
Chapter 2
Hybrid Systems with Time-Dependent Switching

This chapter considers a broad class of HS whose switchings are activated according
to time functions, i.e., a switching occurs at a certain time instant. These switching
instants can be prescribed a priori and fixed, or designed arbitrarily by engineers.
The motivation of researching HS appears from many practical systems e.g., circuit
system, and also the switching control ideas. In this chapter, several FTC methods
are presented for such HS. Two natural ideas follow: One way is to design FTC
law in each faulty mode such that it is stable (Lyapunov stable, asymptotical stable
or input-to-state stable) or the output regulation problem of each mode is solvable,
then apply the standard stability results on HS (see sections 2.1-2.3). Another way
is to research directly the stability of HS without reconfiguring the controller in
each unstable mode (see sections 2.4-2.5). These two ideas will be developed in this
chapter. The switching control techniques as developed in Chapter 6 also have their
roots in this chapter.

2.1 Output-Input Stability Technique

In this section, we apply the output-input stability concept proposed in [70, 71] to
the FTC design of HS with continuous faults.

The concept of output−input stability (OIS) [70, 71] is a robust variant of the
minimum-phase property for general smooth nonlinear control systems. Its defi-
nition requires the state and the input of the system to be bounded by a suitable
function of the output and derivatives of the output. Our objective is to provide a
fault tolerant strategy for a class of hybrid nonlinear systems, in which each mode
is output−input stable in the healthy situation and without full state measurements.
The main ideas are that:

1 An observer-based FTC method is proposed for each output−input stable mode
to make each mode asymptotically stable whenever faults occur during its dwell
period;

2 A set of switching laws based on this FTC method are designed to guarantee the
asymptotic stability of the overall HS.

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 11–58.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



12 2 Hybrid Systems with Time-Dependent Switching

To make this section more readable, we first discuss the FTC for nonlinear systems
in the following two subsections 2.1.1 and 2.1.2, then extend the obtained results to
hybrid case in subsection 2.1.3.

2.1.1 State Feedback Control for Nonlinear System

Consider the following affine nonlinear system with faults

ẋ = f (x)+ G(x)u + E(x) fa

y = h(x) (2.1)

where x∈ℜn is the non measured state, u∈ℜm is the input, y∈ℜp is the output, and
only the case m ≤ p is considered. Functions f (·), G(·), E(·) and h(·) are smooth,
and it is assumed that u∈C k, the set of k times continuously differentiable functions
u : [0;∞) → ℜm, with k ≥ 1. For all u ∈ C k, derivatives ẏ, ÿ, . . . ,y(k+1) are assumed
to exist and to be continuous.

The fault effect is modelled by a “fault pattern”, described by the distribution
matrix E(x) and a “fault parameter” fa ∈ ℜd , which can be time varying, and is sup-
posed to be norm bounded, i.e., ∃ f1 : | fa|< f1. The fault pattern describes the family
of faults that are investigated [152], as identified e.g. through standard methods like
failure modes and effect analysis (FMEA) [10]. The fault parameter describes the
size of the fault, and its time evolution. It is assumed that the distribution matrix
E(x) satisfies the so-called matching condition

E(x) = G(x) ·W(x) (2.2)

i.e. it can be factorized as (2.2) for some m×d continuous matrix W (x). The inter-
pretation of the matching condition is that the effect of faults can be described by a
deviation of the control signal. This model covers actuator faults and a large number
of system faults.

Definition 2.1. [70] System (2.1) with fa = 0 is called output-input stable if there
exist a positive integer N, a function β of class K L , and a function γ of class
K∞ such that for every initial state x(0) and every input u ∈ C N−1 its solution x(t)
satisfies ∣

∣
∣
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for all t, where y
k
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∥
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∥
∥
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According to [70], the system is said to be weakly uniformly 0-detectable of order
N if inequality (2.4) holds, or just weakly uniformly 0-detectable when an order is
not specified.

The weak uniform 0-detectability is independent on any input, which implies that
even when the faulty system is not output-input stable any more, it is still weakly
uniformly 0-detectable if faults satisfy the matching condition (2.2). This property
is very useful for FTC.

The following structure algorithm will be helpful to construct the feedback con-
troller later. Due to the structure of the fault distribution matrix (2.2), the term
G(x)u + E(x) fa is written as G(x)ū where ū = u +W(x) fa.

Algorithm 2.1. nonlinear structure algorithm
Step 1: Define h̃1(x) � Lf h(x), J̃1(x) � LGh(x). Differentiating y with respect to

time along the trajectories of (2.1) gives

ẏ = h̃1(x)+ J̃1(x)ū (2.5)

Assume that matrix J̃1(x) has constant rank r1 and a fixed set of r1 rows that are
linearly independent for all x, these rows are taken as the first r1 rows of J̃1(x).

Denote ȟ1(x) and ĥ1(x) as respectively the first r1 and the last p− r1 components
of h̃1(x), then Eq.(2.5) is divided into two parts as

ẏ1...r1 = ȟ1(x)+ J1(x)ū

and
ẏr1+1...p = ĥ1(x)+ Ĵ1(x)ū (2.6)

where (·)1...k denotes the first k elements of the signal. J1(x) is a matrix of full row
rank, and Ĵ1(x) = f1(x)J1(x) for some (p− r1)× r1 matrix f1(x).

Define h̄1(x, ẏ1...r1) � ĥ1(x)+ f1(x)(ẏ1...r1 − ȟ1(x)). Eq.(2.6) can be rewritten as

ẏr1+1...p = h̄1(x, ẏ1...r1) (2.7)

Step 2: Similar to Step 1, define

h̃2(x, ẏ1...r1 , ÿ1...r1) � Lf h̄1(x)+
r1

∑
i=1

∂ h̄1

∂ ẏi
(x, ẏ1...r1)ÿi

J̃2(x, ẏ1...r1) � LGh̄1(x)

Differentiating (2.7) leads to

ÿr1+1...p = h̃2(x, ẏ1...r1 , ÿ1...r1)+ J̃2(x, ẏ1...r1)ū (2.8)

The termination condition of the structure algorithm at Step 2, denoted as C 1, is
as follows:
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C 1: The matrix

[
J1(x)

J̃2(x, ẏ1...r1)

]

is continuous and has constant rank m and there is

a fixed set of m−r1 rows of J̃2(x, ẏ1...r1) which together with the rows of J1(x) form a
linearly independent set for all x and ẏ1...r1 . These rows are taken as the first m− r1

rows of J̃2(x, ẏ1...r1).

Denote ȟ2(x) and ĥ2(x) as respectively the first m−r1 and the last p−m components
of h̃2(x). Under C 1, since m ≤ p, Eq.(2.8) can be written similarly to Step 1 as

ÿr1+1...m = ȟ2(x, ẏ1...r1 , ÿ1...r1)+ J2(x, ẏ1...r1)ū

and
ÿm+1...p = ĥ2(x, ẏ1...r1 , ÿ1...r1)+ Ĵ2(x, ẏ1...r1)ū (2.9)

The following Lemma is a special case of Theorem 1 in [71], therefore its proof
is omitted. It gives a necessary and sufficient OIS condition.

Lemma 2.1. Under the termination condition C 1, the system (2.1) with fa = 0 is
output-input stable if and only if it is weakly uniformly 0-detectable.

Based on Algorithm 2.1, a state feedback controller is now designed for the healthy
system, m = p is considered, the extension to m ≤ p is straightforward. Two as-
sumptions are imposed.

Assumption 2.1. The vector ẏr1+1,...,m is not affected directly by input signals, which
results, for an output-input stable system (2.1) with fa = 0, in the fact that f1(x) = 0.

Assumption 2.2. Let χ ∈ ℜ2m−r1 � (y�1...r1
,y�r1+1...m, ẏ�r1+1...m)�. When fa = 0, there

exists an invertible map T : ℜn → ℜ2m−r1 , such that χ = T (x).

Since m = p, Eq.(2.9) is removed. Under C 1 and assumptions 2.1-2.2, the algorithm
2.1 leads to [

ẏ1...r1

ÿr1+1...m

]

=
[

ȟ1(x)
ȟ2(x)

]

+
[

J1(x)
J2(x)

]

ū (2.10)

where ȟ2 = h̃2, J2 = J̃2.
The state feedback control design consists of the following three steps:
Step 1: Choose a Hurwitz matrix A10, which gives ẏ1...r1 = A10y1...r1 provided

that J1(x)ū = ϑ1(x) with

ϑ1(x) � A10y1...r1 − ȟ1(x)

Step 2: Choose two (m− r1)× (m− r1) matrices A21 and A20 such that

ÿr1+1...m = A21ẏr1+1...m + A20yr1+1...m

The matrix

[
0 I(m−r1)×(m−r1)

A20 A21

]

is Hurwitz provided that J2(x)ū = ϑ2(x) and
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ϑ2(x) � A21ẏr1+1...m + A20yr1+1...m − ȟ2(x)

Step 3: Design the state feedback controller un(x) as

un(x) �
[

J1(x)
J2(x)

]−1 [ϑ1(x)
ϑ2(x)

]

(2.11)

Define

hχ(x) �

⎡

⎣
ȟ1(x)

0
ȟ2(x)

⎤

⎦ , Jχ(x) �

⎡

⎣
J1(x)

0
J2(x)

⎤

⎦

Ā �

⎡

⎣
A10 0 0
0 0 I(m−r1)×(m−r1)
0 A20 A21

⎤

⎦

Then under the control un(x), the system (2.10) is augmented as

χ̇ = hχ(x)+ Jχ(x)un = Āχ (2.12)

Therefore, un(x) in (2.11) asymptotically stabilizes system (2.12) if A10,A20, and
A21 are chosen such that Ā is Hurwitz. An “optimized” choice of Ā can be refered
to [61]. The weak uniform 0-detectability implies that the closed-loop system is
stabilized.

2.1.2 Observer-Based FTC for Nonlinear System

Now we provide an observer-based method to stabilize system (2.1) under both
healthy and faulty conditions.

The FD scheme in [56] is first applied to provide rapid and accurate estimation
of states and faults. Denote x̂ and f̂a as the estimates states and faults respectively.
Using the differential geometry theory, we can obtain (see [56] for details) a global
diffeomorphism z = N(x) with N(0) = 0 and z ∈ ℜn that satisfies

|z̃| ≤ μ(λ ∗)|z̃(0)|exp(−λ ∗t) (2.13)

where z̃ � z− ẑ, λ ∗ > 0, μ(λ ∗) > 0 is polynomial in λ ∗. We can also get from [56]
that fa(t)− f̂a(t)→ 0 when z(t)− ẑ(t) = 0. This means that rapid and accurate fault
estimates can always be obtained when faults occur.

The following two lemmas provide the control strategy for the healthy case and
faulty case respectively.

Lemma 2.2. Suppose that the output-input stable system (2.1) with fa = 0 and m =
p satisfies C 1 and assumptions 2.1-2.2. Given an initial x(0), there exists a constant
ε1 > 0 such that if |˜̄z(0)| ≤ ε1, then the control u(x̂) = un(x̂) makes the origin of the
closed-loop system asymptotically stable.
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Proof : In the healthy case, system (2.12) controlled by un(x̂) is rewritten as

χ̇ = Āχ + Jχ(x)(u(x̂)−u(x)) (2.14)

Let P be the symmetric positive definite solution of the Lyapunov equation
Ā�P + PĀ = −Q with a given matrix Q > 0. Consider the Lyapunov function
V = χ�Pχ , its time derivative with respect to (2.14) is

V̇ = −χ�Qχ + 2χ�PJχ(x)(u(x̂)−u(x))

≤ −λmin(Q)|χ |2 + 2|χ | · |P| · |Jχ(x)| · |u(x̂)−u(x)| (2.15)

Consider the given initial x(0), and define Ω � {χ : V (χ) ≤ χ(0)�Pχ(0)}, which
are the level sets of V with respect to χ (see Chapter 4 in [62]).

Note that |u(x̂)− u(x)| is continuous within the region Ω , and vanishes when
x̂− x = 0, i.e., z̃ = 0. There exists two constants ε̄1 > 0 and κ1 > 0, such that |˜̄z2| ≤
ε̄1 =⇒ |u(x̂)−u(x)| ≤ κ1|z̃|. From inequality (2.15) it follows

V̇ ≤ −λmin(Q)|χ |2 + 2κ1|χ | · |P| · |z̃|
√(

λmax(J�χ (x)Jχ(x))
)
(χ∈Ω)

≤ −(1− r)λmin(Q)|χ |2 (2.16)

∀|χ | ≥

√
√
√
√2κ1|P| · |˜̄z2|

√(
λmax(J�χ (x)Jχ(x))

)
(χ∈Ω)

rλmin(Q)
� γ̄(|˜̄z2|),0 < r ≤ 1 (2.17)

where γ̄(·) is a class K function. There exists a constant ε̄2 such that |z̃| ≤ ε̄2 satisfies
(2.17). Based on [62], the choice of |z̃(0)| ≤ ε1 where ε1 = min(ε̄1, ε̄2), clearly results
in χ being input-to-state stable with respect to z̃. Note that limt→∞ z̃(t) = 0. Hence the
origin of the system (2.14) is asymptotically stable. On the other hand, the map T (x)
is invertible and not affected by the observer, and system (2.1) is weakly uniformly
0-detectable, which leads to the asymptotic stability of the origin of the system. �

Lemma 2.3. Consider the output-input stable system (2.1) with fa = 0 and m = p
satisfying C 1 and assumptions 2.1-2.2. Let a fault occur at t = 0. Given an ini-
tial x(0), there exists a constant ε2 > 0 such that for all |˜̄z2(0)| ≤ ε2, the con-
trol u(x̂) = un(x̂)−W (x̂) f̂a makes the origin of the closed-loop faulty system (2.1)
asymptotically stable.

Proof: In the faulty case, the system (2.10) controlled by un(x̂)−W (x̂) f̂a is rewrit-
ten as

χ̇ = Āχ + Jχ(x)
(

un(x̂)−un(x)
)

+ Jχ(x)W (x̂)( fa − f̂a)+ Jχ(x)
(

W (x)−W(x̂)
)

fa

(2.18)
The time derivative of V along (2.18) is

V̇ = −χ�Qχ + 2χ�PJχ(x)
[(

un(x̂)−un(x)
)

+W (x)( fa − f̂a)+
(

W (x)−W (x̂)
)

fa

]
(2.19)
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There exist two constants ε̄3 > 0 and κ2 > 0, such that |z̃| ≤ ε̄3 =⇒ |N(t)− N̂(t)| ≤
κ2|z̃| within Ω . Similarly, there exist two constants ε̄4 > 0 and κ3 > 0, such that
|z̃| ≤ ε̄4 =⇒ |W (x)−W (x̂)| ≤ κ3|˜̄z2|. Following (2.19), appropriate selection of ˆ̄z2

leads to

V̇ ≤ −λmin(Q)|χ |2 + Ξ (2.20)

Ξ � 2|χ | · |P| · |z̃| ·
√(

λmax(J�χ Jχ)
)
(χ∈Ω)

·
[
κ1 + κ2

√(
(λmax(η�η) ·λmax(W�W )

)
(χ∈Ω) + κ3 f1

]
(2.21)

where η is defined as in [56]. Given a physical bound of control signals and f1, the
value of λmax[η�η ] within Ω can be estimated. As in Lemma 2.2, there exists a con-
stant ε2 > 0 such that |z̃(0)| ≤ ε2 makes the origin of system (2.14) asymptotically
stable. On the other hand, from the structure of faults in (2.2) and Assumption 2.2,
T (x) exists and is still invertible, the faulty system (2.1) is still weakly uniformly
0-detectable, which leads to the asymptotic stability of the origin of the closed-loop
system. �

The following theorem provides a reconfiguration strategy based on the previous
analysis.

Theorem 2.1. Assume the output-input stable system (2.1) with fa = 0 and m = p
satisfies C 1, assumptions 2.1-2.3. Faults are assumed to occur at t = t f . Given
a x(0), there exists a constant ω = min(ε1,ε2) such that for all |z̃(0)| ≤ ω , the
following control

us(x̂,t f d) �
{

un(x̂), t ∈ [0, t f d)
un(x̂)−W(x̂) f̂a, t ∈ [t f d ,∞)

(2.22)

makes the origin of the closed-loop system asymptotically stable, where t f d is the
time instant when the fault has been estimated.

Proof: From Lemma 2.2, under the control un(x̂) with the initial |z̃(0)| ≤ ω , one
has V̇ < 0,∀t ∈ [0, t f ), and χ(t f ) ∈ Ω̄ , where Ω̄ ⊂ Ω . Eq.(2.13) implies |z̃(t f )| ≤
|z̃(0)|. On the other hand, the fault can be detected at t f d = t f if |z̃(0)| ≤ ω (see [56]
and [142]), which means the faults are detected rapidly. Therefore, after t = t f d ,
inequality (2.20) holds under the control un(x̂)−W (x̂) f̂a. The result of Lemma 2.3
is then applied to complete the proof. �

Remark 2.1. Theorem 2.1 provides a flexible control architecture which guarantees
that V̇ < 0 ∀t ∈ [0,∞) whenever the faults occur, this property is very suitable for
HS [142]. The proposed strategy treats the healthy system and the faulty system with
different controllers, which leads to good system performance in the sense of FTC.

Example 2.1: [142] A DC motor example is employed to illustrate a potential ap-
plication field of this approach. A series DC motor is a DC motor where the field
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circuit is connected in series with the armature circuit [19]. Under the hypothesis
that there is no magnetic saturation, the modified model of this system is expressed
as follows:

⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
−k1x1x2 − R

L x1 + u1 + L fa

−k2x2 + k1
JL x2

1 − x3
J

u2 + 2k1x1 fa

⎤

⎦ (2.23)

[
y1

y2

]

=
[

x1

x2

]

where x1 = φ f denotes the flux, x2 = ω f denotes the speed, x3 = TL denotes time
varying load torque, u1 and u2 are the voltage inputs. the speed and the flux are
measured.

Let us first consider the healthy case ( fa = 0). Since x1 = y1, x2 = y2, and |x3| =
J|ẏ2

2 + k2y2 − k1
JL y2

1| ≤ J|ẏ2|2 + Jk2|y2|+ k1
L |y1|2, it is seen that the healthy system is

weakly uniformly 0-detectable of order 1. The output derivatives are

[
ẏ1

ẏ2

]

=
[ −k1x1x2 − R

L x1

−k2x2 + k1
JL x2

1 − x3
J

]

+
[

1 0
0 0

][
u1

u2

]

so r1 = 1, differentiating the equality of ẏ2 leads to

ÿ2 = k2
2x2 − k1k2

JL
x2

1 +
k2

J
x3 − 2k2

1

JL
x2

1x2 − 2k1R
JL2 x2

1 +
[ 2k1

JL x1 − 1
J

]
[

u1

u2

]

The matrix

[
1 0

2k1
JL x1 − 1

J

]

is always nonsingular. The map T : x → χ is also invertible

and not affected by the observer. C 1 and assumptions 2.1-2.2 are satisfied. From
(2.11), un can be designed as

un =
[

k1x1x2 +(R
L −1)x1

(Jk2
2 − k1

JL )x2
1 − ( 2k1

L + k1k2
L )x2

1 +(k2 + 1
J )x3

]

which makes Ā Hurwitz.
Now consider the faulty case. It is clear that W (x) = (L, 2k1x1)�, fa is an actuator

fault that affects both control channels. The invertible transformation z1 = x2, z2 =
− x3

J + k1
JL x2

1 , z3 = x1 puts system (2.23) into the form

[
ż1

ż2

]

=
[

z2 − k2y1

−2 k1
JL y2(k1y1y2 + R

L y2 −u1)− u2
J

]

(2.24)

y2 = z1 (2.25)

ż3 = −k1y1y2 − R
L

y1 + u1 + L fa (2.26)

y1 = z3



2.1 Output-Input Stability Technique 19

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t/s

S
ta

te
 tr

aj
ec

to
rie

s

x1
x2
x3

 The fault occurs

Fig. 2.1 State trajectories

Eq.(2.26) does not involve the estimation of z1 and z2, which implies that fault
estimates are obtained without any estimation error. So the fault can be detected
and compensated immediately after the fault occurs. Under control un(x), one has
χ̇ = Āχ , where χ = (y1,y2, ẏ2)�.

In the simulation, the parameters are [19]: R = 0.0247, L = 0.06, J = 30.1, k1 =
0.04329, k2 = 0.0033. The initial x(0) = (0.5,0.1,1)�. x̂(3) = 0.85. The fault is
considered as

fa =
{

0, 0s ≤ t < 2.5s
0.5 + 0.2sin(5t), 2.5s ≤ t < 10s

(2.27)

Fig.2.1 shows state trajectories, the origin of the closed-loop system is asymptoti-
cally stable in spite of faults.

2.1.3 FTC for Hybrid Systems

The above FTC solution is now extended to a class of switched systems taking the
form

ẋ = fσ (x)+ Gσ (x)uσ + Eσ(x) faσ

y = h(x) (2.28)

where each mode satisfies all the conditions in Theorem 2.1. σ(t) : [t0,∞) → Q =
{1,2, . . . ,N} is a switching signal, which is assumed to be a piecewise constant
function continuous from the right.

The switching property is considered as in [29]: (a) the switching sequence is
fixed, (b) there is a series of dwell periods Δ tk j for mode k when it is activated for
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the jth time and mode k switches to mode (k + 1) for the jth time at t = tk j when
Δ t(k+1) j is elapsed, (c) the states do not jump at the switching instants.

The observer-based method in Section 2.1.2 is modified for the HS as follows:

• The observer and the fault estimates scheme are switched according to the current
mode at each switching time.

• The initial states of the current observer are chosen as the final states of the
previous observer. The fault estimates are set to zero at each switching instant.

We also need to impose a condition on the above switching law such that the
weak uniform 0-detectability of the overall HS can be guaranteed.

Assumption 2.3. Δ tk j(k = 1,2, . . . ,N) are large enough such that for any s ∈ ℜ+,
we have

βk+1(2βk(2s,Δ tk j),Δ t(k+1) j) ≤ λ̄s < s ∀k ∈ Q (2.29)

where 0 < λ̄ < 1 and βk(k ∈ Q) satisfies (2.4) for mode k.

Lemma 2.4. Consider the HS (2.28) satisfying Assumption 2.3 in the healthy case.
Then, the overall HS is weakly uniformly 0-detectable.

Proof: Lemma 2.4 is an extension of Theorem 1 in [129] to the weak uniform 0-
detectability case, its proof is omitted. �

Let Vk, usk(x̂,t f dk), ωk be respectively V , us(x̂, t f d), ω for mode k. The FTC problem
for the system (2.28) with unfixed dwell periods and fixed dwell periods will be
discussed respectively.

Theorem 2.2. Under Assumption 2.3, consider the HS (2.28) under a family of con-
trol laws uk(x̂,t f dk). There exists a constant ωk such that |˜̄z2(0)| ≤ ωk with a given
x(0). If, at any time instant t̄, the following conditions hold:

|z̃(t̄)| ≤ ωk+1 (2.30)

Vk+1(χ(t̄)) < Vk+1(χ(t(k+1)( j−1))), j > 0 (2.31)

then, choosing Δ tk j ≥ t̄ − tk j, which satisfies (2.29), and setting σ(t) = k + 1 at
t = tk j + Δ tk j guarantee that the origin of the overall HS is asymptotically stable.

Proof: If the initial |z̃(0)| ≤ ωk for some k ∈ Q, it follows from Theorem 2.1 that
V̇k < 0 as long as mode k remains active. If at some time instant t̄ one has |z̃(t̄)| ≤
ωk+1, and σ(t) = k + 1 is set on, then for all t ∈ [t̄, tk j + Δ tk j), V̇k+1 < 0 as long as
σ(t) = k +1. It is concluded that if the kth mode is activated only when |z̃(t)| ≤ ωk,
then

V̇σ (t) < 0, ∀σ(t) = k (2.32)

Moreover, from (2.31), for any admissible switching time tk j one has

Vk+1(χ(t(k+1) j)) < Vk+1(χ(t(k+1)( j−1))) (2.33)

Since the kth faulty mode is still weakly uniformly 0-detectable, and T always ex-
ists, the Multiple Lyapunov function method [22] can be applied to conclude that the
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origin of the hybrid system is Lyapunov stable. On the other hand, for each switch-
ing time tk j, j = 1,2, . . . such that σ(t+k j) = k, the sequence Vσ(tk j) is decreasing and
positive, and therefore has a limit ζ ≥ 0. One has

lim
j→∞

[
Vk+1(χ(t(k+1)( j+1)))−Vk+1(χ(t(k+1) j))

]
= ζ − ζ = 0

Note that there exists a class K function α such that

0 = lim
j→∞

[
Vk+1(χ(t(k+1)( j+1)))−Vk+1(χ(t(k+1) j))

]

≤ lim
j→∞

[−α(‖χ(t(k+1) j‖)] ≤ 0 (2.34)

Inequality (2.34) together with Lemma 2.4 implies that x(t) converges to the origin,
which combined with Lyapunov stability, leads to the asymptotic stability of the
origin of the HS. This completes the proof. �

Remark 2.2. Inequality (2.31) is used only when the target k + 1th mode has been
previously activated. Actually, when only a finite number of switchings is considered
over the infinite time-interval, Inequality (2.31) can be relaxed to allow for finite
increases in Vk+1, (see [28] and [29] for some analysis). In this case, inequality
(2.30) alone is sufficient to enforce the asymptotic stability of the origin.

Many real systems work under a series of prescribed dwell periods, i.e., Δ tk j is fixed.
In this case, the goal of FTC must be achieved before each switching time whenever
the faults occur. This is possible because the decay rate of Vk can be estimated. We
have the following corollary.

Corollary 2.1. Consider the HS (2.28) under a family of control laws uk(x̂,t f dk)
with fixed Δ tk j k ∈ Q which satisfies (2.29). If each faulty mode satisfies (iv), T
exists and is still invertible, and there exists a constant ωk such that |˜̄z2(0)| ≤ ωk,
then the origin of the overall hybrid system is asymptotically stable.

Proof: It is clear from (2.13) that appropriate selection of λ makes (2.30) hold at a
given t(k+1) j. On the other hand, inequality (2.20) in Lemma 2.3 leads to

V̇k ≤−λmin(Qk)|χ |2 + Ξk ≤−ιkVk + Ξk, ιk � λmin(Qk)
λmax(Pk)

(2.35)

Note that Ξk is bounded within a known region and converges to zero, so the trajec-
tory of Vk can be estimated by (2.35). The results of Theorem 2.2 can be applied to
guarantee the asymptotic stability of the origin of the HS. �

2.2 Overall Fault Tolerant Regulation

This section extends the classical output regulation theories to hybrid nonlinear sys-
tems and analyzes its fault tolerance in the presence of continuous faults modeled
by the exosignals.



22 2 Hybrid Systems with Time-Dependent Switching

2.2.1 Fault Tolerant Regulation for Nonlinear Systems

The considered system takes the general nonlinear form

ẋ(t) = G(x(t),u(t), f (t)) (2.36)

y(t) = H(x(t), f (t)) (2.37)

ḟ (t) = S( f (t)) ∀t ≥ t f , with f (t) = 0 ∀t ∈ [0,t f ) (2.38)

e(t) = y(t)− yr(x(t)) (2.39)

with measurable state x ∈ ℜn, input u ∈ ℜp, output y ∈ ℜm. The regulated error
e denotes the output tracking error between y and the continuous reference signal
yr(x) : ℜn → ℜm. The vector fields G, H are assumed to be smooth and known.

Once the fault occurs, the fault signal f ∈ F ⊂ ℜq is generated by the neurally
stable exosystem (2.38), i.e., ∂S(0)/∂ f has all its eigenvalues on the imaginary axis,
which means that f is always bounded. The function S is also assumed to be smooth
and known. Such model effectively describes process, actuator and sensor faults.

The following assumption is a basic requirement for the state feedback output
regulation design [55].

Assumption 2.4. There exist some u = α(x, f ) with f = 0 such that x = 0 of healthy
system (2.36) ẋ = G(x,α(x,0),0) is asymptotically stable.

Definition 2.2. Fault tolerant regulation problem (FTRP) for system (2.36)-(2.39) is
to find a FTC law u = α(x, f ) such that ∀x(0) ∈ X with X ⊂ ℜn a neighborhood
of 0 and ∀ f ∈F , the trajectory of the closed-loop system (2.36) ẋ = G(x,α(x, f ), f )
is bounded ∀t ≥ 0 and limt→∞ e(t) = 0.

Theorem 2.3. Suppose that the fault f can be detected/approximated accurately,
and there exists a u = α(x, f ) satisfying Assumption 2.4. The FTRP for system
(2.36)-(2.39) is solvable if and only if there exists a C k mapping x = π( f ) with
π(0) = 0 defined for (x, f ) ∈ X ×F satisfying

∂π
∂ f

S( f ) = G(π( f ),α(π( f ), f ), f ) (2.40)

0 = H(π( f ), f )− yr(π( f )) (2.41)

Proof: The proof follows the same way as that of Theorem 8.3.2 in [55], which is
thus omitted. �

Remark 2.3. It can be seen that FTRP is similar to the general output regulation
problem with disturbances. Theorem 2.3 provides necessary and sufficient condi-
tions to solve FTRP in the classical faulty case. The existence and the design of
π( f ) and α(x, f ) have been deeply investigated in many literatures, e.g. [55], [52],
which are not focused on here.

2.2.2 Overall Fault Tolerant Regulation

Now we consider the hybrid case. The system is
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ẋ(t) = Gσ(t)(x(t),uσ(t)(t), fσ(t)(t)) (2.42)

y(t) = H(x(t), fσ(t)(t)) (2.43)

ḟσ(t)(t) = Sσ(t)( fσ(t)(t)) ∀t ≥ t f , with fσ(t)(t) = 0 ∀t ∈ [0, t f ) (2.44)

where σ(t) : [0,∞) → Q also denotes a piecewise constant switching function.

Assumption 2.5. There exists a family of controllers ui = αi(x, fi) for i ∈ Q solving
the FTRP for system (2.39) and (2.42)-(2.44) with σ(t) = i.

Assumption 2.5 means that the FTRP of each mode is solvable individually. The
following definition is an extension of FTRP to the successional faulty case.

Definition 2.3. Overall fault tolerant regulation problem (OFTRP) for system (2.39)
and (2.42)-(2.44) is to find a switching scheme among ui = αi(x, fi), i ∈ Q such that
∀x(0) ∈ X and ∀ fi ∈F , the trajectory of the closed-loop system (2.42) is bounded
∀t ≥ 0 and limt→∞ e(t) = 0.

Before solving the OFTRP, we give an important concept as follows

Definition 2.4. [49]: Let Nσ (T, t) denote the number of switchings of σ over the
interval (t,T ), if there exists a positive number τa such that

Nσ (T,t) ≤ N0 +
T − t

τa
, ∀T ≥ t ≥ 0 (2.45)

where N0 > 0 denotes the chattering bound, then the positive constant τa is called
average dwell time (ADT) of σ over (t,T ).

Definition 2.4 means that there may exist some switchings separated by less than τa,
but the average dwell period among switchings of modes is not less than τa.

The following theorem establishes the sufficient conditions to solve OFTRP.

Theorem 2.4. Consider a system (2.39) and (2.42)-(2.44) satisfying Assumption
2.5. Suppose that each fault can be diagnosed without delay, and each FTC law
ui is applied once a fault fi occurs. The OFTRP is solvable if

C1) τa > lnB
a , where B � maxi∈Q Bi, a � mini∈Q ai.

and either C2) or C3) holds for k = 1,2, ...
C2) πσ(tk−1)( fσ(tk−1)(tk)) = πσ(tk)( fσ(tk)(tk)).
C3) −(a− lnB

τa
)(t − tk)+ lnk < −a∗t, for t ≥ tk and a∗ > 0.

Remark 2.4. Before proving Theorem 2.4, we provide some insight into the con-
ditions C1)-C3): C1) requires that the switching of modes is slow averagely, i.e.,
the frequency of switching is not too much. C2) imposes a condition on the map-
ping πi and the fault value fi. It can be seen that if there is a common mapping
x = π( fi) for all modes, and fσ(tk−1)(tk)) = 0, then C2) holds. Generally, C2) is
hard to satisfy even in the linear case [76]. In the absence of C2), C3) requires
that the dwell period of each mode is long enough. C3) can be verified by checking
whether lnk +(a− lnB

τa
)tk < (a− lnB

τa
−a∗)t holds or not for t ∈ [tk,tk+1).
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Proof of Theorem 2.4: Since mode σ(tk) in the time interval [tk,tk+1) is controlled
by uσ(tk), thus its FTRP is solved from Assumption 2.5. According to Theorem 8.3.2
in [55], a center manifold x = πσ(tk)( fσ(tk)) of mode σ(tk) is locally attractive, i.e.,

|x(t)−πσ(tk)( fσ(tk)(t))| ≤Be−a(t−tk)|x(tk)−πσ(tk)( fσ(tk)(tk))|, tk ≤ t < tk+1 (2.46)

Similarly, in [tk−1,tk) one has

|x(t−k )−πσ(tk−1)( fσ(tk−1)(t
−
k ))| ≤ Be−a(t−k −tk−1)|x(tk−1)−πσ(tk−1)( fσ(tk−1)(tk−1))|

(2.47)
Combining (2.46) with (2.47) yields

|x(t)−πσ(tk)( fσ(tk)(t))| ≤ Be−a(t−tk)
∣
∣
∣x(tk)−πσ(tk−1)( fσ(tk−1)(tk))

+πσ(tk−1)( fσ(tk−1)(tk))−πσ(tk)( fσ(tk)(tk))
∣
∣
∣

≤ B2e−a(t−tk−1)|x(tk−1)−πσ(tk−1)( fσ(tk−1)(tk−1))|
+Be−a(t−tk)|πσ(tk−1)( fσ(tk−1)(tk))−πσ(tk)( fσ(tk)(tk))| (2.48)

By induction, we obtain

|x(t)−πσ(tk)( fσ(tk)(t))| ≤ Bk+1e−at |x(0)−πσ(0)( fσ(0)(0))|

+
k

∑
s=1

(
Bse−a(t−tk−s+1)|πσ(tk−s)( fσ(tk−s)(tk−s+1))

−πσ(tk−s+1)( fσ(tk−s+1)(tk−s+1))|
)

(2.49)

From C1), we can pick λ = a− lnB
τa

, we have τa = lnB
(a−λ ) . Based on (2.45), we have

Bk+1e−at ≤ BN0+1e
t

τa
lnB−at < BN0+1e−λ t (2.50)

If C2) holds, each term of the sum in (2.49) is zero. Substituting (2.50) into (2.49),
we further have

|x(t)−πσ(tk)( fσ(tk)(t))| ≤ BN0+1e−λ t |x(0)−πσ(0)( fσ(0)(0))| (2.51)

Inequality (2.51) means that x−πσ(tk)( fσ(tk)) still converges to zero ∀t ≥ tk, ∀x(0)∈
X and ∀ fi ∈ F . By continuity of H and yr in each [tk−1, tk), it follows that
limt→0 e(t) = 0.

If C2) does not hold, one has from C1) and (2.45) that

Bse−a(t−tk−s+1) ≤ BN0+
t−tk−s+1

τa e−a(t−tk−s+1)

≤ BN0e
t−tk−s+1

τa
lnB−a(t−tk−s+1)

≤ BN0e−λ (t−tk−s+1) (2.52)
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Since each fi is bounded due to the neurally stable exosystems, there exists a con-
stant ξ > 0 such that ∀k = 1,2, ..., and 1 ≤ s ≤ k

∣
∣
∣πσ(tk−s)( fσ(tk−s)(tk−s+1))−πσ(tk−s+1)( fσ(tk−s+1)(tk−s+1))

∣
∣
∣≤ ξ (2.53)

It follows from (2.53) and C3) that

k

∑
s=1

(
Bse−a(t−tk−s+1)|πσ(tk−s)( fσ(tk−s)(tk−s+1))−πσ(tk−s+1)( fσ(tk−s+1)(tk−s+1))|

)

≤ ξ BN0
k

∑
s=1

e−λ (t−tk−s+1)

≤ ξ BN0elnk−λ (t−tk)

≤ ξ BN0e−a∗t (2.54)

By substituting (2.50) and (2.54) into (2.49), we conclude that x − πσ(tk)( fσ(tk))
converges to zero ∀t ≥ tk, ∀x(0) ∈ X and ∀ fi ∈ F . The result follows. �

2.3 Multiple Observers Method

2.3.1 Problem Formulation

Differently from sections 2.1-2.2, we address a class of HS with both continuous
faults and discrete faults in this section. The system takes the form

ẋ(t) = Aσ x(t)+ gσ(x(t), t)+ Bσ uσ (t)+ Eσ f c
σ (t) (2.55)

y(t) = Cx(t) (2.56)

where x(t) ∈ ℜn is the non measured state, y(t) ∈ ℜp is the output, uσ (t) ∈ ℜm

is the control. Aσ , Bσ , Eσ and C are real constant matrices of appropriate dimen-
sions. (Aσ ,Bσ ) is controllable. gσ (x(t), t) is a continuous Lipschitz function, i.e.,
|gσ (x1,t)−gσ (x2,t)| ≤ Lσ |x1 − x2|, where Lσ > 0 is called the Lipschitz constant.
Moreover, gσ (0,t) = 0.

The continuous actuator fault is modelled by a “fault pattern” as in Chapter 2.1.
Suppose that there exists two constants f 0

σ and f 1
σ such that | f c

σ | ≤ f 0
σ , | ḟ c

σ | ≤ f 1
σ .

Such fault model covers all faults that result in a deviation of the control signal from
normal.

Define Q = {1,2, . . . ,N}, where N is the number of modes. σ(t) : [t0,∞) → Q
denotes the switching function as in sections 2.1-2.2. Denote t j as the jth switching
instant of the system (2.55)(2.56). At t j, the system switches to mode k, where k∈Q,
j = 1,2, ....

The switching property is considered as in [29]: a) the switching sequence is
fixed. b) there is a series of prescribed dwell periods between each switching. We
also assume that the states do not jump at the switching instants.
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The discrete fault is represented by the faulty switching function σ f (t), that
forces the system to switch to a mode which is not the prescribed successor at
the switching instant. Similarly, σH(t) denotes the healthy switching function. If
σ(t) = σH(t), then there is no discrete fault in the current mode.

The FTC problem in this section can be described as: Keep the states of system
(2.55)-(2.56) always bounded and make them converge to a small closed set in spite
of continuous and discrete faults.

Different from sections 2.1-2.2, the FTC of discrete faults must be taken into
account as in [132] and [145]. Since the current mode after each switching time
may be unknown due to discrete faults, some identifying work must be applied
for a short period. Some related work can be seen in [129], [68], [48] and [20].
Whatever method used, the necessary time period in which mode is identified (due
to computation time, decision time) may cause instability. How to overcome this
finite delay is a problem to be addressed.

The main idea is as follows: 1) For the continuous faults in each mode, an adap-
tive observer technique is proposed to provide the rapid fault estimation, based on
which the FTC law is designed. 2) For the discrete faults, a novel model-free sliding
mode observer is designed, which together with a series of observers related to sys-
tem modes, can identify the current mode quickly while guaranteeing the stability
of the system during each transition period. 3) The above two FTC strategies are
combined with the average dwell time scheme such that the states of the overall
hybrid system are always bounded and converge to a small closed set.

2.3.2 FTC for Continuous Faults

In this subsection, only f c
σ (t) is addressed. We introduce the input-to-state practical

stability and a lemma that will be used later.

Definition 2.5. [113] A system ẋ = f (x,u) is said to be input-to-state practically
stable (ISpS) over [0,t) w.r.t. u if there exist functions β ∈ K L , α,γ ∈ K∞, and a
constant ς > 0, such that for any bounded input u and any initial condition x(0), we
have

α(|x(t)|) ≤ β (|x(0)|, t)+ γ(‖u‖[0,t))+ ς , ∀t ≥ 0

Note that when ς = 0, ISpS becomes input-to-state stability (ISS) [114] (see also
Definition 4.1 in Chapter 4).

It has been proven in Section VI of [113] that the following property holds.

Lemma 2.5. If there exist α1, α2, α3, γ1 ∈ K∞, ς1 > 0 and a smooth function V :
ℜn → ℜ≥0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.57)

V̇ (x) ≤ −α3(|x|)+ γ1(|u|)+ ς1 (2.58)

Then the system ẋ = f (x,u) is ISpS over [0, t) w.r.t. u.
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If ς1 = 0, then V is called ISS Lyapunov function[114], and the system is ISS under
(2.57) and (2.58) with the state x and the input u (see Lemma 2.14 in [114]).

Now let us consider the system (2.55)(2.56) with σ(t) = k for some k ∈Q starting
from t = t j

ẋ(t) = Akx(t)+ gk(x(t), t)+ Bkuk(t)+ Ek f c
k (t) (2.59)

y(t) = Cx(t) (2.60)

Assumption 2.6. There exists a matrix Kk such that Gk(s)=C[sI−(Ak−KkC)]−1Ek,
is strictly positive real (SPR) :

∀ω > 0 : Re(Gk( jω)) > 0 (2.61)

Moreover
min

ω∈R+
σmin(Ak −KkC− jωI) > Lk (2.62)

where σmin (M) is the smallest singular value of M.

Remark 2.5. Assumption 2.6 is a restriction on the triple (Ak,C,Ek) in terms of the
fault to residual transfer of the observer-based residual generator associated with
the linear part of the system. A known necessary condition for Gk(s) to be SPR is
that (Ak,C) is observable and CEk is of full column rank. It should be noted that CEk

being of full column rank is a standard assumption in fault isolation problem [10].

Under Assumption 2.6, it has been proven in [104] that for any given matrix Qk ∈
ℜn×n > 0 and scalar ε > 0, there exist two matrices Pk ∈ ℜn×n > 0 and Rk ∈ ℜr×q

such that
PkEk = C�Rk (2.63)

and

(Ak −KkC)�Pk + Pk(Ak −KkC)+ εL2
kIn +

P2
k

ε
+ Qk ≤ 0 (2.64)

The FD scheme for mode k is designed as

˙̂x = Akx̂+ gk(x̂, t)+ Bkuk + Ek f̂ c
k + Kk(y− ŷ) (2.65)

˙̂f c
k = ΓkR�

k (y− ŷ)−ϑkΓk f̂ c
k (2.66)

ŷ = Cx̂ (2.67)

where x̂(t) , f̂ c
k (t) , ŷ (t) are the estimates of x(t) , f c

k (t),y(t). The weighting matrix
Γk = Γ �

k > 0, and the constant ϑk > 0 are chosen such that ϑk −λmax(Γ −1
k ) > 0.

Remark 2.6. The diagnostic scheme (2.65)-(2.67) plays an important role to diag-
nose the f c

k . Our goal is to stabilize the system, we neither care about when the fault
occurs nor design a so-called detection observer as in [58] to detect the fault. The
diagnostic scheme (2.65)-(2.67) always works no matter the mode k is faulty or not
(i.e., the normal condition can be treated as a special faulty case where f c

k = 0).
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Denote ex(t) = x(t)− x̂(t), ey(t) = y(t)− ŷ(t), e f (t) = f c
k (t)− f̂ c

k (t), we have the
following lemma:

Lemma 2.6. [57] Define a set Sk as

Sk �
{

(ex,e f )

∣
∣
∣
∣
∣
λmin(Pk)|ex|2 + λmin(Γ −1

k )|e f |2 ≤ βk

αk

}

where

βk�λmax(Γ −1
k )( f 1

k )
2
+ σk( f 0

k )
2
, αk � min(ck1, ck2)

max[λmax(Pk), λmax(Γ −1
k )]

ck1�λmin(Qk) > 0, ck2 � ϑk −λmax(Γ −1
k ) > 0 (2.68)

Then under Assumption 2.6, the fault diagnostic scheme (2.65)-(2.67) guarantees
that (ex,e f ) of mode k converges to Sk exponentially at a rate greater than e−αkt .

The following lemma gives a relation between ex and e f .

Lemma 2.7. Under Assumption 2.6, the fault diagnostic scheme (2.65)-(2.67) guar-
antees that ex is ISS w.r.t. e f , i.e., there exist βek ∈ K L , αek,γek ∈ K∞ such that

αek(|ex(t))| ≤ βek(|ex(t j)|,t)+ γek(‖e f ‖[t j ,t)), ∀t ≥ t j (2.69)

Proof: From (2.59), (2.60), (2.65) and (2.67), we have

ėx = (Ak −KkC)ex + gk(x,t)−gk(x̂,t)+ Eke f (2.70)

Choose a Lyapunov candidate Θk = e�x Pkex, its derivative w.r.t. time along (2.70) is

Θ̇k = e�x [Pk(Ak −KkC)+ (Ak −KkC)�Pk]ex

+2e�x Pk(gk(x, t)−gk(x̂,t))+ 2e�x PkEke f

Note that, for two vectors a1, a2, it holds that 2a1
�a2 ≤ 1

ε a1
�a1 +εa2

�a2 for ε > 0.
Similarly, we can show that

2e�x Pk(gk(x,t)−gk(x̂, t)) ≤ e�x
P2

k

ε
ex + εL2

k e�x ex (2.71)

From (2.64), we have

Θ̇k≤−e�x Qkex + 2e�x PkEke f

≤(−λmin(Qk)+ ε1)|ex|2 +
|PkEk|2

ε1
|e f |2 (2.72)

where ε1 > 0 is chosen such that −λmin(Qk)+ε1 < 0. Inequality (2.72) implies that
Θk is an ISS-Lyapunov function with the state ex and the input e f . From Lemma 2.5,
the result follows.
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Moreover, we have

Θ̇k ≤ −λmin(Qk)+ ε1

λmax(Pk)
Θk +

|PkEk|2
ε1

|e f |2 � ι1Θk + ι2|e f |2

Using the differential inequality theory (see Chapter 2 in [84]), we can obtain

Θk≤eι1(t−t j)Θk(t j)+
∫ t

t j

eι1(t−τ)ι2|e f (τ)|2dτ

≤eι1(t−t j)Θk(t j)+ sup
τ∈[t j ,t)

{ι2|e f (τ)|2}
∫ t

t j

eι1(t−τ)dτ

≤eι1(t−t j)λmax(Pk)|ex(t j)|2
︸ ︷︷ ︸

βek(|ex(t j)|,t)

+
1

−ι1
sup

τ∈[t j ,t)
{ι2|e f (τ)|2}

︸ ︷︷ ︸
γek(‖e f ‖[t j ,t)

)

(2.73)

Define αek(·) = λmin(Pk)(·)2, which, together with βek,γek in (2.73), leads to
(2.69). This completes the proof. �

Supposed that e f (t) is norm bounded in each [t j,t j+1). Inequality (2.69) means that
given an initial |ex(t j)| (or a bound of |ex(t j)|, the value of |ex| can be estimated.
Define

ex(t)est � α−1
ek′′ ◦βek′′(|ex(t j)|,t)+ α−1

ek′′ ◦ γek′′(‖e f (t)‖[t j ,t)), t j ≤ t ≤ t j+1 (2.74)

ex(t)est is the estimates of |ex(t)|. It follows that |ex(t)| ≤ ex(t)est .
Now we are ready to design the FTC law. Since (Ak,Bk) is controllable, let Wk =

W�
k > 0 be associated with a given symmetric positive definite matrix Hk by the

Riccati equation
A�

k Hk + HkAk −2HkBkB�
k Hk +Wk = 0 (2.75)

The design of the proposed fault-tolerant controller makes use of the two follow-
ing assumptions.

Assumption 2.7. Given a solution Hk of (2.75), there exists a bounded function
ηk(x,t) > 0 such that

|x�Hkgk(x,t)| ≤ ηk(x,t)|x�HkBk| (2.76)

Assumption 2.8. rank(Bk,Ek) = rank(Bk).

Remark 2.7. Inequality (2.76) is not restrictive. Since gk(0,t) = 0, from the Lips-
chitz condition, one has |gk(x,t)| ≤ Lk |x| and

∣
∣x�Hkgk(x,t)

∣
∣ ≤ Lk

∣
∣x�Hk

∣
∣ |x|. Since

(Ak,Bk) is controllable, the ratio
∣
∣x�Hk

∣
∣/

∣
∣x�HkBk

∣
∣ is homogeneous and its

maximal value is found by solving max(|x�Hk|) under the constraint |x�HkBk| = 1
providing some bounded solution x∗. Assumption 2.8 is naturally satisfied for the
actuator faulty case. Indeed, rank(Bk) = rank(Bk,Ek) ⇔ Im(Ek)⊆ Im(Bk) which is
equivalent to the existence of B∗

k such that (I−BkB∗
k)Ek = 0.
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The fault-tolerant controller is constructed as

uk(x̂) = uk1(x̂)+ uk2(x̂) (2.77)

where

uk1(x̂) � −B�
k Hkx̂−B∗

kEk f̂ c
k , (2.78)

uk2(x̂) � − ηk(x̂,t)
|φk(x̂)|+ ε/2

φk(x̂), φk(x̂) � ηk(x̂, t)B�
k Hkx̂ (2.79)

with ε an arbitrarily small positive scalar.

Lemma 2.8. Suppose that assumptions 2.6-2.8 are satisfied, under the feedback
control (2.77)-(2.79), mode k in (2.59)(2.60) is ISpS over [t j,t) w.r.t. ex, e f and a
constant ςk > 0.

Proof: Applying the control (2.77) to (2.59) results in the closed-loop dynamics

ẋ = (Ak −BkB�
k Hk)x + BkB�

k Hkex + Eke f + gk(x, t)+ Bkuk2(x̂) (2.80)

Consider a Lyapunov candidate Vk(x) = x�Hkx, where Hk > 0 is defined by (2.75).
Its derivative along the system is

V̇k ≤ −λmin(Wk)|x|2 + 2|HkBkB�
k Hk| · |x| · |ex|

+2|HkEk| · |x| · |e f |+ 2x�Hk[Bkuk2(x̂)+ gk(x,t)] (2.81)

From (2.79), one has

2x�Hk[Bkuk2(x)+ gk(x,t)]

=
−2η2

k (x,t)|x�HkBk|2 + 2x�Hkgk(x, t)ηk(x, t)|x�HkBk|+ εx�Hkgk(x, t)
ηk(x,t)|x�HkBk|+ ε/2

(2.82)

Substituting (2.76) into (2.82) yields

2x�Hk[Bkuk2(x)+ gk(x,t)] ≤ ε|x�Hkgk(x,t)|
ηk(x, t)|x�HkBk|+ ε/2

≤ ε (2.83)

Assumption 2.7 guarantees that the control uk2(x) is continuous and locally bounded.
There always exists a number δk > 0 such that |uk2(x̂)−uk2(x)| ≤ δk|ex| for a small
|ex|. Due to the convergence of the estimation in Lemma 2.6, it follows that

2x�Hk[Bk(uk2(x̂)−uk2(x)] ≤ 2|HkBk| ·δk|ex| (2.84)

where δk > 0. It also holds that

2|HkBkB�
k Hk| · |x| · |ex| ≤ ε2|x|2 +

|HkBkB�
k Hk|2

ε2
|ex|2
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2|HkEk| · |x| · |e f | ≤ ε3|x|2 +
|HkEk|2

ε3
|e f |2

where ε2,ε3 > 0 are chosen such that −λmin(Wk) + ε2 + ε3 < 0. Substituting two
inequalities above and (2.83), (2.84) into (2.81), one can further obtain

V̇k≤(−λmin(Wk)+ ε2 + ε3)|x|2

+
|HkBkB�

k Hk|2
ε2

|ex|2 + 2|HkBk| ·δk|ex|+ |HkEk|2
ε3

|e f |2 + ε

From Lemma 2.5, the result follows. �

Based on previous analysis for single mode, now we consider the HS (2.55)(2.56).
It can be obtained from Lemma 2.8 that there exist continuously differentiable func-
tions Vk : ℜn → ℜ≥0, k ∈ Q and γ̄1(·), γ̄2(·) ∈ K∞, such that ∀p,q ∈ Q

ᾱ1|x|2 ≤ Vp(x) ≤ ᾱ2|x|2 (2.85)

V̇p(x) ≤ −λ0Vp(x)+ γ̄1(|ex|)+ γ̄2(|e f |)+ ς0 (2.86)

Vp(x) ≤ μVq(x) (2.87)

where constants ᾱ1, ᾱ2, λ0, ς0 > 0, μ ≥ 1. The existence of μ is automatically
guaranteed for the quadratic Lyapunov functions, e.g., μ = ᾱ2/ᾱ1.

Since no discrete fault is considered, the system follows the prescribed switching
sequence at each switching instant. The observer is modified for the overall system
as follows:

• The fault diagnostic scheme is switched according to the current mode at each
switching instant.

• The initial states x̂ of the current observer are chosen as the final states of the
previous observer. The fault estimates f̂ c

k are set to zero at each switching instant.

The following theorem provides a FTC strategy for the overall system with con-
tinuous faults.

Theorem 2.5. Consider the HS (2.55)(2.56) with an initial x(0), each mode satisfies
assumptions 2.6-2.8. Let the switching function σ have an ADT τa. If τa > ln μ

λ0
,

where μ and λ0 are chosen from (2.86)-(2.87), and ex(t j(k + 1))est < ex(t j(k))est

where t j(k) denotes the time instant that mode j is activated for the kth time, then
under the diagnostic scheme (2.65)-(2.67) and controller (2.77)-(2.79), the states of
the overall switched system are always bounded and converge to a small closed set.

Proof : Define Gb
a(λ ) =

∫ b
a eλ sΦds, where Φ � γ̄1(|ex|)+ γ̄2(|e f |)+ ς0. Let T > 0

be an arbitrary time. Denote by t1, . . . ,tNσ (T,0) the switching instants on the interval
(0,T ), where Nσ (T,0) is defined in (2.45). Similar to [125], consider the function

W (s) � eλ0sVσ(s)(x(s)) (2.88)
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Since σ(s) is constant on each interval s ∈ [t j, t j+1), from (2.86), we have Ẇ (s) ≤
eλ0sΦ,∀s ∈ [t j,t j+1). Integrating both sides of the foregoing inequality from t j to

t−j+1 and from (2.87), we obtain W (t j+1)≤ μ(W (t j)+G
tj+1
t j

(λ0)). Iterating the fore-
going inequality from 0 to Nσ (T,0), we get

W (T−) ≤ μNσ (T,0)
(

W (0)+
Nσ (T,0)

∑
j=0

μ− jG
t j+1
t j

(λ0)
)

(2.89)

where T− denotes the time instant just before T .
Pick λ ∈ (0,λ0 − ln μ

τa
), we have τa ≥ ln μ

(λ0−λ ) . Based on (2.45), we have

μNσ (T,0)− j≤μN0+ T
τa
− j+1−1

≤μ1+N0eτa(λ0−λ )( T
τa
−1− j) ≤ μ1+N0e(λ0−λ )(T−t j+1) (2.90)

and

G
tj+1
t j

(λ0) =
∫ t j+1

t j

eλ0sΦds ≤ e(λ0−λ )t j+1G
tj+1
t j

(λ ) (2.91)

Substituting (2.90), (2.91) into (2.89) yields

W (T−)≤μNσ (T,0)W (0)+
Nσ (T,0)

∑
j=0

μ1+N0e(λ0−λ )T G
t j+1
t j

(λ )

≤μ1+N0e−λ T
(

eλ0T−(λ0−λ )τaW (0)+
Nσ (T,0)

∑
j=0

eλ0T G
t j+1
t j

(λ )
)

≤μ1+N0e−λ T eλ0T
(

W (0)+ G�
0 (λ )

)

It follows that

ᾱ1|x(T )|2 ≤ μ1+N0e−λ T (ᾱ2|x(0)|2 + G�
0 (λ ))

≤ μ1+N0e−λ T ᾱ2|x(0)|2 + μ1+N0
1
λ

(
γ̄1(‖ex‖[0,T))+ γ̄2(‖e f ‖[0,T))

)
+ ς̄

where ς̄ � (μ1+N0 · ς0)/λ .
This implies that the HS is ISpS w.r.t. ex, e f and a constant ς̄ > 0. On the other

hand, the inequality ex(t j(k+1))est < ex(t j(k))est guarantees the global convergence
of ex, which together with the boundness of e f leads to convergence of the states of
the overall HS to a small closed set. This completes the proof. �

Roughly speaking, Theorem 2.5 shows that, if the average dwell time is large
enough, then the overall HS is stable and the states are bounded whenever the con-
tinuous actuator faults occur in each dwell period.
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2.3.3 FTC for Discrete Faults

Since the discrete faults violate the prescribed switching sequence, one would nat-
urally try to first identify the current mode at the beginning of each time interval
[t j,t j+1) using a short time period Δ t j � t j+1 − t j, and then control the identified
mode in the rest of the time interval.

In this section, a model-free sliding mode observer is proposed to estimate the
states of current unknown mode, which together with a series of observers accord-
ing to system modes, can identify the current mode quickly while guaranteeing the
stability of the system in each Δ t j.

In each Δ t j, the control signal is set to zero, thus no continuous fault signal ap-
pears in Δ t j .

The system (2.59)-(2.60) without input can be written as

ẋ(t) = Ak′x(t)+ gk′(x(t), t), y(t) = Cx(t) (2.92)

where k′ ∈ Q is unknown. The system (2.92) is rewritten as

ẋ(t) = Āx(t)+ Fk′(x(t), t), y(t) = Cx(t) (2.93)

where Fk′(x,t) � Ak′x + gk′(x,t)− Āx, Ā is a matrix such that the pair (Ā,C) is ob-
servable. There exists a matrix L̄ such that Ā− L̄C is Hurwitz stable. Denote P̄ as the
symmetric positive definite solution of the Lyapunov equation (Ā− L̄C)�P̄+ P̄(Ā−
L̄C) = −Q̄ with a given symmetric positive definite matrix Q̄.

A model-free sliding mode observer is designed as

˙̄x(t) = Āx̄(t)+ S(ēx(t),ρ j)+ L(y(t)− ȳ(t)), ȳ(t) = Cx̄(t) (2.94)

where ēx � x− x̄, and

S(ēx(t),ρ j) � P̄−1C�Cēx(t)
|Cēx(t)| ρ j

with a constant ρ j > 0 which will be designed later.
From (2.93) and (2.94), we have

˙̄ex(t) = (Ā− L̄C)ēx(t)−S(ēx(t),ρ j)+ Fk′(x(t), t) (2.95)

Assumption 2.9. There exists a bounded function hk′(x, t), |hk′(x,t)| < ρ |x| for ρ >
0 such that

Fk′(x, t) = −P̄−1C�hk′(x, t) (2.96)

Remark 2.8. Eq.(2.96) is not hard to be satisfied if Fk′(x,t) is bounded. It is clear
that there exists a constant F̄ > 0 such that |Fk′(x, t)| ≤ F̄ |x|. If x is bounded in Δ t j

(which will be shown later), then |Fk′(x, t)| is naturally bounded.
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Lemma 2.9. Under Assumption 2.9, there exists a ρ j > 0 such that, if the states in
each Δ t j are bounded, then the origin of the system (2.95) is asymptotically stable.

Proof: Consider a Lyapunov function candidate V̄ (ēx) = ē�x P̄ēx. Its derivative along
the system (2.95) is

˙̄V = −ē�x Q̄ēx + 2ē�x P̄Fk′(x, t)−2|Cēx|ρ j

≤ −ē�x Q̄ēx + 2|Cēx| · |x|ρ −2|Cēx|ρ j (2.97)

If |x| is always bounded in Δ t j, then we can choose a ρ j large enough such that
˙̄V < −ē�x Q̄ēx in Δ t j . This completes the proof. �

In order to identify the current mode, a series of following observers are also needed

observer i : ˙̂xi = Aix̂i + gi(x̂i, t)+ Ki(y− ŷi), ŷi = Cx̂i, i ∈ Q (2.98)

which are the same as (2.65)-(2.67) without ui and f̂ c
i . exi denotes the state estima-

tion error using observer i.
The sliding mode observer in (2.94) and all observers in (2.98) are invoked to

estimate the current mode simultaneously in Δ t j . Set the initial states of observers
to x̂(t−j ) at t = t j. It is supposed that all modes are discernable [20], i.e., for mode
i without input, |exi| converges faster than |ex j|,∀ j ∈ Q, j �= i . This is a quite gen-
eral condition for switching control problem as for instance in [20],[129] and [68].
Roughly speaking, it means that all the modes are not overlapping.

The identifiability is analyzed in the following lemma.

Lemma 2.10. The current mode k′ can be identified at time instants t j +Δ t j, where
Δ t j can be made arbitrarily small.

Proof: It is evident that |exk′ |− |ēx| ≤ |x̄− x̂k′ | ≤ |exk′ |+ |ēx|, one has

|x̄− x̂i|− |x̄− x̂k′ | ≥ χ , ∀i ∈ Q, i �= k′

where χ � |exi|− 2|ēx|− |exk′ |. All observers share the same initial states at t = t j,
so χ(t j) < 0. From Lemmas 2.7, 2.8, and (2.98), it follows that if the current mode
is mode k′, then |exk′ | converges to zero at a given rate depending on Kk′ and Qk′ .
Lemma 2.9 ensures |ēx| also converges to zero at a given rate. Note that all modes are
discernable, there always exist Kk′ , Qk′ , L̄, Q̄ and ρ j such that χ(t) > 0 ∀t ≥ t j +Δ t j

with arbitrarily small Δ t j. It follows that |x̄− x̂k′ | is minimal ∀t ≥ t j + Δ t j. This
implies that mode k′ can be identified. �

The work of identifier is to find x̂k′ that is most similar to x̄. Although Δ t j can be
made arbitrarily small as in Lemma 2.10, a small delay is necessary to overcome the
possible overshoot of the state trajectories. Since x̂i, x̂k′ and x̄ are all continuous and
measurable, in the real implementation of the identifier, high order time derivatives
of the signals can help to find the similarity (as using 1-order time derivative of
signals in the simulation).
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The following assumption is imposed to avoid that the system states escape into
infinity or a large region before a proper controller is invoked.

Assumption 2.10. The Δ t j determined by Lemma 2.10 is always within the follow-
ing set

ΩΔ t j � {Δ t j|Δ t j < t j+1 − t j and |x̄(t j + Δ t j)| ≤ ξ |x̄(t j)|} (2.99)

where ξ ≥ 1, ∀k′ ∈ Q, j = 1,2 . . ..

Remark 2.9. The selection of ξ depends on system dynamics. Assumption 2.10 is
not hard to be satisfied, since Δ t j can be made arbitrary small (due to Lemma 2.10).
If the system without control is still stable or divergent slowly (this is the ideal case),
then it is also possible that |x̄(t j +Δ t j)|< ξ |x̄(t j)| when the current mode is detected
at t + Δ t j.

From (2.99), lemmas 2.7 and 2.9, we have

|x(t j + Δ t j)| ≤ |x̄(t j + Δ t j)|+ |ēx(t j + Δ t j)|
≤ |x̄(t j + Δ t j)|+

√

ᾱ3eᾱ4Δ t j |ēx(t j)|
≤ |x̄(t j + Δ t j)|+

√
ᾱ3ex(t j)est

≤ ξ |x̄(t j)|+ ε j (2.100)

where ᾱ3 > 0, ᾱ4 < 0 are determined by P̄,Q̄. k′′ denotes the mode activated in
[t j−1,t j). Note that ε j > 0 can be calculated from the estimates ex(t j)est in (2.74).
The main contribution of inequality (2.100) is that it provides a bound of |x(t)| in
Δ t j, which can be used to design ρ j in (2.94).

The proposed identifier in this section has three good properties:

• It can provide accurate state estimates after each Δ t j .
• It is not affected by continuous actuator faults since no control signal are applied

in Δ t j.
• It avoids the large transient overshoot of states in Δ t j.

2.3.4 FTC Framework

Based on the analysis in sections 2.3.2-2.3.3, the FTC problem for both continuous
and discrete faults is discussed in this section. Fig.2.2 shows the block diagram of
the framework, where the plant is connected with three parts: a series of observers
and controllers, a model-free observer, and an identifier. The fault tolerant control
framework works as the following procedure:

1) At switching instant t j, stop the fault diagnostic scheme (2.65)-(2.67), set control
signals and fault estimates to zero.

2) Invoke the model free observer (2.94), a series of observers (2.98), initialize all
observers at t j with the same states x̂(t−j ).
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Fig. 2.2 The FTC framework

3) Choose ρ j by (2.97) and (2.100), invoke the identifying scheme in Lemma 2.10
into the system.

4) Determine Δ t j based on Lemma 2.10.
5) At t j +Δ t j, stop the identifier, apply the fault diagnostic scheme (2.65)-(2.67) and

controller (2.77)-(2.79) into the system according to the current mode.
6) At switching instant t j+1, go to 1).

The following theorem is given to guarantee the stability of overall system with
both continuous and discrete faults.

Theorem 2.6. Consider the HS (2.55)(2.56) with an initial x(0) satisfying assump-
tions 2.9, 2.10, with each mode satisfying assumptions 2.6-2.8. Let the switching
function σ have an ADT τa. If τa > ln μ

λ0
, and ex(t j(k +1))est < ex(t j(k))est , then the

proposed FTC framework guarantees that the states of the HS are always bounded
and converge to a small closed set.

Proof: Following the result of Theorem 2.5, we have

W (t j+1) ≤ μ(W (t j + Δ t j)+ G
tj+1
t j+Δ t j

(λ0)) (2.101)

If the current mode is mode k′, then

W (t j + Δ t j) = eλ0(t j+Δ t j)Vk′(x(t j + Δ t j)) (2.102)

From Lemma 2.9 and (2.99), we have

|x(t j + Δ t j)| ≤ |ēx(t j + Δ t j)|+ |x̄(t j + Δ t j)|
≤

√

ᾱ3eᾱ4Δ t j |ēx(t j)|+ ξ |x̄(t j)− x(t j)+ x(t j)|
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≤ (
√

ᾱ3eᾱ4Δ t j + ξ )|ēx(t j)|+ ξ |x(t j)| (2.103)

From (2.126), we further have

Vk′(x(t j + Δ t j)) ≤ ᾱ2|x(t j + Δ t j)|2

≤ 2ᾱ2(
√

ᾱ3eᾱ4Δ t j + ξ )|ēx(t j)|2 +
2ᾱ2ξ 2

ᾱ1
Vk′(x(t j)) (2.104)

Define ψ(t j) � 2ᾱ2(
√

ᾱ3eᾱ4Δ t j + ξ )|ēx(t j)|2eλ0Δ t j , Δ j � (2ᾱ2ξ 2)
ᾱ1

eλ0Δ t j . In each pe-
riod Δ t j , there are no input and continuous actuator fault, so e f (t) = 0 ∀t ∈
[t j,t j + Δ t j), and it is natural that G

tj+1
t j+Δ t j

(λ0) ≤ G
tj+1
t j

(λ0). Iterating the inequality

(2.101) from 0 to Nσ together with (2.104), where Nσ denotes Nσ (T,0), we get

W (T−) ≤
(

μNσ
Nσ−1

∏
s=0

Δs

)
W (0)+

Nσ−1

∑
i=1

(
μNσ−i+1eλ0ti ψ(ti−1)

Nσ−1

∏̄
s=i

Δs̄

)

+μeλ0T ψ(tNσ−1)+
Nσ−1

∑
j=1

(
μNσ− j+1G

tj
t j−1

(λ0)
Nσ −1

∏
l= j

Δl

)
+ μG�

tNσ−1
(λ0)

Since Δ t j is a bounded small time period, there exists a constant Δ̄ > 0 such that

∏Nσ−1
s=i Δs ≤ Δ̄ ∀i ∈ {1,2, . . . ,Nσ −1}. Note that eλ0ti ≤ eλ0T , one has

W (T−) ≤ μNσ Δ̄W (0)+ eλ0T Δ̄
Nσ−1

∑
i=1

(μNσ−i+1ψ(ti−1))+ μeλ0T ψ(tNσ−1)

+Δ̄
Nσ−1

∑
j=1

(μNσ− j+1G
tj
t j−1

(λ0))+ μG�
tNσ−1

(λ0) (2.105)

From (2.90) and (2.91), we get μNσ− j+1G
tj
t j−1

(λ0) ≤ μ1+N0e(λ0−λ )T G
t j
t j−1

(λ ), for
0 < λ < λ0. Taking the forgoing inequality into (2.105), and following the same
way as in Theorem 2.5, we can finally obtain

ᾱ1|x(T )|2 ≤ βa(|x(0)|,t)+ γē(‖ēx(t j)‖[0,T))
+γex(‖ex‖[0,T ))+ γe f (‖e f ‖[0,T))+ ς̄2 (2.106)

where βa ∈ K L , γē, γex, γe f ∈ K∞, ς̄2 ≥ 0 are determined from (2.105).
The inequality (2.106) implies the ISpS of HS w.r.t. ex(t), e f (t), ēx(t j) and a con-

stant ς̄2 > 0, where j = 1,2 . . . . which, together with ex(t j(k + 1))est < ex(t j(k))est

and the boundness of e f guarantees the global convergence of the states of the sys-
tem to a small closed set. �

Remark 2.10. Note that ēx(t j) is a discrete vector, since its value is captured only at
each switching instant. Moreover, it has been shown that |ēx(t j)| ∀k ∈ Q is bounded.
Theorem 2.6 also implies that the value of Δ t j ∈ ΩΔ t j does not change the system’s
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ISpS property. Appropriate selection of Δ t j can reduce the bound of x in the sense
of ISpS in (2.106).

Remark 2.11. Switching the input between the nominal control strategy and zero
value has been shown to be an efficient way for performance-based FTC [103]. It
is natural for HS that, at each t j, the controller is switched on according to the
next mode. Setting the input to zero during a short period after each switching is
reasonable.

Example 2.2: [132] A m̄-phase switched reluctance motor (SRM) system is em-
ployed to illustrate a potential application field of the approach. x = [θm, ωm]� is
the state, where θm, ωm denote the angular position and velocity of the motors.

The simplified system model is expressed as follows:

θ̇m=ωm

ω̇m=−κe

Jm
sin(θm)− bi

Jm
ωm +

ci

Jm
ui, i = 1,2, . . . ,m̄

where Jm denotes the inertia of the motor. κe > 0 is the elasticity constant. ui is the
voltage applied to the motor of phase i, with bi and ci being the related viscous fric-
tion and the amplifier gain. In the simulation, m̄ = 3 is considered. The parameters
are Jm = 0.935 kgm2, κe = 0.311 Nm/rad, b1 = 1.17 Nms/rad, b2 = 2.23 Nms/rad,
b3 = 0.54 Nms/rad, c1 = 20.196 Nm/V , c2 = 35.31 Nm/V , c3 = 12.44 Nm/V . We
further describe the model by the general form (2.55)-(2.56) with

A1 =
[

0 1
0 −1.2513

]

, A2 =
[

0 1
0 −2.385

]

, A3 =
[

0 1
0 −0.5775

]

B1 =
[

0
21.6

]

, B2 =
[

0
37.765

]

, B3 =
[

0
13.305

]

, g(x) =
[

0
−0.333sinx2

]

The position of the motor phase can be measured via the shaft position sensor, while
the motor velocity is often estimated by timing the interval between phase commu-
tations of SRM. A coupled output signal of the angular position and velocity is
obtained shared by all phases, the output matrix C = [1 2].

The continuous actuator fault is considered only in mode 1 with E1 = [0 −
12.5]�. The matrix K1 and Q1 are chosen as

K1 =
[

3
−1.8

]

, Q1 =
[

0.1105 −0.0007
−0.0007 0.0986

]

Solving Eqs.(2.63)-(2.64), we obtain R1 = 0.3225 and

P1 =
[

0.0157 0.0258
0.0258 0.0516

]
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Fig. 2.3 An illustration of system’s behavior

On the other hand, by choosing W1 = I2×2, we obtain the matrix H1 from (2.75) as

H1 =
[

1.0330 0.0327
0.0327 0.0325

]

The bounded function η1(x,t) is selected from (2.76) as

η1(x,t) =
0.333|0.0151x1−0.0377x2|

|0.3266x1−0.8150x2|
Take Γ1 = 20, ϑ1 = 8, ε = 0.01. The related parameters of modes 2 and 3 can be
obtained following the same way as for mode 1, which is omitted.

The considered switching sequence is: mode 1→ mode 2→ mode 3 as shown in
Fig. 2.3. N0 = 0. From (2.126)-(2.87), choose μ = 35, λ0 = 0.8. The switching in-
stants are prescribed as t1 = 7s, t2 = 14s, which satisfy the ADT scheme in theorems
2.3 and 2.4. The system is initialized in mode 1 with x(0) = [0.05 0.2]�.

f c
1 is assumed to occur at t = 1.5s as

f c
1 (t) =

{
0, 0s ≤ t < 1.5s

0.5 + 0.3sin(4πt), 1.5s ≤ t < 7s

which corresponds to an increase in the friction of the motor, that makes the voltage
deviates from normal situation. Fig. 2.4 shows the fault estimation performance,
from which we can see that f̂ c

1 follows f c
1 rapidly with a very small overshoot.

The discrete fault occurs at t = t1 = 7s, which represents the abnormal switching
behavior of the motor phase that makes mode 1 switch to mode 3 as in Fig. 2.3. At
t = 7s, the identifier scheme is invoked. The parameter of the model free observer
in (2.94) is designed as

Ā =
[

0 1
0 −1

]

, L̄ =
[

2.8
−1.6

]

, P̄ =
[

2.7055 4.5351
4.5351 9.0703

]
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where P̄ is obtained with Q̄ =
[

0.6384 0.6540
0.6540 1.8141

]

. There exists a h(x,t) with ρ se-

lected as 3. The speed of the rotor can cause an increase of the current after the cor-
responding voltage control has been switched off. As a consequence, such residual
current can have an adverse effect on torque production at each switching instant. To
avoid an unexpected oscillation of rotor, we select ξ = 2. From (2.97) and (2.100),
we can also choose ρ1 = 5. A boundary layer compensator technique [150] is used
with a bound number 0.02 to eliminate the chattering.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

t/s

fault estimates
continuous fault

Fig. 2.4 Fault diagnosis
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Fig. 2.5(a) shows the performance of the identifier. Although |x̄− x̂1| is minimal at
the beginning, |x̄− x̂3| is minimal and decreases at 7.35s, while |x̄− x̂1| and |x̄− x̂2|
still diverge. This implies that Mode 3 and consequently the discrete fault can be
identified with Δ t1 = 0.35. The controller and fault diagnostic scheme for mode 3
are invoked into the system at t = 7.35s. The state trajectories throughout the system
process is shown in Fig. 2.5(b), it can be seen that the states are always bounded.

2.4 Global Passivity

In sections 2.1-2.3, we designed FTC law in each faulty mode such that it is stable,
then applied the standard stability results for HS. In the following two sections, we
will research directly the stability of HS without reconfiguring the controller in each
mode. We introduce, for the first time, the passivity theory into the FTC analysis
of HS.

2.4.1 Passivity and Fault Diagnosis

Passivity theory, that provides a bridge between achievable system performances
and energy-like considerations, has been widely used to analyze stability of non-
linear systems, where systems can not store more energy than that supplied by the
environment outside [127]. Passivity concept has also been adopted for switched
and HS [156], [151], where each mode is assumed to be passive.

We shall introduce the passivity theory into the FTC design for HS where each
mode is passive in the healthy situation, and may be not passive due to the fault.

Consider the affine nonlinear system

ẋ = f (x)+ g(x)u + Δ(x)
y = h(x) (2.107)

where x ∈ X ⊂ ℜn are measurable states, u ∈ U ⊂ ℜm are inputs, y ∈ Y ⊂ ℜm are
outputs. The fault is modelled by an unknown function Δ(x)∈ ℜn, which effectively
represents the process faults [10], and occurs at an unknown time. f , g, h and Δ are
smooth functions.

Definition 2.6. [14] A system (2.107) with Δ ≡ 0 is passive if there exists a nonneg-
ative function V : X → ℜ, which satisfies V (0) = 0, called the storage function, and
a supply rate y�u, such that for all initial states x(0) ∈ X, u ∈U, and t ≥ 0

V (x(t))−V(x(0))
︸ ︷︷ ︸

stored energy

≤
∫ t

0
y�(s)u(s)ds

︸ ︷︷ ︸
supplied energy

(2.108)

where x(t) are the states at time t.
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Fig. 2.6 Comparison of FD methods

The inequality (2.108) is called dissipativity inequality [127], which formalizes the
property that the increase in stored energy is never greater than the amount of energy
supplied by the environment. A passive system is easy to control, choosing u =
−φ(y), where φ : U → Y is a smooth function and φ(0) = 0, such that y�φ(y) > 0
for each nonzero y leads to Lyapunov stability [14].

Now we address the FD problem. As shown in Fig. 2.6, most classical methods
[36, 18] are designed such that the explicit values of faults can be estimated. Here
we develop a novel energy based FD technique that is concerned with the energy
analysis and has its root in the passivity. Under the passivity framework, we show
that only a part of faults needs to be detected and estimated implicitly.

In the following, we assume that V is a C 1 function. The passivity property is
equivalent to

[∂V
∂x

(x)
]�

[ f (x)+ g(x)u] ≤ y�u (2.109)

Once a fault occurs, the constraint (2.108) may be violated. Adding Δ(x) into
(2.109) and integrating both sides yields

V (x(t))−V(x(0)) ≤
∫ t

0
y�(s)u(s)ds

+
∫ t

0

[∂V
∂x

(x)
]�

Δ(x(s))ds
︸ ︷︷ ︸

fault energy E f

(2.110)

As indicated in (2.110), the energy dissipativity property changes due to the fault.
The fault may help to dissipate the stored energy (E f < 0) or increase the stored
energy (E f > 0). We only care about the faults that result in V (x(t))−V (x(0)) >∫ t

0 y�(s)u(s)ds. A diagnosis threshold can be designed as

V (x(t))−V(x(0)) =
∫ t

0
y�(s)u(s)ds (2.111)
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This is also called lossless property [14]. Note that the faults with E f < 0 are not
necessary to be detected since they do not change the energy dissipativity. Once
the left side of (6.6) becomes larger than the right side, the fault is detected. We
estimate such fault value implicitly as V (x(t))−V (x(0))− ∫ t

0 y�(s)u(s)ds. More
precisely, we estimate the energy that increases due to the fault and check whether
the system is still passive or not. This information will be used for fault tolerance
analysis [141].

2.4.2 Fault Tolerance Analysis of Hybrid Systems

The hybrid system takes the form

ẋ = fσ (x)+ gσ(x)uσ + Δσ (x)
y = hσ (x) (2.112)

where x ∈ X ⊂ ℜn is continuous everywhere, uσ ∈ ℜmσ , hσ ∈ ℜmσ . All fσ , gσ , hσ
and Δσ are smooth functions. σ(t) : [t0,∞) → Q = {1,2, . . . ,N} denotes the switch-
ing function. We denote by tk, k = 1,2, ... the kth switching time. Nσ(t) represents the
number of switchings in [0,t). tk j , k = 1,2, ..., j ∈ Q denotes the kth switching time
that mode j is activated. Suppose that there exists N non-negative storage functions
Vp(x), and α p

1 , α p
2 ∈ K∞, ∀p ∈ Q that satisfy

α p
1 (|x|) ≤Vp(x) ≤ α p

2 (|x|) (2.113)

such that mode p is passive with Vp(x) in the healthy situation.
In this work, we neither reconfigure the controller uσ nor adjust the switching

law σ . We analyze fault tolerance of the HS (2.112) under the original uσ and σ . It
will be shown that under the global energy dissipativity, the stability of the HS can
be achieved in spite of non passive modes.

Definition 2.7. A switched system (2.112) is globally passive if there exists nominal
controllers u1, u2, ...,uN, such that for all initial states x(0) ∈ X, and T ≥ 0

Vσ(T)(x(T ))−Vσ(0)(x(0))−Etr(x(0)) ≤
∫ T

0
W (s)ds (2.114)

where W (s) ≤ 0 is defined as

∫ T

0
W (s) �

Nσ(T )

∑
k=0

∫ tk+1

tk

(
y�(s)uσ(s)(s)

+
[∂Vσ(s)

∂x
(x)

]�
Δσ(s)(x(s))

)
ds (2.115)

and Etr = ∑
Nσ(T )
k=1

[
Vσ(tk)−Vσ(t−k )

]
is bounded by a constant and tends to zero as x(0)

goes to origin.
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The left side of (2.114) represents the sum of stored energies of all modes, which

could also be written as ∑
Nσ(T )
k=0

[
Vσ(t−k+1)

−Vσ(tk)

]
where t0 = 0, tNσ(T )+1 = T . The

formulation of (2.114) is consistent with the standard passivity inequality, Etr de-
notes the total transient energy. As shown later, Etr may be eliminated under some
conditions.

It is clear from (2.115) that the right hand of (2.114) denotes the total supplied
energy and “fault” energy. Since W (s) ≤ 0, it follows that under the nominal con-
trollers u1, u2, ...,uN, the sum of the supplied energy during [0,T ) can compensate
the increasing energy due to faults. This means that the total stored energies still
dissipative in spite of faults.

Global passivity balances the total energy throughout the overall process, while
no individual passivity of each mode is required. We shall prove that the global
passivity includes the passivity property proposed in [156] as in the following
proposition.

Proposition 2.1. If each mode of a HS (2.112) is passive as in (2.108), and there
exist functions ωk+1

k (t), called cross supply rates such that ωk+1
k (t)≤ φ k+1

k (t) where
φ k+1

k (t) ∈ L1 and

Vq(x(tq(k+1)))−Vq(x(tqk)) ≤
∫ tq(k+1)

tqk

ωk+1
k (s)ds (2.116)

then the system (2.112) is globally passive.

Proof: The passivity of each mode leads to the fact that each energy is non-
decreasing when the related mode is activated. Suppose mode q is activated at the
time T , from (2.116), we obtain

Vq(x(T ))−Vq(x(tq1))−Θ(x(0))≤
∫ T

0
W (s)ds (2.117)

where W (s) ≤ 0, Θ(x(0)) is a constant and tends to zero as x(0) goes to the origin.

This constant is obtained from the fact that Σ∞
k=1

∫ tq(k+1)
tqk

ωk+1
k (s)ds is bounded, since

φ k+1
k (t) ∈ L1. On the other hand, for any x(0), Vσ(0)(x(0)) is bounded, there exists

a constant Φ � Vσ(0)(x(0))−Vq(x(tq1)), which together with (2.117), leads to the
result. �

Global passivity implies the stability as shown below.

Theorem 2.7. If a HS (2.112) is globally passive, then the origin of the system is
stable in spite of faults.

Proof: For a given arbitrary ε > 0, since Vi is continuous and Vi(0) = 0, based on
(2.113), we can choose ε i

2 > 0 such that Vi < ε i
2 leads to (α i

1)
−1(Vi) < ε . Pick ε3 =

mini[ε i
2], since Etr tends to zero as x(0) goes to the origin, we can choose ε4 such that

|x(0)| < ε4 results in maxi[α i
2(|x(0)|)+ Etr(x(0))] < ε3. Thus, followed by (2.114),



2.4 Global Passivity 45

...mode 6mode 5

healthy

mode 4mode 3mode 1 mode 2

healthyfaultyhealthyfaulty healthy

Fig. 2.7 Switching sequence

we find that if the system starts in B(ε4), we will stay within B(ε). This completes
the proof. �

Theorem 2.7 provides us a method to check the fault tolerance, which is equivalent
to check the global passivity. However, when we use (2.114) to check the fault
tolerance at any instant T , one obstacle appears since we are not sure whether there
is a constant bound of the total transient energy for all t ≥ T . This motivates the
following result.

Proposition 2.2. If a HS (2.112) is globally passive, and Vσ(t)(x(t)) ≤ Vσ(t−)(x(t))
at each switching instant t, then (2.114) holds with Etr = 0.

Proof: The result follows the fact that

Nσ(T )

∑
k=0

[
Vσ(t−k+1)

(x(tk+1))−Vσ(tk)(x(tk))
]

= Vσ(T)(x(T ))−Vσ(tNσ(T )
)(x(tNσ(T ) ))+ · · ·

+Vσ(t−k+1)
(x(tk+1))−Vσ(tk)(x(tk))+ · · ·+Vσ(t−1 )(x(t1))−Vσ(0)(x(0))

≥Vσ(T)(x(T ))−Vσ(0)(x(0)) (2.118)

Thus, from (2.115), we have Vσ(T)(x(T ))−Vσ(0)(x(0)) ≤ ∫ T
0 W (s)ds . �

The condition in Proposition 2.2 guarantees that the energy in the current mode at
switching time is always larger than that of the next mode. In this case, the transient
energy is negative.

To further overcome the obstacle in (2.114), and allow the increase of energy at
switching time, we provide a stronger version of global passivity, named “periodic
fault tolerant passivity”. We first define some mode sets:

• Q1 ⊂ Q denotes the set of healthy modes.
• Q2 ⊂ Q1 denotes the set of healthy modes that may be activated as the initial

mode or after a healthy mode.
• Q3 ⊂ Q1 denotes the set of healthy modes that are activated after a faulty mode,

meanwhile, are followed by a healthy mode or are the final mode.

The relation of above several sets is illustrated by Fig.2.7, from which we see that
{ 1, 3, 5, 6 } ∈ Q1. { 1, 6 } ∈ Q2. 5 ∈ Q3. Note that Mode 3 is activated between
two faulty modes. Thus 3 ∈ Q1 \ (Q2 ∪Q3).
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Definition 2.8. A HS (2.112) is periodically fault tolerant passive if there exist nom-
inal controllers u1, u2, ...,uN, such that for all initial states x(0) ∈ X, and T ≥ 0, the
following inequalities hold:

• ∀i ∈ Q2

Vi(x(t(k+1)i))−Vi(x(tki)) ≤ 0 (2.119)

where 0 ≤ t(k)i < t(k+1)i ≤ T .
• ∀i ∈ Q2, j ∈ Q3, such that mode j is the first mode of set Q3 activated after mode

i. Denote by Te, Ts the end time of mode j and the start time of mode i respectively

Vj(x(Te))−Vi(x(Ts)) ≤
∫ Te

Ts

W1(s)ds (2.120)

where W1(s) ≤ 0.
• For the case that the initial mode i is faulty, and there exists j ∈ Q3 such that

mode j is the first mode of set Q3 activated after initial mode and is ended at Te

Vj(x(Te))−Vi(x(0)) ≤
∫ Te

0
W2(s)ds (2.121)

where W2(s) ≤ 0.
• For the case that the final mode i is faulty, and there exists j ∈ Q2 such that mode

j is the last mode of set Q2 activated before the final mode and is started at Ts

Vj(x(T ))−Vi(x(Ts)) ≤
∫ T

Ts

W3(s)ds (2.122)

where W3(s) ≤ 0.
• For the case that no mode of the set Q2 ∪Q3 is activated

Vσ(T)(x(T ))−Vσ(0)(x(0)) ≤
∫ T

0
W4(s)ds (2.123)

where W4(s) ≤ 0.

Definition 2.8 is illustrated in Fig. 2.8, from which we can see that the energy is
dissipative in each small period that includes the faulty modes. Two advantages
result from this property, that is 1) Inequalities (2.120)-(2.123) are not hard to justify.
2) We can check the fault tolerance in a short period after the fault occurs.

Theorem 2.8. If a HS (2.112) is periodic fault tolerant passive, then the origin of
the system is stable in spite of faults.

Proof: We consider four cases as follows:

• Case 1: The initial and final modes are not faulty. Note that each healthy mode is
passive. Inequalities (2.120)-(2.122) imply that every time when we start in the
mode of the set Q2, the energy is non-increasing until the next mode of set Q2 is
activated. The stability follows from Theorem 2.3 in [13] and Theorem 2.7.
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Fig. 2.9 A switched RLC circuit

• Case 2: No mode of the set Q2 ∪Q3 is activated. The stability is achieved from
(2.123) and Theorem 2.7.

• Case 3: The initial mode is healthy, and the final mode is faulty. It follows from
(2.122) that after the last mode of set Q2 before final mode is activated, the en-
ergy is non-increasing. The stability is achieved from Theorem 2.3 in [13] and
Theorem 2.7.

• Case 4: The initial mode is faulty, and the final mode is healthy. Similarly to Case
3, the result can be obtained from (2.121). �

Example 2.3: A switched RLC circuit that is widely employed in order to perform
low-frequency signal processing in integrated circuits is taken as an example to
illustrate the results. As shown in Fig. 2.9, the circuit consists of an input power
source, a resistance, an inductance and N capacitors that could be switched between
each other. The two measurable state variables are the charge in the capacitor and
the flux in the inductance x = [qc,φL]�. The input u is the voltage.

The dynamic equations are given by

⎧
⎨

⎩

ẋ1 = 1
L x2

ẋ2 = − 1
Ci

x1 − R
L x2 + u

y = 1
L x2, i = 1,2, ...,N

where Ci denotes the ith capacitor. The energy function of each mode is given as

Vi =
1

2Ci
x2

1 +
1

2L
x2

2
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Let us first consider the case N = 1, this RLC circuit is also discussed in [91].
In the healthy situation, it can be obtained that V̇ = −R

L x2
2 + yu which satisfies the

passivity. The nominal control is chosen as u = un =−y. Now we consider a leakage
fault that occurs in the capacitor at t = 200s, the dynamic equation of ẋ2 is changed
into

ẋ2 = − 1
C

x1 − R
L

x2 +
k
C

x1 + u (2.124)
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where k > 0 is an unknown faulty parameter. It follows that V̇ = −R
L x2

2 − k
LC x1x2 +

yu. If −R
L x2

2 ≤ k
LC x1x2, then such fault does not affect the passivity. Otherwise, the

fault would be diagnosed. Set k =−200, L = 0.1H, C = 100μF, R = 1Ω , the initial
states are [0.2,0.2]�. Fig. 2.10 shows the diagnosis performance, we can see that
once the threshold is reached at nearly 370s, the fault is detected.

Suppose that N = 3, i.e., the system is switched among three capacitors. C1 is
activated in [t3n,t3n+1), C2 is in [t3n+1, t3n+2), and C3 is in [t3n+2, t3n+3), n = 0,1, ....
The nominal input is ui = − 1

L x2. The fault occurs in C2 as (2.124) with k = −200,
which violates the passivity of mode 2. It is clear that 1 ∈ Q2, 3 ∈ Q3. In the simu-
lation, set L = 0.1H, C1 = 50μF, C2 = 100μF, C3 = 20μF and R = 1Ω . Assume
that the dwell period t3n+3 − t3n+2 = 20s, t3n+2 − t3n+1 = 20s, and t3n+1 − t3n = 20s.
We can check that each period [t3n,t3n+3) satisfies (2.120), and mode 1 satisfies
(2.119). Thus the system is periodic fault tolerant passive. Fig. 2.11 shows the state
trajectory, the system is still stable in spite of the fault.

2.5 General Stability Results in HS

Motivated by the fact that some modes may be unstable due to faults, in this sec-
tion, we establish a new sufficient stability condition named “ gain technique” for
HS with unstable mode, and provide novel stabilizing switching laws such that the
stability is guaranteed and each mode can be activated following any prescribed
sequence whatever it is stable or not.

2.5.1 Preliminaries

The considered switched system takes the general form

ẋ(t) = fσ(t)(x(t)) (2.125)

where x ∈ X ⊂ ℜn are the states. fσ is a nonlinear smooth function. Define
Q = {1,2, . . . ,N}, where N is the number of modes. σ(t) : [0,∞) → Q denotes the
switching function, which is assumed to be a piecewise constant function continu-
ous from the right. fi, i ∈ Q are smooth functions with fi(0) = 0, hence, the origin is
an equilibrium point. We denote by t j, j = 1,2, ... the jth switching instant, t0 = 0.
Let tik, i ∈ Q, k = 1,2, ... be the kth time when mode i is switched on. Nσ(t) rep-
resents the number of switchings in [0, t). In this work, we only consider nonZeno
sequences (i.e., sequences that switch at most a finite number of times in any finite
time interval). However, the developed theory allows infinite switchings in infinite
time interval. We also assume that the states do not jump at the switching instants.

Specially, we define a class G K L function as in [135] γ : [0,∞)× [0,∞) →
[0,∞) if γ(·,t) is of class K for each fixed t ≥ 0 and γ(s,t) increases as t → ∞ for
each fixed s ≥ 0.

Denote Qs ⊂ Q as the set of stable modes and Qus ⊂ Q the set of unstable
ones. Q = Qs ∪Qus, Qs ∩Qus = /0 and Qs �= /0. Suppose that there exist continuous
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non-negative functions Vp : ℜn → ℜ≥0, α p
1 , α p

2 ∈ K∞, ∀p ∈ Q, and φp ∈ K L
∀p ∈ Qs, φp ∈ G K L ∀p ∈ Qus that satisfy for k = 1,2, ...

α p
1 (|x|) ≤Vp(x) ≤ α p

2 (|x|), ∀p ∈ Q (2.126)

Vp(x(t)) ≤ φp(Vp(x(tpk)),t − tpk), ∀p ∈ Qs, φp ∈ K L , t ≥ tpk (2.127)

Vp(x(t)) ≤ φp(Vp(x(tpk)),t − tpk), ∀p ∈ Qus, φp ∈ G K L , t ≥ tpk (2.128)

Formulations (2.126)-(2.128) include various converging and diverging forms (e.g.,
the exponential decay form [47], the constant gain form [155]). For each stable
mode, Vp in (2.127) is more general than a classic Lyapunov function since a
bounded increase is allowed. For unstable modes, inequality (2.128) implies that
Vp may increase infinitely as described by a G K L function if t → ∞. G K L
function is more general than the Lyapunov-like function in [148] since we do not
impose an upper bound on Vp. Note that (2.127)-(2.128) are properties satisfied by
functions of each mode, and do not depend on the switching sequence. Vp (∀p ∈ Q)
is not required to be differentiable.

Definition 2.9. Given a switching function σ(t), the origin of a switched system
(2.125) is said to be stable under σ if for any ε > 0, there exists a δ > 0 such that
|x(t)| ≤ ε , t ≥ 0, whenever |x(0)| ≤ δ .

Definition 2.9 describes the stability w.r.t. a given switching function σ(t). The ob-
jectives of this section is to propose switching laws that stabilize the system (2.125)
satisfying (2.126)-(2.128) by determining the switching instants according to any
given switching sequence.

2.5.2 Stabilization of Switched Systems

In the following, we first establish a stability condition for the considered switched
systems in the finite time interval with finite numbers of switchings (Lemma 2.11).
Based on such stability criterion, a stabilizing switching law will be constructed
(Theorem 2.9).

Lemma 2.11. Consider a switched system (2.125) satisfying (2.126)-(2.128). Under
σ(t), if there exists a constant β > 0 such that

Nσ(ts ,t)

∑
k=0

(Nσ(ts ,t)

∏
i=k

φ ti+1−ti
σ(ti)

Vti
σ(ti)

)
≤ β , t > ts ≥ 0, where tNσ(ts ,t)+1 � t, Nσ(ts,t) is finite

(2.129)
Then x is bounded in [ts,t). Moreover, for any bounded x(ts), the upper bound of
|x(t)| can be estimated.

Remark 2.12. Note that
φ t−ti

σ(ti)

V
ti
σ(ti)

for t ≥ ti is the bound of the gain of function Vσ(ti)

when mode σ(ti) is activated. Condition (2.129) gives a relation among the gains of
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each activated mode and its activating period. More precisely, x is bounded in [ts, t)
if the product of gains from each activated mode to the terminated mode is bounded,
and the sum of these products values is also bounded. It deserves to point out that
for a switched system with unstable modes, even in the finite time interval with finite
switching times, x may escape to infinity under inappropriate switching law.

Proof of Lemma 2.11: For the sake of clearness, suppose that ts = t0 = 0. Denote
Nσ(t) � Nσ(0,t).

Consider t ∈ [0,t1), we have V t
σ(0) ≤

φ t
σ(0)

V 0
σ(0)

V 0
σ(0). Condition (2.129) ensures that

φ t
σ(0)

V 0
σ(0)

≤ β . It follows from (2.126)-(2.128) that

|x(t1)| ≤ (ασ(0)
1 )−1 ◦β ◦ασ(0)

2︸ ︷︷ ︸
ϑt1

(|x(0)|) (2.130)

for ϑt1 ∈ K∞. According to (2.126), one has

Vt1
σ(t1)

≤Vt1
σ(t−1 )

+ ασ(t1)
2 (ϑt1(|x(0)|))−ασ(t−1 )

1 (ϑt1(|x(0)|)) (2.131)

Define αt1 = max[ασ(t1)
2 ◦ϑt1 ,α

σ(t−1 )
1 ◦ϑt1 ]. Since ασ(t1)

2 ,ασ(t−1 )
1 ,ϑt1 ∈K∞, it is clear

that αt1 ∈ K∞ and

αt1(|x(0)|) ≥ ασ(t1)
2 (ϑt1(|x(0)|))−ασ(t−1 )

1 (ϑt1(|x(0)|)) (2.132)

Substituting (2.132) into (2.131) results in

Vt1
σ(t1)

≤Vt1
σ(t−1 )

+ αt1(|x(0)|) (2.133)

For t ∈ [t1,t2), we have

Vt
σ(t) ≤

φ t−t1
σ(t1)

V t1
σ(t1)

Vt1
σ(t1)

≤
φ t−t1

σ(t1)

Vt1
σ(t1)

[
V

t−1
σ(t−1 )

+ αt1(|x(0)|)
]

≤
φ t−t1

σ(t1)

Vt1
σ(t1)

φ t1
σ(0)

V 0
σ(0)

V 0
σ(0) +

φ t−t1
σ(t1)

Vt1
σ(t1)

αt1(|x(0)|) (2.134)

Note that V 0
σ(0) is bounded and αt1 ∈K∞. Condition (2.129) ensures that

φ t−t1
σ(t1)

V
t1
σ(t1)

φ t1
σ(0)

V 0
σ(0)

≤

β and
φ t−t1

σ(t1)

V
t1
σ(t1)

≤ β . It follows from (2.126)-(2.128) and (2.134) that
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|x(t2)| ≤ (ασ(0)
1 )−1 ◦β ◦

(
ασ(0)

2 (|x(0)|)+ αt1(|x(0)|)
)

︸ ︷︷ ︸
ϑt2(|x(0)|)

(2.135)

for ϑt2 ∈ K∞. One further has

Vt2
σ(t2)

≤Vt2
σ(t−2 )

+ ασ(t2)
2 (ϑt2(|x(0)|))−ασ(t−2 )

1 (ϑt2(|x(0)|)) (2.136)

Define αt2 = max[ασ(t2)
2 ◦ϑt2 ,α

σ(t−2 )
1 ◦ϑt2 ]. Since ασ(t2)

2 ,ασ(t−2 )
1 ,ϑt2 ∈K∞, it follows

that αt2 ∈ K∞ and

αt2(|x(0)|) ≥ ασ(t2)
2 (ϑt2(|x(0)|))−ασ(t−2 )

1 (ϑt2(|x(0)|)) (2.137)

Substituting (2.137) into (2.136) results in

Vt2
σ(t2)

≤Vt2
σ(t−2 )

+ αt2(|x(0)|) (2.138)

for αt2 ∈ K∞.
By induction, we find that under condition (2.129) there exists a function α ∈K∞

such that at each switching instant ti > 0, i = 1,2, ...,Nσ(t)

Vσ(ti)(x(ti)) ≤Vσ(t−i )(x(ti))+ α(|x(0)|) (2.139)

where α(|x(0)|) � supi=1,2,...,Nσ(t)
[αti(|x(0)|)].

Denote j = Nσ(t) for t ≥ 0, j ≥ 0, it follows from (2.127)-(2.128) that

Vσ(t)(x(t)) ≤ φ t−t j

σ(t j)
=

φ t−t j

σ(t j)

V
tj

σ(t j)

V
tj

σ(t j)

≤
φ t−t j

σ(t j)

V
tj

σ(t j)

[
V

t−j
σ(t−j )

+ α(|x(0)|)
]

≤
φ t−t j

σ(t j)

V
tj

σ(t j)

φ t j−t j−1

σ(t j−1) +
φ t−t j

σ(t j)

V
tj

σ(t j)

α(|x(0)|)

≤
φ t−t j

σ(t j)

V
tj

σ(t j)

φ t j−t j−1

σ(t j−1)

V
tj−1

σ(t j−1)

V
t−j−1

σ(t−j−1)
+

[φ t−t j

σ(t j)

V
tj

σ(t j)

φ t j−t j−1

σ(t j−1)

V
tj−1

σ(t j−1)

+
φ t−t j

σ(t j)

V
tj

σ(t j)

]
α(|x(0)|)

...

≤
Nσ(t)

∏
s=0

φ ts+1−ts
σ(ts)

Vts
σ(ts)

Vσ(0)(x(0))+
Nσ(t)

∑
k=1

(Nσ(t)

∏
i=k

φ ti+1−ti
σ(ti)

Vti
σ(ti)

)
α(|x(0)|) (2.140)
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Based on (2.126) and (2.139), since α ∈K∞, there exists a K∞ function ᾱ such that

ᾱ(|x(0)|) = max
[
ασ(0)

2 (|x(0)|),α(|x(0)|)
]

(2.141)

Substituting (2.141) into (2.140), together with (2.129), yields

Vσ(t)(x(t)) ≤
Nσ(t)

∑
k=0

(Nσ(t)

∏
i=k

φ ti+1−ti
σ(ti)

Vti
σ(ti)

)
ᾱ(|x(0)|) ≤ β ᾱ(|x(0)|) (2.142)

From (2.126), we finally obtain

|x(t)| ≤ (ασ(t)
1 )−1β ᾱ(|x(0)|) (2.143)

Since β > 0 is a constant, ασ(t)
1 , ᾱ ∈ K∞, the stability result follows.

From above procedures, one can find that under condition (2.129), given any
x(ts), β and switching sequence, each αti(|x(ts)|) can be calculated which is inde-
pendent from the switching instants. Thus, for any bounded x(ts), we can find a
function Ω(·) such that |x(t)| ≤ Ω(|x(ts)|). This completes the proof. �

Remark 2.13. The main contributions of Lemma 2.11 are twofold: 1) Both stable
and unstable modes are allowed in the switched nonlinear system; 2) The “μ” con-
dition is removed by introducing a difference α(|x(0)|) among functionsVp ∀p∈M .
However, the condition (2.129) is independent from α(|x(0)|). 3) The upper bound
of |x(t)| can be estimated without the information of switching instants in [0,t). This
property will be very useful in switching law design.

Remark 2.14. The condition (2.129) is valid since Vσ is a non-negative function and
is impossible to become zero unless a stronger finite time stability [9] is achieved.
For the case that finite time stability is achieved, (2.129) is available if we take j
instead of Nσ(t) where Vt

σ(t) > 0 for t < t j+1.

Remark 2.15. It is often not easy to verify (2.129) on-line, which relies on the so-
lutions of the system. However, this condition can help to construct a stabilizing
switching law as shown below. The proposed stabilization scheme will automati-
cally guarantee the validation of (2.129).

Unlike the usual design methods that adjust both the switching sequence and switch-
ing instants [155], [130], we only redesign the switching instants such that the origin
of switched system is always stable under any given switching sequence where each
prescribed mode can be activated.

Assumption 2.11. there exists a known constant χ ≥ 1 such that

χ = max
j∈M ,k=1,2...

φ j(Vj(x(t jk)),0)
Vj(x(t jk))

(2.144)
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Remark 2.16. Assumption 1 means that the initial gain of function Vj is bounded
when the corresponding mode j is just switched on at t = t jk. In some situations,
φ j(Vj(x(t jk)),0) is affine w.r.t. Vj(x(t jk)), e.g. the exponential decay form [47], the
constant gain form [155]. In these cases, χ can be easily obtained a priori.

Without loss of generality, suppose that at for a given sequence, at most m unstable
modes (m is finite) are activated one by one without being interrupted by stable
modes.

Choose a constant β > max[m(1 + χ)χm,m(m + 1)χm+1], where χ is defined
in (6.37). Given any required upper bound ε of |x(t)| and switching sequence, the
switching law is designed as:

Switching law S (with a given ε and a switching sequence)

1. Let i = 0, choose x(0) such that (ασ(0)
1 )−1φσ(0)(Vσ(0)(x(0),0)) ≤ ε

2. If (C1) mode σ(ti) is stable and mode σ(ti+1) is stable, then go to 3;
Else, go to 5.

3. Choose ti+1 such that (ασ(ti+1)
1 )−1φσ(ti+1)(Vσ(ti+1)(x(ti+1),0)) ≤ ε .

4. Let i = i+ 1, go to 2.
5. If (C2) mode σ(ti) is stable and mode σ(ti+1) is unstable, and there exist h− 1

unstable modes (h ≤ m) activated successively after mode σ(ti+1), then go to 6;
Else, go to 9.

6. Determine the bound Ω(|x(ti+1)|) satisfying |x(ti+h+1)| ≤ Ω(|x(ti+1)|) using
(2.143) in Lemma 2.11, choose ti+1 such that

(ασ(ti+h+1)
1 )−1φσ(ti+h+1)(α

σ(ti+h+1)
2 (Ω(|x(ti+1)|)),0)) ≤ ε

let s = 0.
7. Choose ti+2+s such that

i+1+s

∑
k=0

( i+1+s

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
≤ β

(h + 1− s)χh+1−s −1

8. Let s = s+ 1; If s �= h, then go to 7; Else, let i = i+ h, go to 2.
9. If (C3) the initial mode σ(0) is unstable, and there exist h− 1 unstable modes

(h ≤ m) activated successively after mode σ(0), then go to 10.
10.Determine the bound Ω(|x(0)|) satisfying |x(th)| ≤ Ω(|x(0)|) using (2.143) in

Lemma 2.11, choose x(0) such that

(ασ(th)
1 )−1φσ(th)(α

σ(th)
2 (Ω(|x(0)|)),0)) ≤ ε

let s = 0.

11.Choose t1+s such that ∑s
k=0

(
∏s

j=k

φ
t j+1−t j
σ(t j )

V
t j
σ(t j)

)
≤ β

(h+1−s)χh+1−s −1.

12.Let s = s+ 1; If s �= h, then go to 11; Else, let i = h, go to 2. �
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The main idea behind S is that for current stable mode σ(ti), if next mode σ(ti+1) is
stable, we let mode σ(ti) be activated until ti+1 such that x(ti+1) results in |x(t)| ≤ ε
during mode σ(ti+1)’s working period [ti+1, ti+2) (step 3). When we predict that h
unstable modes will be activated after stable mode σ(ti), we let mode σ(ti) be acti-
vated long enough until ti+1 such that x(ti+1) results in |x(t)| ≤ ε for t ∈ [ti+1, ti+h+2),
i.e. the total activating periods of all h unstable modes and stable mode σ(ti+h+1)
(step 6). This can be achieved because the upper bound Ω(|x(ti+1)|) can be obtained
without the information of switching instants ti+1, ...,ti+h+1. The switching scheme
among unstable modes is based on Lemma 2.11 (steps 7, 8, 11, 12). For initial sta-
ble/unstable modes, the initial states x(0) are also chosen in different ways (steps 1
and 10).

Theorem 2.9. Consider a switched system (2.125) satisfying (2.126)-(2.128) and
Assumption 2.11. For any given ε > 0 and any switching sequence where at most
m unstable modes are activated one by one, under the switching law S , there exist
an initial states x(0) and a series of switching instants satisfy 0 < t1 < t2 < ..., such
that the origin is stable and |x(t)| ≤ ε ∀t ≥ 0.

Proof: In the step 1 of S , choosing x(0) satisfying

(ασ(0)
1 )−1φσ(0)(Vσ(0)(x(0),0)) ≤ ε

which leads to |x(0)| ≤ ε when mode σ(0) is just activated. If mode σ(0) is sta-
ble, we have from (2.126)-(2.127) that |x(t)| ≤ ε for t ∈ [0, t1). We will consider
respectively three cases C1-C3 in S .

For C1, since mode σ(ti) is stable, it follows from (2.126)-(2.127) that there
always exists a time instant ti+1 > ti satisfying

(ασ(ti+1)
1 )−1φσ(ti+1)(Vσ(ti+1)(x(ti+1),0)) ≤ ε

this implies that |x(ti+1)| ≤ ε when mode σ(ti+1) is just activated. Since mode
σ(ti+1) is also stable, we have |x(t)| ≤ ε for t ∈ [ti+1, ti+2).

For C2, switching on mode σ(ti+2) at t = ti+2 results in

φσ(ti+2)(V
ti+2
σ(ti+2)

,0)

Vti+2
σ(ti+2)

( i+1

∑
k=0

( i+1

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
+ 1

)
≤ β

(h + 1)χh

Since β > m(m+ 1)χm+1, h ≤ m, we have β
(h+1)χh < β

hχh −1. Thus we can choose

ti+3 > ti+2 such that

φ ti+3−ti+2
σ(ti+2)

Vti+2
σ(ti+3)

( i+1

∑
k=0

( i+1

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
+ 1

)
≤ β

hχh −1



56 2 Hybrid Systems with Time-Dependent Switching

By induction, for s = 1,2, ...,h−1 we have β
(h+1−s)χh−s < β

(h−s)χh−s −1. Choose

ti+3+s as S , we obtain

φ ti+3+s−ti+2+s
σ(ti+2+s)

Vti+2+s
σ(ti+2+s)

( i+1+s

∑
k=0

( i+1+s

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
+ 1

)
≤ β

(h− s)χh−s −1

Finally, we verify condition (2.129) with t = ti+1+h and ts = ti+1. There are finite
numbers of switchings occurring in (ti+1, ti+1+h], it follows from Lemma 2.11 that
we can find a bound Ω(|x(ti+1)|) satisfying |x(ti+h+1)| ≤Ω(|x(ti+1)|) using (2.143).
Since this bound is independent from the switching instants, we can determine it
before h unstable modes are switched into.

Note that mode σ(ti) is stable, we can find a time instant ti+1 > ti such that

(ασ(ti+h+1)
1 )−1φσ(ti+h+1)(α

σ(ti+h+1)
2 (Ω(|x(ti+1)|)),0)) ≤ ε

This guarantees that |x(t)| ≤ ε for t ∈ [ti+1, ti+h+1]. Mode σ(ti+h+1) is also stable,
we further have |x(t)| ≤ ε for t ∈ [ti+h+1, ti+h+2).

For C3, note that β > m(1 + χ)χm and χ ≥ 1, which results in χ < β
hχh − 1.

We can choose t1 such that
φ t1

σ(0)

V 0
σ(0)

≤ β
hχh − 1, the rest of the proof follows the same

procedure as in C2, thus is omitted here. We finally obtain (2.129) with t = th and
ts = 0.

Based on above analysis, one finds that for a switched system with any given
switching sequence, finite or infinite numbers of switchings and both stable and
unstable modes, the switching law S maintains the stability of the origin, and
|x(t)| ≤ ε for t ≥ 0. This completes the proof. �

Remark 2.17. Roughly speaking, S lets the activating periods of stable modes
large enough and lets the activating periods of unstable modes small enough such
that the state trajectory is bounded under a given switching sequence. Such idea is
similar to that of dwell-time schemes in [136], [32] where an aggregated system is
considered including stable modes and consequently activated unstable ones. This
aggregated system would be stable if the total activating periods of stable modes
are sufficient large. However, S provides an alternative way to approach stability
in the absence of the “μ” condition.

Example 2.4: Consider a numerical example with three modes. Let M = {1,2,3},
x = [x1, x2]�, the modes take the following forms

f1 =
[−x1 + 4x3

2
−x1 − x2

]

, f2 =
[

x1 − x2

x2 + x3
1

]

, f3 =
[

x1 −3x2

x1 + x2

]

The prescribed switching sequence is

mode 1 → mode 2 → mode 3 → mode 1 → ··· · · ·
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Fig. 2.12 State trajectory

For mode 1, it is not easy to find a quadratic Lyapunov function. However the
origin is still stable, we choose a polynomial Lyapunov function V1 = x2

1 + 2x4
2, this

results in V1(x(t)) < e−2tV1(x(0)) for t ≥ 0. Both mode 2 and mode 3 are unstable,
applying V1 to modes 2 and 3 yields

dV1(x)
dx

f2(x) ≤ V 0.5
1 (x)+ 7V1(x)+ 4V1.5

1 (x)+ 4V 3
1 (x) (2.145)

dV1(x)
dx

f3(x) ≤ V 0.5
1 (x)+ 11V1(x)+ 2V 1.5

1 (x) (2.146)

It can be seen that a common Lyapunov function is hard to impose here because in-
equalities (2.145)-(2.146) do not satisfy the general Lyapunov function formulation
in dwell-time scheme [48]. The method in [88] is also not easy to be implemented
since the right sides of (2.145) and (2.146) are polynomial forms of V1 rather than
aV m

1 (x) for a,m > 0 in [88], and the exponents larger and smaller than 1 exist simul-
taneously.

We choose V2 = x4
1 + 2x2

2, V3 = x2
1 + x2

2. It follows that V2(x(t)) < e4tV2(x(0)),
V3(x(t)) < e2tV3(x(0)), for t ≥ 0. Note that MLFs techniques are difficult to be
applied since the state trajectories in unstable modes are not bounded and Lyapunov-
like functions are not easy to find. The “μ” condition is also hard to impose here,
because V1 and V2 are non-quadratic.

Set ε = 4 which means that |x(t)| ≤ 4 must hold for all t ≥ 0. The prescribed
switching sequence is

mode 1 → mode 2 → mode 3 → mode 1 → ··· · · ·
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Now we design the switching instants according to S . Mode 1 is stable, choose
x(0) = [1, 2]� from step 1 of S such that |x(t)| ≤ 4 for t ∈ [0, t1). Since both mode 2
and mode 3 are unstable, the switching scheme based on Lemma 1 is applied after t1.
It can be obtained from (6.37) that χ = 1. m = 2 due to two unstable modes. Choose
β = 6.3 > 2(2 + 1). The activating periods of modes 2 and 3 can be calculated
from step 7 of S : 0.0059s for mode 2; 0.2602s for mode 3. Choose t1 = 0.9s from
step 6 of S such that |x(t)| ≤ 4 for t ∈ [0, t4). Consequently, choose t2 = 0.9059s,
t3 = 1.1661s. The activating period of mode 1 is set to be 0.9s in the following
switching process, i.e., t4 = 2.0661s. Although our theory allows infinite switchings
in infinite time interval, in the numerical simulation, a finite time interval [0s, 4s]
is considered. Other switching instants can be obtained straightly. Fig.2.12 shows
the state trajectory, from which we can see that the stability is achieved and |x| ≤ 4
always holds.

2.6 Conclusion

In this chapter, several FTC methods have been proposed for HS with time de-
pendent switching. The known switching instants bring much convenience to FTC
design. In sections 2.1-2.3, FTC objective has been achieved via designing the sta-
bilizing controller in each faulty mode and a switching scheme. Sections 2.4-2.5
researched directly the stability of HS without reconfiguring the controller in each
mode. It can be found that even some faulty modes are unstable, the stability of
overall HS is still maintained under appropriate switching schemes.
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