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Preface

Optimization is an essential part of research, both in science and in engi-
neering. In many cases the research goal is an outcome of an optimization
problem, for example, improving a vehicle’s aerodynamics or a metal alloy’s
tensile strength.

Motivated by industrial demands, the process of design in science and en-
gineering has undergone a major transformation. The advances in the fields
of intelligent computing paradigm and the introduction of massive comput-
ing power have facilitated a move away from paper-based analytical systems
towards digital models and computer simulations. Computer-aided design
optimization is now involved in a wide range of design applications, ranging
from large transatlantic airplanes to micro electro mechanical systems.

With the development of more powerful optimization techniques, the re-
search community is continually seeking new optimization challenges and
to solve increasingly more complicated problems. An emerging class of such
challenging problems is known as the ‘expensive optimization problems’. High
computational cost can arise due to:

e Resource-intensive evaluations of the objective function: such problems
arise when using ‘computer-experiments’, i.e., when a computer simula-
tion replaces a real-world laboratory experiment during the optimization
process. Such simulations can be prohibitory expensive (require anywhere
from minutes to hours of evaluation time for each candidate solution). Also,
there is no analytic expression for the objective function or its derivatives,
requiring optimization algorithms which are derivative-free. Examples in-
clude wing shape optimization and electronic circuit design.

e Very high dimensional problems: in problems with hundreds or thousands
of variables the ‘curse of dimensionality’ implies locating an optimum
can be intractable due to the size of the search space. Examples include
scheduling problems and image analysis.

On top of these difficulties, real-world optimization problems may ex-
hibit additional challenges such as a complicated and non-smooth landscape,
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multiple optima and discontinuities. Under these difficulties classical opti-
mization methods may perform poorly or may even fail to obtain a satis-
factory solution within the allocated resources (such as computer time). To
circumvent this, researchers turn to computational intelligence methods such
as agent-based algorithms, fuzzy logic and artificial neural networks. Such
methods have shown to perform well in challenging scenarios and they can
often handle a wide variety of problems when little or no-apriori knowledge
is available. These nature- and biologically-inspired techniques are capable of
‘learning’ the problem features during the optimization and this can improve
their performance and provide a better final solution.

However, the application of computational intelligence methods to expen-
sive optimization problems is not straightforward. Their robustness, also re-
ferred to as the ‘exploration-exploitation trade-off’, implies they do not ex-
ploit domain knowledge efficiently and this can impair their convergence. For
example, an evolutionary algorithm may require many thousands of function
evaluations to obtain a satisfactory solution, which is unacceptable when
each function evaluation requires hours of computer run-time. This necessi-
tates the need to explore various methods to bridge the missing gaps before
computational intelligence can be applied effectively to expensive problems.

Computational intelligence in Expensive Optimization Problems is a re-
cent and emerging field which has received increasing attention in the last
decade. This edited book represents the first endeavor to provide a snapshot
of the current state-of-the-art in the field, covering both theory and prac-
tice. This edition consists of chapters contributed by leading researchers in
the field, demonstrating the different methodology and practice to handle
high computational cost of today’s applications. This book is intended for
wide readership and can be read by engineers, researchers, senior undergrad-
uates and graduates who are interested in the development of computational
intelligence techniques for expensive optimization problems.

This book is divided into 3 parts:

I Techniques for resource-intensive problems
IT  Techniques for high-dimensional problems
IIT Real-world applications

Part I considers the various methods to reduce the evaluation time, such as
using models (also known as surrogate-models or meta-models, which are
computationally cheaper approximations of the true expensive function) and
parallelization. This section starts with two surveys on the current state-of-
the-art. Shi and Rasheed survey a wide range of model-assisted algorithms,
including frameworks for model-management in single objective optimiza-
tion while Santana-Quintero et al. survey fitness approximations in multi-
objective algorithms. Giannakoglou and Kampolis propose a flexible parallel
multilevel evolutionary algorithm (EA) framework where each level can em-
ploy a different model, different search algorithm or different parametrization.
They describe the performance of their approach with real-world expensive
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aerodynamic shape optimization problems. Koziel and Bandler describe an-
other approach which uses models of different fidelity, the ‘space-mapping’
method, to accelerate the optimization search. They apply their method to
electronic circuit design. In another related study, Takahama and Sakai pro-
pose methods for model management which assesses the model accuracy and
decides when a model needs to be improved. They implement their method
in a differential evolution framework. Ginsbourger et al. parallelize the Effi-
cient Global Optimization (EGO) algorithm which uses Kriging models and
the expected improvement criterion. They propose statistical criteria for se-
lecting multiple sites to evaluate for each iteration. Guimaraes et al. propose
a memetic algorithm for expensive design optimization problems. Their al-
gorithm identifies promising regions and candidates from these regions are
identified with a higher fidelity model and are given more weight by the algo-
rithm. Ochoa also employs statistical criteria and proposes using Estimation
of Distribution Algorithms (EDAs) to reduce the number of function evalua-
tions. The study describes several approaches such as Boltzmann estimation
and the Shrinkage EDAs. Also within the evolutionary computing framework,
Fonseca et al. explore the use of similarity-based models (a nearest-neighbour
approach) to extend the number of generations of an evolutionary algorithm
in expensive optimization problems. Nakayama et al. and Bird and Li ad-
dress the issues of expensive dynamic optimization problems. Nakayama et
al. describe a model-predictive control algorithm for dynamic and expensive
multiobjective optimization problems where they use a support-vector re-
gression model. On the other hand, Bird and Li suggest a specialized particle
swarm optimization (PSO) algorithm with least-squares regressors. The re-
gressors locally approximate the objective function landscape and accelerate
the convergence of the PSO to local optima.

In Part II, researchers explore sophisticated operators, such as those uti-
lizing domain knowledge or which self-adapt during the search to combat
the ‘curse of dimensionality’. Caponio et al. implement a memetic algorithm
which combines differential evolution (DE) with an adaptive local search
which scales the DE vector, along with other algorithmic enhancements. Car-
valho and Ferreira tackle the electric network distribution problem, which is
a large scale combinatorial problem. They propose several hybrid Lamarckian
evolutionary algorithms with specialized operators. dos Santos et al. tackle
the traveling salesman problem (TSP) and propose a reinforcement learning
metaheuristic for a specialized parallel hybrid EA. They show performance
can be improved by using multiple search trajectories. Siiral et al. also focus
on the TSP and the TSP with back hauls problem and propose several evo-
lutionary algorithms with specialized crossover and mutation and operators.
They show that utilizing domain knowledge improves the algorithms perfor-
mance. Cococcioni et al. study multiobjective genetic Takagi-Sugeno fuzzy
systems in high-dimensional problems, which pose a challenge to such mul-
tiobjective EAs. They propose two enhancements to the multiobjective EA
to accelerate the search. Davis-Moradkhan and Browne propose a specialized
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evolutionary algorithm to tackle the multicriterion minimum spanning tree
problem, a challenging combinatorial problem. They suggest several special-
ized operators as well as several algorithm variants to improve the spread of
solutions along the Pareto front. Lastly, Shilane et al. present a specialized
evolutionary algorithm to tackle the problem of risk-minimization in statis-
tical parameter estimation, a multimodal high-dimensional problem. They
demonstrate that their algorithm compares well with existing parameter-
estimation methods while having the advantage that it can run in parallel.

Part III focuses on real-world applications. Successful application of com-
putational intelligence methods to real-world problems is non-trivial and
there are important insights and lessons to be learned from researchers’ ex-
perience. Chen et al. use a particle swarm optimization algorithm for an
expensive optimization problem of a transceiver design. They study a semi-
blind joint maximum likelihood channel estimation and data detection for
a receiver and the minimum bit-error-rate multiuser transmission. Results
show their algorithm outperforms existing approaches. Donateo describes
a multiobjective optimization of a diesel engine piston. The study used a
multiobjective evolutionary algorithm which is parallelized over a cluster to
reduce evaluation time. They obtained a more efficient engine with lower
pollution level. Vasile and Croisard study the robust planning of a space mis-
sion, where the computational time grows exponentially with the number of
uncertain variables. They use a multiobjective EA and apply the Evidence
theory and an indirect approach to estimate the belief and plausibility func-
tions. Kumar and Bauer propose a methodology to manage an expensive
design process from the conceptual stage to a final design. They apply the
methodology to the design of electrical drives and electrical circuits. Won et
al. consider the problem of reliable network design and proposed a hybrid
EA-ant colony system algorithm. They propose a multiring encoding scheme
to combine the two and apply their algorithm to a variety of network design
problems. Yamada and Berger describe the optimization of neural network
for speech recognition using an EA. The structure of the EA changes from
a random search to a steady state EA and finally to an elitist EA during
the optimization. The algorithm reduces the high computational cost of the
optimization by identifying a promising subset of variables and concentrat-
ing on it. Guichén and Castro tackle the expensive optimization problem of
automatic image registration optimization by using a parallel evolutionary
algorithm. The study describes an implementation of a fast and robust In-
ternet subtraction service using a distributed evolutionary algorithm and a
service-oriented architecture. Finally, Pilato et al. describe an expensive mul-
tiobjective optimization digital circuits, where the proposed algorithm uses
fitness inheritance and approximation models to reduce the number of calls
to the expensive simulation.
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Overall, the chapters in this volume discuss a wide range of topics which
reflect the broad spectrum of computational intelligence in expensive opti-
mization problems. The chapters highlight both the current achievements

and challenges and point to promising future research venues in this exciting
field.

September 2009 Yoel Tenne
Chi-Keong Goh
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Chapter 1

A Survey of Fitness Approximation Methods
Applied in Evolutionary Algorithms

L. Shi and K. Rasheed

Abstract. Evolutionary algorithms (EAs) used in complex optimization domains
usually need to perform a large number of fitness function evaluations in order to
get near-optimal solutions. In real world application domains such as engineering
design problems, such evaluations can be extremely computationally expensive. In
some extreme cases there is no clear definition of the fitness function or the fitness
function is too ambiguous to be deterministically evaluated. It is therefore common
to estimate or approximate the fitness. A popular method is to construct a so-called
surrogate or meta-model, which can simulate the behavior of the original fitness
function, but can be evaluated much faster. An interesting trend is to use multiple
surrogates to gain better performance in fitness approximation. In this chapter, an
up-to-date survey of fitness approximation applied in evolutionary algorithms is pre-
sented. The main focus areas are the methods of fitness approximation, the working
styles of fitness approximation, and the management of the approximation during the
optimization process. To conclude, some open questions in this area are discussed.

1.1 Introduction

In recent years, EAs have been applied to many real-world application domains and
gained much research interest. EAs proved to be powerful tools for optimization
problems and were therefore used in a wide range of real-world applications, espe-
cially for engineering design domains. In such domains, the so-called fitness func-
tions are sometimes discontinuous, non-differential, with many local optima, noisy
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and ambiguous. It was found that EAs perform better than the conventional optimiz-
ers such as sequential quadratic programming and Simulated Annealing [@, E,EI, ].

Many challenges still arise in the application of EAs to real-world domains.
For engineering design problems, a large number of objective evaluations may be
required in order to obtain near-optimal solutions. Moreover, the search space can be
complex, with many constraints and a small feasible region. However, determining
the fitness of each point may involve the use of a simulator or analysis code that takes
an extremely long time to execute. Therefore it would be difficult to be cavalier about
the number of objective evaluations used for an optimization [B, ]. For tasks like
art design and music composition, no explicit fitness function exists; experienced
human users are needed to do the evaluation. A human’s ability to deal with a large
number of evaluations is limited as humans easily get tired. Another challenge is that
the environment of an EA can be noisy, which means that the exact fitness cannot be
determined, and an approximate fitness must be assigned to each individual. An av-
erage fitness solution to the noise problem requires even more evaluations. For such
problems surrogate-assisted evolution methods based on fitness approximation are
preferable, as they can simulate the exact fitness at a much lower computational cost.
A good fitness approximation method can still lead the EA process to find optimal
or near-optimal solutions and is also tolerant to noise [EL ].

In this chapter we further extend the discussion about fitness approximation by
introducing more concepts in this area and by presenting new developments in re-
cent years. Three main aspects of fitness approximation are our main focus areas.
Those are the different types of fitness approximation methods, the working styles
and the management schemes of the fitness approximation.

For the methods of fitness approximation, instance-based learning methods, ma-
chine learning methods and statistical learning methods are the most popular ones.
Instance-based and machine learning methods include fitness inheritance, radial ba-
sis function models, the K-nearest-neighbor method, clustering techniques, and neu-
ral network methods. Statistical learning methods also known as functional models
such as the polynomial models, the Kriging models, and the support vector ma-
chines are all widely used for fitness approximation in EAs. Comparative studies
among these methods are presented in this chapter.

For the working styles of the fitness approximation, we discuss both direct and
indirect fitness replacement strategies. The direct fitness replacement method is to
use the approximate fitness to directly replace the original exact fitness during the
course of the EA process. Thus individuals mostly have the approximate fitness
during the optimization. The indirect fitness replacement method is to use the ap-
proximate fitness only for some but not all processes in the EA, such as population
initialization and EA operators. Individuals have the exact fitness during most if not
all of the optimization process.

With fitness approximation in EAs, the quality of an approximate model is
always a concern for lack of training data and the often high dimensionality
of the problem. Obtaining a perfect approximate model is not possible in such
cases. Usually the original fitness function is used with the approximate method
to solve this problem. The original fitness function can either correct some/all
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individuals’ fitness in some generations or improve the approximate model by giv-
ing the exact fitness. This is called the management of the fitness approximation
or evolution control. In this chapter, different management methods of approximate
fitness are presented, including online fitness update, offline model training, online
model update, hierarchical models, and model migration. At the end of this charter,
two real-world expensive optimizations by surrogate-assisted EAs are given.

1.2 Fitness Approximation Methods

The optimization problem usually deals with non-linear functions. There are some
classic approximation methods, such as transforming the original function to a sim-
pler one. This method entails transforming the original functions to linear ones, and
then using a linear programming technique, such as the Frank-Wolfe method [IE]
or Powell’s quadratic approximation [@]. Other classical methods like the Fourier
approximation and Walsh function approximation use a set of basis functions and
find a weighted sum of such basis functions to use as an approximation. These tech-
niques have been used to first transform the original problem into an easy one, and
then apply the EA to find the optima of the easier version of the original fitness
function [@, ].

Another class of methods determines a function’s approximation using a chosen
set of evaluated points extracted from the whole design space or from the evalua-
tion history. This class includes in-stance-based learning methods (also known as
lazy learning methods), machine learning methods and statistical learning methods.
The relationships between the different types of fitness approximation methods are
shown in Fig.[[.]l Many instancebased learning and other machine learning meth-
ods have been used for fitness approximation in EAs. Several of the most popular of
these methods are reviewed next.

1.2.1 Instance-Based Learning Methods

1.2.1.1 Fitness Inheritance (FI)

Fitness inheritance techniques are one of the main subclasses of fitness approxima-
tion techniques. One such technique simply assigns the fitness of a new solution
(child) based on the average fitness of its parents or a weighted average based on
how similar the child is to each parent [@l]) To deal with a noisy fitness function,
a resampling method combined with a simple average fitness inheritance method is
used to reduce the computational cost in [15]. Another approach is to divide the pop-
ulation into building blocks according to certain schemata. Under this approach, an
individual obtains its fitness from the average fitness of all the members in its build-
ing block (13]. More sophisticated methods such as conditional probability tables
and decision trees are used in [@] for fitness inheritance.
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Fitness Approximation

T~

Classic Building Surrogates
Transformation Based on
Methods Evaluated Points
Instance Machine Statistical
Leaming Learning Learning
Fl KNN RBF NN DT
PM Kriging SVM

Fig. 1.1 Fitness approximation methods, FI: Fitness Inheritance KNN: K-Nearest Neigh-
bors RBF: Radial Basis Functions NN: Neural Networks DT: Decision Tree PM: Polynomial
Model SVM: Support Vector Machines

1.2.1.2 Radial Basis Function Model (RBF)

The Radial Basis Function (RBF) model is another instance-based learning method.
RBF networks can also be viewed as a type of neural networks. Since it is a very
popular technique for fitness approximation in EAs [3,119,131], it is worthy of being
introduced independently from the normal multilayer neural networks.

An RBF network consists of an input layer with the same number of input units
as the problem dimension, a single hidden layer of k nonlinear processing units and
an output layer of linear weights w; (Fig.[[.2). The size of the hidden layer (k) can
be equal to the sample size if the sample size is small. In the case of a larger sample
size, k is usually smaller than the sample size to avoid excessive calculations. This
RBF network is called the generalized RBF network. The output y(x) of the RBF
network is given as a linear combination of a set of radial basis functions expressed
in the following way:

k
y(x) =wo+ Y wiy (|lx—ci)) (1.1)
i=1

where wy and w; are the unknown coefficients to be learned. The term ¢; (||x —¢;||),
also called the kernel, represents the ith radial basis function. It evaluates the dis-
tance between the input x and the center c;. For the generalized RBF network, the
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Fig. 1.2 Structure of RBF network models

centers ¢; are also unknown and have to be learned by other methods such as the
k-means method.

Typical choices for the kernel include linear splines, cubic splines, multi-
quadratics, thin-plate splines, and Gaussian kernels. A Gaussian kernel is the most
commonly used in practice, having the form:

0 ([x—cil]) = exp (—”’“‘””) (12)

202

A detailed comprehensive description of RBF networks can be found in [@].

1.2.2 Machine Learning Methods

1.2.2.1 Clustering Techniques

Clustering algorithms include hierarchical clustering (such as single-linkage,
complete-linkage, average-linkage and Ward’s method), partition clustering (such
as Hard C-Means and K-Means algorithm), and overlapping clustering (such as
Fuzzy C-Means and B-Clump algorithm). Among them, the K-Means algorithm ap-
pears to be the most popular one for application to EAs due to its relative simplicity
and low computational cost. In 16, [17], the entire population is divided into many
clusters, and only the center of each cluster is evaluated. Other individuals’ fitness
values in the clusters are computed using their distance from these centers. Another
approach is to build an approximate model based on sample points composed of
the cluster centers. Every other individual’s fitness is estimated by this approximate
model, which may be a neural network model [@] or an RBF model [IE]. An-
other interesting clustering approach applied in EAs is to divide the population into
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several clusters and then build an approximate model for each cluster. The motiva-
tion is that multiple approximate models are believed to utilize more local informa-
tion about the search space and fit the original fitness function better than a single

model (5,20, 21].
1.2.2.2 Multilayer Perceptron Neural Networks (MLPNNs)

Multilayer Perceptron Neural Networks (MLPNNs) usually utilize the back-
propagation algorithm. MLPNNs have been proven to be powerful tools for fitness
approximation. A MLPNN model is generally used to accelerate the convergence by
replacing the original fitness function 134, 36]. In engineering design domains and
drug design, MLPNNSs have been used to reduce the evaluation times of complex
fitness functions [@, @, @]. In [@], MLPNNS are used as surrogates to speed-up
the process of an expensive blade design problem.

yix)

Fig. 1.3 Structure of the feed-forward MLPNN model

A simple feed-forward MLPNN with one input layer, one hidden layer and one
output layer can be expressed as:

K n
y(x) =Y wif (Z WijXi + 9.;) + 6o (1.3)
=1 i=1

where n is the number of input neurons (which is usually equal to the problem
dimension), K is the number of nodes of the hidden layer, and the function f is
called the activation function. The structure of a feed-forward MLPNN is shown in
Fig.[[3l W and 0 are the unknown weights to be learned. The most commonly used
activation function is the logistic function, which has the form:

1

T+ exp(—cx) 14

f(x)

where c is a constant. A comprehensive study can be found in [@].
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1.2.2.3 Other Machine Learning Techniques

Other machine learning techniques were also applied for fitness approximation in
EAs. An individual’s fitness can be estimated by its neighbors using the K-nearest-
neighbor algorithm [@]. The screening technique has been used for pre-selection

,I5]. Decision Tree (DT) is another machine learning technique which has been
used in [@].

1.2.3 Statistical Learning Methods

Statistical Learning methods for fitness approximation (basically statistical learning
models) as applied to EAs have gained much interest among researchers, and have
been used in several successful GA packages. In these methods, single or multiple
models are built during the optimization process to approximate the original fit-
ness function. These models are also referred to as approximate models, surrogates
or meta-models. Among these models, Polynomial Models, Kriging Models, and
Support Vector Machines (SVM) are the most commonly used.

1.2.3.1 Polynomial Models

Polynomial models (PM) are sometimes called Response Surfaces. Commonly used
quadratic polynomial models have the form:

F(X)=ao+ Y axi+ Y, aijxx; (1.5)
i=1 i=1,j=1

Where ag, a; and a;; are the coefficients to be fitted, n is the dimension of the
problem and x; is design variable number i.

Usually the least-squares approximation method is used to fit the unknown co-
efficients ag, a; and g;;. The main limitation of the least-squares method is that the
number of sample points (N) must exceed (n+1)(n+2)/2 for a second-order polyno-
mial model. Even if this condition is satisfied, the fitting cannot be guaranteed be-
cause the singularity problem may still arise. Another drawback of the least-squares
method is that its computational complexity grows quickly with the problem’s di-
mension which can be unacceptable. The gradient method is introduced to address
the problems of the least-squares method. More implementation details for using
these two methods to fit a polynomial model can be found in ]. Polynomial
models are widely used as surrogates. One application can be found in 1691, which
uses a response surface method to approximate the Pareto front in NSGA-II for an
expensive liquid-rocket engine design problem.

1.2.3.2 Kriging Models

The Kriging model consists of two component models which can be mathematically
expressed as:



10 L. Shi and K. Rasheed

y(x) = fx) +Z(x) (1.6)

Where f(x) represents a global model and Z(x) is the realization of a stationary
Gaussian random function that creates a localized deviation from the global model.
Typically f(x) is a polynomial and can be as simple as an underlying constant f3 in
many cases, and then equation (L.6) becomes:

y(x) = B+Z(x) (1.7)

The estimated model of equation (L)) is given as:
9=B+r Ry~ 1) (1.8)

Where y is a vector of length N as defined in equation (L.8), § is the estimated
value of y given the current input x, f is a column vector which is filled with ones,
and R is the correlation matrix which can be obtained by computing the correlation
function between any two sampled data points. The form of the correlation function
is specified by the user. Gaussian exponential correlation functions are commonly
used, which is why the Kriging model is also sometimes called a Gaussian process:

. 7 . 12
R(x',x') =exp [—zek x}{—xi‘ ] (1.9)
k=1

The correlation vector between x and the sampled data points is expressed as:

T (x) = [R(x,xl),R(x,x2)7...,R(x,x")]T (1.10)

Estimation of the parameters is often carried out using the generalized least squares
method or the maximum likelihood method. Detailed implementations can be found
in [24,25).

In addition to the approximate values, the Kriging method can also provide accu-
racy information about the fitting in the form of confidence intervals for the estimated
values without additional computational cost. In [B, ], a Kriging model is used to
build the global models because it is believed to be a good solution for fitting com-
plex surfaces. A Kriging model is used to pre-select the most promising solutions in
[IE]. In [IE, @, @], a Kriging model is used to accelerate the optimization or reduce
the expensive computational cost of the original fitness function. In [@], a Kriging
model with a pattern search technique is used to approximate the original expen-
sive function. In [[70], a Gaussian process method is used for landscape search in a
multi-objective optimization problem that gives promising performance. One disad-
vantage of the Kriging method is that it is sensitive to the problem’s dimension. The
computational cost is unacceptable when the dimension of the problem is high.

1.2.3.3 Support Vector Machines (SVM)

The SVM model is primarily a classifier that performs classification tasks by con-
structing hyper-planes in a multidimensional space to separate cases with different
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class labels. Contemporary SVM models support both regression and classification
tasks and can handle multiple continuous and categorical variables. A detailed de-
scription of SVM models can be found in [@, ]. SVM models compare favorably
to many other approximation models because they are not sensitive to local optima,
their optimization process does not depend on the problem dimensions, and over-
fitting is seldom an issue. Applications of SVM for fitness approximation can be
found in [42]. The regression SVM is used for constructing approximate models.
There are two types of regression SVMs: epsilon-SVM regression and nu-SVM re-
gression. The epsilon-SVM regression model is more commonly used for fitness
approximation, where the linear epsilon-insensitive loss function is defined by:

LE(x,y,f) = |y = f(x)| = max(0, |y — f(x)| — €) (L.11)

The sum of the linear epsilon-insensitive losses must be minimized:

1 N
szw+CZL£(xi7yi7f) (1.12)
i=1

This is equivalent to a constrained minimization problem having the form:
1 N N
WWHCY GHCY G (1.13)
i=1 i=1

Subject to the following constraints:

wlo(x)+b—yi<e+ (1.14)
yi—wlo(x)—bi < e+ (1.15)
6,6 >0,i=1,....N (1.16)

Where ¢(x) is called the kernel function. It may have the forms of linear, polyno-
mial, Gaussian, RBF and sigmoid functions. The RBF is by far the most popular
choice of kernel type used in SVMs. This is mainly because of their localized and
finite responses across the entire range of the real x-axis. This optimization problem
can be solved by using quadratic programming techniques.

1.2.4 Existing Research in Multi-surrogate Assisted EAs

For some real world applications, special approximation methods have been used.
For example, a one dimensional approximation of the Kubelka Munk model is used
to replace the expensive Monte Carlo method in an EA for analyzing colon tissue
structure [@]. In [@], a classifier with confidence information is evolved to replace
time consuming evaluations during tournament selection.
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The whole population

FitaPM FitaPM FitaPM

Fig. 1.5 A multiple surrogate model structure used in [5]

In some applications, several approximation methods have been combined to
construct a type of fitness approximation model known as a Multi-surrogate. In
[18,133] the MLPNN model was combined with clustering methods for construct-
ing approximate models (shown in Fig. [[[4). Fig. shows another strategy using
clustering techniques and polynomial models together [5]. A trained RBF model
was used to generate sample points for the construction of polynomial models for
fitness approximation in [39]. In [28,|51]], the Kriging method was used to construct
a global approximate model for pre-selection then RBF models were built using
those pre-selected sample points for further fitness approximation. Fig. shows
the structure of this model. Multiple approximate models formed in a hierarchical
structure have been used to assist the fitness evaluations in[[.T1l In [59,162], multiple
local approximate models are built for each individual, and then these local models
are aggregated into an average or weighted average of all approximate models. In
[64, [65], multiple surrogates are built, and then the best surrogate is used [64] or
the weighted sum of all surrogates is used, where the weights associated with each
surrogate are determined based on the accuracy of the surrogate [65]. Fig.[[.7lshows
this model in detail.
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The whole population

Fit a global Kriging model
¥

Pick up certain sample points according to
the Kriging model

Fit an RBF local model

Fig. 1.6 A multiple surrogate model structure used in [51]

For each individual

Perform local search by using an aggregate
model created from above N models

Fig. 1.7 A multiple surrogate model structure used in [[59]

Multi-surrogates are also used for multi-objective optimization problems. In
[63], the NSGA-II algorithm, a multi-objective EA using PM and RBF surro-
gates together is presented. A local surrogate-assisted evolution strategy using KNN
and RBF models is introduced in [61]. For each new offspring in this strategy, a cu-
bic RBF surrogate is built using the k-nearest previously evaluated points. This local
RBF surrogate is then used to estimate the new off-spring’s fitness. Fig. shows
the model structure used in [61]. In [66], Polynomial Models are used to estimate
the coefficients of the fitness surrogate. Thus the surrogate is made adaptive to char-
acteristics of the specific optimization problems.

A recent trend is to use multiple approximate models adaptively. In [[60], both
global and local (for each cluster) surrogate models are used. The global model
adaptively evolves from a simple average of the fitness of all individuals in a pop-
ulation, all the way to a Support Vector Machine (SVM) model. The local models
follow a similar path but do not exceed quadratic polynomials. The model evolu-
tion depends on the time complexity as well as model accuracy for each model. A
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New offspring

Use KNN methods to get sample points

v
Build a cubic RBF model upon these sample
points to evaluate the new offspring

Fig. 1.8 A Multiple surrogates structure used in [61]

Population Average and KNN

¥

Linear Polynomial Model

¥

Cuadratic Polynomial Model
 J

SVIM Model

Fig. 1.9 Global approximate model evolution path in [6(]

formula is used to decide whether to continue using the same type of model or
switch to the next at any time. Fig. shows the evolution path.

1.3 Comparative Studies for Different Approximate Models

Many approximation methods have been introduced for special problem domains.
Even though these methods are claimed to save many function evaluations and to
be nearly as good as the original fitness function, they are bound to their special
domains, and thus no comparative studies have been conducted on them. On the
other hand, the performance of many general-purpose approximation methods has
been compared in early papers, especially for popular methods such as statistical
learning methods.
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The neural network model and the polynomial model were compared in l46,72].
The study concluded that the performance of the two types of approximation was
comparable in terms of the number of function evaluations required to build the
approximations and the number of undetermined parameters associated with the ap-
proximations. However, the polynomial model had a much lower construction cost.
In [[72], after evaluating both methods in several applications, the authors concluded
that both of them can perform comparably for modest data. In [43], a quadratic poly-
nomial model was found to be the best method among the polynomial model, RBF
network, and the Quick-prop neural network when the models were built for regions
created by clustering techniques. The authors were in favor of the polynomial model
because they found that it formed approximations more than an order of magnitude
faster than the other methods and did not require any tuning of parameters. The
authors also pointed out that the polynomial approximation was in a mathemati-
cal form which could be algebraically analyzed and manipulated, as opposed to the
black-box results that neural networks give.

The Kriging model and the neural network model were compared using bench-
mark problems in [@]. However, no clear conclusion was drawn about which model
is better. Instead, the author showed that optimization with a meta-model could lead
to degraded performance. Another comparison was presented in [@] between the
polynomial model and the Kriging model. By testing these two models on a real-
world engineering design problem, the author found that the polynomial and Kriging
approximations yielded comparable results with minimal difference in predictive ca-
pability. Comparisons between several approximate models were presented in l44],
which compared the performance of the polynomial model, the multivariate adaptive
splines’ model, the RBF model, and the Kriging model using 14 test problems with
different scales and nonlinearities. Their conclusion was that the polynomial model
is the best for low-order nonlinear problems, and the RBF model is the best for deal-
ing with high-order nonlinear problems (details shown in Table [[.T)). In 591, four
types of approximate models - Gaussian Process (Kriging), RBF, Polynomial model
and Extreme Learning Machine Neural Network (ELMNN) - were compared on
artificial unconstrained benchmark domains. Polynomial Models (PM) were found
to be the best for final solution quality and RBF was found to be the best when
considering correlation coefficients between the exact fitness and estimated fitness.
Table shows the performance ranks of these four models in terms of the quality
of the final solution.

So far different approximate models have been compared based on their perfor-
mance, but the word performance itself has not been clearly defined. This is because
the definition of performance may depend on the problem to be addressed, and mul-
tiple criteria need to be considered. Model accuracy is probably the most important
criterion, since approximate models with a low accuracy may lead the optimization
process to local optima. Model accuracy also should be based on new sample points
instead of the training data set points. The reason for this is that for some models
such as the neural network, overfitting is a common problem. In the case of over-
fitting, the model works very well on training data, yielding good model accuracy,



16 L. Shi and K. Rasheed

Table 1.1 Summary of best methods in ]

Low-order  High-order
Nonlinearity Nonlinearity

Small Scale Polynomial RBF
Large Scale Kriging RBF
Overall Polynomial RBF

Table 1.2 Final quality measures for Kriging, PM. RBF and ELMNN approximate models
in 59

Benchmark Method
domain Kriging PM RBF ELMNN
Ackley 2 1 4 3
Griewank 3 1 2 4
Rosenbrock 1 3 2 4
Step 3 1 2 4

but may perform poorly on new sample points. The optimization process could
easily go in the wrong direction if it is assisted by a model suffering from overfit-
ting. There are other important criteria to be considered, including robustness, effi-
ciency, and time spent on model construction and updating. A fair comparison would
consider the model accuracy as well as all of these criteria.

It is difficult to draw a clear conclusion on which model is the best for the reasons
stated above, though the polynomial model seems to be the best choice for a local
model when dealing with local regions or clusters and enough sample points are
available [43]. In such cases, the fitting problem usually has low-order nonlinearity
and the polynomial model is the best candidate according to [@]. The polynomial
model is also believed to perform the best for problems with noise [@]. As for high-
order nonlinear problems the RBF model is believed to be the best and it is the least
sensitive to the sample size and has the most robustness [@]. So the RBF model is a
good choice for a global model with or without many samples. In [72], NN is found
to perform significantly better than PM when search space is very complex and the
parameters are correctly set.

The SVM model is a powerful fitting tool that belongs to the class of kernel
methods. Because of the beneficial features of SVMs stated above, the SVM model
becomes a good choice for constructing a global model, especially for problems
with high dimension and many local optima, provided that a large sample of points
exists.
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1.4 The Working Styles of Fitness Approximation

There are two categories of surrogate incorporation mechanisms in EAs, as shown
in Fig. In one category the original fitness is directly replaced by the estimated
fitness when the individual is evaluated throughout the optimization. Only a few
individuals have their exact fitness calculated for control purposes. In the other cat-
egory, the original fitness is kept for each individual and the approximate fitness is
not used to directly replace the original fitness. These two methods are reviewed
next.

Working Styles of Fitness Approximation

/ \-A

Direct: Most Individuals Indirect: All Individuals
Carrying Estimated Carrying Exact Fitness
Fitness during Most during All Optimization
Optimization Time Time
L 4 r
Evolution Control Informed Operators

Fig. 1.10 Working styles of fitness approximation

1.4.1 Direct Fitness Replacement Methods

Direct fitness replacement is straightforward. Individuals are evaluated by surro-
gates and then the estimated fitness is assigned to each individual. During the course
of the EA process, the approximate fitness assumes the role of the original fitness.
This method has been used in numerous research efforts [6, 112, (13,114, 115, |16, |18,
19, 22, 126, 27, 128, 29, 130, 131, 134, 135, 136, 137, 42, 148, 56]. The obvious draw-back
is that the inaccuracy of the approximate fitness may lead the EA to inferior local
optima. Consequently, the direct fitness replacement method needs a continuous cal-
ibration process called Evolution Control (described below). Even with Evolution
Control, convergence to true optima cannot be guaranteed.

1.4.2 Indirect Fitness Approximation Methods

The indirect surrogate method computes the exact fitness for each individual during
an EA process and the approximate fitness is used in other ways. For example, the
approximate fitness can be used for population pre-selection. In this method, instead
of generating a random initial population, an individual for the initial population
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can be generated by selecting the best individual from a number of uniformly dis-
tributed random individuals in the design space according to the approximate fitness
(5,43, l49).

Approximate fitness can also be used for crossover or mutation in a similar man-
ner, through a technique known as Informed Operators [B, @, , ]. Under this
approach, the approximate models are used to evaluate candidates only during the
crossover and/or mutation process. After the crossover and/or mutation process,
the exact fitness is still computed for the newly created candidate solutions. Using
the approximate fitness indirectly in the form of Informed Operators - rather than di-
rect evaluation - is expected to keep the optimization moving toward the true global
optima and to reduce the risk of convergence to suboptimal solutions because each
individual in the population is still assigned its exact fitness [49]. Experimental re-
sults have shown that a surrogate-assisted informed operator-based multi objective
GA can outperform state-of-art multi objective GAs for several benchmark prob-
lems [B]. Informed Operators also make it easy to use surrogates adaptively, as the
number of candidates can be adaptively determined. Some of the informed operators
used in [@] are explained as follows:

e Informed initialization: Approximate fitness is used for population pre-selection.
Instead of generating a random initial population, an individual for the initial
population can be generated by selecting the best individuals from a number of
uniformly distributed random individuals in the design space according to the
approximate fitness.

e Informed mutation: To perform informed mutation, several random mutations
of the base point are generated. The mutation with the best approximate fitness
value is returned as the result.

e Informed crossover: Two parents are selected at random according to the usual
selection strategy. These two parents are not changed in the course of the
informed crossover operation. Several crossovers are conducted by randomly
selecting a crossover method, randomly selecting its internal parameters and
applying it to the two parents to generate a potential child. The surrogate is used
to evaluate every potential child, and the best child is selected as the outcome.

1.5 The Management of Fitness Approximation

For direct fitness replacement methods the management of the fitness approximation
is necessary to drive the EA to converge to global optima with the cost reduced as
much as possible. There are several ways to conduct the model management, as
shown in Fig.[[.T1]

1.5.1 Evolution Control

Evolution Control uses surrogates together with original fitness functions in an
EA process where the original fitness functions are used to evaluate some/all
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Management of Fitness Approximation
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Fig. 1.11 Management of fitness approximation

individuals in some/all generations. There are two categories of Evolution Con-
trol methods: Fixed Evolution Control and Adaptive Evolution Control. For fixed
evolution control, there are individual-based and generation-based methods. In in-
dividual-based evolution control, only some selected individuals are evaluated by
the exact fitness function. The individual selection can be random or using some
strategy, e.g., selecting the best individual (according to the surrogate) for evolution
control. In generation-based Evolution Control, all individuals in a selected gener-
ation will be evaluated by the original fitness function, the generation selection can
be random or with a fixed frequency. The adaptive Evolution Control adjusts the
frequency of control according to the fidelity of the surrogates.

1.5.2 Offline Model Training

Offline model training constructs surrogates based on human evaluation or previous
optimization history data. In this case, either the approximate model is of high fi-
delity or the original fitness cannot be easily evaluated during an EA process such
as evolutionary art, so the original fitness is never used. An example of this method
can be found in [50].

1.5.3 Online Model Updating

Fitness approximation may be constructed at an early stage of the EA process.
Because of the limited sample points, a surrogate may concentrate on the region
spanned by the existing sample points and not cover the rest of the search space
well. As the EA continues and new individuals enter into the population, the ac-
curacy of the previously built surrogate model will decrease. Thus the surrogate
model needs to be reformed using the old sample points together with the new sam-
ple points. This technique is known as online surrogate up-dating. There has been
considerable research with this method [3,13,16,116,119, 120, 26,127, 28,129,130, 31]].
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1.5.4 Hierarchical Approximate Models and Model Migration

The hierarchical surrogates’ method builds multiple models with a hierarchical
structure during the course of an EA process (51, é]. In 51, a Gaussian process
model is built for the so-called global model. A user-specified percentage of the best
individuals according to the global model are selected to form a local search space.
Then Lamarckian evolution is performed involving a trust region-enabled gradient-
based search strategy that employs RBF local approximate models to accelerate
convergence in the local search space. In (52] the whole population is divided into
several sub-populations. Each sub-population constructs its own surrogate. At a cer-
tain interval, the individuals in the different sub-populations can migrate into other
sub-populations. This is called an Island Model. To gain a balance between the
model performance and the population diversity, the selection of migration size and
migration interval is important. It has been found that the migration interval plays a
more dominant role than migration size [@].

1.6 Case Studies: Two Surrogate-Assisted EA Real-World
Applications

1.6.1 The Welded Beam Design Domain

The Welded Beam Design problem is illustrated in Fig.[T.12] The goal for this design
is to use the least material to sustain a certain weight. It has four design variables
x = (h,l,t,b); the definition of Welded Beam Design problem can be found in the
appendix. The known optimal solution is 2.38116 with & = 0.2444, [ = 6.2187,
t =8.2915, and b = 0.2444.

‘We demonstrate it with three GA methods, GADO, GADO-R and ASAGA. GADO
[@] stands for Genetic Algorithm for Design Optimization, a GA that has proved to

Fig. 1.12 Welded Beam Structure
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Fig. 1.13 Welded Beam design with global optima 2.38116

be powerful for solving engineering design problems. GADO-R is based on GADO,
and includes global and local polynomial surrogate models structured by clustering
techniques. ASAGA [@] is an adaptive multi-surrogate assisted EA with a backbone
of a GADO. GADO was used with no approximate model assistance. GADO-R incor-
porates fixed quadratic polynomial surrogates through Informed Operators [45,159).
All three methods ran 30 times with different random starting populations. The av-
erage best fitness values of the 30 runs with corresponding number of actual fitness
evaluations are shown in Fig.[[LT3l The figure shows that the surrogate-assisted GA
outperforms the GA with no surrogate assistance and the adaptive surrogate-assisted
GA further outperforms the non-adaptive surrogate-assisted GA.

1.6.2 Supersonic Aircraft Design Domain

This domain concerns the conceptual design of supersonic transport aircraft. It is
summarized briefly here and is described in more detail in [@]. Fig. [[.14] shows a
diagram of a typical airplane automatically designed by the software system. The
GA attempts to find a good design for a particular mission by varying twelve of
the aircraft conceptual design parameters over a continuous range of values. An
optimizer evaluates candidate designs using a multidisciplinary simulator. The op-
timizer’s goal is to minimize the takeoff mass of the aircraft, a measure of merit
commonly used in the aircraft industry at the conceptual design stage. Takeoff mass
is the sum of fuel mass, which provides a rough approximation of the operating cost
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Fig. 1.14 Supersonic aircraft design problem

of the aircraft, and “dry”’mass, which provides a rough approximation of the cost of
building the aircraft. In summary, the problem has 12 parameters and 37 inequality
constraints and only 0.6% of the search space is evaluable.

Fig. shows a performance comparison in this domain. Each curve in the fig-
ure shows the average of 15 runs of GADO starting from random initial populations.
The experiments were done once for each surrogate: Least Square PM (LS), Quick-
Prop NN (QP) and RBF in addition to one without the surrogate-assisted informed
operators altogether, with all other parameters kept the same. Fig.[T.13]demonstrates
the performance with each of the three surrogate-assisted methods as well as per-
formance with no approximation at all (the solid line). The figure plots the average
(over the 15 runs) of the best measure of merit found so far in the optimization as
a function of the number of iterations. The figure shows that all surrogate-assisted
methods are better than the plain GADO and the LS approximation method gave the
best performance in all stages of the search in this domain.
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Fig. 1.15 Four GA methods comparison in supersonic aircraft design domain, landscape
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1.7 Final Remarks

Using fitness approximation methods to assist GAs and other Evolutionary Algo-
rithms has gained increasing popularity in recent years. This chapter presented a
survey of the popular and recent trends in approximation methods, control strate-
gies and management approaches. An interesting question in this area is: what is
the best model for fitness approximation? Though the answer depends on the prob-
lem and user requirements, we propose an interesting generic solution, which is
to try the simplest model first. If the performance is not satisfactory or degrades
with time, more sophisticated models can be used. So far many researchers use only
one type of approximation model, as in [26]. Some researchers use multiple mod-
els for different levels of approximation, but the approximate model itself is still
fixed [@, , ]. An interesting new direction [60] is to use an adaptive model-
ing method. In this method, first a simple approximation can be used such as the
fitness inheritance or K-nearest neighbor method. If the fitting is not satisfactory,
a more sophisticated model can be used such as the polynomial model. There are
several levels inside the polynomial model method itself from the linear polyno-
mial model to cubic polynomial model. They can be applied following a simple to
complex direction. If this level of approximation is still inadequate, more complex
models should be introduced such as the RBF, Kriging or SVM models. Usually the
more complex models give better fitting accuracy but need more construction time.
This adaptive method can provide the best trade-off between model performance
and efficiency by adaptively adjusting the fitness approximation.



24

L. Shi and K. Rasheed

Appendix: Definitions of Welded Beam Design

Minimize fyierdedyeam (X) = 1.10471h% 4 0.04811¢b(14 + 1) (1.17)
Subject to13600 — 7(x) > 0 (1.18)

30000 —o(x) >0 (1.19)

b—h>0 (1.20)

P.(x) — 6000 > 0 (1.21)

0.25—8(x) >0 (1.22)
0.125<h < 10 (1.23)
0.1<1,t,b<10 (1.24)

The terms 7(x), 6(x), and d(x) are given below:

(x) = \/ T(x)2 + 7/(x)2 + 17/ (x) 7 (x) /\/0.24(12 Y (h+1)?) (125

o(x) = 504000/ (°b)  (1.26)
P.(x) = 64746.022(1 — 0.02823461)tb>  (1.27)
8(x) =2.1952/(*b)  (1.28)

where
7' (x) = 6000/ (v/2hl) (1.29)
oo 6000(14+0.50),/0.25(1" + (h+1)2)
T = 0707hI(12)12 +0.25(h +112)) (1.30)
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Chapter 2

A Review of Techniques for Handling Expensive
Functions in Evolutionary
Multi-Objective Optimization

Luis V. Santana-Quintero, Alfredo Arias Montafio,
and Carlos A. Coello Coello*

Abstract. Evolutionary algorithms have been very popular for solving multi-
objective optimization problems, mainly because of their ease of use, and their wide
applicability. However, multi-objective evolutionary algorithms (MOEAs) tend to
consume an important number of objective function evaluations, in order to achieve
a reasonably good approximation of the Pareto front. This is a major concern when
attempting to use MOEAs for real-world applications, since we can normally af-
ford only a fairly limited number of fitness function evaluations in such cases. De-
spite these concerns, relatively few efforts have been reported in the literature to
reduce the computational cost of MOEAs. It has been until relatively recently, that
researchers have developed techniques to achieve an effective reduction of fitness
function evaluations by exploiting knowledge acquired during the search. In this
chapter, we analyze different proposals currently available in the specialized litera-
ture to deal with expensive functions in evolutionary multi-objective optimization.
Additionally, we review some real-world applications of these methods, which can
be seen as case studies in which such techniques led to a substantial reduction in
the computational cost of the MOEA adopted. Finally, we also indicate some of the
potential paths for future research in this area.

2.1 Introduction

In many disciplines, optimization problems have, in a natural form, two or more
objectives that we aim to minimize simultaneously, and which are normally in con-
flict with each other. These problems are called “multi-objective”, and their solution

Luis V. Santana-Quintero - Alfredo Arias Montafio - Carlos A. Coello Coello
CINVESTAV-IPN (Evolutionary Computation Group)

Departamento de Computacién

Av. IPN No. 2508, Col. San Pedro Zacatenco

Meéxico, D.F. 07360, Mexico

e-mail: 1vspenny@hotmail.com, aarias@computacion.cs.cinvestav.mx,
ccoello@cs.cinvestav.mx

* The third author is also affiliated to the UMI-LAFMIA 3175 CNRS.

Y. Tenne and C.-K. Goh (Eds.): Computational Intel. in Expensive Opti. Prob., ALO 2, pp. 29
springerlink.com © Springer-Verlag Berlin Heidelberg 20TU


lvspenny@hotmail.com, aarias@computacion.cs.cinvestav.mx,

30 L.V. Santana-Quintero, A.A. Montaiio, and C.A.C. Coello

gives rise not to one, but to a set of solutions representing the best possible trade-
offs among the objectives (the so-called Pareto optimal set). In the absence of user’s
preferences, all the solutions contained in the Pareto optimal set are equally good.
When plotted in objective function space, the contents of the Pareto optimal set
produces the so-called Pareto front.

Evolutionary algorithms (EAs) have become a popular search engine for solving
multi-objective optimization problems 17, 211, mainly because they are very easy
to use and have a wide applicability. However, multi-objective evolutionary algo-
rithms (MOEAs) normally require a significant number of objective function eval-
uations, in order to achieve a reasonably good approximation of the Pareto front,
even when dealing with problems of low dimensionality. This is a major concern
when attempting to use MOEAs for real-world applications, since in many of them,
we can only afford a fairly limited number of fitness function evaluations.

Despite these concerns, relatively little efforts have been reported in the litera-
ture to reduce the computational cost of MOEAs, and several of them only focus
on algorithmic complexity (see for example [@]), in which little else can be done
because of the theoretical bounds related to nondominance checking [@].

It has been until relatively recently, that researchers have developed techniques
to achieve a reduction of fitness function evaluations by exploiting knowledge ac-
quired during the search [@]. Knowledge of past evaluations can also be used to
build an empirical model that approximates the fitness function to optimize. This
approximation can then be used to predict promising new solutions at a smaller eval-
uation cost than that of the original problem [40,42)]. Current functional a proxima-
tion models include Polynomials (response surface methodologies [@ é}), neural
networks (e.g., multi-layer perceptrons (MLPs) [@, @, .]), radial-basis function
(RBF) networks E%i E§ ort vector machines (SVMs) [E], |fl|], Gaussian
processes l6, 78], and Kriging Eﬁp@] models. Other authors have adopted fitness
inheritance [@] or cultural algorithms [@] for the same purposes.

In this chapter several possible schemes are described, in which the use of the
knowledge from past solutions can help to guide the search of the new solutions, with
particular emphasis on MOEAs. The remainder of this chapter is organized as fol-
lows. In Section 2.2 we present basic concepts related to multi-objective optimiza-
tion. Then, in Section 23] we discuss several schemes that incorporate knowledge
into the fitness evaluations of an evolutionary algorithm, providing a brief explana-
tion of the surrogate models that have been used to approximate the fitness function.
Next in Section 2.4 some selected research works are discussed. Such works are
related to real-world engineering optimization problems, and can be considered as
case studies in which the use of the described techniques led to a substantial reduc-
tion in the computational cost of the MOEA adopted. Finally, in Section our
conclusions and some potential paths for future research in this area are indicated.

2.2 Basic Concepts

The general multi-objective optimization problem (MOP) can be formally defined
as the problem of finding:
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X" = (x],x5,... ,x*)T which satisfies the m inequality constraints:

gi(X)<0; i=1,....m
the p equality constraints:

hi(X)=0;, j=1,....p
and optimizes the vector function:

£(x) = [f1(X), £(T), ..., (X))

In other words, we aim to determine from among the set S of all vectors (points)
which satisfy the constraints those that yield the optimum values for all the k
objective functions simultaneously. The constraints define the feasible region S and
any point x” in the feasible region is called a feasible point.

2.2.1 Pareto Dominance

Pareto dominance is formally defined as follows:

A vector U = (uy,...,ux) is said to dominate a vector V.= (v1,...,v) if and
only if U is partially less than V', i.e., Vi € {1,... .k}, u; <viATi € {1,...,k} 1u; <
v; (assuming minimization).

In order to say that a solution dominates another one, it needs to be strictly better
in at least one objective, and not worse in any of them. So, when we are comparing
two different solutions A and B, there are 3 possible outcomes:

* A dominates B.
e A is dominated by B.
* A and B are incomparable.

2.2.2 Pareto Optimality

The formal definition of Pareto optimality is provided next:

A solution X, € S (where S is the feasible region) is said to be Pareto optimal
if and only if there is no x, € S for which v = f(x,) = (vi,...,v) dominates u =
S(x4) = (u1,...,u), where k is the number of objectives.

In words, this definition says that x,, is Pareto optimal if there exists no feasible
vector Xy which would decrease some objective without causing a simultaneous
increase in at least one other objective (assuming minimization).

This definition does not provide us a single solution (in decision variable space),
but a set of solutions which form the so-called Pareto Optimal Set (P*). The vectors
that correspond to the solutions included in the Pareto optimal set are nondominated.
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Fig. 2.1 Mapping of the Pareto optimal solutions to the objective function space

2.2.3 Pareto Front

When all nondominated solutions are plotted in objective function space, the
nondominated vectors are collectively known as the Pareto Front (PF*). Formally:

PF" = {f (%) = [(),.... ilx)] [x € P}
It is, in general, impossible to find an analytical expression that defines the Pareto
front of a MOP, so the most common way to get the Pareto front is to compute a suf-
ficient number of points in the feasible region, and then filter out the nondominated
vectors from them.
The previous definitions are graphically depicted in Figure 2l showing the
Pareto front, the Pareto optimal set and the dominance relations among solutions.

2.3 Knowledge Incorporation

From the many techniques adopted to solve such multi-objective optimization prob-
lems, evolutionary algorithms are among the most popular mainly because of their
population-based nature, which is very useful to generate several nondominated
solutions in a single run. However, dealing with a large population size and a
large number of generations make MOEAs an unaffordable choice (computation-
ally speaking) in certain applications, even when parallelism is adopted. In general,
MOEASs can be unaffordable for an application when:

e The evaluation of the fitness functions is computationally expensive (i.e., it takes
from minutes to hours).

e The fitness functions cannot be defined in an algebraic form (e.g., when the
fitness functions are generated by a simulator).

e The total number of evaluations of the fitness functions is limited by financial con-
straints (i.e., there is a financial cost involved in computing the fitness functions).
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Problem . .
. . Simulations
Approximation

_Response Surface Methods
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Knowledge A imati
Incorporation pproximation Radial Basis Functions
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Neural Networks

Support Vector Machines

Evolutionary Clusters
Approximation Fitness Inheritance

Fig. 2.2 A taxonomy of approaches for incorporating knowledge into evolutionary
algorithms

Jin et al. [40] presented a taxonomy of approaches which incorporate knowledege
into EAs (see Figure[2.2)). From this taxonomy, we can distinguish three main types
of strategies or approaches to deal with expensive fitness functions:

Problem Approximation: Tries to replace the original statement of the problem
by one which is approximately the same as the original problem but which is
easier to solve. To save the cost of the experiments, numerical simulations instead
of physical experiments are used to pseudo-evaluate the performance of a design.

Functional Approximation: In this case, a new expression is constructed for
the objective function based on previous data obtained from the real objec-
tive functions. The models obtained from the available data are often known as
meta-models or surrogates (see Section 2.3.1).

Evolutionary Approximation: This approximation is specific for EAs and tries to
save function evaluations by estimating an individual’s fitness from other similar
individuals. Two popular subclasses in this category are fitness inheritance and
clustering.

2.3.1 Surrogates

In many practical engineering problems, we have black-box objective functions
whose algebraic definitions are not known. In order to construct an approxima-
tion function, it is required to have a set of sample points that help us to build a
meta-model of the problem. The objective of such meta-model is to reduce the total
number of evaluations performed on the real objective functions, while maintaining
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a reasonably good quality of the results obtained. Thus, such meta-model is used to
predict promising new solutions at a smaller evaluation cost than that of the original
problem.

The accuracy of the surrogate model relies on the number of samples provided
in the search space, as well as on the selection of the appropriate model to represent
the objective functions. There exist a variety of techniques for constructing surrogate
models (see for example [IE]). One example is least-square regression using low-
order polynomials, also known as response surface methods. Comparisons of several
surrogate modeling techniques have been presented by Giunta and Watson [Iﬁ] and
by Jin et al. [39].

A surrogate model is built when the objective functions are to be estimated. This
local model is built using a set of data points that lie on the local neighborhood of
the design. Since surrogate models will probably be built thousands of times during
the search, computational efficiency becomes a major issue of their construction
process.

In [43], Knowles and Nakayama present a survey of meta-modeling approaches
to solve specific problems. The authors discuss the problem on how to model each
objective function and how to improve the Pareto approximation set using a trade-
off method proposed by Nakayama et al. [@]. In multi-objective optimization prob-
lems, the trade-off method tries to satisfy an aspiration level at the k-th iteration, with
the help of a trade-off operator which changes the k-th level if the decision maker
(DM) is not satisfied with the solution. So, they combine the satisficing trade-off
method and meta-modeling for supporting the DM to get a final solution with a low
number of fitness function evaluations. They use the u — v Support Vector Regres-
sion method [@] as their meta-model and include two real-world multi-objective
optimization problems, using also a Radial Basis Function Network with a Genetic
Algorithm in searching the optimal value of the predicted objective function 158].
The proposed approach obtains good solutions within 1/10 or less analysis time
than a conventional optimization approach based on a quasi-Newton method with
approximated differentials.

2.3.2 Polynomials: Response Surface Methods (RSM)

The response surface methodology comprises three main components: (1) regres-
sion surface fitting, in order to obtain approximate responses, (2) design of experi-
ments in order to obtain minimum variances of the responses and (3) optimizations
using the approximated responses.

An advantage of this technique is that the fitness of the approximated response
surfaces can be evaluated using powerful statistical tools. Additionally, the mini-
mum variances of the response surfaces can be obtained using design of experiments
with a small number of experiments.

For most response surfaces, the functions adopted for the approximations are
polynomials because of their simplicity, although other types of functions are, of
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course, possible. For the cases of quadratic polynomials, the response surface is
described as follows:

y= (BO) Z Bz -xl + z Blj X+ x/ (2.1)

i,j=1,i<j

where n is the number of variables, and By and [3; are the coefficients to be calcu-
lated. To estimate the unknown coefficients of the polynomial model, both the least
squares method (LSM) and the gradient method can be used, but either of them re-
quires at least the same number of samples of the real objective function than the f3;
coefficients in order to obtain good results.

2.3.3 Gaussian Process or Kriging

An alternative approach for constructing surrogate models is to use a Gaussian Pro-
cess Model (also known as Kriging), which is also referred to as “Design and Analy-
sis of Computer Experiments” (DACE) model [68] and Gaussian process regression
[@]. This approach builds probability models through sample data and estimates
the function values at every untested point with a Gaussian distribution.

In Kriging, the meta-model prediction is formed by adding up two different

models as follows:
¥(X) =a(X)+b(X)

where a(X') represents the “average” long-term range behavior and the expected
value of the true function. This function can be modeled in various ways, such as
with polynomials or with trigonometric series as:

—a0+22aU x,

i=1j=

where: R is the polynomial order with L dimensions and »(x’) stands for a local
deviation term. b(x') is a Gaussian random function with zero mean and non-zero
covariance that represents a localized deviation from the global model. This function
represents a short-distance influence of every data point over the global model. The
general formulation for b(X’) is a weighted sum of N functions, K, (x) that represent
the covariance functions between the n' data point and any point x:

N — Xin 2
b(7) = 2 b,,K(h(x,xn)) and h X x" - 2 xmax mm )

n=1

where ¥/ and x/"* are the lower an upper bounds of the search space and x;,
denotes the i — th component of the data point x,,. However, the shape of K(h) has
a strong influence on the resulting aspect of the statistical model. That is the reason
why it is said that Kriging is used as an estimator or an interpolator.
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Table 2.1 Radial basis functions

Type of Radial Function
LS linear splines 7|
CS cubic splines |r?
MQS multiquadrics splines /14 (er)?
TPS thin plate splines  |r|>"*!1n|r|
GA Gaussian e (er)?

2.3.4 Radial Basis Functions

Radial Basis Functions (RBFs) were first introduced by R. Hardy in 1971 132].
Let’s suppose we have certain points (called centers) X 1,..., X , € R?. The linear
combination of the function g centered at the points X is given by:

n n
[ROSR:T - Y Ag(F - %) = 2 Lo(| % — %) (2.2)
i=1 i=1
where | X — %7 || is the Euclidean distance between the points X and X;. So, f
becomes a function which is in the finite dimensional space spanned by the basis
functions:

gi: ¥ = g(I ¥ =)

Now, let’s suppose that we already know the values of a certain function H : R? — R
at a set of fixed locations X/ ,.. ., X,. These values are named f; = H (X} ), so we try
to use the X; as centers in the equation[Z2} If we want to force the function f to take
the values f; at the different points x—_,?, then we have to put some conditions on the
Ai. This implies the following:

Vie{l,..n} fi=f(5) = le<xi-¢<||?j—z>||>>

In these equations, only the A; are unknown, and the equations are linear in their
unknowns. Therefore, we can write these equations in matrix form:

0(0)  (llxr —x2ll) - O(floer —xul]) A i
Oz —xll) 00 .. o2 —xll) | |22 f

. . . . - . (2.3)
O([[xn = x1[l) OCllen —x2fl) .. ¢(0) A I

Typical choices for the basis function g(x) include linear splines, cubic splines,
multiquadrics, thin-plate splines and Gaussian functions as shown in Table 2.11
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@ = input layer

@= hidden layer

®= output layer i

Fig. 2.3 A graphical representation of an MLP network with one hidden layer

2.3.5 Artificial Neural Networks

An ANN basically builds a map between a set of inputs and the corresponding
outputs, and are good to deal with nonlinear regression analysis with noisy signals
[B]. A multilayer feedforward neural network consists of an array of input nodes
connected to an array of output nodes through successive intermediate layers. Each
connection between nodes has a weight, which initially has a random value, and that
is adjusted during a training process. The output of each node of a specific layer is
a function of the sum on the weighted signals coming from the previous layer. The
crucial points in the construction of an ANN are the selection of inputs and outputs,
the architecture of the ANN, that is, the number of layers and the number of nodes
in each layer, and finally, the training algorithm.

The multi-layer perceptron (MLP) is a multilayered feedforward network that
has been widely used in function approximation problems, because it has been often
found to provide compact representations of mappings in real-world problems. An
MLP is composed of neurons and the output (y) of each neuron is thus:

n

y=9o (ZWi'ai+b>
i=1

where a; are the inputs of the neuron, and w; is the weight associated with the ih

input. The nonlinear function ¢ is called the activation function as it determines the

activation level of the neuron.

In Figure 23] we show an MLP network with one layer of linear output neu-
rons and one layer of nonlinear neurons between the input and output neurons. The
middle layers are usually called hidden layers.

To learn a mapping R” — R by an MLP, its architecture should be the following:
it should have n input nodes and m output nodes with a single or multiple hidden
layer. The number of nodes in each hidden layer is generally a design decision.
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2.3.5.1 Training an ANN

In general terms, supervised training consists of presenting to the network patterns
whose output we know (the training set) finding the output of the net and adjusting
the weights so as to make the actual output more like the desired (or teaching signal).
The two most useful training protocols are: off-line and on-line. In off-line learning,
all the data are stored and can be accessed repeatedly. In on-line learning, each case
is discarded after it is processed and the weights are updated. With off-line learning,
we can compute the objective function for any fixed set of weights, so we can see
whether or not we are making progress in training.

Error backpropagation is the simplest and most widely used algorithm to train
feedforward neural networks. In this algorithm the training is performed by mini-
mizing a loss function, usually the sum of square errors over the N elements of the
training set. In this case, it is adopted a generalization of the square error function
given by:

Jow) =

M=

c 2 1Y = =2
N (ki — zi) ZZZHL‘—Z[H
k=1 i=1

where t; and z; are the i’-target and the #/"-network output vectors of length c, re-
spectively; W represents all the weights in the network. The backpropagation learn-
ing rule is based on a gradient descent. The weights are initialized with random
values, and are changed in a direction to reduce the error following the next rule:

oJ
Waew = Woia — n oW

The weight update for the hidden-output weights is given by:

OWy; =n(tx — zk) f (nety)y;

and the input-to-hidden weights learning rule is:

n
8W,-,- =MN-x; -f/(netj) 2 ijak
k=1
where 1 is the learning rate, i, j, k are the corresponding node indexes for each layer
and net; is the inner product of the input layer with the weights w; at the hidden unit.

2.3.6 Support Vector Machines

Support vector machines (SVM) have become popular in recent years for solving
problems in classification, regression and novelty detection. An important property
of support vector machines is that the determination of the model parameters cor-
responds to a convex optimization problem, and thus, any local solution found is
also a global optimum. In SV M regression, our goal is to find a function f(x) that
has at most an € deviation from the obtained targets y; for all the training data, and
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at the same time is as flat as possible. Let’s suppose we are given training data
% = (x,y:)I_, where y; € R. Then, the f(x) is given by:

x) = (w,x +bwithweRd,x€Rd,b€R
f(x) = (w,x)

where (-, -) denotes the dot product in %. A small w means that the regression is
flat. One way to ensure this, is to minimize the norm, ||w||> = (w,w). The problem
can be written as a convex optimization problem:

minimize 21wl (2.4)

. yi— (wxi)—b <e
subject to {(W,xi)+b—yi <e

And one can introduce two slack variables &;,&, for positive and negative devia-
tions, &; > 0 and £ > 0, where §; > 0 corresponds to a point for which (w,x;) +b >
yi+€and & > 0 corresponds to a point for which (w,x;) +b < y; — € (as in Fig-

ure 2.4):

minimize CY!_;(&+E&)+ 3||w|? (2.5)
yi—(wxi) —b <e+g
subject to § (w,xi)+b—y; <e+&

éiaé:‘ﬁ 20

The constant C > 0 determines the trade-off between the flatness of f and the
amount up to which deviations larger than € are tolerated. The e-insensitive loss
function [&] (see equation (2.6)) means that we tolerate errors up to € and also
that errors beyond that value have a linear rather than a quadratic effect. This error
function is therefore more tolerant to noise and is thus, more robust.

IEle = { i< (2.6)

|E] — €, otherwise.

Figure 2.4] shows a plot of the e-insensitive loss function. Note that only the points
outside the shaded region contribute to the cost of the function. It turns out that in
most cases, the optimization problem defined by equation (Z.3)) can be solved more
easily in its dual formulation. The dual formulation also provides the capability for
extending SVM to nonlinear functions using a standard dualization method based on
Lagrange multipliers, as described by Fletcher [25]. So, optimizing the Lagrangian
and substituting #; = (w,x;) for simplicity, we have:

N

Ei+&)+ I\W\Iz—Z(ui§i+u?§?)

i=1

L

CII3
M=

Il
-

'MZ

N
0i(E+Ei+yn—tn) — 2,05 (E+E +yu—1n) (2.7)
i=1
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Then, we can substitute for y(x) using the linear model equation: y(x) = w’ 0(x) + b
and set the derivatives of the Lagrangian with respect to 1) w, 2) b, 3) &; and 4) &}
to zero, giving:

L o w=3 (- o )0(x) 2.8)
aW_ W_i:1 l i " .
oL N .

aL—o$a-+ i=C (2.10)
a&l - 1 Hi— .
oL —

%, =0= o +u =C (2.11)

Using these results to eliminate the corresponding variables from the Lagrangian,
we see that the dual problem involves maximizing:

=

N N
(0 — o) (ot — 0 )k(xi, ;) — & D' (0 4 0) + Y (0 — 0 )ty
1

!/ * 1 J
L (a7a ):_2 2
i=1 i=1 i=1

J
(2.12)

with respect to o; and o, where k(x;,x;) = 0(x;)” -0 (x;) is the kernel function. So,

the problem becomes a constrained maximization problem with the box constraints:

0o<o; <C

0<o<C

And the predictions for new inputs can be made using:

=

y(x) = 2, (0 — 0 )k(x,x:) +b (2.13)

i=1

The support vectors are those data points that contribute to predictions given by
equation in other words those for which either o; # 0 or o # 0. These are
points that lie on the boundary of the e-tube or outside the tube. All points within
the tube have o; = o = 0.

2.3.7 Clustering

Clustering is the unsupervised classification of patterns into groups (or clusters).
The clustering problem has been addressed in many contexts and by researchers in
many disciplines [35].
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Fig. 2.4 e-insensitive loss function for SVM

Typical pattern clustering involves the following steps:

(1)Pattern Representation: it refers to the number of classes, number of patterns,
and features available to the clustering algorithm.

(2)Definition of a Pattern Proximity: it is usually measured by a distance function
defined on pairs. A simple distance measure such as the Euclidean distance can
often be used to reflect dissimilarity between two patterns.

(3)Clustering or Grouping: it can usually be hard (a partition of the data into well-
defined groups) or fuzzy (where each pattern belongs in certain degree to each of
the output clusters).

(4)Data Abstraction (if necessary): it is the process of extracting a simple repre-
sentation of a data set, and a compact description of each cluster, such as the
centroid.

(5)Assessment of Output (if necessary): it distinguishes a good clustering result
from a poor one, it attempts to study the cluster tendency, and it analyzes the
clustering result with a specific criterion of optimality.

Although, there is no specific approach that uses only clustering to deal with the
problem of reducing the number of objective function evaluations of a problem,
clustering techniques are commonly used in combination with surrogates. The com-
putational cost of a surrogate method can become prohibitively high when the size
of the training data set is very large, because of the time that it could require to
process the data set. In such cases, it is common to cluster the whole data set into
several small clusters and then try to build an independent local model from them.

2.3.8 Fitness Inheritance

Fitness Inheritance is a technique that was introduced by Smith et al. [Iﬂ], whose
main motivation is to reduce the total number of fitness function evaluations per-
formed by an evolutionary algorithm. The mechanism works as follows: when as-
signing the fitness to an individual, some times we evaluate the objective function
as usual, but the rest of the time, we assign fitness as an average of the fitness of the
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parents. This saves one fitness function evaluation, and is based on the assumption
of similarity of an offspring to its parents.

Fitness inheritance must not be always applied, since the algorithm needs to use
the true fitness function several times, in order to obtain enough information to guide
the search. The percentage of time in which fitness inheritance is applied is called
inheritance proportion. If this inheritance proportion is 1, the algorithm is most
likely to prematurely converge 18].

It is important to mention that some researchers consider this mechanism not
so useful in complex or real world problems, under the argument that it has been
only applied in “easy” problems. For example, Ducheyne et al. 23] tested the orig-
inal scheme of fitness inheritance on a standard binary genetic algorithm and the
Zitzler-Deb-Thiele (ZDT) 84 multiobjective test problems, concluding that fitness
inheritance was not useful when dealing with difficult shapes of the Pareto front.
Other authors, however, have successfully applied fitness inheritance to the ZDT
and other (more complicated) test problems (see for example [@]).

2.4 Real-World Applications

In this section, we present some selected research work in which a real-world multi-
objective engineering optimization problem was solved using a MOEA coupled to
a technique for reducing the computational cost involved. There are many engineer-
ing disciplines which require expensive function evaluations. From them, we chose
aeronautical/aerospace engineering, because it presents problems having high CPU
time demand, high nonlinearity and, some times, also high dimensionality. All of
these features are also common in other engineering optimization problems, and we
consider them representative of the main sources of difficulty in engineering opti-
mization in general.

Aeronautical and aerospace engineering are disciplines in which the solution of
multi-objective/multi-disciplinary problems is a standard practice. During the last
three decades, the process of engineering design in these industries has been revo-
lutionized as computational simulation has come to play an increasingly dominant
role. The increasing demand of optimal and robust designs, driven by time to mar-
ket, economics and environmental constraints, along with the increasing computing
power available, has changed the role of computational simulations from being used
only as analysis tools to be used as design optimization tools.

Among the problems with expensive evaluations identified in these
disciplines are the following:

e Aerodynamic Shape Optimization: This type of optimization problem ranges
from 2D to complex 3D shapes. Typical optimization applications for 2D prob-
lems comprise Wing and Turbine Airfoil Shape Optimization as well as In-
let/Nozzle design optimization, whereas for 3D problems, turbine blade, Wing
Shape and Wing-Body configuration design optimizations are typical example
applications.
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e Structural Optimization: The aeronautical/aerospace design philosophy fo-
cuses on the design of structures with minimum weight that are strong enough
to withstand certain design loads. These two objectives are conflicting in na-
ture and, therefore, the aim of structural optimization is to find the best possible
compromise between them. Typical applications for this type of problems com-
prise structural shape and topology optimization, robust structural design and
structural weight optimization.

* Multidisciplinary Design Optimization: aeronautical/aerospace design has a
multidisciplinary nature, since in many practical design applications, two or more
disciplines are involved, each one with specific performances to accomplish.
Typical applications for this type of problems are the aeroelastic applications
in which aerodynamics and structural engineering are the interacting disciplines.

For all the optimization problems indicated above, the objective function evalu-
ations are routinarily done by using complex computational simulations such as
CFD (Computational Fluid Dynamics) in the case of aerodynamic problems, CAA
(Computational Aero-Acoustics) for aero-acoustic problems, CSM (Computational
Structural Mechanics, by means of Finite Element Method software) for Structural
Optimization Problems, or a combination of them in the case of multidisciplinary
design optimization problems. Because of their nature, any of these computational
simulations have a high computational cost (since they solve, in an iterative man-
ner, the set of partial differential equation governing the physics of the problem) and
evaluating the objective functions for the kind of problems indicated above, can take
from minutes to hours for a single candidate solution, depending on the fidelity of
the simulation.

Nowadays in aeronautical/aerospace industries, MOEAs have gained popular-
ity and are considered as a mature and reliable numerical optimization tool, since
they provide to the designers not only with one design solution, but with a set of
them from which the tradeoff between the competing objectives can be assessed.
This last situation can help decision makers to select a compromise design accord-
ing to his/her own preferences. Given the high computational cost required for the
computational simulations and the population based nature of MOEAs, the use of
hybrid methods or meta-models is a natural choice in order to reduce the computa-
tional cost of the design optimization process, as indicated by some representative
research works that will be described next.

2.4.1 Use of Problem Approximation

As indicated in Section 23] this approach tries to replace the original problem by
one which is approximately the same as the original one but which is easier to
solve. In the context of aeronautical/aerospace engineering problems, where com-
plex CFD, CAA and CSD are employed, the problem can be approximated by using
different resolutions in the flow or structural simulation by using either coarse or
fine grids. In the case of CFD simulations another level of approximation can be
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obtained by solving Euler flows or potential flows instead of Navier-Stokes flow
simulations. Some of these techniques are used in the following research works.

Chiba et al. [@, ] addressed the problem of multidisciplinary wing shape op-
timization using the ARMOGA (Adaptive Range Multi-Objective Genetic Algo-
rithm) [@] and CFD and CSD Simulations. Three objective functions are
minimized: (i) Block Fuel, (ii)) Maximum takeoff weight, and (iii) Difference in
the drag coefficient between transonic and subsonic flight conditions. In this work,
and during the optimization process, an iterative aeroelastic solution is performed in
order to minimize the wing weight, with constraints on flutter and strength require-
ments. For this iterative process, Euler flow solutions (instead of Navier-Stokes flow
solutions) are used as a problem approximation in order to reduce the computational
cost. Also, a flight envelope analysis is done, which uses high-fidelity CFD Navier-
Stokes flow solutions for various flight conditions. The whole optimization process
evolves a population of 8 individuals during 16 generations. Authors indicate that
they use on the order of 70 Euler and 90 Navier-Stokes simulations per generation
of their MOEA.

Sasaki et al. [@, @] and Obayashi and Sasaki [@], solved a supersonic wing
shape optimization problem minimizing four objective functions: (i) drag coefficient
at transonic cruise, (ii) drag coefficient at supersonic cruise, (iii) bending moment at
the wing root at supersonic cruise condition, and (iv) pitching moment at supersonic
cruise condition. In this research study, which also makes use of the ARMOGA al-
gorithm, no iterative aeroelastic analysis is performed, aiming at reducing the as-
sociated computational cost. The objective associated with the bending moment at
wing root, is approximated by numerical integration of the pressure distribution over
the wing surface, as obtained by the CFD analysis.

Lee et al. [48, [51] presented the application of the HAPMOEA (Hierarchical
Asynchronous Parallel Multi-Objective Evolutionary Algorithm) 131] to the robust
design optimization of an ONERA M6 wing shape. The optimization problem is
solved considering uncertainties in the design environment, related to the flow Mach
number. The Taguchi method is employed to transform the problem into one with
two objectives: (i) minimization of the mean value of an objective function with
respect to variability of the operating conditions, and (ii) minimization of the vari-
ance of the objective function of each solution candidate, with respect to its mean
value. HAPMOEMA is based on evolution strategies, incorporating the concept of the
Covariance Matrix Adaptation (CMA). It also incorporates a Distance Dependent
Mutation (DDM) operator, and a hierarchical set of CFD models (varying the grid
resolution of the solver) and populations; small populations are evolved using fine
mesh CFD solutions (exploitation of solutions) while large populations are evolved
with coarse mesh CFD solutions (exploration of solutions). Good solutions from the
coarse mesh populations are transferred to the fine mesh populations. The use of a
hierarchical set of CFD models can be seen as different levels of fitness approxima-
tion; low-quality fitness approximations are obtained by using coarse mesh grids at
low computational cost, while high-quality fitness approximations are obtained by
using a fine mesh grid with its associated higher computational cost.
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Lee et al. [49,[50] made use of a generic framework for multidisciplinary design
and optimization ] to explore the application of a robust MOEA-based algorithm
for improving the aerodynamic and radar cross section characteristics of an UCAV
(Unmanned Combat Aerial Vehicle). In both applications, two disciplines are con-
sidered, the first concerning the aerodynamic efficiency and the second one dealing
with the visual and radar signature of an UCAV airplane. The evolutionary Algo-
rithm employed corresponds to the HAPMOEA indicated above. In this case, the
minimization of three objective functions is considered: (i) inverse of the lift/drag
ratio at ingress condition, (ii) inverse of the lift/drag ratio at cruise condition, and
(iii) frontal area. The problem has, approximately, 100 decision variables, and the
first two objective functions are evaluated using a potential flow solver (FLO22)
coupled to FRICTION code for obtaining the viscous drag. The use of these last
two codes approximates the Navier-Stokes flow solution, considerably reducing the
computational cost. The evolutionary system evaluates a total of 1600 solution can-
didates from which, a Pareto set containing 30 members is obtained. From these
nondominated solutions, a single compromise solution is obtained. The authors
reported a solution time of 200 hours on a single processor.

2.4.2 Use of RSM by Polynomial Approximation

Lian and Liou [52] used a multi-objective genetic algorithm coupled to a second-
order polynomial response surface model for the multiobjective optimization of a
three-dimensional rotor blade. The optimization problem consisted of the redesign
of the NASA rotor 67 compressor blade, a transonic axial-flow fan rotor which acts
as the first stage of a two-stage compressor fan. Two objectives are considered: (i)
maximization of the stage pressure raise, and (ii) minimization of the entropy gen-
eration. A constraint is imposed on the mass flow rate to have a difference less
than 0.1% between the new and the reference design. Blade geometry is constructed
from airfoil shapes defined at four span stations, with 32 total design variables. The
quadratic response surface model is constructed with 1,024 sampling design candi-
dates and using the IHS (Improved Hypercube Sampling) algorithm [3]. The authors
noted that the evaluation of the 1,024 sampling individuals took approximately 128
hours (5.3 days) using eight processors and a Reynolds-Averaged Navier-Stokes
CFD simulation. The optimization process for this application is done for 200 gen-
erations with a population size of 320 individuals, where objective functions are
obtained from the approximation model. Following the optimization process, 12
design solutions are selected from the obtained response surface method Pareto
front, and verified with the high fidelity CFD simulation. Objective functions dif-
fer slightly from those obtained using the approximation model, and all selected
solutions are better in both objective functions than the reference design. A simi-
lar research work is presented by Lian and Liou [@, @], but minimizing the blade
weight instead of entropy generation.

Goel et al. [29] used a quintic polynomial response surface method for
solving a liquid-rocket injector multiobjective optimization design problem. Four
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competing objectives are considered: i) combustion length, ii) injector face temper-
ature, iii) injector wall temperature, and iv) injector tip temperature. In this research,
the NSGA-IIa (referred to as archiving NSGA-II [22]), and a local search strategy
called “€ — constraint” are adopted to generate a solution set that is used for ap-
proximating the Pareto optimal front by a response surface method (RSM). Once
the Pareto optimal solutions are obtained, a clustering technique is used to select
representative tradeoff design solutions.

Pagano et al. [@] presented an application for three-dimensional aerodynamic
shape optimization, particularly the aerodynamic shape of an aircraft propeller. The
aim of this multiobjective optimization is to improve an actual propeller perfor-
mance. The authors considered two conflicting objectives: (i) minimize noise emis-
sion level, and (ii) maximize aerodynamic propeller efficiency. For this industrial
problem, several disciplines are considered and, therefore the objective function
evaluations consider: (a) aerodynamics, (b) structural behavior, and (c) aeroacus-
tics. For each of these, specialized computer simulation codes are employed. Every
calculation comprises an iterative coupling procedure (fluids-structures-acoustics)
among these simulation codes in order to evaluate a more realistic operating con-
dition. As a consequence, the optimization process becomes computationally de-
manding. In order to reduce the burden of this high computational cost, the authors
made use of design of experiment techniques (DOE), and a quadratic response sur-
face method (RSM) for efficiently exploring the design space. The geometry for the
propeller blade is parameterized using a total of 14 design variables. The optimiza-
tion problem contains constraints on the geometry design variables and on propeller
shaft power at two flight conditions; takeoff and cruise, respectively. The evolution-
ary algorithm employed corresponds to the NSEA+ (Nondominated Sorting Evo-
lutionary Algorithm) as implemented in the OPTIMUS commercial code which is
adopted by the authors. The population size for the evolutionary algorithm is set
to 20 individuals, and the optimization is run using the DOE and RSM methods.
Afterwards, the Pareto front solutions obtained are evaluated using the high fidelity
simulation codes. The authors indicated that a total of 340 designs were evaluated
using high fidelity simulations. From them, approximately 20 Pareto solutions were
obtained, all of them being better than the reference design in the two objectives
considered.

2.4.3 Use of Artificial Neural Networks

Rai [64] addressed the problem of multiobjective robust design of a turbine blade air-
foil, considering performance degradation due to manufacturing uncertainties. For
this problem, the objectives are: (i) minimize the variance of the pressure distribution
over the airfoil’s surface, and (ii) maximize the wedge angle at the trailing edge. Both
objectives must be met subject to the constraint that the required flow turning angle
is achieved. Objectives are evaluated by means of a model that modifies the geome-
try of the airfoil surface following a probability density function that is observed for
manufacturing tolerances, and with a CFD simulation for obtaining the flow pressure
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distribution. The blade geometry is defined by eight design parameters, but only two
of them are varied during the optimization process. The evolutionary algorithm used
in this research correspond to a multiobjective version of the differential evolution
algorithm previously implemented by the same author and described in [@]. In order
to cope with the associated calculation time of the CFD simulations required to eval-
uate the objective functions, the authors used a hybrid neural network comprised of
10 individual single—hidden—layer feed forward networks. The optimization is run
with a small population size of 10 individuals and during 25 generations.

Arabnia and Ghaly [@] presented a strategy that makes use of multi-objective
evolutionary algorithms for aerodynamic shape optimization of turbine stages in
three-dimensional fluid flow. The NSGA [Iﬂ] is used and coupled to an artificial
neural network (ANN) based response surface method (RSM) in order to reduce the
overall computational cost. The blade geometry, both for rotor and stator blades, is
based on the E/TU-3 turbine which is used as a reference design to compare the
optimization results to. The multi-objective optimization consists of finding the best
distribution of 2D blade sections in the radial and circumferential directions. For
this, a quadratic rational Bezier curve, with 5 control points, is used for each of the
two blades. The objective functions to be optimized include: (i) maximization of
isentropic efficiency for the stage, and (ii) minimization of the streamwise vorticity.
Both objective functions are evaluated using a 3D CFD flow simulation with con-
straints on: (1) inlet total pressure and temperature, (2) exit pressure, (3) axial chord
and spacing, (4) inlet and exit flow angles, and (5) mass flow rate. The authors noted
that one CFD simulation took approximately 10 hours. Therefore they resorted to an
ANN based RSM. The ANN model with backpropagation, containing a single hid-
den layer with 50 nodes, was trained and tested with 23 CFD simulations, sampling
the design space using the latin hypercubes sampling technique. The optimization
process used the ANN model to estimate the objective functions, and the constraints
values as well. The population size used in the NSGA was set to 50 individuals, and
was run for 150 generations. Finally, the Pareto solutions were evaluated with the
CFD flow simulation. From their results, the authors indicated that they obtained
design solutions which were better in comparison to the reference turbine design.
Indeed, they attained a 1.2% improvement in stage efficiency, which is remarkable
considering the small number of design variables used in the optimization process.

Alonso et al. ] described a procedure for the multi-objective optimization
design of a generic supersonic aircraft. The competing design objectives consid-
ered were two: 1) maximization of aircraft range, and ii) minimization of the per-
ceived loudness of the ground boom signature. Constraints were set for aircraft’s
structural integrity, take-off field length and landing field length. The objective
functions were evaluated using CFD with various fidelity (approximation) lev-
els. In this work, the authors made use of a neural network (NN) based response
surface method. The prototype for the NN is a single hidden layer perceptron
with sigmoid activation functions, providing a general nonlinear model, which is
useful for the high non-linearities present in the objective functions landscapes
associated to this problem. The neural network was trained with 300 sampling
design solutions, obtained with low fidelity simulations in order to reduce the
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computational cost. In their optimization cycle, authors used high fidelity simula-
tions only in promising regions of the design space to do a local exploration. The
problem comprised 10 design variables and the NSGA-II [@] was used as the search
engine with a population size of 64 and was run for 1000 generations using the
surrogate-based objective function.

2.4.4 Use of a Gaussian Process or Kriging

D’ Angelo and Minisci [@] used an evolutionary algorithm based on MOPED [@],
which is a multi-objective optimization algorithm for continuous problems that uses
the Parzen method to build a probabilistic representation of Pareto solutions, with
multivariate dependencies among variables. The authors included three modifica-
tions to improve a previous implementation of MOPED: (a) use of a kriging model
by which solutions are evaluated without resorting to costly computational sim-
ulations, (b) use of evolution control, which is adopted to avoid the evolution to
converge to a false minima; the mechanism of this technique is to evaluate a sub-
set of individuals or the whole actual generation, with the real simulation model,
for a continuous kriging model update, and (c) hybridization of the algorithm; in
this case, the selection and ranking of the individuals is different from the orig-
inal algorithm and some mechanisms borrowed from the NSGA-II algorithm are
adopted as well. In their optimization examples, subsonic airfoil shape optimization
was performed. The optimization problem considered two objective functions: (i)
drag force coefficient, and (ii) lift force coefficient difference with respect to a refer-
ence value. Both objectives were minimized. The airfoil geometry is parameterized
using Bezier curves both for its camber line and thickness distribution. In total, 5
design variables were used and constraints were imposed on the objective functions
extreme values. The authors indicated that the subsonic airfoil shape optimization
presented several difficulties. For example, the true Pareto front was discontinuous
and partially converged solutions from the aerodynamic simulation code introduced
irregularities in the objective function. It is important to note that the approximation
model used (kriging) reduced the number of real evaluations to only 2300, consid-
ering that the evolution system comprised a population size of 100 individuals and
a total of 150 generations.

Song and Keane [@] applied a multi-objective genetic algorithm for studying
the shape optimization of a civil aircraft engine nacelle. The primary goal of the
study was to identify the tradeoff between aerodynamic performance and noise ef-
fects associated with various geometric features for the nacelle. The geometry was
parameterized using 40 parameters, 33 of which were considered as design vari-
ables. In their study, the authors used NSGA-II [@] as the multi-objective search
engine, while a commercial software was used for the CFD evaluations of the three-
dimensional flow. Due to the large size of the design space to be explored, as well as
the simulations being very time consuming, a kriging surrogate model was adopted
in order to keep to a minimum the number of designs being evaluated with the
CFD tool. The kriging model was continuosly updated, adding sampling solutions
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from the Pareto front obtained using the kriging model and evaluated with the CFD
tool. In their research, the authors reported difficulties in obtaining a converged
Pareto front (there exist large discrepancies between the approximated and the real
Pareto fronts). They attributed this behavior to the large number of variables in the
design problem, and to the associated difficulties in obtaining an accurate kriging
model for these situations. In order to alleviate this situation, they performed an
ANOVA (Analysis of Variance) test to find the variables that contributed the most
to the objective function values. After this test, they presented results with a reduced
kriging surrogate model, employing only 7 variables. The authors argued that they
obtained a similar design with this reduced kriging model at a considerably lower
computational effort.

Jeong et al. 138] investigated the improvement of the lateral dynamic characteris-
tics of a lifting-body type re-entry vehicle in transonic flight condition. The problem
was posed as a multi-objective optimization problem in which two objectives were
minimized: (i) derivative of the yawing moment, and (ii) derivative of the rolling
moment. Due to the geometry of the lifting body and the operating flow condition
of interest, namely high Mach number and strong vortex formation, the evaluation of
the objectives was done by means of a full Navier-Stokes CFD simulation. Since the
objectives were derivatives, multiple flow solutions were required to determine their
values in a discrete manner through the use of finite differencing techniques. This
considerably increased the total computational time due to a large number of calls
for the CFD code. The optimization problem considered 4 design variables, and two
solutions were sought: the first one without constraints, and the second one con-
straining the L/D ratio for the lifting-body type reentry vehicle. the authors used the
EGOMOP (Efficient Global Optimization for Multi-Objective Problems) algorithm
developed by Jeong et al. 1371. Such algorithm was built upon the ideas borrowed
from the EGO and ParEGO algorithms from Jone et al. [IIl'] and Knowles et al. [@],
respectively. EGOMOP adopts the use of the kriging model as a response surface
model, for predicting the function value and its uncertainty. For the exploration of
the Pareto solutions, Fonseca’s MOGA [@] was used. The initial kriging model
was built by using the latin hypercube sampling method for uniformly covering the
design space, and the model was continuosly updated.

Voutchkov et al. [|8__l|] used the NSGA-II ﬂé] to perform a robust structural design
of a simplified FEM jet engine model. This application aimed at finding the best jet
engine structural configuration minimizing: the variation of reacting forces under a
range of external loads, the mass for the engine and the engine’s fuel consumption.
These objectives are competing with each other and, therefore, the authors used a
multi-objective optimization technique to explore the design space looking for trade-
offs among them. The evaluation of the structural response was done in parallel by
means of finite element simulations. The FEM model comprised a set of 22 groups
of shell elements. The thickness for 15 of these groups were considered as the de-
sign variables. Computational time was reduced by using a kriging based response
surface method. The optimization problem was posed as a MOP, comprising four ob-
jectives (all to be minimized): (i) standard deviation of the internal reaction forces,
(i) mean value of the internal reaction forces, (iii) engine’s mass, and (iv) mean value
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of the specific fuel consumption. The first two objectives were computed over 200
external load variations. The authors noted that for this class of problem which com-
prises huge combinations of loads and finite element thicknesses, the multiobjective
optimization problem would take on the order of one year of computational time on
a single 1 GHZ CPU. Also, they indicated that by using the surrogate model and
parallel processing, the optimization time was reduced to about 26 hours in a cluster
with 30 PEs (processing elements).

Todoroki and Sekishiro [@, @] proposed a new optimization method for com-
posite structural components. This approach is based on the use of a multi-objective
genetic algorithm coupled to a kriging model, in order to reduce the number of
objective function evaluations, and to a FBB (Fractal Branch and Bound) method
for the stacking sequence optimization needed in laminar composite structures. The
problem consisted of two objectives: (i) minimize the structural weight of a hat-
stiffened wing panel, subject to buckling load constraints, and (ii) maximize the
probability of satisfying a predefined buckling load. The variables for the problem
are a set of mixed real/discrete variables. Real variables correspond to the stiffener
geometry definition, while discrete variables correspond to the number of plies for
the composite panel. Constraints were imposed on the dimensions of the stiffener,
but they were automatically satisfied in the definition of the variables ranges. The
authors noted that the buckling load constraint demanded a large computational cost,
since it needed a FEM (Finite Element Analysis). For this reason a kriging model
was adopted and initialized with sampling points obtained by the LHS (Latin Hy-
percube Sampling) technique. The optimization cycle consisted of two layers. The
upper one driven by the multi-objective genetic algorithm and the kriging model,
in which the optimization of the structural dimensions was performed. In the lower
layer, the stacking sequences of the stiffener and panels were optimized by means
of the FBB method. The evolutionary algorithm was run for 300 generations with
a population of 100 individuals, and every 50 generations some nondominated so-
lutions were evaluated with the FEM model, in order to update the kriging model.
The authors obtained a Pareto Front that was discontinuous. Also, from the results
obtained, a comparison of different designs was made. The solution obtained with
the evolutionary algorithm was 3% heavier than a previous design obtained with
a conventional method (deterministic), but obtained after only 301 FEM analyses
compared to the tens of thousands required by the conventional method.

Choi et al. [IL1] used the NSGA-II [22] in the solution of a multidisciplinary
supersonic business jet design. In this case, the disciplines involved were (i) aero-
dynamics and, (ii) aeroacoustics. The main objective of this particular problem was
to obtain a compromise design having good aerodynamic performance while min-
imizing the intensity of the sonic boom signature at the ground level. Multiobjec-
tive optimization was used to obtain tradeoffs among the following objectives: (i)
the aircraft drag coefficient, (ii) initial pressure raise (boom overpressure), and (iii)
ground perceived noise level. All the objectives were minimized. The geometry of
the aircraft was defined by 17 design variables, involving the modification of the
wing platform, its position along the fuselage, and some cross sections and cam-
ber for the fuselage. For evaluating the objective functions, a high fidelity Euler
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solution was obtained with a very fine grid close to the aircraft’s surface. In order to
reduce the computational time required for the optimization cycle, a kriging model
was employed. Its initial definition was formed with a latin hypercube sampling of
the design space with 232 initial solutions, including both feasible and infeasible
candidates. Following a kriging based optimization cycle, the Pareto optimal so-
Iutions were evaluated with high fidelity simulation tools and used to update the
kriging model. In the example, constraints were imposed on some geometry param-
eters, and on the aircrfat’s operational conditions. No special constraint-handling
mechanism was adopted other than discarding the solution candidates that did not
satisfy the constraints, which were mostly geometrical. From their results, the au-
thors noted that after the first design cycle using the kriging based NSGA-II, 59
feasible solutions were obtained. It is important to note that all the solutions ob-
tained were better in both objectives compared to a base design. Another important
issue in this particular application was that the kriging model did not perform as
well as in other applications. The reason for this behavior was the high nonlinear
physics involved in the two disciplines considered, which required, in consequence,
more design cycles in the optimization.

In related work, Chung and Alonso [@] and Chung et al. ] solved the same
previously defined multidisciplinary problem, but using the u-GA Algorithm, from
Coello Coello and Toscano Pulido ,]. This change was aimed at reducing
the total number of function evaluations during the optimization process. This u-
GA algorithm used a population size of 3 to 6 individuals and an external file to
keep track of the nondominated solutions obtained so far. In the study reported in
[Iﬂ], the design cycles were performed using a kriging model. Two design cycles
were executed, each one consisting of 150 solution candidates using the latin hy-
percube sampling technique applied around a base design in the first cycle. For the
second cycle, the sampling was applied around the best solution obtained in the
previous cycle. The authors reported that they obtained a very promising Pareto
front estimation with only 300 functions evaluations. In the second study, reported
in ], the authors proposed an tested the GEMOGA (Gradient Enhanced Multiob-
jective Genetic Algorithm). The basic idea of this algorithm is to enhance the Pareto
solutions with a gradient based search. One important feature of the algorithm
is that gradient information is obtained from the kriging model. With this, the
computational cost is not considerably increased.

Kumano et al. [@] used Fonseca’s MOGA [@] for the multidisciplinary design
optimization of wing shape for a small jet aircraft. In this study, four objectives
were considered: (i) drag at the cruise condition, (ii) drag divergence between cruis-
ing and off-design condition, (iii) pitching moment at the cruising condition, and
(iv) structural weight of the main wing. All these objectives were minimized. In this
study, the optimization process was also performed by means of a kriging model,
and such model was continuosly updated after a certain prescribed number of it-
erations (defined by the user), adding new nondominated points obtained from the
optimization steps.
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2.4.5 Use of Clustering

Langer et al. [47] applied an integrated approach using CAD (Computer Aided
Design) modeling with a MOEA for structural shape and topology optimization
problems. The application presented in this research, dealt with the structural opti-
mization of a typical instrument panel of a satellite, and considered two objectives:
(i) minimize the instrument panel mass, and (ii) maximize the first eigenfrecuency.
The problem contained a mixed continuous/discrete set of variables. 17 design vari-
ables were used, from which 3 were discrete, which consider the number of stringers
to use in the panel, as well as the plate and stringer materials. The authors solved
the optimization problem for three shape and topology optimization cases: (a) a
panel without instruments, (b) a panel with instruments at fixed positions, and (c)
a panel with instrumental placing. They made use of polynomial based response
surface methods in order to reduce the computational cost. Multiple local approx-
imation models were constructed using a clustering technique. In all the examples
included, the population size was set to 200 and was evolved for 20 generations.
The evaluation of the objective functions comprised four load cases: (a) quasi-static
acceleration, (b) modal analysis, (c) sinusoidal vibration loads, and (d) ‘pseudo tem-
perature’ load. This latter load case, constrained the positioning of the instruments
on the panel, since it imposed a limiting operating temperature for a specific in-
strument. The first three load cases were evaluated in parallel using FEM (Finite
Element Method) simulations on a cluster of 32 workstations.

2.4.6 Use of Radial Basis Functions

Cinnella et al. [IEI] presented the airfoil shape optimization for transonic flows of
BZT (Bethe-Zel’dovich-Thompson) fluids, by using a multi-objective genetic al-
gorithm. This application explored the design of airfoil shapes in turbine cascades
which could exploit the benefits of BZT transonic flows past airfoils. In the ap-
plication, the authors proposed two optimization problems which aimed at finding
optimal airfoil geometries both for (i) non—lifting airfoils, and (ii) lifting airfoils. In
both cases GA-Based approaches were used as search engines. In the second case,
the optimization problem considered two design objectives: (i) maximize lift at BZT
subcritical conditions, and (ii) Minimize wave drag while maximizing lift for super-
critical BZT flow conditions. Therefore, a bi-objective problem was solved, and
the evolutionary algorithm helped the designers to find trade-off solutions between
these two design points. The multi-objective genetic algorithm used in the second
case was the NSGA [Iﬂ]. In previous related work [IE], a population size of 36 and
24 generations were used (totaling 864 objective function evaluations obtained from
CFD), based on the constraint that the whole CFD calculation time had to be kept
inferior to one week (the evaluation time for each individual varied from 5 to 10 min
in a PC equipped with a Pentium Processor). In order to reduce the computational
cost, the authors included an ANN (Artificial Neural Network) based on radial ba-
sis functions, formed by an input layer, an intermediate layer, and an output layer.
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The weights of the linear combinations were determined through a training proce-
dure. The number of neurons involved was taken as the number of individuals in
the training set. The first training set was formed with all the solutions obtained
from the first two generations. Afterwards, the objective functions were approxi-
mated with the ANN-RBF model, and the training set was updated by adding a 30%
of “exactly evalauted” individuals per generation. With this technique the authors
obtained similar design solutions with approximately 60% less computational cost.

Kampolis and Giannakoglou [Eh solved the inverse design of an isolated airfoil at
two operating conditions. For this design problem, two reference airfoil and operat-
ing conditions were defined (these solutions could be seen as the extreme portions of
the Pareto front), and a MOEA was used to find the tradeoff solutions between them.
The MOEA adopted was SPEA-2 (85]. In their approach, the authors proposed the
use of a radial basis function meta-model.

2.5 Conclusions and Future Research Paths

We have described several techniques which have been coupled to MOEAs, aim-
ing to reduce the computational cost of evaluating the objective functions of a
multi-objective optimization problem. Additionally, some selected real-world ap-
plications of such techniques were also presented as case studies in which these
hybrid schemes led to substantial reductions in the computational cost. The main
aim of this review was to provide a general overview of this area, which we believe
that may be of interest both for MOEA researchers who may be looking for new
algorithmic design challenges, and for practitioners, who may benefit from com-
bining MOEAs with surrogate methods or any other approximation techniques that
they normally use to reduce the computational cost of their simulations.

From the application examples reviewed here, we observed that the most pre-
ferred methods seem to be problem approximation, kriging and polynomial interpo-
lation, followed by the use of neural networks and radial basis functions. Our study
of the small sample of real-world applications presented here, also led us to outline
some of the future research paths that seem promising within this area:

e Model Selection Guidelines: Since the high computational cost involved in ap-
plications such as those described here preclude us from any exhaustive exper-
imentation, the existence of guidelines that allow us to identify which sort of
method could be a good choice for a given problem would be of great help. To
the authors’ best knowledge no guidelines of this sort have even been reported in
the specialized literature.

e Hybridization: Approximation models can be used not only to replace the
objective function evaluations, but also to estimate first-order information
(e.g., gradient information). This could lead to the use of hybrids of MOEAs
with gradient-based methods. An example of this type of approach is presented
in Chung et al. ], where solutions are improved by the use of gradient
information obtained from a kriging model. This sort of hybridization scheme
is, however, relatively scarce in the literature until now.
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e Use of Multiple Approximation Models: Most authors report the use of a sin-
gle approximation model. However, it may be worth exploring the combination
of several of them for exploiting either their global or their local nature. This
idea has been explored in the past, for example, by Mack et al. [@], by using a
combination of polynomial respose surface methods and radial basis functions,
for performing global sensitivity analysis and shape optimization of bluff bodies.
Also, Glaz et al. [28] adopted three approximation models, namely polynomial,
kriging, and radial basis functions. This combined approach, adopted a weighted
estimation from the different models, which was used to reduce the vibration for
a helicopter rotor blade. To the authors’ best knowledge, no similar combination
of approaches has ever been reported when using MOEAs.

e Automatic Switching: Considering that every approximation model has partic-
ular properties in terms of global or local accuracy, and that the selection of the
“best” approximation method to use for a particular application can also be con-
sidered a difficult task, one promising research area is to develop mechanisms
allowing to automatically switch from one approximation method to a different
one, as the optimization process is being executed. For example, a global approx-
imation method (i.e., coarse-grained) could be used for exploration of the design
space, while a more locally accurate method (i.e., fine-grained) might be used for
solution exploitation.

e Sampling Techniques: The accuracy of the approximation highly depends on
the sampling and updating technique used. In most cases, the initial sampling is
defined by a latin hypercube sampling, aiming at covering as much as possible the
design space. This can be considered as a general technique. Another possibility
is to use application-dependent sampling techniques, where the initial sampling
design points are selected on the basis of reference or similar solutions. One
example of this sort of situation is reported by Chung et al. (13] and by Chung and
Alonso [[12], where the initial approximation models are built around a reference
design in decision variable space.
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Chapter 3

Multilevel Optimization Algorithms Based on
Metamodel- and Fitness Inheritance-Assisted
Evolutionary Algorithms

Kyriakos C. Giannakoglou and Ioannis C. Kampolis

Abstract. This chapter is concerned with the efficient use of metamodel-assisted
evolutionary algorithms built in multilevel or hierarchical schemes for the solution
of computationally expensive optimization problems. Existing methods developed
by other researchers or the authors’ group are overviewed and a new enhancement
based on fitness inheritance is proposed. Whereas conventional evolutionary algo-
rithms require a great number of calls to the evaluation software, the use of low
cost surrogates or metamodels, trained on the fly on previously evaluated individ-
uals for pre—evaluating the evolving populations, reduce noticeably the CPU cost of
an optimization. Since, the metamodel training requires a minimum amount of previ-
ous evaluations, the starting population is evaluated on the problem—specific model.
Fitness inheritance is introduced in this context so as to approximate the objective
function values in place of metamodels. In addition, to profit of the availability of
evaluation or parameterization models of lower fidelity and CPU cost and/or refine-
ment methods, a multilevel search algorithm relying also on the use of metamodels is
presented. The algorithm may optionally operate as hierarchical—distributed (many
levels performing distributed optimization) or distributed—hierarchical (more than
one sub—populations undergoing their own hierarchical optimizations) to further re-
duce the design cycle time. The proposed algorithms are generic and can be used
to solve any kind of optimization problems. Here, aerodynamic shape optimization
problems, including turbomachinery applications, are used to demonstrate the ef-
ficiency of the proposed methods. A new computationally demanding application,
namely the optimization of a 3D compressor blade is also shown.
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3.1 Introduction

The term computationally expensive optimization problems is referred to design or
optimization applications requiring an excessive number of calls to the costly eval-
uation software for locating the optimal solution(s). Typical examples are optimiza-
tions in which the evaluation of candidate solutions calls for the numerical solution
of p.d.e.’s or is based on Monte—Carlo techniques to account for uncertainties. With-
out loss in generality, we will restrict ourselves to design—optimization problems
with aerodynamic performance criteria. Therefore, the evaluation software might
be any Computational Fluid Dynamics (CFD) code. Depending on the selected flow
model, the problem dimension (2D or 3D) and the complexity of the flow domain
(affecting the computational grid size, if such a grid is needed), the cost of running
the CFD code may range from a couple of minutes to some hours on many CPUs.

In aerodynamic shape optimization, the use of either gradient—based methods or
global search metaheuristics is steadily increasing, 148, [82]. Though they usually
appear as “rival” methods, they can be hybridized to create more efficient optimiza-
tion methods (see also [@], chapter 16). In the present chapter, an evolutionary
algorithm (EA, [EI, @, @]) is the key search method. EAs are assisted by metamod-
els and fitness inheritance, hybridized with gradient-based methods and structured
as multilevel search algorithms. They are also used in distributed search schemes,
properly adapted for use on multiprocessor platforms and may become Grid
enabled.

EAs are gradient—free methods that may accommodate any ready-to-use analysis
software, even a commercial-off—the—shelf one without having access to its source
code. In aerodynamic optimization problems, they unfortunately become compu-
tationally demanding if (some, at least, of) the add—on features discussed in this
chapter or elsewhere in this book are not used. This is due to the high number of
candidate solutions that must be evaluated. For EAs to become routine industrial
tools, much focus has been placed on methods reducing the number of evalua-
tions required and, thus, their CPU cost. To this end, most of the existing papers
rely on surrogate evaluation models or metamodels. The latter stand for evaluation
methods of lower accuracy and CPU cost. The so—called metamodel—-assisted EAs
(MAEAs, [@, @]) use both the exact and costly problem—specific evaluation model
and the approximate and computationally cheap metamodel), according to coupling
schemes to be discussed below.

In the so—called MAEAs with off~line trained metamodels [ﬂ,, E, , , @, |Il|,
@, |fl|, ], the metamodel is trained in advance, i.e. separately from the evolution
which is exclusively based on them. The problem—specific tool is used to evaluate
a number of selected samples which the metamodel should be trained on and for
cross—checking the outcome of the metamodel-based optimization.

In MAEAs with on—line trained metamodels [B, , Eg, @, @, @, @, @, |ﬂ, ]
the metamodel(s) and the problem—specific model are used in an interleaving way
during the evolution. The metamodels may be local (valid over a part only of the
design space) or global (valid over the entire design space). The more frequently
metamodels are used (in place of the exact model), the greater the gain in CPU cost.
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Another interesting alternative, regarding the possible coupling of metamodels
and stochastic search techniques, lies in the so—called metamodel—assisted memetic
algorithms (MAMAs) [@ ﬁ @ @ In ], the metamodels are (also) used for the
refinement (local search) of selected populatlon members in the spirit of Lamarckian
learning. The hierarchical and/or distributed optimization schemes presented in this
chapter can certainly accommodate metamodel-based local search processes but
this is beyond the scope of this chapter.

The method discussed in this chapter is an extension of the MAEA originally pro-
posed in [@, , @], for single— (SOO) and multi—objective optimization (MOO)
problems, l44]. A key feature of this method is the inexact pre-evaluation (IPE)
technique. Apart from the starting population which is evaluated on the problem—
specific model, the subsequent generations use local metamodels. These are trained
on the fly on a subset of previously evaluated neighbors of each new population
member. MAEAs can also be configured as distributed search methods (DMAEA),
by handling intercommunicating sub—populations or demes, [@].

The evolutionary search can also be carried out via hierarchical or multilevel
schemes, [39, 43, l44], by incorporating more than one optimization levels associ-
ated with different evaluation software, [Iﬁ @ . . . @] different search
techniques, [@, ., @], and different chromosome sizes, [@ ], or numbers of de-
sign variables, [Iﬂ, ]. The communication between subsequent levels (one— or
two—way migrations of individuals) is important. Gains from using the multilevel
algorithm and the underlying hierarchy or EAs with improved evolution operators
and/or metamodels are superimposed.

This chapter reviews the aforementioned hierarchical methods. Over and above,
fitness inheritance is introduced so as to reduce the number of offspring that un-
dergo exact evaluation during the first generations of a MAEA. In those generations
the archived data are inadequate to train metamodels that generalize well. As a rem-
edy fitness inheritance is employed and only the top approximately evaluated pop-
ulation members must be re—evaluated on the problem—specific model, according
to the IPE concept. According to the method presented in [@, , ], the dis-
tributed search of optimal solutions is structured in levels, each of which employs a
MAEA or a gradient-based method; such a scheme will be referred to as a hierar-
chical distributed MAEA (HDMAEA, even if a gradient-based method is employed
on the higher level). In a HDMAEA, the number of demes may differ from level
to level, inter—level migrations do not depend on levels’ partition into demes and
intra—level (inter—deme) migrations also occur. Apart from MAEAs, gradient-based
methods can also be used on any level but none of the levels is associated with a
metamodel only. On the other hand, distributed hierarchical EAs (DHEAs) where
the hierarchical search is carried out within each deme (this is why this is called
distributed hierarchical, rather than the other way round), have also been devised.
The lower pass evaluations rely on metamodels, so the abbreviation DHEA can be
replaced by DHMAEA. Only a few best performing individuals migrate upwards,
where problem—specific evaluations of increasing fidelity and CPU cost take place.
The DHMAEA demes communicate regularly by exchanging top individuals.
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3.2 Metamodel-Assisted EAs and Distributed MAEAs

This section presents a MAEA, [@, |§l|] and its distributed variant (DMAEA, [IE]).
Note that at least one of the levels of the multilevel algorithms presented below
relies on either a MAEA or a DMAEA.

In a conventional (u,A) EA, with u parents and A offspring, each generation
costs as many as A calls to the problem—specific evaluation software. A metamodel—-
assisted variant (MAEA; see also [@] for SOO and [@] for MOO problems) starts
exactly as the conventional EA by evaluating the first random population on the
problem—specific tool and archiving paired inputs—outputs in a database. In all
subsequent generations, the population members are inexactly pre—evaluated (IPE)
using either fitness inheritance or local metamodels. More precisely, a few next gen-
erations employ fitness inheritance. Once the database exceeds a user—defined min-
imum number of entries, local metamodels are used in place of fitness inheritance.
These are trained on the fly, separately for each new individual, on a small num-
ber of neighboring database entries. As with fitness inheritance, the most promising
members are re—evaluated. Note that, to create the next generation, the evolution
operators use mixed exact and approximate scores.

For the re—evaluation, the cA top pre—evaluated population members are se-
lected. The o value may vary between user—defined lower and upper bounds,
0 < Opin < 0 < Opax < 1. In each generation, the G, A top individuals are un-
conditionally re-evaluated. Up to (Gjax— Omin)A more offspring which take on
better fitness values (on the metamodel) than the current optimal solution can be
re—evaluated, too.

In Pareto front seeking EAs for MOO problems, a scalar fitness value must be
computed for each population member, based on dominance, niching etc criteria
(NSGA, [10], NSGA-2, [11]], SPEA, [85], SPEA-2, [86] to mention a few of them).
The o value is determined as in SOO problems. However, as explained in [@], the
use of the IPE technique in MOO problems may become less efficient than in SOO.
In SOO, the database of previously evaluated solutions (among which the train-
ing patterns are selected) becomes well populated close to the optimal solution and
the metamodels give progressively better predictions. This is not the case in MOO,
where the trained local metamodel must predict well along a front of solutions. In
[@], the replacement of the conventional radial-basis function (RBF) network (used
as metamodel) by its generalized counterpart, using less centers than training pat-
terns and acting as approximation, rather than interpolation, method, greatly im-
proves the performance of the /PE technique in MOO. The RBF centers are selected
as described in section 3.3.2

On the other hand, distributed EAs (DEAs), which handle a small number
of medium-sized sub—populations (the so—called demes or islands), outperform
single—population EAs. The evolution operators are restricted within each deme and
inter—deme exchanges of promising individuals take place. Different evolution poli-
cies over different demes can be used, ]. DEA variants can be devised by chang-
ing the communication topology (ring, grid, etc.), the migration frequency and/or
the selection and replacement policies, [1]. The IPE algorithm is directly applicable
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Fig. 3.1 Metamodel-assisted EA (MAEA), with the —IPE technique

to DEAs, as described in [45] where a distributed MAEA (DMAEA) was proposed.
In non-hierarchical optimization, all demes share a single database archiving previ-
ously evaluated individuals.

DEAs belong to the class of multi-population parallel EAs, , , , @], ex-
hibiting high parallel efficiency. Each deme may use a cluster of processors for the
concurrent evaluation of its offspring and different demes can be evaluated concur-
rently. EAs (in either conventional or distributed or even hierarchical form) are also
enabled for deployment in the Grid environment, [@]. The present method, [Iﬂ], is
also Grid—enabled, using a middleware allowing concurrent offspring evaluations,
52]. Evaluation requests are queued to the Gridway metascheduler, ﬂ%], using the
DRMAA library APIL. Passing through different layers of middleware from the Grid
level down to the execution host, each job is executed on a remote resource. The
Globus Toolkit, ], and Ganglia, [@], are employed for discovery, user authenti-
cation and inter—connection of remote resources. Local resource management (sub-
mission and execution of jobs within the cluster) is accomplished using Condor, 1811].

3.3 Surrogate Evaluation Models for MAEAs

Fitness inheritance, [@, ], and the RBF networks, [@, @], which are used herein
as surrogate evaluation models, are discussed. We assume an optimization problem
with N design variables and M objectives. Let x€ Z" and y € Z denote the design
variable array and the corresponding array of fitness or cost values.

3.3.1 Fitness Inheritance

Fitness inheritance, as originally proposed in [IE], computes the fitness of any
offspring x* from the fitness values of its parents x(*”’)7 p=1,...,p using either
average inheritance (setting y* equal to the average value of y*P)) or proportional
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inheritance (setting y* equal to the weighted average of y**), depending on the
degree of similarity between x* and x(*7)). In the present method, each offspring
inherits an approximate fitness value from its parents according to their distance in
the design space. In specific, y* :2§=1 w,,y(**”), where

HX<*,:‘> %

TS I x|

wi=1 (3.1

3.3.2 Radial Basis Function (RBF) Networks

An RBF network, [36, 74], performs the mapping 2~ — %M using three layers of
processing units: the input with N nodes where the input vectors are applied to, the
hidden with K processing nodes and the output layer with M nodes where responses
emerge. Signals propagate through the network in the forward direction. The K
links connecting the hidden nodes to the output one (assume M = 1) are associated
with synaptic weights w to be computed during the training process. The K hidden
layer units are associated with the so—called RBF centers, c®) e N s k=1,....K,
which are the centers of the neuron’s nonlinear radial-basis activation function ¢ :

_ck)2
#N +— . Here, the Gaussian function ¥ ([|x — ¢W||y,r) = exp | — =PIz s
T
used, where ry, are the RBF radii. The network response is
K
y(x) =Y w(|[x = c®a,n) (3.2)
k=1

Therefore, assuming K centers c¢® and T>K training patterns x("), the network
training requires the solution of the following system of linear equations

K
S w(x — Wy, ) =y, =17
k=1

(where y*) are the known responses) using the least squares algorithm.

The selection of the RBF centers is carried out as in [@]. It is based on self-
organizing maps (SOMs, [Iﬁ, @] and an iterative scheme with both unsupervised
and supervised learning. During the unsupervised learning, the SOMs classify the
training patterns into K clusters. Each cluster gives a single RBF center ¢ and
the corresponding radius ry, through heuristics based on distances between the cen-
ters, [B, é, @, |_4g__2|, @]. During the supervised learning, the synaptic weights are
calculated by minimizing the approximation error over the training set.

Herein, a variant of RBF networks enhanced by Importance Factors (IF's, denoted
byl,, n=1,...,N), as proposed in [@], is used. The modified network incorporates
the 7, factors which quantify how much the network response is affected by each
design variable. The higher the I, value the higher the response sensitivity with
respect to the n—th input variable. A weighted norm defined by
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is used instead of eq. The computation of I, is based on analytically computed
derivatives according to the RBF network signal propagation formulas, [29] and the
current best solution (index ») and must be updated whenever a new optimal solution
is found.

The use of RBF networks trained on both fitness values and gradients is an
interesting alternative, [@, , ]; their presentation is beyond the scope of this
chapter.

’ ayb)

N 2
_ (k) _ 92
= g I, (x;j —Cp , I,= N a0
n=1 i=1 8)6,‘

x* —c®

(3.3)

wei

3.4 Assessment of MAEA and DMAEA

To justify the need for using MAEAs or DMAEAs, instead of conventional EAs, two
examples follow. More examples can be found in [IE, , , , ].

The first case is concerned with the optimization of the RAE2822 (reference, ref’)
airfoil, at M., =0.73 and a..=3.19? (inviscid flow), for minimum drag coefficient
Cp while maintaining the same lift (Cy). Thus, the cost function to be minimized
was F = (Cpyer—Cr)? +5-Cp. A (15,60) EA and a 3 x (5,20) DEA (i.e. with three
demes) were used, with and without metamodels. In the DEA, the demes were fully
connected and the migration operator was employed every four generations; two top
members migrated from each deme to all the rest. In both MAEA and DMAEA, ¢
was fixed to 0.1. So, in each generation, six offspring were re—evaluated on the CFD
software per generation. In fig. the convergence histories of the four algorithms
in terms of the number of evaluations on the CFD model are shown. It is evident
that the DMAEA outperforms all other algorithmic variants. In the same figure, the
pressure coefficient Cp distribution over the optimal airfoil shows that the shock
wave formed over the reference RAE2822 airfoil has been eliminated.

The second case demonstrates the gain expected in MOO problems using MAEAs
instead of EAs. This problem is concerned with the design of an axial compressor
cascade airfoil for oy, =47°, M;,, = 0.6, Reynolds number based on chord Rec =
8.5-10° and inlet turbulence intensity 7, =2.0%. The axial velocity density ratio
was 1.1325 and the stagger angle 30°. The two objectives were (a) minimization
of the cascade total pressure loss coefficient @ and (b) maximization of the static
pressure rise poy /pin. The airfoil was parameterized using Bézier curves and the
control point coordinates were the design variables. The optimization was carried
out using a (60,15) EA, a (60,15) MAEA using RBF networks for the IPE phase
and the same MAEA using the enhanced RBF networks (i.e. the ones using IFs),
both with 6 =0.10. The three methods are compared in fig. B3] illustrating Pareto
front approximations computed at the same CPU cost. The MAEA using the RBF
networks and the IF’s provides the best approximation to the Pareto front.
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3.5 Multilevel Search Algorithms and the Underlying
Hierarchy

In this section, the structure of an optimization algorithm in more than one levels,
which is the backbone of the present method, is described. Three different ways
of employing hierarchy within the multilevel scheme, fig. 3.4} are presented. These
modes can be used either separately or in combination. Two level schemes (L=2)
are described since expansion to L> 2 is straightforward.

3.5.1 The Three Multilevel Modes — Defining a HDMAEA

(a) Multilevel Evaluation: In this mode, a different evaluation software is assigned
to each level. Since the low level undertakes the detection of near—optimal solutions
and delivers them to the high level for refinement, evaluation models of low cost
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Fig. 3.4 The three modes of the multilevel (herein L=2) algorithm at a glance: (a) Multilevel
Evaluation (b) Multilevel Search and (c) Multilevel Parameterization

and fidelity are associated with it. The problem—specific (high fidelity) evaluation
model is employed on the high level. One— or two—way inter—level migrations can
be used. In one—way migrations, a small number of best performing individuals is
directed upwards, with no feedback at all. On the high level, immigrants replace
badly performing and/or randomly selected population members (assume that an
EA or a MAEA is used on both levels). In the two—way migration scheme, promising
individuals from the high level may also move downwards to stimulate better search
in their neighborhood.

The multilevel evaluation algorithm is often configured with different population
sizes per level, usually a large population on the low level and a small one on the
high level to compensate for the high CPU cost per evaluation and synchronize
better with the low level. The latter certainly depends on the CPU cost ratio and the
number of processors used.

The multilevel evaluation mode is appropriate for use in aerodynamic shape op-
timization problems. For instance, in flows dominated by viscous effects, either a
Navier—Stokes solver coupled with wall-functions on a coarse grid or an integral
boundary layer method can be employed on the low level. The high level must
rely on a model with the desired accuracy, such as a Navier—Stokes solver with
a low—Reynolds number turbulence model and a much finer grid. Alternatively, the
same CFD tool running with different grids and/or employing different convergence
criteria can be used on the two levels.

(b) Multilevel Search: In this mode, each level is associated with a different
search technique (EA, conjugate gradient, Sequential Quadratic Programming SQP,
etc., [@]). Stochastic search techniques, such as EAs, are preferably used on the
low level to adequately explore the design space. On the high level, the refine-
ment of promising solutions can be carried out through gradient—based methods or
stochastic, individual-based methods (such as simulated annealing). The migration
of promising solutions is, preferably, bi—directional to accentuate the exploration
capabilities of low level EAs.

The coupling of stochastic, population—based methods and gradient—based algo-
rithms is not new. In the literature, hybrid optimization methods are mostly restricted
to SOO problems or MOO ones where the objectives are concatenated in a single
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function. In [39], a “genuine” multilevel search methods for MOO problems was
proposed. In this method, on the low level, the EA or MAEA computes approxima-
tions to the Pareto front using a known scalar utility assignment (SPEA-2, [@]).
On the high level, the scalar utility gradient is computed for a few selected non—
dominated solutions and a descent algorithm is used to improve them with respect
to all objectives. This is carried out using the chain rule after replacing the deriva-
tive (delta function) of the non—differentiable SPEA-2 utility function (terms that
involve the Heaviside function) with a differentiable approximation.

In case a gradient-based search is used on the high level, the gradient of the
objective function must be computed or approximated. To this end, in aerodynamic
optimization, the adjoint approach can be used at about the cost of an additional

flow solution, [B, , @].

(c) Multilevel Parameterization: The third mode associates a different set of design
variables with each level. On the low level, a problem with just a few design vari-
ables is solved. On the high level, the detailed problem parameterization is used.
To support migrations, (exact or approximate) transformations between different
parameterizations must be available. All immigrants must be transformed to the
parameterization scheme of the destination level. Working with NURBS curves or
surfaces, knot insertion and removal properties and formulas [72] must be used to
switch between levels with different parameterizations.

In constrained problems, the term different parameterization may also imply
that the constraints are handled differently on each level. For instance, on the low
level, constraints may be relaxed or even ignored, allowing thus even infeasible but
promising solutions to be sent to the high level.

The three modes can be used either separately or altogether. As mentioned above,
the term HDMAEA is used to denote an optimization method of multilevel structure
which may accommodate distributed search on all or some of its levels. In a HD-
MAEA, all levels using DEAs or DMAEAs regularly perform intra—level (i.e. inter—
deme) migrations, over and above to the inter—level ones. In case a level has not yet
reached the generation (or iteration, in gradient—based methods) marked for inter—
level migration whereas the other did, the one ahead suspends evolution, waiting for
synchronization. This is also valid for the intra—level migration between demes.

When ineffective inter—level migrations occur (i.e. when all immigrants perform
worse than the destination level individuals) for a user—defined number of consecutive
generations/iterations, the evolution on the lower level terminates.

3.5.2 Distributed Hierarchical Search - DHMAEA vs.
HDMAEA

Apart from the previous HDMAEA modes, a distributed hierarchical EA (fig.
can also be devised using the same ingredients. Since metamodels can optionally be
used during the lower pass, this will also be referred to as distributed hierarchical
metamodel-assisted EA(DHMAEA). DHMAEAs clearly distinguish from HDMAEAs
since, in the former, hierarchy is employed within each deme, [@].
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Fig. 3.5 The distributed hierarchical EA (DHEAm) with one metamodel (Ey) and two
problem—specific tools (Ey, E3)

Let E; (s =0,...,S) denote the S+ 1 evaluation tools. By convention, Ej is the
metamodel and Ey the high fidelity evaluation model. In the sake of simplicity, all
of them use the same number of design variables. Schemes that use different (coarse
and fine) parameterizations on each level have also been devised, see [@], but these
will not be discussed further. The maximum number of offspring per generations and
deme to be evaluated on E; is A, = A H,-S:o 7;. The user—defined parameters 7; € [0, 1]
determine the percentage of individuals evaluated on E;_| to be re—evaluated on E;.
The 7; values decrease with i, starting from mp=1 (i.e. Ag=A1).

The only non—problem—specific evaluation model is Ey (i.e. the metamodel).
Training the metamodels requires a database of samples, shared among all demes.
So, evaluations on Ej are postponed until the database of previously evaluated in-
dividuals (using the low fidelity problem—specific model) exceeds a user—defined
minimum number of entries. Upon completion of a few starting generations (dur-
ing which m; = 1), metamodels are separately trained and used to approximate the
objective vector value(s) of each new offspring.

3.6 Assessment of Multilevel-Hierarchical Optimization

All four multilevel schemes have been assessed on a number of applications. For
some standard benchmarks as well as information on detailed parameter settings, the
reader should refer to [@, , ]. In what follows four of them are presented here.
The first three demonstrate the expected gain from separately using the multilevel
evaluation, search and parameterization algorithms whereas the last one demon-
strates the use of DHMAEA.

The first study is concerned with the design of a 2D transonic compressor cascade
airfoil with minimum total pressure losses and maximum static pressure rise (i.e.
two objectives), as originally presented in ]. The optimization was carried out
for isentropic exit Mach number equal to M, ;s=0.6, a;,=55.4° and Rec=1.7- 10°.
Constraints were imposed on the minimum airfoil thickness at various chordwise
positions, not allowing the airfoil to become unrealistically thin.

The multilevel evaluation mode, with two levels, was used. On the high level,
a (5,20) MAEA (0.05< 0 <0.15) and a Navier-Stokes equation solver with the
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Spalart—Allmaras turbulence model, [@], on a fine unstructured mesh were used.
On the low level, search was carried out using a 3 x (5,20) DMAEA with the same
o bounds. Each evaluation on the low level (£) was based on an integral boundary
layer method, [@] with CPU cost about 30 times less than that of an E,—based
evaluation. So the overall CPU cost of the optimization was ky—+k; /30, where k;
and k, are the numbers of evaluations on E; and E», respectively. On both levels,
the fronts were populated with up to 35 non—dominated solutions, by screening out
excess front members from overcrowded front parts. The /PE phase started after
each level database archived 150 (on E7) and 130 (on E;) evaluated individuals. The
inter—level migrations (with 6 individuals moving upwards and 5 downwards) were
performed every 5 (high) and 20 (low level) generations. In addition, for the low
level DMAEA, the inter—deme migration occurred every 4 generations. The Pareto
front approximation shown in fig. was obtained at the cost of 311 cost units.
This corresponds to 209 and 1778 evaluations on E; and E|, respectively.

The multilevel search HDMAEA mode (with two levels) is demonstrated on the
second case where an isolated airfoil with optimal performance at two operating
points: [O.P.1: 0t.=1.0°,M..=0.5] and [O.P.2: 0t..=5.0°, M.=0.2], was designed,
[@]. The integrals of the deviation of the static pressure distribution along the air-
foil contour from two target distributions were used as objectives. On the high level,
the optimization used a gradient-based method (SQP) whereas a 3% (5,20) DMAEA
was employed on the low level. 10 individuals were simultaneously improved during
one SQP iteration (or equivalent “high level generation”). Every 10 SQP iterations
and 30 DMAEA generations, 10 promising individuals migrated upwards and incor-
porated into the high level on condition that they performed better than the current
SQP “population”. Simultaneously, 5 individuals migrated downwards to join the
DMAEA. On the low level, the /IPE phase (with 0.05 < ¢ <0.20) started once 150
evaluated individuals have been archived.

The same Euler equations solver was used on both levels. On the high level,
the objective function gradients were computed by the adjoint method, [69]; thus,
the cost per high level evaluation was twice as much as a low level one (i.e. two
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equivalent flow solutions). As mentioned in a previous section, the gradient of the
SPEA-2 fitness assignment technique with respect to the design variables was com-
puted and used by the descent method on the high level. Fig. 3.7l presents the com-
puted Pareto front approximation at the cost of 1000 equivalent flow solutions and
compares it with that computed by a single level MAEA at the same cost.

The third case demonstrates the gain achieved by the multilevel parameteriza-
tion mode during the design of a compressor stator cascade. The objective was to
minimize the total pressure loss coefficient @, [@], with four constraints on the min-
imum allowed airfoil thickness. The flow conditions were M, ;s =0.65, ¢, =57°
and Rec=6.0-10°. The axial velocity density ratio was equal to 1.124 and the stag-
ger angle was 35°. The airfoil pressure and suction sides were parameterized using
Bézier curves with 7 and 17 control points, respectively.

New control points (knots) were inserted to the existing parametrization of in-
dividuals migrating upwards without changing their shape. Unfortunately, this was
not the case of knot removal. The incremental knot insertion formula (from N+1 to
N-+2) used for the internal control points of a Bézier curve is

i i
R; = i 1— i, O<i<N+1 34
; N+1r 1+( N+1>r, [ + 34

where r and R are the position vectors of the control points before and after the
insertion, respectively. It is evident that Ry=r(, Ry 1=rn.

In this case, (40,8) and (25,5) MAEAs were used on the high and low levels, re-
spectively, with the same CFD software. Fig.[3.8|presents the convergence behavior
of the high level MAEA and compares it with a single level MAEA. The best solution
achieved using the two—level parameterization algorithm had w = 1.895% whereas
the single level MAEA led to @ =2.14%, both at the same CPU cost.

The last case in this section stands for the two—objective design of a compres-
sor cascade airfoil, aiming at minimum total pressure losses and maximum static
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pressure rise, subject to airfoil thickness related constraints. The flow conditions
were Moy, ,is=0.45, am:47”,Rec:8.41-105. Local metamodels (Ey), a high fidelity
CFD model (E;) and a low fidelity one (E; based on the same iterative solution
methods with relaxed convergence criteria) were used. The CPU cost ratio of Ej
and E, was about0.1:1,

In this case, three algorithms are compared:

1. A single-level (15,60) EA using E>—based evaluations.

2. A DHEA with three (5,20) demes and two evaluation passes (on E; and Ej)
within each deme. During the first pass, the 20 offspring were evaluated on E;
and only the top two of them were re—evaluated on Ej.

3. A3 x(5,20) DHMAEA and three evaluation passes per deme. Upon completion
of the 20 Ep—based evaluations, the 10 best among them were re—evaluated on
E and the 3 best of them on E;. All metamodels were trained on the fly, using
previously evaluated (on Ep) neighbors.

In both distributed algorithms, the migration operator was employed every 8 gen-
erations by exchanging two individuals between any pair of demes. The two emi-
grants of each deme were selected after ranking the 20 population members in terms
of their fitness, irrespective of the evaluation tool used. In each destination deme,
the immigrants replaced the worst performing members evaluated on the same or a
lower fidelity model.

The three algorithms are compared in terms of the hypervolume indicator, 1871,
fig. which quantifies the part of the objective space (up to a user—defined point)
dominated by the front; larger indicator values correspond to better Pareto front ap-
proximations. The combined use of metamodels and hierarchical schemes achieves
better performance. The same figure also shows the Pareto front approximation (at
the cost of 1000 CPU cost units) computed by the DHMAEA.
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Fig. 3.9 Two-objective compressor cascade airfoil design: Evolution of the hypervolume
indicator for the three tested algorithms (left) and the Pareto front approximation computed
by the DHMAEA (right)



3 Multilevel Optimization Algorithms 75

3.7 Optimization of an Annular Cascade

This section is dedicated to a real engineering application, with high CPU cost per
evaluation. This new case is concerned with the optimization of a 3D annular com-
pressor cascade. An existing cascade with 19 straight blades (chord length equal to
C=0.1 m, stagger angle equal to 51.4°) was used as the reference one. The blades
were mounted on the casing by forming a 2.0 mm clearance with the stationary or
rotating hub with radius equal to 0.244 m. This study was concerned only with the
stationary hub. The facility layout and experimental measurements can be found in
[@] and a numerical flow study in [Iﬂ]. The inlet total pressure/temperature and
peripheral/radial flow angle distributions at the cascade inlet were given. The cas-
cade mass flow rate was 13.2 kg /s and the maximum inlet Mach number was about
0.6. The purpose of this study was to redesign the airfoil of the straight blade so as
to achieve minimum mass-averaged pressure loss coefficient PLC,,,. PLCy,, results
from the radial distribution of the circumferentially averaged pressure loss coeffi-

cient PLC(r) = ?j’:;_’; [E;) .

Each airfoil side was parameterized using 15 NURBS control points, 5 of which
were allowed to vary. So the design variables were 20 in total (two coordinates per
design variable). Geometrical constraints were imposed to ensure that the optimal
airfoil would not become thinner than the reference one by more than 90%. In addi-
tion, the mean exit flow angle &,,; was not allowed to exceed 53°.

The CFD software used was a Navier—Stokes solver employing a time—marching,
vertex—centered, finite volume formulation for unstructured grids, [@]. Turbulence
is modeled using the Spalart—Allmaras model, [@]. The inlet turbulence intensity
was set to 1.5%.

The hierarchical optimization algorithm described in section with a sin-
gle deme was used. The two problem—specific evaluation models were both based
on the aforementioned CFD software, using different turbulence modeling and
grid sizes. The high fidelity model (E;) used the low—Reynolds number Spalart—
Allmaras model on a hybrid—unstructured grid of about 1.000.000 nodes, fig. B.11l
Hexahedral and prismatic elements were generated over the blade surface 400 x 95
structured-like grid and the casing; the distance of the first layer of nodes off the

Fig. 3.10 Optimization of an annular cascade: Reference airfoil (continuous line), its control
points’ polygon (dashed line) and the design variables’ bounds (left). Reference (dashed) and
optimal (continuous) blade airfoil contours (right)
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A

Fig. 3.11 Optimization of an annular cascade: Views of the hybrid fine grid used for
E»—based evaluations (left) and view of the surface grid over the reference blade (right)

walls satisfied the usual constraint on the nondimensional distance y™ from the wall
(y* < 1). All subsequent layers of elements were arranged using a geometrical pro-
gression law with ratio w. A layer of pyramids was used to interface the hexahedral
structured-like layers and the tetrahedra filling the inner part of the domain. The
same grid generation procedure was also used to support the low fidelity tool E|,
with different, however, parameters. E| used the Spalart—Allmaras turbulence model
with wall functions and a coarser hybrid—unstructured grid of about 600.000 nodes.
The blade surface was discretized using a 400 x 85 grid; larger @ and distances of
the first layer of nodes off the wall were used. Table 3. Ilcompares the basic features
of the fine (for E,) and coarse (for E) grids.

This optimization was carried out on a cluster of 25 nodes (2 xQuad Core Xeon,
2.0Ghz, with 16 GB RAM each). Each population member was evaluated in paral-
lel on a single node. The wall clock time required for a single E;—based evaluation
was about 6 hours. The same evaluation on Ej required about 1.2 hours. Below, one
CPU cost unit is assigned to each evaluation on E; and 0.2 units to each on Ej. It
should become clear that even if an evaluation failed quite early (during grid
generation), this was assigned the full CPU cost. These are also summarized in
table 3.1}

To compare the modeling accuracy of E; and E,, the reference cascade was
firstly analyzed using both tools. The computed radial distributions of the circum-
ferentially mass—averaged total pressure on the (same) exit plane are compared in
fig. left. Differences between the two models reflect on the PLC,,. values
which were equal to 0.1498 (based on E;) and 0.1189 (on E3).

A (20,60) hierarchical EA, with a single population was used. Fitness inheritance
and RBF networks supported the IPE process. During the first generation, all indi-
viduals were evaluated on E;| and only the 6 top of them were re—evaluated on E,.
On the second generation, the fitness inheritance technique was activated. The most
promising (between 5 and 10 of them) members in the population were re—evaluated
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Table 3.1 Optimization of an annular cascade: Basic features of the E| (low—fidelity) and E»
(high—fidelity) problem—specific evaluation software

E; Ey
Turbulence model Spalart—Allmaras with Spalart—Allmaras,
wall functions low—Reynolds model
Number of grid nodes 600k « 1.000k
Number of tetrahedra 225k 280k
Number of pyramids 6k 10k
Number of prisms 205k 300k
Number of hexahedra 475k 820k
Average wall distance 5% 107m 3%x107%m
Stretching close to wall (@) 1.20 1.15
Blade surface grid 400 x 85 400 x 95
Viscous layers 21 27
Grid generation: Wall clock time  1lmin  18min
Flow solution: Wall clock time «~1.2h  6h
CPU cost units 0.2 1

on E; and only the best of them on E;. Once 100 previously evaluated individuals
on E; were archived in the database, RBF networks were used in place of fitness
inheritance. The hierarchical EA was stopped at 80 CPU cost units.

Fig. (right) illustrates the convergence of the optimization algorithm. The
mass—averaged PLC values of the reference and optimal airfoils were found equal
to 0.1189 and 0.0843, respectively. The gain using the hierarchical algorithm is
absolutely clear since, by merely using a MAEA based on E», it would be impossible
to locate the optimal solution at the cost of 80 CPU cost units.
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Table 3.2 Optimization of an annular cascade: Analysis of the overall CPU cost

E; E;

CPU cost units 33 47

Total evaluations 165 47
Failed evaluations 54 19
Infeasible evaluations 35 3

Table summarizes statistics of the optimization run. An extremely low
number of evaluations on E, (only 47) were carried out. Recall that any candidate
solution evaluated on E, should have previously been evaluated on Ey; the two ob-
jective function values these individuals take on by the two models are compared in
fig. 313l However, 19 of them were assigned a “death penalty” (i.e. an almost infi-
nite objective function value) since E; failed to converge. So, fig. 3.13]compares the
performance of the 28 remaining individuals, only. The average deviation of PLC,,
predictions on E; and E; (for these 28 individuals) was about 29%. The same figure
presents the prediction error of the RBF networks with respect to E; (rank sorted).
The metamodel prediction accuracy seems very satisfactory since, 34 out of the 39
approximate predictions had a relative error less than 5%.

In fig. 314l iso—contours of the total pressure loss coefficient Cp; = ﬁ’: ’”’l’[”: ﬁ’j ,t,/
are plotted on two transversal cross—sections located 0.782C,, and 1.145Cax‘down-
stream of the blade leading edge, for both reference and optimal blades. It is clearly
shown that, with the redesigned blade, the losses induced by the tip clearance vortex

are much lower and this causes a much lower PLC,,. value.
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Fig. 3.14 Optimization of an annular cascade: Total pressure loss fields transversal cross—
sections located at 0.782C,, (top) and 1.145C,, (bottom) downstream of the blade leading
edge. Reference (left) and optimal (right) blade are included

3.8 Conclusions

Several algorithms capable to reduce the number of evaluations and the wall clock
time of EA-based optimization were presented. They were based on:

e Metamodels, which replace as many calls to the problem—specific evaluation
model as possible. RBF networks have been used, assisted by fitness inheri-
tance during the first few generations. However, any other artificial neural net-
work, such as a multilayer perceptron, Gaussian processes or even polynomial
regression, could have been used instead, [IE, , ].

e Distributed search, in the form of intercommunicating demes, being advanta-
geous if, particularly, the design is carried out on multiprocessor platforms.

e Hierarchical schemes, splitting the search into levels based on evaluation tools
of different fidelity and CPU cost, different coarse and fine parameterizations or
involving gradient—based search for refinement.
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Their combination is possible and very efficient indeed. It can be performed in var-
ious ways. In this chapter we presented hierarchical distributed (where the levels
are independently structured in demes) and distributed hierarchical search (where
the hierarchy is implicit to each deme). It was beyond the scope of this chapter to
compare the two aforementioned schemes; from several tests, it has been seen that
such a conclusion is case dependent. However, it was clearly demonstrated that the
combination of the above schemes leads to a considerable economy in the CPU
cost. Over and above, in this work, an EA served as the base search method. The
presented hierarchical framework as well as the IPE technique is directly extended
to any other stochastic search technique, such as evolution strategies with covariant
matrix adaptation [@] or particle swarm optimization [|El|].
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Chapter 4

Knowledge-Based Variable-Fidelity
Optimization of Expensive Objective Functions
through Space Mapping

Slawomir Koziel and John W. Bandler

Abstract. The growing complexity of engineering modeling and design prob-
lems demands effective strategies for optimization of computationally expensive
objective functions. To this end, we focus on knowledge-based, variable-fidelity
optimization of expensive functions through a tried and tested, yet still rapidly
evolving art called space mapping optimization. Fitting into the arena of surrogate-
based optimization, space-mapping optimization is a model-driven optimization
process where the model is an iteratively updated surrogate derived from a valid,
low-fidelity or physics-based coarse model. Space mapping takes several forms.
Here, we present and formulate the original input space mapping concept, as well as
the more recent implicit and output space mapping concepts. Corresponding surro-
gate models are presented, classified, and discussed. A proposed optimization flow
is explained. Then we illustrate both input space mapping and implicit space map-
ping through the space mapping optimization of a simple, technology-free wedge-
cutting problem. We also present tuning space mapping, a powerful methodology,
but one that requires extra engineering knowledge of the problem under investi-
gation. To confirm our work, we select representative examples from the fields of
microwave and antenna engineering, including filter and antenna designs.

4.1 Introduction

True of all branches of engineering, the escalating complexity of modeling and
design problems drives today’s demand for effective strategies for optimization
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of computationally expensive objective functions. Challenging as the issue is for
medium or large problems involving single disciplines, only the engineer’s imagina-
tion limits the scope of possibilities for multidisciplinary optimization. It is timely,
therefore, to consider methodologies capable of spanning many fields of design
optimization endeavour.

This chapter focuses on knowledge-based variable-fidelity optimization of ex-
pensive functions through space mapping. The work fits into the arena of surrogate-
based optimization (SBO). The work-horse for our specific approach to SBO is a
surrogate model derived from a valid, low-fidelity or physics-based coarse model.
Occasional and appropriate recourse to the problem’s high-fidelity model keeps our
surrogate updated. Often the coarse model is a lower fidelity version of the high-
fidelity or fine model. In any case, the cost of computing the surrogate is assumed
to be little more than that of any underlying coarse model.

In the following paragraphs, we introduce some important contributions to the
field from a literature rich with contributions. Our brief review is intended to be
representative and influential rather than exhaustive.

Space mapping procedures iteratively update and optimize surrogates based on
fast physically based “coarse” models. Early approaches include the original al-
gorithm by Bandler et al. [9], and the Broyden-based aggressive space mapping
algorithm by Bandler et al. [10]. Dennis and Torczon [18] exploit trust-region tech-
niques and pattern search methods to manage what they call the interplay between
the optimization method and the fidelity of the approximation model. Alexandrov et
al. [2]] present an approach to managing the use of approximation models of various
fidelity. Their approach is based on the idea of trust regions from nonlinear pro-
gramming. They demonstrate convergence to a solution of the original high-fidelity
problem. Their method suggests ways of deciding when the fidelity, hence cost, of
the approximations can be increased or decreased during the optimization iterations.
More recently, Alexandrov et al. provide a rigorous methodology for solving
high-fidelity optimization problems using derivative-based optimization algorithms
and any combination of high-fidelity and low-fidelity models. The paper considers
both variable-resolution models and variable-fidelity physics models.

A benchmark paper by Booker et al. [14] treats problems for which traditional
optimization approaches are not practical. It offers a framework for generating a
sequence of approximations to an expensive objective function and managing the
use of these approximations as surrogates. The authors’ approach does not require
or involve derivatives of the objective function. Simpson et al. review the re-
sponse surface method then present kriging as an alternative approximation method
for the design and analysis of computer experiments. They apply both methods to a
multidisciplinary design problem involving a computational fluid dynamics model
and a finite-element model. Marsden et al. [36] apply shape optimization to time-
dependent trailing-edge flow so as to minimize aerodynamic noise. They use the sur-
rogate management framework (SMF), a non-gradient based pattern search method,
to explore the design space with an inexpensive surrogate function.
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Within the sphere of space mapping, Robinson et al. [44] treat design prob-
lems when the coarse and fine models are defined over different design spaces and
mappings are required over these spaces.

In a related field, Rayas-Sdnchez reviews the state-of-the-art in electro-
magnetics-based design and optimization using artificial neural networks. He
surveys conventional modeling approaches along with typical enhancing and know-
ledge-based techniques. Rayas-Sanchez reviews strategies for design exploiting
knowledge, including neural space-mapping methods.

Space mapping technology emerged in 1994 [9] out of competitive necessity.
Full-wave electromagnetic solvers had long been accepted for validating microwave
designs obtained through equivalent circuit models. While the idea of employing
electromagnetic solvers for direct optimal design attracted microwave
engineers, electromagnetic solvers are notoriously CPU-intensive. As originally
construed, they also suffered from non-differentiable response evaluation and non-
parameterized design variables that were often discrete in the parameter space,
etc. Such characteristics are unfriendly to classical gradient optimization algo-
rithms. Thus, state-of-the-art successful interconnection of electromagnetic solvers
with powerful optimization techniques still insufficiently addressed the microwave
community’s ambitions for automated electromagnetics-based design optimization.

The original idea of space mapping [9] was to map designs from optimized cir-
cuit models to corresponding electromagnetic models. A “parameter extraction”
step calibrated the circuit solver against the electromagnetic simulator in order to
minimize observed discrepancies between the two simulations. The circuit model
(surrogate) was then updated through extracted parameters and made ready for
subsequent classical optimization.

Bandler et al. [I1]] reviewed the space mapping and the space-mapping-based sur-
rogate modeling concepts and applications in various engineering design optimiza-
tion problems. They present a mathematical motivation and place space mapping
into the context of classical optimization. Recent work in space mapping includes a
trust-region approach [3]], neural space mapping [6] and implicit space mapping [12]].
Parameter extraction is an essential sub-problem used to align the surrogate—an en-
hanced coarse model—with the fine model. In a 2006 review, Bandler et al. show
that all the existing space mapping approaches can be viewed as particular cases of
one, generic formulation of space mapping.

Space mapping demonstrably addresses the engineer’s need for validated, high-
fidelity designs when classical optimization algorithms threaten hundreds of costly
simulations, and perhaps days or weeks of CPU time. The methodology exploits
underlying fast-to-compute, low-fidelity surrogate models, which are ubiquitous
in engineering practice. Space mapping takes the high-fidelity simulator out of
the classical optimization loop, instead exploiting the iterative enhancement of the
available low-fidelity surrogates. Space mapping optimization algorithms enjoy a
desirable feature: they usually provide excellent designs after only a handful of
high-fidelity simulations. The methodology follows the traditional experience and
intuition of the engineer, yet is amenable to mathematical treatment. It enjoys
immediate recognition by the experienced engineering designer.
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A key to the success of space mapping, i.e., that it yields satisfactory solutions
after a few fine model evaluations, is the recommended physical nature of the coarse
model. Other surrogate-model-based methods 146]) exploit functional
surrogates obtained from direct approximation of the available fine model data and,
therefore, cannot compete with space mapping in terms of computational efficiency.

In “implicit” space mapping, preassigned parameters not used in the optimization
process can change in the coarse model. In “output” space mapping, we transform
the response of the coarse model. Other exciting developments include surrogates
that interpolate fine models simulated on a structured grid, frequency mappings; and
the recent concept of “tuning” space mapping. The latest review by Koziel et al.
places various related concepts contextually into the history of design optimization
and modeling of microwave circuits.

Space mapping optimization [21},[29] belongs to the class of surrogate-based opti-
mization methods that generates a sequence of approximations to the objective
function and manages the use of these approximations as surrogates for optimization.

Space mapping methodology continues to provide success in diverse areas [4}
22, 472, 50, [51]): electronic, photonic, radio frequency, an-
tenna, microwave, and magnetic systems; civil, mechanical, and aerospace
engineering structures, including automotive crashworthiness design [43]].

In this chapter, we present and formulate the original input space mapping
concept, as well as the more recent implicit and output space mapping concepts.
We present, classify and discuss corresponding surrogate models. A proposed op-
timization flow is explained. Then we illustrate both input space mapping and
implicit space mapping through the space mapping optimization of a simple wedge-
cutting problem. We also present tuning space mapping, a powerful methodology,
but one that requires extra engineering knowledge of the problem under investiga-
tion. Throughout, we select representative examples from the fields of microwave
and antenna engineering, including filter and antenna designs.

4.2 Space Mapping Optimization

In this section we formulate the space mapping (SM) optimization algorithm, dis-
cuss some popular SM approaches, and provide a simple example that explains the
operation of space mapping. Some practical issues of SM optimization as well as
desirable features of the models involved in the SM process are also indicated.

4.2.1 Formulation of the Space Mapping Algorithm

Let f:Qp — R", Qp C N, denote the high-fidelity (or fine) model of the
engineering device. The goal is to solve

Xy € arg)gg!izr} H(f(x)) (4.1)
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where H : R — R is a given merit function, e.g., a norm. H o f is the objective
function.

We consider the fine model to be expensive to compute and solving (£.I)) by
direct optimization to be impractical. Instead, we use surrogate models, i.e., models
that are not as accurate as the fine model but are computationally cheap, hence
suitable for iterative optimization. We consider a general optimization algorithm
that generates a sequence of points X0 e Qp,i=1,2,..., and a family of surrogate

models s : QW — ®m ;= 0,1,..., so that

XD carg min H(s"(x)) (4.2)
xeQn0

If the solution to (#2)) is non-unique we may impose regularization.

Space mapping (SM) assumes the existence of a so called coarse model, ¢ : 2, —
R", Q. C R, that describes the same object as the fine model: less accurate but
much faster to evaluate. The family of surrogate models is constructed from the
coarse model in such a way that s is a suitable distortion of ¢, such that the mis-
alignment between the fine and the surrogate models is reduced as much as possible
(cf. @A)

Let §: Qy — R™ be a generic SM surrogate model which is the coarse model
composed with some suitable space mapping transformations, where 23 C €, X
Q,, with £, being the parameter space of these transformations. We call £2,, a SM
parameter domain. The surrogate model s) is defined as

s (x) = 5(x, p¥) (4.3)

where

p) € arg min (ZW,ka =56, p)l)) (44)

peQ
where Q,(,i) ={peQ,: (x(k),p) €Q; for k=0,1,...,i} and w;; are weighting
factors. Two typical weight settings are: (i) w;; = 1 fork=0,1,...,i (all points x(k),
k=0,1,...,i, have the same contribution to the parameter extraction process) and
(1) w;x = 1 for i = k, and w; ; = 0 otherwise (only the last iteration point is used in
&34)). The domain Q1 of the surrogate model s is Q) ={xeQ.:(x,p") € Q}.
The space-mapping optimization algorithm flow can be described as follows:

. Set i = 0; choose the initial solution x(o);

. Evaluate the fine model to ﬁnd £y

. Obtain the surrogate model s using @3) and @3);

. Given x') and s, obtain x("*1) using @2);

. If the termination condition is not satisfied go to 2; else terminate the algorithm.

DN AW N -

Typically, x(*) = argmin{x : H(c(x))}, i.e., it is the optimal solution of the coarse
model, which is the best initial design we normally have at our disposal.
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Usually, the algorithm is terminated when it converges (i.e., [|x{!) — x{~1)[| and/or
[[f(xD) — £(x=1)|| are smaller than user-defined values) or when the maximum
number of iterations (or fine model evaluations) is exceeded.

4.2.2 Space Mapping Surrogate Models

There is a variety of space mapping surrogate models available [9} [T0} [T} [12]
[32]]. They can be roughly categorized into four groups (here, n is the number of
the design variables, m is the number of components of the high- and low-fidelity
model response vectors):

e Models based on a (usually linear) distortion of the coarse model parameter
space, e.g., input space mapping of the form 5(x, p) = §(x,B,q) = ¢(B-x+ q)
[11], where B is an n X n matrix and g is an n x 1 vector;

e Models based on distortion of the coarse model response, €.g., output space map-
ping of the form §(x, p) = §(x,d) = ¢(x) + d (additive output SM; d is an m x 1
vector) or §(x,p) = §(x,a) = a-c(x) (multiplicative output SM; a is usually a
diagonal m x m matrix) 291;

e Implicit space mapping, where the parameters used to align the surrogate with
the fine model are separate from the design variables, i.e., 5(x, p) = §(x,x,) =
ci(x,x,), with ¢; being the coarse model dependent on both design variables x and
so-called preassigned parameters x, (e.g., electric permittivity and
the height of the dielectric substrate of a microstrip device [[12]) that are
normally fixed in the fine model but can be freely changed in the coarse model
(12, 32];

e Custom models exploiting problem-specific parameters. For example, in mi-
crowave engineering, components of the coarse model vector ¢(x) depend on
a certain free parameter, usually the frequency w of the input signal. In such a
case we have c(x) = [¢(x, @) ... &(x, @n)]T, where & is the frequency-dependent
model and @;, j = 1,...,m, are frequency samples at which the model is eval-
uated. Often, the fine and coarse model responses considered as functions of
frequency have a similar “shape” and so-called frequency SM [11], can
be useful to reduce their misalignment. The surrogate model has the form of
5(x,p) = 5(x,F) = cf(x,F) = [e(x, fy(o1,F)) ... &(x, fs(0n, F))]", where the
scaling function f; is usually defined as f;(®,F) = f;(®, f1,/2) = fi + Lo, i.e.,
F=[fi f]".

It is a common practice that basic space mapping types are combined together, e.g.,
the model using both input, output and frequency space mapping would as fol-
lows: §(x, p) = §(x,B,q,d,F) = cy(B-x+q,F)+d. The rationale behind it is that a
properly chosen mapping may significantly improve the performance of the space
mapping algorithm, however, the optimal selection of the mapping type for a given
design problem is not a trivial task [32].
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4.2.3 Characterization of Space Mapping

It is critical to the performance of the SM algorithm that the coarse model is
physically-based, i.e., it describes the same physical phenomena as the fine model
but is not necessarily as accurate as f [32]. On the other hand, the coarse model
should be computationally much cheaper than the fine model because both parame-
ter extraction (@.4) and surrogate optimization (£.2)) involve multiple evaluations of
the coarse model. Having this in mind, SM can be considered as both a variable-
fidelity and knowledge-based approach because ¢ is a low-fidelity representation
of f and encodes—sometimes substantial—knowledge about the latter. In the mi-
crowave engineering area, where space mapping originated, the fine model is usu-
ally evaluated using CPU intensive full-wave electromagnetic simulators, while the
coarse model is a circuit-equivalent of the microwave structure in question or is
based on analytical formulas [[111,32].

If the surrogate model is a sufficiently good representation of the fine model [29],
the space-mapping algorithm [@2) is likely to produce a sequence of vectors x/) that
quickly approach a satisfactory design, however, we cannot expect the final solution
to be a local optimum of the fine model in general, unless, for example, first-order
consistency conditions between the surrogate and the fine model are ensured (which
requires exploiting fine model sensitivity data [29]) and convergence safeguards
such as trust region methods are used [[16].

Usually, the fine model is only evaluated once per iteration (at every new design
x(1)) for verification purposes and to obtain the data necessary to update the sur-
rogate model. Because of the low computational cost of the surrogate model, its
optimization cost (cf. 2)) as well as the cost of parameter extraction (@.4) can
usually be neglected and the total optimization cost is determined by the evaluation
of f. The key point here is that the number of evaluations of the fine model for a
well performing surrogate-based algorithm is substantially smaller than for any di-
rect optimization method (e.g., gradient-based) [29]. A typical number of fine model
evaluations reported in the literature (e.g., [4} [5, 9, 10} [T} (12, [32]) for space map-
ping algorithms range between three and ten and is hardly dependent on the problem
size n.

It should be noted that a similar idea is shared by other surrogate-based opti-
mization (SBO) methods [2}, 3] [36, [43]], however, many of them do not use a
simplified physically based coarse model: a functional surrogate is created by direct
approximation of the available fine model data. There is a large group of functional
approximation techniques that can be used to create fast surrogate models, includ-
ing radial basis functions [13], kriging [48], fuzzy systems [38]], and neural networks
[19]. In order to achieve reasonable accuracy, all of these methods require, however,
a large amount of data. Moreover, the number of data pairs necessary to ensure suffi-
cient accuracy grows exponentially with the number of design variables. Therefore,
SBO techniques using functional surrogate models cannot achieve space mapping
efficiency in terms of the number of high-fidelity model evaluations required to find
satisfactory solutions.
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4.2.4 Practical Issues and Open Problems

It is easy to notice that the space mapping algorithm (£.2)-(@.4) has the follow-
ing two features. First of all, consistency conditions between the fine and surrogate
models are not necessarily satisfied. In particular, it is not required that the surro-
gate model matches the fine model with respect to value and first-order derivative
at any of the iteration points. Second, subsequent iterations are accepted regardless
of the objective function improvement. As a consequence, convergence of the SM
algorithm is not guaranteed in general, and the choice of an optimal space mapping
approach for a given problem is not obvious [31].

Several methods for assessing the quality of the coarse/surrogate model have
been proposed that are based on information obtained from the fine model at a set
of test points [30, 31]]. This information is used to estimate certain conditions in
the convergence results and allows us to predict whether a given model might be
successfully used in space mapping optimization. Using these methods one can also
compare the quality of different coarse models, or choose the proper type of space
mapping which would suit a given optimization problem [31]]. Assessment methods
can also be embedded into the space mapping optimization algorithm so that the
most suitable surrogate model is selected in each iteration of the algorithm out of a
given candidate model set [30].

Convergence properties of the space mapping algorithm can be improved by us-
ing the trust region method [[16), [32]], in which the surrogate model optimization is
restricted to a neighborhood of the point x) so that we have

x(i+l) € arg _min H(s(i) (x)) (4.5)
xR, |le—x()|| <80

where 81 denotes the trust region radius at iteration i, which is updated at every
iteration using classical rules [[16].

It should be emphasized that space mapping is not a general-purpose approach.
The existence of the computationally cheap and sufficiently accurate coarse model
is an important prerequisite of our technique. If such a coarse model does exist, the
space mapping method is able to yield a satisfactory design after a few evaluations
of the high-fidelity model, which is a dramatic reduction of the computational cost
of the optimization compared to other methods. Otherwise, space mapping cannot
be used or will not be efficient.

4.2.5 Space Mapping Illustration

In order to illustrate the operation of basic space mapping algorithm we consider
the so-called wedge-cutting problem formulated as follows. Given a wedge as
shown in Fig.E1l(a), cut a piece of length x so that the corresponding area, f(x) is
equal to fy = 100. Our fine model is f, which, for the sake of example, is assumed to
be given by f(x) = x(54x/16). We also consider a simplified representation of the
wedge, a rectangle of height H shown in Fig. E.1[b). The coarse model is the area



4  Knowledge-Based Optimization of Expensive Functions 93

__ | -

X X

@ ®)

Fig. 4.1 Wedge-cutting problem [[I1]]: (a) the fine model, and (b) the coarse model

of a piece of this rectangle, determined by the length x, so that we have c¢(x) = Hx.
Here, we assume that H = 5.

The starting point of SM optimization is a coarse model optimal solution x(¥) =
20. The fine model at x(© is f (x(o)) = 125. For illustration purposes we will solve
our problem using the simplest version of the input space mapping and then using
implicit space mapping.

4.2.5.1 Wedge Cutting Problem Solved Using Input Space Mapping

We use the following setup for the input space mapping approach. The generic
surrogate model is given by §(x,p) = §(x,q) = c¢(x +¢). The weighting factors in
the parameter extraction process (@.4) are given by w;; =1 for k =i and w;; =0
otherwise. Thus, the surrogate model can be written in short as:

sO(x) = c(x+¢") (4.6)

where _ _ ‘
q(’) = argmqin | |f(x(’)) - c(x(’) +4q)|| 4.7

In this simple case, (@.7) has an analytical solution given by ¢() = f(x(0)/H — x(1).,
Figure shows the first four iterations of the SM algorithm solving the wedge
cutting problem. This particular input space mapping approach is both simple and
direct, yet it converges to an acceptable result (from an engineering point of view)
in a remarkably small number of iterations. It is clearly knowledge-based, since
the coarse model is a physical approximation to the fine model, and the iteratively
updated coarse model attempts to align itself with the fine model. The optimization
process mimics a learning process derived from intuition.

4.2.5.2 Wedge Cutting Problem Solved Using Implicit Space Mapping

We use the following setup for the implicit space mapping approach. The generic
surrogate model is given by §(x, p) = §(x,H) = ¢;(x,H), where ¢;(x,H) = Hx. The
weighting factors in the parameter extraction process (&4) are, as before, w;; = 1
for k =i and w;; = 0 otherwise. The surrogate model can be restated as:

sO(x) = ci(e, HD) = Hx (4.8)
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x0=20 = fx")=125
= q(o) =5
= D) =¢
> 5(x) = c(x+5)

¥ =15 = fxV)=89.06
= ¢'V=281

= sO(x) = c(x+2.81)

X =17.19 => fx?)=104.4
= ¢¥=3.69

=> 5@(x) = c(x+3.69)

K =1631 = fx¥)=98.16
= ¢¥V=332

= §O(x) = c(x+3.32)

K =16.68 = f(x*)=100.76

Fig. 4.2 Input space mapping solving the wedge cutting problem [[11]
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= H"=625

= V) =6.25x

=16 = fix")=96.0
= H"=6.00

= sV(x)=6.00x

x? =16.67 => fix*)=100.69
=> H?=6.04

=> §P(x) =6.04-x

x¥ =16.55 => fx?) =99.88
= HY=6.03

= s9(x)=6.03x

*=16.57 = fx)=100.02

Fig. 4.3 Implicit space mapping solving the wedge cutting problem
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where

HY = argmin | F ) = i )| = argmin | /() = H)| (4.9)

In this simple case, (@9) has an analytical solution H) = f(x())/x\9). Figure @3]
shows the first four iterations of the SM algorithm solving the wedge cutting problem.

This indirect, implicit space mapping approach is as simple as input space map-
ping and also converges to an acceptable result (from an engineering point of view)
in few iterations. Since our target is area, the H and the x in the Hx of the rectangle
are of equal significance as design parameters in the coarse model. The physical ap-
proximation remains valid and this optimization process also mimics a learning pro-
cess derived from intuition. In effect, we are recalibrating the coarse model against
measurements of the fine model after each change to the fine model.

4.3 Space Mapping Efficiency

Here, we present two examples to illustrate the efficacy of space mapping technol-
ogy as applied to microwave design. Specifically, we address filter-like structures
operating in the frequency domain. Such problems have a long history of interest
to the microwave community. Classically, filters are designed through optimally ob-
tained transfer functions that need to be realized by practical or manufacturable cir-
cuit components and structures, whether by lumped elements, waveguide structures,
integrated circuits, etc.

The field of filter design is too vast to review in detail here. For our purposes,
we assume that useful structures and topologies have already been selected by ex-
perts, both the high-fidelity and lower-fidelity models. Typically the high-fidelity
models are simulated by full wave electromagnetic simulators that are CPU inten-
sive. By this we mean that a single function evaluation of the high-fidelity model
can take minutes, hours, days, or much longer to evaluate. On the other hand,
empirical models might be connected together though circuit theory that permits
many function evaluations (of the low-fidelity model) in just seconds. Alternatively,
the high-fidelity simulator may feature lower resolution simulations that are both
sufficient for a coarse model and affordable in CPU time.

4.3.1 Example 1: Microstrip Bandpass Filter

Consider a second-order capacitively-coupled dual-behavior resonator (CCDBR)
microstrip filter shown in Fig. B4l The filter consists of conductor (metal)
(micro)strips put on a dielectric substrate. Properties of the filter, here, the relative
amount of the input signal passed to the filter’s output expressed using so-called
transmission coefficients, depend on the filter geometry. For this example, the de-
sign parameters are the lengths of the microstrips as well as the spacing between
the lines so that the design variable vector is x = [L; L, L3 S]”. The fine model is
simulated by the commercial electromagnetic simulator FEKO [23]. The response
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Fig. 4.4 Second-order CCDBR filter: geometry [35]
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Fig. 4.5 Second-order CCDBR filter: coarse model (Agilent ADS)

f(x) of the fine model is the modulus of the so-called transmission coefficient, |S2|,
evaluated at 41 frequency points equally spaced over the frequency band 2 GHz to
6 GHz. Evaluation time on a Pentium D 3.4 GHz processor is about 14 minutes.

Empirical modeling is central to engineering theory and practice. Electrical and
electronics engineers, in particular, have a strong tradition of developing libraries of
fast models already validated by electromagnetic analysis or physical experiment.
Thus, users of commercial circuit solvers such as Agilent ADS [1] enjoy a rich and
vast library of empirical elements that they can call upon in their quest to formulate
suitable coarse models.

Here, a suitable coarse model, Fig. is a circuit equivalent of the structure
in Fig. 4] consisting of circuit-theory-based models of microstrips. The coarse
model is implemented in Agilent ADS. Evaluation of the coarse model takes a few
milliseconds. It should be noted that both fine and coarse models describe basically
the same physical phenomena.

The design specifications are [S>;| > —3 dB for 3.8 GHz < w < 4.2 GHz,
and [S;] < —20 dB for 2.0 GHz < o < 3.2 GHz and 4.8 GHz < 0 < 6.0
GHz. Thus, the merit function H in this case is a minimax function defined as
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frequency [GHz]

Fig. 4.6 Second-order CCDBR filter: fine model (solid line) and coarse model response
(dashed line) at the starting point X0, Design specifications are marked using horizontal
lines

H = max{max{3.8 GHz < w <4.2GHz: -3 dB —|S:;(®)|},max{2.0GHz < w <
3.2GHz : |S21(®)|+20 dB}, max{4.8 GHz < ® < 6.0 GHz : |Sy; ()| +20 dB}}.
Note that H is defined as the maximum of the difference between the model response
and the specification value over the frequency range of interest, i.e., it describes the
maximum violation of the design specifications. In particular, the positive value of
H indicates that the specifications are violated at least for one frequency sample.
The negative value of H indicates, on the other hand, that the response of the model
satisfies the specifications. A graphical interpretation (cf. Fig. 6-9) is that a posi-
tive value of H corresponds to the response plot crossing the specifications lines,
whereas a negative value of H corresponds to the response plot fitting between the
specification lines.

For this problem we used input SM and output SM with the surrogate model de-
fined as 5(x, p) = §(x,q,d) = c(x+¢q) +d. Parameter extraction uses only the current
iteration point so that the surrogate model has the form of s\ (x) = ¢(x+¢(?) 4+ d
with ¢ = argmin{q : || f(x?) — ¢(x') 4 ¢)|}. Vector d\V is calculated as d) =
F(xD) = c(x + ¢W) after vector ¢l is already known [29]. Due to this, the pa-
rameter extraction process is simplified: since vector d contains m components and
usually m is much larger than the number of design variables n (for the CCDBR
filter we have m = 41 and n = 4), having both q“> and d") extracted in a nonlin-
ear minimization process (£4) would be much more complicated and time con-
suming than just extracting ¢(). Also, having d() calculated as above allows us
to satisfy the zero-order consistency condition between the fine model and the
surrogate [3].

The starting point for SM optimization is the optimal solution of the coarse
model, x(¥) = [2.415 6.093 1.167 0.082]" mm. Figure &8 shows the responses
of the fine and coarse models at x(*). The fine model specification error (i.e., min-
imax objective function value) at initial design is +7.8 dB. Figure [£.7] shows the
fine model response and the response of the surrogate model c¢(x + q<0>), i.e., the
coarse model with the input SM vector g realizing argming : || f(x(?)) — ¢(x(?) +¢)||
(the response of the surrogate model s(*) (x(%)) is identical to f(x(?))). Note that the
match between the input SM surrogate and the fine model is very good. What is
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Fig. 4.7 Second-order CCDBR filter: fine model response (solid line) and the response of the
surrogate model ¢(x + ¢(%)) (dashed line) at the starting point x(©)
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frequency [GHz]

Fig. 4.8 Second-order CCDBR filter: fine model response (solid line) and the response of the
surrogate model c(x + q<0)) (dashed line) at x, the optimum of the surrogate model 50

even more important, this good match is maintained away from x(°), as illustrated
in Fig. 8] which shows the fine model response and the response of the surrogate
model ¢(x + ) at x1), the optimum of the surrogate model s(*). This means that
the space mapping surrogate not only exhibits good approximation capability but
also has excellent generalization (prediction) capability. It should be emphasized
that the space mapping surrogate is established using fine model data at just a single
point (design). This is only possible because the coarse model encodes substantial
knowledge about the physical phenomena described by the fine model.

SM optimization is accomplished after five iterations. Fig. shows the fine
model response at the final solution, x%) = [3.344 4.820 1.092 0.052]7 mm; the
corresponding minimax objective function value is —1.4 dB. Table [£.1] compares
the computational efficiency of the SM algorithm and direct optimization using
Matlab’s fminimax routine [37]]. SM optimization is about 16 times faster than di-
rect optimization. Note that the SM optimization time is slightly larger than the
total fine model evaluation time (6-14 min = 84 min), which is because of some
overhead related to multiple evaluations of the surrogate model (cf. (4.2) and

@.3)).
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Fig. 4.9 Second-order CCDBR filter: optimized fine model response. Design specifications
are marked using horizontal lines

Table 4.1 Second-order CCDBR filter: SM optimization versus direct optimization

Optimization Final Minimax Objective Number of Fine Model Total Optimization
Procedure Function Value Evaluations Time

Direct Optimization —1.3 dB 106 24 h 45 min

SM Optimization —1.4dB 6 1 h 31 min

4.3.2 Example 2: Ring Antenna [51]

As a second example [51], consider the stacked probe-fed printed annular ring an-
tenna shown in Fig. [26]. The antenna is printed on a printed circuit board
(PCB) with electrical permittivity & = 2.2, and height d; = 6.096 mm for the
lower substrate, and €, = 1.07, d, = 8.0 mm for the upper substrate. The radius
of the feed pin is rp = 0.325 mm. The design parameters are the outer and inner
radius of each ring and the feed position, namely x = [a; a» by by pi]’.

The fine model is evaluated using the electromagnetic simulator FEKO [23]. Re-
sponse f(x) of the fine model is the modulus of the transmission coefficient, |S;;],
evaluated at 9 frequency points equally spaced over the frequency band 1.75 GHz to
2.15 GHz. The coarse model is also simulated in FEKO. The difference between the
fine and coarse model is in the simulation mesh density. The number of triangular
meshes for the fine model is 2661, whereas the coarse model has only 83 meshes.
The simulation time for the fine and coarse model is 1 hour 18 minutes and 8.7
seconds, respectively. The design specification is |S;;| < —10dB for 1.75 GHz <
o <2.15 GHz.

This problem has been solved using implicit and output SM. The relative permit-
tivities of the two layers, €,1 and €, are used as preassigned parameters (cf. Section
H.2.2). The generic surrogate model takes the form of §(x, p) = §(x,[&,1 €2]7,d) =
c(x,[€1,€2]7) +d. As in the previous example, parameter extraction uses only
the current iteration point so that the surrogate model has the form of s(!) (x) =

c(o[e) e91T) +d with [6f) eY]" = argmin{[en &a]” : [|F(x1) — (x),
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Fig. 4.11 Double annular ring antenna: fine model (solid line) and coarse model response

(dashed line) at the starting point X0 Design specifications are marked using a horizontal

line

&1 €2]D)|} - Vector d is calculated as d = f(x®) — c(xD, [¢") sr(;)]T) after

rl
vector [er(? sr(é)]T is known.

The starting point for SM optimization is the optimal solution of the coarse
model, x((V) =[9.228 8.722 30.723 34.127 18.211]” mm. Figure E11] shows the
responses of the fine and coarse models at x(°). The fine model minimax objective
function value at the initial design is +8.2 dB.

SM optimization is accomplished after three iterations (four fine model evalua-
tions). Fig. shows the fine model response at the final solution, x3) = [10.674
7.809 28.462 32.504 19.682]7 mm as well as the response of the surrogate model
s (x(3)); the fine model minimax objective function value is —0.2 dB. Note that
the fine model response in Fig. corresponds to an almost optimum design in a
minimax sense. The SM optimization time is 5 hours 58 minutes and is larger than
the total fine model evaluation time (4 - 78 minutes = 5 hours 12 minutes), which is
because of the overhead related to multiple evaluations of the surrogate model.
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Fig. 4.12 Double annular ring antenna: fine model (solid line) and surrogate model response
(dashed line) at the final design x3). Design specifications are marked using a horizontal line

Direct optimization of the fine model in this example was not attempted. With a
simulation time of 1 hour and 18 minutes per system analysis, direct optimization
would require about a week, which is not acceptable.

4.3.3 Discussion

In this section we have studied two representative examples taken from electro-
magnetics-based microwave engineering design. We see that a major obstacle in
executing the optimizations include the high computational cost of full wave elec-
tromagnetic simulation by commercial solvers. Space mapping effectively replaces
the direct optimization of the high-fidelity model by iterative re-optimization and
updating of the faster surrogate based on the problem-specific knowledge embed-
ded in the underlying coarse model. Thus, space mapping optimization shifts the
CPU burden from the slower simulator to the faster simulator.

4.4 Exploiting Extra Knowledge: Tuning Space Mapping

Tuning is ubiquitous in engineering practice. It is usually associated with the pro-
cess of manipulating free or tunable parameters of a device or system after that
device or system has been manufactured. The traditional purpose of permitting tun-
able elements is (1) to facilitate user-flexibility in achieving a desired response or
behavior from a manufactured outcome during its operation, or (2) to correct in-
evitable postproduction manufacturing defects, small due perhaps to tolerances, or
large due perhaps to faults in the manufacturing process [7, 8. Tuning of an en-
gineering design can be seen, in essence, as a user- or robot-directed optimization
process.

The tuning space mapping approach is an iterative optimization procedure that
assumes the existence of a so-called tuning model which is less accurate but com-
putationally much cheaper than the fine model. The model incorporates relevant data
from the fine model (typically fine model responses, in a manner of a device under
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Fig. 4.13 The concept of the tuning model

test) at the current iteration point, and tuning parameters (typically implemented
through circuit elements inserted into tuning ports). The tunable parameters are ad-
justed so that the model satisfies the original design specifications. The conceptual
illustration of the tuning model is shown in Fig. The procedure is invasive in
the sense that the structure may need to be cut. The fine model simulator must allow
such cuts and allow tuning elements to be inserted.

A certain relation (not necessarily analytical) between the parameters of the tun-
ing model and the design variables is assumed, so that the new design is obtained
by translating the adjusted parameters into the corresponding design variable values
using this very relation.

4.4.1 Tuning Space Mapping Formulation

The TSM algorithm produces a sequence of points (design variable vectors) x{9),
i=0,1,.... The iteration of the algorithm consists of two steps: optimization of the
tuning model and a calibration procedure. First, the current tuning model 1@ is built
using fine model data at point x{7). In general, because the fine model has undergone
a disturbance, the tuning model response may not agree with the response of the
fine model at x\¥) even if the values of the tuning parameters x; are zero, so that

these values must be adjusted to, say, xt(f()) in order to obtain alignment:

g = argmin||£(x7) =) ()| (4.10)

In the next step, we optimize V) to have it meet the design specifications. We obtain

the optimal values of the tuning parameters x,<'> as follows:

Oi = argminH (t") (x,)) (4.11)

Having xt(’% we perform the calibration procedure to determine changes in the design

variables that yield the same change in the calibration model response as that caused
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by xt(lf - xt(f()), where x; ¢ are initial values of the tuning parameters (normally zero).

We first adjust the SM parameters p¥) of the calibration model ¢ to obtain a match
with the fine model response at x(/)

P = argmin|£(x7) =) p.xf3) | (4.12)

The calibration model is then optimized with respect to the design variables in order
to obtain the next iteration point xit1)

2 = argmin 19 (+(7) = e(x, p0 1) (4.13)

1.

Note that we use x,(f()) in (4.12), which corresponds to the state of the tuning model af-
ter performing the alignment procedure (£.10), and «\ in @I3), which corresponds

t.1

to the optimized tuning model (cf. @j])). Thus, @.12) and @13) allow us to find
the change of design variable values x{/*1) — x() necessary to compensate the effect

of changing the tuning parameters from x) to x".

TSM exploits the standard SM optimization, classical circuit and electromagnetic
(EM) theory, as well as the engineer’s expertise. For example, in a physics-based
simulation according to classical EM theory, design parameters such as physical
length and width of a microstrip line can be mapped to a "tuning component” such as
a capacitor. The calibration process then transfers the tuning parameters to physical
design parameters, which can be achieved by taking advantage of classical theory
and engineering experience. Still, the TSM algorithm can be seen as a specialized
case of a standard SM. On the other hand, TSM allows greater flexibility in terms of
the surrogate model which may, in general, involve any relation between the tuning
parameters and design variables.

4.4.2 TSM Optimization of Chebyshev Bandpass Filter

Consider the box-section Chebyshev microstrip bandpass filter shown in
Fig. .14 The design parameters are x = [L; Ly L3 Ly Ls S; S,]”. The fine model is
evaluated using the full-wave electromagnetic simulator Sonnet em [47]]. The width
parameters are W = 40 mil (1 mil = 0.001 inch) and W; = 150 mil. Substrate pa-
rameters are: relative permittivity & = 3.63, and height H = 20 mil. The design
specifications are | S| < —20 dB for 1.8 GHz < @ < 2.15 GHz and 2.65 GHz
< ® <3.0GHz, and |S2;| < —3 dB for 2.4 GHz < ®w < 2.5 GHz.

The idea of inserting tuning elements between so-called “co-calibrated” ports
[40]) has opened the door to successful commercial exploitation of tuning space
mapping. The Sonnet em system has been enhanced to permit tuning elements
to be easily inserted into infinitesimal gaps between designated tuning ports. In ef-
fect, Sonnet em can represent the cut fine model by response data placed into a
so-called multi-port S-parameter matrix which may be loaded into the Agilent ADS
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Output

Fig. 4.14 Box-section Chebyshev bandpass filter: geometry [34], and places for inserting
the tuning ports (denoted as white rectangles; the numbers correspond to the terminals of
S-parameter component S28P of the tuning model shown in Fig.

I; Lu
25 27 26 25 24 23 22

1
2
3
4
5
6
7

Fig. 4.15 Box-section Chebyshev bandpass filter: tuning model (Agilent ADS)

circuit simulator [1]]. Tuning elements connected to the appropriate ports complete
the tuning model within the ADS simulator.

Specifically in our example, the tuning model is constructed by dividing the poly-
gons corresponding to the length parameters L; to Ls in the middle and inserting the
tuning ports at the new cut edges. Its S28P data file (a 28-port S-parameter matrix) is
then loaded into the S-parameter component in Agilent ADS [[1]]. The circuit-theory
coupled-line components and capacitor components are designated as tuning ele-
ments and are inserted into each pair of tuning ports (Fig. E.13). The lengths of the
imposed coupled-lines and the capacitances of the capacitors are assigned to be the
tuning parameters, so that we have x; = [L,1 Ly L3 Ly Ls C; Cp]? (Ly are in
mil, Gy in pF).

The calibration model is a circuit equivalent model implemented in ADS and
shown in Fig. It contains the same tuning elements as the tuning model. It
basically mimics the division of the coupled-lines performed while preparing ¢. The
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Fig. 4.16 Box-section Chebyshev bandpass filter: calibration model (Agilent ADS)

1.8 2 22 24 2.6 28 3
Frequency [GHz]
Fig. 4.17 Box-section Chebyshev bandpass filter: the coarse (dashed line) and fine (solid
line) model response at the initial design. Design specifications are marked using horizontal
lines

calibration model also contains six (implicit) SM parameters that will be used as
parameters p in the calibration process (@.12), (@.13). These parameters are p =
(61 €2 &3 €4 &s H|!, where g is the dielectric constant of the microstrip line
segment of length L; (cf. Fig.[4.14), and H is the substrate height of the filter. Initial
values of these parameters are [3.63 3.63 3.63 3.63 3.63 20]7.

The misalignment between the fine and tuning model responses with the tun-
ing elements set to zero is negligible so that xt(?()) =[0000000]" was used
throughout. The values of the tuning parameters at the optimal design of the tun-
ing model are x\}) = [~85.2 132.5 5.24 1.13 —15.24 0.169 —0.290]". Note
that some of the parameters take negative values, which is permitted in ADS. The
values of the preassigned parameters obtained in the first calibration phase (#.12))
are p(© =[3.10 6.98 4.29 7.00 6.05 17.41]".

Figure [£.17] shows the coarse and fine model responses at the initial design,
whereas Fig. shows the fine model response after just one TSM iteration with
x(D = 11022 398 46 56 235 4 10]” mil (the corresponding minimax objective
function value is —1.8 dB).
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Fig. 4.18 Box-section Chebyshev bandpass filter: fine model response at the design found
after one iteration of the TSM algorithm. Design specifications are marked using horizontal
lines

4.4.3 Summary

We have considered simulation-based tuning within the scope of space mapping. In
our TSM approach, which is significantly more knowledge-intensive than regular
space mapping, we construct a tuning model directly by cutting into the fine model
and connecting tuning elements to the resulting internal ports of the structure. Rele-
vant parameters or preassigned parameters of these auxiliary elements are chosen to
be tunable and are varied to match the tuning model to the fine model. This process
takes little CPU effort as the tuning model is typically implemented within a circuit
simulator. An updated tuning model is then available for design prediction. The pre-
diction is fed back to fine model simulator after simple calibration. The process is
repeated until the fine model response is sufficiently close to the design target.

4.5 Conclusions

Ultimately, every engineer seeks high-fidelity, but cheap, solutions to computation-
ally expensive design problems. So much the better if, without loss of fidelity or
sacrifice of optimality, the design process can be cast as a simple nonlinear opti-
mization of black-box functions. However, to ensure low cost, a tight limit on the
number of high-fidelity simulation runs to evaluate expensive objective functions
and constraints is mandatory, otherwise such optimization problems can become
computationally intractable. In our situation, pure classical methods of optimiza-
tion are likely to perform poorly or fail since we limit the number of high-fidelity
function simulations to only a handful. However, space mapping heavily exploits
classical methods in the optimization of the underlying surrogates.

Input space mapping requires expert knowledge, usually deals with relatively
few free optimization variables, but the parameter extraction step can be a diffi-
cult nonlinear optimization problem to solve. Expertise is helpful in implicit space
mapping because of the many possibly available pre-assigned parameters. In out-
put space mapping, engineering expertise may by somewhat less necessary, but the



4

Knowledge-Based Optimization of Expensive Functions 107

process can involve a large number of variables. However, the parameter extraction
step might not require coarse model re-simulation. The new tuning space mapping
approach is an effective simulator-based approach but requires significantly more
expertise to execute.

Essential to overall success, we believe, is a suitable combination of (1) classi-

cal optimization algorithms, (2) computational intelligence, (3) fast physics-based
surrogates, and (4) the designer’s engineering expertise. Our contribution to space
mapping exploits these necessary ingredients.
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Chapter 5

Reducing Function Evaluations Using
Adaptively Controlled Differential Evolution
with Rough Approximation Model

Tetsuyuki Takahama and Setsuko Sakai

Abstract. In this chapter, a rough approximation model, which is an approxima-
tion model with low accuracy and without learning process, is presented in order to
reduce the number of function evaluations effectively. Although the approximation
errors between the true function values and the approximation values are not small,
the rough model can estimate the order relation of solutions with fair accuracy. By
utilizing this nature of the rough model, we have proposed estimated comparison
method, in which function evaluations are omitted when the order relation of solu-
tions can be judged by approximation values. In the method, a parameter for error
margin is introduced to avoid incorrect judgment. Also, a parameter for utilizing
congestion of solutions is introduced to avoid omitting promising solutions. In order
to improve the stability and efficiency of the method, we propose adaptive control
of the margin parameter and the congestion parameter according to the success rate
of the judgment. The advantage of these improvements is shown by comparing the
results obtained by Differential Evolution (DE), DE with the estimated compari-
son method, adaptively controlled DE with the estimated comparison method and
particle swarm optimization in various types of benchmark functions.

5.1 Introduction

Evolutionary computation has been successfully applied to various fields of science
and engineering. Evolutionary algorithms (EAs) have been proved to be powerful
function optimization algorithms. However, EAs need a large number of function
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evaluations before a well acceptable solution can be found. Recently, the size of
optimization problems tends to become large, and the cost of function evaluation
becomes high. It is necessary to develop more efficient optimization algorithms in
order to reduce the number of function evaluations.

An effective method for reducing function evaluations is to build an approxima-
tion model for the objective function and to solve the optimization problems using
the approximation values l6]. However, building the high-quality approximation
model is very difficult and time-consuming. Also, a proper approximation model
depends on the problems to be optimized. It is difficult to design a general-purpose
approximation model with high accuracy.

In order to solve these difficulties, we have proposed estimated comparison
method (17, 20]. In the method, an approximation model with low accuracy and
without learning process, or a rough approximation model, is utilized to reduce the
number of function evaluations effectively. The approximation errors between the
true function values and the approximation values estimated by the rough approxi-
mation model will not be small. However, the rough model can estimate whether the
function value of a solution is smaller than that of the other solution or not with fair
accuracy, and can be used to compare solutions. Thus, the estimated comparison,
which compares solutions using the rough approximation values, can be defined.

In the estimated comparison, the approximation values are compared first. When
a value is judged to be worse enough than the other value, the estimated compari-
son returns the estimated result without evaluating the objective function. When it is
difficult to judge the result of comparison from the approximation values, true val-
ues are obtained by evaluating the objective function and the estimated comparison
returns the true result based on the true values. By using the estimated comparison,
the evaluation of the objective function is sometimes omitted and the number of
function evaluations can be reduced.

Two parameters, an error margin parameter and a congestion parameter, are in-
troduced in the estimated comparison. The error margin parameter is used to allow
approximation error and avoid incorrect judgment. If the error margin is too large,
cautious judgment is made and the objective function is often evaluated to obtain
true values. As the result, the efficiency of optimization could not be improved
much. If the margin parameter is too small, the evaluation of the objective func-
tion is often omitted, but the judgment would often be incorrect. As the result, the
optimization process might be led to a wrong direction. In this study, we propose to
control the margin parameter adaptively based on success rate of the comparison.
The congestion parameter is used not to block the search for new direction. If the
congestion of a solution is low, the solution exists in new or not-yet-visited area and
it is difficult to estimate the true function value of the solution. It is important to
evaluate the function and confirm whether the solution is good or not. If the con-
gestion parameter is too large, the solution in new area will always be evaluated. As
the result, the efficiency of optimization could not be improved much. If the con-
gestion parameter is too small, the search for new area would often be blocked. As
the result, the speed of optimization process might be slow down. In this study, we
propose to control the congestion parameter adaptively based on the success rate.
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In this chapter, potential model is used as a rough approximation model. The po-
tential model can estimate a function value of a point based on some other points
without learning process and can be used as a general-purpose rough approximation
model. Differential Evolution (DE) [@, , , ,] is used as an optimization al-
gorithm and the estimated comparison is introduced in the survivor selection phase
of DE. The advantage of these improvements is shown by comparing the results ob-
tained by DE, DE with the estimated comparison method, adaptively controlled DE
with the estimated comparison method and particle swarm optimization in various
types of benchmark functions.

The rest of this chapter is organized as follows: Section 2 describes evolutionary
algorithms using approximation models briefly. Section 3 describes the potential
model as a rough approximation model. The estimated comparison is defined using
the potential model and the adaptive control of parameters is proposed. The adap-
tive DE with the estimated comparison method is proposed in Section 4. Section 5
presents experimental results on various benchmark problems. Section 6 describes
a comparative study between the adaptive method and particle swarm optimization.
Finally, Section 7 concludes with a brief summary of this chapter and a few remarks.

5.2 Optimization and Approximation Models

5.2.1 Optimization Problems

In this study, the following optimization problem (P) with upper bound constraints
and lower bound constraints will be discussed.

(P) minimize f(x) (5.1)
subjectto [; <x; <uw;, i=1,...,n,

where x = (x1,x2,---,x,) is an n dimensional vector, f(x) is an objective function.
Values u; and /; are the upper bound and the lower bound of x;, respectively. Also, let
the search space in which every point satisfies the upper and lower bound constraints
be denoted by S.

The objective function f(x) will be approximated using a rough approximation
model.

5.2.2 Evolutionary Algorithms Using Approximation Models

In this section, evolutionary algorithms using approximation models are briefly
reviewed.

Various approximation models are utilized to approximate the objective function.
For example, quadratic model is used as a simple case of polynomial models [EI].
Kriging models [EI, ] approximate the function by a global model and a localized
deviation. Also, multi-layered neural networks in neural network models ] and
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Radial Basis Function (RBF) network models [B,EL , ] are often used. In most ap-
proximation models, model parameters are learned by least square method, gradient
method, maximum likelihood method and so on. In general, learning model param-
eters is time-consuming process, especially in order to obtain a model with higher
accuracy or a model of a large function such as a function with large dimensions.
Evolutionary algorithms with approximation models can be classified into some

types:

e Allindividuals have only approximation values. Very high quality approximation
model is built and the objective function is optimized using approximation values
only. It is possible to reduce function evaluations greatly. However, these meth-
ods can be applied to well-informed objective function and cannot be applied to
general problems.

* Some individuals have approximation values and others have true values. Meth-
ods in this type are called evolution control approaches and can be classified into
individual-based and generation-based control [Ia]. The individual-based control
means that good individuals (or randomly selected individuals) use true values
and others use approximation values in each generation [7.I8]. The generation-
based control means that all individuals use true values once in a fixed number
of generations and use approximation values in other generations [E, ]. In the
approaches, the approximation model should be accurate because approxima-
tion values are compared with true values. Also, it is known that approximation
models with high accuracy sometimes generate a false optimum or hide a true op-
timum. Individuals may converge into a false optimum while they are optimized
using the approximation models in some generations. Thus, these approaches are
much affected by the quality of approximation models. It is difficult to utilize
rough approximation models.

e All individuals have true values. Some methods in this type are called surrogate
approaches. In the surrogate approaches, an estimated optimum is searched using
an approximation model that is usually a local model. The estimated optimum is
evaluated to obtain the true value and also to improve the approximation model
[|I|, , @]. If the true value is good, the value is included as an individual. In
the approaches, rough approximation models might be used because approxima-
tion values are compared with other approximation values. These approaches are
less affected by the approximation model than the evolution control approaches.
However, they have the process of optimization using the approximation model
only. If the process is repeated many times, they are much affected by the quality
of approximation models.

5.2.3 Estimated Comparison Method

The estimated comparison method is classified into the category where all indi-
viduals have true values. However, the method is different from the surrogate ap-
proaches. It uses a global approximation model of current individuals using a rough
approximation model. It does not search for an estimated optimum, but it judges
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whether a new individual is worth evaluating its true value or not. Also, it can spec-
ify the error margin parameter for allowing approximation error and the conges-
tion parameter for accepting the promising solutions in a new direction when the
comparison is carried out. Thus, it is not affected by the approximation model much.

The reduction of function evaluations by the estimated comparison method is not
larger than that by other optimization methods using approximation models with
high accuracy. However, the estimated comparison method does not need the learn-
ing process of the approximation model which is often time-consuming and needs
much effort to tune the learning parameters. The estimated comparison method is
fast and easy-to-use approach and can be applied to wide range of problems includ-
ing from low or medium computation cost to high computation cost problems. It is
thought that the estimated comparison method is a more general-purpose method
than other methods with high-quality approximation models.

5.3 Rough Approximation Model

In this study, potential model is used as a rough approximation model.

5.3.1 Potential Model

Potential energy is stored energy that depends on the relative position of various
parts of a system. The gravity potential energy is an example of potential energy.
If there is an object of which mass is m, there exists gravity potential energy E,
around the object. If there is another object of which mass is m’ at a distance r from
the object, there exists the attractive force F, between two objects.

(5.2)

where G is a proportional constant or the gravitational constant.

In this study, it is supposed that when a solution x exists, there are potential for
objective U, and potential for congestion U, at a distance r from the solution as
follows:

y, = %) (5.3)
rP
1

U=, (5.4)

where p is a positive number and usually 1 or 2. The proportional constant is 1 for
simplicity.

When a set of solutions X = {x,x2,--- ,xy} are given and the objective values
f(x;),i=1,2,--- N are known, two potential functions at a point y can be defined
as follows:
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U(y) = 2 J; xy (5.5)
1
U0 = 2 gy oo

where d(x,y) is a distance between points x and y.

It is obvious that U, shows a measure of the function value at y and U, shows the
congestion of the pointy. If U, is large, the function value tends to be large. If U, is
large, there are many points near the point.

The approximation value f(y) at the point y can be defined as follows:

F0) = Uov)/Uc(y) (5.7)
For example, if y is same as x;, f(y) becomes f(x;).
5.3.2 Estimated Comparison

When the true function values of all points in X = {x;|i=1,2,---,N} are known and
a new child point x/ is generated from a parent point x;, the approximation values at
points x; and x; are given as follows:

Uy(x!)y = f (x,-(}) (5.8)
jZid(xj,x;")
(") 1
Uex;") = , (5.9)
) §d<xj7x§)>ﬂ
760y = U,y U ) (5.10)

It should be noted that the parent point x;(j = i) is omitted in the right side of U,
and U,. If the parent point is not omitted, the approximation value of the parent
point becomes the true value. As the result, the difference between the precision of
approximation at the parent point and that at the child point becomes large, and it is
difficult to compare the approximation values.

The estimated comparison judges whether the child point is better than the par-
ent point. In the comparison, a reference value z for indicating accuracy level of
the approximation model, the error margin parameter 6(8 > 0) and the congestion
parameter A(0 < A < 1) are introduced. The estimated comparison can be defined
as follows:

better (x}, x;, z) {
LE (Ue(x)) SMUe(xi) || fx)) < floei) +82) {
Evaluate x};
1f(f(x}) < f(xi)) return vyes;

return no;

}
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When A is 0, the congestion is not considered because U, is positive. Otherwise, if
the congestion of child point is much less than that of parent point, the child point
is evaluated. The recommended value of A is [}, ]].

When 3 is 0, the estimated comparison can reject many children and omit a large
number of function evaluations. However, the possibility of rejecting good child
becomes high and a true optimum sometimes might be skipped. When & is large, the
possibility of rejecting good child becomes low. However, the estimated comparison
can reject fewer children and omit a small number of function evaluations. Thus, &
should have a proper value.

In this study, the reference value z is given by the standard deviation of approxi-
mation values, G:

1y
c= Ni:21<f<xi)—f) (5.11)
1.
v 2] ) (5.12)

In this case, the recommended value of the margin parameter 8 is [0.05,0.5].

5.3.3 Adaptive Control

In this study, a simple adaptive control schema of & and A, which is derived from
Rechenberg’s 1/5 success rule, is adopted as shown in Table 5.1l The accuracy of
the approximation model is classified into 5 categories, Very Bad, Bad, Normal,
Good, and Very Good, according to the success rate of the comparison between
the child and the parent. The success rate is given by the ratio between the number
of successful evaluations, or the number of cases when the child is better than the
parent and the parent is replaced by the child, and the total number of evaluations in
one generation.

If the success rate is large, the accuracy of the approximation model is high and
the parameters & and A can be decreased. Thus, when the success rate is Good, &
and A are decreased by a factor of 0.9. When the rate is Very Good, 6 and A have the

Table 5.1 Rules of adaptive control

Category Success Rate 8(r+1) A(r+1)

Very Bad [0,0.1] Omax  Amax
Bad (0.1,0.2]  1.58(r) 1.5\(r)
Normal  (0.2,0.3] 3(1) A1)
Good  (0.3,04] 0.95(r) 0.9A(r)
Very Good  (0.4,0) Omin~ Amin

where 8(t) € [Smin; Omax] = [10_570.2},
A(t) € Mmins Amax] = [107370.4}.
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minimum value S, and A, respectively. If the success rate is small, the accuracy
is low and the margin parameter and the congestion parameter should be increased.
Thus, when the rate is Bad, 6 and A are increased by a factor of 1.5. When the rate
is Very Bad, & and A have the maximum value &yax and Amayx, respectively.

5.4 Differential Evolution with the Estimated Comparison
Method

In this section, Differential Evolution and DE with the estimated comparison method
are described.

5.4.1 Differential Evolution

Differential evolution is a variant of ES proposed by Storn and Price (13,14]. DE is
a stochastic direct search method using population or multiple search points. DE has
been successfully applied to the optimization problems including non-linear, non-
differentiable, non-convex and multi-modal functions. It has been shown that DE is
fast and robust to these functions [@].

There are some variants of DE that have been proposed, such as DE/best/1/bin
and DE/rand/1/exp. The variants are classified using the notation DE/base/num/
cross. “base” indicates the method of selecting a parent that will form the base
vector. For example, DE/rand/num/cross selects the parent for the base vector at
random from the population. DE/best/num/cross selects the best individual in the
population. “num” indicates the number of difference vectors used to perturb the
base vector. “cross” indicates the crossover mechanism used to create a child. For
example, DE/base/num/bin shows that crossover is controlled by binomial crossover
using constant crossover rate. DE/base/num/exp shows that crossover is controlled
by a two-point crossover with exponentially decreasing crossover rate.

In DE, initial individuals are randomly generated within the search space and
form an initial population. Each individual contains n genes as decision variables or
a decision vector. At each generation or iteration, all individuals are selected as par-
ents. Each parent is processed as follows: The mutation process begins by choosing
1 + 2 num individuals from all individuals except for the parent in the processing.
The first individual is a base vector. All subsequent individuals are paired to create
num difference vectors. The difference vectors are scaled by a scaling factor F' and
added to the base vector. The resulting vector is then recombined with the parent.
The probability of recombination at an element is controlled by the crossover rate
CR. This crossover process produces a trial vector. Finally, for survivor selection,
the trial vector is accepted for the next generation if the trial vector is better than the
parent.

In this study, DE/rand/1/exp variant, where the number of difference vector is 1
or num = 1, is used.
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5.4.2 Adaptive DE with the Estimated Comparison Method

The algorithm of the adaptive DE with the estimated comparison method based on
DE/rand/1/exp variant, which is used in this study, is as follows:

Step 0:  Initialization. Initial N individuals x; are generated randomly in the search
space S and form an initial population P = {x;|i = 1,2,--- ,N}. The parameters
of the estimated comparison method are initialized as & = Omax and A = Apax.

Step 1:  Termination condition. If predefined condition, such that the number of
generations (iterations) exceeds the maximum generation (iteration) Tinax, 1S
satisfied, the algorithm is terminated.

Step 2:  Mutation. For each individual x;, three individuals x 1, x> and x,3 are
chosen from the population without overlapping x; and each other. A new vector
x' is generated by the base vector x,; and the difference vector x> —x,3 as
follows:

x' =x,1+F(xp—xp3) (5.13)

where F' is a scaling factor.

Step 3:  Crossover. The vector x’ is recombined with the parent x;. A crossover
point j is chosen randomly from all dimensions [1,#]. The element at the j-th di-
mension of the trial vector x™¥ is inherited from the j-th element of the vector x’.
The elements of subsequent dimensions are inherited from x’ with exponentially
decreasing probability defined by a crossover rate CR. Otherwise, the elements
are inherited from the parentx;. In real processing, Step2 and Step3 are integrated
as one operation.

Step 4:  Survivor selection. The estimated comparison is used for comparing the
trial vector and the parent. The trial vector x™¥ is accepted for the next generation
if the trial vector is better than the parent x; by using the estimated comparison.

Step 5:  Adaptive Control of the parameters. The success rate is calculated and the
parameters & and A are updated according to Table 3.1l

Step 6:  Go back to Stepl.

The pseudo-code of the adaptive DE/rand/l/exp with the estimated comparison
method is as follows:

Adaptive DE/rand/l/exp with estimated comparison()
{
P=Generate N individuals {x;} randomly;
Evaluate x;, i=1,2,--- ,N;
Initialize & = Omax and A = Amax;
for (t=1; termination condition is not satisfied; r++) {
o=the standard deviation of approximation values in P;
for (i=1; i< N; i++) {
(p1,p2,p3)=select randomly in [1,N]\{i}
s.t.pj #pk(ﬁk: 1a2v3aj7ék)/'
x}V=x; € P;
j=select randomly from [I,n];
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k=1;
do {
X=Xyt F (Xpy,j = Xps i) i
J=(+1)%n;
k++;
} while(k<n && u(0,1) <CR);
// estimated comparison
if (better (x"V, x;, 0)) x;=x"";
}
Update O and A adaptively;
}
}

where u(0,1) is a uniform random variable generator between [0, 1].

In this study, current population P is used as the set of solutions which have
known objective values. As the search process progresses, the area where individ-
uals exist may become elliptical. In order to handle such a case, the normalized
distance is introduced, in which the distance is normalized by the width of each
dimension in the current population P.

2
. ; 5.14
(xJ) \J>; (maXx,-erij —mile,-ePXij> ( )

5.5 Numerical Experiments

5.5.1 Test Problems

In this section, the estimated comparison method is applied to sphere function,
Rosenbrock function, Rastrigin function, Ackley function and Griewank function.
These functions have various surfaces such as unimodal, multimodal, smooth,
bumpy, or steep surfaces. Table[5.2] shows features of the functions.

The function definitions and their search spaces, where 7 is the dimension of the
decision vector, are as follows:

*  f1: Sphere function

n
fle)=Yxf, —512<x<5.12 (5.15)
i=1

This function is a unimodal function and has the minimum value 0 at (0,0, - - - ,0).
e f>: Generalized Rosenbrock (Star type) function

n
fx) =Y {100(x; —x7)* + (x; — 1)*}, —2.048 < x; < 2.048
=2
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This function is a unimodal function with a steep surface and has the minimum
value O at (1,1,---,1).
Jf3: Ill-scaled generalized Rosenbrock (Star type) function

flx) = i{lOO(xl — (ix))?)? + (ixi— 1)%}, —2.048/i < x; < 2.048/i
i=2

This function is a unimodal and ill-scaled function with a steep surface and has
the minimum value 0 at (1, ;7- b

fa: Generalized Rastrigin function

n
f(x) =10n+Y {x7 — 10cos(2mx;)}, —5.12 < x; < 5.12
i=1

This function is a multimodal function with a very bumpy surface and has the
minimum value 0 at (0,0,---,0).
f5: Ackley function

f(x)=20+exp(l) —20exp (—0.2:1 ixf) —exp (; icos(an,)) ,
i=1

i=1

—32<x;<32

This function is a multimodal function with a bumpy surface and has the mini-
mum value 0 at (0,0,---,0).
fe: Griewank function

| Q- Xj
flx)= 4000i§ixl-2 —1IT. | cos (\/’l> +1, —600 < x; <600

This function is a multimodal function with a less bumpy surface and has the
minimum value 0 at (0,0,---,0).

Figure 3.1l shows the graphs of functions f>, fi, fs and fg in case of n = 2.

Table 5.2 Features of test functions

Function modality surface dependency of variables ill-scale
fi unimodal smooth — —
h unimodal steep strong —
f3 unimodal steep strong strong
fa multimodal bumpy (large bumps) — —
fs multimodal bumpy — —

fe multimodal bumpy (small bumps) — —



122 T. Takahama and S. Sakai

(A, |
| A Nl
E A

100

iyl J

ik

i
ki
!‘§‘

Fig. 5.1 Graphs of f>, fa, f5 and f¢

5.5.2 Conditions of Experiments

All functions are optimized with a fairly large number of decision variables n = 50.
Experimental conditions for DE, potential model and the estimated comparison are
as follows: Parameters for DE are population size N = 80, scaling factor F = 0.6
and crossover rate CR = 0.95. DE/rand/1/exp is adopted in DE with the estimation
comparison method. The parameter p for U, and U, in Egs. (3.3) and (3.8} is 2. In
the estimated comparison method, the initial value of the margin parameter 6(0) =
Omax = 0.4 and the initial value of the congestion parameter A(0) = Ayax = 0.2, and
the parameters are adaptively controlled according to Table [3.1l The fixed values
of the margin parameter and the congestion parameter, (0.2,0.4) and (0.1,0.2), are
also examined for comparison.

In this study, 25 independent runs are performed. In each run, the optimization
is terminated when a near optimal solution of which function value is less than or
equal to 1 x 1073 is found.

5.5.3 Experimental Results

Table shows the results of optimization. The column labeled “Func.” shows
the function name optimized, and “Method” shows optimization method where
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Table 5.3 Comparison among adaptive DE with the estimated comparison method, DE with
the estimated comparison method, and DE

Func. Method eval success fail rate(%) reduce(%)
fi  adaptive  36,256.68 13,224.08 22,950.88 36.56  57.67
(0.2,0.4) 46,324.32 14,649.48 31,592.96 31.68 4592
(0.1,0.2) 41,344.04 14,157.88 27,104.32 3431 51.73
DE 85,656.16 15,357.96 70,216.20  17.95 0
f>» adaptive 586,018.92 65,552.36 520,384.56 11.19  25.85
(0.2,0.4) 578,136.68 58,460.00 519,594.72 10.11  26.84
(0.1,0.2) 617,305.88 87,315.84 529,908.20 14.15 21.89
DE 790,263.36 45,467.08 744,714.28 5.75 0
f3 adaptive 586,919.64 66,579.04 520,258.72 11.35  28.23
(0.2,0.4) 582,880.12 59,880.64 522,917.60 10.27  28.73
(0.1,0.2) 620,157.24 86,223.28 533,852.04 1391 24.17
DE 817,802.48 45,482.80 772,237.68 5.56 0
fa adaptive 304,002.68 22,342.08 281,578.76 7.35 4542
(0.2,0.4) 313,046.68 23,243.68 289,721.12 743 4379
(0.1,0.2) 295,009.04 22,895.68 272,031.48 7.76  47.03
DE 556,960.80 24,504.44 532,374.36 4.40 0
fs  adaptive  69,175.84 23,521.36 45,572.80 34.04 55.61
(0.2,0.4) 83,019.20 25,245.48 57,691.84 30.44  46.72
(0.1,0.2) 75,401.76 24,669.00 50,651.08 32.75 51.61
DE 155,823.64 26,636.68 129,104.96 17.10 0
fe  adaptive  56,982.00 19,982.08 36,918.08 35.12  56.05
0.2,0.4) 71,336.48 21,822.72 49,431.88 30.63  44.98
(0.1,0.2) 63,453.12 21,104.56 42,266.72 33.30 51.06
DE 129,658.04 22,888.72 106,687.32  17.66 0

“adaptive” means the adaptive DE with the estimated comparison method using
potential model, “DE” means original DE/rand/1/exp, and others mean DE with the
estimated comparison method using fixed parameter values (8, A) specified in the
table. The columns labeled “eval”, “success”, “fail” and “rate” show the total num-
ber of evaluation until a near optimal solution is found, the number of successful
evaluations where the child solution is better than the parent solution, the number
of failure evaluations and the success rate on average, respectively. The column “re-
duce” shows the ratio of how many times function evaluations is reduced compared
with DE.

The function f; is a unimodal and smooth function. It is easy to approximate the
function. The adaptive DE with the estimated comparison method achieved the best
result and reduced 57.67% of function evaluations compared with DE.

The functions f» and f3 are unimodal but steep functions. It is difficult to ap-
proximate the functions. The DE with the estimated comparison method using
(8,A) = (0.2,0.4) reduced 26.84% (f») and 28.73% (f3) of function evaluations
compared with DE and achieved the best result. The adaptive DE with estimated
comparison method reduced 25.85% (f2) and 28.23% (f3) of function evaluations.
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It achieved the second best result and the reduction rate is almost same as the best
result.

The function f4 is a multimodal and very bumpy function. It is difficult to
approximate the function. The DE with the estimated comparison method using
(8,A) = (0.1,0.2) reduced 47.03% of function evaluations compared with DE and
achieved the best result. The adaptive DE with the estimated comparison method
reduced 45.42% of function evaluations. It achieved the second best result and the
reduction rate is almost same as the best result.

The function f5 is a multimodal and bumpy function. It is not so difficult to
approximate the function. The adaptive DE with the estimated comparison method
reduced 55.61% of function evaluations compared with DE and achieved the best
result.

The function fg is a multimodal and less bumpy function. It is fairly easy to
approximate the function. The adaptive DE with the estimated comparison method
reduced 56.05% of function evaluations compared with DE and achieved the best
result.

It is shown that the adaptive and original DE with the estimated comparison
method are far better than original DE in all problems. Also, it is shown that the
adaptive DE with the estimated comparison method could reduce from 25% to 57%
function evaluations without hand-tuning the parameters 6 and A and achieved bet-
ter or almost same results compared with the estimated comparison method with
hand-tuning the parameters.

Figures B4 and [3.7] show single logarithmic plots of the best
function values (left figures) and adaptively controlled parameter values of & and
A (right figures) over the number of function evaluations for function fi, f2, f3,
fa, f5 and fg, respectively. Note that the ends of graphs are violated because some
runs are terminated earlier than some other runs when the near optimal solution is
found. In the figures of the best values, thick solid lines, thin solid lines and dotted
lines show optimization process by adaptive, (0.2,0.4) and (0.1,0.2) DE with the
estimated comparison method, and chain lines show that by DE. In the figures of the
parameter values, solid lines and dotted lines show the values of & and A controlled
by the adaptive DE with the estimated comparison method.

It is clear that the adaptive and original DE with the estimated comparison method
can find better solutions faster than DE. Also, it is clear that the adaptive control
can adjust the parameter values properly and dynamically. The function f; can be
approximated easily. As shown in the right of Fig. the parameter values of &
and A are small and are often decreased to the minimum values. The approximation
of the functions f> and f3 is very difficult. As shown in the right of Figs. and
[5.4] the parameter values are large and are often increased to the maximum values.
The approximation of f4 is difficult because the function is multimodal. However,
after the valley of the function surface including the minimum value has found, f1
becomes unimodal and the approximation becomes easy. As shown in the right of
Fig. the parameter values are large in the early stage of the search process and
become small in the last stage. The approximation of f5 and fg is not so difficult.
As shown in the right of Figs. and[5.7] the parameter values are almost in the
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lower range of [0.01,0.1] than the fixed case of (8,A) = (0.2,0.1) and more number
of function evaluations can be skipped than the fixed case. The parameter values in
fe are often lower than those in fs5, because fg is less bumpy than f5. Thus, it is
thought that the parameter values are properly controlled according to the difficulty
of approximation for the objective functions.
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In this section, the adaptive DE with the estimated comparison is compared with
particle swarm optimization (PSO), because PSO is known as a fast and efficient op-
timization algorithm. In this study, the standard Particle Swarm Optimization 2007
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(SPSO-07) (3], which is a recent standard PSO acknowledged by PSO community,
is used for the comparison.

Searching procedures by PSO can be described as follows: A group of parti-
cles optimizes the objective function. At any time ¢, each particle i knows its po-
sition x;(r) and the velocity v;(r). It remembers its best previous position pb; (). It
also knows the best position of the best particle among its neighbors, rb;(t). The
neighbors are defined by the topology of the particles.

Initial positions are generated randomly inside the search space. In SPSO-07, ini-
tial velocity is defined as the half-difference of two random positions. The particles
are updated as follows:

vij(t4+1) = wvij(t) +u(0,c1)(pbij(t) — xij(1)) +u(0,c2) (nbij(t) — xij(t)), (5.16)
xij(t+1) = xij(1) +vij(t + 1), (5.17)

where w is an inertia weight, ¢ is a cognitive parameter, c¢; is a social parameter,
and u(0, ¢) returns a random value in [0, ¢] according to the uniform distribution. In
SPSO-07, random topology is employed: Each particle chooses a few informants (K
informants) at random, selects the best one from them as the best particle. If it finds
no particle better than itself, it becomes the best particle.

In the experiment, 25 independent runs are performed. In each run, the optimiza-
tion is terminated when a near optimal solution of which function value is less than
or equal to 1 X 1073 is found. Also, the run is terminated when the number of func-
tion evaluations exceeds 1,000,000. The default parameter settings for SPSO-07 are
as follows: The swarm size that is the number of particlesis | 1042+/n| =24, K =3,
w=1/(2In2) ~ 0.721348 and ¢; = ¢; = 0.5+ In2 &~ 1.193147. The swarm size is
changed to 100, because the swarm size 100 attained most stable result among the
swarm sizes 24, 50, 80 and 100.

Table [5.4] shows the experimental results of the adaptive DE and SPSO-07. The
column labeled “success” shows the ratio of successful runs when the near optimal
value was found over 25 runs, “eval” shows the average number of function eval-
uations in the successful runs, and “best” shows the average of the best objective
values over 25 runs.

As for the functions f>, f3 and fi1, SPSO-07 can not find the near optimal solution
within 1,000,000 function evaluations. On the contrary, the adaptive DE can find the
near optimal solutions in all runs. As for the functions f; and f5, the both methods
can find the near optimal solutions stably. The adaptive DE can find the solutions
with fewer number of function evaluations than SPSO-07. As for the function fg,
SPSO-07 failed to find the near optimal solution in two runs. On the contrary, the
adaptive DE can find the near optimal solutions in all runs. Also, the adaptive DE can
find the solution with fewer number of function evaluations than SPSO-07. Thus, it
is thought that the adaptive DE can find the near optimal solutions more stably and
faster than SPSO-07.
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Table 5.4 Comparison between adaptive DE with the estimated comparison method and
SPSO-07

Func. Method success eval best
fi adaptive 100%  36,256.68 0.001
SPSO-07 100% 38,956.00 0.001
f» adaptive  100% 586,018.92 0.001

SPSO-07 0% — 2.528
f3 adaptive  100% 586,919.64 0.001
SPSO-07 0% — 2.534
fa adaptive  100% 304,002.68 0.001
SPSO-07 0% — 67.059

fs adaptive 100% 69,175.84 0.001
SPSO-07 100% 72,016.00 0.001
fe adaptive 100% 56,982.00 0.001
SPSO-07 92% 61,721.74 0.002

5.7 Conclusions

We proposed to utilize a rough approximation model, which is an approximation
model with low accuracy and without learning process, in order to reduce the num-
ber of function evaluations in wide range of problems including from low or medium
computation cost to high computation cost problems. We proposed the estimated
comparison method, in which the function evaluation of a solution is skipped when
the goodness of the solution can be judged from the approximation value of it. Also,
we proposed to control the margin parameter and the congestion parameter adap-
tively in the estimated comparison method. Through the optimization of various
types of test problems, it is shown that the estimated comparison method is very
effective to reduce function evaluations. Also, it is shown that without tuning the
parameters the adaptive DE with the estimated comparison method can improve
the optimization process and reduce about from 25% to 57% function evaluations
compared with DE.

In the future, we will apply the estimated comparison method into constrained op-
timization problems using the € constrained Differential Evolution (¢DE) 16, [191.
We have shown some results of constrained optmization using the estimated com-
parison method and €DE in [IE]. We plan to apply the estimated comparison method
into other evolutionary algorithms such as particle swarm optimization. Also, we
will apply the estimated comparison method to real world problems, and test the
performance of the method.
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Chapter 6

Kriging Is Well-Suited to Parallelize
Optimization

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro

Abstract. The optimization of expensive-to-evaluate functions generally relies on
metamodel-based exploration strategies. Many deterministic global optimization al-
gorithms used in the field of computer experiments are based on Kriging (Gaussian
process regression). Starting with a spatial predictor including a measure of uncer-
tainty, they proceed by iteratively choosing the point maximizing a criterion which
is a compromise between predicted performance and uncertainty. Distributing the
evaluation of such numerically expensive objective functions on many processors
is an appealing idea. Here we investigate a multi-points optimization criterion, the
multipoints expected improvement (g-EI), aimed at choosing several points at the
same time. An analytical expression of the g-[E/ is given when ¢ = 2, and a consis-
tent statistical estimate is given for the general case. We then propose two classes
of heuristic strategies meant to approximately optimize the ¢g-E/, and apply them
to the classical Branin-Hoo test-case function. It is finally demonstrated within the
covered example that the latter strategies perform as good as the best Latin Hy-
percubes and Uniform Designs ever found by simulation (2000 designs drawn at
random for every ¢ € [1, 10]).
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6.1 Introduction

6.1.1 Motivations: Efficient Optimization Algorithms for
Expensive Computer Experiments

Beyond both estalished frameworks of derivative-based descent and stochastic
search algorithms, the rise of expensive optimization problems creates the need for
new specific approaches and procedures. The word “expensive”” —which refers to
price and/or time issues— implies severely restricted budgets in terms of objec-
tive function evaluations. Such limitations contrast with the computational burden
typically associated with stochastic search techniques, like genetic algorithms. Fur-
thermore, the latter evaluations provide no differential information in a majority
of expensive optimization problems, whether the objective function originate from
physical or from simulated experiments. Hence there exists a strong motivation for
developing derivative-free algorithms, with a particular focus on their optimization
performances in a drastically limited number of evaluations. Investigating and im-
plementing adequate strategies constitute a contemporary challenge at the interface
between Applied Mathematics and Computational Intelligence, especially when it
comes to reducing optimization durations by efficiently taking advantage of parallel
computation facilities.

The primary aim of this chapter is to address parallelization issues for the opti-
mization of expensive-to-evaluate simulators, such as increasingly encountered in
engineering applications like car crash tests, nuclear safety, or reservoir forecasting.
More specifically, the work presented here takes place in the frame of metamodel-
based design of computer experiments, in the sense of [@]. Even though the results
and discussions might be extended to a more general scope, we restrict ourself here
for clarity to single-objective optimization problems for deterministic codes. The
simulator is seen as black-box function y with d-dimensional vector of inputs and
scalar output, the latter being often obtained as combination of several responses.
Metamodels, also called surrogate models, are simplified representations of y. They
can be used for predicting values of y outside the initial design, or visualizing the
influence of each variable on y 127, l43). They may also guide further sampling de-
cisions for various purposes, such as refining the exploration of the input space in
preferential zones or optimizing the function y [Iﬁ]. Classical surrogates include
radial basis functions [37], interpolation splines [@], neural nets [E] (deterministic
metamodels), or linear and non-linear regression [Ij], and Kriging [ﬂ] (probabilistic
metamodels). We concentrate here on the advantages of probabilistic metamodels
for parallel exploration and optimization, with a particular focus on the virtues of
Kriging.

6.1.2 Where Computational Intelligence and Kriging Meet

Computational intelligence (CI) methods share, in various proportions, four
features:
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An History Going from Experiments to Theory: CI methods very often origi-
nate from empirical computing experiments, in particular from experiments that
mimick natural processes (e.g., neural networks [EI], ant colony optimization [B],
simulated annealing [@]). Later on, as researchers use and analyze them, the-
ory develops and their mathematical content grows. A good example is provided
by the evolutionary algorithms 19] which have progressively mixed the genetic
metaphor and stochastic optimization theory.

An Indirect Problem Representation: In standard evolutionary optimization
methods, knowledge about the cost function takes the indirect form of a set of
well-performing points, known as “current population”. Such set of points is an
implicit, partial, representation of a function. In fuzzy methods, the probabil-
ity density functions of the uncertain variables are averaged out. Such indirect
representations enable to work with few mathematical assumptions and have
broadened the range of applicability of CI methods.

Parallelized Decision Process: Most CI approaches are inherently parallel. For
example, the evolutionary or particle swarm optimization [24] methods process
sets of points in parallel. Neural networks have an internal parallel structure.
Today, parallelism is crucial for taking advantage of the increasingly distributed
computing capacity. The parallel decision making possibilities are related to the
indirect problem representations (through set of points, distributions) and to the
use of randomness in the decision process.

Heuristics:  Implicit problem representations and the empirical genesis of the CI
methods rarely allow mathematical proofs of the methods properties. Most CI
methods are thus heuristics.

Kriging has recently gained popularity among several research communities related
to CI, ranging from Data Mining [16] and Bayesian Statistics [@, ] to Machine
Learning [139], where it is linked to Gaussian Process Regression [@] and Kernel
Methods [ﬁ]. Recent works [@, @, B_l'] illustrate the practical relevance of Kriging
to approximate computer codes in application areas such as aerospace engineer-
ing or materials science. Indeed, probabilistic metamodels like Kriging seem to be
particularly adapted for the optimization of black-box functions, as analyzed and
illustrated in the excellent article [@]. The current Chapter is devoted to the opti-
mization of black-box functions using a Kriging metamodel [@, , , |i_l|]. Let
us now stress some essential relationships between Kriging and CI by revisiting the
above list of features.

A History from Field Studies to Mathematical Statistics: Kriging comes from
the earth sciences [@, ], and has been progressively developed since the 1950’s
along with the discipline called geostatistics , ]. Originally aimed at esti-
mating natural ressources in mining applications, it has later been adapted to ad-
dress very general interpolation and approximation problems [42,143]. The word
“Kriging” comes from the name of a mining engineer, Prof. Daniel G. Krige,
who was a pioneer in the application of mathematical statistics to the study of
new gold mines using a limited number of boreholes [@].
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An Indirect Representation of the Problem: As will be detailed later in the
text, the Kriging metamodel has a powerful interpretation in terms of stochastic
process conditioned by observed data points. The optimized functions are thus
indirectly represented by stochastic processes.

Parallelized Decision Process: The central contribution of this chapter is to pro-
pose tools enabling parallelized versions of state-of-the art Kriging-based
optimization algorithms.

Heuristics:  Although the methods discussed here are mathematically founded on
the multipoints expected improvement, the maximization of this criterion is not
mathematically tractable beyond a few dimensions. In the last part of the chapter,
it is replaced by the “Kriging believer” and the “constant liar” heuristics.

Through their indirect problem representation, their parallelism and their
heuristical nature, the Kriging-based optimization methods presented hereafter are
Computational Intelligence methods.

6.1.3 Towards Kriging-Based Parallel Optimization: Summary of
Obtained Results and Outline of the Chapter

This chapter is a follow-up to [IEI]. It proposes metamodel-based optimization cri-
teria and related algorithms that are well-suited to parallelization since they yield
several points at each iteration. The simulations associated with these points can be
distributed on different processors, which helps performing the optimization when
the simulations are calculation intensive. The algorithms are derived from a multi-
points optimization criterion, the multi-points or g-points expected improvement
(g-ED). In particular, an analytic expression is derived for the 2-EI, and consistent
statistical estimates relying on Monte-Carlo methods are provided for the general
case. All calculations are performed in the framework of Gaussian processes (GP).
Two classes of heuristic strategies, the Kriging Believer (KB) and Constant Liar
(CL), are subsequently introduced to obtain approximately g-El-optimal designs.
The latter strategies are tested and compared on a classical test case, where the Con-
stant Liar appears to constitute a legitimate heuristic optimizer of the g-EI criterion.
Without too much loss of generality, the probabilistic metamodel considered is Ordi-
nary Kriging (OK, see egs. 6.1,6.2]633), like in the founder work [22] introducing
the now famous EGO algorithm. In order to make this document self-contained,
non-specialist readers may find an overview of existing criteria for Kriging-based
sequential optimization in the next pages, as well as a short but dense introduction
to GP and OK in the body of the chapter, with complements in appendix. The outline
of the chapter is as follows:

e Section[6.2](Background in Kriging for Sequential Optimization) recalls the OK
equations, with a focus on the joint conditional distributions associated with this
probabilistic metamodel. A progressive introduction to Kriging-based criteria for
sequential optimization is then proposed, culminating with the presentation of the
EGO algorithm and its obvious limitations in a context of distributed computing.
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e Section (The Multi-points Expected Improvement) consists in the presenta-
tion of the g-EI criterion —continuing the work initiated in [@]—, its explicit
calculation when g = 2, and the derivation of estimates of the latter criterion in
the general case, relying on Monte-Carlo simulations of gaussian vectors.

e Section (Approximated q-EI maximization) introduces two heuristic strate-
gies, KB and CL, to circumvent the computational complexity of a direct g-EI
maximization. These strategies are tested on a classical test-case, and CL is found
to be a very promizing competitor for approximated g-EI maximization

o Section[6.3](Towards Kriging-based Parallel Optimization: Conclusion and Per-
spectives) gives a summary of obtained results as well as some related practical
recommendations, and finally suggests what the authors think are perspectives of
research to address the most urgently in order to extend this work.

e The appendix is a short but dense introduction to GP for machine learn-
ing, with an emphasis on the foundations of both Simple Kriging and Ordinary
Kriging by GP conditioning.

Some Notations: y : x € D C R? — y(x) € R refers to the objective function, where
d € N\{0} is the number of input variables and D is the set in which the inputs vary,
most of the time assumed to be a compact and connexﬂ subset of RY. At first, yis
known at a Design of Experiments X = {x',...,x"} , where n € N is the number of
initial runs or experiments, and each x’ (1 <i < n) is hence a d-dimensional vector
(xi,...,x,). We denote by Y = {y(x!),...,y(x")} the set of observations made by
evaluating y at the points of X. The data (X,Y) provides information on which is
initially based the metamodeling of y, with an accuracy that depends on n, the geom-
etry of X, and the regularity of y. The OK mean predictor and prediction variance
are denoted by the functions mok(.) and s3(.). The random process implicitely
underlying OK is denoted by Y (.), in accordance with the notations of eq. (6.35)
presented in appendix. The symbol ”|” is used for conditioning, together with the
classical symbols for probability and expectation, respectively P and E.

6.2 Background in Kriging for Sequential Optimization

6.2.1 The Ordinary Kriging Metamodel and Its Gaussian Process
Interpretation

OK is the most popular Kriging metamodel, simultaneously due to its great versa-
tility and applicability. It provides a mean predictor of spatial phenomena, with a
quantification of the expected prediction accuracy at each site. A full derivation of
the OK mean predictor and variance in a GP setting is proposed in the appendix.
The corresponding OK mean and variance functions are given by the following
formulae:

I Connexity is sometimes untenable in practical applications, see e.g. ] for a treatment of
disconnected feasible regions.



136 D. Ginsbourger, R.L. Riche, and L. Carraro

mok (x) = |e(x)+ (l—c(x)TZ_lln) 1,!} TZ*IY, (6.1)

17311,
(1-17%"e(x))?
17z,

sk (x) =% —e(x) 7= e(x) + (6.2)

where ¢(x) := (c(Y(x),Y (x")), ...,c(Y(x),Y(x")))T, and X and o7 are defined fol-
lowing the assumptiondq and notations given in appendix Classical proper-
ties of OK include that Vi € [1,n] mog(x') = y(x) and s (x') = 0, therefore
[Y (x)|Y (X) = Y] is interpolating. Note that [Y (x*)|Y (X) = Y] and [Y (x*)|Y (X) = Y]
are dependent random variables, where x? and x” are arbitrary points of D, as we
will develop later.

The OK metamodel of the Branin-Hoo function (Cf. eq. 6.25) is plotted on fig.
The OK interpolation (upper middle) is based only on 9 observations. Even if
the shape is reasonably respected (lower middle), the contour of the mean shows an
artificial optimal zone (upper middle, around the point (6,2)). In other respects, the
variance is not depending on the observationd] (eq. 6.2). Note its particular shape,
due to the anisotropy of the covariance kernel estimated by likelihood maximization.
In modern interpretations 1391, deriving OK equations is often based on the assump-
tion that y is a realization of a random process Y with unknown constant mean and
known covariance (see ] or [@] for a review of classical covariance kernels). Here
we follow the derivation of which has the advantage of delivering a gaussian
posterior distribution:

Y ()Y (X) = Y] ~ N(mok (x), 50k (X)) (6.3)

Note that both a structure selection and a parametric estimation are made in prac-
tice: one often chooses a generalized exponential kernel with plugged-in maximum
likelihood covariance hyperparameters, i.e. without taking the estimation variance
into account [@]. This issue is sometimes addressed using a full bayesian treat-
ment, as can be found in [@], or more recently in [@, @, ]. Rephrasing eq. 6.3,
under the latter GP assumptions, the random variable Y (x) knowing the values
of {y(x!),...,y(x")} follows a gaussian distribution which mean and variance are
respectively E[Y (x)|Y (X) = Y] = mok(x) and Var[Y (x)|Y(X) = Y] = 524 (x). In
fact, as shown in appendix (Cf. eq. 6.38), one can even get much more than these
marginal conditional distributions; Y (.)|Y(X) = Y constitutes a random process

2 An extension of the Kriging equations to the framework of covariance non-stationary pro-
cesses ] is straightforward but beyond the scope of the present work.

3 Phenomenon known as homoskedasticity of the Kriging variance with respect to the
observations [ﬂ].
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Branin function and DOE Kriging Variance

Fig. 6.1 Ordinary Kriging of the Branin-Hoo function (function, Kriging mean value and
variance, from left to right). The design of experiments is a 3 x 3 factorial design. The covari-
ance is an anisotropic squared exponential with parameters estimated by gaussian likelihood
maximization [Ij]

which is itself gaussian, and as such completely characterized by its conditional
mean, mog, and conditional covariance kernel cog explicited herunder:

Y OY(X) = Y] ~ GP(mok () cok( )) (64)

(1—172"Te(x))(1 - 1127 Te(x))
17z-11,
(6.5)

where cox(x X') =c(x—x) —¢(x)TZ7le(x') + 62

This new kernel cog is not stationary, even if ¢ is. In other respects, the knowledge
of mpg and cog is the first step to performing conditional simulations of ¥ knowing
the observations Y (X) = Y, which is easily feasible at any new finite design of
experiments, whatever the dimension of inputs. This will enable the computation
of any multi-points sampling criterion, such as proposed in the forthcoming section
about parallelization.

6.2.2 Kriging-Based Optimization Criteria

GP metamodels [@, ] such as OK has been used for optimization (minimiza-
tion, by default). There is a detailed review of optimization methods relying on a
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metamodel in [44, 435] or [20]. The latter analyzes why directly optimizing a deter-
ministic metamodel (like a spline, a polynomial, or the Kriging mean) is dangerous,
and does not even necessarily lead to a local optimum. Kriging-based sequential
optimization strategies (as developed in [@], and commented in [@]) address the
issue of converging to non (locally) optimal points, by taking the Kriging variance
term into account (hence encouraging the algorithms to explore outside the already
visited zones). Such algorithms produce one point at each iteration that maximizes a
figure of merit based upon [Y (x)|Y (X) = Y]. In essence, the criteria balance Kriging
mean prediction and uncertainty.

6.2.2.1 Visiting the Point with Most Promizing Mean: Minizing mox

When approximating y by mgg, it might seem natural to hope that minimizing
mog instead of y brings satisfying results. However, a function and its approxi-
mation (mpg or other) can show substantial differences in terms of optimal values
and optimizers. More specifically, depending on the kind of covariance kernel used
in OK, the minimizer of mgg is susceptible to lie at (or near to) the design point
with minimal y value. Taking the geometry of the design of experiments and space-
filling considerations into account within exploration criteria then makes sense. The
Kriging variance can be of providential help for this purpose.

6.2.2.2 Visiting the Point with Highest Uncertainty: Maximizing sox

A fundamental mistake of minimizing mog is that no account is done of the un-
certainty associated with it. At the extreme inverse, it is possible to define the next
optimization iterate as the least known point in D,

x' = argmaxgep sox (X) (6.6)

This procedure defines a series of x’s which will fill the space D and hence ulti-
mately locate a global optimum. Yet, since no use is made of previously obtained
Y information —look at formula 6.2 for s2,,—, there is no bias in favor of high
performance regions. Maximizing the uncertainty is inefficient in practice.

6.2.2.3 Compromizing between mox and sox

The most general formulation for compromizing between the exploitation of previ-
ous simulations brought by mog and the exploration based on spk is the multicriteria
problem
mingep mog (X
xeD MoK (X) (6.7)
maxyep Sok (X)

Let & denote the Pareto set of solutionsﬂ. Finding one (or many) elements in &
remains a difficult problem since &7 typically contains an infinite number of points.
A comparable approach called direct, although not based on OK, is described in

4 Definition of the Pareto front of (spx,—mog): Vx € 2,3 z € D : (mok(z) <
mok (x) and sok (z) > sox (x)) or (mok (z) < mog (x) and sok (z) > sok (x)).
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[21]: the metamodel is piecewise linear and the uncertainty measure is a distance to
already known points. The space D is discretized and the Pareto optimal set defines
areas where discretization is refined. The method becomes computationally expen-
sive as the number of iterations and dimensions increase. Note that [@] proposes
several parallelized versions of direct.

6.2.2.4 Maximizing the Probability of Improvement

Among the numerous criteria presented in 201, the probability of getting an im-
provement of the function with respect to the past evaluations seems to be one
of the most fundamental. This function is defined for every x € D as the prob-
ability for the random variable ¥ (x) to be below the currently known minimum
min(Y) = min{y(x'),...,y(x")} conditional on the observations at the design of
experiments:

PI(x) := P (Y (x) < min(Y (X))|¥(X) = Y) 6.8)

min(Y) — mog (x)
=K [ly(x)gmin(y(x)ﬂY(X) =Y|=0 < sox (X)OK ) , (6.9)

where @ is the gaussian cumulative distribution function, and the last equality fol-
lows eq. 6.3. The threshold min(Y) is sometimes replaced by some arbitrary target
T € R, as evokated in [38]. PI is known to provide a very local search whenever
the value of T is equal or close to min(Y). Taking several T’s is a remedy proposed
by [@] to force global exploration. Of course, this new degree of freedom is also
one more parameter to fit. In other respects, PI has also been succesfully used as
pre-selection criterion in GP-assisted evolution strategies [49], where it was pointed
out that PI is performant but has a tendency to sample in unexplored areas. We argue
that the chosen covariance structure plays a capital role in such matters, depending
whether the Kriging mean is overshooting the observations or not. The next pre-
sented criterion, the expected improvement, is less sensitive to such issues since it
explicitly integrates both Kriging mean and variance.

6.2.2.5 Maximizing the Expected Improvement
An alternative solution is to maximize the expected improvement (EI),
EI(x) :=E[(min(Y (X) - Y (x))" |V (X) = Y] = E[max{0,min(Y (X)) — ¥ (x) }|Y (X) = Y],

(6.10)
that additionally takes into account the magnitude of the improvements. EI measures
how much improvement is expected by sampling at x. In fine, the improvement
will be 0 if y(x) is above min(Y) and min(Y) — y(x) else. Knowing the conditional
distribution of Y (x), it is possible to calculate EI in closed form:
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E1(6) = (nin(Y) o)) (PO ) 4 gy (1) x() ),

sok (x) Zofl(X)
(6.11)

where ¢ stands for the probability density function of the standard normal law
A7(0,1).

Proof of 6.11: EI(x) = E[(min(Y) =Y (X)) Lyx)<min(y)|¥ (X) = Y]

min(Y)—mp (x)

min(¥) K ) )
= ./J“ (min(Y)—1)f , (V"KU(X).A;‘(U(X))(’)dt = ./,w KO ( (min(Y) —mgo(x) — sko(X) X u) fy(0.1)(u)du
min(Y)—mg o (x) min(Y) =g (x)
= (min(Y) 7mkg(x))/7 ko) f,V«,A,)(u)du*SKo(X)/i Kol X fy(0.1)(u)du
. min(Y) — mgo(x) ) (mm(Y) - mko("))
= (min(Y) —mgo(x)) @ +sko(x
(nin(¥) - o) (") wote (")

El represents a trade-off between promising and uncertain zones. This criterion has
important properties for sequential exploration: it is null at the already visited sites,
and positive everywhere else with a magnitude that is increasing with the Kriging
variance and with the decreasing Kriging mean (EI maximizers are indeed part of the
Pareto front of (sog, —mmﬁ. Such features are usually demanded from global opti-
mization procedures (see 21]] for instance). EI and the probability of improvement
are compared in fig. (2).

6.2.2.6 The Stepwise Uncertainty Reduction (SUR) Strategy

SUR has been introduced in ] and extended to global optimization in [@, ].
By modeling y using the process Y’s conditional law Y (x)|Y, it is possible to define
x*|Y, the conditional law of Y’s global minimizer x*, and its density py:|y(x). The
uncertainty about the location of x* is measured as the entropy of py+|y(x), H(x*[Y).
H(x*|Y) diminishes as the distribution of x*|Y gets more peaked. Conceptually, the
SUR strategy for global optimization chooses as next iterate the point that specifies
the most the location of the optimum,

x' = argminyepH (x*|Y,Y (X)) (6.12)

In practice, py:|y(x) is estimated by Monte-Carlo sampling of ¥ (x)|Y at a finite
number of locations in D, which may become a problem in high dimensional D’s
as the number of locations must geometrically increase with d to properly fill the
space. The SUR criterion is different in nature from the criteria presented so far in
that it does not maximize an immediate (i.e. at the next iteration) payoff but rather
lays the foundation of a delayed payoff by gaining a more global knowledge on Y
(reduce the entropy of its optima). The multi-points EI criterion we are focusing on
in the present chapter also uses a delayed payoff measure.
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Fig. 6.2 PI and EI surfaces of the Branin-Hoo function (same design of experiments, Kriging
model, and covariance parameters as in fig. [6.2.1). Maximizing PI leads to sample near the
good points (associated with low observations) whereas maximizing EI leads here to sample
between the good points. By construction, both criteria are null at the design of experiments,
but the probability of improvement is very close to é in a neighborhood of the point(s) where
the function takes its current minimum

6.2.2.7 The Efficient Global Optimization (EGO) Algorithm

EGO [22] relies on the EI criterion. Starting with an initial Design X (typically a
Latin Hypercube), EGO sequentially visits the current global maximizer of EI (say
the first visited one if there is more than one global maximizer) and updates the OK
metamodel at each iteration, including hyperparameters re-estimation:

1. Evaluate y at X, set Y=y(X) and estimate covariance parameters
of Y by MLE (Maximum Likelihood Estimation)
2. While stopping criterion not met

a. Compute X' =argmaxxepEI(x), set X=XU{x'} and Y=YU{y(x')}
b. Re-estimate covariance parameters by MLE
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After having been developed in (22, 47], EGO has inspired contemporary works
in optimization of expensive-to-evaluate functions. For instance, [[19] exposes some
EGO-based methods for the optimization of noisy black-box functions like stochas-
tic simulators. [IE] focuses on multiple numerical simulators with different levels
of fidelity, and introduces the so-called augmented EI criterion, integrating possi-
ble heterogeneity in the simulation times. Moreover, 6] proposes an adaptation to
multi-objective optimization, (17] proposes an original multi-objective adaptation of
EGO for physical experiments, and [é] focuses on robust criteria for multiobjective
constrained optimization with applications to laminating processes.

In all, one major drawback of the EGO-like algorithms discussed so far is that
they do not allow parallel evaluations of y, which is desirable for costly simulators
(e.g. a crash-test simulation run typically lasts 24 hours). This was already pointed
out in [@], where the multi-points EI was defined but not further developed. Here
we continue this work by expliciting the latter multi-points EI (¢g-EI), and by propos-
ing two classes of heuristics strategies meant to approximatly optimize the ¢g-EI, and
hence (almost) simultaneously deliver an arbitrary number of points without inter-
mediate evaluations of y. In particular, we analytically derive the 2-EI, and explain
in detail how to take advantage of statistical interpretations of Kriging to consis-
tently compute ¢g-EI by simulation when ¢ > 2, which happens to provide quite a
general template for desiging Kriging-based parallel evaluation strategies dedicated
to optimization or other purposes.

6.3 The Multi-points Expected Improvement (g-EI) Criterion

The main objective of the present work is to analyze and then approximately opti-
mize a global optimization criterion, the g-EI, that yields g points. Since ¢g-EI is an
extension of EI, all derivations are performed within the framework of OK. Such
criterion is the first step towards a parallelized version of the EGO algorithm 221.
It also departs, like the SUR criterion, from other criteria that look for an immediate
payoff. We now propose a progressive construction of the g-EI, by coming back to
the random variable improvement.

Both criteria of PI and EI that we have previously recalled share indeed the fea-
ture of being conditional expectations of quantities involving the improvement. The
improvement brought by sampling at some x € D is indeed defined by I(x) :=
(min(Y (X)) — Y (x))™", and is positive whenever the value sampled at x, Y (x), is
below the current minimum min(Y (X)). Now, if we sample Y at ¢ new locations
x"t1 . x""4 € D simultaneously, it seems quite natural to define the joint —or
multipoints— improvement as follows:

vyt X" ep [(x" X"T) : = max (I(Xn+1) I(Xn+q))
= max ((min(Y (X)) =Y (X"1)* (min(¥ (X)) - ¥ (x"*9))")
= (min(¥ (X)) = min(y (") y(x"*)))"
(6.13)
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where we used the fact that Va,b,c € R, max((a—b)",(a—c)")=(a—b)" if b <
c and (a — ¢)™ else. The way of unifying the ¢ criteria of (1-point) improvements
used in eq. 6.13 deserves to be called elitist: one juges the quality of the set of g-
points as a function only of the one that performs the best. This is to be compared
for instance to the weighted sums of criteria encountered in many political science
applications.

The g-points EI criterion (as already defined but not developed in [47] under the
name “g-step EI”) is then straightforwardly defined as conditional expectation of
the improvement brought by the q considered points:

EI(x"! x"9): = E[max{(min(Y (X)) — Y (x" "))+ (min(Y) Y(x"H) 1Y (X) =]Y]
=E [(min(¥ (X)) — min (¥ (x" ") )Y (X) =Y]
=E [(min(Y) —min (¥ (x""!)  ¥( "+q)) lY(X)=Y

(6.14)

Hence, the g-EI may be seen as the regular EI applied to the random variable
min(Y (x"+1),....¥ (x"*9)). We thus have to deal with a minimum of dependent ran-
dom variables. Fortunately, eq. 6.4 provides us with the exact joint distribution of
the q unknown responses conditional on the observations:

(Y ("), Y (X" )|V (X) = Y] ~ A (mox (X™), ..., mok (x"19)),S,) (6.15)

where the elements of the conditional covariance matrix S, are (8q)i,j = cox (X",
x"*7) (See eq. 6.5). We now propose two different ways to evaluate the criterion
eq. 6.14, depending whether ¢ =2 or g > 3.

6.3.1 Analytical Calculation of 2-E1

We first focus on the calculation of the 2-EI associated with two arbitrary points
x"t1 x"*2 ¢ D, defined as

EI(x"!,x"*?) = E[(min(¥ (X)) — min(Y (x"*1),¥ (x"*2))) Y (X) = Y],

Let us remark that in reformulating the positive part function, the expression above
can also be written:
EIX"x"2) = E[(min(Y (X)) —min(Y (X"1), Y (8" ) Lyin(r (1) 3 (02)) <miny) Y (X) = Y] -

We will now show that the 2-EI can be developed as a sum of two 1-EI’s, plus a
correction term involving 1- and 2-dimensional gaussian cumulative distributions.
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Fig. 6.3 1-EI (lower left) and 2-EI (right) functions associated with a monodimensional
quadratic function (y(x) = 4 x (x —0.45)? known at X = {—1,-0.5,0,0.5,1}. The OK meta-
model has here a cubic covariance with parameters 6> = 10, scale = 0.9)

Before all, some classical results of conditional calculus allow us to precise the
dependence between Y (x**!) and ¥ (x"*2) conditional on ¥ (X) = Y, and to fix some
additional notations. Vi, j € {1,2} (i # j), we note:
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m; := mgo(x') = E[Y (x"7)|Y (X) = Y],

01 1= sko(x"*1) = \/VarlY (x| ¥ (X) = )

€12 :=pP120102 = COV[Y(X"+1),Y(XVI+2)‘Y(X) = Y], (6.16)
my; =EY (XY (X) = Y, Y (X)) = mi+c120;, 2 (Y (X"H) —m;),
Gi%j = Giz - C%,2Gj_2 = 61'2(1 _p122)

At this stage we are in position to compute EI(x"*!,x"*2) in four steps. From now
on, we replace the complete notation Y (x"*/) by ¥; and forget the conditioning on
Y (X) =Y for the sake of clarity.

Step 1

EI(X,H—I 7Xn+2) = E[(min(Y) - min(Yl ’ Y2))1min(Yl ‘Yg)gmin(Y)}
= E[(min(Y) —min(Yy, Y2))1min(Yl o) <min(Y) (ly] <v, T 1<y, )]
=E[(min(Y) = Y1)y, <pin(v) v, <v,| + E[(min(Y) = Y2) 1y, <pnin(y) v <, |
Since both terms of the last sum are similar (up to a permutation between x"*! and
x"+2), we will restrict our attention to the first one. Using 1y, <y, = 1 —1y,<y,ll, we
get:
E[(min(Y) = Y1)y, <pin(y)Ivi <v2] = E[(min(Y) — Y1)y, <ppin(y) (1 — Ir,<n )]
= EI(X"+1) E[(mm( )—1 )1Y1 gmin(Y)lyzﬁYl ]
:EI(Xn+1)+B( n+1 n+2)
where B(x" ™!, x"2) = E[(Y; — min(Y))1y, <pin(y) 1r<y, - Informally, B(x" ™! x"*2)
is the opposite of the improvement brought by ¥; when ¥, <Y} and hence that

doesn’t contribute to the 2-points improvement. Our aim in the next steps will be to
give an explicit expression for B(x"+! x"+2).

Step 2

B(Xn+1 ) Xn+2) = E[Yl 1Y1 <min(Y) 1y, <y, } - min(Y)E[lYl <min(Y) Iy,<y, }

At this point, it is worth noticing that Y1 mi + 01N, (always conditional on Y(X)
Y) with Ny ~ 47(0,1). Substituing this decomposition in the last expression of
B(x"*! x"*2) delivers:

B(x""!,x""2) = 61 E[Ni 1y, < in(y) vy <, ] + (m1 = min(Y))E[ly, < ppin(y) vy <y,

> This expression should be noted 1 — 1y,.y,, but since we work with continous random
variables, it sufficies that their correlation is # 1 for the expression to be exact ({¥; = Y»}
is then neglectable). We implicitely do this assumption in the following.
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The two terms of this sum require some attention. We compute them in detail in the
two next steps.

Step 3. Using a key property of conditional calculudd, we obtain
E[N11y, <pmin(y) Io<vi] = E[N11y, <pin(v) E[Iy <y, 11]],

and the fact that Y>|Y; ~ A" (my); (Yl),sg|1 (Y1)) (all conditional on the observations)
leads to the following:

Y1 —my), Yi—my— 3 (Y —my)
Elly, <y, ] = @ = '
21 ()'2\/1—p122

Back to the main term and using again the normal decomposition of Y;, we get:

my —my+ (01 — P1202)N,
E [Ni1y, <pin(v) ly<v ] = |:N11N1<”"'”(Y)”’1¢‘< L b0 pieoy) 1)} =E [Ny, <, ®(ouN; +B1)]

o 02\/1—P%2

(YY) — B B
where y; = min(Y) ml, Bi= i and o = 1~ P1202
o 62\/1_1)122 62\/1_1)122

(6.17)

E[N11n, <y @ (o1 Ny + B1)] can be computed applying an integration by parts:

—u? ~(ayu+py)?
2

N "N
[ @@ (enu+du=~o(n)@(en+B)+ 50 [ e

—oo

s L B

: 2 2 _ 2 1P 1 :

And since u” + (oqu+f1)° = (\/(l +o5)u+ \/1+O£12> + a2 the last integral
reduces to:

1+ocl

(1+0<%) - VE

We conclude in using the definition of the cumulative distribution function:

T (\/;> ® ( (1+od)m + O“Bl)

(1+a3) 1+of

E[Ni1y, <min(y) vy <r ] = —=0(y1)@(0uy1 +Bi) +

6 For all function ¢ in Z?(R,R), E[X¢(Y)] = E[E[X|Y]o(Y))].
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Step 4. We then compute the term E[Ly, <,in(y) Ly, <v;] = E[Lx <pmin(y)1z<0], Where
(X,Z) := (Y1,Y» — 1)) follows a 2-dimensional gaussian distribution with expecta-
. . . o2 clap—07

tion M = (my,mp —my), and covariance matrix I := (61‘,2 1012 622_'_'*;12 _561‘2) )

The final results rely on the fact that: E[1y<,in(y)1z<0] = CDF (M,I")(min(Y),0),
where CDF stands for the bi-gaussian cumulative distribution function:

EIx',x*) = EI(x") + EI(x*) + B(x',x*) + B(x*,x"),  (6.18)

B(x',x?) = (mog (x') — min(Y))d(x",x?) + ook (x")e(x'| x?)
where 8(X17X2) = @ (J%) & ((1 +0‘%)% (Y+ figl%)) —0(Y)D(ouy+B1)
8(x!,x2) = CDF(T) (mi”(Y) i )

mp —nmyp

Figure represents the 1-EI and the 2-EI contour plots associated with a de-
terministic polynomial function known at 5 points. 1-EI advises here to sample be-
tween the ”good points” of X. The 2-EI contour illustrates some general properties:
2-El is symmetric and its diagonal equals 1-EI, what can be easily seen by coming
back to the definitions. Roughly said, 2-EI is high whenever the 2 points have high
1-EI and are reasonably distant from another (precisely, in the sense of the metric
used in OK). Additionally, maximizing 2-EI selects here the two best local optima
of 1-EI (x; = 0.3 and x, = 0.7). This is not a general fact. The next example illus-
trates for instance how 2-EI maximization can yield two points located around (but
different from) 1-EI’s global optimum whenever 1-EI has one single peak of great
magnitude (see fig. [6.4).

6.3.2 gq-EI Computation by Monte Carlo Simulations

Extrapolating the calculation of 2-EI to the general case gives complex expressions
depending on g-dimensional gaussian cumulative distribution functions. Hence, it
seems that the computation of q-EI when q is large would have to rely on numerical
multivariate integral approximation techniques anyway. Therefore, directly evaluat-
ing g-EI by Monte-Carlo Simulation makes sense. Thanks to eq. the random
vector (Y (x"1),...,Y(x"9)) can be simulated conditional on ¥ (X) = Y using a
decomposition (e.g. Mahalanobis) of the covariance matrix S;:

1
Vk € [, ngim], Mi = (mog (X+1),.coomog (X)) + [SENGT ,Ni ~ A (0,,1,) iind.
(6.19)
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Fig. 6.4 1-point EI (lower left) and 2-points EI (right) functions associated with a monodi-
mensional linear function (y(x) = 3 X x) known at X = {—1,-0.5,0,0.5,1}. The OK meta-
model has here a cubic covariance with parameters 62 = 10, scale = 1.4)

Computing the conditional expectation of any function (not necessarily linearly) of
the conditioned random vector (Y (x"*1), ..., ¥ (x"4)) knowing Y (X) = Y can then
be done in averaging the images of the simulated vectors by the considered function:
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: Function ¢-EI(X, Y, X"¢")

: L= chol(Var[Y (X"*")|Y (X) = Y]) {Decomposition of S, }

: for i — 1,ng;, do

N ~ N\((0,1,) {Drawing a standard gaussian vector N at random}

M; = mog (X"") + LN {Simulating Y(X"*") conditional on ¥ (X) =Y}
qLsim (i)=[min(Y) —min(M;)]" {Simulating the improvement at X"*"}

: end for

. qElLy = - 3™ gl (i) {Estimation of g-ET}

Nsim

I

A straightforward application of the Law of Large Numbers (LLN) yields indeed

qusim = min [mln(Y) - min(Mi)rr

i=1

——— EI(x!,...,x%) as., (6.20)
Nsim Ngim—> oo

and the Central Limit Theorem (CLT) can finally be used to control the precision of
the Monte Carlo approximation as a function of ng;,, (see [@] for details concerning
the variance estimation):

Ely,—EI(x',...,x9 :
/Nsim =5 (%, x) ——— #(0,1) in law. (6.21)
VVarll(x!,...,x4)] Hgim—-+oo

6.4 Approximated g-EI Maximization

The multi-points criterion that we have presented in the last section can poten-
tially be used to deliver an additional design of experiments in one step through the
resolution of the optimization problem

(x" X2 X" = argmaxyscpa [EI(X')] (6.22)

However, the computation of g-EI becomes intensive as ¢ increases. Moreover, the
optimization problem is of dimension d x ¢, and with a noisy and derivative-
free objective function in the case where the criterion is estimated by Monte-Carlo.
Here we try to find pseudo-sequential greedy strategies that approach the result of
problem while avoiding its numerical cost, hence circumventing the curse of
dimensionality.
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6.4.1 A First Greedy Strategy to Build a q-Points Design with the
1-Point EI

Instead of searching for the globally optimal vector (x "1 x™2 _ x*4) an in-
tuitive way of replacing it by a sequential approach is the following: first look for
the next best single point x**! = argmaxycpEI(x), then feed the model and look
for X2 = argmaxyepEI(x), and so on. Of course, the value y(x"*!) is not known
at the second step (else we would be in a real sequential algorithm, like EGO).
Nevertheless, we dispose of two pieces of information: the site x"*! is assumed
to have already been visited at the previous iteration, and [Y (x"*1)|Y = Y (X)]
has a known distribution. More precisely, the latter is [Y(x"+1)|Y(X) = Y] ~
N (mok (X", 55, (x"1)). Hence, the second site x"2 can be computed as:

X% = argmaxycpE [E [(Y (x) —min(Y (X)) "[Y(X) = Y, Y (x""H)]], (6.23)

and the same procedure can be applied iteratively to deliver q points, computing
viell,g—1]:

X" = argmaxxep/ []E [(Y(X) 7min(Y(X)))+\Y(X) =Y Y("”“) Y(Xn+j7])]} fY(xlzr)\y(x):Y(“)d“

uek/

(6.24)
where fy(x1:j)y(x)—y i the multivariate gaussian density of the OK conditional
distribution at (x"*1, ..., x"*/). Although eq. 6.24 is a sequentialized version of the
g-points expected improvement maximization, it doesn’t completely fulfill our ob-
jectives. There is still a multivariate gaussian density to integrate, which seems to be
a typical curse in such problems dealing with dependent random vectors. We now
present two classes of heuristic strategies meant to circumvent the computational
complexity encountered in eq. 6.24.

6.4.2 The Kriging Believer (KB) and Constant Liar (CL)
Strategies

Lying to escape intractable calculations: Starting from the principle of eq. 6.24,
we propose to weaken the conditional knowledge taken into account at each itera-
tion. This very elementary idea inspired two heuristic strategies that we expose and
test in the next two subsections: the Kriging Believer and the Constant Liar.

6.4.2.1 Believing the OK Predictor: The KB Heuristic Strategy

The Kriging Believer strategy replaces the conditional knowledge about the re-
sponses at the sites chosen within the last iterations by deterministic values equal to
the expectation of the Kriging predictor. Keeping the same notations as previously,
the strategy can be summed up as follows:
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Algorithm 1. The Kriging Believer algorithm: a first approximate solution of the
multipoints problem (x 1, x"2 . x"4) = argmaxx/cpa[EI(X')]

1: Function KB(X, Y, ¢)

2: fori«+ 1,qdo

3: X" = argmaxgepEI(X)

4 mog(x") =E[y (x"T)|Y(X) = Y]
50 X=XU{x""} .

6:  Y=YU{mox(x""")}

7: end for

This sequential strategy delivers a g-points design and is computationally affordable
since it relies on the analytically known EI, optimized in d dimensions. However,
there is a risk of failure, since believing an OK predictor that overshoots the ob-
served data may lead to a sequence that gets trapped in a non-optimal region for
many iterations (see 4.3). We now propose a second strategy that reduces this risk.

6.4.2.2 Updating the OK Metamodel with Fake Observations: The CL
Heuristic Strategy

Let us now consider a sequential strategy in which the metamodel is updated (still
without hyperparameter re-estimation) at each iteration with a value L exogenously
fixed by the user, here called a “’lie”. The strategy referred to as the Constant Liar
consists in lying with the same value L at every iteration: maximize EI (i.e. find
x"*1), actualize the model as if y(x" ') = L, and so on always with the same L € R:

Algorithm 2. The Constant Liar algorithm: another approximate solution of the
multipoints problem (x™ !, X2, xX"4) = argmaxx/cpa[EI(X')]

1: Function CL(X, Y, L, g¢)
2: fori« 1,qdo

3: X" = argmaxgepEI(X)
4: X =XU{x"}

55 Y=YU{L}

6: end for

The effect of L on the performance of the resulting optimizer is investigated in the
next section. L should logically be determined on the basis of the values taken by y
at X. Three values, min{Y}, mean{Y}, and max{Y} are considered here. The larger
L is, the more explorative the algorithm will be, and vice versa.

6.4.3 Empirical Comparisons with the Branin-Hoo Function

The four optimization strategies presented in the last section are now compared
on the Branin-Hoo function which is a classical test-case in global optimization

[22.38, l47):



152 D. Ginsbourger, R.L. Riche, and L. Carraro

_ 51 .2, 5 2 1
{yBH(xlaxZ) = (x— a1t % — 6)"+10(1 — g )eos(x1) + 10 (6.25)

X] € [—57 10], Xy € [0, 15}

ygu has three global minimizers (—3.14,12.27), (3.14,2.27), (9.42,2.47), and the
global minimum is approximately equal to 0.4. The variables are normalized by
the transformation x; = *| 5> and x, = 12. The initial design of experiments is a
3 x 3 complete factorial design Xg (see[6.3]), thus Y = ygy (Xo). Ordinary Kriging

is applied with a stationary, anisotropic, gaussian covariance function
2 2
Vh = (h1,hy) € R%, ¢(h) = o2 O1hi—0M (6.26)

where the parameters (6;,6,) are fixed to their Maximum Likelihood Estimate
(5.27,0.26), and o2 is estimated within Kriging, as an implicit function of (6}, 8;)
(like in [@]). We built a 10-points optimization design with each strategy, and ad-
ditionally estimated by Monte Carlo simulations (ng;, = 10%) the PI and EI values
brought by the g first points of each strategy (here ¢ € {2,6,10}). The results are
gathered in Tab.

The four strategies (KB and the three variants of CL) gave clearly different de-
signs and optimization performances. In the first case, Constant Liar (CL) sequences
behaved as if the already visited points generated a repulsion, with a magnitude in-
creasing with L. The tested values L = max(Y) and L = mean(Y) forced the explo-
ration designs to fill the space by avoiding Xg. Both strategies provided space-filling,
exploratory designs with high probabilities of improvement (10-PI near 100%)
and promising q-EI values (see Table 1). In fine, they brought respective actual
improvements of 7.86 and 6.25.

Of all the tested strategies, CL[min(Y)] gave here the best results. In 6 itera-
tions, it visited the three locally optimal zones of ypy. In 10 iterations, it gave the
best actual improvement among the considered strategies, which is furthermore in
agreement with the 10-points EI values simulated by Monte-Carlo. It seems in fact
that the soft repulsion when L = min(Y) is the right tuning for the optimization of
the Branin-Hoo function, with the initial design Xg.

In the second case, the KB has yielded here disappointing results. All the points
(except one) were clustered around the first visited point x"*1 (the same as in CL,
by construction). This can be explained by the exaggeratedly low prediction given
by Kriging at this very point: the mean predictor overshoots the data (because of the
Gaussian covariance), and the expected improvement becomes abusively large in
the neighborhood of x*!. Then x"*? is chosen near x"*!, and so on. The algorithm
gets temporarily trapped at the first visited point. KB behaves in the same way as CL
would do with a constant L below min(Y). As can be seen in Table 1 (last column),
the phenomenon is visible on both the q-PI and g-ET criteria: they remain almost
constant when q increases. This illustrates in particular how g-points criteria can
help in rejecting unappropriate strategies.

In other respects, the results shown in Tab. highlight a major drawback of
the q-PI criterion. When ¢ increases, the PI values associated with all 3 CL strate-
gies quickly converge to 100%, such that it is not possible to discriminate between
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6 iterations of CL[min(yBH(Xg))]

— —
@Canmurol -

o Initial Design %,
@  Sites visited by CL

x2

DISTRIBUTION OF THE MC-SIMULATED IMPROVEMENTS
(given by & iterations of CL[min(yBH(Xg))])

6-El=117.3802 6-PI=0_9458
1000 T T T T T T

L L
500 BOD 7o0

Fig. 6.5 (Left) contour of the ypy function with the design Xg (small black points) and
the 6 first points given by the heuristic strategy CL[min(ypy(Xo))] (large bullets). (Right)
Histogram of 10* Monte Carlo simulated values of the improvement brought by the 6-points
CL[min(ypy(X9))] strategy. The corresponding estimates of 6-points PI and EI are given
above

the good and the very good designs. The ¢-EI is a more selective measure thanks
to taking the magnitude of possible improvements into account. Nevertheless, q-£1
overevaluates the improvement associated with all designs considered here. This
effect (already pointed out in [@]) can be explained by considering both the high
value of 62 estimated from Y and the small difference between the minimal value
reached at Xo (9.5) and the actual minimum of ygy (0.4).

We finally compared CL[min], CL[max], latin hypercubes (LHS) and uniform
random designs (UNIF) in terms of ¢-EI values, with ¢ € [1,10]. For every g €
[1,10], we sampled 2000 g-elements designs of each type (LHS and UNIF) and
compared the obtained empirical distributions of g-points Expected Improvement
to the g-points Expected Improvement estimates associated with the ¢ first points of
both CL strategies.
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Table 6.1 Multipoints PI, EI, and actual improvements for the 2, 6, and 10 first iterations
of the heuristic strategies CL[min(Y)], CL[mean(Y)], CL[max(Y)], and Kriging Believer
(here min(Y) = min(ypy (X9))). ¢ — PI and g — EI are evaluated by Monte-Carlo simulations
(EQ- Nsim = 104)

CL[min(Y)] CL[mean(Y)] CL[max(Y)] KB

PI (first 2 points) 87.7% 87% 88.9% 65%
EI (first 2 points) 114.3 114 113.5 82.9
PI (first 6 points) 94.6% 95.5% 92.7%  65.5%
EI (first 6 points) 117.4 115.6 115.1 85.2
PI (first 10 points) 99.8% 99.9% 99.9%  66.5%
EI (first 10 points) 122.6 118.4 117 85.86
Improvement (first 6 points) 7.4 6.25 7.86 0
Improvement (first 10 points) 8.37 6.25 7.86 0

140

=il CL{min]
= Cl [max]

e rean LINIF
—80% percentile UNIF
10% percentile UNIF
best UNIF ever

40

| worst UNIF ever
====mean LHS

———B0% percentile UNIF
— 10% percentile UNIF
— — ~best UNIF ever
St s T mm—————— — — -worst UNIF ever

1 2 3 4 5 B 7 8 g 10

o (number of points)

20

Fig. 6.6 Comparaison of the ¢-EI associated with the ¢ first points (¢ € [1,10]) given by the
constant liar strategies (min and max), 2000 g-points designs uniformly drawn for every g,
and 2000 g-points LHS designs taken at random for every ¢

As can be seen on fig. CL[max] (light bullets) and CL[min] (dark squares)
offer very good g-EI results compared to random designs, especially for small val-
ues of g. By definition, the two of them start with the 1-EI global maximizer, which
ensures a ¢-EI at least equal to 83 for all ¢ > 1. Both associated g-EI series then
seem to converge to threshold values, almost reached for ¢ > 2 by CL[max] (which
dominates CL[min] when ¢ = 2 and ¢ = 3) and for ¢ > 4 by CL[min] (which dom-
inates CL[max] for all g s.t. 4 < g < 10). The random designs have less promizing
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q-EI expected values. Their ¢-EI distributions are quite dispersed, which can be
seen for instance by looking at the 10% — 90% interpercentiles represented on fig.
by thin full lines (respectively dark and light for UNIF and LHS designs). Note
in particular that the g-EI distribution of the LHS designs seem globally better than
the one of the uniform designs. Interestingly, the best designs ever found among the
UNIF designs (dark dotted lines) and among the LHS designs (light dotted lines)
almost match with CL[max] when g € {2,3} and CL[min] when 4 < g < 10. We
haven’t yet observed a design sampled at random that clearly provides better g-EI
values than the proposed heuristic strategies.

6.5 Towards Kriging-Based Parallel Optimization: Conclusion
and Perspectives

Optimization problems with objective functions stemming from expensive computer
simulations strongly motivate the use of data-driven simplified mathematical repre-
sentations of the simulator, or metamodels. An increasing number of optimization
algorithms developed for such problems rely on metamodels, competing with and/or
complementing population-based Computational Intelligence methods. A represen-
tative example is given by the EGO algorithm 221, a sequential black-box opti-
mization procedure, which has gained popularity during the last decade and inspired
numerous recent works in the field [ﬁﬁ, , @, ,%E, , @, , @]. EGO re-
lies on a Kriging-based criterion, the expected improvement (EI), accounting for
the exploration-exploitation trade-offfl. The latter algorithm unfortunately produces
only one point at each iteration, which prevents the user from taking advantage of
parallel computation facilities. In the present work, we came back to the interpreta-
tion of Kriging in terms of Gaussian Process [@] in order to propose a framework
for Kriging-based parallel optimization, and to prepare the work for parallel variants
of EGO.

The probabilistic nature of the Kriging metamodel allowed us to calculate the
joint probability distribution associated with the predictions at any set of points,
upon which we could rediscover (see [@]) and characterize a criterion named here
multi-points expected improvement, or q-EI. The q-E1 criterion makes it possible to
get an evaluation of the “optimization potential” given by any set of q new experi-
ments. An analytical derivation of 2-E was performed, providing a good example
of how to manipulate joint Kriging distributions for choosing additional designs of
experiments, and enabling us to shed more light on the nature of the q-E/ thanks
to selected figures. For the computation of q-ET in the general case, an alternative
computation method relying on Monte-Carlo simulations was proposed. As pointed
out and illustrated in the chapter, Monte-Carlo simulations offer indeed the opportu-
nity to evaluate the q-E[ associated with any given design of experiments, whatever
its size n, and whatever the dimension of inputs d. However, deriving q-E/-optimal

7 Other computational intelligence optimizers, e.g. evolutionary algorithms [@], address the
exploration/exploitation trade-off implicitely through the choice of parameters such as the
population size and the mutation probability.
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designs on the basis of such estimates is not straightforward, and crucially depend-
ing on both n and d. Hence some greedy alternative problems were considered:
four heuristic strategies, the ”Kriging Believer” and three ”Constant Liars” have
been proposed and compared that aim at maximizing q-E7 while being numerically
tractable. It has been verified in the frame of a classical test case that the CL strate-
gies provide q-E1 values comparable with the best Latin Hypercubes and uniform
designs of experiments found by simulation. This simple application illustrated a
central practical conclusion of this work: considering a set of candidate designs of
experiments, provided for instance by heuristic strategies, it is always possible —
whatever n and d— to evaluate and rank them using estimates of q-E/ or related
criteria, thanks to conditional Monte-Carlo simulation.

Perspectives include of course the development of synchronous parallel EGO
variants delivering a set of g points at each iteration. The tools presented in the
chapter may constitute bricks of these algorithms, as it has very recently been il-
lustrated on a succesful 6-dimensional test-case in the thesis [13]. An R package
covering that subject is in an advanced stage of preparation and should be released
soon [ﬁ]. On a longer term, the scope of the work presented in this chapter, and not
only its modest original contributions, could be broaden. If the considered methods
could seem essentially restricted to the Ordinary Kriging metamodel and concern
the use of an optimization criterion meant to obtain ¢ points in parallel, several de-
grees of freedom can be played on in order to address more general problems. First,
any probabilistic metamodel potentially providing joint distributions could do well
(regression models, smoothing splines, etc.). Second, the final goal of the new gen-
erated design might be to improve the global accuracy of the metamodel, to learn
a quantile, to fill the space, etc : the work done here with the q-E7 and associate
strategies is just a particular case of what one can do with the flexibility offered by
probabilistic metamodels and all possible decision-theoretic criteria. To finish with
two challenging issues of Computationnal Intelligence, the following perspectives
seem particularly relevant at both sides of the interface with this work:

e CI methods are needed to maximize the g-EI criterion, which inputs live in a
(n x d)-dimensional space, and which evaluation is noisy, with tunable fidelity
depending on the chosen ng;,, values,

e ¢-EI and related criteria are now at disposal to help pre-selecting good points in
metamodel-assisted evolution strategies, in the flavour of [IE].
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6.6 Appendix

6.6.1 Gaussian Processes for Machine Learning

A real-valued random process (Y (x))xep is called a Gaussian Process (GP) when-
ever all its finite-dimensional distributions are gaussian. Consequently, for all n € N
and for all set X = {x',...,x"} of n points of D, there exists a vector m € R" and
a symmetric positive semi-definite matrix X € .#,(R) such that (Y (x!),...,¥ (x"))
is a gaussian Vector, following a multigaussian probability distribution .4 (m, X).
More specifically, for all i € [1,n], Y (x') ~ A (E[Y (x')], Var[Y (x')]) where E[Y (x')]
is the ith coordinate of m and Var[Y(x')] is the ith diagonal term of X. Further-
more, all couples (Y (x),Y(x/)) i,j € [1,n],i # j are multigaussian with a covari-
ance Cov[Y (x),Y (x/)] equal to the non-diagonal term of ¥ indexed by i and ;.

A Random Process Y is said to be first order stationary if its mean is a constant,
ie. if Ju € R| Vx € D, E[Y(x)] = u. A first order stationary process Y is said to
be second order stationary if there exists furthermore a function of positive type,
¢:D—D — R, such that for all pairs (x,x') € D?, Cov[Y (x),Y (x')] = c(x — X).
We then have the following expression for the covariance matrix of the observations
at X:

2

o c(x sz) (X1 —xy)
3= (Cov[Y (x;) Y(Xj)])ije[l W (e(xi _Xj))ije[l n = c(xz =) ° o(xz =)
c(Xp —X1) (X, —X2) o2

(6.27)
where 62 := ¢(0). Second order stationary processes are sometimes called weakly
stationary. A major feature of GPs is that their weak stationarity is equivalent to
strong stationarity: if Y is a weakly stationary GP, the law of probability of the ran-
dom variable ¥ (x) doesn’t depend on x, and the joint distribution of (Y (x!),....¥ (x"))
is the same as the distribution of (¥ (x! +h),...,¥ (x" +h)) whatever the set of points
{x!,...,x"} € D" and the vector h € R" such that {x! +h,...,x" +h} € D". To sum
up, a stationary GP is entirely defined by its mean p and its covariance function
¢(.). The classical framework of Kriging for Computer Experiments is to make pre-
dictions of a costly simulator y at a new set of sites Xy, = {X"*1,...,x"* 4} (most
of the time, ¢ = 1), on the basis of the collected observations at the initial design
X = {x!,...,x"}, and under the assumption that y is one realization of a stationary
GP Y with known covariance function ¢ (in theory). Simple Kriging (SK) assumes
a known mean, ¢ € R. In Ordinary Kriging (OK), u is estimated.

6.6.2 Conditioning Gaussian Vectors
Let us consider a centered Gaussian vector V = (V,V,) with covariance matrix

T
Xy =E[vvl] = ( ZZVI Zg;m) (6.28)
Cross P}
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Key properties of Gaussian vectors include that the orthogonal projection of a Gaus-
sian vector onto a linear subspace is still a Gaussian vector, and that the orthogo-
nality of two subvectors Vi, V, of a Gaussian vector V (i.e. Zpp55 = ]ET[V;VIT] =0
is equivalent to their independence. We now express the conditional expectation
E[V1|V5]. E[V}|V»] is by definition such that V; — E[V;|V] is independent of V5.
E[V}|V,] is thus fully characterized as orthogonal projection on the vector space
spanned by the components of V5, solving the so called normal equations:

E[(Vi —E[Vi[Va])V5 ] =0 (6.29)

Assuming linearity of E[V;|V,] in V3, i.e. E[V||V2] = AV, (A € .#,(R)), a straightfor-
ward development of (eq[6.29) gives the matrix equation X’ = AXy,, and hence
ZJZ;MZJ;Z 1V, is a suitable solution provided 2y, is full rankedd. We conclude that

EVi|Va] = 2] 0523, Va (6.30)

by uniqueness of the orthogonal projection onto a closed linear subspace in a Hilbert
space. Using the independence between (V) — E[V|V;]) and V5, one can calculate
the conditional covariance matrix 2y, |y,

Sy, =E[(Vi —EViWa])) (Vi —E[Vi|[Va])T Vo] = E[(V) — AVL) (V) — AV,) ]
= EV] —AZiross — 2l AT +AEV2AT = Evl -7 2\72126,0”

Cross Cross

(6.31)

Now consider the case of a non-centered random vector V = (V;,V,) with mean
m = (my,my). The conditional distribution V;|V, can be obtained by coming back
to the centered random vector V — m. We then find that E[V; —m; |V, —my] =
ZZ;MZ;Z Y(V, — my) and hence E[V; V5] = my + 267;(,“2‘72 Y(Vy —my).

6.6.3 Simple Kriging Equations

Let us come back to our metamodeling problem and assume that y is one realization
of a Gaussian Process Y, defined as follows:

centered stationary GP with covariance function ¢(.)

where (1t € R is known. Now say that Y has already been observed at n locations
X = {x!,...,x"} (¥(X) = Y) and that we wish to predict ¥ a g new locations X, =
{x"1 . x4}, Since (Y (x!),...,Y (x"),Y (x"*1), ..., Y (x"*%)) is a Gaussian Vector
with mean u1,, and covariance matrix

8 1f 2y, is not invertible, the equation holds in replacing X, ! by the pseudo-inverse 2‘2.
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o? c(xq —2X2) o C(X1 —Xpyg)
T —_ —
th — z Z"cr()xx _ C(XZ Xl) o C(XZ XrH»q) (633)
ZC,‘OSS Enew R e e “es
c(Xntg —X1) ¢(Xntqg—X2) -.. o’

We can directly apply eq. ©.30) and eq. (&.31)) to derive the Simple Kriging Equa-
tions:
[Y(Xnew)|Y(X) = Y] ~ JV(mSK(XneW)7ZSK (Xnew)) (6.34)

with  msg(Xpew) = E[Y Xpe)[Y(X) = Y] = ply + 2,0 Z (Y — uly)
and ESK(X}’M_’W) = Zpew — 23;,,”2_12cmss- When q = L, Zeross = C(Xn+1) =
Cov[Y(x"™1),Y(X)] and the covariance matrix reduces to si (x) =
02 — e(x" )Tz le(x"1), which is called the Kriging Variance. Note that
when  is constant but not known in advance, it is not mathematically correct to
sequentially estimate p and plug in the estimate in the Simple Kriging equations.

Ordinary Kriging addresses this issue.

6.6.4 Ordinary Kriging Equations

Compared to Simple Kriging, Ordinary Kriging (OK) is used when the mean of
the underlying random process is constant and unknown. We give here a derivation
of OK in a Bayesian framework, assuming that g has an improper uniform prior
distribution u ~ % (R). y is thus seen as a realization of a random process Y, defined
as the sum of i and a centered Gk

Y(x)=pu+e(x)
€(x) centered stationary GP with covariance function c(.) (6.35)
w ~ 7% (R) (prior), independent of €

Note that conditioning with respect to ¢ actually provides SK equations. Letting
vary, we aim to find the law of [Y (X,e)|Y (X) = Y]. Starting with [Y (X) = Y|u] ~
A (ul,,%), we get U’s posterior distribution:

1"z ly 1

mY(X)=Y]~ .4 (i,02) =N o (posterior)  (6.36)
(,04) 1711717511,

We can re-write the SK equations [Y(Xpew)|Y(X) = Y,u] ~
N (msk (Xnew)s Zsk (Xnew)). Now it is very useful to notice that the random
vector (Y (Xpew), 1) is Gaussian conditional on Y (X) = Y[ It follows that
[Y (Xew)|Y (X) = Y] is Gaussian, and its mean and covariance matrix can finally
be calculated with the help of classical conditional calculus results. Hence using
mok (Xnew) = E[Y (Xpa)[Y (X) = Y] = Ey [E[Y (Xpew)|Y (X) = Y, u]], we find that
mok (Xnew) = L+ Z0 2~ 1Y — i1,,). Similarly, Zox (Xpew) can be obtained using
that Cov[A,B] = Cov[E|A|C],E[B|C]] + E[Cov[A,B|C]] for all random variables

9 The resulting random process Y is not Gaussian.
10 Which can be proved by considering its Fourier transform.
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A,B, C such that all terms exist. We then get for all couples of points (x"+ x"*/)
@i,j€[1,q):

Covly (x"T), Y (x"™)|Y (X) = Y]
=E [Cov[¥ (x"7),Y (x"™)|¥ (X) = Y, 4] ] + Cov [E[Y (x"7)|Y (X) = Y, 4, E[Y (x" ™) |V (X) = Y, 4] -
(6.37)
The left term Cov[Y (x"*), Y (x"/)|Y (X) = Y, u] is the conditional covariance un-
der the Simple Kriging Model. The right term is the covariance between u +
e(x")TE2-1(Y - pu1,) and u +e(x""/)T -1 (Y — u1,) conditional on the observa-
tions Y (X) = Y. Using eq.[6.36 we finally obtain:

Cov[Y (x"™), Y (x") |7 (X) = Y]
=Covsx [V (x" ), Y (x" ™) |7 (X) = Y]
T Covfe(x™)TEN(Y) (1 + (e )TE ), e(x )T E (Y) + (1 (x5,
(1+e(x""HT= 1) (1 +e(x")T211,)
17311, '

:C(XnH 7X"+j) fc(x"+i)T2*1c(x”+j) +

(6.38)
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Chapter 7

Analysis of Approximation-Based Memetic
Algorithms for Engineering Optimization

Frederico Gadelha Guimaraes, David Alister Lowther, and Jaime Arturo Ramirez

Abstract. This chapter discusses the treatment of expensive optimization problems
in Computer-Aided Design (CAD) problems by combining two strategies. First, we
perform the whole optimization varying the accuracy with which a given candi-
date solution is evaluated by the expensive black-box function, rather than using
the same accuracy for all evaluations. This idea follows from the fact that evolu-
tionary algorithms, in general, employ more searching effort on the most promising
regions of the search domain. We can adopt the same principles for allocating more
computational effort when evaluating candidate solutions within these regions. The
second strategy is the employment of local approximations within the local search
operator of memetic algorithms. Since the points in the data are evaluated with dif-
ferent accuracies, the approximation methodology should give greater weight to
samples evaluated with higher precision. The chapter proceeds to the formal analy-
sis of approximation-based memetic algorithms, in which we investigate the effect
of the local search operators on the global convergence properties of evolutionary
algorithms via Markov chain theory, and also study the computational complexity of
the approximation-based local search operator. The chapter concludes with the illus-
tration of the methodology in the design of electromagnetic devices, as an example
of an expensive optimization problem.
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7.1 Memetic Algorithms and Computer-Aided Design

In a more general context, computer-aided design (CAD) refers to the application
of computers to the design process. In this sense, a CAD system is a computational
system used in engineering, geology, and architecture for technical designs. Here,
we refer to CAD processes in a more strict sense, intending to refer in a special man-
ner to the contexts of systems engineering and engineering optimization, in which
the CAD process is viewed as an automated process involving the association of
a mathematical and computational model of the device to be designed and an ad-
equate optimization method for finding the optimal values of the design variables
, ]. In the context of this chapter, the device represents an electromagnetic
device such as an electrical motor, a transformer, an antenna, a wave guide, etc.,
but the methodology presented is general enough to be applied to computationally
intensive optimization problems in other contexts. Figure [Z.]] presents a flowchart
description of the basic design process. In this flowchart, we can identify the funda-
mental blocks of a complete design process. The process starts with the establish-
ment of specifications and requirements, which leads to the definition of a prototype,
a first design model to solve the problem at hand. These initial steps depend on the
knowledge and intervention of a human designer, or a team of designers. The main
purpose of the prototype, and its associated computational model, is to provide a
parameterized search space, and a set of objective and constraint functions for the
optimization process. The goal of the optimization process is to find the solution,
in the given search space, that moves the current design to a prototype which will
satisfy the requirements as closely as possible. Finally, if the optimized prototype
satisfies the specifications and requirements defined by the designer, then the design
process stops and the final solution is achieved.

The product specifications and requirements are translated into objective and con-
straint functions, and the design variables into optimization variables with their re-
spective ranges. In mathematical terms, the design problem can be defined as an
optimization problem of the form

minf(x) € R"
X (7.1)
subject to: x € %, C R™
in which x is the vector of optimization variables, f(-) : R™ +— R"/ are the objec-
tive functions and .%, is the feasible set, mathematically defined by the constraint
functions. This optimization problem requires an adequate optimization algorithm
to search for the best solutions. During the search process, the evaluation of each
possible design demands the solution of partial differential equations that describe
the laws that physically govern its behavior. When nonlinearities and accuracy re-
quirements are incorporated, the computational cost becomes even more relevant.
In coupled problems, the analysis step may also involve the association of different
analysis softwares as in [E,@], which further increases the computational cost. This
synthesis-analysis cycle is shown in the inner loop of the flowchart in Figure [Z1
When the prototype is optimized, its performance is evaluated to verify if it meets
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Fig. 7.1 Flowchart description of the computer-aided design process

the requirements defined in the beginning of the CAD process. If it does not meet
the requirements, we can either give up, due to lack of resources and rethink the
design specifications, or return to step 2 to modify the prototype, hence modifying
the objective and contraint functions and the search space.

For the sake of simplicity, the software responsible for solving the analysis prob-
lem will be treated as an expensive “black-box”, of which we know only the outputs
- the behavior it produces - due to different inputs. From the optimization point of
view, it does not matter what is inside this black-box, as long as it provides consis-
tent outputs. In some problems, all objective and constraint functions are functions
of the black-box output value. In this case, the time to evaluate one individual in a
population-based evolutionary algorithm is simply the time consumed by the black-
box. In other cases, only some of these functions depend on the black-box software,
while the others are analytically defined and usually inexpensive.

Evolutionary Algorithms (EAs) play an important role in the solution of
complex CAD problems [IE, , ], because they can deal with problems that are
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discontinuous, nonconvex, multimodal, noisy, and present correlations or higher-
order dependencies among variables. Moreover, these algorithms can explore si-
multaneous regions of the search space in a single run and evolve a population of
candidate solutions that represent sub-optimal solutions or trade-off solutions in the
context of multiobjective problems. The bottom line is that the same principles in
nature that are responsible for the diversity and complexity of biological systems
can be applied to the solution of complex design problems in engineering. Thanks
to the work of many researchers since the 1950’s, and contributions of the last two
decades that helped to popularize and mature these techniques, evolutionary algo-
rithms are today an important computational intelligence methodology for complex
designs and an established field of research [4, 6, (9].

Memetic Algorithms (MAs) 124, 25], a term initially coined by Pablo Moscato
in 19841 represent a particular class of EAs that employ local search methods
inside their cycle. MAs first appeared for combinatorial optimization problems
[IEI, , ], but it did not take long for continuous search space versions of such
algorithms to appear 118,22, 27]. MAs for multiobjective problems have also been
proposed, see [ﬁ, 39]. Any successful global search meta-heuristic method, includ-
ing evolutionary techniques, should find a good balance between its exploitation
and exploration componentsﬁ. MAs approach the exploration-exploitation balance
by trying to find a good association of global search mechanisms and local search
operators, which can favor the optimization process as a whole. In fact, some de-
terministic search methods, although capable of local search only, present fast and
precise convergence properties that surpass the properties of EAs, which, in contrast,
have poorer convergence and accuracy. There are very specialized methods for treat-
ing constraints in optimization problems, including equality constraints, that rely on
assumptions that favor their utilization as local search techniques 15,37). All these
characteristics suggest the use of hybrid strategies, in order to enhance the local
search properties of typical EAs.

In the first versions of MAs, the local search method is applied to each indi-
vidual generated by the reproductive operators, leading this offspring to its clos-
est local optimum. Such MAs have presented good performance in some contexts,
since the search space to be explored by the global search side of the hybrid algo-
rithm is then greatly reduced. This reduction has a price to be paid, which is the
computational cost of the local search, limiting the application of MAs in many
expensive-to-evaluate CAD problems involving continuous-variable search spaces.
Later versions of MAs have relaxed this definition, by not applying the local search
to all individuals and sometimes not applying the local search in all generations.
The specification of the local search intensity and frequency is referred to as the
balance between global and local search [15]. Some approaches relax the accuracy
of the local optimizer [@] and other strategies relax the requirement that the local
search is applied up to local optimality, only a local enhancement is required [@]. In

! Moscato was inspired by the concept of memes as proposed by Richard Dawkins in 1976
(.

2 Exploration is related to the global search capability of the algorithm, while Exploitation
means spending more searching effort in the most promising regions.
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this chapter, we follow the taxonomy presented by Krasnogor in (201, and adopt the
term Memetic Algorithm for evolutionary algorithms that employ any local search
method to some or all individuals of the population, but this is not a consensus, and
different opinions exist [Iﬁ, ].

This chapter deals with Approximation-Based Memetic Algorithms (27-MAs),
which is a category of MAs that employ approximation techniques within the
local search phase, using samples produced by the algorithm itself in previous gen-
erations. These <7/-MAs have arisen recently to deal specifically with expensive-
to-evaluate black-box functions in continuous-variable search spaces, in order to
reduce the computational overhead of the local search phase while still benefitting
from the principles of MAs [|ﬁ|, , @, @, , ]. The use of approximations,
or surrogate models, in evolutionary optimization is well discussed in the literature
[IE], but the employment of local approximations, specially in the context of MAs
is rather recent [&]. The algorithms in this particular class of MAs rely strongly on
the sampling properties of population-based EAs, whose heuristic operators tend to
concentrate more samples in the most promising regions of the search space. Given
the computational effort spent to obtain each of these samples, it is a good idea to
store them and use some of this information to build local approximations of these
black-box functions for the local search operator. With these computationally less
expensive-to-evaluate local approximations in hand, the local search can be used
to enhance some individuals of the population. By using approximations, the local
search is not exact, but this local search engine can potentially increase the con-
vergence properties of typical EAs without the high computational cost in terms of
function evaluations required when applying the local search method directly to the
real functions. Note that, unlike usual MAs, the local search phase in .o/-MAs is
intended to be as inexpensive as possible, considering the number of function eval-
uations, usually not requiring any additional evaluation of the black-box functions.

We propose a methodology for the local search in «7-MAs that is based on Ra-
dial Basis Function (RBF) approximations , @] of the expensive black-box func-
tions. The auxiliary local search problem based on these RBF approximationsis then
solved by the Sequential Quadratic Programming (SQP) method [@], which is a fast
and accurate method for constrained mono-objective problems, having a quite pre-
dictable behavior. This procedure locally enhances one individual of the population,
making it an MA according to [@].

Adittionally, we combine this framework of .&/-MAs with another strategy for
treating expensive optimization problems: we perform the whole optimization vary-
ing the accuracy with which a given candidate solution is evaluated by the expensive
black-box function, rather than using the same accuracy for all evaluations. We al-
locate more computational effort for evaluating the candidate solutions around the
best regions and also as the evolutionary search converges. When high accuracy
is required for the final solution of the CAD problem, we can reduce the overall
computational cost by varying the accuracy (and thus the computational cost) of the
objective function when analyzing points tested by the algorithm during the opti-
mization process. This has an impact in the approximation methodology used in the
local search.
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The chapter proceeds to the formal analysis of .<7-MAs. This analysis is divided
in two main parts. The first part investigates the effect of the local search oper-
ators on the global convergence properties of evolutionary algorithms via Markov
chain theory [26]. The second part studies the computational cost of <7-MAs. In this
second part, the computational complexity of the approximation-based local search
operators is derived and expressions for the overhead of the local search are pre-
sented. The chapter concludes with the illustration of the methodology in the design
of electromagnetic devices, in which the evaluation of candidate solutions requires
the numerical solution of partial differential equations, making it an expensive
optimization problem.

7.2 Approximation-Based Memetic Algorithms

The general structure of instances of 2/-MAs is detailed in Algorithm [Z.Il This
structure is very general and can accomodate many well-known evolutionary
algorithms. Py is the online (or parent) population of size u, Qy is the offspring
population of size A. For instance, genetic algorithms have g = A, while evolution
strategies usually have u < A. Qy is produced after the application of the reproduc-
tion operators on Py, see lines 6 and 17. The reproduction procedure makes reference
to rather general procedures in EAs. In genetic algorithms, reproduction comprises
fitness-proportional selection, crossover and mutation operators. In other EAs, dif-
ferent specific operators apply. The search space is defined by the lower and upper
bounds of each variable such as

S ={xeR™:x/ gxigx;“} (7.2)

The inequality constraints g(-) : R™ — R and the equality constraints h(-) : R™ —
R define the feasible region:

F=5) (ﬁl %) N (,ﬂhl jf;) (7.3)

where ¢ = {x € R"™ : g;(x) <0} and 7} = {x € R™ : h(x) = 0}.

The archive or offline population A stores the best solution set found by the
algorithm. Usually, in mono-objective optimization problems, A; has size & =1,
that is, only the global best solution found to date is stored and maintained. When
we are interested in finding not only the global one but also a set of optima, Ay may
store more than one solution, as is the case in some niching evolutionary algorithms
or multimodal immune-based algorithms. The update method, see lines 5 and 18, is
slightly more complicated, since some diversity mechanism should be imposed on
the solution set. In multi-objective problems, we have & > 1 and the update method
is also more complicated, since we need to consider dominance relations and a good
representation of the Pareto front.
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Algorithm 7.1. Generic structure of an approximation-based MA.

Data: population size u, offspring size A, maximum archive size &, search space .7,

objective and constraint functions f(-), g(-), h(-).
Result: Estimate(s) of .* in the archive population Ay.
1 k< 0/ Generation counter

P = { I(CU,...,p]((“)} «— Initialize population(u,.?);

Ap =0« Initialize archive /* Keep the best solution(s)
@p «— Evaluate fitness(F,f,g,h);

Ay < Update(Ay,P.8);

// Reproduction comprises selection and variation

O = {ql(:), - ,q,il)} « Reproduction(F,Ag, Pp);

9 «— Update data({P;f(P);g(P);h(P)}) /+ Global data set
while — stop criteria do
@y, — Evaluate fitness(Q,f,gh);
10 9 «— Update data({Q;f(0x);g(0k);h(QK)}) s
11 if mod (k,ny) =0 then
12 for each of the o best individuals do

B W N

R=IEN- - B
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*/

*/

*/

13 Approximation-based local search operator /* See Algorithm [73]

*/
14 end
15 end
16 Piy1 + Substitution(Py, Ox);
17 Qk+1 — Reproduction(Pyyy);
18 Agyi — Update(Ap,PUQOx,8);
19 k—k+1;
20 end

The substitution operator creates the next parent population. In genetic algo-
rithms, the offspring simply substitutes for the previous parent population. In
evolution strategies, substitution schemes such as the ES(u +A) or ES(u, 1) are
employed [EI]. Other deterministic substitution schemes are used in differential evo-

Iution and evolutionary programming algorithms.

The main point that is expressed in this general structure is that the basic evo-
lutionary operators, as well as the generic evolutionary structure, are essentially
preserved in the structure of ©7-MAs. The local search phase is described in lines
11-15, after the fitness assignment of the offspring population Q. It introduces the

following parameters:

e the interval of generations in which the local search is to be applied, denoted by
ng > 0. For example, if n;, = 0, the local search operator is applied at every gen-
eration. If n; = 4, the local search operator is applied at every four generations.

e the number of individuals in the Q) population that will be subject to local search,

denoted by 0 < o < .
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There is no general rule for choosing the values of these parameters. They are related
to the frequency and the intensity of the local search in the memetic algorithm. The
value of n;, cannot be too small, because the local search is more efficient when new
information is available, that is, when new samples are generated. It cannot be too
big either, because the local search has to be applied in a number of generations
that is enough for producing some effect on the performance of the algorithm. The
value of ¢ should be less than u. An intuitive argument is that the approximation-
based local search operators rely on the samples available, and therefore they would
not work properly if applied to all individuals, simply because there are not enough
samples to generate local approximations around each individual. Therefore, the
local search in .«7-MAs should be applied to few individuals. In the next section we
provide a formal argument based on convergence properties.

In this section, we discuss the treatment of expensive optimization problems by
combining two strategies. First, we do not perform the whole optimization with
great accuracy for all evaluations, but only for some of them. The black-box func-
tions are evaluated with varying accuracy instead of using a fixed accuracy in the
whole process. The second strategy is the employment of local RBF approximations
within the local search operator of .«#-MAs. The approximations should be flexible
given that the points in the data were not evaluated with the same accuracy.

7.2.1 Varying Accuracy in Black-Box Functions

In general, expensive black-box functions have a computational cost that is approx-
imately constant for a given accuracy requirement. In this section, we propose an
adaptive variation of the accuracy when evaluating candidate solutions. We argue
that, when high accuracy solutions are required to a given problem, one does not
need to perform the whole evolutionary search making all evaluations at this high
accuracy level, but only for some of them, thus saving computational effort. This
idea follows from the key observation that EAs in general employ more searching
effort on the most promising regions of the search domain. We can adopt the same
principles of the exploration-exploitation balance to allocate more computational
effort when evaluating candidate solutions within these most promising regions.

The parameters that define the accuracy, and hence the computational cost, of
the objective function are provided together with the evaluation point x. We assume
that some accuracy parameters are available to the user of the black-box in the form
of the vector €. These parameters that define the accuracy of the numerical method
used in the analysis problem may include the mesh density, the order of the finite
elements, the number of iterations of a nonlinear method, etc.

Each individual in the parent population P; has an associated accuracy, which
can take any value within a list of discrete values provided by the designer within
the range [€™, €], related to the maximum and minimum accuracies acceptable for
the problem. Suppose there are two functions available: the function next (g), which
returns the next value in the list, and prev(€), which returns the previous value in
the list. Also, next(e™) = €™ and prev(e™) =¢~.
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In this way, the evolutionary algorithm can specify the values of €. The searching
process can then dedicate more computational effort when evaluating some solu-
tions in the search space .. The parameters € may vary with time and/or within the
population at a given generation. For example, as the time increases the parameters
€ are selected in order to increase the accuracy of the numerical method. Moreover,
in a given generation, we can dedicate more effort and time to those solutions in
the most promising regions, and solutions generated by exploratory mutations are
evaluated with less computational effort. These general ideas in the utilization of
varying accuracy cost functions lead to the specification of the following general
rules or heuristics:

1. Initially, the basis value € assumes the first value in the list, i.e., £™.

2. During the first generations, the algorithm is in its exploration phase, sampling
the search space in a more exploratory way and the diversity of the population
is high. As the number of generations increases, we expect the population have
converged toward a given optimum, and we can therefore increase the accuracy
for the evaluation of the population. Therefore, after 7; successive generations,
we change the base value to next(g).

3. Individuals in better regions of the search space should be evaluated with higher
accuracy, while we should not spend much computational effort evaluating indi-
viduals in poor regions. In this case, we use the fitness values to decide which
individuals are evaluated with higher accuracy. The offspring of the N, best indi-
viduals are evaluated using next(€), while the remaining ones are evaluated using
the current base value €. This follows from the principle of heredity, which states
that the offspring tend to be similar to their parents.

4. Each offspring individual changed by mutation is evaluated using prev(e), thus
with less effort.

This approach does give rise to some noise in the objective function, but evolu-
tionary algorithms are relatively robust in the presence of noise. Moreover, as the
algorithm converges towards a given optimum, this noise is reduced because more
and more points around this optimum are evaluated with the same accuracy.

7.2.2 Approximation-Based Local Search

Considering the class of expensive optimization problems, the accumulated infor-
mation represented by the samples gathered by the algorithm is very valuable. We
can progressively reconstruct the black-box input-output relationship to an arbitrar-
ily high precision, which in turn may be exploited to speed up the searching process
via local search operators.

By viewing the evolutionary process as an intelligent sampling process, we note
that there will be more samples in the most promising regions of the search space.
In these regions, the evolutionary convergence is slow, with poor precision due to
genetic drift caused by the variation operators. As the generations advance, we ob-
tain more samples in these regions, making the approximations more accurate. It is
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reasonable to believe that the local approximations will improve as the search pro-
gresses, making the solutions achieved by indirect (i.e., using approximations) local
search arbitrarily close to the ones that would be obtained by direct local search.

In the context of CAD optimization problems using .<7-MAs, we point out some
important requirements [Ef])

e The time spent in the evaluation step is dominant in the whole process;

e The time spent to generate the approximations should be as small as possible;

e The total time spent in the optimization process when using the hybrid algorithm
with approximation-based local search must be less than that spent when using
the standard algorithm.

The first observation is often true in complex CAD problems. It implies that some
additional complexity in the algorithm operations is justifiable. The second require-
ment is important because the time needed to generate and evaluate the approxi-
mations must be small in comparison to the time consumed in evaluating solutions
directly. Finally, the third requirement means that the hybrid algorithm must con-
verge with less evaluations than the standard algorithm, or at least provide a better
solution for the same number of evaluations. We detail next how the approxima-
tions are generated and how the local search is performed. We consider constrained
mono-objective problems only.

All evaluations performed by the evolutionary algorithm are stored in a global
data set:

; ; ; ; ; ; Ny
D = {X<’>;f(X<’>);g1 (xD),.. g (xD): g (xD), .. (x<’>)}i:1 (7.4)

where Ny is the total number of samples collected by the algorithm at iteration k.
) contains each solution x() in the search space tested by the algorithm and its
respective values for the objective and constraint functions. Only nonlinear func-
tions are stored. Linear constraints are explicitly provided by the user and are not
approximated. Additionally, the value of the accuracy parameter used to evaluate
x() is also stored. Z is the global data set representing all information acquired by
the algorithm until time k. Part of this information, the data within the neighborhood
of the individual, is used for building the local approximations, specifically the RBF
approximation.

Define z as the solution represented by the individual p,(cl) € P, selected for local
search. The neighborhood region is centered at z and is generally defined as follows:

¥ (2.p) = {x: [x—2| <R(p)} (1.5)

where R(p) is a region whose size is parameterized by p. Considering || - ||, We
have a rectangular neighborhood:

V(zp)={x:zi—pl—x)<xi<zi+p—x),i=1....n} (7.6)

and considering || - |2, we have an ellipsoidal neighborhood
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V(z,p)={x: (x—2)"A(x—2z) <1} (1.7

in which the matrix A is given by:

+ -l
A= {[p(xl- S i=] .
0, i#]
The parameter 0 < p < 1 defines the size of the local neighborhood with respect to
the parameter range. This parameter is usually set to a small value, typically 0.1.
Algorithm [Z.2] shows how the local data set .Z is assembled from 2. Identical
points and points closer than a threshold { do not enter the local data set. The elim-
ination of similar points is important, because they cause numerical ill-conditioning
in approximation techniques such as neural networks and RBF models.

Algorithm 7.2. Building local data set

1 £ =0 /% Stores local data set */
2 fori=1,..., Ny do
3 if x) € ¥ (z,p) then
4 calculate the distance between x() and each data point in .%;
5 if x() is at least an amount { distant from all points in £ then
6 ‘ put x() and their respective evaluations in .%;
7 else
8 ‘ keep the point evaluated with the greater accuracy in .%;
9 end
10 end
11 end
12 return.Z;

The approximations are generated to fit data in .Z. We employ RBF approxima-
tions of the form:

p(x) = 2vir,-(||x—ci||) =rly (7.9
i=1

where x is the vector of optimization variables, ¢; is the center of the radial basis
function ; (||x — ¢;]|) : R™ — R, and v is the vector of parameters of the RBF model.
There are many types of RBF available [13,30], we have selected the multiquadric
function in the methodology. For training the RBF approximation, we adopt the
following error cost function:

C(v) =Y wie; = e’ We (7.10)
i=1
where ¢; is the error between the RBF model and the desired value in the local

data set 2. The weighted squared error is used because some points in the data
are evaluated with more accuracy than others. Therefore, these points should have
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a greater weight in the RBF model. This problem can be solved with the Weighted
Least Squares (WLS) method:

9= [R"WR] 'R" Wy (7.11)

where R is the matrix with the values of the radial basis functions and y is the vector
with the desired outputs.

Each nonlinear expensive-to-evaluate function in the optimization problem is lo-
cally approximated using the RBF model trained with the WLS method. One advan-
tage of this approach is that it is a fast way to obtain the approximations, as required
by the observations made before. With the approximations in hand, we can define
the local search problem as:

mxin f(x)

. N (7.12)
subject to: x € F N Y (z,p)

in which #(z,p) is the local neighborhood, f(-) is the approximation for the objec-
tive function, and % is the approximated feasible set generated by the approximated
constraints.

Observe that the local search problem, see (ZI12)), has an additional constraint
in comparison to the original optimization problem: the local problem is restricted
to the region ¥/ (z,p), that is, the neighborhood of the individual selected for local
search. This problem can be easily and directly solved by employing the Sequen-
tial Quadratic Programming (SQP) method [@]. The SQP method is an extension
of the Newton’s method for unconstrained optimization to constrained problems.
The method replaces the objective function with its quadratic approximation and
replaces the constraint functions by linear approximations. A nonlinear problem in
which the objective function is quadratic and the constraints are linear is called
a Quadratic Program (QP). The SQP method solves a QP at each iteration until
a satisfactory solution is found. The local convergence properties of the SQP are
well understood. Therefore, although the solution of the problem is obtained
numerically, it is found by a fast and accurate method, allowing us to call it a semi-
analitycal solution. Furthermore, since the expressions of the RBF approximations
are known, their quadratic and linear models are easily and analytically obtained
and used within the SQP procedure. We summarize the local search operator in
Algorithm[Z3]

Algorithm 7.3. Approximation-based local search operator
1 £+« Build local data(¥(z,p));
2 fﬂg,ﬁ «— Generate local approximations(%);

3 z* = argmin £(x) subject to: x € ZN ¥ (z,p) /* Enhanced solution */
4 return z*;
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This section presented the approximation-based local search operator and its use
in evolutionary algorithms. The local enhancement of some individuals in 27/-MAs
can be achieved in an indirect way, by using a local representation of the problem,
based on the knowledge acquired by the algorithm along successive generations.
This indirect local search via local approximations reduces the computational cost
associated with the exploitation component of memetic algorithms. However, it is
important to analyze the theoretical effects of the proposed local search on the global
convergence properties of evolutionary algorithms. This issue is addressed in the
next section. We also discuss the computional cost of the proposed methodology.

7.3 Analysis of Memetic Algorithms

In the previous section we discussed <7-MAs in general and presented the approxi-
mation-based local search methodology, which can be coupled with usual evolution-
ary algorithms following the generic structure in Algorithm 7.1. In this section, we
employ the Markov chain theory, which is a popular theoretical tool for analyzing
EAs [ﬁi], to analyze the effect of the local search operators on global convergence
properties of memetic algorithms. We also present the computational cost analysis
of memetic algorithms, especially those employing the local search methodology in
the context of CAD optimization problems.

7.3.1 Convergence Analysis

Let 2 be a finite set of states with cardinality | 2| and {X,, € 2" :n € N} arandom
sequence or stochastic process. X,, is a Markov chain if it is a stochastic process in
which the future state depends only on the present state, and it is independent of
the past states. Observe that the sequence of populations of an evolutionary algo-
rithm falls in this definition, since the transitions from one population to another is
stochastic and independent of previous populationsﬁ. We can write transition prob-
abilities as gZ{X,hH = Sj|Xn = S,‘} = Tj, with i, j € {1,,‘%—”’ and Si,Sj € Z,
where | 27| is the number of states. Since the state space is finite, we can conve-
niently represent the transition probabilities in a | 2"| x | 2| matrix T. Each entry of
the stochastic transition matrix T gives the probability that the next state is S; given
that the current state is S;.

The state of an algorithm in the time step n is represented by the population at
time n. The operations in the algorithm define its transition matrix T. The state space
Z is the set of all possible populations with size u for the search space .7

The generic structure presented in Algorithm 7.1 has an archive population 4,,
with size & > 1. Considering this population, the state representation changes to

3 In general, adaptive evolutionary algorithms cannot be analyzed by Markov chain theory
because their transition matrices are time-dependent. In these situations, we need to reccur
to other analysis methods. Adaptive memetic algorithms are analyzed with Markov chains
in ] but assuming that the transition matrix produced by the genetic operators is positive.
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si = (si';s!'), where s} is the part of the state associated with A,, and s} is the part
associated with P,. After the archive update function, we can say that the individuals
represented by s/ are the best individuals in the state s;.

Before proceeding, we give some useful definitions:

Definition 1. A state s; is said to be accesible from the state s; if Ik < oo such that:
P{Xnsk=5j|Xn=si} = i(/@ > 0, where Ti(j@ is the element ij of the matrix T¥, and
we write s; — S;.

Definition 2. A state s; is said to be a communicating state with the state s; if' s; — s;
and sj — s;, and we write s; <> sj.

Definition 3. A Markov chain {X, € 2 : n € N} is irreducible if its state space is
a communicating class, that is, all its states are communicating states.

The last definition means that it is possible to get to any state from any state in
an irreducible Markov chain. Therefore, every state will be visited in finite time
regardless of the initial state [@]. Due to the use of the archive population A,,
some states are not communicating states, because of elitism. Thus, states containing
worse solutions in A, cannot be reached from states containing better solutions in
A,,. These intermediate states in the search process are called transient states, since
si—sj, buts; /s;.

Let .* be the set of optimal solutions for the optimization problem. It can repre-
sent: (i) all the global optima if there are more than one; (ii) all the global and local
optima (if the algorithm is designed to find them); or (iii) all global Pareto-optimal
solutions in a multi-objective context. We adopt the following notation:

Definition 4. Those states that represent an A, whose elements belong to .* are
called essential states. They form the set &. Those states that represent an A,
whose elements do not belong to " are called inessential states, hence they are
intermediate states. They form the set .¥ .

From [33], we know that P{X, € #} — 0, when n — oo. Since all essential
states represent archive populations that are optimal, whose meaning depends on the
context, the algorithm will finally converge to one of the essential states:

PXEC XY= P{X, €& =1—-P{X, € .7} (7.13)

which becomes equal to one, when n — o, and we say that the algorithm is globally
convergent. The probability that the archive population A, has converged to a subset
of the optimal solution set is equal to one when time goes to infinity. Therefore,
we say that the online population P, locates the optimal solution, while the offline
population A, converges to the optimal solution.

All essential states should be accessible from any inessential state. So, to improve
the solutions in A(n), the following transition must be possible:

() = (f5s) — (sfs]) 14

where sf represents a population with better solutions than those in sf‘.
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Observe that the archive population does not undergo the selection and variation

steps, and the last transition is performed by the update operator. Therefore, s/ must
P

J
be accessible from s; , in order to validate the complete transition. Thus, although the
complete transition matrix is not irreducible, the transition matrix associated with
the online population P, must be irreducible, in order to guarantee that the online
population will visit all states in the search space with finite time.

Let G be the transition matrix for P,. It is a function of the operators of the al-
gorithm during one iteration, i.e., it is obtained by the product of transition matrices
associated with the selection and variation steps (crossover and mutation in the case
of genetic algorithms, for instance). Since we will analyze the product of stochastic
matrices, it is important to provide some helpful definitions and properties.

Definition S. A matrix A is said to be positiveﬁ ifa;j>0,Vi,j.
Definition 6. A matrix A is said to be non-negative if a;; > 0, Vi, j.

Definition 7. A square matrix A is said to be diagonal positive if all elements of its
diagonal are positive.

Definition 8. A stochastic square matrix A, representing the transition probabilities
of a Markov chain process with state space 2, is said to be irreducible if ¥s;,s; €

X, In € N such that a§7> > 0.

A positive matrix A is hence irreducible since it satisfies al(;') > 0, with n = 1. The
converse is not necessarily true.

Definition 9. A matrix is said to be column-allowable (row-allowable) if each
column (row) contains at least one positive entry. A matrix that is both
column-allowable and row-allowable is an allowable matrix.

From the definition above, we see that a diagonal positive matrix is both column-
allowable and row-allowable. Also, the product of two diagonal positive matrices is
also a diagonal positive matrix.

Let us consider a standard genetic algorithm, using selection, crossover, and mu-
tation operators in the evolutionary iteration. In this case, the transition matrix G is:

G =SCM (7.15)

where S, C, and M are respectively the transition matrices of selection, crossover,
and mutation steps.

We know from [@] that this transition matrix is positive if the mutation operator
produces a positive transition matrix. There are mutation operators whose transition
matrices are not positive, but they are irreducible. Since there is a positive proba-
bility that the selection and crossover operators do not change the individual, then

there is a positive probability that any point in the search space be attained in n > 1

steps, by consecutive mutations. Hence 3n > 0 such that Ti(;l) > 0 and the transition

matrix is irreducible. In this case, it is possible to show that if M is irreducible and
the product SC is diagonal positive, then G is also an irreducible matrix ].

4 Do not confuse with the concept of positive (or negative) definiteness.
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7.3.1.1 Analyzing the Local Search Operator

In this section, we analyze the case when a local search is explicitly used in the
evolutionary cycle. In the canonical hybrid algorithm, see Algorithm [Z1] the local
search is performed before the selection and variation steps. Thus, assuming that the
product SCM is irreducible, we need to analyze what happens with the product:

H=LG = L(SCM) (7.16)

where L is the transition matrix associated with the local search phase, G is the
transition matrix associated with the global search algorithm, and H is the transi-
tion matrix associated with the hybrid algorihm, which results from the global-local
search interaction.

Considering the Lamarckian approach for hybrid evolutionary algorithms, the
population is modified by the local search. If the local search operator is determin-
istic, we can say that L is at least row-allowable. Based on these characteristics, we
can state the following:

Theorem 1. If SCM is positive and the local search is deterministic, L is at least
row-allowable, then H is also positive and thus irreducible. Therefore, the archive
population will converge to the solution set and the hybrid algorithm is globally
convergent.

Proof. Let D =SCM. Since L is row-allowable, there is at least one k such that /;;
is positive, then:
h,‘j = ZZikdkj >0
k

Vi, j. Thus, H is positive and, following the Definition 8, it is irreducible. O

However, when G =SCM is irreducible, due to a mutation operator that pro-
duces a non-positive but irreducible transition matrix, and L is row-allowable,
we cannot state that H is irreducible. Therefore, we cannot prove global conver-
gence in general. This situation can be understood with an illustrative example, see
Figure 7.2. In this Figure, we consider that the population is concentrated in the
region of attraction of a local optimum, which is not the global optimum. Using
a mutation with compact support, the population is able to escape from the local
minimum in n > 1 steps. But if the local search is applied to all individuals at ev-
ery generation, the population will never escape from the local minimum in this
situation.

Nevertheless, it is possible to guarantee convergence if the number of individuals
selected for local search ¢ is smaller than the population size u. The result is stated
in the following theorem:

Theorem 2. If 6 < u, SCM is irreducible and L is at least row-allowable, then H
is also irreducible (but not positive in general). Therefore, the archive population
will converge to the solution set and the hybrid algorithm is globally convergent.
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(A)

Fig. 7.2 (A) The population of an evolutionary algorithm at a given iteration is stuck in
the region of attraction of a local minimum. (B) A mutation operator with compact support
produces new solutions inside the same region of attraction, as shown in the figure. In the next
evolutionary cycle, the local search will concentrate the population, including the mutated
individuals, around the local minimum. The population has no chance of escaping the local
minimum in this situation

Proof. In this case, there is a positive probability that the individual(s) not selected
for local search is(are) able to escape from the local minimum in n > 1 steps due
to the irreducible mutation. Therefore, In such that hl(j'-l) > 0 and hence the product

H = L(SCM) will be irreducible when ¢ < . O

Finally, we need to analyze the situation when the local search operator is not ap-
plied at every generation, but at every constant number of generations, let us say, at
every ny generations. The transition matrix becomes:

H:L§CM><SCM><---XSCN£ (7.17)
nL?iI/nes
then:
H" = (LG™)" (7.18)

For this situation, we have the following result:

Theorem 3. If 6 < i, G = SCM is irreducible, L is at least row-allowable, and the
local search is applied at every ny generations, then H is also irreducible (but not
positive in general). Therefore, the archive population will converge to the solution
set and the hybrid algorithm is still globally convergent.

Proof. The hybrid algorithm using local search at every n; generations can be seen
as a hybrid algorithm with an extended generation, that is, one in which the local
search is applied first and then the selection, crossover and mutation operators are
applied ny, times. Since G is irreducible, the sequence of n; iterations of G is also
irreducible, i.e., G is irreducible. Consequently, H= LG". remains irreducible
from Theorem 2. a
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Therefore, given the considerations above, the hybrid algorithm using an explicit
local search phase is also globally convergent as long as the non-hybrid algo-
rithm is globally convergent. The local search phase will not affect this property
except when the mutation is irreducible and the local search is applied to all
individuals.

This global convergence analysis by means of Markov chain theory allows us
to state only if the algorithm is globally convergent or not under the very general
criterion considered previously. The analysis does not say anything about the con-
vergence rate of the algorithm. For example, the random search algorithm, using
uniform sampling in the search space, is globally convergent under the Markov
chain analysis, because its transition matrix is positive. As long as we use an archive
population to store the best solutions, the random search is globally convergent.
Nonetheless, assessing the global convergence property of an algorithm is an ob-
vious requirement to calculate its convergence rate. Moreover, strategies like the
random search and simple enumeration are very inefficient in practice. The tran-
sition matrices L, S, and C do not affect the global convergence of the algorithm,
which stands on the transition matrix M. This is important, but they may affect its
convergence time. As a consequence of the No Free Lunch theorems [40], an evo-
lutionary algorithm can outperfom the random search for a given class of problems,
when the local search and crossover operators exploit some knowledge of that class
of problems, or implicitly rely on some common structure of these problems. On
the other hand, simple random search does not exploit any structure at all. Evolu-
tionary algorithms are far from being random search methods, because the matrices
L, S, and C can improve the performance of the algorithm in comparison to simple
random search for a specific class of problems.

7.3.2 Computational Cost

The MA has the potential of converging in less generations, because reaching any
of the basins around the global optima gives more chance of achieving the optimal
solutions through local search. Of course, that comes at the price of a more expen-
sive generation. Consequently, even though the hybrid algorithm converges in less
iterations, on average, it is not useful in practice if it takes more time than the con-
ventional one does. For practical purposes, we require that the total optimization
time, on average, by using the hybrid algorithm be smaller than the total time, on
average, needed when using the non-hybrid algorithm. We discuss this relation in
this section.

Before proceeding, we turn to computational complexity issues first. The quantity
(N) is hereafter termed the averaged number of generations. We introduce (T') as
the averaged total optimization time, which is of more practical interest. We can
estimate the time complexity of an evolutionary algorithm to converge in a given
problem as:

O(,A,&,ny)(N) =[O (1, 1,8 ,nx) + Oc(€)] (N) (7.19)
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where O,(-) is the number of operations in the reproduction step and O,(-) is the
number of operations in the evaluation step. They are related to parameters of
the algorithm and the number of variables n,. The complexity of the reproduction
operators of EAs is polynomial.

The number of solutions generated by Algorithm 7.1 at generation k is 1 + Ak.
The operation of building the local data has a worst case complexity of O((u +
Ak)Npny), where Ny, is the maximum number of points allowed in the local data
set .Z. The cost of the generation of each approximation by the multiquadric RBF
technique is dominated by the assembling of the R matrix, which is of O(nN;m)
because we need to calculate the pairwise distances of Ny points and m centers.
Of course, many local approximations are generated with less than Ny points. The
computation of the pseudo-inverse has complexity of O(m?). Finally, considering
all objective and constraint functions, we get O((1 + ng +ny,) (nNpm +m?)).

Finally, the cost of the solution of the auxiliary problem by the SQP method
can be roughly estimated as follows. The cost of evaluating the multiquadric model
is of O(nym). The computation of the gradients of all functions in the auxiliary
problem requires (1+n4+n;) evaluations of the multiquadric approximations, since
the gradients can be obtained inexpensively together with the evaluations of the
approximations. Therefore, we can estimate a complexity of O((1 + ng + ny,)n2m)
for solving the local search problem.

We can see that the complexity of the approximation-based local search is small
and the polynomial complexity of usual EAs is preserved in the </-MA. The
approximation-based local search adds the operations associated with local data
assembling and approximation building, which have polynomial complexity, and
increase storage requirements, but this increase in storage is linear. The computa-
tional complexity of the evaluation step depends on the calculations made by the
black-box function. The overall cost of this step is reduced in our framework by
evaluating some individuals with low accuracy and thus less computational effort.

The complexity analysis is important but limited because the complexity of the
evaluation step is unknown. The overhead of the local search can be quantified as
follows:

(Tg) = (ute+1,)(Ng) (7.20)

(Tu) = <me+tr+ }Zm) (Nu) (7.21)

where (T;) and (T ) are, respectively, the averaged total time consumed by the stan-
dard EA and the MA to converge to the solution within a given accuracy; (Ng) and
(Npy) are, respectively, the averaged number of generations required by the standard
EA and the MA to convergeE; t, is the time consumed to evaluate one solution; ¢, is
the time consumed by the reproduction step; #;; is the computational time consumed
by the local search of one individual.

3 (Ng) and (Ng) can represent the theoretical mean time in the Markov chain or the sample
mean over a given number of independent runs.
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By imposing the condition (Ty) < (Ti) and assuming #, >> t,, which is usually
the case in CAD problems, we have

te 1
‘ o - <NG> [}
(ure+ 21 (1+.2.%)

Based on this relation, we observe that even if the hybrid algorithm converges in
less generations (on average) compared to the basic algorithm, (7y) can be greater.
The more significant the amount (6 /ny,)t;;, compared to it., the smaller the value
(Ny) should be in comparison to (Ng) to satisfy the initial condition (Ty) < (Tg).

When using an indirect local search, by means of approximated functions, we can
have f;; << t,, that is, the time to evaluate a solution is dominant in the problem. In
this case, if (Ny) is slightly smaller than (Ng), then the initial condition will be sat-
isfied and thus the additional complexity introduced by the methodology would be
justifiable. This relation emphasizes the context of problems in which the proposed
methodology can be considered helpful.

This section showed that as long as we can say that the EA is globally convergent
under Markov chain analysis, the local search operator preserves this characteristic.
Moreover, the approximation-based local search operator preserves the polynomial
complexity of standard evolutionary algorithms, and the additional complexity in
the memetic algorithm is not dramatic and would be acceptable in some applica-
tions. The final relations developed show under which conditions the hybrid algo-
rithm is advantageous. These relations show that the proposed methodology can be
very interesting for expensive optimization problems, in which the evaluation time
t, of a single solution is very big in comparison to the time required for performing
the normal operations of the algorithm, including the local search. This scenario,
commonly found in CAD problems, is the one in which the additional complexity
of the memetic algorithm is justifiable.

(Ny) < (Ng) (7.22)

7.4 Numerical Results

7.4.1 Analytical Problems

In this first experiment we apply a typical genetic algorithm configuration, from the
framework discussed in Section 2, to analytical unconstrained optimization prob-
lems. The goal here is to observe the effect of the local search on the convergence
speed of the evolutionary algorithm in terms of the number of generations. For this
purpose, we consider the minimization of the following functions:

ny—1
A= 3100 (F —xi1) +(1—x)>, —2<x <2,k (7.23)

i=1

1
fo(x)=2.6164+ > 0.01 [(x;+0.5)* —30x7 —20x;], —6 <x <6, Vk (7.24)

x i1
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f3(x) = 10nc+ Y, [x7 — 10cos(27mx;) ], —5 <x <5, Vk (7.25)
i=1

The function f; is the Rosenbrock function, which is a unimodal and non-convex
function. Despite the apparent simplicity of this function, it is notoriously hard for
evolutionary algorithms in general. The function f; is a multimodal function with
a moderate degree of multimodality, with local minima located at the corners of
the hypercube C = [+4.4538 ... +4.4538]. The function f3 is the Rastrigin func-
tion, with a high degree of multimodality. The Rastrigin function is another difficult
problem as it defines a search space with many local optima, due to the combination
of a sinusoidal and a quadratic function. All problems were solved with n, = 4.

Both the GA and the <7-MA shared the following setup: t = A = 50 and £ =
1; ES(u, ) for the substitution; roulette wheel as selection operator; real-biased
convex crossover; Gaussian mutation with p,, = 0.1. The only stop criterion is the
maximum number of generations, set as 200. For the .o/-MA, the maximum number
of points used to build the local approximation is Ny, = 200. The local search was
applied to the best individual in the offspring at every generation, hence ¢ = 1 and
ny = 1.

Due to the stochastic behavior of both algorithms, we need to perform a given
number of runs to draw meaningful conclusions. Therefore, each algorithm was
executed 40 times on each problem. Figure [7.3] shows the mean convergence of
the GA and the <7/-MA on each problem. As we can see, the memetic algorithm
converged faster than the typical GA on these problems. These results confirm the
hypothesis that the local search speeds up the convergence of the genetic algorithm.

Table [Z1] shows the success rate of both algorithms on all problems, as well as
an estimate of the average number of generations to converge (N). The maximum
number 200 is used for those runs in which the algorithm has not converged. This
Table shows that the local search not only has improved the convergence speed of
the algorithm but also it has increased the success rate.

The smallest difference in (N) is observed in the Rastrigin function, while the
biggest difference appears in the minimization of f;. The Rastrigin function is
highly multimodal, therefore one would expect that the local search would not
present a great impact on the performance. The observed effect on the performance
may be understood by noting that the Rastrigin function is in fact a quadratic func-
tion plus noise. The local approximation is not capable of modeling this noise, due
to undersampling, specially in the first generations, but can capture the global trend
of the quadratic component in the objective function. The mean curves in Figure[Z.3]
clearly show a fast decrease in the first 15 generations. After that, the slopes of the
mean convergence velocity curves for both algorithms are similar. After some gen-
erations, the noise component was also “learned” during the evolutionary process,
then reducing the impact of the local search because the basins of attraction become
small. That is an interesting side effect of the approximation-based local search: it
can filter a highly multimodal function, capturing the global trend in the objective
function.
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Fig. 7.3 Mean convergence for the GA and its memetic version for (A) fi(x), (B) f2(x), and
(©) f3(x)

Table 7.1 Results for the analytical functions

Problem Algorithm Success rate (N)
filx) GA 22.5% 171.9
o/-MA 67.5% 105.0
H(x) GA 67.5% 106.8
o/-MA 95.0% 21.5
f3(x)  GA 7.5% 186.9
o/-MA 20.0% 166.5

The mean velocities for f; and f, present different slopes for a wider range of
generations, showing that the local search is having an important impact in the
search process. This is because f; is unimodal and f;, although multimodal, has
a low to medium degree of multimodality. The basins of attractions in f, are fairly
convex and present no obstacle for a gradient-based local search. This is why the
performance in f; is even better than in fi. The non-convexity of f; poses some
difficulty for the approximation, due to the gradual slope of the “banana” region,
and also for the local search.
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In these analytical problems, the local search was the most time-consuming step.
The overhead of the local search is in this case very high, because the evaluation
of the objective functions is very fast. Therefore, in these problems, although the
memetic algorithms converged in less iterations, they took much more time to do so.
Nonetheless, we can estimate the minimal value for ¢, that would make the memetic
algorithms converge in less time using the relation in (Z.22). For each analytical
problem, we have monitored the mean times in seconds taken to perform the local
search of one individual #;; and we can use the values in Table [Z1] as rough es-
timates of (Ny) and (Ng). Using these values in (Z.22), we get 7, min = 71ms for
f1(X), te.min = 12ms for fi(x), and , min = 310ms for f;(x). Therefore, if the time to
evaluate f1, f>, and f3 was at least some tenths of a second, the memetic algorithm
would have converged in less time than the genetic algorithm (on average), showing
that the overhead of the local search is not that significant in expensive optimization
problems.

7.4.2 Electromagnetic Benchmark Problem

The TEAM Workshop problem 22 was proposed in [3] and is known as a bench-
mark optimization problem in electromagnetics. The problem consists in optimizing
the dimensions of a super-conducting magnetic energy storage (SMES) device with
two solenoids. Such a device has many relevant applications and an optimal con-
figuration for it is an important issue to resolve. This problem has three distinct
objectives:

e The stray field, evaluated 10m away from the device, must be as small as possible;

e The stored energy must be equal to 180 MJ (50 kWh);

e The physical condition that guarantees the superconductivity, named the quench
condition, must not be violated.

Figure [7.4] shows the geometry of the problem for the computational model. The
stray field is evaluated at 21 points along the lines (y = 10m;0 < z < 10m) and
(z = 10m;0 <y < 10m). This radiated field by the SMES may be formulated as
the summation of the contributions of each of the two loops, given by the numeric
solution of integrals derived from the Biot-Savart law. We may evaluate the energy
through the Finite Element Method (FEM), using a magneto-static formulation with
magnetic vector potential A, considering the axis-symmetry to simplify it into a 2D
problem, as shown in Figure [Z.4

The full-version of the problem has eight optimization variables: the current
density in both coils and the coil shapes, defined by the radius, height and width
of their 2D cuts. Nonetheless, a simplified version with only three variables can
also be defined, in which the dimensions of the outer coil are optimized. The vari-
ables r| = 2.0m, hy = 1.6m, di = 0.27m are respectively the radius, the height and
the width of the inner coil. The variables 2.6m < r, < 3.4m, 0.4m < h, <2.2m,
0.1m < dp < 0.4m represent the same for the outer coil. J; and J, are respectively
the current density in the inner and outer coil, both equal to 22.5MA /m?.
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Fig. 7.4 Finite Element Method (FEM) model of the SMES device

The specifications above are translated into the optimization problen@:

2

minf(x) = \/211 212:11 |Bstmy,'|
xe.7 (7.26)
subject to: { g(X) = Bmax —4.92T <0
h(x) = |E — 180MJ|/180MJ = 0

where By qy, is the value for the magnetic flux density evaluated in one of the 21
points, Bmax is the biggest value for the flux density and is related to the quench
condition, it cannot be greater than the value of 4.927T, and E is the energy value
obtained by the FEM.

The accuracy parameter is the mesh density, and thus the number of nodes
in the mesh, for the FEM. Fig. shows the convergence of the energy value
with the number of nodes. The list of values for the accuracy parameter is € =
{1.0,0.5,0.2,0.1}. Table shows how the number of nodes and the computation
time vary with €.

In order to compare instances of EAs and MAs in this problem, we use the mean

convergence given by
_ F(x € Ay)
¢(n) =log (\/f(x eA1)>

We applied two instances of the generic structure in Algorithm [Z]] with and
without the approximation-based local search. The parameters of the local search
are 0 =5, np =4, N, = 400. One instance is a Genetic Algorithm (GA) with

6 The square root is not present in the original formulation [B]. We use it here just to make
the objective function smoother.
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Fig. 7.5 Convergence with respect to the mesh density (energy value)

Table 7.2 Varying the mesh density

€ nodes to(s)? fe

1.0 1024 0.7

0.5 3777 1.0 ~1.5
0.2 22998 3.6 ~5
0.1 91246 16.0 ~ 23

¢ Running on a Windows computer, Intel Core 2 Duo, 2 GB RAM.

real-biased crossover [@], Gaussian mutation, and mutation rate of 0.1. The other is
a Differential Evolution Algorithm (DEA) [@], with convex crossover for the mu-
tant vectors, Gaussian mutation, and mutation rate of 0.1. In Fig. we illustrate
the mean convergence of GA, DEA, and their memetic versions. One can see that
DEA performed better than the GA in this problem. Also, both algorithms presented
higher convergence rate when using the approximation-based local search.

In the experiments in Fig. all evaluations were performed with the same
accuracy for all individuals (¢ = 0.2 and 7, = 3.6s). Also, #;; was about 1.4s on
average and 7, was less than 1ms on average, making 7, >> t,. Using these values
in (Z22), we get (Ng) < 0.988(Ng), showing a negligible overhead for the local
search. Therefore, if the hybrid algorithm takes less generations, it will take less time
to converge in this problem. Using direct local search, i.e. without approximations,
the time to perform the local search of one individual #;; becomes two times greater
than the time to evaluate the whole population in this problem, greatly increasing the
overhead of the local search phase. Although the MA with direct local search usually
converges in less generations than the «7-MA, its local search is very expensive,
increasing the total time for the optimization process.
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Fig. 7.6 (A) Mean convergence for the GA and its memetic version. (B) Mean convergence
for the DEA and its memetic version

Finally, we introduce the varying accuracy approach with the parameters 7, = 20
and N = 40%. The mean convergence curves and the mean number of evaluations
were similar, but the overall optimization time was greater when using fixed accu-
racy. By comparing the memetic version of DEA using fixed accuracy (¢ = 0.1)
all the way and using the varying accuracy approach, we observe that the latter
takes only 9% of the computational time consumed by the former to achieve the
same level of solution quality — the level c(n) = —1 in the graph. Using the list
€ =1{1.0,0.5,0.2} and comparing again the fixed approach (¢ = 0.2) and the vary-
ing approach, the latter still takes about 70% of the computational time consumed
by the former. This illustrates how the combination of varying accuracy in the eval-
uation of candidate solutions and approximation-based local search operators can
save computational effort in expensive CAD problems, while achieving solutions of
good quality.

7.5 Final Remarks

This chapter described a framework for expensive optimization that is based on the
combination of &7-MAs and varying the accuracy of the black-box functions during
the optimization. The approximation-based local search should take into account the
fact that some evaluations are performed with greater accuracy than others, when
building the local approximations. The methodology described in this chapter has
the following benefits:

e [t can tackle constrained mono-objective optimization problems with any number
of inequality and equality constraints. The approximation-based local search can
be seen as a constraint-handling technique for expensive problems;

e Different approximation techniques can be combined, such as quadratic mod-
els and neural networks, but the WLS method should be incorporated into the
generation of these models;
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e [t is possible to choose which nonlinear functions are approximated. If there
are analytical or fast-to-evaluate functions in the problem, they do not need to
be approximated. Situations like this are easily accomodated by the framework
described in this chapter.

Finally, it is worth noting that even though the problem studied here is relatively fast
to evaluate, the overhead of the local search is still negligible. More complex real-
world CAD problems, ranging from medium to large scale applications, could take
minutes to hours to complete one evaluation, specially when dealing with nonlinear
and transient 3D problems. In this scenario, any new approach for saving compu-
tational effort is welcome, and MAs employing approximation-based local search
operators are very promising. Also, we illustrate that high accuracy evaluations are
not needed throughout the whole optimization process, saving additional effort. It is
reasonable to conjecture that other complex problems in engineering optimization
will benefit even more from the proposed methodology.
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Chapter 8

Opportunities for Expensive Optimization with
Estimation of Distribution Algorithms

Alberto Ochoa

Abstract. The chapter claims that the search distributions of Estimation of Distri-
bution Algorithms (EDAs) contain much information that can be obtained with the
help of modern statistical techniques to create powerful strategies for expensive op-
timization. For example, it shows how the regularization of some parameters of the
EDAs probabilistic models can yield dramatic improvements in efficiency. In this
context a new class, Shrinkage EDAs, based on shrinkage estimation is presented.
Also, a novel mutation operator based on a regularization of the entropy is discussed.
Another key contribution of the chapter is the development of a new surrogate fit-
ness model based on the search distributions. With this method the evolution starts
in the fitness landscape, switches to the log-probability landscape of the model and
then backtracks to continue in the original landscape if the optimum is not found.
For the sake of completeness the chapter reviews other techniques for improving
the sampling efficiency of EDAs. The theoretical presentation is accompanied by
numerical simulations that support the main claims of the chapter.

8.1 Introduction

Nowadays, the optimization of computationally expensive black-box functions has
become a task of great practical importance that requires new theoretical develop-
ments. In particular, in the area of evolutionary algorithms (EAs) several approaches
have been studied so as to reduce the number of function evaluations.

The main message of this chapter is: the area of Estimation of Distribution Al-
gorithms (EDAs) [ﬁ%, , @, ﬂ, @], a state-of-the-art branch of EAs, can play a
leadership role in expensive optimization. However, it is important to recognize that
dealing with expensive optimization problems within the framework of EDAs is
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a very complex issue that has to be attacked from several different directions at
the same time. Therefore, our main point is the following affirmation: the search
distributions contain a lot of information that can be extracted with the help of mod-
ern statistical techniques to be used to elaborate powerful strategies for expensive
optimization.

To begin with, it is crucial to understand that in EDAs the distribution is the
central concept, as opposed to populations and individuals. We believe that it is
from this understanding that these new research opportunities will arise.

In [@] several developments of this idea related to both the entropy of the search
distributions and the entropy of the optimization problems were presented. Two
interesting issues were raised: maximum entropy and entropic mutation, and the
important role of the Boltzmann distribution in the theory of EDAs was stressed.

The influence of the quality of the utilized probabilistic model in the performance
of an EDA algorithm was another issue investigated in [@]. It was made clear that
building a ”good” model is important, but at the same time it was recognized that
”good” does not always point out the model with the most information.

Throughout the chapter the above-mentioned issues are revisited and other un-
published or published elsewhere are presented. Our goal is to highlight the main
directions that can be taken today to boost the capabilities of current EDAs to cope
with expensive problems.

The outline of the chapter is as follows. To begin with, a brief introduction on Es-
timation of Distribution Algorithms (EDAS) is given in Sect. Then, we review
three different perspectives on a basic problem: enhancing the sampling efficiency
of EDAs. This occurs in Sect. [83] which is divided in three subsections: improv-
ing selection methods (Sect. [§.3.1), accelerating the convergence (Sect. and
building statistically efficient sampling distributions (Sect.[8.3.3).

Section[8.4lpresents the first of the two main contributions of this chapter: amethod
and an algorithm that do not evaluate all visited search points. The evolution occurs
in two different landscapes, in one of them the fitness is estimated. The method is
called Partial Evaluation with Backtracking from Log-Probability Landscapes.

Section is devoted to regularization, a new important area of research
in EDAs. We will show how the regularization of the probabilistic models used in
EDAs can yield dramatic improvements in efficiency. In Sect. [8.3.1] we show how
to design mutation operators that do not destroy the learned distributions. This tech-
nique, called Linear Entropic Mutation (LEM), increases the entropy of
the probabilistic models and produces higher percentage of success rates and fewer
function evaluations. It is a natural operator for EDAs because it mutates distribu-
tions instead of single individuals. Finally, in Sect. [8:3.2] the second main contribu-
tion of our work is presented: an efficient technique for accurate model building with
small populations. With this we are opening the doors of EDAs research to a new
class of efficient algorithms based on shrinkage estimation. We propose the name
Shrinkage Estimation of Distribution Algorithms (SEDA) for
the whole class. We give a brief introduction of the SEDAs by means of a detailed
discussion of one of its members: SEDA,,, (an algorithm that uses the multivariate
normal distribution).
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The chapter includes an appendix dedicated to the B- functions -a new bench-
mark function model especially designed for EDAs. Some of the functions used in
our simulations are of this type. Finally, the conclusions of the chapter are given.

8.2 Estimation of Distribution Algorithms

A fundamental concept in the field of EDAs is that of search distribution,
which is the distribution from where new points are sampled at every evolutionary
step. In this chapter we are interested in EDAs that construct Bayesian network
models of the search distributions.

The basic evolutionary cycle of an EDA is as follows. The algorithm uni-
formly samples the solution space to create an initial population. The population
is then updated for a number of generations. First, a set of promising solutions
(the selected set) is chosen using truncation, tournament or Boltzmann se-
lection. A Bayesian network that captures the correlations of the selected set is
constructed and new solutions are simulated from it. Finally, the new solutions
are combined with the old ones and a new population — with better properties — is
constructed. The algorithm iterates until some termination criteria are met.

Learning the Bayesian network is the critical step. Some algoritms use a greedy
procedure that, starting from an empty (complete) graph, at each step adds (deletes)
the edge that improve a certain metric, which is defined over the set of all acyclic
graphs. Other algorithms, like the one we shall present in Sect. [§.4.3] use statistical
tests instead.

After more than ten years of research there exists a tremendous amount of liter-
ature about EDAs. The interested reader can easily find many detailed presentatios
on the topic. The references of this chapter might be good starting points.

The Boltzmann distribution has been recognized by some authors [@, , ,
] as a crucial ingredient of EDAs. In Sect. it will play an important role.
Therefore, in the following section we give a brief introduction to a Bayesian EDA
that uses Boltzmann selection.

8.2.1 Boltzmann Estimation of Distribution Algorithms

Hereafter, X; represents a scalar random variable and p (x;) = p (X; = x;) its prob-
ability mass function with x; € X = {0,1,...,K}, Note that p (x;) and p (x;) refer
to two different random variables, and have in fact different probability mass func-
tions, p (X; =x;) and p (X; = x;), respectively. Similarly, X = (X;,X»,---,X,) de-
notes a n-dimensional random variable, x = (xj,x2,---,x,) is a configuration and
p(x1,x2,- - ,x,) represents a joint probability mass.

Definition 1. For B > 0 define the Boltzmann distribution of a function f(x) as

BIE) P
P8 = g ) = Z,(p)

where Zy(B) is the partition function.



196 A. Ochoa

We also use Zg ¢, but to simplify the notation 8 and f can be omitted. If we follow
the usual definition of the Boltzmann distribution, then —f(x) is called the free
energy and 1/ the temperature of the distribution. The parameter 8 is usually
called the inverse temperature.

Closely related to the Boltzmann distribution is Boltzmann selection:

Definition 2. Given a distribution p(x) and a selection parameter 7y, Boltzmann
selection calculates a new distribution according to

~p) V()
3, p(y)ert)

Boltzmann selection is important because the following holds [Iﬁ]:

p'(x)

Theorem 1. Let pg ;(x) be a Boltzmann distribution. If Boltzmann selection is used
with parameter v, then the distribution of the selected points is again a Boltzmann
distribution with

eBH7)f(x)

o) —
P = 3, eB+170)
On the basis of the above, in [Iﬁ] the Boltzmann Estimation of Distribution Al-
gorithm (BEDA) was introduced. It is an EDA with Boltzmann selection and an
annealing schedule for the temperature [@].

Lemma 1. Af (1) = ¢/\/Vars(B(t)) leads to an annealing schedule where the av-
erage fitness, Wy(B3(t)), increases approximatively proportional to the standard
deviation:

Wi (Bt +1)) = Wr(B (1)) = C\/Varf(ﬁ(t))

where c is a constant and Vary(B(t)) = 0'}%([3 (t)) is the variance of the fitness func-
tion. This annealing schedule has been called Standard Deviation Schedule (SDS).

The exponential complexity of computing the partition function can be avoided
if the Boltzmann distribution is approximated with a tractable distribution. There
are several ways of accomplishing this approximation, However, for the purposes
of this chapter we restrict ourselves to the special case covered by the Factoriza-
tion Theorem [27], for dealing with additively decomposable functions of bounded
complexity. This theorem defines how and under what conditions the search distri-
butions associated to discrete functions can be factorized. The factorization follows
the structure of the function and is only exact if the function obeys certain struc-
tural constraints known as the running intersection property [14]. Besides, we shall
assume that we have a good Bayesian-network-learning algorithm capable of dis-
covering the underlying function’s structure, which is not distorted (under the above
conditions) by Boltzmann selection. A BEDA with a Bayesian network probabilistic
model is a Bayesian BEDA algorithm. One example is given in Sect.[8.4.3]
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8.3 Three Opportunities for Enhancing the Efficiency of EDAs

The main contributions of this chapter will be presented in Sect.[84land in Sect.
In one case we build an accurate approximation of the search distribution to con-
struct a surrogate model for the fitness function. In the other case, the challenge is
to build accurate models of the search distributions from small samples.

For the sake of completeness, in this section, we want to discuss briefly three
others techniques aimed to increase the sampling efficiency of EDAs. The central
concept is again the probability distribution. We believe that all these methods de-
serve more attention from those scientists interested in experimenting with EDAs in
the area of expensive optimization.

8.3.1 Right-Sized Selection

What are the correct number of points that the selected set should have?

The answer that one can give to this question based on the current practice
depends on the selection method used. For truncation selection a fraction of the
population size (often 30%) is the popular choice, whereas for tournament and
Boltzmann selection the widely accepted practice is to create selected sets as large
as the corresponding populations.

The experiment shown in Table [B.1] and the discussion of this section is taken
from [44]. An EDA with Boltzmann selection that learns a Bayesian network by
optimizing the BDe scoring metric is investigated with the DeceptiveKE function of
order three. The size of the selected set is equal to f * N, where N is the population
size.

To improve the 83% success rate (%Success) found in the table we have two op-
tions: we can increase the population size or the size of the selected set. The later
gives the best result: a success rate of 96% is obtained without making any additional
function evaluation. In fact, the number of evaluations drops. The alternative pro-
duces an increase of the number of function evaluations. Note that according to the
experiment, the increase of f does not seem to influence the convergence time, G.

Table 8.1 A Boltzmann EDA with Bayesian learning and the DeceptiveK (K = 3). The cell
triplets mean %Success, G, (convergence time), #Evaluations (number of function evalua-
tions). The sizes of the population and selected set are N and f N respectively

N f=1 f=4 f=12
400 83,7,2689 93,6,2546 96,6,2408
450 94,6,2844 99,6,2645 99,6,2614
500 99,6,3025 100,6,2920 100,6,2750

! Miiehlenbein’s K-Deceptive function, which is easier than Goldberg’s Deceptive3.
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Table 8.2 Probabilistic Elitism. PADA with Goldberg’s Deceptive3. (See ] page 94)

Elit-size Prob-Elit-size G, 9oSuccess #Evaluations
0 0 6.75 £ 1.43 79 3375

150 0 7.04 + 1.46 100 2614

300 0 9.07 +2.29 100 2114

450 0 14.90 + 491 20 -

300 5 8.05 + 1.60 96 1945

300 10 7.36 £ 1.68 98 1835

An important equation in EDAs is the following:
plrt+1)~p'(x1). 8.1)

We call this equation hypothesis of similarity, others authors refer to it indirectly
by claiming that EDAs do the search in promising zones of the space. Note that
the symbol ~ means there are two distributions, that despite their similarity, are not
the same. This subtle detail seems to be ignored by most of the papers on EDAs.
Some of them usually claim that the distribution of the selected set p* (x,t) is the
one that is used as the distribution p (x,z + 1); but is this really so? Actually, what
EDA does is to construct the distribution p (x,z 4 1) from a sample, the selected set,
which comes from the distribution p® (x,7). This implementation has the following
important problem: if the sample size is reasonably smaller than the size determined
by the sample complexity of p* (x,t), then p (x,z + 1) = p* (x,¢) will no longer hold.
It does not matter how well we know p* (x,1); if there are not enough points in the
sample, the equation will not be correct. Let us recall that the sample complexity
is defined as the minimum sample size needed in order to recover the distribution
where the sample comes from.

Fortunately, it is possible to improve the quality of the selected set, so that it al-
lows a better estimation of p (x,f+ 1), without increasing the number of functions
evaluations. In Boltzmann selection, for example, it is enough to increase the num-
ber of points sampled by selection. All this means that, in principle, we have the
capability of increasing the efficiency of the EDA algorithm without affecting its
efficacy. Another much more important fact is that this gives the possibility of using
EDAs with small populations.

The right-sized selection may create favorable conditions for the technique we
will introduce in Sect. [§.4] because it allows a better estimation of the distribution
plx,t+1).

8.3.2 Probabilistic Elitism

Even a simple evolutionary operator like elitism can profit from the EDA emphasis
on distributions. If we can compute the modes of the search distribution why do not
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Table 8.3 The impact of using maximum-entropy search distributions. (See [@])

N YSuccess Gce %SuccessME GcME

200 0 - 2 8.5+0.7
600 8 97+15 69 74 +1.1
800 10 87+32 90 7.0 +£1.2
5000 92 72+1.2 100 5.8+09

ME Results when maximum-entropy search distributions are used.

grant them the right to be in the next population as it is done with the best current
individuals? The term probabilistic elitism was chosen for this method in [@].

Table[8.2] shows an interesting experiment about the synergy between traditional
and probabilistic elitism. The algorithm used is PADA, the Polytree Approxima-
tion Distribution Algorithm 43], one of the pioner EDAs. The algorithm learns
polytree Bayesian networks from the selected populations. It makes independence
tests to construct the skeleton and to orient some edges, then a BIC score guides a
hillclimbing local search to orient the remainder edges.

Notice that increasing the classic elitism decreases the number of function eval-
uations, but this has an upper bound beyond which the efficacy (%Success) of the
algorithm drops (see Elitism = 450). Adding the five or ten best configurations of
the search distributions accelerates the convergence of the algorithm and produces
an additional reduction of the number of evaluations. As a result of the combined
use of the methods 1540 function evaluations were saved. Simple, but effective! It
is worth noting from the point of view of expensive optimization (see Sect. [8:4.2),
that the probabilistic elite can be included in the new population without being
evaluated.

When it is possible to build a junction tree for a discrete problem, the probabilistic
elite —the M most probable configurations— can be computed with the Nilsson’s
algorithm [@]. Alternatively, the algorithm introduced in [@], which uses max-
marginals instead of a junction tree, can be used for arbitrary discrete graphical
models. For some continuos problems it is also possible to sample zones of high
probability with similar results, for example, around the mean of the multivariate
normal distribution.

We look at the probabilistic elitism as an acceleration method that compensates
for the delay introduced by classic elitism and the regularization techniques that will
be discussed later in this chapter.

8.3.3 Maximum Entropy

In EDAs, two good reasons for building a sampling distribution of maximum en-
tropy are: 1) the sample size is limited and we know that we will not be able to
estimate correctly marginals of order larger than a given low integer K; 2) a model
of higher order has been estimated with statistics of lower order. The first scenario
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corresponds to a common situation in expensive optimization. An example of the
second is shown in Table[8.3]

Two EDAs use the same structure learning algorithm, which only makes indepen-
dence tests of order two to approximate a polytree distribution. The point is that the
estimation of the conditional probability associated to a variable with more than one
parent involves marginal distributions of order larger than two. Therefore, although
the structure can be obtained with a small population the sampling distribution may
need a larger population size to learn its parameters.

Parameter learning at the simulation step is different for each EDA. The first
algorithm does probabilistic logic sampling with the maximum likelihood (MLE)
estimates of the conditional probabilities. The second algorithm, builds a junction
tree, fixes the second order marginals and for each clique computes the maximum
entropy distribution that is consistent with the fixed marginals. Note that without
maximum-entropy (second and third columns in Table [83)) the algorithm needs six
times more function evaluations to achieve a 90% success. For details see page 29
in [@].

If we have the joint distribution with the maximum-entropy among all the joints
that fulfill a given collection of marginals, choosing a joint with less entropy amounts
to adding some information that is not justified by the marginal constraints. The Iter-
ative Proportional Fitting (IPF) algorithm can be used to find the maximum-entropy
distribution [E, , E, ]. For large distributions, an efficient implementation of the
maximum-entropy algorithm was developed in (10, 23]. The general idea is to im-
prove the performance of IPF by combining it with the junction tree technique. It
consists of performing IPF locally on the nodes and passing messages to the neigh-
boring nodes. It has been proved that this converges to the unique maximum-entropy
solution, so it is equivalent to IPF. The reader is referred to ﬂjj for details on the im-
plementation of the method for computing maximum-entropy distributions of poly-
trees.

8.4 Evolutionary Backtracking from Log-Probability
Landscapes

In this section we present a novel computational scheme for decreasing the number
of function evaluations of an EDA algorithm without harming, or even improving
its convergence properties.

At every generation, if the EDA does not find the optimum it restarts the search
in the logarithmic space of the probabilities assigned to every configuration by the
current model of the selected set. If after searching for some generations in the log-
space the optimum is not found, the algorithm backtracks to its previous state in the
fitness function space.

Among other things, we will show that the success of the method depends on
the quality of the probability model built by the EDA algorithm. Therefore, as a
first step, we must choose an algorithm capable of building accurate models of the
search distributions.
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8.4.1 Selecting a Bayesian EDA Algorithm

Powerful Bayesian EDA algorithms for integer and real valued optimization were
introduced in [20] and [21]] (two of them, MMHC-EDA and TPDA-EDA, are shown
in bold in Table [84). Unlike most of the existing approaches these methods are
mainly based on tests of (in)dependence, in contrast to other well-known algorithms
like BOA [@] and EBNA [@] that only use scoring metrics. In the new algorithms,
the structure of the search distribution is learned with a modification of the algo-
rithms reported in [@, |i|]. The interested reader is refered to [IE] for a detailed dis-
cusion of sequential and parallel versions of these algorithms. The presentation that
follows is partially adapted from [@] and ].

The experiments of this section use the class of random B-functions that was
introduced in [@], later extended in [@] and further investigated in [@]. We have
included a short introduction to this benchmark in the appendix. We recommend
reading it before the remainder of this section.

Table[8.4shows that MMHC-EDA and TPDA-EDA do many fewer function eval-
uations than BOA and EBNA in a collection of ease uncorrelated problems. The
UMDA is the best, which is not a surprise because it knows the problem structure.

Table presents the success rates the MMHC-EDA and other algorithms
achieved with the hard random polytree B-function class: BF2B30s4-1245, for dif-
ferent population sizes. Notice the high value of the univariate entropies. As far as
the pairwise mutual informations belong to the interval [0.1,0.2] we can conclude
that the bivariate entropies are also high. Therefore, the algorithm must discover the
conditional higher order dependence structure of the problem to be able to find the
optimum.

The results are conclusive. UMDA does nothing due to the high univariate en-
tropies. BOA with k = 1 deals with bivariate marginals, which also have high en-
tropy. Interestingly, neither EBNA nor the other BOA behave better than BOA with
k = 1. The MMHC-EDA algorithm is the winner, it succesfully learns the problem
structure although it needs a large population due to the high entropy.

Table 8.4 Average results on 10 instances of a random class BF2B100s0-0012

N*4 9Success Gcb %Evaluations
UMDA 100 98.70 11.98 1198.78+3.01
MMHC-EDA 250 95.30 10.97 2742.65+9.61
TPDA-EDA 250 98.60 10.54 2635.65+8.64
BOA(kzl) 280 97.80 10.83 3034.19+11.48
BOA(k:3) 700 97.80 11.09 7765.13+£27.16
EBNA 150 97.10 28.85 4328.534+36.37

a critical population size - Minimum size to achieve 95% success rate.
b generation where the optimum is found.
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Table 8.5 Minimization in the hard class of random polytree B-functions, BF2B30s4-1245.
The cells contain the succcess rate

BOA BOA BOA MMHC
N UMDA k=1 k=2 k=3 EBNA EDA
300 333 46.67 23.33 13.33 30.00 40.00
500 3.33 50 56.67 43.33 26.67 53.33
1000 333 43.33 50 50 40.00 73.33
2000 333 43.33 50 53.33 43.33 100

In summary, we believe that MMHC-EDA is the best candidate for our purposes.
It seems to obtain accurate approximations of the search distributions, which is
highly convenient for the technique we will introduce in the next section.

8.4.2 Partial Evaluation in Boltzmann EDAs

The term Partial Evaluation (PE) was introduced in evolutionary compu-
tation to deal with the problem of evaluating evolutionary algorithms Wlth ex en-
sive fitness functions ]. Some related techniques are ﬁtness inheritance
variable-fidelity [Ia] and surrogate models [@ ﬁ

The name partial evaluation, which was borrowed from the literature on logic
programming, emphasizes the fact that a certain amount of individuals and/or pop-
ulations are not completely evaluated during the execution of the algorithm. In 31
the authors explored the feasibility of building a neural network model to predict
the fitness of individuals, based on information of the genotypes and fitness values
of their parents and the genetic operations performed.

Many PE strategies can be and have been implemented with genetic algorithms.
However, although there have been some interesting works with EDAs too, we
believe that there are still many research opportunities in this area.

In EDAs, a basic idea underlies the method: building a fitness surrogate model
using the probability distribution of the selected set. This has been called Partial
Evaluation of an EDA algorithm in [@]

In what follows we will discuss an experiment presented in [@] The results are
shown in Table [8.6

The Onemax function counts the number of 1s in its input variable. The Boltz-
mann Univariate Marginal Distribution Algorithm (BUMDA) is an EDA that as-
sumes probability independence among the variables and uses Boltzmann selection.
In the experiment the fitness function is evaluated during the first few (first col-
umn in the table) generations. Afterwards, the fitness surrogate model that will be
presented below is used to evaluate the population.

The table presents average results for 100 runs. The last row is left for the
case when no partial evaluation is used: convergence time G. = 7.86 (the count



8  Opportunities for Expensive Optimization with EDAs 203

Table 8.6 Partial Evaluation of the OneMax function with the Boltzmann Univariate
Marginal Distribution Algorithm (BUMDA). (See @], page 83)

Gpg G¢ 9Success #Evaluations 9%Estimated
1 4.77 48 5770 83

2 4.95 80 5950 66

3 5.47 95 6470 54

4 5.97 100 6070 43

- 7.86 100 8860 0

starts at 0), number of function evaluations #Evals = 8860, percentage of times
the function’s model was used %Estimated = 0 and the percentage of success
Yo Success = 100. The problem and population sizes were set at n = 60 and N = 1000
respectively. We used no elitism.

The third row, shows the results when the estimation starts at the fourth genera-
tion. This time the algorithm made 6470 function calls, but only 46% of them were
actual fitness evaluations. Therefore, 5883 functions evaluations were saved and still
we got a high percentage of success, 95%. Another interesting observation is that
with PE the algorithm converged faster. The reduction in the number of evaluations
is the result of the combination of a faster convergence and the use of the fitness
model. Notice, that in this case the algorithm converged two and a half generations
after the start of PE, but still before than the required number of generations without
PE.

It is worth noting that this example is just an academic illustration of the PE idea.
In reality, the function is easy and without PE such a large population size is not
needed. The point is that the quality of the PE fitness function model depends on the
quality of the search distribution as it will be shown below. As far as the structure
of the model is known, a large population size guarantees and adequate estimation
of its parameters.

We now introduce the used surrogate model. From Definition [II it is easy to
see that with BEDA, the optimization of f (x) amounts to the optimization of the

.1 . . .
function oe(pp.s () . The computation of the standard deviation annealing schedule

now should be carried out with the formula:

c.p
AB =
V%o, 0)

The problem with the above is that in general we do not know the distribution
py,p (x). However, we do know that the Factorization Theorem [@] tells us that
under certain mild conditions the Boltzmann distribution of additively decompons-
able functions has a computable Bayesian factorization. Denoting it by p?, B (x), we
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)

propose to use the function B as a PE model of f(x). This was the model
used in the experiment.

In practice, we deal with finite populations and therefore BEDA approximates the
Boltzmann distribution gradually. This is why better results are obtained when this
strategy of partial evaluation starts at the latter generations. There exist other PE
strategies. For example, it can be shown that for high probable configurations the
approximation is better. Thus, one could estimate a fraction of the most probable
configurations at the earlier generations.

We now try to quantify the magnitude of the error. Denoting A g (x) = f* (x) —

£ (@) and £ (x) =log (P ;(x)) /B +1og (Z (B)) /B. we obtain

P%‘f(x)
log <pﬁ,f(x)>
B

and taking the expectation with respect to the approximating distribution, we get

App (x) =

D () g @]
B = (8.2)
P s (x) B
The error expectation equals the product of the temperature times the Kullback-
Liebler divergence between the two distributions. Notice that the last two equations
further explain why the function approximation is better toward the end of the run:
B is larger.

One interesting observation, which deserves more study, is the fact that for this
function the search in the log-probability space seems easier than in the original
fitness landscape. In [@] the authors reported a similar behaviour of the UMDA
with the Saw function. According to these authors, the rugged fitness landscape
of the function is implicitly transformed into a fairly smooth landscape in a space
whose coordinates are the univariate probabilities. The algorithm performs a gra-
dient ascent on the transformed landscape and easily gets to the optimum. In this
regard the apparent merit of our PE technique is that it explicitly performs the
optimization in the probability space. These issues are the subject of ongoing
research.

Now the obvious question is whether or not the method can be applied to cases
different from those covered by the Factorization theorem. Equation [§.2] drops us a
hint. We can apply the PE method if our approximating distribution is close enough
to the Boltzmann distribution. This is valid for both discrete and real valued prob-
lems. In [@] a variant of Boltzmann selection with an annealing schedule for real
variables was reported. The algorithm proposed by these authors computes the mul-
tivariate normal distribution that minimizes the Kullback-Liebler distance to the
Boltzmann search distribution.

(Dpp ()
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8.4.3 A Simple Algorithm for Partial Evaluation with
Backtracking

We begin this section with a similar experiment to the one commented in the pre-
vious section. However, there are important differences: 1) truncation selection is

used instead of Boltzmann selection; 2) the fitness model is log (p‘[3 ¢ (x)); and 3)

the fitness function has proven to be quite challenging even when its dependence
structure is known.

It is interesting to explore the feasibility of using truncation selection with PE
because it is much faster than Boltzmann selection.

The function used in the experiment was designed in [@] using the B-function
formalism developed by the present author and outlined in the appendix. It is called
Ten Little Niggers (TLN) because its dependence structure is composed of disjoint
groups of 10 variables. The distribution is given by:

p(x) = p(xio | x1,%2- - ,x9) - p(x20 | X11,X12 -+ ,X19) -~ P(X50 | X41,X42 -+, X49)

In [[19] this function was proved to be very difficult for the well-known state-of-
the-art Bayesian EDAs: BOA and EMNA, which were not able to optimize (95%
success) the function with a population size of 10000 points. The MMHC-EDA,
however has a critical population size of 3000 points and makes about 19990
function evaluationg?.

Table[8. 7l presents the numerical results. The first column is the generation where
the PE starts from. For example, the first row shows the case when the fitness func-
tion is evaluated in two generations and the model is applied from the third until
convergence (second column). Under this conditions the algorithm converges as
average nine times in 100 runs. This is not too much, but when the PE starts at
generation five the success rate is already 83%.

The results of Table [8.7] suggest the following simple algorithm. At every gen-
eration, if EDA does not find the optimum it restarts the search in the logarithmic
space of the probabilities assigned to every configuration by the current model of
the selected set. In other words, the fitness model is used instead of the fitness func-
tion. Now, if after searching until Gy, in the log-space the optimum is not found
neither, the algorithm backtracks to its previous state in the fitness function space.
We can easily obtain an estimate of the average number of function evaluations that
this algorithm would make according to the results of the table. Taking the forth
column of the table as the percentage of times the algorithm converges in K runs,
we obtain after simple arithmetic operations an estimate of about 11000 evaluations
which amount to a saving of 45%.

We extended the MMHC-EDA with the described PE algorithm and produce
Algorithm[Il Only one new parameter has to be added: Gpg, the generation where

2 The TLN function and C code to work with it is available from the author.
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Table 8.7 Optimization of the B-function TLN with 50 variables. The reported averages are
computed over 100 runs. Algorithm: MMHC, N=3000, Elit=0, G,4,=20, 7=0.3

PE g art Mean Gen, #Evaluations %Success
3 6.77 6005.8 9

4 6.45 9004.5 42

5 6.66 12003.7 83

6 6.59 15002.5 93

7 6.49 17937.7 94

Table 8.8 Optimization of the function Trap5 with 30 variables. The reported averages are
computed over 20 successfuls runs. Algorithm: MMHC, N=4000, Elit=0, G,;;,x=12, Gpp=2

Selection Partial Evaluation #Evaluations %Success
7=03 yes 19360 60
7=03 no 21201 100
Boltzmann (N = Ny) yes 11611 100
Boltzmann (N = N;) no 16401 100

the application of the method starts from. Using this algorithm, we have confirmed
the predictions made in the previous paragraph.

At this point we conclude that the log-probability fitness model can be effective
with truncation selection at least for the investigated function. Unfortunately, this is
not always the case as the following example shows.

We investigate our method with the Trap function. It is a separable deceptive
problem proposed in [3]. Its global maximum is located at the point (L,1,...,1).

Given the function
trap(u) = k, foru=k
PU= -1 - u, otherwise

The function (we use k = 5) is defined as follows:

Trap(X') =Y, trap(Xii—i1 + Xkioki2 + - -+ Xi) (8.3)
i=1

This function has been used extensively in testing of EDAs and genetic algorithms,
and solving them has proven to be quite challenging in the absence of a correct
knowledge of its dependence structure.

Table [8.8] reveals several interesting issues. The first thing to notice is the sig-
nificant reduction in the success rate when PE is applied with truncation selection.
Besides, the decrease in the number of function evaluations is smaller than the one
obtained with Boltzmann selection. In the later case, a reduction of about 5000
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evaluations is achieved with the same 100% success. Notice that the best value is
about 46% of the maximum number of function evaluations for truncation selection.

It is worth noting, that the results shown in Table[8.§] were computed for a pop-
ulation size less than the critical value for 30 variables. For truncation selection the
critical value (97% success in 100 runs) is equal to 5000 and the average number
of function evaluations in this case is 23042. We have found that with Boltzmann
selection and PE we get a 100% success and an average of 11500 function evalu-
ations. This means that the average saving is of 51%. We also present, in Fig. [81]
the histograms of the number of function evaluations per optimization run. As it
can be seen near 90% of the runs are below 15000 function evaluations when PE is
combined with Boltzmann selection. In contrast, more than 95% of the runs without
PE require more than 20000 function evaluations and 70% of the PE runs need only
half of this amount.

Algorithm 1. MMHC-EDA + Partial Evaluation with Backtracking from Log-
Probability Landscapes (PEBLPL)

Sett 1
Randomly generate N >> 0 configurations
while stop criteria are not valid do
one-MMHC-EDA-step (f(x)) {// Evolution in fitness landscape }
if stop criteria are not valid AND (r > Gpg) then
save(t, current Population)
while stop criteria are not valid do
one-MMHC-EDA-step (logp(x)) {// Evolution in log-probability landscape}
end while
if optima are not found then
restore(t, Population) {// Backtracking}
end if
end if
end while

function one-MMHC-EDA-step (g(x))
Evaluate the current population with the input function g(x)
According to a selection method build the selected set SS
Find the structure of the probability model BN = MMHC(SS)
Estimate the parameters of p**(x,7) using BN and SS
Generate N new configurations from p(x,z + 1) ~ p*(x,1)
Sett «—t+1

endfunction

According to the results shown in this section we cannot still say under what
conditions it is possible to use truncation selection with the PE scheme proposed
here. We only know so far that for some functions this is posible. Obviously, this
topic needs more research. At this point, it is important to say that with the TLN
function the PE also works with Boltzmann selection. This is another confirmation
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Fig. 8.1 Histograms of the number of function evaluations per optimization run of the Trap
function. N = 5000. top) Truncation selection without PE. bottom) Boltzmann selection with
PE

of the theoretical ideas developed in Sect. and of the important role of the
Boltzmann distribution in the theory/practice of EDAs.

It is worth noting, that the proposed Partial Evaluation scheme is beneficial when
the actual fitness evaluation is expensive, in which case the above costs are indeed
negligible and the model developed in this section valid.

8.5 Regularization in Estimation of Distribution Algorithms

In this section we present theoretical and empirical evidences supporting the follow-
ing claim:

The regularization of the parameters of the search distributions can bring enor-
mous savings with respect to the number of function evaluations.

We discuss two examples. In the first one the entropy of the search distribution
is the parameter to regularize. Due to space constraints, we give just a small in-
troduction to the topic and leave the details for a forthcoming publication. In the
second example, the covariance matrix of a multivariate normal search distribution
is regularized. In this case we give more details and introduce a new EDA algorithm.

8.5.1 Entropic Mutation

Thinking of distributions when talking about mutation suggest mutating distribu-
tions instead of individuals. In [32] we proposed a method for doing so. The ap-
proach changes linearly the entropy of the distribution to achieve the amount of
disorder usually understood as mutation.
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Table 8.9 Entropic mutation of the search distributions. UMDA with OneMax function for
fixed population size

o 0 0.05 0.1 0.125 0.2
%oSuccess 17 74 97 100 99
#Evaluations 300 465 425 412 450

Table 8.10 A Bayesian EDA and the LEM mutation for the Goldberg’s Deceptive 3 function,
n=18

N % Success #Evaluations
500 (o =0) 86 2211
600 (or =0) 88 2815
700 (ox = 0) 96 3186
800 (ax =0) 100 3306
420 (or = 0.08) 100 2600
420 (oe = 0.10) 100 2450
420 (. =0.12) 100 2400
420 (oc = 0.14) 100 2300
420 (e = 0.20) 100 2200

Table presents the results of a small experiment. For a fixed small popula-
tion size, which is not enough to obtain a good success rate without mutation, it is
possible to boost the efficacy of the Univariate Marginal Distribution Algorithm by
increasing the mutation intensity, o.

The approach was called linear entropic mutation (LEM) in (32]. The LEM acts
as a regularizer of the entropy of the system and computes a convex sum of the
current and the maximum entropy with the regularization parameter ¢. In this way
the distribution is shrunk toward the maximum entropy distribution. It turns out that
this process can be interpreted as a mutation process as far as it increases the level
of uncertainty or randomness in the system. For multivariate discrete systems the
following definition introduces the LEM.

Definition 3. Let p(x1,x2,-++ ,xn) and pe (X1,%2,++ ,%,) denote a discrete joint
probability mass and its LEM-mutation with mutation intensity o. If H(X) and
Hyg (X) are their respective entropy values, then the following holds:

SH(X)=(n—H(X))oo and Hy(X) = (1 —0)H (X)+no (8.4)

The computation of pg (x1,x2,- -+ ,X,) given p (x1,x2,--- ,x,) is challenging. Notice
that the distributions must be similar, which means that the mutation does not de-
stroy the learned distributions. For n = 1 it is easy. It was explained in [Iﬁ]. In [@]
we report a method for the case n > 1. Here we use it in a very simple example,
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just to show that the LEM is another regularization technique that can reduce the
number of function evaluations.

The Goldberg’s Deceptive3 function with 18 variables is optimized with an EDA
that learns a Bayesian network using a scoring metric. All the results are averages
over 30 runs.

Table[B.10 shows that without mutation to achieve a success rate larger than 95%
more than 3000 function evaluations are needed. In contrast, for a fixed population
size equal to 420 and for all the mutation intensities shown (starting at 0.08) a 100%
success is obtained with many fewer function evaluations. For o = 0.2, the table
shows a saving of more than 30%!

8.5.2 Shrinkage Estimation of Distribution Algorithms

In this section we propose a new class of EDAs that we believe will soon find its
place in the arsenal of tools for expensive optimization problems.

Equation (8.4) was to the best of our knowledege the first attempt to regularize
the entropy in such a way, i.e. shrinking it toward the maximum entropy. It is also
the only attempt so far to model mutation as an entropic variation in the area of
evolutionary algorithms. In this approach the entropy is first shrunk linearly and
then the probabilities are computed. An alternative could be a linear shrink of the
probabilities followed by the computation of the new value of entropy.

The equation underlying the idea of modelling mutation with the concept of en-
tropy was derived based only on evolutionary arguments [32]. However, there is a
strong connection between Linear Entropic Mutation and the general principles be-
hind shrinkage estimation and the analytic approach by Ledoit and Wolf [[15] for
determining the optimal shrinkage level.

The connection between shrinkage estimation (SE) and LEM have suggested us
the existence of a general class of EDAs based on the many different aspects of
SE. We have called the new class Shrinkage Estimation of Distribution Algorithms
(SEDAs).

Shrinkage Estimation gives EDAs the ability of building better models of the
search distributions under small populations. Having better models is impor-
tant for implementing partial evaluation strategies.

Our main claim is that the synergy between shrinkage estimation, small
populations and partial evaluation offers a great research opportunity with
regard to expensive optimization problems.

Due to space constraints the complex issues of the combination of the above men-
tioned methods are not discussed in the chapter. We recall that the material presented
in Sect.[83]is relevant to the small population issue. Hereafter, we concentrate our-
selves on the impact of shrinkage estimation alone.
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The now well-known ”Small n, Large p” problem of machine learning can be
mapped to the “small population” problem of EDAs. The direct link between the
later and the optimization of expensive functions is obvious. Therefore, most of the
developments in one of the fields must be useful in the other.

The class of SEDAs is large because almost any EDA algorithm can be improved
by shrinking some of its distribution parameters. As far as, in this chapter we have
focused so far in discrete optimization problems, we decided to introduce in this
section a continuos member of the SEDA class: an algorithm that estimates the
multivariate normal distribution: SEDA,,,,.

The excellent work by Schifer and Korbinian 139] gave us the tools to initiate the
work.

At each generation the algorithm estimates the vector of means and the variance-
covariance matrix. This means that the number of parameters to estimate is quadratic

in the problem size: p =2n+ (n ). Thus, it is easy to get to the ”small n, large

2
p” scenario. The EMNA 41,pq algorithm [IE] computes the MLE estimates of these
parameters. Another possibility is to use the unbiased estimator of the covariance
matrix. However, it is well-known that both are statistically inefficient, because for
medium to small sample sizes they are far from being optimal estimators for recov-
ering the population covariance.

The merit of the shrinkage method is that it improves the efficiency and accuracy
of the estimation and yields a covariance matrix that is well-conditioned and positive
definite, which is importante to compute its inverse.

The idea of the shrinkage estimation is simple. We now follow [@]. Assume
we have an unrestricted high-dimensional model and a lower dimensional restricted
submodel. By fitting each of the two different models to the observed data associated
estimates are obtained. Clearly, the unconstrained estimate will exhibit a compara-
tively high variance due to the larger number of parameters that need to be fitted,
whereas its low-dimensional counterpart will have lower variance but potentially
also considerable bias as an estimator of the true unrestricted model.

Instead of choosing between one of these two extremes, the linear shrinkage
approach suggests combining both estimators in a weighted average

U* = AR+ (1—-A)U

Compare this equation with (8.4)!

In addition, it is possible to choose the parameter A in a data-driven fashion by
explicitly minimizing a risk function.

SEDA,,, uses the shrinkage estimates based on the optimal A. From an evolu-
tionary point of view it is a simple algorithm. The current implementation uses
truncation selection and elitism. It is like the EMNA g pa1 ], but with a differ-
ent method for variance and covariance estimation. A simplified pseudo-code of the
current implementation is shown in Algorithm[2l

In what follows we present some experimental results to illustrate the power of
SEDA,,, for expensive optimization.
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Algorithm 2. SEDA,,, - Srinkage Estimation of Distribution Algorithm for the
Multivariate Normal (current implementation).
Setr 1
Randomly generate N >>> 0 configurations
while stop criteria are not valid do
- Evaluate the population with the fitness function f(x)
- Using truncation selection construct the selected set, SS.
- Compute the mean, ut, and the covariance matrix, S, of SS:
S;} = sz/:ar + (1 - 2'\:kar)sii
sj; = rijmin(1,max(0,1—A%)) /siisj;
where: -
Moar = (Efz/l\Var(Skk))/ X2 (suk—sm)%
A% =Sy Var(ri) | Sy
{sm denotes the median of the empirical variances and the coefficients s;; and r; j
denote the empirical variance (unbiased) and correlation, respectively. See ] for the
computation of Var(s; i)}
- Generate N new configurations (the new population) from the multivariate normal
with parameters tt and S.
-Sett—t+1
end while

We study our algorithm with the well-known benchmark functions: Sphere,
Rosenbrock, Ackley, Griewangk and Rastrigin. The authors of (13] (page 183) use
these functions to investigate the EMNA o, and six other EDA algorithms. They
present results for n = 10 and n = 50.

Table [B.11] shows impressive results for 50 variables. For SEDA,,, we set a pop-
ulation size equal to 25 and present averages over 30 runs. The best fitness value
reported in [[13] for each function is shown in the second column whereas the third
column shows a lower bound in the number of function evaluations. The next two
columns contain the same information for SEDA,,,. Finally, the last column is the
best fitness value obtained with the very same SEDA,,, algorithm, but with MLE

Table 8.11 Comparison of SEDA,,, with EMNA,,, and the other algorithms reported in

(13]

F(x) Best Fv* #Evals® Best Fv? #Evals? Best Fv©
Sphere 106 > 200000 10-8 <3000 > 1000
Rosenbrock ~ 48.7 > 270000 48.5 <1500  >150
Ackley 1076 > 280000 10-8 <2500 @ >1.2
Griewangk 10-6 > 170000 10-8 <2500 > 6x10°

@ Best result from [IE]. (EMNAjopa and others); b SEDA,,, with shrinkage; © SEDA,;,, with
MLE covariance estimation.
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Table 8.12 Scaling of SEDA,,,. Averages over 20 runs. N = 50 and error = 10~°

F(x) n=50 n =100 n =500
Ackley 506096 6720+ 103.2 11880+£97.7
Griewangk 5525£110 8140-£251.4 14050 +282.8
Rastrigin 6575-£761.4 8500 4 1149 13540+ 1069

covariance estimation and the maximum number of function evaluations that ap-
pears in the corresponding fifth column.

Now, and just to get an idea of the scaling of SEDA,,,, we fix the population
size N = 50 and report in Table the average number of function evaluations
needed for getting an error of 1076 in 20 runs. We show the results for 50, 100 and
500 variables and the functions: Ackley, Griewangk and Rastrigin. Note the linear
dependence.

In our opinion, the experiments of this section clearly show that SEDA,,, is a
new powerful EDA algorithm that offers us a significant reduction in the number of
function evaluations with respect to existing EDAs.

8.6 Summary and Conclusions

We have presented a collection of methods that utilize the probabilistic models built
by the EDAs for enhancing the efficiency of these algorithms. These methods make
EDAs more suitable for expensive black-box optimization. Our main goal was to
send two messages to those scientists in the expensive optimization research com-
munity who are interested in experimenting with EDAs: 1) EDAs have an enormous
potential to become a powerful tool for this kind of problems. 2) There are many
research opportunities for improving current EDAs most of which depend on our
ability to use the huge and increasing set of methods of modern statistical sciences
and machine learning.

We have shown how the regularization of the parameters of the probabilistic mod-
els used in EDAs can yield dramatic improvements in efficiency. We presented the
design of the Linear Entropic Mutation, which is a mutation operator that do not
destroy the learned distributions and is based on global information. This technique,
increases the entropy of the probabilistic models and produces higher percentage of
success rates and fewer function evaluations.

Of particular interest is the proposal of a new class of EDAs based on shrinkage
estimation, SEDAs, which is capable of an efficient and accurate model building
with small populations. We presented a brief introduction of the SEDAs by means
of a detailed discussion of one of its members: SEDA,,, (an algorithm that uses the
multivariate normal distribution). We have presented numerical simulations with
popular benchmark functions that show impressive results for the new algorithm.
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Another key contribution of the chapter is the development of a new surrogate
fitness model based on the search distributions. With this method the evolution starts
in the fitness landscape, switches to the log-probability landscape of the model and
then backtracks to continue in the original landscape if the optimum is not found.
We have presented numerical results that show a reduction in the number of fitness
evaluations of about 45%.

For the sake of completeness the chapter reviews other techniques for improving
the sampling efficiency of EDAs. In all cases the theoretical presentation is accom-
panied by numerical simulations that support the main claims of the chapter.

At this point it is worth noting that the main goal of the chapter is similar to that
of the work [38]. Both highlight the role of the search distributions as an important
source of information for developing EDAs-efficiency-enhancement strategies. The
authors of that chapter presented a classification of these strategies into four cat-
egories: hibridization, parallelization, time continuation/utilization and evaluation-
relaxation. However, their main contribution was the provision of examples of two
principled efficiency-enhancement techniques (1) An evaluation-relaxation scheme
where they build an endogenous fitness-estimate model using the probabilistic mod-
els built by the Bayesian optimization algorithm, and (2) a time-continuation scheme
where they develop a scalable mutation operator in the extended compact GA.

Our work is different from [@] in several aspects. We just mention four of them.

1. We include a new category into the classification: Regularization.

2. Our PE (evaluation-relaxation) scheme is different. The evolution in log-proba-
bility landscapes with backtracking is introduced. The computation of the fitness
surrogate is straightforward and inexpensive.

3. Linear Entropic Mutation is presented as a global mutation operator. This is in
contrast with other approaches that rely on local information.

4. The new class of Shrinkage EDAs, and one of its members SEDA,,, are
introduced.

Acknowledgements. We would like to thank Marta Soto and Julio Madera for our
previous joint work. It was reviewed in Sect.[83land Sect. 8411

We also thank the editors and the anonymous referees for their useful comments
and recommendations.

Appendix

B-Functions: A Random Class of Benchmark Functions

The random Boltzmann function model was introduced in [Iﬁ] and later extended in
[Iﬂ] and investigated in [@], where it is called B-function model. The model allows
the explicit codification of probabilistic information, which is very convenient for
the study of Estimation of Distribution Algorithms.
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The following definition formally introduces the B-functions.

Definition 4. (B-functions). Assume 1 > 0. Let p(x) be any unimodal probability
mass function and let X,,pc be its most probable configuration (mpc). The parametric
function

o (P
BF, 5 (x) = nl g( p(x) ), (8.5)

called here B-function, is an additively decomposable unimodal non-negative func-
tion with minimum at X, pc.

The above definition can be modified to the deal with multimodal and real valued
problems. It also says that whenever we have a distribution we can construct a B-
function. For example, the Alarm B-function is built by using as p (x) the famous
ALARM Bayesian network ]. We also have shown elsewhere how to build such a
distribution given collections of certain types of probabilistic constraints.

The following properties tell us why B-functions are an excellent benchmark for
evolutionary optimization.

e The minimum of a B-function is always zero, thus the stopping criterion of the
optimization algorithm is easy to implement.

e The computation of the most probable configuration (discrete variables), which
is necessary for the definition of the function, can be accomplished in polynomial
time for a large class of distributions [@, ].

e The random generation of B-function instances (graph and parameters) can be
accomplished efficiently 1321.

e A naming convention to facilitate referencing of some B-function instances and
subclasses can be easily implemented. Alternatively, less standard B-functions
instances and subclasses can be distributed as files.

e [tis straightforward to control problem size, structural and parametric complexity
to test scalability.

e There is no need to construct functions by concatenating small subfunctions.

In [@] we introduced a naming mechanism (and a program available from the au-
thor) to facilitate working with and referencing to certain subclasses of B-functions.
We show it here for the case of boolean polytree B-functions.

BF2Bnjsn; — didadzdy [I’l4} (8.6)

The above notation stands for a function with n, boolean variables. The depen-
dence structure is given by a polytree (restricted Bayesian network) with maximum
number of parents equal to n3. The digits dy,...,ds have the following meaning.
The mutual information of any pair of adjacent variables in the dependency graph
of the function lies on the interval 0.1 x [d},d,]. The digits d3 and dy constraint
the univariate entropies. In fact, the univariate probabilities lie in the interval
[Pmins Pmax) = 0.1 % [d3,d4] +0.05 or in [1 — pyayx, | — pmin]. Finally, the optional pa-
rameter n4, which is a natural number not exceding (109 — 1), is a random seed that
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determines a unique B-function instance. In other words, if n4 is given it determines
a random function instance, otherwise the expression denotes a random subclass.

To clarify the above statements, consider the following examples of B-functions
definitions.

BF2B30s4-1245. the random subclass of binary polytree functions that have 30
variables, each with a maximum of four parents. Besides, each pair of adja-
cent variables has mutual information in the interval [0.1,0.2] and the univariate
probabilities are bounded by [0.45,0.55].

BF2B30s4-124595012929. this is an instance of the above class.

BF2B100s0-1301. the graph has no edges. The fields containing the mutual
information bounds are senseless, thus their values are ignored.
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Chapter 9

On Similarity-Based Surrogate Models for
Expensive Single- and Multi-objective
Evolutionary Optimization

L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge

Abstract. In this chapter we propose a surrogate-assisted framework for expen-
sive single- and multi-objective evolutionary optimization, under a fixed budget of
computationally intensive evaluations. The framework uses similarity-based surro-
gate models and an individual-based model management with pre-selection. Instead
of existing frameworks where the surrogates are used to improve the performance
of evolutionary operators or as local search tools, here we use them to allow for an
augmented number of generations to evolve solutions. The introduction of the surro-
gates into the evolutionary cycle is controlled by a single parameter, which is related
with the number of generations performed by the evolutionary algorithm. Numerical
experiments are conducted in order to assess the applicability and the performance
in constrained and unconstrained, single- and multi-objective optimization prob-
lems. The results show that the present framework arises as an attractive alternative
to improve the final solutions with a fixed budget of expensive evaluations.

9.1 Introduction

Several problems of interest in science and engineering are or can be advanta-
geously formulated as optimization problems. However, modern problems have lead
to the development of increasingly complex and computationally expensive simula-
tion models. When the optimization algorithm involves the repeated use of expen-
sive simulations to evaluate the candidate solutions, the computational cost of such
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applications can be excessively high. A trade-off between the number of calls to
the expensive simulation model and the quality of the final solutions must often be
established. As result, an improvement of the optimization process is necessary.

A possible solution to this problem is the use of a surrogate model, or metamodel.
In this case, when evaluating candidate solutions in the optimization cycle, the com-
putationally intensive simulation model is substituted by the surrogate model, which
should be a relatively inexpensive approximation of the original model 24].

Genetic Algorithms (GAs) ], inspired by Darwin’s theory of evolution by nat-
ural selection, are powerful and versatile tools in difficult search and optimization
problems. They do not require differentiability or continuity of the objective func-
tion, are less sensitive to the initialization procedures, and less prone to entrapment
in local optima. However, they usually require a large number of evaluations in
order to reach a satisfactory solution, and when expensive simulations are involved,
that can become a serious drawback to their application.

The idea of reducing the computation time or improving the solutions per-
forming less computationally expensive function evaluations, appeared early in the
evolutionary computation literature [22]. It should be mentioned also that there are
additional reasons for using surrogate models in evolutionary algorithms: (a) to re-
duce complexity [Iﬁ], (b) to smooth the fitness landscape [a,], (c) when there is no
explicit fitness available, and (d) in noisy environments [25].

Several surrogate models, of varying cost and accuracy, can be found in the lit-
erature, such as polynomial models [36], artificial neural networks 171, Kriging or
Gaussian processes [B], radial basis functions [@, @], and support vector machines
[Iﬁ]. Of course such techniques can also be combined and used as an ensemble
(32,411

Research in surrogate-assisted frameworks for solving problems with computa-
tionally expensive objective functions has been receiving increasing attention in the
last few years [7, 14, lﬁ, 18,26, 43, led].

In the evolutionary optimization context, the surrogate model is constructed from
previously obtained solutions and used to evaluate new candidate solutions, avoiding
expensive simulations. An interesting strategy, when a given budget of expensive
evaluations is assumed, is to combine both exact and surrogate evaluations along the
evolutionary process in order to allow for an extension in the number of generations,
which can have a positive impact in the final result.

This chapter is focused on the use of a similarity-based surrogate model (SBSM)
to assist evolutionary algorithms in solving single- and multi-objective optimiza-
tion problems with a limited computational budget. Examples of similarity-based
surrogate models are fitness inheritance [@], fitness imitation [@], and the nearest
neighbor approximation model 4, 54).

In the surrogate-assisted optimization presented here, the individuals in the parent
population (evaluated by the original function) are sequentially stored in a database,
and then they are used to construct a surrogate model, based on similarity, which
is used along the optimization procedure to perform extra (surrogate) evaluations,
resulting in a larger number of generations.
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This chapter is organized as follows. The optimization problem is described in
Section Section @3] presents the similarity-based surrogate models and the sur-
rogate assisted evolutionary optimization algorithm, for single- and multi-objective
optimization. The numerical experiments conducted are presented and discussed in
Section and finally the concluding remarks are given in Section

9.2 The Optimization Problem

The optimization problems considered here can be written as

minimize fi(x), f2(x),. .., fa,,; (*)
with x = (x1,...,x,) € ./
subjectto g;(x) <0, j=1,...,n
xb<xi <AV

9.1

where f;(x) is the ith objective function to be minimized, n,; is the number of
objectives, n is the number of design variables, .7 is the search space bounded by
xl < x <Y, and n; is the number of inequality constraints. The feasible region is
defined by . and the n; inequality constraints g;(x).

We have multi-objective (MO) optimization when n,,; > 2. Single-objective
(SO) optimization (n,,; = 1) is a special case of the formulation above. Also,
in the absence of constraints (n; = 0) we have the single- and multi-objective
unconstrained optimization problems.

In MO optimization a set of solutions representing the tradeoff among the differ-
ent objectives rather than an unique optimal solution is sought. This set of solutions
is also known as the Pareto optimal set and these solutions are also termed noninfe-
rior, admissible, or efficient solutions [@]. The corresponding objective vectors of
these solutions are termed nondominated and each objective component of any non-
dominated solution in the Pareto optimal set can only be improved by degrading at
least one of its other objective components [@]. The concept of Pareto dominance
and Pareto optimality will form the basis of solution quality. Pareto dominance is
defined by

X1 <p xp (x; Pareto-dominates x,) :& 9.2)
Vie{l,....ngpj}: filx1) < filx2)A
3] S {1,...,n0bj} :fj(xl) < fj(Xg).

The Pareto optimal front (PFT) is the set of nondominated solutions such that
PFT = {f;(x*)|3£;(x) <p filx*), j € {1,...,n0p;} }.
9.3 Surrogate-Assisted Evolutionary Optimization

Surrogate modeling, or metamodeling, can be viewed as the process of capturing the
essential features of a complex computer simulation (original evaluation function)
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in a simpler, analytical model by providing an approximation of the input/output
relation of the original model. The surrogate model should be simple, general, and
keep the number of control parameters as small as possible [B]. Examples of such
surrogates are the similarity-based surrogate models.

In this section we describe the similarity-based models, and the surrogate-assisted
evolutionary algorithms for single- and multi-objective optimization.

9.3.1 Similarity-Based Surrogate Models (SBSMs)

Similarity-based surrogate models (SBSMs) can be classified as lazy learners [Ij]
(and also memory-based learners) since that, in contrast to eager learning algorithms
such as Neural Networks, Polynomial Response Surfaces, and Support Vector Ma-
chines, which generate a model and then discard the inputs, SBSMs simply store
their inputs and defer processing until a prediction of the fitness value of a new
individual is requested. Then they reply by combining their stored data (previous
samples) using a similarity measure, and discard the constructed answer as well as
any intermediate results.

Among the SBSMs one can find the Fitness Inheritance procedure, Fitness Im-
itation, and the nearest neighbors method. In the following subsections we present
those approaches, and describe with details the nearest neighbor method, used here
as a surrogate model.

9.3.1.1 Fitness Inheritance

The fitness inheritance procedure was first proposed by Smith et al 1561, and since
then has been applied in several problems [B, , , , , ] and algorithms
[@, ]. In fitness inheritance, all the individuals in the initial population have their
fitness value obtained via fitness function. Thereafter, the fitness of a fraction of
the individuals in the subsequent populations is inherited from their parents. The
remaining individuals are evaluated using the original fitness function (referred to
as simulation model).

The inheritance procedure is described as follows. Given an individual x" gener-
ated by evolutionary operators (crossover and mutation), from the parents x”! and
xP2. The surrogate evaluation is given by:

S(xPi) if d(x*,xP)) =0, i=10r2
fh = 9.3)

SO P 1) (1) (6 2P2) f(xP2) :
(P )5t xP2) otherwise

where s(x", xPi) is the similarity between x" and x”i. The assumption is that an off-
spring is similar to its parents and thus its fitness is assigned as the weighted average
of the parents fitness.

In the inheritance procedure an entire simulation is replaced by a procedure with
negligible computational cost, which may lead to great computational savings that
grow with the rate of application of the inheritance technique and the cost of the
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Fig. 9.1 Illustration of the Fitness Imitation procedure. The individuals inside the dotted
circles belong to the same group. The representative individual, denoted by a black square,
is evaluated by the exact function. The remaining individuals are evaluated by a surrogate
model, their predicted fitness being calculated according to the distance to the representative
individual

fitness function evaluation [@, ]. In fact, the inheritance procedure may be orders
of magnitude less expensive than the standard fitness evaluation. However, this ap-
proach introduces some noise in the search process and may adversely affect the
final solution found [IE].

9.3.1.2 Fitness Imitation

In Fitness Imitation [@], the individuals are clustered into several groups. Several
clustering techniques can be used to perform this task [@]. Then, only the individ-
ual that represents its cluster is evaluated using the fitness function. The choice of
the representative individual can be made either deterministically or randomly 1351.
The fitness value of other individuals in the same cluster will be estimated from the
representative individual based on a similarity measure. If a new individual to be
evaluated does not belong to any cluster, it is evaluated by the original function. The
term Fitness Imitation is used in contrast to Fitness Inheritance.

An illustration of the Fitness Imitation procedure is depicted in Figure
Examples of applications of this procedure can be found in [@f)@, 351.

9.3.1.3 Nearest Neighbors

The nearest neighbors surrogate model (k-NN) is a simple and transparent surro-
gate model where the approximations are built based on a set 2, which stores 1
individuals (samples).

The idea of using k-NN to assist an evolutionary algorithm was explored in ,
], where the aim was to reduce the number of exact function evaluations needed
during the search. Here we use the surrogate to extend the generations, and to guide
the search towards improved solutions. R

Given an offspring x”, the corresponding value f(x") =~ f(x"), to be assigned to
¥ is
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F(x7h) if X" =x7i, forsome j=1,...,n
Ty ks T 9.4
J&?) z,:lk«x SIIED) erwise 9.4)
PUIRICUE L
where s(x",x") is a similarity measure between x" and x/, .#;, j=1,...,n is a

list that stores the individuals in the set 2 most similar to x", k is the number of
neighbors used to build the surrogate and u is set to 2.

The main advantages of the k-NN technique are that it is flexible, does not have
severe restrictions, does not require any predefined functional form nor rely on
any probability distribution, and the variables can be either continuous or discrete.
Databases are also easy to maintain and updated when it is necessary to add or
remove samples. Indeed, k~-NN does not require a training procedure, and in each
surrogate evaluation the database & must be ranked in order to determine the nearest
neighbors.

The similarity measure used here is based on the Euclidean distance and it is
given by

dg(x",x)

dp(xV ,xL)

where dg(x,y) is the Euclidean distance between x and y.

The nearest neighbors (and its variations) have been applied in two-dimensional
interpolation (54, supervised learning l62], and recently in forest management
planning 155].

s(xx) =1

9.3.2 Surrogate-Assisted Framework

Once a surrogate model has been chosen, there are many ways of introducing it into
the evolutionary process. Some of them include: integrating GAs with surrogate ap-
proximations 144 or landscape approximations [E%], the use of surrogate-guided
evolutionary operators [42], surrogate-assisted local search 133, 60, accelerating
the optimization process using surrogates, pre-selection approaches (19, 39,
multiple surrogates , , @], and coevolution of fitness predictors [@].

In this chapter we introduce the surrogate models into the evolutionary cycle by
means of a model management procedure [24] which, in each generation, uses in
a cooperative way both surrogate and exact models, so that the evaluation of the
population does not rely entirely on the surrogate model.

Maintaining a total of Ny ., exact evaluations, surrogate model evaluations are
introduced in the GA in increasing levels, by decreasing the parameter pg,. The

. . . N max
number of generations performed by the GA is given by Ng = PC e When pg,, =1,
all individuals are evaluated by the exact function, one has Ng = N¢ ax /A, and the
standard GA is recovered. Indeed, as py,, decreases, more surrogate evaluations are

introduced into the evolutionary optimization process.
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: procedure Pre-selection (PS)
: if pgy # 1 then
repeat
Evaluate individual using )?
N = N 7 +1
until all individuals in G, evaluated
Rank G; according to the surrogate model
: end if
. repeat
10:  Evaluate individual using f
11:  Ny=Ng+1
12: until all pg, best individuals in G, evaluated

PR RwD

o

Fig. 9.2 Pre-selection (PS) management procedure. py, is the fraction of individuals eval-
uated by the original model, A is the population size, f and f are the original and surro-
gate functions, Ny the current number of exact evaluations and N 7 is the current number of
surrogate evaluations

In the model management used here, only a fraction 0 < pg,, < 1 of the population
is evaluated by the time-consuming original model. We implement a pre-selection
PS) (19] strategy, where the surrogate model is used to decide which individuals
will be evaluated by the original function. This procedure is described as follows:
first, using evolutionary operators, A individuals in the offspring population G; are
generated from A parents in the parent population P;. Then the offspring population
G; is entirely evaluated by the surrogate model and then ranked in decreasing order
of quality. Based upon this rank, the py,A highest ranked individuals (according to
the surrogate model f) are evaluated by the original model, and the remaining A —
psmA individuals in G, maintain their objective function predicted by the surrogate
model f. The PS model management procedure is shown in Figure [0.2]

In the PS model management it is not necessary that the surrogate model approxi-
mates the objective function closely. It is sufficient that the ranking of the individuals
in the offspring population be similar to the ranking that would be obtained using
the simulation model.

9.3.3 The Surrogate-Assisted Evolutionary Algorithm

The similarity-based surrogate-assisted GA for computationally expensive opti-
mization problems, is shown in Figure[0.3] The developed algorithm will be referred
to as SBSM-GA. The variant developed for single-objective optimization is named
SBSM-SOGA while the multi-objective one is referred to as SBSM-MOGA. The
differences between them are (i) the ranking procedures (line[3 and [I2)) and (ii) the
parent population update procedure (line [T3)).

In the presented algorithm, we adopted the standard floating-point coding: each
variable is encoded as a real number and concatenated to form a vector which is
an individual in the population of candidate solutions. The following step is to ran-
domly generate an initial population. Each individual has then one or more objec-
tive function values assigned to it and, in cases of constrained optimization, also a
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procedure SBSM-GA
t<—O;Nf<—O;Nf<—O;@<—®
Generate an initial population P, with A individuals
Evaluate P, using the simulation model f
Rank P in decreasing order of quality
Initialize the set ¥ «— B
while Ny < Ny 4, do
Select parents from P,
9:  Generate a population G, from P,
10:  Apply the model management (Figure @.2)).
11:  Update the set
12:  Rank P in decreasing order of quality
13:  Update parent population P4 from P and G,
14: t—t+1
15: end while

Sl A U el

Fig. 9.3 Similarity-based surrogate-assisted GA (SBSM-GA). Pseudo-code for single-
(SBSM-SOGA) or multi-objective (SBSM-MOGA) optimization. P, is the parent population,
G, is the offspring population, A is the population size, f and fare the original and surrogate
functions. Nf, 4y is maximum number of exact evaluations, Ny is the current number of exact

evaluations and N 7 is the number of surrogate evaluations

measure of constraint violation associated with it. The population is sorted in or-
der to establish a “ranking”. Individuals are then selected for reproduction in a way
that better performing solutions have a higher probability of being selected. The
genetic material contained in the chromosome of such “parent” individuals is then
recombined and mutated, by means of crossover and mutation operators, giving rise
to offspring which will form a new generation of individuals. Finally, the whole
process is repeated until a termination criterion is attained.

Elitism is applied in the parent population update procedure (line [[3)): some in-
dividuals of the parent population are saved to the offspring population before the
new parent population is created. In the single-objective version (SBSM-SOGA),
the best ranked individual of the parent population P; is copied to the offspring
population G;.

In single-objective constrained optimization (n; # 0), we use a constraint han-
dling technique presented in (107 to guide the search toward the (feasible) optimum.
The individuals are ranked according to a pair-wise comparison procedure, where
the following criteria are enforced:

1. when two feasible solutions are compared, the one with better objective function
value is chosen,

2. when one feasible and one infeasible solutions are compared, the feasible
solution is chosen, and

3. when two infeasible solutions are compared, the one with smaller constraint
violation is chosen.

The constraint violation is given by 2;5":1 max (0, g;(x))?.
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The surrogate-assisted multi-objective GA (SBSM-MOGA) uses the operators
from the Non-dominated Sorting Genetic Algorithm (NSGA-II) ]. The multi-
objective version of the algorithm differs from the single-objective version in the
following aspects: (i) the ranking procedure, which uses the fast non-dominated
sorting algorithm and the crowding comparison operator, and (ii) the elitism mech-
anism used in the parent population update procedure.

The ranking procedure that appears in lines [§] and [[2] of the Figure 0.3 is re-
placed by the non-dominated sorting procedure ], where the population is first
partitioned by means of nondominated sorting and, then, a crowding comparison op-
erator is employed by considering distances between individuals of the same rank.
The update procedure shown in line[[3lis performed over the union of the parent and
offspring populations. The offspring population G; is added to the parent population
P, and the combined population (of size 21) is ranked according to non-domination,
then the highest ranked individuals are copied to the next generation.

The constraint handling technique for multi-objective optimization problems is
based on the constraint-domination criteria [Iﬂ], where feasible solutions have a
better non-domination rank than any infeasible solution. A solution i is said to
constraint-dominate a solution j, if any of the following conditions is true:

1. Solution i is feasible and solution j is not.

2. Solution i and solution j are both infeasible, but solution i has a smaller overall
constraint violation.

3. Solution i dominates solution j

To improve the quality of the approximations in Eq. (9:4) the surrogate models are
updated along the optimization process, by updating the set Z. In the SBSM-GA, all
individuals exactly evaluated are recorded into the set &, and when the maximum
size 1 of the set is reached, the oldest individual is chosen to be replaced. As a result,
one has a relatively small and updated sample set, as older individuals are discarded
from 2 as the population evolves. The set size is equal to A in the first generation
(line [@] of the algorithm and limited to 71 individuals along the evolutionary
process.

In order to avoid convergence to false optima, and the need to re-evaluate the best
solutions in each generation, after the ranking procedure (either for single- or multi-
objective version), a sorting algorithm is applied in order to ensure that individuals
evaluated by the original function are ranked highest in the population.

9.4 Computational Experiments

The algorithmic parameters for both SBSM-SOGA and SBSM-MOGA are
summarized in Table

We remark that, as described in Table[0. 1] we have set a lower bound py,,, = 1/A.
For single-objective problems, we must have pg,, > 1/A = 1/40=0.025, and py,, >
1/A =1/50 = 0.02 for multi-objective problems. In the computational experiments
of this section, we have set pg, > 0.05.
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Table 9.1 Algorithmic parameters setting for SBSM-GA (single- and multi-objective

optimization)

Population size (1)

Representation

Operators

Stop criterium
Crossover Probability (p.)

Mutation Rate (p;;,)
Database size (1)

Database update

Surrogate Model
Number of Neighbors (k)

Model Management

Fraction pg,,,

Performance Measures

Number of runs

Algorithmic Parameters
Single-obj. optimization problems: A = 40
Multi-obj. optimization problems: A = 50
Floating-point coding: vectors of real numbers.
Single-obj. opt. problems: Uniform mutation, [@], Heuristic,
One- and Two-point crossover, ], Rank-based selection [@]
and Elitism (best individual copied to the next generation)
Multi-obj. opt. problems: Uniform mutation, Heuristic, One- and
Two-point crossover, Rank-based selection (fast-non-dominated
sorting and crowding distance [ﬂ]), and Elitism (parent and off-
spring population mixed and sorted in order to create the next
generation)
Maximum number of exact evaluations, given by N¢ jnqx.
Pe e = 0.54 (Heuristic), p¢ 1, = 0.18 (One-point) and pc 5, =
0.18 (Two-Point)
pm=0.02
n={A, 24, 54, 15A} or DPR=(n/A) =1, 2, 5, 15}
Replace the oldest individual. Only individuals evaluated by the
original function can replace individuals in the database 2.
Nearest Neighbors (k-NN)
ke{1,2,5,10,15}
Individual-based Pre-Selection (PS) [@]. At each generation, the
offspring population G; is entirely evaluated by the surrogate
model and ranked in decreasing order of quality. The pg,A high-
est ranked individuals (according to the surrogate model f) are
evaluated by the original model, and the remaining A — pg,A in-
dividuals in G; maintain their objective function predicted by the

surrogate model f.
Psm € [0.05,1.00]. The parameter pg;, defines the fraction of indi-

viduals evaluated by the original model: pg;, = 1 means the stan-
dard GA (no surrogates) with Ng = Ny /A generations. As
we must ensure at least one individual evaluated by the original

model in each generation, we have pg, > 1/A.
The performance of the SBSM-GA is to be compared to the Stan-

dard GA (psm = 1).
Single-obj. opt. problems: The value of the objective function.
For constrained problems, also the number of runs leading to fea-
sible final solutions.
Multi-obj. opt. problems: Generational Distance [@], Maximum

Spread [@] and Spacing ].
50

DPR: Database size Population size Ratio, with DPR = Database size _ 2

Population size
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As the surrogate evaluations are introduced into the Standard GA, errors due
the surrogate model evaluations are also introduced, which may adversely affect the
quality of the final solutions. On the other hand, the extra surrogate evaluations allow
for a longer period to search for improved solutions. There is a trade-off beetwen the
noise introduced by the surrogate models and the beneficial impact in increasing the
number of generations. We recall that, given a budget of Ny, exact evaluations,
as the parameter py, decreases, the number of generations increases according to
Ng = Nf,max/pxm/’lu

Itis assumed that for complex real-world applications the cost of a surrogate model
evaluation is negligible when compared to that of a simulation, hence total compu-
tational time will be only slightly increased due to the extra surrogate evaluations.

9.4.1 Single-Objective Optimization

In this section we show the results obtained for unconstrained and constrained
problems, using the GA assisted with the k-NN surrogate model.

The single-objective minimization problems are shown in Table[0.2] and the con-
strained optimization problems considered are shown in the Table For the con-
strained problems, the bounds for each parameter, in each function, are defined in
the Table[0.4l More details of this set of constrained problems can be found in [@].

In problems with a large number of constraints (n;), similarity-based surrogate
models are computationally interesting, since they do not require a training pro-
cedure, leading to a simple and inexpensive way to estimate the constraints of the
individuals in the population.

9.4.1.1 Effects of the Number of Neighbors

In this first experiment, we study the impact of increasing the number of neigh-
bors, given a fixed database size (fixed DPR), in order to choose an appropriate
neighborhood size. Under a fixed DPR=1 /A = 2. the experiments were conducted

Table 9.2 Single-objective minimization problems. The maximum number of simulations is
N max the lower and upper bounds are respectively xV and xL, n is the number of design
variables, and f* is the optimal objective function value

# Objective function Nfmax 1 [xf,2Y) f*
Fo nox7 1000 10 [-5.12,5.12] 0
Foz > (lx+0.5])2 1000 10  [-100,100] O
Fos Iy g — Ty <5 +1 1600 10 [~600,600] 0
—0.2\/ Tt s e
Fos —20e e 4204e 1000 10 [—32.768,32.768] 0
Fos S 100(xi4 g —22)2 + (1—x)? 2000 10 [-5.12,5.12] 0
Fos >t it +U(0,1) 1000 10 [—4.28,4.28] 0
Fy7 " (x? —10cos (27x;) + 10) 2000 10 [~10,10] 0
Fog Y7, —xisin(y/|x;|) —418.982887272433n 1000 10  [-500,500] 0
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Table 9.3 Constrained minimization problems — The number of design variables is n. The
constraints read g; = g;(x) <0, j=1,...,n

#

Goi

Goz

Goy

Gog

Go7

Gog

Gooy

Gio

Objective function

4 4 2 I3
52,‘:1 Xi _52,':1 X; _Zizsxi

S cost (x;)—2TTr cos?(x;)

VL i}

5.3578547x3 +0.8356891x,
+x237.293239x) —40792.141

(x1 —10)® + (x2 — 20)?

x% —l—x% +x1x0 — 14x) — 1630+
(x3 = 10)? +4(xs —5)2+

(x5 —3)2 +2(x6 — 1)2+
5x2+7(xg — 1)+

2(x9 — 10)2 + (x10 — 7)% 445

sin (27x; ) sin (27x;)
X (x14x2)

(61— 10)2 4 5(x, — 12)>+
xgb% +3(xs — 11)2+
4
103+ +5 —
4xgx7 — 10x6 — 8x7

X1 +x3 +x3

Constraints n
81 =2x1 +2x2 +x10 +x11 — 10

g2 =2x1 +2x3 +x10 +x12 — 10

83 =2x3+2xp +x2+x11 — 10

84 = —8x1 +x10

gs = —8xy+x11 13
86 = —8x3+x12

87 =—2x4 —x5+x10
88 = —2x6 —x7 +x11
89 = —2xg — X9 +x12
81 20.75—1_[?:1)6,'

g2 =31 xi—1.5n 20
g1 = 85.334407 4+ 0.0056858x, x5+
0.0006262x1x4 —0.0022053x3x5 — 92
g2 = —85.334407 — 0.0056858x7 x5 —
0.0006262x1x4 +0.0022053x3.x50
g3 = 80.51249+0.0071317x, x5+
0.0029955x1 x» —0—0.0021813)6% —110 5
g4 = —80.51249 — 0.0071317xp x5 —
0.0029955x1 x; — 0.0021813x§90
g5 = 9.300961 + 0.0047026x3 x5+
0.0012547x1x3 +0.0019085x3x4 — 25
g6 = —9.300961 — 0.0047026x3 x5 —
0.0012547x1x3 — 0.0019085x3.x420
g1 =—(x1-57—(x-5)*+100 )
2 = (x] —6)% — (x3 —5)%> +82.81
g1 = —105+4x; + 5xp + 3x7 4+ 9xg
g2 = 10x; — 8xp — 17x7 +2x3
g3 = —8x1 +2xp +5x9 — 2x19 — 12
g4 ="3(x1 —2)> +4(x2 —3)> +2x3 — Txs — 120 10
g5 = 5x7 +8xy + (x3 —6)> —2x4 — 40
86 = x% +2(xp — 2)2 —2x1x + 14x5 — 6x¢
g7 =0.5(x; —8)2 +2(x2 —4)% +3x% —x6 — 30
g8 = —3x1 +6xp + 12(x9 — 8)% — 7xyg
g1 = x% —xp+1 )
g =1-x1+(x—4)?
g1 = —127+2xF +3x4 4 x3 + 447 + 5x5
g2 = —282+7Tx; +3x; + 1023 + x4 — x5 ;
g3 = —196+23x| +x3 +6x2 — 8x7
g4 = 4x% —Q—x% —3x1x2 +2x% + Sx¢ — 11x7
g1 =—1+0.0025(x4 +x¢)
g = —1+0.0025(x5 +x7 —x4)
g3 =—1+0.01(xg —x5) 8

g4 = —x1x6 + 833.33252x4 + 100x; — 83333.333
g5 = —xpx7 + 1250x5 4+ xpx4 — 1250x4
g6 = —x3xg + 1250000 + x3x5 — 2500x5
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Table 9.4 Bound constraints for single-objective constrained optimization problems. The
maximum number of simulations is Ny, and f* is the optimal objective function value

Function Bound constraints Ny max f*
0<x;<1(i=1,...,9),
Gy 0<x; <100 (i=10,11,12), 600 —15
0<x3<1
Gy, 0<x<10(i=1,...,n)n=20 1200 —0.80355
78 < x1 <102,
Goy 33 <xp <45, 6000 —30665.539
27 <x; <45(i=3,4,5)
Gog (1)3 ngjl ggl (1)80’ 2400 —6961.81388
Goy7 —10<x;<10(i=1,...,10) 1000 24.3062091
Gog 0<xp,x <10 8000 —0.095825
Goo —10<x;<10(i=1,...,7) 800 680.6300573

100 < x; < 10000,
Gip 1000 < x; < 10000(i =2,3), 3000 7049.3307
10 < x; < 1000(i = 4, ...,8)

for k = {1,2,5,15} neighbors and the averaged fitness in 50 runs was used as
performance measure.

The neighborhood size affects the surrogate model in a way that small neigh-
borhood leads to estimates very close to the data in the database &, while a larger
neighborhood tends to smooth the surrogate output, resulting in estimates close to
the mean of the data in & [@].

The results for the SBSM-SOGA applied to the single objective optimization
problems in Tables[0.2]and@.3] for different values of pg,,, and using 1, 2, 5, 10, and
15 neighbors are shown in Figures[0.4]and[9.3] In Figure[0.3] for each test-problem,
the average of the objective function in 50 runs is displayed. The average was
calculated considering only the feasible runs, i.e. those producing a final solution
which does not violate the constraints in Eq. @.1)).

For the all unconstrained functions, except for Fyg, as py,, decreases, increasingly
better results are obtained. For those functions, it is possible to use very small values
of pgn. In this set of experiments we set pg, = 0.05, although we may use pg, >
1/40 = 0.025, as described in Table[0.1] The results obtained for function Fyg, show
that improvements with respect to the Standard GA are obtained for pg, values
below a certain threshold value, and the maximum improvement (compared to the
Standard GA) were obtained when py,, > 0.20.

The same trend with respect to the number of neighbors and the parameter py,,
is observed for all unconstrained functions. We observe that the extra evaluations
performed by the surrogate are beneficial to the evolutionary search, and improved
results are obtained when the number of generations increases.

From the results obtained for function Ggpg, we can see that reducing py,,, no
longer improves the final results, which means that the noise introduced by the
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Fig. 9.4 Averaged Fitness for different values of pg;,, with DPR=2, using 1, 2, 5, 10, and 15
neighbors in the surrogate model shown in Eq. @4)
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surrogate model affects the search in a negative way. Function Gog, corresponds to a
complex landscape which could not be well approximated by the surrogate model.
Although faster and simple, the k-NN surrogate model has limited capabilities to
approximate complex mapping in R”, which, as an inner-product space, allows for
other calculus-based approximation. However, when the search occurs in a metric
space, k-NN may be one of the few available alternatives.

As observed in function Gog, the constraints make the problem harder for the
SBSM-SOGA, since more approximations are involved (objective functions and
constraints) and the use of surrogates may lead the evolutionary process to poorer
regions of the search space.

The results displayed in Figure except for function Gg, and for Gog (where
no improvements were obtained), show that the number of neighbors does not sig-
nificantly affect the performance of the SBSM-SOGA for the set of functions con-
sidered here.

Table 0.3 shows the number of feasible runs for the SBSM-GA. The results were
obtained using k = 2 neighbors and DPR=2 to build the surrogate in Eq. (©.4). We
observe that the introduction of the surrogate does not affect the number of feasible
runs, except in test-problem Ggg, where a slightly decrease occurs. In Gg; and Gy,
the SBSM-GA increased the number of feasible runs.

Table 9.5 Constrained optimization problems — Number of runs that produce a final feasible
solution with respect to the parameter py,,. The results were obtained using 2 neighbors and
DPR=2 to build the surrogate in Eq. (9.1)

Psm_Go1 Goz2 Gos Gos Go7 Gos Gog Gio
1 12 50 50 50 46 50 50 20
09 13 50 50 49 42 50 50 15
0.8 25 50 50 49 45 50 50 20
0.7 29 50 50 47 49 50 50 20
0.6 43 50 50 48 50 50 50 15
0.5 48 50 50 49 49 50 50 27
04 50 50 50 47 50 50 50 28
03 50 50 50 47 50 50 50 33
02 50 50 50 48 50 50 50 39
0.1 50 50 50 46 50 50 50 41
0.0550 50 50 47 50 50 50 40

In frameworks that use surrogates as a local search tools or to enhance oper-
ators, the improvements are directly related to the surrogate models. In this set of
experiments, the contribution of the surrogates to the evolutionary search is indirect:
the surrogates allow for an extended number of generations (although with inexact
evaluations), which provided the GA a longer period to evolve solutions.

9.4.1.2 Effects of the Database Size

In this section, a study of the impact of the database size on the evolutionary process
is performed. Based on the experiments presented in the previous section, we set
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the neighborhood size to k = 2 and we perform experiments for DPR={1,2,5,15},
corresponding to n = {14, 24, 54, 104, 154} where n = |Z|.

Figures[0.6land[0.7]display the results obtained by the SBSM-SOGA. We observe
that for Gog larger values of 11 improve the results for smaller pg,,. The remaining
test-problems are not affected by the database size. Except for Gpg, we observe
the same trend for all unconstrained and constrained functions, independent of the
database size.

One can verify that the negative impact of the surrogate model persists for test
problem Gyg: the average results become worse as pg, decreases, independently of
the size of 2.

The results suggest that, for single-objective problems, a smaller database 2,
combined with smaller values of py, are enough to improve the final solutions found
by the SBSM-SOGA (when compared to the Standard GA, where py,, = 1). How-
ever as the ruggedness/complexity of the optimization problem increases, and when
constraints are involved (requiring more surrogate approximations), the performance
may be not satisfactory, leading in some cases to deteriorated final solutions.

The results presented in sections and[0.4.1.2] suggest to use a small value
of the parameter pg,. For SO problems, where one has no previous knowledge,
we suggest as an initial trial pg, = 0.20. Indeed, the results are indifferent to the
database size, and we sugest a database size 1 =24 (DPR=2).

9.4.2 Multi-objective Optimization

In this section we present and discuss the performance of the SBSM-MOGA when
applied to constrained and unconstrained multi-objective problems.

A total of 14 MO problems (8 unconstrained and 6 constrained) were collected
[@] to study the impact of the surrogates into the SBSM-MOGA. Tables and[0.7]
show respectively the multi-objective unconstrained and constrained optimization
problems, the bounds for each parameter, the constraints (for the constrained ones),
the number of variables, and the maximum number of evaluations. Details can be
found in [@].

In order to investigate the impact of the surrogate models in multi-objective opti-
mization, we use as performance metrics the Generational Distance indicator (GD)
[@], the Maximum Spread [@] and Spacing [@].

The GD indicator measures the gap between the evolved Pareto front (PFE) and
the true Pareto front (PFT), given by

GD = Y, d? 9.5)

where Npp is the number of individuals in PFT, d; is the Euclidean distance (in the
objective space) beetwen an individual j in PFE and its nearest individual in PFT.
The generational distance in Eq. (9.3) measures the convergence to the true Pareto
front, and lower values of GD are better.
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Fig. 9.6 Surrogate-assisted single-objective evolutionary unconstrained optimization
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Fig. 9.7 Surrogate-assisted single-objective evolutionary constrained optimization
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Table 9.6 Unconstrained multi-objective optimization problems. The maximum number of
simulations is N ;uqx, the lower and upper bounds are respectively x¥ and xL, and n is the
number of design variables

# Objective Functions n AUl Npa
filx) =x
MFy, =1-/fi(x)/g(x) 30 [0,1] 1000
()—1+9(2 Lyxi)/(n—1)
filx) =x
MF, flx) = ( ) [1=(f1(x)/8(x))?] 30 [0,1] 1000
8(x) =1+9(Xi,x)/(n—1)
fl( )fX1
MFy f(x) = g(x) [1—\/fl - f(x)/g(x))sinmnfl] 30 [0,1] 1000
glx )—1+9(Z" 2%i)/(n—1)
filx) =x x1 € [0,1],
MFo4 frlx) —1—\/f1 10 x; €[-5,5] 1000
glx )—l+10(n H+9(X 2(x —lOcos477:x,) i=2,...,10
J1(x) = 0.5x1x02(1+g(x))
MFos f2(x) =0.5(1 —x2)(1+g(x)) 2 o1 2000

f3(x) =0.5(1 —x1)(1+g(x))
2(x) = 1000+ 1003”5 [(x; —0.5)% — cos 207 (x; — 0.5)]
f1(x) = 1 —exp (—4x; ) sin®(67x; )
MFos fa(x) =g(x )[l—fl(X)/g( )] 10 [0,1] 1000
(0 = 1+9[52 3,/ (n— 1)

Sf1(x) =cos 2x1 cos 2x2(1 +g(x))
fa(x) = cos §xy sin J o (1+g(x))
f3(x )—Sln 2x1(1+g( x))
g(x) = 1 5(x; —0.5)

f ((x)) = cos T xj cos gxz((l +g((x))))

fa(x) = cos §xysin S xp (1+g(x
Mros fx) = sin £, (1 4 ¢(x) 7o e
g(x) = 1000+ 1003”5 [(x; — 0.5)2 — cos 207 (x; — 0.5)]

MFy; 12 [0,1] 1000

The Maximum Spread (MS) is used to measure how well the true Pareto front
PFT is covered by the evolved Pareto front PFE. A larger value of MS reflects that
a larger area of the PFT is covered by PFE. The MS is given as

1 Tob j min(f[max’Fimax) _ max(f[min’Fimin) 2

MS = Noh: Fmax _ Fmin
obj =1 i i

(9.6)

where f"“* and f™" are the maximum and minimum of the i/ objective in the
evolved Pareto front, respectively, and F/"* and F/"" the maximum and minimum
of the i’ objective in the true Pareto front, respectively.
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Table 9.7 Constrained multi-objective optimization problems. The maximum number of
simulations is N ;uqx, the lower and upper bounds are respectively x¥ and xL, and n is the

number of design variables. The constraints are g; = g;(x) <0, j=1,...,n
# Objective functions Constraints n  Domain Ny
J1=="2x1+x; g1=—x1+x—1 0<x; <5
MGor fr=42x1+x @ =tntn-7 > 0<p<3 00
fi=@ =22+ (-1 -2 g1 =x}+x3 225 B
MGo2 o g0 4 (g 1) o —x 3n 10 2 [20.200 800
gl:l_X%zx%_F -
J1=x 0.1cos (16arctan !
MG 202 0 4000
03 Hh=x g = (x1 —0.5)2-1— [ 77‘6}
(x2-0.5)2-0.5
g1=x1+x—2 0<x <10
fi==25(x1 =2+ (x2 -2+ g =6-x—x 0<x, <10
(3 — 1) + (x4 —4)2+ g3 =2—x2+x 1 <x3<5
MGoq (xs—1)2 g1 =2—x1+3%x, 6 0<x,<6 800
h=3r 2 gs=4—(13-32—x;  1<x5<5
g6 = (x5—3)> 4 x5 —4 0<x<10
Ji=—x
MGys fr=-x gr=—1+3 % 3 [01] 1200
fa=—x3
fi= 20 g1=1-f3-4f
MGy Hr= 132 x a=1-f3-4f 30 [0,1] 2000
fr= 1022 i $=1=-2f3-fi—fo

The metric of Spacing (S) shows how the nondominated solutions are distributed
along the evolved Pareto front and is given as

1 1 Nero | 5
S= . d—d;)*,
P\ S04

J

. 1 Npp
d= d 9.7
where Npr is the number of individuals in PF'T and d; is the Euclidean distance (in

the objective space) beetwen an individual i in the evolved Pareto front PFE and its
nearest individual in the true Pareto front PFT.

9.4.2.1 Effects of the Number of Neighbors

In this section we analyze the impact of the number of neighbors to the evolutionary
search, given a fixed database size. According to the database replacement policy,
the oldest individual is always chosen to be replaced. However, by removing so-
lutions according to age, we may inevitably remove some important information.
In order to alleviate this effect, we enlarge the training size for MO problems, and
set the database size to 11 = 154, which corresponds to DPR=15. This value of
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Fig. 9.8 Generational Distance (GD) indicator: surrogate-assisted multi-objective optimiza-
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DPR results in storing information of at least 15 past generations, considering only
individuals evaluated by the simulation model are stored in Z.

Figures and show the Generational Distance (GD) values, calculated for
the (final) population at the end of the evolutionary process.

We observe that the SBSM-MOGA produced better results (compared to the
Standard GA) depending on the values of the parameter py,,. Except for the test-
problems MFys, MFy7, and MFyg, we observe that lower values of pg, allow for
final solutions closer to the true Pareto front. Also, the performance does not vary
significantly as we change the number of neighbors used in the surrogate model. For
function MGgg we observe that the surrogate model is not able to consistently help
the GA in searching for improved solutions.

Figures and show the values of the Maximum Spread (MS) and
Spacing (S) metrics, respectively, for a group of functions from those shown in
Tables[0.6] and From the results presented in Figure we observe that, in-
dependently of the number of neighbors, smaller values of py,, improve the perfor-
mance of the SBSM-MOGA in the MS metric for MF;, MFy3, MGg; and MG,
and for MFys5, MFog, MGq,, MGg3; the MS is slightly affected when decreasing
the parameter pg,,. Considering the Spacing metric, decreasing ps,, consistently im-
proves the solutions in test-problems MFy;, MF3, and MGy .

9.5 Concluding Remarks

In this chapter we have proposed the introduction of a similarity-based surrogate
model into a real-coded GA to assist the optimization of single- and multi-objective,
constrained and unconstrained optimization problems, under a fixed computational
budget.

We used the nearest neighbor approximation as a surrogate model, which is inte-
grated into the evolutionary cycle by means of an individual-based evolution control
where the surrogate is used to select individuals to be evaluated by the exact function
according to a single parameter pgy,.

Instead of existing frameworks where the surrogates are used to improve the per-
formance of evolutionary operators or as local search tools, here we use them to
allow for an augmented number of generations to evolve solutions.

The tests performed so far support the following general conclusions:

Single-objective optimization: ~The augmented number of generations leads to
improved solutions, when compared to the standard GA with the same number of
expensive evaluations. Also, the number of neighbors does not affect in a signifi-
cant way the final results, and a uniform trend is observed for unconstrained and
constrained problems, as the parameter pg, decreases. Also, the final results are
not affected by the database size, which stores individuals previously evaluated
by the simulation model.

Multi-objective optimization:  For the set of multi-objective unconstrained opti-
mization problems considered, small values of the parameter py,, help to achieve
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a better convergence to the true Pareto front, according to the performance met-
rics, and the results are not significantly affected by the number of neighbors
used.

In the nearest neighbor approximation model no training procedure is required and
the prediction involves finding the nearest neighbors in an archive of previously
evaluated individuals. Under a fixed number of expensive simulations, the cost of
the surrogate-assisted procedure is only slightly increased due to the negligible com-
putational cost of the extra surrogate evaluations as the cost of the expensive simu-
lation increases.

The framework presented here seems to be a simple and effective way to tackle
single- and multi-objective unconstrained or constrained expensive optimization
problems. Additionally, the proposed framework can be easily extended to other
population-based metaheuristics, such as Differential Evolution, Ant Colony
Optimization and Particle Swarm Optimization.

References

1. Acar, E., Rais-Rohani, M.: Ensemble of metamodels with optimized weight factors.
Struct. Multidisc. Optim. 37(3), 279-294 (2009)

2. Aha, D.W.: Editorial. Artif. Intell. Rev. 11(1-5), 1-6 (1997); special issue on lazy learning

3. Akbarzadeh-T, M.R., Davarynejad, M., Pariz, N.: Adaptive fuzzy fitness granulation for
evolutionary optimization. International Journal of Approximate Reasoning 49(3), 523
(2008)

4. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician 46(3), 175-185 (1992)

5. Blanning, R.W.: The source and uses of sensivity information. Interfaces 4(4), 32-38
(1974)

6. Bui, L.T., Abbass, H.A., Essam, D.: Fitness inheritance for noisy evolutionary multi-
objective optimization. In: GECCO 2005: Proceedings of the 2005 conference on Ge-
netic and evolutionary computation, pp. 779-785. ACM, New York (2005)

7. Bull, L.: On model-based evolutionary computation. Soft Computing 3(2), 76-82 (1999)

8. Chen, J.H., Goldberg, D.E., Ho, S.Y., Sastry, K.: Fitness inheritance in multi-objective
optimization. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pp. 319-326. Morgan Kaufmann Publishers Inc., San Francisco (2002)

9. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic Publishers, Norwell (2002)

10. Deb, K.: An Efficient Constraint Handling Method for Genetic Algorithms. Computer
Methods in Applied Mechanics and Engineering 186(2/4), 311-338 (2000)

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-IIL. IEEE Transactions on Evolutionary Computation 6(2), 182-197
(2002)

12. Ducheyne, E., De Baets, B., de Wulf, R.: Is fitness inheritance useful for real-world
applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 31-42. Springer, Heidelberg (2003)

13. Ducheyne, E., Baets, B.D., Wulf, R.D.: Fitness inheritance in multiple objective evo-
lutionary algorithms: A test bench and real-world evaluation. Applied Soft Comput-
ing 8(1), 337-349 (2007)



246 L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge

14. El-Beltagy, M., Nair, P., Keane, A.: Metamodeling techniques for evolutionary optimiza-
tion of computationally expensive problems: promises and limitations. In: Proceedings of
Genetic and Evolutionary Conference, pp. 196-203. Morgan Kaufmann, Orlando (1999)

15. Emmerich, M., Giannakoglou, K., Naujoks, B.: Single- and multiobjective evolution-
ary optimization assisted by gaussian random field metamodels. Evolutionary Computa-
tion 10(4), 421-439 (2006)

16. Emmerich, M.T.M.: Single- and multi-objective evolutionary design optimization
assisted by gaussian random field metamodels. PhD thesis, Technische Universitaet Dort-
mund (2005)

17. Ferrari, S., Stengel, R.F.: Smooth function approximation using neural networks. IEEE
Transactions on Neural Networks 16(1), 24-38 (2005)

18. Forrester, A.L., Keane, A.J.: Recent advances in surrogate-based optimization. Progress
in Aerospace Sciences 45, 50-79 (2009)

19. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimiza-
tion methods and computational intelligence. Progress in Aerospace Sciences 38(1), 43—
76 (2002)

20. Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic
multiobjective optimization. IEEE Transactions on Evolutionary Computation 13(1),
103-127 (2009)

21. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Co., Reading (1989)

22. Grefenstette, J., Fitzpatrick, J.: Genetic search with approximate fitness evaluations. In:
Proceedings of the International Conference on Genetic Algorithms and Their Applica-
tions, pp. 112-120 (1985)

23. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: Oper-
ators and tools for behavioural analysis. Artificial Intelligence Review 12(4), 265-319
(1998)

24. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing Journal 9(1), 3—12 (2005)

25. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303-317 (2005)

26. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with ap-
proximate fitness functions. IEEE Transactions on Evolutionary Computation 6(5), 481—
494 (2002)

27. Kecman, V.: Learning and soft computing: support vector machines, neural networks,
and fuzzy logic models. Complex adaptive systems. MIT Press, Cambridge (2001)

28. Kim, H.S., Cho, S.B.: An efficient genetic algorithm with less fitness evaluation by clus-
tering. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 2, pp.
887-894 (2001)

29. Knowles, J.: Parego: A hybrid algorithm with on-line landscape approximation for ex-
pensive multiobjective optimization problems. IEEE Transactions on Evolutionary Com-
putation 10(1), 50-66 (2006)

30. Kybic, J., Blu, T., Unser, M.: Generalized sampling; a variational approach — Part I:
Theory. IEEE Transactions on Signal Processing 50(8), 1965-1976 (2002)

31. Kybic, J., Blu, T., Unser, M.: Generalized sampling; a variational approach — Part II:
Applications. IEEE Transactions on Signal Processing 50(8), 1977-1985 (2002)



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

On Similarity-Based Surrogate Models 247

Lim, D., Ong, Y., Jin, Y., Sendhoff, B.: A study on metamodeling techniques, ensem-
bles, and multi-surrogates in evolutionary computation. In: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, pp. 1288-1295. ACM Press, New
York (2007)

Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary
computation. IEEE Transactions on Evolutionary Computation (2008) (in press)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn.
Springer, Heidelberg (1996)

Mota, F., Gomide, F.: Fuzzy clustering in fitness estimation models for genetic al-
gorithms and applications. In: IEEE International Conference on Fuzzy Systems,
pp- 1388-1395 (2006) ISBN: 0-7803-9488-7

Myers, R.H., Montgomery, D.C.: Response Surface Methodology — Process and Product
Optimization Using Designed Experiments. Wiley Series in Probability and Statistics.
John Wiley & Sons Inc., New York (2002)

Ong, Y., Nair, P., Keane, A.: Evolutionary optimization of computationally expensive
problems via surrogate modeling. AIAA Journal 41(4), 687-696 (2003)

Pilato, C., Tumeo, A., Palermo, G., Ferrandi, F., Lanzi, P.L., Sciuto, D.: Improving evo-
lutionary exploration to area-time optimization of FPGA designs. Journal of Systems
Architecture 54(11), 1046 (2008)

Praveen, C., Duvigneau, R.: Low cost PSO using metamodels and inexact pre-evaluation:
Application to aerodynamic shape design. Computer Methods in Applied Mechanics and
Engineering 198(9-12), 1087-1096 (2009)

Queipo, N., Arévalo, C., Pintos, S.: The integration of design of experiments, sur-
rogate modeling, and optimization for thermoscience research. Engineering with
Computers 20, 309-315 (2005)

Queipo, N.V., Haftka, R.T., Shyy, W., Goela, T., Vaidyanathana, R., Tucker, P.K.:
Surrogate-based analysis and optimization. Progress in Aerospace Sciences 41(1), 1-28
(2005)

Rasheed, K., Vattam, S., Ni, X.: Comparison of methods for using reduced models to
speed up design optimization. In: Proceedings of Genetic and Evolutionary Computation
Conference, pp. 1180-1187. Morgan Kaufmann, New York (2002)

Rasheed, K., Ni, X., Vattam, S.: Comparison of methods for developing dynamic
reduced models for design optimization. Soft Computing Journal 9, 29-37 (2005)
Regis, R.G., Shoemaker, C.A.: Local function approximation in evolutionary algorithms
for the optimization of costly functions. IEEE Trans. Evolutionary Computation 8(5),
490-505 (2004)

Reyes-Sierra, M., Coello, C.A.C.: A study of fitness inheritance and approximation tech-
niques for multi-objective particle swarm optimization. In: The 2005 IEEE Congress on
Evolutionary Computation, vol. 1, pp. 65-72 (2005)

Runarsson, T.: Approximate evolution strategy using stochastic ranking. In: Yen, G.G.,
Wang, L., Bonissone, P., Lucas, S.M. (eds.) IEEE World Congress on Computational
Intelligence, Vancouver, Canada (2006)

Runarsson, T.P.: Constrained Evolutionary Optimization by Approximate Ranking and
Surrogate Models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervds,
J.J., Bullinaria, J.A., Rowe, J.E., Tino, P., Kaban, A., Schwefel, H.-P. (eds.) PPSN 2004.
LNCS, vol. 3242, pp. 401-410. Springer, Heidelberg (2004)

Runarsson, T.P., Yao, X.: Stochastic Ranking for Constrained Evolutionary Optimiza-
tion. IEEE Transactions on Evolutionary Computation 4(3), 284-294 (2000)



248 L.G. Fonseca, H.J.C. Barbosa, and A.C.C. Lemonge

49. Salami, M., Hendtlass, T.: A fast evaluation strategy for evolutionary algorithms.
Applied Soft Computing 2, 156-173 (2003)

50. Sanchez, E., Pintos, S., Queipo, N.: Toward an optimal ensemble of kernel-based
approximations with engineering applications. Structural and Multidisciplinary Opti-
mization, 1-15 (2007)

51. Sastry, K., Goldberg, D.E., Pelikan, M.: Don’t evaluate, inherit. Tech. Rep. IlliGAL
Report No. 2001013, Illinois Genetic Algorithms Laboratory (IlliGAL), Department of
General Engineering, University of Illinois at Urbana-Champaign (2001)

52. Sastry, K., Pelikan, M., Goldberg, D.E.: Efficiency enhancement of genetic algorithms
via building-block-wise fitness estimation. In: Congress on Evolutionary Computation,
CEC 2004, pp. 720-727 (2004)

53. Schmidt, M., Lipson, H.: Coevolution of fitness predictors. IEEE Transactions on Evo-
lutionary Computation 12(6), 736749 (2008)

54. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In:
Proceedings of the 1968 23rd ACM National Conference, pp. 517-524. ACM Press,
New York (1968)

55. Sironen, S., Kangas, A., Maltamo, M., Kalliovirta, J.: Localization of growth estimates
using non-parametric imputation methods. Forest Ecology and Management 256, 674—
684 (2008)

56. Smith, R.E., Dike, B.A., Stegmann, S.A.: Fitness inheritance in genetic algorithms. In:
SAC 1995: Proceedings of the 1995 ACM symposium on Applied computing, pp. 345—
350. ACM Press, New York (1995)

57. Sokolov, A., Whitley, D., Barreto, A.M.S.: A note on the variance of rank-based selection
strategies for genetic algorithms and genetic programming. Genetic Programming and
Evolvable Machines 8(3), 221-237 (2007)

58. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation 2(3), 221-248 (1994)

59. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a
pareto front. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998
Conference, Stanford University Bookstore, University of Wisconsin, Madison, Wiscon-
sin, USA, Stanford, CA, USA (1998)

60. Wanner, E.F., Guimaraes, F.G., Takahashi, R.H.C., Lowther, D.A., Ramirez, J.A.: Mul-
tiobjective memetic algorithms with quadratic approximation-based local search for ex-
pensive optimization in electromagnetics. IEEE Transactions on Magnetics 44(6), 1126—
1129 (2008)

61. Yang, D., Flockton, S.J.: Evolutionary algorithms with a coarse-to-fine function smooth-
ing. In: IEEE International Conference on Evolutionary Computation, vol. 2, pp. 657—
662 (1995)

62. Zhang, J., Yim, Y.S., Yang, J.: Intelligent selection of instances for prediction functions
in lazy learning algorithms. Artif. Intell. Rev. 11(1-5), 175-191 (1997)

63. Zheng, X., Julstrom, B.A., Cheng, W.: Design of vector quantization codebooks using
a genetic algorithm. In: Proceedings of 1997 IEEE International Conference on Evolu-
tionary Computation, Piacataway, NJ, pp. 525-530 (1997)

64. Zhou, Z., Ong, Y.S., Nair, P.B.: Hierarchical surrogate-assisted evolutionary optimiza-
tion framework. In: Congress on Evolutionary Computation, pp. 1586—1593. IEEE, Los
Alamitos (2004)



Chapter 10

Multi-objective Model Predictive Control Using
Computational Intelligence

Hirotaka Nakayama, Yeboon Yun, and Masakazu Shirakawa

Abstract. When function forms in mathematical models can not be given explicitly
in terms of design variables, the values of functions are usually given by numeri-
cal/real experiments. Since those experiments are often expensive, it is important to
develop techniques for finding a solution with as less number of experiments as pos-
sible. To this end, the model predictive optimization methods aim to find an optimal
solution in parallel with predicting the function forms in mathematical models. Suc-
cessive approximate optimization or metamodeling are of the same terminology. So
far, several kinds of methods have been developed for this purpose. Among them,
response surface method, design of experiments, Kriging method, active learning
methods and methods using computational intelligence are well known. However,
the subject of those methods is mainly static optimization. For dynamic optimiza-
tion problems, the model predictive control has been developed along a similar idea
to the above. This chapter discusses multi-objective model predictive control prob-
lems and proposes a method using computational intelligence such as support vector
regression.

Keywords: multi-objective optimization, satisficing trade-off method, model
predictive control, support vector regression.

Hirotaka Nakayama
Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658-8501, Japan
e-mail: nakayama@konan-u.ac.jp

Yeboon Yun
Kagawa University, 2217-20 Hayashicho, Takamatsu 761-0396, Japan
e-mail: yun@eng . kagawa-u.ac.jp

Masakazu Shirakawa
Toshiba Corporation, 2-4 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
e-mail: masakazul .shirakawa@toshiba.co.jp

Y. Tenne and C.-K. Goh (Eds.): Computational Intel. in Expensive Opti. Prob., ALO 2, pp. 249
springerlink.com (© Springer-Verlag Berlin Heidelberg 2616


nakayama@konan-u.ac.jp
yun@eng.kagawa-u.ac.jp
masakazu1.shirakawa@toshiba.co.jp

250 H. Nakayama, Y. Yun, and M. Shirakawa

10.1 Introduction

In many practical problems such as engineering design, function forms in math-
ematical models can not be given explicitly in terms of design variables, but the
values of functions are usually given by numerical/real experiments. Since those
experiments are often expensive, it is important to develop techniques for finding
a solution with as less number of experiments as possible. Model predictive opti-
mization (or sequential approximate optimization: SAO depending on literatures)
has been developed to this aim extensively in recent years (18119, 22].

In this chapter, we consider model predictive optimization problems under a dy-
namic environment with multiple objectives. For prediction of function forms, we
apply some techniques of computational intelligence such as support vector regres-
sion or radial basis function networks. For optimization with multiple objectives, the
satisficing trade-off method, which was developed by one of authors in *80s, is applied
along with some meta-heuristic optimization method such as genetic algorithms. It
will be shown how model prediction using computational intelligence combined with
an interactive multi-objective optimization technique works well for multi-objective
model predictive control problems.

10.2 Meta-modeling Using Computational Intelligence

Letting the design variables x be a vector of R", optimization problems can be
formulated as
minimize f(x) over xeXCR",
X

where the constraint set X may be represented by g;(x) £0, i =1,...,m. The iden-
tification of f and X (or g;, i =1,...,m) is called “modeling”. We assume that those
functions exist due to some physical rule, although their explicit function forms
can not be known in terms of design variables x. Those situations are common in
particular in engineering design problems. Under the circumstance, we try to get
approximate functions f (and g;, i = 1,...,m, if necessary). The approximation of
objective/constraint functions based on several observations is called “metamodel-
ing” in the sense of making a model of the model.
Now, our aim is to construct a good metamodel in the sense that

i) we can obtain an approximate optimal solution %* through the
metamodel with the property

F@) = fH) S &

where * and x* minimize f and f, respectively, and €] is a given small
positive number,

ii) the total number of observations is as small as possible,
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iii) the metamodel f approximates well f entirely, if possible. Namely

If = fIl = &,
where & is a given small positive number.

If our aim is merely to find the optimal solution minimizing f(x), the above require-
ment iii) is not necessary, but the metamodel f approximates f sufficiently well at
least in a neighborhood of the optimal solution x*. Depending on practical problems,
however, one may want to see the global behavior of the model f.

For metamodeling, several kinds of methods for regression can be available.
Among them, Response Surface Method (RSM), Design of Experiments (DOE)
and Kriging method are well known as methods for getting a well predicted model
with less number of experiments. On the other hand, methods using computational
intelligence such as Radial Basis Function Networks (RBFN) and Support Vector
Regression (SVR) have been widely recognized to be effective for general nonlinear
models.

Support Vector Regression (SVR) means the regression by Support Vector Ma-
chine (SVM). SVM was originally developed for pattern classification and later
extended to regression (Vapnik er al. [3, 29]), and now is widely recognized as a
powerful machine learning technique. Recently, Nakayama-Yun [21] claimed that
several variants of SVM are possible from linear classifiers using goal program-
ming, which was researched extensively in 1980’s [8]]. Consider several kinds of
objectives in goal programming using both the exterior deviation and the interior
deviation:

(i) minimize the maximum exterior deviation
(decrease errors as much as possible),

(i1) maximize the minimum interior deviation
(i.e., maximize the margin),

(iii) maximize the weighted sum of interior deviation,
(iv) minimize the weighted sum of exterior deviation.

Introducing the objective (iv) above leads to the soft margin SVM with slack vari-
ables (or, exterior deviations) which allow classification errors to some extent. Tak-
ing into account the objectives (ii) and (iv) above, we have v—SVM which was
originally proposed from a different viewpoint by Scholkopf e al. [23]. On the
other hand, using the objectives (i) and (ii) we have u — v—SVM [21]], which seems
attractive since they provide less support vectors than other SVM models.

Those SVM models can be applied to regression by introducing €-insensitive loss
function by Vapnik [29]. Denote the given training data set by (x;,y;),
i=1,...,L. Suppose that the regression function f on the feature space Z = @(x),
where the map @ is defined implicitly by using the kernel function K (x,x’) = z7z =
@(x)T ®(x'), is expressed by
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4
fz) = zWiZi +b,
i=1
and the linear € insensitive loss function is defined by
L% (z,y,f) = [y = f(2)]e = max(0, [y — f(2)[ — &).

For a given insensitivity parameter &, C—SVR considering exterior

deviations &;, i = 1,...,£ is formulated as follows:
L 1, n 1< p
minimize [lw]jz+C ’ Y(&+E) (C—SVR)p
w,b,E.& 2 i=1
subject to (Wzi+b)—yiSe+&, i=1,....¢
Yi— (WTZi+b) §£+5i7 i= 17"'a£7
& &=0,

where C is a trade-off parameter between the norm of w and &; (5,)
The dual formulation to the problem (C—SVR)p using the kernel function
K(x,x') =zlz= @(x)T ®(¥') is given by

1 !l
maximize ~, Y (6 — o) (dj — o) K (x7,x;) (C—SVR)
o,a ij=1
4 4
+ 3 (6 — ) yi— €Y, (6 + )
i=1 i=1
4
subject to 2 (d; — ;) =0,
i=1
C Cc
Oédi§£7o§al§€al:1a' 76

In order to decide the insensitivity parameter € automatically, Scholkopf and Smola
proposed v—SVR which is formulated by the following [25]:

minimize ! [w|j3+C <V£+ L (§,+§,)> (v—SVR)p
wb.e & & 2 5
subject to (szH-b)—y,-§£+§,‘7 i=1,....¢,

vi— (Wz+b)Se+é, i=1,...,0

e & &20,

where C and 0 < v < 1 are trade-off parameters between the norm of w and € and

& (&).
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The dual formulation to the problem (v—SVR)p is given by

1 4
maximize ~, Y (i — o) (dj — o) K (xi,x)) (v—SVR)
e i,j=1
4
+ z (dl - al)yl
i=1
!l
subject to Y (¢ — o) =0,
i=1
4
Z (di+ o) S Cv,
i=1
C C
Ogdlg Ogalg , i=1, 7€

~

In a similar fashion to classification, C—SVR can be extended to 4t—SVR aiming to
minimize the maximum exterior deviation £ as follows:
For a given insensitivity parameter €,

minmize Il + 1 +€) (1—SVR),
subject to (szi+b)—yi§£+§, i=1,...,4,
yi—(sz,‘—HJ)ge—ké7 i=1,...,0,
g €20,

where 1 is a trade-off parameter between the norm of w and & (é ).
The dual formulation to the problem (u—SVR)p is given by

4
maximize =) (di—04) (0 — o)) K (xi,x;) (L—SVR)

a6 2.
l

+Z(o’c,-—oc,-)yi—£2(o'c;+ai)

i=1 i=1

¢
subject to Y (¢ — ;) =0,

i=1

4 14

zal§u7 zat§N7

i=1 i=1

420, =20, i=1,....1.

Combining 4—SVR and v—SVR, we can derive another formulation which may be
defined as 4 — v—SVR:
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Hylvnbngnélée ;”W”%“LVH“@*&) (L —V—SVR)p
subject to (W'zi+b)—yiSe+&, i=1,...¢
vi—(Wat+b)Se+é i=1,...1,
e, & £20,

-

where & (&) denotes the maximum outer deviation from the € band, and v and u
are trade-off parameters between the norm of w and € and & (é ) respectively.

In this formulation, however, at least either € or & (or é) vanishes at the solution
according to v = 2u or v < 2u. Therefore, t — v—SVR may be reduced to the

following formulation simply called v —SVR (or similarly ug —SVR replacing &
by ¢ (&) and ve by u(§ +&)):

migfbrgize ;||w||%+ve (Ve — SVR),,
subject to (szi+b)—yi§£, i=1,...,0,
yi—(wlzi+b)Ze, i=1,...¢,
£=0,

where V is a trade-off parameter between the norm of w and €.

This formulation can be regarded as a kind of Tchebyshev approximation in the
feature space.

The dual formulation of (ve — SVR), is given by

1 5
maximize — z (0,65—06,') (OZj—(Xj)K(X,',Xj) (Vg—SVR)
o,0 2i.j=1
4
+ z (al - Oﬂz)yz
i=1
14
subject to Z (& —0;) =0,
i=1
4
Z (di+o05) S v,
i=1
20, 0,20, i=1,...¢.

It has been observed that 4 —SVR and v, —SVR provide the least number of support
vectors while keeping a reasonable error rate, compared with C—SVR and v—SVR.
That is, t—SVR and v —SVR is promising for sparse approximation which means
the computation is less expensive. The fact that t—SVR and v, —SVR yields good
function approximation with reasonable accuracy and with less support vectors, is
important in practice in engineering design.
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10.3 Aspiration Level Approach to Interactive Multi-objective
Optimization

Suppose that we have several (usually conflicting) objective functions fi(x),
..., fr(x) to be minimized. In such a multi-objective optimization, in general, there
is no solution minimizing all objective functions simultaneously. A Pareto solution
X is defined as a solution for which in order to improve some objectives we have to
sacrifice some of other objectives (see Fig. 10.1).

f

A

Fig. 10.1 Pareto solution in the objective space

Since there may be many Pareto solutions in practice, the final decision should
be made among them taking the total balance over all criteria into account. This
is a problem of value judgment of decision maker (DM). The balancing over cri-
teria is usually called trade-off. The set of Pareto values (namely, the values of
objective functions corresponding to Pareto solutions) is called Pareto frontier. If
we can visualize the Pareto frontier, DM can easily make his trade-off analysis on
the basis of the shown Pareto frontier. In recent years, studies aimed at generating
Pareto frontier have been developed with a help of meta-heuristic algorithms such as
evolutionary algorithms and particle swarm optimization (see, for example, [[11, 23]
(LI 12D).

On the other hand, it is not so easy to understand the trade-off relation of Pareto
frontier with more than 3 dimensions. Since 1970’s, interactive multi-objective pro-
gramming techniques have been developed in order to overcome this difficulty:
those methods search a solution in an interactive way with DM while making trade-
off analysis on the basis of DM’s value judgment (see, for example, [1]]). Among
them, the aspiration level approach is now recognized to be effective in many prac-
tical problems. As one of aspiration level approaches, one of authors proposed the
satisficing trade-off method [20).

Suppose that we have objective functions f(x) := (f;(x),..., f+(x))T to be min-
imized over x € X C R". In the satisficing trade-off method, the aspiration level at

the k-th iteration fk is modified as follows:

k

F=Top(s),
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Here, the operator P selects the Pareto solution nearest in some sense to the given
aspiration level fk. The operator T is the trade-off operator which changes the -
th aspiration level fk if DM does not compromise with the shown solution P( fk).
Of course, since P( f]( ) is a Pareto solution, there exists no feasible solution which
makes all criteria better than P(f k), and thus DM has to trade-off among criteria if
he wants to improve some of criteria. Based on this trade-off, a new aspiration level
is decided as T o P( fk ). Similar process is continued until DM obtains an agreeable
solution.

The operation which gives a Pareto solution P( f]( ) nearest to fk is performed by
some auxiliary scalar optimization:

minimize max {o; (fi(x) = f;) } + ai o;fi(x),
x i=1

1Sisr

where o is usually set a sufficiently small positive number, say 107°.

The weight w; is usually given as follows: Let f;* be an ideal value which is
usually given in such a way that f* < min{f;(x) |x€X}. For this
circumstance, we set

1
k
wl' - k . .
fi—fi
With this weight, Fig. [10.2] illustrates the operation P (namely, finding the nearest
Pareto solution to the given aspiration level) and 7' (namely, revising the aspiration
level).

12

~

—k+1

o

A
Fig. 10.2 Satisificing Trade-off Method

For more details of nonlinear interactive methods for multiobjective optimization,
the readers should refer Branke et al. [1]], Gal et al. [O], Miettinen [13], Sawaragi
et al. [24], Steuer [27], Wierzbicki et al. [30], etc. In particular, Nakayama [[17]]
emphasizes why the weighting method using linearly weighted sum of objective
functions does not work so well.
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10.4 Multi-objective Model Predictive Control

Consider dynamic optimization problems in this section. Along optimal control the-
ory, let u(t), x(¢) denote the control (input) vector and the state vector at the time 7,
respectively, and T the terminal time. The theory assumes the mathematical model
as follows:

u,x

T
minimize  J = ¢[x(T)] +/() F(x(t),u(t),r)dt
7t)

subject to x=f(x(),u(t),r), x(0)=xo. (10.1)
If the function form in the above model is explicitly given, then we can apply some
techniques on the basis of optimal control theory. However, we assume that some of
function forms, in particular the dynamic system equation (I0.1), can not explicitly
be given. Under this circumstance, we predict some of future state x(r +1),...,x(t +
pi1) for given u(r+1),...,u(t + p2), where the prediction period p; and the control
period p, are given (p; = p). Our aim is to decide the optimal control sequence
u(t) over [0, 7).

Suppose that our problem to be considered in this section has multiple objectives

J=(1,....J)".

For example, those objectives are the energy consumption, constraints of terminal
state, the terminal time (7) itself and so on.

For predicting the future state, we apply a support vector regression technique,
namely 4 —SVR which was introduced in the previous section. It has been observed
that £ —SVR provides less support vectors than other SVRs.

In order to get the final decision for these multi-objective problems, applying
the satisficing trade-off method [20] which is an aspiration level based method, we
summarize the algorithms as belows:

Step 1. Predict the model f by using £—SVR based on the past state and control
(x(k—q),x(k—q+1),...,x(k),u(k—q),ulk—qg+1),...,ulk—1)), k=gq,...,t,
where ¢ represents a depth of sampling training data and x(0) = x, (denote f as
the predicted function of f).

Step 2. Decide a control u*(¢) at the time # by using genetic algorithm:

(1) Generate randomly N individuals of control sequence:
wi(0), ug(e+1),cuj(t+pa—1), j=1,2,....N,

and set uj(t +1i) = u;(t+ py — 1) for i 2 p,, generally.
(ii) Predict the next state vector x;(k -+ 1) for each control sequence from the
present time ¢ to the time # + py:

xj(k+1) —x;j(k) := f(xj(k),uj(k)), k=t,t+1,....t +p; — 1.
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(iii) For x; = (x(0),x(1),...,x(¢),xj(t+1),...,.x;(r+p1)) and u; = (u(0),u(1),. ..,
u(t),uj(t+1),...,x;(t+p1 —1)), calculate the value of auxiliary scalar function
of satisficing trade-off method: for the aspiration level J = (J1,...,J,)" given
by a decision maker,

zj = max {w; (Ji(u;,x}) - )}+O‘2W1( (uj,xj) = Ji)
1<i<r

where w; = and J; is an ideal value of i-th objective function.

Ji— J*

(vi) Evaluating the individuals of control sequence by the value of z;, generate new
individuals of control sequence through natural selection and genetic operators
(for details, see [3]).

(v)Repeat (ii)—(iv) until a stop condition, for example the number of iteration,
holds.

Step 3. Decide the best control sequence u* such that _nllinsz, and
J=l

observe the real value x( + 1) using u(z) = u*(1).
Step 4. Stopifr =T, otherwise update r < 7+ 1 and go to Step 1.

In order to show the effectiveness of the stated method, we shall apply our method
to an example of flight control of an aircraft described in [14].

Let x; be the angle of attack, x; the pitch angle, x3 the pitch rate and x4 the
altitude. In addition, let the output be the pitch angle y; (rad), the altitude y, (m) and
the altitude rate y3 (m/sec). Suppose that the elevator angle u (rad) is just an input
(controller), and the aircraft flies with a constant velocity 128.2 m/sec at the altitude
5000 m. Then the linearized dynamic equation is given by

X =Ax+Bu, y=Cx+ Du. (10.2)

The above equation (10.2) for the discrete time can be represented by

x(t+1)=Ax(r)+Bu(t), y(t)=Cx(t)+Du(t), (10.3)
where
[ —1.2822 0 0.98 0 -0.3
0 0 1 0 0
A=l _sa03 0 —18%6 0|° BT | 17 |
| —1282 1282 0 0 0
0 1 00 0
C= 0 0o 0 1], D=0
| —1282 1282 0 0 0

2 A decision maker may change her/his aspiration level from the one at the previous time
t—1.
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We have the following structural constraints
|u| £0.262 rad (15°), |4 < 0.524 rad/sec (30°/sec),

and in addition, for the comfortability of passengers we impose the following
constraint
[vi] < 0.349 rad (20°).

Our aim is to get up to the target altitude H as soon as possible, and as comfortable
for passengers as possible within the given time 7. Therefore, our objective at the
present time ¢ is given by

1+pi k 2
minimize Ji = z (1_y2( )>
k=0 H
t+p1 2
. yi(k)
J =
minimize H kg{) (0.349>

Now, we optimize the input (i.e., the elevator angle) without knowing the explicit
form of dynamic equation (I0.3), and set the target altitude H = 400 m. Both the
prediction period p; and the control period p, are 5 sec and 1.5 sec, respectively,
and the depth of sampling training data ¢ = 1. The terminal time 7 is given by 20
sec, and the sampling period for discretization of dynamics is 0.5 sec. In GA, we use
BLX,, o =0.25 (blend crossover, BLX) which is well known as a real-coded GA
[6]. The size N of individuals is 100 and the iteration number is 100. Each constraint
is treated by the penalty method (other techniques to deal with constraints in GA can
be referred to [2),28])).

Case 1

Suppose that we are at the time ¢ = 5, and consider two situations without/with
turbulence for 5 seconds from the present time r = 5 (the observed altitude may be
considerably different with the predicted one by turbulence). The aspiration level is
given by J; = 6.0, J, = 10.0, and the ideal point J{ = 3.0, J; =5.0.

Fig. shows the solutions by using the satisficing trade-off method with the
predicted model. Here, the symbol A represents the aspiration level, the symbol
<& the solution without turbulence and the symbol O the solution with turbulence.
Fig.[10.4] and Fig. show each response corresponding to the obtained solution.
Compared Fig.[10.3 with Fig.[T0.4] because of turbulence, there are relatively strong
fluctuations in controlling the elavator angle u.

In this case, one may see that the time in which the increase of altitude attains
400 m becomes longer because the comfortability of passengers is considered rel-
atively more important. However, since the upper bound of the altitude rate ys is
not constrained, the pitch angle y; may take the value of the upper bound during
the transient state. Thus, in the following case 2, we consider the case in which the
upper bound of the altitude rate y3 is 30 m/sec.
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Fig. 10.3 Solution by using the aspiration level method (case 1)
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Fig. 10.4 Responses without turbulence (case 1)

Case 2

The aspiration level is given by /| = 8.0, J, = 8.0, and the ideal point J{ = 4.0, J; =
4.0. We show the solutions by using the satisficing trade-off method with the pre-
dicted model in Fig. Fig.[10.7]and Fig. show each corresponding response
to the obtained solution.
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Fig. 10.5 Responses with turbulence (case 1)
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Fig. 10.6 Solution by using the aspiration level method (case 2)

Comparing the results of case 1 and case 2, it is seen in case 2 that the pitch angle
v during the transient state is smaller than its upper bound due to the limitation of
the altitude rate y3. As seen from Fig. [[0.7] and Fig. consequently, there are
strong fluctuations in controlling the elavator angle u from# = 10 to # = 15, in order
to attain the target altitude 400 m as fast as possible. Moreover, the curve of the
pitch angle y; in Fig.[I0.8]is not as smooth as the one in Fig.[[0.7
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Fig. 10.7 Responses without turbulence (case 2)
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10.5 Concluding Remarks

We discussed a method for multi-objective model predictive control. £ —SVR is ap-
plied for model prediction, while the satisficing trade-off method for solving multi-
objective optimization. It has been observed that the proposed method works well
through our several experiments. A difficulty in the problems stated in this chapter
is that the terminal time is variable. In this chapter, for a fixed terminal time, firstly,
we find a sequence of optimal control. Next, we vary the terminal time. This proce-
dure requires a lot of iterations for optimization. It is desirable to reduce the number
of iterations for optimization from this viewpoint in the future.

Another difficulty occurs in finding optimal solutions to predicted models by
using genetic algorithms (GAs): In general, GAs are not good at treating constraints.
As can be seen in our numerical example, it is difficult to obtain optimal solutions
for constrained optimization problems in a reasonable precision by GAs such as
BLX, used in this chapter. It seems better to apply usual gradient-based methods for
treating simple constraints such as linear forms. In addition, since there have been
developed some methods for treating constraints in a framework of evolutionary
algorithms [12], comparative studies on the performance of those methods
should be further research topics.
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Chapter 11

Improving Local Convergence in Particle
Swarms by Fitness Approximation Using
Regression

Stefan Bird and Xiaodong Li*

Abstract. In this chapter we present a technique that helps Particle Swarm Optimis-
ers (PSOs) locate an optimum more quickly, through fitness approximation using
regression. A least-squares regression is used to estimate the shape of the local fit-
ness landscape. From this shape, the expected location of the peak is calculated and
the information given to the PSO. By guiding the PSO to the optimum, the local con-
vergence speed can be vastly improved. We demonstrate the effectiveness of using
regression on several static multimodal test functions as well as dynamic multimodal
test scenarios (Moving Peaks). This chapter also extends the Moving Peaks test suite
by enhancing the standard conic peak function to allow the creation of asymmetri-
cal and additional multiple local peaks. The combination of this technique and a
speciation-based PSO compares favourably to another multi-swarm PSO algorithm
that has proven to be working well on the Moving peaks test functions.

Keywords: Particle Swarm Optimization, Swarm Intelligence, Optimization in
Dynamic Environments, Regression Techniques, Numerical Optimization.

11.1 Introduction

Local search methods are known for their extremely fast convergence, however they
are also highly susceptible to becoming trapped in the first optimum they find. Many
real world problems are far too complex to be solvable by these methods. Evolution-
ary Algorithms (EAs) and Particle Swarm Optimisation (PSO) have been proved
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to be effective search strategies. Both algorithms are able to converge on an op-
timum even when the catchment area occupies only a small portion of the search
space. These algorithms are far less likely to become trapped in a local peak than
local search, especially when combined with a diversification measure. This prop-
erty comes at a cost though, as they take far more evaluations to locate an optimum
than local search methods.

Combining local search with an EA (or PSO) can provide the best of both worlds,
as we gain the robustness of the population-based algorithms as well as the local
search’s convergence speed [@]. This hybrid approach is quite common, for ex-
ample [@, @, @]. However, using the local search requires extra fitness evalua-
tions to be performed; when considered over the entire optimisation process, these
evaluations can be very costly.

To overcome the issue associated with high computational cost, several fitness
approximation techniques have been developed (see also Section [TT.2.1)). For ex-
ample, in aerodynamic structure optimization, since simulations for computational
fluid dynamics are usually very expensive, approximate models were developed
1, [16]. Fitness approximation was also used in conjunction with an evolution-
ary algorithm for protein structure prediction to cut down the computational cost

]. Another interesting study in 23] shows the benefits of approximating fitness
landscape using a polynomial regression model.

This chapter presents a fitness approximation technique that helps Particle Swarm
Optimisers (PSOs) locate an optimum more quickly, without requiring any extra
fitness evaluations. Rather than performing a local search, we use the candidate
solutions already tested by a PSO to create a surface that best fits the peak. We
then attempt to calculate the highest point of this surface. Provided that the local
features of the fitness landscape roughly match our surface, the optimum should be
very close to the computed highest point. This allows us to very quickly hone in on
the actual maximum point — with each successive attempt we know more and more
about the landscape, improving our estimation further.

Our early study in [El‘]) suggested that regression was able to improve efficiency in
handling some dynamic optimization functions (ie., Moving peaks scenario 2). Ex-
tending the early findings, this chapter provides several new investigations on using
regression. Firstly, we identified similarities and differences between our regression
method and other existing works in literature. Secondly, we included several widely
used static multimodal test functions to further verify if regression is effective in im-
proving local convergence for solving static multimodal problems in general. In ad-
dition, we also adopted a Generic Hump function (which is tunable with the number
of peaks and the number of dimensions) to study especially if regression is effec-
tive in reducing the number of evaluations for high dimensional multimodal prob-
lems. Furthermore, we extended the Moving Peaks test functions to allow creation
of asymmetrical and additional multiple local peaks. The effectiveness of regression
on these more complex peak shapes was examined.

Although fitness approximation using regression has been developed for EAs
23], this study represents a first attempt to integrate regression with a PSO for im-
proving local convergence. This paper is organised as follows. Section[IT.2lprovides
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the background of this technique and the algorithms we have used to test it. A de-
tailed explanation of the method follows in Section Sections [[T.4] and
show the experimental setup and results. Our conclusions will be presented in
Section[IT.6] as well as some further research directions.

11.2 Background

Local search methods are typically designed to rapidly locate an optimum once its
general area has been found. These methods are susceptible to becoming trapped
in a local optimum, meaning that they are most effectively used once the peak’s
location is already approximately known. The most intuitive local search method
is hill climbing. This method works by continually sampling the decision space
around the best point found so far [@]. At each iteration, a point somewhere near the
current best is selected and evaluated. If the new point is better than the current best
it replaces it, otherwise the new point is discarded. By repeating this process many
times we “climb” the peak of the initial starting point, usually chosen randomly. One
variant of hill climbing is gradient ascent, which works by using the derivative of the
fitness function to guide the search direction [14]. The next point chosen to search
is one that is close to the last point evaluated, but in the direction of the steepest
ascent. However, this technique can only be used with fitness functions where the
gradient can be computed.

To improve the local convergence of a PSO on a multimodal fitness landscape we
are incorporating a method that approximates the fitness landscape using regression.
This chapter will demonstrate that the use of regression and a convergence enhancer
can dramatically improve local convergence while saving computational cost. This
section provides the background for these techniques.

11.2.1 Fitness Approximation

In recent years, several studies have proposed EAs incorporating fitness approxima-
tion with an aim to improve performance while not incurring expensive computa-
tional cost [IB, , ]. Typically these EAs employ a surrogate model in place of
the expensive original function evaluations. The surrogate model is used to approx-
imate the original fitness function by using a small set of evaluated search points
chosen from the EA population. The goal is to reduce the number of expensive orig-
inal function evaluations while retaining an accurate approximation of the original
function. The most commonly used techniques for constructing surrogate models
include Kriging ], neural networks [Iﬂ], and polynomial regression , , @].
A recent survey on fitness approximation in EAs can be found in [15].

One particularly interesting EA combining fitness approximation and local search
is EANA (Evolutionary Algorithms with N-dimensional Approximation) 23], where
polynomial regression was used to approximate fitness landscape. The experiments
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of EANA on a wide range of test functions have demonstrated the effectiveness of
this approach. Nevertheless, EANA was designed to locate a single global optimum
(not multiple global optima), and test functions were all static test functions. To the
best of our knowledge, no EAs using fitness approximation and local search have
been tested for locating multiple global optima. It is even more difficult when track-
ing multiple moving peaks in a dynamic environment. This paper aims to develop a
PSO incorporating fitness approximation and local search methods, and evaluate the
effectiveness of the hybrid PSO using multimodal test functions in both static and
dynamic environments.

11.2.2 Particle Swarms

Particle Swarm Optimisation (PSO) is an evolutionary algorithm that mimics a flock
of birds [18]. As birds move throughout a territory, they are all simultaneously
watching for both food and predators. In addition they are monitoring the behaviour
of the birds around them. A change in a neighbour’s behaviour usually indicates
there is some new information available, for example a food source or predator has
been seen. By copying the behaviour of its neighbours each bird is able to benefit
from the discovery, even before it has the information itself. In PSO, each bird is
represented by a particle. It maintains its current location and velocity, as well as
a memory of the best location it has seen so far, known as the personal best. Each
particle also has a number of neighbours with whom it can share its personal best.
At every timestep each particle chooses a random point between its personal best
location and the fittest personal best of any of its neighbours. It then steers towards
that point, but does not travel there directly. The particles have momentum, meaning
that if the chosen point is in the opposite direction to where they’re travelling it may
take a number of timesteps to turn around. This ensures the particles thoroughly
explore the area surrounding the fittest known point, and are able to jump to a better
peak if one is discovered nearby.

To guarantee convergence, we have used Clerc’s constriction coefficient PSO [|rl|,
[18]. This is described by Equations (IT.I) and (IT.2), which are run for every
timestep ¢.

Viijitr1) = X ja) 01 (Pajay — X)) T 2P — X)) (11.1)

X(iju+1) = X(ijg) T V(ijr+1) (11.2)

where: )
K
O =ciry, Qp=cr2, X = (11.3)
2—c—e2—4c

The current location of particle i in dimension j at time 7 is represented as x; ;.
with the current velocity v(; ;. @1 and @ act as random weightings for the
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personal and neighbourhood bests, represented as p(; ;) and p(, ;) respectively. c;
and ¢, are constants, usually set at 2.05, with ¢ = ¢; 4 ¢,. r; and r, are uniform ran-
dom numbers in the range [0, 1]. Equation (IT.3) calculates x, a constant friction on
the particles that prevents them from oscillating violently around an optimum. K is
usually set at 1.

11.2.3 Speciated Particle Swarms

Most PSO algorithms are limited in that they will only converge on a single solution,
even when there are many global optima. Locating several solutions is beneficial in
several ways. Firstly, it provides the user with a choice. While to the algorithm it
may appear that two optima are of equal fitness, in reality it may be preferable to
choose one over the other. In many environments there are factors that are too com-
plex to incorporate into the fitness function. These factors are nevertheless present
and may lead an expert user to choose one solution over another. Secondly, by
simultaneously locating multiple solutions we reduce the risk of premature
convergence, that is where the entire population becomes trapped in a local
optimum.

Speciation, also known as niching, is one way to achieve this. The population is
divided into species, which are groups of particles that are close to each other in the
decision space. Communication between species is either severely limited or non-
existant, allowing them to each explore their local area without interference from
particles on distant peaks.

We have used SPSO [21]] as our base algorithm to test the regression method.
To determine the effectiveness on dynamic environments we will be using Moving
Peaks, a well-known dynamic test function generator (see section [I1.4.2). SPSO is
an ideal candidate for this function for two reasons. Not only does it perform well on
dynamic multimodal functions 291, its performance is also strongly correlated with
its local convergence speed [6]. This shows that by increasing the local convergence
speed, we should see a marked improvement in overall performance.

In SPSO, each species is defined by a hyper-spherical area of radius r. This area
is centred on the locally-fittest particle, called the species seed. Any particles within
the species area are considered to belong to that species, although they are free
to leave should they move away. The particles within each species are connected
using the global neighbourhood topology [19]. There is no communication between
particles of different species. To allocate the particles to species, they are first sorted
from fittest to least-fit. The list is then iterated through; for each particle, if there is
a species seed within r of its location it joins that species. Otherwise it becomes the
seed particle of a new species. If a particle is within r of two or more species seeds
it is allocated to the species of the fittest seed, as shown in Fig.[[T.1}

In the original SPSO algorithm ], particles were allocated to species based on
their current location. To improve species stability we have used the personal best
location and fitness, as was done in [5].
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. Particle
. Species seed
X2 q !

X1

Fig. 11.1 The species seeds are the fittest particles in their area of the decision space. The
middle seed is fitter than the one on the left, so its species area takes precedence where they
overlap

11.2.4 Guaranteed Convergence PSO

The basic PSO model has an inefficiency, in that the velocity of the fittest particle
will quickly drop to zero. This is caused by its personal and neighbourhood bests
being on the same point. While this is not a big problem in the standard imple-
mentation, it can become noticeable when using speciated algorithms because the
population of each species is often very low. Having an idle particle in a population
of 20 is far less noticeable than in a population of 4. In order for the particle to start
moving again, one of its neighbours must locate a better point. If there are only 2 or
3 particles this can take a long time, if it happens at all.

Guaranteed Convergence PSO 130] was developed to overcome this problem. In-
stead of travelling around like the rest of the population, the fittest particle randomly
tries points within a distance d of its personal best location. GCPSO adaptively de-
termines the value of d for each particle by tracking how many consecutive suc-
cessful or unsuccessful tries there were. An attempt is considered successful if it
improves on the personal best, otherwise it is a failure. If the number of consec-
utive successes exceeds a threshold, the algorithm searches more aggressively by
doubling d. Likewise if the number of consecutive failures becomes too large d is
halved so as to search in a smaller area. Combining SPSO with GCPSO means that
the species seed will follow the GCPSO rules, ensuring that it never stops searching.
The other particles follow the standard PSO implementation.

11.2.5 mQSO

To provide a benchmark to test SPSO’s performance against, we have used one
of the most effective PSO-based algorithms on Moving Peaks, mQSO 18]. mQSO
modifies the standard PSO in several ways to improve performance on this function.
These improvements are discussed below.
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To track as many peaks as possible, mQSO divides the population into sub-
swarms. These are equivalent to species in SPSO, except that particles are not free
to join or leave a subswarm. If two subswarms become too close to each other, the
weaker one will have its particles reinitialised. This prevents duplication and en-
courages the swarm to explore new areas. Stagnation is prevented by means of an
anticonvergence measure. If all of the subswarms have converged to small areas, the
weakest one is reinitialised in the same way as a duplicate subswarm. This prevents
the system from wasting its resources on peaks of low fitness.

mQSO is used to increase the swarm’s responsiveness to a peak movement.
Rather than letting all of the particles tightly converge on the optimum, half of
the particles are reserved as quantum particles. These particles do not follow the
standard PSO movement equations; instead at each timestep they are placed ran-
domly within a hypersphere of radius 7,4 using a uniform volume distribution.
This technique is similar in some respects to GCPSO mentioned above.

11.3 Using Regression to Locate Optima

On a multimodal fitness landscape, around each peak there is a catchment area.
Within this area, fitness generally improves as you get closer to the peak. If we
can model the overall shape of the peak while ignoring the local features, we can
calculate the highest point of that shape. Assuming that our model is reasonably
accurate, the top of our shape should be close to the optimum. We can use regres-
sion to approximate the shape of the peak. Polynomial regression with least-squares
approximation has been used to improve traditional optimisation methods [ﬁ, ].
And more recently, regression was also employed to improve the performance of
EAs [23,32,37).

In our proposed hybrid PSO using regression, we maintain a separate memory
to the base algorithm, storing only the best locations and their fitnesses. If the base
algorithm’s memory was used, points would only remain known as long as there is
an individual there. The regression needs to know the locations of the fittest points,
regardless of the population’s current state.

A minimum number of points is needed in order to calculate the regression —
below this there will be more than one shape that fits the data. As the algorithm con-
tinues sampling the fitness landscape, the regression may keep some excess points to
help reduce the effect of any local landscape features. The number of excess points
e is a tunable, although robust, parameter.

By performing a linear least-squares regression on the known points and their
fitnesses, we are able to estimate the peak’s shape. From the regression we obtain
a set of equations, one for each decision variable, that defines the shape that best
fits our known points. Although more complex and flexible equations can be used
if desired, for simplicity and efficiency we have used quadratic equations to rep-
resent the shape. This results in a set of simultaneous equations in the form of
Equation (IT.4) to be solved for ay,as, ...,az, and ¢, where n is the number of deci-
sion variables.
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Sx1, X0,y Xp) = alx% + arx) —|—a3x% +ago+ ...
(2 1) + A2 + € (11.4)

In matrix form, the simultaneous equations look like:

2 2 2 a
f X XL X7 X12 -ee Xy, Xig ] !
2 2’ 2 1 a
f2 x2_’1 XQ,l x2_’2 x2,2 x27n x2’n
A=|. L . C=
2 T2 ) aon
S X1 Xm,1 X2 Xm2 - Xy Xmon 1 .

where there is an equation for each of the m known points. To solve the simultaneous
equations, we manipulate the matrices as in Equation (LL.J)):

A =BC
B'A =B*BC
B'A =C (11.5)

where BT is the pseudoinverse of B [B]. If we only use the minimum number of
points, B will be square and we can use the inverse B~! instead. The minimum
number of points required to perform an approximation is 2n + 1, according to
Equation (TT4) (see also [23]). The coefficients that make our equation best match
the known points are found by computing C. We then find the turning point for the
equation in each dimension i = [1,7] by taking the partial derivative, as in Equation
(IL6): 5

ax,‘

The turning point in dimension i is where a‘l Sf(x1,x2,...,x,) = 0. To find out
whether it is a maximum or minimum point, we take the second derivative. When
using quadratic equations, we can simply look at the sign of a(5; 1); a negative num-
ber indicates that it is a maximum. If this is a maximisation problem and one of the
equations has only a minimum turning point, we abort the regression and wait for
better data. Similarly, if it is a minimisation problem we abort if any of the equations
has no minimum turning point.

The global maximum point of the shape will be at the location of the turning
point in each decision variable. Even though we were able to compute a maximum,
we still need to check that it is valid. If the points do not give a good representation
of the peak, for example they are all on one side, the regression will not be accurate.
If the computed point is outside the expected area, or even the entire decision space,
it is discarded. We will try the regression again when we have more data.

To test the calculated position, we replace the least-fit individual with a new in-
dividual at the shape’s highest point. This avoids using an extra evaluation, and it
is unlikely that the individual’s next movement would have contributed much to
the search. If the regression was successful, the new point will be used to further

f(xl,X2,...7Xn) :2xia(2[_1)+a(2i> (11.6)
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Fig. 11.2 a) Trying to find the highest point of the peak. We currently know the fitnesses
of 4 points: 3, 6, 15 and 20. The right side of the peak is less steep than the left. b) The
regression curve has a maximum at x = 10.926, considerably closer to the peak than any of
the previously known points

refine the shape when it is next performed, hopefully improving the fitness still fur-
ther. When using this technique with dynamic environments, we clear the memory
whenever a peak movement is detected. This prevents the regression from being
performed on stale data.

The main cost of this method is in performing the matrix inversion. Assuming
the minimum number of points are used, this has a complexity of &'(n?). As n is
dependent only on the number of decision variables and complexity of the equa-
tions used, the cost is usually quite low. The CPU cost can be further reduced by
only performing the regression at certain intervals or only for the most promising
peaks. In many environments, fitness evaluations are the most expensive aspect.
The regression’s minimal CPU overhead is usually far outweighed by the number
of evaluations saved.

As an example we will try to solve a 1-dimensional triangular function, as shown
in Fig. a). Currently we know the fitnesses of 4 points:
f3)
f(6)
f(s)
£(20)

Il
—_— W N

We place these values into B and C:

32 31
62 61| |4
~ 1152151 |

20220 1

— N

Multiplying both sides by BT gives:
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0.01 —0.01 —0.01 0.01 g [a1]
~024 012 0.30 —0.17| |Z| = a2
146 002 —1.01 0.54 | [T [c]
—0.065]  [ai]
1430 | = |a>
~1.516] | c]

This gives us the best-fitting quadratic curve, Equation (TL7).
£(x) = —0.065x2 + 1.430x — 1.516 (11.7)

To find the turning point, we differentiate it:

df (x)

o = (-0.065)2x+1.430 (11.8)

Solving Equation (IT.8) gives a turning point of x = 10.926. We know this point
is the maximum because the x> coefficient is negative. The fitness at x = 10.926 is
8.2592. As can be seen from Fig.[IT.21b), this is not the location of the actual peak,
however it is considerably closer than any of the points known so far.

There are similarities between EANA [23] and the technique presented here. Both
methods use a polynomial regression to estimate the location of a peak. However
there are also important differences, including the focus of the algorithms. EANA
is designed to estimate the area of the global optimum, whereupon local search is
used to refine its guess. As with all local search algorithms, premature convergence
can be a problem. Our technique takes advantage of the fact that modern EAs are
already very effective at locating the area of a peak. Instead we use the regression as
a heuristic, guiding the base algorithm towards its goal as it explores the surrounding
areas. This gives us the best of both worlds — substantially improving performance
while only minimally increasing the risk of premature convergence.

Another important difference is the way the two techniques obtain an accurate
model of the landscape. EANA assumes that the height of the local optima is corre-
lated with their distance from the global optimum, and so spends evaluations search-
ing for the local peaks. Our technique makes no such assumption, instead using
more than the required number of points to compute its model. This allows it to bet-
ter reflect the general trends of the landscape and discourages overfitting, without
needing additional evaluations.

11.4 Experimental Setup

To determine whether performing the regression is effective, we compared the per-
formance of SPSO and GCPSO with and without the regression. For the rest of
the paper, we will use SPSO to mean SPSO + GCPSO, and rSPSO to mean SPSO +



11 Improving Local Convergence in Particle Swarms 275

GCPSO + regression. The regression has been implemented so as to discard any cal-
culated solutions that are outside the species boundary, as described in Section [ITT.3l

For the purposes of the regression, we consider each species to be an individual
subpopulation with its own memory. This means that for every timestep, there is a
regression run for each species.

The regression will be tested on both static and dynamic multimodal test func-
tions; we will describe our procedure below. For all of the tests, each species is
limited to P, = 6 particles; any excess particles are reinitialised elsewhere in the
decision space. This is the same method as was used in [@] to avoid having too
many individuals crowd an optimum. The success and failure thresholds for GCPSO
have been set to the values recommended in [@], that is s = 15 and f. = 5. Unless
otherwise stated, the regression stores a maximum of e = 10 excess points. Each
experiment was performed 50 times and the results have been averaged.

11.4.1 Static Functions

To test general performance in a static multimodal environment, we chose functions
that represents several different landscape features. These functions are described
below; the mathematical definitions are shown in Table[TT.11

e Inverted Branin RCOS (F1) and Himmelblau (F4) both have peaks with large
catchment areas.

e Six-Hump Camel Back (F2) has two global optima with relatively large catch-
ment areas, however there are also 4 local optima for the particles to become
trapped in.

e Deb’s Ist Function (F3) has 5 narrow narrow peaks; even though it is only 1
dimensional, it can be difficult to locate all of the optima.

Table 11.1 Static multimodal test functions

Function r Comments

Inverted Branin RCOS [d]: F1(x,y) = —[(y— 4 3 global optima

2;22 + 5; —6)2+10(1— Sln )cos(x) 4 10], where

—5<x<10;0<y<15

Six-Hump Camel Back [25]: F 2(x,y) =1 2 global optima and 4 local
—4[(4— 2.1 + 5 )% + xy + (—4+ 427, optima

where —1.9 <x<1.9;-1.1<y<1.1

Deb’s 1st Function [13]: F3(x) = sin®(57x), 0.15 5 equally spaced global
where 0 <x <1 optima

Himmelblau [2]: F4(x,y) =200 — (x> +y—3 4 global optima

11)2 - (x—i—y2 —7)2, where —6 <x,y <6

Inverted Shubert 2D [20]: F 5(x,y) =0.75 18 global optima in 9 clus-
Y2 yicos[(i+ Dx+i] X2 icos[(i+ 1)y +1il, ters, many local optima
where —10 < x,y < 10
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Fig. 11.3 The inverted Shubert 2D test function has 18 global optima located in 9 pairs, as
well as many local optima

e Inverted Shubert 2D (F5) is the most difficult as it is highly multimodal. There are
18 global optima, all of which have extremely small catchment areas. In addition,
there are numerous local optima as shown in Fig. [ 1.3

A run is only considered successful if the algorithm locates all of the optima to
within a fitness of € = 0.00001 within 2000 timesteps.

For F1 through F4, a population size of 50 has been used. To reliably solve F5,
SPSO requires at least 500 particles. With the exception of Deb’s First function, all
of these are two dimensional functions.

In addition to the test functions in Table[TT.1l we also used a modified version of
the Generic Hump Function proposed by Singh and Deb 133], to test the regression’s
performance in environments where there are a larger number of decision variables.
The Hump function allows us to independently control the number of dimensions,
the number of humps and the size and shape of those humps, making it ideal for our
testing.

The Humps function consists of K humps rising from a flat surface. The height
of the hump k at a given point X is shown in Equation (T1.9):

Flr k) = {h" [1 - (d(xrf)ak )] X K) <7 (11.9)

0, otherwise

The distance from the centre of the hump & to X is denoted by d(X,k). In Singh’s
testing, all of the humps have the same height, radius and shape; b, = 1,04 = 1 for
all k. The radius r was varied with the number of dimensions. The humps are placed
so that they do not intersect, meaning that the distance between any two humps j
and k is at least r; + r¢. For our testing, we have removed the function’s flat base so
as to allow SPSO to more easily find the peaks, as shown in Equation (IT.10):
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Modified Humps

Fig. 11.4 An example of the Modified Humps landscape using 3 humps in two dimensions

S, k) = hy {1 - (d(X’k)ak)] (11.10)

Tk

The height of any given point in the decision space is the height of the tallest hump
at that point, as in Equation (ILII):

f(x) = Maxi_ f(x,k) (11.11)

An example of a landscape with 3 humps in two dimensions is shown in Fig. [T.4l
We have tested this function with 20 peaks and 5, 10, 15 and 20 decision variables,
with ry set to 0.27,0.37,0.41 and 0.43 respectively. All of the tests used 300 particles
and SPSO’s r parameter was set to 2ry, that is twice the hump radius.

11.4.2 Moving Peaks

Moving Peaks is a highly configurable dynamic test function suite, and is a common
benchmark for dynamic optimisation algorithms (10]. Moving Peaks is very similar
to the Humps function described above, except that the peaks periodically move and
change size. The peaks are usually conic, however in this paper we will be testing
with other shapes as well.

The algorithm must track the peaks as they move around the fitness landscape. As
the peaks move they also change height; this means that the globally optimal peak
changes over time, as in Fig. For this reason, algorithms that only track one
or a few peaks tend to perform poorly; the results of a particular run depend more
on the peak’s average height than the algorithm’s performance [Ia]. To achieve good
performance it is critical that an algorithm tracks as many peaks as possible. It is
too expensive to locate the new optimum from scratch after every landscape change.
Following this rationale, it is expected that the good performance of an optimiser for
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Fig. 11.5 The difficulty of tracking peaks: Peak 2 used to be the global optimum however it
is now covered by Peak 3. At some point in the future Peak 2 may re-emerge and become the
highest again; algorithms with insufficient population diversity are unlikely to rediscover this
peak

a static multimodal environment should be transferable to the dynamic multimodal
environment.

Unless otherwise stated, all Moving Peaks parameters are set as specified by
scenario 2; please refer to Table[I1.2] for detailg].

The most widely-used performance metric on Moving Peaks function is offline
error [IE]. Offline error is the difference in fitness between the best-known point
and the global optimum, averaged over the entire run. All of our results on Moving
Peaks will be presented in terms of offline error after 500,000 evaluations.

Both the PSO and regression algorithms need to be informed when the landscape
changes. To detect these changes, at the end of each timestep we check the fitness
of the top 5 species seeds. If any of the fitnesses differ from the recorded value, the
particles’ personal best memories and the memory used for the regression are both
cleared.

To determine the robustness of the regression under different circumstances, we
tested:

e The number of peaks between 1 and 200
e The severity of each peak movement, between 0 and 6
e The number of decision variables between 5 and 10

11.4.2.1 Creating Varying Peak Shapes

Extending our preliminary work in (71, we will fully analyse the regression’s per-
formance, including on more complex peak shapes, as defined in this section. We
wanted to see whether the regression was still effective with other peak shapes. The
standard conic shape used by Moving Peaks is produced by Equation (IT.12):

f(x) :h—w\/
d

I See also: http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

(x4 — pa)* (11.12)

Mo

1
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Table 11.2 Moving Peaks Scenario 2 parameters

Parameter Setting
Random seed 1
Dimensions 5
Peaks 10
Minimum peak height 30
Maximum peak height 70
Standard peak height 50
Minimum peak width 1
Maximum peak width 12
Standard peak width 0
Coordinate range [0, 100]
Peak movement severity 1
Peak height severity 7
Peak width severity 1
Basis function None
Movement correlation A 0

Peak movement interval 5000 evaluations
Peak shape Conic

Change stepsize Constant

where w and A specify the width and height of the peak respectively, x, is the loca-
tion of the point in dimension d and py is the tip of the peak in dimension d. We
have extended this equation in several ways:

e The relationship between height and distance from the peak’s centre in dimension
d is now controlled by oy. oy = 1 will produce the conic shape used by the
standard Moving Peaks scenarios. Using ¢; > 1 will produce a mound shape,
with steepness increasing as the o gets bigger. Setting o, € (0, 1) produces a
spike shape, as depicted in Fig.

e To create asymmetric peaks, for each decision variable we divide the peak into
2 halves, left and right. The value of oy used for the left and right halves are
denoted oty and oy respectively. Fig. [[1.7] shows an asymmetric peak.

e Local optima have been added by superimposing a cosine wave over the peak.
The amplitude and frequency of the wave are specified by B; and 7y, respectively.
All 7y values used in this paper are in radians. Fig. shows a cosine wave
superimposed on Fig.[[T.7]1 By adjusting 8, and 7y, we can specify the number
and severity of local peaks in variable d.

The new peak function is defined in Equation (IT.I3). The standard conic peak
shape can be achieved by setting oy = 1, 8; = 0,79, = 0 for all d.
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Fig. 11.6 Five peaks have been overlaid, showing how o determines the peak’s shape
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Fig. 11.7 An example of an asymmetric peak. The values of o are 2 and % for the left and
right halves respectively
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Fig. 11.8 Superimposing the cosine wave over the peak in Fig.[[T.7]
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f(x) :h—w\/
d

ug = Ba (cos [Ya (xa — pa)l — 1) 0o 0tg1 € (0 ) By va € [0 o)

2
(Ixa — pal ™ +uq) (11.13)

Mo

1
where

0Olgo if Xq A pg
Oy = .
041 Ootherwise

To determine the regression’s performance on varying peak types, the following
tests were carried out:

e Symmetric peaks where all oo and ¢ values are equal. We tested with the
following setting: oty € {1,3,1,2,3},B=y=0.

e Asymmetric peaks where all o; values are randomly generated within the range
[3.3],and B =y =0.

e Conic peaks with a superimposed wave: oy = 1, Maxg € [2,10], Maxy € [20, 100].

e Asymmetric peaks with a superimposed wave: o, 0y € [;,3], Maxg € [2,10],
Maxy € [20,100].

Maxg indicates that each peak’s values for f3; are randomly chosen in the range
[0, Maxg]. Maxy indicates the same thing for .

We also tested the regression’s sensitivity to e, both on the standard scenario 2
problem and with the modified peak function, using oy; € [; ,3],Maxg = 10, Max, =
100. The latter is designed to show whether using a larger e value improves
performance on functions with many local optima.

Finally we compared our results to mQSO, one of the best performing algorithms
on Moving Peaks scenario 2. We have compared our results to the 10 (5 + 57) con-
figuration that Blackwell showed to be optimal on this problem. All experiments
were run with 100 particles and with SPSO’s r parameter set to 30. These were the
settings used in [@ﬁ

11.5 Results

This section is divided into two main parts. We will first look at the regression’s
performance on static multimodal functions. Secondly we will analyse its behaviour
on the Moving Peaks test suite.

11.5.1 Static Functions

Even with static environments, it is still very important to reduce the number of
evaluations. Each evaluation costs CPU time, often well in excess of the time used
by the optimiser itself. In this part we will report on the regression’s performance on
static problems, both in low dimensional and high dimensional environments. The
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Table 11.3 Regression performance on low dimensional static functions. Mean, standard
error and improvement over SPSO are shown

Function rSPSO SPSO Improvement
Fl1 6254.54 (£298 59) | 9552.86 (£216 98) 35%
F2 1489.63 (£53 90) | 8934.58 (£304 97) 83%
F3 5306.60 (£225 23) | 7613.16 (£271 40) 30%

F4 4963.74 (£277 75) | 11069.68 (£299 91) 55%
F5  |50511.46 (794 94)|164360.00 (£2912 89) 69%

Table 11.4 Regression performance on the high dimensional Humps function. d is the num-
ber of decision variables

d rSPSO SPSO Improvement
51191902.50 (5353 82)(292472.57 (£12638 88) 34%
10(256795.42 (£2506 12)| 356665.10 (£5146 87) 28%
15(277200.14 (£2038 94)| 404640.00 (£1161 45) 31%
201297978.00 (£1427 11)| 462036.00 (£1216 41) 36%

third part of this section will investigate how the number of excess points affects
performance.

11.5.1.1 Low Dimensional Landscapes

Table [[T.3] shows that using the regression dramatically increased performance on
all of the low dimensional functions we tested. The largest improvement was on
Branin RCOS, where the number of evaluations required was reduced by more than
80%. Even on Deb’s First Function (F3), the regression still reduced the number of
evaluations by nearly a third. This is a significant improvement.

Inverted Shubert 2D (depicted in Fig.[TT.3) was by far the hardest 2 dimensional
function we tested, normally requiring 160,000 evaluations for SPSO to locate all
of the optima. Adding the regression reduced this to just 50,000. We suspect that
one of the reasons the regression performed so well is that the peak tips resemble a
parabola, allowing it to be accurately modelled.

11.5.1.2 High Dimensional Landscapes

The number of dimensions does not appear to affect the regression’s effective-
ness. Table[TT.4 shows that using the regression reduced the number of evaluations
by about 30%. This becomes especially signficant as the number of dimensions
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Fig. 11.9 Number of evaluations needed for Humps 5D with different numbers of excess
points. The vertical bars show one standard error

increases; for the 20 dimensional function using the regression saved over 160,000
evaluations.

11.5.1.3 Sensitivity to ¢

As Fig. shows, the best performance was obtained by setting e to between
10 and 30. Although it still beat SPSO, the regression performed relatively poorly
when excess points were not kept. The Humps function’s peaks are conic, making
them difficult to model when only using the minimum number of points. The excess
points help to define the surface better, improving the regression’s guess.

Using too many points also decreased performance. The regression does not per-
form any weighting — it tries to match all of the points regardless of their fitness.
By storing too much data, we allow the memory to become polluted with distant
and poor quality points. Instead of just modelling the tip, the peak’s overall shape is
matched. We are then unable to accurately determine the tip’s location as our model
is not specific to that area.

We recommend that e be set to 10 for all problems. This value represents a good
tradeoff; it provides excellent performance without creating too much CPU or mem-
ory overhead. We have also tested this on the Moving Peaks problem and found the
same ideal value. This is discussed in the next section.

11.5.2 Moving Peaks

Reducing the number of evaluations is critical when working with dynamic envi-
ronments. If the environment is changing every 2 minutes, an algorithm that takes
3 minutes to find an adequate solution is useless. By adding the regression we are
able to significantly reduce the number of evaluations needed; this section details
the performance on Moving Peaks under different situations.
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Fig. 11.10 Current error over time on Moving Peaks scenario 2; a) showing the effect of
adding the regression; b) the same as a) but without the first 5000 evaluations

11.5.2.1 Increasing Convergence Speed

Fig.[[T.10a) compares the current error over time for SPSO and rSPSO. Current er-
ror is the difference in fitness between the best known point and the global optimum.
Offline error is calculated by averaging the current error over an entire run.

In scenario 2, the peaks move every 5000 evaluations, as can be seen by the
upwards jumps in the graphs. The regression is inactive for at least the first 200
evaluations after a peak movement. As the population size is 100, this represents
only two timesteps; improvements here are mostly due to the fortunate placement
and existing momentum of the particles. The regression cannot be used yet because
there are insufficient points for it to be computed. For a 5-dimensional function, 11
points are needed. Since each species is limited to 6 particles, at least two timesteps
needed to collect the required data.

Fig. [T.I0b) is the same as a), but without the first 5000 evaluations. This gives
a better indication of the regression’s performance helping to track the peaks. Af-
ter a peak movement the PSO requires 100 evaluations to re-evaluate the particles,
one for each individual. Thus the indicated error immediately after a change is not
representative of the individuals’ true fitnesses.

At 300 evaluations after a peak movement the regression’s effect becomes obvi-
ous. The curve for rSPSO drops quickly as the algorithm hones in on the optimum.
After a landscape change, a normal PSO must wait for the particles to accelerate
towards the new peak, then wait for them to converge again once the peak has been
located. The combination of GCPSO and the regression reduces the time spent do-
ing this: the regression moves the worst particle close to the peak while GCPSO’s
rules set the velocity to 0 and force it to explore the local area.

At 1200 evaluations after a peak movement rSPSO has already achieved the same
error as SPSO does after 4900 evaluations. Even at this point, the curve has a fairly
steep gradient; substantial improvements are being made each timestep. The graph
plateaus around 3000 evaluations; the error at this point is very small. The curve
does not converge to 0 because SPSO is usually unable to maintain species on all of
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Fig. 11.11 Adding the regression substantially reduced offline error

the optima l6]; the residual error is from the times that the algorithm is not tracking
the highest peak.

Please note that to ensure a smooth curve for Fig. we have performed 1000
runs for each of the algorithms. All other results presented in this paper are based
on experiments of 50 runs.

11.5.2.2 Number of Peaks

Adding the regression reduced offline error by between 1 and 1.5, as shown in
Fig. [T.11l The settings of SPSO (r = 30, P,,qx = 6) are optimised for 10 peaks,
which explains the sweet spot at that point. Below this, there are too many par-
ticles for the number of peaks. Since only 6 particles are allowed on each peak,
when there are too few peaks most of the particles are continually reinitialised. This
wastes evaluations, resulting in a larger offline error.

At the other end of the graph it becomes impossible for the algorithm to track
all of the peaks. Having neither enough particles nor a small enough r value, the
algorithm must rely on the particles to jump between peaks, hopefully to the globally
optimal one. The increased error is caused by the times the algorithm is unable to
discover the best peak.

11.5.2.3 Peak Movement Severity

The peak movement severity controls how far the peak moves each time. Larger
severities increase the time needed to re-find the peak. The further the peaks move,
the faster the particles will be travelling when they reach it. In a standard PSO
they will then take longer to slow down and reconverge. Using the regression in
combination with GCPSO helps this process; whenever the regression’s guess is
successful, the worst particle will become the species seed as the regression’s guess
was better than any of the existing solutions. Since the species seed follows the
GCPSO movement rules, it immediately loses the momentum it previously had.
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Fig. 11.13 The regression reduced the offline error by around 1.5 for all of the dimension
values tested

As this happens to successive particles, the average velocity is quickly reduced,
allowing the particles to reconverge.

Fig. shows how SPSQO’s error increases linearly with severity. rSPSO’s
error also increases, but at a much lower rate. At a severity of 0 the peaks do not
move at all, they only change height. In this situation the error achieved depends
almost entirely on being able to track all of the peaks. As the peaks are not moving,
once the optima have been initially located the regression is not needed to track
them, thus the performances of SPSO and rSPSO are very similar.

11.5.2.4 Dimensionality

As with the results shown in Table [[1.4] for the Hump function, performance im-
provement provided by the regression on the Moving Peaks is fairly constant.
The error increases linearly as the number of dimensions increases, however the
difference between rSPSO and SPSO remains about 1.5, as shown in Fig. [[T.13
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Fig. 11.14 Offline error for different peak shapes

11.5.2.5 Peak Shape

For this experiment, all of the ¢; values have been set identically, making the shapes
tested symmetrical. A one dimensional peak for each value of ¢y is depicted in
Fig.

The most obvious feature of Fig.[[T.14is that outside the range ¢, € [1,2] there
is a large increase in offline error.

For o; > 2, the areas away from the optima are exceptionally steep. Performance
depends almost entirely on how quickly the algorithm can locate the general area
of the tip, rather than its exact location. Guiding the PSO’s search, the regression is
able to reduce the offline error from 35 to 30.

When oy < 1, the penalty for being far away from the peak’s tip is relatively
small, however to achieve a small error it is extremely important to precisely locate
the optimum. The difference between a point 0.1 units away from the peak and 0.2
units away can be substantial. Again, using the regression reduced the offline error
by about 1. This is quite impressive as the actual peak shape is the opposite of the
regression’s model — the fitness landscape does not fit a parabola at all. This result
suggests the parabolic model works well even on difficult peak shapes, and that
more elaborate models are generally unnecessary. Further testing would be required
to confirm this though.

11.5.2.6 Asymmetric Peaks

In the real world, many fitness landscapes have asymmetrical peaks. The peak may
be very steep on one or more sides, or be at the edge of the feasible region. For
these experiments, we have used random peak shapes. The ¢; values for each side
of every peak in each dimension are chosen randomly within a specified range. For
example, in a run with only two peaks, the following values may be chosen:

Oy = 0.407 01 = 0.94, o0 = 2.647 o1 =0.58
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Table 11.5 Regression performance on asymmetric peaks

oy rSPSO SPSO  Improvement
[0.33,3] 1.82(£0.07) 2.59 (£0.09) 30%
[0.4,2.5] 1.70 (£0.07) 2.46 (£0.07) 31%
[0.5,2] 1.66 (£0.06) 2.67 (+£0.07) 38%
[0.67,1.5] 1.58 (£0.05) 2.66 (+0.09) 41%
[1,1]  1.45(£0.05) 2.90 (+0.08) 50%

As Table[TT.5]shows, the regression is most effective when the range of o is small.
The regression works better on peaks that are roughly symmetrical as they more
closely match the parabolic shape used. However even when highly asymmetrical
peaks are created, the regression still achieved a 30% improvement over SPSO.
This shows again that the regression’s guesses are still accurate enough to aid the
optimisation, even when it cannot closely model the peak.

11.5.2.7 Adding Local Optima

By comparing Fig. a) and b) we can see that the wave’s amplitude had a
much greater effect on performance than its frequency. The flatness of Fig.
b) suggests that the swarm is able to jump from peak to peak with relative ease.
The amplitude’s effect is far greater because each new candidate solution is just as
likely to be at the bottom of the wave as the top. On average each new point will
be halfway down a wave, increasing the overall error incurred. The local optima
decrease the accuracy of the regression’s model, reducing its effectiveness. Even so,
it still managed to reduce the offline error by around 1 in all of the runs.

"SPSO - "SPSO -
14 frSPSO —— 14 [SPSO ——

»»»»»»»»» a3

Offline Error
Offline Error

L L L L L L
0 2 4 6 8 10 0 20 40 60 80 100
Maximum amplitude (B) Maximum frequency (y)

(@ (b)

Fig. 11.15 Performance on symmetric peaks for different values of: a) Maxg (oy =
I,Maxy = 100); b) different values of Maxy (0g = l,Maxlg =10)
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Fig. 11.16 Performance on asymmetric peaks for different values of: a) Maxg (otg € [0.33,3],
Maxy = 100); b) Maxy (0 € [0.33,3], Maxg = 10)
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Fig. 11.17 a) Offline error for Moving Peaks Scenario 2 for different values of e. b) Of-
fline error for asymmetric peaks with waves for different values of e (o € [0.33, 3},Max/3 =
10,Maxy = 100)

11.5.2.8 Asymmetric Peaks with Local Optima

This is the most challenging landscape for the PSO; we are creating peaks that look
similar to the one shown in Fig.[TT.8] In all of the experiments the regression reduced
the offline error by between 1.5 and 2. As can be seen by comparing Fig. a)
and b) with the results for the asymmetric peaks and local optima individually, the
local optima are the primary cause of the large offline error - the asymmetric peaks
are not a significant component. As would be expected, the results here are very
similar to the results for the local optima tests.

11.5.2.9 Sensitivity to ¢

On scenario 2 the value of e does not greatly affect the regression’s performance.
Low, nonzero values provided slightly better results for the same reason as before,
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Table 11.6 Comparing against mQSO: Severity

s mQSO rSPSO SPSO
0 1.18 (40.07) 0.49 (£0.06) 0.60 (+0.04)
1 1.75 (£0.06) 1.41 (£0.04) 3.02 (40.07)
2 2.40 (40.06) 2.10 (£0.06) 4.49 (+0.09)
33.00 (40.06) 2.79 (+£0.07) 5.65 (+0.09)
43.59 (+0.10) 3.33 (£0.07) 7.02 (40.14)
5 4.24 (40.10) 3.85 (+0.08) 8.32 (+0.14)
6 4.79 (40.10) 4.25 (+0.08) 9.59 (+0.15)

o~~~ o~ o~ —
~ o~~~ —~
~ o~~~ —~

Table 11.7 Comparing against mQSO: Number of peaks

Peaks mQSO rSPSO SPSO
1 5.07 (£0.17) 1.91 (£0.09) 3.79 (+0.18)
2 347 (4£0.23) 1.62 (£0.04) 3.14 (£0.10)
5 1.81 (£0.07) 1.42 (£0.06) 2.88 (+0.07)
7 177 (£0.07) 1.38 (£0.04) 2.82 (0.07)
10 1.80 (£0.06) 1.47 (£0.07) 2.78 (£0.06)
20 2.42 (+0.07) 1.80 (£0.04) 2.9 (+0.05)
30 2.48 (+0.07) 2.07 (£0.05) 3.21 (+0.06)
40 2.5 (£0.07) 2.30 (£0.06) 3.52 (+0.06)
50 2.50 (0.06) 2.30 (£0.04) 3.52 (+0.05)
100 2.36 (£0.04) 2.51 (£0.04) 3.73 (£0.06)
200 2.26 (40.03) 2.57 (£0.03) 3.77 (+0.06)

A~ o~~~ o~~~ —~
A~ o~~~ o~~~ —~

by allowing the regression to concentrate on the best information. In all cases the
regression outperformed SPSO by a significant margin, as shown in Fig.[TT.17a).

When optimising the most complex function, Moving Peaks with of; € [0.33,3],
B = 10,7 = 100, the value of e played a larger role in performance (Fig.[IT.17]b)).
As would be expected, increasing e slightly helped the regression ignore the local
optima. Values larger than 20 gave no extra advantage however, showing that even
for difficult problems only a few excess points are needed.

11.5.2.10 Comparing to mQSO

In Table we compare the performance against mQSO (with the anticonver-
gence measure) for differing movement severities. As can be seen, rSPSO exceeds
mQSO’s performance for all of the severities tested. This is even more impres-
sive considering that for most of the experiments SPSO had far worse performance
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than mQSO. It should also be noted that both mQSO and SPSO have been tuned
for this benchmark - the parameters chosen by Blackwell were optimised for each
severity setting. SPSO’s r has been set to the standard value for the Moving Peaks
benchmark. The only parameter specifically related to the regression, e, requires
very little tuning. The value of 10 was shown to be either optimal or near-optimal
for all of the tests we conducted.

Table [[1.7] compares mQSQ’s performance against both SPSO and rSPSO for
differing numbers of peaks. It can be seen that rSPSO is highly competitive with
mQSO; offering better performance for all but the 100 and 200 peak runs. It should
be remembered that the regression can be added to most numerical optimisation
algorithms; it is highly likely that it could be used to improve mQSO’s performance
even further.

11.6 Conclusion

In this chapter we have presented a technique to incorporate regression into a PSO
algorithm, in order to improve local convergence. We have provided experimental
studies and analysis of results using several multimodal test functions with varying
difficulty. We have also extended the Moving Peaks test suite with more complex
peak shapes, and carried out experimental studies on these newly defined test func-
tions. Our results show that the performance of the regression-based SPSO (rSPSO)
compares favorably against two existing multimodal PSOs (SPSO and mQSO). In
particular, adding the regression significantly improved the performance of an ex-
isting multimodal PSO algorithm (SPSO) on a range of fitness landscapes in both
static and dynamic environments. By using the existing population members, the
regression technique does not require any additional evaluations, but only a modest
amount of memory and CPU time depending on the number of decision variables
and excess points.

As a future research direction it may be worthwhile exploring other deterministic
techniques that could be combined with a PSO. Currently much of the available
information is thrown away as the population moves each generation. By retaining
and analysing this data, it is likely that further improvements in performance can be
found.
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Chapter 12

Differential Evolution with Scale Factor Local
Search for Large Scale Problems

Andrea Caponio, Anna V. Kononova, and Ferrante Neri

Abstract. This chapter proposes a novel algorithm for handling high dimensional-
ity in large scale problems. The proposed algorithm, here indicated with Differential
Evolution for Large Scale problems (DELS) is a Differential Evolution (DE) based
Memetic Algorithm with self-adaptive control parameters and automatic popula-
tion size reduction, which employs within its framework a variation operator local
search. The local search algorithm is applied to the scale factor in order to generate
high quality solutions. Due to its structure, the computational cost of the local search
is independent on the number of dimensions characterizing the problem and thus is
a suitable component for large scale problems. The proposed algorithm has been
compared with a standard DE and two other modern DE based metaheuristics for
a varied set of test problems. Numerical results show that the DELS is an efficient
and robust algorithm for highly multivariate optimization, and the employment of
the local search to the scale factor is beneficial in order to detect solutions with a
high quality, convergence speed and algorithmic robustness.

12.1 Introduction

Computationally expensive optimization problems can be classified into two cate-
gories: problems which require a long calculation time for each objective function
evaluation and problems which require a very high amount of objective function
evaluations for detecting a reasonably good candidate solution. The problems be-
longing to the latter category, which are the focus of this chapter, are usually
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characterized by a vast decision space which is strictly related to the high dimen-
sionality of the function. Optimization problems characterized by a high number
of variables are also known as large scale optimization problems, or briefly Large
Scale Problems (LSPs).

The detection of an efficient solver for LSPs can be a very valuable achievement
in applied science and engineering since in many applications a high number of de-
sign variables may be of interest for an accurate problem description. For example,
in structural optimization an accurate description of complex spatial objects might
require the formulation of a LSP; similarly such a situation also occurs in schedul-
ing problems, see (19]. Another important example of a class of real-world LSPs is
the inverse problem chemical kinetics studied in [IE] and [@].

Unfortunately, when an exact method cannot be applied, LSPs can turn out to be
very difficult to solve. As a matter of fact, due to high dimensionality, algorithms
which perform a neighborhood search (e.g. Hooke-Jeeves Algorithm) might require
an unreasonably high number of fitness evaluations at each step of the search while
population based algorithms are likely to either prematurely converge to suboptimal
solutions, or stagnate due to an inability to generate new promising search direc-
tions. In other words, many metaheuristics that perform well for problems charac-
terized by a low dimensionality, e.g. Evolutionary Algorithms (EAs), can often fail
to find good near optimal solutions to high-dimensional problems. The deterioration
in the algorithmic performance, as the dimensionality of the search space increases
is commonly known as a “curse of dimensionality”, see 138].

Since the employment of optimization algorithms can lead to a prohibitively high
computational cost of the optimization run without the detection of a satisfactory
result, it is crucially important to detect an algorithmic solution that allows good
results by performing a relatively low amount of objective function evaluations. In
the literature various studies have been carried out and several algorithmic solutions
have been proposed. In (151, a modified Ant Colony Optimizer (ACO) has been
proposed for large scale optimization problems. Some other papers propose a tech-
nique, namely cooperative coevolution, originally defined in [27] and subsequently
developed in other works, see e.g. [@] and [36]. The concept of the cooperative
coevolution is to decompose a LSP in a set of low dimension problems which can
be separately solved and then recombined in order to compose the solution of the
original problem. It is obvious that if the objective function (fitness function) is sep-
arable then the problem decomposition can be trivial while for nonseparable func-
tions the problem decomposition can turn out to be a very difficult task. However,
some techniques for performing the decomposition of nonseparable functions have
been developed, see 26]. Recently, cooperative coevolution procedures have been
successfully integrated within Differential Evolution (DE) frameworks for solving
LSPs, see [33], [39], [41], [24] and [4].

It should be remarked that a standard DE can be inefficient for solving LSPs, see
[B]. However, DE framework, thanks to its simple structure and flexibility, can be eas-
ily modified and become an efficient solver of high dimensional problems. Besides
the examples of DE integrating cooperative coevolution, other DE based algorithms
for LSPs have been proposed. In [|30] the opposition based technique is proposed for
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handling the high dimensionality. This technique consists of generating extra points,
that are symmetric to those belonging to the original population, see details in ].
In [@] a Memetic Algorithm (MA) (see for the definitions e.g. [@], [IE], and [@])
which integrates a simplex crossover within the DE framework has been proposed
in order to solve LSPs, see also [Iﬂ]. In [B], on the basis of the studies carried out
in [|I|], [@], and [ﬁ], a DE for LSPs has proposed. The algorithm proposed in [B] per-
forms a probabilistic update of the control parameter of DE variation operators and
a progressive size reduction of the population size. Although the theoretical justifi-
cations of the success of this algorithm are not fully clear, the proposed approach
seems to be extremely promising for various problems. In [21]], a memetic algorithm
which hybridizes the self-adaptive DE described in [2] and a local search applied
to the scale factor in order to generate candidate solutions with a high performance
has been proposed. Since the local search on the scale factor (or scale factor local
search) is independent on the dimensionality of the problem, the resulting memetic
algorithm offered a good performance for relatively large scale problems, see ].

This chapter proposes a novel memetic algorithm which integrates the potential
of the scale factor local search within the self-adaptive DE with automatic reduc-
tion of the population size in order to guarantee a high performance, in terms of
convergence speed and solution detection, for large scale problems.

The rest of this chapter is organized in the following way. Section[I2.2]describes
the algorithmic components characterizing the proposed algorithm. Section
shows the numerical results and highlights the performance of the proposed algo-
rithm with respect to a standard DE and two modern DE variants. Section[12.4] gives
the conclusion of this work.

12.2 Differential Evolution for Large Scale Problems

This section describes the algorithmic components composing the proposed algo-
rithm, namely Differential Evolution for Large Scale Problems (DELS), and their
combination.

In order to clarify notation used throughout this article we refer to the minimiza-
tion problem of an objective function f (x), where x is a vector of n design variables
in a decision space D.

12.2.1 Differential Evolution

According to its original definition given in [Iﬁ], the DE consists of the following
steps. An initial sampling of S, individuals is executed pseudo-randomly with a
uniform distribution function within the decision space D. At each generation, for
each individual x; of the S, available, three individuals x,, x; and x; are randomly
extracted from the population. According to DE logic, a provisional offspring xf)ff
is generated by mutation as:

xﬁ,ff =x + F(x — xy) (12.1)

where F € [0,14] is a scale factor which controls the length of the exploration
vector (x, — x;) and thus determines how far from point x; the offspring should be
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generated. With F € [0, 1+], it is here meant that the scale factor should be a positive
value which cannot be much greater than 1, see [@]. While there is no theoretical
upper limit for F, effective values are rarely greater than 1.0. The mutation scheme
shown in eq. (I2Z.I) is also known as DE/rand/1. Although the DE/rand/1 mutation
have been employed in this chapter, it’s important to mention that other variants of
the mutation rule have been proposed in literature, see [29]:
DE/best/1: x| if = Xbest +F (x5 —x¢)
DE/cur-to-best/1: xﬁ,ff =x; + F (Xpesr — Xi) + F (x5 — x¢)
DE/best/2: x;ff = Xpesr + F (x5 — ;) + F (x, — x,)
DE/rand/2: x;ff =X+ F (xs—x) + F (x — x)
where xp,y is the solution with the best performance among the individuals of the
population, x, and x, are two additional randomly selected individuals.

Then, to increase exploration, each gene of the new individual x; Y is switched
with the corresponding gene of x; with a uniform probability CR € [0,1] and the
final offspring x, s is generated:

Xij if  rand(0,1) <CR
Xoff.j =

(12.2)
X, pp.; Otherwise

where rand (0, 1) is a random number between O and 1; j is the index of the gene
under examination, from 1 to n, n the length of each individual.

generate S, individuals of the initial population randomly;
while budget condition
Jori=1:Sp,
compute f (x;);
end-for
Jori=1:Sp,
*Fmutation®*
select three individuals x,, x;, and x;;
compute x’off =x +F(x, — x5);

**crossover®*
I .

Xoff =Xoff>

forj=1:n

generate rand(0,1);
if rand(0,1) < CR
Xoff,j = Xij>
end-if
end-for
*#selection™*
if f(xorr) < f(xi)
Xj = Xoffs
end-if
end-for
end-while

Fig. 12.1 DE pseudocode
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The resulting offspring x, s¢ is evaluated and, according to a steady-state strategy,
it replaces x; if and only if f(x,¢¢) < f(x;); otherwise no replacement occurs. For
the sake of clarity, the pseudo-code highlighting working principles of the DE is
shown in Fig.[12.1]

12.2.2 Self-Adaptive Control Parameter Update

The standard DE described in Subsection [[2.2.1] has been modified according to
the work proposed in [2] and its enhancement proposed in [41]. When the initial
population is generated, two extra values between O and 1 are also generated per
each individual. These values represent ' and CR related to the individual under
analysis. Each individual is thus composed (in a self-adaptive logic) of its genotype
and its control parameters:

Xi = <x,‘71 3 Xi 2y Xi s ...x,‘7n,E‘,CR,‘> . (12.3)

In accordance with a self-adaptive logic, see e.g. [@], the variation operations are
preceded by the parameter update. More specifically when, at each generation, the
i"" individual x; is taken into account and three other individuals are extracted ran-
domly, its parameters F; and CR; are updated according to the following scheme:

P F;+ F,rand,, if rand, < 11 (12.4)
F; otherwise
F; = —F; if rands < t3 AND f(x;) > f(x) (12.5)

CRi - { rands, if randy < T (12.6)

CR;, otherwise

where rand;, j € {1,2,3,4,5,6}, are uniform random values between 0 and 1; T,
T2, and T3 are constant values which represent the probabilities that parameters are
updated, F; and F, are constant values which represent the minimum value that
F; could take and the maximum variable contribution to F;, respectively. The sign
inversion in the scale factor described in eq. can be seen as the exploitation
of a crude approximation of the gradient information in order to generate offspring
along the most promising search directions. The newly calculated values of F; and
CR; are then used for generating the offspring. Mutation, crossover, and selection
scheme are performed as shown in Subsection[I2.2.1]for a standard DE.

12.2.3 Population Size Reduction

Taking into account the studies given in (1] and [3] a population size reduction has
been integrated within the proposed algorithm. This algorithmic component requires
that initial population size Sll,o s total budget T, in terms of fitness evaluations, and
number of stages Ny, i.e. the number of population sizes, employed during the algo-

rithm’s run are prearranged.
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Thus, the total budget of the algorithm is divided into N, periods, each period
being characterized by a population size value S];,O p (for k =1 we obtain the initial
population size). Each period is composed of Ngf generations which are calculated

in the following way:

T
NE = +r (12.7)
4 k
8 {NSSPOPJ

where ry is a constant non-negative value which takes a positive value when 7}, is
not divisible by N;. In this case r; extra generations are performed. The population
reduction is simply carried out by halving the population size at the beginning of

the new stage, see [[1]]. In other words, for k = 1,2,...,Ny — 1, S’]‘,j; = S%””.

In this way, the population size is progressively reduced during the optimization
process until the final budget is reached. The concept behind this strategy can be
explained as the satisfaction of the necessity of focusing the search in progressively
smaller search spaces in order to inhibit the DE stagnation in the environment with
high dimensionality. During the early stages of the optimization process, the search
requires a highly explorative search rule, i.e. a large population size, in order to ex-
plore a large portion of the decision space. During the optimization, the search space
is progressively narrowed by decreasing the population size and thus exploiting the
promising search directions previously detected. Although the number of stages and
the population size values remain arbitrary issues defined by the algorithmic de-
signer, the idea seems to lead to a fairly robust algorithmic behavior for the setting
proposed in [41] and seems to be very promising for LSPs, as highlighted in (.

The last topic to be clarified is the selection rule employed every time a pop-
ulation reduction occurs. At the end of each stage, i.e. at each N§ generation for

k=12,3,...,N;, the population is divided into two sub-populations on the basis of
k

o . s . Koy
the position index i of the individuals. Each sub-population encounters %7 in-
dividuals. Thus, the first sub-population is composed of the candidate solutions
X1,X2,...,Xsp0,k While the second sub-population is composed of the candidate so-

2

lutions x Sp;pk X Spopk

+177P g
spawning, typical of the DE logic, to the two sub-populations analogous to the se-

lection among parent and offspring individuals in a standard DE scheme. In other
k

oo o . s
words, the individuals x; and xs,,,« . are pairwise compared, fori =1,2,.. )’ , and
POPT i 2

Xxg. . The selection occurs by applying the one-to-one
pop

the individuals having the most promising fitness value are retained for the subse-
quent generation.

For the sake of clarity, it should be remarked that in order to guarantee a proper
functioning of the population reduction mechanism, populations should never un-
dergo sorting of any kind.

12.2.4 Scale Factor Local Search

At each generation, with a certain probability py, the individual with the best per-
formance undergoes local search while its offspring is generated. However, the local
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search is not applied to all the coordinates of the individual but on its scale factor F;.
The main idea is that the update of the scale factor and thus generation of the off-
spring is, with a certain probability, controlled in order to guarantee a high quality
solution which can take on a key role in subsequent generations, see also [IE].

Local search in the scale factor space can be seen as the minimization over the
variable F; of fitness function f in the direction given by x, and x; and modified by
the crossover. More specifically, at first the scale factor local search determines those
genes which are undergoing crossover by means of the standard criterion explained
in eq. (I2.2), then it attempts to find the scale factor value which guarantees an
offspring with the best performance. Thus, for given values of x;, x,, x5, and the set
of design variables to be swapped during the crossover operation, the scale factor
local search attempts to solve the following minimization problem:

minf (F) in [-1,1]. (12.8)

For sake of clarity, the procedure describing the fitness function is shown in
Fig.[12.2]

insert Fj;

compute x:)ff =+ F; (% — X5);
perform the swapping of the genes

and generate in a crossover fashion x, ff;
compute f (F) = f (xor7):

return f (F;);

Fig. 12.2 Local search fitness function, f (F;) pseudocode

It must be remarked that each scale factor F; corresponds to an offspring solution
Xorf during the local search and thus the proposed local search can be seen as an
instrument for detecting solutions with a high quality over the directions suggested
by a DE scheme. At the end of the local search process, newly generated design
variables x; ; with corresponding scale factor F; within the candidate solution x;, see
eq. (I12.3), compose the offspring solution. In addition, it is fundamental to observe
that negative values of F; are admitted up to —1. The meaning of the negative scale
factor is obviously, in this context, the inversion of the search direction. If this search
in the negative direction succeeds, the corresponding positive value (the absolute
value |F;|) is assigned to the offspring solution which has been generated by a local
search. In order to perform this minimization, a simple uni-dimensional hill-climb
(see any book on optimization, e.g. [@]) local search has been employed.

The algorithm uses the current value of F; as a starting point and is com-
posed of an exploratory move and a decisional move. The exploratory move sam-
ples F; —h and F; +h where h is a step size. The decisional move computes the
min{f (F;—h),f(F;),f(Fi+h)} and selects the corresponding point as the center
of the next exploratory move. If the center of the new exploratory move is still F;,
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the step size & is halved. The local search is stopped when a budget condition is
exceeded. For the sake of completeness the pseudo-code of the Scale Factor Hill-
Climb (SFHC) is shown in Fig.[12.3

insert Fj;
initialize h;
while budget condition
compute f (F; —h)., f (F;), and f (Fi+h);
select the point with the best performance F;*;
if Ff ==F
h=h/2;
end-if
Fi=F
end-while

Fig. 12.3 SFHC pseudocode

It should be remarked that the SFHC is a local search algorithm characterized by
a steepest descent pivot rule, see (121, i.e. an algorithm which explores the whole
neighborhood of the candidate solution before making a decision on the search di-
rection. This property makes, in general, the local search accurate and thus relatively
computationally expensive. The computational cost of the search in one dimension
cannot, in any case, be very high.

It is interesting to visualize the functioning of this local searcher in terms of
generation of an offspring within a DE for a multi-dimensional problem. Given
that the scale factor is related to the modulus of a moving vector (x, — x;) in the
generation of the preliminary offspring, the SFHC in operation can be seen as a
pulsing vector in a multi-dimensional space which tunes to the best offspring and
then generates this offspring.

Regarding the probability for the local search activation, the initial value of p; is
set equal to 1. Subsequently, p;, is progressively halved every time the population
size is reduced. The main idea is that at the beginning of the optimization process
the global search due to large population size is balanced by the application of the
SFHC on the individual with the best performance and therefore, offers promising
search directions to the algorithm. During the subsequent stages of the optimization
process, the DELS tends, due to the population reduction, to focus its search in a
smaller portion of the decision space. In these conditions a lower intensity of the
local search is needed. It should be remarked that the reduction in the probability
pis means, on one hand, a reduction in the local search with respect to the occurrence
within the generations and, on the other hand, a constant employment of global and
local components in terms of fitness evaluations. In other words, the reduction rule
related to p; assures that the ratio between the amount of fitness evaluations devoted
to the local search with respect to the ones devoted global search is kept constant
throughout the entire optimization process.
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Table 12.1 Test Problems

Test Problem Analytic Expression Decision Space
Ackley —20+e+20exp (— 02 \/2;’:]x,-2> —1,1"
—exp (1 S0, cos(2m-x;)x;)
Ellipsoid (S x) [~65.536,65.536]"
Griewangk e —TTigcos 41 (~600,600]"
Michalewicz — > sinx; (sin ('1:’2 >>~0 [0,x]"
Parallel Axis S iea? [-5.12,5.12]"
Rastrigin 10n+ 37 (x7 — 10cos(27mx;)) [-5.12,5.12]"
Rosenbrock s ((x,,H —xiz)z +(1 —x)z) [—2.048,2.048]"
Schwefel S, xsin (\/ \x,-\) [~500,500]"
Tirronen 3exp (— H])(‘)‘:) — 10exp (—8|[x||?) [-10,5]"

+23 3 cos (Sx;(1+i mod 2)cos(||x]]))

For the sake of clarity, the pseudocode highlighting the working principle of the
DELS integrating the scale factor local search is given in Fig.[12.4l

12.3 Numerical Results

The DELS has been tested on a set of benchmark problems. The problems considered
in this study are listed in Table 2.1l The amount of variables is indicated with 7.

In addition to the problems listed in Table [[2.1l one rotated problem for each
test problem has been added to the benchmark set. The rotated problems are ob-
tained by means of multiplication of the vector of variables to a randomly generated
orthogonal rotation matrix.

The performance of the DELS has been compared with the performance obtained
by the self-adaptive Differential Evolution with dynamic population size and inver-
sion of the scale factor (jDEdynNP-F) proposed in (1] for LSPs, the Differential
Evolution with Self-adaptive Control Parameters proposed in [E] and with a stan-
dard DE. The algorithms involved in this study ad their parameter settings are listed
below.

1. The DE has been run with ' = 0.7, and CR = 0.7 in accordance to the sugges-
tions given in [@].

2. Regarding the SACPDE, the constant values in formulas (I2.4) and (IZ.6) have
been set, respectively, F; = 0.1, F, = 0.9, 11 = 0.1, and 17, = 0.1 as suggested
in [2].

3. Regarding the jJDEdynNP-F, it employs the scale factor inversion shown in for-
mula (IZ.3) with 13 = 0.75, as suggested in [[1] and the population size reduc-
tion described in Subsection [[2.2.3] with Ny = 4 in accordance with the results
in ]. The control parameters vary with the same rules given in formulas[12.4]
and[[2.6land the related parameter setting (F}, F,,, T| and T») has been performed
as for the SACPDE.
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generate S, individuals of the initial population with related

parameters randomly;
while budget condition
Jori=1:58pp
compute f(x;);
end-for
Jori=1:5,,,
generate rand; for j=1to 5;
randomly select three individuals x,, x, and x;;
if x; is the best AND rands < pjs
*Scale Factor Hill-Climb*
randomly select genes undergoing crossover;
apply SFHC using F; as the starting point;
save the resulting offspring x,/;
else
**[; update®*

Fi+ Fyrandy, if randy <7

F= ;
F otherwise
if rands < 13 AND f(x5) > f (%)
Fi=-F;
end-if

**CR; update®*
generate rands and randy;
CR = { rands, if randy < T
CR;, otherwise
**mutation®*
compute X, - = x; + Fj (X, — x;);
**crossover**
Toff =Xoff’
forj=1:n
generate rand(0,1);
if rand(0,1) < CR;
Xoff,j = %i,j
end-if
end-for
end-if
**gelection®*
if £ (ropy) < f ()
Xj = Xoff:
end-if
end-for

*##tpopulation size and local search probability reduction**

i Ny == |y |+

s 1. Spop
fJori=1:-53"

if f <x7+> < f(x)

X = )C&,%E e
end-if
end-for
halve Sy, and pjs;
update Ng;
end-if

end-while

Fig. 12.4 DELS pseudocode
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4. The proposed DELS has the same parameter setting of the jDEdynNP-F. In
addition, the SFHC has been run with a budget of 40 fitness evaluations and an
initial step size h = 0.1.

The experiments have been performed for n = 100, n = 500, and n = 1000. The
total budget for all the algorithms has been set equal to 1.5 x 10°, 3 x 10°, and 6 x
10° fitness evaluations, respectively. Regarding jDEdynNP-F and DELS, the initial
population size Sll,o » 1s set equal to n. Regarding DE and SACPDE the population
size §,,, has been set in order to keep constant the amount of generations for all the
algorithms considered in this study. More specifically, DE and SACPDE have been
run with a population size S,,, = 27 for the 100 dimension case, S,,, = 134 for the
500 dimension case, and S, = 267 for the 1000 dimension case.

For each test problem, each algorithm performed the optimization process on 30
independent runs.

Regarding the rotated test problems, in order to perform a fair comparison and an
analysis on the robustness, a rotation matrix has been generated for each problem
and for each run. Then, all the algorithms considered in this study have been run

with the same set of rotated problems.

12.3.1 Results in 100 Dimensions

Table[12.2]shows the final average detected results by each algorithm = the standard
deviations for the 100 dimension case.

Table 12.2 Average final fitness values + standard deviations in 100 dimensions

Test Problem
Ackley

Rotated Ackley
Ellipsoid

Rotated Ellipsoid
Griewangk

Rotated Griewangk
Michalewicz
Rotated Michalewicz
Parallel

Rotated Parallel
Rastrigin

Rotated Rastrigin
Rosenbrock
Rotated Rosenbrock
Schwefel

Rotated Schwefel
Tirronen

Rotated Tirronen

DE
9.41E+00+1.26E+00
7.87E+00+1.67E+00
1.02E+03+4.20E+02
8.86E+02+3.90E+02

1.02E-01+£1.74E-01
2.24E-02+3.31E-02
-4.60E+01+5.86E+00
-8.16E+0046.48E-01
2.74E-04+6.36E-04
5.13E+00+3.82E+00
2.28E+0248.02E+01
1.64E+02+5.15E+01
2.24E+0245.59E+01
1.34E+0245.59E+01
1.60E+04+2.19E+03
1.99E+0443.78E+03
-1.75E+00+£1.17E-01
-7.82E-01+6.42E-02

SACPDE
4.54E+00+1.14E+00
5.83E+00+1.50E+00
3.81E+03+1.87E+03
3.80E+03+1.32E+03

2.76E-0146.66E-01
7.45E-4+2.34E-03
-8.99E+01+1.13E+00
-7.98E+00+4.31E-01
4.39E-18+6.96E-18
1.50E+00+8.23E-01
3.74E+01+£8.29E+00
1.89E+0244.76E+01
1.82E+02+45.26E+01
1.25E+0245.52E+01
4.46E+03+1.27E+03
1.64E+04+1.03E+03
-2.48E+00+1.32E-02
-1.03E+00+1.00E-01

jDEdynNP-F
8.87E-05+8.97E-05
6.49E-01-£6.04E-01
4.37E+03£9.65E+02
4.07TE+03£7.58E+02
1.21E-02:£2.12E-02
6.85E-03+8.11E-03
-8.86E+01+1.15E+00
-8.28E+0049.11E-01
3.76E-08£4.92E-08
6.44E+00-:3.98E+00
1.28E+01£5.39E+00
3.05B+02+7.78E+01
115E+022.72E+01
9.71E+011.30E+00
1.10E+03+3.03E+02
1.74E+04-£1.21E+03
2.47E+00+7.98E-03
-1.01E+00+1.57E-01

DELS
3.21E-05+4.56E-05
3.57E-01+5.77E-01
3.91E+03+9.11E+02
3.98E+03+9.97E+02
2.18E-02+4.05E-02
2.45E-03+2.42E-03

-9.16E+01+2.49E+00
-1.09E+01+1.37E+00
2.13E-08+3.05E-08
3.40E+00+2.10E+00
1.27E+01+4.92E+00
1.96E+02+6.22E+01
1.45E+0244.55E+01
9.69E+01+1.43E+00
9.76E+02-+4.30E+02
1.59E+04+42.00E+03
-2.49E+00+6.16E-03
-1.61E+00+2.08E-01
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Results in Table [[2.2] show that the proposed DELS obtained the best results for
10 problems out of the 18 considered in the 100 dimension benchmark. Thus, the
DELS seems clearly to be the most efficient algorithm in terms of final solutions.

In the remaining 8 test problems the DELS, in any case is never by far outper-
formed by other algorithms and still demonstrates a competitive performance. For
example, with the Griewangk function, although the DELS does not seem to have a
very promising behavior, reaches satisfactory results anyway.

In order to prove the statistical significance of the results, the Student’s t-test
has been applied according to the description given in [@] for a confidence level
of 0.95. Final values obtained by the DELS have been compared to the final value
returned by each algorithm used as a benchmark. Table shows the results of
the test. Indicated with ”+” is the case when the DELS statistically outperforms, for
the corresponding test problem, the algorithm mentioned in the column; indicated
with ”="is the case when pairwise comparison leads to success of the t-test i.e. the
two algorithms have the same performance; indicated with ”-” is the case when the
DELS is outperformed.

Table 12.3 Results of the Student’s t-test in 100 dimensions

Test Problem DE SACPDE jDEdynNP-F
Ackley + +

Rotated Ackley +
Ellipsoid — =
Rotated Ellipsoid = =

Griewangk

I+
Il

Rotated Griewangk
Michalewicz

+

Rotated Michalewicz
Parallel
Rotated Parallel

I+ + 1
|

Rastrigin

I+

Rotated Rastrigin

m+ 1+ 1 + + 1

Rosenbrock

Rotated Rosenbrock
Schwefel
Rotated Schwefel

Tirronen

+ ++ + 01+ 0+

+ + 01+
+ + 1

Rotated Tirronen

The t-test results listed in Table[I2.3]show that the DELS loses the comparison in
only 4 cases out of the 54 comparisons carried out i.e. the DELS loses in only 7.4%
of the pairwise comparisons. In addition, it should be remarked that the scale factor
local search never reduces the performance of the jJDEdynNP-F framework, as the
right hand column of Table[T2Z.3] proves.

In addition to the t-test also the Friedman test has been performed, see [@]. Ina
nutshell, Friedman test is a non-parametric test equivalent of the repeated-measures
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ANOVA. Under the null-hypothesis, it states that all the algorithms are equivalent. If
the hypothesis is rejected, the algorithms have a different performance. Details of the
test can be found in [@] and the application of this test in the context of algorithm
comparisons is described in ]. In this study, rotated and non-rotated problems
have been treated separately and in both cases level of significance has been set to
0.05. We can conclude that the probability that the algorithms under analysis have
the same performance for non-rotated problems is O while the probability that this
events happens for rotated problems is 1.4618 x 1078, i.e. this event is very unlike.

In order to carry out a numerical comparison of the convergence speed perfor-
mance, for each test problem, the average final fitness value returned by the best per-
forming algorithm G has been considered. Subsequently, the average fitness value at
the beginning of the optimization process J has also been computed. The threshold
value THR = J — 0.95(G — J) has then been calculated. The value THR represents
95% of the decay in the fitness value of the algorithm with the best performance. If
an algorithm succeeds during a certain run to reach the value THR, the run is said
to be successful. For each test problem, the average amount of fitness evaluations
rie required, for each algorithm, to reach THR has been computed. Subsequently,
the Q-test (Q stands for Quality) described in [IE] has been applied. For each test
problem and each algorithm, the Q measure is computed as:

0= (12.9)

where the robustness R is the percentage of successful runs. It is clear that, for each
test problem, the smallest value equals the best performance in terms of convergence
speed.The value ”Inf” means that R = 0, i.e. the algorithm never reached the THR.

Table[[2.4shows the Q values in 100 dimensions. The best results are highlighted
in bold face.

Results in Table [[2.4] show that the best performance values in terms of Q-
measure are distributed among the considered algorithms. In other words, there is
not a clear best algorithm in terms of Q-measure. The jDEdynNP-F seems to have
a slightly lower performance than the other algorithms. It is important to notice that
the DELS has a very robust behaviour compared to the other algorithms considered
in this study. As a matter of fact, as shown in Table[12.4] the DELS is the only al-
gorithm whose Q-measure never takes the ”Inf” value. This means that the DELS is
always able to detect candidate solutions with a high performance and is never out-
performed consistently by other algorithms. We can conclude that in 100 dimension
case the proposed DELS tends either to have an excellent performance with respect
to the other algorithms (e.g. Rotated Schwefel) or is anyway competitive with the
other algorithms (e.g. Rastrigin).

In order to graphically show the behaviour of the algorithms, some examples of
the average performance are plotted against the number of fitness evaluations (for
some of the test problems listed in Table[T2.1)) and represented in Figure [12.3



310 A. Caponio, A.V. Kononova, and F. Neri

Table 12.4 Results of the O-test in 100 dimensions

Test Problem DE SACPDE jDEdynNP-F  DELS

Ackley Inf Inf 3.27E+02  4.61E+02
Rotated Ackley Inf Inf 6.83E+02  6.51E+02
Ellipsoid 9.94E+01 1.43E+02 3.90E+02  5.40E+02
Rotated Ellipsoid 1.16E+02 1.79E+02 4.09E+02  5.92E+02
Griewangk 7.35E+01 3.96E+01 1.39E+02 1.99E+02
Rotated Griewangk ~ 6.58E+01 4.04E+01 1.39E+02 1.92E+02
Michalewicz Inf 3.19E+03 Inf 1.80E+03
Rotated Michalewicz Inf Inf Inf 1.45E+04
Parallel 6.67E+01  3.63E+01 1.39E+02 1.83E+02
Rotated Parallel 6.39E+01 3.94E+01 1.72E+02  2.22E+02
Rastrigin Inf 3.40E+02 6.61E+02  8.63E+02
Rotated Rastrigin 5.09E+02 2.06E+03 9.94E+03 1.74E+03
Rosenbrock 1.96E+01 2.07E+01 1.06E+02 1.34E+02
Rotated Rosenbrock  1.45E+01  2.12E+01 1.04E+02 1.35E+02
Schwefel Inf Inf 7.38E+02  9.57E+02
Rotated Schwefel Inf Inf Inf 4.53E+03
Tirronen Inf 3.88E+02 7.13E+02 7.84E+02
Rotated Tirronen Inf Inf Inf 1.49E+04

12.3.2 Results in 500 Dimensions

The experiments performed in 100 dimensions have been repeated for the test prob-
lem listed in Table [I2.1] for 500 dimensions. Numerical results in terms of final so-
lutions, t-test, and Q-measure are shown in Table [[2.3] and[[2.7] respectively.

The Friedman test in 500 variables shows that the probability that the algorithms
have the same performance for non-rotated problems is 3.3307 x 10~ !¢ and for ro-
tated problems 7.0201 x 10~7. Also in this case the probability is lower then con-
sidered level of significance o. = 0.05, therefore we can conclude that we are almost
sure that the algorithms have a different performance.

Numerical results in the 500 dimension case (see Table show that the pro-
posed DELS reaches the best results for 50% of the best functions. The results re-
lated to the t-test, listed in Table [[2.6] show that the DELS loses only 3 pairwise
comparisons out of the 54 carried out and wins 26 comparisons. In other words, re-
garding the final solution, the DELS significantly outperforms the other algorithms
in 48.1% of the comparisons, is outperformed in 5.5% of the comparisons and has
the same performance for 44.4% of the comparisons. Concerning the convergence
speed performance, Table [[2.7] shows that it is impossible to identify clearly the
overall best algorithm in terms of Q-measure values. Nevertheless, the SACPDE
seems to have a convergence speed performance slightly superior with respect to the
other algorithms. On the other hand, the DELS clearly has the best performance in
terms of algorithmic robustness since it is the only algorithm which always succeeds
at detecting a competitive value (there are no “’Inf” values in the DELS column).

Some examples of the average performance are shown in Figures[12.6l
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Table 12.5 Average final fitness values + standard deviations in 500 dimensions

Test Problem
Ackley

Rotated Ackley
Ellipsoid

Rotated Ellipsoid
Griewangk

Rotated Griewangk
Michalewicz
Rotated Michalewicz
Parallel

Rotated Parallel
Rastrigin

Rotated Rastrigin
Rosenbrock
Rotated Rosenbrock
Schwefel

Rotated Schwefel
Tirronen

Rotated Tirronen

DE
5.02E+00+5.56E-01
3.97E+00+43.58E-01
6.14E+04+£5.47E+03
6.18E+04+1.66E+04

3.58E-02+4.08E-02
2.31E-024+2.01E-02
-2.42E+02+8.51E+00
-1.24E+01+£8.41E-01
3.18E-03£1.53E-03
5.58E+01+£2.11E+01
4.50E+02+6.74E+01
3.67E+02+3.56E+01
6.14E+02+45.40E+01
5.08E+02+2.82E+01
9.23E+04+3.21E+03
1.79E+05+1.55E+03
-1.78E+00+4.99E-02
-4.06E-0142.42E-02

SACPDE
2.09E+0043.75E-01
2.88E+00+2.44E-01
1.12E+0441.35E+03
1.04E+04+1.03E+03
1.72E-0243.44E-02
1.84E-10+7.26E-11
-4.57TE+02+2.66E+00
-1.21E+01£5.86E-01
4.67E-52+7.24E-53
4.22E+00+£3.69E+00
9.95E-01+1.41E+00
7.59E+02+£3.26E+01
6.16E+02+8.47E+01
5.17E+02+2.96E+01
3.26E+02+1.78E+02
9.60E+04+5.26E+02
-2.49E+00£1.96E-03
-8.72E-014+4.14E-02

JDEdynNP-F
1.11E-12+8 86E-13
7.85E-13+1.08E-13

8.06E+03+5.77E+02

7.42E+03+1.09E+03
4.97E-1542.03E-15
2.57E-09+2.60E-09

-4.46E+0242.65E+00

-1.21E+0144.41E-01
3.95E-42:£5.64E-42

3.94E+00-£1.59E+00
1.27E+00-2.54E+00
7.14E+02:45.32E+01
4.91E+0243.25E+01
4.91E+0243.57E-01

8.88E+0145.92E+01
9.14E+04+1.52E+03

-2.49E+00£3.91E-03

-9.57E-0144.99E-02

DELS
6.01E-13+5.64E-14
7.13E-13+5.08E-14
8.86E+03+1.10E+03
9.50E+03+1.07E+03
5.52E-154+1.78E-15
1.40E-08+1.33E-08
-4.69E+0248.75E-01
-1.44E+01+2.74E+00
2.87E-384+2.79E-38
2.95E+00£1.14E+00
5.60E+00+4.63E+00
9.21E+02+£1.76E+02
4.97E+02+3.17E+01
4.92E+02+5.15E-01
6.36E-03+2.84E-07
8.77E+04+4.66E+03
-2.50E+00-£1.86E-03
-1.41E+00+1.64E-01

Table 12.6 Results of the Student’s t-test in 500 dimensions

Function DE SACPDE
Ackley + +
Rotated Ackley + +
Ellipsoid +

Rotated Ellipsoid + =
Griewangk =
Rotated Griewangk =
Michalewicz + +
Rotated Michalewicz =

Parallel + =
Rotated Parallel + =
Rastrigin + =
Rotated Rastrigin - =
Rosenbrock + +
Rotated Rosenbrock = =
Schwefel + +
Rotated Schwefel + +
Tirronen + +
Rotated Tirronen + +

jDEdynNP-F

+

+ o+
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Table 12.7 Results of the O-test in 500 dimensions

Test Problem DE SACPDE jDEdynNP-F  DELS

Ackley Inf Inf 5.00E+03 5.33E+03
Rotated Ackley Inf Inf 5.73E+03 6.22E+03
Ellipsoid 8.50E+03 1.46E+03 6.63E+03 7.05E+03
Rotated Ellipsoid 9.46E+03 1.46E+03 6.59E+03 7.00E+03
Griewangk 8.92E+02 4.01E+02 1.56E+03 1.71E+03
Rotated Griewangk ~ 9.64E+02  3.73E+02 1.64E+03 1.66E+03
Michalewicz Inf 2.84E+04 4.86E+04 2.29E+04
Rotated Michalewicz Inf Inf Inf 9.55E+04
Parallel 8.96E+02 3.83E+02 1.50E+03 1.65E+03
Rotated Parallel 8.98E+02 4.01E+02 1.76E+03 1.91E+03
Rastrigin 2.30E+04 1.08E+04 1.85E+04 1.67E+04
Rotated Rastrigin 8.48E+03 2.98E+04 2.73E+04 9.42E+04
Rosenbrock 2.01E+02 2.17E+02 1.11E+03 1.17E+03
Rotated Rosenbrock  1.79E+02  1.99E+02 1.10E+03 1.09E+03
Schwefel Inf 1.45E+04 1.96E+04 2.07E+04
Rotated Schwefel Inf Inf Inf 5.21E+04
Tirronen Inf 1.51E+04 1.98E+04 1.64E+04
Rotated Tirronen Inf Inf Inf 5.38E+04

12.3.3 Results in 1000 Dimensions

The same experiments carried out in 100 and 500 dimensions have also been per-
formed in 1000 dimensions. Numerical results in in 1000 dimensions are shown in
Table[12.8] and[12.10l Some performance trends are given in Figures[12.7]

The Friedman test in 1000 variables shows that the probability that the algorithms
have the same performance for non-rotated problems is 0 and for rotated problems
2.4636 x 1078, Also for 1000 variables the probability is very low and we can con-
clude that we are almost sure that the algorithms have a different performance.

Results in Table [[2.8] show that the proposed DELS has the best performance in
terms of final solution since it converged to the best solutions in 50% of the test
problems analyzed. Regarding the t-test shown in Table [[2.9] it can be observed
that the DELS significantly outperforms the other algorithms for the 55.5% of the
pairwise comparisons while is outperformed for only the 3.7% of the comparisons.
Most importantly, it must be remarked that, as shown in Table also for the
1000 dimension case, the Q-test shows that the DELS is the only algorithm which
does not displays “Inf” values. Thus, the DELS confirms its high performance in
terms of robustness despite the high dimensionality of this set of experiments. In
summary, the DELS seems to be less affected than the other algorithms from the
curse of dimensionality.
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Table 12.8 Average final fitness values 4 standard deviations in 1000 dimensions

Test Problem
Ackley

Rotated Ackley
Ellipsoid

Rotated Ellipsoid
Griewangk

Rotated Griewangk
Michalewicz
Rotated Michalewicz
Parallel

Rotated Parallel
Rastrigin

Rotated Rastrigin
Rosenbrock
Rotated Rosenbrock
Schwefel

Rotated Schwefel
Tirronen

Rotated Tirronen

DE
4.47E+00+£3.10E-01
4.01E+00+£5.22E-02
2.31E+06+£6.82E+05
2.39E+06+5.79E+05
1.86E+00+41.24E-01
2.40E+00+4.95E-01

-2.20E+02+46.37E+00
-1.49E+01-+4.88E-01
2.18E+02+48.66E+01
8.98E+02+1.71E+02
5.62E+02+1.53E+01
5.82E+02+48.38E+01
1.39E+03+1.88E+02
1.34E+03+9.43E+01
2.30E+05+1.30E+03
3.75E+05+1.50E+03
-1.47E+00+£2.96E-02
-2.87E-0142.01E-02

SACPDE
1.47E+0043.38E-01
3.24E+0042.62E-01
4.19E+04+-6.78E+03
4.26E+04+2.93E+03

3.83E-02+7.67E-02
2.47E-03+4.93E-03
-4.26E+02+1.17E+01
-1.46E+01+1.66E-01
6.24E-36+7.30E-36
2.31E+01+8.83E+01
3.05E+02+5.20E+01
1.45E+03+2.32E+02
1.29E+03+£1.61E+02
1.05E+03+7.29E+01
1.86E+04+1.86E+03
2.27E+0542.78E+03
-2.36E+00+8.76E-03
-6.96E-01+4.56E-02

JDEdynNP-F
5.41E-12::4.99E-12
1.14E-11£1.82E-11
2.94E+044 37E+03
3.32E+04:£4.55E+03
1.93E-14+1.05E-14
3.39E-06:+1.12E-06

-7.51E+0244.31E+00

-1.46E+0146.53E-01
5.75E-29-:6.28E-29

2.55E+0141.08E+02
2.29E+0047.56E-01

1.49E+03+2.51E+02
9.94E+024:3.90E+01
9.87E+0244.67E-01

1.48E-+02:£1.14E+02
2.14E+05+5.24E+03

-2.46E+00+1.32E-03

-7.86E-0142.88E-02

DELS
1.80E-1248.74E-14
2.67E-12£1.11E-12

3.11E+0443.64E+03
2.86E+04+4.39E+03
1.58E-14+7.79E-15
8.66E-06+5.27E-06
-8.23E+02+2.50E+01
-1.63E+01£3.06E+00
2.17E-2742.92E-27
2.41E+0145.65E+01
8.95E+01+6.31E+01
1.59E+03+2.35E+02
1.05E+03+1.02E+02
1.00E+03+£2.62E+01
2.18E+02+2.57E+02
2.07E+05+1.25E+03
-2.49E+00+2.12E-03
-1.15E+00-£6.71E-02

Table 12.9 Results of the Student’s t-test in 1000 dimensions

Test Problem
Ackley

Rotated Ackley

Ellipsoid

Rotated Ellipsoid

Griewangk

Rotated Griewangk

Michalewicz

Rotated Michalewicz

Parallel

Rotated Parallel

Rastrigin

Rotated Rastrigin

Rosenbrock

Rotated Rosenbrock

Schwefel

Rotated Schwefel

Tirronen

Rotated Tirronen

DE SACPDE jDEdynNP-F

+

R e
+ o+ o+

+

+ o+
+

o+
o IS

+ o+ o+
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Table 12.10 Results of the O-test in 1000 dimensions

Test Problem DE SACPDE jDEdynNP-F  DELS

Ackley Inf Inf 1.35E+04 1.41E+04
Rotated Ackley Inf Inf 1.54E+04 1.62E+04
Ellipsoid 2.25E+05 4.09E+03 1.36E+04 1.42E+04
Rotated Ellipsoid Inf 4.13E+04 1.41E+04  1.39E+04
Griewangk 2.53E+03 1.04E+03 4.39E+03  4.54E+03
Rotated Griewangk ~ 2.54E+03 1.08E+03 4.33E+03  4.64E+03
Michalewicz Inf Inf Inf 1.16E+05
Rotated Michalewicz Inf Inf Inf 2.17E+05
Parallel 2.33E+03 9.83E+02 4.00E+03  4.32E+03
Rotated Parallel 2.49E+03 1.06E+03 4.69E+03 1.79E+03
Rastrigin 3.14E+04 4.32E+04 4.71E+04  4.39E+04
Rotated Rastrigin 3.77E+04 1.89E+05 9.00E+04 1.22E+05
Rosenbrock 7.76E+02 5.65E+02 3.10E+03 3.11E+03
Rotated Rosenbrock  5.50E+02 4.85E+02 2.49E+03  2.64E+03
Schwefel Inf 7.91E+04 5.12E+04  4.98E+04
Rotated Schwefel Inf Inf 7.76E+04  5.40E+04
Tirronen Inf Inf 5.10E+04 4.65E+04
Rotated Tirronen Inf Inf Inf 1.66E+05

12.3.4 Discussion about the Algorithmic Components

This subsection gives an explanation and an interpretation of the results on the basis
of the algorithmic components employed.

As highlighted in [ﬁ], the success of the DE is due to an implicit self-adaptation
contained within the algorithmic structure. More specifically, since, for each candi-
date solution, the search rule depends on other solutions belonging to the population
(e.g. x, x, and x;), the capability of detecting new promising offspring solutions de-
pends on the current distribution of the solutions within the decision space. During
the early stages of the optimization process, the solutions tend to be spread out
within the decision space. For a given scale factor value, this implies that the muta-
tion appears to generate new solutions by exploring the space by means of a large
step size (if x, and x, are distant solutions, F (x, — x;) is a vector characterized by
a large modulus). During the optimization process, the solutions of the population
tend to concentrate in specific parts of the decision space. Therefore, the step size
in the mutation is progressively reduced and the search is performed in the neigh-
borhood of the solutions. In other words, due to its structure, a DE scheme is highly
explorative at the beginning of the evolution and subsequently becomes more ex-
ploitative during the optimization.

Although this mechanism seems, at the first glance, very efficient, it hides a lim-
itation. If for some reasons, the algorithm does not succeed at generating offspring
solutions which outperform the corresponding parent, the search is repeated again
with the similar step size values and likely fails by falling into the undesired stag-
nation condition (see [IE]). In other words, the main drawback of the DE is that
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the scheme has, for each stage of the optimization process, a limited amount of
exploratory moves and if these moves are not enough for generating new promising
solutions, the search can be heavily compromised. Clearly, the risk of the DE stag-
nation is higher for larger decision spaces and worsens as number of the dimensions
of the problem increases. A large decision space (in terms of dimensions) requires a
wide range of possible moves to enhance the capability of detecting new promising
solutions.

Experimental observations from Fig [5(c)} [6(b)} and [7(b) show that for a com-
plex fitness landscape (Rotated Schwefel) the DE is heavily influenced by curse of
dimensionality. It can be observed that for 100 dimensions the DE performance is
competitive compared to the other algorithms, for 500 variables the performance is
poor and for 1000 variables stagnates early and detects a completely unsatisfactory
solutions.

In order to enhance the performance of the DE by widening the range of its search
moves, in [ﬂ], [@], and [@], arandomization of the scale factor is proposed. Although
this operation seems to be beneficial for the DE in some specific cases (noisy prob-
lems), according to our opinion, it leads to excessive random search within the de-
cision space possibly leading to a significant slowing down of the optimization in
high dimensional problems. Conversely, the probabilistic update of the scale factor
proposed in [@] seems to be an effective alternative to handle complex and multi-
variate functions. As a matter of fact the SACPDE tends to outperform, on a regular
basis, the standard DE for most of the test problems analyzed in this chapter.

The inversion of the scale factor described in equation (I2.3)) and proposed in 151
can be seen as a single step local search which detects the most promising search
directions on the basis of an estimation of the gradient. Thus, for high dimensional
problems, the limited amount of moves of the DE is increased by means of a ran-
domized update of the scale factor and on a knowledge based correction of this
parameter during the algorithmic search. The scale factor local search, originally
proposed in ] and here proposed for LSPs is a further step in this direction. As
mentioned above, the scale factor local search is independent of the amount of vari-
ables and is thus suitable for highly multivariate problems. In addition, the SFHC
integrated into the framework has the crucial role of offering an alternative move
to the DE which is the selection of the most suitable scale factor for a specific off-
spring generation. This move should lead towards the generation of promising off-
spring, significantly contributing to the search of more promising solutions during
the subsequent generations. This effect can be easily visualized in Fig. where
the improvements appear to be not only due to the application of the local search but
also (and mainly) due to the presence of the individuals generated during the local
search while the global search is performed.

Finally, the population size reduction proposed in ] plays a different, but never-
theless important role. Although this component does not explicitly offers alterna-
tive search moves, it progressively narrows the space where the search is performed
by eliminating the individuals characterized by a poor performance. This makes
the algorithm more exploitative and thus reduces the risk of stagnation. In other
words, this component does not help to detect the global optimum in a LSP but is
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fundamental in order to quickly improve upon the obtained results after complet-
ing the exploratory procedure. To give an analogy, the progressive reduction in the
population size is similar to progressive increase in selection pressure in Genetic
Algorithms. Following a different analogy, this mechanism is similar to a cascade
algorithm composed of as many algorithms as the amount of stages Ny, see equation
(I271). The search by each algorithm is progressively focused in smaller decision
space after that promising search directions are detected.

The combination of these algorithmic components appears to be very beneficial
for LSPs and helpful in improving the performance of a standard DE.

12.4 Conclusion

This chapter proposes a novel Computational Intelligence algorithm for real-valued
parameter optimization in high dimensions. The proposed algorithm employs a local
search on the scale factor of a DE framework in order to control generation of high
performance offspring solutions. The DE framework also includes self-adaptive pa-
rameter control and automatic re-sizing of the population.

It should be remarked that the proposed memetic algorithm performs the local
search on the scale factor and thus on one parameter, regardless of the dimensional-
ity of the problem. This kind of hybridization seems to be very efficient in enhancing
the offspring generation and have a dramatic impact on stagnation prevention in the
Differential Evolution framework. More specifically, these improved solutions seem
to be beneficial in “refreshing” the genotypes and assisting the global search in the
optimization process.

Numerical results show that the algorithmic behaviour in 100 dimensions is very
promising and the scale factor local search leads to good results in terms of robust-
ness over various optimization problems. The results in 500 and 1000 dimensions
show that the standard DE is much affected but the curse of dimensionality. The
SACPDE and the jDEdynNP-F can have, in various cases good performance but in
some test problems, fail to detect competitive solutions. On the contrary, the pro-
posed DELS appears to be competitive in all the problems analyzed in this chapter,
as the Q-tests prove. To be specific, for some test problems the DELS displays per-
formance competitive to other algorithms considered in this study while in other
cases significantly outperforms them.

In summary, the scale factor local search in DE frameworks seems to be a pow-
erful component for handling LSPs and appears to be very promising in terms of
robustness notwithstanding the complexity of the fitness landscape and high di-
mensionality characterizing the problem. In this sense, the proposed logic can be
potentially be very useful for various real-world applications.
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Chapter 13

Large-Scale Network Optimization with
Evolutionary Hybrid Algorithms: Ten Years’
Experience with the Electric Power Distribution
Industry

Pedro M.S. Carvalho and Luis A.E.M. Ferreira

Abstract. Electric power distribution networks are large-scale infrastructures that
need to be planned regularly and operated continuously. The planning and oper-
ation tasks involve difficult decision-making processes that can be formulated as
optimization problems: large-scale combinatorial optimization problems. These
problems have been addressed successfully with specially designed evolutionary
hybrid approaches. Such approaches rely upon Lamarckian evolutionary hybrid al-
gorithms. In this chapter, we present the most successful implementations of such
algorithms and discuss such implementations based on our experience in the de-
velopment of industrial applications for planning and operation of electric power
distribution networks for a period of over ten years.

13.1 Introduction

Electric power distribution network planning and operation is the subject matter
of most of the research conducted in network optimization in power systems since
the 90’s. The problem has been formulated in many different ways but its solution
always relies on computationally expensive optimization approaches [1]-[6]. Re-
alistic formulations lead to large-scale combinatorial problems where the objective
function and constraints are not possible to express analytically. We have been work-
ing on several instances of the problem since the early 90’s and succeed to deploy
industrial applications to solve such problems with evolutionary based algorithms
since 1997 [7]-[10]. In the following we state the network planning and opera-
tion problems focusing on the problem aspects that lead to the main optimization
difficulties.
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Both network planning and operation problems are hard optimization problems
but for different reasons. Distribution network planning consists in choosing a new
distribution system from a set of possible distribution systems so as to meet the
expected load profile in a better way, more reliably, and with fewer losses. The new
distribution system is a plan, a plan to be carried out by project services if the plan
comprises acquisition or installation of new equipment or a plan to be carried out
by dispatch services if the plan involves only changes in the network configuration
(i.e., switching operations). If one can define criteria to measure the goodness of a
plan, then there will be one plan that ranks higher than others; that plan will be the
optimal distribution plan. Finding such plan is computationally difficult because:

1. The number of possible plans is very large, as distribution networks have thou-
sands of nodes and thousands of branches and new investments in one network
area impact considerably in neighbor areas (see Fig. [[3.1]for an illustration of a
medium voltage distribution network);

2. The criterion to measure the goodness of a plan is complex. Plan analysis in-
volves complex judgment usually impossible to express analytically, e.g., criteria
involve reliability and security analysis which must be carried out by simulation
for each candidate plan.

Distribution network operation consists in several different network dispatch activ-
ities. The most computationally demanding activity is to follow contingency con-
ditions by attenuating the effects of the contingency and leading the distribution
system to a satisfactory point of operation (when possible). For a given contin-
gency, the problem consists in selecting and sequencing a set of switching oper-
ations to restore power in a secure and prompt manner. The problem is dynamic.
The switching operations require a substantial cuamputational effort to be sequenced
in a securely and optimal manner. The sequence must be investigated in order to
keep the network radial, minimize customer outage costs and not violate voltage
and branch capacity constraints during the several reconfiguration stages ]—[ﬁ].
The dynamic restoration problem can be addressed in two phases: (i) in the first
phase a network optimization approach finds the post-contingency final configura-
tion; and (ii) in the second phase an optimal sequencing approach finds the order of
the switching operations that better changes the original network configuration into
the post-contingency final configuration. Finding the post-contingency final config-
uration is a hard optimization problem because the network optimization objective
is twofold: finding a secure configuration is not enough - one must find one that does
not involve many switching operations in order to be able to promptly restore power
to the maximum number of customers [|I|].

Both planning and operation problem solutions rely upon network optimization.
Network optimization is a broad area of research. In this chapter we address a par-
ticular type of network optimization - radial network optimization. The chapter is
organized as follows. In Sect. we formulate the planning and operation prob-
lems as network optimization problems. In Sect. [[3.3] we present the evolutionary
solution approach together with the necessary framework to deal effectively with the
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Fig. 13.1 Geographic representation of a medium-voltage distribution network. Circles rep-
resent substations (feeding points) and triangles low-voltage transformation stations (load
points)

network topology constraints. In Sect.[I3.4] we present application examples and use
these to discuss implementation practicalities. Section [13.5] concludes the chapter.

13.2 Optimization of Electric Power Distribution Networks

Electrical power distribution networks are composed of thousands of nodes, most
of which correspond to power delivery points or load points, and thousands of
branches, most of which correspond to electrical cables or lines. The other nodes
correspond to connecting points, and the other branches correspond to switching
busbars. From the topology perspective the physical network infra-structure can be
represented by a graph G.
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In normal operation, each node of the graph is connected to a single power deliv-
ery point through a single path. The operating network configuration is radial and
connected. Thus, from the topology perspective the operating configuration of the
network can be represented by a spanning-tree T of the graph G. See Fig. for
an illustration of the relationship between the electrical network topology and the
graph concepts.

Fig. 13.2 Schematic representation of an electrical network (upper diagram), and its corre-
spondent graph and spanning tree solution (lower diagram). The figure shows a small-scale
network with two power delivery points (busbars a and i), six load points (busbars b, c,d, e, g,
and /), and a connecting point (busbar f). The dashed lines identify the network branches
not used by power flow purposes. In the graph representation, the two delivery points are
represented by a single node (the tree root a = i), the spanning-tree arcs are represented by
solid lines, and the co-tree arcs are represented by dashed lines

Many operating configurations can be found for the same network infra-structure.
The co-tree arcs of the graph can be used to change the operating topology so as
to improve its performance. It may also happen that even the optimal operating
topology will not be satisfactory. In such case, the network infra-structure must be
upgraded or expanded, thus leading to investment costs in new cables and switching
busbars. The problem of finding the optimal operating network configuration can be
formulated as in the following:

(P) Minimize f(T) overall T € G
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Where,

f: Operating cost and investment cost function;
T: Spanning tree of G;
G: Graph of the physical network infra-structure.

Problem (P) falls into general network problem formulations. It can be stated as
connecting all nodes by selecting a spanning-tree T (out of graph G) to minimize
f. The specificities of this problem are that the objective function is non-analytical.
The operating costs must involve at least efficiency and reliability costs.

Efficiency is determined by computing the electrical losses in the network cables
(Joule losses) and transformers (Joule, Foulcault and hysteresis losses), which must
be obtained after finding the network node voltages and branch currents. The volt-
ages and currents depend on loads and are obtained by running an AC power flow
given the network configuration. The AC power flow problem is non-linear and is
usually solved by Newton-like algorithms.

Reliability must be obtained by simulation analysis of possible faults [@, ].
Faults in distribution networks cause the trigger of one or more breakers upstream
the fault. The opening of a breaker is followed by a sequence of switching actions to
isolate the fault and restore power to the downstream load points (customers). Some
switching actions are automatic others are manual; the manual switching can be
remote-controlled or operated in site. Some switching actions may cause additional
customer interruptions. Reliability is a measure of the interruption impact. Several
reliability indices can be defined. A popular index is the value of the expected En-
ergy Not Supplied (ENS). Such value is a function of (i) the number of faults, (ii)
the chosen sequence of switching actions and their operating times, and (iii) the load
demand of the customers interrupted during the sequence. The function is complex.
Instead of expressing it analytically or even formulating it mathematically, we de-
scribe it as follows.

A fault in a line-section leads to the automatic opening of the feeder breaker. If
the fault is fugitive, the feeder is usually reclosed successfully in very short time and,
therefore, the energy that is not supplied is negligible (very short interruptions are
usually not included in system average reliability indices). If the fault is persistent,
then either the breaker reopens the feeder or some line-section upstream automatic
device isolates the fault from the feeder, in which case the breaker recloses. The
breaker or the automatic device stays opened until the faulted line-section is isolated.
After fault isolation, the breaker or the automatic device may be closed so as to
supply the customers upstream from the fault.

After fault isolation, the network may be reconfigured to feed the customers
downstream the fault. When normally opened devices exist, (one of) these may be
closed to feed the downstream customers. However, if the downstream demand is
high, the backup circuit prompted by closing the normally opened device may not
be able to feed all customers without circuit overloads. If overloads appear, some
demand must be discarded. If the backup circuit cannot feed all customers, the dis-
carded demand stays out of service during fault repair time. After repairing the
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cable or line, the network may return to its original configuration without additional
interruptions.

The expected value of the ENS is obtained by summing the contributions of every
switching step, for every possible line-section fault, and multiplying the result by the
line-section fault probability.

Synthetically, the objective function f can be defined by the sum:

f(T)=i(T)+e(T)+r(T) (13.1)

Where,

i: Investment cost
e: Efficiency cost (from AC power flow losses)
r: Reliability cost (from fault simulation)

Both e and r are strongly dependent on the configuration T as losses are quadratic
functions of branch-currents and ENS is strongly dependent on branch failure rates
and neighbor switching capabilities.

Problem (P) can get more complex [B]. Increased complexity results from: (i)
node information (load, for instance) being considered as a stage dependent vari-
able. In that case the problem becomes dynamic, as decisions must be scheduled to
gather a sequence of network solutions, and (ii) information for future stages be-
ing considered uncertain. This happens when important future investments stand a
chance of being impossible to realize, or some important future information is un-
known. If uncertainty is also considered, the problem becomes a stochastic-dynamic
problem.

The more complex versions of the network optimization problem can however
be decoupled into sequences of (P)-like problems [13]. Here, we will address the
solution of (P)-like problems with evolutionary algorithms.

13.3 Evolutionary Approach

Evolutionary algorithms (EA) are algorithms that manage the survival of a set of
solutions based on the principles of natural selection (neo-Darwinian evolution).
Such principles are: (i) generation sequencing, (ii) survival of the fittest, and (iii)
genetic exchange [[14].

Evolution takes place in time (generation sequence) if only the fittest get a chance
(competition) to combine their genes (mating), and this way contributing to the sub-
sequent generation. Such an evolutionary process can be synthetically presented as
the following algorithm.

Evolutionary Algorithm

Make ¢ = 0;
Initialize the population p(0), at random.
Evaluate p(0)
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Repeat Steps 1 to 4 (until close to genetic saturation)
Stepl t«—1t+1

Step2  Select the fittest from p(z — 1) to build p()
Step3  Change p(r)

Step4 Evaluate p(r)

The algorithm ends when the genetic material represented by the solutions of the
population is no longer diverse enough, i.e., when close to the so-called genetic
saturation.

The change in Step 3 is a crucial process of any evolutionary algorithm. Usually,
it is undertaken in two independent processes:

1. A solution-pair recombination process where information between solutions is
exchanged (this process is usually denoted by crossover); the exchange should
be designed to be a solution-pair neighborhood variation that explores the differ-
ences and (more important) keeps the likenesses of pairs; and

2. an individual solution arbitrary information change (usually denoted by muta-
tion); these changes are usually designed to be local and rare.

Evolutionary algorithms that use these two processes are usually called Genetic
Algorithms (GA).

13.3.1 Working within the Feasibility Domain

The problem (P) requires satisfaction of nontrivial constraints. Feasible solutions
of (P) must be spanning-trees of a graph. The canonical recombination operators
can hardly transmit radiality and connectivity to the offspring. Even when they do
so, important similarities about solutions can hardly propagate genetically. We will
explain why in the following.

A trivial representation of a spanning tree of a graph consists in identifying the
arcs from G that belong to the tree. That could be done by defining an array of
the graph arcs and by using a binary array of the same size to identify the ones
that belong to the tree. Canonical recombination operators could then be defined as
variants of the one point crossover operator that we state in the following.

Canonical Recombination. Let A be the array of all arcs, e.g., [(a-b); (b-c); ...
(e-f)]. Let B/ and B¥ be binary arrays (strings), e.g., [1;0 ... 1] if (a-b) and (e-f) are
tree arcs, and (b-c) is a co-tree arc.

Step I:  Randomly select a position p in the string A. _
Step 2:  Swap the first p binary information between solutions, i.e., substitute B'
[1:p] by B" [1:p], and B [1:p] by B* [1:p].

The binary array representation is very poor as it defines a solution domain much
larger than the space of spanning trees. Note that the domain of the binary array
representation is 2" where m is the number of graph arcs and the space of spanning-
trees is much smaller than that [IE]. In such circumstances, the canonical recombi-
nation operators would hardly find a feasible solution in the binary string domain.
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Another popular operator that has been proposed by several under different
names is the so-called edge-set encoding [IE]— ] that consists in superimposing
both parents to create a subgraph of G and then randomly generating two spanning
trees of such subgraph as possible offspring. This is a simple idea that guarantees
offspring feasibility but the result it is not effective. The tree generating process
(Prim-like) is time consuming and too much random, which leads to slow conver-
gence to the optimum. We state such operator in the following under the name of
Tree Generation.

TG Recombination. Let H, T and T be subgraphs of G and G be defined by the
pair (A, N) where A is the set of arcs and N is the ser of nodes N.

Step 1:  Built H=T'U T = (A’U A", N) as the subgraph of G with the arcs of the
two spanning-trees only. _ )
Step 2:  Randomly generate the offspring trees T* and T as spanning-trees of H.

In the following we propose a more natural problem-related representation of span-
ning trees. In our approach we propose to recombine by interchanging paths be-
tween solutions. The idea is to take the information to be interchanged between
solutions as sub-networks of each solution. As sub-networks, connectivity and ra-
diality can be ensured and meaningful information gets propagated along genera-
tions [B].

The main idea behind our recombination approach will be presented together
with the theoretical results that allow going into the implementation details. We
start by defining the spanning tree genotype space as a partially ordered set of nodes
(A, <), i.e., a set where:

(i) a<a;
(i) a < b and b < aimplies a = b;
(iii) a < band b < cimplies a < c, for every a,b,c € A [@].

An element a is called the direct precedent of the element b in A, iff: (i) a # b; (ii)
a < b; (iii) there is no element ¢ €A such that a < ¢ and ¢ < b. The relation is denoted
by b < a. Similarly, an element b is denoted the direct follower of an element a in
A, iff a is one of its direct precedents. The elements of the set are the nodes of the
spanning-tree, and the order relation a < b denotes that node a precedes node b on
the path from a to b. Spanning trees have a specific property as partially ordered
sets: each tree element is preceded directly by one and just one single element; an
exception is made for the first element (the root), which is not preceded.

Then, we define possible changes as changes that do not violate order as defined
in properties (i)-(ii)-(iii). We call these consistent changes. Take Lemmal[Ilto identify
non-consistent changes.

Lemma 1. A b direct-precedence change b < a taken over a tree ordered set T
violates order (i)-(ii)-(iii) iff b < a.

Proof. Sufficiency — If b < a there exists in T a direct ordered sequence like a <
x>y« ...« b. Achange b « a forces a circulationa «— x>y« ... <= b+«—a,
and thus an order violation (property-ii).
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Necessity — If b < a does not apply, either (1) a < v, or (2) no order exists between
a and b. In case (1), a change b < a eliminates the order relationship between every
x:a<x<bandy:b <y by eliminating the existent b-precedence. The order of
the x-elements is not changed: the x-elements remain as followers of a. The same
applies for the y-elements, they remain as followers of b, and by change b < a,
also followers of a. In case (2), a change b < a forces b to become a follower of a,
and thus every y : b <y becomes a follower of a, instead of being a follower of the
existing p(b). |

Lemma [T] allows classifying direct precedence changes as consistent or nonconsis-
tent. When consistent, direct precedence changing is a simple way to change tree
information, guaranteeing network radiality and connectivity. Simplicity is impor-
tant but is not enough. Information to be interchanged should also be meaningful.
One simple and meaningful information structure of a network is a path between
two nodes of the spanning-tree. We propose to interchange path information be-
tween solutions as a recombination operator.

Paths can be interchanged between spanning trees if they do not enclose incon-
sistencies. A path is not just a set — it is a partially ordered set — and thus precedence
change consistency must be tested orderly. Path precedence relationships must be
submitted and tested, starting from the path’s smallest element to the largest one,
by the order defined in the path itself. The following algorithms summarize the path
interchange approach:

Path Interchange Algorithm. (Submit a path P to a tree T)
Name a as the path’s smallest element. Denote by F(x) the set of direct followers of
x in the path P. Consider a set E of tree elements, and start by setting it to E = F(a).

Step 1:  Change T by changing every precedence relation x «— y of T to x «— z of
P, iff (i) x € E, and (ii) x < z is consistent in T.
Step2:  Update T, set E = UF (x €E), and repeat Step 1 until E= ¢.

Recombination Algorithm. (Interchange paths between solutions T’ and T*)

Step 1:  Randomly select two nodes, a and b. _ 4 ) )
Step 2:  Find the paths P* and P" between a and b: P* in T' and P* in T".
Step 3:  If possible, submit P* to T#, and P” to T". If not possible, go to Step 1.

Recombination Example. (Recombine solutions T! and T%) Solutions T’ and T*
are represented in Fig. [I3.3] The descendants are represented in Fig.[[3.4] P is the
path between the two randomly selected nodes, say 1 and 6. Consider 1 as the path’s
smallest element. The procedure is summarized in the following:

Step 1:  Represent the solutions as tree ordered sets T! = {2 <= 1,5 <= 1,4 «
235627387 and Ti={51,8 1,456«
8,7+ 8,2+>6,3 < 7} and the paths P! in T/ and P" in T" as P! = {2 «
1,6 <2} and P = {8 «— 1,6 « 8}
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Fig. 13.3 Two spanning trees T’ and T# (upper and lower figures) and the complementary
paths between nodes 1 and 6, respectively P* and P' (in dashed line)

Step 2:

Submit P/ = {2+ 1,6 =2} to TV = {5+ 1,8 > 1,4>5,6+>8,7 «
8,2 6,3 <7} Node 1 is the path P smallest element. F (1) = {2}. The
change 2 < 1 is a consistent change in T% as node 2 is also a descendent
of node 1 in T. Note that 6 < 2 is not consistent in T at this stage. By
updating the tree with 2 < 1 (in bold) one gets T = {5« 1,8 <= 1,4 «
5,6 2,7+ 8,2« 1,3« 7}, in which 2 < 6 changes to 6 <« 2. So,
the change of the second element of the path is no longer necessary. The
result of the path submission in shown in Fig.[13.4l

Now submit Pi = {8 <= 1,6« 8} to T' = {2+ 1,5 1,42 3«
5,6 — 2,7« 3,8« 7}. Element 1 is the smallest element of the path
P, F(1) = {8}.8 « 1 is a consistent change as 8 < 2 in T'. Changing the
precedence results in the tree update {2 «— 1,5« 1,4 — 23— 56«
2,7+ 3,8 <> 1}. The follower of 8 in P is 6, F (8) = 6. The change 6 <
8 is again a consistent one as there is not an order relationship between
node 6 and node 8 in T’. The change results in the spanning-tree {2 «
1,5—1,4—23«—56+« 8,7« 3,8« 1}. The result of the path
submission in shown in Fig. 3.4
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Fig. 13.4 Two descendant spanning trees that result from path interchange between node 1
and node 6 and the branches that were lost in each spanning tree (dotted line). The figures
represent the changed spanning trees T! and T# (upper and lower figures). The originals are
represented in Fig.[[33]

13.3.2 Lamarckian Hybridization

GAss abstract the fundamental process of neo-Darwinian evolution, namely selection
and genetic variation through crossover and mutation. According to neo-Darwinian
evolution, these are the unique processes that change genotype information. How-
ever, in the early nineteenth century, Lamarck suggested that characteristics of or-
ganisms acquired during lifetime could be inherited by their descendants. Despite
this theory being discredited nowadays, the idea of modifying genotypes during the
individual lifetime and allowing the modification to be transmitted to the offspring
is a very interesting idea (in what concerns optimization).The lifetime modification
can be understood as lifetime learning and be implemented by undertaking indi-
vidual local improvements. This is the central idea of most hybridization processes
and is known as Lamarckian learning. Such an evolutionary hybrid process can be
written as an algorithm like the following:
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Lamarckian Hybrid

Make t =0;

Initialize the population p(0), at random.

Evaluate p(0)

Repeat Steps 1 to 5 (until close to genetic saturation)
Stepl 141

Step2  Select the fittest from p(z — 1) to build p()
Step3 Recombine p(¢) and mutate p(t)

Step4 Improve p(t) with local heuristics

Step5 Evaluate p()

Some implementation difficulties spring out when trying to implement Step 4. The
difficulties rely upon deciding what solutions will be improved and in what extent
they will be improved. To answer this, note that: (i) if too many solutions are to
be improved, the GA process will become too slow — and would be the merit of
improving very bad solutions if they will barely survive after all, and (i) if solutions
are to be improved in a high extent, population will lose diversity as solutions will
tend to be very much alike (each one similar to its “closer” local optimum).

Some authors have proposed empirical rules for undertaking Lamarckian steps
(e.g., the Rule of 10); others have proposed theories for coordinating global and lo-
cal search [[19]. Here, we present a very simple but effective approach to coordinate
local search effort with global search effort. We call it Diversity Driven hybridiza-
tion. Despite being very simple to implement, the presented coordination approach
observes population diversity and solution relative quality. The approach is summa-
rized in the following two steps.

Diversity Driven Hybridization

Step 1:  Given a population of solutions to be improved (Step 4), identify the sub-
set of solutions that have at least one clone (a copy) in p(¢). Name this
set ¢(¢) and remark that p(¢) \ g(7) has the same genetic material as p(¢).

Step 2:  Use local search to improve some solutions of ¢(¢). Randomly choose (i)
the solutions of ¢(¢) to be improved, e.g., with a fixed probability, as well
as (ii) the number of local improvement to make in each solution.

The coordination process just presented is made dependent on diversity as local
improvements are rare in the GA insipient generations (where populations are much
diverse) but frequent for the ending generations (where populations are close to
genetic saturation).

Moreover, the coordination process is also made dependent on the solution qual-
ity as local search does not spend considerable effort in locally improving bad so-
Iution as these do not get many chances of having a significant number of copies in
future generations.

But what would be the definition of local neighborhood in the context of network
optimization? In the context of network optimization, local improvements can be
seen as any optimization subproblem in a small neighborhood. We propose that the
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neighborhood is defined as a fundamental cycle of the graph and the subproblem be
formulated as a (Q)-like problem.

(0) Minimize f(y) overally € Y

Where,

f : Operating and investment cost function

y : Co-tree arc of Y

Y: Fundamental cycle of the graph G

G : Graph of the physical network infra-structure

Problem (Q) is very simple when compared to (P). The fundamental cycles of the
graph G with respect of a spanning tree T defined by co-tree arcs represent the
operating network open-loops. For a single of such cycles, the subproblem objective
function is often convex in the space of possible co-tree arcs (201, and can be solved
approximately very easily.

Two questions seem pertinent about the proposed hybridization procedure: (i)
what should be the number of fundamental cycle changes to be operated in each
solution, a single one, y € ¥, or a generalized operation, y € G \ T (single vs. mul-
tiple changes), and (ii) why should local optimization be performed on non-diverse
solutions only. The rationale is the following:

1. Local optimization must not perform exhaustive modifications on each solution
— that would lead to a dramatic diversity lack

2. Above average solutions are more likely to get copies in the descendant’s gener-
ation — selection is a competitive mechanism

3. Local modifications performed at above average solutions are more likely to
propagate to the descendants.

The proposed hybridization has the additional advantage of guaranteeing local opti-
mality, which is a very important aspect for industry applications. See the following
result where optimality is related to genetic saturation.

Lemma 2. Genetic convergence guarantees (Q)-optimality.

Proof. Genetic convergence presumes the stable absence of diversity, i.e., p(t) =
q(t). If a solution is not (Q)-optimal, then it is possible to perform a single loop
reconfiguration to improve such solution, and as improved, selection will guarantee
its propagation to the descendants. So, for a non empty random subset ¢, (Q) sub-
optimal solutions are unstable. a

13.4 Application Examples and Illustration

In this section we present two application examples that illustrate the main difficul-
ties in addressing large-scale distribution optimization problems. Scale influences
algorithm robustness if genetic operators and parameters do not change accordingly.
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Knowing how to change is not an easy task. We present the results of our experience
and discuss their limitations.

We start by solving a network operation problem. We chose to optimize the oper-
ating configuration of the distribution network represented in Fig.[I3.1l The network
has nine substations, 1613 nodes from which 768 are load points and 1667 branches,
which are connected through 35 different feeders (sub-trees). The network has a
300 M VA installed capacity for a peak load of 185 MVA. High-voltage losses are
1 GWh /year and medium-voltage losses are 6 GWh /year. Yearly operational costs
include losses costs and reliability costs amounting to about 1 MC /year.

We start from the actual configuration and generate a population of 120 random
solutions by undertaking a random number of fundamental cycle changes over the
actual spanning-tree configuration. Changes are made sequentially for each indi-
vidual configuration. The generated population has a cost distribution that varies
between 0.9 MC and 3.4 MC (see Fig.[13.3).

Operating cost [M€]

10° 10’ 107
No. of individuals

Fig. 13.5 Operating cost distribution for generations 1, 5, and 10. In generation number 1
most of the individuals have costs around 1 MC, in generation number 5 there is already a
large distribution of the costs, some still have high values but many are already below 800k C,
and after 10 generations most are already below 650 kC. The initial cost that corresponds to
the actual configuration is shown in the figure as a circle

Then, we select the better solutions from this population with binary tournaments
without elitism and recombine 80% of the selected configurations by interchanging
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paths between spanning-trees. We do not mutate. From the set of recombined con-
figurations we find out clones (repeated solutions) and modify these by undertaking
fundamental cycle changes to solve (Q)-like subproblems. The modified population
is then evaluated by computing f before going again into the selection process.

This sequence continues for 20 generations until genetic saturation is achieved
(see Fig. [[3.6). The result obtained has a total operating cost of 650kC, which
represent a cost reduction of 35%. This has been possible in such few generations
because the operators are very effective for the problem at hand. Parameters are
also important for effectiveness. How many paths did we submitted when recom-
bining? How many cycle changes did we undertake when improving clones? These
are important questions that experience can answer.
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Fig. 13.6 Generation evolution of the operating cost and the corresponding number of re-
peated individuals that are locally optimized by solving Q-subproblems

Before answering the questions on parameters used, let us solve a network plan-
ning problem, i.e., an optimization problem that also involves investment possi-
bilities. That problem is similar to the operation problem but harder. It is harder
because the investment costs increase significantly the spanning-tree building block
cost variance, the so-called collateral noise [21]. A small change either in a path or
in a cycle might be responsible for a big difference in performance. That makes the
evolutionary algorithm job much more difficult.

For the planning problem, we use the same distribution network as before (the
network represented in Fig. [[3.0)) but now with some of the nodes and some of
branches as new possible investments. The starting investment plan involves in-
vestment costs of 330k C, high-voltage losses of 1 GWh /year and medium-voltage



340 P.M.S. Carvalho and L.A.F.M. Ferreira

losses 8 GWh/year. Part of the network shows serious under-voltage and over-
current problems, which are penalized. Penalties related to electrical constraints
amount to 315k C. Yearly operational costs include losses costs and reliability costs
amounting to about 2 M C /year.

Like before, we start from the actual configuration plan and generate a pop-
ulation of 120 random solutions. The generated population has a cost distribu-
tion that varies between 1.6 MC and 7.2MC (see Fig. [[37). The evolutionary
algorithm evolves now for 37 generations until genetic saturation is achieved (see
Fig.[I3.8). The process is now longer than before (for the operation problem) and
also more sensitive to the algorithm parameters. We will address this problem in the
following.

The evolution of the process depends on the classical GA parameters, such as
crossover probability, population size, etc., but also on other parameters that are
required by our specific approach. These parameters are (i) the number of paths
exchanged, np, at the recombination of two individuals, and (ii) the number of cycle
changes, nc, undertaken in each repeated solution (for each clone).

Invesment and Operating cost [M€]

gn=235 ];

I I | I i Lol
10° 10' 107

No. of individuals

Fig. 13.7 Operating and investment cost distribution for generations 1, 10, and 20 and 35. In
generation number 1 most of the individuals have costs around 2 MC, in generation number
10 there is already a large number of individuals with costs around 1.6 MC, and after 20
generations most are already around 1.35 M C. The population saturates for an optimum cost
is below 1.2 M C after generation number 33
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Fig. 13.8 Generation evolution of the investment and operating cost and the corresponding
number of repeated individuals that are locally optimized by solving Q-subproblems

Our experience with distribution networks lead to the conclusion that these num-
bers should be random but bounded. Upper and lower bounds can be defined for the
number of paths to be exchanged, say npV and np", and for the number of cycles to
be changed, say nc¥ and ncl. The bounds can be defined as a function of the num-
ber of feeders, nf (independent sub-trees). Simple functions can be used with good
results. In the cases presented previously we used the bounds given in Table[I3.1]

Table 13.1 Bounds for the number of paths to be exchanged and the number of cycles to be
changed

Name npt npY ncl nc¥

Value 1 10.2nf 0 10.15nf

In Table[I37] the function |- | is the floor function that maps a real number to the
next smallest integer. In the example above, the network had 35 feeders, for which
the upper bounds were set to npU = 7 and ncV = 5. Increasing the upper bounds
leads to a decrease in the algorithm performance, e.g., if one sets npV ~ nf the cost
of the final solution yielded for the planning problem would become 10% higher.
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13.5 Summary

In this chapter we have presented an evolutionary approach to the electric power
distribution network planning and operation problems. The problems have been for-
mulated as large-scale optimization problems and addressed by especially designed
evolutionary hybrids. The designed evolutionary operators and hybridization process
have been presented and their role in optimality discussed. Application examples
have been provided to support the discussion and illustrate critical implementation
practicalities.
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Chapter 14

A Parallel Hybrid Implementation Using
Genetic Algorithms, GRASP and Reinforcement
Learning for the Salesman Traveling Problem

Jodo Paulo Queiroz dos Santos, Francisco Chagas de Lima Jdnior,
Rafael Marrocos Magalhaes, Jorge Dantas de Melo, and Adrido Duarte Doria Neto

Abstract. Many problems formerly considered intractable have been satisfacto-
rily resolved using approximate optimization methods called metaheuristics. These
methods use a non-deterministic approach that finds good solutions, despite not en-
suring the determination of the overall optimum. The success of a metaheuristic is
conditioned on its capacity of alternating properly between the exploration and ex-
ploitation of solution spaces. During the process of searching for better solutions,
a metaheuristic can be guided to regions of promising solutions using the acquisi-
tion of information on the problem under study. In this study this is done through
the use of reinforcement learning. The performance of a metaheuristic can also be
improved using multiple search trajectories, which act competitively and/or coop-
eratively. This can be accomplished using parallel processing. Thus, in this paper
we propose a hybrid parallel implementation for the GRASP metaheuristics and the
genetic al gorithm, using reinforcement learning, applied to the symmetric traveling
salesman problem.

14.1 Introduction

Modeling and resolving complex problems in the world we live in is not an easy
task, given that there are some situations in which it is impossible to build a detailed
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model for the problem, owing to its high complexity. On the other hand, a process of
simplifying this model leads to loss of relevant information that may compromise its
quality. In addition to the inherent difficulty in building models for these problems,
a characteristic during the resolution phase is the need for large scale computa-
tional processing, which, in most cases, leads to these problems being considered
intractable. In this context researchers have dedicated themselves to the develop-
ment of techniques aimed at facilitating modeling and, mainly, at resolving these
problems ], ] and [IE].

A widely used approach for solving intractable problems has been the usage of
so-called metaheuristics, which are strategies based on heuristic procedures, mainly
applicable to optimization problems and which produce a simplified process of a
stochastic search in the solution space (12]. Despite achieving good results without
an exhaustive search, metaheuristics do not ensure obtaining the optimal solution of
the problem.

The great challenge of a metaheuristic is to maintain the equilibrium between
exploration and exploitation processes. Exploration (or diversification) is used to
allow the solution to escape from the so-called local minima, whereas exploitation
(or intensification) is used to improve the quality of the solution locally, in search of
the overall optimum.

Resolving the dilemma of when to “explore” and when to “exploit” is not an easy
task. Thus, many researchers have been involved in seeking improvements that help
the metaheuristics in the exploration and/or exploitation process. In this context a
very interesting study (7] was conducted using reinforcement learning, but specifi-
cally the Q-learning algorithm, as an exploration/exploitation strategy for GRASP
metaheuristics and the genetic algorithm, applied to the traveling salesman problem
- TSP. In addition to the “explore or exploit” dilemma, another aspect to consider is
the large number of possible solutions that problems such as 7'SP present.

This high dimension of the universe of solutions of problems like 7'SP generates a
large processing demand, which may be met by the use of architectures with parallel
processing capacity, able to increase, by some orders of magnitude, the processing
power available in monoprocessed architectures.

The use of parallel processing promotes the development of new algorithms and
opens possibilities for the exploration of aspects of the problem not approached in
the usual architectures such as competition and cooperation [B].

Based on the success obtained by the aforementioned techniques and motivated
by the difficulties of complex problems in the real world, this study proposes the de-
velopment of hybrid parallel methods, using reinforcement learning, GRASP meta-
heuristic and genetic algorithms.

With the use of these techniques together, better efficiency in obtaining solutions
is expected. In this case, instead of using the Q-learning algorithm of reinforce-
ment learning only as a technique to generate the initial metaheuristic solution, we
intend to use it cooperatively/competitively with the other strategies in a parallel
implementation, which will be described in detail in the continuation of the text.
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14.2 Theoretical Foundation

A brief theoretical foundation, required for a better understanding of the rest of the
text, will be presented in this section.

14.2.1 GRASP Metaheuristic

The Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic 4]
is a multi-start iterative process, in which each iteration consists of two phases:
construction and local search. The construction phase generates a viable solution,
whose neighborhood will be investigated until a local minimum is found during the
local search phase. The best solution among these is used as the result.

In each iteration of the constructive phase, the set of candidate elements is formed
by all the elements that can be incorporated into the partial solution under construc-
tion without compromising viability.

The selection of the following element to be incorporated is determined by the
assessment of all the candidate elements, according to a function of greedy as-
sessment. This greedy function generally represents the incremental increase in
the cost function, owing to the incorporation of this element in the solution under
construction.

The assessment of the elements for this function leads to the creation of a re-
stricted candidate list (RCL) formed by the best elements, that is, those whose in-
corporation into the current partial solution results in lower incremental costs (this
is the greedy aspect of the algorithm). Once the selected element is incorporated
into the partial solution, the candidate list is updated and the incremental costs are
reassessed (this is the adaptable aspect of the heuristic).

The probabilistic aspect of GRASP is due to the fact of randomly choosing one
of the RCL elements and not necessarily the best, except when the RCL is of unitary
size, where the selection criterion is reduced to the greedy option.

The improvement phase consists typically of a local search procedure aimed at
enhancing the solution obtained in the construction phase, given that the construc-
tion phase solution may not represent an overall optimum. In GRASP metaheuristic
it is always beneficial to use a local search to improve the solutions obtained in
the constructive phase. Additional information on the GRASP metaheuristic can be
found in [@], [E].

14.2.2 Genetic Algorithm

Genetic Algorithms (GA) are based on a biological metaphor. They “visualize” the
resolution of a problem as competition between a population of candidate solutions
that evolve. A function of fitness assesses each solution and decides if it will con-
tribute to the evolution of the population in the next generation. Thus, using opera-
tors analogous to the genetic transfer in sexual reproduction, the algorithm creates
a new generation of candidate solutions.
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At the start of the execution of a genetic algorithm, a population of chromosomes
is generated. Each of these chromosomes, when decoded, will represent a different
solution to the problem. Considering that there are N chromosomes in the initial
population, the following steps will be repeated until a stop criterion is reached:

1. Assess each chromosome to determine how good it is in resolving the problem,
associating a score to each chromosome according to the function of "fitness”.

2. Select two members of the current population. The selection probability must be
proportional to the fitness function value.

3. Depending on the crossover rate, cross the genes of the selected chromosomes at
a randomly chosen point.

4. Depending on the mutation rate, exchange the genes of one selected chromo-
some. Repeat steps 2, 3 and 4, until a new population of N chromosomes has
been generated.

Genetic algorithms are very efficient in the search of optimal or nearly optimal so-
lutions, in a wide variety of problems, such as: network project optimization (i,
vehicle routing [15], timetable problem 3], task grouping [16], among others. Ad-
ditional information on genetic algorithms can be found in [@] and [9].

14.2.3 Reinforcement Learning: Q-Learning Algorithm

Not all reinforcement learning algorithms need a complete modeling of the environ-
ment; that is, it is not necessary to know the matrix of transition probabilities or the
expected values of the reinforcement signal for all the possible states actions in the
environment. This is the case, among others, for reinforcement learning techniques
based on temporal differences [@].

One of these techniques is the Q-learning algorithm (Watkins, 1989), which is
considered one of the most important contributions in reinforcement learning, given
that its convergence to optimal Q values does not depend on the policy that is being
used. The updated expression of the Q value in the Q-learning algorithm is the
following:

O(s.a) = (1 - 2)Q(s,a) + afr + ymax O(s'.a)] (14.1)

where s; is the current state, at is the action performed in the s; state, r; is the re-
inforcement signal received after executing at in sy, 5,41 is the next state, y is the
discount factor (0 <y < 1) and a (0 < o < 1) is the learning coefficient. The func-
tion Q(s,a) is the value associated to the state-action pair (s,a) and represents how
good the choice of this action is in minimizing the accumulated reward function,
designated by:

R= 2 7{(+k+1 (14.2)
k=0

One important characteristic of this algorithm is that the choice of actions to be
executed during the process of iterative approximation of the Q function can be
made using any exploration/exploitation criterion, including in a random manner. A
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widely used technique for this choice is the so-called e-greedy exploration, which
consists of choosing the action associated to the highest Q-value with probability
1 — e+ ¢€||A(s)[, where |A(s)| corresponds to the number of possible actions to be
executed starting from s. Q-learning was the first reinforcement learning method
to display strong evidence of convergence. Watkins (17] showed that if each pair
(s,a) is visited an infinite number of times, the Q-value function Q(s,a) will con-
verge with probability one for Ox, with o sufficiently small. As long as the opti-
mal Q-value is known, an optimal choice of actions can be made according to the
expression:

a*(s) :mlfth(&a) (14.3)

The pseudocode for the Q-learning algorithm is:

Q-learning Procedure(r,q, €, y)
Initialize Q(s,a)
Repeat for each episode
Initialize s
Repeat for each state of the episode
Select a in accordance with the rule e-greedy
Observe the values of r and s'
0(s.a) — O(s.a) + alr+ ymax O+, ) ~ O(s.)]
s s
Until a final state is reached
Until the convergence is gotten
End-Q-Learning.

The convergence criteria for the Q-learning algorithm are:

1. The model of the system is a deterministic MDP.
2. The immediate reward values are bounded by some constant.
3. The agent visits every possible state-action pair infinitely often.

Additional information on the Q-learning algorithm can be found in [ﬂ]

14.3 Hybrid Methods Using Metaheuristic and Reinforcement
Learning

The hybrid parallel implementation proposed in this paper is based on work orig-
inally published by [7]. In the paper the authors propose the use of Q-learning
algorithm as a intelligent strategy for exploitation and/or exploitation for GRASP
metaheuristics and Genetic Algorithm. For better understanding of the hybrid par-
allel method proposed here, the Sec. [[4.3.1] and describe of brief way, the
sequential implementations proposals by previously cited authors.
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14.3.1 GRASP-Learning

The GRASP metaheuristic need to work with good initial solution. Considering this
dependence, the use of the Q-learning algorithm is here proposed as a construc-
tor of initial solutions, in substitution to the partially greedy algorithm generally
used.

The Q-learning algorithm use as rule of state transition will use € — greedy strat-
egy, mentioned previously, defined by:

/N __ J Qrandom ifv<e
() = {argmaxa/Q(s’ ,a') otherwise (144)

where: v is a random value with uniform probability distribution between [0, 1], €
(0 < &< 1) is the parameter that defines the exploration rate so that, the lesser the
value of €, the lesser the probability of making a random choice of the action will
be, and d,4uq0m 15 an action randomly chosen amongst the possible actions to be
executed in the state s'.

As already mentioned, the Q-learning algorithm will be used as a constructor
of initial solutions for GRASP metaheuristics. Therefore, each iteration of the al-
gorithm intends to construct a solution of good quality, since the Q-learning will
explore the knowledge of the environment (solution space of the problem) through
the use of the matrix of rewards. The matrix of rewards is generating using the
matrix of distance of each instance do TSP, and is computed of the following
form:

r(s',d) = M; (14.5)
dij
where, d;; corresponds to the distance between cities i and j that compose a route
and are represented in the model by the states s and s, respectively, while M; is the
distance average of the city i for all another cities.

The control between “exploitation” and “exploration” will be made by the pa-
rameter of the transition rule described in (I4.4). Higher the value of &, more rarely
the Q-learning algorithm will make use of the knowledge of the environment, while,
lower value of €, means more random choice of actions.

The basic idea of the GRASP-Learning method is to make use of the information
contained in the matrix of Q-values as a kind of adaptive memory, that allows repeat
the good decisions made in previous iterations, and avoid those that were not inter-
esting. Thus, considering for example the traveling salesman problem, the method
used in each GRASP iteration, the state-action pairs Q(s,a) stored in the matrix of
the Q-values, to decide which visits are promising for the traveling salesman.

The policy e— greedy is used with the objective guarantee certain level of ran-
domness, thus avoiding the construction of locally optimal solutions. The Fig. [T4.1]
presents an overview of the GRASP-Learning metaheuristic.
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GRASP-Learning Metaheuristic

Execute Nmax lterations

A —
Constructive Phase Local Search Phase
Q-learning Algorithm || Get_Route Procedure 2-opt Methods
Q-values Matrix [I:I:I:I:I:I:‘TSP Feasible Solution I:I:I:I:I:I:I:l

P

Best Local Solution

Best Global Solution |

Fig. 14.1 Framework of GRASP-Learning Metaheuristic

14.3.2 Genetic-Learning

The Genetic-Learning algorithm use the idea of introducing knowledge of the en-
vironment through the Reinforcement Learning. The main focus of this method is
to explore of efficient way the space of search through the learning of the environ-
ment of the problem, using the Q-learning algorithm with a genetic algorithm - GA.
Making use of a genetic algorithm, the solution search space of a problem can be
explored adequately through the generation of an initial population of high fitness in

Cooperative Genetic Learning Algorithm

Use Q-values in the Crossover Operator Execute Nmax Geratlons

/ Ranking Population N

Q-Learning

Initial EVALUATION Improved
Population Population

Q-values Matrix

Genetic
Operators

Il| SELECTION
b CROSSOVER
MUTATION .

Generate Popu/ation? | Next Generation 1

Update the Q-values Matrix Using the Best Solution

Fig. 14.2 Framework of Cooperative Genetic-Learning Algorithm
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relation to the objective function. Therefore, the genetic algorithm considered here
has its generated initial population through the Q-learning algorithm.

Another modification in this method occurs in the crossover operator of the GA.
In this operator, one of the parents will be taken from the improved population for
the action of the operators of the current generation, as in the traditional GA, while
the other will be generated by the Q-learning algorithm without any action from the
genetic operators. The other operators (selection and mutation) are implemented in
the traditional way. The Fig. presents an overview of the Cooptative Genetic-
Learning algorithm.

The following Section describe the parallel hybrid implementation of the GRASP-
Learning and Genetic-Learning metaheuristics.

14.4 Parallel Hybrid Implementation Proposed

This study proposes the development and implementation of a cooperative and/or
competitive parallel strategy of Q-learning, genetic and GRASP algorithms, to re-
solve the traveling salesman problem (7'SP). The basic idea is to collectively use
the solutions found for each algorithm and with this make up the deficiencies
they exhibit when used separately. For this interaction to be effective, one must
establish the communication interfaces that enable the exchange of information.
Similarly, the existence of multiple processing elements will allow different algo-
rithm parameterizations to be used, as described below.

14.4.1 Methodology

As explained in section the genetic algorithms work with populations of solu-
tions, GRASP provides a local optimal solution and Q-learning a table of Q-values
that enables the building of solutions starting from any point on the table. All the al-
gorithms involved are iterative; that is, the quality of their solutions tends to improve
with an increase in the number of iterations.

For a better understanding of the proposal, consider the schematic diagram in
Figure [[43] which shows the interaction structure between the algorithms. In this
scheme the critical has the task of managing the quality of solutions generated by
each of the algorithms, i.e., when necessary it replace a bad solution by another best.

14.4.1.1 Communication Sent by Q-Learning Algorithm

Using the table of Q-values, one or more solutions are generated as follows: Choose

a starting city so for TSP and refer to the table of values Q(s,a), obtaining the best

value Q* (s0,a) = max Q(so,a), Va € A(so), where A(so) are all the possible actions
a

from the s state.
Choose the city indicated by the choice of action a as being the next in the
TSP route. Repeat the process until all the cities have been visited a single time,
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Genetic
Algorithm

Fig. 14.3 Cooperation scheme between the Q-learning, GRASP and Genetic algorithms

generating thus a solution S, for TSP. For simplicity, consider that only one solu-
tion is generated.

For GRASP, solution S, will be used as the initial solution instead of that obtained
in the construction phase and will be improved using local search in a new iteration
of the algorithm.

14.4.1.2 Communication Sent by Genetic Algorithm

At each iteration of the algorithm, choose the individual of the population with the
highest suitability value (best fitness); this individual will be a solution S,. Let R,
be the cost of the route associated to S,.

For GRASP, solution S, will be used as the initial solution, substituting the solu-
tion that would be generated in the construction phase, in the same way that this
solution will be improved before using local search in the next iteration of the
algorithm.

For Q-learning, the Q-values table must be updated based on information avail-
able in solution S,. Therefore, it should be remembered that a value Q(s,a) repre-
sents an estimate of the total expected return that will be obtained when in state s
and choosing action a. In the case of TSP this value represents a cost estimate of the
cycle starting from s and having as the next city visited the one indicated by action
a. Similarly, solution S, has a cost associated to the cycle, that is, R,. Thus, a series
of pairs (s, a) can be established from this solution, corresponding to the order in
which the cities were visited and the values Q(s,a) can be updated as follows:

0(s,a) =B.(Q(s,a)+R,), (0<P<1) (14.6)
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14.4.1.3 Communication Sent by GRASP

At each iteration of the algorithm, take the solution obtained using the GRASP local
search, Sg. Let R be the cycle cost associated to Sg.

For Q-learning, use the same procedure described in the previous item and rep-
resented by equation[I4.6] replacing R, by Rg.

It is important to observe that in a parallel application, each of the algorithms
will constitute an independent task that will be executed at its own pace. This means
that communication between tasks cannot be synchronous; otherwise the execution
of one of the tasks will be blocked while it waits for results from another to be sent.
Therefore, asynchronous communications could be avoided with a specific param-
eters settings. It is done in a fashion that each algorithm execute a number of steps
that is approximately proportional of others algorithms. For example, if the GRASP
algorithm run ten times faster than genetic algorithm for one step, so the number
of steps for that algorithm will be adjusted proportionally greater than another. This
solution reduce problems with asynchronous communications and avoid idleness
time of tasks.

Since there are three algorithms involved in the parallel implementation, it can be
supposed that three distinct tasks are needed for such a purpose. If we consider that
a parallel architecture has considerably more than 3 processing elements, it follows
that the efficiency of the implementation will be compromised, given that several of
these elements will be idle during the execution of the application.

To avoid this idleness and to make use of the entire potential of parallel archi-
tecture, multiple parameterizations of the algorithms will be used in this study. We
understand multiple parameterizations as being the execution of a same algorithm
with different behaviors.

In the case of genetic algorithms, this corresponds to associating to some parallel
tasks, instances of genetic algorithms with different population behaviors; that is,
different mutation rates, crossover and selection mechanisms.

For GRASP, different lengths can be used for the restricted list of candidates and
different local search mechanisms.

In the case of Q-Learning, the possibilities of multiple parameterizations are as-
sociated to the choices of the parameters involved in updating Q-values. These val-
ues are the o and the y presented in equation[T4.11

It should be pointed out that the occurrence of multiple parameterizations, in
addition to allowing a more efficient use of parallel architecture, will make the
communication structure between the tasks more complex, given that two differ-
ent instances of a same algorithm will be able to exchange information. The cost
of these communications, in terms of processing time, will be analyzed during the
implementation to avoid compromising performance.

14.5 Experimental Results

In this section all the experiments done in this work are explained and their re-
sults are presented and compared. The proposed methods in the Sec. [[4.4] use the



14 A Parallel Hybrid Implementation Using Genetic Algorithms, GRASP 355

Q-learning algorithm, GRASP metaheuristic and Genetic Algorithm in a parallel
hybrid implementation. Therefore, to evaluate the proposed method the well known
traveling salesman problem was utilized. To use the proposed method in resolution
of the TSP is necessary an adequate modeling of the problem. To do that, the section
[[43 Tl presents the TSP modeled as a Reinforcement Learning problem.

The section shows how the computational tests were conducted, the
first sub section introduces the utilized methodology. The sub sections to
14.5.2.5] explain the four different setups developed and their individual results,
namely Serial execution, Parallel execution, Parallel limited execution, and Paral-
lel Group execution respectively. Therefore, to conclude the section, in sub section
[[4:3. 2.6 was conducted the performance analysis and in[14.3.2.7]was done a collec-
tive analysis of all the experiments.

14.5.1 The Traveling Salesman Problem

The traveling salesman problem (7'SP) is a classical problem of combinatorial op-
timization that consists of determining a minimum-cost Hamiltonian cycle on a
weighted graph. The TSP is classified as NP-complete [Ia], which means that re-
solving this problem by examining all the possible solutions is computationally im-
practicable.

The problem can be formally defined as follows: Consider a set V of vertices,
representing cities, and a set A of arches totally connecting the V vertices. Let d;; be
the length of the arch (i, j) € A, which is, the distance between cities i and j, with
i,j € V. Resolving TSP is finding a minimum-length Hamiltonian circuit on graph
G(V,A), a Hamiltonian circuit being a closed pathway visiting once and only once
all the n = |V| vertices of G, and the circuit length is given by the sum of the length
of all the arches that it is made up of. In this work the TSP will be modeled as a
reinforcement learning task.

In this work the environment for the traveling salesman problem can be seen as
a system whose dynamics can be represented by a Markovian decision process of
finite horizon time, characterized as follows:

e The environment evolves probabilistically occupying a finite set of discrete
states. This evolution is episodic where, to each episode, one of the states of
the system is chosen as the final one, i.e., the final state is not known a priori.
The state of the system is completely observable and the transition probabilities,
in each discrete time ¢, can assume two distinct values:

. . 0
Pr={s;11=jls; =i,a; = a} = pjj(a) = { | (14.7)

It must be observed that, if P;;(a) = 0 then j =i;

e For each state of the environment there is a finite set of possible actions that can
be carried through. This set of actions is invariant in time, being represented by
A(s, i) = A(i);

e Every time the agent carries through an action, it causes certain rewards that can
assume two distinct values in each discrete time:
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rl‘j( ) _ { _'yn}?XQ(iva/) +Q(l,(1) lfpl] =0 (148)

rij if pij(a) =1

As previously established, if P;;(a) = 0 then j = i. Soon, the Q(i,a) associated to
state i and the action @ must not be updated, which justifies the choice of expres-
sion for rewards r;j(a) in when P;j(a) = 0. The observation of the states, the
accomplishment of the actions and the incidence of the reward occur in discrete
time. Considering the description of the environment for the 7SP made here, the
modeling process as a reinforcement learning problem can be made in the following
way:

e States: S = {s € N|N is the set of the cities that compose a route for the TSP};

e Actions: A = {a € A(i)|A(i) is the set of all possible options of cities to be added
in the route, from a city i},

e Rewards: r(s,a) is the expected return in state s to decide for the action a.

In practice, the rewards can be seen as the prize (or save) of choosing the short-
est distance of the current city in the route, and can also be trivially seen by
Equation[14.5]

14.5.2 Computational Test

This section evaluates the potential use of parallel processing approach for the co-
operative and competitive algorithms for integration of (GRASP, and Genetic Q-
learning), aimed to observe the best type of parallel configuration for the three
algorithms involved. With these goals, a programming environment has been de-
veloped to allows the parallel evaluation of the performance in terms of speedup
and efficiency parameters, and also the quality of results.

14.5.2.1 Methodology

The computer architecture was used as a dedicated network of computers that form
a cluster system of Beowulf type. This architecture is composed of nine computers
that have the following configuration: Intel Core 2 Duo processor with 2.33GHz
of clock, 2GB of RAM, 80GB hard disk and Gigabit Ethernet network card. The
operating system used on the machines is GNU/Linux Ubuntu version 8.04. The
library for parallel programming used was OpenMPI version 1.2.5, that is an imple-
mentation of a message passing interface library. The MPI is based on simulating
of the existence of many different programs exchange information simultaneously.
The Zabbix software version 1.4.2 was used as monitoring performance. The imple-
mentation of the algorithms were developed with the programming language C++
and analysis using MATLAB.

For the Traveling Salesman Problem (TSP) was used the TSPLIB] repository,
this library presents various instances for many different variants of TSP. Eight TSP

! The instances of the TSP problem used were obtained from TSPLIB site, hosted under the
domain http://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
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instances were evaluated in this parallel implementation, they are: grl7, bays29,
grd8, berlin52, €il76 and a280. The information about the instances used in the
experiment are presented in Table [[4.1]

Table 14.1 Information about the TSPLIB instances

Instance Name Description Best value
arl7 City problem (Groetschel) 2085.00
bays29 Bavaria (street distance) 2020.00
ar48 City problem (Groetschel) 5046.00
berlin52 Locations in Berlin (Germany) 7542.00
eil76 city problem (Christofides/Eilon) ~ 538.00
a280 Drilling problem (Ludwig) 2579.00

14.5.2.2 Serial Execution

This experiment makes the implementation of the serialized algorithm, where all
algorithms were implemented on the same machine, that is in the same processing
node. Table [[4.2] presents the results of serial execution in each of eight instances
evaluated. This experiment was conducted comparing purposes with the parallel
implementation and measurement of speedup gain and efficiency in terms of time
and quality of results.

Table 14.2 Serial execution time and Objective Function values for each instance

Instance bays29  swiss42  berlin52 eil76 gr120 chl150 sil75  a280

Objective Function 2020 1284 7705 591 8789 9163 23795 4682
Time in seconds 220 577 952 1390 3308 7082 9975 20300

14.5.2.3 Parallel Execution

The parallel implementation has been done distributing the algorithm parts over the
nodes of the cluster. One node with genetic algorithm, other with GRASP algorithm,
and another focused on the reinforcement learning. The communication between
algorithms nodes was done as showed in Figure [[4.3] For each evaluated instance
was generated thirty executions for a statistical analysis of implementation.

Table [[4.3] shows the parameters used for implementation of algorithms for this
set of experiments. The number of individuals in the population for genetic algo-
rithm was one hundred (100) elements, the crossover rate equals to 0.7, the muta-
tion rate equal to 0.2, while for Q-learning algorithm the parameters were adjusted
as follows, oe = 0.8, £ =0.01, y=1 and § = 0.2, which is the actualization parameter
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of Q-values with solutions from the GRASP and Genetic Algorithm. Considering
the fact that the execution time of Genetic Algorithm (GA) is slower than others
algorithms, the number of executions of the GRASP and the Q-Learning are higher
than the Genetic Algorithm, this quantity is expressed in columns (QL/GA) and
(GRASP/GA) mean that the number of executions of the algorithm Q-Learning per
Genetic Algorithm iteration and the GRASP execution per GA iteration. The Rand
index means an exchan ge of position in the current solution in order to avoid a
local minimum or to diversify the current solution, the Communication index is the
number of iterations that the algorithms exchange information.

Table 14.3 Parameters for algorithms executions

Instance iterations (QL/GA) (GRASP/GA) Rand Communications

bays29 20.00 8.00 28.00  5.00 10.00
swiss42 40.00 7.00 18.00  5.00 20.00
berlin52 50.00 7.00 18.00  5.00 20.00
eil76 50.00 8.00 10.00  5.00 20.00
gr120 70.00 8.00 7.00  5.00 30.00
ch150 100.00 10.00 6.00  6.00 50.00
sil75 100.00 12.00 5.00 5.00 50.00
a280 100.00 12.00 5.00 6.00 50.00

The graphs shown in Figures from [[4.4] to [[4.11] presents for each instance the
behavior of the value of objective function achieved by each test in comparison with
the best known normalized value of the objective function, in addition are plotted
the tracks of superior and inferior standard deviation for a better visual perception
of the quality of solution. The limits of the plot area were chosen in a range of 20%
around the value of the average objective function in each experiment.

Figure [[4.4] shows homogeneous result in all executions, in this case the objec-
tive function reached the optimal value known in thirty executions. Figures to
[[4 10 have a very stable behavior in all executions, it can be confirmed by the value
of standard deviations that in all case were less than 2%. The less homogeneous be-
havior and more proportional variance was in Figure[I4.11] this is probably caused
by the complexity of this instance and the parameters of execution that was selected
empirically for this implementation.

Table[[4.4lpresents a compilation of statistical data for this experiments. The first
line shows the average values for the objective function obtained with thirty runs in
each instance studied. The second line shows the standard deviation of each instance
in relation to mean value of objective function obtained, the third line presents the
same information about standard deviation but in percentage value for better un-
derstanding of the data. The fourth line shows the optimal value (better value) of
the objective function found in literature and TSPLIB database for each instance.
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The fifth line shows the distance between the mean value and the known optimum
values, which is shown again in the last line in percentages.

It is possible to interpret from the last row of table [[4.4] that result from the
execution of the bayes29 instance in average 100% near (in a proximity way) of
the best objective function value known, for instance 42 is 99.45% near of better
value known and so on, as shown in the graph of the Figure and Table
where the values closer to 100% represent better solutions. The average distance
of maximum and minimum proximity are obtained through the standard deviation
percentage value shown in Table [[4:4] which indicates in average, more than half
of the instances have an proximity of objective function a value greater than 90%
closer to the optimal function value.
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Fig. 14.10 Standard Deviation of sil75 test ~ Fig. 14.11 Standard Deviation of a280 test

Table 14.4 Statistical data about parallel experiments

Instances bays29 swiss42 berlin52  eil76  grl120  ch150 sil75  a280
O.F. Mean Value %F 2020.00 1280.00 7678.70 590.80 8638.50 8723.10 23936.90 4608.70
Standard Deviation 0.00 870 5210 6.30 168.60 164.70 240.60 183.40
Standard Deviation (%)  0.68 0.00 0.67 1.07 1.95 1.88 1.00  3.90
Optimal O.F. 2020.00 1273.00 7542.00 538.00 6942.00 6528.00 21407.00 2579.00
O.F. Mean Dist 0.00  7.10 136.70 52.80 1696.5 2195.17 2529.90 2029.70
O.F. Mean Dist. (%) 0.00 050 1.80 9.80 24.40 33.60 11.80 78.70

O-F. Objective Function.
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Table 14.5 Mean percentage distance of best objective value evaluated

Instance  mean proximity(%) max prox. value(%) min prox. value(%)

bays29 100.00 100.00 100.00
swiss42 99.44 100.00 98.77
berlin52 98.19 98.87 97.51
eil76 90.19 91.26 97.51
gr120 75.56 77.51 73.62
ch150 66.37 68.26 64.48
sil75 88.18 89.19 87.18
a280 21.30 25.28 17.32

Normalized Average Distance
2 : : : ‘

—— Normalized Average Value (objective function)
Normalized Optimal Value (objective function) ,
- - - Normalized Standard Deviation (upper and lower)

Objective Function Value

0.8 | | | | | |
bays29 swiss42 berlin52 eil76  gri20 ch150 si175 a280
Size Instance

Fig. 14.12 Mean percentage distance of optimal objective function value for each instance

14.5.2.4 Parallel Limited Time Execution

In this experiment the procedure adopted for implementation of algorithms in the
cluster was the same as the parallel experiment previously described, the difference
was in limit the execution time that was chosen as half of the average time spent
with the standard parallel implementation, the algorithm was stopped independent
of the iteration it has achieved. To obtain statistical data each instance was run thirty
(30) times.

Table shows the values obtained with the experiments. Comparing them
with the results of execution without the limitation of time, it is observed that the
results although they are lower in quality, are very close to the values found in
experiment. This behavior was expected because the time to search for the minimum
was reduced.
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Table 14.6 Statistical data about limited time parallel experiments

Instances bays29 swiss42 berlin52  eil76  grl20  ch150 sil75  a280
Mean O.F. -F: 2020.00 1273.00 7695.90 589.40 8560.00 8674.30 23789.00 4519.00
Standard Deviation 0.00 11.00 92.80 640 17540 22250 179.60 138.30
Standard Deviation (%)  0.00  0.80 1.20  1.10 2.00 2.50 070  2.90
Optimal O.F. 2020.00 1273.00 7542.00 538.00 6942.00 6528.00 21407.00 2579.00
O.F. Optimal Dist. 0.00 1290 209.90 60.90 1793.70 2368.10 2683.80 2153.90

O.F. Optimal Dist. (%) 0.00 1.01 280 11.30 2590 36.20 12.50  83.50

O-F. Objective Function.

Figure [[4.13] shows the normalized distances between the values obtained with
the experiment and the optimum values found in literature, where can be visualized
a similar behavior to the parallel experiment without time limitation.

Normalized Average Distance (Limited time)

1.8H - - -~ Normalized Average Value (Objective Function)
‘‘‘‘‘ Normalized Optimal Value (Objective Function)
—— Normalized Standard Deviation (upper and lower)

1.7(

Objective Function Value

0.9 . . . . . .
bays29 swiss42 berlin52 €il76  gr120 ch150 si175 a280
Instance

Fig. 14.13 Normalized distance between the mean Objective Functions evaluated and the
optimal Object Function known

14.5.2.5 Parallel Group Execution

This experiment deals with a cooperative and competitive in a bigger hierarchy.
That was done ten (10) executions for each experiment. Each experiment was done
with collaboration of two parallel groups, each group consisting of components
with Genetic Algorithms, Q-learning and GRASP. The architecture is similar to the
grouping of multiple executions of the structure shown in Figure [[4.3] doing com-
munication through the critical. The aim was to assess if the collaboration would
lead Objective Function value better than those obtained with previous approaches.
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Table[[4.7]shows the settings parameters for algorithms implementation in this set of
experiments. For both Genetic Algorithm and Q-learning the same parameters were
used rather than in the previous experiment, except for 3 value, that was set with
different values (multiparameterized) because of the changes in values of param-
eters have fundamental importance for initial solutions provided from Q-learning,
making possible to continue the produce of good solutions and further enhance these
solutions. Two groups of structures were created, for Group 1, 8 = 0.2 and for Group
2, the B =0.3.

Table 14.7 Parameters for algorithms executions in groups parallel experiments

Instance iterations (QL/GA) (GRASP/GA) Rand Communications

bays29 20.000 5.00 20.00  5.00 10.00
swiss42 40.00 5.00 16.00  5.00 20.00
berlin52 50.00 5.00 13.00  5.00 20.00
eil76 50.00 6.00 8.00  5.00 20.00
gr120 70.00 7.00 7.00  5.00 30.00
ch150 100.00 8.00 6.00  6.00 50.00
sil75 100.00 8.00 5.00 5.00 50.00

When comparing the table with the table [[47] there is a decrease of the
values in columns (QL/GA) or (GRASP/GA). This is due to cooperation and com-
petition between the groups, because it can get the same solution quality of the
previous architecture with less iterations due to greater diversity.

Table[I4.8] presents the results obtained in this application. As previous tables are
presented in table [I4.8]data with statistical values about achieved objective function
values, their absolute and percentage standard deviations, the best known optimal
value and the distance between the optimum values known and the obtained absolute
and percentage values.

Table 14.8 Statistical data about Group parallel experiments

Instances bays29 swiss42 berlin52  eil76  gr120  ch150 sil75  a280
Mean O.E.9-F: 2020.00 1273.00 7695.90 589.40 8560.00 8674.30 23789.00 4519.00
Standard Deviation 0.00 000 43.05 5.80 157.08 181.30 202.30 131.80
Standard Deviation (%) ~ 0.00  0.00  0.56  0.98 1.81 2.10 085 290
Optimal O.F. 2020.00 1273.00 7542.00 538.00 6942.00 6528.00 21407.00 2579
O.F. Optimal Dist. 0.00  0.00 15390 51.40 1618.00 2146.30 2381.70 1940.00

O.F. Optimal Dist. (%). 0.00 0.00 210 950 2330 32.80 11.10  75.20

O-F. Objective Function.
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From the table [[4.8]is observed that in addition to instance bays29 the instance
swiss4?2 also gets the average value for Objective Function with a zero % distance
on the optimal value, i.e., all executions of the experiment reach the best value of
solution.

14.5.2.6 Analysis of Performance

The performance analysis achieved in this section relates only to data processing
and time, not including the quality of results information. A final consideration on
the results is presented in the following subsection (collective analysis). The com-
parison of the results include data of execution time of the serial experiments (us-
ing only one machine), parallel experiments (using three machines per experiment)
and in parallel groups (using six machines per experiment). Table contains the
values of the time in seconds of execution for each instance in each type of tests
serial, parallel and in groups. The same information are expressed graphically in the
Figure [[4.14]included here for better visual perception.

Table 14.9 Execution time for each experiment

Instances bays29 swiss42 berlin52  eil76  gr120 ch150  sil75 a280

Serial Time (sec.) 220.00 577.00 952.00 1390.00 3308.00 7082.00 9975.00 20300
Parallel Time (sec.) 112.00 302.00 470.00 790.00 2030.00 4500.00 6660.00 13050.00
Group Time (sec.) 115.00 307.00 464.00 750.00 2041.00 4237.00 5487.00 13413.00

In all cases, the serial execution time is longer than the parallel execution time
and parallel group time. The experimental of parallel group, has a similar time to
the simple parallel implementation, a less time if readily apparent at the eil76, ch150
and sil75 instances, while the simple parallel implementation time only highlights
in a280 instance.

The statistical measures commonly used for evaluating performance in paral-
lel software are the speedup and efficiency [B]. The speedup is obtained by the
expression [14.9

speedup = L (14.9)
Ty
where T is the best time of serial algorithm execution and 7), the best parallel time
execution, this analysis uses the average time for parallel execution as 7 . The effi-
ciency can be calculated as shown in expression [[4.10l

T
efficency= " (14.10)
Ty
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Fig. 14.14 Time for execution of experiments

where again Ty is the serial time, 7}, parallel time and p is the number of processors
used in the experiment. Thus the value of p is equals three in parallel experiments
and equals six in group parallel experiments.

Table gives the values of speedup and efficiency for each experiment in
each instance examined. Since it is not possible to evaluate the characteristics of a
instance only by its number of cities, can not be regarded as increasing the num-
ber of cities produces a linear increase in processing time, several factors must be
considered, such as the value parameters of each algorithm and distribution of cities
(the distance between them).

Table 14.10 Speedup and Efficiency of implementations

Instances bays29 swiss42 berlin52  eil76  gr120 chl150  sil75 a280

Parallel Speedup 1.96 1.91 202 1.73 1.62 1.57 1.49 1.55
Parallel Efficiency 0.65  0.63 0.67 0.57 0.54 0.52 049 051
Group Speedup 1.91 1.87 205 1.85 1.62 1.67 1.81 1.51
Group Efficiency 0.31 0.31 0.34  0.30 0.27 0.27  0.30 0.25

Figure shows the curves that represent the speedup for parallel and par-
allel group implamentations for purposes of comparison. Figure shows the
efficiency curves of the parallel and parallel group experiments. That is possible to
observe that the cost to maintain a good speedup for all the instances, which shows
almost constant, there is just a slight reduction in efficiency, seen in Figure
because of the addition of node processors in parallel group experiment.



366 J.P.Q. dos Santos et al.

Speeddup Value (Parallel Applications)

-
)]

Speedup Value

0.5- b
- - - Parallel Speedup

— Parallel Speedup (group)

0 i i i i i i
bays29 swiss42berlin52 eil76 gr120 ch150 si175 a280
Instance

Fig. 14.15 Speedup of implementations

Parallel Applications (efficiency)
1 T T T T T

=== Parallel
—— Parallel in group||
0.8 1

0.9

0.7} i
50.6* DR B
I e e e S
] 0.5- ~—- q
i 0.4} :
0.35/\_/\
0.2} )

0.1 b

0 i i i i i i
bays29 swiss42berlin52 €il76 gr120 ch150 si175 a280
Size Instance

Fig. 14.16 Efficiency of implementations

14.5.2.7 Collective Analysis

Tables [[4.11] and present a qualitative comparison among all experiments in
this work. In the first table are presented for each experiment: serial, parallel, time
limited parallel and in group parallel, the best average values for objective function.
In the last line there is the best objective function value known.

In Table[T4:12lis presented the percentage distance among the average O.F. values
obtained in each experiment and the known optimal value. From these tables[T4.11]
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Table 14.11 Comparison between obtained values of objective function in all implementa-

tions

Instances bays29 swiss42 berlin52
Serial 2020.00 284.00 7705.00
Parallel 2020.00 1280.00 7678.00
Limited Parallel ~ 2020.00 1285.00 7751.00
Parallel Group 2020.00 1273.00 7695.00

Optimal O.F. Value 2020.00 1273.00 7542.00

eil76

erl120

ch150

sil75  a280

591.00 8789.00 9163.00 23795.00 4682.00
590.00 8638.00 8723.00 23936.00 4608.00
598.00 8735.00 8896.00 24090.00 4732.00
589.00 8560.00 8674.00 23788.00 4519
538.00 6942.00 6528.00 21407.00 2579.00

Table 14.12 Percentage distance between the average values of objective function achieved

by implementations

Instances

Serial (%)

Parallel (%)
Limited Parallel (%)
Group Parallel (%)

0.00
0.00
0.00
0.00

0.86
0.55
0.94
0.00

bays29 swiss42 berlin52

2.16
1.80
2.77
2.02

eil76

9.85
9.66
11.15
9.47

gr120

26.60
24.43
25.82
23.30

ch150

40.36
33.62
36.27
32.87

100
90
80r
701

50
401
301
201

101

—e— Serial Experiment

— Parallel Experimentt

-=-=:Parallel Experiment (Limited time)|
- - - Parallel Experiment (Group)

Average Distance (General Percentage)

Distance from Optimal Objective Function (Percentage

bays29 swiss42 berlin52 eil76 gr120 ch150 si175
Instance

a280

sil75 a280

11.15 81.54
11.81 78.67
12.53 83.48
11.12 75.22

Fig. 14.17 Distance between avarege values of O.F. obtained in each experiment and the best

O.F. value

and[I4.12]can be seen that there is some proximity between the data obtained in each
type of experiment per instance evaluated. As expected the values of the time limited
parallel execution were a slight reduction in quality results when compared to other
executions, but in the worst case the difference is about 8% for another instance
when compared to the known optimal value, this is the case of a280 instance.
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The graph of Figure [[4.17] was created from these data. In this chart the values
closer to zero are better because they correspond to shorter distances between the
values obtained and the optimum values known. Its possible to see that the exper-
iment that better contribute to the average solution in all instances is the parallel
group communication, being the only exception the berlin52 instance, where paral-
lel execution without time limitation has a slightly higher performance.

14.6 Conclusions

The computational results presented in this work show that the cooperative and com-
petitive approaches achieved satisfactory results in both of cooperation and compe-
tition between them (algorithms), and cooperation and competition between groups,
which in both instances tested, the bays29 and swiss42, was found the global opti-
mum in all executions, the rest of the instances get good results as presented.

Furthermore, an performance analysis was made from the proposed approach and
there was a good performance on questions that prove the efficiency and speedup
of performed implementations. The new parallel implementation developed here re-
duced the execution time by increasing the number of processor nodes. The modular
form of implementation of algorithms and communication infrastructure enables to
create differentiated and good adaptability to high scalability, which can be used for
problems of high dimensionality.
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Chapter 15

An Evolutionary Approach for the TSP and the
TSP with Backhauls

Haldun Siiral, Nur Evin Ozdemirel, Tlter Onder, and Meltem Sénmez Turan

Abstract. This chapter presents an evolutionary approach for solving the travel-
ing salesman problem (TSP) and the TSP with backhauls (TSPB). We propose two
evolutionary algorithms for solving the difficult TSPs. Our focus is on developing
evolutionary operators based on conventional heuristics. We rely on a set of de-
tailed computational experiments and statistical tests for developing an effective
algorithm.

The chapter starts with a careful survey of the algorithms for the TSP and the
TSPB, with a special emphasis on crossover and mutation operators and applica-
tions on benchmark test instances. The second part addresses our first evolutionary
algorithm. We explore the use of two tour construction heuristics, nearest neigh-
bor and greedy, in developing new crossover operators. We focus on preserving the
edges in the union graph constructed by edges of the parent tours. We let the heuris-
tics exploit the building blocks found in this graph. This way, new solutions can
inherit good blocks from both parents. We also combine the two crossover opera-
tors together in generating offspring to explore the potential gain due to synergy.
In addition, we make use of 2-edge exchange moves as the mutation operator to
incorporate more problem specific information in the evolution process. Our repro-
duction strategy is based on the generational approach. Experimental results indicate
that our operators are promising in terms of both solution quality and computation
time.

In the third part of the chapter, we present the second evolutionary algorithm de-
veloped. This part can be thought of as an enhancement of the first algorithm. A
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common practice with such algorithms is to generate one child or two children from
two parents. In the second implementation, we investigate the preservation of good
edges available in more than two parents and generate multiple children. We use the
steady-state evolution as a reproduction strategy this time and test the replacement
of the worst parent or the worst population member to find the better replacement
strategy. Our two mutation operators try to eliminate the longest and randomly se-
lected edges and a third operator makes use of the cheapest insertion heuristic. The
algorithm is finalized after conducting a set of experiments for best parameter set-
tings and testing on larger TSPLIB instances. The second evolutionary algorithm is
also implemented for solving randomly generated instances of the TSPB. Our ex-
periments reveal that the algorithm is significantly better than the competitors in the
literature. The last part concludes the chapter.

Keywords: Networks-Graphs, Traveling Salesman Problems, Evolutionary Algo-
rithms, Crossover Operator, Mutation Operator, Heuristics.

15.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well-known NP-hard problem widely
investigated in combinatorial optimization. Given a set of n cities, the TSP seeks
the shortest tour that visits every city once. The problem definition is very sim-
ple in words but finding its optimal solution is very difficult and computationally
expensive. In 2006 a TSP instance with 85,900 cities was solved to optimality.
The total computation time was equivalent to 136 CPU years, scaled to a 2.4 GHz
AMD Opteron 250 compute node. As of July 2009 finding an optimal solution to an
100,000-city problem instance would set a new world record for the TSP ]. Gutin
and Punnen [2] provide an up-to-date coverage of the TSP literature in their recent
book.

Various methods for solving the TSP to optimality have been proposed so far.
Branch-and-cut algorithms have given the most effective results in general. Solution
quality guarantees of 5% are obtained quickly, but it takes a very long time to get
close to 1% [@]. As Rego and Glover [2] state, exact solution procedures for the
TSP seem to “require computational effort that exceeds the realm of practicality”.
There exist heuristics that provide near optimal solutions in reasonable computation
time. The collection of these heuristics provides a wide range of tradeoffs between
solution quality and computation time. However, there is not a perfect correlation
between increased computation time and improved quality.

In this chapter, we represent the TSP on a graph. Consider a complete graph
where the node set denotes the cities and the edge set represents the arcs between
them. There is a cost (or distance) for traversing each arc. The problem is to find the
cheapest (shortest) tour that visits every node once on the graph.
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15.1.1 Conventional TSP Heuristics

In general, conventional TSP heuristics can be classified into two categories: tour
construction and tour improvement heuristics.

Construction heuristics generate a solution from scratch by a growth process that
selects and inserts a node or an edge iteratively into a partial tour until a complete
feasible tour is constructed. They typically get within roughly 10-15% of optimal
solution in relatively short time [4]. Among the numerous procedures, we review
the two that we use in this study, namely nearest neighbor and greedy.

The nearest neighbor is perhaps the most natural and simplest construction
heuristic. It starts by choosing an initial node randomly, then the nearest unvis-
ited node is added to the partial tour until a complete tour containing all nodes is
constructed. The algorithm produces connections with short edges in the beginning.
However, some of the nodes are “forgotten” during the process. These nodes are
inserted at a high cost in the end, decreasing the tour quality. Nevertheless, near-
est neighbor tours contain only a few severe mistakes, and there are several long
segments connecting nodes with short edges. Therefore, these tours can serve as a
good starting point for improvement heuristics. Nearest neighbor tours appear to be
roughly 25% longer than the Held-Karp bound for Euclidean instances [l%)

Greedy heuristic starts by sorting all of the edges in the order of increasing length.
Then, a tour is generated by inserting the shortest edges in turn as long as no node
has a degree greater than two, and an insertion does not result in a subtour. The tours
obtained by greedy are about 17% longer than the optimal [E].

Tour improvement heuristics start with a feasible tour and try to improve it it-
eratively by making incremental changes on the tour. These procedures are called
local search methods because they only consider tours that are the neighbors of the
current tour. If a neighbor is better than the current tour, the current tour is replaced
with this neighbor. This process is repeated until there are no better neighbors. Per-
haps the most commonly used search technique is based on k-edge exchanges. The
2-edge exchange heuristic systematically checks each pair of nonadjacent edges of
the tour and determines whether the tour length decreases by removing these two
edges and adding a new pair of edges that would result in a tour. If the tour length
is shortened, the exchange is performed and the search for another continues. The
2-opt examines all such exchanges for the current tour and chooses the best improv-
ing one. Average tour length with 2-opt is about 5% above the Held-Karp bound for
Euclidean instances [2].

Conventional local search methods have the ability to find good, sometimes even
optimal, solutions. However, because of their limited modification capabilities, they
are able to find only a local minimum most of the time. Starting the search many
times with different initial tours increases the chance of finding better local minima.
Metaheuristics, on the other hand, try to escape from local minima in a more sys-
tematic way so as to explore the solution space methodically. Several metaheuristics
such as neural networks, simulated annealing, tabu search, and evolutionary algo-
rithms are used to solve the TSP.
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15.1.2 Metaheuristics for the TSP

Leung et al. (3] propose a neural network (ESOM) that solves the TSP with reason-
able quality. DePuy et al. l6] introduce a metaheuristic (Meta-RaPS) that modifies
conventional heuristics by allowing randomness in construction rules. Considering
nearest neighbor and cheapest insertion heuristics, [B] solves the TSP with very
good results. Based on their survey, Johnson and McGeoch [EI] state that simple
tabu search is not very effective compared to local search heuristics such as 2-opt.
Their experimentation with simulated annealing shows that the resulting solution
quality is comparable to that of 2-opt. Variations of simulated annealing can catch
up to multi-start Lin-Kernighan with 1% deviation, but they still have longer com-
putation times. The evolutionary approaches Johnson and McGeoch discuss seem
to be promising in solution quality.

15.1.3 Evolutionary TSP Algorithms

In Evolutionary Algorithms (EAs), crossover is a genetic operator that typically
combines two parent solutions to produce new offspring, carrying solution compo-
nents from one generation to the next through the evolution process. The idea is that
a new offspring may be better than both of its parents if it inherits their best charac-
teristics. The strength of crossover comes from its ability to preserve and recombine
the “building blocks” when assembling new solutions. It is widely recognized that
the crossover operator has a great influence on performance of EAs, since it rapidly
explores the search space and exploits good solutions.

Crossover operators for the TSP can be classified by their preservation capabil-
ities. The three main classes are position, order, and edge preserving operators 7.
Position preserving operators interpret a tour as a series of independent slots, as if
the cost of assigning a node to a given position is independent of the nodes assigned
to neighboring positions. Typical examples are partially mapped crossover-PMX,
cycle crossover-CX, and position based crossover. Order preserving operators aim
at preserving relative position of nodes. PMX tries to preserve order as well as posi-
tion of nodes. Other examples of this class are order crossover-OX and order based
crossover. Edge preserving operators interpret the sequence of nodes as a series
of adjacency relations. Heuristic crossover, edge recombination-ER, and edge as-
sembly crossover-EAX by 18] are examples of this class. An experimental study to
compare various operators is presented by Schmitt and Amini [9].

The objective of the TSP is primarily related with the edges in the tour and sec-
ondarily with the order of nodes. According to [ﬂ] Homaifar and Guan argue that
basic building blocks of the TSP are the edges as opposed to the nodes, and a good
crossover operator should extract edge information from parents as much as possi-
ble. This argument is partially supported by Oliver’s findings given in [7] that OX
does 11% better than PMX and 15% better than CX. Xiaoming et al. 0] argue that
crossovers that preserve the order or position of cities are redundant in optimiza-
tion. Potvin ] reports a similar conclusion in a survey of genetic algorithms for
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the TSP. It seems that the idea of using edges rather than position or order of nodes
is more promising.

Among the edge preserving operators, EAX proposed by Nagata and Kobayashi
[E] seems to be particularly promising. Deviation from optimal is less than 0.03% in
21 instances from the TSPLIB [[12] with 100 < < 3000. In generating an offspring,
8] starts with the union graph constructed with all the edges from two parents. They
preserve edges from the union graph, but their detection of good edges or segments
in the graph seems to be limited. Chen ], on the other hand, assumes that the
edges that are common to the parents lead to good solutions and concentrates on the
intersection graph of parental edges.

Jung and Moon [14] devise natural crossover-NX where the parent tours are par-
titioned randomly, and partitions from different parents are merged to give partial
tours. The partial tours are then merged using the shortest edges. They argue that
the results they present are better than EAX and faster than distance preserving
crossover-DPX. They also report that EAX “showed poorer performance than the
original paper 18]”. Lin-Kernighan heuristic is used to improve the results of NX,
and a deviation of 0.085% is obtained for a problem instance with 11849 cities.

Merz [@] proposes a new edge recombination-NEX operator where the probabil-
ities of inheriting an edge from the parents and selecting an edge from the complete
graph can be adjusted. The results are comparable with the results of EAX for small
problems. Ray et al. l16] present a crossover to improve the tours generated with
the nearest neighbor heuristic. They propose fragmentation of tours generated with
the heuristic and connecting the fragments using the shortest possible edges.

Considering conventional heuristics as hill climbing methods, the combination
of conventional heuristics and EA seems a promising approach for solving the TSP,
since EAs are also able to find the “hills” for the conventional heuristics to “climb”.

15.1.4 The TSP with Backhauls

The TSP with backhauls (TSPB) is a TSP with precedence constraints, where the
cities are grouped as linehauls and backhauls such that all linehauls must precede
all backhauls on the tour. The TSPB arises from three different routing applications.
It is a strictly constrained version of the TSP with pickup and delivery, and a special
case of the vehicle routing with backhauls. Moreover, the TSPB is a three-cluster
version of the clustered TSP, where one cluster contains only the depot and two
others contain linehauls and backhauls [Iﬁ].

Chisman [17] transforms the clustered TSP into a TSP, by adding large numbers
to the inter-cluster distances, and reports that the transformed problems are solved
to optimality without exception.

Gendreau et al. [IE] use GENIUS heuristic [IE], which basically consists of two
parts. GENI tries to insert a city v between two cities, each of which becomes
adjacent to v after insertion; US tries to improve the tour by using GENI opera-
tions. Gendreau et al. [IE] conduct experiments with six different heuristics to solve
the TSPB. The first heuristic, GENIUS, solves the TSPB using the modified cost
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matrix in which large numbers are added to the inter-cluster distances. In the second
heuristic, GENIUS constructs linehaul and backhaul tours separately, and then con-
nects these tours. The third heuristic is similar to the second one except the depot
is not included in the beginning. The fourth heuristic is cheapest insertion coupled
with US for improving the solutions, and the fifth one is GENI coupled with Or-
opt improvement moves. The last heuristic uses cheapest insertion that incorporates
Or-opt. 18] reports that the first heuristic is the best, and the best results are 3-
4% larger than the lower bound on average. Mladenovi¢ and Hansen [@] improve
GENIUS for solving the TSPB, incorporating variable neighborhood search (VNS).
VNS is a random neighborhood search mechanism in which the neighborhood size
is increased until an improving move has been found. 201 reports that GENIUS
coupled with VNS, G+VNS, is better than the original GENIUS by an average of
0.40% with an increase of 30% in computation time.

Ghaziri and Osman ] use an artificial neural network (SOFM) and demonstrate
that SOFM coupled with 2-opt (SOFM*) can improve the solution quality. Their test
results are comparable to those of the methods that transform TSPB to TSP.

The only EA to solve the clustered TSP, developed by Potvin and Guertin 221,
use the edge recombination crossover-ER and 2-opt as a mutation operator. ER is
used to preserve the inter-cluster edges in the first phase and the intra-cluster edges
in the second phase. The 2-opt mutation operator is applied within clusters. The
results are better than those of GENIUS.

15.1.5 Outline

Our aim in this chapter is to illustrate that conventional TSP heuristics can be used
as effective crossover and mutation operators. We restrict the use of crossover op-
erators on the union graph of parents in an attempt to preserve parental edges. We
describe two EAs and report their computational results in Sect. 15.2 and Sect. 15.3.
The first EA uses nearest neighbor and greedy heuristics for crossover and 2-edge
exchange for mutation. We choose these heuristics for illustrative purposes, but oth-
ers can also be considered. We also explore combined use of multiple crossovers
operators and make use of generational evolution approach. The second EA focuses
on nearest neighbor crossover and explores generation of multiple offspring from
more than two parents. Mutation operators used are 2-edge exchange to eliminate
the longest or random edges and node insertion. The second EA takes a steady-
state evolution approach. Considering the TSP materializes with side constraints in
practice, we implement the second EA to solve the TSP with backhauls using the
modified cost matrix and report our computational results. Sect. 15.4 concludes the
chapter.

15.2 The First Evolutionary Algorithm for the TSP

In an EA, an initial population of solutions is generated either randomly or by
using some heuristics. This population evolves through a number of generations
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until stopping conditions are satisfied to indicate convergence. In each generation,
some members of the population are placed in a mating pool as potential parents.
Crossover operator is applied to selected pairs of parents and new offspring are gen-
erated. Mutation is applied to offspring mainly for diversification. These offspring
replace either their parents or other members of the population, resulting in a new
generation.

15.2.1 Generating Offspring from the Union Graph

The basic building blocks of the TSP are the edges. Therefore, we concentrate on
preserving edges from the parents. Edges of two parents are combined to form a
union graph where the degree of each node is at most four. Proposed crossover
operators use this union graph while generating new tours.

In the TSP literature, heuristics are often applied on a graph of k-nearest neigh-
bors of each node, rather than the complete graph, because most of the edges in an
optimal tour appear in the reduced search space, and it brings significant savings in
computation time. Our operators also use a kind of reduction, as the union graph
has at most four neighbors for each node. However, it is not always possible to find
a feasible edge in the union graph for constructing a complete tour. When this hap-
pens, the restriction is relaxed and all edges on the complete graph become eligible
to construct a valid tour.

15.2.2 Nearest Neighbor Crossover (NNX)

Nearest neighbor takes O(n?) time [23]. Its solutions have long segments contain-
ing short edges, and it is possible to exploit these segments in the union graph and
transfer them from parents to offspring. Therefore, nearest neighbor is an appro-
priate choice for use in a crossover operator. NNX randomly selects a node as the
starting point. A single offspring is generated by visiting the nearest unvisited node,
using only the edges in the union graph. In general, if we construct the union graph
using edges of k parents, each node in the graph has at most 2k neighbors. As one
of these neighbors is used to arrive at the current node, NNX constructs a tour in
n(2k — 1) steps, provided that it always finds a feasible edge in the union graph.
Otherwise, NNX resorts to the complete graph to search for the nearest unvisited
node.

Suppose we have parent A (12475986314 1511 12 13 10) and parent B
(1548732691011 1513 12 14), where the numbers represent the cities in
the order they are visited. Fitness values of parent tours are 43 and 51 according to
the distance matrix given in Table [[3.1l With the random starting node 11, NNX
generates offspring (11 1213 15143211098 6 7 5 4) depicted in Figure[[3.1la.
The nodes adjacent to 11 are 12, 15 and 10 with distances 2, 4 and 2, respectively.
There is a tie between 12 and 10, and 12 is chosen randomly. Now the unvisited
nodes adjacent to 12 are 13 and 14. The distance from 12 to 13 is the shortest; hence
node 13 is added to the tour. Nodes 15, 14, 3, 2, 1, 10, 9, 8 and 6 are also added
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to the tour in this manner. The nodes adjacent to 6 are 8, 3, 2 and 9, all of which
are already in the tour. In this case, from the complete graph, we choose 7 among
the unvisited nodes 4, 5 and 7. Then, 5 and 4 are added to the tour. Note that all
edges except 6-7 and 4-11 are taken from the union graph. Fitness value of the new
tour is 31, which is less than fitness values of both parents. In Figure [[3.1la, most
of the edges in the tour are short except the lastly inserted edge 4-11. Notice that,
for instance, removing edges 4-11 and 1-2, and inserting edges 1-11 and 2-4 would
improve the tour, which can be achieved with 2-edge exchange.
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Fig. 15.1 Offspring generated by the two crossover operators

Table 15.1 Distance matrix for the example problem

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 3

3 4 2

4 3 4 1

5 5 5 41

6 4 6 52 2

7 78 75 22

8 5754 411

9 1 4 65 5312

10 3 6 76 64 4 52

11 3 4 45 75 6 74 2

12 6 3 6 7108 7 86 3 2

13 52 47 881286 3 2 1

4 6 2 24 66 126 6 6 4 4 3
5 6 3 47 9911777 6 3 1 1

Given a starting node, there is only one tour a deterministic NNX can gener-
ate unless there is a tie in selection. We have also tried a stochastic version of
NNX where one of the edges incident to the current node is selected probabilis-
tically. The selection probability is inversely proportional with the length of the
edge. Edge selection in this version of NNX is similar to the heuristic crossover
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(71, which preserves 60% of parental edges. Stochastic NNX has a potential advan-
tage over deterministic NNX. Given two parents and a starting node, it can pro-
duce different offspring because of randomization. Hence, it is possible to increase
the population diversity and portion of search space covered. Our pilot run results
have shown that stochastic NNX indeed provides higher diversification, resulting in
slower population convergence at the expense of longer computation times. In solu-
tion quality, however, stochastic NNX has proven to be significantly inferior to the
deterministic version. Therefore we used only the deterministic version in further
experimentation.

15.2.3 Greedy Crossover (GX)

Greedy heuristic constructs a tour by adding edges one at a time, starting from the
shortest edge. Every time a new edge is added to the partial tour, the algorithm
checks if there exists a node with a degree higher than two or a cycle with fewer
than n nodes. Greedy algorithm runs in O(n?logn) time [23].

We have tried two versions of the greedy crossover. GX1 is the same as the greedy
heuristic but restricted to the union graph. Edge preservation percentage is very high
with GX1 since it is usually possible to generate feasible tours by taking only the
last few edges from the complete graph. Edge preservation is mainly related with
the exploitation aspect of crossover. However, a desirable property of a crossover
operator is to have a balance between exploration and exploitation. GX1, with ex-
tremely high edge preservation, misses the exploration aspect, which comes from
inserting new edges to the offspring. This results in premature convergence of the
EA with low quality solutions. To overcome lack of exploration, in GX2, we place
an upper bound on the number of edges taken from the union graph. The bound is
taken as the problem size n. The edges that are present in both parents are counted
as two. Whenever the number of edges from the union graph reaches the bound, the
union graph restriction is relaxed.

In applying GX1, the edges in the union graph are first sorted according to edge
length. In our example, after inserting edges from the union graph sequentially, we
see that the edges in this graph are sufficient to generate a feasible path but not a
tour. Therefore, the edge 1-4 is taken from the complete graph to obtain a feasible
tour. The resulting tour is offspring (11 12 131514321457 8 6 9 10) shown in
Figure [[3.1lb. Fitness value of this solution is 28. For this example, GX2 also re-
sults in the same tour. Although only the first half of the edges are intentionally taken
from the union graph, the second half that come from the complete graph happen to
be in the union graph with the exception of edge 1-4. If two parents are identical,
the offspring generated by GX1 is the same as the parents with 100% edge preserva-
tion (note that it is also true for NNX). With GX2, however, half of the edges come
from the complete graph and edge preservation can be as low as 50%. In our pi-
lot runs, GX2 has yielded much better solution quality with only a slight increase in
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the computation time. Therefore, we have decided to continue our experimentation
only with GX2, referring to it as GX.

15.2.4 Combined Use of the Crossover Operators

Potvin and Bengio [22] used a mixture of two crossover operators for a routing
problem and found that combined use of operators performed better than a sin-
gle operator alone. In our multi-crossover approach, we use NNX and GX to-
gether in the same EA. Although both operators are designed to preserve short
parental edges, they are different in nature. NNX selects the shortest edge among
at most three edges going out of the current node in the union graph; hence the
choice is myopic. GX, on the other hand, considers the union graph as a whole,
resulting in less myopic behavior. Our experimentation with the two operators in-
dividually shows that they also differ in solution quality, percent edge preserva-
tion, population diversity, and computation time. NNX can find good solutions in
short times whereas GX searches different parts of the solution space. Our multi-
crossover approach works as follows. After a pair of parents is selected from the
mating pool, one of the crossover operators is chosen probabilistically. Hence, on
average, a certain fraction of offspring is generated using NNX and the remain-
ing fraction by GX. We have tried giving different weights to two operators in our
experimentation.

15.2.5 Proposed Mutation Operators

Ordinarily, mutation is a genetic operator that prevents an EA from premature
convergence to a suboptimal solution. In combinatorial optimization improvement
heuristics are frequently used as some sort of Lamarckian mutation (see [@]) to ob-
tain competitive results for the TSP. To incorporate problem specific information in
our EA, we use 2-edge exchange heuristic as a mutation operator.

A 2-edge exchange move is equivalent to removing a subpath from the tour and
swapping it. In applying the move, we start with a randomly selected node and pro-
ceed clockwise. We consider removing the edge incident to the selected node and
each of the remaining n — 2 nonadjacent edges in the order they are given in the
tour. One of the two subpaths is swapped and the tour is reconnected, introducing
two new edges. The move is accepted immediately if it brings improvement. We
then restart with a new randomly selected node. The total number of improvement
checks is (n—1)(n —2)/2. Because an improving move is implemented immedi-
ately, resulting tours are not necessarily locally 2-opt. Given a tour and a starting
node, this mutation is deterministic.

We have two versions of mutation. M1 applies 2-edge exchange only to the best
offspring produced in every generation. In M2 all the offspring produced undergo
mutation. Mutation operators are reported to have great influence on convergence
behavior. Xiaoming et al. (101 prove that their genetic algorithm converges to global
optima when only mutation operators are applied.
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15.2.6 Other Settings of the First Evolutionary Algorithm

Our EA settings include chromosome representation, fitness function, initial popu-
lation generation, parent selection and replacement, and stopping conditions.

1. Chromosome representation: Our literature review reveals various forms of vec-
tor representation such as path, adjacency, ordinal, and rank representations [ﬂ].
Among them, we choose the path representation for the TSP, which is the most
natural and common one. In this representation, a number is assigned to every
node and solutions are represented by the ordered sequence of nodes, as in our
example. Unless the initial position is fixed, path representation of a given tour is
not unique. Classical EA operators are not suitable for path representation, but a
large number of operators are developed for this representation including PMX,
CX, ER and EAX.

2. Fitness function: A TSP solution has a widely used fitness value, which is the
tour length.

3. Population size: EAs converge more rapidly with smaller populations, but bet-
ter results are obtained with larger populations. On the other hand, for large in-
stances, the search space is so huge that increasing the population size further
does not improve the solution quality significantly. We investigated the effect of
the population size on solution quality and computation time and decided to use
the population sizes of 50 and 100.

4. Initial population generation: Schmitt and Amini [@] report that, for various
problem classes and sizes, a hybrid initial population tends to give superior re-
sults over a pure random initial population. We tried two settings to see the effect
of initial population quality. In the first setting, the whole population is gener-
ated randomly. In the second one, about half of the population is still randomly
generated and the other half is generated by using nearest neighbor, greedy and
insertion heuristics with or without improvement heuristic 3-edge exchange. The
percentages of different heuristics in the hybrid initial population are given in
Table[[53.2

In generating the hybrid population, insertion heuristic starts with a partial
tour containing a few nodes (tour nodes), selects a non-tour node according to a
particular criterion and then inserts that node in the tour. Selection and insertion
are repeated until a tour containing all nodes is constructed. Nearest (farthest)
insertion chooses the non-tour node whose minimal distance to the closest tour
node is minimum (maximum). Both insert the selected node in the tour such
that the increase in tour length is minimized. They run in O(n?) time. Cheapest
insertion chooses the non-tour node to be inserted with the minimal increase in
tour length and runs in O(n*logn) time [23].

5. Parent selection: Parent selection, together with crossover and mutation opera-
tors, evolves the population toward higher fitness. If the selection pressure is too
high, EA may converge to a local optimum since genetic diversity rapidly de-
creases. Our selection method, which is borrowed from [@], first forms a mating
pool from the current population by replicating each chromosome twice. Then, it
selects random pairs of parents from the pool without replacement. The crossover
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operator generates one offspring from each pair. We use this method because we
wish to isolate the effect of our evolutionary operators. We do not want the se-
lection pressure to interfere with this effect, therefore, we prefer to use a neutral
selection scheme.

6. Replacement: With newly generated offspring, the population size is temporarily
doubled. For replacement, we sort parents and offspring together according to
their fitness values. We then carry the best half of these chromosomes to the next
generation.

7. Stopping conditions: We stop our EA if average fitness is exactly the same in
two consecutive generations. In addition to this condition, we also use an upper
bound of 500 on the number of generations, which is large enough when we
consider convergence behavior of our EA in Figure [T3.2]for an instance with 52
cities.
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Fig. 15.2 Convergence behavior of the EA

Table 15.2 Share of different heuristics in hybrid initial population

Heuristic %

Random 45

Nearest neighbor 10

Nearest neighbor + 3-edge exchange 10

Greedy + 3-edge exchange
Nearest insertion
Nearest insertion + 3-edge exchange
Cheapest insertion
Cheapest insertion + 3-edge exchange
Farthest insertion
Farthest insertion + 3-edge exchange

[ NV, RV, RV, B, SRV, BV

There is no one best configuration in terms of initial population generation, parent
selection and parent replacement strategies. For instance, studies such as [é] and
] report impressive results when the initial population is generated randomly. On



15  An Evolutionary Approach for the TSP and the TSP with Backhauls 383

the other hand, [IE], [IE], and [Iﬁ] are some of the studies who come up with very
good solutions when the initial population is generated using a heuristic.

15.2.7 Computational Results for the TSP

Below we first describe our experimental settings including performance measures
and test problems used. Then we discuss computational results for our operators
with a focus on the effects due to conventional heuristics.

Our experimentation with the EA involves the following settings, which result in
18 combinations.

e Crossover operator: NNX, GX and combined use of the two.
e Mutation operator: No mutation (NoM), M1 and M2.
e Initial population (IP): Random (R) and hybrid (H).

We use the performance measures listed below in evaluating the EA.

e DB: Percent deviation of final population best from optimal solution.

e DA: Percent deviation of final population average from optimal solution.

e CT: Computation (or elapsed) time in seconds.

e NG: Number of generations until convergence.

DB is the percent deviation of the best solution found throughout the evolution in a
single EA run. We also use DA to see whether or not the population has converged
at the end of the run; if DB and DA are close, then convergence has been achieved.
CT includes the initial population generation time. NG gives us an idea about con-
vergence behavior of the EA. We can observe, for instance, if GX leads to faster
convergence than NNX in terms of the number of generations.

We test 25 problem instances in total. They range in size from 52 to 1748. 24
problem instances selected from the TSPLIB have symmetric integer Euclidean dis-
tances. The additional problem tr81 includes the cities in Turkey. Note that only an
upper bound is available for tr81, and therefore the percent deviation of its EA so-
lutions is computed using this bound. We replicate our EA runs 30 times for small
problems with n < 226 and 10 times for larger problems. The algorithm is coded in
ANSI C and runs on a Pentium IV 1600 MHz machine with 256 MB RAM running
RedHat Linux 8.0.

Table includes the averages of performance measures over 30 replications
of 10 problem instances with n < 226, where the initial population size p is 50.
When we compare two crossovers, NNX yields better solution quality than GX and
takes much shorter CT. Both M1 and M2 improve solution quality over no mutation
case. M2 mutating all offspring improves NNX better compared to M1 mutating
only the best. For GX, M2 performs only slightly better than M1. M2 coupled with
NNX takes longer time than M1 as expected. With GX, however, M1 results in
longer CT than M2 because of slower convergence of GX-M1 combination. Hybrid
initial population leads to slightly better solution quality than random population.
Edge preservation from the union graph is 97% for NNX and 92% for GX without
mutation. Mutation reduces these figures by 2-5%. The largest NG values are
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Table 15.3 Average results over 30 replications of the 10 small problem instances’ where
p=350

Crossover Mutation IP DB DA NG CT
3.10 5.71 4539 0.38

NoM 4.82 574 3352 2.95

1.67 230 4021 0.62

NNX Mi 157 2.13 3609 3.55
o 055 0.67 5337 552

055 0.73 4353 8.11

1254 15.54 17.35 48.23

NoM 11 719 12.58 1637 54.27

436 748 60.44 208.70

GX Ml 3.67 7.04 48.44 178.65
o 330 491 2630 82.79

301 4.80 25.83 90.58

Nom R 815 8.86 4250 7325

5.53 7.99 38.47 75.67
1.92 290 66.04 113.81
1.68 3.06 61.21 112.77
1.76 4.32 19.25 26.40
1.61 4.16 20.68 34.19
7.23 7.44 41.16 13.39
5.19 6.03 34.93 14.95
1.84 2.35 55.60 19.14
1.67 2.38 46.93 20.16
0.51 0.67 37.13 19.26
0.48 0.63 37.24 21.95
6.69 7.03 41.23 6.74
5.06 598 33.04 893
1.77 2.39 52.62 10.03
1.41 2.43 4433 11.30
0.49 0.62 37.15 11.58
0.44 0.58 36.19 14.88

50% NNX 50% GX Ml

M2

NoM

90% NNX 10% GX M1

M2

NoM

95% NNX 5% GX Ml

M2

TAIZIAIANITDAIANIANIANIANITIANIANITIANITZIAIANTZAIA

 Problem instances: berlin52, tr81, eil101, bier127, ch130, pr136, ch150, u159, kroa200, and
pr226.

observed when mutating only the best offspring. As expected, NG is higher for
random initial population compared to hybrid one.

In implementing our multi-crossover approach, we tried mixing NNX and GX
with various ratios. We started with 50% NNX and 50% GX and observed that both
the solution quality and the computation time are in between those obtained with in-
dividual operators. As NNX yields better solution quality in shorter time compared
to GX, we decided to increase the contribution of NNX. After experimenting with
90% and 95% NNX, we found that best results are obtained with the latter. With
95% NNX and 5% GX, M2, and hybrid initial population, the EA’s results deviate
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from the optimal by only 0.44%. The same figure is 0.55% with only NNX. This
shows that using multiple crossover operators instead of a single one can indeed
bring advantages in terms of solution quality. Our observation is also consistent
with the results reported by Potvin and Bengio [@]. The results for the 10 instances
are given in Table [[3.4] for the best mixture of crossovers with p = 100. When p is
increased from 50 to 100, the average deviation reduces to 0.34%, which is quite a
satisfactory result in 25 seconds.

Table 15.4 Average results over 30 replications of the 10 small problem instances with 95%
NNX and 5% GX where p = 100

Problem NoM Mi M2
IP DB DA NG CT DB DA NG CT DB DA NG CT
berlins2 R 1.22 1.91 359 0.7 0.07 0.45 39.0 0.8 0.00 0.00 14.6 0.8
H 092 1.61 27.5 0.7 0.00 0.00 32.3 0.7 0.00 0.00 13.2 0.8
81 R 3.35 3.57 42.5 2.5 0.97 1.4551.7 3.1 048 0.53 34.5 4.6
H 3.48 3.80 34.2 2.7 0.84 1.21 50.6 3.6 0.47 0.48 37.7 5.8
eil101 R 6.60 6.75 62.1 12.5 2.10 2.64 83.8 9.0 0.93 1.06 69.9 15.6
H 3.78 3.93 63.0 10.3 0.93 1.37 81.1 8.7 0.82 0.92 60.9 14.3
bierl27 R 3.15 3.25 60.2 10.7 0.77 1.14 73.6 13.4 0.26 0.28 28.5 9.6
H 3.72 3.81 53.0 12.1 0.62 0.93 71.5 15.3 0.28 0.28 27.9 12.0
h130 R 549 5.68 45.8 20.0 2.14 2.49 69.0 23.8 0.76 0.90 53.4 22.6
H 6.16 6.19 41.2 12.7 2.39 2.50 51.7 18.6 0.85 0.99 47.0 22.3
pri36 R 11.09 11.20 42.9 11.8 4.85 5.78 68.6 19.2 0.41 0.46 64.0 24.6
H 592 592 40.4 14.2 2.87 3.52 55.3 18.4 0.37 0.49 67.1 35.2
ch150 R 3.18 3.26 44.0 15.3 0.28 0.42 58.8 21.1 0.26 0.40 26.3 15.8
H 3.44 3.51 36.3 19.0 0.37 0.44 51.9 23.5 0.24 0.35 26.9 20.7
0159 R 645 6.80 42.6 14.9 0.81 0.97 6.5 23.50.04 0.14 31.6 19.6
H 695 6.98 33.517.8 1.03 1.28 53.0 2.2 0.00 0.04 25.4 21.1
Kroa200 R 8.37 8.43 42.6 33.3 1.68 1.78 85.7 72.4 0.33 0.43 64.1 84.3
H 9.12 9.27 41.2 45.8 1.78 2.23 89.6 87.3 0.32 0.43 65.6 98.6
pr226 R 5.06 5.14 60.6 62.4 0.72 1.10 72.8 77.3 0.01 0.01 40.5 64.8
H 426 427 54.476.40.79 1.21 70.5 93.0 0.01 0.07 40.2 21.6
Average R 540 5.60 479 18.4 1.44 1.82 61.0 26.4 0.35 0.42 42.7 26.2
H 4.78 493 42.521.2 1.16 1.47 60.8 27.1 0.34 0.41 41.2 25.2

To investigate performance of the EA for larger problems, we made a preliminary
comparison test on four more problems from the TSPLIB, where 318 <n <442, us-
ing the best mixture of crossovers and only NNX. We also limit this test with random
initial population since Table [I5.4]shows that hybrid initial population does not im-
prove consistently and brings unnecessary computational burden. Table [[3.3] shows
the averages of performance measures over 10 replications of these four problem in-
stances, where p is 100. We observe that the deviation from the optimal solution and
CT increase as n increases. The average deviations for the best mixture of crossovers
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Table 15.5 Average results over 10 replications of the four larger problem instances™ where

p =100

Crossover

Mutation DB DA NG CT
8.43 8.46 74.5 494.0
3.90 4.66 120.9 972.4

NoM

95% NNX 5% GX Ml

100% NNX

M2

NoM

M1
M2

2.01 2.74 105.2 964.0
473703 924 45

3.254.61 133.8 11.7
2.13 3.05 102.1 206.3

T Problem instances: 1in318, fl417, pr439 and pcb442.

are quite comparable with those for NNX only. Besides, the multi-crossover ap-
proach requires significantly longer computation times than NNX. Therefore, we
decided to run the EA using only NNX and random initial population for solving

larger test problems.

The final test bed includes 15 instances, where 318 < n < 1748, including the
four instances in the preliminary test. The average results over 10 replications are
given in Table[T5.6 Coupled with M1, NNX achieves an average deviation of 4.9%
from the optimal in about 65 seconds. M2 requires more CT and slightly improves

this deviation.

Table 15.6 Average results over 10 replications of the 15 larger problem instances with NNX

only where p = 100

Problem DB

lin318 4.44
417  4.93
pr439 4.38
pcb442  5.15
rat575 5.30
po54 747
des7  7.95
u724  6.35
rat783 8.40
ul060 9.56
vm1084 10.01
pcb1173 9.47

NoM

DA
6.67
6.67
6.76
8.00
7.94
10.50
10.03
8.29
10.38
13.81
12.55
13.26

nrw1379 10.60 13.26
ul432 10.79 13.08

vm1748 9.31

11.16

DB

1.87
293
3.44
4.75
5.16
3.09
5.16
5.14
5.84
6.68
5.77
3.00
7.35
6.89
7.05

M1
DA
2.60
4.73
3.68
7.42
7.15
7.68
7.35
6.64
6.75
9.06
10.58
5.52
10