of front occupation and the aver-
age front distance, whereas SPEA [48] has a better spread than NSGA-II. Thus, the
general-purpose NSGA-II was selected for comparison with KEA and was specifi-
cally tailored to the MCMST problem; hence renaming it NSGA2.

The adapted version, NSGA2 is faithful to the original NSGA-II . The initial
parent population consists of all the n star trees that contain all the edges (genes)
and for this reason is superior to a random initial population. If the size of the initial
parent population is such that n < P (where P is the set population size), then 2P−n
children are created by the usual procedures of selection, crossover and mutation,
in order to complete the initial combined parent and child population (the combined
population contains 2P individuals).

The NSGA-II schemes for reproduction [13], [12] required tuning for the
MCMST problem. In addition to the Total Costs of an ST, the Rank and the Crowd-
ing Distance are also used as dominance criteria as in NSGA-II.

Population size (P), number of APSs (F) and number of generations (g) are
the user defined parameters for NSGA2. Preliminary trials were used to select the
NSGA2 parameters including that there should be twice as many fronts as popula-
tion size in case each individual in a combined parent and child population is placed
in a distinct front. The crossover probability was thus set equal to 0.9 [13], whilst
the mutation probability was calculated as 1.0/((n×1.0)−1.0) [12].

The exhaustive search algorithm described by Christofides [8] was adapted to the
MCMST problem and termed EXS to be used for validation and verification tests
for instances with at most ten nodes. For larger graphs the Pareto fronts discovered
by the Extreme Point Deterministic Algorithm (EPDA) [10] are used as reference.

17.3.3 Performance Indicators

An important issue in multi-criterion optimization is the comparison of algorithms
in a quantitative manner. According to Schwefel [44], ’Numerical tests employ var-
ious model objective functions. The results are evaluated from two points of view’:

• Efficiency or speed of approach to the objective,
• Effectivity or reliability under varying conditions.

To compare the efficiency of the algorithms, the three classical performance indi-
cators, which are recommended in literature [48], [26] will be used, namely the
hyper-volume (the S-measure), the additive binary epsilon (the I-indicator) and the
attainment surface plots. Four further indicators will be measured in order to refine
the comparison, defined as follows:

CPU Duration of program execution in seconds.
T TC Total number of trees created.
FO Front occupation, the number of non-dominated solutions an algorithm places

on its APS.
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%FO = (FO/TTC)×100 , shows the efficiency of an algorithm. An efficient al-
gorithm will derive its APS with few calculations, whilst avoiding the infeasible
region, resulting in a large %FO.

Effectivity is demonstrated by testing with the three cost functions and increasing
problem sizes.

17.3.4 Numerical Results

All the programs were coded in C and executed on Microsoft Window XP Profes-
sional with X86-based PC system and Intel 2.8 GHz processor. Two series of results
are reported in this section.

The first series of experiments correspond to verification tests conducted against
EXS for graphs having four to ten nodes with E ps = 0.0001. In all these validation
tests KEA and NSGA2 performed very well. NSGA2, although slower, determined
all the points on the PF. KEA was able to find the true PF in all the 28 different
experiments except that, in one case it found all but one of the optimal solutions.

Table 17.1 shows the results for the anti-correlated cost instance with 10 nodes.
KEA has the largest %FO showing its efficiency. It has succeeded in finding the en-
tire PF with only 0.464 K calculations as opposed to 42.6 K calculations by NSGA2
and 100 000 K evaluations by EXS. NSGA2 found the true PF in 50 generations
with a population size of 380, as opposed to 40 generations for KEA. The speed of
KEA was also confirmed by its CPU time of 6.6 seconds as opposed to 13.8 seconds
for NSGA2. Since the results for the other cost types are similar [11], they are not
shown here.

Table 17.1 Results for a graph with 10 nodes, 45 edges, 108(= 100,000,000) STs and anti-
correlated costs with coe f .o f cor. = −0.7, E ps = 0.0001, (NSGA2: crossover-prob. = 0.9,
mutation-prob. = 0.111), g = number of generations, P = population size for NSGA2 and F is
the number of fronts. T TC measures total number of STs created of which a number equal to
front occupation , FO, are placed in the APS. The values of %FO show the non-dominated
portion of the T TC. CPU is measured in seconds

EXS KEA NSGA2
g 40 50
P 380
F 1 1 760

T TC 100,000,000 464 42,575
FO 38 38 38

%FO 38−6% 8% 0.09%
CPU Sec. 467.5 6.6 13.8

Parameter tuning tests were performed with benchmark complete graphs having
20, 30, 50 and 100 nodes in order to determine the best values for decision pa-
rameters. These tests were performed with two different values for the precision
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parameter, E ps = 0.001 and E ps = 0.0001. It was found that when E ps = 0.0001,
the corresponding APS for the same graph contained more solutions and was more
refined. All solutions with equal Total Costs are mapped into a single point on the
APS. Since two real cost values are considered equal if their difference is less than
E ps, variations in E ps result in variations in the number of points on the APS.
As noted by Kumar et al. [33], this is ’analogous in some way to a sort of shar-
ing/niching mechanism (in objective space) which effectively controls the selection
pressure and thus partly contributes to diversity’. Thus E ps may be used as a control
parameter to vary the size of the niches and hence the number of reported points on
the APS.

In the second series of experiments, the best parameter values that were deter-
mined in the preliminary tests were used to obtain statistical results. Since KEA
and NSGA2 obtained similar fronts for graphs with n ≤ 50, in this section the sta-
tistical results averaged over 10 runs for the 100-node graphs will be presented in
Table 17.2, Table 17.3 and Figures 17.4 and 17.5. More runs whould be impractical
due to the CPU times of NSGA2.

Table 17.2 shows the statistical values of the S-measure (mean, μ , and standard
deviation,σ ), which indicates the spread of the discovered APS. The bounding point
for the calculation of S values is chosen to be the anti-ideal (nadir) point of the true
PF whose coordinates can be found from the extreme points of the APS calculated
by EPDA or KEA. KEA has the larger values for the S-measure since it has a larger
spread than NSGA2. KEA also has a higher mean and a smaller standard deviation
showing a more reliable performance. The Mann-Whitney rank-sum test confirms
that the differences between the means of the two distributions are significant in all
the cases at 99% level of confidence.

Comparison of TTC, FO, %FO and CPU shows that NSGA2 is slower than
EPDA and calculates more spanning trees, yet it finds APSs that contain fewer solu-
tions. KEA is the fastest algorithm arriving at its final solution set in a few minutes
compared with hours in some cases. In the case of anti-correlated costs , even though
KEA calculates a larger number of trees than NSGA2 (3,759 K against 2,938 K), it
does so in a shorter period of time (698 sec. against 9,080 sec.).

In all the instances tested, the APS found by KEA is on average three times larger
than the APS calculated by NSGA2. It was also found that the FO of KEA was quite
close to the FO of EPDA in all cases. The %FO confirms that KEA is capable of
producing superior APSs to NSGA2 but with fewer calculations.

The median and the inter-quartile range (IQR) values of the I-indicator are shown
in Table 17.3. The positive I-indicators show that KEA and NSGA2 are incompa-
rable in anti-correlated and random instances. However, since I(KEA) values are
smaller than I(NSGA2), it can be concluded that, in a weaker sense, KEA is better
in more than %50 of the runs. In the case of correlated costs, the median score
of KEA is negative indicating that it is better than NSGA2 in a strict sense on
more than %50 of runs. Therefore, the additive epsilon indicator confirms the su-
periority of KEA over NSGA2 in all instances. The Mann-Whitney rank-sum tests
confirm that the distributions of I values are significantly different at %99 level of
confidence.
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Table 17.2 (100 Nodes) Mean and standard deviation of the S-measure, the CPU times in
seconds and the values of other parameters averaged over 10 runs of KEA and NSGA2 on
Graphs with 100 Nodes and three different Cost Types. g = number of generations, P =
population size for NSGA2. T TC measures total number of STs created of which a number
equal to front occupation, FO, are placed in the APS. The values of %FO show the non-
dominated portion of the T TC

Correlated Costs Anti-Correlated Costs Random Costs
E ps 0.0001 0.0001 0.0001
g KEA 3 K 20 K 20 K
g , P NSGA2 1000 , 1.5 K 500 , 5 K 500 , 5K
S-value KEA μ , (σ ) 25.1 , (0.1) 2,051 , (2.5) 7,705 K ,(17,184)
S-value NSGA2 μ , (σ ) 17.7 , (1.1) 1,878.7 , (7.9) 7,07 K , (26,700)
Mann-Whitney z-value -3.74 -3.74 -4.35
Significant level > 99% > 99% > 99%
CPU Sec. EPDA 78.2 2,407 2,021
CPU Sec. KEA μ , (σ ) 37.1 , (3) 698.3 , (59.8) 515.5 , (51.9)
CPU Sec. NSGA2 μ , (σ ) 1,197 , (21.9) 9,079.8 , (52.4) 8,852.9 , (33.6)
TTC EPDA 412 K 5,696 K 4,643
TTC KEA μ , (σ ) 383 K , (31 K) 3,759 K , (350 K) 3,063 , (199 K)
TTC NSGA2 μ , (σ ) 1,942 K , (55 K) 2,938 K , (44 K) 21,837 K , (19 K)
FO EPDA 1,339 4,453 4,805
FO KEA μ , (σ ) 1,315 , (61.2) 4,255 , (124.1) 4,430 , (139.8)
FO NSGA2 μ , (σ ) 501 , (74.3) 1,550 , (308.3) 1,860 , (208.2)
%FO EPDA 0.32% 0 08% 0.10%
%FO KEA μ , (σ ) 0.34% , (0.20) 0.11% , (0.04) 0.14% , (0.07)
%FO NSGA2 μ , (σ ) 0.03% , (0.13) 0.05% , (0.69) 0.01% , (1.1)

Table 17.3 Median and Inter-quartile Range (IQR) values of the Additive Epsilon Indicator
Obtained after 10 evaluations of KEA and NSGA2 on Graphs with 100 Nodes and different
Cost Types. Lower values indicate better performance. E ps = 0.0001

I(KEA) I(KEA) I(NSGA2) I(NSGA2) z-value
Cost Type Median IQR Median IQR > 99%

Anti-Correlated 2.19 0.17 3.40 0.18 -12.22
Correlated -0.36 0.17 1.18 0.35 -12.22
Random 154.40 43.24 301.23 12.20 -12.22

Figure 17.4 compares the best attainment surface plots obtained by the three al-
gorithms in the case of random costs. Since the median and the worse attainment
surfaces are close to the best, they are not plotted for clarity. Figure 17.4 shows
that the middle section of the surface plot of KEA is dominated by EPDA; and that
NSGA2 mostly dominates the middle portion of KEA and is almost superimposed
on the middle section of EPDA. Nonetheless, NSGA2 and KEA are incomparable
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Fig. 17.4 Best attainment surface plots by KEA and NSGA2 compared with the attainment
surface of EPDA for a graph with 100 nodes and random costs, (NSGA2: P = 5,000, g = 500,
crossover-prob. = 0.9, mutation-prob. = 0.01) (KEA: g = 20,000)EPDA FO = 4,805, KEA
FO = 4,317, NSGA2 FO = 2,030, E ps = 0.0001

in terms of the I-indicator. The attainment surface plots showed that in all instances
NSGA2 converges to a small area in the middle of the objective space, due to the
way NSGA2 explores the decision space (similar to Knowles [26]).

In practical situations with a short time limit, KEA dominates both EPDA and
NSGA2. To illustrate this point, the attainment surface plots for the random cost
instance are shown in Figure 17.5, where the running times of EPDA and NSGA2
have been limited to that of KEA. In this figure KEA dominates both algorithms
in the middle section of the APS, which is not the case for an unlimited execution
time. Where time is not a critical issue and the middle sections are important, neither
KEA nor NSGA2 is recommended as EPDA dominates both.

17.3.5 Experimental Complexity of KEA and NSGA2

Since the true PF is not known and since the task of creating STs is probabilistic,
only a probabilistic theoretical complexity for both KEA and NSGA2 can be esti-
mated, which is beyond the scope of this chapter. The experimental complexities of
the two algorithms, compared in this section, depend on the implementation and data
structures used. Most of the functions and procedures that perform time consuming
operations (to check for non-dominance and to check for the creation of cycles)
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Fig. 17.5 Attainment surface plots for a graph with 100 nodes and random costs, where
the execution time has been limited to that of KEA. Approximate CPU = 515.5 sec. (KEA:
g = 20,000), resolution = 60, total no. of test points = 120 (NSGA2: P = 5,000, crossover-
prob. = 0.9, mutation-prob. = 0.01) EPDA FO = 2,782, Approximate KEA FO = 4,317,
NSGA2 FO = 21, E ps = 0.0001

Fig. 17.6 Plots showing CPU times of EPDA, KEA and NSGA2 vs. no. of nodes of graphs
with correlated costs, E ps = 0.01
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Fig. 17.7 Plots showing CPU times of EPDA, KEA and NSGA2 vs. no. of nodes of graphs
with anti-correlated costs, E ps = 0.01

Fig. 17.8 Plots showing CPU times of EPDA, KEA and NSGA2 vs. no. of nodes of graphs
with random costs, E ps = 0.01

are common to all the algorithms (EXS, EPDA, KEA and NSGA2). Therefore their
experimental complexities can be compared on the basis of the CPU times.
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The superiority of KEA over NSGA2 in terms of CPU time is demonstrated in
Figures 17.6 to 17.8 by plots showing CPU times of both algorithms versus the num-
ber of nodes. CPU times of EPDA are also shown to demonstrate that NSGA2 does
not scale well. In order to compare the speed of KEA with NSGA2 more effectively,
both algorithms have been executed for 1,000 generations. The population sizes of
NSGA2 have been set approximately equal to the Front Occupation of EPDA for
each instance.

The plots show that although NSGA2 is relatively fast for graphs with ≤ 50
nodes, its time complexity becomes impractical for graphs with 100 or more nodes.
For example, Figure 17.7 demonstrates that NSGA2 can take nearly five times
longer than EPDA for a graph with twice the number of nodes. KEA is very fast
compared with both EPDA and NSGA2, e.g. it uses only 1362 seconds on the anti-
correlated instance with 500 nodes.

17.3.6 Scalability of KEA

Generally, MCMST algorithms are tested on two criteria and n < 100 problems. A
proposed benefit of KEA is scalability both in the number of nodes and the number
of criteria. To test scalability in number of nodes, KEA was compared with EPDA
for instances with 150 and 200 nodes on the three benchmark cost types. Because
NSGA2 became impractically slow with these problems (see Figures 17.6 to 17.8),

Fig. 17.9 Attainment surface plots for a Graph with 200 nodes and random costs, (KEA:
g = 60,000), resolution = 60. The middle of the attainment surface of KEA is dominated by
that of EPDA while the tails are almost identical, E ps = 0.01
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it was not tested on these graphs. In the case of graphs with 150 nodes, the S-
measures of KEA were very close to EPDAs. This suggests that the APSs of the
two algorithms were very close, although the positive I-indicators mean that they
were incomparable. However, since I(EPDA) indicators were smaller, it means that
in a weak sense EPDA dominated KEA. The weak dominance of EPDA over KEA
is due to the dominated middle part of KEAs front. The Mann-Whitney rank sum
test indicated that the I values are significantly different in all instances at %99 level
of confidence.

In some 200-node instances, KEA obtained better values for the S-measure than
EPDA. Moreover, although both I-indicators were positive, KEA was better in a
weak sense as its I-indicator was smaller. In the case of Random costs with 200
nodes, the S-measure of KEA was close to EPDAs, suggesting that the APS discov-
ered by KEA was relatively close to the APS of EPDA. The strength of KEA lies in
that it was able to find this APS in a third of the time of EPDA.

The best attainment surface for KEA is compared with EPDA in Figure 17.9,
which confirms that the APSs calculated by the two algorithms are very close except
for the middle section.

17.3.7 Tri-Criterion Instances

To test the scalability in the number of criterion, KEA was executed on benchmark
complete graphs for the tri-criterion case with random costs. Results for 10, 50 and

Table 17.4 (Three Criteria) Values of the S and the I indicators and the CPU times in seconds
averaged over 10 runs of KEA compared with EPDA on graphs with 10, 50 and 100 nodes
and random costs in three criteria

10 Nodes 50 Nodes 100 Nodes
E ps 0.0001 9 9
g KEA 1 K 10 K 30 K
S-value EPDA 9 M 3.296 M 22,575 M
S-value KEA μ , (σ ) 9.5 M , (198 K) 2,988 M , (135 M) 24,088 M , (1,185 M)
I (EPDA, KEA) Median , (IQR) 0 , (0) 69.57 , (26.13) 170.75 , (68.81)
I (KEA, EPDA) Median , (IQR) 2.66 , (5.96) 82.03 , (28.81) 139.67 , (36.85)
Mann-Whitney z-value -3.36 -1.85 -3.74
Significant level > 99% 95% > 99%
CPU Sec. EPDA 2.9 933 86K
CPU Sec. KEA μ , (σ ) 0.65 , (0.08) 887.2 , (51.79) 23 K , (1,797.1)
TTC EPDA 25 K 14,807 K 342,811 K
TTC KEA μ , (σ ) 23 K , (885.8) 13,466 K , (531 K) 205,800 K , (8,657 K)
FO EPDA 628 1,743 4,265
FO KEA μ , (σ ) 624.5 , (3.2) 1,700.1 , (55.6) 3,400.9 , (113.9)
%FO EPDA 2.54% 0.01% 0.001%
%FO KEA μ , (σ ) 2.73% , (0.36%) 0.01% , (0.01) 0.002% , (0.001%)
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100 nodes are compared with those obtained by EPDA in Table 17.4. It can be seen
that KEA is much faster than EPDA, in particular for n = 100. The %FO shows
that the computational effort of the two algorithms is almost identical. In the tri-
criterion case, there is no clear recommendation for the more suitable algorithm as
the I-indicator is positive in all cases. The S-measure suggests that KEA is better for
the 10 and 100 node instances.

The attainment surface obtained by EPDA and the best attainment surface ob-
tained by KEA for the graph with 100 nodes are shown in Figure 17.10. To aid
visualization, the resolution is reduced so that only 84 points are shown on the at-
tainment surfaces. Similar to the bi-criterion case, the APS determined by KEA and
EPDA are close, but EPDA partly dominates KEA.

Fig. 17.10 Attainment surface plot obtained by EPDA and the best attainment surface plot
obtained by KEA for a graph with 100 nodes, random costs and three criteria, (KEA: g =
30000), resolution 14 (only 84 points are projected for clarity), E ps = 9

17.4 Alternative Algorithms Based on KEA

The only deficiency of KEA is that the middle section of the APS it calculates for
large graphs is dominated. As shown in figures 17.3, and 17.9, while the tails of
the attainment surface of KEA are almost identical to those of EPDA, the middle
is dominated. In order to overcome this deficiency, a number of modifications have
been tested [10].

In KEA-M, a version of KEA, the middle point of the APS and all its first neigh-
bours are calculated after the evolutionary Phase 3. These new solutions are then
placed on the existing APS and used to eliminate the dominated points. However,
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Fig. 17.11 The approximate Pareto set obtained by KEA-M after 20000 generations for a
graph with random costs and 100 nodes which shows two gaps and still dominated solutions,
E ps = 0.0001

as seen in Figure 17.11, these solutions are unable to eliminate all the dominated
solutions and leave gaps in the final APS.

In KEA-G all the supported solutions are found and placed on the APS along
with the extreme points in the first phase; and then the other phases are performed
as in KEA. However, this algorithm does not perform well in verification tests as
it is unable to calculate the complete APS. The reason for this failure is that the
supported solutions dominate and consequently eliminate many of the intermediate
solutions whose non-dominated offspring are never produced.

Finally, KEA-W [11] is proposed that includes the search for non-dominated so-
lutions from the middle point of the APS as well as the extreme points. The inclusion
of the middle point, found by the geometric method of Ramos et al. [42], ensures
that the middle section of the APS is not dominated. Verification tests against EXS,
demonstrated that KEA-W is capable of finding all the optimal solutions in graphs
with four to ten nodes in all the instances tested. In particular KEA-W found the
solution that was missed out by both EPDA and KEA in the case of the graph with
random costs and ten nodes.

Further experimental results were carried out with graphs having 20, 30, 50 and
100 nodes and three different cost types, comparing KEA-W with EPDA, KEA and
NSGA2. Table 17.5 shows the statistical results for KEA-W averaged over ten runs
compared with those obtained by KEA, NSGA2 and EPDA. KEA-W has a larger S-
value in all instances compared with KEA and NSGA2, whilst the S-values obtained
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Table 17.5 (100 Nodes, bi-criterion) Mean and standard deviation of the S-measure and other
parameters and the CPU times in seconds averaged over 10 runs of KEA-W compared to those
obtained by KEA, EPDA and NSGA2 on graphs with 100 nodes and three different cost types

Correlated Costs Anti-Correlated Costs Random Costs
E ps 0.0001 0.0001 0.0001
g KEA-W 3 K 20 K 20 K
g KEA 3 K 20 K 20 K
g , P NSGA2 1000 , 1.5 K 500 , 5K 500 , 5 K
S-value EPDA 25.3 2073.5 7,810
S-value KEA-W μ , (σ ) 25.3 , (0.004) 2,073.6 , (0.16) 7,807 K , (1,172)
S-value KEA μ , (σ ) 25.3 , (0.1) 2,063.6 , (6.7) 7,727 K , (30,977)
S-value NSGA μ , (σ ) 17.7 , (1.1) 1,878.7 , (7.9) 1,077 K , (26,700)
CPU Sec. EPDA 78.2 2,407 2,021
CPU Sec. KEA-W μ , (σ ) 874 , (209) 27 K , (8 K) 11 K , (2 K)
CPU Sec. KEA μ , (σ ) 37.1 , (3) 698.3 , (59.8) 515.5 , (51.9)
CPU Sec. NSGA2 μ , (σ ) 1,197 , (21.9) 9,079.8 , (52.4) 8,852.9 , (33.6)
TTC EPDA 412 K 5,696 K 4,643 K
TTC KEA-W μ , (σ ) 56 M , (5 M) 235 M , (25 M) 294 M , (22 M)
TTC KEA μ , (σ ) 383 K , (31 K) 3,759 K , (350 K) 3,063 K , (199 K)
TTC NSGA2 μ , (σ ) 1,942 K , (55 K) 2,938 K , (44 K) 2,837 K , (19 K)
FO EPDA 1,339 4,453 4,805
FO KEA-W μ , (σ ) 1,457 , (40) 5,236 , (86) 5,824 , (207)
FO KEA μ , (σ ) 1,315 , (61.2) 4,255 , (124.1) 4,430 , (139.8)
FO NSGA2 μ , (σ ) 501 , (74.3) 1,550 , (308.3) 1,860 , (208.2)
%FO EPDA 0,32% 0.08% 0.10%
%FO KEA-W μ , (σ ) 0.003% , (0.001) 0.002% , (0.0003) 0.002% , (0.0001)
%FO KEA μ , (σ ) 0.34% , (0.20) 0.11% , (0.04) 0.14% , (0.07)
%FO NSGA2 μ , (σ ) 0.03% , (0.13) 0.05% , (0.69) 0.01% , (1.1)

by EPDA and KEA-W are very close. The inclusion of the mid-point of the PF has
increased the accuracy of KEA-W compared with that of KEA as well as its front
occupation. However, this precision has been achieved at the cost of large CPU time,
which is due to the large total number of STs calculated (TTC). The presence of an
additional search point results in the unnecessary re-evaluation of many solutions.

The median and the inter-quartile range (IQR) values of the I-indicator are shown
in Table 17.6, where lower values indicate better performance. The positive I-
indicators show that KEA-W and KEA are incomparable in all instances. However,
since I(KEA-W, KEA) values are smaller than I(KEA, KEA-W), it can be con-
cluded that, in a weaker sense, KEA-W is better in more than 50% of the runs. The
same conclusion can be made when comparing KEA-W with EPDA. In the case of
NSGA2, the median scores of KEA-W are negative in all instances tested indicating
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Table 17.6 Median and Inter-quartile Range (IQR) values of the Additive Epsilon Indicator
obtained after 10 evaluations of KEA-W, KEA and NSGA2 on graphs with 100 nodes, E ps =
0.0001

Algorithms I-values Correlated Costs Anti-Correlated Costs Random Costs
I(KEA-W, KEA) Median 0.001 0.013 1.219
I(KEA-W, KEA) IQR 0.010 0.014 2.201
I(KEA, KEA-W) Median 0.046 2.361 162.398
I(KEA, KEA-W) IQR 0.019 0.791 36.196

I(KEA-W, NSGA2) Median -0.381 -0.088 -2.434
I(KEA-W, NSGA2) IQR 0.161 0.087 6.879
I(NSGA2, KEA-W) Median 1.179 3.398 301.227
I(NSGA2, KEA-W) IQR 0.352 0.184 12.203
I(KEA-W, EPDA) Median 0.008 0.078 7.019
I(KEA-W, EPDA) IQR 0.010 0.026 0.700
I(EPDA, KEA-W) Median 0.010 0.168 8.912
I(EPDA, KEA-W) IQR 0.000 0.000 0.000

Fig. 17.12 Attainment surface plots obtained by KEA-W, KEA and NSGA2 with a graph
with 100 nodes and anti-correlated costs, resolution 60, total number of test points 120,
E ps = 0.0001
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Fig. 17.13 Attainment surface plots obtained by KEA-W, KEA and NSGA2, with a graph
with 100 nodes and random costs, resolution 60, total number of test points 120, E ps =
0.0001

that it is better than NSGA2 in a strict sense on more than 50% of runs. Therefore,
the additive epsilon indicator confirms the superiority of KEA-W over KEA, EPDA
and NSGA2 in all three instances.

Figures 17.12 and 17.13 compare the best attainment surface plots obtained
by the three algorithms, KEA-W , KEA, and NSGA2 for the random and anti-
correlated costs with E ps = 0.0001. These figures show that the middle section of
each surface plot of KEA is dominated by KEA-W. NSGA2 mostly dominates the
middle portion of KEA and is almost superimposed on the middle section of KEA-
W. However, the tails of KEA-W dominate those of NSGA2. Therefore, the attain-
ment surface plots also attest the superiority of KEA-W over KEA and NSGA2.

In order to discover how expensive these algorithms are if only an approximate
PF is sought, all the four algorithms were executed for a limited time and their At-
tainment surface plots are compared in Figure 17.14. The solutions of NSGA2 are
dominated by the other three techniques when the CPU time is limited. EPDA di-
verges away from the middle of the APS, so it is dominated by KEA which diverges
less. At this middle point of the APS, KEA-W dominates all algorithms, but di-
verges on either side of the APS, where it is dominated by KEA and EPDA. Thus,
when time is limited, a member of the KEA family can be selected depending on
the part of the APS of interest.
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Fig. 17.14 Attainment surface plots for a graph with 100 nodes and random costs, where the
execution time has been limited to approximately 515 sec. EPDA FO = 2,782, approximate
KEA FO = 4,317, NSGA2 FO = 21, KEA-W FO = 1,629, resolution = 60, total no. of test
points = 120, E ps = 0.0001

17.5 Discussions and Analysis

The main strength of the proposed approach of KEA is that it incorporates domain
knowledge both prior and during the evolutionary process in order to get as close to
the true PF as possible. The large spread and front occupation of KEA is due to its
initial population that contains the extreme points of the PF and their non-dominated
neighbors, most of which are optimal solutions. This elite initial population helps to
concentrate the search in a specific area of the combinatorial search space. NSGA2
was also given a deterministic initial population consisting of all the n star trees that
contain all the edges (genes).

Another reason for the speed of KEA is that it allows only mutations. A crossover
operation, such as used in NSGA2, does not usually produce non-dominated solu-
tions in the MCMST problem, so any associated algorithm will be slow to find
non-dominated solutions.

Moreover, the mutation operator in KEA is knowledge-based, and adopts a
greedy-type heuristic, which also helps to eliminate the calculation of dominated
solutions. The advantage of heuristics is high performance in solving specific prob-
lems, but their disadvantage is in the low applicability. However, the underlying
philosophy of KEA can be extended to other domains, in particular its method of
exploring the multi-objective landscape.
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One of the advantages of KEA is having an APS with flexible size. In most al-
gorithms the APS is a vector with a fixed size. Therefore if the APS is full, when
new solutions are found other solutions have to be discarded. This may be a disad-
vantage since valuable information is lost. Given the present computational memory
capacity, a large APS should not cause computational problems. If in special appli-
cations there is a risk of memory getting saturated, the size of APS can be tailored
accordingly. KEA controls the size of the APS in two ways. By varying the precision
parameter, E ps, different sizes of APS can be obtained. Furthermore, the solutions
with equal fitness functions are deleted from the APS.

Most algorithms proposed in literature have been tested with integer costs. In
the past, to the best of our knowledge, only Kumar et al. [33], who have used real-
valued data, have made observations about the effects of the precision parameter,
E ps. Other researchers have fixed the precision parameter and therefore have not
noted that with different values of the precision parameter they could have obtained
different sized APSs in the objective space. It is emphasized that the precision pa-
rameter affects the Pareto front only in the objective space. The number of the opti-
mal solutions in the decision space will not be affected; regardless of the value of the
precision parameter. Nevertheless, since algorithms are compared with their APS in
the objective space, it is important to note the value of the precision parameter used
when results are reported to enable meaningful comparisons with future algorithms.

The only weakness of KEA lies in its dominated solutions in the middle of the
APS in certain instances. This is because these points are the farthest away from
the initial ancestors, the end points of the PF. Moreover, unlike EPDA that mutates
systematically all the STs in the APS, KEA selects the STs randomly. This has a
number of important effects. 1) KEA is substantially faster since not all STs are
mutated. 2) At each iteration, dominated STs are eliminated, which again speeds
up future processing, but at the cost that the non-dominated offspring of these STs
cannot be produced. 3) Some existing non-dominated STs may not be selected in
order to produce new non-dominated offspring. The last two effects result in the
dominated middle section of the APS.

17.6 Conclusions

A fast knowledge-based Evolutionary Algorithm, called KEA, was presented for
the multi-criterion minimum spanning tree problem. KEA was validated and tested
using hard benchmark instances of the problem generated with algorithms from
literature. The verification tests in the bi-criterion case against an exhaustive search
algorithm, for complete graphs having four to ten nodes and three different cost
functions, showed that KEA is capable of finding the true Pareto fronts.

KEA was compared with an adapted NSGA-II (NSGA2), on complete graphs
with 20, 30, 50 and 100 nodes and three different cost functions. The approximate
Pareto sets calculated by a deterministic algorithm (EPDA) were used as reference.
It was shown that KEA outperforms NSGA2 in terms of speed, spread and front
occupation. Further experiments with larger graphs of up to 200 nodes in two criteria
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and up to 100 nodes in three criteria showed that it can obtain approximate Pareto
sets that are almost as good as those obtained by EPDA in less time. The speed of
KEA was demonstrated on problems with up to 500 nodes. The main advantages of
KEA over its predecessors include its scalability to more than two criteria; its ability
to calculate both the supported and the non-supported Pareto optimal solutions ;
exploring regions of the search space that other algorithms do not thus finding evenly
distributed Pareto fronts; and its speed making it applicable to problems with more
than 500 nodes.

The only deficiency of KEA is that the middle section of its approximate Pareto
sets for large graphs is dominated. In order to overcome this deficiency, a number
of modifications were tested. It was found that KEA-W obtains the best results at
the cost of large CPU times. Therefore when time is expensive and constitutes a
limiting factor, KEA is still preferable over all the algorithms tested.

Although KEA has been tailored for the MCMST problem, its underling phi-
losophy is anticipated to be applicable to other domains, where the calculation of
extreme points is possible.
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Chapter 18
Loss-Based Estimation with Evolutionary
Algorithms and Cross-Validation

David Shilane, Richard H. Liang, and Sandrine Dudoit

Abstract. Statistical estimation in multivariate data sets presents myriad challenges
when the form of the regression function linking the outcome and explanatory vari-
ables is unknown. Our study seeks to understand the computational challenges of
regression estimation’s underlying optimization problem and design intelligent pro-
cedures for this setting. We begin by analyzing the size of the parameter space in
polynomial regression in terms of the number of variables and the constraints on
the polynomial degree and the number of interacting explanatory variables. We sub-
sequently propose a new procedure for statistical estimation that relies upon cross-
validation to select the optimal parameter subspace and an evolutionary algorithm
to minimize risk within this subspace based upon the available data. This general
purpose procedure can be shown to perform well in a variety of challenging mul-
tivariate estimation settings. Furthermore, the procedure is sufficiently flexible to
allow the user to incorporate known causal structures into the estimate and to ad-
just computational parameters such as the population mutation rate according to the
problem’s specific challenges. Furthermore, the procedure can be shown to asymp-
totically converge to the globally optimal estimate. We compare this evolutionary
algorithm to a variety of competitors over the course of simulation studies and in
the context of a study of disease progression in diabetes patients.

18.1 Introduction

Many statistical inference methods rely on selection procedures to estimate a param-
eter of the joint distribution of the data structure X = (W,Y ) that consists of explana-
tory variables W = (W1, . . . ,WJ), J ∈ Z+, and a scalar outcome Y . The parameter of
interest often takes the form of a functional relationship between the outcome and
explanatory variables, as in the regression setting’s estimation of E[Y |W ], the condi-
tional expectation of the outcome given a set of covariates. In loss-based estimation,
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the parameter of interest is defined as the risk minimizer for a user-supplied loss
function. Risk optimization is particularly challenging for high-dimensional estima-
tion problems because it requires searching over large parameter spaces to accom-
modate general regression functions with possibly higher-order interactions among
explanatory variables. We will show that the size of the parameter space in poly-
nomial regression grows at a doubly exponential rate. In light of this expensive
optimization problem, we seek new procedures that rely upon computational intel-
ligence to provide accurate statistical estimates. In this study, we propose an evolu-
tionary algorithm (EA) for risk optimization that may be applied in the context of
loss-based estimation with cross-validation.

Statistical estimation in regression settings may consider a variety of approaches.
For a fixed regression function relating the outcome and explanatory variables, a
least squares approach [12] may be employed when the sample size is large rela-
tive to the number of explanatory variables. When the sample size is insufficient
for the dimension of the problem, sparse regression procedures such as the Lasso
[19], Least Angle Regression [10], or the Dantzig Selector [4] may be applied as
shrinkage procedures. By including only a small number of explanatory variables as
main effects, these estimators aim to produce interpretable models of the outcome.
By contrast, other estimators focus solely on their predictive value; these include
Classification and Regression Trees [3], Random Forests [2], Multivarite Adaptive
Regression Splines [13, 14], and neural network approaches [17]. Loss–based esti-
mation with cross–validation seeks to balance the goals of producing interpretable
models and reliable estimates with predictive value by selecting among a variety
of candidate estimators in terms of their fit on an independent validation set. Like
shrinkage procedures, loss–based estimation with cross-validation results in some
degree of variable selection but also allows for the exploration of higher–order vari-
able interactions. Furthermore, cross–validation can be shown to be an asymptot-
ically optimal selection procedure in terms of the sample size [7, 15]. Because of
its strong theoretical properties and its utility in producing reliable and interpretable
estimates, we will rely upon cross–validation as a general method for estimation and
propose a new procedure for risk optimization to be used within this context.

The proposed methodology is motivated by the general road map for statisti-
cal loss–based estimation using cross–validation of van der Laan and Dudoit [15]
and Dudoit and van der Laan [7]. Risk optimization may be considered a sub–
problem of this road map. Sinisi and van der Laan [16] introduced a general Dele-
tion/Substitution/Addition (DSA) algorithm for generating candidate estimators that
seek to minimize empirical risk over subspaces demarcated by basis size (Section
18.3.1). However, Wolpert and MacReady [20] have shown that no single optimiza-
tion algorithm can competitively solve all problems; therefore, we are interested in
generating complementary risk optimization algorithms for use in estimator selec-
tion procedures. Within the estimation road map [7, 15], this project seeks to analyze
the size of the parameter space for a polynomial regression function in terms of the
number of explanatory variables, the maximum number of interacting variables, and
either the polynomial degree or the variable degree. It also introduces an EA to gen-
erate candidate estimators and minimize empirical risk within parameter subspaces.
Relying upon V-fold cross-validation to select an optimal parameter subspace, the
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procedure effectively estimates the parameter of interest in a manner that seeks to
minimize true risk.

The proposed EA for estimator selection includes a stochastic mutation mecha-
nism that can be shown to assign all candidate estimators within a parameter subspace
to a single communicating class. By doing so, the EA prevents the risk optimization
from becoming trapped at local optima. An elitist selection procedure is employed
to retain the best candidate estimator among those considered at every generation
of the evolution process. When all candidate estimators form a single communicat-
ing class and the selection mechanism is elitist, the optimization algorithm converges
asymptotically in generation to the global optimum [11]. The EA also includes com-
putational parameters such as the population size and mutation probability that may
be varied to produce an arbitrary number of different optimization routines; this al-
lows the user to tailor the procedure to the problem at hand. The proposed algorithm
may also be applied to general parameterizations and loss functions. Finally, the EA
is modular in its design, so the user may easily substitute alternative components ac-
cording to situational needs. As a result, the proposed estimator selection procedure
is widely applicable in scientific settings such as regression studies in biology and
public health. In addition to studying the proposed algorithm’s efficacy through sim-
ulation experiments, we investigate a diabetes data set to explore the combination of
factors contributing to the progression of the disease in human patients.

Section 18.2 summarizes loss-based estimation with cross-validation and outlines
our procedure for estimator selection. Section 18.3 reviews the parametrization of
polynomial basis functions, considers constraints that may be imposed on the degree
and interaction order of these basis functions, and analyzes the size of the parameter
space under specific combinations of these constraints. Section 18.4 proposes a new
EA for risk optimization that may be applied within the procedure of Section 18.2.2.
Section 18.5 compares the performance of the proposed EA to that of the DSA in
simulation experiments. We then apply these techniques in Section 18.6 to estimate
a regression function in the context of a diabetes study. Section 18.7 concludes the
study with a discussion, and Section 18.8 is an appendix of further details for the
analysis of the parameter space.

18.2 Loss-Based Estimation with Cross-Validation

18.2.1 The Estimation Road Map

As summarized by Dudoit and van der Laan [7], we assume that the data X
are generated according to a distribution P belonging to a statistical model M ,
which is a set of possibly non-parametric distributions. Consider a parameter map-
ping Ψ : M → F (D ,R) from the model M into a space F (D ,R) (or F in
short) of functions with domain D and range R. A parameter is a realization
ψ ≡Ψ(P) : D → R of Ψ for data generating distribution P. The parameter space
is defined as Ψ≡ {ψ =Ψ(P) : P ∈ M } ⊆ F . Given a random variable X and a
parameter value ψ , a loss function L(X ,ψ) : (X ,ψ) → R is a measure of distance
between the parameter and the data. Given a data generating distribution P, we can
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summarize loss in terms of a corresponding risk function, which is defined as the
expected value of the loss function:

Θ(ψ ,P) ≡
∫

L(x,ψ)dP(x) = E[L(X ,ψ)]; P ∈ M . (18.1)

It is assumed that the loss function is specified such that the parameter of interest ψ
minimizes the risk function. For instance, in regression, the parameter of interest is
the regression function ψ(W ) = E[Y |W ], which minimizes risk for the L2 loss func-
tion L(X ,ψ) = (Y −ψ(W ))2. We can then define the optimal risk over the parameter
space as:

θ ≡Θ(ψ ,P) = min
ψ ′∈Ψ

Θ(ψ ′,P) = min
ψ ′∈Ψ

∫
L(x,ψ ′)dP(x). (18.2)

Given Xn, a set of n independent, identically distributed (i.i.d.) observations of data
Xi = (Wi,Yi), i ∈ {1, . . . ,n}, from (typically unknown) distribution P, our goal is to
select an estimator ψn = Ψ̂(Pn) based upon the empirical distribution Pn of the data
Xn in a manner that seeks to minimize true risk. The empirical risk of a parameter
value ψ is defined as:

Θ(ψ ,Pn) ≡
∫

L(x,ψ)dPn(x) =
1
n

n

∑
i=1

L(Xi,ψ). (18.3)

The general road map for loss-based estimation [7, 8, 15] contains three steps:

1. Define the parameter of interest. This parameter is the value that minimizes risk
for a user-supplied loss function.

2. Generate candidate estimators. The parameter space is divided based upon a
sieve of increasing dimensionality into subspaces whose union approximates the
complete parameter space. Within each subspace, a candidate estimator is chosen
to minimize empirical risk.

3. Apply cross-validation. Select the optimal estimator among the candidates pro-
duced in Step 2 using cross-validation.

18.2.2 Estimator Selection Procedure

An estimatorψn seeking to minimize empirical riskΘ(ψn,Pn) on the learning set Xn

is prone to over-fitting at the expense of predictive value. The general road map for
loss-based estimation [7] resolves the issue of over-fitting by first selecting a subspace
of the parameter space using a cross-validation procedure and then selecting the op-
timal estimator to minimize empirical risk on the learning set over this subspace. We
may apply the estimation road map in the following estimator selection procedure:

1. The user specifies a set K of candidate subsets of the parameter space to be
searched. By default, the subspaces are indexed by K = {1, . . . ,K}, with K ∈Z+.

2. The user specifies V ∈ Z+, the number of folds to use in cross-validation. Al-
though we employ V -fold cross-validation in this procedure, it should be noted
that alternative cross-validation procedures such as Monte-Carlo cross-validation
may be substituted [7].
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3. Data points Xi = (Wi,Yi), i ∈ {1, . . . ,n}, from the learning set Xn are randomly as-
signed to a class in {1, . . . ,V} such that each class contains an approximately equal
number of observations. Let Q = (q1, . . . ,qn) refer to the data’s class assignments.

4. For each fold v ∈ {1, . . . ,V}:

a. Assign data points to the training set:

Tn(v) = {Xi : qi �= v} . (18.4)

b. Assign data points to the validation set:

Vn(v) = {Xi : qi = v} . (18.5)

c. For each candidate subspace k ∈ K :
i. Search within the subspace for the candidate estimator ψk,n that minimizes

empirical risk on the training set Tn(v).
ii. Compute the validation set risk Θ

(
ψk,n,P

Vn(v)
n

)
, where PVn(v)

n represents

the empirical distribution on the validation set Vn(v).

5. Calculate the mean cross-validated risk for each subspace and store it in the vector

ΘCV ≡(
ΘCV

1 , . . . ,ΘCV
K

)
=

(
1
V

V

∑
v=1

Θ
(
ψ1,n,P

V (v)
n

)
, . . . ,

1
V

V

∑
v=1

Θ
(
ψK,n,P

V (v)
n

))
.

(18.6)
6. Select the subspace that minimizes mean cross-validated risk:

kn = argmin
k∈{1,...,K}

ΘCV
k . (18.7)

7. Finally, search within the parameter subspace kn for the estimate ψn minimizing
empirical riskΘ (ψn,Pn) on the learning set data Xn.

Steps 4(c)i and 7 of the above procedure rely upon searching a parameter subspace
for the estimator that minimizes empirical risk when applied to the specified (train-
ing or learning) data set. An exhaustive search of the parameter subspace may be
employed when doing so is computationally tractable. However, in estimation prob-
lems over general regression functions with possibly higher-order interactions, the
parameter space can grow complex and large (Section 18.3.3) for even a moder-
ate number of explanatory variables. We therefore require a search algorithm to
minimize risk within a parameter subspace in the allotted computational time. The
DSA [16] is one candidate search algorithm; Section 18.4 will introduce a class of
evolutionary algorithms as an alternative procedure for risk minimization.

18.3 The Parameter Space for Polynomial Regression

18.3.1 Parametrization

Given a parameter of interest ψ and a suitable loss function L(X ,ψ), we seek to
characterize the set of candidate estimators to be searched by an estimator selection
procedure. In regression, the parameter space can be defined by the class of basis
functions for the explanatory variables (e.g. polynomial functions or set indicators),
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the choice of the link function (e.g. logit or probit) mapping the selected basis func-
tions to the outcome variable, and the constraints that limit the way in which explana-
tory variables may interact. Much as in Sinisi and van der Laan [16], the proposed
estimator selection procedure may be applied to any estimation setting, including but
not limited to robust and weighted regression, censored data structures, and gener-
alized linear models for any choice of link function h : R → R. Because of its ap-
proximation capabilities [18], we will focus on the parameter space consisting of the
set of polynomial combinations of the explanatory variables with real-valued coeffi-
cients. In this parametrization, the set of basis functions Φ consists of all monomial
functions φ that can be expressed in terms of an exponent vector d = (d1, . . . ,dJ) as

φ = W d ≡W d1
1 · · ·WdJ

J . (18.8)

A parameter value ψ may be specified in terms of a subset of basis functions:

ϕ =
{
φi1 , . . . ,φik

}⊆Φ, (18.9)

with cardinality |ϕ |= k referred to as the basis size. Given the link function h, a size
k set of basis functions ϕ , and a (k + 1)-dimensional vector β = (β0,β1, . . . ,βk) of
real-valued coefficients, a regression function for ψ has the form

ψ = h

(
β0 + ∑

i:φi∈ϕ
βiφi

)
. (18.10)

In seeking an estimate ψn that minimizes true risk, we will first search for the opti-
mal set of basis functions ϕn and then subsequently seek an optimal estimate βn of
β . Estimating β given ϕn is a standard regression problem that is solved in a closed
form for linear regression and with numeric optimization methods for non-linear
regression. Given ϕn and βn, the estimate ψn is defined as:

ψn = h

(
β0n + ∑

i:φi∈ϕn

βinφi

)
. (18.11)

18.3.2 Constraints

At the user’s discretion, constraints may be imposed on the set of basis functions
Φ . These constraints may take the form of limits on the interaction order and the
polynomial or variable degree. The interaction order constraint, which limits the
number of variables that interact in a basis function, may be stated as:

1 ≤
J

∑
j=1

1{d j > 0} ≤ S; S ∈ Z+. (18.12)

A polynomial degree constraint may be phrased in the form:

1 ≤
J

∑
j=1

d j ≤ D; d j ∈ Z+, j ∈ {1, . . . ,J}. (18.13)
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A variable degree constraint, which may be used as an alternative to the polynomial
degree constraint, allows each component variable in a basis function to indepen-
dently attain a maximum degree D0. The variable degree constraint is:

0 ≤ d j ≤ D0; j ∈ {1, . . . ,J} with
J

∑
j=1

d j ≥ 1. (18.14)

Although the constraints (18.12), (18.13), and (18.14) are not required, they allow
the researcher to restrict attention to a particular subset of the class of chosen basis
functions. By default, the interaction order S can be no greater than min(J,D) under
constraint (18.13) and is limited to J under (18.14). The extreme cases S = 1 and
either S = min(J,D) or S = J correspond, respectively, to constraints allowing no
interactions and interactions of any order.

18.3.3 Size of the Parameter Space

Under the above formulation, the set of basis functions Φ consists of all unique
monomials φ corresponding to an exponent vector d = (d1, . . . ,dJ) satisfying the
interaction order constraint (18.12) and either the polynomial degree constraint
(18.13) or the variable degree constraint (18.14). We can then determine the num-
ber I of basis functions in Ψ using combinatorial arguments. When subject to the
polynomial degree constraint (18.13), the value of I is given by:

I =
S

∑
s=1

(
J
s

)[
1 +

D

∑
d=s+1

min(s,d−s)

∑
k=1

(
s
k

)(
d− s−1

k−1

)]
. (18.15)

The sum from s = 1 to S represents all possible values for the number of variables
to appear in a monomial. Once this is selected, the

(J
s

)
term provides the num-

ber of ways to choose s variables Wj1 , . . . ,Wjs from the J total variables. Given
Wj1 , . . . ,Wjs , we turn our attention to the number of valid monomials using exactly
all of these variables. Because the multilinear term Wj1Wj2 · · ·Wjs is always included,
the number of valid monomials is 1 plus the number of higher-order monomials. The
sum from d = s + 1 to D represents the choice of higher order polynomial degree
for the monomial in the set {s+ 1, . . . ,D}. Once we have chosen a degree, we must
distribute it over all of the selected variables. Knowing that each of these s variables
must have a degree of at least one, this leaves d − s powers to distribute to s vari-
ables. The sum over k chooses the number of monomial variables allocated a higher
degree. A total of

(s
k

)
combinations of variables may receive higher power. Finally,

by a well-known result in combinatorics, the number of ways to distribute at least
one degree to each of the k variables selected to receive more power is

(d−s−1
k−1

)
.

As an example, suppose we assign S = 1 and impose constraint (18.12) to pre-
clude all variable interactions. In this case, the summations over s and k involve only

a single iteration, leaving us with
(J

1

)[
1+

D

∑
d=2

(
1
1

)(
d−2

0

)]
=
(J

1

)
[1+(D−1)]=JD.
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That is, when no variables may interact, the set of possible basis functions con-
sists of all choices of a single variable Wj, j ∈ {1, . . . ,J}, raised to a power
d j ∈ {1, . . . ,D}.

When the parameter space is instead restricted by the variable degree constraint
(18.14), the number of basis functions is I0:

I0 =
S

∑
s=1

(
J
s

)
Ds

0. (18.16)

In (18.16), all allowed basis functions may be categorized by the number of interact-
ing variables s ∈ {1, . . . ,S}. Given s, a total of

(J
s

)
combinations of variables may be

selected to interact. Each of these interacting variables must have a positive degree
in the set {1, . . . ,D0} that may be assigned independently. For a given regression set-
ting subject to the above constraints, the number of basis functions I (18.15) (or I0

(18.16)), provides an indication of the problem’s size and may be used to guide the
selection of computational parameters in the risk optimization algorithm. Because
each basis function may be included in or excluded from a regression function, there
are 2I (or 2I0 ) possible estimators among which to choose. Within a size k parameter
subspace, exactly k basis functions are included in any estimator, so the subspace
contains

(I
k

)
or

(I0
k

)
estimators, respectively. We can analyze the size of the param-

eter space by providing upper and lower bounds on the number of basis functions.
Using the notation of Cormen et al [6], the functions Ω and O may be used to spec-
ify asymptotic lower and upper bounds on the order of the number of basis functions
I or I0 in terms of the interaction order bound S and the polynomial degree bound
D or variable degree bound D0, respectively. (Please refer to the Appendix for de-
tails.) When subject to the interaction order constraint (18.12) and the polynomial
degree constraint (18.13), the value of I is bounded below by a function of order
Ω
(
2S
)
. When the variable degree constraint (18.14) is employed subject to the in-

teraction order constraint (18.12), the value of I0 is bounded below by a function
that is Ω

(
DS

0

)
. When no interaction order constraint is imposed, then S = min(J,D)

under the constraint (18.13), and so the lower bound on I is Ω
(

2min(J,D)
)

. Like-

wise, when no interaction order constraint is imposed under the constraint (18.14),
then S = J, and I0 is bounded below by Ω

(
DJ

0

)
. Because all interactions are allowed

when S = J, the summation for I0 in (18.16) may be expressed as a polynomial in
D0 of degree J. Therefore, when S = J, I0 is both Ω

(
DJ

0

)
and O

(
DJ

0

)
, which jointly

imply a tight bound on I0. The latter bound may also be used as a loose upper bound
when S < J. Furthermore, because any basis function allowed under the constraints
(18.12) and (18.13) is also permitted under (18.12) and (18.14) when D = D0, this
upper bound on I0 is also a trivial upper bound on I. Therefore, I is O

(
DJ

)
. Finally,

because the size of the parameter space is 2I or 2I0 , these quantities are respec-

tively bounded below by functions of order Ω
(

22S
)

and Ω
(

2DS
0

)
. Likewise, upper

bounds of O
(

2DJ
)

and O
(

2DJ
0

)
may also be established, where the former is a

trivial bound, and the latter is a loose bound that is only tight in the extreme case of
S = J. These results are proved in the Appendix and summarized in Table 18.1.
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Table 18.1 Size of the parameter space under the interaction order constraint (18.12) and
either the polynomial degree constraint (18.13) or the variable degree constraint (18.14)

Polynomial Degree Constraint (18.13) Variable Degree Constraint (18.14)

Upper Bound O
(

2DJ
)

O
(

2DJ
0

)
Lower Bound Ω

(
22S

)
Ω
(

2DS
0

)

Because the size of the parameter space is at least of a doubly exponential order
of the number of variables J and the polynomial degree bound D or variable de-
gree bound D0 when the interaction order is not constrained, even moderate degree
constraints imposed on a small number of variables may result in an intractable pa-
rameter space to search. In this setting, significant computation may be required to
obtain a reliable estimate of the parameter of interest. Figure 18.1 depicts the growth
of log(I) and log(I0) as the polynomial degree bound D and the variable degree
bound D0 increase in an estimation setting with J = 11 variables and no interaction
order constraint; i.e. S = min(J,D) for the constraint (18.13), and S = J for the con-
straint (18.14). The approximately linear growth on the logarithmic scale confirms
that the values I and I0 are exponential functions of their respective degree bounds.
The value I is consistently smaller than I0 because the polynomial degree constraint
(18.13) restricts the parameter space to a subset of that specified by the variable de-
gree constraint (18.14). Furthermore, the maximum value of S under the constraint
(18.14) is J, whereas S is constrained to min(J,D) ≤ J under the constraint (18.13).
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Fig. 18.1 The natural logarithm of the numbers of basis functions I and I0 as a function
of the polynomial degree bound D and the variable degree bound D0, respectively, for J =
11 variables and no interaction order constraint. For the constraint (18.13), we have S =
min(J,D), and for the constraint (18.14), this value is S = J
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Fig. 18.2 The natural logarithm of the number of basis functions I0 as a function of the
interaction order bound S for J = 11 variables with the variable degree constraint (18.14)
specified by D0 = 5

Therefore, for a fixed level of the interaction order bound S, the polynomial degree
constraint (18.13) always results in a smaller parameter space than that specified by
the variable degree constraint (18.14) when D = D0.

Figure 18.2 plots the growth of log(I0) as a function of the interaction order
bound S for an estimation setting including J = 11 variables and degree bound D0 =
5, which corresponds to Model 5 presented in Section 18.5. In practice, S is often
chosen according to scientific insight for the problem at hand. However, the choice
of S can also be used to effectively prune the parameter space to a manageable size.

18.4 Evolutionary Algorithms as Risk Optimization Procedures

Evolutionary Algorithms (EA) comprise a class of stochastic optimization algo-
rithms that generate candidate solutions via a process similar to biological evolution
[1, 11]. Although Wolpert and MacReady [20] have shown that no single algorithm
can best solve all optimization problems, EAs are sufficiently flexible to be applied
to many types of problems, perform reasonably well in a variety of settings, and
provide few difficulties in software development [11]. Furthermore, we can imme-
diately generate many candidate algorithms for comparison by varying the proposed
EA’s computational parameters. In this section, we will familiarize the reader with
EA methodology, elucidate the underlying stochastic process by which an EA seeks
to optimize a function, and incorporate this class of algorithms as a search procedure
in estimator selection (as in Section 18.2.2).

An EA seeks to optimize a real-valued objective (or fitness) function. When gen-
erating candidate estimators ψn, our objective is to minimize the riskΘ(ψn,P) over
parameter subspaces, where, depending upon the context, P denotes the empirical
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distribution for either the full learning set or a cross-validation training set. A can-
didate optimum of this fitness function is given by an individual consisting of a
genotype vector e = (e1, . . . ,ekJ) ∈ (R+)kJ and a corresponding phenotype vector:

d=d(e)≡([d(e1, . . . ,eJ)] , [d(eJ+1, . . . ,de2J)] , . . . ,
[
d(e(k−1)J+1, . . . ,ekJ)

])∈(R+)kJ
.

(18.17)
Each block of J phenotypic components

[
d(e( j−1)J+1), . . . ,d(e jJ)

]
serves as the ex-

ponent vector of a particular basis function, and the k basis functions collectively
specify a subset ϕ of the form (18.9) that map to a candidate optimum ψn. An indi-
vidual’s fitness is given by the riskΘ(ψn,P) of its associated estimate ψn. Although
the user may proceed by directly specifying a phenotype vector, a data structure
including both a genotype and a phenotype allows for a greater variety of evolution-
ary information to be stored in an individual. For instance, a continuous genotype
may be used to break ties in the phenotype when an interaction order constraint is
imposed. In this setting, the elements of the genotype vector e may belong to the
positive real numbers R+, the elements of the phenotype vector d may be limited
to the set of positive integers Z+, and any function with domain R+ and range Z+

may be used to map from an individual’s genotype to its phenotype. In the proce-
dure of Section 18.4.1, we choose this function according to the selected degree
and interaction order constraints. When an interaction order constraint is imposed, a
continuous genotype structure allows some genes to maintain a genotype while re-
maining dormant in terms of phenotype. In this scenario, if a gene whose phenotype
previously interacted mutates, a gene of dormant phenotype may immediately take
its place as one of the at most S interacting phenotypic components of a given basis
function. Furthermore, a data structure incorporating both a genotype and a pheno-
type generalizes the EA so that it may be tailored to a particular constraint profile
(e.g. those of Section 18.3.2) solely through the choice of the phenotype function.

Starting from a random initial population, EAs typically generate subsequent
populations of individuals in generations of offspring created from existing par-
ents via iterations of evolutionary mechanisms. Although other mechanisms may be
used, each generation of the proposed EA consists of a reproduction, mutation, and
selection phase, and these mechanisms collectively create and evaluate new indi-
viduals for quality in terms of fitness. After allowing the population to evolve for
G ∈ Z+ generations, the individual with optimum observed fitness is retained as the
algorithm’s result, which specifies an estimate ψn with an associated risk given by
Θ(ψn,P).

18.4.1 Proposed EA

The following EA is used to optimize risk within a parameter subspace of size
k ∈ Z+ based on monomial basis functions of the J explanatory variables un-
der the interaction order constraint (18.12) and either the polynomial degree con-
straint (18.13) or the variable degree constraint (18.14). A schematic diagram of this
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algorithm is depicted in Figure 18.3. Each step of the algorithm is first summarized
here and then further elucidated below.

Fig. 18.3 Schematic diagram for the proposed EA risk optimization procedure

1. Initialization: Create a population of candidate solutions.
2. Evolution: Create a new population from the existing population. The three evo-

lutionary mechanisms are performed in order at each of G generations:

a. Selection: Rank individuals according to fitness and select a proportion of the
population to survive and mate.

b. Reproduction: Pair selected individuals and create offspring via a random
combination of parental genotypes.

c. Mutation: Alter offspring genotypes according to a stochastic mutation pro-
cess.

3. Result: After G generations of evolution, perform the selection mechanism on
the resulting population and return the individual with optimal fitness as the EA’s
result. This individual’s phenotype vector d has an associated subset of basis
functions ϕn that correspond to an estimate ψn according to (18.11).

Mapping from Genes to Estimates: The following steps may be used to map from
a genotype vector e to a candidate estimate ψn:

1. Each individual contains k blocks of J genes. Rank gene values within each block
in decreasing order in a vector r:

r =
(
(r1, . . . ,rJ) ,(rJ+1, . . . ,r2J) , . . . ,

(
r(k−1)J+1, . . . ,rkJ

))
(18.18)

so that each block (r( j−1)J+1, . . . ,r jJ), j ∈ {1, . . . ,k}, contains a permutation of
{1, . . . ,J}. When the interaction order constraint (18.12) is employed, this rank-
ing is used to select the basis function corresponding to the (at most) S genes of
largest value in each block.
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2. Calculate the individual’s phenotype vector d from its genotype e. This compu-
tation differs depending on which degree constraint is used. However, this step is
the only location within the EA for which the procedure differs depending upon
the constraint. This is an additional advantage of a data structure that includes
both a genotype and a phenotype.

• For the polynomial degree constraint (18.13): Within each block of J genes of
the genotype vector e, begin with the variable of highest rank (corresponding
to the largest gene value). Assign the minimum of the floor of this gene value
and the remaining polynomial degree as the variable’s phenotype within the
block. Repeat this procedure on each variable in order of its gene rank until the
monomial is of degree D or the interaction order constraint (18.12) is binding.

• For the variable degree constraint (18.14): Within each block of J genes, com-
pute the phenotype by assigning the floor of the genotype for each of the at
most S interacting variables. (Because all gene values are within the inter-
val (0,D0 + 1), the floor function ensures that no phenotype exceeds D0.) All
non-interacting variables receive phenotype 0. This computation may be per-
formed via the following equation:

d = 
e�1{r ≤ S} = (
e1�1{r1 ≤ S}, . . . ,
ekJ�1{rkJ ≤ S}) . (18.19)

In order to ensure that the resulting monomials are all of degree at least 1 under
each of the above degree constraints, the variable of highest rank within each
block of J genes may receive a phenotype of 1 when all gene values within the
block are less than 1.

3. Given a phenotype vector d, an individual has an associated subset of basis func-
tions ϕn. Calculate from ϕn the corresponding estimate ψn according to (18.11).

Initialization: The user may specify the number Z ≥ 4, Z ∈ Z+, of individuals in
the initial population. Recall that the genotype vector e for an individual has length
kJ. Initialization consists of generating genotype vectors for each individual from a
(kJ)-variate uniform distribution on (0,D+ 1)kJ or (0,D0 + 1)kJ .

Selection: Given a population of individuals, each with an associated estimate ψn,
we will rank individuals according to fitness via the following procedure:

1. Compute empirical risk Θ(ψn,P), where P is the empirical distribution with re-
spect to either a cross-validation training data set Tn or the learning set Xn.

2. Rank existing individuals in order of increasing empirical risk. Select the 2
Z/4�
individuals with smallest empirical risk for reproduction. We will refer to the
ranked population as (e[1], . . . ,e[Z]), with each e[z] mapping to the gene vector e
for the individual with the zth smallest risk.

An individual may be considered cumulatively optimal at generation g if its asso-
ciated estimate ψn has a smaller risk than that of any other individual produced in
the first g generations. The proposed selection mechanism is elitist in the sense that
the cumulatively optimal individual is always selected at each generation. (Indeed,
if the cumulatively optimal individual at generation g is not selected at generation
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g + 1, then it is supplanted by some other individual with an associated estimate of
smaller risk. This new individual is then cumulatively optimal at generation g + 1.)
As a result, the associated estimate of the EA’s cumulatively optimal individual is
monotonically non-increasing in risk as a function of the generation of evolution.

Reproduction: Create offspring from selected individuals via the following
procedure:

1. Assign selected individuals to mating pairs in order of increasing empirical risk.
The individuals e[1] and e[2] are assigned to a mating pair, and the process is
repeated on the remaining population until 
Z/4� pairs of individuals have been
assigned.

2. Breed each mating pair to produce C = 2 offspring. For each child c∈ {1, . . . ,C},
generate a Bernoulli(p) random variable γc. The default value of p is 0.5.

3. Given the population sorted in order of fitness, then, for z ∈ {1, . . . ,
Z/4�}, con-
struct each child’s genotype vector as:

e [
Z/2�+ 2(z−1)+ c] = (γc)pmax(e [2z−1] ,e [2z])
+(1− γc) pmin(e [2z−1] ,e [2z]) . (18.20)

That is, a child’s genotype is produced via either the pairwise maximum or pairwise
minimum of the parental genes according to the flip of a weighted coin with proba-
bility p of selecting the pairwise maximum. The pairwise maximum pmax and pair-
wise minimum pmin are defined as the component wise maximum and minimum,
respectively, of the two vector-valued arguments. Although it may seem redundant
to produce two identical children if both coin flips match, dual propagation of the
parental line may lead to a stronger evolutionary outcome over time. Furthermore,
each child is subject to the mutation mechanism, so many identical twins produced
at the reproduction stage may still result in genotypic differences. When the popu-
lation size Z is a multiple of 4, the cth child of individuals e[z−1] and e[z] will re-
place individual e [
Z/2�+ 2(z−1)+ c]. In this case, the reproduction mechanism
ensures that each offspring replaces an individual not selected for reproduction in
the previous generation to maintain the population size throughout the evolution
process. For other values of Z, the population size decreases to the largest multiple
of 4 less than Z after the first reproduction phase.

Mutation: Each offspring is subject to mutation immediately following birth. An
offspring mutates with a user-specified mutation probability η . When an offspring
mutates, select the number of mutating genes by a discrete uniform random vari-
able on {1, . . . ,
λkJ�}, with the mutation proportion parameter λ ∈ [0,1] supplied
by the user. (A current software implementation of this procedure suggests η = 0.1
and λ = 0.25 as the default values. However, when too many genes mutate, the al-
gorithm devolves into random search. In seeking the proper overall rate of mutation
for the problem at hand, the user must weigh the number of explanatory variables
J, the interaction order constraint (18.12), the mutation probability η , and the muta-
tion proportion parameter λ .) Each mutating gene is selected uniformly at random
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and is independently assigned a new value on (0,D+ 1) or (0,D0 + 1) according to
a uniform random variable.

Result: After G generations of the evolutionary mechanisms, a final iteration of the
selection phase is performed on the resulting population. Select the best-fit individ-
ual (e[1]) from the final ranked population as the algorithm’s result. This individ-
ual’s phenotype vector d maps to a set of k basis functions ϕn with an associated
estimate ψn of the parameter of interest. Because the selection mechanism is eli-
tist, individual e[1] is cumulatively optimal at generation G. Within the search of
size k estimators, the minimum observed risk for the specified data set is given by
Θ (ψn,P).

In applying the EA to a particular regression setting, the user may select tun-
ing parameters such as the population size Z, the number of generations G to run
the algorithm, the mutation probability η , and the mutation proportion parameter λ
specifying the maximum number of mutations that may occur in an individual. Any
choice of these tuning parameters results in a new algorithm that may be compared
to other estimation procedures directly in terms of risk on a test data set. Because the
No Free Lunch theorem shows that no optimization algorithm solves all problems
competitively [20], the EA’s adaptability allows the user to generate an arbitrary
number of algorithms from which to choose. Moreover, the modular structure of the
proposed search algorithm allows for alternative procedures that may remove, re-
place, or add to the existing evolutionary mechanisms without requiring significant
changes to the software’s design. For instance, the user may choose to insert an ad-
ditional component of mutation that modifies the mutation probability η according
to the population’s phenotypic homogeneity. Crossover, which splices each parent’s
genes into a random number of subvectors and recombines the segments to produce
two complementary children, may be used as a substitute for the proposed repro-
duction mechanism. Although the specific combination of evolutionary mechanisms
may be chosen by the user, any evolutionary algorithm requires selection pressure
to generate estimators of increasing quality and some procedure (such as mutation)
to identify new candidate estimators. Additionally, the user may incorporate prior
information into the EA by inserting existing estimates into the initial population
or limiting evolution to a subset of genes so that particular basis functions may be
forced into the estimate.

As the number of evolutionary generations G increases toward infinity, the pro-
posed EA will converge to the size k estimate with globally minimal risk. Indeed,
Fogel [11] shows that an EA converges asymptotically in generation provided that
all candidate optima form a single communicating class and an elitist selection
mechanism is employed. In the proposed EA, any candidate optimum (as speci-
fied by an individual’s phenotype) may be transformed into any other candidate
optimum over the course of evolution through the mutation mechanism. Because
all candidate optima form a single communicating class, the global optimum will
eventually be reached over the course of evolution, and once this individual enters
the population, elitist selection ensures that no other individual will ever supplant
it. Therefore, the EA asymptotically converges as a function of generation to the
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estimate of globally optimal risk within the size k parameter subspace. Because of
this convergence, and because cross-validation is an asymptotically optimal proce-
dure for selecting the basis size kn as a function of the sample size n, the proposed
estimator selection procedure asymptotically converges in risk to the parameter of
interest ψ as n and G tend toward infinity.

When information is known about the risk surface for an estimator selection ap-
plication, it may be incorporated into the design of an appropriate optimization algo-
rithm. However, the risk surface topology is typically unknown, so we are unable to
provide any general bounds on the rate at which convergence to the global optimum
is achieved. Indeed, it is possible that an EA will not improve upon full enumeration
in terms of the rate of asymptotic convergence; however, because an EA evolves
the population according to the risk surface, it generally outperforms random search
in practical settings with limited computational resources available. Similarly, it is
difficult to provide a priori guidelines on how the EA’s computational parameters
should be tuned to facilitate optimization over the specific problem’s unknown risk
surface. However, the resulting estimator is typically most sensitive to the muta-
tion parameters η and λ . Although allowing for a larger number of mutating genes
through the choice of λ risks devolving the EA into a random search, one must take
into account that not all mutations will affect the choice of basis function because
of the interaction order constraint.

18.5 Simulation Studies

We conducted the following simulation experiment to test the efficacy of the pro-
posed EA-based estimator selection procedure.

18.5.1 Simulation Study Design

Each trial consisted of generating n = 1000 explanatory variables and outcomes
as functions (both random and non-random) of the explanatories. The trials were
designed to reproduce a subset of the results obtained in Sinisi and van der Laan
[16]. With J = 11, the explanatory variables W = (W1, . . . ,WJ) were independently
generated from the uniform distribution on (0,1). Using these data, the following
outcomes were created:

Y1 = W2 +W 2
3 ; Y1e = Y1 + ε; ε ∼ N(0,1); ε ⊥W ;

(18.21)

Y2 = W2W4; Y2e = Y2 + ε; ε ∼ N(0,1); ε ⊥W ;
(18.22)
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Y3 = W2W4W 2
6 +W8W11; Y3e = Y3 + ε; ε ∼ N(0,1); ε ⊥W ;

(18.23)

Y5 = W1W 2
2 W 2

3 +W1W2W 2
3 W4 +W3

3 +W 4
5 ; Y5e = Y5 + ε; ε ∼ N(0,1); ε ⊥W.

(18.24)
Each model a was subject to the variable degree constraint (18.14) with bounds of
D1 = D2 = 2, D3 = 4, and D5 = 5. No interaction order constraint was imposed, so
S = J = 11 by default. The total number of basis functions for each setting, which is
given by the formula for I0 in (18.16), is shown in Table 18.2. Figure 18.1 also shows
the growth in I0 as a function of D0 with J = 11 variables and no interaction order
constraint. Model 5 comprises the largest parameter space. Figure 18.2 shows how
this parameter space can be pruned by introducing an interaction order constraint.

The above experiment was repeated for a total of B = 193 trials. Given a subset
of basis functions, the parameter vector β in (18.10) was estimated using Ordinary
Least Squares (OLS) linear regression. Candidate basis sizes were restricted to a
maximum value of K = 5. V-fold cross-validation was conducted with V = 5 and the
default values of all non-specified computational parameters. Both the EA presented
in Section 18.4 and the DSA algorithm of [16] were used to estimate the parameter
of interest ψa = E[Ya|W ] for each of the above random and non-random models
a ∈ {1,2,3,5}. However, the DSA used the polynomial degree constraint (18.13),
and the EA relied upon the variable degree constraint (18.14). On each trial, the EA
and DSA algorithms each performed separate random assignments of data to their
respective training sets T and validation sets V . Furthermore, because the DSA
algorithm includes a stopping criterion based upon relative improvement in risk,
the trials do not involve the same number of model fits. In general, the DSA was
allowed to run until its stopping criterion was triggered, and the EA was run for
the generation limits specified in Table 18.2. However, for the deterministic models,
the EA was allowed to halt its search if an estimate with zero risk (with a round-
off error tolerance of 10−15) was located. If all V searches of a parameter subspace
with basis size k located estimators that attained a validation set risk of zero, then
no parameter subspaces of larger basis size were searched. Likewise, the EA also
halted if the learning set search located an estimate with zero empirical risk. The
current software implementation of the EA also allows for an exhaustive search of
a parameter subspace if doing so is more computationally efficient than running the
EA for the specified number of generations. For a population of size Z, the proposed
EA fits a total of T regression estimates over G generations of evolution, where T is
given by:

T = Z + 2G
Z/4�. (18.25)

The EA first fits regression estimates for each of the Z individuals in the initial
population. At each generation, a total of 2
Z/4� offspring are created. Because
regression estimates are computationally costly, the value of T may be reduced if
individuals within the population specify the same candidate solution. Similarly,
when

(I
k

) ≤ T or
(I0

k

) ≤ T for constraints (18.13) or (18.14), respectively, an ex-
haustive search of the size k parameter subspace is more computationally efficient
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than evolution. As an additional computational parameter, the user may specify a
leeway value l such that an exhaustive search is used provided that

(I
k

) ≤ T + l or(I0
k

) ≤ T + l, which may be preferred when the computational limits are close to
those required for an exhaustive search. In practice, an exhaustive search is often
tractable when the basis size is k = 1 and may also be practical for size k = 2 when
the number of variables J and the degree bound D or D0 are of moderate size.

Table 18.2 Generation values G and variable degree bounds D0 supplied to constraint (18.14)
for the EA estimator selection procedure in the simulation studies. With J = 11 variables,
constraint (18.14), and no interaction order constraint, the number of basis functions I0 is
calculated according to (18.16) for each estimation setting. Generation values were increased
for estimation settings with a larger parameter space

Model Cross-Validation Search Generations Learning Set Search Generations D0 I0

1 1,000 5,000 2 177,146
1e 2,000 5,000 2 177,146
2 1,000 5,000 2 177,146
2e 2,000 5,000 2 177,146
3 3,000 10,000 4 48,828,124
3e 5,000 12,000 4 48,828,124
5 12,000 10,000 5 362,797,055
5e 12,000 15,000 5 362,797,055

18.5.2 Simulation Study Results

For each simulation model studied, the EA and DSA produce estimates of the pa-
rameter of interest. We can assess these results in terms of the selected basis size,
sensitivity, specificity, cross-validated risk, empirical learning set risk, and empiri-
cal test set risk. With respect to the true parameter ψ , an estimate ψn’s sensitivity
reflects the proportion of true basis functions included in the estimate, and its speci-
ficity denotes the proportion of the selected basis functions that are contained in
the set generating the true parameter. If both quantities are one, then the estimator
includes the same set of basis functions as that specifying the parameter of interest.
In terms of the set of basis functions ϕn that generate an estimate ψn of ψ , we can
define the sensitivity and specificity as follows:

sensitivity(ψ ,ψn) =
|ϕ ∩ϕn|
|ϕ | ; (18.26)

speci f icity(ψ ,ψn) =
|ϕ ∩ϕn|
|ϕn| . (18.27)

The cross-validated risk is the minimum component of the vector (18.6) of mean val-
idation set risks. The empirical learning set risk is the risk of the selected estimator
on the learning set Xn. The empirical test set risk is the risk of the selected estima-
tor on a test set of 1 million observations generated independently of the learning
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set from the same distribution. Because we seek to minimize risk, smaller quantities
are preferred for the cross-validated, empirical learning set, and empirical test set
risks. When independent and identical trials are conducted for a given algorithm on
separate data sets, we can combine the results in terms of a performance metric.
We are primarily concerned with the distribution of each type of risk in general and
the median value in particular. The results of the simulation study are contained in
Tables 18.3–18.5 and Figures 18.4–18.9. These figures contain notched boxplots,
and evidence of a significant performance difference between the DSA and EA is
noted when the notches of the respective boxplots fail to overlap [5].

The simulation’s sensitivity results for the random and non-random models are
summarized in Table 18.3. For non-random models, the EA consistently produces
a sensitivity of 1 for estimating E[Ya|W ] on Models 1, 2, and 3. Although results
are variable for Model 5, the median sensitivity is 1. Meanwhile, the DSA produces
strong results for some models but not for others. In the random models, the results
are more varied. The EA successfully locates the proper basis functions for Model
1e and at least one true basis function for Models 3e and 5e but does not locate the
proper term for Model 2e. The DSA performs similarly to the EA on Models 1e,2e,
and 5e, but it does not locate any true basis functions for Model 3e.

Table 18.3 Six number summaries for sensitivity measurements in the simulation study

Min. 1st Qu. Median Mean 3rd Qu. Max.
Model 1 EA 1.00 1.00 1.00 1.00 1.00 1.00
Model 1 DSA 1.00 1.00 1.00 1.00 1.00 1.00
Model 1e EA 0.00 0.50 1.00 0.81 1.00 1.00
Model 1e DSA 0.00 1.00 1.00 0.88 1.00 1.00
Model 2 EA 1.00 1.00 1.00 1.00 1.00 1.00
Model 2 DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model 2e EA 0.00 0.00 1.00 0.58 1.00 1.00
Model 2e DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model Y3 EA 1.00 1.00 1.00 1.00 1.00 1.00
Model Y3 DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model 3e EA 0.00 0.00 0.00 0.23 0.50 1.00
Model 3e DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model Y5 EA 0.50 1.00 1.00 0.89 1.00 1.00
Model Y5 DSA 0.50 0.50 0.50 0.50 0.50 0.50
Model 5e EA 0.00 0.00 0.25 0.18 0.25 0.75
Model 5e DSA 0.00 0.00 0.25 0.23 0.25 0.50

The specificity results are displayed in Table 18.4. The EA consistently selects
only proper basis functions for Models 1,2, and 3, with 1 improper term and 4
correct terms typically selected for Model 5. The DSA includes both proper and
improper terms for Models 1 and 5 but trails the EA in specificity on all non-random
models. However, for random models, the DSA appears to perform better than the
EA on Models 1e and 5e, equally on Model 2e, and worse on Model 3e.
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Table 18.4 Six number summaries for specificity measurements in the simulation study

Min. 1st Qu. Median Mean 3rd Qu. Max.
Model 1 EA 1.00 1.00 1.00 1.00 1.00 1.00
Model 1 DSA 0.40 0.40 0.40 0.44 0.40 1.00
Model 1e EA 0.00 0.25 0.40 0.36 0.40 1.00
Model 1e DSA 0.00 0.50 1.00 0.79 1.00 1.00
Model 2 EA 1.00 1.00 1.00 1.00 1.00 1.00
Model 2 DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model 2e EA 0.00 0.00 0.20 0.15 0.20 1.00
Model 2e DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model 3 EA 0.67 1.00 1.00 1.00 1.00 1.00
Model 3 DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model 3e EA 0.00 0.00 0.00 0.11 0.20 1.00
Model 3e DSA 0.00 0.00 0.00 0.00 0.00 0.00
Model 5 EA 0.40 0.80 0.80 0.78 1.00 1.00
Model 5 DSA 0.40 0.40 0.40 0.40 0.40 0.50
Model 5e EA 0.00 0.00 0.20 0.16 0.20 0.75
Model 5e DSA 0.00 0.00 0.33 0.34 0.50 1.00

Table 18.5 Six number summaries for basis size error measurements in the simulation
experiments

Min. 1st Qu. Median Mean 3rd Qu. Max.
Model 1 EA 0.00 0.00 0.00 0.00 0.00 0.00
Model 1 DSA 0.00 3.00 3.00 2.77 3.00 3.00
Model 1e EA 0.00 2.00 3.00 2.60 3.00 3.00
Model 1e DSA 0.00 0.00 0.00 0.37 1.00 3.00
Model 2 EA 0.00 0.00 0.00 0.00 0.00 0.00
Model 2 DSA 1.00 1.00 1.00 1.27 1.00 4.00
Model 2e EA 0.00 3.00 4.00 3.47 4.00 4.00
Model 2e DSA 0.00 1.00 1.00 1.26 1.00 4.00
Model 3 EA 0.00 0.00 0.00 0.01 0.00 1.00
Model 3 DSA 3.00 3.00 3.00 3.00 3.00 3.00
Model 3e EA 0.00 2.00 3.00 2.47 3.00 3.00
Model 3e DSA −1.00 0.00 1.00 1.33 2.00 3.00
Model 5 EA 0.00 0.00 1.00 0.61 1.00 1.00
Model 5 DSA 0.00 1.00 1.00 0.99 1.00 1.00
Model 5e EA −1.00 0.00 1.00 0.69 1.00 1.00
Model 5e DSA −2.00 −2.00 −1.00 −0.97 0.00 1.00

Table 18.5 shows the basis size error. The error is standardized across models
by subtracting the true basis size from the selected size on each trial, so an error
of zero is desirable. In terms of median performance, the EA consistently selects
the appropriate basis size on all non-random models but occasionally overestimates
on Model 5. The DSA consistently overestimates the basis size for all non-random
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models. However, for random models, the EA appears to overestimate the true basis
size while the DSA either produces a smaller overestimate (Models 2e and 3e),
selects the appropriate size (Model 1e), or underestimates the basis size (Model 5e).

The performance difference between the EA and DSA becomes clear when we
compare the two procedures in terms of risk. Figure 18.4 (non-random models)
and Figure 18.5 (random models) summarize the cross-validated risk for the es-
timates produced in the simulation study. Both procedures consistently locate the
appropriate set of basis functions in the cross-validation stage of estimator selec-
tion on Model 1, but the EA produces a smaller median cross-validated risk for the
other seven models studied. Furthermore, the EA consistently locates an estimate
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resulting in essentially zero cross-validated risk (within a tolerance of 10−15 for
rounding error) for the deterministic models.

Empirical learning set risk in the simulation study is displayed in the boxplots of
Figures 18.6 and 18.7. Just as in the cross-validated risk measures, the EA consis-
tently performs as well or better than the DSA in terms of median empirical learning
set risk. Finally, Figures 18.8 and 18.9 convey an estimate of the EA and DSA’s true
risk obtained from a separate test data set consisting of one million observations.
Again, the EA performs as well or better than the DSA on the non-random models
of Figure 18.8. The DSA appears to outperform the EA on Model 1e, but the EA re-
sults in a superior median empirical test set risk on each of the other random models
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Fig. 18.6 Empirical learning set risk of estimates produced by the EA and DSA algorithms
for the non-random simulation models
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Fig. 18.7 Empirical learning set risk of estimates produced by the EA and DSA algorithms
for the random simulation models
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Fig. 18.8 Empirical test set risk of estimates produced by the EA and DSA algorithms for
the non-random simulation models
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Fig. 18.9 Empirical test set risk of estimates produced by the EA and DSA algorithms for
the random simulation models

of Figure 18.9. For the random models, the true risk (the risk of the true regression
function) is given by the variance of the residual vector ε , which is 1 in this case
because the residuals were generated from standard Normal random variables. For
the simulation study, any increase above 1 in the test set risk can be attributed to
a bias introduced by the selection of improper basis functions by the EA or DSA.
Across all simulations, it appears that the EA’s estimates produce a test set risk that
exhibits greater variance than that of the DSA.
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The cross-validated risk, empirical learning set risk, and empirical test set risk
are all estimates of true risk for a given estimate of the regression function ψ . How-
ever, it is well known that the empirical learning set risk tends to underestimate
true risk [7]. In the figures mentioned above, the median empirical learning set risk
for the simulation results is smaller than the corresponding median cross-validated
risk or empirical test set risk in each of the random models studied for both the
EA and DSA. (In many of the non-random models, each median is zero.) In gen-
eral, we prefer the empirical test set risk to the cross-validated risk in assessing an
estimate’s quality; because the test set data are not used in the estimator selection
process, the resulting estimate cannot over-fit to the test set data. Although the me-
dian cross-validated and empirical test set risks were both close to the true risk of
1, the cross-validated risk exhibits significantly greater variability across trials than
the corresponding empirical test set risk on each model. Therefore, the empirical
test set risk appears to estimate true risk more reliably than the cross-validated risk
in the random simulation models.

18.6 Data Analysis for a Diabetes Study

The proposed EA for estimator selection may be applied in a wide variety of esti-
mation settings to investigate which explanatory variables contribute to an outcome
of interest and examine the ways in which these variables interact. As an example
of our procedure, we will study a diabetes data set used in Efron et al [10] to pre-
dict a quantitative measure of disease progression taken one year after the onset of
illness. Explanatory variables include age, sex, body mass index (BMI), blood pres-
sure (BP), and quantitative measures of six blood serum levels S1, . . . ,S6. Data are
available for a total of n = 442 patients. We seek to estimate the expected value of
disease progression given a particular 10-dimensional covariate profile.

In order to estimate true risk, we divided the diabetes data at random into a learn-
ing set of 392 observations and a test set of 50 data points. Using an R language
implementation of the EA estimator selection procedure, we supplied the parame-
ter values in Table 18.6 (with all other computational parameters set to the default
values) to obtain an estimate of the expected disease progression given the covariate
values on the learning set. Additionally, we allowed the DSA to run with the same
candidate basis sizes, cross-validation folds V , and interaction order bound for con-
straint (18.12) as those supplied to the EA. For the DSA, the polynomial degree
constraint (18.13) with D = 3 was used in place of the variable degree constraint
(18.14) employed by the EA with D0 = 3. Because the two procedures were not
subject to the same constraints, the estimated regression functions are not directly
comparable. It should be noted that an updated software release of the DSA (ver-
sion 2.2.1) was used for this analysis compared to version 2.0.2 employed in the
simulation study of Section 18.5. Computations were performed on a Unix work-
station with approximately 11 gigabytes of RAM and a 2 megaHertz processor in
the University of California, Berkeley’s Statistical Computing Facility. The gener-
ation limits of Table 18.6 were chosen so that the computation could be performed



18 Loss-Based Estimation with Evolutionary Algorithms and Cross-Validation 477

overnight, which was considered the maximum acceptable search time for the study.
In total, this required 5.7 hours of computation.

Table 18.6 Tuning parameter values for the EA estimator selection algorithm applied to the
diabetes data set of Efron et al [10]

Basis Sizes V D0/D S Population Size, Z CV Generations, G Learning Set Generations, G
{0,1, . . . ,8} 5 3 3 20 5,000 10,000

Fig. 18.10 Mean cross-validated risk of EA by candidate basis size

Figure 18.10 displays the cross-validated risk for each candidate basis size
considered by the EA. During the cross-validation phase, the estimator selection
algorithm selected a basis size of 8, the maximum considered. Figure 18.11 plots
empirical learning set risk as a function of generation in the learning set risk opti-
mization within the size 8 parameter subspace. Because the cumulatively optimal
individual is retained at each generation, risk decreases monotonically as a function
of generation. Somewhat after the 8,000th generation, the EA located an estimate
that was not improved upon in the subsequent generations. The estimator selection
procedure results in the OLS coefficient estimates contained in Table 18.7. Ordinar-
ily, these coefficients are accompanied by estimated standard errors, t-statistics, and
p-values for testing the null hypothesis of a zero coefficient. However, such infer-
ences can only be drawn through a model of the underlying distribution of the esti-
mator, which is currently an open problem for estimator selection procedures such
as those considered in this paper. Similarly, Table 18.8 shows the regression coef-
ficient estimates obtained by the DSA. The basis function including the S5 serum
measurement was selected by both the EA and DSA, but otherwise the selected basis
functions differed in terms of degree, order of interaction, and coefficient estimates.
Most of the basis functions selected by the EA contain higher powers, a maximal
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order of interaction, and generally large coefficient estimates. In contrast, the DSA
produced an estimate with no higher powers assigned to any variable, relatively few
variable interactions, and smaller coefficient estimates that produce a simpler inter-
pretation for the effect of each variable. It is possible that the EA would also produce
a more meaningful estimate if the polynomial degree constraint (18.13) were used
in place of the variable degree constraint (18.14), which would limit the parameter
space to a subspace of that considered here. However, at the time of this analysis,
the software implementation of the EA for the polynomial degree constraint (18.13)
was not yet available.

Fig. 18.11 Empirical learning set risk as a function of generation in risk optimization on
estimates of size 8. The circled region contains the generation at which the final estimate was
located by the EA

Table 18.7 EA regression coefficient estimates for disease progression in the diabetes study

Int. S5 Sex3 :BMI3 :S13 Sex2 :BMI3:S42 Age3 :S33:S63 Age:S6 Sex2 :BMI BP2 :S43:S62 BMI2:S43 :S62

-3.67 5.95e02 -1.48e11 3.04e08 2.03e11 3.72e03 3.04e05 7.28e08 -3.76e08

Table 18.8 DSA regression coefficient estimates of disease progression in the diabetes study

Int. BMI S5 S3 BP SEX BMI : BP AGE : SEX
−5.84 525.98 549.76 315.14 295.34 −255.71 3910.98 3913.89

We then compared the EA and DSA estimates to those obtained by a variety of
other estimator selection procedures considered by Durbin et al [9]. These estimates’
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test set risks were calculated on a total of B = 100 bootstrap samples produced from
the test set data. Although the learning and test sets were identical to those used
by Durbin et al [9], the specific bootstrap test set samples previously used were not
available. However, the bootstrap test sets generated in this analysis are i.i.d. obser-
vations produced from the sampling technique of Durbin et al [9]. The results are
displayed in Table 18.9. In terms of mean test set risk, both the EA and the DSA
improved upon the performance of all estimators considered by Durbin et al [9]. In
particular, the EA’s estimate resulted in a mean test set risk that improved upon all
previous results by approximately 7.9%. Moreover, the DSA’s estimate improved
upon that of the EA by approximately 10.2%. Figure 18.12 displays a notched box-
plot of bootstrap test set risk for each estimator selection algorithm. These results
may be directly compared to those contained in [9], which are reproduced in Figure
18.13 with the permission of the authors. Because its notches do not overlap with
those of any other estimator, it appears that the DSA significantly outperforms all
other estimators considered for this particular problem. The EA and DSA’s 95%
confidence intervals for test set risk appear to be wider than those of the other es-
timators studied. It is possible that the proposed EA produces a greater variability
in its estimates on account of its stochastic mechanisms in the reproduction and
mutation stages.

Table 18.9 Empirical test set risk of several estimator selection procedures on the diabetes
data of Efron et al [10] based upon B = 100 bootstrap samples of the diabetes data test set
of 50 observations. The EA and DSA results are compared in terms of risk to a number of
estimators tested in Durbin et al [9] on the diabetes data . The table shows the mean boot-
strap test set risk and 95% risk confidence interval for each estimator based on 100 bootstrap
samples from the test set. Confidence intervals were produced from normal theory according
to estimates of the mean and standard deviation for each estimator’s risk. The third column
compares each procedure’s mean risk ratio to that of the EA, and the final column shows
which covariates were included in each algorithm’s selected estimator. It appears that all re-
sults obtained by Durbin et al [9] were at least 7.9% larger in test set risk than that obtained
from the EA, and the DSA subsequently improved on the EA by approximately 10.2%

Estimator Bootstrap Test Set Risk Ratio Covariates
lm 3182.0 (1966.2, 4397.7) 1.079 (all)

LARS (CV) 3270.9 (2118.6, 4423.2) 1.109 Sex, BMI, BP, S1−S3, S5, S6
polymars 3301.8 (2123.8, 4479.9) 1.119 Sex, BMI, BP, S3, S5, S6

LARS (Cp) 3336.7 (2206.2, 4467.3) 1.131 Sex, BMI, BP, S2, S3, S5, S6
full nnet 3552.4 (2297.2, 4807.6) 1.204 (all)

nnet-DSA 3565.2 (2368.4, 4175.8) 1.208 (all)
rpart 3692.0 (2498.9, 4885.0) 1.251 BMI, BP, S2, S3, S5, S6
DSA 2649.3 (1337.1, 3961.6) 0.898 Sex, BMI, BP, S3, S5
EA 2950.3 (1670.6, 4230.0) 1 Age, Sex, BMI, BP, S1, S3−S6
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Fig. 18.12 Boxplots of bootstrap test set risk of the EA and DSA estimates obtained from
the diabetes data based upon B = 100 bootstrap samples of the test set. These results may be
directly compared to those obtained by Durbin et al [9] in Figure 18.13

Fig. 18.13 Empirical test set risk of several estimator selection procedures on the diabetes
data based upon B = 100 bootstrap samples of the diabetes data test set of 50 observations.
This figure was originally produced by Durbin et al [9] and is reproduced here with the
permission of the authors. These results may be directly compared to those of the EA and
DSA, which are displayed in Figure 18.12
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18.7 Conclusion

In light of the size of parameter spaces for the constraint profiles characterized in
Section 18.3, estimator selection procedures operating according to the general road
map for loss based estimation must be able to search quickly and effectively for can-
didate estimators minimizing empirical risk within parameter subspaces. EAs and
similar stochastic optimization algorithms provide an aggressive approach to risk
optimization and are sufficiently flexible to offer high-quality estimates in a wide
variety of settings. The results of the simulation study and diabetes analysis estab-
lish the proposed EA as a competitive alternative to other procedures. Because the
No Free Lunch Theorem [20] shows that no single algorithm can always outperform
all others, the proposed EA may be used as a complement to the DSA as a general
tool for estimator selection in regression settings. The EA is an attractive alterna-
tive because its computational parameters can be adapted to the problem at hand,
and its modular design allows for variations of its evolutionary mechanisms without
requiring significant changes in the overall software implementation. Furthermore,
the EA converges asymptotically in generation to the global optimum within the
size k parameter subspace to be searched. It should be noted that asymptotic con-
vergence does not ensure that a global optimum will be reached in the allotted time.
However, the EA performed competitively in the simulations and data analysis, and
its asymptotic convergence property and elitist selection mechanism indicates that
further computations would only improve the quality of its results.

While the DSA search algorithm shifts between parameter subspaces of differ-
ent basis size, the EA independently searches each subspace. This separation allows
for parallel computing techniques to simultaneously search different parameter sub-
spaces on additional processors and also allows the user to tune computational pa-
rameters like the population size, mutation probability, and number of generations
according to the size of the subspace. Although the EA described is designed to
search a parameter space consisting of polynomial regression functions, the pro-
posed methodology applies to general parameterizations (e.g. histogram regression
and neural networks), which is an appealing feature of both the EA and the DSA.

The results obtained in this study come with a few caveats: first, in general the EA
required significantly more time to produce its estimates than the DSA. This time
difference may be attributed to the DSA’s implementation in the C programming
language, which is significantly faster than R. Although this project illustrates the
EA’s utility, it also demonstrates the need to improve the algorithm’s speed in subse-
quent software packages. Future implementations of the EA may also apply parallel
computing techniques to simultaneously search distinct subspaces or training sets in
the cross-validation phase. However, because statistical estimation typically occurs
at the end of a lengthy study, these computations are not especially time–sensitive,
and in many cases it is reasonable to allow several hours or days for this task.

Because the DSA was treated as a black box in the simulations, a comparison
to the EA in terms of the number of model fits required to obtain an estimate of a
given quality is currently unavailable. However, the simulation results suggest that
the DSA is vulnerable to local optima. Unlike EAs, the DSA risk-optimizing search



482 D. Shilane, R.H. Liang, and S. Dudoit

procedure is deterministic for a given split of the data into training and validation
sets. Future versions of the DSA may consider introducing a stochastic component
akin to the EA’s mutation mechanism to work in concert with its existing elitist
selection procedure. If the proposed augmentation ensures that all estimators within
a parameter subspace form a single communicating class, then this modified DSA
would asymptotically converge in time to the global optimum.

Additionally, estimator selection software packages may provide the researcher
with the opportunity to include particular basis functions in all candidate estimates
so that known causal relationships remain fixed while searching for additional fac-
tors that contribute to a quantity of interest. When the researcher wishes to compare
results from a large number of distinct algorithms, an arbitrary number of alterna-
tive search procedures may be generated by varying the EA’s tuning parameters such
as the mutation probability. For a particular problem, an additional cross-validation
procedure may be used to select among candidate mutation probabilities or other
tuning parameters. Finally, the variability of the EA’s results may be investigated as
a function of generation to guide the choice of these computational parameters.

18.8 Appendix

Section 18.3.3 analyzed the size of the parameter space for polynomial regression
under the interaction order constraint (18.12) and the polynomial degree constraint
(18.13) or the variable degree constraint (18.14). We wish to substantiate the con-
clusions summarized in Table 18.1.

Under constraint (18.13), the number of basis functions is given by the value of
I (18.15), which can be bounded below as follows:
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The first equality restates (18.15), and the first inequality follows because all
terms in the nested summations are positive. Under constraint (18.13), then S ≤
min(J,D) ≤ J, and

(S
s

) ≤ (J
s

)
for all s ∈ {1, . . . ,S}, so the second inequality holds.

The final equality is a direct consequence of the Binomial Theorem. Therefore, I is
bounded below by a function of orderΩ

(
2S
)
. For the extreme case of S = min(J,D),

then I = Ω
(
2S
)

= Ω
(

2min(J,D)
)

, which is an exponential function of the number

of variables J and the polynomial degree bound D. We then turn our attention to the
case of I0 under the variable degree constraint (18.14). We can bound I0 from below
as follows:

I0 =
S

∑
s=1

(
J
s

)
Ds

0 ≥
S

∑
s=1

(
S
s

)
Ds

0 = (D0 + 1)S −1 > DS
0 ⇒Ω

(
DS

0

)
. (18.29)



18 Loss-Based Estimation with Evolutionary Algorithms and Cross-Validation 483

The first equality restates (18.16), and the first inequality follows because J ≥ S
when constraint (18.14) is imposed. The next equality follows from the Binomial
Theorem, and the remaining polynomial is of degree S. In the extreme case of S = J,
the number of basis functions is then Ω

(
DJ

0

)
. Because the summation in (18.29) is

solved in a closed form and results in a polynomial when S = J, this asymptotic
lower bound is also an asymptotic upper bound, and both are tight [6]. Therefore
the number of basis functions is both Ω

(
DJ

0

)
and O

(
DJ

0

)
when S = J. Because S

is maximized, this upper bound is an overall upper bound on the number of basis
functions under the variable degree constraint (18.14). Furthermore, because the
set of basis functions under the polynomial degree constraint (18.13) is a subset of
those under the variable degree constraint (18.14) when D = D0, then the number of
basis functions I is trivially bounded above by a function of order O

(
DJ

)
. Likewise,

the value I0 for constraint (18.14) is loosely bounded above by a function of order
O
(
DJ

0

)
that becomes tight if S = J.

The size of the parameter space is 2I or 2I0 in the constraint profiles of Section
18.3. By applying the previous bounds for I and I0 to the parameter space analysis,
we arrive at the conclusions summarized in Table 18.1. It should be noted that the
order functions Ω and O imply that the bounds can be stated as a constant times the
given function. In expressing the size of the parameter space in terms of the number
of basis functions under different constraint profiles, the constant for the order of
the size of the parameter space differs from that for the order of the number of basis
functions.
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Chapter 19
Particle Swarm Optimisation Aided MIMO
Transceiver Designs

S. Chen, W. Yao, H.R. Palally, and L. Hanzo

Abstract. Multiple-input multiple-output (MIMO) technologies are capable of sub-
stantially improving the achievable system’s capacity, coverage and/or quality of
service. The system’s ability to approach the MIMO capacity depends heavily on
the designs of MIMO receiver and/or transmitter, which are generally expensive op-
timisation tasks. Hence, researchers and engineers have endeavoured to develop effi-
cient optimisation techniques that can solve practical MIMO designs with affordable
costs. In this contribution, we demonstrate that particle swarm optimisation (PSO)
offers an efficient means for aiding MIMO transceiver designs. Specifically, we con-
sider PSO-aided semi-blind joint maximum likelihood channel estimation and data
detection for MIMO receiver, and we investigate PSO-based minimum bit-error-rate
multiuser transmission for MIMO systems. In both these two MIMO applications,
the PSO-aided approach attains an optimal design solution with a significantly lower
complexity than the existing state-of-the-art scheme.

19.1 Introduction

Multiple-input multiple-output (MIMO) technologies are widely adopted in prac-
tice to improve the system’s achievable capacity, coverage and/or quality of service
[14, 15, 30, 32, 33, 41, 42, 43, 45]. The designs of MIMO receiver and/or transmit-
ter critically influence the system’s ability to approach the MIMO capacity. MIMO
transceiver designs, which are typically expensive optimisation tasks, have moti-
vated researchers and engineers to develop efficient optimisation techniques that
can attain optimal MIMO designs with affordable costs. Hence, the particle swarm
optimisation (PSO) as an advanced optimisation tool can offer an efficient means
for aiding MIMO transceiver designs. PSO [25] is a population based stochastic op-
timisation technique inspired by social behaviour of bird flocking or fish schooling.
The algorithm commences with random initialisation of a swarm of individuals, re-
ferred to as particles, within the problem’s search space. It then endeavours to find
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a global optimal solution by gradually adjusting the trajectory of each particle to-
ward its own best location and toward the best position of the entire swarm at each
evolutionary optimisation step. The PSO method is popular owing to its simplic-
ity in implementation, ability to rapidly converge to a “reasonably good” solution
and its robustness against local minima. The PSO method has been successfully ap-
plied to wide-ranging optimisation problems [10, 12, 13, 16, 18, 26, 27, 35, 37, 38].
In particular, many research works have applied the PSO techniques to multiuser
detection (MUD) [11, 17, 28, 29, 36]. In this contribution we consider the PSO
aid MIMO transceiver designs. Specifically, we develop the PSO aided semi-blind
joint maximum likelihood (ML) channel estimation and data detection for MIMO
receivers and we investigate the PSO-based minimum bit error rate (MBER) mul-
tiuser transmission (MUT) for MIMO systems.

In a MIMO receiver, if the channel state information (CSI) is available, opti-
mal ML data detection can be performed using for example the optimised hierarchy
reduced search algorithm (OHRSA) aided detector [2], which is an advanced exten-
sion of the complex sphere decoder [34]. Accurately estimating a MIMO channel
however is a challenging task, and a high proportion of training symbols is required
to obtain a reliable least square channel estimate (LSCE) which considerably re-
duces the achievable system throughput. Although blind joint ML channel estima-
tion and data detection does not reduce the achievable system throughput, it suffers
from drawbacks of excessively high computational complexity and an inherent es-
timation and decision ambiguities [40]. An interesting scheme for semi-blind joint
ML channel estimation and data detection has been proposed in [1], in which the
joint ML channel estimation and data detection optimisation is decomposed into
two levels. At the upper level a population-based optimisation algorithm known as
the repeated weighted boosting search (RWBS) algorithm [7] searches for an op-
timal channel estimate, while at the lower level the OHRSA detector [2] recovers
the transmitted data. Joint ML channel estimation and data detection is achieved by
iteratively exchanging information between the RWBS-aided channel estimator and
the OHRSA data detector. The scheme is semi-blind as it employs a few training
symbols, approximately equal to the rank of the MIMO system, to provide an ini-
tial LSCE for aiding the RWBS channel estimator to improve its convergence. The
employment of a minimum training overhead has an additional benefit in terms of
avoiding the ambiguities inherent in pure blind joint channel estimation and data
detection. This study advocates the PSO aided alternative for semi-blind joint ML
channel estimation and data detection. We will demonstrate that this PSO aided
scheme compares favourably with the existing state-of-the-art RWBS based method,
in terms of performance and complexity.

In the downlink of a space-division multiple-access (SDMA) induced MIMO
system, mobile terminal (MT) receivers are incapable of cooperatively perform-
ing sophisticated MUD. In order to facilitate the employment of a low-complexity
high-power efficiency single-user-receiver, the transmitted signals have to be pre-
processed at the base station (BS), leading to the appealing concept of multiuser
transmission (MUT) [50], provided that accurate downlink CSI is available at the
transmitter. The assumption that the downlink channel impulse response (CIR) is
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known at the BS may be deemed valid in time division duplex (TDD) systems,
where the uplink and downlink signals are transmitted at the same frequency, pro-
vided that the co-channel interference is also similar at the BS and the MTs. MUT-
aided transmit preprocessing may hence be deemed attractive, when the channel’s
coherence time is longer than the transmission burst interval. However, for fre-
quency division duplex (FDD) systems, where the uplink and downlink channels
are expected to be different, CIR feedback from the MT’s receivers to the BS trans-
mitter is necessary [51]. Most of the MUT techniques are designed based on the
minimum mean-square-error (MMSE) criterion [44, 51]. Since the achievable bit
error rate (BER) is the ultimate system performance indicator, interests on mini-
mum BER (MBER) based MUT techniques have increased recently [21, 39]. The
optimal MBER-MUT design is a constrained nonlinear optimisation [21, 39], and
the sequential quadratic programming (SQP) algorithm [31] is typically used to ob-
tain the precoder’s coefficients for the MBER-MUT [21, 23, 39]. In practice, the
computational complexity of the SQP based MBER-MUT solution can be excessive
for high-rate systems [23] and, therefore, it is difficult for practical implementation.
In this contribution, the PSO algorithm is invoked to find the precoder’s coefficients
for the MBER-MUT in order to reduce the computational complexity to a practi-
cally acceptable level. Our results obtained in [52] have demonstrated that the PSO
aided MBER-MUT design imposes a much lower computational complexity than
the existing SQP-based MBER-MUT design.

The rest of this contribution is structured as follows. In Section 19.2, the PSO
algorithm is presented. Section 19.3 is devoted to the development of the PSO-aided
semi-blind joint ML scheme, while Section 19.4 derives the PSO assisted optimal
MBER-MUT scheme. Our conclusions are then offered in Section 19.5.

Throughout our discussions we adopt the following notational conventions. Bold-
face capitals and lower-case letters stand for complex-valued matrices and vectors of
appropriate dimensions, respectively, while IK and 1K×L denote the K ×K identity
matrix and the K × L matrix of unity elements, respectively. The (p,q)th element
hp,q of H is also denoted by H|p,q. Furthermore, ()T and ()H represent the trans-
pose and Hermitian operators, respectively, while ‖‖2 and | | denote the norm and
the magnitude operators, respectively. E [ ] denotes the expectation operator, while
ℜ[ ] and ℑ[ ] represent the real and imaginary parts, respectively. Finally, j =

√−1.

19.2 Particle Swarm Optimisation

Consider the generic optimisation task defined as follows

Uopt = arg min
U

F(U) (19.1)

s.t. U ∈ UN×M (19.2)

where F() is the cost function of the optimisation problem, U is a N ×M complex-
valued parameter matrix to be optimised, and
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U =
[−Umax, Umax

]
+ j

[−Umax, Umax
]

(19.3)

defines the search range for each element of U. The flowchart of the PSO algorithm

is given in Fig. 19.1. A swarm of particles, {U(l)
i }S

i=1, that represent potential solu-
tions are evolved in the search space UN×M , where S is the swarm size and index l
denotes the iteration step. The details of the algorithm is now explained.

Update velocities

iV

Modify
velocity

Velocity
approaches zero
or out of limits?

Yes

No

U
Update positions

(l)
i

out of bounds?
positionModify

position
Yes

No

Initialise particles
{ i } S

i=1

Evaluate costs {F(       )i }i=1
update{ }

Yes
Output solution Gb

No

i=1

U S

S

Terminate?
l=l+1 A new iteration

(l)
iPb and (l)

l=0

U(0) (l)

(l)

Gb

Fig. 19.1 Flowchart of the PSO algorithm

19.2.1 PSO Algorithm

a) The swarm initialisation. Set l = 0 and generate the initial particles, {U(l)
i }S

i=1,
in the search space UN×M with a prescribed way. Typically, the initial particles are
randomly generated.

b) The swarm evaluation. For each particle U(l)
i , compute its associated cost F

(
U(l)

i

)
.

Each particle U(l)
i remembers its best position visited so far, denoted as Pb(l)

i , which
provides the cognitive information. Every particle also knows the best position vis-
ited so far among the entire swarm, denoted as Gb(l), which provides the social
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information. The cognitive information {Pb(l)
i }S

i=1 and the social information Gb(l)

are updated at each iteration:

For (i = 1; i ≤ S; i++)
If (F(U(l)

i ) < F(Pb(l)
i )) Pb(l)

i = U(l)
i ;

End for;
i∗ = arg min1≤i≤S F(Pb(l)

i );
If (F(Pb(l)

i∗ ) < F(Gb(l))) Gb(l) = Pb(l)
i∗ ;

c) The swarm update. Each particle U(l)
i has a velocity, denoted as V(l)

i , to direct
its “flying” or search within the search space. The velocity and position of the ith
particle are updated in each iteration according to:

V(l+1)
i = ξ ∗V(l)

i + c1 ∗ϕ1 ∗ (Pb(l)
i −U(l)

i )+ c2 ∗ϕ2 ∗ (Gb(l) −U(l)
i ), (19.4)

U(l+1)
i = U(l)

i + V(l+1)
i , (19.5)

where ξ is the inertia weight, c1 and c2 are the two empirically chosen acceleration
coefficients, while ϕ1 = rand() and ϕ2 = rand() denotes the two random variables
uniformly distributed in (0, 1).

In order to avoid excessive roaming of particles beyond the search space [18], a
velocity space VN×M with

V =
[−Vmax, Vmax

]
+ j

[−Vmax, Vmax
]

(19.6)

is imposed so that each element of V(l+1)
i is within the search range V defined in

(19.6), namely,

If (ℜ[V(l+1)
i |p,q] > Vmax) ℜ[V(l+1)

i |p,q] = Vmax;

If (ℜ[V(l+1)
i |p,q] < −Vmax) ℜ[V(l+1)

i |p,q] = −Vmax;

If (ℑ[V(l+1)
i |p,q] > Vmax) ℑ[V(l+1)

i |p,q] = Vmax;

If (ℑ[V(l+1)
i |p,q] < −Vmax) ℑ[V(l+1)

i |p,q] = −Vmax;

Moreover, if V(l+1)
i approaches zero, it is reinitialised proportional to Vmax with a

small control factor γ according to:

If (ℜ[V(l+1)
i |p,q] == 0)

If(rand() < 0.5)

ℜ[V(l+1)
i |p,q] = ϕv ∗ γ ∗Vmax;

Else
ℜ[V(l+1)

i |p,q] = −ϕv ∗ γ ∗Vmax
)

;
End if;

Else if (ℑ[V(l+1)
i |p,q] == 0)

If(rand() < 0.5)

ℑ[V(l+1)
i |p,q] = ϕv ∗ γ ∗Vmax;
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Else
ℑ[V(l+1)

i |p,q] = −ϕv ∗ γ ∗Vmax
)

;
End if;

End if;

where ϕv = rand() is another uniform random variable in (0, 1).
Similarly, each U(l+1)

i is checked to ensure that it stays inside the search space
UN×M . This can be done for example with the rule:

If (ℜ[U(l+1)
i |p,q] > Umax) ℜ[U(l+1)

i |p,q] = Umax;

If (ℜ[U(l+1)
i |p,q] < −Umax) ℜ[U(l+1)

i |p,q] = −Umax;

If (ℑ[U(l+1)
i |p,q] > Umax) ℑ[U(l+1)

i |p,q] = Umax;

If (ℑ[U(l+1)
i |p,q] < −Umax) ℑ[U(l+1)

i |p,q] = −Umax;

An alternative rule is, if a particle is outside the search space, it is moved back inside
the search space randomly, rather than forcing it to stay at the border as the previous
rule does. That is,

If (ℜ[U(l+1)
i |p,q] > Umax) ℜ[U(l+1)

i |p,q] = rand()∗Umax;

If (ℜ[U(l+1)
i |p,q] < −Umax) ℜ[U(l+1)

i |p,q] = −rand()∗Umax;

If (ℑ[U(l+1)
i |p,q] > Umax) ℑ[U(l+1)

i |p,q] = rand()∗Umax;

If (ℑ[U(l+1)
i |p,q] < −Umax) ℑ[U(l+1)

i |p,q] = −rand()∗Umax;

This is similar to the checking procedure given in [18].

d) Termination condition check. If the maximum number of iterations, Imax, is
reached, terminate the algorithm with the solution Uopt = Gb(Imax); otherwise, set
l = l + 1 and go to Step b).

19.2.2 Complexity of PSO Algorithm

Let the computational complexity of one cost function evaluation be Csingle. Given
the swarm size S, assume that the algorithm converges in Imax iterations. Then the
total number of cost function evaluations is simply Ntotal = S× Imax, and the com-
plexity of the algorithm is given by

C = Ntotal ×Csingle = S× Imax ×Csingle. (19.7)

19.2.3 Choice of PSO Algorithmic Parameters

We now comment on the choices of PSO algorithmic parameters. The search bound
Umax is specified by the optimisation problem considered, while the velocity limit
Vmax is typically related to the value of Umax. The swarm size S depends on how hard
the optimisation problem (19.1) is. For small to medium size optimisation problems,
a standard choice recommended in the literature is S = 20 to 50. The maximum
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number of iterations, Imax, is generally determined by experiment. In our experi-
ments we choose the optimal swarm size S to minimise the total complexity C of
(19.7).

It was reported in [35] that a time varying acceleration coefficient (TVAC) en-
hances the performance of PSO. In this TVAC mechanism [35], c1 for the cognitive
component is reduced from 2.5 to 0.5 and c2 for the social component varies from
0.5 to 2.5 respectively during the iterative procedure according to

c1 = (0.5−2.5)∗ l/Imax+ 2.5

c2 = (2.5−0.5)∗ l/Imax+ 0.5

}
(19.8)

The reason given for this TVAC mechanism is that at the initial stages, a large cog-
nitive component and a small social component help particles to wander around
or exploit better the search space and to avoid local minima. In the later stages, a
small cognitive component and a large social component help particles to converge
quickly to a global minimum.

We also experiment an alternative TVAC mechanism in which c1 is varies from
0.5 to 2.5 and c2 changes from 2.5 to 0.5 during the iterative procedure according to

c1 = (2.5−0.5)∗ l/Imax+ 0.5

c2 = (0.5−2.5)∗ l/Imax+ 2.5

}
(19.9)

Which TVAC mechanism to choose is decided by empirical performance in our
applications.

Several choices of the inertia weight can be considered, including the zero inertia
weight ξ = 0, a constant inertia weight ξ or a random inertia weight ξ = rand(). In
our applications, empirical experience suggests that ξ = 0 is appropriate. An appro-
priate value of the control factor γ in reinitialising zero velocity found empirically
for our applications is γ = 0.1.

19.3 PSO Aided Semi-blind Joint ML Estimation

Our first application of PSO to multiple-input multiple-output (MIMO) transceiver
design involves the PSO-aided semi-blind joint maximum likelihood (ML) channel
estimation and data detection for MIMO receiver.

19.3.1 MIMO System Model

We consider a MIMO system consisting of nT transmitters and nR receivers, which
communicates over flat fading channels [42]. The system is described by the well-
known MIMO model [32]

y(k) = Hx(k)+ n(k), (19.10)



494 S. Chen et al.

where k is the symbol index, H denotes the nR × nT complex-valued MIMO
channel matrix, x(k) = [x1(k) x2(k) · · ·xnT (k)]T is the transmitted symbols vec-
tor of the nT transmitters with the symbol energy given by E

[|xm(k)|2] = σ2
x for

1 ≤ m ≤ nT , y(k) = [y1(k) y2(k) · · ·ynR(k)]T denotes the received signal vector, and
n(k) = [n1(k) n2(k) · · ·nnR(k)]T is the complex-valued Gaussian white noise vector
associated with the MIMO channels with E

[
n(k)nH(k)

]
= 2σ2

n InR = NoInR . The
signal-to-noise ratio (SNR) of the system is defined by SNR = Eb/No = σ2

x /2σ2
n .

More specifically, the narrowband MIMO channel matrix is defined by H =
[hp,m], for 1 ≤ p ≤ nR and 1 ≤ m ≤ nT , where hp,m denotes the channel coeffi-
cient linking the mth transmitter to the pth receiver. The fading is assumed to be
sufficiently slow, so that during the time period of a short block of L symbols, all
the entries in the MIMO channel matrix H may be deemed unchanged. From frame
to frame, the channel impulse response (CIR) taps hp,m are independently and iden-
tically distributed (i.i.d.) complex-valued Gaussian processes with zero mean and
E
[|hp,m|2

]
= 1. Note that frequency selective MIMO channels can be made narrow-

band using for example the orthogonal frequency division multiplexing (OFDM)
technique [19]. We also assume that the modulation scheme is the quadrature phase
shift keying (QPSK) and, therefore, the transmitted symbol takes the value from the
symbol set

xi(k) ∈ X = {±1± j}. (19.11)

All the results discussed here are equally applicable to higher-throughput modu-
lation schemes, such as the quadrature amplitude modulation (QAM) [20], with
increased complexity.

19.3.2 Semi-blind Joint ML Channel Estimation and Data
Detection

Let us consider the joint channel estimation and data detection based on the obser-
vation vector y(k) over a relatively short length of L symbols. First define the nR×L
matrix of the received data as Y = [y(1) y(2) · · ·y(L)] and the corresponding nT ×L
matrix of the transmitted symbols as X = [x(1) x(2) · · ·x(L)]. Then the probability
density function (PDF) of the received data matrix Y conditioned on the MIMO
channel matrix H and the transmitted symbol matrix X can be written as

p(Y|H,X) =
1

(2πσ2
n )nR×L e

− 1
2σ2

n
∑L

k=1‖y(k)−Hx(k)‖2

. (19.12)

The ML estimation of X and H can be obtained by jointly maximising p(Y|H,X)
over X and H. Equivalently, the joint ML estimation is obtained by minimsing the
cost function

JML(X̌,Ȟ) =
1

nR ×L

L

∑
k=1

∥∥y(k)− Ȟ x̌(k)
∥∥2

, (19.13)
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which is a function of the symbol matrix X̌ = [x̌(1) x̌(2) · · · x̌(L)] and the channel
matrix Ȟ. Thus the joint ML channel and data estimation is obtained as

(X̂,Ĥ) = arg

{
min
X̌,Ȟ

JML(X̌,Ȟ)
}

. (19.14)

The joint ML optimisation defined in (19.14) is computationally prohibitive. The
complexity of this optimisation process may be reduced to a tractable level, if it is
decomposed into an iterative search carried out over all the possible data symbols
first and then over the channel matrices as

(X̂,Ĥ) = arg

{
min

Ȟ

[
min

X̌
JML(X̌,Ȟ)

]}
. (19.15)

At the inner-level optimisation we can use the optimised hierarchy reduced search
algorithm (OHRSA) based ML detector [2] to find the ML data estimate for the
given channel. The detailed implementation of the OHRSA-aided ML detector can
be found in [2] and will not be repeated here. In order to guarantee a joint ML es-
timate, the search algorithm used at the outer or upper-level optimisation should be
capable of finding a global optimal channel estimate efficiently. A joint ML solution
is achieved with the following iterative loop.

Outer-level Optimisation: A search algorithm searches the MIMO channel parame-
ter space to find a global optimal estimate Ĥ by minimising the mean square error
(MSE)

JMSE(Ȟ) = JML(X̂(Ȟ),Ȟ), (19.16)

where X̂(Ȟ) denotes the ML estimate of the transmitted data for the given channel
Ȟ.

Inner-level Optimisation: Given Ȟ the OHRSA detector finds the ML estimate of
the transmitted data and feeds back the ML metric JMSE(Ȟ) to the upper level.

Pure blind joint data and channel estimation converges very slowly and suffers
from an inherent permutation and scaling ambiguity problem [40]. To resolve this
permutation and scaling ambiguity, a few training symbols are employed to provide
an initial least square channel estimate (LSCE) for aiding the outer-level search al-
gorithm. Let the number of training symbols be K, and denote the available training
data as YK = [y(1) y(2) · · ·y(K)] and XK = [x(1) x(2) · · ·x(K)]. The LSCE based
on {YK ,XK} is readily given by

ȞLSCE = YKXH
K

(
XKXH

K

)−1
. (19.17)

To maintain the system throughput, we only use the minimum number of training
symbols, namely, K = nT , which is equal to the rank of the MIMO system. The
training symbol matrix XK should be designed to yield the optimal estimation per-
formance [4]. Specifically, XK is designed to have nT orthogonal rows. This yields
the most efficient estimate and removes the need for matrix inversion.
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19.3.3 PSO Aided Semi-blind Joint ML Scheme

The above semi-blind joint ML data and channel estimation is a very expensive
optimisation problem. Firstly, let us exam the inner-level optimisation. For a given
channel Ȟ, the ML data detection solution X̂(Ȟ) must be calculated. Note that the
data matrix X̌ has M L×nR legitimate combinations, where M = 4 is the size of the
QPSK symbol set (19.11). A exhausted search would require to calculate the cost
function (19.13) M L×nR times and to find the data matrix that attains the minimum
value of the cost function. This is obviously prohibitive. The OHRSA-aided ML
detector [2] manages to reduce dramatically the complexity required for attainding
the ML solution X̂(Ȟ). Even so the OHRSA detector is by no means low-complexity
and is in fact inherently expensive owing to the nature of the optimal ML detection.
The detailed complexity analysis can be found for example in [46] and is beyond
the scope of this contribution. Now consider the outer-level optimisation, which has
to search through the (2nR)× (2nT ) dimensional real-valued channel space. Each
point evaluated requires to call the OHRSA detector once. Any search algorithm
will require a large number of OHRSA evaluations in order to attain the joint ML
solution X̂(Ĥ).

In the previous work [1], we have applied the repeated weighted boosting search
(RWBS) algorithm [7] to perform the outer-level optimisation search of the joint ML
iterative loop. The results shown in [1] demonestrate that the RWBS-aided semi-
blind joint ML scheme performs well and is efficient in terms of its convergence
speed. In this contribution, we show that by invoking the PSO method as the outer-
level search algorithm, further performance enhancement can be achieved in terms
of reduced complexity. The cost function for the PSO algorithm to optimise in this
case is F(Ȟ) = JMSE(Ȟ) with the dimensions of the search space specified by N =
nR and M = nT .

In Step a) The swarm initialisation, the initial particles are chosen as Ȟ(0)
1 =

ȞLSCE and
Ȟ(0)

i = ȞLSCE +ϕh(1nR×nT + j1nR×nT ), 2 ≤ i ≤ S, (19.18)

where ϕh is a uniformly distributed random variable defined in the range [−α, α].
Appropriate value for α is determined by experiment.

In Step c) The swarm update, we adopt the zero inertia weight ξ = 0 and the
TVAC mechanism (19.9). For any particle wandering outside the search space, we
force it back to stay at the border of the search space. These provisions are found to
be appropriate for this application empirically.

Let COHRSA(L) be the complexity of the OHRSA algorithm to decode the L-
symbol data matrix X and let NOHRSA be the number of calls for the OHRSA al-
gorithm required by the PSO algorithm to converge. Then the complexity of the
proposed semi-blind method is expressed as

C = NOHRSA ×COHRSA(L), (19.19)

where COHRSA(L) is given in [46], and NOHRSA = S × Imax with Imax being the
maximum number of iterations and S the swarm size. It can be seen that the



19 Particle Swarm Optimisation Aided MIMO Transceiver Designs 497

computational complexity of the PSO aided semi-blind joint ML estimation scheme
is characterised by the number of OHRSA cost function evaluations NOHRSA. Obvi-
ously, the number of iterations that the PSO algorithm requires to converge is Imax,
and the value of Imax depends on the choice of S. It is easily seen that the optimal
choice of the swarm size S should lead to the minimum value of NOHRSA.

19.3.4 Simulation Study

A simulation study was carried out to investigate the PSO aided semi-blind joint
ML channel estimation and data detection scheme. We considered the benchmark
MIMO system with nT = 4 and nR = 4 used in [1]. The achievable performance was
assessed in the simulation using three metrics, and these were the MSE defined in
(19.16), the mean channel error (MCE) defined as

JMCE(Ȟ) = ‖H− Ȟ‖2, (19.20)

where H denotes the true MIMO channel matrix and Ȟ the channel estimate, and
the bit error rate (BER). All the simulation results were averaged over 50 different
channel realisations of H.

We set the population size to S = 20, which led to the maximum number of
evolutionary steps Imax = 50. This choice of S appeared to be adequate for this
application as it resulted in the smallest NOHRSA for the algorithm to converge. Thus,
the complexity of the PSO based semi-blind scheme was determined by NOHRSA =
1000. Since ℜ[hp,q] and ℑ[hp,q] of each MIMO channel tap hp,q were Gaussian
distributed with a variance 0.5, we chose the search space bound to be Umax = 1.8
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Fig. 19.2 Mean channel error average over 50 different channel realisations as a function of
α after 1000 OHRSA evaluations, for two values of Eb/No and two values of L
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which lay between 2 to 3 standard deviations of the true tap distribution. We also set
the velocity limit to Vmax = 1.0 which was confirmed in simulation to be a suitable
value for this application. The control factor γ in reinitialising zero velocity was
found empirically to be γ = 0.1. The optimal value for the control parameter α in
the channel population initiation (19.18) was first found empirically. Fig. 19.2 shows
the MCE performance after 1000 OHRSA evaluations over a range of α values. It
can be seen from Fig. 19.2 that the optimal value of α in this case was 0.15. This
value of α was used in all the other simulations.

Fig. 19.3 depicts the BER performance of the PSO based semi-blind scheme hav-
ing a frame length L = 100 after 1000 OHRSA evaluations and averaging over 50
different channel realisations, in comparison with the performance of the training-
based OHRSA detector having K = 4, 8 and 16 training symbols for the LSCE,
respectively, as well as with the case of perfect channel knowledge. It can be ob-
served from Fig. 19.3 that, for the training-based scheme to achieve the same BER
performance of the PSO-aided semi-blind one having only 4 pilot symbols, the num-
ber of training symbols had to be more than 16. This example was identical to the
MIMO system investigated in [1]. The BER performance of the PSO-based semi-
blind scheme depicted in Fig. 19.3 was slightly better than the BER of the RWBS-
based semi-blind scheme shown in [1]. Moreover, the performance of the PSO-aided
scheme was achieved after 1000 OHRSA evaluations, while the performance of the
RWBS-based scheme reported in [1] was obtained after 1200 OHRSA evaluations.
Thus, for this 4× 4 MIMO benchmark, the computational saving achieved by the

Fig. 19.3 BER of the PSO aided semi-blind scheme with frame length L = 100 after 1000
OHRSA evaluations and average over 50 different channel realisations in comparison with
the training-based cases using 4, 8 and 16 pilot symbols as well as the case of perfect channel
knowledge
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Fig. 19.4 Mean square error convergence performance of the PSO aided semi-blind scheme
averaged over 50 different channel realisations for different values of Eb/No and L

proposed PSO-based semi-blind method over the previous RWBS-based scheme
was approximately

1200×COHRSA(L)−1000×COHRSA(L)
1000×COHRSA(L)

= 20%. (19.21)

Figs. 19.4 and 19.5 depict the convergence performance of the proposed PSO-aided
semi-blind joint ML channel estimation and data detection scheme averaged over
50 different channel realisations in terms of the MSE and MCE, respectively, for
different SNR values as well as for two frame lengths L = 50 and 100. It can be seen
from Fig. 19.4 that the MSE converged to the noise floor. The MCE performance
shown in Fig. 19.5 was seen to be slightly better and converging faster than the
results obtained by the RWBS-based semi-blind joint ML scheme shown in [1].

19.4 PSO Based MBER Multiuser Transmitter Design

In this second application, we adopt the PSO for designing the minimum BER
(MBER) multiuser transmission (MUT) for the downlink of a space-division
multiple-access (SDMA) induced MIMO system.
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Fig. 19.5 Mean channel error convergence performance of the PSO aided semi-blind scheme
averaged over 50 different channel realisations for different values of Eb/No and L

19.4.1 Downlink of SDMA Induced MIMO System

In the downlink of the SDMA induced MIMO system, the base station (BS)
equipped with nT transmit antennas communicates over flat fading channels with nR

mobile terminals (MTs), each employing a single-receive antenna. Again we point
out that frequency selective channels can be converted to a multiplicity of parallel
narrowband channels using the OFDM technique [19]. Let the vector of nR informa-
tion symbols transmitted in the downlink be x(k) = [x1(k) x2(k) · · ·xnR(k)]T , where
k denotes the symbol index, xm(k) denotes the transmitted symbol to the mth MT,
and the symbol energy is given by E[|xm(k)|2] = σ2

x , for 1 ≤ m ≤ nR. The modu-
lation scheme is again assumed to be the QPSK of the symbol set (19.11), but the
extension to the generic QAM modulation scheme can be achieved by considering
the minimum symbol error rate criterion [9]. The nT ×nR precoder matrix C of the
BS’s MUT is defined by

C = [c1 c2 · · ·cnR ], (19.22)

where cm, 1 ≤ m ≤ nR, is the precoder’s coefficient vector for pre-processing the
mth user’s data stream. Given a fixed total transmit power ET at the BS, an appro-
priate scaling factor should be used to fullfill this transmit power constraint, which
is defined as

ρ =
√

ET/E[‖Cx(k)‖2]. (19.23)

Thus, the signal vector to be launched from the nT transmit antennas is ρCx(k).



19 Particle Swarm Optimisation Aided MIMO Transceiver Designs 501

The downlink of the SDMA system is specified by its channel matrix H, which
is given by

H = [h1 h2 · · ·hnR ], (19.24)

where hm = [h1,m h2,m · · ·hnT ,m]T , 1≤m≤ nR, is the mth user’s spatial signature. The
channel taps hi,m for 1 ≤ i ≤ nT and 1 ≤ m ≤ nR are independent of each other and
obey the complex-valued Gaussian distribution with E[|hi,m|2] = 1. At the receiver,
the reciprocal of the scaling factor, namely ρ−1, is used to scale the received signal
to ensure unity-gain transmission, and the baseband model of the system can be
described as

y(k) = ρ−1HTρCx(k)+ρ−1n(k) = HT Cx(k)+ρ−1n(k), (19.25)

where n(k) = [n1(k) n2(k) · · ·nnR(k)]T is the channel additive white Gaussian noise
vector, nm(k), 1 ≤ m ≤ nR, is a complex-valued Gaussian random process with zero
mean and E[|nm(k)|2] = 2σ2

n = No, and y(k) = [y1(k) y2(k) · · ·ynR(k)]T denotes the
received signal vector. Note that ym(k), 1 ≤ m ≤ nR, constitutes sufficient statistics
for the mth MT to detect the transmitted data symbol xm(k). The SNR of the down-
link is defined as SNR = Eb/No, where Eb = ET/(nT log2 M ) is the energy per bit
per antenna for M -ary modulation. In our case, M = 4.

19.4.2 MBER MUT Design

The minimum mean square error (MMSE) MUT design, denoted as CTxMMSE,
is popular owing to its appealing simplicity [44, 51], but it does not minimise the
achievable system’s BER. The average BER of the in-phase component of y(k) at
the receiver is given by [8]

PeI (C) =
1

nRM nR

M nR

∑
q=1

nR

∑
m=1

Q

(
sgn(ℜ[x(q)

m ])ℜ[hT
mCx(q)]

σn

)
, (19.26)

where Q( ) is the standard Gaussian error function, M nR = 4nR is the number of
equiprobable legitimate transmit symbol vectors x(q) for QPSK signalling (19.11)

and x(q)
m the mth element of x(q), with 1 ≤ q ≤ M nR . Similarly, the average BER of

the quadrature-phase component of y(k) can be shown to be [8]

PeQ(C) =
1

nRM nR

M nR

∑
q=1

nR

∑
k=1

Q

(
sgn(ℑ[x(q)

m ])ℑ[hT
mCx(q)]

σn

)
. (19.27)

Thus the average BER of the MUT with the precoder matrix C is given by

Pe(C) =
(
PeI (C)+ PeQ(C)

)
/2, (19.28)
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Table 19.1 Computational complexity per iteration of two MBER MUT designs for QPSK
signalling, where nT is the number of transmit antennas, nR the number of mobile terminals,
M = 4 is the size of symbol constellation and S is the swarm size

Algorithm Flops
SQP nR × (8×n2

T ×n2
R +6×nT ×nR +6×nT +8×nR +4)×M nR

+O(8×n3
T ×n3

R)+8×n2
T ×n2

R +16×nT ×n2
R +8×n2

T ×nR

+12×nT ×nR +6×n2
R −2×n2

T +nT −2×nR +11
PSO ((16×nT ×nR +7×nR +6×nT +1)×M nR +20×nT ×nR +2)×S+8

and the solution of the average MBER MUT is defined as

CTxMBER = arg min
C

Pe(C) (19.29)

s.t. E[‖Cx(k)‖2] = ET.

The optimisation problem (19.29) is a constrained nonlinear optimisation prob-
lems, and it is typically solved by an iterative gradient based optimisation algorithm
known as the SQP [21, 23, 39]. The computational complexity per iteration of the
SQP-based MBER MUT, quoted from [39], is listed in Table 19.1 for QPSK mod-
ulation, where O(8× n3

T × n3
R) stands for order of 8× n3

T × n3
R complexity and we

assume that the complexity of a real-valued multiplication is equal to a real-valued
addition. Note that O(8× n3

T × n3
R) is the complexity for matrix inversion required

by the SQP algorithm, and the exact value of O(8×n3
T ×n3

R) depends on the inver-
sion algorithm employed. The total computational complexity equals the number of
iterations that the algorithm required to arrive at a global optimal solution multiplied
by this complexity per iteration.

19.4.3 PSO Aided MBER MUT Design

In practice, the computational complexity of the SQP based MBER-MUT solution
may be excessively high for high-rate systems [23]. In this contribution, we invoke
the PSO algorithm to solve the MBER-MUT design (19.29) in order to bring down
the computational complexity to a practically acceptable level. A penalty function
approach is adopted to convert the constrained optimisation process (19.29) into the
unconstrained one and to automatically perform power allocation in order to meet
the transmit power constraint. Let us define the cost function for the PSO algorithm
to minimise as

F(C) = Pe(C)+ G(C) (19.30)

with the penalty function given by

G(C) =

{
0, E[‖Cx(k)‖2]−ET ≤ 0,

λ (E[‖Cx(k)‖2]−ET), E[‖Cx(k)‖2]−ET > 0.
(19.31)
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With an appropriately chosen penalty factor λ , the MBER-MUT design (19.29) can
be obtained as the solution of the following unconstrained optimisation

CTxMBER = arg min
C

F(C). (19.32)

The value of λ is linked to the value of SNR. Since the BS has the knowledge of
the downlink SNR, it is not difficult at all to assign an appropriate λ value. The
dimensions of the search space for the PSO optimisation are specified by N = nT

and M = nR.
In Step a) The swarm initialisation, we set C(0)

1 = CTxMMSE, the MMSE MUT

solution, and randomly generate the rest of the initial particles, {C(0)
i }S

i=2, in the
search space UnT×nR .

In Step c) The swarm update, we adopt the zero inertia weight ξ = 0 and the
TVAC mechanism (19.8). If a particle wanders outside the search space, we move
it back inside the search space randomly rather than forcing it to stay at the border
of the search space. These measures are tested empirically to be appropriate for this
application.

The computational complexity per iteration for the PSO-aided MBER-MUT
scheme is also listed in Table 19.1. We will demonstrate that the PSO-aided MBER
MUT design imposes a considerably lower complexity than the SQP based MBER
MUT design. This is owing to the fact that the designed PSO algorithm is very
efficient in searching through the precoder’s parameter space to find an optimal so-
lution, as demonstrated in the following simulation study.

19.4.4 Simulation Study

We considered the downlink of a multiuser system that employed nT = 4 transmit
antennas at the BS to communicate over the 4×4 flat Rayleigh fading MIMO chan-
nels to nR = 4 single-receive-antenna QPSK MTs. The size of the swarm was chosen
to be S = 20, and the corresponding maximum number of iterations for the PSO al-
gorithm to arrive at the MBER performance was in the range of Imax = 20 to 40,
depending on the value of the downlink SNR. The choice of S = 20 was appropriate
in this application as it led to the lowest computational cost for the algorithm to
converge. Our empirical results suggested that the search limit Umax = 1.0 and the
velocity bound Vmax = 1.0 were appropriate for this application. The control factor γ
in avoiding zero velocity was found to be γ = 0.1 by experiments. All the simulation
results were obtained by averaging over 100 different channel realisations.

We first assumed the perfect channel state information (CSI) at the BS. Fig. 19.6
compares the BER performance of the MMSE-MUT scheme with that of the PSO-
based MBER-MUT scheme. It can be seen from Fig. 19.6 that, given the per-
fect CSI, the PSO-aided MBER-MUT provided an SNR gain of 3 dB over the
MMSE-MUT scheme at the target BER level of 10−4. The robustness of the PSO-
aided MBER-MUT design to channel estimation error was next investigated by
adding a complex-valued Gaussian white noise with a standard deviation of 0.05 per
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dimension to each channel tap hi,m to represent channel estimation error. The BERs
of the MMSE-MUT and the PSO-based MBER-MUT under this channel estimation
error are also plotted in Fig. 19.6. It can be seen that the PSO-aided MBER-MUT
design was no more sensitive to channel estimation error than the MMSE-MUT
design. The convergence performance and computational requirements of the PSO-
aided MBER-MUT design were investigated, using the SQP-based MBER-MUT
counterpart as the benchmark. Fig. 19.7 compares the convergence performance of
the SQP-based and PSO-aided MBER MUT schemes, operating at the SNR values
of Eb/No = 10 dB and 15 dB, respectively.

At the SNR of 10 dB, it can be seen from Fig. 19.7 that the SQP algorithm
converged to the MBER-MUT solution after 100 iterations, while the PSO counter-
part arrived at the same MBER-MUT solution after 20 iterations. Fig. 19.8 shows
the computational complexities required by the SQP-based and PSO-aided MBER-
MUT designs, respectively, to arrive at the MBER MUT solution, in term of (a) the
total number of operations (Flops) and (b) the total run time (seconds) recorded. In
deriving the number of operations required by the SQP algorithm, we had approxi-
mated O(8×n3

T ×n3
R) by 8×n3

T ×n3
R. It can be observed from Fig. 19.8 (a) that the

SQP-based algorithm needed 229,351,100 Flops to converge to the MBER-MUT
solution, while the PSO-aided algorithm converged to the same MBER-MUT solu-
tion at the cost of 34,561,760 Flops. Therefore, the PSO-aided MBER-MUT design
imposed an approximately seven times lower complexity than the SQP counterpart
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Fig. 19.6 BER versus SNR performance of the PSO-aided MBER-MUT communicating
over flat Rayleigh fading channels using nT = 4 transmit antennas to support nR = 4 QPSK
MTs, in comparison with the benchmark MMSE-MUT
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for this scenario. From Fig. 19.8 (b), it can be seen that the SQP-based design re-
quired 1730.6 seconds to converge to the optimal MBER-MUT solution, while the
PSO-aided design only needed 257.3 seconds to arrive at the same optimal MBER-
MUT solution. This also confirms that the PSO-aided MBER-MUT scheme was
approximately seven times faster than the SQP-based counterpart in this case.

From Fig. 19.7 it can also been that, with the SNR of 15 dB, the SQP based al-
gorithm converged after 140 iterations, which required a total cost of 321,091,540
Flops, while the PSO-aided scheme archived the convergence after 40 iterations,
which required a total cost of 63,541,120 Flops. Thus, the PSO-aided design im-
posed an approximately five times lower complexity than the SQP counterpart in
this scenario.

Further investigation showed that the convergence results obtained for SNR<
10 dB were similar to the case of SNR= 10 dB, while the convergence results ob-
tained under SNR> 15 dB agreed with the case of SNR= 15 dB. Thus, we may
conclude that for this 4×4 MIMO benchmark the PSO-aided MBER-MUT design
imposed approximately five to seven times lower complexity than the SQP-based
MBER-MUT counterpart.

Finally, we showed that why the choice of the swarm size S = 20 was optimal
in this application. Fig. 19.9 illustrates the convergence performance and the total
required complexity for the PSO-aided algorithm with the different swarm sizes of
S = 10, 20, 30 and 40 at the SNR value of 15 dB. It is clear that S = 10 was too small

Fig. 19.7 Convergence performance of the SQP-based and PSO-aided MBER-MUT schemes
for the system employing nT = 4 transmit antennas to support nR = 4 QPSK MTs over flat
Rayleigh fading channels at Eb/No = 10 dB and 15 dB, respectively
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Fig. 19.8 Complexity comparison of the SQP-based and PSO-aided MBER-MUT schemes
for the system employing nT = 4 transmit antennas to support nR = 4 QPSK MTs over flat
Rayleigh fading channels at Eb/No = 10 dB, in terms of (a) number of FLOPs, and (b) run
time (seconds)
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Fig. 19.9 Convergence performance (a) and required total complexity (b) of the PSO-aided
MBER-MUT scheme with different swarm sizes for the system employing nT = 4 transmit
antennas to support nR = 4 QPSK MTs over flat Rayleigh fading channels at Eb/No = 15 dB
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for the algorithm to converge to the optimal MBER-MUT solution in this case. The
results of Fig. 19.9 also show that with S = 20 the algorithm took 40 iterations to
converge at the cost of 63,541,120 Flops, and with S = 30 it needed 27 iterations
at the cost of 64,335,276 Flops, while the algorithm given S = 40 only required 25
iterations to converge but its cost was 79,426,200 Flops. Thus the choice of S = 20
led to the lowest computational cost for the algorithm to converge in this application.

19.5 Conclusions

State-of-the-art MIMO transceiver designs impose expensive optimisation prob-
lems, which require the applications of sophisticated and advanced optimisation
techniques, such as evolutionary computation methods, in order to achieve the op-
timal performance offered by MIMO technologies at practically affordable cost.
In this contribution, we have demonstrated that the PSO provides an efficient tool
for aiding MIMO transceiver designs. Specifically, we have applied the PSO al-
gorithm to the semi-blind joint ML channel estimation and data detection for
MIMO receiver, which offers significant complexity saving over an existing state-
of-the-art RWBS-based scheme. Furthermore, we have employed the PSO to de-
sign the MBER MUT scheme for the downlink of a SDMA induced MIMO system,
which imposes much lower computational complexity than the available SQP-based
MBER MUT design.

The Communication Research Group at the University of Southampton has ac-
tively engaged in research of state-of-the-art MIMO transceiver designs using var-
ious powerful evolutionary computation methods for a long time. In particular, we
have extensive experience using the genetic algorithm [3, 5, 6, 22, 24, 53] and the ant
colony optimisation [47, 48, 49] for MUD designs. Further research is warranted to
further investigate various evolutionary computation methods in benchmark MIMO
designs and to study their performance-complexity trade-offs with the aim of pro-
viding useful guidelines for aiding practical MIMO system designs.
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44. Vojčić, B.R., Jang, W.M.: Transmitter precoding in synchronous multiuser communica-
tions. IEEE Trans. Communications 46(10), 1346–1355 (1998)

45. Winters, J.H.: Smart antennas for wireless systems. IEEE Personal Communica-
tions 5(1), 23–27 (1998)

46. Wolfgang, A.: Single-Carrier Time-Domain Space-Time Equalization Algorithms for the
SDMA Uplink. PhD Thesis, School of Electronics and Computer Science, University of
Southampton, Southampton, UK (2007)

47. Xu, C., Yang, L.-L., Hanzo, L.: Ant-colony-based multiuser detection for MC DS-
CDMA systems. In: Proc. VTC 2007-Fall, Baltimore, USA, September 30-October 2,
pp. 960–964 (2007)

48. Xu, C., Yang, L.-L., Maunder, R.G., Hanzo, L.: Near-optimum soft-output ant-colony-
optimization based multiuser detection for the DS-CDMA. In: Proc. ICC 2008, Beijing,
China, pp. 795–799 (2008)

49. Xu, C., Hu, B., Yang, L.-L., Hanzo, L.: Ant-colony-based multiuser detection for multi-
functional antenna array assisted MC DS-CDMA systems. IEEE Trans. Vehicular Tech-
nology 57(1), 658–663 (2008)

50. Yang, L.-L.: Design of linear multiuser transmitters from linear multiuser receivers. In:
Proc. ICC 2007, Glasgow, UK, June 24-28, pp. 5258–5263 (2007)

51. Yang, D., Yang, L.-L., Hanzo, L.: Performance of SDMA systems using transmitter pre-
processing based on noisy feedback of vector-quantized channel impulse responses. In:
Proc. VTC2007-Spring, Dublin, Ireland, pp. 2119–2123 (2007)

52. Yao, W., Chen, S., Tan, S., Hanzo, L.: Particle swarm optimisation aided minimum bit
error rate multiuser transmission. In: Proc. ICC 2009, Dresden, Germany, 5 pages (2009)

53. Yen, K.: Genetic Algorithm Assisted CDMA Multiuser Detection. PhD Thesis, School
of Electronics and Computer Science, University of Southampton, Southampton, UK
(2001)



Chapter 20
Optimal Design of a Common Rail Diesel Engine
Piston

Teresa Donateo

Abstract. This chapter analyzes the main challenges in the application of ”simula-
tion optimization” to the design of engine components, with particular reference to
the combustion chamber of a Direct Injection Diesel engine evaluated via Compu-
tational Fluid Dynamic (CFD) codes.

20.1 Presentation

This chapter analyzes the main challenges in the application of ”simulation opti-
mization” to the design of engine components, with particular reference to the com-
bustion chamber of a Direct Injection Diesel engine evaluated via Computational
Fluid Dynamic (CFD) codes.

The chapter starts with a description of the advantages of simulation optimization
with respect to traditional trial and error approaches. The state of the art and the re-
cent spreading of such techniques also in industry will be considered. Then, the spe-
cific challenges of optimizing an internal combustion engine are analyzed: the large
computational time required for the fluid dynamic simulation of the engine (de-
pending on the resolution of the computational mesh used to represent the fluid do-
main), the necessity to take into account several operating conditions (each requiring
time expensive simulations), the interaction between fluid and solid structure (re-
quiring the combination of CFD and FEM), etc. Moreover, if the design parameters
include the geometrical features of the engine (i.e. the shape of the combustion
chamber), the computational three-dimensional mesh has to be parameterized so
that it can be automatically generated according to the selected values of the design
parameters. This is particularly challenging when using commercial CFD codes that
usually have a specific pre-processor with specific requirements in terms of grid
quality, volumes connection, boundary conditions, etc. Constraints, restrictions and
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limits that the designer must meet due to norms, regulations and functionalities are
additional challenges in the design process. Another aspect to be considered is the
multi-objective nature of the problem (the main goals to be achieved are the reduc-
tion of emissions, the containment of fuel consumption and CO2 emissions, etc)
that has been addressed in different ways by the main research centers involved in
this kind of application.

Among the available optimization methods, Genetic Algorithms (GAs) are usu-
ally chosen in this application for their robustness and their capability to deal with
multi-objective optimizations. Furthermore, they are simple to use and to combine
with existing simulation code without significant modifications and their efficiency
is independent of the nature of the problem. Another advantage of genetic algo-
rithms is their implicit parallel nature that makes possible to easily exploit the com-
putational capability of high performance multi-processors server now available not
only in academic but also in industrial research centres. The advantages and the crit-
icism of distributing the computational load on inter regional computing grids like
the south Italy SPACI Grid will be also underlined.

Finally, a test case will be presented, describing the application of simulation op-
timization to the design of a common rail direct injection diesel engine for automo-
tive applications based on multi-objective genetic algorithms and CFD analysis with
respect to four different engine operating conditions. Note that a multi-disciplinary
approach is a key aspect to successfully apply the method. The achievements shown
in the test case are the results of the collaboration with both automotive companies
(CVIT - Bosch Research Center, Bari, Italy, Prototipo Group) and high performance
computation academic research centres (HPC- Lecce). Moreover, the methodology
described in the chapter has been extensively applied for the design of commercial
diesel engines since 2003 so that a wide amount of data are available. The results
have been also validated through experiments by building and testing the optimized
pistons developed with the described method.

20.2 Introduction

In direct injection diesel engines, the combustion chamber is represented by the
space defined, at each time, by the cylinder head and walls and the piston crown.
Since the combustion and emissions mechanisms of formation are strongly affected
by the flow field produced by the chamber shape, the optimization of the bowl pro-
file is a strategic way to fulfill present day and future regulations about pollutant
emissions and greenhouse gases, which depend on fuel consumption. A symmetri-
cal cavity, called the bowl, is usually present in the piston to allow fuel to be injected,
mixed with air and burned. This type of combustion system was firstly introduced
in 1934 by a Swiss company named Adolph Saurer [1] and then adopted by several
companies, such as Scania, Volvo, PSA, British Leyland, IVECO and many oth-
ers. Lately, the increase of fuel injection pressure and the use of multiple injections
improved their efficiency and reduced emissions. These results yielded the develop-
ment of high-pressure electronically-controlled injection systems as unit injectors
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and common rail systems. Due to the high flexibility of common rail in fulfilling
arbitrary injection strategies, cars equipped with direct injection diesel engines and
Common Rail injection systems are now widespread in the automotive market.

The necessity to fulfill more and more stringent limits of emissions, lead design-
ers to abandon the traditional trial and error approach in the design of the combus-
tion chamber and to search for innovative solutions. Since ’90s, work has been done,
mainly through experiments but also with the help of CFD simulations to study the
effect of combustion chamber on engine performances and emissions by comparing
a small number (two or three) of combustion chamber designs a ([2],[3], [4], [5],
[6], [7], [8],[7]).

In the mean time, the academic world and in particular the ERC Research Cen-
ter at the University of Madison-Wisconsin [9] and the CREA Research center of
the University of Salento [10], introduced the use of simulation optimization in the
design of engine combustion chambers. In these first applications, the optimization
was performed by combining a standard genetic algorithm with the Kiva code, an
open source three-dimensional engine simulation program. These works underlined
one of the difficulties of optimizing the combustion chamber, that is the necessity to
take into account a very large number of input parameters. The two main operating
parameters of the engine are its torque and speed that change continuously when the
vehicle is run according to the vehicle route, the user driving style, etc. For this rea-
son, to assess the performance of a vehicle in terms of consumption and emissions,
standard driving cycle are used. A driving cycle consists of a particular profile of
velocity versus time that has to be executed under controlled conditions. Only the
vehicles that fulfill specific regulation in terms of emissions along a standard driving
cycle can be introduced in the market. The specification of the driving cycle changes
form nation to nation and depends on the mass or the rated power of the vehicle.

In the preliminary design of the vehicle, however, the engine is not tested over the
entire driving cycle but only over a certain number of operating conditions (torque
and speed couples) named ”modes” that are assumed to be representative of the
cycle. The effect of a particular chamber shape over emission levels changes signifi-
cantly when changing from one mode to another [6]. Thus, the combustion chamber
optimization has to be performed according to several modes. Senecal et al. [11]
applied the KIVA-GA optimization method to optimize chamber for two operating
modes, de Risi et al. [12] considered up to four modes. Moreover, the performance
of an engine with a particular combustion chamber shape depends on the control
strategy chosen for the engine in terms of injection strategy (injection pressure,
number of injection per cycle, quantity of fuel injected in each injection pulse),
EGR (exhaust gas recirculation), boost pressure, etc. This problem is usually ap-
proached by separating the design parameters that are ”common” across all modes
(compression ratio, combustion chamber profile, etc.) from those that can vary from
mode to mode (EGR, injection profile, boost pressure, etc.) and so can be con-
sidered ”independent”. To completely optimize engine performance and pollutant
emissions, both ”common” and ”independent” parameters should be considered in
the optimization. This approach, used by Reitz et al. [9], would find an absolutely
optimized configuration of the input parameters but it is unlikely to explain why this
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configuration works well. Moreover, by using this approach, the complexity of the
system strongly increases when different modes are taken into account since each
independent parameters has to be counted as many time as the number of modes.
For this reason, the optimizations of engine geometry and control parameters were
taken separated at the CREA. De Risi et al. [13] developed a two-step optimization
methodology where both steps are based on genetic algorithms and CFD simula-
tions. Firstly, the combustion chamber shape is optimized for a fixed injection strat-
egy. Then, the shape of the combustion chamber is kept constant and the injection
strategy is changed to identify the response of the chambers selected in the first step
to different injection strategies.

In [14] to save computational time the Kriging response surface model is adopted
to limit the number of CFD simulations to be performed. The Kriging method
is used to develop an approximation model that is coupled with an optimization
method to find the optimum. In this way, the computational time is cut by 95%.
However, using RSM in optimization the global optimum can be missed because
the estimated function values obtained with RSM includes errors at an unknown
point.

Nowadays, the use of multi-objective optimization combined with CFD code is
widespread in automotive industry that has become one of the main user of com-
plex simulation and optimization tools. However, industry search for user-friendly
optimization tools easily to couple with existing commercial CFD code. This is the
reason of the success of optimization environment like ModeFRONTIER [15] and
iSIGHT [16]. In these optimization environments, different optimization method
(genetic algorithm, simulated annealing, etc.) can be chosen by the user. However,
it is important to stress the difference between optimizing the engine in terms of
operating conditions (injection strategy, EGR level, etc) and in terms of combustion
chamber shape. In the first case, in fact, the design parameters are usually easy to
modify since they are given as input to commercial CFD code by means of ASCII
files. On the other hand, the shape of the combustion chamber is given through a
complex three-dimension computational mesh that cannot be easily described by in-
put parameters and automatically generated. For this reason the next chapter will an-
alyze the automatic generator of mesh for open source and commercial CFD codes.

20.3 Automatic Definition of the Computational Mesh

In direct injection diesel engines, the combustion chamber consists of two commu-
nicating regions named squish and bowl and illustrated in figure 20.1. During the
intake and exhaust phases, the combustion chamber communicates with the mani-
folds through the intake and exhaust valves. However, the flow field generated by
the intake process is not affected by the shape of the combustion chamber [17] and
the exhaust phase is important only for its effect on catalyst and turbo-charging
systems. Thus, only the closed portion of the engine cycle is considered.

The squish region is the cylinder space defined at any time by the cylinder head,
the cylinder wall and the piston head while the bowl is the cavity usually present
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in the piston to allow fuel to be injected, mixed with air and burned. Note that the
squish region grows and shrinks as the piston moves downward and upward between
the top dead center (TDC) and the bottom dead center (BTD) while the bowl region
keeps always the same shape and size. The minimum height of the squish region
is dependent on the compression ratio of the engine and is named ”squish height”.
To simulate the behavior of the combustion chamber with CFD code, a moving 3D
computational mesh that describes the combustion space according with the piston
movement is used.

In initial applications of simulation optimization to the combustion chamber, the
engine was simulated with different versions of an open source CFD code named
KIVA ([18],[19]). In the first investigation at the ERC [9] the bowl geometry was
defined by three input variables (bowl diameter, bowl depth and central crown height
of the piston) allowing only open chamber profiles to be investigated. Lately, a more
general chamber profile generation tool was developed at the ERC[20]. where the
chamber profile is defined according to the parameters shown in figure 20.2. This is
performed with an automated grid generator named Kwickgrid that uses a reduced
set of input parameters when compared with the standard KIVA grid generation code
[18]. Kwickgrid uses up to five parameters to define the overall piston bowl shape
and up to eight variables to generate Bezier curves that describe the desired piston

Fig. 20.1 An example of computational mesh

Fig. 20.2 The ERC profile generator, adapted from [20]
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design and make it smooth for practical application. An approximating and iterative
methodology is used to maintain the compression ratio and user-determined mesh
size until a convergence criterion is reached.

In 2002, Senecal et al. [11] presented a general geometry parametrization where
six parameters were used to define the bowl shape. By increasing or decreasing
the number of parameters defining the profile it is possible to include more or less
”wiggles” in the bowl profile. Once the bowl profile is determined, a grid genera-
tion program G-Smooth is used to create the mesh. A wide range of bowl shapes
can be obtained with this technique but some of them are unsuitable for practical
application. Senecal et al. [11] stress the importance of keeping the same mesh res-
olution for all geometries generated in the search. This ensures that differences in
design performance are due to changes in geometry (and other eventual independent
parameters) and not changes in mesh resolution. Like in the approach of the ERC
center, bore, stroke, and compression ratio are constant. The compression ratio set
by the user is maintained for all designs by changing the squish height.

In the investigation of Wakisaka et al. [21], the shape of the combustion chamber
is defined with 10 design variable (see figure 20.3). Injection angle is also consid-
ered as design variable because diesel engine combustion largely depends on the
injection angle.

In the investigations performed at the CREA the parametric schematization of
figure 20.5 has been initially considered. Note that this schematization does not
allow more than one inflexion point in the bowl profile. In the method of de Risi
et al. [10] the volume of the bowl obtained with a particular combination of the
parameters is calculated as algebraic sum of six volumes Vj with j = 1,6 as in figure
20.4. Once calculated the six volumes the volume of the bowl is given by:

Vbowl =
5

∑
i=1

Vj −V6 (20.1)

Since volumes Vj with j = 2,6 depend on the position of point O, a non linear equa-
tion in x0 is obtained that is solved with a standard iterative calculus procedure. Note

Fig. 20.3 The Wakisaka’s profile generator, adapted from [21]
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that in this way the achievement of the desiderate volume bowl (i.e. compression ra-
tio) is obtained by moving point 0 in the horizontal direction and not by changing
the squish height. In this way the bowl to squish ratio, that strongly affects the flow
field, doesn’t change when the parameters of the bowl are changed. The bowl profile
obtained is then processed by a tool named ”Meshmaker” that automatically write
the simple input file which is required by the KIVA standard preprocessor, named
K3prep, in order to generate a three-block structured mesh. The mesh consists of
three blocks represented in 20.5. The first two blocks define the squish region while
the third block describes the bowl. The spatial resolution is set equal for all cham-
bers and the number of divisions along x, θ and z axes is automatically calculated
for each chamber according to both engine size (bore, stroke and squish) and bowl
depth and width. K3prep automatically adapts the shape of the computational cells
of the third region to follow the profile of the bowl trying to avoid cells with a bad
aspect ratio. If this is not achievable, depending on the shape of the profile, an error
message is given by k3prep. In this case the computational mesh is not generated.

Fig. 20.4 The CREA bowl volume calculation

Fig. 20.5 The CREA profile generator
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All the examples illustrated until now, refer to open source mesh generators
where structured meshes are used and the implementation of the automatic gen-
eration of the chamber profile is quite simple. On the contrary, the implementation
becomes more complex when using commercial CFD codes that usually consider
unstructured meshes and have complex pre-processors with specific requirements
in terms of grid quality, volumes connection, boundary conditions, etc. Moreover,
they only accept input files with specific formats (Iges, Patran, STL, etc.). Thus,
automatically writing the chamber profile for them is quite challenging. Recently,
the CREA research center extended the optimization method to the use of commer-
cial CFD codes in collaboration with the Nardo’ Technical Center, Prototipo group
[15] . In this application, the simulation of the engine was performed with the CFX
software and the procedure of figure 20.6 was developed to generate an automatic
computational mesh for this software. Moreover, the effect of the combustion cham-
ber was evaluated not only with respect to its fluid-dynamic behavior but also with
respect to the thermal and pressure stresses on the piston head. This could be done
thanks to the capability of the CFX software in performing both CFD analysis of the
fluid domain (combustion chamber) and FEM analysis of the piston (solid domain).
The flow-chart of the optimization process is shown in figure 20.6.

The method has been implemented in the optimization environment ModeFron-
tier. The input files Meshparam.txt and Enginemode.ccl contain the geometrical
parameters of the bowl and the operating conditions of the engine, respectively.
These files are automatically generated in the optimization environment according
to the design parameters selected by the optimization algorithm. The geometrical
parameters defining the bowl are the input of the automatic profile and mesh gener-
ator (Meshmaker−X). The engine operating conditions (rpm, injected fuel, injec-
tion strategy, EGR, etc.) are used as boundary conditions for both the thermo-fluid
dynamics analysis and the structural simulation with CFX. The results of the sim-
ulations are post-processed with CFX-Post and the main outputs are written in two

Fig. 20.6 Flow chart of the optimization with CFX
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ASCII files that are returned to the optimization environment. The first one is named
C f dout.txt and contains the emission levels (mainly soot and NOx) and the fuel
consumption of the engine with the proposed combustion chamber for the operating
mode in Enginemode.ccl. The second one ( f emout.txt) contains information about
the capability of the piston to sustain the predicted thermal load that will be used as
constrain in the optimization process.

The bowl profile is obtained by the union of the two cubic Bezier curves (AB and
BD) and the vertical lines OA and CD as illustrated in figure 20.7. Points 1,2,3,4
are control points that define the direction and the slope of the curves. By moving
points A,B,C , D,1,2,3 and 4, a large variety of combustion chamber profiles can be
obtained. However there are some constraints in the building of the profile. Point D
can move only in the horizontal direction (x axis), zD = 0, and its x coordinate must
be the same of point C (xC = xD) while point A has to belong to the vertical axis z
(xA = 0). The two Bezier curves have in common the point B, thus the slope in that
point has to be the same for the two curves. The achievement of the constant volume
of the chamber is obtained by adjusting the coordinates of point B. In particular
point B is moved parallel to the bisector of angle the defined by the prolongations
of segments A1 and C4 until the volume of the chamber is equal (with a tolerance
Δv) to the value chosen by the user. The numerical values of the parameters of
figure 20.7 as described in table 20.1 are contained in the input file Meshparam.txt.

Once the profile has been generated, an unstructured computational mesh is de-
fined for the fluid domain according to the resolution selected by the user (also in-
cluded in the Meshparam.txt) and written in a PATRAN file to be read by the CFX
solver. Meshmaker−X also sets the boundary conditions on the mesh and check for
the fulfillment of the CFX preprocessor requirements in terms of grid uniformity,
cell shape, etc. Thanks to the combined CFD-FEM evaluation, chambers that are
suitable from the CFD point of view but not able to sustain the thermal load are pe-
nalized in the optimization process. Details on the construction of the solid domain
for the FEM analysis are not reported here for the sake of brevity. Note that the

Fig. 20.7 Chamber parameterization for CFX
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Table 20.1 Input parameters for Meshmaker-X

Variable Description

zA z coordinate of point A
x1 x coordinate of point 1
z1 z coordinate of point 1
Δx2 horizontal distance between points 2 and B
Δx3 horizontal distance between points 3 and B
s2,3 slope of the line 2 3 B
x4 x coordinate of point 4
z4 z coordinate of point 4
xC x coordinate of point C
zC z coordinate of point C
xB initial value of the x coordinate of point B
ΔxB movement of point B along x direction
n1 number of points defining the first Bezier curve (AB)
n2 number of points defining the second Bezier curve (BC)
vol f selected volume of the bowl
Δv maximum acceptable error of the bowl volume

computational time required for the FEM analysis of the piston is negligible with
respect to the CFD simulation of the combustion chamber.

20.4 Single-objective and Multi-objective Approaches

The optimization of an internal combustion engine is a very difficult task due to the
multiple and competitive goals to be achieved. A typical case is the contemporary
reduction of the two main diesel engine emissions (soot and nitrogen oxides). Other
engine outputs to be controlled in the optimization are the emission of unburned
hydrocarbons (HC), specific fuel consumption (ISFC), mean effective pressure, ex-
haust temperature, peak of pressure, noise, etc. The initial approach of the ERC
group was to combine all the engine optimization goals in a merit function. For
example, the form of the merit function utilized in [22] is as follows:

merit =
1000[

NOx+NC
NOx,n+HCm

]2
+ ISFC

ISFC0
+ W HEAT

W HEAT0

(20.2)

where NOx + HC are the nitrogen oxides and hydrocarbon emissions lumped to-
gether while NOx,m + HCm are the target values to be achieved to fulfill specific
engine emission regulation, ISFC is the indicated specific fuel consumption and
ISFC0 is the same but calculated from simulation of the baseline operating case.
WHEAT is the total cylinder wall heat transfer and WHEAT0 is the corresponding
value for the baseline configuration.



20 Optimal Design of a Common Rail Diesel Engine Piston 523

A similar approach was also used by Senecal et al [11] to optimize the chamber
with respect to two operating modes A and B, Senecal calculated the merit function
with respect of each mode ( fA and fB) and then considered the following expression:

f =
1

0.5
(

1
fA

+ 1
fB

) (20.3)

Compared with the simply averaging of the individual merit function values, this
expression has the property of weighting the overall merit value more heavily by
the lower of fA and fB. In this way, the formulation does not allow a design with
a high value of f fA and a very low value of fB to falsely have a high value of the
overall merit function. The individual merit function values from both operating
conditions must be reasonable to obtain a high value of f .

Starting from 2008, the ERC group [23] considered a multi-objective approach by
using the NSGA-II optimization algorithm. In [14] the EGOMOP (Efficient Global
Optimization for multi-objective problem) approach is used, in which each objective
function is converted into its Expected Improvement and this value is used as fitness
in multi-objective optimization problem. The k-means clustering method is adopted
for the efficient selection of additional sample points in high dimensional problem.
In this way not all the Pareto points are used as additional sample points but only a
reduced number is selected. In this study, the optimization was performed with four
objective functions: soot, NO, CO and thermal efficiency.

In the approach followed at the CREA, the optimization goals, soot, NOx, HC
and Indicate Mean Effective Pressure, are kept separate and a fitness component is
evaluated for each of them:

F1 =
Nmodes

∑
i=1

F1p(i) ·w1(i)
(

NO0
x

NOx

)
i

(20.4)

F2 =
Nmodes

∑
i=1

F2p(i) ·w2(i)
( soot0

soot

)
i

(20.5)

F3 =
Nmodes

∑
i=1

F3p(i) ·w3(i)
(

HC0

HC

)
i

(20.6)

F4 =
Nmodes

∑
i=1

F4p(i) ·w4(i)
(

IMEP
IMEP0

)
i

(20.7)

Note that in this case the optimization of the combustion chamber is treated as a
maximization problem. In these equations, subscript 0 refers to the values obtained
with the baseline configuration while wj(i), j = 1,4 represents the weight of mode
i for the definition of objective j (1=NOx, 2=soot, 3=HC and 4=IMEP); Nmodes is
the total number of modes considered in the application and F p

j (i), j = 1,2,3 is
the value of the penalty function for the fitness component j calculated on mode i.
Penalty functions are used to introduce inequality constraints in the optimization.
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This approach also allows for secondary optimization goals to be taken into account
as constraints instead of goal so that the complexity of the problem is not excessively
increased by considering more than four fitness components. More details on this
approach will be given in the last section of this chapter that describes a case study
performed with this approach.

20.5 Optimization Algorithms

Genetic algorithms (GAs) are suitable for engine optimization thanks to their high
robustness and their capability to deal with multi-objective optimization. Moreover,
they are simple to use and to combine with existing simulation code without signif-
icant modifications. The implicit parallel nature of GAs makes it easy to exploit the
growing parallel computing power. In fact, they work with a population of solutions,
then multiple optimal individuals can be captured in a single run.

Before GAs, traditional optimization methodologies (e.g. gradient based meth-
ods) were used as optimization tools in engineering design. These methods are sen-
sitive to derivatives of the parameters space (while the design spaces is generally
non-smooth in engineering applications) and have difficulties both in finding global
optimum and in addressing multi-objective problems.

A considerable number of Multi-objective Genetic Algorithm applied to indus-
trial problems can be found in literature. The assessment of MOGAs toward the ap-
plication of engine designs by Shi and Reitz [23] showed that NSGA II, compared
with a micro-GA and an Adaptative Range Multi-Objective Genetic Algorithm per-
forms better with respect to optimality and diversity of the optimal solutions when a
large population size is applied. As far as the activity at CREA is concerned a multi-
objective genetic algorithm named GA-CREA was developed. In the GA-CREA
algorithm [10], a standard genetic algorithms structure is considered but instead of
a single fitness function, an array of fitness values is assigned to each configuration
as described in the previous paragraph. The components of the array are the fitness
values calculated separately according to each objective for each individual in the
current generation. Once the fitness arrays are calculated, non dominated solutions
are ranked by using the dominance criterion. The method is illustrated in the test
case section since it has also been implemented in the HiPeGEO algorithm.

At each GACREA iteration (i), before the new population (with size Np) is gen-
erated, the elitism module randomly select Ne individual from the non dominated
solutions obtained in the generation (i-1), Pareto(i-1) and reproduce them, without
any modifications, in the population pop(i). The remaining Np-Ne individuals of
gen(i) are obtained by gen(i-1) after applying single-point crossover and mutation.
Ne is set equal to the size of Pareto(i-1) if it is less than Np/2, otherwise it is set
equal to Np/2. The execution of the optimization is stopped when a prefixed number
of generations is completed and the Pareto front is extracted from all the individuals
analyzed during the GA run.

The performance of GA-CREA were evaluated with respect to both mathematical
test problems [24] and a typical engine optimization problem [25]: reducing soot
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and NOx emissions and increasing IMEP by changing the injection pressure and
the advance of the single injection. This problem is called ”Diesel dilemma” since
retarding the injection NOx decrease while soot increases. On the other hand, by
increasing injection pressure soot emissions and IMEP improve but NOx emissions
get worse. GA-CREA was compared with three optimization tools available in the
ModeFrontier environment: MOGAII, MOSA and MACK.

For the quantitative analysis of the optimization algorithms, four metrics avail-
able in literature [26] were considered and applied to the Pareto front obtained with
GACREA, MOGAII, MOSA and MACK. The results of this test showed that the
optimization algorithms GACREA performs very well in terms of distribution and
definition of the Pareto front. Even if the number of points on the Pareto front is
lower than in the case of MOGAII and MOSA, only a small percentage of these
points are dominated by the solutions found with MOGAII, MOSA and MACK.

Another genetic algorithm named HiPeGEO (High Performance Genetic Al-
gorithm for Engine Optimization) was developed by the CREA in collaboration
with the High Performance Computing group at the University of Salento,. The
HiPeGEO algorithm will be described in the test case section since it was specifi-
cally developed for that application.

20.5.1 Implementations on Computation Platform and Grids

Thanks to the implicit parallel nature of genetic algorithms, a UNIX shell script is
usually sufficient to parallelize a GA and distribute the computational task on multi-
processor servers. Recently, some works have been devoted to analyze the use of
grid computing for industrial optimization problems [27]. Based on the popular-
ity of the Internet and the availability of a large amount of geographically disperse
computational resources, the grid computing allows the use of the computing power
offered by such platforms to tackle complex problems which involve intensive com-
puting tasks. An implementation of the micro-GA HiPeGEO using a grid system to
distribute the function evaluations is presented in [12] and applied to the optimiza-
tion of the combustion chamber according to the approach developed at the CREA.
Grid technologies were implemented in a grid portal named DESGrid which con-
sists of three essential modules:

• a web interface to access the system transparently;
• a second module for the management and the execution of the HiPeGEO;
• a grid resource manager to optimize the use of the available computational re-

sources.

As further example concerning heuristic methods for multi-objective optimization
and grid computing is described in the work of [27]. In this investigation, authors do
not just distribute the function evaluations (e.g., the algorithm remains as in sequen-
tial) but develop a new grid-based model of search based on the PAES algorithm.

However, some drawbacks of the use of computational grid for engine optimiza-
tion via numerical simulation have to be underlined. Firstly, the numerical results of
the simulation are affected by the architecture where they are run over. This means
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that difference in the performance of the analyzed chambers could derive not only
from the chamber specification but also on the architecture used to simulate that
specific chamber. A possible way to solve this problem is to use scaled objective
function as in 20.4 - 20.7 where the baseline data used for the comparison are calcu-
lated on the same architecture where the current design is being evaluated. A second
difficulty arise when commercial codes are used. In this case, the possibility to dis-
tribute the computational load over the grid is limited by the number of available
licenses. Thus, each resource of the grid has to be connected with the licence man-
ager server and ask for the availability of a license to run an evaluation with the
simulation code.

20.6 Test Case

A direct injection diesel engine with four valves per cylinder, a zero-offset bowl and
a centrally disposed seven-hole injector has been considered. The engine specifica-
tions are reported in table 20.2. To optimize the bowl profile, the simple parametric
schematization of figure 20.5 was considered. The range of variation of the param-
eters for the test case are shown in table 20.3.

Table 20.2 Engine specification

specification unit value

Displacement [cm3] 420
Compression ratio 17.2
Intake valve closing, crank angle BTDC [deg] 134
Injection system Common Rail
Holes diameter [mm] 0.145
Number of holes 7

Table 20.3 Input parameters for the test case

Parameter unit lower limit upper limit

Xe [mm] 15.0 34.0
α [deg] -90 90
β [deg] 45 90
r [mm] 2.0 14.0
E [mm] 1.0 5.0

For the present application, bore, stroke, squish volume and compression ratio
were kept constant and equal to the baseline configuration chosen for reference.
Therefore, the bowl volume was the same for all the analyzed combustion chambers.
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The simulation of the engine behavior when changing the bowl shape was performed
with the CFD code KIVA3V-CREA while the optimization was performed with the
HiPeGEO algorithm, specifically developed for this application.

20.6.1 Problem Specifications

The injection parameters were assumed to be the same for all investigated configu-
rations and an innovative injection strategy with a large quantity of fuel injected 60
before TDC was considered (early injection) at low speed and load while a single
injection was assumed for mode 3 and 4. The optimization was aimed at reducing
pollutant emissions at low speed and load and increasing engine performance at high
load. Thus, three fitness functions were defined according to the main pollution pro-
duced by diesel engines: particulate, NOx and Unburned Hydrocarbons (HC) while
a fourth function was used to take into account the Indicated Mean Pressure (IMEP).
The behavior of each configuration was evaluated by comparing its emission levels
and IMEP value with those produced by the baseline chamber for the same operat-
ing mode. The comparison was performed for all modes and a weight was assigned
to each mode on the basis of its influence on the definition of engine emissions and
performance. The four objective functions have been already reported in equations
20.4 - 20.7.

The four modes of table 20.4 were used in the optimization. The same weight
was assigned to mode 1 and 2 in the calculation of the fitness components because
they were considered equally important in the definition of total engine emissions.
In the same way, a weight equal to 0.5 was assigned to mode 3 and 4 for IMEP
maximization. Note that mode 4 represents the maximum allowed values of speed
and load.

Table 20.4 Operating conditions for the optimization

Mode 1 2 3 4

Engine speed [rpm] 1500 2000 3000 5300
Indicated Mean Pressure IMEP[bar] 4.3 8.0 25.0 20.5
Weight for emission calculation (w1=w2=w3) 0.5 0.5 0 0
Weight for performance calculation (w4) 0 0 0.5 0.5

The optimization process was performed by means of numerical simulations;
thus, the injected fuel mass was necessarily an input parameter to be set the same
for all configurations. When engine speed and injected mass are kept constant, the
highest IMEP values correspond to the lowest fuel consumptions so that the capabil-
ity of each solution in reducing specific consumption can be evaluated by analyzing
the IMEP levels.
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The IMEP was considered as the main objective at full load but it has to be taken
into account at low load and speed too. In fact, IMEP values can be very low, fuel
injected being the same, if the completeness of the combustion processes is pre-
vented somehow or other. In spite of their low performance, these chambers could
be considered good solutions by GA because they produce very low levels of NOx.
For this reason, a penalty function, was used to penalize chamber configurations
with low IMEP values at low speed and load. If the current chamber gives an IMEP
value higher than the baseline configuration, the penalty function is set equal to 1
and no penalization is given to the chamber. Otherwise, the chamber is slightly pe-
nalized if the reduction of IMEP is inferior to 8% while penalization is much higher
when the reduction is greater than 8% with respect to the baseline case. The same
criterion was applied at full load to penalize chamber configurations with soot emis-
sions higher than a prefixed threshold value, in the present investigation the value
Sootths = 0.78g/kg f was considered (baseline value at operating mode 4). Mathe-
matically, the penalty functions used in this test case can be both described in the
following way:

Fp(i) =

⎧⎨⎩
1 p ≥ 1.0
1.0 + log(p)/10p 0.92 ≤ p ≤ 1.0
p + 0.07 p ≤ 0.92

(20.8)

where p is the penalty parameter, i.e. p = IMEP/IMEP0 at modes 1 and 2 (applied
to fitness components 1 to 3) and p = sootths/soot at modes 3 and 4 (applied to the
fourth fitness component). The choice of this formulation derives from experience
in the automotive industry according to which variations up to 8% can be regained
by re-mapping the engine.

20.6.2 Engine Simulation Code

KIVA3V is a transient, three-dimensional, multiphase, multicomponent code for
the analysis of chemically reacting flows with sprays. The code uses discretizes
space using the finite-volume technique and uses an implicit time-advancement
with the exception of the advective terms that are cast in an explicit but second-
order monotonicity-preserving manner. Arbitrary numbers of species and chemical
reactions are allowed. A stochastic particle method is used to calculate evaporating
liquid sprays, including the effects of droplet collisions and aerodynamic breakups.
The code is specifically designed for performing internal combustion engine cal-
culations. However, in this investigation a modified version of the KIVA3V code
named KIVA3V-CREA [28] was used since improved models for spray and com-
bustion are needed to predict the behavior of modern direct injection diesel en-
gines when geometrical and control parameters like injection strategy and EGR are
changed.
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20.6.3 HIPEGEO

In the HiPeGEO algorithm, the micro-GA technique proposed by Coello’s and
Pulido’s [29] is implemented. HiPeGEO automatically executes the preprocessor,
the solver and the postprocessor of KIVA3V-CREA, as described in the text sub-
paragraphs. HiPeGEO has been developed specifically for this application and uses
Grid Technologies to reduce computational time. The complexity of the system is
hidden to the final user who accesses the Grid using a user-friendly web interface
to solve a specific optimization problem. The flowchart of HiPeGEO is shown in
fig. 20.8.

HiPeGEO is structured on two levels: an external level, where a certain number of
macro-iterations are performed, and an internal one which is represented by a micro-
GA cycle. The external iteration uses a large population divided in a replaceable and
a non-replaceable portion (which is generated randomly only once at the begin of

Fig. 20.8 HiPeGEO architecture
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the optimization). The non replaceable portion is never upgraded and represents the
source of diversity for the micro-GA cycles.

At each iteration, a micro population is randomly extracted from both the re-
placeable and non-replaceable portions and a micro-GA cycle is performed until the
nominal convergence is reached. Then, the external memory containing the Pareto
front (initially empty) is upgraded (as described in the elitism module section) with
the nominal solution of the micro-GA and a new iteration is started. The size of the
external memory is limited (filter block of figure 20.8) to a threshold value selected
by the user with the clustering procedure described in the clustering module section.
The micro-GA cycle is perfomed through the generation, fitness, rank, crossover,
mutation, nominal convergence and elitism modules described next.

20.6.3.1 Generation Module

The generation module produces a list of randomly generated chromosomes of five
genes representing the geometric parameters of fig.20.5:

xe=0.361762 alfa=0.695257 beta=1.547302 r=0.361379 em=1.108602
xe=0.863116 alfa=4.800000 beta=0.695257 r=0.937501 em=0.361379
xe=0.361762 alfa=1.326748 beta=4.800000 r=0.361379 em=0.863116
xe=1.547302 alfa=4.800000 beta=4.800000 r=4.800000 em=0.408767
.....

For each gene, a suitability analysis is performed to verify that the corresponding
geometrical parameter is included in the range of variation of table 20.3.

20.6.3.2 Fitness Module

The fitness module calculate the fitness values corresponding to a list of the chro-
mosomes. For the test case, the fitnessmodule executes four runs with the KIVA3V
code (one for each mode of table 20.4 and produces a list of chromosomes and their
fitness values as follows:

xe=0.361762 alfa=0.695257 beta=1.547302 r=0.361379 em=1.108602
fit1=15.766697 fit2=0.001982 fit3=0.404997 fit4=0.078914

xe=0.863116 alfa=4.800000 beta=0.695257 r=0.937501 em=0.361379
fit1=7.673714 fit2=0.001166 fit3=0.106391 fit4=0.160870

xe=0.361762 alfa=1.326748 beta=4.800000 r=0.361379 em=0.863116
fit1=0.000000 fit2=0.000000 fit3=0.000000 fit4=0.000000

xe=1.547302 alfa=4.800000 beta=4.800000 r=4.800000 em=0.408767
fit1=18.446617 fit2=0.002777 fit3=0.000000 fit4=0.210047
.....

The fitness functions are calculated with the following procedure.
For each chromosome, the fitness module generates a file, named iprep, using the

meshmaker tool described above. Then, the module calls the K3PREP grid generator
that writes a mesh file for KIVA3V-CREA conforming to the needed specifications.
The spatial resolution is set equal for all chambers and the number of divisions along
x, and z axes is automatically calculated for each chamber according to both engine
size (bore, stroke and squish) and bowl depth and width. In the present application
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the maximum cell size was set equal to 2.2 mm, 1.4 mm and 2 deg after a sensitivity
analysis performed to test the influence of grid resolution on KIVA3V results ([13]).

If the K3PREP pre-processor is able to generate a structured mesh with a good
aspect ratio for the candidate chamber, an output file named itape17, containing
geometric solution information, is passed to the KIVA3V application which simu-
lates the combustion process and generates the fitness file, named fort.65. On the
contrary, if a good mesh cannot be obtained, the corresponding chamber profile is
excluded from the optimization process. Other input files are needed for KIVA3V
execution, such as itape5erc, itapei, itape5, etc., containing initial conditions, con-
stants of spray combustion models and so on.

At the end of each KIVA3V-CREA run, the emissions levels and the IMEP are
stored and uses at the end of the four runs to calculate the penalty function and the
fitness functions (eqs. 20.4- 20.7).

20.6.3.3 Rank Module

The rank module provides a list of rank values for the individuals belonging to a
population to be ranked, as required by the selection module. To rank individuals, the
approach developed by Fonseca [30] has been followed in HiPeGEO. In particular,
the rank r( j) of an individual j is defined by the number of fitness vectors by which
F( j) is dominated, increased by 1. If F(x) is the fitness vector associated to solution
x, F(y) is the fitness vector of individual y, and the goal is the maximization of all
the fitness components of F , than F(y) is said to dominate F(x) if the condition 20.9
is verified:

∀i (Fi(x) ≤ Fi(y)) ∧ ∃i (F(xi) < F(yi)) (20.9)

If a vector is not dominated by any other, it is called non-dominated or not inferior
and the corresponding design is said to belong to the Pareto front.

In this way the Pareto solutions, which are the ”best” individuals in a multi-
objective problem, have rank equal to one and while the ”worst” solutions has a
rank equal to the population size (). The pseudo-code of the rank module for the
case study, characterized by 4 fitness functions to be maximized, is the following:

For i=1 to N
Rank(i)=1
For m=1 to N

If ((F1(i)-F1(m)<=0) and (F2(i)-F2(m)<=0) and
(F3(i)-F3(m)<=0) and (F4(i)-F4(m)<=0))
If ((F1(i)-F1(m)<0) or (F2(i)-F2(m)<0) or

(F3(i)-F3(m)<0) or (F4(i)-F4(m)<0))
Individual i is dominated
Rank(i)=Rank(i)+1

next m
next i

20.6.3.4 Selection Module

The selection module provides a list of couples of selected chromosomes accord-
ing to the rank selection method. Generally speaking, the rank selection method is
preferable to the roulette wheel when there are big differences among the fitness
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values of a population. In fact, with the rank method all the chromosomes have a
chance to be selected, also those with all zeros values in the fitness because unable
to generate a good quality mesh. Of course, the rank method is particular suitable
for this application where the solutions are ranked in a multi-objective fashion.

20.6.3.5 Crossover and Mutation Module

The crossover and mutation module provides a list of offspring generated after
crossover and mutation operations. Like the generation module, it verifies the suit-
ability of offsprings. The selection of crossover and mutation techniques to be ap-
plied, is a crucial factor. For the present case study, the uniform crossover has been
chosen since experience has showed its stability compared with other crossover
methods and its efficiency if applied to chromosomes with few genes. The initial
crossover probability Pci is specified by the user (as a parameter of the HiPeGEO
application). After the first iteration, the probability changes taking into account the
degree of stability of the Pareto front and the number of iterations already executed.
The crossover probability Pc(i), referred to the ith iteration is given by (20.10):

Pc(i) =
{

Pci i = 1
Pci − (a×Sp f (i)+ b× i) i > 1

(20.10)

where a and b are two positive coefficients selected by the user and Sp f (i) measures
the stability of the Pareto front.

The distance between the fronts at ith and (i− 1)th iterations, d(i), is defined as
the average of Euclidean distance between couples of points with the same index j,
belonging to the fronts (20.11):

N(i)

∑
j=1

Pj(i)Pj(i−1)
N(i)

(20.11)

If ΔN(i) is the difference between the number of points belonging to the two fronts,
and d is the optimal distance (fixed by the user) between two fronts in order to con-
sider them very similar, then Sp f (i) is given by eq. 20.12:

Sp f (i) =

⎧⎪⎨⎪⎩
0 ΔN(i) �= 0[
1− d(i)−d

d(i)

]
× i ΔN(i) = 0, d(i) ≥ d

i ΔN(i) = 0, d(i) < d

(20.12)

When the user specifies Pci and a and b coefficients, the system verifies that Pc(i)
belongs to the [0,1] interval ∀i, that is (a+b)≤ Pci

i ∀i, so that (a+b)≤ Pci
Nmax

, being
Nmax the maximum number of iterations to be executed.

The uniform mutation is then applied. It is known that the mutation probability
has to be chosen as a compromise between the necessity to preserve the building
blocks and the necessity to explore the search space for new building blocks. For
this reason, a mutation probability increasing with the number of executed iterations
Pm(i) is considered (equation (20.13):



20 Optimal Design of a Common Rail Diesel Engine Piston 533

Pm(i) = Pmi + c× i
Nmax

(20.13)

where Pmi is the initial mutation probability and c is a positive coefficient, both
selected by the user. When the user specifies Pmi and c coefficient, the system verifies
that Pm(i) belongs to the [0,1] interval ∀i, that is c ≤ (1−Pmi)× Nmax

i ∀i, so that
c ≤ (1−Pmi), being Nmax the maximum value of i.

20.6.3.6 Nominal Convergence Module

The nominal convergence module provides the nominal solution of the micro-GA if
the convergence has been achieved.

In the present work, both convergence criteria suggested by Coello and Pulido
have been implemented. The module verifies the similarity among the chromosomes
belonging to the new population provided as input. For each geometric parameter
(gene), a range of similarity is fixed by the user. The nominal convergence can be
considered reached when the difference among the same genes is within the range
of similarity for all analyzed individuals. Once the similarity criterion is satisfied, a
representative individual is selected as nominal solution. However, if convergence
is not reached after a fixed number of cycles, the micro-GA execution stops and the
individuals are ranked to select the nominal solution. If two or more solutions have
the same rank, one of them is randomly selected.

The nominal solution is then is copied in the external memory.

20.6.3.7 Elitism Module

The elitism module performs a tournament between the individual to be preserved
and an individual randomly chosen from the population of destination. The win-
ner of the match will remain in the population, while the loser will be excluded.
This module is called at each micro-iteration of the micro-GA cycle to preserve the
best individual (according to the rank method) . However, the same module is also
used to perform two other elitism models suggested by Coello’s and Pulido’s and
implemented at the end of the micro-GA cycle to drive the evolution of the macro-
population:

1. the representative solution of the micro-GA cycle is preserved in the replaceable
memory (is it wins the tournament);

2. at a fixed number of iterations some of the non-dominated solutions are used to
update the replaceable portion.

20.6.3.8 Clustering Module

After each iteration, the clustering module verifies if the number of solutions stored
into the external memory, which contains the Pareto front, exceeds the maximum
size (n) defined by the user during the submission of the optimization process. When
this happens, it is necessary to exclude some individuals, preserving a uniform
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distribution of solutions. The procedure to perform the uniformity of the Pareto
front is described in the following steps:

1. definition of a matrix D of size m×m, where the generic element di j is the dis-
tance between ith and jth individuals;

2. search of the pair of points which have the minimum distance;
3. deleting of the point in the selected pair which has minimum distance from a

third point;
4. if the number of excluded points is lower than m−n, go to step 2.

20.6.4 Required Computational Time

For the test case, the optimization was performed with the HiPeGEO parameters of
table 20.5 on an AlphaServer where the computational time of a single KIVA3V
simulation is equal to 35 minutes. The time required to run the optimization over an
Alpha Server with 16 processors was 20 days, a value quite negligible with respect
to the design time required with the standard trial and error approach (usually six
months). The use of Itanium clusters of the SPACI (Southern Partnership for Ad-
vanced Computational Infrastructure) could allow reducing the constitutional load.
On the Itanium server, where the computational time of each run is only 9.5 min-
utes, the optimization can be performed in 5 days. Moreover, the use of the 128-
processors server could allow the number of modes included in the optimization to
be increased up to 32, still keeping the same computational time (5 days).

Table 20.5 HiPeGEO parameters for the test case

Parameter Value

Maximum Number of Iterations 100
Population Memory Size 50
Replaceable Portion (%) 70
Initial Population Size 5
Initial Mutation Probability 0.05
External Memory Size (%) 100

20.6.5 Analysis of the Results

The plots of figure 20.9 shows the final Pareto Front together with the values cor-
responding to the baseline chamber. Note that very small improvement on soot and
HC were obtained with the HiPeGEO, as can be easily assessed by considering fig-
ure 20.9c) where the points representing the baseline configuration are very close
to the origin of the plot. On the contrary, a strong reduction of NOx with respect
to the baseline chamber can be obtained with almost all the optimized chambers.
The improvement in IMEP are below 15% for all modes, as can be expected. Since
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Fig. 20.9 Results of HiPeGEO

the injected mass is the same for all the chambers at the same operating mode, an
increase of IMEP by 15% corresponds to reducing fuel consumption by the same
amount. To better analyze the results, a clustering process has been performed on the
Pareto front with the same algorithm described in the nominal convergence module
section.

20.6.5.1 Clustering of the Results

The final Pareto Front has been clustered in five groups and the outcome of the
clustering process is shown in fig. 20.10. The data in 20.10 can be used to analyze
the effect of combustion chamber not only on each output parameter but also on
each operating condition.
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Fig. 20.10 Clustering of the Pareto chambers

Note that the first four combustion chambers (C1-C4), very deep and with a nar-
row throat, allow a strong reduction of NOx emissions on almost all the operating
modes, while the fifth chamber is worse than the baseline chamber at high load
(mode 3 and 4). On the other hand, soot emissions seem to be more affected by the
mode. In fact, the behavior of the selected chambers changes with engine speed and
load. In particular, chambers C1 and C2 (with a narrow throat and a large bottom)
performs better than the baseline chamber at mode 1 and 2. At high load and speed
(mode 3 and mode 4) a very large and shallow chamber is required to reduce partic-
ulate (see results of chamber C5). Chambers C3 and C4 are characterized by very
high values of soot emission on all modes.

As far as IMEP is concerned, note that this output value is weakly influenced by
the combustion chamber shape at mode 1 and 2. The best results are obtained with
chamber C5 which is very similar to the baseline configuration, except for the shape
of the throat lip and the high of the central protrusion. Among the five chambers
of fig. 20.10, chambers C1 and C5 can be said to guarantee a better compromise in
the optimization goals; for this reason they were selected for further investigation
so as to explain the influence of bowl geometry on emissions and performance.
The results of this investigation can be found in [12]. The choice between C1 and
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C5 depends on the relative importance given by the user to the emissions in urban
driving cycle (mode 1 and 2) with respect to high load conditions. In the first case
chambers C1 is to be preferred while C5 is the best solution at high speed and load.

20.6.6 Conclusions

This chapter analyzes different approaches described in literature for the optimiza-
tion of a direct injection diesel combustion chambers by means of evolutionary
algorithms and Computational Fluid Dynamic (CFD) codes. The chapter focused
principally on the investigations of two academic research centers: the ERC at the
Madison-Wisconsin University and the CREA at the University of Salento, Italy.
The different approaches of these centers were compared in terms of specification
of the algorithm used for the optimization, kind of parameterization of the chamber
profile, treatment of the competitive goals, etc. Finally, a test case developed at the
CREA is presented to illustrate how these aspects have been practically addressed
in the design of a common rail diesel engine piston in collaboration with a major
European automotive company.

From the analysis of the test case presented here and from the application of
the method to several other engine optimization problems, the following general
considerations can be drawn.

The key factor in the optimization of a complex system like a diesel engine is, of
course, the capability of the simulation model to capture the behavior of the engine.
Even if this aspect is not directly connected with the optimization process, it must
be always kept in mind when addressing the optimization of an engine. In particular,
the optimization process must be always preceded by a validation of the model with
appropriate experimental data.

Of course, a compromise must be looked for between accuracy and computa-
tional load. The behavior of an engine when changing its control parameter (like
EGR, injection rate, etc.) can be captured with an acceptable accuracy also with
simplified models like ANNs and 1-D simulation codes. On the other hand, when
the goal of the optimization is to change the design parameter (spray orientation with
respect to the cylinder axys, compression ratio, squish ratio, bowl profile), simple
models cannot be used since this aspects can be only addressed by complex CFD
codes. The experience suggests that small differences in the bowl parameters (and
often on the bowl profile) can produce very large differences in the behavior of the
engine in terms of pollutant emissions.

Moreover, the optimization of the engine design requires the development of spe-
cific mesh generator tools for each CFD simulation codes. In literature, the level of
complexity of these tools as been increased in time to allow a larger variety in the
shape of the bowl, a better quality of the mesh in terms of resolution and aspect
ratio, the possibility to generate specific file formats like IGES, PATRAN, etc, the
necessity to simulate also the solid domain with FEM codes, etc.

Another proof of the particular challenges in optimizing the design parameters
has been obtained at the CREA when one of the chamber optimized for a specific
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engine was tested on a second engine. When adapted to a slightly larger cylinder di-
ameter and a smaller compression ratio, that bowl profile produced higher emission
levels than the baseline chamber of the second engine. Note that this was not due to
lack of accuracy of the simulation code since it was able to predict the behavior of
the two engines without any tuning of the models. Thus, the optimization was to be
repeated for the second engine to obtain a reduction of emissions for that engine.

The validation of the CFD model also includes a sensitivity study to assess the
lowest mesh resolution compatible with the desired accuracy and this resolution has
to be preserved for all the investigated chamber designs. Once the model has been
validated, it is preferable to orient the optimization to the improvements achievable
with respect to a baseline case and not to the achievement of specific target values
of the goals. In fact, even if validated, the model always introduce some errors in
the evaluation of the engine behavior when changing the boundary conditions with
respect to those considered in the validation. Thus, the absolute values of the output
variables can be meaningless. On the other hand, a good engine model is expected
to capture the trend of the output when changing the value of the design variables.
For this reasons, the author suggests to compare the output of each design with
those of the baseline conditions as simulated with the same simulation code and on
the same computing architecture. In this way, it is also possible to directly monitor
the optimization process by analyzing in real time the improvement achieved with
respect to the initial configuration.

An experimental validation of the method is also useful at the end of the opti-
mization. For the test case presented in this chapter, one of the optimized chamber
was built and tested at operating conditions similar to those used in the optimization.
The experimental results showed that the optimized chamber was effective in reduc-
ing soot and HC emissions and the measured reduction of soot was higher than the
calculated one (up to 50% for mode 2). As far as NOx emissions are concerned, a
better NOx-soot trade-off was also obtained. However, the experimental validation
also revealed another important aspect to be kept in mind. As discussed in the in-
troduction, the author choose to keep constant the control parameters, in particular
the injection strategy, and to focus the optimization only on the design parameter of
the combustion chamber. When tested with injection strategies different from those
used in the optimization, the optimized chamber didn’t perform better that the base-
line one with the same strategy. This stresses the strong interaction between the air
flow field (generated by the chamber profile) and the spray distribution (resulting
from the injection specification) on the pollutant mechanisms of formation.

In the case of mechanical components like the engine piston is also mandatory
to consider not only the fluid dynamic behavior but also the mechanical response
of the component to the stresses generated by the pressure flow field. A shape of
the bowl that is able to reduce emissions but strongly decrease the mechanical re-
sistance of the piston cannot be accepted. The mechanical resistance is one of the
secondary output values that can be included in the optimization as a penalty func-
tions if it can be evaluated with a specific model. These results of the optimization
also put in evidence the importance of keeping separated the fitness components. In
fact, in the choice of the final configuration to be built, a preference has been given
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to the reduction of soot (or particulate) since the NOx emissions could be controlled
with the use of EGR. Some months after the construction of the optimized chamber,
the massive introduction in the diesel automotive market of particulate filters com-
pletely changed the optimization scenario making preferable reducing NOx. With
the multi-objective approach followed at CREA, the solution for the new scenario
was already available without the necessity to perform a new optimization.

A final consideration can be drawn with respect to the criterion used for the
choice of the final configuration. In this investigation, a clustering of the Pareto
solutions was performed with respect to the design parameter (genotype) in or-
der to group the chambers with similar geometric characteristics. This approach
allowed the effect of the overall combustion chamber aspect to be analyzed with
respect to each optimization goals. However, as underlined before, the output val-
ues can change significantly also for chambers belonging to the same cluster.
From this point of view, it is better to use Multi-Criteria-Decision-Making tech-
niques to perform the final choice of the chamber with respect to the output values
(phenotype).
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Chapter 21
Robust Preliminary Space Mission Design under
Uncertainty

Massimiliano Vasile and Nicolas Croisard

Abstract. This chapter presents the design of a space mission at a preliminary stage,
when uncertainties are high. At this particular stage, an insufficient consideration
for uncertainty could lead to a wrong decision on the feasibility of the mission.
Contrary to the traditional margin approach, the methodology presented here ex-
plicitly introduces uncertainties in the design process. The overall system design
is then optimised, minimising the impact of uncertainties on the optimal value of
the design criteria. Evidence Theory, used as the framework to model uncertain-
ties, is presented in details. Although its use in the design process would greatly
improve the quality of the design, it increases significantly the computational cost
of any multidisciplinary optimisation. Therefore, two approaches to tackle an Opti-
misation Problem Under Uncertainties are proposed: (a) a direct solution through a
multi-objective optimisation algorithm and (b) an indirect solution through a clus-
tering algorithm. Both methods are presented, highlighting the techniques used to
reduce the computational time. It will be shown in particular that the indirect method
is an attractive alternative when the complexity of the problem increases.

21.1 Introduction

In the early phase of the design of a space mission, it is generally desirable to in-
vestigate as many feasible alternative solutions as possible. At this particular stage,
an insufficient consideration for uncertainty would lead to a wrong decision on the
feasibility of the mission. Traditionally, a system margin approach is used in or-
der to take into account the inherent uncertainties related to the computation of the
system budgets. The reliability of the mission is then independently computed in
parallel. An iterative, though integrated, process between the solution design and
the reliability assessment should finally converge to an acceptable solution. This
chapter describes a way to model uncertainties and introduce them explicitly in the
design process. The overall system design is then optimised, minimising the impact
of uncertainties on the optimal value of the design criteria. The minimisation of the
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impact of uncertainties in the design process is generally known as robust design
and the associated optimisation process robust optimisation.

In the last few decades, robust design has been gaining wide attention and its ap-
plications have been extended from improving the quality of individual components
to the design of complex engineering systems. The methods for robust design have
progressed from the initial Taguchi’s ’parameter design method’ (Taguchi 1950) to
recent nonlinear programming methods that formulate robust design problems as
nonlinear optimisation problems with multiple objectives subject to feasibility ro-
bustness.

Most of these approaches are based on gradient methods for multiobjective op-
timisation and to a treatment of uncertainty with probability theory [10]. More re-
cently, other approaches based on Evidence Theory have been proposed [1, 2, 23,
28]. Some of them use gradient methods in combination with response surfaces
[1, 23], others evolutionary computation [28]. Evidence Theory, also know as the
Dempster-Shafer theory [8, 25], represents an advantage with respect to probability
theory in that it allows modelling both aleatory and epistemic uncertainties, coming
from a poor or incomplete knowledge of the design parameters.

Epistemic uncertainties are typical during the preliminary phase of the design of
a space mission since the specialists responsible for each of the subsystems compos-
ing a spacecraft (structure, propulsion, power, etc.) are asked to provide reasonable
estimations regarding the size, mass, power consumption or performance of individ-
ual components. The whole design process can be mathematically represented as a
multidisciplinary optimisation problem in which a number of design parameters are
uncertain or their values derive from opinions or estimations.

In Evidence Theory, the values of uncertain or vague design parameters are ex-
pressed by means of intervals with associated belief (degree of confidence in the
range of values). Each expert participating in the design, assigns an interval and a
belief according to their opinion or rare experimental data. Evidence Theory treats
these epistemic uncertainties better than probability theory since there is no reason
to prefer one distribution function over another. Ultimately, all the pieces of infor-
mation associated to each interval are fused together to yield two cumulative values,
Belief and Plausibility, that express the confidence range in the optimal design point.
In particular the value of Belief expresses the lower limit on the probability that the
selected design point remains optimal (and/or feasible) even under uncertainties.
More precisely it represents the lowest level of confidence in the computed value of
the cost function (and/or the constraints).

Although introducing epistemic and aleatory uncertainties in the design process
would greatly improve the quality of the design (and would give a measure of the re-
liability of the result), it increases significantly the computational cost of any multi-
disciplinary optimisation. In particular, if the evaluation of the cost function (and/or
the constraints) associate to each discipline of a multidisciplinary problem is already
computationally expensive. In this chapter we present two approaches to tackle an
Optimisation Problem Under Uncertainties (OUU): (a) a direct solution through a
multi-objective optimisation algorithm and (b) an indirect solution through a clus-
tering algorithm.
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In these two approaches the solution of the OUU problem is addressed through
a global optimisation procedure based on evolutionary computation. In particular,
in the direct approach the OUU problem is directly solved in the attempt to recon-
struct the set of all the Pareto optimal solutions (or a good approximation to it) that
maximise the Belief and optimise the cost functions for all the disciplines. The in-
direct approach is proposed to mitigate the computational cost related to the use of
Evidence Theory (in particular the exponential growth of the combinations of uncer-
tainty intervals). The indirect approach tries to find at first the sets of solutions for
which the system budgets are within some required values, then it intersects these
sets with the interval of uncertainties for the design parameters. The resulting set is
a superset of the Pareto optimal one (i.e. it contains the Pareto one).

The preliminary design is here performed by using reduced models for trajec-
tory analysis and system design. When a reduced model is not available we propose
the use of surrogate models made of Kriging response surfaces (e.g. the shape of
a heat shield may need running a CFD code, in this case every variation in shape
would require minutes to hours of computational time). Although the methodol-
ogy is of general applicability to mission design problems it is here intended for
preliminary combined design of interplanetary trajectories in which system level
parameters play a consistent role, such as low-thrust or low-thrust multi gravity as-
sist transfers. The chapter will present the solution of the OUU problem associated
to the robust design of a real space mission.

21.2 Uncertainties in Space Mission Design

Uncertainties are usually classified in two distinct categories, aleatory and epistemic
uncertainty. According to Helton [14, 15], the definition of each type is:

Aleatory Uncertainty arises from what is considered to be an inherent random-
ness in the behavior of the system under study.
also known as: Stochastic uncertainty, Type A uncertainty, Irreducible uncer-
tainty, Variability, Objective uncertainty

Epistemic Uncertainty arises from a lack of knowledge about a quantity that is
assumed to have a fixed value in the context of a particular analysis.
also known as: Subjective uncertainty, Type B uncertainty, Reducible uncertainty,
State of Knowledge uncertainty, Ignorance

W.L. Oberkampf considers a third category, Error, also called numerical uncer-
tainty, which “is defined as a recognizable deficiency in any phase or activity of
modelling and simulation that is not due to lack of knowledge” [1]. Such uncertain-
ties are well-known, and a good estimation of the error is generally available. This
point distinguishes errors from epistemic uncertainties. Aleatory uncertainties are
due to the random nature of input data while epistemic ones are generally linked to
incomplete modelling of the physical system, the boundary conditions, unexpected
failure modes, etc.

In the case of preliminary space mission design, analysts face both types of un-
certainty. For example, the initial velocity of the spacecraft, the gravity model or the
solar radiation, all present aleatory uncertainties. On the other hand, a good deal of
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the parameters defining the characteristics of spacecraft subsystems are not known
a priori and their value cannot be computed because it depends on other unknown
parameters. Therefore their value has to be first estimated on the basis of previous
experience or educated guesses by a group of experts. The uncertainty associated to
those parameters is therefore epistemic.

The classical way to treat uncertainty is through probability theory. A probabil-
ity density function is well suited to mathematically model aleatory uncertainties,
as far as enough data (experimental for instance) are available [1]. Even though,
the analyst still has to assume the distribution function and estimate its parameters.
Moreover, Bae et al. [3] pointed out that aleatory uncertainty could be in fact epis-
temic uncertainty when “insufficient data are available to construct a probability
distribution”. In this situation, alternative distributions can represent the uncertainty
as the mean, variance and shape are unknown [16].

However, probability fails to represent epistemic uncertainties because there is no
reason to prefer one distribution function over another [23]. Indeed, the probability
applies only if one can identify a sample of independent, identically-distributed ob-
servations of the phenomenon of interest [24]. When uncertainties are express by
means of intervals, based on experts opinion or rare experimental data, as it is the
case in space mission design, this representation becomes questionable. As pointed
out by Helton et al. [15], there is a large conceptual difference between saying that
all that is known about a quantity is that its value belongs to an interval [a,b] and
saying that the probability distribution of that quantity is uniform on [a,b]. The latter
statement, in fact, implies an additional piece of knowledge on where the value of
that quantity is located in [a,b].

A few modern theories exist to better represent epistemic uncertainties, without
the need to make additional assumptions. These include for example interval analy-
sis [13, 19], Possibility Theory [29], Fuzzy Set Theory [11], Theory of Paradoxical
Reasoning [26] or Theory of Clouds [22]. Evidence Theory is an extension of Possi-
bility and Fuzzy Set Theory [18], therefore we propose the use of Evidence Theory
in the framework of preliminary space mission design.

21.3 Modelling Uncertainties through Evidence Theory

Evidence Theory was developed by Shafer [25] based on Dempster’s original
work [9] and is appealing because: it does not require additional assumptions when
the available information is poor or incomplete; can model aleatory and epistemic
uncertainty; offers a consistent way of combining several sources of information. In
the remainder of this section we will give a brief introduction to Evidence Theory.

21.3.1 Frame of Discernment U, Power Set 2U and Basic
Probability Assignment

The frame of discernment U, also know as the universal set, is “a set of mutually
exclusive elementary propositions” [3]. In most engineering applications of Evi-
dence Theory, experts express their belief of an uncertain parameter u being within
a given set of intervals. For example, u ∈ [a,b] is an elementary proposition, thus
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an element of U. The frame of discernment can be viewed as the counterpart of the
finite sample space in probability theory.

The power set of U, 2U, is a set of subsets of U. The level of confidence an expert
has on an element of 2U is quantified using the Basic Probability Assignment (BPA)
also called mass (m). A BPA satisfies the following three axioms:

m(E) > 0,∀E ∈ 2U (21.1)

m(E) = 0,∀E /∈ 2U (21.2)

m(∅) = 0 (21.3)

∑
E∈2U

m(E) = 1 (21.4)

Therefore, the BPA is a function that maps the power set into [0,1]. The elements
of 2U are solely defined by their associated BPA being strictly positive, and are
commonly called focal elements (FE).

While the set of subsets of the finite sample space in the probability theory con-
stitutes a σ -algebra, the power set 2U does not. This distinguishes fundamentally
Evidence Theory from the probability theory. Unlike probability theory, unions and
intersections of subsets of U are not necessarily included in the power set. This
means that evidence on the event {A or B} or {A and B} does not imply/require in-
formation on either events {A} and {B}. Moreover, the complement of an element
of U is not necessarily in the power set. While P(A) = 1−P(A) is true in probability
theory, it does not hold for Evidence Theory.

Therefore, the power set 2U and the BPA are less structured than their coun-
terparts of probability theory. They aim at representing all and only the piece of
information available to the analyst. This characteristic is fundamental when the
analyst needs to make decisions based on poor or incomplete information.

When more than one parameter are considered uncertain (e.g. u1 and u2), the
power set is composed of the cartesian products of all the elements of the power
sets of each parameter’s frame of discernment: 2(U1,U2) = 2U1 ×2U2 . Thus the BPA
of a given element of 2(U1,U2) is the product of the BPA of the two corresponding
focal elements:

∀(FE1,FE2) ∈ 2U1 ×2U2 , m1⊗2 (FE1 ×FE2) = m1 (FE1)∗m2 (FE2) (21.5)

The number of focal elements increases exponentially with the number of uncertain
parameters and the number of focal elements of their respective power sets. If N
parameters are considered uncertain and nk represents the number of focal elements
of the power set of the kth uncertain parameter, the total number of focal elements
is given by:

nFE =
N

∏
k=1

nk (21.6)

This expression is based on the assumption that the different uncertain parameters
are independent. This chapter considers that this assumption holds true. For the case
of dependant parameters, which is beyond the scope of the present publication, the
reader can refer to the work of Ferson et al. [12].
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It is worth mentioning that, in general, the pieces of evidence can come from
different sources and need to be combined. As highlighted in [23], “the results of an
uncertainty analysis can strongly depend on which combination method is chosen
for use”. The choice of the combination rule should be driven principally by the
context of the information to be combined. However, in this chapter we consider
only the case in which the sources of evidence have already been combined.

21.3.2 Belief and Plausibility Functions

While Probability theory uses a single value for quantifying uncertainty, Evidence
Theory uses two values: the lower and upper bounds of the uncertainty quantifica-
tion. The lower bound is called Belief (Bel) and the upper bound Plausibility (Pl)
and are defined as follows:

Bel(A) = ∑
FE⊂A

FE∈2U

m(FE) (21.7)

Pl(A) = ∑
FE∩A �=∅
FE∈2U

m(FE) (21.8)

Thus, all the propositions with a not null intersection with the set A contribute to the
Pl value while only the propositions included in A contribute to the Bel value. For
example, Fig. 21.1 represents a BPA structure of two uncertain parameters u1 and
u2. Parameter u1 can belong to any of the four intervals [a1,b1], [b1,c1], [c1,d1] and
[d1,e1] while the parameter u2 can belong to the three intervals [a2,b2], [b2,c2] and
[c2,d2]. Thus there is a total of twelve focal elements FE1, . . . ,FE12. Let us define
the proposition A as the area within the dashed curve C . Only the focal elements
FE1, FE6 and FE10 (gray in the figure) are entirely included in C . In addition, FE2,
FE3, FE5, FE7, FE9 and FE11 are partly inside C (dotted in the figure), therefore
only partially implying the proposition A. The belief and plausibility of A are then:

Bel(A) = m (FE1)+ m(FE6)+ m(FE10)
Pl(A) = m (FE1)+ m(FE2)+ m(FE3)+ m(FE5)+ m(FE6)

+ m (FE7)+ m(FE9)+ m(FE10)+ m(FE11)

If the pair (u1,u2) takes their value within [b1,c1]× [c2,d2], it fulfils the proposi-
tion A. However, if it is inside [c1,d1]× [b2,c2], it may verify A but also may not.
Therefore, the belief represents our confidence in A being always true while the
plausibility is our confidence in A being possibly true.

Three important and meaningful relations between belief and plausibility func-
tions come directly from the fact that all basic assignments must sum to 1.

Bel(A)+ Bel(A) ≤ 1 (21.9)

Pl(A)+ Pl(A) ≥ 1 (21.10)

Pl(A)+ Bel(A) = 1 (21.11)
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Fig. 21.1 Belief and Plausibility of proposition A in a given BPA structure of two uncertain
parameters

Fig. 21.2 Interpretation of the relation between Belief, Plausibility and uncertainty

where (A) represents the complement of A. The two first relations shows that, on
the contrary of probability, the belief (resp. plausibility) assigned to an event does
not uniquely determine the belief (resp. plausibility) of its complement. The last
relation means that Pl considers the uncertainty, while Bel does not (cf. Fig. 21.2).

21.3.3 Cumulative Functions: CBF, CCBF, CPF, CCPF

Whatever the system to be analysed is, it can be represented by a function f giving
for a set of input variables u a quantity y characteristic of it. When the input variables
are subject to uncertainties, the analyst is interested in propagating the uncertainties
into the output domain. For this purpose, and similarly to probability, the Evidence
Theory defines cumulative and complementary cumulative functions to summarise
the uncertainty in y.

As Evidence Theory defines two functions to quantify the uncertainty, two pairs
of cumulative functions are available to the analyst: (i) the cumulative belief func-
tion (CBF) and complementary cumulative belief function (CCBF) related to the
belief and (ii) the cumulative plausibility function (CPF) and complementary cumu-
lative plausibility function (CCPF) related to the plausibility. They are defined as
follows:
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CBF : y∗ ∈ Y → BelY (y ≤ y∗) = BelU
(

f−1 (Y∗)
)

(21.12)

CCBF : y∗ ∈ Y → BelY (y > y∗) = BelU
(

f−1 (Y∗)) (21.13)

CPF : y∗ ∈ Y → PlY (y ≤ y∗) = PlU
(

f−1 (Y∗)
)

(21.14)

CCPF : y∗ ∈ Y → PlY (y > y∗) = PlU
(

f−1 (Y∗)) (21.15)

where Y∗ is the set of value of Y that are lower than y∗:

Y∗ = {y ∈ Y | y ≤ y∗} (21.16)

and:

BelU
(

f−1 (Y∗)
)

= ∑
FE∈2U

∀u∈FE, f (u)≤y∗

m(FE) (21.17)

BelU
(

f−1 (Y∗)) = ∑
FE∈2U

∀u∈FE, f (u)>y∗

m(FE) (21.18)

PlU
(

f−1 (Y∗)
)

= ∑
FE∈2U

∃u∈FE, f (u)≤y∗

m(FE) (21.19)

PlU
(

f−1 (Y∗)) = ∑
FE∈2U

∃u∈FE, f (u)>y∗

m(FE) (21.20)

Fig. 21.3 shows an illustration on typical cumulative and complementary cumulative
functions in the frame of Evidence Theory.

Computational Complexity. From the definitions Eqs. (21.12–21.15), it can be
deduced that the computational time required to compute a cumulative function can
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become quickly prohibitive as the number of uncertain parameters and the number
of intervals per parameter increase. In fact, the total number of focal elements nFE

grows exponentially, according to Eq. (21.6), with the number of uncertain parame-
ters N, in particular if the number of focal elements is the same for every uncertain
parameter nFE = nN . Furthermore, in order to identify the focal elements included
(or intersecting) f−1 (Y∗), the maximum of f over every focal element in 2U has to
be computed and compared to y∗. In the event that the system function is convex,
this maximum lies at one of the vertices of the focal element, otherwise, an opti-
misation problem has to be solved over every focal element. Therefore, a generic
algorithm that attempted the direct calculation of the Belief and Plausibility values
starting from the calculation of the focal elements, would have a computational cost
that increases exponentially with the number of uncertain parameters.

In the literature, there exist some approximation methods that attempt a reduc-
tion of the number of focal elements, such as (k-l-x)-approximation [27] or the D1-
approximation [4], in order to improve the speed of computation of the cumulative
functions. Other, more recent methods, instead try to reduce the number of uncer-
tain parameters by evaluating their impact on the value of the cumulative function
through a sampling approach [15]. All these techniques could be used as a pre-
processing stage to simplify the computation of the cumulative functions by ap-
proximating it.

In this chapter, however, we are addressing the OUU without any a priori re-
duction of the number of focal elements or uncertain parameters. Note that existing
approaches like the one proposed by Agarwal et al. [1] address a reliability opti-
misation problem in which the belief in the satisfaction of the constraints has to be
higher than a given value. In this case the construction of the entire CBF is not re-
quired, furthermore in the works of Agarwal et al. no specific technique to mitigate
the exponential growth of the computational cost is considered.

21.4 Solution of the OUU Problem

21.4.1 Problem Formulation

Let us consider a cost function f (u,d):RM+N −→ Y of some uncertain parameters
u = [u1,u2, . . . ,uN ] and design variables d = [d1,d2, . . . ,dM]. The cost function f
represents the system or the subsystem budget in the design process (e.g. the overall
mass of the spacecraft). Then, let us associate a BPA structure to the frame of dis-
cernment U of the uncertain parameters u. Now, the design variables can be adjusted
at will by the designer within a feasibility domain D to optimise the cost function
f . Furthermore, for a given constant y∗, named the threshold, such that f < y∗, the
generic problem of optimisation under uncertainty (OUU) can be defined as follows:

max
d∈D

CBFd (y∗) (21.21)
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The subscript ()d highlights the dependency of the CBF value on the design vector
d. Without loss of generality, we assumed here that the cost function is minimised.
Note that the use of Belief corresponds to a strict requirement on the actual feasi-
bility of the mission. On the other hand, if the analyst was interested in the possi-
bility of having the mission in some conditions, then Plausibility should be used in
Eq. (21.21) instead of Belief.

Although, the solution to problem (21.21) gives a measure of the maximum con-
fidence in the proposition f < y∗, it does not give a measure of the best achievable
system budget. The simultaneous optimisation of the CBF and of f can be formu-
lated as a bi-objective optimisation problem, such that:⎧⎨⎩ max

y∗∈Y,d∈D
CBFd (y∗)

min
y∗∈Y,d∈D

y∗ (21.22)

A solution to Problem (21.22) corresponds to a pair [d,y∗] such that y∗ is minimal
and the CBF is maximal. Therefore, a pair [d,y∗] can be said to be Pareto optimal
if there is no other pair for which the corresponding CBF is higher and y∗ is lower.
The image of the set of solutions that are Pareto optimal is called Pareto front. Two
sample CBF curves corresponding to two design points are represented in Fig. 21.4.
Note that, for different y∗, different d can be optimal. Furthermore, the following
two considerations apply to Problem (21.22):

• for each value of the threshold, one or more design points can maximise the
belief.

• an ideal design point d1 is such that the CBF associated to it is better than the
CBF associated to any another design point d2 for any threshold.

¬∃y∗ ∈ Y|CBFd1 (y∗) < CBFd2 (y∗)
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Fig. 21.4 Typical solution of the optimisation under uncertainty problem (dash). The CBF of
2 of the dominating designs are represented (� and �)



21 Robust Preliminary Space Mission Design under Uncertainty 553

The latter point is particularly interesting because defines the optimality of a set
(the entire CBF curve) over another. According to this principle, the optimality of
a design point can be redefined by saying that a design point d1 dominates another
design point d2 if every point in the image space corresponding to d1 is better,
lower y∗ and higher CBF, than every point in the image space corresponding to d2.
As described in the next section, this definition of optimality will lead to a particular
formulation of the OUU.

21.4.2 Direct Solution through a Population-Based Genetic
Algorithm

Problem (21.22) is nonlinear and non-differentiable, furthermore it can present
multiple locally optimal Pareto sets, therefore for its solution we used the population-
based genetic algorithm NSGA-II [7]. The approaches presented in this chapter,
however, are independent of the choice of the multiobjective optimiser and any other
evolutionary computation algorithm could be used instead. Other examples of the
use of NSGA-II to solve the OUU can be found in the work of Limbourg et al. [20].
We propose here two approaches:

• Bi-objective approach. This approach is tackling directly the bi-objective for-
mulation problem of Eq. (21.22) based on a direct formulation of the OUU. In
this formulation, the number of objectives is limited to 2. However, the num-
ber of optimisation variables is increased by one as the threshold is seen as both
objective and optimisation variable. Moreover, the typical solution of the OUU
problem (cf. Fig. 21.4) is seen in this formulation as a Pareto front.

• Multi-belief approach. This approach consists in computing the CBF curve ev-
ery time a design vector is selected. It dominates the others if there exist at least
one belief level for which its corresponding threshold is minimum. Therefore,
we can see the problem as a multiobjective optimisation problem where the ob-
jectives are to minimise all the minimum thresholds corresponding to the given
belief levels.

The belief levels could be uniformly distributed between 0 and 1. However,
we can have access to a few (if not all) achievable belief levels by computing the
CBF curve for a specific design vector (e.g. the middle of the design domain D).
If we name bl the vector of the nbel characteristic belief levels identified, we thus
have to solve the following nbel-objectives optimisation problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
d∈D

y∗d (bl(1))

min
d∈D

y∗d (bl(2))
...

min
d∈D

y∗d (bl(nbel))

(21.23)

where y∗d (bl(k))=min(y∗ | CBFd(y∗)=bl(k)) corresponds to the minimal thresh-
old for which the design d is at belief bl(k). All the nbel minimal thresholds for a
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Algorithm 1. Computing the belief in the bi-objective formulation
Inputs : y∗, d, CBFopt

Outputs: y∗d, Beld

/* Initialise outputs */
Beld ← 0;
y∗d ←−∞;
/* Identify the current optimal belief corresponding to y∗

*/
Belopt ←CBFopt(y∗) ;
/* Initialise local variables */
i ← 1 ; /* Counter */
nFE ← numel(FE) ; /* Number of focal elements */
achBel ← 1 ; /* Achievable CBF value */

/* Main loop */
while achBel ≥ Belopt and i <= nFE do

/* Compute the maximum of f on the ith focal element */
ymax ← max

u∈FEi

f (d,u) ;

/* Update the achievable CBF value or the outputs */
if ymax ≤ y∗ then

Beld + = m(FE(i));
y∗d ← max(ymax,y∗d);

else
achBel − = m(FE(i));

endif
i + = 1 ; /* Increase counter */

endw

given design are known as soon as the entire belief curve is computed, which is
done each time a design is selected.

In the case of the bi-objective approach, the solution vector is x = [d,y∗]. We firstly
rank all the focal elements according to their BPA and compute a complete belief
curve for a randomly selected design point. This curve, called CBFopt represents the
current best estimate of the optimal CBF . We then start the optimisation process.
When evaluating an agent ai, corresponding to a pair [d,y∗] (i.e. a new design point
and a new threshold), we use Algorithm 1 to compute efficiently the belief asso-
ciated to it. Because we ranked the focal elements, we add them up starting from
the ones with higher BPA value. If the focal elements with higher BPA value are
discarded because f is above y∗ and the sum of all the remaining BPA’s would not
allow to improve the current CBFopt value for that particular y∗, then we stop the
computation of the belief value associated to that particular solution vector. This is
done via the achievable belief (variable achBel in Algorithm 1) that tracks the value
of the maximum belief that can be achieved during the computation. Furthermore,
once a value is assigned to the threshold y∗, the maximisation of the system function
f over each focal element is stopped as soon as a value is found above the threshold.
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Finally, if the Bel(d,y∗) value associated to a pair [d,y∗] is better than CBFopt(y∗),
we compute the minimum threshold y∗min such that Bel(y∗min) = Bel(d,y∗) and up-
date the CBFopt . This guided search for the optimal belief curve is summarised in
Algorithm 1. Note that the multiobjective optimisation algorithm had to be slightly
modified to make the CBFopt available throughout the computation. Such a modifi-
cation does not modify the performance of the optimiser. The computational cost of
Algorithm 1 is dictated by nFE the number of focal elements. In fact, a maximum of
nFE optimisation problems need to be solved every time a design point is evaluated.

In the case of the multi-belief approach, the solution vector is simply x = d. For
each selected design vector the complete belief curve is computed. Though this is
more computationally expensive than computing a single belief value, it has the
benefit of having only the design vector as optimization variable. Therefore, each
design needs to be evaluated once and only once. Additionally, in Algorithm 1, the
known maxima of f over all focal elements evaluated during the loop are lost. Thus,
while the information was available, it is not used to identify if the current design is
dominating for lower belief levels (or identically lower thresholds). By computing
the whole belief curve instead we preserve this information.

A more elegant implementation of this approach would consist in redefining the
dominance index. If the classical Pareto dominance index:

Ii =
∣∣∣{ j | CBFd j(y

∗
j) > CBFdi(y

∗
i )∧ y∗j < y∗i j = 1, . . . ,npop∧ j �= i

}∣∣∣ (21.24)

is used to define the Pareto optimality of a design vector di, where |.| denotes the
cardinality of a set, the optimiser cannot evaluate correctly the local Pareto optimal-
ity of a point on the CBF − y∗ plane since for each design there is a whole curve
of points in the CBF − y∗ plane. If the Pareto dominance index were defined as in
equation Eq. (21.25)

Ii = nbel −
∣∣∣{k ∈ [i,nbel] |∀ j ∈ [1,npop],y∗i (bl(k)) > y∗j(bl(k))

}∣∣∣ (21.25)

then a design with a dominance index lower than nbel is dominating all the others
for at least one of the belief levels bl. Therefore leading to the same result as the
formulation of Eq. (21.23) and standard dominance index (Eq. (21.24)).

21.4.3 Indirect Solution Approach

The direct computation of the Belief and Plausibility curves for every feasible de-
sign point can be a very computationally expensive operation, due to the complexity
of the computation of the cumulative functions even after one of the approximation
techniques is applied. In order to reduce such a complexity, the idea is to identify, at
first, within the cartesian product of the uncertain parameters domain and the design
domain, the set Sy∗ of subdomains where the system function verifies the proposition

f < y∗. For a design vector d, an approximation C̃BFd (y∗) of the cumulative belief
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Fig. 21.5 Illustration of the cluster method with 3 focal elements FE1, FE2 and FE3. The
proposition f < y∗ is true only within the subdomains s1, s2 and s3. Two examples of design
point d1 and d2 are given

function can then be cheaply computed by adding the mass of the focal elements
included in any element of Sy∗ .

C̃BFd (y∗) = ∑
(d,FE)⊂s

s∈Sy∗

m(FE) (21.26)

Fig. 21.5 illustrates the proposed method. In this example, there are only three focal
elements FE1, FE2 and FE3. The set of subdomains where the system function
verifies the proposition is Sy∗ = {s1,s2,s3}. Two different design points d1 and d2

are represented. Their respective approximation of CBF are:

C̃BFd1 (y∗) = m(FE1) ; C̃BFd2 (y∗) = m(FE2)+ m(FE3)

Algorithm. To compute the approximation of the CBF function, the set Sy∗ of sub-
domains is computed for increasing values of the threshold until a belief of 1 is
found. At each step, sample points verifying the proposition f (d,u) < y∗ are identi-
fied, then classified in clusters. The points of a given cluster defines one subdomain
si of Sy∗ . Then, the design maximising the approximation of C̃BF (y∗) is selected.
The algorithm used here is described in Algorithm 2.

To speed up the computation, Axis-Aligned Box (AAB) are used. Each subdo-
main si is associated with its outer AAB (called also the Axis-Aligned Boundary
Box) and an inner AAB. If si is defined by the set of points of RL (x1,x2, . . . ,xp),
then its axis-aligned boundary box oAAB(si) is defined as:

oAAB(si) =
{

y ∈ RL | ∀k,1 ≤ k ≤ L, min
1≤ j≤L

x j(k) ≤ y(k) ≤ max
1≤ j≤L

x j(k)
}

(21.27)
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Algorithm 2. Algorithm of the cluster approximation method
Inputs : y∗, step
/* Fix a low value for threshold y∗ */

Output: Matrix Out where each row corresponds to a step. The ith row of Out is
composed of the value of the threshold, the optimum design vector and the
maximum approximated cumulative belief found at the ith step.

/* Initial sample points */
X ←{[d,u] | f (d,u) ≤ y∗};
Xnew ←{};
/* Initialise B̃elmax */

B̃elmax ← 0 ;

/* Main loop */

while B̃elmax < 1 do
/* Update the threshold */
y∗ ← y∗ − step ;
/* New sampling points */
Xnew ←{[d,u]|(y∗− step) < f (d,u) ≤ y∗} ;
/* Update the set of valid sampled point */
X ←{X ,Xnew} ;
/* Identify the valid subdomains */
Partition in clusters the sample points X ;
foreach cluster do

Compute the associated convex hull ;
Compute the oAAB and an iAAB ;

endfch

/* Find the design point giving the highest C̃BF */

[C̃BFopt (y∗),dopt ] ← max
d∈D

C̃BFd(y∗) ;

/* Add a line at the end of the output matrix and save
the results */

Out(end +1, :) = [y∗,C̃BFopt(y∗),dopt ] ;
/* Update the optimum belief variable */

B̃elmax ← C̃BFopt(y∗) ;
endw

The inner AAB is an axis-aligned box that is contained within the subdomain si. As
opposite to the outer AAB, the definition of the inner AAB is not unique. It has been
chosen here to centre the inner AAB on the barycentre of the sample points defining
si and to maximise its relative size such that it remains within si.

The idea behind the inner and outer AABs is that it is extremely cheap to check
if a focal element is outside or inside an AAB. The focal elements that are outside
the outer AAB are guaranteed not to be within f−1 (Y∗) and the one inside the inner
AAB are guaranteed to be within f−1 (Y∗). Once this selection process done, only
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the focal elements that do not enter in any of those categories need to be checked to
compute C̃BF (y∗).

Convex hull. In order to identify if any of the remaining focal elements fulfils the
proposition f (d,u) < y∗,∀u ∈ FE , one only need to check if its vertices are within
the same subdomain si. In our implementation si is the convex hull of the sample
points of the ith cluster. If v is a point of Rp, we have:

v ∈ si ⇐⇒∃λ ∈ (
R+)p | (v =

p

∑
k=1

λ (k)∗ xk)∧ (
p

∑
k=1

λ (k) = 1) (21.28)

Thus the phase 1 of the revised simplex method used to find a feasible solution to a
linear programming problem has been implemented in order to determine whether
or not such a vector λ exits [6][5].

It is important to highlight that in this method, no assumptions are made on the
convexity of the system function f . Only the subdomains si are considered as convex
which in the practical application related to space design is reasonable. Another
advantage of this method is that it shall identify all the locally optimal design regions
and thus identifying various classes of interesting design (as in the direct solution).
Finally the global optimum is likely to be found using a simple local optimiser,
starting for instance from the barycentre of each cluster.

Pixelisation. A more efficient possibility to identify the subdomains si is based on
the partition into pixels the cartesian product of the uncertain parameters domain
and the design domain. This pixelisation technique replaces the use of the convex
hull to identify the subdomains si.

It is done by creating first the list of the pixels containing sample points verifying
the proposition f (d,u) < y∗, then pruning this list by eliminating the pixels con-
taining at least one sample point violating the proposition. It can be proven that this
operation is polynomial with the number of dimensions and subdivisions of each
dimension. A focal element is thereafter said valid if all the pixels intersecting it are
included in any si.

The quality of this approximation technique is related the quality of the sampling
of the uncertain and design space and on the number and size of the pixels. It is here
implicitly assumed that the set of points that satisfy the proposition f (d,u) < y∗ is
finite and can be covered with a finite set of pixels (a reasonable assumption for the
problems of interest). The larger the pixels the lower the accuracy of the coverage
and the faster the algorithm. However, it has a main advantage over the convex
hull one, as it can represent even very non-convex subdomain si. Moreover, as the
design domain is discretised, a fixed number of possible design vector is accessible.
Therefore, one can consider testing them all to identify the best one(s). If not, an
optimiser working with binary variables can be use to solve the OUU.

Finally, since the number of pixels is at most equal to the number of admissible
sample points in Sy∗ , it does not grow exponentially if an efficient sampling pro-
cedure is used. The sampling algorithm needs to be run only once per every value
of the threshold and, therefore, unlike in the direct approach, is independent of the
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total number of focal elements. Then, if f is a single-valued function, the pixels
generated for a given level of y∗ can be preserved when the threshold is increased.
In the following we will use NSGA-II also to identify the set Sy∗ .

21.5 A Case Study: The BepiColombo Mission

In this section, we will present the results of the three previously described ap-
proaches applied to the preliminary design of the BepiColombo mission. The ob-
jective is to minimise the wet mass of the spacecraft (for the low-thrust part of the
mission) considering uncertainties on a few parameters. The first part of this section
presents the mass modelling of the spacecraft, i.e. the system function f .

21.5.1 Spacecraft Mass Model

The mass model presented here is a generic one used for preliminary system mass
assessment of a Solar Electric Propulsion (SEP) mission. It enables the mass de-
pendence on thrust profile and specific impulse to be evaluated [17]. The total SEP
related mass is given by the following equation:

mSEP
wet

= mtank + marray + mrad + mharness + mPPU + mthrusters + mxenon (21.29)

In this equation, the subsystem considered are the tanks (mtank), the solar arrays
(marray), the radiator (mrad), the harness equipment (mharness), the power process-
ing subsystem(mPPU), the thrusters (mthrusters) and finally the propellant required to
perform the low thrust transfer (mxenon). The expressions of all these quantities are
given in the following subsections.

21.5.1.1 Propellant Mass

The mass of xenon is estimated from the ΔV budget using the rocket equation.

mxenon = mT LO

(
1− e

− ΔV
ISP∗g0

)
(21.30)

where mT LO is the trans lunar orbit mass, i.e. the wet mass of the spacecraft just
after the Earth-Moon system escape (specific to this mission, mT LO = 2400 kg), g0

is the gravitational acceleration (g0 = 9.80665 m/s2), ΔV is the delta V budget for
the SEP transfer from the Earth-Moon system escape to the Mercury capture (in
ms−1) and ISP is the mean specific impulse of the SEP transfer, given in seconds by
Eq. (21.31).

ISP = 0.989 ∗ ISP
max T

(21.31)

In Eq. (21.31), ISP
max T

is the specific impulse at maximum thrust (in seconds).
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Fig. 21.6 Kriging surrogate of the deep space ΔV for the low thrust mission of BepiColombo

Delta V budget. The delta V budget is composed of the deep space ΔV (cf. be-
low), the ΔV for second Lunar Gravity Assist (40 ms−1), the ΔV for SAA control
(100 ms−1), the ΔV for flyby navigation (260 ms−1), the ΔV for other navigation
(280 ms−1) and the contingency (+5% of the deep space ΔV ).

The deep space ΔV is a quantity essential to any optimisation of spacecraft de-
sign. Indeed, it has a direct impact on the propellant mass (cf. Eq.(21.30)) and the
tank mass (cf. Eq.(21.32)). In the frame of the BepiColombo test case, this value is
computationally expensive to obtain and cannot be done fully automatically. There-
fore, it is not feasible to consider it within the model as it is. In order to overcome
this issue, a surrogate model has been built based on 180 different transfers priorly
computed for various values of P1AU the power to be generated by the solar arrays
at 1 Astronomical Unit (AU) and Tmax the maximum thrust. Moreover, the surrogate
reduces significantly the computational time but at the expense of accuracy. For
this study, Kriging has been selected via the DACE package [21], with a first order
polynomial regression model and an exponential correlation model (cf. Fig. 21.6).

21.5.1.2 Propulsion System Mass

Tank. The mass of the tank is directly proportional to the mass of propellant:

mtank = σtank ∗mxenon (21.32)

where σtank is the specific ratio of the tank subsystem (σtank = 11%).

Solar arrays. The area of the solar arrays required is given by Eq. (21.33).

A =
P1AU

ηp ∗Gs
∗κA (21.33)
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where ηp is the power conversion efficiency (ηp = 0.22751), Gs is the solar constant
(Gs = 1367 W/m2) and κA is the area margin for the solar arrays (κA = 1.2).

Using the area of the solar arrays, their mass is given by Eq. (21.34).

marray =
(

A∗ρSA + m0
array

)
∗κSA (21.34)

where ρSA is the specific ratio mass/area of the solar arrays (ρSA = 2.89 kg/m2),
m0

array
is the inevitable structural mass of the solar arrays and κSA is the mass margin

for the solar arrays (κSA = 1.1).

Radiator. The radiator (and the associated elements) is sized based on the
maximum power Pmax, thus at the shortest distance to the Sun. In the case of Bepi-
Colombo mission, this is at the perihelion of Mercury’s orbit, i.e. 0.3 AU. It is cal-
culated using a system of two equations linking the power used by the thrusters, the
thrust, the specific impulse and the voltage. The power is a linear function of the
thrust and the square root of the voltage. The specific impulse on the other hand
is a second order polynomial of the trust with coefficient linear of the square root
of the voltage. With T = Tmax and ISP = ISP

max T
, the voltage is first computed using

Eq. (21.35), then Pmax via Eq. (21.36).

ISP = b2T 2 + b1T + b0 (21.35)

P = c∗ (a1T + a0) (21.36)

where a1, a0, b2, b1 and b0 are linear function of
√

V . V is the voltage in volt and c
a constant.

Once Pmax is known, the dissipated power while at the perihelion can be evaluated
using Eq. (21.37).

Pdis = δpPmax + Q (21.37)

where δp is the percentage of the maximal power that is wasted (δp = 0.15) and Q
is the heat to be dissipated at the perihelion of Mercury’s orbit.

Two different types of radiator can be envisaged for the BepiColombo mission.
The choice depends on the value of the dissipated power (cf. Eq.(21.37)) being
above or below a given threshold Pdis

lim
. The mass of the radiator plus its associated

structure is calculated using the following equation:

mrad =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

c0 + c1
Pdis
Pdis
lim

)
∗κrad if Pdis < Pdis

lim
,(

c2 + c3
Pdis
Pdis
lim

+ c4

(
Pdis
Pdis
lim

)2
)
∗κrad otherwise.

(21.38)

where c0, c1, c2, c3 and c4 are constants and κrad is the mass margin for the radiator
(κrad = 1.15).
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Table 21.1 Margins used in the low thrust spacecraft model

Margins Value Subsystem

ΔV +5% ΔV contingency
κA 1.20 Area of the solar arrays
κSA 1.10 Mass of the solar arrays
κrad 1.15 Mass of the radiator

κharness 1.20 Mass of the harness subsystem

Harness. The harness mass is given by the following equation:

mharness = m0
harness

+ρharnessPmaxκharness (21.39)

where m0
harness

is the inevitable mass of the harness subsystem, ρharness is the spe-

cific ratio mass/power of the harness subsystem (ρharness = 1.3763 ·10−3 kg/W) and
κharness is the mass margin for the harness subsystem (κharness = 1.2).

Power Processing Unit. The mission of BepiColombo is designed with 4 power
processing unit (PPU). The mass of each of them is estimated using an equation
linear with the maximum power Pmax (cf. Eq.(21.36)) and the square of the mean
specific impulse (cf. Eq.(21.31)).

Thrusters. Finally, the mass of the thrusters and the associated components varies
with the technology used and also the number of thrusters necessary to achieved the
required thrust.

mthrusters = m0
thrusters

+ nthrustermnominal
thrusters

(21.40)

where m0
thrusters

is the inevitable mass of the thrusters subsystem, mnominal
thrusters

is the

nominal mass of one thruster and nthruster is the number of thrusters installed aboard
the spacecraft (nthruster = 2).

Remark. The simple model presented here enables to estimate the mass of the
main subsystems of a low thrust spacecraft with only three inputs: (i) the power to be
generated by the solar arrays at 1AU P1AU , (ii) the maximum thrust Tmax and (iii) the
specific impulse at maximum thrust ISP

max T
. Moreover, margins are conventionally

used to take into account uncertainties on this modelling, therefore we report them
in table 21.1.

21.5.2 The BPA Structure

In this application, we have selected three parameters as uncertain: ηp, ρSA and
ρharness that appear in respectively Eq. (21.33), (21.34) and (21.39). Table 21.2
presents their BPA structure. This choice followed recommendations of experts
from EADS Astrium. Indeed, various technologies and quality of space solar power
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Table 21.2 Uncertainty representation through Evidence Theory

Uncertain Intervals Basic probability
parameter Lower bound Upper bound assignment

ηp

0.18959 0.195 0.05
0.195 0.205 0.15
0.205 0.215 0.25
0.215 0.22751 0.55

ρSA

2.89 3.00 0.10
3.00 3.10 0.15
3.10 3.25 0.35
3.25 3.3105 0.40

ρharness

1.3763 ·10−3 1.4500 ·10−3 0.05
1.4500 ·10−3 1.5500 ·10−3 0.25
1.5500 ·10−3 1.6000 ·10−3 0.30
1.6000 ·10−3 1.6515 ·10−3 0.40

systems are available to the designer, and their performances varies significantly,
impacting directly the value of ηp and ρSA. Similarly, the specific mass/power ratio
of the harness subsystem is dependant on the technology used but also on the inter-
nal configuration of the spacecraft, which is unknown at the preliminary stage of the
spacecraft design.

The use of system margins is classically to compensate for uncertainties. As we
are aiming here at crystallising the uncertainties with Evidence Theory, we selected
parameters as uncertain when they were associated to a system margin. In our ex-
ample, these are κA, κSA and κharness. Therefore they are set to 0 for the OUU prob-
lem. Note that the BPA structure is such that the effect of the 3 parameters being
considered as uncertain is artificially equivalent to applying the default system mar-
gins. The consequence is that the optimal design of the OUU is the same as the
deterministic one. This is obviously not generally the case but helps here to better
comprehend the results.

21.6 Results and Comparisons

The proposed approaches to solve the OUU problem have been tested on the
BepiColombo mission described previously. A (nearly) optimal solution was iden-
tified after very extensive simulations. This solution was used as a reference to eval-
uate the quality of the output of each test. The quality of a solution is defined as
the area between its CBF curve and the reference one, in the CBF − y∗ plane (area
shown in Fig. 21.7), normalised dividing by the difference of highest and lowest
optimal thresholds. This normalised area is called error area in the following.

The location of the optimal design points is given in Fig. 21.8. It is important
to realise that 2 classes of solutions exist for this problem, distinct by the value of
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Fig. 21.8 Location of the optimal design points for the OUU - BepiColombo test case

P1AU : 4,650 or 4,800 W. The optimal maximum thrust is clearly 230 mN and the
specific impulse at maximum thrust between 5639 and 5655 seconds.

21.6.1 Direct Solution Simulations

The direct solution approach is tested for three different numbers of total system
function evaluations: 100,000, 500,000 and 1,000,000. Each system function eval-
uation costs 0.00034 s on an Intel Pentium D, 3.6GHz with 1GB of RAM. As
the multi-objective optimiser is not deterministic, 100 simulations have been run
for both implementations (bi-objective and multi-belief) to draw meaningful con-
clusions. Moreover, the setting of NSGA-II were: (i) agents: 20 (ii) probability of
crossover and mutation: 0.75 and 0.33 (iii) distribution index for crossover and for
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Fig. 21.9 Influence of the number of agents in the performance of NSGA-II for the Bepi-
Colombo test case

mutation: 10 and 25. As for any test involving evolutionary algorithm, the settings
of the optimiser parameters is tricky and can affect significantly the results. We
set the probabilities and distribution indices such that we balance the convergence
speed and the global exploration. The most significant parameter however is clearly
the size of the population. We set it to 20 agents after running some preliminary
tests for up to 100,000 function evaluations. Fig.21.9 shows that for our selection of
probabilities and distribution indices, the optimal population size is around 20.

The BPA structure defined for the BepiColombo test case is composed of 64
adjacent focal elements (cf. table 21.2). As we do not assume convexity here of the
system function mSEP

wet
, a local optimiser1 is used to identify the maximum of the

system function over each of the 64 focal elements.
The average solution found for one hundred function evaluations is given in

Fig. 21.10. The mean value of the error area and its variance are given for all simula-
tions in table 21.3. Furthermore, we consider that the OUU problem is successfully
solved if the optimiser (NSGA-II in this case) identifies the basins of attraction of
all the locally optimal design points. Each basin is a class of solutions. In the case
of BepiColombo, there are two classes that are identified by the boxes:

Class 1 = [4640 W,4740 W]× [229 mN,231 mN]× [5620 s,5680 s]
Class 2 = [4780 W,4820 W]× [229 mN,231 mN]× [5620 s,5680 s] (21.41)

Table 21.4 gives the percentage of times, over 100 runs, an approach finds solu-
tions within both classes or, in brackets, within only one class. Once again, both
approaches give similar results. It is interesting to note that even though the bi-
objective gives worse results than the multi-belief approach, it finds solutions in
both classes more often. Indeed, as the bi-objective approach associates a design
with a given threshold, it does not guarantee that nearly optimal designs are found
for the whole range of thresholds, thus leading to a higher error area.

1 The Matlab R© function fmincon is used here.



566 M. Vasile and N. Croisard

870 872 874 876 878 880 882 884 886 888
0

0.2

0.4

0.6

0.8

1

C
B

F
(m

∗ S
E

P
w

e
t
)

m∗

SEPwet
[kg]

BepiColombo − Comparison of direct approach implementation
100,000 system function evaluations

Optimal
Pareto Front
Multi−Belief
Bi−objective

Fig. 21.10 Solution found for the OUU with only 100,000 system function evaluations (Bepi-
Colombo test case)

Table 21.3 Mean value and variance of the normalised error area for the OUU BepiColombo
test case for 100 runs

nval
Bi-Objective Multi-Belief

mean variance mean variance

100,000 2.39 ·10−1 5.23 ·10−2 2.36 ·10−1 4.78 ·10−2

500,000 9.26 ·10−3 2.37 ·10−5 9.85 ·10−3 1.63 ·10−5

1,000,000 5.27 ·10−3 2.53 ·10−6 3.24 ·10−3 3.00 ·10−6

Table 21.4 Percentage for which solutions have been found over 100 runs in both classes
and in at least one class, for the case of BepiColombo

Number of system Bi-Objective Multi-Belief
function evaluations both classes one class both classes one class

100,000 2% 20% 0% 2%
500,000 94% 99% 58% 100%

1,000,000 100% 100% 79% 100%

21.6.2 Indirect Solution Simulations

For the indirect approach, both the clustering and pixelisation have been imple-
mented and tested. The number of system functions has been limited to 100,000.
The resulting approximation of the pareto front is represented in Fig. 21.11. The
pixelisation method is such that it may overestimate the real result. This is the rea-
son why it appears to be far better than the clustering, and even a little better than the
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Fig. 21.12 Variation of the number of designs evaluated in the direct approach versus the
number of focal elements. The number of system function evaluations has been fixed to
100,000

global solution. However, both the clustering and the pixelisation give a reasonably
good approximation of the Pareto front.

Unlike the direct solution, the complexity of the indirect one does not increase
with the number of focal elements. Indeed, only the focal elements that lie between
the outer and inner axis-aligned boxes need to be checked. Moreover, the number of
sample points needed to gather the same information increases polynomially with
the number of dimensions. It is not dependant on the number of focal elements in
any way. Fig. 21.12 shows the number of design points that the direct approach can
test with 100,000 function evaluations. As the number of focal elements increases,
the result of the direct approach naturally decreases in quality. On the contrary, an
increase in the number of focal elements has no affect on the indirect approach.
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21.7 Conclusions

In this chapter, we presented a way to model the uncertainties inherent to prelimi-
nary space mission design. The use of Evidence Theory was introduced to represent
adequately both aleatory and epistemic uncertainties. The associated robust design
problem was formulated as a multi-objective optimisation problem, and two solu-
tion approaches were proposed: a direct and an indirect one. The direct approach
solves directly the multi-objective optimisation problem (in this chapter we used
a population-based multi-objective genetic algorithm). It was tested on two differ-
ent interpretations of the optimisation under uncertainty problem, however, in both
cases, the computational time was increasing exponentially with the number of un-
certain parameters. Therefore, an indirect approach was devised to contain the com-
putational cost required to optimise the belief and plausibility functions. The indirect
approach, provided good approximations of the belief and plausibility curves with a
computational complexity that remained polynomial with the number of uncertain
parameters. Therefore, it can be used to produce a first estimation of the optimal so-
lution and to narrow down the design and uncertain domains. The direct approached,
instead, could be used on the reduced domains for more accurate results.
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Chapter 22
Progressive Design Methodology for Design of
Engineering Systems

Praveen Kumar and Pavol Bauer

Abstract. This chapter focuses on a design methodology that aids in design and
development of complex engineering systems. This design methodology consists of
simulation, optimization and decision making. Within this work a framework is pre-
sented in which modelling, multi-objective optimization and multi criteria decision
making techniques are used to design an engineering system. Due to the complex-
ity of the designed system a three-step design process is suggested. In the first step
multi-objective optimization using genetic algorithm is used. In the second step a
multi attribute decision making process based on linguistic variables is suggested
in order to facilitate the designer to express the preferences. In the last step the fine
tuning of selected few variants is performed. This methodology is named as Progres-
sive Design Methodology (PDM). The method is applied as a case study to design
a permanent magnet brushless DC motor drive and the results are compared with
experimental values.

22.1 Introduction

The design of complex engineering systems, as such electrical drives and power
electronics, requires application of knowledge from several disciplines (multidisci-
plinary) of engineering (electrical, mechanical, thermal) [1, 2, 3]. The interdisci-
plinary nature of complex systems presents challenges associated with modelling,
simulation, computation time and integration of models from different disciplines.
There is a need to develop design methods that can model different degrees of col-
laboration and help resolve the conflicts between different disciplines. In order to
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simplify the design problem assumptions based on the designer’s understanding
of the system are introduced. The ability and the experience of the designer usu-
ally lead to good but not necessarily an optimum design. Hence there is a need
to introduce formal mathematical optimization techniques, in design methodolo-
gies, to offer an organised and structured way to tackle design problem. A review
of different methods for design and optimisation of complex systems is given in
[4, 5, 6, 7, 8]. The rise of complexity of systems as well as the number of design
parameters needed to be co-ordinated with each other in an optimal way have led to
the necessity of using mathematical modelling of system and application of optimi-
sation techniques. In this situation the designer focuses on working out an adequate
mathematical model and the analysis of the results obtained while the optimisation
algorithms choose the optimal parameters for the system being designed. Marczyk
[9] presented stochastic simulation using the Monte-Carlo techniques as an alterna-
tive to traditional optimisation. In recent years probabilistic design analysis and op-
timisation methods have been developed [10, 11, 12] to account for uncertainty and
randomness through stochastic simulation and probabilistic analysis. Much work
has been performed on developing surrogate-based optimisation (SBO). The SBO
methods have been proposed to achieve high-fidelity design optimisation at reduced
computational cost. Booker et.al [13] developed a direct search SBO framework
that converges to an expensive objective function subject only to bounds on the de-
sign variables and that does not require derivative evaluations. Audet et. al. [14]
extended that framework to handle general non-linear constraints using a filter for
step acceptance [15]. A major barrier to the use of gradient based search meth-
ods for engineering design is that complex multidisciplinary design spaces tend to
have many apparent local optima. The primary shortcomings of many existing de-
sign methodologies is that they tend to be hard coded, discipline or problem specific
and have limited capabilities when it comes to incorporation of new technologies.
There appears to be a need for a new methodology that can exploit different tools,
strategies and techniques which strive to simplify the design cycle associated with
large, coupled engineering problems. There are many computational techniques, in-
dependently developed computer codes and concepts that are physically separated,
yet functionally related. The design methodology presented in this work is a step
towards providing the design engineer an environment that allows the combination
and/or integration of different techniques. The design methodology presented in this
work is named as Progressive Design Methodology (PDM). The above mentioned
methods are excellent in design of complex engineering systems but require ex-
tensive knowledge of the process itself. The PDM attempts to simplify the design
process of complex engineering systems so that a team engineers can use in their
day to day work and an extensive knowledge of the design methodology is not a
prerequisite. All the components of the PDM can be implemented using commer-
cially available tools and can be easily integrated in the work process of a typical
engineering team. Progressive design methodology is a three-step design process. In
the first step a simple model of the components of a system is developed and design
problem is reformulated as a multi-objective optimisation problem (MOOP). In the
second step the results obtained in the MOOP process are analysed and a small set
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of feasible solutions is selected. In the final step a detailed model of the variants of
the system, as selected from the previous set, are developed and the design variables
of the system are fine-tuned. At the end the final design of the system is selected.
The aim of this chapter is to:

• Present a framework where optimisation and decision making is employed to
accelerate and improve the design of complex systems.

• Support the formulation of the optimisation problem, partly by supporting the
selection of optimisation parameters, but also by supporting the formulation of
the objective functions. The design problem is often multiobjective in nature,
it is therefore natural to formulate the problem as a multiobjective optimisation
problem.

• Develop a framework in which system-level simulation models can be composed
from sub-system models in different disciplines

• Formalise a multi-domain modelling paradigm that allows to evolve with the
design process, increasing in detail as the design process progresses

22.2 Progressive Design Methodology

A design method is a scheme for organising reasoning steps and domain knowledge
to construct a solution [16]. Design methodologies are concerned with the question
of how to design whereas the design process is concerned with the question of what
to design. A good design methodology has following characteristics [17]:

• Takes less time and causes fewer failures
• Produces better design
• Works for a wide range of design requirements
• Integrates different disciplines
• Consumes less resources: time, money, expertise
• Requires less information

An ideal condition in the design of an engineering system will be if all the objec-
tives and constraints can be expressed by a simple model. However, in practical
design problems this is seldom the case due to the complexity of the system. Hence,
a trade-off has to be made between the complexity of the model and time to com-
pute the model. A complex model will enable us to represent all the objectives and
constraints of the system but will be computationally intensive. On the other hand a
simple model will be computationally inexpensive but will limit the scope of objec-
tives and constraints that can be expressed. In order to overcome this problem PDM
consists of three main phases:

• Synthesis phase of PDM
• Intermediate analysis phase of PDM
• Final design phase of PDM

Since in the first step (synthesis phase) of PDM the detailed knowledge of the sys-
tem is unavailable, the optimization process is exhaustive. If complex models are
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used in this stage then the computational burden will be overwhelming. In order
to facilitate the initial optimization process only those objectives and constraints
are considered that can be expressed by simple mathematical models of the sys-
tem. In the synthesis process a set of feasible solutions (Pareto Optimal solutions)
is obtained, Fig. 22.1 and Fig. 22.2. The important task in engineering design is to
generate various design alternatives and then to make preliminary decision to select
a design or a set of designs that fulfils a set of criteria. Hence the engineering de-
sign decision problem is a multi criteria decision-making problem. In the conceptual
stages of design, the design engineer faces the greatest uncertainty in the product at-
tributes and requirements (e.g., dimensions, features, materials, and performance).
Because the evolution of the design is greatly affected by decisions made during the
conceptual stage, these decisions have a considerable impact on overall cost. In the
intermediate analysis process the multi criteria decision making process is carried

Fig. 22.1 Set of Pareto optimal solutions for a optimisation problem with two objectives

Fig. 22.2 Set of Pareto optimal solutions for a optimisation problem with three objectives
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out. This step is a screening process where the large number of solutions obtained
from the first step are subjected to process of elimination. In order to achieve the
elimination additional constraints are taken into consideration. The constraints con-
sidered here are those that cannot be expressed explicitly in mathematical terms,
such as manufacturability of an embodiment of the system. In the final design phase
detail model of the system is developed. After having executed the synthesis phase a
better understanding of the system is obtained and it is possible to develop a detailed
model of the system. In this phase all the objectives and constraints that could not be
considered in the synthesis phase are taken into consideration. In this phase exhaus-
tive optimisation is not carried out, rather fine tuning of the variables is performed
in order to satisfy all the objectives and constraints.

22.3 Synthesis Phase of PDM

In the synthesis phase the requirements of the system to be designed are identified.
Based on these requirements system boundaries are defined and performance crite-
rion/criteria are determined. The next step is to determine the independent design
variables that will be changed during the optimisation process. The various steps
involved in the synthesis phase are:

• System requirements analysis
• Definition of system boundaries
• Determination of performance criterion/criteria
• Selection of variables and sensitivity analysis
• Development of system model
• Deciding on the optimisation strategy

The implementation of the above steps is shown in Fig. 22.3. From Fig. 22.3 it
can be seen that the six steps involved in the synthesis phase are not executed in
purely sequential manner. After the sensitivity analysis has been done and a set of
independent design variables (IDV) has been identified, the designer has to decide
if the set of IDV obtained is appropriate to proceed with the modelling process. The
decision about the appropriateness of the set of IDV can be made based on previous
experience or discussions with other experts. If the set of IDV is not sufficient then
it is prudent to go back to system requirement analysis and perform the loop again.
This loop can be repeated until a satisfactory set of IDV is identified. Similarly after
the model of the system to be designed (target system) is developed, it is important to
check if the model includes the system boundaries and the set of IDV. In reality the
selection of variables and the development of the model have to be done iteratively
since both depend on each other. The choice of variables has influence on modelling
and the modelling process itself will influence the variables needed. The details of
each of the above steps are given in the following subsections.
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Fig. 22.3 Steps in the synthesis phase of Progressive Design Methodology (PDM)

22.3.1 System Requirements Analysis

The requirements of the system to be designed are analyzed in this phase. The pur-
pose of system requirement analysis is to develop a clear and detailed understanding
of the needs that the system has to fulfill. Hence this phase can be a challenging
task since the requirements form the basis for all subsequent steps in the design
process. The quality of the final product is highly dependent on the effectiveness
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of the requirement identification. The primary goal of this phase is to develop a
detailed functional specification defining the full set of system capabilities to be
implemented.

22.3.2 Definition of System Boundaries

Before attempting to optimise a system, the boundaries of the system to be de-
signed should be identified and clearly defined. The definition of the clear sys-
tem boundaries helps in the process of approximating the real system [18]. Since,
an engineering system consists of many subsystems it may be necessary to ex-
pand the system boundaries to include those subsystems that have a strong in-
fluence on the operation of the system that is to be designed. As the boundaries
of the system increases, i.e. more the number of subsystems to be included, the
complexity of the model increases. Hence it is prudent to decompose the com-
plex system into smaller subsystems that can be dealt with individually. However
care must be exercised while decomposing the system as too much decomposi-
tion may result in misleading simplifications of the reality. For example a brush-
less direct current (BLDC) motor drive system consists of three major subsystems
viz.

• The BLDC motor
• Voltage source inverter (VSI)
• Feedback control

Usually a BLDC motor is designed for a rated load, i.e. the motor is required to
deliver a specified amount of torque at specified speed for continuous operation at a
specified input voltage. During design process the motor is the primary system under
design. However, optimized design of the motor based only on the magnetic circuit
may result in misleading results. It is possible that this optimized motor has a high
electrical time constant and the VSI is not able to provide sufficient current resulting
in lower torque at rated speed and given input voltage. Hence, for the successful
design of the BLDC motor it is important to include the VSI in the system, i.e. the
boundary of the system is expanded. Of course, it is a different matter that the model
of the system that includes the BLDC motor and the VSI is more complicated but
nevertheless is closer to the reality.

22.3.3 Determination of Performance Criterion/Criteria

Once the proper boundaries of the system have been defined, performance crite-
rion/criteria are determined. The criterion/criteria form the basis on which the per-
formance of the system is evaluated so that the best design can be identified. In
engineering design problems different types of criteria can be classified as depicted
in Fig. 22.4 [19]:
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• Economic criterion/criteria: In engineering system design problems the eco-
nomic criterion involves total capital cost, annual cost, annual net profit, return
on investment, cost-benefit ration or net present worth.

• Technological criterion/criteria: The technological criterion involves production
time, production rate, and manufacturability.

• Performance criterion/criteria: Performance criterion is directly related to the
performance of the engineering system such as torque, losses, speed, mass, etc.

Fig. 22.4 Classification of criterion

In the synthesis phase of PDM the Performance criterion/criteria are taken into con-
sideration because they can be expressed explicitly in the mathematical model of
the system. The economic and technological criteria are suitable for Intermediate
analysis and Final design phases of PDM because by then detailed knowledge about
the engineering systems performance and dimensions are available.

22.3.4 Selection of Variables and Sensitivity Analysis

The next step is selection of variables that are adequate to characterize the possible
candidate design. The design variables can be broadly classified as, Fig. 22.5:

• Engineering variables: The engineering variables are specific to the system being
designed. These are variables with which the designer deals.

• Manufacturing variables: These variables are specific to the manufacturing do-
main.

• Price variables: This variable is the price of the product or the system being
designed.

In the synthesis phase of PDM engineering variables are considered. There are two
factors to be taken into account while selecting the engineering variables. First, it is
important to include all the important variables that influence the operation of the
system or affect the design. Second, it is important to consider the level of detail
at which the model of the system is developed. While it is important to treat all
the key engineering variables, it is equally important not to obscure the problem
by the inclusion of a large number of finer details of secondary importance [19].
In order to select the proper set of variables, sensitivity analysis is performed. For
sensitivity analysis all the engineering variables are considered and its influence on
the objective parameters is considered. The sensitivity analysis enables to discard
the engineering variables that have least influence on the objectives.
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Fig. 22.5 Classification of variables

22.3.5 Development of System Model

Developing a model is to answer a question or a set of questions. If the questions
that the model has to answer, about the system under investigation, are specific then
it is easier to develop a suitable and useful model. The models that have to answer a
wide range of questions or generic questions are most difficult to develop. The most
effective process for developing a model is to begin by defining the questions that
the model should be able to answer. Broadly models can be classified into following
categories [20], Fig. 22.6:

• Physical models: These models are full-scale mock-up, sub-scale mock-up or
electronic mock up.

• Quantitative models: These models give numerical answers. These models can
be either analytical, simulation or judgmental. These models can be dynamic or
static. An analytical model is based on system of equations that can be solved
to produce a set of closed form solutions. However finding exact solutions of
analytical equations is not always feasible. Simulation models are used in situ-
ations where analytical models are difficult to develop or are not realistic. The
main advantage of analytical models is that they are faster than numerical mod-

Fig. 22.6 Classification of models
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els and hence are suited for MOOP. The major aspect of analytical model is
that certain approximations are required to develop analytical models. However
in certain cases where approximations cannot be made and a very deep insight
of the system are required then numerical simulation methods such as Finite
Element Method (FEM), Computational Fluid Dynamics (CFD), etc. have to be
adopted. The main drawback of numerical models is that they are computation-
ally intensive and are not suitable for exhaustive optimisation process.

A detailed discussion about the suitability of the models is given in another section
of this chapter.

22.3.6 Deciding on the Optimization Strategy

Multi-objective optimization results in a set of Pareto optimal solutions specifying
the design variables and their objective tradeoffs. These solutions can be analyzed
to determine if there exist some common principles between the design variables
and the objectives [21]. If a relation between the design variables and objectives
exits they will be of great value to the system designers. This information will pro-
vide knowledge of how to design the system for a new application without resorting
to solving a completely new optimization problem again. The principles of multi-
objective optimisation are different from that of a single objective optimisation.
When faced with only a single objective an optimal solution is one that minimises
the objective subjected to the constraints. However, in a multi-objective optimisa-
tion problem (MOOP) there are more than one objective functions and each of them
may have a different individual optimal solution. Hence, many solutions exist for
such problems. The MOOP can be solved in three different ways depending on
when the Decision Maker (DM) articulates his preference concerning the different
objectives [21]. The classification of the strategies is as follows, Fig. 22.7:

• Priori articulation of preference information: In this method the DM gives his
preference to the objectives before the actual optimisation is conducted. The ob-
jectives are aggregated into one single objective function. Some of the optimisa-
tion techniques that fall under this category are weighted-sum approach [22, 23],
Non-Linear Approaches [24], Utility Theory [24, 25].

• Progressive articulation of preference information: In this method the DM in-
dicates the preferences for the objectives as the search moves and the decision-
maker learns more about the problem. In these methods the decision maker either
changes the weights in a weighted-sum approach [26], or by progressively reduc-
ing the search space as in the STEM method of reference [27]. The advantages
of this method are that it is a learning process where the decision-maker gets a
better understanding of the problem. Since the DM is actively involved in the
search it is likely that the DM accepts the final solution. The main disadvantage
of this method is that a great degree of effort is required from the DM during the
entire search process. Moreover the solution depends on the preference of one
DM and if the DM changes his/her preferences or if a new DM comes then the
process has to restart.
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Fig. 22.7 Classification of optimisation methods based on aggregation of information

• Posteriori articulation of preference information: In this method the search space
is scanned first and Pareto optimal solutions are identified. This set of Pareto op-
timal solution is finally presented to DM. The main advantage of this method is
that the solutions are independent of DM’s preferences. The process of optimi-
sation is performed only once and Pareto optimal set does not change as long
as the problem description remains unchanged. The disadvantage of this method
is that they need large number of computations to be performed and the DM is
presented with too many solutions to choose from.

The principle goal of multi-objective optimisation algorithms is to find well spread
set of Pareto optimal solutions. Each of the solutions in the Pareto optimal set cor-
responds to the optimum solution of a composite problem trading-off different ob-
jective among the objectives. Hence each solution is important with respect to some
trade-off relation between the objectives. However in real situations only one solu-
tion is to be implemented. Therefore, the question arises about how to choose among
the multiple solutions. The choice may not be difficult to answer in the presence of
many trade-off solutions, but is difficult to answer in the absence of any trade-off
information. If a designer knows the exact trade-off among objective functions there
is no need to find multiple solutions (Pareto optimal solutions) and a priori articu-
lation methods will be well suited. However, a designer is seldom certain about the
exact trade-off relation among the objectives. In such circumstance it is better to
find a set of Pareto optimal solutions first and then choose one solution from the
set by using additional higher level information about the system being designed.
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With this in view in PDM posteriori based optimisation method is used. In principle
any posteriori based multiobjective optimisation algorithm such as NSGA-II [28],
SPEA 2 [29], etc. can be used in PDM. In this work the NBGA [30] was used.
Choosing a suitable solution from the Pareto optimal set forms the second phase of
PDM and is described in the next section 22.4.

22.4 Intermediate Analysis Phase of PDM

Once the synthesis process is done and a set of Pareto optimal solutions is deter-
mined the next step involves analysis of the solutions. In the conceptual stages of
design, the design engineer faces the greatest uncertainty in the product attributes
and requirements (e.g., dimensions, features, materials, and performance). Because
the evolution of the design is greatly affected by decisions made during the con-
ceptual stage, these decisions have a considerable impact on overall cost. In the
intermediate analysis phase the various alternatives obtained from the previous step
(synthesis phase) are analysed and a small set of solutions are selected for deeper
analysis. The most important tasks in engineering design, besides modelling and
simulation, are to generate various design alternatives and then to make preliminary
decision to select a design or a set of designs that fulfils a set of criteria. Hence the
engineering design decision problem is a multi criteria decision-making problem.
It is a general assumption that evaluation of a design on the basis of any individual
criterion is a simple and straightforward process. However in practice, the determi-
nation of the individual criterion may require considerable engineering judgement
[31]. An extensive literature survey on multi criteria decision making is given in the
work of Bana de Costa [32]. Carlsson and Fuller [33] gave a survey of fuzzy multi
criteria decision making methods with emphasis on fuzzy relations between interde-
pendent criteria. A new elicitation method for assigning criteria importance based
on linguistic variables is presented in [34]. Roubens [35] introduced a new pair
wise preferred approach that permitted a homogeneous treatment of different kinds
of criteria evaluations. A fuzzy model for design evaluation based on multiple crite-
ria analysis in engineering systems is presented by Martinez and Liu et.al. [36]. In
the initial phase of development of an engineering system the details of a design are
unknown and design description is still imprecise that the most important decisions
are made [37]. In this initial engineering design phase, the final values of the design
variables are uncertain. Hence at this stage decision making using fuzzy linguistic
variables is appropriate. After a decision is made and an alternative or set of alter-
natives is selected, detailed modelling of the system using standard tools (such as
Finite Element Analysis, etc) serve to calculate the performance of the system and
also help in reducing the uncertainty in the design variables. In the initial stage of de-
cision making the designers represent their preferences for different values of design
variables using a set of fuzzy linguistic variables. Each value of design variable is as-
signed a preference between absolutely unacceptable and absolutely acceptable. The
values of design variables have linguistic preference values. Hence the designer’s
judgement and experience are formally included in the preliminary design problem.
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Fig. 22.8 Steps in the intermediate analysis phase of PDM

The general problem is thus a Multi Criteria Decision-Making problem, where the
designer is to choose the highest performing design configuration from the available
set of design alternatives and each design is judged by several, even competing, per-
formance criteria or variables. A Multi Criteria Decision-Making problem (MCDM)
is expressed as:

C1, C2, · · · , Cn

D =

A1

A2
...

Am

⎛⎜⎜⎜⎝
x11 x12 · · · x1n

x2n x22 · · · x2n
...

... · · · ...
xm1 xm2 · · · xmn

⎞⎟⎟⎟⎠
(22.1)

w = {w1,w2, ...,wn} (22.2)
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where Ai, i=1,...,m are the possible alternatives; c j, j=1,...,n are the criteria with
which alternative performances are measured and xi j is the performance score of
the alternative Ai with respect to attribute Cj and wj are the relative importance of
attributes. The alternative performance rating xi j can be crisp, fuzzy, and/or linguis-
tic. The linguistic approach is an approximation technique in which the performance
ratings are represented as linguistic variable [38, 39, 40] . The classical MCDM
problem consists of two phases:

• an aggregation phase of the performance values with respect to all the criteria for
obtaining a collective performance value for alternatives

• an exploitation phase of the collective performance value for obtaining a rank
ordering, sorting or choice among the alternatives.

The various parts of intermediate analysis phase of PDM are:

• Identification of new set of criteria
• Linguistic term set
• Semantic of linguistic term set
• Aggregation operator for linguistic weighted information

The flow chart of the above steps is shown in Fig. 22.8.

22.4.1 Identification of New Set of Criteria

In the synthesis stage the constraints imposed on the system are engineering con-
straints. The engineering constraints are specific to the system being designed and
can be considered as criteria based on which decision making is done. Besides en-
gineering constraints there are other non-engineering constraints such as manufac-
turing limitations. It may be possible that certain Pareto optimal solutions obtained
in the synthesis stage may not be feasible from the manufacturing point of view or
may be too expensive to manufacture. Hence, in order to determine these constraints
a high level of information is to be collected from various experts.

22.4.2 Linguistic Term Set

After determining all the constraints, the next step is to determine the linguistic
term set. This phase consists of establishing the linguistic expression domain used
to provide the linguistic performance values for an alternative according to different
criteria. The first step in the solution of a MCDM problem is selection of linguis-
tic variable set. There are two ways to choose the appropriate linguistic description
of term set and their semantic [41]. In the first case by means of a context-free
grammar, and the semantic of linguistic terms is represented by fuzzy numbers de-
scribed by membership functions based on parameters and a semantic rule [41, 42].
In the second case the linguistic term set by means of an ordered structure of lin-
guistic terms, and the semantic of linguistic terms is derived from their own ordered
structure which may be either symmetrically/asymmetrically distributed on the [0,1]
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scale. An example of a set of seven terms of ordered structured linguistic terms is as
follows:

S = {S0 = none,S1 = very low,S2 = low,S3 = medium,S4 = high,S5 = very high,S6 = perfect}
(22.3)

22.4.3 Semantic of Linguistic Term Set

The semantics of the linguistic term set can be broadly classified into three cate-
gories (Fig. 22.9), (a) Semantic based on membership functions and semantic rule
[43, 44, 45], (b) Semantic based on the ordered structure of the linguistic term set
[41, 46, 47, 48] and (c) Mixed semantic [46, 48].

Fig. 22.9 Classification of semantic of linguistic term set

22.4.4 Aggregation Operator for Linguistic Weighted Information

Aggregation of information is an important aspect for all kinds of knowledge based
systems, from image processing to decision making. The purpose of aggregation
process is to use different pieces of information to arrive at a conclusion or a deci-
sion. Conventional aggregation operators such as the weighted average are special
cases of more general aggregation operators such as Choquet integrals [49]. The
conventional aggregation operators have been articulated with logical connectives
arising from many-valued logic and interpreted as fuzzy set unions or intersections
[50]. The latter have been generalised in the theory of triangular norms [51]. Other
aggregation operators that have been proposed are symmetric sums [52], null-norms
[53], uninorm [54], apart from other. The aggregation operators can be grouped into
the following broad classes [50]:

• Operators generalising the notion of conjunction are basically the minimum
and all those functions f bounded from above by the minimum operators.

• Operators generalising the notion of disjunction are basically the maximum
and all those functions f bounded from below by the maximum operations



586 P. Kumar and P. Bauer

Fig. 22.10 Classification of aggregation operator for linguistic variables

• Averaging operators are all those functions lying between the maximum and
minimum.

For linguistic weighted information the aggregation operators mentioned above
have to be modified for linguistic variables and can be placed under two categories
[55] Linguistic Weighted Disjunction (LWD) and Linguistic Weighted Conjunction
(LWC). In Fig. 22.10 the detailed classification of the linguistic aggregation op-
erators is shown. In the following example the mathematical formulation of LWD
and LWC is given. In order to illustrate each of the above mentioned linguistic ag-
gregation operators the following example is considered [56]: Example: For each
alternative an expert is required to provide his/her opinion in terms of elements from
the following scale

S = {OU(S7),VH(S6),H(S5),M(S4),L(S3),V L(S2),N(S1)} (22.4)

where OU stands for Outstanding, V H for Very High, H for High, M for Medium,
L for Low, VL for Very Low, N for None. The expert provides the opinion on a set
of five criteria . An example of criteria as for electrical drive can be:

C1=Mass of the motor (Minimum mass is 100 gram and maximum mass is 800
gram)

C2=Cost of the electrical drive (Minimum cost is 10 Euros and maximum cost is
80 Euros)

C3=Losses in the electrical drive (Minimum loss is 10 watts and maximum loss
is 80 watts)

C4=Electrical time constant (Minimum loss is 0 .1 milliseconds and maximum
time constant is 0.8 milliseconds)

C5=Moment of inertia of the motor (Minimum moment of inertia is 1 and maxi-
mum moment of inertia is 8)
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Then perofrmance of each alternative is also defined in terms of the scale. The per-
formance of each alternative is also defined in terms of the scale shown above. The
scale is evenly distributed and the scale for each alternative is given in Table 22.1
[55]. The problem is to select a drive that has lowest losses, lowest cost, lowest
mass, low electrical time constant and low moment of inertia. The motor is to be
used in a hand held drill. For this application the mass of the motor and its cost
are very important because a lighter motor with a low cost will be most preferred.
Hence these two criteria are given Very High (VH) importance. For this application
the efficiency of the motor is of moderate importance and is given a Medium (M)
importance. The electrical time constant and moment of inertia of the rotor are im-
portant from the dynamic behaviour of the motor and are not very important for the
application in hand held drill and are given low (L) and Very Low (VL) importance.
The importance to each criterion is shown in Table 22.2. The performance of an
alternative on all the criteria is also shown in Table 22.2; in brackets the numeri-
cal value is given. The aggregation of the weighted information using Linguistic
Weighted Conjunction (LWC) is defined as follows

f = LWC [(w1,a1) , · · · ,(wm,am)] (22.5)

where LWC = MINi=1,. . .,mMax(Neg(wi) ,ai) and m is the number of alternatives.
An example of LWC is Kleene-Diene’s Linguistic Implication Function LI→1 [58]:

LI→1 (w,a) = (Neg(w) ,a) (22.6)

Table 22.1 The relation between numerical values and linguistic variables

N VL L M H VH OU

C1 100-200 200-300 300-400 400-500 500-600 600-700 700-800
C2 10-20 20-30 30-40 40-50 50-60 60-70 70-80
C3 10-20 20-30 30-40 40-50 50-60 60-70 70-80
C4 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8
C5 1-2 2-3 3-4 4-5 5-6 6-7 7-8

Table 22.2 Importance and score of alternative

Criteria C1 C2 C3 C4 C5
Importance Weight (w) VH VH M L VL
Score of Alternative 1 M(425) L(34) OU(77) VH(0.65) OU(7.6)
Score of Alternative 2 M(460) OU(75) VH(64) VH(0.67) H(5.6)
Score of Alternative 3 H(572) M(47) VH(64) H(0.53) OU(7.8)
Score of Alternative 4 OU(72) M(45) H(53) VH(0.66) H(5.8)
Score of Alternative 5 H(550) M(46) H(55) OU(0.74) VH(6.5)
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Based on the example given in Table 22.1 the net performance of the first alternative
based on LI→1 is:

f1 = MIN [LI→1 (VH,M) ,LI→1 (VH,L) ,LI→1 (M,OU) ,LI→1 (L,V H) ,LI→1 (VL,OU)]
= MIN [M,L,OU,V H,OU ] = L (22.7)

The final score of the second alternative is

f2 = MIN [LI→1 (VH,M) ,LI→1 (VH,OU) ,LI→1 (M,V H) ,LI→1 (L,V H) ,LI→1 (VL,H)]
= MIN [M,OU,V H,VH,VH] = M (22.8)

The final score of the third alternative is

f3 = MIN [LI→1 (VH,H) ,LI→1 (VH,M) ,LI→1 (M,VH) ,LI→1 (L,H) ,LI→1 (VL,OU)]
= MIN [H,M,V H,H,OU ] = M (22.9)

The final score of the fourth alternative is

f4 = MIN [LI→1 (VH,OU) ,LI→1 (VH,M) ,LI→1 (M,H) ,LI→1 (L,V H) ,LI→1 (VL,H)]
= MIN [OU,M,H,VH,VH] = M (22.10)

The final score of the fifth alternative is

f5 = MIN [LI→1 (V H,M) ,LI→1 (VH,M) ,LI→1 (M,H) ,LI→1 (L,OU) ,LI→1 (VL,H)]
= MIN [M,M,H,OU,V H] = M (22.11)

Hence on the basis of LI→1 the final score of all the alternatives is [L,M,M,M,M].
The results of total score of all the five alternatives based on different aggregation
operators is summarised below in Table 22.3. From the above the following conclu-
sions can be drawn:

• The choice of linguistic aggregation operator can influence the results of the
intermediate analysis process.

Table 22.3 Result of total score of all the alternatives using different aggregation operators

Alternative → 1 2 3 4 5
Min LD→

1 M VH H VH H
Nilpotent LD→

2 M VH H VH H
Weakest LD→

3 M VH VL VH L
Kleene-Diene’s LI→1 L M M M M
Gdel’s LI→2 L M M M M
Fodor’s LI→3 L M M M M
Lukasiewicz’s LI→4 M H M H H
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• The linguistic weighted disjunction aggregation operators in general give an op-
timistic average value to alternatives. The Weakest linguistic disjunction gives
the least optimistic value to the alternatives.

• The linguistic weighted conjunction aggregation operators in general give a pes-
simistic average value to the alternatives.

• Out of all the conjunction operators the Lukasiewicz’s implication operator gives
the least pessimistic final score to all the alternatives.

• The disjunction aggregation operators are suitable if it is required to select a set
of as many alternatives as possible. This situation can arise in the initial design
phase when the designer wants to include as many alternatives as possible for
further investigation.

• In the initial design process if the number of alternatives is large and there is
limited capability, in terms of manpower and computing power, to investigate
each alternative then linguistic weighted conjunction operators are preferred.

22.5 Final Analysis Phase of PDM

In the final analysis detailed simulation model of the target system is developed. Af-
ter intermediate analysis the set of plausible solutions is greatly reduced and hence
a detailed simulation for each solution is feasible. After setting up of the simulation
model a new set of Independent design variables and objectives is identified. The
steps involved in this stage are:

• Detailed simulation model of the target system is developed.
• Independent design variables and objectives are identified.
• Each solution in the reduced solution set is optimised for the new objectives and

a set of solutions is obtained.
• Final decision is made.

22.6 Model Suitable for PDM

The engineering systems can be modelled at many levels of approximation. The
right model will depend, in general, on the problem to be solved. The type of model
needed to synthesise a new design may be different from the type of models required
to accurately predict the performance of a single proposed design or to diagnose
problems with an existing design. When an engineering system is to be designed
and optimised the choice of proper models will have a profound influence on the re-
sults. One of the problems with modelling is that, according to the definition, models
simplify the reality. This means that some information will be lost somewhere along
the line that can cause problems. Hence, it is important to know how the model re-
lates to real system. The Progressive Design Methodology (PDM) involves three
essential features namely Design, Selection, and Tuning. The main goal of design
is to create a set of feasible new artefact based on requirements. This process is
carried out in the Synthesis Phase of PDM. In this phase the design models of
the system under consideration are used. Using the design models together with
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multiobjective optimization algorithms an initial set of feasible solution is gener-
ated. Since the multiobjective optimization is employed and the detailed knowledge
of the system is not available, it is prudent to use simple low fidelity models of the
system. The advantage of low fidelity models is that they are computationally less
intensive and hence are suitable for multiobjective optimization. The suitable low fi-
delity models are the analytical models. For many situations it is possible to develop
an analytical model of the system by making suitable assumptions. However if an-
alytical models are not possible then simple numerical models of the system should
be used in the synthesis phase of PDM. In the Intermediate Analysis phase of PDM
the selection is performed. The central challenge of this phase is to select from the
set of solutions, obtained in the Synthesis Phase, a subset of suitable solutions. The
selection process involves evaluating the alternatives available. In PDM the alterna-
tives are evaluated based on criteria that cannot be expressed mathematically such as
manufacturability of the system. In order to achieve this the judgmental models are
used. The judgmental models are formed by the deductions and assessments con-
tained in the mind of an expert. In Intermediate Analysis the expert evaluates each
alternative based on judgmental models and assigns preference based on linguistic
variables and the entire multi attribute decision making is carried out (chapter 2).
After the selection process a small set of suitable solutions is generated. The Final
Analysis phase of PDM involves the tuning process. In the tuning process the sys-
tem performance criteria are improved by varying system parameters. In order to
achieve this, high fidelity model of the system that is to be designed is developed.
Each alternative obtained after Intermediate Analysis phase is evaluated using the
high fidelity model and tuning of the system is performed. The high fidelity models
can be developed using finite element methods (FEM), computational fluid dynamic
(CFD), etc. These models are computationally intensive but are closer to the actual
system and are suitable for Final Analysis phase of PDM. In the next section the
PDM is applied for design of a BLDC motor. The various aspects of PDM are used
in the design of BLDC motor.

22.7 Synthesis Phase of PDM for Design of a BLDC Motor
Drive

In this section the PDM is applied for the design of a BLDC motor for a specific
application. All the steps of PDM are applied and the motor is designed that opti-
mal with respect to the system in which it has to work. In the next subsection the
customer requirements are elicited and validated.

22.7.1 Requirement Analysis

The specified parameters of the motor are:

Rated speed 800 rpm (mechanical)
Torque at rated speed 0.2 Nm
Number of phases 3
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The aim of the problem is to design a motor with a cogging torque of less than
20 milliNm, maximum efficiency, minimum mass and trapezoidal back emf.

Inverter Full bridge Voltage source inverter
Motor topology Inner rotor with surface mount magnets
Phase connection The phases are connected in star
The additional constraints of the motor are:
Outer stator diameter 40 mm
Max. Length 50 mm
Air gap length 0.2 mm
Maximum input voltage 50 Volts

22.7.2 Definition of System Boundaries

The BLDC motor to be designed is driven by a voltage source inverter (VSI). The
VSI topology used here is a full bridge inverter. Hence while designing the motor
it is important to include the VSI in the system boundaries so that the motor pa-
rameters are not mutually exclusive. This will ensure that the designed motor will
produce the required torque when it is integrated with the VSI. The model of the
system that includes the BLDC motor and the VSI is more complicated but will en-
sure a well designed motor. Hence the system boundary under consideration in the
synthesis phase consists of:

• ” The BLDC motor (Primary system)
• ” Three phase VSI (Secondary system)

22.7.3 Determining of Performance Criteria

From the requirement analysis the primary objectives that have to be satisfied are:

• Minimum Cogging Torque
• Maximum Efficiency
• Minimum Mass
• Sinusoidal shape of back EMF

In the synthesis phase of PDM only simple model of the BLDC drive is developed.
However determining parameters like cogging torque and shape of the back emf
requires detailed analytical models or FEM models. The mass and efficiency of the
motor can be calculated with relative ease compared to the cogging torque and back
emf shape. Hence in the synthesis phase the objectives that will be considered are:

• Minimise the mass
• Maximise the efficiency
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A generic topology of BLDC motor with surface mount magnets as shown in
Fig. 22.11 is considered. This topology is optimised for minimum mass and maxi-
mum efficiency. In the final design the parameters of this optimised generic topology
are fine-tuned to reduce the cogging torque and obtain sinusoidal back emf shape.
The independent design variables that are used in this case are shown in Table 22.4.

Table 22.4 List of independent variables used in the synthesis phase

Serial No. Variable name Symbol Min. value Max. Value Units
1 Number of poles Np 2 10 -
2 Number of slots Ns 3 15 -
3 Length of the motor Lmot 1 15 mm
4 Ratio of inner diameter of motor to outer diameter αdido 0.1 0.7 -
5 Ratio of magnet angle to pole pitch αm 0.1 1 -
6 Height of the magnet hm 1 3 mm
7 Reminance field of the permanent magnet Br 0.5 1.2 T
8 Maximum allowable field density in the lamination ma-

terial for linear operation
B f e 0.5 2 T

9 Number of turns in the coils of the motor Nturns 1 100 -
10 Input Voltage Vdc 10 50 V

22.7.4 Development of System Model

22.7.4.1 Motor Model

In this section a simple design methodology for the surface mounted BLDC mo-
tor is given [57]. To develop this model certain assumptions have been made. The
assumptions made are:

• No saturation in iron parts.
• Magnets are symmetrically placed.
• Slots are symmetrically placed.
• Back emf is trapezoidal in shape.
• Motor has balanced windings.
• Permeability of iron is infinite.

The general configuration of the motor is shown in Fig. 22.11. The motor design
equations are developed in detail in [57].

22.7.4.2 Dynamic Model of BLDC Motor

The schematic of the typical voltage source inverter is shown in Fig. 22.12. The
coiupled circuit equations of the stator windings in terms of the motor electrical
parameters are

[V ] = [R] [i]+ [L]
d [i]
dt

+[e] (22.12)

where
[V ] = [Va,Vb,Vc]′ (22.13)
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Fig. 22.11 Typical lamination and variables of BLDC motor

Fig. 22.12 Schematic diagram of a three phase voltage source inverter

[R] =

⎡⎣Rph 0 0
0 Rph 0
0 0 Rph

⎤⎦ (22.14)

[i] = [ia, ib, ic]
′ (22.15)

[L] =

⎡⎣Lph 0 0
0 Lph 0
0 0 Lph

⎤⎦ (22.16)

[e] = [ea,eb,ec]′ (22.17)

where Rph and Lph are the phase resistance and phase inductance values respec-
tively defined earlier and V a, V b and V c the input voltages to each phase a, b and c
respectively. The induced emf ea, eb and ec and the phase resistance Rph and phase
inductance Lph are determined from the motor model described above. The electro-
magnetic torque is given by
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Te = [eaia,ebib,ecic]
1
ωm

(22.18)

where ωm is the mechanical speed of the motor. The analytical solution of the eq.
(7) is done following the lines of Nucera et.al. work [58].

22.7.5 Optimisation Strategy

In the present case study optimisation strategy based on Posteriori articulation of
preference information is used. To achieve the multiobjective optimisation the Non-
dominated sorting Biologically Motivated Genetic Algorithm (NBGA) [30] is used.
The parameters of NBGA are as follows

Number of generations =50
Number of individuals =100
Crossover probability = 80
Single point crossover was used.
The mutation rate was fixed between 0 and 10

Hence the multiobjective optimisation problem to be solved is expressed mathemat-
ically as

min
{

f1 (x→) = Pcu + Phys + Peddy; f2 (x→) = Miron + Mmagnet
}

(22.19)

where Pcu, Phys, Peddy are the copper loss, hysteresis loss in the stator yoke, the
eddy current loss in the stator yoke and losses in the MOSFET (both switching and
conduction losses) respectively and Miron and Mmagnet are the mass of yoke (stator
and rotor) and mass of permanent magnets respectively. subject to h(x→) = Tmotor ≥
0.2Nm where x→= (Br,BFe,hm,αm,αd ,Nm,Ns,Nturns,Fsw,Vdc) are the independent
variables and the limits of the variables are given in Table ??. In the optimization
process several constraints are also included. For example if the r.m.s value of the
phase current is higher than the rated current then a violation of constraint takes
place. The combinations of variables where constraints are violated are inferior to
those in which constraints are not violated.

22.7.6 Results of Multiobjective Optimisation

The results of optimisation given in Fig. 22.13 to Fig. 22.18. From the results it can
be seen that for each pole slot combination a number of Pareto optimal solutions
are present and as the mass of the motor increases the losses decreases. Since the
number of feasible solutions is large the results have to be screened so that a reduced
set is obtained. Detailed analysis can be then performed on the reduced set. In the
next section the screening process is performed.
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Fig. 22.13 Pareto optimal solutions with Ns=6 and Np=4

Fig. 22.14 Pareto optimal solutions with Ns=9 and Np=6

22.8 Intermediate Analysis Phase of PDM for Design of a
BLDC Motor Drive

In this section the results of the multiobjective optimization obtained in the previ-
ous section are screened to reduce the number of feasible solution set. In order to
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Fig. 22.15 Pareto optimal solutions with Ns=6 and Np=8

Fig. 22.16 Pareto optimal solutions with Ns=12 and Np=8

perform the screening process certain parameters are required. Each solution ob-
tained in the previous section is evaluated based on the values these parameters. The
application of various steps of intermediate analysis is explained in the following
subsection.



22 Progressive Design Methodology for Design of Engineering Systems 597

Fig. 22.17 Pareto optimal solutions with Ns=9 and Np=8

22.8.1 Identification of New Set of Objectives

For decision making the following parameters of the motor are taken into
consideration

• Stack length
• Losses
• Mass
• Electrical time constant
• Inertia of the rotor
• Ratio of inner diameter of stator to outer diameter
• Number of turns
• Switching frequency
• Width of the tooth
• Thickness of the stator yoke
• Input Voltage
• Area of slots

The losses and mass of the motor are the primary parameters. A motor with small-
est losses and smallest mass is preferable. However as can be seen from the results
of the previous section as the mass increases the losses decrease. Hence in the in-
termediate analysis both are considered for the screening purpose. Electrical time
constant of the motor has a direct influence on the dynamic performance of the mo-
tor. A motor with lower time constant has a better dynamic response compared to
the motor with higher electrical time constant. Similarly the inertia of the rotor is
important parameter because it influences the dynamic performance of the motor.
A motor with high inertia will accelerate slowly compared to the motor with lower
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inertia. The ratio of inner diameter of stator to outer diameter of stator is considered
because it has an influence on the end turn of the winding. Switching frequency
has an impact on the performance of the motor. Higher switching frequency results
is lower torque ripple but higher switching losses and a lower switching frequency
results in higher torque ripple but lower switching frequency. The magnetic load-
ing and the mechanical aspects determine the width of the tooth. If the tooth is too
thin then it may not be able to withstand the mechanical forces acting on it. Hence
in this analysis tooth with higher thickness is preferred. The thickness required for
the stator yoke depends on the magnetic loading of the machine as well as on the
mechanical properties. If the number of the pole pairs is small, often the allowable
magnetic loading and the mechanical loading determines the thickness of the sta-
tor yoke. However, if the number of pole pairs is high enough the stator yoke may
be thin if it is sized according to the allowed magnetic loading. The mechanical
constraints may thus determine the minimum thickness of the stator yoke. In the
decision making process it smaller the thickness of stator yoke the better it is. A
smaller yoke thickness is preferred because it reduces the mass of the steel lamina-
tion required. The area of the slot is considered as an objective because it influences
the winding. A slot with smaller area is difficult to wind. Hence in this analysis a
larger slot area is preferred.

22.8.2 Linguistic Term Set

For the screening purpose the Linguistic term set Based on the Ordered Structure
is used. A set of seven terms of ordered structured linguistic terms is used here:
following scale

S = {S0 = none,S1 = very low,S2 = low,S3 = medium,S4 = high,

S5 = very high,S6 = perfect} (22.20)

where Sa < Sbi f a < b. The linguistic term set in addition satisfy the following con-
mditions:

Negation operatorNeg(Si) = S j, j = T − i(T + 1is cardinality)) (22.21)

Maximisation operatorMax(Si,S j) = Si, i f Si ≥ S j (22.22)

Minimisation operatorMin(Si,S j) = Si, i f Si ≤ S j (22.23)

22.8.3 The Semantic of Linguistic Term Set

In this case the Semantic Based on the Ordered Structure is used. The terms are
symmetrically distributed, i.e. it is assumed that linguistic term sets are distributed
on a scale with an odd cardinal and the mid term representing an assessment of
”approximately 0.5” and the rest of the terms are placed symmetrically around it.
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22.8.4 Aggregation Operator for Linguistic Weighted Information

In this case the Linguistic Weighted conjunction aggregation operator is used.

Table 22.5 Importance of different parameters used in screening proces

Parameter Importance Direction

Length of the stack M L
Losses H L
Mass VH L
Electrical time constant H L
Inertia of the rotor L L
Ratio of inner stator to outer stator diameters H H
Number of turns M L
Reminance field of permanent magnet N L
Max. field density in stator lamination material N L
Width of the tooth VL L
Width of the yoke L L
Input Voltage H L
Area of slot H H

22.8.5 The Screening Process

The importance of different parameters discussed in the previous section is shown
in Table 22.5. The length of the motor stack is given medium importance and the
smaller the length of the motor the better it is, i.e. a smaller stack length is preferred
over the larger length. For the losses a high importance and the lower the losses the
better. Similarly for the mass a very high importance is given and smaller the mass
the more preferred is the motor. The electrical time constant of the motor is given a
high importance and the lower value is better. Ratio of inner to outer stator diameter
is given a higher value and higher the value the better it is. A medium importance is
given to number of turns and lower the number of turns is preferred. The reminance
field of permanent magnet and maximum allowable field density of stator lamination
is given no importance. The width of the tooth and width of the yoke are given very
low and low importance respectively and lower the values of both the parameters

Table 22.6 Parameters of the set of solutions after final screening

Nturns Lmotor αdido αm Br B f e hm Vdc Fsw wt wy Ns Nm

59 10.35 0.60 0.94 1.19 1.88 1.61 36.24 206.17 5.80 4.35 6 4
60 10.65 0.60 0.94 1.19 1.55 1.59 21.10 207.34 3.39 2.54 9 6
60 10.36 0.60 0.98 1.20 1.85 1.57 25.05 149.98 3.92 2.94 12 8
60 18.21 0.50 0.88 0.82 1.99 1.53 22.51 192.57 2.90 1.09 6 8
60 19.93 0.60 0.78 0.82 1.94 1.51 19.56 115.40 2.14 1.20 9 8
60 19.49 0.54 0.96 1.01 1.97 1.55 25.36 120.08 2.61 1.18 9 10
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the better it is. The area of the slot is given a high importance and the higher value
of the slot area is preferred. The results of the multicriteria decision for motors are
given in Table 22.6.

22.9 Final Analysis Phase of PDM for Design of a BLDC Motor
Drive

In this section detailed analysis of the motors obtained in the previous section is
done. At this point it is important to obtain accurate value of induced voltage,
cogging torque, torque profile etc. Hence, in this case formal (mathematical) de-
terministic and a high fidelity model of the BLDC motor drive is required. These
deterministic and high fidelity models are developed using Finitie Element Models
of the motor using FEMAG and smartFEM.

22.9.1 Detailed Simulation Model

The Final Analysis phase of PDM involves the tuning process. In the tuning pro-
cess the system performance criteria are improved by varying system parameters.
In order to achieve this, high fidelity model of the system that is to be designed is
developed. Each alternative obtained after Intermediate Analysis phase is evaluated
using the high fidelity model and tuning of the system is performed. The high fi-
delity models can be developed using finite element methods (FEM), computational
fluid dynamic (CFD), etc. These models are computationally intensive but are closer
to the actual system and are suitable for Final Analysis phase of PDM. The detailed
model of the BLDC motors are developed using FEM packages FEMAG and smart-
FEM. The FEM model is able to calculate the cogging torque and shape of the back
EMF accurately.

22.9.2 Independent Design Variables and Objectives

The independent design variable are length of the stack (Lstack), ratio of stator inner
to outer diameter (αDiDo), ratio of magnet angle to pole pitch (αm) and Bmag. The
new objectives are cogging torque and back emf values. The shape of the back emf
and the magnitude of the cogging torque strongly depend on these variables [57],
hence they are chosen as independent design variables for the final analysis.. It is
required that the motor has a trapezoidal back emf and cogging torque less than
20mNm. The FEM model of the BLDC motor is run for different combinations of
the independent design variables and the results are studied and the solution meeting
the criteria (trapezoidal shape of back emf and cogging torque less than 20mNm)
are selected.
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Fig. 22.18 Cogging torque waveform of motors

Fig. 22.19 Peak values of the cogging torque
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22.9.3 Set of Solutions

The results of cogging torque for all the 6 alternatives in Table 22.6 are shown in
Fig. 22.18 and the peak values of cogging torque are shown in Fig. 22.19 respec-
tively. From the Fig. 22.18 and Fig. 22.19 it is seen that motor with 12 slots and
8 poles has the minimum cogging torque, hence this motor was considered for de-
tailed analysis and its parameters were determined so as to meet all the required
criteria. The geometric parameters of the motor were fine-tuned so as to obtain cog-
ging torque less than 0.02Nm and a trapezoidal back emf. The final configuration of
the motor is given in Table 22.7 below. Finally a prototype based on configuration
given in Table 22.7 was made. The characteristics curves of the prototype are given
in Fig. 22.20 to Fig. 22.23. From these figures it can be seen that the performance
of the motor is close to the simulated values.

Table 22.7 Parameters of the motor after fine tuning

Nturns Lmotor αdido αm Br B f e hm Vdc Fsw wt wy Ns Nm

60 10 0.60 1 0.65 1.57 1.505 24 206.17 2.015 1.511 12 8

Fig. 22.20 Power vs. Speed characteristics: Comparison between simulation and experimen-
tal values
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Fig. 22.21 Current vs. Speed Characteristic comparison between simulation and experimen-
tal values

Fig. 22.22 Torque vs. Speed characteristics: Comparison between simulation and experi-
mental values
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Fig. 22.23 Cogging torque comparison between simulations and experimental values

22.10 Conclusions

In this chapter the progressive design methodology (PDM) is proposed. This
methodology is suitable for designing complex systems, such as electrical drive and
power electronics, from conceptual stage to final design. The main aspects of PDM
discussed are as follows:

• PDM allows effective and efficient practices and techniques to be used from the
start of the project.

• PDM ensures that each component of the system is compatible with each other.
• The computation time required for optimisation is reduced as the bulk of opti-

misation is done in the synthesis phase and the models of the components of the
target system are simple in the synthesis phase.

• The experience of design engineers and production engineers are included in the
intermediate analysis thus ensuring that the target system is feasible to manufac-
ture.

In PDM the decision making factor is critical as proper decisions about dimensions,
features, materials, and performance in the conceptual stage will ensure a robust
and optimal design of the system. The different stages of PDM are explained us-
ing the example of the design of a BLDC motor and the results are validated by



22 Progressive Design Methodology for Design of Engineering Systems 605

experiments. It is shown that using PDM an optimal design of the motor can be
obtained that meets the performance requirements.
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Chapter 23
Reliable Network Design Using Hybrid Genetic
Algorithm Based on Multi-Ring Encoding

Jin-Myung Won, Alice Malisia, and Fakhreddine Karray

Abstract. Designing an inexpensive but reliable network is an important problem in
many engineering applications such as transportation, telecommunication, and com-
puter networks. This problem belongs to the class of NP-hard problems and lots of
research works have been performed to develop a practical and efficient heuristic al-
gorithm. This chapter surveys up-to-date research efforts to address the reliable net-
work design problem and proposes a new hybrid heuristic of the genetic algorithm
and local search ant colony system. The proposed hybrid heuristic represents a two-
edge-connected candidate network as multiple rings. The genetic algorithm evolves
a population of multi-ring-encoded individuals with special genetic operators while
the local search ant colony system fine-tunes each ring. The results of computer ex-
periments show the effectiveness and efficiency of the proposed hybrid heuristic.

23.1 Reliable Network Design

It is an important problem to design the topology of reliable networks that re-
mains connected under the failure of network components. This problem so called
a Reliable Network Design Problem (RNDP1) has many applications in the area of
transportation, utility, telecommunication, and computer networks [1]. The general
objective of the RNDP is to find the minimum-cost sub-network of a given undirected
network that satisfies a prescribed level of reliability and other problem-specific
constraints. Difficulties in handling the RNDP arise from its huge search space. In
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fact, the exact evaluation of network reliability belongs to the class of NP-hard prob-
lems [2]; that is, these exists no polynomial-time algorithm to calculate the reliability
of a given network exactly. Moreover, even if we know the reliability of every can-
didate network, the RNDP itself cannot be solved exactly in a polynomial time.

To address realistic RNDP, many algorithms have been studied and proposed
in the literature. They can be classified into three categories: (i) enumeration-
based approaches, (ii) heuristic approaches, and (iii) computational intelligence.
The enumeration-based approaches attempt to evaluate all the possible candidate
solutions to find the best one. To avoid exhaustive enumeration, reduction tech-
niques such as branch and bound methods [1] should be involved. The reduction
technique restructures the search space so that scanning the limited portion of the
search space could yield the optimal solution. It has been shown that even with a
well-designed reduction technique, the enumeration-based approaches are applica-
ble for small networks only.

The heuristic approaches find a sub-optimal solution of the RNDP by exploring
the search space using problem specific trial and error mechanism. The heuristic ap-
proaches never guarantee the discovering of the optimal solution, but they are prac-
tical choices to find a satisfactory solution in an acceptable time. Typical examples
of the classical heuristic-based approaches are greedy heuristics [3], cross-entropy
methods [4], simulated annealing [5, 6, 7], and tabu search [8, 9].

Algorithms based on computational intelligence can be regarded as a branch
of heuristic approaches. However, computational intelligence simulates distinctive
search process based on learning, adaptation, and evolution mechanism. A Genetic
Algorithm (GA) is the most widely used optimization technique based on computa-
tional intelligence [10, 11]. Mimicking natural evolution process, the GA maintains
a population of candidate solutions by applying selection, crossover, and mutation
operators iteratively. The goal of the GA process is adapting the population to the
fitness landscape of the RNDP to find a good sub-optimal solution. More recently,
it has been often attempted to hybridize the GA with problem-specific local search
algorithms to achieve better solution quality [12]. Such hybrid GA is called genetic
local search or memetic algorithms [13, 14].

This chapter surveys up-to-date research efforts for the RNDP and proposes a
new GA hybridized with an Ant Colony System (ACS). The ACS is a heuristic in-
spired by the behavior of real ants, which establish the shortest path between the nest
and food source [15, 16]. To combine the GA and ACS, the proposed heuristic algo-
rithm incorporates a Multi-Ring Encoding (MRE), which encodes a candidate net-
work as a union of rings. The MRE has three distinctive advantages for the RNDP.
First, it can represent every possible two-edge-connected network. Second, it is free
from expensive algorithms required to repair disconnected or unreliable candidate
networks generated by the GA. Third, the MRE allows incorporating a local search
heuristic dedicated to ring optimization. In the proposed hybrid heuristic, the GA
works as a high-level heuristic evolving a population of multi-ring-encoded individ-
uals with special genetic operators. On the other side, the ACS fine-tunes each ring
by trying to connect the nodes in other possible orders.

This chapter is organized as follows. Section 23.2 describes the mathemati-
cal formulation of the RNDP and suggests the ways handling two objectives,
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cost and reliability. Section 23.3 classifies reliability metrics and introduces the is-
sues regarding reliability evaluation and estimation. Section 23.4 outlines previous
works related to this study. Section 23.5 reviews existing encoding methods de-
veloped for the network design problem and discusses the advantages of the pro-
posed MRE. Section 23.6 explains each procedure of the proposed hybrid heuristic
in detail. Section 23.7 discusses numerical results comparing the proposed hybrid
heuristic to existing exact algorithm and genetic local search.

23.2 Problem Formulation

The RNDP is a combinatorial optimization problem to find a sub-network of a given
undirected network that satisfies given cost, reliability, and performance criteria. Let
G = (N,E) be the given complete undirected network, where N is a set of n nodes
representing communication stations and E is a set of e := n(n−1)/2 edges repre-
senting communication links. The network G has neither self-loops nor redundant
edges. Two distinct nodes in G are connected if there exist at least one path between
them. A network is connected if every pair of two nodes is connected.

To represent a sub-network of G, denote xk ∈ {0,1} for k ∈ {1, . . . ,e} by a binary
decision variable indicating if the k-th edge is purchased. Then, a binary vector
representing one of 2e possible candidate solutions can be defined as

x := (x1, . . . ,xe)′ ∈ {0,1}e. (23.1)

Let C(x) and R(x) be the cost and reliability of the candidate solution x. Then, the
objective of the basic RNDP is to find x∗ that forms a connected sub-network of G
such that C(x) is minimized while R(x) is maximized. If other performance criteria
like capacity or transmission delay are specified, they act as additional constraints
of the RNDP.

It is clear that the cost and reliability are conflicting objectives. Adding edges
to a certain network will make it more reliable but more expensive and vice versa.
This implies that the RNDP can be regarded as a bi-objective optimization problem
having multiple solutions, where the improvement in cost sacrifices the reliabil-
ity. Such solutions are called Pareto optimal solutions [17]. Many research works
have been performed to establish the theory and applications of the multi-objective
optimization problem. In particular, the GA has enjoyed great success in address-
ing multi-objective optimization problems. The population-based search paradigm
of the GA provides a simple but efficient way to approximate the Pareto optimal
solutions from the single GA run [18].

A simple way to make the RNDP single-objective is to consider either objective
as a constraint. This study assumes that the minimum reliability requirement Rmin

is predetermined and C(x) should be minimized accordingly. Hence, the RNDP is
formulated as:

Given: G and Rmin ∈ (0,1)
Over: x
Minimize: C(x)
Subject to: R(x) ≥ Rmin.
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Table 23.1 Relationship between network size and search space size of RNDP

Network size
(n)

Search space size (2n(n−1)/2) Number of spanning trees
(nn−2)

5 1024 125
10 3.52×1013 1.00×108

20 1.57×1057 2.62×1023

With a slight modification, the proposed hybrid heuristic can be applied to the oppo-
site case, where the available budget is prescribed and R(x) should be maximized.

The cost of the edge k is given as ck ∈ℜ+ and C(x) is the summation of the total
edge cost:

C(x) =
e

∑
k=1

ckxk.

This study assumes that nodes are invulnerable (perfectly reliable) but the edge k
may fail with a probability of qk ∈ [0,1]. The operating probability pk, is hence
1−qk. The probabilistic metric for all-terminal reliability is used as R(x). Refer to
the next section to see how R(x) is evaluated or estimated from x and pk.

The RNDP belongs to the class of NP-hard problems. As mentioned above, the
exhaustive search space of the RNDP has a cardinality of 2e. This grows faster than
exponentially as the network size n increases. Table 23.1 shows the relationship be-
tween the number of nodes and the associated search space size of the RNDP. Even
for a small network with n = 10, it is impractical to check the cost and reliability of
every candidate solution to pick up the best one. Instead, we should rely on heuristic
methods, which yield good sub-optimal solutions in an acceptable time.

23.3 Network Reliability

The RNDP heuristics require either exact evaluation or rough estimation of network
reliability. Since the exact evaluation of network reliability is NP-hard, relying on
the estimation technique is unavoidable. The proper choice of the reliability esti-
mation method is a crucial factor that decides the performance of RNDP heuris-
tics. This section mathematically defines network reliability metrics and introduces
several estimation methods popularly used.

23.3.1 Reliability Metrics

Network reliability metrics can be categorized into deterministic metrics and prob-
abilistic metrics [19]. The deterministic metrics represent the number of network
components whose failure disconnects the network. The deterministic metrics some-
times give inadequate reliability measure since the operating probability of network
components is not considered. On the other hand, the probabilistic metrics indicate
how probably the network will remain connected for given operating probabilities
of network components. The reliability metrics can be further classified into two
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categories based on the number of interested nodes: All-Terminal Reliability (ATR)
and Two-Terminal Reliability (TTR). Under the all-terminal case, all the node pairs
should be connected. The two-terminal case predefines the source node and sink
node that should be connected.

To give formal definition of the reliability metrics, we need to introduce some defi-
nitions regarding network connectivity. Let G(x) be a candidate network of the RNDP
represented by a decision vector x. A set of edges in G(x) whose failure disconnects
the network is defined as an edge cutset. The minimum edge cutset is called a prime
edge cutset and the minimum cardinality of the edge cutset is entitled edge connec-
tivity, which can be used as a deterministic metric for ATR. Analogous definitions
can be made for TTR. For example, two-terminal edge connectivity is the minimum
number of edges whose failure disconnects the source node from the sink node.

The RNDP considered in this chapter adopts the probabilistic metric for ATR as
the reliability measure R(x), which is termed ATR in the sequel for simplicity’s sake.
To compute R(x) for a general G(x), all the edge operating scenarios of G(x) should
be enumerated. Denote e(x) by the set of edges in G(x). Then, G(x) has 2e(x) edge
operating scenarios, which can be grouped into connected or disconnected scenarios.
If the failing edges in an edge operating scenario form an edge cutset, G(x) becomes
disconnected; otherwise, G(x) remains connected. Aggregating the probability of
every connected edge operating scenario of G(x) yields R(x).

If G(x) has a special layout composed of a limited number of edges, its ATR is
easily computable. The exact ATR computation is NP-hard though [20]. For a gen-
eral G(x), there exists no polynomial-time algorithm to group 2e(x) edge operating
scenarios into connected and disconnected cases.

23.3.2 Reliability Estimation

Given the NP-hard nature of ATR computation, we should rely on approximation
techniques such as bound-based approaches and Monte Carlo Simulation (MCS)
methods. The bound-based approach uses the upper or lower bound of the ATR as
a reliability estimate. Good examples of such bounds are Jan’s upper bound [1] and
Lomonosov’s lower bound [21]. This section describes how Jan’s upper bound can
be derived.

Let di for i ∈ N be the degree of node i, which is the number of edges incident to
i. Denote μi by the set of edges connected to node i. Then, μi is an edge cutset of
G(x). Let Fi be the event that all the edges in μi fail and Fc

i the complement of Fi.
Since the network failure probability, 1−R(x), is no less than Pr[F1 ∪·· · ∪Fn], we
have the following inequality describing an upper bound of R(x):

R(x) ≤ 1−Pr[F1]−Pr[F2 ∩Fc
1 ]−·· ·−Pr[Fn ∩Fc

1 ∩Fc
2 ∩·· ·∩Fc

n−1]. (23.2)

For the sake of simplicity, suppose again all the edges have the same failure proba-
bility of q. Then, we have Pr[F1] = qd1 . For the other terms on the right-hand side of
(23.2), we have

Pr[Fi ∩Fc
1 ∩Fc

2 ∩·· ·∩Fc
i−1] ≥ qdi

i−1

∏
j=1

(1−qd j−1)
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for i ∈ {2, . . . ,n} as G(x) may have an edge between node i and j ∈ {1, . . . , i− 1}.
Given di, we may have a tighter lower bound as follows:

Pr[Fi ∩Fc
1 ∩Fc

2 ∩·· ·∩Fc
i−1] ≥ qdi

min(di,i−1)

∏
j=1

(1−qd j−1)
i−1

∏
j=min(di+1,i)

(1−qd j).(23.3)

From (23.2) and (23.3), we have Jan’s upper bound:

R(x) ≤ 1−
n

∑
i=1

{
qdi

min(di,i−1)

∏
j=1

(1−qd j−1)
i−1

∏
j=min(di+1,i)

(1−qd j)

}
. (23.4)

This upper bound can be calculated in a polynomial time of n, but sometimes has a
considerable error from the actual ATR.

Another simple but intuitive estimation method is the MCS. Given G(x) =
(N,E(x)) and pk for k ∈ E(x), the MCS randomly generates a number of edge
operating scenarios and checks if the nodes remain connected under each scenario.
The edge operating scenario is generated by sampling a uniform random number
u ∈ [0,1] for each edge k; if this number is greater than pk, the edge is removed.
For every scenario, a connectivity test such as breadth-first search is performed. The
ratio of the operating scenarios that maintain the node connectivity becomes the
reliability measure of G(x).

As the iteration number of MCS grows, more precise reliability estimation can be
expected. The computational load of the MCS for precise estimation grows slightly
faster than linearly with network size, but this is much heavier than the bound-based
method. For this reason, the bound-based method is generally used for the screening
purpose of unreliable candidate networks while the MCS is applied to obtain more
precise reliability estimates of the low-cost candidate solutions having high ATR
bounds.

Under certain conditions making reliability evaluation straightforward, the RNDP
can be easily solved even for a big n. For example, if all the e edges in E have iden-
tical operating probability p and Rmin ≤ pn−1, the RNDP is reduced to the minimum
spanning tree problem whose objective is to find the shortest-length spanning tree
to connect all the nodes in N. Greedy heuristics such as Prim’s algorithm [22] can
solve the minimum spanning tree problem in a polynomial time. If Rmin > pn−1 and
Rmin ≤ pn + npn−1(1− p), the RNDP becomes the Travelling Salesman Problem
(TSP) to find out the shortest-length Hamiltonian cycle visiting all the nodes in N
[23]. The TSP is NP-hard and thus exact algorithms work only for a small network.
However, many approximation algorithms have been proposed so far to find a good
sub-optimal solution in an acceptable time. Once the entire edges in E have the iden-
tical cost, theoretical clues obtained from previous works can help us to find a good
solution of the RNDP even when Rmin is large. For example, [19] showed that the
network with a largest number of trees maximizes the ATR when p is higher. How-
ever, these kind of exact methods cannot cope with realistic RNDP whose Rmin is
big and ck and pk are different for a different k ∈ E . The heuristic methods surveyed
in the next section are practical approaches for the realistic RNDP.
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23.4 Previous Works

Modern heuristic methods such as the GA and ACS have enjoyed great success
in solving various network designing and routing problems. This section briefly
describes the GA and ACS used for network optimization problems and outlines
previous works that tried to hybridize the two algorithms.

23.4.1 Genetic Algorithm

The GA is a heuristic based on the computer-simulated natural genetic system. Since
proposed by Holland in the early 1970’s [24], the GA has been popularly used
to solve expensive combinatorial optimization problems for which no satisfactory
problem-specific heuristic exists. The GA maintains a population of individuals,
which act as abstract representation of candidate solutions. The general format of
the abstract representation is a binary string, but other formats can be used. The GA
initializes the individuals as random strings and enters a generational loop. At every
generation, the GA evaluates the fitness of every individual in the current population,
selects multiple individuals based on their fitness, and evolves them with crossover
and mutation operators to form a new population for the next generation. The gen-
erational loop continues until the termination condition is satisfied. The termination
condition can be either the number of generations or the level of fitness that should
be reached by the best individual.

The GA has successfully tackled various network design problems. For example,
Kumar et al. [25] developed a GA to design a distributed system topology consid-
ering graph diameter and exactly calculated network reliability. Pierre and Legault
[26] used a GA to generate the minimum-cost distributed packet switch networks
subject to delay and reliability constraints. Chou et al. [27] designed a GA and ex-
amined the relationship between the GA parameters and performance. Gen et al.
[11] surveyed research works on the GA for the network design problems such as a
fixed charge transportation problem. Marseguerra et al. [28] assumed that network
components have uncertainty in reliability and proposed a multi-objective genetic
algorithm to find the Pareto optimal solutions maximizing the expected network
reliability while minimizing its variance.

23.4.2 Ant Colony Optimization

The ACS is a kind of Ant Colony Optimization (ACO) technique that was firstly
proposed by Dorigo in the early 1990’s [16]. Inspired by the behavior of real ants,
the ant algorithm sends out multiple artificial ants, which try to find the shortest path
from the source node to the destination node. Each artificial ant deposits pheromone
on its path to the destination node. The next ant can smell the pheromone and prefers
the path with high pheromone concentration. In this manner, the search history ob-
tained from the predecessor ants is propagated to the successors. It was experimen-
tally shown that this group behavior of ants reveals a good path between the source
node and destination node.



616 J.-M. Won, A. Malisia, and F. Karray

Although the ACO has broadened its application area to various engineering
problems such as routing, quadratic assignment, and scheduling, it especially out-
performs other heuristic algorithms in dealing with the TSP. It has been rarely at-
tempted to apply the ACO technique to general network design problems [15]. This
is because an ant itself is incapable of building a generic network, where a node may
have three or more adjacent edges. An intuitive way to utilize the ACO for the net-
work design problems is to make it generate an initial Hamiltonian cycle and then
augment the cycle by adding edges until the given network constraints are satisfied.
This approach is not recommended since it cannot synthesize every possible con-
nected network. As a part of network design heuristics, however, the ACO may play
an important role of building the minimum-cost path or cycle. From this motivation,
we propose the hybrid heuristic in Section 23.6.

23.4.3 Hybrid Heuristics

The hybridization of a GA and ACO has been an active research area. Despite the
GA and ACO being successfully applied to various real-world optimization prob-
lems, researchers have been combining the two techniques to achieve better solution
quality. For instance, one particular variant of the ACO, named a best-worst ant sys-
tem, incorporated pheromone mutation based on the concepts from evolutionary
computation [29]. Similarly, Poorzahedy combined a GA and an ant system to im-
prove the performance of the ant system for the network design problem [12]. The
GA is used to mutate the pheromone matrix, but the algorithm remains mostly an
ant algorithm. Gong and Ruan attempted to address a TSP by integrating a GA and
ACO [30]. In their implementation, an ant mapped to each chromosome undergoes
special genetic operators based on linkage-based operation. Pilat and White pro-
posed two other hybrid approaches that focus on parameter optimization of the ant
algorithm [31].

In other hybrid implementations, the algorithms work together by sharing suc-
cessful candidate solutions. Tseng proposed an algorithm, where a GA and ACO
work in parallel on the quadratic assignment problem [32]. If the GA produces a
better solution than the one found by the ACO, the pheromone is updated with the
GA solution. The pheromone matrix is used as the link between the GA and ACO.
In another study, Acan developed an algorithm to combine the benefits of a GA and
ACO [33]. The two algorithms work in parallel, but as soon as one of the algo-
rithms finds an improved solution, the solutions are migrated to the other algorithm.
A common GA–ACO hybridization approach is to use the ant algorithm to generate
the population for the GA [34, 35, 36]. This is an intuitive form of hybridization,
but requires the assumption that the ACO can generate every possible candidate
solution, which is not true for the RNDP.

Another popular hybridization strategy is using the algorithms to optimize dif-
ferent parts of the problems. To solve the concrete delivery problem, Silva et al.
introduced a method, where hybridization is done sequentially [37]. The GA is
the main algorithm and the ACO is used to solve a sub-problem. Clearly, this
is a flexible approach as one can use the best algorithm to optimize a particular
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sub-problem. Likewise, Li et al. hybridized the ACO and GA to handle the task
mapping in multi-core based system, where task scheduling and task assignment
problems are combined [38].

23.5 Solution Representation

This section describes the MRE, which represents a two-edge-connected network
as a union of rings. The MRE plays a key role in the proposed hybrid heuristic as
it enables to hybridize the ACS as the local search heuristic of the GA. This section
also explains how the MRE could help to improve the performance of the MCS for
reliability estimate.

23.5.1 Multi-Ring Encoding

The encoding of a candidate solution is an important factor that may determine the
performance of a GA. A good encoding method should be able to represent all the
possible candidate solutions. One-to-one mapping between the encoded string and
candidate solution is also desirable. Moreover, it should have high locality, which
makes a small change in the encoded string result in a small change in the candidate
solution [27]. This guarantees the standard crossover operator and mutation operator
of the GA work properly.

Popular encoding techniques developed for the network design problem are edge
representation [26], Prüfer encoding [39], predecessor encoding [40], determinant
encoding [41], random keys [42], and weighted encoding [43]. The edge encoding
belongs to direct encoding, which represents a candidate network as a string whose
element indicates the presence of a certain edge in the candidate network. The direct
encoding is intuitive and exhibits high locality, but mostly generates disconnected
networks via standard genetic operators. This means the GA working with the di-
rect encoding requires extra algorithms to repair disconnected networks as in [10].
Indirect encoding such as Prüfer encoding employs a special string structure that
needs to be decoded to produce specific types of network topology such as mini-
mum spanning trees or ring-star topologies [44, 45]. The indirect encoding largely
suffers from low locality and does not work well with genetic operators.

To address the RNDP efficiently, this study uses the MRE [46, 47], which rep-
resents a network as a union of rings (i.e., cycles) traversing three or more nodes.
The distinct advantage of the MRE is that it only represents the networks with the
edge connectivity of two, which is a necessary condition for a reliable network. In
the same context, we need not incorporate an additional algorithm to repair the con-
nectivity or reliability of infeasible candidate solutions, which may be generated
during search process. Another important merit of the MRE is that it enables to hy-
bridize the GA with the ACS, which acts as a local search heuristic specialized for
ring optimization. The MRE has high locality [48] and works fine with evolution-
ary operators specially designed for the RNDP. Existing search operators developed
for permutation-based encoding are directly applicable to the MRE. Examples of
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Ring1: (1, 2, 3)

Ring2: (1, 3, 4, 7)

Ring3: (5, 6, 7)

Fig. 23.1 Example of multi-ring encoding

such operators are the nearest neighbor algorithm, Clarke-Wright algorithm [49],
Christofides algorithm [50], 2-Opt [51], 3-Opt [52], double-bridge move [53], and
Lin-Kernighan algorithm [54].

Under the MRE, a two-edge-connected candidate network can be represented by
a set of rings Y = {r1, . . . ,rL}, where rl for l ∈ {1, . . . ,L} is a simple ring visiting ml

distinct nodes in N. The candidate network is formed by taking the union of all the
edges composing r1, . . . ,rl . For example, Fig. 23.1 illustrates a seven-node network
represented by three rings. Define a node whose degree is three or more as a bridge
node of a candidate network. Under the MRE, the bridge node acts as a junction
point of two or more rings. The network in Fig. 23.1 has three bridge nodes 1, 3,
and 7.

23.5.2 Contraction Model

The contraction model of a candidate network is obtained by modelling an edge or
a chain of edges connecting two bridge nodes as a contracted edge. With the con-
traction model, we can evaluate the ATR of the candidate network more precisely
with a less computation time. Since the reliability evaluation is the main compu-
tational bottleneck of population-based heuristics, using the contraction model can
significantly reduce the computation time of the GA.

Given a candidate network G(x), we can establish its contraction model Ḡ(x) =
(N̄, Ē) by going through the following steps:

1. Count the degree of every node in G(x) to decide bridge node set N̄.
2. Add a single edge connecting two bridge nodes to Ē.
3. Add a chain of edges connecting two bridge nodes to Ē .

Note that Ḡ(x) may have self-loops or redundant contracted edges. For example,
the network depicted in Fig. 23.1 has a contraction model illustrated in Fig. 23.2.
Node 1, 3, and 7 become the member of N̄ and five contracted edges are generated
accordingly.

A contracted edge may have three states:

1. Connected: All the edges in the contracted edge are operating.
2. Edge-Disconnected: One edge fails but others are operating.
3. Node-Disconnected: Two or more edges fail.
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Fig. 23.2 Contraction model of the network depicted in Fig. 23.1 (black circles: bridge
nodes; white circles: non-bridge nodes; solid lines: contracted edges composed of a single
edge; dashed lines: contracted edges composed of two or more edges)

Table 23.2 List of contracted edges in Fig. 23.2

k Nodes connected p̄k q̄k r̄k

1 1, 3 0.95 0.05 0
2 1, 7 0.95 0.05 0
3 1, 2, 3 0.9025 0.095 0.0025
4 3, 4, 7 0.9025 0.095 0.0025
5 5, 6, 7 0.857375 0.135375 0.00725

If a contracted edge k connecting two bridge nodes i and j is in the edge-disconnected
state, k is not operating, but non-bridge nodes traversed by k is connected to either i or
j. If a contracted edge is in the node-disconnected state, at least one non-bridge node
is disconnected from both i and j. Suppose that the probabilities of the three states
for a contracted edge k are denoted by p̄k, q̄k, and r̄k, respectively, and k comprises
m edges whose operating probability are p. Then, we can easily show that

p̄k = pm;

q̄k = mpm−1(1− p);
r̄k = 1− pm−mpm−1(1− p).

Based on the operating probability of contracted edges, we can evaluate the ATR of
the candidate network more quickly due to the less number of nodes involved during
computation. For example, recall the network depicted in Fig. 23.1 and assume that
the edge operating probability p is 0.95 identically. It is difficult to compute the ATR
of this network directly. For the contraction model illustrated in Fig 23.2, the indices
and operating probabilities of the contracted edges are given as in Table 23.2. From
simple computation based on Table 23.2, we can easily derive the ATR as 0.982450.

If the cardinality of Ē is large, we should rely on the MCS. Even for this case,
the contraction model helps to obtain a more accurate reliability estimate with a
less iteration number thanks to the less cardinality of Ē . To verify this, we per-
formed computer experiments to compare the performances of the MCS conducted
for the original network in Fig. 23.1 and its contraction model in Fig. 23.2. The av-
erage ATR estimation errors obtained from the 20 independent runs are depicted in
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Fig. 23.3 ATR estimation errors averaged over 20 independent MCS runs performed for
original network in Fig. 23.1 and its contraction model in Fig. 23.2 (dotted line: original
network; solid line: contraction model)

Fig. 23.3. It is seen that the reliability estimate obtained from the contraction model
converged to the actual ATR much faster. The difference in convergence speed will
be even bigger if the given network has lots of nodes and only a limited portion of
them are bridge nodes. Note that the contraction model is also useful in evaluat-
ing other network constraints such as throughput or transmission delay though it is
beyond the scope of this study.

23.6 Hybrid Genetic Algorithm

Based on the MRE, this section proposes a new GA hybridized with Local Search
ACS (LSACS). This GA is called Hybrid GA (HGA) henceforth. An individual
of the HGA is given as a pair of a ring set and a pheromone matrix. With special
operators dedicated to the MRE, the HGA evolves a population of individuals to
seek for the best combination of rings to form the optimal solution of the given
RNDP. The node order of each ring is fine-tuned by the LSACS that works with the
pheromone matrix part of the individual. With this hybridization strategy, the poor
local search capability of the GA is efficiently overcome.
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Table 23.3 Pseudo code of the proposed hybrid GA

Line # Function HGA

1 g ← 0;
2 Initialize(Pg);
3 FOR EACH I ∈ Pg DO
4 Repair(I);
5 Evaluate(I);
6 END FOR
7 REPEAT
8 I1,I2 ← Select Parents(Pg);
9 I3,I4 ← Generate Offspring(I1,I2);
10 Mutate(I3, I4);
11 LSACS(I3, I4);
12 Evaluate(I3, I4);
13 Pg+1 ← Select(Pg, I3, I4);
14 g ← g+1;
15 UNTIL g < gT

The pseudo code of the HGA is outlined in Table 23.3, where g denotes the
generation index of the HGA, gT the termination generation, Pg the population of
individuals at g, I1 and I2 two parent individuals, and I3 and I4 two offspring indi-
viduals. At the initial generation, the HGA creates P individuals and evaluates them.
At every subsequent generation, I1 and I2 are selected from the current population
Pg to generate I3 and I4. The offspring I3 and I4 undergo mutation and LSACS
operations. After evaluating the offspring, the HGA decides which individual will
survive to the next generation. In the following subsections, each step of the HGA
is discussed in detail.

23.6.1 Representation and Initialization

An individual I is a pair of a ring set Y and a pheromone matrix H ∈ ℜn×n
+ . The

(i, j)-th element of H, τi, j , represents the desirability of choosing j as the next node
of a ring from node i.

The initialization procedure creates P individuals to build the initial population
P0. All the elements of H are initialized as

τ0 =
1

n∑e
k=1 ck

.

Denote V by the set of nodes visited by the rings in Y, W a temporary node set used
to create a new ring, and N\V the relative complement of V in N. The initialization
procedure for Y is as follows:
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1. Make Y and V empty sets.
2. Choose the size of a new ring r as a random integer u ∈ {3, . . . ,n}.
3. Make W an empty set.
4. Pick up a random node i in N\V and add it to W .
5. Choose u−1 random nodes other than i from N and add them to W .
6. Apply the nearest neighbor algorithm to the nodes in W to build r.
7. Add r to Y and update V . If V = N, stop; otherwise, go to Step 2.

The nearest neighbor algorithm is a simple heuristic to find a short ring r. Its
procedure is as follows:

1. Select a random starting node in W as the current node and mark it as visited.
2. Add the edge connecting the current node to the nearest unvisited node to r.
3. Mark the nearest node as visited and assign the nearest node to the current node.
4. If all the nodes in W are visited, added the edge connecting the current node to

the starting node and stop; otherwise go to Step 2.

Usually, the output of the nearest neighbor algorithm is not the shortest ring and can
be improved by other heuristics.

23.6.2 Repair

The ring set Y of a newly created individual I undergoes a repair procedure, where
its connectivity is tested and repaired. Even when every node in N is visited by
one or more rings in Y, the network represented by Y may be disconnected due
to the presence of disconnected rings. The breadth-first search is used to check the
connectivity of a given individual. If the individual is disconnected, it is repaired by
taking new rings. To build a new ring, the repair procedure picks up a disconnected
node i from N and builds a ring traversing i using the ring creation method used for
the initialization procedure. The repair procedure is summarized as follows:

1. Check if the network represented by Y is connected. If so, stop; otherwise, go to
next step.

2. Choose the size of a new ring r as a random integer u ∈ {3, . . . ,n}.
3. Make W an empty set.
4. Pick up a disconnected node i ∈ N and add it to W .
5. Choose u−1 random nodes other than i from N and add them to W .
6. Apply the nearest neighbor algorithm to the nodes in W to obtain r.
7. Add r to Y and go to Step 1.

Note that a network represented by the MRE is two-edge-connected once it is
connected. So, the connectivity repair algorithm also repairs two-edge-connectivity.

23.6.3 Fitness Evaluation

To handle the reliability constraint of the RNDP, the constraint violation rate is
incorporated as the penalty term of the fitness function. Let x be a binary decision
vector represented by an individual I. Then, the fitness function f is formulated as:



23 Reliable Network Design Using Hybrid Genetic Algorithm Based on MRE 623

f (x) =

{
1

C(x) if R(x) ≥ Rmin,
1

C(x)+n(Rmin−R(x))∑e
k=1 ck

otherwise.
(23.5)

Using this fitness function allows an infeasible candidate solution to be included
in the population. Maintaining infeasible individuals in the population is known to
be helpful to find the optimal solution that may lie on the constraint satisfaction
boundary in the search space.

For a newly created individual x, R(x) is initially estimated as Jan’s upper bound.
At every generation of the HGA, the best individual x∗ is transformed to the con-
traction model and undergoes the MCS of 10000 iterations to have a better estimate
of R(x). This step is skipped if x∗ was the best individual in the past generation and
already took the MCS. Moreover, if the fitness of offspring individual I3 (or I4) is
higher than that of x∗, it undergoes the MCS and the fitness is recalculated based on
the MCS result.

23.6.4 Parent Selection and Offspring Generation

The HGA uses the steady state selection, which generates two offspring at every
generation and makes them compete with the individuals in the current population
[56]. The HGA carries out tournament selection of size κ to select two parents I1

and I2 from Pg. That is, κ individuals are randomly chosen from Pg and the one
with the highest fitness value is selected as I1. The same procedure is repeated to
select I2.

The offspring I3 and I4 are generated either from parents themselves or from
crossover operation. Denote the crossover rate by pC ∈ [0,1]. If a uniform random
number u ∈ [0,1] is greater than pC, I3 and I4 are copied from I1 and I2, respec-
tively; otherwise, I3 and I4 are generated from the crossover operation. In the liter-
ature, special crossover operators have been proposed to handle permutation-based
representation. Such operators include order crossover [57] and partially mapped
crossover [58]. These crossover operators, however, cannot be used for the HGA
since they cannot manipulate individuals represented by multiple rings.

We use a new crossover operator considering a ring as the minimum swapping
unit. Let Y1, Y2, Y3, and Y4 be the ring sets of I1, I2, I3, and I4, respectively. The
crossover procedure is outlined as follows:

1. Make Y3 and Y4 empty sets.
2. Build a temporary pool of rings as the union of Y1 and Y2.
3. Move each ring in the temporary pool either to Y3 or to Y4 with the equal prob-

ability.
4. Apply the repair algorithm to Y3 (or Y4) if Y3 (or Y4) represents a disconnected

network.

Since computer experiments showed that swapping pheromone matrix elements is
not helpful, no crossover operation is performed for the pheromone matrix part of
the individuals; that is, the pheromone matrices of I1 and I2 are directly copied to
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Y1 = {(1, 4, 3), (1, 2, 4, 5)}

Y2 = {(1, 2, 3), (2, 3, 5, 4)}

(1, 4, 3)
(1, 2, 4, 5)

(1, 2, 3)
(2, 3, 5, 4)

Ring pool

Y3 = {(1, 4, 3), (2, 3, 5, 4)}

Y2 = {(1, 2, 3), (1, 2, 4, 5)}

Fig. 23.4 Example of crossover operation

I3 and I4, respectively. Fig. 23.4 illustrates the crossover operation of multi-ring-
encoded networks.

23.6.5 Mutation

The mutation operator comprises three sub-operators dedicated to the MRE: ring-
merging, ring-splitting, and ring-resizing operators. The first two operators changes
the size of Y while the last one changes the number of nodes visited by the rings.
Since the node order of each ring will be fine-tuned by the LSACS, no permutation-
based mutation operators such as 2-Opt are used here. Moreover, no mutation oper-
ation is performed for the pheromone matrix.

The three sub-operators are applied one by one. The ring-merging operation is
performed with a probability pRM ∈ [0,1]. It randomly selects two rings ra and rb

in Y and applies the nearest neighbor algorithm to the nodes visited by ra and rb to
create a new ring, which replaces both ra and rb in Y. The network represented by
the mutated individual is generally cheaper but less reliable than the original one.

The ring-splitting operator is carried out with a probability pRS ∈ [0,1]. It ran-
domly selects one ring rc ∈ Y whose size is greater than three and replicates it
as rd . Let the number of nodes visited by rd is nd . Given a uniform random inte-
ger u ∈ {1, . . . ,nd −3}, the ring-splitting operator removes u + 1 consecutive edges
from rd and places an edge between two disconnected nodes to make rd connected.
The ring-splitting operator ends by adding rd to Y. As a consequence, a shortcut is
placed between two nodes visited by rc to make the network more expensive but
more reliable.

To every ring r ∈ Y, the ring-resizing operator is applied with a probability pRR ∈
[0,1]. Let Nr be the set of nodes visited by the ring r. The ring-resizing operator
either augments or diminishes r with an equal probability 0.5. When augmenting r,
the ring-resizing operator randomly chooses a node i in N\Nr and takes the nearest
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Y = {(1, 4, 2), (2, 4, 5), (2, 3, 5, 4)}

Ring
splitting

Y 2, 3, 4)= {(1, 2, 4, 5), (2, 3, 5, 4), ( }

Y 1, 2, 4, 5)= {( , (2, 3, 5, 4)}

Ring merging

Y 1, 2, 4)= {( , (2, 3, 5, 4), (2, 3, 4)}

Ring resizing

Fig. 23.5 Example of mutation operation for the multi-ring-encoded network

node j ∈ Nr from i. Between two neighbor nodes of j in r, the one h nearer to i is
chosen. The existing edge between j and h is removed while two edges between
i and j and i and h are added to r. When diminishing r, the ring-resizing operator
randomly chooses a node i in Nr. While removing two edges adjacent to i, the edge
connecting two neighborhood nodes of i is added. The ring-diminishing operation
may destroy the connectivity of the network represented by Y. If this is the case, the
repair algorithm is applied. Fig. 23.5 illustrates the mutation operation.

23.6.6 Local Search Ant Colony System

The LSACS is a key procedure fine-tuning the rings representing the offspring. The
same LSACS operation is applied to I3 and I4. Let I = (Y,H) be the offspring at
hand. Then, the LSACS procedure comprises the following seven steps:

1. Given I = (Y,H), generate a ring sets with ants.
2. Calculate f ’s of the networks represented by the a ring sets and select the best

one as Y∗.
3. If f of Y∗ is higher than that of Y, replace Y with Y∗.
4. Apply 2-Opt operation to Y to build b ring sets.
5. Calculate f ’s of the networks represented by the b ring sets and select the best

one as Y∗∗.
6. If f of Y∗∗ is higher than that of Y, replace Y with Y∗∗.
7. Perform global update of H with Y.

In Step 1, the LSACS sends out artificial ants for all the rings in Y to generate each
of a ring sets. The artificial ants attempt to connect the nodes visited by original
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(a) A ring is given. (b) Two edges are ran-
domly chosen and re-
moved.

(c) Disconnected paths
are reconnected in other
possible way.

Fig. 23.6 Example 2-Opt operation

rings in other possible ways. If the new ring set generated by the ants achieve a
better fitness, it replaces Y as described in Step 2 and 3. In Step 4, a ring randomly
chosen from Y passes through further fine-tuning stage named 2-Opt operation to
generate each of b ring sets [51]. The 2-Opt operator randomly picks up two edges
in r and removes them to have two separate paths. The paths are reconnected in
other possible way by reversing the node sequence of one path. The example of 2-
Opt operation is illustrated in Fig. 23.6. If this modification improves the fitness, the
modified ring replaces r as shown in Step 5 and 6. Step 7 updates the pheromone
matrix with the updated ring set. More details on each step is described in the later
part of this subsection.

The proposed LSACS is different from the standard ACS in two aspects. First,
the LSACS optimizes multiple rings at the same time. Given Y = {r1, . . . ,rL}, the
LSACS creates L ants, which share the same pheromone matrix H. Second, the
LSACS performs a single iteration of ant algorithm while the standard ACS per-
forms multiple iterations, each of which creates multiple ant tours and updates
pheromone matrix with the best tour. For the proposed HGA, a single iteration is
enough since the pheromone matrix evolves as a part of the HGA individual. The
multi-generation operation of the HGA effectively simulates the multi-iteration op-
eration of the standard ACS.

To generate each of a ring sets, the LSACS assigns L ants to N1, . . . ,NL, where
Nl for l ∈ {1, . . . ,L} represents the set of nodes visited by rl . The daemon of each
ant generates a tour (ring) from Nl using the algorithm that is identical to the nearest
neighbor algorithm described in Section 23.6.1 except for the way to choose the
next node from the current node. Instead of taking the nearest node as the next
node, the ant daemon uses the pseudo-random-proportional rule to choose the next
node. Given the current node i, unvisited node set U , H, and edge cost ci, j for j ∈U ,
the daemon builds an ant decision table whose element corresponding to j ∈ U is
formulated as:

ai, j =
τi, j · cβi, j

∑m∈U τi,m · cβi,m
,

where β < 0 is a tunable parameter representing the relative importance of ci, j over
τi, j . With a probability pA ∈ [0,1], the daemon chooses the next node j such that
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j = argmaxm∈U ai,m. With a probability 1− pA, a roulette wheel selection method
is used, where the probability of choosing j is given as ai, j/∑m∈U ai,m.

The LSACS performs a local pheromone update, which gives penalty to the
pheromone content corresponding to the edges in the ant tours just generated. If
the ant tours include an edge between node i and j, the associated pheromone is
updated as

τi, j = (1−ϕ)τi, j +ϕτ0, (23.6)

where ϕ ∈ (0,1) is a tunable parameter. The local pheromone update increases so-
lution diversity by encouraging the next ants to generate a new tour that has not
emerged so far.

A global pheromone update is performed for the updated ring set Y. If Y contains
an edge between node i and j, the associated pheromone is updated as

τi, j = (1−ρ)τi, j +ρ f ,

where ρ ∈ (0,1) is a tunable parameter and f is the fitness of the updated Y. The
higher the fitness of Y is, the more pheromone is deposited over the edges in Y.
Note that the LSACS never destroys the connectivity of the network represented by
the offspring.

23.6.7 Selection for New Generation

The best P individuals are selected from Pg ∪{I3,I4} to form the next population
Pg+1. The best individual in Pg+1 undergoes the MCS unless it has already taken the
MCS. Because the MCS is the most time-consuming procedure of the HGA, how
frequently the best individual changes over generations affects the execution time
of the HGA.

23.7 Numerical Results

To verify the efficiency of the HGA, we compared its solution quality and CPU sec-
ond to those of Branch and Bound Algorithm (BBA) and Local Search GA (LSGA)
proposed in [1] and [10], respectively. The BBA is an exact algorithm that arranges
all the candidate solutions of the RNDP in a special order. This arrangement inspires
an efficient strategy to find the optimal solution by scanning a portion of the search
space. The LSGA is an edge-encoding GA that works with special genetic operators
implementing greedy local search heuristics dedicated to the RNDP. The details on
the LSGA and BBA are described first and the numerical results are discussed later
in this section.

The main differences between the LSGA and HGA are summarized in
Table 23.4. For fair comparison between the LSGA and HGA, we used the following
experimental setup. First, both algorithms started from the same initial population
and evaluated a candidate solution using the same fitness formula (23.5). Second,
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Table 23.4 Main differences between the LSGA and HGA

LSGA [10] HGA

Network encoding Edge encoding Multi-ring encoding
MCS Based on original network Based on contraction model
Repair algorithm Greedy edge augmentation Random ring augmentation
Crossover Uniform edge crossover Ring swapping
Local search heuristic Randomized greedy mutation Local search ant colony system

the steady state version of the LSGA was implemented so that it would breed two
offspring at every generation. This choice was based on the observation that the
number of offspring mainly affects the computation time of both algorithms. Third,
the two algorithms applied the MCS to the best individual in the current population
and the offspring individuals whose initial fitness evaluated with Jan’s upper bound
are higher than the best individual.

On the other hand, we retained the core features of the LSGA such as the en-
coding method, repair algorithm, and genetic operators. The edge encoding of
the LSGA represented a candidate network with an e-dimensional binary vector
(23.1). To repair the candidate network violating two-edge-connectivity constraint,
the LSGA used a greedy edge augmentation procedure, which added the least-cost
edges to connect the nodes of degree one. The uniform crossover operator of the
LSGA ensured that each offspring is two-edge-connected and contains a least-cost
spanning tree in its parent. The mutation operator implemented a randomized greedy
local search algorithm. If every node in N have a degree of two, an edge was ran-
domly chosen and added to the network. If the node degrees are greater than two
for all the nodes, expensive edge was removed from the network once the two-
edge-connectivity was maintained. The LSGA carried out the MCS for the original
network while the HGA used the contraction model for the MCS runs.

Both algorithms used P = 50, gT = 5000, κ = 3, pC = 0.7, and MCS iterations of
10000, which gave good results during the experiment. The HGA used pRM = 0.3,
pRS = 0.3, pRR = 0.1, a = b = 2, β = 3, pA = 0.9, and ϕ = ρ = 0.1. The mutation rate
and drop rate of the LSGA are chosen as 0.3 and 0.6, respectively, as suggested in
[10].

The BBA is an exact algorithm attempting to find the optimal solution of the
RNDP by going through the limited portion of the search space using special ar-
rangement of candidate solutions. The BBA works only for the case, where all the
edges in E have the same operating probability p. All the candidate solutions of
the RNDP are grouped into e− n + 2 sets Sn−1,Sn, . . . ,Se, where e = n(n− 1)/2
and Sl represents the set of candidate solutions composed of l edges. Using (23.4),
the BBA approximates the maximum ATR achievable by Sl denoted by Rl . Since
Rn−1 < Rn < .. . < Re, the BBA first determines l∗ such that Rl∗−1 < Rmin and
Rl∗ ≥ Rmin to reduce the search space to Sl∗ ∪ · · ·∪Se.
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Table 23.5 RNDP instances used for the experiments

Network size Edge operating Minimum reliability
(n) probability (p) requirement (Rmin)

7 0.9 0.95
10 0.9 0.95
20 0.95 0.95
30 0.97 0.95
40 0.975 0.95
50 0.98 0.95
70 0.985 0.95
100 0.99 0.95

Candidate solutions in each set Sl for l ∈ {l∗, . . . ,e} are sorted according to the
ascending order of costs. Starting from Sl∗ , the candidate networks in each set are
evaluated one by one. If the ATR upper bound (23.4) of a candidate network is
higher than Rmin, the MCS is applied to the candidate network to obtain a better
ATR estimate. If this estimate is no less than Rmin, the BBA skips the rest solutions
in the current set Sl since they are more expensive than the one just evaluated. Before
moving on the next set Sl+1, the BBA checks if the first solution candidate in Sl+1
is more expensive than the best solution found so far. If this is the case, the BBA
terminates outputting the best solution.

The three algorithms were implemented with C++ Standard Template Library
and tested over Intel Core2 Duo T5550 1.83GHz CPU. Eight RNDP instances with
n = 7, 10, 20, 30, 40, 50, 70, and 100 were created for the experiments as listed in
Table 23.5. When creating a RNDP instance, a node position was chosen randomly
and uniformly in a unit square region [0,1]× [0,1]. The edge cost was set to the two-
dimensional Euclidean distance between the two nodes connected by the edge. The
minimum reliability requirement was set to 0.95 for all the RNDP instances. The op-
erating probability of edges was chosen low enough to avoid having a Hamiltonian
cycle as the solution of the RNDP.

For each RNDP instance, a single run of the BBA and 30 independent runs of
the LSGA and HGA were performed since the BBA is an exact algorithm while the
other two are stochastic ones. When starting each run of the LSGA and HGA, we
generated 50 individuals using the method described in Section 23.6.1 and assigned
them to the initial population of the two algorithms.

Table 23.6 shows the solution quality of the three algorithms. The BBA found the
solution for the RNDP instance with n = 7 only. For the other RNDP instances, BBA
did not terminate within the first six hours. This implies that the exact algorithms
cannot handle the realistic RNDP in an acceptable time. On the other hand, both
LSGA and HGA yielded fairly good solutions for all the RNDP instances. Even for
the RNDP with n = 7, the solution quality of the HGA was comparable to the BBA.

It was also seen that the average solution quality of the HGA was better than
the LSGA. We ran two-tailed paired t-test for the best fitness values of the 30 runs
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Table 23.6 Average solution quality obtained from the single BBA run and 30 LSGA and
HGA runs (Better results are highlighted in boldface)

RNDP (n) BBA LSGA HGA

7 2.623 2.913 2.625
10 N/A 4.763 4.318
20 N/A 5.712 5.190
30 N/A 7.206 6.749
40 N/A 8.425 7.582
50 N/A 9.220 8.315
70 N/A 10.974 10.133

100 N/A 13.638 11.490

and obtained P-value less than 0.001 for every RNDP instance. This verifies that the
HGA significantly outperforms the LSGA in solution quality. Further investigation
on the experiment results revealed that the LSGA tended to converge prematurely
at early generations due to its greedy repair and mutation operators biased to find
nearby local optima. The diversity of the LSGA crossover operator was limited be-
cause the edge of an offspring always comes from one of its parents. Moreover, the
edge-wise greedy heuristic was not so helpful to fine-tune the paths comprising a
candidate network. For example, the edge-wise greedy heuristic cannot mimic 2-Opt
operation. On the other hand, the HGA exhibited strong solution diversity. Actually,
the crossover operator of the HGA is able to generate any two-edge-connected net-
work regardless how parents look like. This is because of the ring swapping and
augmentation mechanism. It was also observed that the mutation and LSACS op-
erators of the HGA worked properly to fine-tune the ring topologies comprising a
candidate network.

Table 23.7 lists the statistics of the CPU seconds obtained from the three algo-
rithms. Between the LSGA and HGA, we could not judge which algorithm generally
ran faster. We only observed that the CPU seconds of the LSGA varied widely while
the CPU seconds of the HGA were roughly proportional to n. As mentioned before,
the CPU second is mainly decided by the number of MCS runs performed for the
offspring individuals. Once all the individuals in the current population represent
the same network topology, the LSGA keeps generating similar offspring. There-
fore, the LSGA will experience no MCS run if the offspring never outperforms the
best individual in future generations. On the other hand, if the reliability estimate
of the best individual is slightly lower than Rmin, the offspring will outperform the
best individual and undergo the MCS procedure, which may adjust the fitness of the
offspring lower than the best individual. This could be repeated for all the remaining
generations to waste CPU seconds. The consequence of this irregular behavior of the
LSGA is also illustrated in Table 23.8, which shows the ratio of computation time
spent to perform MCS during the runs of the two algorithms. The non-MCS compu-
tational load was roughly proportional to n for the HGA, but no such a tendency was
observed for the LSGA. It is also seen that the HGA required more computational
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Table 23.7 CPU seconds obtained from the single BBA run and 30 LSGA and HGA runs
(Better results are highlighted in boldface)

RNDP (n) BBA
LSGA HGA

mean std. dev. mean std. dev.

7 311 121 130 28 12
10 N/A2 74 156 40 23
20 N/A 174 394 77 27
30 N/A 12 13 58 20
40 N/A 64 193 111 49
50 N/A 57 138 114 39
70 N/A 312 1110 258 100

100 N/A 227 794 389 49

Table 23.8 Average ratios of CPU seconds spent to perform MCS during the LSGA and
HGA runs

RNDP (n) LSGA HGA

7 0.98 0.86
10 0.98 0.88
20 0.97 0.82
30 0.64 0.58
40 0.89 0.61
50 0.81 0.41
70 0.93 0.42
100 0.71 0.16

resources than the LSGA to perform non-MCS routines. This implies that the spe-
cial genetic operators and LSACS dedicated to the MRE are more expensive than
conventional counterparts.

Fig. 23.7 depicts the best solutions obtained from the 30 runs of the LSGA and
HGA for the RNDP instance with n = 10. Even with naked eyes, we could see that
the HGA yielded a better solution. This is even more impressing if we consider the
number of evaluated candidate solutions. With P = 50, gT = 5000, and a = b = 2,
the 30 HGA runs evaluated 1.5×106 distinctive candidate solutions at most. This is
very tiny compared to the exhaustive search space size 3.52×1013.

The results of computer experiments verified that the RNDP is a computationally
expensive problem. As an enumeration-based approach, the BBA worked for the
RNDP only when n is very small. Even for a moderate network size with n = 10,
the BBA did not terminate within six hours of CPU time. On the other hand, the
counterpart methods based on computational intelligence handled realistic RNDP
effectively. The numerical results also proved that the search capability of the tra-
ditional edge-represented GA is limited compared to the HGA, which could handle
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(a) LSGA (C = 4.389, R = 0.951) (b) HGA (C = 4.048, R = 0.950)

Fig. 23.7 Best solutions obtained from the LSGA and HGA for the RNDP instance with
n = 10

the RNDP more efficiently. This suggests that a proper hybridization may achieve
a synergetic alliance of two or more computational-intelligence-based heuristics.
Moreover, we showed that the problem-specific representation method such as the
MRE plays an important role in improving solution quality and CPU seconds of the
population-based heuristics.
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Chapter 24
Isolated Word Analysis Using Biologically-Based
Neural Networks

Walter M. Yamada and Theodore W. Berger

Abstract. A dynamic synapse neural network (DSNN) for speech recognition sys-
tem input filtering and the genetic algorithm (GA) used to optimize DSNN pa-
rameters is presented. DSNNs are trained to respond to a target word (TW) said
by one female speaker or by 8 male and 8 female speakers. The response of the
single-speaker trained DSNNs to all 16 speakers is similar to the 16-speaker-trained
DSNN responses. TW training results in an ordering of the expected responses to
the 9 words of the non-TW set. The ordering determined by single-speaker training
matches the ordering determined by multi-speaker training; and in many instances,
the single-speaker trained DSNN output matches the multi-speaker trained DSNN
output. While searching the parameter space to best solve the isolated word recog-
nition task, the GA implicitly searched the input space to find the input subset best
describing the separatrix between TWs and non-TWs. Computation is decreased by
concentrating optimization on this subset. The GA adapts as knowledge of this sub-
set is learned. The GA begins as a random search, becoming a steady state GA and
then a simple elitist GA over the course of optimization.

24.1 Neural Engineering Speech Recognition Using
the Genetic Algorithm

Voiced-command interfaces (VCI) often use isolated word recognition (IWR) algo-
rithms to classify input sound. Generally, a button is pushed to alert the computer
to record sound – this sound contains a spoken command-word (TW) embedded
within background sound. The IWR algorithm is responsible for determining which
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one of a limited number of menu TWs was most likely said. This task is not triv-
ial. Menus contain a variable number of items and each TW is of variable length
and placement within the recorded sound. The acoustic environment is unknown,
e.g. the noise and reverberation characteristics are unknown. Each example word is
a function; but the exact form of the function is altered by a large number of fac-
tors. For example, gender, age, accent (both regional as well as foreign language
induced), current state of health or physical exertion, volume of speech (whisper,
normal speech, or yelling), familiarity with the recording device, and experience
with the language and syntax of the VCI. Finally, the functions that represent each
menu item are not of uniform distance from each other. Controlling for these fac-
tors still results in a variable input signal since human speech is variable. Therefore,
a statistical and nonlinear approach to IWR is required that generally begins with
the analysis of many thousands of example inputs. To make this problem tenable,
engineered VCIs are designed to solve the IWR task under specific operating re-
strictions. Our own auditory system however, is capable of learning new items after
very few presentations and is able to generalize that learning to new speakers, new
acoustic settings, an altered vocalization, a novel accent, different ambient noise
conditions, etc. Because traditionally engineered VCIs are not robust in the face of
the general problem, whereas our own auditory system is, there is much interest in
determining the mechanisms that allow for human hearing.

Human hearing occurs in two steps. The first step happens between the ear and
the cerebral cortex. Sound passes through a non-linear spectral/temporal filter, with
many thousands of channels, expressing many different characteristics, with several
clearly defined processing centers (nuclei), each of which has a complicated cir-
cuitry allowing for intranuclear channel mixing; also, each nuclei communicates
with the others to affect internuclear processing [42]. The second step happens
within the cerebral cortex, where auditory imaging studies are used to correlate neu-
ral activity in particular places with speech intelligibility [7, 10]. The cerebral cortex
hierarchically processes speech. Higher processing feeds back to lower processing
centers to allow for context sensitive sound filtering, both intracortically [57] and
subcortically [16]. Unfortunately, the high degree of complexity and an inability to
observe much of it, renders reverse engineering the auditory system difficult. In-
stead, a forward approach is taken to model aspects of auditory neuron function, to
use these models to support IWR tasks, and to then ascertain how well the model
supports the task. In this chapter we present one such model and the optimization
algorithms required for studying it. The application presented here is a bio-mimetic
neural engineering model of sub-cortical auditory filter behavior.

A genetic algorithm (GA) has served to greatly speed up model development and
testing. The GA is an optimization tool that is intuitive to apply, is model indepen-
dent, and is well known within the application area of natural computation [3]. The
GA requires the list of system free parameters and ranges and an equation that scores
how well a particular individual (a complete set of valid parameter values) solves for
a stated objective. The GA is a recursive algorithm that generates sequential sets of
individuals (populations) that are increasingly better at solving for the objective. It
begins by scoring a population using the objective function and mapping the scores
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to fitness values. Then, based on each individual’s relative fitness it is cloned, killed,
or mated to reproduce more individuals, generating a new population and allow-
ing the loop to be re-run. Each new loop is a generation. In our case, the objective
function measures how well a neural model may be used to classify a set of words.
Whether an individual is cloned or killed depends only on if it is one of the best
or one of the worst of the current generation at solving the IWR task. However, at
the heart of all GAs is a fitness-weighted random process: reproduction. During re-
production the bit representation of corresponding parameter values from different
individuals has a high probability of being split and recombined (crossover) to form
new individuals. After new individuals are formed there is a small probability that
any single bit will be flipped (mutated). This loop is illustrated in figure 24.1.

micro-Word Environment

%-age of Corpus (best score, generation)

OBJECTIVE FUNCTION

Score each Individual

if (Individual score > best score)
 (1.) Retest on entire corpus

 (2.) Reset score for the individual

{Individual, Score}
FITNESS FUNCTION

SELECTION OPERATOR

(1.) Kill r Individuals before reproducing

(2.) The z most fit Individuals are cloned

(3.) All Individuals not lost in (1) reproduce

Current Generation

of (K + r) Individuals

(Crossover and Mutation)

f = Score - <Score>

BIASED SELECTION from

Entire Word Corpus

Mutation (best score, generation)

(K - z + r)

Individuals
K

Individuals

z
Individuals

REPRODUCTION

Fig. 24.1 The genetic algorithm used in this work is pictured above. At all times, K = 40,
initially, z = 40 and r = 32, but as evolution progresses the value of z and r decrease, falling
to 1. The grey boxes are controlled by the GA. Functionality of these boxes is explained in
many places, e.g. [17, 33]. Functionality of the white boxes is explained in the text. Objective
function: 24.4.2, Biased Selection of Words: 24.4.1, and Mutation and z: 24.4.4

The GA has many variations (different variable encoding, true or overlapping
generations, adapting mutation and crossover parameters, multiple populations, etc.)
each shown to be better applicable to particular classes of optimization problem.
In figure 24.1, setting z = K, and foregoing re-scoring of the cloned individuals
would result in a steady state GA with population overlap equal to r. When a single
objective is being pursued – as is the case after the Biased Selector has converged
to a stationary process – a simple GA suffices. In figure 24.1, setting r = z = 0,
would result in such a GA. We refer to our GA as a modified elitist simple GA; the
modification is r = z = 1.

Our free parameter space is modest: 210 parameters. Each parameter is encoded
in an 8-bit binary string and converted to a real value on a specified range for use
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in the model (Table 24.1). Computational overhead of the IWR problem during op-
timization lays almost exclusively in filtering many different sound examples many
thousands of times. The first generation of these models was ‘optimized’ by an
intuitive hand tweaking approach taking many months to finally ‘converge’ on a
solution. They separated only four command-words and they incorporated simplis-
tic approximations of biological dynamics that could be expressed in terms of linear
functions and threshold devices. They also used a circuit construction algorithm that
resulted in optimization for new menu items being a super-exponential task in terms
of model complexity and numbers of input words. Nevertheless, these IWR systems
were more noise-robust than state-of-the art speech recognition systems [25, 26, 27].
By redefining the IWR task to a set of binary operations (TW vs. all others), fur-
ther simplifying the incorporated dynamics, and using a GA with the objective of
having greater integrated TW output on a particular output lead vs. the other, time
for parameter optimization was reduced to approximately two weeks; allowing for
larger IWR systems to be designed [15, 35]. However the simple dynamics used
were not useful for elucidating principles of human hearing and although they could
be programmed for use for technological application [13], they offered no insight
toward neural engineering (culturing) of biological hearing systems. Such insight
requires that the designed systems be constructed with models that mimic neural
parts as opposed to abstractions of neural functionality. The application reported
here moves toward addressing these concerns; while also decreasing optimization
time to approximately two days per model.

Biological synapses consist of complicated dynamic processes that constrain
and support complex non-linear functional transformations that generally have
no analytic description. The synapses used here incorporate models of both N-
methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onate (AMPA) protein function [49]. This results in synapses resembling those
found in the central nervous system. To optimize network performance, we devel-
oped an objective function that allows the GA to simultaneously conduct an implicit
search of the input space and an explicit search of the model parameter space to:

1. find the smallest subset of input words that represents the separatrix between
TWs and non-TWs, and

2. find the model parameter values that best solve for the IWR task on the entire
word corpus, while

3. calling the Objective Function as few times as possible.

Simultaneous search is necessary because these two goals are inter-dependent. Each
choice of input subset may imply different best parameter values, and vice-versa:
each choice of parameter values classifies best a different input subset. Three mea-
sures of parameter fitness were calculated with the goal of applying evolutionary
force in the direction of increasing information capacity, increasing accuracy, de-
creasing non-target word decision cost, and increasing network stability. The mea-
surement weightings were determined by programmer experience. Fitness scores
fell along a gradient of less to more useful network behaviors, with lowest scores
applied to ‘no-machines’, and highest scores being associated with networks that
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both classify the training set and also filter-out a portion of the non-TWs in the
training set. Mutation rate and input subset were independently adjusted through-
out training in order to control the degree to which optimization was directed and
to focus optimization near the target/non-target word separatrix. Overtraining was
implicitly prevented by use of the output PDFs across all networks, and by our pref-
erence for training with historically difficult to classify input (function of the Biased
Selector).

Non-TWs could be discerned in two ways, either by correctly classifying them
as non-TW or by filtering out (not responding) to the non-TW input sound. Training
toward a filtering operation was accomplished by scaling the non-target-class deci-
sions used to fill the confusion matrix by a cost or discernment factor. Because of
the preponderance of non-target class input, after 100% classification was reached,
but while optimization continued toward filtering-out non-target-class input, the cal-
culated information capacity continued to increase because the ratio of TWs to
non-TWs classified increased.

IWR analysis usually begins with an assumption that speech intelligibility is de-
pendent upon recognizing particular patterns in the sound; analysis of the isolated
speech is in terms of one or more of these classifiable sequences (usually spec-
tral patterns or phonemes). We did not use these patterns for determining input en-
coding, network processing, or output analysis. We lumped nine of the ten input
classes into a single “Negative Id” class. Furthermore, we used integrated output
pulse trains (did not account for output dynamics) to score networks during train-
ing. Nevertheless, training resulted in a set of networks with discernible temporal
(dynamic) output pattern clusters useful for input classification. These patterns are
presented.

We show temporal output responses to filtered and pulse-encoded isolated speech
of DSNNs constrained by equations approximating the functionality of NMDA and
AMPA proteins and by the architecture of Figure 24.2. Emphasis is on dynamic
synapse neural network (DSNN) formalism, optimization, and response visualiza-
tion, i.e. the acoustic temporal processing task is converted into a spatial pattern
recognition task. DSNNs have synapses consisting of a dynamic presynapse, gener-
ating an amplitude modulated pulse train for input to a single dynamic postsynapse.
Each postsynapse is a variable resistor with instantaneous current proportional to a
potential affected by multiple postsynapses, which are passively connected to each
other and to a single cell body via a dendritic branch. The NMDA and AMPA equa-
tions are state transition models affecting the instantaneous postsynaptic membrane
conductance. We show these networks have three cluster-types of trained I/O: first,
multiple (distinct temporal, spectral, and phoneme description) input speech classes
that elicit similar average temporal output (n  → 1); second , input speech classes
that elicit a distinct average temporal output response (1  → 1); and most often, mul-
tiple input speech classes that elicit a gradient of average temporal output response
([a . . .n]  → [A . . .N]).

ANNs are designed to provide efficient computation for well-defined tasks in
regression analysis, classification and data processing. Biological neural networks,
from which ANNs are inspired, are living tissue that has evolved physiological I/O
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Fig. 24.2 DSNN architecture. Isolated speech samples were decomposed into seven continu-
ous waveforms that were passed through an adaptive pulse encoder – oval shaded ‘AP’. There
are two output neurons, one with synapses trained to be responsive to a specific TW (Positive
ID), the other with synapses trained to be responsive to all other input (Negative ID). Further
detail is discussed throughout the chapter; signal flow through the Branch is illustrated in
figure 24.4

descriptions that are interpretable as computation. The defined nature of the tasks for
which ANNs are designed has allowed for the development of analytical tools for
interpreting the computational ability of ANNs – there is as yet no such set of rules
for construction, development, or interpreting evolution, of biological neural net-
works. The application herein is an open problem in both ANN and natural compu-
tation research: generalization from single-speaker training data to multiple-speaker
performance. We compare averaged temporal output for single-speaker trained net-
works versus output of networks trained using sixteen speakers. The resulting output
response clusters, and in many cases the actual average temporal output, was sim-
ilar for both sets of trained networks. Speaker specific training resulted in speaker
independent functionality. Our networks have the minimum architecture required to
embody the speech recognition task and so are a suitable test of the computational
ability supported by the synaptic dynamics relatively independent of other factors.
We thus make progress toward determining rules for understanding how biological
synapses may solve waveform classification problems. Our network is contrasted
with the dorsal cochlear nucleus (DCN), which provides complex signal envelope
processing necessary for human speech perception.

24.2 Input Description

The input set contains recordings from 8 male and 8 female speakers, saying
10 words, each word said 26 times. The recordings were taken from the Texas
Instruments TI 46 Word Speech Database Speaker-Dependent Isolated Word



24 Isolated Word Analysis Using Biologically-Based Neural Networks 643

Corpus. Our aim is to generate pulse-trains typical of those seen on auditory nerve
afferent fibers.

The inner ear is a large-scale parallel distributed processor with approximately
35,000 output channels [34]. The operation of the inner ear is to pulse-encode the
presence of features in the filtered sound, with the purpose of supporting subsequent
segregation of relevant from irrelevant sound sources [5, 14]. One successful body
of work, Uysal, et al. [48], begins with an attempt to model the inner ear output.
Leaky integrate and fire neurons (LIFs) preceded by a synapse (HC, [46]) are used
to classify vowels. Their 7850 synapses are arranged in parallel and do not interact.
Output is the order of neuron firing – the LIFs, however, receive summated input
from multiple HCs. The HC output represents probable firing of auditory nerve
fibers. The result is that appropriately thresholded LIF firing is more likely when a
quorum of HCs output is high, allowing them to be synchrony detectors. Because
each LIF is associated with a characteristic HC center frequency the likely mix of
formant frequencies emerges, allowing for vowel classification.

However, the hearing ability of cochlear implant patients [30] and of normal hear-
ing subjects listening to spectrally limited speech [11] or to speech-envelope modu-
lated noise [12, 41], is proof that the input filter bank need not duplicate the number
(or form) of the filters of a normal ear in order to support word recognition (ergo
or to research the required neural complexity allowing for word recognition). Au-
ditory fibers respond to sound with a wide variety of characteristics that have been
well-described using statistical systems identification [40] derived, and experimen-
tally validated, models (e.g. prediction of tuning curve amplitude dependence, phase
locking, and onset/offset response to pulsed tones [9, 53]). This analysis has led to
a high-level biophysical model of the acoustic transform that is descriptive through
the entire spectral sensitivity of the inner ear [23, 53], and that has been validated in
several vertebrate acoustic preparations [24, 38, 54]. This model describes inner ear
acoustic waveform transduction as a filter followed by a pulse generator.

For our filter bank, we opted to use a Debauchies-4 level 6 wavelet decompo-
sition, which results in seven channels of spectrally filtered continuous waveforms
for input to the pulse encoder [37]. We mimicked two response characteristics of the
pulse encoder: onset responses, and phase locking to the filtered-sound. The input
pulse encoding is a running threshold,

ψ(t) =

{
kψ if (sκ > ψ); also, an input pulse is generated,

cψ otherwise
(24.1)

where, sκ(t) is one component of the wavelet filtered input, k is a constant > 1, and
c is the exponential decay per time step that satisfies

ky exp(−Td/τ) = y (24.2)

where, y is the value of ψ(t) when a pulse is generated, Td is the desired aver-
age inter-pulse interval duration, and τ must be calculated for a given value of k.
Td = 10msec; resulting in the average pulse rate in response to noise being 100 per
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Fig. 24.3 Phase locking. The graphs on the left are peri-stimulus time histograms of the
pulse encoder response to a sinusoidal input with added noise over 256 cycles. The sinu-
soid is 24.41Hz. Noise is pseudo-Gaussian to approximately 2kHz. The SNR of the signals,
10log10(Es/En), is 4 (black), 1(light grey), -2 (medium grey), and -4 (dark grey). Three cy-
cles at SNR equal to -4, 1 and 4 are shown in the graphs to the right. Average pulse rate per
cycle is approximately 4 for all SNR levels, corresponding to a pulse rate of approximately
100Hz

second. A value of k near to 1, generates a strong onset response characteristic, and
for a noiseless sinusoidal input, also generates a periodic sequence of pulses with the
pulses near to the peaks of the sustained sinusoidal input. A larger value of k yields
the phase-locked response typical of auditory fibers most sensitive to low-frequency
input.

The series of equations 24.1 (one per input channel), with c = 1, yields a reduced-
channel network similar to [29]. In that study a single layer of neuron models was
used to classify the ten French digits. Using the order of the first 20 neurons to
spike (each neuron representing a spectral channel and one of three fixed thresh-
olds), Loiselle, et. al. accomplished very good true-positive classification rates; and
thereby convincingly argued for the merit of developing bio-inspired approaches
to speech processing under certain constraints, namely, small and not-necessarily
representative, training data sets and limited computational time. We only recently
became aware of their research, but in some sense, this chapter answers their chal-
lenge to use more realistic biology and in particular, synaptic dynamics, to address
speech recognition problems.

24.3 Synapse Connectivity: The Dynamic Synapse Neural
Network

The nonlinear dynamic function of isolated biological synapses render them well-
suited for passing energy represented by an optimal event sequence vs. other
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event sequences [36]. In so far as we can assume a good neural information pro-
cessor is one that transforms classes of input event sequences into classes of out-
put event sequences, where each output class is a set of similar sequences distin-
guishable from any given sequence of a different output class, the optimal sequence
passing feature of a single synapse renders it an unlikely candidate for informa-
tion processing on two counts. First, there is no guarantee that each input class is a
set of event sequences with low-enough variability that each sequence is approxi-
mately equal to any other in the class. Therefore the nonlinear nature of a synapse
implies there is no guarantee that the output of each input sample maps to an out-
put sequence that is near enough to the average of a recognized output class as to
declare passage of a meaningful message. Second, the output of a synapse is ‘inter-
preted’ by a neuron as it generates action potentials, the action potential sequence
presumably carries the passed information. However, this sequence has no ‘nega-
tive’ bit – the output sequence only consists of ‘yes’ and ‘absence of yes’ events
(periods of silence). Isolated synapses are good filters, but a network is mandatory
to study the role of synaptic dynamics in information processing. The network de-
scribed in this section is a relatively stiff system of ordinary differential equations.
However, we were able to estimate the dynamics of most of this system explicitely
using a forward Euler approach (and a small time step, approx. 1/10msec).
The postsynapse however, required implicit solution using Heun’s method [21,
chapter 14].

Synapses are the “elementary structural and functional unit for constructing of
neural circuits” [43]. As such, it is the definition of synaptic operation that ulti-
mately limits both the physical structure and the information processing ability of a
given neural circuit. A reasonably general mathematical description of the synaptic
functional is,

u j(t) = f (u j,Σδλ≤t; j,vint ,vd)
vint(t) = g(Σδλ≤t;int)
vd(t) = h({u j},vd) (24.3)

In equation 24.3, u j is the weight of the jth synapse associated with a small patch
of dendritic branch. Weight is the real number value describing the strength or abil-
ity to transmit a signal across the synapse. Σδ j and Σδint are the event sequences
(the mathematical equivalent of action potentials in neural tissue) that represent
the input to the synapse. The λ are the times of each event in the sequences.1

vd is the dendritic branch voltage. The function f describes the jth synapse trans-
form, the function g describes the affect of an interneuron, and the function h de-
scribes the function of the dendritic branch. Referring to figure 24.2, synapses (see

1 The notation, Σδλ≤t (read as, the sequence of events at times λ less than t), is equivalent to
the notation Σλδt−Δλ with Δλ = t−T (λ ) and T (λ ) is the list of event times. Networks not
containing dendritic branch function are notated by replacing vd with vsoma, the somatic
potential. Networks with no interneurons have vint = 0; while networks with arrays of
interneuronal interference replace vint with Σvint .
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figure inset) in our DSNNs are lumped into three groups of seven, j ∈ {1, ...7}; with
the synaptic group connecting the input to the interneuron having vint(t) = 0, i.e.
having no interneuronal connectivity onto itself.

24.3.1 DSNN Architecture

We are concerned with determining the computational ability of synapses (rather
than the additional computational potential provided by various network architec-
tures) therefore we limit the network to a single layer of synapses connecting the
input to the output. These synapses are each considered to be communications chan-
nels, so we allow for our network to provide a ‘stop transmission’ signal prior to
synaptic transmission, and a ‘receiver modulation’ signal at the tail-end of synaptic
processing. These signals come in the form of, respectively, a pre-synaptic inhibi-
tion via an interneuron and a post-synaptic variable resistance that is sensitive to a
parameter shared by multiple post-synapses.

The minimum number of input channels was gleaned from psychophysical liter-
ature; most significantly those studies relevant to the hearing of cochlear implant
patients. These studies set the lower limit of spectral channels that can support
speaker independent speech recognition to five to sixteen (depending on quantiza-
tion) channels being sufficient to yield > 90% speech recognition ability for normal
hearing subjects [31]. Our network supports seven channels because (after observa-
tion) we found that level-6 wavelet decomposition of the speech resulted in three
to five channels carrying a significant component of the speech signal; with the re-
maining decomposition waveforms being amplified recording noise. We assume the
minimum number of output channels is two; one that communicates ‘Positive ID’
(+), and the other that communicates ‘Negative ID’ (−). We applied the same in-
terneuronal (stop transmission) signal to all presynapses of the network. Feedback
inhibition is responsible for sharpening the acoustic filter response in noisy environ-
ments [28] and via a complex neural circuit determining the central transmission of
complex-sound localization cues [19]. However, this feedback is largely initiated by
brain nuclei that are two or more synapses removed from sound transduction and
it includes non-auditory information [56]. Wideband feedforward inhibition of the
first central synapse of the DCN [1] also plays an important role in peripheral audi-
tory processing [56]; we mimic this functionality in the DSNNs by using the input
pulse trains as the input to the interneuron. The interneuron do not receive a ‘stop
transmission’ signal.

The resulting network consists of one inter- and two output neurons (Refer to
figure 24.2). Each neuron receives a copy of each input pulse train via a synapse,
for a total of twenty-one synapses in each network. Each neuron is described by a
non-trainable adaptive threshold mechanism. Each input waveform corresponds to a
unique event sequence, which is copied three times with one copy being received by
a presynapse at each of the three neurons. Finally, our analysis of network responses
assumes the output pulse sequences could potentially be input to another neuronal
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network which supports an excitation / inhibition algorithm, Difference(Δ t), for the
purpose of speech recognition.

24.3.2 Synapse Functionality

The operation of chemical synapses [45] allows us to split equation 24.3 into two
separable processes: pre- and post-synapse, with the pre-synapse transmitting a
chemical signal to the postsynapse via a sequence of amplitude modulated aliquots
(neurotransmitter).2 In this neuroengineering study of the computational capabil-
ity of a single layer of synapses, we include synaptic functionality typical of most
synapses, but that is not found in the peripheral auditory system. We primarily draw
from two sources in determining our pre-synaptic description: a review of short-
term synaptic plasticity [58], and of presynaptic inhibition [50]. We primarily draw
from two sources in determining our post-synaptic description: a recent review of
glutamate excitation of postsynaptic membranes [49], and a numerical model that
has been shown to describe well the post-synapse of an isolated synapse [44].

The amount of neurotransmitter released from the presynapse is proportional to
the space-averaged intracellular calcium concentration taken to a power (1 to 4;
depending on type of synapse) at the time of release. The process initiating trans-
mitter release is the input action potential, which opens pores in the membrane,
allowing calcium to flow into the terminal, and dramatically increasing the intra-
cellular calcium concentration. This increase is of very short duration, therefore,
in our model, u j(t) need be non-zero only at the time of an input action potential.
Unidirectional transmission from pre- to post-synapse allows for the weight of the
jth synaptic connection, u j, to carry the specific interpretation of neurotransmitter
release magnitude. u j(t) is now independent of the dendritic branch voltage. These
two modifications to equations 24.3 yield,

u j(t) =

{
f (u j,Σδλ≤t; j,vint) if t = λ
0 otherwise

vint(t) = g(Σδλ<t;int)
vd(t) = h({u j},vd) (24.4)

The pre-synaptic terminal stores a limited supply of transmitter ready for release;
after release, it takes time to replenish this store via uptake, transport, and metabolic
mechanisms. Time is also required for intracellular buffers and membrane pump
mechanisms to restore [Ca2+] to the resting value after action potential induced
influx. During that time the residual calcium adds to any new calcium entering
the terminal, resulting in the new incoming action potential releasing more neu-
rotransmitter than the previous one did. This effect is mediated by a reaction-
diffusion equation that can saturate. This process is called facilitation and we de-
scribe a fast ( f f ast ) and slow ( fslow) component of facilitation in our presynapses.

2 Retrograde communication is biologically possible but is not modeled in our equations.
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Table 24.1 Pre- and Post-synapse parameter values or ranges. Kx are unitless, τ values are in
msec. The NMDA gate has a rise time of 3.5msec and decay time of 8.27msec

Fast Facilitation Kf , f ast ∈ (0,100); τ f , f ast ∈ (0,12.5)

Slow Facilitation Kf ,slow ∈ (0,200); τ f ,slow ∈ (0,125)

Interneuron Inhibition Kint ∈ (−200,0); τinhib ∈ (0,50); 2× τinhib

Postsynaptic Membrane V∞ = −70; τm = 1.372; Ereversal = 140;

AMPA τo>>c = 0.56; τc>>∗ = 15.76; τ∗>>o = 0.225; KAMPA = 0.83

NMDA τ1 = 35.0; τ2 = 5.0; τ3 ∈ (0.1,7.5); τ4 = 1.0

τ5 = 1.0; τ6 ∈ (0.5,50); τ7 = 1.0; τ8 = 3.75;

τ9 = 1.5; τ10 ∈ (1,15); τ11 = 250.0; KNMDA ∈ (900,15000)

Synapses have processes that can reduce the width and height of incoming action
potentials. These processes reduce the amount of calcium entering the presynapse
during the action potential timecourse; which has the subsequent affect of reducing
the amount of neurotransmitter released in response to the action potential as well
as reducing the amount of residual calcium remaining at the time of the next action
potential. We do not model these modulations as they are a relatively insignificant.3

The primary process responsible for adjusting the amount of calcium entry into the
presynapse (up to 85% of the total possible modulation in guinea pig and rat hip-
pocampal CA3-CA1 synapses) is a GABA-ergic type-B synapse [47]. We describe
this using a negative going alpha-function initiated at the time of an interneuron
action potential (vint). The constraints discussed here are applied to equation 24.4
resulting in the more descriptive equations 24.5 through 24.10.

f f ast (t) = Σδλ≤t; j(t)∗Kf , f ast exp
(−t/τ f , f ast

)
(24.5)

fslow(t) = Σδλ≤t; j(t)∗Kf ,slow exp
(−t/τ f ,slow

)
(24.6)

vint(t) = Σδλ<t;int(t)∗Kint exp
(−t/τint,slow

)
−Σδλ<t;int(t)∗Kint exp

(−t/τint, f ast
)

(24.7)

Ar(t) = 1 + f f ast + fslow − vint (24.8)

u j(t) =

⎧⎨⎩
0 if (Ar < ψR)
Ar if (Ar > ψR) AND (Ar < Nstore)
Nstore if (Ar > ψR) AND (Ar ≥ Nstore)

(24.9)

Nstore(t) =

⎧⎨⎩
CNNstore + KN if (Ar < ψR)
Nstore −u j if (Ar ≥ ψR) AND (Nstore ≥ u j)
0 if (Ar ≥ ψR) AND (Nstore < u j)

(24.10)

3 These contributions can be modeled by setting the value of Kr in equation 24.8 to a func-
tion modeling the action potential shape modulation processes and attenuating each input
impulse accordingly.
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Fig. 24.4 Diagram of a single synapse embedded in the DSNN of Figure 24.2. To the upper
left is one of seven input sequences (Σδλ≤t; j of equation 24.4). The remaining six input
sequences have identical synapses onto the dendritic branch; only the postsynaptic membrane
of these connections is drawn (bottom). To the upper right is the interneuronal input (vint(t)
of equation 24.4). The circled Glutamate is u j(t) in equation 24.4. The Dendritic Branch
equation is h({u j},vd) in equation 24.4. kx correspond to the τx of Table 24.1

Variables in equations 24.5 to 24.10 are defined consistent to the presynaptic biol-
ogy presented above. The convolution operation is indicated by an asterisk. ψR is
an imposed threshold for synaptic transmitter release. Replenishment of the neu-
rotransmitter store is a linear function (+KN), however, the store has an exponen-
tial cycling decay (CNNstore), i.e. vessicles that are ready for release but do not get
released may become absorbed back into the intracellular matrix.

Analytic study of isolated synapses [4] and synaptic networks [55] reveal them
to be highly complex processes. However, for simplicity of presentation, the com-
plexity of the postsynaptic model is described herein by figure 24.4, where sev-
eral interacting processes are drawn: AMPA, NMDA, and Dendritic Branch. All
three processes are simplified functional descriptions of their biological counter-
parts [51, 52], rather than being an accurate kinetic representation. Both AMPA
and NMDA are described by state transition models; the amounts of stuff rep-
resented is conserved. At equilibrium all AMPA is in the AMPA∗, or activated,
state. An impulse of glutamate, results in a percentage of AMPA∗ making a tran-
sition to AMPAOPEN , changing the variable resistance of the postsynaptic mem-
brane. The fraction of AMPAOPEN quickly falls, as it is converted to AMPAClosed ,
which is then, subject to a slower time constant, converted once again to AMPA∗.



650 W.M. Yamada and T.W. Berger

Presynaptic activity is generally low enough to prevent saturation of the AMPA
channel; the postsynaptic resistance change due to AMPA opening is relatively con-
sistent. The model of NMDA expresses long term dynamics. We do not model learn-
ing with this network, eventually, all NMDA will be at equilibrium between two
states, NMDAClosed and NMDAStore. However this transition is slow. k3 is a func-
tion of the postsynaptic current, therefore, until a sufficient amount of glutamate
is released from the presynapse, openning AMPA channels, a sufficient amount
of NMDA cannot be converted to C1 and C2, in readiness to affect postsynaptic
conductance. A fraction of C1 is converted to g1, slowing the conversion back to
NMDAClosed . A fraction of C2 is activated in readiness to interact with subsequent
glutamate pulses. The gating kinetics of NMDA are much slower than for AMPA;
once initiated, the gate undergoes a slow rise and slower decay. The result is that
the maximal conductance change due to the NMDA process happens after a delay
from the initiating glutamate pulse (that resulted in transition to C∗

2 and g1). Since
the initial C∗

2 will have been reverting during that delay, first to C2 and then to the
closed state, for the NMDA process to affect a substantial change in postsynaptic
conductance, pulses of glutamate must be received by the postsynaptic membrane
during the delay period so that the amount of C∗

2 remains high. k11 is small, allowing
C0

2 to act as a buffer that results in previously opened NMDA to maintain the level of
C2, and thereby, C∗

2. The Dendritic Branch process is a numerical buffer, necessary
to maintain system stability.

24.4 Synapse Optimization

Network I/O was trained toward serving both a TW classification task and a TW
dynamic modeling task. This was accomplished using a GA. Mutation rate was
adjusted throughout training to increase or decrease the degree to which new gen-
eration parameter choice was focused on a local minimum. These adjustments are
weakly analogous to a simulated annealing process (see [6, 8, 39]). Generational
processing time was decreased by estimating the fitness of each network on a sub-
set of the available input training set; highly fit networks were re-evaluated using
a larger subset. Subset size was increased as training progressed and as relative
generational improvement slowed. Input subset choice was skewed toward those
input samples correlated with the lowest fitness scores – thereby focusing optimiza-
tion at the separatrix between TWs and non-TWs. The non-TW decisions used to
fill the Confusion Matrix were weighted by a factor on the interval (0,1], equal to
the current sample output energy divided by the least responsive TW output en-
ergy. Because of the preponderance of non-TW input, after 100% classification was
reached, but while optimization continued toward filtering-out non-TW input, the
calculated information capacity continued to increase as the percentage of non-
TWs eliciting high output energy decreased. Our preference for using samples not
associated with high-scoring input sets had the effect of concentrating optimiza-
tion for classification ability on those non-TW samples which produced larger than
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average integrated output and were misclassified (non-TW input producing low-
energy output were filtered out of consideration) and on TW samples that produced
low output energy (as these would lower the threshold of discernment resulting
in some non-TW misclassifications being counted that would otherwise have been
‘filtered out’ of consideration). These points are discussed below.

24.4.1 Biased Selection: Word Micro-environment

For computational efficiency, it is essential that each individual DSNN performance
be probed using as small a subset of the corpus as possible. However, experience
reveals that some input examples are much more easily classified than others, i.e.
training subsets containing these examples yield much higher fitness scores than
other subsets (for a given set of DSNN parameters); and because the DSNN trans-
form is highly non-linear, every set of DSNN parameters has a different ‘optimal’
training subset. Therefore, poor choice of training subset can result in DSNN pa-
rameter sets being given falsely high fitness scores, encouraging evolution in a sub-
optimal direction. We address this situation directly by limiting the potential fitness
increase attributed to individual input samples, and indirectly via intra- and inter-
generational testing of high-scoring DSNN parameter sets; ‘Biased Selection’ in
Figure 24.1.

Our initial goal is to ‘cull out’ those input examples that are likely to result in
uncharacteristically high fitness scores – before these examples have a chance to
bias the optimization algorithm into a poor choice of state space locality. After this
goal is reached, we can then attempt to determine the smallest input subset size
that will accurately reflect the outcome of the entire corpus. Initially, the probability
of choosing any given example is uniform over the entire corpus. This probability
is adjusted whenever a micro-environment score is generated that is greater than
the current best macro-environment score. The number of times that an example
contributes to such a high score is tabulated, these numbers are used to create a
sequence of intervals,

[1,n1], [n1 + 1,n1 + n2], ...,
[
ΣN−1

j=1 n j + 1,ΣN
j=1n j

]
.

Choosing an example reduces to generating a number from the uniform distribution
on [1,ΣN

j=1n j], and matching that number to the appropriate interval. The percentage
of TW and non-TW examples chosen for input to a given DSNN increases through-
out training as a function of the highest fitness score attained. If two generations
passed without improvement, the number of samples increases by one seventh of
the difference between the current number and the total number of example words
of that class in the corpus. The purpose is to concentrate optimization at the sep-
aratrix of TW and non-TW class samples; rather than to optimize parameters to a
small set of examples that is assumed apriori to best describe the input classes. If
twenty-one generations passed without improvement, then the entire optimization
was restarted and the number of samples chosen to fill the training set for both TW
and non-TW word classes was reduced to 3.
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24.4.2 Objective Function: Fitness Evaluation

Each member, wi, of the training subset is or is not a TW, (respectively, ∈ or �∈). The
optimization routine observes the “Positive ID” and “Negative ID” pulse sequences
(respectively, S+

i and S−i ) of figure 24.2. The fitness function integrates S+
i and S−i ,

to yield the corresponding pairs,
(
E+

i ,E−
i

)
. Finally, the classification result for each

wi is the sign(E+
i −E−

i ). So that {wi} corresponds to an ordered list of length, I.

Training Subset = {wi}⇒
{(

<∈, �∈>,E+,E−,< +,− >
)

i

}
(24.11)

We generate four histograms from the E-sequence data: H+∈ , H−∈ , H+
�∈ , and H−

�∈ ;

with respectively, mean values, m̄+∈ , m̄−∈ , m̄+
�∈ , and m̄−

�∈ . It is useful for the immediate

discussion to define r for each histogram as, for example: r−�∈ = rms(E−
�∈,i − m̄−

�∈ ). We
also used the sequence in 24.11 to generate the Confusion Matrix [22], and used
standard operations on the Confusion Matrix for determining how well a particular
DSNN was able to classify {wi}. However, during training the contribution of the
non-TWs to the matrix was normalized.4

Normalized (Cost Weighted) Confusion Matrix, P =
∣∣∣∣P(∈,+) P(∈,−)
P( �∈,+) P( �∈,−)

∣∣∣∣, such that,

∀wi ⇒�∈, and for θ+ = min[E+
i | wi ⇒∈], (24.12)

P( �∈,sign(E+
i −E−

i ))
+=

{(
E+

i /θ+) if E+
i < θ+

1 otherwise
(24.13)

and ∀wi ⇒∈, P(∈,sign(E+
i −E−

i ))
+= 1.

Perfect filtering (discrimination of TWs by comparing E+
i to an absolute thresh-

old) and classification5 (discrimination according to sign(E+
i −E−

i )) is achieved if
training accomplishes the following two-part goal:

goal 1: Complete overlap of
(√

I ∗ m̄−
�∈ ± r−�∈

)
and

(√
I ∗ m̄−∈ ± r−∈

)
(24.14)

with, r−∈ → r−�∈ → very small (24.15)

goal 2: Complete separation of H+∈ and H+
�∈ (24.16)

with, m̄+
�∈ << m̄−∈ ≈ m̄−

�∈ << m̄+∈ (24.17)

4 The Confusion Matrix used here is a tabulation of all decisions; rather than a matrix of
true- and false-, positive and negative rates.

5 If both min[H+∈ ]−max[H−∈ ] > 0 and max[H+
�∈ ]−min[H−

�∈ ] < 0 are true, perfect classifica-
tion is guaranteed. However, this constraint is much stricter than necessary because classi-
fication is determined from individual samples of wi ⇒

(
<∈, �∈>,E+,E−)

i. We also note,
anecdotally, that generally, ∀i, E+ ≈ E−; but that the magnitude of E<+,−> depends on
speaker-specific input factors – for example the sex or dialect of the speaker. Therefore,
the strict population constraint on E+ and E− necessary to guarantee perfect classification
is not a useful measure for network performance as it is almost never realizable.
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Equations 24.14 encodes an understanding of biological circuits: stability in terms
of event rate (energy) is a local operating imposition on global functionality.

Whereas all wi ⇒∈ represent the same word, each wi ⇒�∈ represents one of 9
words. Certainly, at the onset of training, when I = 3 for both ∈ and �∈ classes,
H<+,−>

<∈,/∈>
cannot be represented faithfully by mean and variance values (equations

24.14 to 24.17 ). We declared the following intervals,

(min, max)−∈ = (min[E−
i | wi ⇒∈],max[E−

i | wi ⇒∈])
(min, max)−�∈ = (min[E−

i | wi ⇒�∈],max[E−
i | wi ⇒�∈]),

and using the above declarations, we determined the percentage, z∈, of TW samples
that did not have E−

i within (min, max)−�∈ , and the percentage, z�∈, of non-TW sam-

ples that did not have E−
i within (min, max)−∈ . We used the average of z∈ and z�∈ to

estimate progress toward the goal stated in 24.14.

score(H−) = a(H−) + (b(H−) −a(H−))(1−
z∈ + z�∈

2
) (24.18)

with b(H−) > a(H−).
We determined y �∈, equal to the percentage of non-TWs that yielded E+ >

min[E+
i | wi ⇒∈], and scored progress toward goal 24.16 using,

score(H+) = b(H+) −a(H+)y �∈ (24.19)

Pf/ f =
∣∣∣∣ 25 1

0 102.3

∣∣∣∣ Pf/∀ =
∣∣∣∣ 251 175
700 3270.0

∣∣∣∣ P∀/∀ =
∣∣∣∣ 386 31
116.4 2922.4

∣∣∣∣ (24.20)

Cf/ f =
∣∣∣∣25 1

0 234

∣∣∣∣ Cf/∀ =
∣∣∣∣ 240 164

60 3655

∣∣∣∣ C∀/∀ =
∣∣∣∣ 384 29
108 3606

∣∣∣∣ (24.21)

Three Confusion Matrices are displayed in equation 24.20; Pf/ f , for training on
words from a single female speaker, Pf/∀, the result of applying all 16 speaker’s
samples to the DSNN represented by Pf/ f , and P∀/∀, for training on all 16 speaker’s
samples. Pf/ f is produced from 260 samples, 26 of the word ‘repeat’; Σ f/ f ,�∈ =
102.3 indicates the high degree of filtering applied to the non-target word output,
as evidenced by complete separation of the H+∈ and H+

�∈ in figure 24.5, left. Pf/∀
and P∀/∀ are discussed in section 24.5. Non-weighted classification is tabulated in
equation 24.21. There are 413 samples of the word repeat but Σ∈P and Σ∈C for the
right four matrices are not necessarily equal to 413 due to how ambiguity is logged.
For P-matrices, ambiguous decisions are (+ and −), for C-matrices, ambiguous
decisions are not (+ and −).

For the normalized Confusion Matrix, P,
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Fig. 24.5 Example population output statistics used for fitness scoring. The four PDFs on
the left are the output of training on a single female speaker; the four PDFs on the right are
for training using all 16 speakers. The Confusion Matrices are given in the boxed equations
24.20 and 24.21

scoreP =

{
−P( �∈;−)(

bp
Σ−P) if Σ+P = 0, and

P(∈;+)(
aP
Σ+P + 2ap+bp

2Σ∈P )+ P( �∈;−)( 1
ΣP�∈ ) bp

2 otherwise.
(24.22)

In equation 24.22 the sum of all output represented in P is ΣP, the sum of all TW
output is Σ∈P, and the sum of all output that is classified as in-class is Σ+P. Specific
entries in P are notated by the subscripted pair. Equations 24.18, 24.19, and 24.22,
are summed by the Objective Function of figure 24.1 to determine the fitness score
of each DSNN. The range of these functions, and therefore the balance of their
importance toward parameters optimization, was determined by adjusting the values
of b(H−), a(H−), b(H+), a(H+), bp and ap.

24.4.3 Score Function Rational

The Objective Function tested individual fitness by balancing signal discriminability
(equation 24.19) and classification ability (equation 24.22), with system stability
(equation 24.18). This is illustrated in figure 24.6.

At the onset of evolution, networks may express any of the functionalities de-
scribed in figure 24.6; however, most commonly, optimization first progressed from
the bottom left corner of the score-space, toward the circled 150. The ideal be-
havior of the network represented at that point is illustrated by the drawing at the
bottom right of figure 24.6. Such a network would have good overlap of the two
H− histograms, and good separation of the H+∈ and H+

�∈ , with H+∈ > H+
�∈ . Initial

optimization is aided by the weighting function on P (equation 24.13). This equa-
tion has the affect of scoring Perfect No-machines better for greater separation of
H+∈ and H+

�∈ , encouraging optimization toward networks with H+∈ >> H+
�∈ . This

initial phase of evolution occurs rapidly, generally within three to six generations.
At the end of this phase, the population of networks consists of some classifiers,
but mostly of Yes-machines and No-machines, with these three types of networks
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Fig. 24.6 Score values as they relate to network function. Ordinate = scoreH− + scoreH+,
abscissa = scoreP; fitness = abscissa + ordinate. Perfect No-machines are networks with
ΣP = Σ−; No-machines are networks with Σ+P/ΣP → 0 ; Yes-machines are networks with
P( �∈;−)/Σ �∈P → 0 and P(∈;+)/Σ∈P → 1; Classifiers are networks that have most weight in P
on the diagonal; a Perfect Classifier has strictly diagonal P. The grey area of the plane repre-
sents the networks that can be generated; the light grey areas are highly unlikely. The range
of score for any given type of network is given in the table to the top right; there is a bound
on the lower right side of the Perfect No-machine and the Yes-machine score-spaces. The cir-
cled numbers are the score of idealized networks and where those networks lie in the plane;
the graphs boxed to the bottom right are their ideal behavior (explained in the text). The
graphs represent relative placement of, H−∈ and H−

�∈ (dotted), H+
�∈ (grey) and H+∈ (black). The

score ranges depicted here are for: aH− = −50, bH− = 50, aH+ = 125, bH+ = 100, aP = 50,
bP = 100

having respectively better H−scores. There is a ‘quantal’ leap in score as a small
change in parameter (similar H−scores) converts a network from a No- to a Yes-
machine, and from a Yes-machine to a classifier. This is apparent in figure 24.7. The
other circled numbers in figure 24.6 represent ideal networks toward which evolu-
tion progresses within the score-space of each network type. The relative placement
of the H-histograms of these ideal behaviors are shown in the graphs to the bottom
right. Evolutionary force between network types is in the direction shown. Within
each network type the evolutionary force along the scoreP axis is proportional to,
P( �∈;−)/Σ−P for Perfect No-machines, and P(∈;+)/Σ+P for No- and Yes-machines.
Therefore, for both Perfect No- and Yes- machines, evolutionary force along the
scoreP axis is in the direction of networks with H+∈ >> H+

�∈ . For No-machines, evo-

lutionary force is more complicated: H−∈ is pushed leftward of H+∈ and H−
�∈ is pushed

rightward of H+
�∈ (scoreP), while overlap of H−∈ and H−

�∈ is maintained (scoreH+).
The roughly equivalent significance of these two forces results in an upward diag-
onal evolutionary force, that encourages development toward ideal Yes-machines
and classifiers, as pictured in the boxed inset of figure 24.6. The light grey ‘highly
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Fig. 24.7 Convergence progress for 7 DSNNs trained on all speakers to the target ‘repeat’
are overlayed. Every generated DSNN Micro-Environment score is plotted with a grey dot.
Those DSNNs that merit testing on the complete Word Environment have score plotted with a
black asterisk. The stratification of score values is explained in section 24.4.3. First generation
micro-scores are not tabulated, second generation micro-scores do not initiate macro-testing

unlikely’ areas of the Perfect No- and the Yes-machines score spaces is a result
of the rightward evolutionary force along the scoreP axis: as the separation of H+∈
and H+

�∈ increases, the increasing value of P(∈;+)/Σ+P, requires that H+∈ and H+
�∈ be-

come increasingly separated, so that both scoreP and scoreH are expected to increase
together.

The familiar operations on confusion matrices [22] are,

precision ∼= P(∈;+)/Σ+P

sensitivity; true positive rate = P(∈;+)/Σ∈P

specificity; true negative rate ∼= P( �∈;−)/Σ �∈P

accuracy ∼= (P(∈;+) + P( �∈;−))/ΣP

The weights applied to the �∈ row of the Confusion Matrix in equation 24.13 render
some of the calculations above approximate. However, in so far we can accept the
above equations, the scoreP function is a measure which balances the relative im-
portance of precision, sensitivity, specificity, and (due to the fractional representa-
tion of the overwhelming representation of words in the non-target class) accuracy –
exactly what one would expect from a task-specific measure of classifier
performance.
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24.4.4 Genetic Algorithm: Mutation, Elitism, and
Micro-environment

The mutation rate, p, number of cloned individuals, z, and population size, K +r, per
generation were adjusted to restrain the GA from focusing on a local minimum prior
to determining the appropriate probabilities of choosing specific words to represent
the entire corpus. At the outset of training we assume that the generated scores are
only loosely indicative of the true fitness of an individual (because the input subset
does not yet emphasize the TW-nonTW separatrix) and that the most fit DSNNs
have parameters that are sufficiently different as to describe local spaces far removed
from each other. Therefore, initially we have as a goal to keep as many of these
highly fit individuals as possible and to verify individual scores by re-scoring. This
is accomplished by initially setting z = 40, and generating r = 32 new individuals.
Mutation rate is initially high, meaning that the 32 new individuals represent novel
genetic stock i.e. are unrelated to the cloned 40.

When the best score achieved is on the range 1/10 to 3/4 of the best score pos-
sible, z and r are inversely proportional to the ratio of the historical best score to the
theoretical best score on the range of (40,1) and (32,1), respectively. For best score
achieved greater than 3/4 of the best score possible, z = r = 1. Similarly, mutation
rate was a decreasing function of the historical best score. For the initial high mu-
tation rate, pg = 0.5, and the low mutation rate used after the GA has settled into a
satisfactory local state space, pl = 0.05, the equation defining the current mutation
rate p, is,

q = 1− log10

(
1 + 9

(
scorebest −0.1
0.1 ∗ scoremax

))
p = pl + q(pg − pl) (24.23)

The duration of high mutation rate value is intended to coincide with the duration
required for the Biased Selector to determine an initial distribution of probabilities
for selecting Micro-Word-Environments that emphasize the separatrix between TW
and non-TWs. In this sense, we have built into our optimization a self-determined
initialization phase. After this phase has passed, if more than 21 generations pass
without improvement (Micro-Word Environment scores are less than the histori-
cal best score) then the GA is re-initialized: mutation rate is set high, micro-word
environment size is set to 3, and z = 40 and r = 32.

There are two types of highly fit DSNNs at the end of micro-environment testing,
those with fitness high enough to elicit re-scoring using the macro-environmentprior
to a new generation being generated, and those that are high enough scoring to be
cloned, but not fit enough to be re-scored prior to generation of a new set of DSNNs
and word micro-environments being generated. Those that are high enough to be
saved, are retested in the next generation with a new micro-environment. Macro-
environement re-scoring may reveal the current set of DSNN parameters to be a
historical best, but most often a significantly lower score is generated and those
parameters are removed from the to-be-saved parameter list (and another DSNN is
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substituted). The threshold to elicit macro-environment testing is the historical best
score. Over the course of evolution, the micro-environment size increases, making
it less likely to produce scores that elicit macro-environment testing. Operationally,
there are two optimization loops running, one fast-loop which generates potential
best parameter sets, and one slow-loop that tests the potential best parameter sets
and resets various parameters of the fast-loop (threshold for macro-testing, elitism,
population size, and mutation rate values).

24.5 Output Description and Analysis

The DSNN output is two event sequences, respectively, S+ and S−. We log the event
times, sequentially bin them, and subtract the value of the (−) from the correspond-
ing (+) bin, to generate a single discrete output function. Each input to the DSNN is
an isolated word, and each output is a function in time. We take the output functions
that correspond to the same input word, average them, and it is this average response
to each word, and the differences or similarities between them, that are presented in
this section. The input words are labeled as in the TI46 Word database:

ST = start GO = go RB = rubout ER = erase YS = yes
SP = stop NO = no HP = help EN = enter RP = repeat

DSNNs trained to a particular TW are noted by subscripting the appropriate label
from the list above. For example, DSNNST is the DSNN trained for TW = ‘start’.
The difference function defined above is noted by the TW label of the input word
label, for example, the average difference response elicited by input examples of
‘erase’ from DSNNRP is,

RP(ER) = ∀wi ⇒ ER, exp
[
DSNNRP(S+−S−) | Δ t

]
(24.24)

24.5.1 Integrated Responses

In this subsection we describe the energy output of the trained DSNNs as a function
of input word (with Δ t = the duration of the longest word in {wi}). In the following
subsections we describe the energy output of the trained DSNNs as functions of
input word and time, as described by equation 24.24 (with Δ t = 20msec).

The histograms of output energy for DSNNRP as a function of input word are
plotted in figure 24.8. The top row is indicative that, for a relatively small speaker-
specific optimization, the network converges to the goals stated in equations 24.14
to 24.17 (left two plots). In particular, E+ for non-TWs is less than E+ for TWs, and
there is a tight interval within which E− falls for all input. Also, this data indicate
these goals support classification (third column). And finally, this data indicate that
such a trained network will have an optimal input class, as measured by average total
output energy in response to that word input versus other input (fourth column).

In the second row of figure 24.8, all sample words are applied to the DSNN
of the first row (26 samples of each word from 8 male and 8 female speakers;
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Fig. 24.8 Population output statistics of DSNNRP broken down into target word and non-
target word subclasses: for training on a single female speaker (top four plots), for that same
DSNN with sample words from all speakers applied to it (middle row), and for training
on all 16 speakers (bottom four plots). This data is also pictured in figure 24.5. Here, the
height of each histogram is indicated by shade intensity. The input labels for each histogram
are printed on the ordinate; the abscissa corresponds to the response energy relative to the
min

[
E+;∀wi ⇒∈] (see equation 24.11). The columns of graphs are respectively, H+, H−,

pdf(E+ −E−), and pdf(E+ +E−)

approximately 4160 samples including the 260 used during training). The pattern
of output energy versus input word remains similar. However, we note that the in-
terval containing E+ for non-TWs is increased, and the increased number of sam-
ples allow us to visualize more than one optimal output class – in this case the
word, stop. From the classification results in table 24.2 middle row, the word stop
is correctly classified at greater than 99%, indicating that this network has optimal
Positive ID input, and optimal Negative ID input. Classification of all non-TWs is



660 W.M. Yamada and T.W. Berger

Table 24.2 Positive-classification rates for the DSNNs of Figure 24.8. The true input word
is given at the top of each column, the target word is RP. First row: training data for the
single female speaker DSNN. Second row: validation of the single speaker DSNN on all 16
speakers. Third row: training data for a DSNN trained using examples from all 16 speakers.
The P-matrices used during training corresponding to the first and third rows are given in
equations 24.20. The last row is the average positive classification rate for each subclass dur-
ing validation of 15 DSNNs, each one having been trained with a different speaker. The data
given in the last row indicate that regardless of which of the 16 speaker’s data sets is chosen
to train the initial DSNN, the input words filtered will be the same, and the classification task
will be reduced to the same subset of non-target words

ST GO RB HP SP NO YS ER EN RP
- - - - - - - - - 96.2
- - 0.2 0.5 0.7 4.3 2 2.4 4.3 57.8
- - - - - - 3.6 11.1 11.1 93.0

0.21 0.34 0.16 0.24 - 1.56 4.95 6.18 14.31 70.44

validated above 95%; but noticeable misclassification rates are generated for four of
the non-target words; the remaining non-target words being classified at near 100%
rate. The classification rate for ‘repeat’ has fallen to 57.8% – certainly, adjusting
the classification threshold leftward would better balance the error rates for TW
and non-TW classes, but here we are interested in output patterns more than clas-
sification statistics according to equation 24.11 with an added variable threshold
(Receiver Operating Characteristic).

The third row of plots is for a DSNN trained on all word samples. In some sense,
these plots represent the ideal response to which validation data ought to be com-
pared – unfortunately, training these systems is intolerably slow. The DSNN pic-
tured in row one was achieved overnight on a desktop PC; whereas, DSNNs trained
on all 4140 input samples require two to four weeks of dedicated processing time on
seven comparably equipped computers. Indeed, one of the motivations for this work
was to determine algorithms for decreasing the compute- and real-time required to
optimize biologically based small-set speech classifiers. Row three of figure 24.8
is demonstrative of an important output characteristic: by defining classification in
terms of equation 24.11 the optimal filtering properties of a DSNN do not nec-
essarily coincide with the actual classification abilities. This is evidenced by the
output energy for the words, ‘enter’ and ‘erase’, both of which have 11% error rate
(Table 24.2). The word enter produces a relatively significant total output energy,
but the word erase has significantly depressed output relative to all other word input
(Row 3, Pane 4).

The result shown in figure 24.8 and table 24.2 is typical, and indicative of the
following general patterns found in most of our trained DSNNs. First, optimization
toward the TW versus a set of nine non-TWs is in effect optimization toward dis-
tinguishing the TW from a subset of the non-TWs. Some non-TWs are filtered-out
(rendering their classification a moot issue), others are easily distinguished from the
TW. Therefore it is possible to limit the optimization task to a corpus of manageable
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size, without making prior assumptions regarding on which words, or particular
examples of those words, the optimization should focus. Second, independent of
classification based on differential network output, there is a subset of optimal input
words, in the sense that the expected total network excitation in response to these
words is greater than for others. Third, the overall pattern of integrated output after
training on input words from a single speaker is similar to the pattern evoked from
that DSNN by the input words of all 16 speakers, even those of opposite sex (i.e.
very different formant frequencies and temporal waveform fine-structure), and fol-
lows similar trends of the pattern generated by training on all 16 speakers. Although
generalization is not perfect; with regard to energy output, DSNNs formulated and
trained in the manner explained in section 24.4 demonstrate generalization from
speaker-dependent training to speaker-independent operation that is stronger than
expected. Fourth, our trained DSNNs have bounded input and output. Training to-
ward classification based on output energy difference alone tended toward driving
the DSNN outputs to saturation or zero. However, DSNNs trained to the goals of
equations 24.14 to 24.17 tend to have total output on a bounded range, with some
words generating less, and some more, energy, but most responding with near aver-
age total output. In the following subsections we describe how the output energy is
expected to be distributed as a function of time for each input word.

24.5.2 Dynamic Model Emergence Via Cost-Weighted
Classification

Intelligible speech is coherent at the time scale of the syllable [18]. A weak impli-
cation of this is the variability of the (appropriately analyzed and described) set of
sound waveforms elicited by all speakers if vocalizing a given word is low. This is
the general assumption underlying all word recognition devices. We have a similar
assumption to guide our output visualization, that underlying speech perception is
a set of canonical word representations that can be expressed as the expectation of
a distinct event sequence. The degree to which this second assumption is valid for
our DSNN transformation is the underlying theme of this section. In this section we
compare the expected temporal output of two DSNNs, one trained to recognize the
word repeat as spoken by a single female speaker, the other trained to recognize the
word repeat as spoken by all sixteen speakers.

The top four frames of figure 24.9 are the average output of DSNNRP trained on a
single female speaker. The average responses for that speaker, RPf/ f (·), are plotted
atop the average responses of this network to all sixteen speakers, RPf/∀(·). There
are three response types: a negative going response, i.e. RP(SP,ST,GO, and HP), a
primarily negative going response but also having a sharp positive going prelude,
i.e. RP(NO,ER, and YS), and an oscillating response, i.e. RP(RB,EN, and RP).
As expected, the single speaker training responses are ‘noisier’ than the sixteen
speaker validation responses. Observation indicates that RPf/ f (·) versus RPf/∀(·)
are similar: RP(SP, and ST ) are near identical; RP(RP, and NO) are similar; and
RP(HP,GO, and ER) each have a slightly exaggerated response. The response dis-
similarities are: the RPf/ f (Y S) is approximately 80msec time delayed and has a half
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Fig. 24.9 Average temporal output for a DSNN trained on a single female speaker (Top
half: blue thick lines), average temporal output of a DSNN trained on all speakers (Bottom
half: blue thick lines), versus average temporal output for the single speaker trained DSNN
responding to all sixteen speakers (thin orange to brown lines). Time is in msec

magnitude positive prelude as compared to RPf/∀(Y S); RPf/ f (EN) is very similar to
RPf/∀(EN), with the exception of a positive going ‘feature’ that peaks just prior to
600msec in RPf (EN) that is averaged out of RPf/∀(EN); this same feature is found
in the RPf/ f (RB) response, but not in RPf/∀(RB). As expected, words with pronun-
ciation requiring a mid-word full stop produce an oscillating response (‘rubout’ and
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‘repeat’); ‘enter’ is spoken with at least a partial stop, it also produces an oscillat-
ing response. We expected, but could not measure, the compilation of error due to
syllable sequences e.g. different speakers vocalize the syllable sequence at different
rates, so that the average of all speaker output at any given time after the start of
vocalization includes the response to multiple syllables.

The bottom four frames of figure 24.9 compare RPf/∀(·) to the average responses
of a DSNN trained on all sixteen speakers (RP∀/∀(·)). We note that the single speaker
training required two days of optimization time (individual 4679; score = 344.65
training; score = 215.3 validation), whereas the sixteen speaker training required
seven parallel GAs running for approximately two weeks on seven identical com-
puters (individual 1048 of one of the parallel GAs; score = 266.51) . There are
three dissimilarities in these responses: the positive prelude in RPf/∀(ER) is prac-
tically missing, whereas it is quite prominent in RP∀/∀(ER), and the positive pre-
lude for RPf/∀(YS) is truncated by nearly 30% relative to RP∀/∀(Y S); and possibly
significant, RPf/∀(RP) is an entirely different waveform than RP∀/∀(RP).

The isolated results displayed in figure 24.9 typify a very important general
theme we see in all trained DSNNs. There are three cluster-types of trained I/O:
first, multiple (distinct temporal, spectral, and phoneme description) input speech
classes that elicit similar average temporal output (n  → 1;e.g.RP(ST) = RP(SP));
second , input speech classes that elicit a distinct average temporal output re-
sponse (1  → 1;e.g.RP∀/∀(RP)); but most often, multiple input speech classes that
elicit a gradient of average temporal output response ([a . . .n]  → [A . . .N]). The
most obvious example of the last cluster type is displayed in the sequence of
RPf/ f orall(RB) ↔ RPf/∀(EN) ↔ RPf/∀(RP). In such a case, the waveform de-
scribing the expected, canonical response, is very similar, however, the magnitude
(and/or very low frequency modulation) of the response differs. Less obvious from
the responses graphed here (but seen in other DSNNs) are the sequences in critical
point movement, breadth of the negative going lobes, and the height of the sharp
positive prelude.

Taken altogether, what we find is that any given optimization results in a small
subset of words being distinguishable from the others based on output energy (pre-
vious section) and temporal response – single DSNNs as defined in figure 24.2 and
constrained by dynamic operation as described in section 24.3.2 are weak clas-
sifiers with regard to capacity or total number of distinguishable input classes.
However, most words elicit a response that tends towards a canonical output; our
experience suggests that these DSNNs are very good ordering operators on the input
set. Their output can support system level (multiple DSNNs) probabilistic classifi-
cation schemes. In particular, in graphing the output responses, we found that there
was an obvious order of the responses in terms of expected magnitude, critical point,
and breadth of waveform – and most importantly, that the expected sequences were
word dependent, but were consistent between single speaker and multiple speaker
trained DSNNs. This suggests that our DSNNs are capable of quickly forming the
basis for a probabilistic speech recognizer, without making apriori assumptions
regarding the input or desirable output waveforms.
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24.5.3 System Output Visualization

In the preceding sections, we emphasized DSNNs trained to a particular TW that
demonstrated typical behavior. However, each TW indicates a unique separatrix be-
tween TW and non-TW subclasses. In this section we display the ordering of the
input subsets determined by a set of ten DSNNs (DSNN∀/∀), each one trained to a
different TW of the ten word input set. Where possible, we also point out observed
atypical behavior. To summarize this data, we visualize the functions using pseudo-
color plots, rather than x-y plots. In figure 24.10 ten such plots are drawn, each one
being the canonical response to the word labeled.

An example of each TW defining a distinct separatrix is found in the responses to
the words, ‘rubout’ and ‘stop’. In figure 24.10, RB∀/∀(RB) (5th row, RB, an orange
rectangle) is approximately equal to RB∀/∀(SP) (5th row, SP); the timing of the
response indicates that DSNNRB has converged onto a strong response to the vowels
preceding the bilabial consonant. SP∀/∀(SP) (8th row, SP) and SP∀/∀(RB) (8th row,
RB) are however, quite distinct (almost additive inverses of each other).
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Fig. 24.10 The expected output of all DSNNs is shown here for each input word. The input
word label is given to the right of each set of graphs. Graph order is the same for each set, from
bottom to top: EN,HP,RP,ER,RB,YS,NO,SP,GO,ST . For example, the lower left set of
color graphs are EN(Y S),HP(Y S),RP(YS),ER(Y S), ...ST(Y S). The functions graphed here
are for DSNNs trained on all available word samples. The third row of each plot corresponds
to the x-y graph of the same label in the lower half of figure 24.9; as in that figure, event
averages are for Δ t = 20msec, averages near zero are not plotted
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Not only does each TW indicate a unique separatrix, it also indicates a unique pat-
tern of non-target subclass separation. An example is the response of DSNN∀(ST )
and DSNN∀(SP) to the words ‘start’ and ‘stop’. DSNNEN , DSNNHP, DSNNRP,
DSNNER, DSNNGO, and DSNNST have indistinguishable responses to the words
‘start’ and ‘stop’ (rows 1-3, 9, 10, of ST and SP); and DSNNER, DSNNY S and
DSNNNO, have similar responses (rows 4,6, and 7, of ST and SP, relative color
magnitude difference between 600− 700msec). The distinguishing characteristics
of these responses is found in two DSNNs: DSNNRB, which has no significant re-
sponse to the word ‘start’, but does respond to ‘stop’ (row 5), and DSNNSP, which
has a bimodal response to ‘stop’, but only a unimodal response to ‘start’.

Likewise, DSNN∀(GO) and DSNN∀(NO) are remarkably similar – however,
eight of the 10 trained DSNNs have response to NO that begins with a prelude to
the main system response, five of these preludes are short duration negative bursts.
Although three of these expected preludes are of modest magnitude, the sum total
of the prelude response is a significant identifying feature of DSNN∀(NO).

DSNN∀(RP) and DSNN∀(ER) are somewhat similar, the onset of response
(< 400msec) indicates an expected magnitude difference of approximately 8 events
greater for DSNN∀(ER). After this initial phase, there is a cessation of activity on
seven of the ten DSNNs of DSNN∀(RP) while at the same time DSNN∀(ER) is
sparsely active with a strong negative response from RP(ER). This is followed by
a 100msec phase where, again, the two responses are very similar except in mag-
nitude, during this time period DSNN∀(RP) is greater. These responses finish with
a 100msec period during which time EN(ER) and YS(ER) show strong activity,
whereas there is little to no activity from DSNN∀(RP).

Similar observation reveals the significant differences between any given two
spatiotemporal response patterns. These diffferences are indicative that the overall
expected output is not necessarily as important as where and when is the output
for distinguishing the response of one word vs. another – an expected conclusion
when using dynamic neural networks to analyze a signal. What was unexpected was
the minimal amount of information required to train these differences – namely, no
information regarding composition of the non-TW subset.

24.6 Discussion

Pattern classification tasks often begin with an analysis of the input signal. In par-
ticular, the first concern is to determine useful signal components or parameters of
the signal (nonlinear filtering [20]) that can be measured or catalogued in such a
way that the signals are more easily classified after measurement than before. Re-
search in speech perception (human pattern classification of speech) has identified
over 50 such measures [18]. A standard approach toward building VCIs is to analyze
input speech signals in terms of one or more known measures with the aim of map-
ping the input sound as a function of time into a sequence of meaningful speech. In
contrast to this approach, one may assume only that the input signal contains clas-
sifiable components (or that the input is a set of classifiable signals), and then after
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applying a transform to the input, perhaps repeatedly, hypothesizing the number of
input classes and to which elements each input belongs based on how well the out-
put can be clustered and how distinguishable the clusters are from each other. In
this chapter we took this second approach to explore the ability of a small number
of biological synaptic models to duplicate a human hearing task: learning a word
spoken by a single speaker. We then demonstrated that this oversimplified model
of hearing generalizes to 15 other speakers. We chose to qualitatively present our
results via visualization primarily because the aim of this work is the development
of an appropriate input filter for a biologically based large scale waveform analysis
system: we showed here that it is possible to quickly produce a transformation that
orders the expected dynamic output as a function of the input words for subsequent
classification while also ‘filtering out’ irrelevant input. Using an array of such pro-
duced DSNNs we demonstrated how the property of optimal sequence excitation
of individual synapses is expressed by our networks as unique expectations in time
and space of the passed energy. Finally, we showed that these canonical dynamic
responses per word are distinguishable, despite that the response ordering resulting
from individual DSNN optimization was independently determined. A genetic al-
gorithm was central to this work. Initially, optimization was by random search as
mutation rate was set very high. After finding a combination of input and model
parameter values that carried out the classification task sufficiently well, search be-
came more directed: mutation rate decreased, the number of local parameter spaces
explored decreased, and the choice of input converged to a stationary process.

Canonical response differences are not easily measured by the usual measures,
which operate on the entire output. Differentiating ‘start’ from ‘stop’ is an excel-
lent example. These input are discernible from all others, but to distinguish them
from each other requires analysis be focused onto a small section of the spatiotem-
poral output. It is also difficult to know from a neuro-philosophical perspective the
appropriate statistical inference to apply to the output to support classification, as
dendritic physiology tells us that non-linear signal and signal component operations
(summation, deletion, relative delay, thresholding, etc.) are acceptable at the anal-
ysis stage of processing. Finally, human perception of isolated words via cochlear
implant and simulations of, is the benchmark for the work begun here; however,
human perception is based on contextual processing that will include many more
layers of processing each of which have recursive input to various of the preceding
layers.

The DSNNs reported here cannot be used as the sole computational component of
a classification system. Canonical response differences are not easily measured by
the usual measures, which operate on the entire output. Differentiating ‘start’ from
‘stop’ is an excellent example. These input are discernible from all others, but to
distinguish them from each other requires analysis be focused onto a small section
of the spatiotemporal output. It is also difficult to know from a neuro-philosophical
perspective the appropriate statistical inference to apply to the output to support
classification, as dendritic physiology tells us that non-linear signal and signal
component operations (summation, deletion, relative delay, thresholding, etc.) are
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acceptable at the analysis stage of processing. Finally, human perception of isolated
words via cochlear implant and simulations of, is the benchmark for the work begun
here; however, human perception is based on contextual processing that will include
many more layers of processing each of which have recursive input to various of the
preceding layers. However, our DSNNs are a suitable candidate model of the input
transform (or filter) required to support development of a large biologically based
contextual processing system. This is because they conform to several requirements.
They are quickly and independently optimized so that adding new classes will not
require re-optimizing the entire system from scratch. A subset of the input classes
are “filtered out” of consideration by any given DSNN with the remaining input
classes having an ordered output; so that we can expect novel input would either
be filtered out, or would generate new expected patterns that fall within the origi-
nal ordering. There is much interest in applying biological solutions to real-world
problems, and in this sense, our DSNNs are an excellent example of where to begin
neuro-engineering such solutions for waveform classification.

24.6.1 Sound Processing Via the Dorsal Cochlear Nucleus

There are myriad differences in detail between cochlear nucleus physiology and our
DSNNs. However, from an information processing perspective, our DSNNs do have
functionality in common with the DCN transform – withstanding that we filter the
sound in a single layer of synapses, whereas the DCN contains apical and basal
synapses (onto the pyramidal cells) each set of synapses having complete neural
circuits, including interneurons, preceding them. First, there is a complex (sensitive
to multiple spectral bands) inhibition of the spectrally narrow input. In the DSNN
this comes via the feedforward inhibitory interneuron (which is sensitive to all seven
of the inputs) onto the presynapses (each sensitive to a single spectral decomposi-
tion component); in the DCN this comes via multipolar cells of the Ventral CN.
These would be the onset-C neurons that have very good envelope sensitivity, as
measured by modulation depth. Second, there is a sensitivity to the spectral enve-
lope of the sound, versus the fine temporal structure of the sound. For the DSNNs
this sensitivity is inherent in the pulse encoding of the stimulus wavelet decom-
position, in the DCN this comes via outer spiral fiber excitation of granule cells
followed by granule cell parallel fiber excitation of the apical pyramidal dendrites.
Third, there is a complex (sensitive to multiple spectral bands) excitation of the
output. In the DSNN this occurs via the modulation of postsynaptic potentials by
multiple synapses through the long-term kinetics of the NMDA model, in the DCN
this comes from the granule cell axonal connection to the pyramidal cells, which is
perpendicular to the frequency axis of the DCN. We further note that granule cell
synapses contain functional NMDA receptors [2, 32]. The preceding points do not
argue for our DSNNs being a model of DCN function – rather they point toward cer-
tain underlying neural processing that may be important toward understanding the
neural complexity underlying waveform classification and that may be engineered
using realistic synaptic mechanisms.
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Chapter 25
A Distributed Evolutionary Approach to
Subtraction Radiography

Gabriel Mañana Guichón and Eduardo Romero Castro

Abstract. Automatic image registration is a fundamental task in medical image pro-
cessing, and significant advances have occurred in the last decade. However, one
major problem with advanced registration techniques is their high computational
cost. Due to this restraint, these methods have found limited application to clini-
cal situations where real time or near real time execution is required, e.g., intra-
operative imaging, or high volumes of data need to be processed periodically. High
performance in image registration can be achieved by reduction in data and search
spaces. However, to obtain a significant increase in performance, these approaches
must be complemented with parallel processing. Parallel processing is associated
with expensive supercomputers and computer clusters that are unaffordable for most
public medical institutions. This chapter will describe how to take advantage of an
existing computational infrastructure and achieve high performance image regis-
tration in a practical and affordable way. More specifically, it will outline the im-
plementation of a fast and robust Internet subtraction service, using a distributed
evolutionary algorithm and a service-oriented architecture.

25.1 Introduction

In image processing, the interest often lies not only in analyzing one image but also
in comparing or combining the information present in different images. In this con-
text, image registration can be defined as the process of aligning images so that cor-
responding features can be related. The term image registration is also used to refer
to the alignment of images with a computer model or the alignment of features in an
image with locations in physical space. For this reason image registration is one of
the fundamental tasks within image processing: by determining the transformation
required to align two images, registration enables specialists to make quantitative
comparisons.
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From an operational point of view, image registration is an optimization prob-
lem and its goal is to produce, as output, an optimal geometrical transformation that
aligns corresponding points of the two given views. Image registration has appli-
cations in many fields, including remote sensing, astro- and geophysics, computer
vision, and medical imaging. The field of application to be addressed in this chapter
is medical imaging, and in this field, this transformation is generally used as input to
another system that can be, for instance, a fusion system or a subtraction system. For
a complete overview of the different image acquisition systems and the relevance of
registration in medical image interpretation and analysis, you may refer to Hajnal et
al. [29], and references therein.

In many clinical scenarios, images of the same or different modalities may be ac-
quired and it is the responsibility of the diagnostician to combine or fuse the images
information to draw useful clinical conclusions. Without an imaging system this
generally requires mental compensation for changes in patient position, the sensors
used, or even the chemicals involved. An image registration system aligns the im-
ages and so establishes correspondence between features present in different images,
allowing the monitoring of subtle changes in size or intensity over time or across a
population. It also allows establishing correspondence between images and physical
space in image guided interventions. In many applications a rigid transformation,
i.e., translations and rotations only, is enough to describe the spatial relationship
between two images. However, there are many other applications where non-rigid
transformations are required to describe this spatial relationship adequately.

In terms of the algorithms used, the current tendency is to use automatic algo-
rithms (i.e., no user interaction) [8], which requires the application of advanced im-
age registration techniques, all characterized by their high computational cost. Due
to this restraint, these methods have found limited application in clinical situations
where real time or near real time execution is required, e.g., intra-operative imaging
or image guided surgery. High performance in image registration can be achieved
by reduction in data space, as well as reduction in solution search space. These
techniques can decrease significantly the registration time without compromising
registration accuracy. Nonetheless, to obtain a significant increase in performance,
these approaches must be complemented with parallel processing. The problem is
that parallel processing has always been associated with extremely expensive super-
computers, unaffordable for most medical institutions in developing countries. This
chapter will describe our experience in achieving high performance in an affordable
way, i.e., taking advantage of an existing computational infrastructure. More specif-
ically, it will outline how this can be done by using open source software tools that
are readily available. This will be illustrated by the use of a real case study: an online
subtraction radiography service that employs distributed evolutionary algorithms for
automatic registration.

The chapter is organized as follows. Section 25.2, Background, briefly describes
the main aspects behind medical image registration and presents a general overview
of available options to attain high-performance computing for scientific research.
Next, section 25.3, A Grid Computing Framework for Medical Imaging, presents
our experience in building a scalable computing framework for medical imaging,
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by using a service-oriented architecture and open source software tools. To show
the use of the framework in a real working situation, section 25.4, Case Study: Au-
tomatic Subtraction Radiography using Distributed Evolutionary Algorithms, will
review the algorithms behind the implementation of the online system. Finally, sec-
tion 25.5, Discussion and Conclusions draws some pertinent conclusions and sum-
marizes our experience adopting a service-oriented approach and an open source
developing model.

25.2 Background

As introduced in the previous section, the task of image registration is to find an
optimal geometric transformation between corresponding image data. The image
registration problem can be stated in just a few words: given a reference and a tem-
plate image, find an appropriate geometric transformation such that the transformed
template becomes similar to the reference. However, though the problem is easy to
express, it is hard to solve. In practice, the concrete types of the geometric transfor-
mation, as well as the notions of optimal and corresponding depend on the specific
application. In this section we summarize the main aspects involved in the registra-
tion process and review recent trends in high-performance computing (HPC).

25.2.1 The Image Registration Problem

Any image registration technique can be described by three main components [6]:

1. a geometrical transformation which relates reference and template images,
2. a similarity measure which measures similarity between reference and trans-

formed image,
3. an optimization scheme which determines the optimal transformation as a func-

tion of the similarity measure.

Geometrical transformation refers to the mathematical forms of the geometrical
mapping used in the registration process and can be classified by complexity into
rigid transformations, where all distances are preserved, and deformable or non-
rigid transformations where images are stretched or deformed. While the first is
ideal for most fusion applications, and accounts for differences such as patient po-
sitioning, non-rigid transformations are used to take into account more complex
motions, such as breathing or heartbeat.

The similarity measure is the driving force behind the registration process, and
it aims to maximize the similarity between both images. From a probabilistic point
of view, it can be viewed as a likelihood term that expresses the probability of a
match between the reference and transformed image [15]. Like many other prob-
lems in computer vision and image analysis, registration can be formulated as an
optimization problem whose goal is to minimize an associated cost function [6]:

C = −Csimilarity +Ctrans f ormation, (25.1)
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where the first term characterizes the similarity between the images and the second
term characterizes the cost associated with particular deformations. From a proba-
bilistic point of view, the cost function in eq. (25.1) can be can be explained in a
Bayesian context. In this framework, the similarity measure can be viewed as a like-
lihood term which expresses the probability of a match between the two images, and
the second term can be interpreted as a prior which represents a priori knowledge
about the expected deformation. This term only plays a role in non-rigid registration
and in the case of rigid registration is usually ignored.

Several approaches can be used to optimize this function. They go from the use
of standard numerical methods to the use of evolutionary methods, including some
hybrid approaches. No matter what method is used, this always implies an iterative
process whose computational cost is so high that prevents most applications from
performing appropriately in real time situations. One possible way to solve this issue
is to devise faster algorithms. Another way is to exploit the intrinsic parallelism that
most methods convey.

Medical image registration spans numerous applications and there is a large score
of different techniques reported in the literature. What follows is an attempt to clas-
sify the different techniques and categorize them based upon some criteria, for a
complete analysis, please refer to, e.g., [2]. Maintz and Viergever [25] originally
proposed a nine-dimensional scheme that can be condensed into the following eight
criteria [22]: image dimensionality, registration basis, geometrical transformation,
degree of interaction, optimization procedure, image acquisition modalities, sub-
ject, and object.

Image dimensionality refers to the number of geometrical dimensions of the
image spaces involved, which in medical applications are typically two and three-
dimensional, but may include time as a fourth dimension. For spatial registration,
there are the 2D/2D, 3D/3D and the more complex 2D/3D registration (e.g., CT/X-
ray).

The registration basis is the aspect of the two images used to perform the reg-
istration. In this category, registration can be classified into extrinsic and intrinsic
methods. Registration methods that are based upon the attachment of markers are
termed extrinsic methods, and in contrast, those which rely on anatomic features
only are termed intrinsic. When there are no known correspondences as input, in-
tensity patterns in the two views are used for alignment. A basis known as intensity-
or voxel -based, has become in recent years the most widely used registration ba-
sis in medical imaging. Here there are two distinct approaches: the first reduces
the image gray value content to a representative set of scalars and orientations (e.g.
principal axes and moments based methods), the second uses the full image pixel
content throughout the registration process. In general, intensity-based methods are
more complex, yet more flexible.

The category geometrical transformation refers to the mathematical forms of the
geometrical mapping used to align points in one space with those in the other. These
include rigid transformations, which preserve all distances, i.e., transformations that
preserve the straightness of lines - and hence planarity of surfaces - and all angles
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between straight lines. Images are rotated and translated in two or three dimen-
sions in the matching process, but not deformed in any way. This is ideal for most
fusion applications, and accounts for differences such as patient positioning. Reg-
istration problems that are limited to rigid transformations are called rigid regis-
tration problems. In deformable or non-rigid registration, images are stretched to
take into account complex motions, such as breathing, and any changes in the shape
of the body or organs, which may occur following surgery, for example. Non-rigid
transformations are important not only for applications to non-rigid anatomy, but
also for inter-patient registration of rigid anatomy and intra-patient registration of
rigid anatomy, in those cases where there are non-rigid distortions caused by the
image acquisition procedure. These include scaling transformations, with a special
case when the scaling is isotropic, known as similarity transformations; the more
general affine transformations that preserve the straightness of lines and planarity
of surfaces, as well as parallelism, but change the angles between lines; the even
more general projective transformations that preserve the straightness of lines and
planarity of surfaces, but no parallelism; perspective transformations, a subset of
the projective transformations, required for images obtained by techniques such as
X-ray, endoscopy or microscopy, and finally curved transformations which do not
preserve the straightness of lines. Each type of transformation contains as special
cases the ones described before it, e.g., rigid transformations are a special type of
non-rigid transformations, and so on. Transformations that are applied to the whole
image are called global, while transformations that are applied to subsections of
the image are called local. Rigid, affine and projective transformations are gener-
ally global, and curved transformations are more or less local, depending upon the
underlying physical model used.

Degree of interaction refers to the degree of intervention of a human operator
in the registration algorithm. The fully automatic algorithm, which requires no user
interaction and represents the ideal situation, is a central focus of the subtraction
service presented in this chapter.

The optimization procedure is the method by which the function that measures
the alignment of the images is maximized. Depending upon the mathematical ap-
proach to registration used, i.e., parametric or non-parametric, the optimization
method will try to find an optimum of some function defined on the parameter
space, or will try to come up with an appropriate measure, both for the similarity
of the images as well as for the likelihood of a non-parametric transformation. The
more common situation here is that in which a global extremum is sought among
many local ones by means of iterative search. In parametric registration, popular
techniques include traditional numerical methods like Powell’s method [36], Down-
hill Simplex [24], gradient descent methods, as well as evolutionary methods like
genetic algorithms [27], simulated annealing [39], and differential evolution [30].

Modalities refers to the means by which the images to be registered are acquired.
Two-dimensional images are acquired, e.g., by X-ray projections captured on film
or digitally, and three-dimensional images are typically acquired by tomographic
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modalities such as computed tomography (CT), nuclear magnetic resonance (MRI),
or positron emission tomography (PET). In medical applications the object in each
view is some anatomical region of the body. In all cases we are concerned primar-
ily with digital images stored as discrete arrays of intensity values. Registration
methods used for like modalities are typically distinct from those used for differing
modalities. They are called mono-modal and multi-modal registration, respectively.

Subject refers to patient involvement and there can be intra-patient registration
involving images of the same patient, inter-patient registration involving images of
different patients, and atlas. Atlas refers to registration between an image acquired
from a single patient and an image constructed from an image database of many
patients.

Finally, object refers to the particular region of anatomy to be registered, e.g.,
mandible.

The subtraction service presented in this chapter is an application of parametric
registration of X-ray images, and uses an automatic and intensity-based registration
method. Furthermore, a real encoding and distributed evolutionary algorithm is used
to find the projective transformation that aligns the images.

25.2.2 High Performance Computing

Technology plays a critical role today to help academics to do research more effec-
tively. Most research relies on high performance computing for data-intensive appli-
cations, information access, visualization and communications. The last decade has
seen a considerable increase in the performance of computers and communication
networks, mainly due to faster development of hardware and more elaborate soft-
ware. However, there are still many problems associated with algorithms in the fields
of science, engineering and business, which cannot be managed efficiently with the
current generation of supercomputers. This inefficiency is reflected in several neg-
ative factors associated with the supercomputer: high cost1, complex maintenance
and administration, limited scalability, rapid obsolescence.

Another option is to link together an homogeneous set of high performance
servers or personal computers [40] by means of a fast local area network. These
are known as computer clusters and can provide a computing capacity similar to
that provided by supercomputers, at a fraction of their cost.

A number of teams have conducted studies on the cooperative use of geograph-
ically distributed resources conceived as a single powerful virtual computer [11].
This alternative approach is known by several names, such as, meta-computing,
global computing, and more recently by grid computing. Internet and grid-based
systems, whether their purpose is computation, collaboration or information shar-
ing, are all instances of systems based on the application of fundamental principles
of distributed computing. Grid computing is a set of standards and technologies
that academics, researchers, and scientists around the world are developing to help

1 The IBM Roadrunner, number one in the TOP500 list as of the end of 2008: about 130
million dollars (http://en.wikipedia.org/wiki/IBM_Roadrunner).

http://en.wikipedia.org/wiki/IBM_Roadrunner


25 A Distributed Evolutionary Approach to Subtraction Radiography 677

organizations take collective advantage of improvements in microprocessor speeds,
optical communications, raw storage capacity, and the Internet. By using the tech-
nique to disaggregate their computer platforms and distribute them as network
resources, researchers can vastly increase their computing capacity. Linking geo-
graphically dispersed and heterogeneous computer systems can lead to important
gains in computing power, speed, and productivity.

When the unGrid2 research project started back in 2004, there were already sev-
eral thousand personal workstations in the main university campus (Bogotá), inter-
connected by a back bone of high speed fiber optics (FDDI). Studies carried out on a
random sample of more than two hundred of these computers, showed that an aver-
age of 90% of the CPU cycles were wasted. Our research group - like most research
groups at the university - requires a significant computing capacity and based on
the fact that no other computing facilities were available at that time, we started the
development of a software framework that would allow us to benefit the idle CPU
cycles, and use it to build a general purpose computing grid.

There are many design choices to be made along the way to building a computing
grid for research purposes. The first one and most determining factor, is related with
a software layer that lies between the user applications and the operating system, a
technology known as middleware.

Fig. 25.1 The easiest way to integrate heterogeneous computing resources is not to recreate
them as homogeneous elements, but to provide a layer that allows them to communicate
despite their differences. This software layer is commonly known as middleware

This layer is responsible for hiding distribution and the heterogeneity of the var-
ious hardware components, operating systems and communication protocols. At its
most basic level, middleware is nothing but a way of abstracting access to a re-
source through the use of an Application Programming Interface (API). Despite
their benefits, distributed systems can be notoriously difficult to build. Perhaps the
most obvious complexity is the variety of machine architectures and software plat-
forms over which a distributed application must function. In the past, developing
a distributed application entailed porting it to every platform it would run on, as
well as managing the distribution of platform-specific code to each machine. Most
of the computers in the University campus are used in academic related tasks and

2 Please refer to http://ungrid.unal.edu.co/

http://ungrid.unal.edu.co/
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use a variety of operating systems, a fact that clearly indicated the necessity of a
platform-independent middleware. Additionally, the computing grid would be part
of a bigger system3 that uses a service-oriented architecture (SOA), so it should act
as another service.

Another important aspect to be considered was related to the available computing
infrastructure. Contrary to what happens with computers in a cluster, that are ded-
icated and under a single administration domain, the computers in the campus are
shared and belong to many different domains. This meant that the computers would
frequently enter and leave the grid at random, and therefore the middleware to use
should allow us to build a loosely coupled system, in space (network addresses) and
time (synchronization).

25.3 A Grid Computing Framework for Medical Imaging

Based upon the previous considerations, and a thorough analysis of the available
middleware technologies at that moment, we decided to use the Java-based Jini4

platform on top of which construct our computing grid. Jini, an open source tech-
nology that now is part of the Apache project River [3], is a service-oriented technol-
ogy that provides a platform and protocol-agnostic infrastructure to build distributed
systems. This includes services for the registration and discovery of other services,
distributed events, transactional support like that one provided by relational database
engines, and most important for us, the JavaSpaces service. This technology is a
high-level coordination tool for gluing processes together into a distributed applica-
tion by means of a minimal, yet powerful, programming interface. It is a departure
from conventional distributed tools which rely on passing messages between pro-
cesses (MPI), or invoking methods on remote objects (RPC), and produce inherently
tightly coupled systems. The JavaSpaces technology uses a fundamentally different
approach that views a distributed application as a collection of processes cooperat-
ing via the flow of objects into and out of one (or more) distributed shared-memory
space. The space-based model of distributed computing has its roots in the Linda
coordination language developed by Dr. Gelernter at Yale University [5].

A space, in this context, is a shared and network-accessible repository for ob-
jects that processes can use as persistent storage and exchange mechanism: instead
of communicating directly, they coordinate by exchanging objects through spaces,
as shown in Figure 25.2. Despite its minimal programming interface, JavaSpaces
provides a unique set of features that allows for the construction of loosely coupled
and transactionally secure distributed applications, and as we will show next, for the
implementation of computing grids with automatic load balancing.

Spaces allow the exchange of objects, that is, self-contained entities that include
data and related code. While in the space, objects are just passive data, but when read

3 The system now includes services for data mining, machine learning, simulation and visu-
alization, and image analysis. For detailed information please refer to
http://www.bioingenium.unal.edu.co/

4 Java, Jini and JavaSpaces are trademarks of Sun Microsystems Inc.

http://www.bioingenium.unal.edu.co/
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Fig. 25.2 Space-based coordination by means of a simple programming interface

or taken out from the space they transform themselves into standalone applications.
This not only solves the problem of code distribution, but also gives us a powerful
mechanism for building parallel computing servers. The application pattern use for
this is known as the Replicated-Worker pattern [9], and involves a master process
that divides a problem into smaller tasks and puts them into a space. The workers
take and execute these tasks, and write the results back into the space. It is then
the responsibility of the master to collect the task results and combine them into a
meaningful overall solution.

It is worth pointing out a couple of important characteristics of this pattern.
First, each worker process may execute many tasks, as soon as one task is com-
puted a worker can take another task from the space and execute it. In this way, the
replicated-worker pattern automatically balances the load: workers compute tasks in
direct relation to their availability and capacity to do the work. Second, the type of
applications that fit into the replicated-worker pattern scales naturally: more work-
ers can be added and the computation speeds up, without rewriting the code. The
Appendix section shows how the JavaSpaces API and the replicated-worker pattern
can be used to build a generic worker node.

Another important issue that has to be addressed when implementing a dis-
tributed system is related to the following. So far, we have discussed several tools
that Jini provides and that help obtain fault tolerance in the worker nodes. However,
the set of Jini services run in a server computer, a situation known as a single point of
failure (SPOF). This means that if this single server computer fails for some reason,
the whole computing grid goes down. To avoid this situation, we have embedded our
computing grid service, along with Jini, in a layered application (JEE). The service
is then run in a cluster of six application servers using two open source frameworks:
the application server JBoss [26] and the clustering tool Terracotta [41].
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Fig. 25.3 Space-based replicated-worker design pattern

25.4 Case Study: Automatic Subtraction Radiography Using
Distributed Evolutionary Algorithms

Digital subtraction radiography detects tissue mass changes by subtracting two dig-
ital radiographs. This method was shown to be very useful in early diagnosis of
disease and follow-up examination [1]. When subtracting two radiographs taken
over time, the image features which are coincident to both images can be removed
and the small changes can be amplified to highlight their presence. For many years,
digital subtraction radiography in dentistry has been used to qualitatively assess
changes in radiographic density. Numerous authors have demonstrated the ability
of this method to improve diagnostic performance for the detection of approximal
dental caries, periapical pathology and periodontal disease, e.g. [14]. A large vari-
ety of odontological diseases result in destruction of mineralized tissues, which are
relatively small in the initial progression of the disease. A reliable detection and
follow-up examination necessarily requires a precise alignment of the two images
for the tissue changes to be detectable.

Multiple works in the literarture address the problem of image registration by
means of evolutionary algorithms. The 2D intensity-based method proposed by
Gómez Garcı́a et al. in [18], for instance, uses a (μ + λ ) evolutionary strategy
(μ = 250, λ = 50) for optimization and a multiscale representation of the images to
reduce the search space. For the same problem, Yuan et al. [43] propose a feature-
based method that uses a (μ ,λ ) selection scheme (μ = 50, λ = 300). Cordón et
al. [17] extend the binary-coded CHC algorithm [33] to work with real-coded chro-
mosomes and successfully apply it to 3D registration. Particularly, De Falco et al.
[20] show the ability of Differential Evolution to perform well in satellite image
registration and raise its possible use in medical image registration.

In this section we will evaluate a standard numerical technique, the Downhill
Simplex method, and two evolutionary strategies: Genetic Algorithms and Differ-
ential Evolution.
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25.4.1 Problem Statement

Different approaches have been proposed for correcting such geometrical distor-
tions. It goes from manual correction to different devices used to ensure a consistent
geometric projection which can be reliably reproduced over time. In daily medical
practice, however, devices for adequate patient fixation are not available to clini-
cians, a drawback that has not allowed the application of this method to the series of
routine examinations needed for progression estimation of lesions or treatments. In
fact, since most clinicians do not pay attention to this issue, radiographic examina-
tions generally produce strong geometrical distortions which makes it inappropriate
to apply conventional correction approaches. Under these circumstances, standard
numerical techniques for extrema searching like the Powell’s [36] method or the
Downhill Simplex method [24] usually yield irrelevant results.

In this section, an entirely automatic method is proposed for spatial radiographic
alignment in those cases where a considerable amount of distortion is presented.
The process starts by selecting one of the two images as the reference while the
other is considered to be the template image. Afterwards, illumination differences
are eliminated by means of an equalization algorithm explained below. Consecutive
geometrical transformations are then performed on the template image, and the out-
come is compared to the reference image using the correlation ratio as the similarity
measure.

Conventional registration approaches have been successfully used in those situ-
ations where the patients head has been appropriately fixated, therefore producing
images with little distortions. However, anatomical variations either from patient to
patient or for the same patient in two different moments, have been a major incon-
venience for radiographic subtraction to become an applicable method in routine
evaluations. Our problem can be defined, therefore, as a multi-parametric search
in a highly irregular space of possible transformations, for which conventional ap-
proaches have a high probability of remaining trapped in local extrema.

25.4.2 Parametric Transformations

Small tissue deformations are conveniently modeled using affine or projective trans-
formations. The genetic algorithm presented below is based on a previous work by
the authors [12]. In this work, affine transformations were used to register the im-
ages, i.e., only translation in the x and y axes, rotation in the z axis, and scaling
were considered. Experimental results obtained in that opportunity, showed that the
capacity of the algorithm to correctly register images, significantly deteriorated in
the presence of very strong misalignments. Further studies allowed us to determine
that affine transformations were not enough to properly model the acquisition ge-
ometry, and that also rotations in the x and y axes should be taken into account. The
projective transformations applied in this work can be defined using homogeneous
coordinates such as:
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Therefore, the new coordinates (x′,y′) of pixels (x,y) in the template image, are
given by x′ = (a1x + a2y + dx)/(a5x + a6y + 1) and y′ = (a3x + a4y + dy)/(a5x +
a6y + 1).

25.4.3 Similarity Measure

The mutual information measure, successfully applied to multimodal image regis-
tration [25, 38], assumes only statistical dependence between image intensities. It
treats intensity values in a purely qualitative way, without considering any correla-
tion or spatial information conveyed by nearby intensities. Mutual information tries
to reduce entropy and this can be observed as a trend to form intensity clusters in
the joint histogram. In the problem of radiography subtraction, since it deals with
mono-modal images of natural tissue, the mutual information measure is under-
constrained and a functional correlation can be assumed.

The concept of functional dependence, fundamental in statistics, provided us with
the framework for the computation of similarity between the two images. To use this
concept we consider images as random variables and interpret an image histogram
as its probability density function. Furthermore, we consider the 2D histogram of a
pair of images as their joint probability density function as proposed in [42]. Thus
when a pixel is randomly selected from an image X having N pixels, the probabil-
ity of getting an intensity i is proportional to the number of pixels Ni in X having
intensity i, i.e.,

P(i) =
Ni

N
. (25.3)

In order to define the joint probability density function of an image pair, we consider
two images (X ,Y ) and a spatial transformation T that maps the set of pixels of Y ,
Ωy, to the set of pixels of X , Ωx. Since we are working with digitized radiographs,
we can also assume that images X and Y take their intensity values from a known
finite set A = 0, ...,255:

X : Ωx → A

Y : Ωy → A .

Now, by applying transformation T to image Y , a new mapping is defined from the
transformed positions of Y to A :

YT : T (Ωy) → A ,

ω  → Y [T−1(ω)].

We now have to find the intensities that a given point of T (ωy) simultaneously takes
in X and YT . Since we are dealing with continuous spatial transformations, points of
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the grid T (ωy) do not, in general, transform to points of the grid ωx . So, in order to
define the joint probability density function of the images, we used the interpolation
approach explained below, discarding the points of T (ωy) that do not have eight
neighbors in ωx. If we denote by T (ωy)∗ the subset of accepted points and by X̃ the
interpolation of X , we can define the image pair as the following couple:

ZT : T (Ωy)∗ → A 2,

ω  → (
X̃(ω),Y [T−1(ω)]

)
,

and, in a similar way as we did for a single image in Eq. (25.3), their joint probability
density function as:

PT (i, j) =
Card {x | ZT (x) = (i, j)}

Card T (Ωy)∗
. (25.4)

On the other hand, the total variance theorem:

Var(Y ) = Var [E(Y |X)]+ EX [E(Y |X = x)] , (25.5)

expresses the fact that the variance can be decomposed as a sum of two energy terms:
a first term Var [E(Y |X)] that is the variance of the conditional expectation and mea-
sures the part of Y which is predicted by X , and a second term EX [E(Y |X = x)]
which is the conditional variance and stands for the part of Y which is functionally
independent of X .

Now, based on the previous equation that can be seen as an energy conserva-
tion equation, we can define the correlation ratio as the measure of the functional
dependence between two random variables:

η(Y |X) =
Var [E(Y |X)]

Var(Y )
.

Unlike the correlation coefficient which measures the linear dependence between
two variables, the correlation ratio measures the functional dependence. The corre-
lation ratio takes on values between 0 and 1, where a value near 1 indicates high
functional dependence. Then, for a given transformation T , in order to compute
η(YT |X) we can use the following equation:

1−η(YT |X) =
EX [Var(YT |X = x)]

Var(YT )
,

that by means of Eq. (25.4) and Eq. (25.5) can be expressed as:

1−η(YT |X) =
1
σ2 ∑

i

σ2
i Px,T (i),
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where
σ2 =∑

j

j2Py( j)−m2, m =∑
j

jPy( j),

and

σ2
i =

1
Px(i)

∑
j

j2P(i, j)−m2
i , mi =

1
Px(i)

∑
j

jP(i, j).

The correlation ratio measures the similarity between two images, and since it is
assumed to be maximal when the images are correctly aligned, it will be used to
compute the fitness of the individuals that make up the algorithm population.

25.4.4 Optimization Problem

The problem faced is to find the transformation that maximizes the correlation ratio
between a pair of images. The parameters to be found are the eight parameters that
define the required projective transformation.

25.4.5 Interpolation Approach

In terms of linear interpolation, the reconstructed signal is obtained by convolution
of the discrete signal (defined as a sum of Dirac functions) with a convenient se-
lected kernel. We used spline interpolation due to its accuracy and acceptable com-
puting speed. Spline interpolation of order n is uniquely characterized in terms of a
B-spline expansion:

s(x) =
∞

∑
κεZ

c(κ)β n(x−κ),

which involves integer shifts of the central B-spline. The parameters of the spline
are the coefficients c. In the case of images with regular grids, they are calculated at
the beginning of the procedure by recursive filtering. A three-order approximation
was used in the present work.

25.4.6 Search Strategy

Evolutionary algorithms (EA) represent a subset of evolutionary computation and
use mechanisms inspired by biological evolution: recombination, mutation, and se-
lection. By simulating the natural selection process, where the fittest individuals are
more likely to survive, these algorithms can be used to find approximate or even
exact solutions to optimization problems. Candidate solutions to the optimization
problem play the role of individuals in a population, and the fitness function de-
termines the environment within which the solutions live, also known as the cost
function.

Evolutionary algorithms are implemented as a computer simulation in which a
population of abstract representations of candidate solutions evolves towards bet-
ter solutions. These representations are called chromosomes (or the genotype of
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the genome), and the candidates are called individuals or phenotypes. Traditionally,
individuals are represented as binary strings, but as we shall see, real number en-
coding is also possible. The evolution usually starts from a population of randomly
generated individuals and occurs in generations. In each generation, the fitness of
every individual in the population is evaluated, multiple individuals are stochasti-
cally selected from the current population, recombined and mutated to form a new
population. The new population is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when either an adequate fitness level has been
achieved, a maximum number of iterations has been reached, or, as in our case, the
available computational time is exausted.

Despite their computational cost, evolutionary algorithms have been chosen over
standard numerical methods because of their strong immunity to local extrema, their
intrinsic parallelism and robustness, as well as their ability to cope with large and
irregular search spaces. In this section we compare two simple evolutionary algo-
rithms categorized as parallel iterative [28]: a Genetic Algorithm (GA) and Dif-
ferential Evolution (DE). Genetic algorithms are attributed to Holland (1975) [27]
and Goldberg (1989) [7], while evolution strategies were developed by Rechenberg
(1973) [21] and Schwefel (1995) [19]. A good and diverse set of GA examples is
synthetized in Chambers [31], while a practical approach to Differential Evolution
can be found in [30]. Both approaches mimic Darwinian evolution and attempt to
evolve better solutions through recombination, mutation, and selection. However,
some distinctions do exist. DEs are very effective in problems of continuous func-
tions optimization, in part because they use real encoding and arithmetic operators.
Since GAs generally encode parameters as binary strings and manipulate them with
logical operators, they are more suited to combinatorial optimization.

Upon analyzing the most relevant works in this area, it can be concluded that
the most crucial aspects refer to the selection of the coding scheme and the design
of the fitness function. All seem to agree that for this kind of optimization problem,
real-number encoding performs better than both binary and Gray encoding [34]. Ac-
cordingly for the problem at hand, in both evolutionary algorithms the chromosome
has been coded as eight floating point numbers representing the set of parameters
used in the projective transformation. The initial population includes an individual
that is either the null transformation or the center of mass transformation, according
to their respective fitness. The rest of the population is generated randomly within
the search space.

The fitness of each individual, indicating the similarity between the transformed
image and the reference image, is then computed using the correlation ratio previ-
ously described. Selection in the GA is performed as follows. The fittest ten percent
of the population is selected to be part of the next generation, a facet known as ex-
ploitation. The rest of the individuals are the result of either crossver (pc = 0.85
in our implementation) or random selection. In the case of crossover, the parents
of each new offspring are selected by tournament (5% the size of the population)
from the current population. Finally, leaving unmodified the individuals selected by
elitism (the evolution history), new candidate individuals are mutated according to
a predetermined probability (pm = 0.21), known as the exploration characteristic.
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Crossover in the GA is performed applying a convex operator as suggested by
Davis in [32]. The genes of an offspring chromosome are then the result of a con-
vex interpolation of the parameters of the two mates. A mutation operator is applied
to guarantee that the probability of searching a particular subspace of the problem
space is never zero. This prevents the algorithm from becoming trapped in local
extrema [7]. The mutation operator used, known as real number creep, sweeps the
individual adding or subtracting a Gaussian distributed random noise to each pa-
rameter [32]. The creep operator implemented is a neighborhood search that looks
in the vicinity of a good solution, to see if a better one exists.

By contrast, in DE all individuals undergo mutation, recombination, and selec-
tion. Mutation starts by randomly selecting three individuals (vectors in DE termi-
nology) and adding the weighted difference of two of the vectors to the third, and
hence the name differential mutation. The resulting vector is called the donor vector.
For recombination, a trial vector is developed from the elements of the target vector
and the elements of the donor vector. The elements of the donor vector enter the
trial vector with a given probability (Cr = 0.5). In this step, to ensure that the trial
vector results effectively different from the target one, one of the elements of the
donor vector is selected at random and entered directly into the trial vector. Finally,
target and trial vectors are compared and the one with the higher similarity measure
is selected to be part of the next generation.

This process is repeated in both algorithms until some stopping criterion is
reached. In our example, given that we receive a large variety of cases, a prede-
termined similarity measure is ineffective as the only stopping criterion. For this
reason, the actual stopping criterion in our case is given by a maximum number of
allowed iterations that is computed as follows. The available processing time span is
about 12 hours, and since each iteration takes an average of 250 ms, we can make an
estimate of the overall number of iterations that can be performed from one day to
the next. Also, according to tests carried out with synthetic images, it has been deter-
mined that to obtain acceptable results, at least 200 iterations are required. Based on
these considerations and the number of images to be processed, we precompute the
number of times the algorithm can be executed for each pair of radiographs in the
daily batch. The algorithm is then executed the maximum number of times possible
and the best result obtained is the one used for the subtraction process.

25.4.7 Algorithms Distribution

The evaluation of the fitness function consists in applying a projective transforma-
tion and then computing the corresponding correlation ratio. This computational
intensive operation (see Figure 25.4) is required for each individual of the popula-
tion. Since the operation can be computed independently for each individual, this
part of the algorithm was parallelized and executed on the computational grid pre-
viously described. The execution of the evolutionary algorithms uses 120 worker
nodes: general purpose workstations, a 1GHz processor on average and memory
ranging from 256 to 512 Mbytes. The source code of the implemented distributed
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Fig. 25.4 Timing profile for the parallel iterative algorithm showing the percentage time
required for each operation

algorithms, as well as additional documentation regarding the computational grid,
can be found on the unGrid project site (http://ungrid.unal.edu.co/).

25.4.8 Algorithms Validation

To validate the correctness of the evolutionary algorithms implemented, two sets
of experiments were conducted. In both cases, the algorithms were compared to a
standard numerical method, the Downhill Simplex method devised by Nelder and
Mead. This method was chosen because of its ease of implementation and because,
amid the standard numerical optimization methods, it is the least sensitive to initial
conditions. First, a series of synthetic images was created by applying a set of known
transformations to ten reference radiographs. Then the transformed images were
registered to the original ones to verify the ability of each algorithm to find the
original values used in the transformation. In the second batch of experiments the
algorithms were evaluated with pairs of images obtained from real radiographs.

The set of synthetic images was created by applying the transformations shown
in Table 25.1, using a reliable image processing program. The algorithms were ex-
ecuted ten times for each pair of reference and template images. The GA and DE
algorithms were executed on the computational grid, while the Downhill Simplex
implementation was executed on a single machine of the same grid, using its full
processor capacity.

For the set of synthetic images, the transformation values and correlation ratio
obtained by the Downhill Simplex method, the Genetic Algorithm, and Differential
Evolution are presented in Table 25.2, Table 25.3, and Table 25.4, respectively.

From these results, it can be concluded that for deformations in the expected
range, both evolutionary algorithms outperform the Downhill Simplex algorithm
and provide clinically acceptable registration accuracy. Moreover, Table 25.4 shows
that the DE algorithm produces the most accurate results.

For the second experiment, a group of ten intra-oral radiograph pairs, taken on
different occasions, was randomly selected from an unrelated study of periodontal
therapy. No film holders or any other fixation device were mechanically coupled to
the cone of the X-ray machine. Radiographs were digitized in a HP 3570 scanner

http://ungrid.unal.edu.co/
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Table 25.1 Some combinations of rotation, scaling, and translation applied to the set of syn-
thetic images

θx θy θz Tx Ty SF a

1 1 1 1 10 10 0.8
2 10 1 1 10 10 0.8
3 10 10 1 10 10 0.8
4 10 10 10 10 10 0.8
5 10 10 10 100 10 0.8
6 10 10 10 100 100 0.8
7 1 1 1 10 10 1.2
8 10 1 1 10 10 1.2
9 10 10 1 10 10 1.2
10 10 10 10 10 10 1.2
11 10 10 10 100 10 1.2
12 10 10 10 100 100 1.2

a SF: scale factor, angles expressed in degrees and translations in pixels.

Table 25.2 Values found by the Downhill Simplex algorithm

θx θy θz Tx Ty SF CR a Error %

1 0.91 0.88 1.17 8.55 8.78 0.88 0.67 12.5
2 12.32 1.15 0.76 8.75 11.74 0.81 0.61 15.6
3 11.15 8.16 0.91 13.28 10.98 0.83 0.64 14.2
4 13.98 7.75 12.24 7.34 8.68 0.79 0.50 21.0
5 8.11 8.12 10.83 76.16 7.74 0.78 0.60 15.8
6 7.98 10.71 12.77 91.21 129.05 0.67 0.56 18.2
7 1.11 0.96 0.87 8.15 10.78 1.08 0.71 10.7
8 7.12 0.95 0.82 9.05 10.54 1.04 0.65 13.3
9 7.67 12.98 1.31 6.55 8.13 1.42 0.40 25.9
10 8.73 9.01 11.96 13.34 12.26 1.41 0.53 19.3
11 10.98 12.85 7.77 87.14 7.76 1.01 0.55 18.6
12 11.96 6.72 6.11 111.17 132.32 1.39 0.42 25.1

a CR: correlation ratio.

using a transparent material adapter at a resolution of 600 × 600 DPI, producing
724 × 930 pixel images.

Even though acquisition conditions are standardized as much as possible, illumi-
nation differences are inevitable. Thus, the histogram of the template image is equal-
ized by using the reference image luminances. This transformation first computes
the histogram of each image and then luminances are homogeneously distributed in
the template image according to the levels found in the reference image. The prop-
erties compared in this experiment were accuracy, in terms of the similarity measure
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Table 25.3 Values found by the Genetic Algorithm

θx θy θz Tx Ty SF CR Error %

1 0.98 1.03 0.96 9.65 10.15 0.81 0.87 2.5
2 11.01 0.99 1.01 9.43 9.96 0.82 0.85 3.5
3 9.47 10.03 1.03 9.15 11.37 0.82 0.81 5.6
4 8.69 8.98 9.21 9.99 10.50 0.79 0.79 6.3
5 10.1 10.93 11.10 96.04 13.34 0.78 0.72 10.2
6 8.76 11.23 11.52 115.88 96.13 0.82 0.71 10.4
7 1.03 1.09 0.99 10.12 10.35 1.21 0.86 3.1
8 9.44 0.95 0.89 9.53 9.66 1.16 0.81 5.5
9 10.91 9.78 1.11 9.01 11.00 1.23 0.77 7.7
10 9.62 10.12 10.52 11.08 11.10 1.22 0.79 6.4
11 9.63 9.21 10.09 92.77 12.96 1.32 0.73 9.5
12 12.08 10.23 8.91 93.49 108.65 1.34 0.72 10.0

Table 25.4 Values found by Differential Evolution

θx θy θz Tx Ty SF CR Error %

1 0.99 0.99 1.02 9.66 9.78 0.82 0.88 2.0
2 10.05 0.98 0.99 9.55 9.36 0.81 0.87 2.6
3 9.77 10.02 1.03 10.1 10.99 0.83 0.85 3.4
4 9.01 9.57 9.52 9.98 10.02 0.80 0.85 3.5
5 10.2 9.78 11.1 95.99 11.34 0.81 0.81 5.6
6 9.06 10.55 9.43 92.77 117.31 0.82 0.76 7.9
7 0.98 0.97 1.01 9.88 10.02 1.10 0.87 2.6
8 10.2 0.97 0.91 10.53 9.87 1.15 0.84 4.1
9 9.85 10.15 0.97 10.9 10.7 1.19 0.84 3.8
10 10.34 9.88 9.68 10.95 9.15 1.18 0.83 4.6
11 10.65 10.37 9.76 109.01 9.13 1.19 0.82 5.2
12 9.19 9.39 10.91 110.56 92.28 1.17 0.77 7.4

obtained, and efficiency, in terms of execution time and use of resources. All algo-
rithms were coded in the same programming language and use the same routine to
compute the correlation ratio between the transformed and reference images. For
this comparison, the three algorithms were also executed ten times for each pair of
radiographs. A summary of the results obtained is presented in Table 25.5:

As expected, the Downhill Simplex method appeared to be very sensitive to the
initial parameters and not always converged to the global optimum. While in some
executions it obtained better results than the EAs, in other executions it produced
meaningless values and this is reflected in the low overall accuracy shown in Ta-
ble 25.5. Again, the DE algorithm consistently outperformed the GA and for that
reason it is the algorithm currently used in production. It is also important to note
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Table 25.5 DS-GA-DE performance comparison

Property DS GA DE

Average Correlation Ratio 0.63 0.81 0.83
Average Execution Time (secs) 52 50 48
Number of CPUs 1 120 120

that the computational grid, used to run the EAs, only uses the free CPU cycles of
the computers that make it up.

Fig. 25.5 shows a pair of radiographs to be subtracted (top row). The bottom row
displays subtraction without geometric correction on the left and with correction on
the right. Null intensity level is shifted to 128 in order to make tissue changes easily
observed. In this particular example, it can be appreciated that the match is precise
enough to make objective measurements despite the fact that in the second radio-
graph, the fifth tooth (from left to right) is nearly hidden. The small spot, possibly
an artifact, that appears in both images is observed in the resulting image in white,
indicating that new tissue developed. In this image it can also be observed that a
difference appears at the root of the third tooth which corresponds to new tissue
developed after treatment. These changes are impossible to observe in the raw dif-
ference image (bottom left). Similarly, in this image the bone pattern is blurred and
impossible to recognize, while in the resulting image the trabecular bone pattern is
clear. For the entire set of test images, matching has been visually assessed by two
experts in the field. They judged that the alignment was sufficiently accurate to get
objective measurements while maintaining acceptable computation times.

For the GA, 4580 experiments were performed in order to guarantee a complete
analysis of the parameter space. An experiment is the execution of the algorithm
with a particular set of images and parameters, i.e. population size, tournament size
and genetic operators probabilities. In this task the grid became an essential tool and
allowed us to achieve a second level of parallelism. The first analysis was conducted
to determine two basic parameters of the algorithm: population size and selection
scheme used to choose the parents for crossover. The experiments showed that the
optimum population size for this problem is 120. Two common selection options are
tournament selection and elitism. In tournament selection of size N, N individuals
are selected at random and the fittest is chosen. Elitism is a particular case of tour-
nament selection where the size of the tournament equals the size of the population,
so the best individual is always preserved. For this problem, tournament selection of
size 12 is the best option for selecting the parents for a new generation. The other pa-
rameters analyzed were the crossover and mutation probabilities. The combination
of probabilities that yielded the best results were 0.85 and 0.21 respectively.

Another advantage of the DE algorithm over the GA is that it only uses two pa-
rameters: the scale factor F , that controls the rate at which the population evolves,
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Fig. 25.5 The upper row shows the two images to subtract. Bottom row shows the subtracted
images: left without geometrical correction and right after automatic correction

and the uniform crossover probability Cr. This makes the analysis of the parameter
space simpler and therefore tuning of the algorithm becomes easier. The values
found for the DE algorithm are F = 0.5 and Cr = 0.5.
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25.4.9 The Subtraction Service

The medical imaging community has a growing need for Internet-aware tools that
facilitate interaction with remote data in a collaborative way. Such medical imag-
ing data typically requires special-purpose tools that come in the form of stand-alone
and non-portable applications, i.e., software to be manually installed and maintained
on a local computer. This is possible provided there is an available binary version
for the particular platform in use, or the source code is publicly obtainable and the
user is responsible for gathering the required libraries and tools, and compiling the
source code. There is also a growing need in the medical imaging community for
Internet-aware software tools that facilitate collaborative data analysis and visual-
ization. Research projects and clinical studies require a medium for a geographi-
cally dispersed scientific and clinical community to interact and examine medical
imaging data via the Internet. Additionally, health care and medical research rely
increasingly on the use of computationally intensive algorithms.

The service-oriented model proposed has many advantages over the stand-alone
application model. First and foremost, it avoids the user having to manually install
the software. All that is needed is a standard web browser and an Internet connec-
tion: the platform dependency is no longer an issue. In addition, updates are made on
the server side and automatically propagate to all service users. By having redundant
and clustered servers it is possible to attain high data availability, something difficult
-if indeed possible- with a personal workstation. Finally, and most important, the
service-oriented paradigm leverages interdisciplinary and collaborative work, one
critical success factor in biomedical practice and research. This section will present
a service-oriented model for medical imaging via the Internet. Services are accessed
via a standard web browser, however the essential tools also work off-line. This is
accomplished by using a local server and a local database, and synchronizing data
when the user goes back online.

The proposed architecture for this model is basically an enhanced version of a
standard client-server architecture (see Figure 25.6). The difference lies in the addi-
tion of a local server that allows for the basic services to keep functioning without
an active Internet connection. The proxy component is responsible for providing the
essential functionality when the user is disconnected from the Internet, and for syn-
chronizing data with the server when the connection is active again. To accomplish
this, the local server is connected to a lightweight relational database engine that
allows the client application to store, search and recover data using the structured
query language (SQL).

On the client side, services are accessed using a standard web browser. In our
implementation, all services use a digitally-signed Java browser extension (“applet”)
that takes care of the installation of the local server and other required tools such as
the database engine (e.g. Apache Derby) and OpenGL5 libraries. Additionally, the
applet provides the tools for visualization, manipulation and light processing tasks
such as image reconstruction and geometric transformations. On the server side, and
behind a pool of web servers, there is a high-availability cluster that provides access

5 OpenGL is a registered trademark of Silicon Graphics Inc.



25 A Distributed Evolutionary Approach to Subtraction Radiography 693

Fig. 25.6 Overall architecture of the subtraction radiography service, showing the protocols
used for communication between neighbouring components

to the computing grid (HPC). The cluster is based on the Rocks cluster distribution
[13] and Sun Grid Engine [37], and uses peer-to-peer technologies - a replicated,
distributed, transactional tree-structured cache - to avoid the appearence of a single-
point of failure (HA).

The subtraction service provides two modes of operation: an interactive mode
and a batch mode. In the first mode, the user loads the images to register, and in-
teractively drags, rotates and scales the template image to align it manually. Once
registered, the images can be subtracted and the difference visualized. Since this is
a lightweight operation, it is carried out completely on the client side. However, the
user can choose to register the images automatically. In this case, the images are up-
loaded to the server (if not already there), and then registered by the aforementioned
distributed algorithm. The parameters of the projective transformation are then sent
back to the client application for visualization. With the help of the local server
and database, the interactive mode keeps working even without an active Internet
connection, provided the images reside in the local machine. This is what happens
most of the time, either because the images were produced on the local machine,
or because they were previously downloaded from the server. The synchronization
process is the responsibility of the so called proxy element that the client appli-
cation actually communicates with: it uploads the locally digitized images to the
server, and downloads the images stored on the server to the corresponding client
computers. Figure 25.7 shows the graphical user interface of the service.

In practice, the service is mostly used in the second or batch mode. In this mode
the set of radiographs taken daily are digitized and uploaded to the service server
where they are registered automatically by the same evolutionary algorithm. The
job of the master process, executed in the cluster, is to generate the initial popula-
tions and send them to the computing grid for evaluation. Since the fitness of each
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Fig. 25.7 Graphical user interface for the radiography subtraction service

individual can be evaluated independently from the others, this task is performed in
parallel on the grid. Once evaluated, each population is collected by the correspond-
ing master process that applies the genetic operators (mutation, recombination, se-
lection), produces a new population and sends it again to the grid for evaluation. The
process repeats until the stop conditions are met. The optimal transformations are
then stored in the server database and sent to the client applications for visualization.

The use of Java and Internet technologies in medical imaging is not new. These
technologies have been used in radiology teaching files, to access information in
multimedia integrated picture archiving and communication systems (PACS), and
for teleradiology purposes. However, all known approaches seem to assume the ex-
istence of a reliable and stable Internet connection, and this is not always possible.

25.5 Discussion and Conclusions

In this chapter, we have reviewed the main aspects involved in the task of medical
image registration. Through a simple yet real case study, we have seen one effective
way to build a high performance computational grid that benefits from an existing
computational infrastructure. The framework is based on a loosely-coupled architec-
ture and asynchronous communications. Using a service-oriented architecture that
provides a shared and distributed memory space and other essential services (pub-
lication, discovery, transactions, leasing), we have implemented a general-purpose
computing grid and shown its application in medical imaging. The computing grid
is most appropriate for the parallel execution of computationally intensive jobs that
can be divided in multiple independent tasks. Other crucial aspects, like security,
storage management, and general system administration, are out of the scope of this
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chapter and have been omitted. However, it is worth noticing that these are essential
aspects that in research and clinical environments have to be properly addressed in
order to provide secure and reliable medical imaging services.

To demonstrate the applicability of the computing grid in a real situation, we
have presented the case study of automatic digital subtraction. In this situation, we
evaluated two evolutionary algorithms as the search strategy to solve an expensive
optimization problem. This is to find a global maximum of an unknown function that
measures the similarity between two given images. In this evaluation, i.e., for this
particular problem, differential evolution proved to be more performant and reliable
than the genetic algorithm. The global structure of the algorithm is iterative, but
since individuals in a population can be evaluated independently from the others,
the most time-consuming stage of the algorithm is computed in parallel. This, and
the simple yet powerful API of JavaSpaces, allowed us to easily implement the
devised solution.

The high computational cost of the evolutionary algorithm in use was addressed
by developing a distributed implementation. This implementation exploits the com-
putational power of a set of personal computers arranged in a low cost computational
grid. Since it can be deployed over an existent computational infrastructure, this ap-
proach can be affordably implemented in institutions with a low budget, like public
and university hospitals.

The proposed service-oriented model for medical imaging is feasible and useful
in research and clinical scenarios, and is used daily in the School of Dental Medicine.
The implemented framework allows doctors to use up to date medical imaging tech-
niques and high-performance computing power in routine clinical studies, by means
of a standard web browser and without specialized training. Furthermore, the frame-
work allows for new services to be obtained from the integration of existing services
with different dynamics, such as 2D/3D/4D, and video processing tools.

We are currently working on evolving the architecture in use towards a cloud com-
puting model, in which the common theme relies on integrated services over the
Internet to satisfy the clinician computing needs. Regarding the algorithms used in
registration, current and future work is related to further exploring hybrid evolution-
ary algorithms such as those presented in [4, 16, 35], their possible application to 3D
curvature-based registration [23], as well as their distribution and parallelization.

Acknowledgements. The authors would like to give special thanks to Professors Fabio A.
González, Germán J. Hernández, Luis F. Niño, and Mark J. Duffy for their invaluable help
and advice.

Appendix

This section shows the use of the Command pattern and JavaSpaces to build a
generic worker node. This pattern was first introduced by Gamma et al. [10] in
object-oriented software design, and is used in a variety of domains. In our case it
was used to create a worker application capable of servicing requests of any master
process, in other words, to build a generic worker. In this context, to implement the
Command pattern, a class must implement the following interface:
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public interface Task
{

Result execute();
}

To benefit from this pattern, a master process has to break the job at hand into
TaskEntry objects and write them to the space. The TaskEntry class, given as
an example here, implements the Entry interface (a tagged JavaSpaces interface,
without methods) and the execute() method declared in the Task interface de-
scribed before.

public class TaskEntry implements Task, Entry
{

public Result execute()
{

. . .
}

}

An outline of the Master class is presented below:

public class Master
{

public void generateTasks()
{

for ( int t = 0; t < numTasks(); t++ )
{

writeTask( getTask( t ) );
}

}

public void collectResults()
{

for ( int t = 0; t < numTasks(); t++ )
{

mergeResult( takeResult() );
}

}
}
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In practice, the routines that generate tasks and collect results are run concur-
rently in two separate execution threads. This is because this process can be ex-
ecuted asynchronously: as soon as the tasks start to generate and are written into
the space, worker nodes can start computing them without having to wait for this
mapping process, therefore speeding up the whole computation.

A simplified version of the generic worker would then look like:

public class Worker
{

public void run()
{

for ( ;; )
{

Task t = takeTask();
Result r = t.execute();
writeResult( r );

}
}

}

Again, in practice, the actual Worker class spawns several worker threads to
compute multiple tasks concurrently, depending upon the number of processors
(and cores) available. Internally, the method takeTask() calls the JavaSpaces
method take() which is blocking, therefore releasing the processor where the
worker thread is running.

For the sake of clarity we have also omitted some important details such as those
regarding the use of transactions, leases, job priorities and caches. Transactions are
used to guarantee that a master process acts as a standalone application: if it writes a
number of tasks into the space, then it must receive the same number of results (com-
plete success), or none (complete failure). That is, to avoid partial failure, workers
compute every task under a transaction. If the task is completed successfully, then
the worker writes the result into the space and commits the transaction, otherwise,
the transaction is cancelled and the task is returned to the space. These semantics are
provided by a two-phase commit protocol that is performed by the Jini transaction
manager6. Using transactions, the pseudo code for the Worker class would now be:

public class Worker
{

public void run()
{

for ( ;; )

6 For detailed information on this protocol, please refer to the Jini Transaction Specification
(http://www.jini.org/transactions).

http://www.jini.org/transactions
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{
createTransaction()

try
{

Task t = takeTask();
Result r = t.execute();
writeResult( r );

commitTransaction();
}
catch ( Exception e )
{

cancelTransaction();
}

}
}

}

The use of transactions alone does not guarantee that partial failure will not occur.
Let us suppose a worker node takes a task from the space and starts computing it.
Then, if some component fails (e.g., the worker application, the operating system,
the computer is shut down or disconnected from the net) before the task finishes
execution, the transaction will not be committed, nor cancelled, and the result will
never be written into the space, causing the master process to wait indefinitely. The
solution to this situation lies in the use of leases.

Leasing in JavaSpaces provides a way of allocating resources for a fixed period
of time, after which the resource is freed. In the context of our worker class, when it
calls the JavaSpaces take()method to fetch a task object for execution, it supplies
a lease parameter that specifies the amount of time that it will hold the task object.
If the task is executed before the lease runs out, the result is written into the space
and the operation finishes. Otherwise, the lease keeps being renewed until the tasks
finishes. If the lease is not renewed, an indication that something went wrong in the
worker node, the task is returned to the space by the Jini lease manager7, so another
worker node can compute it.
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Chapter 26
Speeding-Up Expensive Evaluations in
High-Level Synthesis Using Solution Modeling
and Fitness Inheritance

Christian Pilato, Daniele Loiacono, Antonino Tumeo, Fabrizio Ferrandi,
Pier Luca Lanzi, and Donatella Sciuto

Abstract. High-Level Synthesis (HLS) is the process of developing digital circuits
from behavioral specifications. It involves three interdependent and NP-complete
optimization problems: (i) the operation scheduling, (ii) the resource allocation, and
(iii) the controller synthesis. Evolutionary Algorithms have been already effectively
applied to HLS to find good solution in presence of conflicting design objectives. In
this paper, we present an evolutionary approach to HLS that extends previous works
in three respects: (i) we exploit the NSGA-II, a multi-objective genetic algorithm, to
fully automate the design space exploration without the need of any human interven-
tion, (ii) we replace the expensive evaluation process of candidate solutions with a
quite accurate regression model, and (iii) we reduce the number of evaluations with
a fitness inheritance scheme. We tested our approach on several benchmark prob-
lems. Our results suggest that all the enhancements introduced improve the overall
performance of the evolutionary search.

26.1 Introduction

High-Level Synthesis (HLS) [8] is concerned with the design and implementation of
digital circuits starting from a behavioral description, a set of goals and constraints,
and a library of different types of resources. HLS typically consists of three steps:
the scheduling, the resource allocation and the controller synthesis. The scheduling
assigns each operation to one or more clock cycles (or control steps) for the exe-
cution. The resource allocation assigns the operations and the produced values to
the hardware components and interconnects them using connection elements. Fi-
nally, the controller synthesis provides the logic to issue data-path operations, based
on the control flow. Unfortunately, it is non-trivial to solve these problems as they
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are NP-complete and strongly interdependent. In addition, the high-level synthesis
problem is multi-objective and most of the design objectives are contrasting by na-
ture. Therefore, developers usually apply an iterative refinement cycle: at each step
they (i) manually apply transformations, (ii) synthesize the design, (iii) examine the
results coming from the synthesis of the design solution, and (iv) modify the de-
sign to trade off the design objectives. This process is usually called design space
exploration.

Evolutionary algorithms (EAs) have been successfully applied [12, 21] to such
complex explorations, since their behavior is very similar to the one of a designer:
they iteratively improve a set of solutions (i.e. alternative designs) using the results
of their evaluations as a feedback to guide the search in the solution space. In addi-
tion, EAs proved to work well on large optimization problems even if (i) the search
space is constrained, (ii) there are few information available on EAs can also eas-
ily deal with different objectives, without the need of combining them into a single
objective function. The main drawback of EA approaches is the need to evaluate a
huge number of design alternatives. This is a serious concern as in HLS problems
the solution evaluation is a very expensive process. To meet the time-to-market con-
straints we need to shorten the design process without reducing the quality of the
solutions discovered.

In this paper we present an evolutionary framework to perform a fully automated
design space exploration for HLS problems. In addition, to compute the fitness of
the evolved solution we replace the usual expensive evaluation process with a cost
model coupled with an inheritance fitness scheme. In particular, our approach ex-
tends previous works on the application of EAs to HLS [14, 21, 24, 25] basically
in three respects: (i) while in previous works focused on evolutionary approaches
to optimize a human designed objective function, we exploit NSGA-II [9], a multi-
objective genetic algorithm, to perform a fully automated design space exploration;
(ii) we exploit a regression model to perform a fast and quite accurate evaluation of
the candidate solutions; (iii) to our knowledge, this is the first work that applied a
fitness inheritance scheme to HLS in order to reduce the number of evaluations. We
validated our approach on several benchmark problems. Our empirical results sug-
gest that both the regression model introduced and the fitness inheritance scheme
result in an improvements of the design space exploration process.

This chapter is organized as follows. After discussing relevant work in Sec-
tion 26.2, we describe our approach in Section 26.3. In Section 26.4 we discuss
the issues of the solution evaluation. Then, we present two different techniques to
reduce expensive evaluations: cost modeling and fitness inheritance [29, 34]. The
former technique, presented in Section 26.5, consists of replacing a part of the ex-
pensive solution evaluation with a prediction model that, given some relevant fea-
tures of the solution, provides an estimation of its objective values, dramatically
reducing the cost. The latter technique, detailed in Section 26.6, allows to reduce
the number of fitness evaluations by replacing some of them with a surrogate, based
on the fitness values of other individuals previously evaluated. Experimental evi-
dences on a set of historical benchmarks for the HLS problem, both in terms of
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quality of the solutions with respect to the design objectives and overall execution
time of the exploration, are presented and discussed for each technique.

26.2 Related Work

The common techniques used in high-level synthesis can be classified into three
categories: exact, heuristic and non-deterministic approaches.

The exact approaches [7, 18] exploit mathematical formulations of the problem
and may find the optimal solution. Unfortunately, their computational requirements
grow exponentially with the size of the problem and are impractical for large de-
signs.

The heuristic approaches [8, 28, 35] work on a single operation or resource at
once and perform continuous refinements on the set of solutions. The decision pro-
cess is deterministic, so they do not explore all the design alternatives, possibly
leading to sub-optimal solutions. Furthermore, most of these techniques perform
the scheduling and the allocation sub-tasks separately, with the scheduling usually
performed as the first step.

To support scalability and to explore a larger set of alternative designs, several
non-deterministic approaches (e.g., [20]), and in particular GAs [12, 14, 21, 24, 25],
have been efficiently applied to HLS. Most of them focused on only one of the HLS
sub-task. In [24], GAs are used to schedule the operation, while in [25] they are used
to allocate and bind a scheduled graph. Grewal et al. [14] implemented a hierarchi-
cal genetic algorithm, where genetic module allocation is followed by a genetic
scheduling. Araújo et al. [1] used a genetic programming approach, where solu-
tions are represented as tree productions (rephrased rules in the hardware descrip-
tion language grammar) to directly create Structured Function description Language
(SFL) programs. This work presents a different approach w.r.t. the previous ones,
but it is difficult to control the optimizations. Krishnan and Katkoori [21] proposed
a priority-based encoding, where solutions are represented as a list of priorities that
defines in which order the operations should be chosen by the scheduling algorithm.
However, they performed a single-objective optimization using a weighted aver-
age of the design objectives, that has been proved to be not effective [39]. Several
works [12, 25] introduced a binding-based encoding, also for system-level synthe-
sis [27, 36], where solutions are represented as the binding between operations and
functional units where they will be executed. In some of these approaches the ex-
ploration can generate unfeasible solutions that have to be recovered or discarded,
wasting time and computation resources.

EAs often require to evaluate a number of candidate solutions that might eas-
ily result computationally unfeasible. This generally happens in real-world problem
and it is also the case of HLS. Accordingly, in the literature several evaluation re-
laxation [13] techniques have been introduced to speedup EAs: an accurate, but
computationally expensive, fitness function is replaced by a less accurate, but in-
expensive, surrogate. Following the early empirical design, theories have been de-
veloped to understand the effect of approximate surrogate functions on population
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sizing and convergence time and to enhance speedups (see [31] for further details).
The surrogate can be either endogenous [34] or exogenous [2, 19, 23]. Fitness in-
heritance [34] is one of the most promising endogenous approach to evaluation
relaxation: the fitness of some proportion of individuals in the population is inher-
ited from the parents. Sastry et al. [33] use a model based on least squares fitting,
applied in particular to extended compact genetic algorithm (eCGA [16]). Chen et
al. [6] present their studies on fitness inheritance in multi-objective optimization as a
weighted average of parent fitness, decomposed in the different n objectives. Recent
studies investigated the impact of fitness inheritance on real-world applications [11]
and different exploration algorithms [30]. Exogenous surrogate are typically used
in engineering applications [2, 10] and consists of developing a simplified model
of the real problem to provide an inexpensive surrogate of the fitness function. In
particular, in HLS several simplified models for area and timing have been proposed
in the literature. In [26], simple metrics are proposed to drive the optimization al-
gorithms, even if some elements are not correctly considered (e.g., steering logic or
effects of optimizations performed by the logic synthesis tools). In [3] the area is
estimated with a linear regression approach that is also able to model the effects of
the logic optimizations. Unfortunately, most of the models proposed provide a poor
guidance to the optimization process as they do not take into account the resource
binding and the interconnections [5]. In this work we focus on data-flow applica-
tions that involve only area models, however we refer the interested reader to [4, 22]
for timing estimation models.

26.3 Design Space Exploration with Multi-Objective
Evolutionary Computation

The proposed methodology is shown in Figure 26.1(a). The inputs are the behavioral
description of the problem in C language, a library of resource descriptions and a
set of constraints to be met, specified in XML format. We exploit a customized
interface to the GNU GCC compiler1 to generate the related GIMPLE, representing
the behavioral specification. From this, a combined control and data dependencies
data structure (CDFG) is built. CDFG allows the identification of the operations that
should be mapped and scheduled on the functional units described in the resource
library provided as input, as well as of the precedences among them.

The core of our methodology, shown in Figure 26.1(b) and detailed in Sec-
tion 26.3.1, is the design space exploration that exploits a multi-objective GA
(NSGA-II [9]) to concurrently optimize the different design objectives: the area and
the latency. This design space exploration iteratively improves a set of candidate so-
lutions to explore the most promising design sub-spaces. Finally, a Register-Transfer
Level (RTL) specification in a hardware description language (e.g. VHDL, Verilog
or SystemC) is generated for each one of the non-dominated solutions contained
into the final population resulting from the exploration algorithm.

1 GCC - GNU Compiler Collection, http://gcc.gnu.org
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(a) Overall Methodology (b) Design Space Exploration

Fig. 26.1 Methodology overview: squared boxes represent intermediate representations,
rounded boxes represent tools. The dashed box represents the methodology described in this
chapter

26.3.1 Design Space Exploration Core

The design space exploration core is shown in Figure 26.1(b). Initially a population
of N candidate solutions is randomly created and evaluated through a complete high-
level synthesis, with respect to the design objectives. In the current implementation,
area and performance have been considered. Once the evaluation is completed, the
solutions are sorted. After the initialization step, a new population of N candidate
solutions is created. In particular, each element of the new population, called off-
spring, is generated by applying the common genetic operators (i.e., crossover and
mutation) to the existing solutions, called parents. Finally, each offspring created is
evaluated as well and added to the population. The resulting population of size 2N
is then sorted again and the worst N solutions are discarded. All the steps described
above, except the initialization, are thus iteratively repeated until the following stop-
ping criterion is met. Whenever the set of best solutions is not improved in the last
10 iterations, the size of the population, N, is increased by 50%. When, even in-
creasing the population size, no best solutions are found, the optimization process
is stopped. At the end, the non-dominated solutions found by the exploration algo-
rithm are returned.
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26.3.2 Genetic Algorithm Design

In this section, we present the design of the NSGA-II that drives our design space
exploration.

Solution encoding. In this methodology, the chromosome is simply a vector where
each gene describes the mapping between the related operation in the behavioral
specification and the functional unit where it will be executed. With this formula-
tion both the resource allocation (i.e., the total number of required functional units)
and the operations binding (i.e., the assignment of the operations to the available
units) are encoded at the same time and all the information that is necessary to gen-
erate the structural description of the design solution is encoded. This encoding was
introduced for the first time in [12] and is inspired to the approach proposed in [25].
The main advantage in using this encoding is that all genetic operators (see Sec-
tion 26.3.2) create feasible solutions. In fact, the recombination of the operations
binding simply results in a new allocation or binding. In this way, good solutions
can be obtained just using common genetic operators, without needing procedures
to recover unfeasible solutions.

Initial population. At the beginning of each run, an initial population of admissible
resource bindings is created. It can be created by random generation or, to cover
a larger design space and to speedup the exploration process, by generating some
known solutions (e.g. the one with the minimum number of functional units or the
minimum latency). This allows the algorithm to start from some interesting points
and then to explore around to improve them.

Fitness function. To evaluate the solutions we used the following multi-objective
fitness function:

F(x) =
[

f1(x)
f2(x)

]
=
[

Area(x)
Time(x)

]
(26.1)

where Area(x) is an estimation of the area occupied by the solution x, Time(x) is
an estimation of the latency of the solution x, computed as the worst case execution
time of the scheduled solution, in terms of clock cycles. The goal of the genetic
algorithm is to find the best trade-offs with respect to this cost function.

Ranking and selection. The ranking of solutions is an iterative process. At iter-
ation k, all the solutions are first sorted according to the fast-non-dominated-sort.
Then, the non-dominated solutions are classified as solution at the k-level and re-
moved from the solutions to be ranked. The process is repeated until all the solutions
have been ranked. At the end of the evolutionary process, the whole set of solutions
ranked as the best ones will be the outcome of the optimization. We refer to this
set as the approximation of the Pareto-optimal set discovered by the evolutionary
process.

Genetic operators. To explore and exploit the design space, the usual genetic op-
erators are used, the unary mutation and the binary crossover. The two operators
are applied respectively with probability Pm and Pc. Mutation is an operator used
for finding new points in the search space. Mutation has been implemented with a
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relatively low rate (e.g., Pm=10%) and it is applied as follows: each gene is modified
with probability Pμ , changing the corresponding binding information. Crossover is
a reproduction technique that mates two parent chromosomes and produces two off-
spring chromosomes. Given two chromosomes, a standard single-point crossover is
applied with a high probability (e.g., Pc=90%). The crossover mechanism mixes the
binding information of the two parent solutions.

26.3.3 Performance Measure

The outcome of multi-objective EAs is a set of solutions that represent the best es-
timate of the Pareto front in the objective space. Accordingly, evaluating and com-
paring the outcome of different EAs is not trivial as it is in single-objective opti-
mization. In particular, several metrics have been introduced in the literature [38]
with different features and aims. In general a performance metric can provide either
a relative measure (e.g., Non Dominated Combined Set Ratio [37]) or an absolute
measure (e.g., S metric [38]). The former type of metric are devised to compare
only two set of solutions, while the latter allow to rank several set of solutions on
a specific problem. In this work we used a performance metric that is equivalent to
the S metric as (i) we need to compare several set of solutions and (ii) it is a scale-
independent metric. In minimization problems with two objectives the S metric
can be computed as the hyper-volume between the set and the anti-ideal objective
vector [17]. Unfortunately in HLS, the anti-ideal objective vector is not always de-
fined. Accordingly we set each objective of the anti-ideal vector to the worst value
discovered during all the evolutionary runs. In addition, for a better readability we
defined the performance measure as the area complementary to the S metric in the
positive quadrant. Accordingly, the smaller is the used metric, the better the set of
solutions is.

26.4 Solution Evaluation

The crucial point to obtain a fast and effective convergence of the exploration is the
quality of the solution evaluation. In particular, the values of the fitness function
should be as close as possible to the effective values that would be obtained through
the actual implementation of the design on the target technology and the evaluation
of the desired characteristics (e.g., area or latency). For this reason, the best fitness
is obtained with a complete synthesis of each design solution. A complete synthesis
includes the following two steps. First, a high-level synthesis flow is performed
from a fully specified design solution to a structural description of the circuit. Then
a logic synthesis step is applied to generate the circuit for the target technology from
its structural description.

Our approach targets the Field Programmable Gate Array (FPGA) technology.
A FPGA is a semiconductor device that can be configured by the customer or the
designer after manufacturing. FPGAs are becoming an interesting alternative to Ap-
plication Specific Integrated Circuits (ASICs) as they allow to customize the system
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without the need of an expensive development process. In particular, FPGAs fit
the needs of embedded systems design where they are used to develop accelera-
tors specific to improve the performance of the applications that will be used on
the systems. Nevertheless, the choice of this technology introduces additional dif-
ficulties in the design process that tools for high level synthesis and design space
exploration need to address. FPGAs are composed by a set of configurable logic
units, typically Look Up Tables (LUTs) with four inputs and one output, that are
used to represent the logic functions, and a series of flip-flops. These elements are
organized in Configurable Logic Blocks (CLBs) that communicates through a pro-
grammable interconnection network. Modern FPGAs may also feature dedicated
blocks for some type of operations (e.g. hardware multipliers) and embedded mem-
ories. The generation of a FPGA based design requires to process the specification
of the circuit in a hardware description language with a synthesizer, like Integrated
Software Environment (ISE) for Xilinx devices or Quartus for ALTERA solutions.
A FPGA synthesis tool follows several stages. The first stage (synthesis) transforms
the specification into a set of logic primitives and memory elements for the recon-
figurable device. The second stage (mapping) maps these basic components to the
specific device available. In the last stage (routing) the blocks are connected together
and with the input/output pins. The initial data on the occupation are available after
the first stage. This process, however, is quite expensive in terms of time. Depend-
ing on the complexity of the design, a single logic synthesis may require hours to be
completed. As a result, the solution cannot be evaluated by simply adding the contri-
bution of the allocated components, but the effects of the logic synthesis step has to
be somehow considered. In previous works, only the area of the functional units (i.e.
the resources that performs the operations) and registers were included in the solu-
tion evaluation, as they were considered much more relevant than interconnection
elements (e.g., multiplexers). However, recent studies [5, 15] demonstrated that the
area of the interconnection elements has by far outweighed the area of the functional
units. In ASICs, this brings undesirable side-effects, like an unacceptable propaga-
tion due to the long wires determined by an inefficient components placement. In
FPGAs, this situation is critical for area calculation, since a large amount of LUTs
may be used to connect and wire the functional blocks. This strongly motivates the
design of techniques that take into account the amount and size of interconnection
elements. Not considering them could lead to an inaccurate area estimation and to a
final solution that does not meet the area constraints.

Unfortunately, due to the complexity of analysis and the interdependence of the
synthesis steps, all the information is available only after the complete synthesis of
the design solutions. Some examples of the computational effort required to pro-
duce a complete synthesis for various designs with our HLS tool and the Xilinx
ISE version 10.1 are reported in Table 26.1. We used a system with a Intel Core
2 Duo T7500 CPU (2,2 GHz, 4 MB of second level cache) and 2 GB of memory.
These results clearly show that the complete synthesis cannot be efficiently included
into any black-box optimization algorithm that usually performs a huge number of
design evaluations.
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Table 26.1 Examples of computational effort for the complete synthesis of common bench-
marks for high-level synthesis

Benchmark HLS time (s) Logic Synthesis time (s) Total time (s)

arf 0.35 100.72 101.07
bandpass 0.99 28.50 29.49
chemical 0.37 122.03 122.40
dct 1.02 133.70 134.72
dct wang 1.04 124.45 125.49
dist 0.96 248.54 249.50
ewf 0.39 121.35 121.74
fir 0.07 43.61 43.80
paulin 0.06 32.19 32.25
pr1 0.84 121.70 122.54
pr2 1.19 176.08 177.27
tseng 0.05 14.00 14.05
Avg. 0.61 105.57 106.18

This motivates us to investigate different solutions to reduce the execution time
of the solution evaluation, limiting the impact on the quality of the final solutions. If
we reduce the time required to evaluate a design solution, more alternatives could be
analyzed in the same time and a larger portion of the design space can be explored.

In the following sections we introduce two different techniques to speed-up the
evaluation process. In Section 26.5 we discuss how to replace the fitness computa-
tion with a cost model to avoid the expensive logic synthesis step to evaluate candi-
date solutions. In particular, we show how the accuracy of the cost model affect the
overall performance. Then, in Section 26.6 we investigate the application of a fitness
inheritance inheritance mechanism to reduce the number of evaluations performed
without degrading the performance of the evolutionary process.

26.5 Building Cost Models

In this section, the time-consuming logic synthesis step is substituted with a model
of performance and area, based on relevant features of the structural descriptions ob-
tained by the high-level synthesis step. To compute the performance, it is necessary
to count the control steps required by the design to execute all the operations, which
correspond to the number of clock cycles required to execute the design. To com-
pute the area, then, it is necessary to perform the logic synthesis of the specifications
produced by the HLS flow. As described in Section 26.2, the typical approach in
literature is to build a fitness surrogate that, considering some features of the design,
is able to estimate its occupation. In the following, we present two possible cost
models for the area: one linearly combines the number of functional units present in
the design and their area and counts the memory elements, the other one is a linear
regression that also takes into account interconnections.

However, even if the solution modeling allows to reduce the time required to
evaluate a solution, it introduces an approximation that could affect the explorations.
For this reason, the accuracy of the models and the quality of the designs obtained
by the exploration using these models will be discussed and analyzed, respectively,
in Section 26.5.2.1 and Section 26.5.2.2.
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#A.Area.FF = ∑
R∈A.DataPath.Registers

sizeo f (R)+ log2(A.FSM.NumControlStates)

#LUT = ∑
F∈A.DataPath.FunctionalUnits

F.Area

A.Area = #A.Area.FF +#LUT

Fig. 26.2 Simplified model to estimate area occupation for the structural design A

26.5.1 Cost Models

One of the simplest models used in HLS flows counts the number of functional
units and memory elements. An area estimation in terms of LUTs for each type of
functional unit (e.g. adder, subtractors, multipliers) can be easily obtained through
the synthesis of such elements. The linear combinations of these values provides
an initial estimation of the overall occupation of the design [21]. The HLS flow
can instead estimate the number of single bit flip-flops by counting the number
of registers required by the design, for both the data-path and the state encoding
registers of the control-FSM. Consequently, the first estimation model we adopted
to compute the area of a design is shown in Fig.26.2. This model is easy to develop
and allows a very fast estimation of the area occupation of the design. However,
it can only model how the exploration affects the number of functional units or
registers, and does not account for the effects of the interconnection elements. The
contribution of the controller is limited to the number of memory elements required
to encode the state. The logic to compute the outputs or the transition function is
ignored. Such a solution was proposed, several years ago, mainly for data-intensive
designs targeting ASIC technology, considering that the interconnections and the
controller had a reduced impact on these designs.

Nevertheless, as discussed in Section 26.4, recent studies demonstrated that this
approach is not applicable with FPGAs [5], and it is becoming inefficient also for
ASICs [15]. We thus investigated more detailed models for generating the required
values to verify if it is possible to obtain better approximations. We started with an
already existing area model for FPGAs [3], and generalized it for several reasons.
First, the vendors (e.g., Xilinx or Altera) offer tools with different approaches to
translate the structural descriptions into the logic functions and to interconnect the
logic blocks. Second, the devices, even if provided by the same vendor, can use
different architectures (e.g., LUTs with a different number of inputs). So, we in-
troduced a generic model and a methodology to specialize it, in order to address
different vendors’ tools and different devices. The final area model we used for fast
estimation is shown in Figure 26.3. For each architecture A the model divides the
area into two main parts: the Flip-Flop part and the LUT part. While the Flip-Flop
part is easy to estimate using the same formula of the previous approach, the LUT
part is a little more complex. Four main parts contribute to the global area in terms
of LUT: FU, FSM, MUX and Glue. The FU part corresponds to the contribution
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#FFFSM = �α1 ∗ log2(A.FSM.NumControlStates)+β1�
#FFDataPath = ∑

R∈A.DataPath.Registers

α2 ∗ sizeo f (R)+β2

A.Area.FF = α3 ∗#FFFSM +β3 ∗#FFDataPath

#LUTFSM = �α4 ∗A.FSM.NumControlStates+β4 ∗A.FSM.Inputs+ γ4 ∗A.FSM.Out puts+δ4�
#LUTFU = ∑

F∈A.DataPath.FunctionalUnits

α5 ∗F.Area+β5

#LUTMUX = ∑
M∈A.DataPath.Mux

�α6 ∗M.Input +β6 ∗ sizeo f (M)+ γ6�

#LUTGlue = �α7 ∗#LUTFSM +β7 ∗A.DataPath.NumRegisters+ γ7�
A.Area.LUT = α8 ∗#LUTFSM +β8 ∗#LUTFU + γ8 ∗#LUTMUX +δ8 ∗#LUTGlue + ε8

A.Area = α8 ∗A.Area.LUT +α9 ∗A.Area.FF

Fig. 26.3 Linear regression model to estimate area occupation for the structural design A

of the functional units and so its value is still the sum of the area value of each
functional unit. The other three parts (FSM, MUX, Glue) are obtained by using a
regression-based approach:

• the FSM contribution is due to the combinational logic used to compute the out-
put and next state;

• the MUX contribution is due to the number and size of multiplexers used in the
data-path;

• the Glue contribution is due to the logic to enable writing in the flip flops and to
the logic used for the interaction between the controller and the data-path.

The model is then specialized for the particular vendor’s tools and devices by using
a linear regression approach similar to [3], obtaining an accurate estimation of the
design objectives, if properly adapted. For this reason, one of the main drawbacks
is that, each time the designer changes the experimental setup, it requires an initial
phase of tuning, that could be time-consuming and error-prone.

26.5.2 Experimental Evaluation

In this section, the models are validated by using the set of benchmarks presented
in [7] and targeting a Virtex XC2VP30 FPGA. The logic synthesis is executed with
Xilinx ISE ver. 10.1. We performed the coefficient extraction for the model based
on linear regression and its validation using two data-sets, each one composed by
different hardware architectures of the benchmarks. The resulting model is shown
in Fig. 26.4.

The error of the two models is discussed in Section 26.5.2.1, while their impact
on the final estimates of the Pareto-optimal set is analyzed in Section 26.5.2.2. In
particular, we demonstrate which model is better to drive the optimization process
carried on by the genetic algorithm.
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#FFFSM = �log2(A.FSM.NumControlStates)�
#FFDataPath = ∑

R∈A.DataPath.Registers

sizeo f (R)

A.Area.FF = #FFFSM +#FFDataPath

#LUTFSM = �1.99∗A.FSM.NumControlStates−0.24∗A.FSM.Inputs+1.50∗A.FSM.Out puts−9.97�
#LUTFU = ∑

F∈A.DataPath.FunctionalUnits

F.Area

#LUTMUX = ∑
M∈A.DataPath.Mux

�(0.79∗ sizeo f (M))�

#LUTGlue = �0.7∗#LUTFSM +1.10∗A.DataPath.NumRegisters�
A.Area.LUT = #LUTFSM +#LUTFU +#LUTMUX +#LUTGlue

A.Area = A.Area.LUT +A.Area.FF

Fig. 26.4 Model used to estimate area occupation for the FPGA design A using Xilinx ISE
ver. 10.1. and targeting a Virtex XC2VP30 FPGA device
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Fig. 26.5 Validation of the FPGA area models

26.5.2.1 Accuracy of Models

Figure 26.5 presents the validation for the models described in the previous section.
The dashed line represents the ideal situation, where the estimated values are equal
to the real ones, obtained with an actual synthesis on the target device. Squared
dots represent the values associated to the first model, where only functional units
and registers are considered. Round dots, instead, represent the values obtained with
the linear regression model. We validated the models on a data-set composed of 73
designs that represent different architectures of the benchmarks described in [7] and
shown in Table 26.1.

The plot shows that the simplified model systematically underestimates the real
values. This happens because the contribution due to multiplexers and steering logic
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Table 26.2 Comparison of the models applied to a set of benchmarks

Simplified Linear Regression
Benchmark Area #Pareto Points Area #Pareto Points

NSGA-II DSE Synthesis NSGA-II DSE Synthesis

arf 63,010 7 6 60,341 9 9
dct 111,392 8 6 107,808 14 14
dct wang 115,167 11 9 110,198 16 16
dist 158,716 14 13 157,049 20 20
ewf 73,969 10 9 72,634 13 13
pr1 72,990 9 8 70,978 12 12
pr2 162,130 17 14 154,503 19 19

is not considered. On the other hand, the model based on linear regression approxi-
mates the real values with a good accuracy. In particular, the simplified model shows
an average error of 43.39±20.00%, while the maximum error is 73.35%. The model
based on linear regression, instead, has an average error equal to 2.22±2.20%, with a
maximum error of 11.85%. Thus, we can confirm that is able to accurately estimate
all the area contributions of a structural description and that it can be effectively
integrated in the proposed methodology to drive the exploration algorithm.

26.5.2.2 Performance of the Methodology

The error information is insufficient to determine which model should be preferred.
We need to evaluate the effects of the adoption of the models on the resulting es-
timates of the Pareto-optimal set. The more accurate is the model, the better it
would drive the design space exploration, resulting in a better estimate of the Pareto-
optimal set. However, even a simple model might be enough to perform an effective
design space exploration, if it would be able to identify and consider the most rele-
vant features of the design.

Consequently, we performed different experiments, alternatively adopting diffe-
rent area models. Each experiment consists of 100 generations and involves a po-
pulation of 100 candidate solutions. The results averaged over 10 runs are shown in
Table 26.2, where the column Area measures the quality of the non-dominated set
discovered. In particular, the lower is this value, the better is the outcome of the op-
timization processes. NSGA-II DSE and Synthesis values represent, respectively, the
Pareto points coming out from the exploration algorithm and the results after their
actual synthesis. The results show that the linear regression model systematically
outperforms the simplified model. The reason is that the linear regression model is
more accurate, and it is able to consider the effects on the solution evaluation of
all the components contained in the final architecture. Furthermore, having a model
that generates a more accurate fitness function results in a larger number of points
in the estimate of the Pareto-optimal set.

Some interesting approximations of the Pareto-optimal curve are also graphically
compared in Fig. 26.6. In Fig. 26.6(a) and Fig. 26.6(b) we see that the linear regression
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Fig. 26.6 Examples of comparison of obtained Pareto curves using the different models

model systematically outperforms the simplified one in terms of quality of the Pareto-
optimal set. In Fig. 26.6(c), for large designs, the model that considers only functional
units and registers obtains better results. In fact, in this region of the design space, the
impact of the multiplexer is limited (about 15-20%) and a fitness function focused
only on functional components and registers is more suitable to drive the exploration
algorithm. In the other region of the space, where few functional units are in the de-
signs, the multiplexers have a larger impact (about 70-75%) and the fitness function
that takes into account their occupation obtains better results. Finally, in Fig. 26.6(d),
the multiplexers are not so relevant for the design. As a result the two models are al-
most equivalent, as also shown by the similar values in Table 26.2.

26.6 Fitness Inheritance

Table 26.1 shows that also the HLS step is computationally intensive, even if much
less than the logic synthesis one. HLS impact becomes bigger as the dimension of
the problem grows. We thus expect that, when applied to larger problems, it could
become another significant bottleneck of the methodology.

For this reason, in this section we exploit fitness inheritance to substitute all the
steps of the complete synthesis by interpolating the fitness of previously evaluated
individuals. Fitness inheritance is a technique totally orthogonal to the solution pro-
posed in the previous section. The individuals used for fitness inheritance can, in
fact, be evaluated with any approach (e.g., actual synthesis or modeling with one of
the proposed models). The key idea is that, with this approach, we try to limit the
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overall number evaluations rather than reducing the time required for a single evalu-
ation (i.e. the synthesis steps, HLS or logic synthesis). Interpolation is usually much
less time consuming, thus we can save some of the time required for a complete
synthesis.

Note that this technique is less dependent on the problem than solution modeling.
In fact, to build the model, the designer should identify the relevant features of
the design solutions, synthesize the related hardware descriptions and establish a
correspondence. On the contrary, fitness inheritance is only based on the definition
of the chromosome encoding and the fitness of previously evaluated individuals.

However, to produce an effective surrogate, we needed to carefully take into ac-
count some aspects. In particular, we focused our attention on the percentage of
individuals to be estimated, on the parents to choose and on how to combine their
fitness. We present and discuss these aspects in Section 26.6.1, and then compare
the quality of some different solutions in Section 26.6.2.

Provided a proper analysis of these aspects, the results show that fitness inheri-
tance is able to consistently reduce the execution time of all the methodology. We
also demonstrate that, if the parameters are not correct, the method can even degrade
rather than improving the performance of the exploration algorithm.

26.6.1 Inheritance Model

In the proposed approach, only in the first, initial population the fitness of all the
individuals is evaluated. In the subsequent populations, only the fitness of a portion
of the population is evaluated, while the remaining ones inherit the fitness through
interpolation of the values already computed. In particular, the fitness of individual
Indi is inherited with probability pi. To compute the fitness estimation for Indi, we
need to calculate the distance between it and all the individuals that can be effec-
tively used for the estimations. The estimation can be based on the ancestors, i.e.,
all the individuals that have been effectively evaluated starting from the first gener-
ation, or on the parents, i.e., all the individuals that have been effectively evaluated
only in the latest generation. In both the cases, we will call this set S in the rest of
the section. The fitness value of Indi is thus estimated as follows. The chromosome
of Indi is mapped onto a binary vector of size N, where each variable of the vector
is uniquely related to a gene of the chromosome. The vector is instantiated by the
following delta function:

δ k
i, j =

{
0 i f Indi[k] = Ind j[k]
1 otherwise

(26.2)

where Indi[k] is the value associated to the k-th gene of the individual Indi. After
the delta function has been computed for all the N genes of the chromosome, the
distance di, j between individual Indi and individual Ind j is calculated as follows:

di, j =
∑N

k=1 δ k
i, j

N
(26.3)
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this function is normalized with the size of chromosome, so its value is always
between 0 and 1. The distance di, j measures the similarity of two individuals. If
these are totally different (there is not any matching gene), the value will be 1.
On the other hand, if the two individuals are identical, the value will be 0. Only
individuals that are considered neighbors in this space will be kept for the fitness
estimation. We call r the maximum distance that an individual should have to be
kept. The name r is used to remember the term radius, since the region delimited by
this value can be imagined as a N-dimensional hyper-sphere centered at individual
Indi. All the individuals Ind j ∈ S, having distance smaller than the radius r, can be
considered as points inside this hyper-sphere. Therefore, all these individuals will
be considered for estimation and the distance value is modified as follows:

d′
i, j =

{
di, j i f di, j ≤ r
1 i f di, j > r

(26.4)

where all individuals outside the hyper-sphere are equivalent to points at infinite di-
stance and they will not be considered for estimation. To perform the estimation, we
require a minimum number of points in this region. If there are not enough points,
it means that there is no sufficient local information to estimate and individual. So,
it will be really evaluated. If there are enough points, instead, the estimation can be
performed on the set S′ of points, selected as follows:

Fitz
i =

∑ j∈S′ f (Fitz
j)∗ g(1 − d′

i, j)

∑ j∈S′ g(1 − d′
i, j)

(26.5)

for each objective z. Fitz
k is the value of the objective z for the individual Indk and

(1 − d′
i, j) is used as a measure of closeness between individuals. f and g are func-

tions that change the contribution of the two terms. We formulated the term (1−d′
i, j)

in this way since the distance d′
i, j does not go to infinite, but has a value between

0 and 1. Therefore, we consider the values associated to 1 equivalent to an infi-
nite distance (i.e., no contribute to the fitness). As explained above, this weighted
average is computed for all the objectives considered in the optimization. The re-
sulting value is then returned to the genetic algorithm, which can so proceed. A flag
is also associated to the individual Indi to remember that the fitness has been esti-
mated and not really evaluated. This allows the algorithm to identify the estimated
individuals when needed.

In particular, in the last generation the fitness of all the individuals are tested for
evaluation. Individuals that have already been evaluated will be skipped, while the
estimated individuals will be effectively evaluated. Thus, when the exploration ends,
all the individuals on which the final non-dominated set is computed will have a real
fitness value associated.

26.6.2 Experimental Evaluation

In this section, we evaluate different aspects related to fitness inheritance and com-
pare several parameter settings. The parameters for the GA are the same used in
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Table 26.3 Comparison of the weighting functions about fitness evaluations and execution
time

w/o inheritance Ancestors Parents
Benchmarks #Eval. Exec. #Eval. Exec. diff #Eval. Exec. diff

Model Time(s) Time (s) (%) Time(s) (%)

arf
linear

9,639 1,064.65
4,721 1,211.68 +13.81% 7,567 888.66 -16.53%

quadratic 5,048 1,327.19 +24.65% 8,160 801.86 -24.68%
exponential 5,330 1,374.83 +29.13% 9,027 985.59 -7.42%

dct
linear

11,150 3,677.55
7,263 5,074.26 +37.98% 7,758 2,699.86 -26.58%

quadratic 7,758 5,492.04 +49.34% 7,131 2,360.44 -35.81%
exponential 7,319 5,135.87 +39.65% 7,867 2,625.69 -28.60%

dct wang
linear

10,837 3,470.16
6,945 4,906.20 +41.38% 7,348 2,385.12 -37.27%

quadratic 7,479 5,456.37 +57,24% 7,758 2,549.29 -26.53%
exponential 6,160 4,083.51 +17,68% 7,312 2,689.09 -22.51%

dist
linear

12,683 3,907.81
8,315 6,181.55 +58.18% 7,812 3,402.46 -12.93%

quadratic 7,607 5,254.36 +34.46% 7,358 3,048.29 -21.99%
exponential 8,376 5,995.74 +53.43% 7,801 3,590.28 -8.13%

ewf
linear

9,575 1,165.55
6,218 2,074.99 +78.03% 6,518 814.60 -30.11%

quadratic 6,392 2,127.26 +82.51% 64,18 790.00 -32.22%
exponential 6,256 2,095.66 +79.80% 6,578 889.94 -23.65%

pr1
linear

9,773 2,542.35
8,358 5,514.68 +116.91% 7,548 2,058.11 -19.05%

quadratic 6,834 3,879.37 +52.59% 6,912 1,878.11 -26.13%
exponential 6,681 3,594.25 +41.48% 7,154 1,958.15 -22.98%

pr2
linear

10,610 4,044.71
6,423 4,718.46 +16.66% 6,958 3,589.25 -11.26%

quadratic 6,930 5,086.70 +25.76% 7,198 3,578.02 -11.54%
exponential 6,937 5,119.57 +26.57% 7,277 3,547.66 -12.59%

Avg. +46.53% Avg. -21.82%
Std. Dev. 25.90% Std. Dev. 8.81%

Section 26.5.2.2. In all the experiment, the fitness evaluation uses the linear regres-
sion model. In Section 26.6.2.1 we present, discuss, and compare different functions
to weight the fitness contributions of the evaluated individuals. In Section 26.6.2.2
we apply fitness inheritance both to the ancestors and to the parents and compare
the results. Finally, we analyze the effects of different inheritance percentages (pi)
and distance rates (r).

26.6.2.1 Weighting Functions

We considered three weighting functions (i.e., function g in Eq.26.5) for inheritance:
linear, quadratic and exponential. The first model is computed as follows:

Fitz
i =

∑ j∈S′ Fitz
j ∗ (1 − d′

i, j)

∑ j∈S′(1 − d′
i, j)

(26.6)

where the fitness of the evaluated individuals are linearly combined with the related
distances 1 − d′

i, j from the candidate individual Indi. While, the second model is
computed as follows:

Fitz
i =

∑ j∈S′ Fitz
j ∗ (1 − d′

i, j)
2

∑ j∈S′(1 − d′
i, j)2 (26.7)

where the quadratic function in (1 − d′
i, j) is used to increase the weight of distance,

similarly to the Physics equations for gravity or magnetism. However, we adopt a
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Table 26.4 Comparison of the weighting functions about quality of the results

w/o inheritance Ancestors Parents
Benchmarks Area #Pareto Area #Pareto Area #Pareto

Model DSE Synth. DSE Synth.

arf
linear

63,157 9
63,756 9 9 63,633 11 11

quadratic 63,633 11 11 62,729 12 12
exponential 65,097 9 9 64,941 12 12

dct
linear

113,526 14
113,151 14 14 113,732 12 12

quadratic 111,598 11 10 113,732 12 12
exponential 114,550 13 11 113,469 10 10

dct wang
linear

112,868 16
113,351 12 12 112,782 15 15

quadratic 114,778 17 17 112,484 14 14
exponential 114,389 13 13 113,911 14 14

dist
linear

169,487 20
168,955 18 17 170,731 19 19

quadratic 171,706 18 17 170,578 18 18
exponential 169,708 21 20 167,900 19 19

ewf
linear

72,634 13
76,946 14 12 73,245 13 13

quadratic 75,503 13 12 74,366 11 11
exponential 77,000 13 13 74,184 13 13

pr1
linear

75,405 12
76,286 11 10 75,168 11 11

quadratic 76,878 11 10 75,083 11 11
exponential 76,580 12 11 75,000 12 12

pr2
linear

156,906 19
158,110 19 18 154,903 18 18

quadratic 161,812 21 19 154,186 19 19
exponential 162,195 22 20 160,800 20 20

proportion with (1 − d)2 and not (1/d)2, that allows dealing with infinite distance
as described above. The last model is computed as:

Fitz
i =

∑ j∈S′ Fitz
j ∗ (e1−d′

i, j − 1)

∑ j∈S′(e1−d′
i, j − 1)

(26.8)

where the distance is exponentially weighted, emphasizing even more the contri-
bution of the nearest individuals to the fitness estimation of Indi. These functions
have been applied both to the ancestors and to the parents. The distance rate has
been set to r = 0.20 and the inheritance rate to pi = 0.5. In the former case, the
set S of individuals considered increases generation by generation, while, in the lat-
ter case, the size is constant and related to the size of the population. When the
ancestors are used, the inheritance model analyzes all the elements of the set for
distance calculation, and the time required for fitness inheritance could overcome
the time required by the function evaluation itself. Thus, in this case, fitness inheri-
tance reduces the number of evaluations, but may also degrade the overall execution
time of the methodology. At opposite, if the methodology is applied only to the
parents, both the number of evaluations and the execution time of the methodology
are significantly reduced. Since less individuals are available for computing the in-
heritance information (see Eq. 26.4), the number of evaluations is larger than with
the ancestors. Table 26.3 shows the data about the number of evaluations and about
the overall execution time.
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Table 26.5 Comparison of different inheritance rate about quality of the exploration, fitness
evaluations and execution time

w/o inheritance w inheritance
Benchmarks Area #Pareto #Eval. Exec. Area #Pareto #Eval. Exec. diff

pi Time(s) DSE Synth. Time(s) (%)

arf

0.20
63,157 9 9,639 1,064.65

64,088 12 12 7,681 834.00 -21.66%
0.30 62,724 11 11 8,852 961.30 -9.71%
0.40 62,990 11 11 8,812 981.43 -7.82%
0.50 63,239 11 11 8,259 913.65 -14.18%
0.55 62,820 10 10 8,160 888.66 -16.53%
0.60 64,275 12 12 8,702 965.97 -9.27%
0.70 63,654 11 11 8,655 961.38 -9.70%

dct

0.20
113,526 14 11,150 3,677.55

113,487 14 14 8,158 3,248.20 -11.67%
0.30 113,909 16 16 7,789 2,874.11 -21.85%
0.40 113,104 15 15 7,441 2,581.47 -29.80%
0.50 113,732 12 12 7,131 2,360.44 -35.81%
0.55 112,223 11 11 7,062 2,236.98 -39.17%
0.60 114,051 16 16 7,325 2,514.02 -31.64%
0.70 111,080 12 12 7,587 2,636.42 -28.31%

dct wang

0.20
112,868 16 10,837 3,470.16

113,952 13 13 8,258 3,025.20 -12.82%
0.30 111,487 14 14 8,126 2,854.01 -17.76%
0.40 113,536 15 15 7,887 2,741.36 -21.00%
0.50 112,484 14 14 7,758 2,549.29 -26.54%
0.55 114,283 15 15 7,747 2,569.10 -25.97%
0.60 112,842 17 17 7,854 2,698.47 -22.24%
0.70 113,706 16 16 7,981 2,747.11 -20.84%

dist

0.20
169,487 20 12,683 3,907.81

166,060 17 17 7,414 3,658.10 -6.39%
0.30 161,432 17 17 7,401 3,698.43 -5.36%
0.40 167,804 18 18 7,333 3,154.01 -19.29%
0.50 170,578 18 18 7,358 3,048.29 -21.99%
0.55 167,801 17 17 7,441 3,341.22 -14.50%
0.60 167,472 19 19 7,551 3,418.99 -12.51%
0.70 170,151 16 16 7,547 3,507.67 -10.24%

ewf

0.20
72,634 13 9,575 1,165.55

74,623 13 13 9,147 847.10 -27.32%
0.30 74,143 12 12 7,765 858.36 -26.36%
0.40 73,609 13 13 7,010 802.19 -31.17%
0.50 74,366 11 11 6,418 790.00 -32.22%
0.55 74,053 11 11 6,211 767.41 -34.16%
0.60 73,234 12 12 6,478 789.23 -32.29%
0.70 73,023 13 13 6,441 796.59 -31.66%

pr1

0.20
75,405 12 9,773 2,542.35

75,308 13 13 8,012 2,236.39 -12.03%
0.30 74,309 9 9 7,477 2,056.47 -19.11%
0.40 75,319 10 10 7,087 1,969.78 -22.52%
0.50 75,083 11 11 6,912 1,878.11 -26.13%
0.55 74,888 9 9 6,898 1,789.56 -29.61%
0.60 75,045 10 10 7,101 1,941.02 -23.65%
0.70 74,831 10 10 7,011 1,867.53 -26.54%

pr2

0.20
156,906 19 10,610 4,044.71

160,628 20 20 8,101 3,856.12 -4.66%
0.30 150,630 22 22 7,812 3,785.54 -6.41%
0.40 158,903 21 21 7,485 3,696.36 -8.61%
0.50 154,186 19 19 7,198 3,578.02 -11.54%
0.55 154,241 15 15 7,012 3,547.10 -12.30%
0.60 155,714 21 21 7,025 3,423.11 -15.37%
0.70 159,150 21 21 6,894 3,326.98 -17.74%

Avg. -20.43%
Std. Dev. 9.13%

Finally, Table 26.4 compares the quality of the results with the different weight-
ing functions. As in Section 26.5.2.2, the area delimited by the approximated
Pareto-optimal curve gives a qualitative evaluation of the explorations. The results
show that the quadratic function is the most efficient solution to weight the fitness
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Table 26.6 Comparison of different distance rate about quality of the results

w/o inheritance w inheritance
Benchmarks Area #Pareto Area #Pareto

r DSE Synth.

arf

0.10
63,157 9

63,549 10 10
0.20 63,626 11 11
0.25 63,307 11 11
0.50 62,906 11 11

dct

0.10
113,526 14

112,626 14 14
0.20 113,116 13 13
0.25 112,630 17 17
0.50 113,234 14 14

dct wang

0.10
112,868 16

113,347 13 13
0.20 115,027 15 15
0.25 111,391 17 17
0.50 112,979 13 13

dist

0.10
169,487 20

171,159 19 19
0.20 168,305 16 16
0.25 168,195 17 17
0.50 169,162 19 19

ewf

0.10
72,634 13

73,156 14 14
0.20 73,302 12 12
0.25 71,693 11 11
0.50 75,009 13 13

pr1

0.10
75,405 12

76,607 13 13
0.20 75,372 11 11
0.25 76,214 12 12
0.50 77,654 12 12

pr2

0.10
156,906 19

157,005 19 19
0.20 154,814 18 18
0.25 158,718 21 21
0.50 153,866 18 18

contributions. In fact, this function emphasizes the individuals closer to the candi-
date more than the linear function. With respect to the exponential function, which
(strongly) emphasize only very similar individuals, it also consider more distant
contributions (always inside the radius).

26.6.2.2 Parameter Analysis

In this section, different inheritance rates (pi) and different distance rates (r) are
studied. The parameters for the GA are the same used in Section 26.5.2.2. The fit-
ness evaluation uses the linear regression model and exploits inheritance on parents
with the quadratic weighting function in all the experiments.

Table 26.5 shows the results of explorations where fitness inheritance is applied
with different inheritance rates. Note that values of pi between 0.40 and 0.55 pro-
vides a good trade-off between the quality of the exploration and the related exe-
cution time. The reason is that, with lower values, few individuals are chosen for
inheritance. On the other hand, with higher values, the number of really evaluated
individuals is limited. When there are not enough similar individuals (at least 10),
we swap the fitness evaluation to the HLS flow and the area model. Therefore, the
execution time is not reduced as expected. The results obtained in our experiments
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are also consistent with the optimal proportion for inheritance derived in [32], de-
fined as follows:

0.54 ≤ pi∗ ≤ 0.558 (26.9)

Finally, Table 26.6 reports the results obtained with pi = 0.5 while changing the
distance rates r. Almost all the considered rates give good results. However, values
comprised between 0.20 and 0.25 perform best. In fact, with lower values, limited
information is available for inheritance, while, with higher values, additional noise
is introduced in the interpolation.

26.7 Conclusions

In this work, we presented an evolutionary approach to HLS design space explo-
ration problem based on NSGA-II, a multi-objective evolutionary algorithm. We
exploited two orthogonal techniques, surrogate fitness and fitness inheritance, to re-
duce the time necessary to the expensive solution evaluations. The fitness surrogate
was computed with a linear regression model that takes into account the contribu-
tions of all the components of the design (e.g., interconnections or glue logic) and
the effect of the optimizations introduced by the logic tool: replacing the logic syn-
thesis process with such a surrogate model, we can save a lot of computational time.
Fitness inheritance was used to reduce the number of evaluations, by evaluating only
a fixed portion of the population. We validated our approach on several benchmarks
and our results suggest that both the proposed techniques allows to speed-up the
evolutionary search without degrading its performance. At the best of our know-
ledge, this is the first framework for the HLS design space exploration that exploits
at the same time a surrogate fitness model as well as a fitness inheritance scheme.
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