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Preface

Hybrid systems (HS) are dynamical systems that involve the interaction of continu-
ous and discrete dynamics. The study of HS is motivated by the fundamentally hy-
brid nature of many real life applications. Over the last decade, significant progress
has taken place in modeling and simulation, verification, stability and controller
synthesis for HS.

Faults in automated processes often cause undesired reactions and shut-down of
a controlled plant, and the consequences could be damage to technical parts of the
plant or to its environment. Fault diagnosis (FD) and fault tolerant control (FTC)
are highly required for safety purpose, and aim at guaranteeing certain system per-
formances and/or properties to be maintained in spite of faults. In the past more
than 30 years, fruitful theoretical results on FD and FTC have been reported for var-
ious linear and nonlinear systems with many successful engineering applications in
practical systems.

FD problem for HS has attracted some attentions. However, to the best of the
authors’ knowledge, until now, the FTC issue for HS has not yet been intensively
studied. FTC method for HS deserves further investigations due to its academic
meaning as well as practical one.

1. Motivation from academic research
It is well known that the stability and some specifications of HS can be achieved
under quite rigorous conditions. Most of existing results are devoted to off-line
analysis and design, such that the HS works well as what it is expected. However,
faults may abruptly change system behavior, FTC strategies must be applied on-
line, not only to keep the stability but also to maintain some specifications of the
HS in presence of faults. This results in a great theoretical challenge, since many
classical FTC methods for non-hybrid systems can not be easily extended to HS.
FTC theory for HS needs to be developed.
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2. Motivation from practical applications
Many practical systems have to be modeled by hybrid models, e.g. chemical pro-
cesses, switched RLC circuits, intelligent transportation systems, etc. The safety
and reliability of these systems are needed, and FTC techniques for HS are highly
required.

The HS considered in this book consists of a series of continuous modes and
a switching logic. Switching from one mode to another is due to a switching law
generated from the switching logic. Faulty behaviors of HS are investigated sys-
tematically. Two main kinds of faults are considered: Continuous faults that affect
continuous modes; Discrete faults that affect the desired switching. In these two
faulty cases, the FTC design has two main objectives as follows:

1) maintain the continuous performances including various stabilities (e.g. Lya-
punov stability, asymptotical stability and input-to-state stability) of the origin and
the output tracking/regulation behaviors along the trajectories of HS.

2) maintain the discrete specifications that have to be followed by HS, e.g. a
desired switching sequence.

For HS with various switching, e.g., time-dependent switching, state-dependent
switching, impulsive switching and stochastic switching, a set of FTC methods
based on continuous system theories are proposed to maintain the continuous per-
formance. Two natural ideas are considered: One way is first to follow the general
FTC idea for non-hybrid systems, i.e., design FTC law in each faulty mode such
that its origin is stable (Lyapunov stable, asymptotical stable, input-to-state stable)
or the output regulation problem is solvable, and second to apply the standard sta-
bility results of HS. Another way is to research directly the stability of HS without
reconfiguring the controller in each unstable mode. It will be shown that FTC of HS
can be achieved through the balance among different modes i.e., the negative effects
resulting from unstable faulty modes are compensated for by that of stable modes.
This provides us a new clue to design FTC for HS.

For HS with certain discrete specifications, i.e., it has to follow some specifica-
tions imposed on the discrete part of the system, a discrete fault would violate these
specifications. As for such fault, one natural idea is to reconfigure the discrete part
after faults occur to maintain the specification, which can be achieved from discrete
event system (DES) point of view. Two major DES models, i.e. finite state machine
and Petri net are utilized. However, compared with pure discrete event systems, con-
tinuous system behaviors must be taken into account in HS. A set of novel schemes
are derived.

Some novel supervisory FTC techniques are also developed based on HS meth-
ods to improve non-hybrid (linear and nonlinear) system performances during FTC
period. Unlike the multiple model FDI /FTC method or supervisory control tech-
nique, the proposed supervision schemes do not need a series of models or filters to
work concurrently with the plant in order to identify the current situation, but only
rely on a simple switching scheme among candidate controllers.

The materials in the monograph have explicit and broad practical backgrounds.
Many examples are taken to illustrate the theoretical results, e.g. Circuit systems;
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DC motors; CPU process; Manufacturing system; Intelligent transportation systems
and electric automated vehicles, etc.

This book intends to provide the readers a good understanding on how to achieve
FTC goal of HS. The book can be used as a reference for the academic research on
FTC and HS or used in Ph.D. study of control theory and engineering. The knowl-
edge background for this monograph would be some undergraduate and graduate
courses on FD and FTC theory, linear sytem theory, nonlinear system theory, HS
theory and DES theory.

There are totally seven chapters in this book. Chapter 1 introduces some back-
ground knowledge on HS and FTC design, and also describes the main work of
the book. Chapters 2-4 provide new theoretical developments for the analysis and
design of FTC for HS with various switching properties, which are based on con-
tinuous system theories and FTC goals aim at maintaining the continuous perfor-
mance. Chapter 5 considers the HS with discrete specifications, which need to be
maintained in spite of faults, FTC issue is addressed from DES point of view. In
Chapter 6, some new supervisory FTC results based on HS methods are reported.
A four-wheel-steering and four-wheel-driving electric vehicle in LAGIS laboratory
is particularly focused on whose actuator faults are analyzed systematically and the
hybrid fault tolerant tracking control approach is applied. At last, in Chapter 7, the
perspectives of FTC for HS are predicated.

The authors are grateful to Prof. Marcel Staroswiecki, of laboratory SATIE from
Ecole Normale Supérieur de Cachan, France; Prof. Zhenyu Yang, of Technical Uni-
versity of Denmark, Denmark; Prof. Peng Shi, of University of Glamorgan, UK
and Prof. Gang Tao, of University of Virginia, USA, who have greatly aided this
research. Finally, we would like to acknowledge the support of research grants, in-
cluding National Natural Science Foundation of China (60874051), International
campus on safety and intermodality in transportation (CISIT), and Graduate inno-
vation research funding of Jiangsu Province (CX07B-112z).

Nanjing, China
September 2009 Hao Yang

Bin Jiang
Vincent Cocquempot
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Chapter 1
Fault Tolerant Control and Hybrid Systems

Both research areas of fault tolerant control (FTC) and hybrid systems (HS) have
been developed separately for several decades, and fruitful results appeared respec-
tively. However, until now, the FTC problem of HS has not yet attracted enough at-
tention, and needs to be investigated due to its academic meaning as well as practical
one. Many modern complex systems have to be modeled by HS and their safety and
reliability are quite important. This naturally motivates to study FTC for HS, which
is the topic of this book. In this chapter, we shall describe the relations between HS
and FTC, and present some examples of HS as well as their fault behaviors. Based
on these examples, we formulate the problems to be solved in this book.

1.1 Background

1.1.1 Hybrid Systems

HS are dynamical systems that often consist of continuous time (CT) and/or dis-
crete time (DT) processes interfaced with some logical or decision-making (LDM)
process. The continuous/ discrete time (C/DT) component may consist of differen-
tial/difference equations or continuous/discrete time state models. The LDM com-
ponent might be a finite automaton or a more general discrete event system. The
C/DT processes affect the state transitions of the LDM, and the LDM processes
affect the dynamic motions of the C/DT processes [22, 80]. The study of HS is mo-
tivated by the fundamentally hybrid nature of many real life systems, e.g., circuit
systems, flight management system, process control and intelligent transportation
systems. Over the last decade, significant progress has taken place in modeling and
simulation [80], verification [122], [46], stability [22], [47] and controller synthesis
[110], [123] for HS.

The HS considered in this book can be illustrated using Fig.1.1, which consists
of a series of continuous/discrete time modes (N maybe a finite or infinite number)
and a switching logic. These modes are switched among each other according to a
switching law generated from the switching logic. The framework in Fig.1.1 is gen-
eral and covers several different kinds of HS that have different switching properties

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 1–9.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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......

Switching scheme

mode 1 mode 3mode 2 mode N

Fig. 1.1 The HS model

or performance requirements. Let us take three interesting examples which will be
discussed in details in the following chapters.

Example 1.1: [138] A simplified CPU processing control system is shown in
Fig.1.2. The key control problem is to deal with the trade-off between the high-
speed computing and the physical constraints. The CPU needs to operate at high
clock frequency (voltage) to realize high-speed computing, while a high clock fre-
quency spends much energy and raises the CPU temperature, which often leads to
hardware trouble.

The system is naturally modeled as a HS with two modes.

Mode 1 (busy mode): the amount of CPU tasks is large while CPU temperature
is not too high.
Mode 2 (usual mode): the amount of CPU tasks is not large and more energy is
used for decreasing the temperature.

A state dependent switching law could be designed i.e., switching occurs when the
temperature or the amount of CPU reaches some given values.

Example 1.2: [140] A hose insertion task shown in Fig. 1.3 is a typical exam-
ple of manipulation of deformable objects. The fingertip of the robot arm inserts a
deformable hose on the plug. The motion of the hose and the fingertip are restricted
in x1 − x2 plane. The completed work is to insert the hose onto the plug. Such task

Fig. 1.2 The CPU model
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Plug

Hose

Robot arm

Position of 

the fingertip(initial)

(initial)

(initial)

Fig. 1.3 Hose insertion task

can be modeled as a HS according to different contact configurations between the
hose and the plug when the fingertip is at different positions.

Example 1.3: [139] Consider a traffic flow control problem in intelligent transporta-
tion systems at the terminator of the bridge, where six roads are interconnected with
the bridge, as in Fig. 1.4. The roads rout

1 , rout
2 and rout

3 are the output roads to which
the autonomous vehicles (AVs) go from bridge, whereas the roads rin

1 , rin
2 and rin

3 are
the input roads from which AVs go to the bridge. There is a supervisor consisting
of a series of internal logic lights (similar to traffic lights for man-driven cars) for
input roads, such that the traffic flows from each input roads get into the bridge with
the prescribed sequence. The overall system is also a hybrid system involves the
interaction of continuous (AVs flows) and discrete dynamics (traffic lights).

It can be seen from the above examples that the structure of HS is very special and
complex, the analysis of fundamental properties of HS is also difficult and quite
different from that of the non-hybrid systems. This is because both continuous and
discrete dynamics and their relations have to be fully taken in account. The general
models of HS include hybrid automata [80], hybrid inclusions [42], and switched
systems [48]. These modes capture both continuous and discrete dynamics of HS,
under which some properties of HS can be analyzed systematically.

The stability and performance of HS are related to many factors including the
initial states, the decreasing rate of Lyapunov function of each continuous mode,
the frequency of switching, the switching sequence, etc. Two basic stability meth-
ods can be applied: multiple Lyapunov functions (MLFs) technique [22, 13, 156]
and dwell-time scheme [72, 125, 129]. MLFs method claims that the stability of HS
can be achieved if the value of each mode’s Lyapunov function 1) does not increase
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Supervising 

lights

Bridge

inr1

inr2

inr3

outr1

outr2

outr3 the first part the second part

Fig. 1.4 One terminator of the bridge

when the mode works and 2) is non-increasing over the consecutive time sequence
when the corresponding mode is just switched on. The dwell-time scheme intro-
duces a minimum time interval called “dwell time”, and claims that the HS is stable
if the interval between any two consecutive switching instants is not smaller than
the “dwell time”. The above two methods have been extended to HS with various
switching properties and stability requirements.

The control design of HS consists of continuous controller design in each contin-
uous mode and switching scheme design (e.g., switching instants design, switching
sequence design, this is also called “discrete controller design” [122]). The former
one is similar to that for non-hybrid systems. Each continuous mode can often be
stabilized by its corresponding continuous controller. However, the individual sta-
bility of each mode is not enough to make HS stable. The latter one is special and
more required for HS, which plays an important role to stabilize the HS globally.

It will be shown throughout the book that the above two stability methods are the
basis of FTC design for HS, and both controller design clues will be followed. The
reader is refer to several excellent survey papers [22, 42] for the analysis of other
interesting properties of HS which is not closely related to the topic of the book and
thus is omitted here.

1.1.2 Fault Tolerant Control

Faults in automated processes will often cause undesired reactions and shut-down
of a controlled plant, and the consequences could be damages to technical parts of
the plant or to its environment, so fault diagnosis (FD) and FTC are highly required
for modern complex control systems. FD is concerned with detecting, isolating and
estimating the faults [18, 23, 36, 95], while Fault Tolerant Control (FTC) aims at
guaranteeing the system goal to be achieved in spite of faults [10, 54, 154].
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In the past 30 years, fruitful results have been obtained in the area of FTC. Gen-
erally speaking, FTC can be categorized into two main classes: passive and active.
Passive FTC is designed with the consideration of a set of presumed failure modes.
The resulting control system performance tends to be conservative. It also has the
limitation to deal with unanticipated faults. In contrast, Active FTC reacts to the
occurrence of system faults on-line in real-time in an attempt to maintain the overall
system stability and performance. Two main potential advantages of Active FTC
are 1) the ability to deal with previously unknown faults with explicit FD and con-
troller reconfiguration, and 2) the possibility to achieve the optimal performance.
The reader are referred to [154] for more detailed development and bibliography.

1.2 FTC Problems of HS

Although the FD problem for HS has been addressed in some literatures recently
using Petri net technique in [155], bond graphs method in [90], observer techniques
in [126], and parity space method in [20], etc., until now, few results have been
reported about FTC for HS.

It is well known that the stability of HS is achieved under quite rigorous condi-
tions as stated previously. Most of existing results are devoted to off-line analysis
and design, such that the HS works well as what is expected. However, faults may
abruptly change system behavior, FTC strategy must be applied on-line to keep the
system performance including stability of the HS in spite of faults. This prevents
many classic FTC methods for non-hybrid systems from being applied to HS.

Two main kinds of faults have been defined for HS [20] with respect to the pro-
cess (C/DT or LDM) that is affected by : One is a continuous fault that affects
each continuous system mode, which corrupts the continuous state behavior of the
related mode. Recall example 1.1, if there exists a fault in voltage input channel
or clock frequency input channel, the system behavior may become unexpected in
busy mode or usual mode. Another one is a discrete fault that affects the switching
sequence. In example 1.2, if there exists an abrupt change of the fingertip’s posi-
tion due to physical faults of the robot arm, the prescribed motion sequence may
be changed. In example 1.3, the discrete faults represent the unexpected behaviors
of traffic lights, whereas the continuous faults describe the abnormal situations of
AVs flows.

Now we define a general HS model with faults.

Definition 1.1. A hybrid automaton with fault is a collection

H = (Q,X ,U,V,F ,Y,�, Init, Inv,E,G,R) (1.1)

where

• Q = {1,2, . . . ,N} is the finite set of discrete states;
• X is the set of continuous states;
• U defines the set of continuous inputs;
• V defines the set of discrete inputs;
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• � = �c ∪�d denotes the set of faults, with �c and �d respectively, continuous
and discrete.

• F : Q×X ×U ×�c → X represents the set of vector fields for each mode;
• Y is the set of continuous outputs;
• Init ⊆ Q×X is the set of initial states;
• Inv: Q → 2X assigns to each mode an invariant set;
• E : V ×Fd → Q×Q is the set of discrete transitions between modes;
• G : E ×Fd → 2X defines a guard set related to each (i, i′) ∈ E, where the system

can be switched from mode i to i′.
• R : Q×Q×X → X is the set of reset maps.

The above model is an extension of usual hybrid automaton as in e.g., [80] and [46]
to the faulty cases. This model is also more general than that in [155] where only
the parameter faulty cases are considered.

It can be seen from model (1.1) that

- Continuous faults �c corrupt the equality constraints of the related mode. Such
kind of faults are similar to that considered in non-hybrid systems.

- discrete faults �d affect the mode transitions by changing discrete transition set
E or the guard sets G. Both the switching instants and switching sequences may
be changed unexpectedly. Such faults are special for HS.

The FTC objective for HS is concerned with the system requirement, i.e., to guar-
antee the system goal to be achieved in spite of continuous and discrete faults. In
this book, two main system requirements are considered:

- Continuous performance goal, e.g., the origin of the HS is stable (Lyapunov sta-
ble, asymptotical stable, input-to-state stable) and the output regulation/tracking
problem is solvable.

- Discrete specification goal, i.e., the HS has to satisfy some constraints on discrete
modes, e.g., the switching sequence.

To investigate continuous performance goal, a class of HS (1.1) named switched
systems are considered which take the form

ẋ = gσ (x,uσ , fσ )
y = hσ (x) (1.2)

where x ∈ X , uσ ∈ U , y ∈ Y , fσ ∈ �c. σ(t) : [t0,∞) → Q denotes the switching
function, which is assumed to be a piecewise constant function continuous from
the right. The dwell period of a mode represents the time period during which this
mode is activated. The switched system model (1.2) emphasizes the vector fields F
in (1.1), and captures the behavior of continuous dynamics using ordinary differen-
tial equations. The affect of the switching on each continuous mode is also clearly
represented. Such model allows us to analyze FTC problems using continuous sys-
tem theories, and to extend the existing FTC techniques of non-hybrid systems to
the hybrid cases.
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FTC for hybrid systems
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Fig. 1.5 The FTC clue for HS

Four kinds of switchings are considered:

- Time-dependent switching. Such switching occurs at a certain time instant. These
switching instants can be prescribed a priori and fixed, or designed arbitrarily by
engineers. The continuous states x are continuous at switching instants.

- State-dependent switching. Such switching occurs whenever the states reach
some given surfaces or satisfy an inequality. x are also continuous at switching
instants.

- Impulsive switching. Under such switching, x abruptly change due to the impulse
effect at each switching instant.

- Stochastic switching. Such switching is governed by some random processes, i.e.
Markov process.

The above various switchings are related with the guard set G, the discrete transi-
tions set E and the reset maps set R in (1.1), which determines switching properties
of system (1.2). As for above different HS, the continuous performance can be inves-
tigated using various continuous system theories as shown in Fig 1.5. Some existing
FTC results for non-hybrid systems could be potentially applied and combined with
the stability conditions of HS. The main idea is to design the FTC law in each faulty
mode and develop an appropriate switching scheme such that the continuous perfor-
mance goal is maintained.

As for the discrete specification goal, one natural idea is to reconfigure the dis-
crete part of the HS after faults occur to maintain such specification. The continuous
system theories are limited in this case. However, the discrete-event system (DES)
supervisory control theories can be applied as also indicated in Fig. 1.5.
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A well known DES model named finite state machines will be utilized to abstract
the discrete part of (1.1) as

(Q,E,Td ,Qd0,Qdm)

where Td denotes the activated discrete transition, Qd0 =
⋃

∀(x,q)∈Init q. Qdm ⊆ Q is
the set of marked states. Such mode captures the behavior of discrete dynamics.
The affect of the switching sequences is particularly emphasized. DES supervisory
control theory [101] can be developed to reconfigure the switching sequence after
faults occur, which, together with some criteria imposed on continuous dynamics of
HS, achieves the discrete specification goal.

Another important HS model named Hybrid Petri net (HPN) originating from the
DES model Petri net (PN) are also considered. HPN inherits all the advantages of
the PN and effectively captures behaviors including concurrency, synchronization
and conflicts, which often appear in complex systems, e.g., the traffic flow control
problem in example 1.3. A HPN structure is the 5-tuple

(P,T,Pre,Post,h)

where P is a set of places, T is a set of transitions; The set of places P (resp. tran-
sitions T ) is split into two subsets: discrete places (resp. discrete transitions) and
continuous places (resp. continuous transitions). Pre and Post assign the weights
between transitions and places. More detailed formulations will be given in Section
5.2. HPN is closely connected with hybrid automaton (1.1), a hybrid automaton can
be constructed associated with a given HPN as reported in [109]. Different control
schemes can be designed for continuous part and discrete part of HPNs respectively
such that the desired discrete specifications are maintained.

One of the motivations of HS research arises from the hybrid control problem.
HS may present different control configurations. Commutation from one configu-
ration to another one is described using discrete event system model as claimed
in [117]. Thus the controlled system becomes hybrid due to the switching control.
Some novel supervisory FTC techniques are also developed based on HS methods
to improve non-hybrid (linear and nonlinear) performance during FTC period. The
hybrid automaton model (1.1) can be applied after a minor modification, where each
mode denotes respectively faulty or healthy situations of the system. All the switch-
ing among modes can be controlled by the user. The discrete fault disappears.

1.3 The Structure of the Book

The rest of this book is organized as follows: Chapters 2-3 provide new theoretical
developments of FTC analysis and design for HS with time-dependent and state-
dependent switchings respectively. Chapter 4 discusses the HS with impulsive and
stochastic switchings based on some results in Chapter 2. These new approaches
are based on continuous system theories and FTC goals aim at maintaining the con-
tinuous performance. The switched system model (1.2) is utilized in Chapters 2, 4
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Fig. 1.6 The chapter relations

and Section 3.3. Chapter 5 considers the HS with discrete specifications, FTC issue
is addressed from DES point of view and the discrete specification goal is empha-
sized. HPNs model is applied in Section 5.2. The Hybrid automaton model (1.1) is
considered in Sections 3.2 and 5.1. As an important related issue of HS, supervisory
control problems are addressed in Chapter 6, some new supervisory FTC results are
reported based on HS approaches developed in Chapters 2-3. A four-wheel-steering
and four-wheel-driving electric vehicle in LAGIS laboratory is particularly focused
on whose actuator faults are analyzed systematically and the hybrid fault tolerant
tracking control approach is applied. In the final Chapter, several future research
directions are predicated related to FTC of HS.

Fig.1.6 shows the relations among chapters. One can follow the arrowhead se-
quence to read the book. the reader who is interested in continuous system FTC
theories can read Chapters 2, 3 and 4. The reader who focuses on supervisory con-
trol can read Chapters 2, 3 and 6. Chapter 5 is independent from Chapters 2-4 and
6, the reader who cares about DES only can read Chapter 5 directly.



Chapter 2
Hybrid Systems with Time-Dependent Switching

This chapter considers a broad class of HS whose switchings are activated according
to time functions, i.e., a switching occurs at a certain time instant. These switching
instants can be prescribed a priori and fixed, or designed arbitrarily by engineers.
The motivation of researching HS appears from many practical systems e.g., circuit
system, and also the switching control ideas. In this chapter, several FTC methods
are presented for such HS. Two natural ideas follow: One way is to design FTC
law in each faulty mode such that it is stable (Lyapunov stable, asymptotical stable
or input-to-state stable) or the output regulation problem of each mode is solvable,
then apply the standard stability results on HS (see sections 2.1-2.3). Another way
is to research directly the stability of HS without reconfiguring the controller in
each unstable mode (see sections 2.4-2.5). These two ideas will be developed in this
chapter. The switching control techniques as developed in Chapter 6 also have their
roots in this chapter.

2.1 Output-Input Stability Technique

In this section, we apply the output-input stability concept proposed in [70, 71] to
the FTC design of HS with continuous faults.

The concept of output−input stability (OIS) [70, 71] is a robust variant of the
minimum-phase property for general smooth nonlinear control systems. Its defi-
nition requires the state and the input of the system to be bounded by a suitable
function of the output and derivatives of the output. Our objective is to provide a
fault tolerant strategy for a class of hybrid nonlinear systems, in which each mode
is output−input stable in the healthy situation and without full state measurements.
The main ideas are that:

1 An observer-based FTC method is proposed for each output−input stable mode
to make each mode asymptotically stable whenever faults occur during its dwell
period;

2 A set of switching laws based on this FTC method are designed to guarantee the
asymptotic stability of the overall HS.

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 11–58.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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To make this section more readable, we first discuss the FTC for nonlinear systems
in the following two subsections 2.1.1 and 2.1.2, then extend the obtained results to
hybrid case in subsection 2.1.3.

2.1.1 State Feedback Control for Nonlinear System

Consider the following affine nonlinear system with faults

ẋ = f (x)+ G(x)u + E(x) fa

y = h(x) (2.1)

where x∈ℜn is the non measured state, u∈ℜm is the input, y∈ℜp is the output, and
only the case m ≤ p is considered. Functions f (·), G(·), E(·) and h(·) are smooth,
and it is assumed that u∈C k, the set of k times continuously differentiable functions
u : [0;∞) → ℜm, with k ≥ 1. For all u ∈ C k, derivatives ẏ, ÿ, . . . ,y(k+1) are assumed
to exist and to be continuous.

The fault effect is modelled by a “fault pattern”, described by the distribution
matrix E(x) and a “fault parameter” fa ∈ ℜd , which can be time varying, and is sup-
posed to be norm bounded, i.e., ∃ f1 : | fa|< f1. The fault pattern describes the family
of faults that are investigated [152], as identified e.g. through standard methods like
failure modes and effect analysis (FMEA) [10]. The fault parameter describes the
size of the fault, and its time evolution. It is assumed that the distribution matrix
E(x) satisfies the so-called matching condition

E(x) = G(x) ·W(x) (2.2)

i.e. it can be factorized as (2.2) for some m×d continuous matrix W (x). The inter-
pretation of the matching condition is that the effect of faults can be described by a
deviation of the control signal. This model covers actuator faults and a large number
of system faults.

Definition 2.1. [70] System (2.1) with fa = 0 is called output-input stable if there
exist a positive integer N, a function β of class K L , and a function γ of class
K∞ such that for every initial state x(0) and every input u ∈ C N−1 its solution x(t)
satisfies ∣

∣
∣
∣

(
x(t)
u(t)

)∣
∣
∣
∣≤ β (|x(0)|,t)+ γ

(∥
∥
∥y

N

∥
∥
∥

[0,t]

)

(2.3)

for all t, where y
k
� (y�, ẏ�, ...,y(k)�)�.

Note that (2.3) implies

|x(t)| ≤ β (|x(0)|,t)+ γ
(∥
∥
∥y

N

∥
∥
∥

[0,t]

)

(2.4)
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According to [70], the system is said to be weakly uniformly 0-detectable of order
N if inequality (2.4) holds, or just weakly uniformly 0-detectable when an order is
not specified.

The weak uniform 0-detectability is independent on any input, which implies that
even when the faulty system is not output-input stable any more, it is still weakly
uniformly 0-detectable if faults satisfy the matching condition (2.2). This property
is very useful for FTC.

The following structure algorithm will be helpful to construct the feedback con-
troller later. Due to the structure of the fault distribution matrix (2.2), the term
G(x)u + E(x) fa is written as G(x)ū where ū = u +W(x) fa.

Algorithm 2.1. nonlinear structure algorithm
Step 1: Define h̃1(x) � Lf h(x), J̃1(x) � LGh(x). Differentiating y with respect to

time along the trajectories of (2.1) gives

ẏ = h̃1(x)+ J̃1(x)ū (2.5)

Assume that matrix J̃1(x) has constant rank r1 and a fixed set of r1 rows that are
linearly independent for all x, these rows are taken as the first r1 rows of J̃1(x).

Denote ȟ1(x) and ĥ1(x) as respectively the first r1 and the last p− r1 components
of h̃1(x), then Eq.(2.5) is divided into two parts as

ẏ1...r1 = ȟ1(x)+ J1(x)ū

and
ẏr1+1...p = ĥ1(x)+ Ĵ1(x)ū (2.6)

where (·)1...k denotes the first k elements of the signal. J1(x) is a matrix of full row
rank, and Ĵ1(x) = f1(x)J1(x) for some (p− r1)× r1 matrix f1(x).

Define h̄1(x, ẏ1...r1) � ĥ1(x)+ f1(x)(ẏ1...r1 − ȟ1(x)). Eq.(2.6) can be rewritten as

ẏr1+1...p = h̄1(x, ẏ1...r1) (2.7)

Step 2: Similar to Step 1, define

h̃2(x, ẏ1...r1 , ÿ1...r1) � Lf h̄1(x)+
r1

∑
i=1

∂ h̄1

∂ ẏi
(x, ẏ1...r1)ÿi

J̃2(x, ẏ1...r1) � LGh̄1(x)

Differentiating (2.7) leads to

ÿr1+1...p = h̃2(x, ẏ1...r1 , ÿ1...r1)+ J̃2(x, ẏ1...r1)ū (2.8)

The termination condition of the structure algorithm at Step 2, denoted as C 1, is
as follows:
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C 1: The matrix

[
J1(x)

J̃2(x, ẏ1...r1)

]

is continuous and has constant rank m and there is

a fixed set of m−r1 rows of J̃2(x, ẏ1...r1) which together with the rows of J1(x) form a
linearly independent set for all x and ẏ1...r1 . These rows are taken as the first m− r1

rows of J̃2(x, ẏ1...r1).

Denote ȟ2(x) and ĥ2(x) as respectively the first m−r1 and the last p−m components
of h̃2(x). Under C 1, since m ≤ p, Eq.(2.8) can be written similarly to Step 1 as

ÿr1+1...m = ȟ2(x, ẏ1...r1 , ÿ1...r1)+ J2(x, ẏ1...r1)ū

and
ÿm+1...p = ĥ2(x, ẏ1...r1 , ÿ1...r1)+ Ĵ2(x, ẏ1...r1)ū (2.9)

The following Lemma is a special case of Theorem 1 in [71], therefore its proof
is omitted. It gives a necessary and sufficient OIS condition.

Lemma 2.1. Under the termination condition C 1, the system (2.1) with fa = 0 is
output-input stable if and only if it is weakly uniformly 0-detectable.

Based on Algorithm 2.1, a state feedback controller is now designed for the healthy
system, m = p is considered, the extension to m ≤ p is straightforward. Two as-
sumptions are imposed.

Assumption 2.1. The vector ẏr1+1,...,m is not affected directly by input signals, which
results, for an output-input stable system (2.1) with fa = 0, in the fact that f1(x) = 0.

Assumption 2.2. Let χ ∈ ℜ2m−r1 � (y�1...r1
,y�r1+1...m, ẏ�r1+1...m)�. When fa = 0, there

exists an invertible map T : ℜn → ℜ2m−r1 , such that χ = T (x).

Since m = p, Eq.(2.9) is removed. Under C 1 and assumptions 2.1-2.2, the algorithm
2.1 leads to [

ẏ1...r1

ÿr1+1...m

]

=
[

ȟ1(x)
ȟ2(x)

]

+
[

J1(x)
J2(x)

]

ū (2.10)

where ȟ2 = h̃2, J2 = J̃2.
The state feedback control design consists of the following three steps:
Step 1: Choose a Hurwitz matrix A10, which gives ẏ1...r1 = A10y1...r1 provided

that J1(x)ū = ϑ1(x) with

ϑ1(x) � A10y1...r1 − ȟ1(x)

Step 2: Choose two (m− r1)× (m− r1) matrices A21 and A20 such that

ÿr1+1...m = A21ẏr1+1...m + A20yr1+1...m

The matrix

[
0 I(m−r1)×(m−r1)

A20 A21

]

is Hurwitz provided that J2(x)ū = ϑ2(x) and
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ϑ2(x) � A21ẏr1+1...m + A20yr1+1...m − ȟ2(x)

Step 3: Design the state feedback controller un(x) as

un(x) �
[

J1(x)
J2(x)

]−1 [ϑ1(x)
ϑ2(x)

]

(2.11)

Define

hχ(x) �

⎡

⎣
ȟ1(x)

0
ȟ2(x)

⎤

⎦ , Jχ(x) �

⎡

⎣
J1(x)

0
J2(x)

⎤

⎦

Ā �

⎡

⎣
A10 0 0
0 0 I(m−r1)×(m−r1)
0 A20 A21

⎤

⎦

Then under the control un(x), the system (2.10) is augmented as

χ̇ = hχ(x)+ Jχ(x)un = Āχ (2.12)

Therefore, un(x) in (2.11) asymptotically stabilizes system (2.12) if A10,A20, and
A21 are chosen such that Ā is Hurwitz. An “optimized” choice of Ā can be refered
to [61]. The weak uniform 0-detectability implies that the closed-loop system is
stabilized.

2.1.2 Observer-Based FTC for Nonlinear System

Now we provide an observer-based method to stabilize system (2.1) under both
healthy and faulty conditions.

The FD scheme in [56] is first applied to provide rapid and accurate estimation
of states and faults. Denote x̂ and f̂a as the estimates states and faults respectively.
Using the differential geometry theory, we can obtain (see [56] for details) a global
diffeomorphism z = N(x) with N(0) = 0 and z ∈ ℜn that satisfies

|z̃| ≤ μ(λ ∗)|z̃(0)|exp(−λ ∗t) (2.13)

where z̃ � z− ẑ, λ ∗ > 0, μ(λ ∗) > 0 is polynomial in λ ∗. We can also get from [56]
that fa(t)− f̂a(t)→ 0 when z(t)− ẑ(t) = 0. This means that rapid and accurate fault
estimates can always be obtained when faults occur.

The following two lemmas provide the control strategy for the healthy case and
faulty case respectively.

Lemma 2.2. Suppose that the output-input stable system (2.1) with fa = 0 and m =
p satisfies C 1 and assumptions 2.1-2.2. Given an initial x(0), there exists a constant
ε1 > 0 such that if |˜̄z(0)| ≤ ε1, then the control u(x̂) = un(x̂) makes the origin of the
closed-loop system asymptotically stable.
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Proof : In the healthy case, system (2.12) controlled by un(x̂) is rewritten as

χ̇ = Āχ + Jχ(x)(u(x̂)−u(x)) (2.14)

Let P be the symmetric positive definite solution of the Lyapunov equation
Ā�P + PĀ = −Q with a given matrix Q > 0. Consider the Lyapunov function
V = χ�Pχ , its time derivative with respect to (2.14) is

V̇ = −χ�Qχ + 2χ�PJχ(x)(u(x̂)−u(x))

≤ −λmin(Q)|χ |2 + 2|χ | · |P| · |Jχ(x)| · |u(x̂)−u(x)| (2.15)

Consider the given initial x(0), and define Ω � {χ : V (χ) ≤ χ(0)�Pχ(0)}, which
are the level sets of V with respect to χ (see Chapter 4 in [62]).

Note that |u(x̂)− u(x)| is continuous within the region Ω , and vanishes when
x̂− x = 0, i.e., z̃ = 0. There exists two constants ε̄1 > 0 and κ1 > 0, such that |˜̄z2| ≤
ε̄1 =⇒ |u(x̂)−u(x)| ≤ κ1|z̃|. From inequality (2.15) it follows

V̇ ≤ −λmin(Q)|χ |2 + 2κ1|χ | · |P| · |z̃|
√(

λmax(J�χ (x)Jχ(x))
)
(χ∈Ω)

≤ −(1− r)λmin(Q)|χ |2 (2.16)

∀|χ | ≥

√
√
√
√2κ1|P| · |˜̄z2|

√(
λmax(J�χ (x)Jχ(x))

)
(χ∈Ω)

rλmin(Q)
� γ̄(|˜̄z2|),0 < r ≤ 1 (2.17)

where γ̄(·) is a class K function. There exists a constant ε̄2 such that |z̃| ≤ ε̄2 satisfies
(2.17). Based on [62], the choice of |z̃(0)| ≤ ε1 where ε1 = min(ε̄1, ε̄2), clearly results
in χ being input-to-state stable with respect to z̃. Note that limt→∞ z̃(t) = 0. Hence the
origin of the system (2.14) is asymptotically stable. On the other hand, the map T (x)
is invertible and not affected by the observer, and system (2.1) is weakly uniformly
0-detectable, which leads to the asymptotic stability of the origin of the system. �

Lemma 2.3. Consider the output-input stable system (2.1) with fa = 0 and m = p
satisfying C 1 and assumptions 2.1-2.2. Let a fault occur at t = 0. Given an ini-
tial x(0), there exists a constant ε2 > 0 such that for all |˜̄z2(0)| ≤ ε2, the con-
trol u(x̂) = un(x̂)−W (x̂) f̂a makes the origin of the closed-loop faulty system (2.1)
asymptotically stable.

Proof: In the faulty case, the system (2.10) controlled by un(x̂)−W (x̂) f̂a is rewrit-
ten as

χ̇ = Āχ + Jχ(x)
(

un(x̂)−un(x)
)

+ Jχ(x)W (x̂)( fa − f̂a)+ Jχ(x)
(

W (x)−W(x̂)
)

fa

(2.18)
The time derivative of V along (2.18) is

V̇ = −χ�Qχ + 2χ�PJχ(x)
[(

un(x̂)−un(x)
)

+W (x)( fa − f̂a)+
(

W (x)−W (x̂)
)

fa

]
(2.19)
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There exist two constants ε̄3 > 0 and κ2 > 0, such that |z̃| ≤ ε̄3 =⇒ |N(t)− N̂(t)| ≤
κ2|z̃| within Ω . Similarly, there exist two constants ε̄4 > 0 and κ3 > 0, such that
|z̃| ≤ ε̄4 =⇒ |W (x)−W (x̂)| ≤ κ3|˜̄z2|. Following (2.19), appropriate selection of ˆ̄z2

leads to

V̇ ≤ −λmin(Q)|χ |2 + Ξ (2.20)

Ξ � 2|χ | · |P| · |z̃| ·
√(

λmax(J�χ Jχ)
)
(χ∈Ω)

·
[
κ1 + κ2

√(
(λmax(η�η) ·λmax(W�W )

)
(χ∈Ω) + κ3 f1

]
(2.21)

where η is defined as in [56]. Given a physical bound of control signals and f1, the
value of λmax[η�η ] within Ω can be estimated. As in Lemma 2.2, there exists a con-
stant ε2 > 0 such that |z̃(0)| ≤ ε2 makes the origin of system (2.14) asymptotically
stable. On the other hand, from the structure of faults in (2.2) and Assumption 2.2,
T (x) exists and is still invertible, the faulty system (2.1) is still weakly uniformly
0-detectable, which leads to the asymptotic stability of the origin of the closed-loop
system. �

The following theorem provides a reconfiguration strategy based on the previous
analysis.

Theorem 2.1. Assume the output-input stable system (2.1) with fa = 0 and m = p
satisfies C 1, assumptions 2.1-2.3. Faults are assumed to occur at t = t f . Given
a x(0), there exists a constant ω = min(ε1,ε2) such that for all |z̃(0)| ≤ ω , the
following control

us(x̂,t f d) �
{

un(x̂), t ∈ [0, t f d)
un(x̂)−W(x̂) f̂a, t ∈ [t f d ,∞)

(2.22)

makes the origin of the closed-loop system asymptotically stable, where t f d is the
time instant when the fault has been estimated.

Proof: From Lemma 2.2, under the control un(x̂) with the initial |z̃(0)| ≤ ω , one
has V̇ < 0,∀t ∈ [0, t f ), and χ(t f ) ∈ Ω̄ , where Ω̄ ⊂ Ω . Eq.(2.13) implies |z̃(t f )| ≤
|z̃(0)|. On the other hand, the fault can be detected at t f d = t f if |z̃(0)| ≤ ω (see [56]
and [142]), which means the faults are detected rapidly. Therefore, after t = t f d ,
inequality (2.20) holds under the control un(x̂)−W (x̂) f̂a. The result of Lemma 2.3
is then applied to complete the proof. �

Remark 2.1. Theorem 2.1 provides a flexible control architecture which guarantees
that V̇ < 0 ∀t ∈ [0,∞) whenever the faults occur, this property is very suitable for
HS [142]. The proposed strategy treats the healthy system and the faulty system with
different controllers, which leads to good system performance in the sense of FTC.

Example 2.1: [142] A DC motor example is employed to illustrate a potential ap-
plication field of this approach. A series DC motor is a DC motor where the field
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circuit is connected in series with the armature circuit [19]. Under the hypothesis
that there is no magnetic saturation, the modified model of this system is expressed
as follows:

⎡

⎣
ẋ1

ẋ2

ẋ3

⎤

⎦ =

⎡

⎣
−k1x1x2 − R

L x1 + u1 + L fa

−k2x2 + k1
JL x2

1 − x3
J

u2 + 2k1x1 fa

⎤

⎦ (2.23)

[
y1

y2

]

=
[

x1

x2

]

where x1 = φ f denotes the flux, x2 = ω f denotes the speed, x3 = TL denotes time
varying load torque, u1 and u2 are the voltage inputs. the speed and the flux are
measured.

Let us first consider the healthy case ( fa = 0). Since x1 = y1, x2 = y2, and |x3| =
J|ẏ2

2 + k2y2 − k1
JL y2

1| ≤ J|ẏ2|2 + Jk2|y2|+ k1
L |y1|2, it is seen that the healthy system is

weakly uniformly 0-detectable of order 1. The output derivatives are

[
ẏ1

ẏ2

]

=
[ −k1x1x2 − R

L x1

−k2x2 + k1
JL x2

1 − x3
J

]

+
[

1 0
0 0

][
u1

u2

]

so r1 = 1, differentiating the equality of ẏ2 leads to

ÿ2 = k2
2x2 − k1k2

JL
x2

1 +
k2

J
x3 − 2k2

1

JL
x2

1x2 − 2k1R
JL2 x2

1 +
[ 2k1

JL x1 − 1
J

]
[

u1

u2

]

The matrix

[
1 0

2k1
JL x1 − 1

J

]

is always nonsingular. The map T : x → χ is also invertible

and not affected by the observer. C 1 and assumptions 2.1-2.2 are satisfied. From
(2.11), un can be designed as

un =
[

k1x1x2 +(R
L −1)x1

(Jk2
2 − k1

JL )x2
1 − ( 2k1

L + k1k2
L )x2

1 +(k2 + 1
J )x3

]

which makes Ā Hurwitz.
Now consider the faulty case. It is clear that W (x) = (L, 2k1x1)�, fa is an actuator

fault that affects both control channels. The invertible transformation z1 = x2, z2 =
− x3

J + k1
JL x2

1 , z3 = x1 puts system (2.23) into the form

[
ż1

ż2

]

=
[

z2 − k2y1

−2 k1
JL y2(k1y1y2 + R

L y2 −u1)− u2
J

]

(2.24)

y2 = z1 (2.25)

ż3 = −k1y1y2 − R
L

y1 + u1 + L fa (2.26)

y1 = z3
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Fig. 2.1 State trajectories

Eq.(2.26) does not involve the estimation of z1 and z2, which implies that fault
estimates are obtained without any estimation error. So the fault can be detected
and compensated immediately after the fault occurs. Under control un(x), one has
χ̇ = Āχ , where χ = (y1,y2, ẏ2)�.

In the simulation, the parameters are [19]: R = 0.0247, L = 0.06, J = 30.1, k1 =
0.04329, k2 = 0.0033. The initial x(0) = (0.5,0.1,1)�. x̂(3) = 0.85. The fault is
considered as

fa =
{

0, 0s ≤ t < 2.5s
0.5 + 0.2sin(5t), 2.5s ≤ t < 10s

(2.27)

Fig.2.1 shows state trajectories, the origin of the closed-loop system is asymptoti-
cally stable in spite of faults.

2.1.3 FTC for Hybrid Systems

The above FTC solution is now extended to a class of switched systems taking the
form

ẋ = fσ (x)+ Gσ (x)uσ + Eσ(x) faσ

y = h(x) (2.28)

where each mode satisfies all the conditions in Theorem 2.1. σ(t) : [t0,∞) → Q =
{1,2, . . . ,N} is a switching signal, which is assumed to be a piecewise constant
function continuous from the right.

The switching property is considered as in [29]: (a) the switching sequence is
fixed, (b) there is a series of dwell periods Δ tk j for mode k when it is activated for
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the jth time and mode k switches to mode (k + 1) for the jth time at t = tk j when
Δ t(k+1) j is elapsed, (c) the states do not jump at the switching instants.

The observer-based method in Section 2.1.2 is modified for the HS as follows:

• The observer and the fault estimates scheme are switched according to the current
mode at each switching time.

• The initial states of the current observer are chosen as the final states of the
previous observer. The fault estimates are set to zero at each switching instant.

We also need to impose a condition on the above switching law such that the
weak uniform 0-detectability of the overall HS can be guaranteed.

Assumption 2.3. Δ tk j(k = 1,2, . . . ,N) are large enough such that for any s ∈ ℜ+,
we have

βk+1(2βk(2s,Δ tk j),Δ t(k+1) j) ≤ λ̄s < s ∀k ∈ Q (2.29)

where 0 < λ̄ < 1 and βk(k ∈ Q) satisfies (2.4) for mode k.

Lemma 2.4. Consider the HS (2.28) satisfying Assumption 2.3 in the healthy case.
Then, the overall HS is weakly uniformly 0-detectable.

Proof: Lemma 2.4 is an extension of Theorem 1 in [129] to the weak uniform 0-
detectability case, its proof is omitted. �

Let Vk, usk(x̂,t f dk), ωk be respectively V , us(x̂, t f d), ω for mode k. The FTC problem
for the system (2.28) with unfixed dwell periods and fixed dwell periods will be
discussed respectively.

Theorem 2.2. Under Assumption 2.3, consider the HS (2.28) under a family of con-
trol laws uk(x̂,t f dk). There exists a constant ωk such that |˜̄z2(0)| ≤ ωk with a given
x(0). If, at any time instant t̄, the following conditions hold:

|z̃(t̄)| ≤ ωk+1 (2.30)

Vk+1(χ(t̄)) < Vk+1(χ(t(k+1)( j−1))), j > 0 (2.31)

then, choosing Δ tk j ≥ t̄ − tk j, which satisfies (2.29), and setting σ(t) = k + 1 at
t = tk j + Δ tk j guarantee that the origin of the overall HS is asymptotically stable.

Proof: If the initial |z̃(0)| ≤ ωk for some k ∈ Q, it follows from Theorem 2.1 that
V̇k < 0 as long as mode k remains active. If at some time instant t̄ one has |z̃(t̄)| ≤
ωk+1, and σ(t) = k + 1 is set on, then for all t ∈ [t̄, tk j + Δ tk j), V̇k+1 < 0 as long as
σ(t) = k +1. It is concluded that if the kth mode is activated only when |z̃(t)| ≤ ωk,
then

V̇σ (t) < 0, ∀σ(t) = k (2.32)

Moreover, from (2.31), for any admissible switching time tk j one has

Vk+1(χ(t(k+1) j)) < Vk+1(χ(t(k+1)( j−1))) (2.33)

Since the kth faulty mode is still weakly uniformly 0-detectable, and T always ex-
ists, the Multiple Lyapunov function method [22] can be applied to conclude that the
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origin of the hybrid system is Lyapunov stable. On the other hand, for each switch-
ing time tk j, j = 1,2, . . . such that σ(t+k j) = k, the sequence Vσ(tk j) is decreasing and
positive, and therefore has a limit ζ ≥ 0. One has

lim
j→∞

[
Vk+1(χ(t(k+1)( j+1)))−Vk+1(χ(t(k+1) j))

]
= ζ − ζ = 0

Note that there exists a class K function α such that

0 = lim
j→∞

[
Vk+1(χ(t(k+1)( j+1)))−Vk+1(χ(t(k+1) j))

]

≤ lim
j→∞

[−α(‖χ(t(k+1) j‖)] ≤ 0 (2.34)

Inequality (2.34) together with Lemma 2.4 implies that x(t) converges to the origin,
which combined with Lyapunov stability, leads to the asymptotic stability of the
origin of the HS. This completes the proof. �

Remark 2.2. Inequality (2.31) is used only when the target k + 1th mode has been
previously activated. Actually, when only a finite number of switchings is considered
over the infinite time-interval, Inequality (2.31) can be relaxed to allow for finite
increases in Vk+1, (see [28] and [29] for some analysis). In this case, inequality
(2.30) alone is sufficient to enforce the asymptotic stability of the origin.

Many real systems work under a series of prescribed dwell periods, i.e., Δ tk j is fixed.
In this case, the goal of FTC must be achieved before each switching time whenever
the faults occur. This is possible because the decay rate of Vk can be estimated. We
have the following corollary.

Corollary 2.1. Consider the HS (2.28) under a family of control laws uk(x̂,t f dk)
with fixed Δ tk j k ∈ Q which satisfies (2.29). If each faulty mode satisfies (iv), T
exists and is still invertible, and there exists a constant ωk such that |˜̄z2(0)| ≤ ωk,
then the origin of the overall hybrid system is asymptotically stable.

Proof: It is clear from (2.13) that appropriate selection of λ makes (2.30) hold at a
given t(k+1) j. On the other hand, inequality (2.20) in Lemma 2.3 leads to

V̇k ≤−λmin(Qk)|χ |2 + Ξk ≤−ιkVk + Ξk, ιk � λmin(Qk)
λmax(Pk)

(2.35)

Note that Ξk is bounded within a known region and converges to zero, so the trajec-
tory of Vk can be estimated by (2.35). The results of Theorem 2.2 can be applied to
guarantee the asymptotic stability of the origin of the HS. �

2.2 Overall Fault Tolerant Regulation

This section extends the classical output regulation theories to hybrid nonlinear sys-
tems and analyzes its fault tolerance in the presence of continuous faults modeled
by the exosignals.
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2.2.1 Fault Tolerant Regulation for Nonlinear Systems

The considered system takes the general nonlinear form

ẋ(t) = G(x(t),u(t), f (t)) (2.36)

y(t) = H(x(t), f (t)) (2.37)

ḟ (t) = S( f (t)) ∀t ≥ t f , with f (t) = 0 ∀t ∈ [0,t f ) (2.38)

e(t) = y(t)− yr(x(t)) (2.39)

with measurable state x ∈ ℜn, input u ∈ ℜp, output y ∈ ℜm. The regulated error
e denotes the output tracking error between y and the continuous reference signal
yr(x) : ℜn → ℜm. The vector fields G, H are assumed to be smooth and known.

Once the fault occurs, the fault signal f ∈ F ⊂ ℜq is generated by the neurally
stable exosystem (2.38), i.e., ∂S(0)/∂ f has all its eigenvalues on the imaginary axis,
which means that f is always bounded. The function S is also assumed to be smooth
and known. Such model effectively describes process, actuator and sensor faults.

The following assumption is a basic requirement for the state feedback output
regulation design [55].

Assumption 2.4. There exist some u = α(x, f ) with f = 0 such that x = 0 of healthy
system (2.36) ẋ = G(x,α(x,0),0) is asymptotically stable.

Definition 2.2. Fault tolerant regulation problem (FTRP) for system (2.36)-(2.39) is
to find a FTC law u = α(x, f ) such that ∀x(0) ∈ X with X ⊂ ℜn a neighborhood
of 0 and ∀ f ∈F , the trajectory of the closed-loop system (2.36) ẋ = G(x,α(x, f ), f )
is bounded ∀t ≥ 0 and limt→∞ e(t) = 0.

Theorem 2.3. Suppose that the fault f can be detected/approximated accurately,
and there exists a u = α(x, f ) satisfying Assumption 2.4. The FTRP for system
(2.36)-(2.39) is solvable if and only if there exists a C k mapping x = π( f ) with
π(0) = 0 defined for (x, f ) ∈ X ×F satisfying

∂π
∂ f

S( f ) = G(π( f ),α(π( f ), f ), f ) (2.40)

0 = H(π( f ), f )− yr(π( f )) (2.41)

Proof: The proof follows the same way as that of Theorem 8.3.2 in [55], which is
thus omitted. �

Remark 2.3. It can be seen that FTRP is similar to the general output regulation
problem with disturbances. Theorem 2.3 provides necessary and sufficient condi-
tions to solve FTRP in the classical faulty case. The existence and the design of
π( f ) and α(x, f ) have been deeply investigated in many literatures, e.g. [55], [52],
which are not focused on here.

2.2.2 Overall Fault Tolerant Regulation

Now we consider the hybrid case. The system is
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ẋ(t) = Gσ(t)(x(t),uσ(t)(t), fσ(t)(t)) (2.42)

y(t) = H(x(t), fσ(t)(t)) (2.43)

ḟσ(t)(t) = Sσ(t)( fσ(t)(t)) ∀t ≥ t f , with fσ(t)(t) = 0 ∀t ∈ [0, t f ) (2.44)

where σ(t) : [0,∞) → Q also denotes a piecewise constant switching function.

Assumption 2.5. There exists a family of controllers ui = αi(x, fi) for i ∈ Q solving
the FTRP for system (2.39) and (2.42)-(2.44) with σ(t) = i.

Assumption 2.5 means that the FTRP of each mode is solvable individually. The
following definition is an extension of FTRP to the successional faulty case.

Definition 2.3. Overall fault tolerant regulation problem (OFTRP) for system (2.39)
and (2.42)-(2.44) is to find a switching scheme among ui = αi(x, fi), i ∈ Q such that
∀x(0) ∈ X and ∀ fi ∈F , the trajectory of the closed-loop system (2.42) is bounded
∀t ≥ 0 and limt→∞ e(t) = 0.

Before solving the OFTRP, we give an important concept as follows

Definition 2.4. [49]: Let Nσ (T, t) denote the number of switchings of σ over the
interval (t,T ), if there exists a positive number τa such that

Nσ (T,t) ≤ N0 +
T − t

τa
, ∀T ≥ t ≥ 0 (2.45)

where N0 > 0 denotes the chattering bound, then the positive constant τa is called
average dwell time (ADT) of σ over (t,T ).

Definition 2.4 means that there may exist some switchings separated by less than τa,
but the average dwell period among switchings of modes is not less than τa.

The following theorem establishes the sufficient conditions to solve OFTRP.

Theorem 2.4. Consider a system (2.39) and (2.42)-(2.44) satisfying Assumption
2.5. Suppose that each fault can be diagnosed without delay, and each FTC law
ui is applied once a fault fi occurs. The OFTRP is solvable if

C1) τa > lnB
a , where B � maxi∈Q Bi, a � mini∈Q ai.

and either C2) or C3) holds for k = 1,2, ...
C2) πσ(tk−1)( fσ(tk−1)(tk)) = πσ(tk)( fσ(tk)(tk)).
C3) −(a− lnB

τa
)(t − tk)+ lnk < −a∗t, for t ≥ tk and a∗ > 0.

Remark 2.4. Before proving Theorem 2.4, we provide some insight into the con-
ditions C1)-C3): C1) requires that the switching of modes is slow averagely, i.e.,
the frequency of switching is not too much. C2) imposes a condition on the map-
ping πi and the fault value fi. It can be seen that if there is a common mapping
x = π( fi) for all modes, and fσ(tk−1)(tk)) = 0, then C2) holds. Generally, C2) is
hard to satisfy even in the linear case [76]. In the absence of C2), C3) requires
that the dwell period of each mode is long enough. C3) can be verified by checking
whether lnk +(a− lnB

τa
)tk < (a− lnB

τa
−a∗)t holds or not for t ∈ [tk,tk+1).
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Proof of Theorem 2.4: Since mode σ(tk) in the time interval [tk,tk+1) is controlled
by uσ(tk), thus its FTRP is solved from Assumption 2.5. According to Theorem 8.3.2
in [55], a center manifold x = πσ(tk)( fσ(tk)) of mode σ(tk) is locally attractive, i.e.,

|x(t)−πσ(tk)( fσ(tk)(t))| ≤Be−a(t−tk)|x(tk)−πσ(tk)( fσ(tk)(tk))|, tk ≤ t < tk+1 (2.46)

Similarly, in [tk−1,tk) one has

|x(t−k )−πσ(tk−1)( fσ(tk−1)(t
−
k ))| ≤ Be−a(t−k −tk−1)|x(tk−1)−πσ(tk−1)( fσ(tk−1)(tk−1))|

(2.47)
Combining (2.46) with (2.47) yields

|x(t)−πσ(tk)( fσ(tk)(t))| ≤ Be−a(t−tk)
∣
∣
∣x(tk)−πσ(tk−1)( fσ(tk−1)(tk))

+πσ(tk−1)( fσ(tk−1)(tk))−πσ(tk)( fσ(tk)(tk))
∣
∣
∣

≤ B2e−a(t−tk−1)|x(tk−1)−πσ(tk−1)( fσ(tk−1)(tk−1))|
+Be−a(t−tk)|πσ(tk−1)( fσ(tk−1)(tk))−πσ(tk)( fσ(tk)(tk))| (2.48)

By induction, we obtain

|x(t)−πσ(tk)( fσ(tk)(t))| ≤ Bk+1e−at |x(0)−πσ(0)( fσ(0)(0))|

+
k

∑
s=1

(
Bse−a(t−tk−s+1)|πσ(tk−s)( fσ(tk−s)(tk−s+1))

−πσ(tk−s+1)( fσ(tk−s+1)(tk−s+1))|
)

(2.49)

From C1), we can pick λ = a− lnB
τa

, we have τa = lnB
(a−λ ) . Based on (2.45), we have

Bk+1e−at ≤ BN0+1e
t

τa
lnB−at < BN0+1e−λ t (2.50)

If C2) holds, each term of the sum in (2.49) is zero. Substituting (2.50) into (2.49),
we further have

|x(t)−πσ(tk)( fσ(tk)(t))| ≤ BN0+1e−λ t |x(0)−πσ(0)( fσ(0)(0))| (2.51)

Inequality (2.51) means that x−πσ(tk)( fσ(tk)) still converges to zero ∀t ≥ tk, ∀x(0)∈
X and ∀ fi ∈ F . By continuity of H and yr in each [tk−1, tk), it follows that
limt→0 e(t) = 0.

If C2) does not hold, one has from C1) and (2.45) that

Bse−a(t−tk−s+1) ≤ BN0+
t−tk−s+1

τa e−a(t−tk−s+1)

≤ BN0e
t−tk−s+1

τa
lnB−a(t−tk−s+1)

≤ BN0e−λ (t−tk−s+1) (2.52)
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Since each fi is bounded due to the neurally stable exosystems, there exists a con-
stant ξ > 0 such that ∀k = 1,2, ..., and 1 ≤ s ≤ k

∣
∣
∣πσ(tk−s)( fσ(tk−s)(tk−s+1))−πσ(tk−s+1)( fσ(tk−s+1)(tk−s+1))

∣
∣
∣≤ ξ (2.53)

It follows from (2.53) and C3) that

k

∑
s=1

(
Bse−a(t−tk−s+1)|πσ(tk−s)( fσ(tk−s)(tk−s+1))−πσ(tk−s+1)( fσ(tk−s+1)(tk−s+1))|

)

≤ ξ BN0
k

∑
s=1

e−λ (t−tk−s+1)

≤ ξ BN0elnk−λ (t−tk)

≤ ξ BN0e−a∗t (2.54)

By substituting (2.50) and (2.54) into (2.49), we conclude that x − πσ(tk)( fσ(tk))
converges to zero ∀t ≥ tk, ∀x(0) ∈ X and ∀ fi ∈ F . The result follows. �

2.3 Multiple Observers Method

2.3.1 Problem Formulation

Differently from sections 2.1-2.2, we address a class of HS with both continuous
faults and discrete faults in this section. The system takes the form

ẋ(t) = Aσ x(t)+ gσ(x(t), t)+ Bσ uσ (t)+ Eσ f c
σ (t) (2.55)

y(t) = Cx(t) (2.56)

where x(t) ∈ ℜn is the non measured state, y(t) ∈ ℜp is the output, uσ (t) ∈ ℜm

is the control. Aσ , Bσ , Eσ and C are real constant matrices of appropriate dimen-
sions. (Aσ ,Bσ ) is controllable. gσ (x(t), t) is a continuous Lipschitz function, i.e.,
|gσ (x1,t)−gσ (x2,t)| ≤ Lσ |x1 − x2|, where Lσ > 0 is called the Lipschitz constant.
Moreover, gσ (0,t) = 0.

The continuous actuator fault is modelled by a “fault pattern” as in Chapter 2.1.
Suppose that there exists two constants f 0

σ and f 1
σ such that | f c

σ | ≤ f 0
σ , | ḟ c

σ | ≤ f 1
σ .

Such fault model covers all faults that result in a deviation of the control signal from
normal.

Define Q = {1,2, . . . ,N}, where N is the number of modes. σ(t) : [t0,∞) → Q
denotes the switching function as in sections 2.1-2.2. Denote t j as the jth switching
instant of the system (2.55)(2.56). At t j, the system switches to mode k, where k∈Q,
j = 1,2, ....

The switching property is considered as in [29]: a) the switching sequence is
fixed. b) there is a series of prescribed dwell periods between each switching. We
also assume that the states do not jump at the switching instants.
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The discrete fault is represented by the faulty switching function σ f (t), that
forces the system to switch to a mode which is not the prescribed successor at
the switching instant. Similarly, σH(t) denotes the healthy switching function. If
σ(t) = σH(t), then there is no discrete fault in the current mode.

The FTC problem in this section can be described as: Keep the states of system
(2.55)-(2.56) always bounded and make them converge to a small closed set in spite
of continuous and discrete faults.

Different from sections 2.1-2.2, the FTC of discrete faults must be taken into
account as in [132] and [145]. Since the current mode after each switching time
may be unknown due to discrete faults, some identifying work must be applied
for a short period. Some related work can be seen in [129], [68], [48] and [20].
Whatever method used, the necessary time period in which mode is identified (due
to computation time, decision time) may cause instability. How to overcome this
finite delay is a problem to be addressed.

The main idea is as follows: 1) For the continuous faults in each mode, an adap-
tive observer technique is proposed to provide the rapid fault estimation, based on
which the FTC law is designed. 2) For the discrete faults, a novel model-free sliding
mode observer is designed, which together with a series of observers related to sys-
tem modes, can identify the current mode quickly while guaranteeing the stability
of the system during each transition period. 3) The above two FTC strategies are
combined with the average dwell time scheme such that the states of the overall
hybrid system are always bounded and converge to a small closed set.

2.3.2 FTC for Continuous Faults

In this subsection, only f c
σ (t) is addressed. We introduce the input-to-state practical

stability and a lemma that will be used later.

Definition 2.5. [113] A system ẋ = f (x,u) is said to be input-to-state practically
stable (ISpS) over [0,t) w.r.t. u if there exist functions β ∈ K L , α,γ ∈ K∞, and a
constant ς > 0, such that for any bounded input u and any initial condition x(0), we
have

α(|x(t)|) ≤ β (|x(0)|, t)+ γ(‖u‖[0,t))+ ς , ∀t ≥ 0

Note that when ς = 0, ISpS becomes input-to-state stability (ISS) [114] (see also
Definition 4.1 in Chapter 4).

It has been proven in Section VI of [113] that the following property holds.

Lemma 2.5. If there exist α1, α2, α3, γ1 ∈ K∞, ς1 > 0 and a smooth function V :
ℜn → ℜ≥0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.57)

V̇ (x) ≤ −α3(|x|)+ γ1(|u|)+ ς1 (2.58)

Then the system ẋ = f (x,u) is ISpS over [0, t) w.r.t. u.
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If ς1 = 0, then V is called ISS Lyapunov function[114], and the system is ISS under
(2.57) and (2.58) with the state x and the input u (see Lemma 2.14 in [114]).

Now let us consider the system (2.55)(2.56) with σ(t) = k for some k ∈Q starting
from t = t j

ẋ(t) = Akx(t)+ gk(x(t), t)+ Bkuk(t)+ Ek f c
k (t) (2.59)

y(t) = Cx(t) (2.60)

Assumption 2.6. There exists a matrix Kk such that Gk(s)=C[sI−(Ak−KkC)]−1Ek,
is strictly positive real (SPR) :

∀ω > 0 : Re(Gk( jω)) > 0 (2.61)

Moreover
min

ω∈R+
σmin(Ak −KkC− jωI) > Lk (2.62)

where σmin (M) is the smallest singular value of M.

Remark 2.5. Assumption 2.6 is a restriction on the triple (Ak,C,Ek) in terms of the
fault to residual transfer of the observer-based residual generator associated with
the linear part of the system. A known necessary condition for Gk(s) to be SPR is
that (Ak,C) is observable and CEk is of full column rank. It should be noted that CEk

being of full column rank is a standard assumption in fault isolation problem [10].

Under Assumption 2.6, it has been proven in [104] that for any given matrix Qk ∈
ℜn×n > 0 and scalar ε > 0, there exist two matrices Pk ∈ ℜn×n > 0 and Rk ∈ ℜr×q

such that
PkEk = C�Rk (2.63)

and

(Ak −KkC)�Pk + Pk(Ak −KkC)+ εL2
kIn +

P2
k

ε
+ Qk ≤ 0 (2.64)

The FD scheme for mode k is designed as

˙̂x = Akx̂+ gk(x̂, t)+ Bkuk + Ek f̂ c
k + Kk(y− ŷ) (2.65)

˙̂f c
k = ΓkR�

k (y− ŷ)−ϑkΓk f̂ c
k (2.66)

ŷ = Cx̂ (2.67)

where x̂(t) , f̂ c
k (t) , ŷ (t) are the estimates of x(t) , f c

k (t),y(t). The weighting matrix
Γk = Γ �

k > 0, and the constant ϑk > 0 are chosen such that ϑk −λmax(Γ −1
k ) > 0.

Remark 2.6. The diagnostic scheme (2.65)-(2.67) plays an important role to diag-
nose the f c

k . Our goal is to stabilize the system, we neither care about when the fault
occurs nor design a so-called detection observer as in [58] to detect the fault. The
diagnostic scheme (2.65)-(2.67) always works no matter the mode k is faulty or not
(i.e., the normal condition can be treated as a special faulty case where f c

k = 0).
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Denote ex(t) = x(t)− x̂(t), ey(t) = y(t)− ŷ(t), e f (t) = f c
k (t)− f̂ c

k (t), we have the
following lemma:

Lemma 2.6. [57] Define a set Sk as

Sk �
{

(ex,e f )

∣
∣
∣
∣
∣
λmin(Pk)|ex|2 + λmin(Γ −1

k )|e f |2 ≤ βk

αk

}

where

βk�λmax(Γ −1
k )( f 1

k )
2
+ σk( f 0

k )
2
, αk � min(ck1, ck2)

max[λmax(Pk), λmax(Γ −1
k )]

ck1�λmin(Qk) > 0, ck2 � ϑk −λmax(Γ −1
k ) > 0 (2.68)

Then under Assumption 2.6, the fault diagnostic scheme (2.65)-(2.67) guarantees
that (ex,e f ) of mode k converges to Sk exponentially at a rate greater than e−αkt .

The following lemma gives a relation between ex and e f .

Lemma 2.7. Under Assumption 2.6, the fault diagnostic scheme (2.65)-(2.67) guar-
antees that ex is ISS w.r.t. e f , i.e., there exist βek ∈ K L , αek,γek ∈ K∞ such that

αek(|ex(t))| ≤ βek(|ex(t j)|,t)+ γek(‖e f ‖[t j ,t)), ∀t ≥ t j (2.69)

Proof: From (2.59), (2.60), (2.65) and (2.67), we have

ėx = (Ak −KkC)ex + gk(x,t)−gk(x̂,t)+ Eke f (2.70)

Choose a Lyapunov candidate Θk = e�x Pkex, its derivative w.r.t. time along (2.70) is

Θ̇k = e�x [Pk(Ak −KkC)+ (Ak −KkC)�Pk]ex

+2e�x Pk(gk(x, t)−gk(x̂,t))+ 2e�x PkEke f

Note that, for two vectors a1, a2, it holds that 2a1
�a2 ≤ 1

ε a1
�a1 +εa2

�a2 for ε > 0.
Similarly, we can show that

2e�x Pk(gk(x,t)−gk(x̂, t)) ≤ e�x
P2

k

ε
ex + εL2

k e�x ex (2.71)

From (2.64), we have

Θ̇k≤−e�x Qkex + 2e�x PkEke f

≤(−λmin(Qk)+ ε1)|ex|2 +
|PkEk|2

ε1
|e f |2 (2.72)

where ε1 > 0 is chosen such that −λmin(Qk)+ε1 < 0. Inequality (2.72) implies that
Θk is an ISS-Lyapunov function with the state ex and the input e f . From Lemma 2.5,
the result follows.
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Moreover, we have

Θ̇k ≤ −λmin(Qk)+ ε1

λmax(Pk)
Θk +

|PkEk|2
ε1

|e f |2 � ι1Θk + ι2|e f |2

Using the differential inequality theory (see Chapter 2 in [84]), we can obtain

Θk≤eι1(t−t j)Θk(t j)+
∫ t

t j

eι1(t−τ)ι2|e f (τ)|2dτ

≤eι1(t−t j)Θk(t j)+ sup
τ∈[t j ,t)

{ι2|e f (τ)|2}
∫ t

t j

eι1(t−τ)dτ

≤eι1(t−t j)λmax(Pk)|ex(t j)|2
︸ ︷︷ ︸

βek(|ex(t j)|,t)

+
1

−ι1
sup

τ∈[t j ,t)
{ι2|e f (τ)|2}

︸ ︷︷ ︸
γek(‖e f ‖[t j ,t)

)

(2.73)

Define αek(·) = λmin(Pk)(·)2, which, together with βek,γek in (2.73), leads to
(2.69). This completes the proof. �

Supposed that e f (t) is norm bounded in each [t j,t j+1). Inequality (2.69) means that
given an initial |ex(t j)| (or a bound of |ex(t j)|, the value of |ex| can be estimated.
Define

ex(t)est � α−1
ek′′ ◦βek′′(|ex(t j)|,t)+ α−1

ek′′ ◦ γek′′(‖e f (t)‖[t j ,t)), t j ≤ t ≤ t j+1 (2.74)

ex(t)est is the estimates of |ex(t)|. It follows that |ex(t)| ≤ ex(t)est .
Now we are ready to design the FTC law. Since (Ak,Bk) is controllable, let Wk =

W�
k > 0 be associated with a given symmetric positive definite matrix Hk by the

Riccati equation
A�

k Hk + HkAk −2HkBkB�
k Hk +Wk = 0 (2.75)

The design of the proposed fault-tolerant controller makes use of the two follow-
ing assumptions.

Assumption 2.7. Given a solution Hk of (2.75), there exists a bounded function
ηk(x,t) > 0 such that

|x�Hkgk(x,t)| ≤ ηk(x,t)|x�HkBk| (2.76)

Assumption 2.8. rank(Bk,Ek) = rank(Bk).

Remark 2.7. Inequality (2.76) is not restrictive. Since gk(0,t) = 0, from the Lips-
chitz condition, one has |gk(x,t)| ≤ Lk |x| and

∣
∣x�Hkgk(x,t)

∣
∣ ≤ Lk

∣
∣x�Hk

∣
∣ |x|. Since

(Ak,Bk) is controllable, the ratio
∣
∣x�Hk

∣
∣/

∣
∣x�HkBk

∣
∣ is homogeneous and its

maximal value is found by solving max(|x�Hk|) under the constraint |x�HkBk| = 1
providing some bounded solution x∗. Assumption 2.8 is naturally satisfied for the
actuator faulty case. Indeed, rank(Bk) = rank(Bk,Ek) ⇔ Im(Ek)⊆ Im(Bk) which is
equivalent to the existence of B∗

k such that (I−BkB∗
k)Ek = 0.
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The fault-tolerant controller is constructed as

uk(x̂) = uk1(x̂)+ uk2(x̂) (2.77)

where

uk1(x̂) � −B�
k Hkx̂−B∗

kEk f̂ c
k , (2.78)

uk2(x̂) � − ηk(x̂,t)
|φk(x̂)|+ ε/2

φk(x̂), φk(x̂) � ηk(x̂, t)B�
k Hkx̂ (2.79)

with ε an arbitrarily small positive scalar.

Lemma 2.8. Suppose that assumptions 2.6-2.8 are satisfied, under the feedback
control (2.77)-(2.79), mode k in (2.59)(2.60) is ISpS over [t j,t) w.r.t. ex, e f and a
constant ςk > 0.

Proof: Applying the control (2.77) to (2.59) results in the closed-loop dynamics

ẋ = (Ak −BkB�
k Hk)x + BkB�

k Hkex + Eke f + gk(x, t)+ Bkuk2(x̂) (2.80)

Consider a Lyapunov candidate Vk(x) = x�Hkx, where Hk > 0 is defined by (2.75).
Its derivative along the system is

V̇k ≤ −λmin(Wk)|x|2 + 2|HkBkB�
k Hk| · |x| · |ex|

+2|HkEk| · |x| · |e f |+ 2x�Hk[Bkuk2(x̂)+ gk(x,t)] (2.81)

From (2.79), one has

2x�Hk[Bkuk2(x)+ gk(x,t)]

=
−2η2

k (x,t)|x�HkBk|2 + 2x�Hkgk(x, t)ηk(x, t)|x�HkBk|+ εx�Hkgk(x, t)
ηk(x,t)|x�HkBk|+ ε/2

(2.82)

Substituting (2.76) into (2.82) yields

2x�Hk[Bkuk2(x)+ gk(x,t)] ≤ ε|x�Hkgk(x,t)|
ηk(x, t)|x�HkBk|+ ε/2

≤ ε (2.83)

Assumption 2.7 guarantees that the control uk2(x) is continuous and locally bounded.
There always exists a number δk > 0 such that |uk2(x̂)−uk2(x)| ≤ δk|ex| for a small
|ex|. Due to the convergence of the estimation in Lemma 2.6, it follows that

2x�Hk[Bk(uk2(x̂)−uk2(x)] ≤ 2|HkBk| ·δk|ex| (2.84)

where δk > 0. It also holds that

2|HkBkB�
k Hk| · |x| · |ex| ≤ ε2|x|2 +

|HkBkB�
k Hk|2

ε2
|ex|2
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2|HkEk| · |x| · |e f | ≤ ε3|x|2 +
|HkEk|2

ε3
|e f |2

where ε2,ε3 > 0 are chosen such that −λmin(Wk) + ε2 + ε3 < 0. Substituting two
inequalities above and (2.83), (2.84) into (2.81), one can further obtain

V̇k≤(−λmin(Wk)+ ε2 + ε3)|x|2

+
|HkBkB�

k Hk|2
ε2

|ex|2 + 2|HkBk| ·δk|ex|+ |HkEk|2
ε3

|e f |2 + ε

From Lemma 2.5, the result follows. �

Based on previous analysis for single mode, now we consider the HS (2.55)(2.56).
It can be obtained from Lemma 2.8 that there exist continuously differentiable func-
tions Vk : ℜn → ℜ≥0, k ∈ Q and γ̄1(·), γ̄2(·) ∈ K∞, such that ∀p,q ∈ Q

ᾱ1|x|2 ≤ Vp(x) ≤ ᾱ2|x|2 (2.85)

V̇p(x) ≤ −λ0Vp(x)+ γ̄1(|ex|)+ γ̄2(|e f |)+ ς0 (2.86)

Vp(x) ≤ μVq(x) (2.87)

where constants ᾱ1, ᾱ2, λ0, ς0 > 0, μ ≥ 1. The existence of μ is automatically
guaranteed for the quadratic Lyapunov functions, e.g., μ = ᾱ2/ᾱ1.

Since no discrete fault is considered, the system follows the prescribed switching
sequence at each switching instant. The observer is modified for the overall system
as follows:

• The fault diagnostic scheme is switched according to the current mode at each
switching instant.

• The initial states x̂ of the current observer are chosen as the final states of the
previous observer. The fault estimates f̂ c

k are set to zero at each switching instant.

The following theorem provides a FTC strategy for the overall system with con-
tinuous faults.

Theorem 2.5. Consider the HS (2.55)(2.56) with an initial x(0), each mode satisfies
assumptions 2.6-2.8. Let the switching function σ have an ADT τa. If τa > ln μ

λ0
,

where μ and λ0 are chosen from (2.86)-(2.87), and ex(t j(k + 1))est < ex(t j(k))est

where t j(k) denotes the time instant that mode j is activated for the kth time, then
under the diagnostic scheme (2.65)-(2.67) and controller (2.77)-(2.79), the states of
the overall switched system are always bounded and converge to a small closed set.

Proof : Define Gb
a(λ ) =

∫ b
a eλ sΦds, where Φ � γ̄1(|ex|)+ γ̄2(|e f |)+ ς0. Let T > 0

be an arbitrary time. Denote by t1, . . . ,tNσ (T,0) the switching instants on the interval
(0,T ), where Nσ (T,0) is defined in (2.45). Similar to [125], consider the function

W (s) � eλ0sVσ(s)(x(s)) (2.88)
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Since σ(s) is constant on each interval s ∈ [t j, t j+1), from (2.86), we have Ẇ (s) ≤
eλ0sΦ,∀s ∈ [t j,t j+1). Integrating both sides of the foregoing inequality from t j to

t−j+1 and from (2.87), we obtain W (t j+1)≤ μ(W (t j)+G
tj+1
t j

(λ0)). Iterating the fore-
going inequality from 0 to Nσ (T,0), we get

W (T−) ≤ μNσ (T,0)
(

W (0)+
Nσ (T,0)

∑
j=0

μ− jG
t j+1
t j

(λ0)
)

(2.89)

where T− denotes the time instant just before T .
Pick λ ∈ (0,λ0 − ln μ

τa
), we have τa ≥ ln μ

(λ0−λ ) . Based on (2.45), we have

μNσ (T,0)− j≤μN0+ T
τa
− j+1−1

≤μ1+N0eτa(λ0−λ )( T
τa
−1− j) ≤ μ1+N0e(λ0−λ )(T−t j+1) (2.90)

and

G
tj+1
t j

(λ0) =
∫ t j+1

t j

eλ0sΦds ≤ e(λ0−λ )t j+1G
tj+1
t j

(λ ) (2.91)

Substituting (2.90), (2.91) into (2.89) yields

W (T−)≤μNσ (T,0)W (0)+
Nσ (T,0)

∑
j=0

μ1+N0e(λ0−λ )T G
t j+1
t j

(λ )

≤μ1+N0e−λ T
(

eλ0T−(λ0−λ )τaW (0)+
Nσ (T,0)

∑
j=0

eλ0T G
t j+1
t j

(λ )
)

≤μ1+N0e−λ T eλ0T
(

W (0)+ G�
0 (λ )

)

It follows that

ᾱ1|x(T )|2 ≤ μ1+N0e−λ T (ᾱ2|x(0)|2 + G�
0 (λ ))

≤ μ1+N0e−λ T ᾱ2|x(0)|2 + μ1+N0
1
λ

(
γ̄1(‖ex‖[0,T))+ γ̄2(‖e f ‖[0,T))

)
+ ς̄

where ς̄ � (μ1+N0 · ς0)/λ .
This implies that the HS is ISpS w.r.t. ex, e f and a constant ς̄ > 0. On the other

hand, the inequality ex(t j(k+1))est < ex(t j(k))est guarantees the global convergence
of ex, which together with the boundness of e f leads to convergence of the states of
the overall HS to a small closed set. This completes the proof. �

Roughly speaking, Theorem 2.5 shows that, if the average dwell time is large
enough, then the overall HS is stable and the states are bounded whenever the con-
tinuous actuator faults occur in each dwell period.
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2.3.3 FTC for Discrete Faults

Since the discrete faults violate the prescribed switching sequence, one would nat-
urally try to first identify the current mode at the beginning of each time interval
[t j,t j+1) using a short time period Δ t j � t j+1 − t j, and then control the identified
mode in the rest of the time interval.

In this section, a model-free sliding mode observer is proposed to estimate the
states of current unknown mode, which together with a series of observers accord-
ing to system modes, can identify the current mode quickly while guaranteeing the
stability of the system in each Δ t j.

In each Δ t j, the control signal is set to zero, thus no continuous fault signal ap-
pears in Δ t j .

The system (2.59)-(2.60) without input can be written as

ẋ(t) = Ak′x(t)+ gk′(x(t), t), y(t) = Cx(t) (2.92)

where k′ ∈ Q is unknown. The system (2.92) is rewritten as

ẋ(t) = Āx(t)+ Fk′(x(t), t), y(t) = Cx(t) (2.93)

where Fk′(x,t) � Ak′x + gk′(x,t)− Āx, Ā is a matrix such that the pair (Ā,C) is ob-
servable. There exists a matrix L̄ such that Ā− L̄C is Hurwitz stable. Denote P̄ as the
symmetric positive definite solution of the Lyapunov equation (Ā− L̄C)�P̄+ P̄(Ā−
L̄C) = −Q̄ with a given symmetric positive definite matrix Q̄.

A model-free sliding mode observer is designed as

˙̄x(t) = Āx̄(t)+ S(ēx(t),ρ j)+ L(y(t)− ȳ(t)), ȳ(t) = Cx̄(t) (2.94)

where ēx � x− x̄, and

S(ēx(t),ρ j) � P̄−1C�Cēx(t)
|Cēx(t)| ρ j

with a constant ρ j > 0 which will be designed later.
From (2.93) and (2.94), we have

˙̄ex(t) = (Ā− L̄C)ēx(t)−S(ēx(t),ρ j)+ Fk′(x(t), t) (2.95)

Assumption 2.9. There exists a bounded function hk′(x, t), |hk′(x,t)| < ρ |x| for ρ >
0 such that

Fk′(x, t) = −P̄−1C�hk′(x, t) (2.96)

Remark 2.8. Eq.(2.96) is not hard to be satisfied if Fk′(x,t) is bounded. It is clear
that there exists a constant F̄ > 0 such that |Fk′(x, t)| ≤ F̄ |x|. If x is bounded in Δ t j

(which will be shown later), then |Fk′(x, t)| is naturally bounded.
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Lemma 2.9. Under Assumption 2.9, there exists a ρ j > 0 such that, if the states in
each Δ t j are bounded, then the origin of the system (2.95) is asymptotically stable.

Proof: Consider a Lyapunov function candidate V̄ (ēx) = ē�x P̄ēx. Its derivative along
the system (2.95) is

˙̄V = −ē�x Q̄ēx + 2ē�x P̄Fk′(x, t)−2|Cēx|ρ j

≤ −ē�x Q̄ēx + 2|Cēx| · |x|ρ −2|Cēx|ρ j (2.97)

If |x| is always bounded in Δ t j, then we can choose a ρ j large enough such that
˙̄V < −ē�x Q̄ēx in Δ t j . This completes the proof. �

In order to identify the current mode, a series of following observers are also needed

observer i : ˙̂xi = Aix̂i + gi(x̂i, t)+ Ki(y− ŷi), ŷi = Cx̂i, i ∈ Q (2.98)

which are the same as (2.65)-(2.67) without ui and f̂ c
i . exi denotes the state estima-

tion error using observer i.
The sliding mode observer in (2.94) and all observers in (2.98) are invoked to

estimate the current mode simultaneously in Δ t j . Set the initial states of observers
to x̂(t−j ) at t = t j. It is supposed that all modes are discernable [20], i.e., for mode
i without input, |exi| converges faster than |ex j|,∀ j ∈ Q, j �= i . This is a quite gen-
eral condition for switching control problem as for instance in [20],[129] and [68].
Roughly speaking, it means that all the modes are not overlapping.

The identifiability is analyzed in the following lemma.

Lemma 2.10. The current mode k′ can be identified at time instants t j +Δ t j, where
Δ t j can be made arbitrarily small.

Proof: It is evident that |exk′ |− |ēx| ≤ |x̄− x̂k′ | ≤ |exk′ |+ |ēx|, one has

|x̄− x̂i|− |x̄− x̂k′ | ≥ χ , ∀i ∈ Q, i �= k′

where χ � |exi|− 2|ēx|− |exk′ |. All observers share the same initial states at t = t j,
so χ(t j) < 0. From Lemmas 2.7, 2.8, and (2.98), it follows that if the current mode
is mode k′, then |exk′ | converges to zero at a given rate depending on Kk′ and Qk′ .
Lemma 2.9 ensures |ēx| also converges to zero at a given rate. Note that all modes are
discernable, there always exist Kk′ , Qk′ , L̄, Q̄ and ρ j such that χ(t) > 0 ∀t ≥ t j +Δ t j

with arbitrarily small Δ t j. It follows that |x̄− x̂k′ | is minimal ∀t ≥ t j + Δ t j. This
implies that mode k′ can be identified. �

The work of identifier is to find x̂k′ that is most similar to x̄. Although Δ t j can be
made arbitrarily small as in Lemma 2.10, a small delay is necessary to overcome the
possible overshoot of the state trajectories. Since x̂i, x̂k′ and x̄ are all continuous and
measurable, in the real implementation of the identifier, high order time derivatives
of the signals can help to find the similarity (as using 1-order time derivative of
signals in the simulation).
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The following assumption is imposed to avoid that the system states escape into
infinity or a large region before a proper controller is invoked.

Assumption 2.10. The Δ t j determined by Lemma 2.10 is always within the follow-
ing set

ΩΔ t j � {Δ t j|Δ t j < t j+1 − t j and |x̄(t j + Δ t j)| ≤ ξ |x̄(t j)|} (2.99)

where ξ ≥ 1, ∀k′ ∈ Q, j = 1,2 . . ..

Remark 2.9. The selection of ξ depends on system dynamics. Assumption 2.10 is
not hard to be satisfied, since Δ t j can be made arbitrary small (due to Lemma 2.10).
If the system without control is still stable or divergent slowly (this is the ideal case),
then it is also possible that |x̄(t j +Δ t j)|< ξ |x̄(t j)| when the current mode is detected
at t + Δ t j.

From (2.99), lemmas 2.7 and 2.9, we have

|x(t j + Δ t j)| ≤ |x̄(t j + Δ t j)|+ |ēx(t j + Δ t j)|
≤ |x̄(t j + Δ t j)|+

√

ᾱ3eᾱ4Δ t j |ēx(t j)|
≤ |x̄(t j + Δ t j)|+

√
ᾱ3ex(t j)est

≤ ξ |x̄(t j)|+ ε j (2.100)

where ᾱ3 > 0, ᾱ4 < 0 are determined by P̄,Q̄. k′′ denotes the mode activated in
[t j−1,t j). Note that ε j > 0 can be calculated from the estimates ex(t j)est in (2.74).
The main contribution of inequality (2.100) is that it provides a bound of |x(t)| in
Δ t j, which can be used to design ρ j in (2.94).

The proposed identifier in this section has three good properties:

• It can provide accurate state estimates after each Δ t j .
• It is not affected by continuous actuator faults since no control signal are applied

in Δ t j.
• It avoids the large transient overshoot of states in Δ t j.

2.3.4 FTC Framework

Based on the analysis in sections 2.3.2-2.3.3, the FTC problem for both continuous
and discrete faults is discussed in this section. Fig.2.2 shows the block diagram of
the framework, where the plant is connected with three parts: a series of observers
and controllers, a model-free observer, and an identifier. The fault tolerant control
framework works as the following procedure:

1) At switching instant t j, stop the fault diagnostic scheme (2.65)-(2.67), set control
signals and fault estimates to zero.

2) Invoke the model free observer (2.94), a series of observers (2.98), initialize all
observers at t j with the same states x̂(t−j ).
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Fig. 2.2 The FTC framework

3) Choose ρ j by (2.97) and (2.100), invoke the identifying scheme in Lemma 2.10
into the system.

4) Determine Δ t j based on Lemma 2.10.
5) At t j +Δ t j, stop the identifier, apply the fault diagnostic scheme (2.65)-(2.67) and

controller (2.77)-(2.79) into the system according to the current mode.
6) At switching instant t j+1, go to 1).

The following theorem is given to guarantee the stability of overall system with
both continuous and discrete faults.

Theorem 2.6. Consider the HS (2.55)(2.56) with an initial x(0) satisfying assump-
tions 2.9, 2.10, with each mode satisfying assumptions 2.6-2.8. Let the switching
function σ have an ADT τa. If τa > ln μ

λ0
, and ex(t j(k +1))est < ex(t j(k))est , then the

proposed FTC framework guarantees that the states of the HS are always bounded
and converge to a small closed set.

Proof: Following the result of Theorem 2.5, we have

W (t j+1) ≤ μ(W (t j + Δ t j)+ G
tj+1
t j+Δ t j

(λ0)) (2.101)

If the current mode is mode k′, then

W (t j + Δ t j) = eλ0(t j+Δ t j)Vk′(x(t j + Δ t j)) (2.102)

From Lemma 2.9 and (2.99), we have

|x(t j + Δ t j)| ≤ |ēx(t j + Δ t j)|+ |x̄(t j + Δ t j)|
≤

√

ᾱ3eᾱ4Δ t j |ēx(t j)|+ ξ |x̄(t j)− x(t j)+ x(t j)|
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≤ (
√

ᾱ3eᾱ4Δ t j + ξ )|ēx(t j)|+ ξ |x(t j)| (2.103)

From (2.126), we further have

Vk′(x(t j + Δ t j)) ≤ ᾱ2|x(t j + Δ t j)|2

≤ 2ᾱ2(
√

ᾱ3eᾱ4Δ t j + ξ )|ēx(t j)|2 +
2ᾱ2ξ 2

ᾱ1
Vk′(x(t j)) (2.104)

Define ψ(t j) � 2ᾱ2(
√

ᾱ3eᾱ4Δ t j + ξ )|ēx(t j)|2eλ0Δ t j , Δ j � (2ᾱ2ξ 2)
ᾱ1

eλ0Δ t j . In each pe-
riod Δ t j , there are no input and continuous actuator fault, so e f (t) = 0 ∀t ∈
[t j,t j + Δ t j), and it is natural that G

tj+1
t j+Δ t j

(λ0) ≤ G
tj+1
t j

(λ0). Iterating the inequality

(2.101) from 0 to Nσ together with (2.104), where Nσ denotes Nσ (T,0), we get

W (T−) ≤
(

μNσ
Nσ−1

∏
s=0

Δs

)
W (0)+

Nσ−1

∑
i=1

(
μNσ−i+1eλ0ti ψ(ti−1)

Nσ−1

∏̄
s=i

Δs̄

)

+μeλ0T ψ(tNσ−1)+
Nσ−1

∑
j=1

(
μNσ− j+1G

tj
t j−1

(λ0)
Nσ −1

∏
l= j

Δl

)
+ μG�

tNσ−1
(λ0)

Since Δ t j is a bounded small time period, there exists a constant Δ̄ > 0 such that

∏Nσ−1
s=i Δs ≤ Δ̄ ∀i ∈ {1,2, . . . ,Nσ −1}. Note that eλ0ti ≤ eλ0T , one has

W (T−) ≤ μNσ Δ̄W (0)+ eλ0T Δ̄
Nσ−1

∑
i=1

(μNσ−i+1ψ(ti−1))+ μeλ0T ψ(tNσ−1)

+Δ̄
Nσ−1

∑
j=1

(μNσ− j+1G
tj
t j−1

(λ0))+ μG�
tNσ−1

(λ0) (2.105)

From (2.90) and (2.91), we get μNσ− j+1G
tj
t j−1

(λ0) ≤ μ1+N0e(λ0−λ )T G
t j
t j−1

(λ ), for
0 < λ < λ0. Taking the forgoing inequality into (2.105), and following the same
way as in Theorem 2.5, we can finally obtain

ᾱ1|x(T )|2 ≤ βa(|x(0)|,t)+ γē(‖ēx(t j)‖[0,T))
+γex(‖ex‖[0,T ))+ γe f (‖e f ‖[0,T))+ ς̄2 (2.106)

where βa ∈ K L , γē, γex, γe f ∈ K∞, ς̄2 ≥ 0 are determined from (2.105).
The inequality (2.106) implies the ISpS of HS w.r.t. ex(t), e f (t), ēx(t j) and a con-

stant ς̄2 > 0, where j = 1,2 . . . . which, together with ex(t j(k + 1))est < ex(t j(k))est

and the boundness of e f guarantees the global convergence of the states of the sys-
tem to a small closed set. �

Remark 2.10. Note that ēx(t j) is a discrete vector, since its value is captured only at
each switching instant. Moreover, it has been shown that |ēx(t j)| ∀k ∈ Q is bounded.
Theorem 2.6 also implies that the value of Δ t j ∈ ΩΔ t j does not change the system’s
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ISpS property. Appropriate selection of Δ t j can reduce the bound of x in the sense
of ISpS in (2.106).

Remark 2.11. Switching the input between the nominal control strategy and zero
value has been shown to be an efficient way for performance-based FTC [103]. It
is natural for HS that, at each t j, the controller is switched on according to the
next mode. Setting the input to zero during a short period after each switching is
reasonable.

Example 2.2: [132] A m̄-phase switched reluctance motor (SRM) system is em-
ployed to illustrate a potential application field of the approach. x = [θm, ωm]� is
the state, where θm, ωm denote the angular position and velocity of the motors.

The simplified system model is expressed as follows:

θ̇m=ωm

ω̇m=−κe

Jm
sin(θm)− bi

Jm
ωm +

ci

Jm
ui, i = 1,2, . . . ,m̄

where Jm denotes the inertia of the motor. κe > 0 is the elasticity constant. ui is the
voltage applied to the motor of phase i, with bi and ci being the related viscous fric-
tion and the amplifier gain. In the simulation, m̄ = 3 is considered. The parameters
are Jm = 0.935 kgm2, κe = 0.311 Nm/rad, b1 = 1.17 Nms/rad, b2 = 2.23 Nms/rad,
b3 = 0.54 Nms/rad, c1 = 20.196 Nm/V , c2 = 35.31 Nm/V , c3 = 12.44 Nm/V . We
further describe the model by the general form (2.55)-(2.56) with

A1 =
[

0 1
0 −1.2513

]

, A2 =
[

0 1
0 −2.385

]

, A3 =
[

0 1
0 −0.5775

]

B1 =
[

0
21.6

]

, B2 =
[

0
37.765

]

, B3 =
[

0
13.305

]

, g(x) =
[

0
−0.333sinx2

]

The position of the motor phase can be measured via the shaft position sensor, while
the motor velocity is often estimated by timing the interval between phase commu-
tations of SRM. A coupled output signal of the angular position and velocity is
obtained shared by all phases, the output matrix C = [1 2].

The continuous actuator fault is considered only in mode 1 with E1 = [0 −
12.5]�. The matrix K1 and Q1 are chosen as

K1 =
[

3
−1.8

]

, Q1 =
[

0.1105 −0.0007
−0.0007 0.0986

]

Solving Eqs.(2.63)-(2.64), we obtain R1 = 0.3225 and

P1 =
[

0.0157 0.0258
0.0258 0.0516

]



2.3 Multiple Observers Method 39

Mode 1

Mode 3

Mode 2

t=7s

Discrete fault  

Continuous fault  

t=1.5s

t=7s

Fig. 2.3 An illustration of system’s behavior

On the other hand, by choosing W1 = I2×2, we obtain the matrix H1 from (2.75) as

H1 =
[

1.0330 0.0327
0.0327 0.0325

]

The bounded function η1(x,t) is selected from (2.76) as

η1(x,t) =
0.333|0.0151x1−0.0377x2|

|0.3266x1−0.8150x2|
Take Γ1 = 20, ϑ1 = 8, ε = 0.01. The related parameters of modes 2 and 3 can be
obtained following the same way as for mode 1, which is omitted.

The considered switching sequence is: mode 1→ mode 2→ mode 3 as shown in
Fig. 2.3. N0 = 0. From (2.126)-(2.87), choose μ = 35, λ0 = 0.8. The switching in-
stants are prescribed as t1 = 7s, t2 = 14s, which satisfy the ADT scheme in theorems
2.3 and 2.4. The system is initialized in mode 1 with x(0) = [0.05 0.2]�.

f c
1 is assumed to occur at t = 1.5s as

f c
1 (t) =

{
0, 0s ≤ t < 1.5s

0.5 + 0.3sin(4πt), 1.5s ≤ t < 7s

which corresponds to an increase in the friction of the motor, that makes the voltage
deviates from normal situation. Fig. 2.4 shows the fault estimation performance,
from which we can see that f̂ c

1 follows f c
1 rapidly with a very small overshoot.

The discrete fault occurs at t = t1 = 7s, which represents the abnormal switching
behavior of the motor phase that makes mode 1 switch to mode 3 as in Fig. 2.3. At
t = 7s, the identifier scheme is invoked. The parameter of the model free observer
in (2.94) is designed as

Ā =
[

0 1
0 −1

]

, L̄ =
[

2.8
−1.6

]

, P̄ =
[

2.7055 4.5351
4.5351 9.0703

]
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where P̄ is obtained with Q̄ =
[

0.6384 0.6540
0.6540 1.8141

]

. There exists a h(x,t) with ρ se-

lected as 3. The speed of the rotor can cause an increase of the current after the cor-
responding voltage control has been switched off. As a consequence, such residual
current can have an adverse effect on torque production at each switching instant. To
avoid an unexpected oscillation of rotor, we select ξ = 2. From (2.97) and (2.100),
we can also choose ρ1 = 5. A boundary layer compensator technique [150] is used
with a bound number 0.02 to eliminate the chattering.
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Fig. 2.5(a) shows the performance of the identifier. Although |x̄− x̂1| is minimal at
the beginning, |x̄− x̂3| is minimal and decreases at 7.35s, while |x̄− x̂1| and |x̄− x̂2|
still diverge. This implies that Mode 3 and consequently the discrete fault can be
identified with Δ t1 = 0.35. The controller and fault diagnostic scheme for mode 3
are invoked into the system at t = 7.35s. The state trajectories throughout the system
process is shown in Fig. 2.5(b), it can be seen that the states are always bounded.

2.4 Global Passivity

In sections 2.1-2.3, we designed FTC law in each faulty mode such that it is stable,
then applied the standard stability results for HS. In the following two sections, we
will research directly the stability of HS without reconfiguring the controller in each
mode. We introduce, for the first time, the passivity theory into the FTC analysis
of HS.

2.4.1 Passivity and Fault Diagnosis

Passivity theory, that provides a bridge between achievable system performances
and energy-like considerations, has been widely used to analyze stability of non-
linear systems, where systems can not store more energy than that supplied by the
environment outside [127]. Passivity concept has also been adopted for switched
and HS [156], [151], where each mode is assumed to be passive.

We shall introduce the passivity theory into the FTC design for HS where each
mode is passive in the healthy situation, and may be not passive due to the fault.

Consider the affine nonlinear system

ẋ = f (x)+ g(x)u + Δ(x)
y = h(x) (2.107)

where x ∈ X ⊂ ℜn are measurable states, u ∈ U ⊂ ℜm are inputs, y ∈ Y ⊂ ℜm are
outputs. The fault is modelled by an unknown function Δ(x)∈ ℜn, which effectively
represents the process faults [10], and occurs at an unknown time. f , g, h and Δ are
smooth functions.

Definition 2.6. [14] A system (2.107) with Δ ≡ 0 is passive if there exists a nonneg-
ative function V : X → ℜ, which satisfies V (0) = 0, called the storage function, and
a supply rate y�u, such that for all initial states x(0) ∈ X, u ∈U, and t ≥ 0

V (x(t))−V(x(0))
︸ ︷︷ ︸

stored energy

≤
∫ t

0
y�(s)u(s)ds

︸ ︷︷ ︸
supplied energy

(2.108)

where x(t) are the states at time t.
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Fig. 2.6 Comparison of FD methods

The inequality (2.108) is called dissipativity inequality [127], which formalizes the
property that the increase in stored energy is never greater than the amount of energy
supplied by the environment. A passive system is easy to control, choosing u =
−φ(y), where φ : U → Y is a smooth function and φ(0) = 0, such that y�φ(y) > 0
for each nonzero y leads to Lyapunov stability [14].

Now we address the FD problem. As shown in Fig. 2.6, most classical methods
[36, 18] are designed such that the explicit values of faults can be estimated. Here
we develop a novel energy based FD technique that is concerned with the energy
analysis and has its root in the passivity. Under the passivity framework, we show
that only a part of faults needs to be detected and estimated implicitly.

In the following, we assume that V is a C 1 function. The passivity property is
equivalent to

[∂V
∂x

(x)
]�

[ f (x)+ g(x)u] ≤ y�u (2.109)

Once a fault occurs, the constraint (2.108) may be violated. Adding Δ(x) into
(2.109) and integrating both sides yields

V (x(t))−V(x(0)) ≤
∫ t

0
y�(s)u(s)ds

+
∫ t

0

[∂V
∂x

(x)
]�

Δ(x(s))ds
︸ ︷︷ ︸

fault energy E f

(2.110)

As indicated in (2.110), the energy dissipativity property changes due to the fault.
The fault may help to dissipate the stored energy (E f < 0) or increase the stored
energy (E f > 0). We only care about the faults that result in V (x(t))−V (x(0)) >∫ t

0 y�(s)u(s)ds. A diagnosis threshold can be designed as

V (x(t))−V(x(0)) =
∫ t

0
y�(s)u(s)ds (2.111)
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This is also called lossless property [14]. Note that the faults with E f < 0 are not
necessary to be detected since they do not change the energy dissipativity. Once
the left side of (6.6) becomes larger than the right side, the fault is detected. We
estimate such fault value implicitly as V (x(t))−V (x(0))− ∫ t

0 y�(s)u(s)ds. More
precisely, we estimate the energy that increases due to the fault and check whether
the system is still passive or not. This information will be used for fault tolerance
analysis [141].

2.4.2 Fault Tolerance Analysis of Hybrid Systems

The hybrid system takes the form

ẋ = fσ (x)+ gσ(x)uσ + Δσ (x)
y = hσ (x) (2.112)

where x ∈ X ⊂ ℜn is continuous everywhere, uσ ∈ ℜmσ , hσ ∈ ℜmσ . All fσ , gσ , hσ
and Δσ are smooth functions. σ(t) : [t0,∞) → Q = {1,2, . . . ,N} denotes the switch-
ing function. We denote by tk, k = 1,2, ... the kth switching time. Nσ(t) represents the
number of switchings in [0,t). tk j , k = 1,2, ..., j ∈ Q denotes the kth switching time
that mode j is activated. Suppose that there exists N non-negative storage functions
Vp(x), and α p

1 , α p
2 ∈ K∞, ∀p ∈ Q that satisfy

α p
1 (|x|) ≤Vp(x) ≤ α p

2 (|x|) (2.113)

such that mode p is passive with Vp(x) in the healthy situation.
In this work, we neither reconfigure the controller uσ nor adjust the switching

law σ . We analyze fault tolerance of the HS (2.112) under the original uσ and σ . It
will be shown that under the global energy dissipativity, the stability of the HS can
be achieved in spite of non passive modes.

Definition 2.7. A switched system (2.112) is globally passive if there exists nominal
controllers u1, u2, ...,uN, such that for all initial states x(0) ∈ X, and T ≥ 0

Vσ(T)(x(T ))−Vσ(0)(x(0))−Etr(x(0)) ≤
∫ T

0
W (s)ds (2.114)

where W (s) ≤ 0 is defined as

∫ T

0
W (s) �

Nσ(T )

∑
k=0

∫ tk+1

tk

(
y�(s)uσ(s)(s)

+
[∂Vσ(s)

∂x
(x)

]�
Δσ(s)(x(s))

)
ds (2.115)

and Etr = ∑
Nσ(T )
k=1

[
Vσ(tk)−Vσ(t−k )

]
is bounded by a constant and tends to zero as x(0)

goes to origin.
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The left side of (2.114) represents the sum of stored energies of all modes, which

could also be written as ∑
Nσ(T )
k=0

[
Vσ(t−k+1)

−Vσ(tk)

]
where t0 = 0, tNσ(T )+1 = T . The

formulation of (2.114) is consistent with the standard passivity inequality, Etr de-
notes the total transient energy. As shown later, Etr may be eliminated under some
conditions.

It is clear from (2.115) that the right hand of (2.114) denotes the total supplied
energy and “fault” energy. Since W (s) ≤ 0, it follows that under the nominal con-
trollers u1, u2, ...,uN, the sum of the supplied energy during [0,T ) can compensate
the increasing energy due to faults. This means that the total stored energies still
dissipative in spite of faults.

Global passivity balances the total energy throughout the overall process, while
no individual passivity of each mode is required. We shall prove that the global
passivity includes the passivity property proposed in [156] as in the following
proposition.

Proposition 2.1. If each mode of a HS (2.112) is passive as in (2.108), and there
exist functions ωk+1

k (t), called cross supply rates such that ωk+1
k (t)≤ φ k+1

k (t) where
φ k+1

k (t) ∈ L1 and

Vq(x(tq(k+1)))−Vq(x(tqk)) ≤
∫ tq(k+1)

tqk

ωk+1
k (s)ds (2.116)

then the system (2.112) is globally passive.

Proof: The passivity of each mode leads to the fact that each energy is non-
decreasing when the related mode is activated. Suppose mode q is activated at the
time T , from (2.116), we obtain

Vq(x(T ))−Vq(x(tq1))−Θ(x(0))≤
∫ T

0
W (s)ds (2.117)

where W (s) ≤ 0, Θ(x(0)) is a constant and tends to zero as x(0) goes to the origin.

This constant is obtained from the fact that Σ∞
k=1

∫ tq(k+1)
tqk

ωk+1
k (s)ds is bounded, since

φ k+1
k (t) ∈ L1. On the other hand, for any x(0), Vσ(0)(x(0)) is bounded, there exists

a constant Φ � Vσ(0)(x(0))−Vq(x(tq1)), which together with (2.117), leads to the
result. �

Global passivity implies the stability as shown below.

Theorem 2.7. If a HS (2.112) is globally passive, then the origin of the system is
stable in spite of faults.

Proof: For a given arbitrary ε > 0, since Vi is continuous and Vi(0) = 0, based on
(2.113), we can choose ε i

2 > 0 such that Vi < ε i
2 leads to (α i

1)
−1(Vi) < ε . Pick ε3 =

mini[ε i
2], since Etr tends to zero as x(0) goes to the origin, we can choose ε4 such that

|x(0)| < ε4 results in maxi[α i
2(|x(0)|)+ Etr(x(0))] < ε3. Thus, followed by (2.114),
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Fig. 2.7 Switching sequence

we find that if the system starts in B(ε4), we will stay within B(ε). This completes
the proof. �

Theorem 2.7 provides us a method to check the fault tolerance, which is equivalent
to check the global passivity. However, when we use (2.114) to check the fault
tolerance at any instant T , one obstacle appears since we are not sure whether there
is a constant bound of the total transient energy for all t ≥ T . This motivates the
following result.

Proposition 2.2. If a HS (2.112) is globally passive, and Vσ(t)(x(t)) ≤ Vσ(t−)(x(t))
at each switching instant t, then (2.114) holds with Etr = 0.

Proof: The result follows the fact that

Nσ(T )

∑
k=0

[
Vσ(t−k+1)

(x(tk+1))−Vσ(tk)(x(tk))
]

= Vσ(T)(x(T ))−Vσ(tNσ(T )
)(x(tNσ(T ) ))+ · · ·

+Vσ(t−k+1)
(x(tk+1))−Vσ(tk)(x(tk))+ · · ·+Vσ(t−1 )(x(t1))−Vσ(0)(x(0))

≥Vσ(T)(x(T ))−Vσ(0)(x(0)) (2.118)

Thus, from (2.115), we have Vσ(T)(x(T ))−Vσ(0)(x(0)) ≤ ∫ T
0 W (s)ds . �

The condition in Proposition 2.2 guarantees that the energy in the current mode at
switching time is always larger than that of the next mode. In this case, the transient
energy is negative.

To further overcome the obstacle in (2.114), and allow the increase of energy at
switching time, we provide a stronger version of global passivity, named “periodic
fault tolerant passivity”. We first define some mode sets:

• Q1 ⊂ Q denotes the set of healthy modes.
• Q2 ⊂ Q1 denotes the set of healthy modes that may be activated as the initial

mode or after a healthy mode.
• Q3 ⊂ Q1 denotes the set of healthy modes that are activated after a faulty mode,

meanwhile, are followed by a healthy mode or are the final mode.

The relation of above several sets is illustrated by Fig.2.7, from which we see that
{ 1, 3, 5, 6 } ∈ Q1. { 1, 6 } ∈ Q2. 5 ∈ Q3. Note that Mode 3 is activated between
two faulty modes. Thus 3 ∈ Q1 \ (Q2 ∪Q3).
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Definition 2.8. A HS (2.112) is periodically fault tolerant passive if there exist nom-
inal controllers u1, u2, ...,uN, such that for all initial states x(0) ∈ X, and T ≥ 0, the
following inequalities hold:

• ∀i ∈ Q2

Vi(x(t(k+1)i))−Vi(x(tki)) ≤ 0 (2.119)

where 0 ≤ t(k)i < t(k+1)i ≤ T .
• ∀i ∈ Q2, j ∈ Q3, such that mode j is the first mode of set Q3 activated after mode

i. Denote by Te, Ts the end time of mode j and the start time of mode i respectively

Vj(x(Te))−Vi(x(Ts)) ≤
∫ Te

Ts

W1(s)ds (2.120)

where W1(s) ≤ 0.
• For the case that the initial mode i is faulty, and there exists j ∈ Q3 such that

mode j is the first mode of set Q3 activated after initial mode and is ended at Te

Vj(x(Te))−Vi(x(0)) ≤
∫ Te

0
W2(s)ds (2.121)

where W2(s) ≤ 0.
• For the case that the final mode i is faulty, and there exists j ∈ Q2 such that mode

j is the last mode of set Q2 activated before the final mode and is started at Ts

Vj(x(T ))−Vi(x(Ts)) ≤
∫ T

Ts

W3(s)ds (2.122)

where W3(s) ≤ 0.
• For the case that no mode of the set Q2 ∪Q3 is activated

Vσ(T)(x(T ))−Vσ(0)(x(0)) ≤
∫ T

0
W4(s)ds (2.123)

where W4(s) ≤ 0.

Definition 2.8 is illustrated in Fig. 2.8, from which we can see that the energy is
dissipative in each small period that includes the faulty modes. Two advantages
result from this property, that is 1) Inequalities (2.120)-(2.123) are not hard to justify.
2) We can check the fault tolerance in a short period after the fault occurs.

Theorem 2.8. If a HS (2.112) is periodic fault tolerant passive, then the origin of
the system is stable in spite of faults.

Proof: We consider four cases as follows:

• Case 1: The initial and final modes are not faulty. Note that each healthy mode is
passive. Inequalities (2.120)-(2.122) imply that every time when we start in the
mode of the set Q2, the energy is non-increasing until the next mode of set Q2 is
activated. The stability follows from Theorem 2.3 in [13] and Theorem 2.7.
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Fig. 2.9 A switched RLC circuit

• Case 2: No mode of the set Q2 ∪Q3 is activated. The stability is achieved from
(2.123) and Theorem 2.7.

• Case 3: The initial mode is healthy, and the final mode is faulty. It follows from
(2.122) that after the last mode of set Q2 before final mode is activated, the en-
ergy is non-increasing. The stability is achieved from Theorem 2.3 in [13] and
Theorem 2.7.

• Case 4: The initial mode is faulty, and the final mode is healthy. Similarly to Case
3, the result can be obtained from (2.121). �

Example 2.3: A switched RLC circuit that is widely employed in order to perform
low-frequency signal processing in integrated circuits is taken as an example to
illustrate the results. As shown in Fig. 2.9, the circuit consists of an input power
source, a resistance, an inductance and N capacitors that could be switched between
each other. The two measurable state variables are the charge in the capacitor and
the flux in the inductance x = [qc,φL]�. The input u is the voltage.

The dynamic equations are given by

⎧
⎨

⎩

ẋ1 = 1
L x2

ẋ2 = − 1
Ci

x1 − R
L x2 + u

y = 1
L x2, i = 1,2, ...,N

where Ci denotes the ith capacitor. The energy function of each mode is given as

Vi =
1

2Ci
x2

1 +
1

2L
x2

2
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Fig. 2.11 System performance (N=3)

Let us first consider the case N = 1, this RLC circuit is also discussed in [91].
In the healthy situation, it can be obtained that V̇ = −R

L x2
2 + yu which satisfies the

passivity. The nominal control is chosen as u = un =−y. Now we consider a leakage
fault that occurs in the capacitor at t = 200s, the dynamic equation of ẋ2 is changed
into

ẋ2 = − 1
C

x1 − R
L

x2 +
k
C

x1 + u (2.124)
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where k > 0 is an unknown faulty parameter. It follows that V̇ = −R
L x2

2 − k
LC x1x2 +

yu. If −R
L x2

2 ≤ k
LC x1x2, then such fault does not affect the passivity. Otherwise, the

fault would be diagnosed. Set k =−200, L = 0.1H, C = 100μF, R = 1Ω , the initial
states are [0.2,0.2]�. Fig. 2.10 shows the diagnosis performance, we can see that
once the threshold is reached at nearly 370s, the fault is detected.

Suppose that N = 3, i.e., the system is switched among three capacitors. C1 is
activated in [t3n,t3n+1), C2 is in [t3n+1, t3n+2), and C3 is in [t3n+2, t3n+3), n = 0,1, ....
The nominal input is ui = − 1

L x2. The fault occurs in C2 as (2.124) with k = −200,
which violates the passivity of mode 2. It is clear that 1 ∈ Q2, 3 ∈ Q3. In the simu-
lation, set L = 0.1H, C1 = 50μF, C2 = 100μF, C3 = 20μF and R = 1Ω . Assume
that the dwell period t3n+3 − t3n+2 = 20s, t3n+2 − t3n+1 = 20s, and t3n+1 − t3n = 20s.
We can check that each period [t3n,t3n+3) satisfies (2.120), and mode 1 satisfies
(2.119). Thus the system is periodic fault tolerant passive. Fig. 2.11 shows the state
trajectory, the system is still stable in spite of the fault.

2.5 General Stability Results in HS

Motivated by the fact that some modes may be unstable due to faults, in this sec-
tion, we establish a new sufficient stability condition named “ gain technique” for
HS with unstable mode, and provide novel stabilizing switching laws such that the
stability is guaranteed and each mode can be activated following any prescribed
sequence whatever it is stable or not.

2.5.1 Preliminaries

The considered switched system takes the general form

ẋ(t) = fσ(t)(x(t)) (2.125)

where x ∈ X ⊂ ℜn are the states. fσ is a nonlinear smooth function. Define
Q = {1,2, . . . ,N}, where N is the number of modes. σ(t) : [0,∞) → Q denotes the
switching function, which is assumed to be a piecewise constant function continu-
ous from the right. fi, i ∈ Q are smooth functions with fi(0) = 0, hence, the origin is
an equilibrium point. We denote by t j, j = 1,2, ... the jth switching instant, t0 = 0.
Let tik, i ∈ Q, k = 1,2, ... be the kth time when mode i is switched on. Nσ(t) rep-
resents the number of switchings in [0, t). In this work, we only consider nonZeno
sequences (i.e., sequences that switch at most a finite number of times in any finite
time interval). However, the developed theory allows infinite switchings in infinite
time interval. We also assume that the states do not jump at the switching instants.

Specially, we define a class G K L function as in [135] γ : [0,∞)× [0,∞) →
[0,∞) if γ(·,t) is of class K for each fixed t ≥ 0 and γ(s,t) increases as t → ∞ for
each fixed s ≥ 0.

Denote Qs ⊂ Q as the set of stable modes and Qus ⊂ Q the set of unstable
ones. Q = Qs ∪Qus, Qs ∩Qus = /0 and Qs �= /0. Suppose that there exist continuous
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non-negative functions Vp : ℜn → ℜ≥0, α p
1 , α p

2 ∈ K∞, ∀p ∈ Q, and φp ∈ K L
∀p ∈ Qs, φp ∈ G K L ∀p ∈ Qus that satisfy for k = 1,2, ...

α p
1 (|x|) ≤Vp(x) ≤ α p

2 (|x|), ∀p ∈ Q (2.126)

Vp(x(t)) ≤ φp(Vp(x(tpk)),t − tpk), ∀p ∈ Qs, φp ∈ K L , t ≥ tpk (2.127)

Vp(x(t)) ≤ φp(Vp(x(tpk)),t − tpk), ∀p ∈ Qus, φp ∈ G K L , t ≥ tpk (2.128)

Formulations (2.126)-(2.128) include various converging and diverging forms (e.g.,
the exponential decay form [47], the constant gain form [155]). For each stable
mode, Vp in (2.127) is more general than a classic Lyapunov function since a
bounded increase is allowed. For unstable modes, inequality (2.128) implies that
Vp may increase infinitely as described by a G K L function if t → ∞. G K L
function is more general than the Lyapunov-like function in [148] since we do not
impose an upper bound on Vp. Note that (2.127)-(2.128) are properties satisfied by
functions of each mode, and do not depend on the switching sequence. Vp (∀p ∈ Q)
is not required to be differentiable.

Definition 2.9. Given a switching function σ(t), the origin of a switched system
(2.125) is said to be stable under σ if for any ε > 0, there exists a δ > 0 such that
|x(t)| ≤ ε , t ≥ 0, whenever |x(0)| ≤ δ .

Definition 2.9 describes the stability w.r.t. a given switching function σ(t). The ob-
jectives of this section is to propose switching laws that stabilize the system (2.125)
satisfying (2.126)-(2.128) by determining the switching instants according to any
given switching sequence.

2.5.2 Stabilization of Switched Systems

In the following, we first establish a stability condition for the considered switched
systems in the finite time interval with finite numbers of switchings (Lemma 2.11).
Based on such stability criterion, a stabilizing switching law will be constructed
(Theorem 2.9).

Lemma 2.11. Consider a switched system (2.125) satisfying (2.126)-(2.128). Under
σ(t), if there exists a constant β > 0 such that

Nσ(ts ,t)

∑
k=0

(Nσ(ts ,t)

∏
i=k

φ ti+1−ti
σ(ti)

Vti
σ(ti)

)
≤ β , t > ts ≥ 0, where tNσ(ts ,t)+1 � t, Nσ(ts,t) is finite

(2.129)
Then x is bounded in [ts,t). Moreover, for any bounded x(ts), the upper bound of
|x(t)| can be estimated.

Remark 2.12. Note that
φ t−ti

σ(ti)

V
ti
σ(ti)

for t ≥ ti is the bound of the gain of function Vσ(ti)

when mode σ(ti) is activated. Condition (2.129) gives a relation among the gains of
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each activated mode and its activating period. More precisely, x is bounded in [ts, t)
if the product of gains from each activated mode to the terminated mode is bounded,
and the sum of these products values is also bounded. It deserves to point out that
for a switched system with unstable modes, even in the finite time interval with finite
switching times, x may escape to infinity under inappropriate switching law.

Proof of Lemma 2.11: For the sake of clearness, suppose that ts = t0 = 0. Denote
Nσ(t) � Nσ(0,t).

Consider t ∈ [0,t1), we have V t
σ(0) ≤

φ t
σ(0)

V 0
σ(0)

V 0
σ(0). Condition (2.129) ensures that

φ t
σ(0)

V 0
σ(0)

≤ β . It follows from (2.126)-(2.128) that

|x(t1)| ≤ (ασ(0)
1 )−1 ◦β ◦ασ(0)

2︸ ︷︷ ︸
ϑt1

(|x(0)|) (2.130)

for ϑt1 ∈ K∞. According to (2.126), one has

Vt1
σ(t1)

≤Vt1
σ(t−1 )

+ ασ(t1)
2 (ϑt1(|x(0)|))−ασ(t−1 )

1 (ϑt1(|x(0)|)) (2.131)

Define αt1 = max[ασ(t1)
2 ◦ϑt1 ,α

σ(t−1 )
1 ◦ϑt1 ]. Since ασ(t1)

2 ,ασ(t−1 )
1 ,ϑt1 ∈K∞, it is clear

that αt1 ∈ K∞ and

αt1(|x(0)|) ≥ ασ(t1)
2 (ϑt1(|x(0)|))−ασ(t−1 )

1 (ϑt1(|x(0)|)) (2.132)

Substituting (2.132) into (2.131) results in

Vt1
σ(t1)

≤Vt1
σ(t−1 )

+ αt1(|x(0)|) (2.133)

For t ∈ [t1,t2), we have

Vt
σ(t) ≤

φ t−t1
σ(t1)

V t1
σ(t1)

Vt1
σ(t1)

≤
φ t−t1

σ(t1)

Vt1
σ(t1)

[
V

t−1
σ(t−1 )

+ αt1(|x(0)|)
]

≤
φ t−t1

σ(t1)

Vt1
σ(t1)

φ t1
σ(0)

V 0
σ(0)

V 0
σ(0) +

φ t−t1
σ(t1)

Vt1
σ(t1)

αt1(|x(0)|) (2.134)

Note that V 0
σ(0) is bounded and αt1 ∈K∞. Condition (2.129) ensures that

φ t−t1
σ(t1)

V
t1
σ(t1)

φ t1
σ(0)

V 0
σ(0)

≤

β and
φ t−t1

σ(t1)

V
t1
σ(t1)

≤ β . It follows from (2.126)-(2.128) and (2.134) that
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|x(t2)| ≤ (ασ(0)
1 )−1 ◦β ◦

(
ασ(0)

2 (|x(0)|)+ αt1(|x(0)|)
)

︸ ︷︷ ︸
ϑt2(|x(0)|)

(2.135)

for ϑt2 ∈ K∞. One further has

Vt2
σ(t2)

≤Vt2
σ(t−2 )

+ ασ(t2)
2 (ϑt2(|x(0)|))−ασ(t−2 )

1 (ϑt2(|x(0)|)) (2.136)

Define αt2 = max[ασ(t2)
2 ◦ϑt2 ,α

σ(t−2 )
1 ◦ϑt2 ]. Since ασ(t2)

2 ,ασ(t−2 )
1 ,ϑt2 ∈K∞, it follows

that αt2 ∈ K∞ and

αt2(|x(0)|) ≥ ασ(t2)
2 (ϑt2(|x(0)|))−ασ(t−2 )

1 (ϑt2(|x(0)|)) (2.137)

Substituting (2.137) into (2.136) results in

Vt2
σ(t2)

≤Vt2
σ(t−2 )

+ αt2(|x(0)|) (2.138)

for αt2 ∈ K∞.
By induction, we find that under condition (2.129) there exists a function α ∈K∞

such that at each switching instant ti > 0, i = 1,2, ...,Nσ(t)

Vσ(ti)(x(ti)) ≤Vσ(t−i )(x(ti))+ α(|x(0)|) (2.139)

where α(|x(0)|) � supi=1,2,...,Nσ(t)
[αti(|x(0)|)].

Denote j = Nσ(t) for t ≥ 0, j ≥ 0, it follows from (2.127)-(2.128) that

Vσ(t)(x(t)) ≤ φ t−t j

σ(t j)
=

φ t−t j

σ(t j)

V
tj

σ(t j)

V
tj

σ(t j)

≤
φ t−t j

σ(t j)

V
tj

σ(t j)

[
V

t−j
σ(t−j )

+ α(|x(0)|)
]

≤
φ t−t j

σ(t j)

V
tj

σ(t j)

φ t j−t j−1

σ(t j−1) +
φ t−t j

σ(t j)

V
tj

σ(t j)

α(|x(0)|)

≤
φ t−t j

σ(t j)

V
tj

σ(t j)

φ t j−t j−1

σ(t j−1)

V
tj−1

σ(t j−1)

V
t−j−1

σ(t−j−1)
+

[φ t−t j

σ(t j)

V
tj

σ(t j)

φ t j−t j−1

σ(t j−1)

V
tj−1

σ(t j−1)

+
φ t−t j

σ(t j)

V
tj

σ(t j)

]
α(|x(0)|)

...

≤
Nσ(t)

∏
s=0

φ ts+1−ts
σ(ts)

Vts
σ(ts)

Vσ(0)(x(0))+
Nσ(t)

∑
k=1

(Nσ(t)

∏
i=k

φ ti+1−ti
σ(ti)

Vti
σ(ti)

)
α(|x(0)|) (2.140)
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Based on (2.126) and (2.139), since α ∈K∞, there exists a K∞ function ᾱ such that

ᾱ(|x(0)|) = max
[
ασ(0)

2 (|x(0)|),α(|x(0)|)
]

(2.141)

Substituting (2.141) into (2.140), together with (2.129), yields

Vσ(t)(x(t)) ≤
Nσ(t)

∑
k=0

(Nσ(t)

∏
i=k

φ ti+1−ti
σ(ti)

Vti
σ(ti)

)
ᾱ(|x(0)|) ≤ β ᾱ(|x(0)|) (2.142)

From (2.126), we finally obtain

|x(t)| ≤ (ασ(t)
1 )−1β ᾱ(|x(0)|) (2.143)

Since β > 0 is a constant, ασ(t)
1 , ᾱ ∈ K∞, the stability result follows.

From above procedures, one can find that under condition (2.129), given any
x(ts), β and switching sequence, each αti(|x(ts)|) can be calculated which is inde-
pendent from the switching instants. Thus, for any bounded x(ts), we can find a
function Ω(·) such that |x(t)| ≤ Ω(|x(ts)|). This completes the proof. �

Remark 2.13. The main contributions of Lemma 2.11 are twofold: 1) Both stable
and unstable modes are allowed in the switched nonlinear system; 2) The “μ” con-
dition is removed by introducing a difference α(|x(0)|) among functionsVp ∀p∈M .
However, the condition (2.129) is independent from α(|x(0)|). 3) The upper bound
of |x(t)| can be estimated without the information of switching instants in [0,t). This
property will be very useful in switching law design.

Remark 2.14. The condition (2.129) is valid since Vσ is a non-negative function and
is impossible to become zero unless a stronger finite time stability [9] is achieved.
For the case that finite time stability is achieved, (2.129) is available if we take j
instead of Nσ(t) where Vt

σ(t) > 0 for t < t j+1.

Remark 2.15. It is often not easy to verify (2.129) on-line, which relies on the so-
lutions of the system. However, this condition can help to construct a stabilizing
switching law as shown below. The proposed stabilization scheme will automati-
cally guarantee the validation of (2.129).

Unlike the usual design methods that adjust both the switching sequence and switch-
ing instants [155], [130], we only redesign the switching instants such that the origin
of switched system is always stable under any given switching sequence where each
prescribed mode can be activated.

Assumption 2.11. there exists a known constant χ ≥ 1 such that

χ = max
j∈M ,k=1,2...

φ j(Vj(x(t jk)),0)
Vj(x(t jk))

(2.144)
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Remark 2.16. Assumption 1 means that the initial gain of function Vj is bounded
when the corresponding mode j is just switched on at t = t jk. In some situations,
φ j(Vj(x(t jk)),0) is affine w.r.t. Vj(x(t jk)), e.g. the exponential decay form [47], the
constant gain form [155]. In these cases, χ can be easily obtained a priori.

Without loss of generality, suppose that at for a given sequence, at most m unstable
modes (m is finite) are activated one by one without being interrupted by stable
modes.

Choose a constant β > max[m(1 + χ)χm,m(m + 1)χm+1], where χ is defined
in (6.37). Given any required upper bound ε of |x(t)| and switching sequence, the
switching law is designed as:

Switching law S (with a given ε and a switching sequence)

1. Let i = 0, choose x(0) such that (ασ(0)
1 )−1φσ(0)(Vσ(0)(x(0),0)) ≤ ε

2. If (C1) mode σ(ti) is stable and mode σ(ti+1) is stable, then go to 3;
Else, go to 5.

3. Choose ti+1 such that (ασ(ti+1)
1 )−1φσ(ti+1)(Vσ(ti+1)(x(ti+1),0)) ≤ ε .

4. Let i = i+ 1, go to 2.
5. If (C2) mode σ(ti) is stable and mode σ(ti+1) is unstable, and there exist h− 1

unstable modes (h ≤ m) activated successively after mode σ(ti+1), then go to 6;
Else, go to 9.

6. Determine the bound Ω(|x(ti+1)|) satisfying |x(ti+h+1)| ≤ Ω(|x(ti+1)|) using
(2.143) in Lemma 2.11, choose ti+1 such that

(ασ(ti+h+1)
1 )−1φσ(ti+h+1)(α

σ(ti+h+1)
2 (Ω(|x(ti+1)|)),0)) ≤ ε

let s = 0.
7. Choose ti+2+s such that

i+1+s

∑
k=0

( i+1+s

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
≤ β

(h + 1− s)χh+1−s −1

8. Let s = s+ 1; If s �= h, then go to 7; Else, let i = i+ h, go to 2.
9. If (C3) the initial mode σ(0) is unstable, and there exist h− 1 unstable modes

(h ≤ m) activated successively after mode σ(0), then go to 10.
10.Determine the bound Ω(|x(0)|) satisfying |x(th)| ≤ Ω(|x(0)|) using (2.143) in

Lemma 2.11, choose x(0) such that

(ασ(th)
1 )−1φσ(th)(α

σ(th)
2 (Ω(|x(0)|)),0)) ≤ ε

let s = 0.

11.Choose t1+s such that ∑s
k=0

(
∏s

j=k

φ
t j+1−t j
σ(t j )

V
t j
σ(t j)

)
≤ β

(h+1−s)χh+1−s −1.

12.Let s = s+ 1; If s �= h, then go to 11; Else, let i = h, go to 2. �
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The main idea behind S is that for current stable mode σ(ti), if next mode σ(ti+1) is
stable, we let mode σ(ti) be activated until ti+1 such that x(ti+1) results in |x(t)| ≤ ε
during mode σ(ti+1)’s working period [ti+1, ti+2) (step 3). When we predict that h
unstable modes will be activated after stable mode σ(ti), we let mode σ(ti) be acti-
vated long enough until ti+1 such that x(ti+1) results in |x(t)| ≤ ε for t ∈ [ti+1, ti+h+2),
i.e. the total activating periods of all h unstable modes and stable mode σ(ti+h+1)
(step 6). This can be achieved because the upper bound Ω(|x(ti+1)|) can be obtained
without the information of switching instants ti+1, ...,ti+h+1. The switching scheme
among unstable modes is based on Lemma 2.11 (steps 7, 8, 11, 12). For initial sta-
ble/unstable modes, the initial states x(0) are also chosen in different ways (steps 1
and 10).

Theorem 2.9. Consider a switched system (2.125) satisfying (2.126)-(2.128) and
Assumption 2.11. For any given ε > 0 and any switching sequence where at most
m unstable modes are activated one by one, under the switching law S , there exist
an initial states x(0) and a series of switching instants satisfy 0 < t1 < t2 < ..., such
that the origin is stable and |x(t)| ≤ ε ∀t ≥ 0.

Proof: In the step 1 of S , choosing x(0) satisfying

(ασ(0)
1 )−1φσ(0)(Vσ(0)(x(0),0)) ≤ ε

which leads to |x(0)| ≤ ε when mode σ(0) is just activated. If mode σ(0) is sta-
ble, we have from (2.126)-(2.127) that |x(t)| ≤ ε for t ∈ [0, t1). We will consider
respectively three cases C1-C3 in S .

For C1, since mode σ(ti) is stable, it follows from (2.126)-(2.127) that there
always exists a time instant ti+1 > ti satisfying

(ασ(ti+1)
1 )−1φσ(ti+1)(Vσ(ti+1)(x(ti+1),0)) ≤ ε

this implies that |x(ti+1)| ≤ ε when mode σ(ti+1) is just activated. Since mode
σ(ti+1) is also stable, we have |x(t)| ≤ ε for t ∈ [ti+1, ti+2).

For C2, switching on mode σ(ti+2) at t = ti+2 results in

φσ(ti+2)(V
ti+2
σ(ti+2)

,0)

Vti+2
σ(ti+2)

( i+1

∑
k=0

( i+1

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
+ 1

)
≤ β

(h + 1)χh

Since β > m(m+ 1)χm+1, h ≤ m, we have β
(h+1)χh < β

hχh −1. Thus we can choose

ti+3 > ti+2 such that

φ ti+3−ti+2
σ(ti+2)

Vti+2
σ(ti+3)

( i+1

∑
k=0

( i+1

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
+ 1

)
≤ β

hχh −1
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By induction, for s = 1,2, ...,h−1 we have β
(h+1−s)χh−s < β

(h−s)χh−s −1. Choose

ti+3+s as S , we obtain

φ ti+3+s−ti+2+s
σ(ti+2+s)

Vti+2+s
σ(ti+2+s)

( i+1+s

∑
k=0

( i+1+s

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
+ 1

)
≤ β

(h− s)χh−s −1

Finally, we verify condition (2.129) with t = ti+1+h and ts = ti+1. There are finite
numbers of switchings occurring in (ti+1, ti+1+h], it follows from Lemma 2.11 that
we can find a bound Ω(|x(ti+1)|) satisfying |x(ti+h+1)| ≤Ω(|x(ti+1)|) using (2.143).
Since this bound is independent from the switching instants, we can determine it
before h unstable modes are switched into.

Note that mode σ(ti) is stable, we can find a time instant ti+1 > ti such that

(ασ(ti+h+1)
1 )−1φσ(ti+h+1)(α

σ(ti+h+1)
2 (Ω(|x(ti+1)|)),0)) ≤ ε

This guarantees that |x(t)| ≤ ε for t ∈ [ti+1, ti+h+1]. Mode σ(ti+h+1) is also stable,
we further have |x(t)| ≤ ε for t ∈ [ti+h+1, ti+h+2).

For C3, note that β > m(1 + χ)χm and χ ≥ 1, which results in χ < β
hχh − 1.

We can choose t1 such that
φ t1

σ(0)

V 0
σ(0)

≤ β
hχh − 1, the rest of the proof follows the same

procedure as in C2, thus is omitted here. We finally obtain (2.129) with t = th and
ts = 0.

Based on above analysis, one finds that for a switched system with any given
switching sequence, finite or infinite numbers of switchings and both stable and
unstable modes, the switching law S maintains the stability of the origin, and
|x(t)| ≤ ε for t ≥ 0. This completes the proof. �

Remark 2.17. Roughly speaking, S lets the activating periods of stable modes
large enough and lets the activating periods of unstable modes small enough such
that the state trajectory is bounded under a given switching sequence. Such idea is
similar to that of dwell-time schemes in [136], [32] where an aggregated system is
considered including stable modes and consequently activated unstable ones. This
aggregated system would be stable if the total activating periods of stable modes
are sufficient large. However, S provides an alternative way to approach stability
in the absence of the “μ” condition.

Example 2.4: Consider a numerical example with three modes. Let M = {1,2,3},
x = [x1, x2]�, the modes take the following forms

f1 =
[−x1 + 4x3

2
−x1 − x2

]

, f2 =
[

x1 − x2

x2 + x3
1

]

, f3 =
[

x1 −3x2

x1 + x2

]

The prescribed switching sequence is

mode 1 → mode 2 → mode 3 → mode 1 → ··· · · ·
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Fig. 2.12 State trajectory

For mode 1, it is not easy to find a quadratic Lyapunov function. However the
origin is still stable, we choose a polynomial Lyapunov function V1 = x2

1 + 2x4
2, this

results in V1(x(t)) < e−2tV1(x(0)) for t ≥ 0. Both mode 2 and mode 3 are unstable,
applying V1 to modes 2 and 3 yields

dV1(x)
dx

f2(x) ≤ V 0.5
1 (x)+ 7V1(x)+ 4V1.5

1 (x)+ 4V 3
1 (x) (2.145)

dV1(x)
dx

f3(x) ≤ V 0.5
1 (x)+ 11V1(x)+ 2V 1.5

1 (x) (2.146)

It can be seen that a common Lyapunov function is hard to impose here because in-
equalities (2.145)-(2.146) do not satisfy the general Lyapunov function formulation
in dwell-time scheme [48]. The method in [88] is also not easy to be implemented
since the right sides of (2.145) and (2.146) are polynomial forms of V1 rather than
aV m

1 (x) for a,m > 0 in [88], and the exponents larger and smaller than 1 exist simul-
taneously.

We choose V2 = x4
1 + 2x2

2, V3 = x2
1 + x2

2. It follows that V2(x(t)) < e4tV2(x(0)),
V3(x(t)) < e2tV3(x(0)), for t ≥ 0. Note that MLFs techniques are difficult to be
applied since the state trajectories in unstable modes are not bounded and Lyapunov-
like functions are not easy to find. The “μ” condition is also hard to impose here,
because V1 and V2 are non-quadratic.

Set ε = 4 which means that |x(t)| ≤ 4 must hold for all t ≥ 0. The prescribed
switching sequence is

mode 1 → mode 2 → mode 3 → mode 1 → ··· · · ·
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Now we design the switching instants according to S . Mode 1 is stable, choose
x(0) = [1, 2]� from step 1 of S such that |x(t)| ≤ 4 for t ∈ [0, t1). Since both mode 2
and mode 3 are unstable, the switching scheme based on Lemma 1 is applied after t1.
It can be obtained from (6.37) that χ = 1. m = 2 due to two unstable modes. Choose
β = 6.3 > 2(2 + 1). The activating periods of modes 2 and 3 can be calculated
from step 7 of S : 0.0059s for mode 2; 0.2602s for mode 3. Choose t1 = 0.9s from
step 6 of S such that |x(t)| ≤ 4 for t ∈ [0, t4). Consequently, choose t2 = 0.9059s,
t3 = 1.1661s. The activating period of mode 1 is set to be 0.9s in the following
switching process, i.e., t4 = 2.0661s. Although our theory allows infinite switchings
in infinite time interval, in the numerical simulation, a finite time interval [0s, 4s]
is considered. Other switching instants can be obtained straightly. Fig.2.12 shows
the state trajectory, from which we can see that the stability is achieved and |x| ≤ 4
always holds.

2.6 Conclusion

In this chapter, several FTC methods have been proposed for HS with time de-
pendent switching. The known switching instants bring much convenience to FTC
design. In sections 2.1-2.3, FTC objective has been achieved via designing the sta-
bilizing controller in each faulty mode and a switching scheme. Sections 2.4-2.5
researched directly the stability of HS without reconfiguring the controller in each
mode. It can be found that even some faulty modes are unstable, the stability of
overall HS is still maintained under appropriate switching schemes.



Chapter 3
Hybrid Systems with State-Dependent Switching

In this chapter, a class of HS with state dependent switching and without full state
measurement are investigated. The considered switching occurs whenever the states
reach some given domains which are defined through a set of inequalities called
guard set. Such kind of switchings appear widely in applications, e.g., flow control,
temperature control. Two FTC methods are proposed for linear and nonlinear HS
respectively.

3.1 Preliminaries

The main difference between the considered systems and that in Chapter 2 is that the
switching instant is not known a priori or can be designed. The considered switching
occurs whenever the states reach some given domains which are defined through a
set of inequalities called guard set. The challenges of observer-based FTC for such
systems are twofold [134]:

1) to distinguish the effects of the continuous faults and mode transitions (may
include discrete faults) on the system. From the abnormal change of state estimates
provided by the observer, we should first identify whether continuous faults in the
current mode occur or another mode is switched into, then treat the system with
different control strategies.

2) to maintain the stability of overall HS in spite of these two kinds of faults.

As for challenge 1), a natural idea is to design an observer whose estimation error
is not affected by (or robust to) continuous faults and sensitive to mode transitions.
Challenge 2) could also be solved if the accurate continuous state estimates are
obtained in Challenge 1). This idea will be followed throughout this chapter.

3.2 Hybrid Linear Systems

In this section, we face the above challenges 1)-2), and propose an observer-based
FTC method for a class of hybrid linear systems. The main work is outlined as
follows:

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 59–90.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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1. Under some mild structure conditions, each mode of HS is transformed into a
new form which is friendly for the design of the observer and FTC law.

2. A novel observer is proposed for each mode of new form whose estimation error
is not affected directly by continuous faults and sensitive to mode transitions.
Based on such observer, a time varying threshold is proposed to detect rapidly
each switching once it occurs in spite of discrete faults.

3. An observer-based FTC law is developed for each mode to guarantee the asymp-
totical stability of the origin. Moreover, sufficient conditions are given such that
the overall HS can be stabilized in the sense of LaSalle invariance principle.

3.2.1 FTC for Linear Systems

Consider a linear system

ẋ(t) = Ax(t)+ Bu(t)+ E f c(t), |u| ≤ umax, x ∈ D

y(t) = Cx(t) = [C1 0r×n−r]x(t) (3.1)

where x ∈ D ⊆ ℜn are unmeasurable states, D is a physical domain of x. y ∈ ℜr

are outputs, C1 is an r × r nonsingular matrix. (C,A) is observable and (A,B) is
controllable, u ∈ ℜp are inputs with umax > 0 as its magnitude constraint, f c ∈
ℜq , with q < r, denote actuator faults, the n× q constant matrix E denotes fault
distribution. Since the system inputs are bounded, it is reasonable to assume that
actuator faults are also bounded, i.e., | f c| ≤ f̄ c, where f̄ c > 0.

Assumption 3.1. Rank (CE) = q

Assumption 3.1 guarantees that the matrix CE is of full column rank, which implies
that the effects of faults on outputs are independent.

Define a transformation x = N−1z, where

N =
[

C1 0
0 I

]

(3.2)

Then the system (3.1) can be transformed into

ż = Āz+ B̄u + Ē f c =

⎡

⎣
Ā1

Ā2

Ā3

⎤

⎦z+

⎡

⎣
B̄1

B̄2

B̄3

⎤

⎦u +

⎡

⎣
Ē1

Ē2

Ē3

⎤

⎦ f c (3.3)

y = Cx = C̄z =
[

I(r−q)×(r−q) 0 0
0 Iq 0

]

z

where Ā = NAN−1, B̄ = NB, Ē = NE . z can be represented as

z = [z1 z2 z3]� = [y1 y2 z3]�
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where z3 ∈ ℜn−r. We just need to estimate z3. It follows from Assumption 3.1 that

Rank

[
Ē1

Ē2

]

= q, it is also assumed that Ē2 is nonsingular.

Define

S =

⎡

⎣
I −Ē1Ē−1

2 0
0 I 0
0 −Ē3Ē−1

2 I

⎤

⎦ (3.4)

Left-multiplying (3.4) into (3.3), we have

⎡

⎣
ẏ1 − Ē1Ē−1

2 ẏ2

ẏ2

ż3 − Ē3Ē−1
2 ẏ2

⎤

⎦ =

⎡

⎣
Ā1 − Ē1Ē−1

2 Ā2

Ā2

Ā3 − Ē3Ē−1
2 Ā2

⎤

⎦z+

⎡

⎣
B̄1 − Ē1Ē−1

2 B̄2

B̄2

B̄3 − Ē3Ē−1
2 B̄2

⎤

⎦u +

⎡

⎣
0

Ē2

0

⎤

⎦ f c (3.5)

The advantage of the form (3.5) is that the first and third blocks of (3.5) are not
affected directly by any fault, an observer can be designed for these two blocks to
estimate z3. This estimates is decoupled from the faults, thus can be used to diagnose
the faults in the second block of (3.5).

Define
ϖ j = Ā j − Ē jĒ

−1
2 Ā2, Hj = B̄ j − Ē jĒ

−1
2 B̄2

where j = 1,3. Partitioning ϖ j as

ϖ j = [ϖ j1 ϖ j2 ϖ j3] (3.6)

then the first and third block rows of system (3.5) can be written as

ż3 = ϖ33z3 + s, v = ϖ13z3 (3.7)

where

s = ϖ31y1 + ϖ32y2 + Ē3Ē−1
2 ẏ2 + H3u

v = ẏ1 − Ē1Ē−1
2 ẏ2 −ϖi11y1 −ϖ12y2 −H1u

To estimate z3, an observer can be designed as

˙̂z3 = ϖ33ẑ3 + s+ ζ (v−ϖ13ẑ3) (3.8)

assume (ϖ33,ϖ13) is an observable pair, the observer gain ζ can be chosen to make
(ϖ33 − ζϖ13) stable.

From the above discussion, we can let x̂ = N−1ẑ = N−1[y1 y2 ẑ3]�, where ẑ3 is
obtained in (3.8). Denote z̃3 = z3 − ẑ3, e(t) = x− x̂, one has

|e(t)| = |z3 − ẑ3| ≤ μ(λ ∗)|z̃3(0)|exp(−λ ∗t) (3.9)

where λ ∗ > 0, μ(λ ∗) = Mλ ∗l is polynomial in λ ∗ for M, l > 0.
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The second block row in (3.5) can be written as

ẏ2 = Ā21y1 + Ā22y2 + Ā23z3 + B̄2u + Ē2 f c

Denote f̂ c as the fault estimate and f̃ c � f c − f̂ c. Then

f̂ c = Ē−1
2 (ẏ2 − Ā21y1 − Ā22y2 − Ā23ẑ3 − B̄2u) (3.10)

f̃ c = −Ē−1
2 Ā23z̃3 (3.11)

From (3.9) and (3.10), one can see that the observer-based FD scheme can provide
rapid and accurate fault estimates, and meanwhile, also gives accurate continuous
state estimates which are not affected by faults.

Now we design the bounded FTC law. Consider the Lyapunov candidate V =
x�Px for (3.1), where P is a positive definite symmetric matrix that satisfies the
Riccati equation

A�P+ PA−PBB�P = −Q (3.12)

for some positive definite matrix Q.
V can be regarded as a control Lyapunov function1 for system (3.1). Using the

results in [73] (see also [28]), a continuous bounded FTC law can be designed as

u(x̂) = −K(L∗
AxV (x̂), x̂)(LBV )�(x̂) � b(x̂) (3.13)

with

K(L∗
AxV ) =

L∗
AxV +

√(
L∗

AxV
)2 +(umax|(LBV )�|)4

|(LBV )�|2
[
1 +

√

1 +(umax|(LBV )�|)2
]

for (LBV )� �= 0, and K(L∗
AxV ) = 0, for (LBV )� = 0, where L∗

AxV = LAxV + ρV +
|LEV | f̄ c, with LAxV = x̂�(A�P+PA)x̂, (LEV )� = 2E�Px̂, (LBV )� = 2B�Px̂, ρ > 0.

For all initial states, the stability region of system (3.1) is defined by the set

Φ � {x ∈ D : L∗
AxV (x) < umax|(LBV )�(x)|} (3.14)

A common way of estimating the stability region (3.14) is by using the level sets
of V (see Chapter 4 in [62]). An estimate is described by

Inv � {x ∈ D : V (x) ≤ cmax} (3.15)

where Inv is expected to be the largest invariant set of Φ , cmax is the largest number
for which Inv ⊆ Φ . Fig. 3.1 describes a system with two states, where the relation
of several sets are illustrated. The yellow region represents Inv.

1 Recall that a positive definite radially unbounded smooth function V : ℜn →ℜ is called a control
Lyapunov function for the system ẋ = f (x)+G(x)u, x ∈ ℜn, if we have infu∈U {L f V +LGVu} <
0 ∀x �= 0.
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x1

x2

Inv

  State  evolution

0

D

 })(:{ max2 cxVRx ≤∈

Fig. 3.1 Relations among several regions

Lemma 3.1. Consider system (3.1), there exists a positive real number eu, such that
if |e(t)| ≤ eu,∀t ≥ 0, and the set {x ∈ ℜn : V (x) ≤ cmax} ⊆ D, then the controller
u = b(x̂) makes the origin of the system asymptotically stable in spite of f c.

Proof: The time derivative of V along the closed loop trajectories is

V̇ = LAxV + LBVu(x)+ LEV f c + LBV (u(x̂)−u(x))

=
(LAxV + LEV f c)

√
1 +(umax|(LBV )�|)2 + LEV f c

[
1 +

√
1 +(umax|(LBV )�|)2

]

−
|LEV | f̄ c + ρV +

√(
L∗

AxV
)2 +(umax|(LBV )�|)4

[
1 +

√
1 +(umax|(LBV )�|)2

]

+LBV (u(x̂)−u) (3.16)

From (3.11), one has LEV f c ≤ |LEV | f̄ c. It is clear from (3.16) that, if L∗
AxV (x) < 0,

we have V̇ < −ρV + LBV (u(x̂)− u). When 0 ≤ L∗
AxV (x) < umax|(LBV )�(x)|, we

have

(LAxV + LEV f c)
√

1 +(umax|(LBV )�|)2

< (L∗
AxV −ρV)

√
1 +(umax|(LBV )�|)2

<

√(
L∗

AxV
)2 +(umax|(LBV )�|)4

−ρV
√

1 +(umax|(LBV )�|)2 (3.17)
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Substituting (3.17) in (3.16), we have that whenever L∗
AxV (x) < umax|(LBV )�(x)|,

V̇ < −ρV + LBV (u(x̂)−u)
≤ −ρ∗|x|2 + MG|u(x̂)−u| (3.18)

where ρ∗ > 0, MG = maxV=cmax(|LBV |), MG exists since |LBV (·)| is continuous over
the region Inv.

Since {x∈ℜn : V (x)≤ cmax}⊆D, we have Inv = {x∈ℜn : V (x)≤ cmax}. Firstly,
we analyze V̇ on the boundary Inv. Inequality (3.18) can be written as

V̇ < −ρcmax + MG|u(x̂)−u| (3.19)

Note that |u(x̂)−u(x)| is continuous ∀t ≥ 0 and vanishes when e = 0, since e is
always bounded which is not affected by faults, there exist two positive real numbers
eu and κ(eu), such that if |e| ≤ eu, then |u(x̂)− u(x)| ≤ κ |e| ≤ ρcmax/MG, which
implies V is always negative on the boundary Inv, so x(t) ∈ Inv ∀t ≥ 0.

Secondly, substituting the estimate κ |e| into (3.18) yields

V̇ < −ρ∗|x|2 + MGκ |e| ≤ −rρ∗|x|2,

∀|x| ≥
√

MGκ |e|
rρ∗ � γ(|e|) (3.20)

where γ(·) is a class K function. Based on [62], we have that, for any x(t) ∈ Inv,
there exists a class K L function β (·, ·) and a class K function γ1(·), such that

|x(t)| ≤ β (|x(0)|, t)+ γ1(sup
τ≥0

|e(τ)|), ∀t ≥ 0 (3.21)

which means that x is input-to-state stable with respect to e. Note that Eq. (3.8) and
(3.9) ensure that limt→∞ e(t) = 0, which together with (3.21), leads to limt→∞ x(t) =
0. This completes the proof. �

3.2.2 FTC for Hybrid Systems

Based on the above FTC solution for linear system, we focus on the HS modeled by
a hybrid automaton as defined in Definition 1.1.

The trajectories of a hybrid automaton H that start from some initial state
(q0,x0) ∈ Init consist of a sequence of continuous flows and discrete transitions.
When the discrete state q ∈ Q is maintained, the continuous state x evolves accord-
ing to the differential equation x = Fq(x,u, f c) where Fq ∈ F as long as x ∈ Inv(q).
After x reaches the guard set, the system would switch into next mode. It is assumed
that the states x are continuous at each switching instant.

Definition 3.1. The system H is live if for i, i′ ∈ Q

∀x ∈ Inv(i) or x �∈ Inv(i),∃e = (i, i′),x ∈ G(i, i′) (3.22)
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∀e = (i, i′) and x ∈ G(i, i′), x ∈ Inv(i′) (3.23)

The liveness of HS ensures the succession of the trajectory under appropriate
control input. Review Fig. 3.1, where x may escape from Inv if {x ∈ ℜ2 : V (x) ≤
cmax} �⊆ D. Condition (3.22) means that before or when x escapes from the invariant
set of the current mode, the switching must happen. Condition (3.23) guarantees
that x ∈ Inv(i′) after mode i′ is switched into.

This section models the plant as a class of H with the following properties:

- (P1) Both normal and faulty switchings are continuous state-dependent and are
not controlled by any discrete input V .

- (P2) The vector field F for mode i is of the form

ẋ(t) = Aix(t)+ Biui(t)+ Ei f c
i (t), |ui| ≤ umax

i , x ∈ Di

yi(t) = Cix(t) = [C1
i 0r×n−r]x(t), t ∈ [tk, tk+1) (3.24)

which satisfies the conditions imposed on the system (3.1). f c
i ∈ ℜq denotes ac-

tuator faults for mode i, where | f c
i | ≤ f̄ c

i , where f̄ c
i > 0.

- (P3) The discrete fault fd ∈ Fd is such that x ∈ Inv(i)∧ x ∈ G(i, i′, fd), where the
system is switched from i to i′ under G(i, i′, fd).

- (P4) The system is live in the heathy situation, and the switching sequence is
deterministic in both healthy and faulty situations, i.e., each trajectory contains
only one switching sequence for all initial (q0,x0) ∈ Init. No Zeno phenomenon
occurs.

Remark 3.1. The considered model is more practical than that in [110], [123] and
[147], since it involves the strict physical bound of control signals and unmeasur-
able states. The mode transition takes place just when states reach the guard set
G, the switching instants are not controllable by the so-called discrete inputs as
in [123].

The FTC Problem (P) for HS can be described as: Keep the HS live as in (3.22)-
(3.23), and make the origin asymptotically stable in spite of any fault in P2, P3.

(P) is similar to the target control problem for HS in [123], where the target objec-
tive is the origin. It is supposed that the prescribed determined switching sequence
can bring x to the origin under appropriate controllers in the healthy situation. De-
tails about how to choose such sequence can be seen in [123].

The characteristics of continuous and discrete faults motivate us to consider four
faulty situations:

Under continuous faults f c
i :

Case 1: x �∈ Inv(i)∧ x �∈ G(i, i′).

Under discrete faults G(i, i′, fd):

Case 2: x ∈ Inv(i)∧ x ∈ G(i, i′, fd)∧ x ∈ Inv(i′).
Case 3: x ∈ Inv(i)∧ x ∈ G(i, i′, fd)∧ x �∈ Inv(i′).
Case 4: x �∈ Inv(i)∧ x �∈ G(i, i′, fd).
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In Case 1, f c
i changes the dynamics of mode i, and makes the states escape from

the invariant set before switching happens, the liveness would be violated. In Cases
2 and 3, Faulty switching happens under G(i, i′, fd). Note that the system is still
live in Case 2, whereas in Case 3, the faulty switching makes the state escape from
the invariant set of the next mode, which also violates the liveness. In Case 4, the
switching does not happen when the continuous evolution is impossible, the system
is locked. All the above four cases may destroy the stability of the HS. We define
two switchings: stable switching (in the normal case and Cases 1,2) and unstable
switching ( in Cases 3,4).

In the following discussions, we first solve Cases 1 and 2 by applying the method,
then provide a relaxed FTC method to solve Case 3, and discuss an active switching
detection technique for Case 4. Finally, we present a FTC framework.

Since each mode satisfies the conditions imposed on the system (3.1), the
observer-based FD and FTC methods developed in Section 3.2.1 is applied to each
mode. The idea of switching detection appears from the analysis of estimation er-
ror vi −ϖi13ẑ3 for mode i. If all the modes are not overlapping, i.e., each observer
works well only when applied to its related mode, then, similar to fault detection
problem [57], vi −ϖi13ẑ3 can be regarded as a residual for mode i to detect the
switching, since limt→∞(vi −ϖi13ẑ3) = 0 before switching occurs. We give a quite
general assumption for switching control problem [20] as follows:

Assumption 3.2. All modes of H are discernable, i.e., for mode i, the estimation er-
ror |e(t)| is convergent as in (3.9) only under the observer (3.8) which is associated
with mode i.

Under Assumption 3.2, given an initial (i,x(tk)) ∈ Init(i) for mode i, any mode
transition can be detected using following time varying threshold:

|vi −ϖi13ẑ3| ≤ ϖi13μ(λ ∗
i )|z̃3(tk)|exp(−λ ∗

i (t − tk)) (3.25)

Now consider the mode transition in Case 2. Two subcases of Case 2 can be
given:

x ∈ Inv(i)∧ x ∈ G(i, i′, fd)∩Gc(i, i′), switch earlier

x ∈ Inv(i)∧ x ∈ G(i, i′)∩Gc
f (i, i

′), switch earlier

Since the sequence is deterministic, once the mode transition is detected, the con-
troller (3.13) and the observer (3.8) are switched according to the next mode. The
initial states x̂ of the current observer are chosen as the final states of the previous
observer.

Recall that in the normal case, and Cases 1, 2, the switching (normal or faulty)
does not affect the liveness of HS, i.e., it always holds that x∈ Inv(i′). Fig. 3.2 shows
the relation of several sets and the system trajectory. The green and yellow regions
denote respectively the invariant sets of two modes, Inv(1), Inv(2). It can be seen
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Fig. 3.2 FTC for Case 1 and Case 2

that the state trajectory starting from mode 1 is always within Inv(2) under both
G(1,2) and G(1,2, fd).

The following theorem extends the LaSalle invariance principle to the HS under
Cases 1 and 2. For the sake of simplicity, denote Ḡ as the guard set for both the
normal situation and Case 2.

Theorem 3.1. Consider a HS satisfying P1-P4 and assumptions 3.1, 3.2, the initial
states (q0,x(t0)) ∈ Inv(q0)∧ x(t0) ∈ Gc(q0,q1), x̂(t0) is such that μ(λ ∗

1 )|e(t+0 )| ≤
min{eu,i,∀i ∈ Q}. Under the controller ui = bi(x̂) which is switched according to
the mode transition, if ∀x ∈ Inv(i)∧ x ∈ Ḡ(i, i′), the following condition holds:

Vi′(x̂)+ Mi + Mi′ < Vi(x̂) (3.26)

where Mi is such that |e| ≤ eu,i → |Vi(x)−Vi(x̂)| ≤ Mi, then the origin of the HS is
asymptotically stable in the normal case, and cases 1, 2.

Proof: Due to the continuity of Vi(·), there exists a positive real number Mi such
that if |e| ≤ eu,i, then |Vi(x)−Vi(x̂)| ≤ Mi. Therefore, we have

Vi′(x)−Mi′ ≤Vi′(x̂) (3.27)

Vi(x)+ Mi ≥Vi(x̂) (3.28)

Inequalities (3.27) and (3.28), together with (3.64), lead to

Vi′(x) < Vi(x) (3.29)

Define Λ i
1 = {x ∈ Inv(i)∧ x ∈ Ḡc(i, i′) : V̇i = 0}, Λ i

2 = {x ∈ Inv(i)∧ x ∈ Ḡ(i, i′) :
Vi = V ′

i }. Let Λ be the largest invariant subset of Λ i
1 ∪Λ i

2 ∀i ∈ Q. Λ is an invariant
set to be attracted. It is clear from Lemma 3.1 that under ui, V̇i is always negative,
thus limtk+1→∞ Vi = 0 ∀i ∈ Q. On the other hand, based on (3.29) and Theorem IV.1
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in [80], one concludes that the trajectory of H approaches Λ , thus the origin is
asymptotical stable. �

Remark 3.2. The switching can be detected using the threshold (3.25) with a short
time delay. Due to the discernability of the modes, such delay is often very short
and much less than the activating period of mode i, which would be acceptable for
practical applications.

In Case 3, a new mode is switched into while the states do not belong to its invariant
set. This is very dangerous for the system since the states would escape to a large
region or infinity without being limited by any control command and guard set.
Indeed, continuous faults f c

i do not always exist, a possible solution to solve Case 3
is to design a variable invariant set according to the time when f c

i occurs.
Define two stability regions for mode i

Φh(i) � {x ∈ Di : L�
AixVi(x) < umax

i |(LBiVi)�(x)|}
Φ f (i) � {x ∈ Di : L�

AixVi(x) < umax
i |(LBiVi)�(x)|}

where L�
Aix

Vi = LAixVi +ρiVi, and L�
Aix

Vi = LAixVi +ρiVi + |LEiVi| ¯̂f c
i + |LEiViĒ−1

i2 Āi23|
e�1

u,i,
¯̂f c
i > 0 is defined such that | f̂ c

i | ≤ ¯̂f c
i , e�1

u,i > 0 will be given later.
Design two controllers

ui(x̂) = −Ki(L�
AixVi(x̂), x̂)(LBiVi)�(x̂) � bi

h(x̂)

ui(x̂) = −Ki(L�
AixVi(x̂), x̂)(LBiVi)�(x̂) � bi

f (x̂)

Similar to (3.15), we define Invh(i) and Inv f (i) as invariant subsets of Φh(i) and
Φ f (i) respectively. We have the following Lemma:

Lemma 3.2. Consider system (3.24) with x(tk) ∈ Inv(i)∧ x(tk) ∈ Gc(i, i′), and {x ∈
ℜn : L�

Aix
Vi(x) < umax

i |(LBiVi)�(x)|} ⊆ Di, {x ∈ ℜn : L�
Aix

Vi(x) < umax
i |(LBiVi)�(x)|}

⊆ Di. There exist two positive numbers e�1
u,i and e�2

u,i such that if μ(λ ∗
i )|e(t+k )| ≤ e�1

u,i

and x̂(t f
k ) ∈ Inv f (i)∧ |e(t f

k )| ≤ e�2
u,i, where t = t f

k is the time when f c
i occurs, and

Inv f (i) is such that ∀|e| ≤ e�2
u,i, x̂ ∈ Inv f (i) → x ∈ Inv f (i)∧ x ∈ Gc(i, i′), then the

bounded controller

u�i (x̂) =

{
bi

h(x̂) t ∈ [tk, t
f
k )

bi
f (x̂) t ∈ [t f

k , tk+1)
(3.30)

makes the origin of mode i asymptotically stable.

Proof: Since the system is fault-free (i.e., f c
i = 0) for t ∈ [tk, t

f
k ). The time-derivative

of Vi along the closed-loop trajectories is

V̇i = LAixVi + LBiViu
�
i (x)+ LBiVi(u�i (x̂)−u�i (x))
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It can be obtained similarly to Lemma 3.1 that there exists e�1
u,i such that ∀|e(t)| ≤ e�1

u,i

and x(tk) ∈ Invh(i)∧x(tk) ∈ Gc(i, i′), the controller bi
h(x̂) makes the origin of the ith

mode asymptotically stable.
At t = t f

k , the faults occur and are detected, the time-derivative of Vi along the
closed-loop trajectories under controller bi

f (x̂) is

V̇i = LAixVi + LBiViu
�
i (x)+ LEiVi f c

i + LBiVi(u�i (x̂)−u�i (x))

=
(LAixVi + LEiVi f c

i )
√

1 +(umax
i |(LBiVi)�|)2 + LEiVi f c

i
[
1 +

√
1 +(umax

i |(LBiVi)�|)2
]

−|LEiVi| ¯̂f c
i −|LEiViĒ

−1
i2 Āi23|e�

u,i + ρiVi
[
1 +

√
1 +(umax

i |(LBiVi)�|)2
]

+

√(
L�

Aix
Vi
)2 +(umax

i |(LBiVi)�|)4

[
1 +

√
1 +(umax

i |(LBiVi)�|)2
] + LBiVi(u�i (x̂)−u�i )

From (3.11), one has

LEiVi f c
i ≤ |LEiVi| ¯̂f c

i + |LEiViĒ
−1
i2 Āi23|e�1

u,i

The subsequent proof follows the same way as in Lemma 3.1, one can conclude
that if x̂(t f

k ) ∈ Inv f (i), then under bi
f (x̂), there exists a constant e�2

u,i > 0 such that

∀|e(t)| ≤ e�2
u,i, the states will stay in the region Inv f (i), and the origin of the ith mode

is asymptotically stable. �

The main contribution of Lemma 3.2 is that it relaxes the invariant set as shown in
Fig.3.3. where Inv(2) ⊆ Invh(2). The Case 3 is said to be fault tolerable if

(
x ∈ Inv(i)

)
∧ x ∈ G(i, i′, fd)∧ x ∈ Invh(i′) (3.31)

Theorem 3.1 can be directly extended to Case 3 as in the following corollary without
the proof.

Corollary 3.1. Consider a HS satisfying P1-P4 and assumptions 3.1, 3.2, the initial
states (q0,x(t0)) ∈ Inv(q0)∧ x(t0) ∈ Gc(q0,q1), x̂(t0) is such that μ(λ ∗

1 )|e(t+0 )| ≤
min{eu,i,∀i ∈ Q}. Under the controller u�k(x̂) which is switched according to the
mode transition, if 1) conditions in Lemma 3.2 and (3.31) hold, 2) ∀x ∈ Inv(i)∧x ∈
G(i, i′, fd), the condition (3.64) holds, then the origin of the HS is asymptotically
stable.

In Case 4, the system is locked and does not respond to any control command,
nothing can be said about the subsequent system’s behavior, the system may be
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Fig. 3.3 FTC for Case 3

entirely destroyed or some new modes occur which are not included in the original
HS. To avoid this phenomenon, an active switching detection technique is devel-
oped. The main idea is to generate a Switching Alarm before the normal switching
(when x ∈ G(i, i′)) occurs, and also generates a Lock Alarm when we identify that
x ∈ G(i, i′) but no switching occurs. This is possible due to the structure of the ob-
server in Section 3.2.1. After Lock Alarm, some emergency measures must be taken
to the system by human (stop the system, or change equipments, or force the system
to switch, and so on).

For mode i, define a set Gnear(i, i′) and three sets as

χs(i) � {x ∈ X : x ∈ Inv(i)∧ x ∈ Gc
near(i, i

′)}
χn(i) � {x ∈ X : x ∈ Inv(i)∧ x ∈ Gc(i, i′)}
χl(i) � {x ∈ X : x ∈ Inv(i)∧ x ∈ G(i, i′)}

where Gnear(i, i′) is close to G(i, i′) such that χs(i) ⊆ χn(i).
Since the observer (3.8) always follows the system (3.7), estimation error con-

verges to zero, similar to Lemma 3.2, we can define Ψs(i) and Ψl(i) such that
∀|e| ≤ e�1

u,i, x̂ ∈Ψs(i) → x ∈ χs(i), x̂ ∈Ψl(i) → x ∈ χl(i). The Active Switching De-
tection strategy for mode i is in two steps as shown in Fig. 3.4:

1) When x̂ ∈Ψs(i), Switching Alarm is generated.
2) If no mode transition occurs after x̂ ∈Ψl(i), Lock Alarm is generated.

Remark 3.3. Due to estimation errors of the observer, the Lock Alarm will be gen-
erated later for a short time delay after states reach the guard set. This delay is
acceptable in most situations, only except a very special case that Case 4 occurs in
this time delay (e.g., once the states reach the guard set, the continuous evolution of
the current mode is impossible).
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Fig. 3.4 FTC for Case 4

We are in the position to provide a FTC framework

1) Apply the FD scheme in sections 3.2.2 and controller (3.13) for the current mode.
2) When the mode transition is detected before Switching Alarm,

If x ∈ Inv(i′), go to 1);
If x ∈ Invh(i′) ∩Invc(i′), apply the controller (3.30) for current mode.

3) When the mode transition is detected after Switching Alarm and before Lock
Alarm, go to 1).

4) When the mode transition does not occur after Lock Alarm, take some measures
to the system by human.

Example 3.1 (Example 1.1 revisited): Recall the CPU processing control system in
Example 1.1. As described before, the system is modeled as a hybrid automaton with
two modes: busy mode and usual mode. Fig. 3.5 shows the determined sequence.
x ∈ ℜ3 = [π , ρ , ω ]� is the state with π being the amount of CPU tasks in the buffer,
ρ the CPU temperature, and ω angular velocity of a cooling fan. c∈ℜ and v∈ℜ are
the clock frequency and the voltage input of a cooling fan. The FTC objectives are
to make the above CPU process switch appropriately between two modes according
to the guard set (liveness), and to make the origin asymptotically stable in spite of
any fault. This means that the cost on the continuous states and inputs is minimized,
which leads to energy saving.

G(12)  ( G  (12) )f
busy

mode

usual

mode

Fig. 3.5 Switching sequence
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The continuous models around the equilibrium state2 are given as:

mode 1 :⎡

⎣
π̇
ρ̇
ω̇

⎤

⎦ =

⎡

⎣
0 0 0
0 −0.05 −0.5
0 0 −3

⎤

⎦

⎡

⎣
π
ρ
ω

⎤

⎦+

⎡

⎣
−2 0
0.2 0
0 0.5

⎤

⎦
[

c
v

]

+

⎡

⎣
2

−0.2
0

⎤

⎦ f c
1

mode 2 :⎡

⎣
π̇
ρ̇
ω̇

⎤

⎦ =

⎡

⎣
0 0 0
0 −0.05 −0.5
0 0 −3

⎤

⎦

⎡

⎣
π
ρ
ω

⎤

⎦+

⎡

⎣
−1 0
0.1 0
0 1.5

⎤

⎦
[

c
v

]

+

⎡

⎣
1

−0.1
0

⎤

⎦ f c
2

C1 = C2 =
[

1 −1 0
0 2 0

]

The models satisfy Assumption 3.1, we can see that both f c
1 and f c

2 affect the

clock frequency input channel. We obtain from (3.2) that N−1 =

⎡

⎣
1 0.5 0
0 0.5 0
0 0 1

⎤

⎦, and

from (3.3), we have

Ā1 = Ā2 =

⎡

⎣
0 0.025 0.5
0 −0.05 −1
0 0 −3

⎤

⎦ , B̄1 =

⎡

⎣
−2.2 0
0.4 0
0 0.5

⎤

⎦ , B̄2 =

⎡

⎣
−1.1 0
0.2 0
0 1.5

⎤

⎦

and Ē1 = [2.2 − 0.4 0]�, Ē2 = [1.1 − 0.2 0]�, then from (3.5) and (3.6), we get
ϖ11 = ϖ21 = [0 −0.25 −5], ϖ13 = ϖ23 = [0 0 −3], it is clear that [ϖ133,ϖ113] and
[ϖ233,ϖ213] are observable, H13 = [0 0.5],H23 = [0 1.5]. The observers for modes 1
and 2 are designed from (3.8) with ζ1 = 0.4, ζ2 = −0.2 respectively. Since the ob-
server is of 1-order, the precise threshold can be given to detect the mode transition
without any delay, Assumption 3.2 is not required in this situation.

In mode 1, D1 = {x∈ℜ3 : π +ρ ≥ 8}, |c| ≤ 5, |v| ≤ 10. In mode 2, D2 = {x∈ℜ3 :
π +ρ ≤ 25}, |c| ≤ 2, |v| ≤ 5. G(1,2) = {x ∈ ℜ3 : π +ρ ≤ 10}. Assume | f c

1 | ≤ 2.5,
| f c

2 | ≤ 1. Choose ρ1 = 0.05,ρ2 = 0.08, and

P1 =

⎡

⎣
0.0540 −0.0062 0
−0.0062 2.1310 0.1646

0 0.1646 2.4753

⎤

⎦ , P2 =

⎡

⎣
1.0240 −0.0048 0
−0.0048 1.6200 0.1246

0 0.1246 1.9752

⎤

⎦

x(t1) = x(0) is assumed to be [8 9.5 9]�. From Lemma 3.1, x̂(0) is chosen
as [8 9.5 8.85]�. f c

1 = 2 + 0.2sin(5t) which occurs at t = 0.15s. Fig. 3.6 shows
the switching detection performance using threshold (3.25), the uncontrollable

2 The state of system when a sufficiently long time has passed after booting the system is defined
as the equilibrium state of this model.
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Fig. 3.6 Switching detection performance with G(1,2)

switching occurs at t = 0.41s, a short detection delay of 0.04s exists. Two states
π and ρ are illustrated. System evolution is shown in Fig. 3.7(a) where Inv(1) and
Inv(2) are computed via level set technique in [62]. We can see that, in the pres-
ence of f c

1 , stabilization of the HS is achieved as in Lemma 3.1 and Theorem 3.1,
the switching detection delay nearly has no effect on the stability. Now consider
the faulty guard set G(1,2, fd) = {x ∈ ℜ3 : π + ρ ≤ 10.5}, which implies that the
mode transition occurs with larger amount of CPU tasks and higher temperature.
Fig. 3.7(b) shows the stability of system.

Now we consider Case 3 with G(1,2, fd) = {x ∈ ℜ3 : 0.8π +ρ ≤ 12}, from Fig.
3.8(a), it is clear that x ∈ G(1,2, fd)∧ (2,x) �∈ Inv(2), however, using the relaxed
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Fig. 3.7 FTC for the stable switchings
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Fig. 3.8 FTC for the unstable switchings

method, it can be seen that (2,x) ∈ Invh(2). Consider f c
2 = 0.8 which occurs at

t = 6s, Fig. 3.8(a) shows that the stabilization of the system is achieved as in Corol-
lary 3.1.

Next, we consider Case 4 with G(1,2, fd) = {x ∈ ℜ3 : π + ρ ≤ 4}. From Fig.
3.8(b), we can find that the system will be locked in mode 1 and is impossible
to switch into mode 2, this is very dangerous since the temperature in CPU can
not decrease. The switching alarm and lock alarm are generated at t = 2.21s and
t = 2.34 respectively, which prevents the system from being dangerous.

3.3 Hybrid Nonlinear Systems

Following the similar idea as in Section 3.2, we now focus on the output tracking
problem for a class of hybrid nonlinear systems with uncontrollable state-dependent
switching, parametric uncertainties, both continuous and discrete faults, and without
full state measurements. Firstly, under geometric conditions, each mode of HS is
transformed into a new form which is suitable for both the observer and the FTC
law design. Then, a novel observer is designed for each mode whose estimation
error is not affected by continuous faults and sensitive to mode transitions. Such
observer leads to a time varying threshold for the switching detection of the HS.
Finally, sufficient conditions are given to solve the fault tolerant tracking problem
for overall HS.

3.3.1 Preliminaries

The HS that we consider takes the form

ẋ = gσ
0 (x)+ gσ(x)uσ + φσ (x,u)θ σ + eσ(x) f σ

y = h(x) (3.32)
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where x ∈ ℜn are unmeasurable states, uσ ∈ ℜpσ
are inputs, yσ ∈ ℜm are out-

puts, θ σ ∈ℜlσ
is an unknown constant vector representing parametric uncertainties,

|θ σ | ≤ θ σ
0 , for θ σ

0 > 0.
The continuous fault is modelled by a “fault pattern”, which consists of the dis-

tribution matrix e j(x) and a “fault signal” f j ∈ ℜq j
.

gσ
0 , gσ , φσ , eσ and hσ are smooth and known functions, and qσ < m ≤ pσ is

considered. σ(t) : [t0,∞) → Q = {1,2, . . . ,N} denotes the switching function as in
Chapter 2.

Define G : Q×Q → ℜn as a guard condition related to two modes. The system
is switched from mode i to mode j , i, j ∈ Q if the continuous states x in mode
i reach the guard set G(i, j). The discrete fault is represented by the faulty guard
set G f : Q×Q → ℜn that makes the system switch under an abnormal switching
condition.

It is assumed that the states x are continuous at each switching instants, and the
switched sequence is prescribed and fixed in spite of faults.

The FTC problem is precisely described as: Keep the outputs of each mode y
asymptotically track the given reference signals y j

d = [y j
d1,y

j
d2, . . . ,y

j
d(m)]

� ∈ ℜm

during the activating period of mode j in spite of continuous and discrete faults,
parametric uncertainties, meanwhile, make the continuous states bounded.

We discuss the system transformation, observer and FTC design problems for
non-hybrid systems in sections 3.3.2-3.3.3, then apply the results to hybrid system
in Section 3.3.4.

3.3.2 Fault Diagnosis for Nonlinear Systems

Consider the following affine nonlinear system

ẋ = g0(x)+ g(x)u + φ(x,u)θ + e(x) f

y = h(x) (3.33)

where x ∈ ℜn, u ∈ ℜp, y ∈ ℜm, f ∈ ℜq, θ ∈ ℜl play the same roles as in (3.32).
|θ | ≤ θ0 and q < m ≤ p, g0, g, φ , e and h are smooth and known.

Definition 3.2. The FD block strict feedback form of system (3.33) is

ż1 = Az1 + γ1(z1,y)u + γ2(z1,y)+ ψ1(z1,u,y)θ (3.34)

ȳ1 = Cz1 (3.35)

ż2 = ψ0(z)+ γ3(z2,y)u + ē(z) f + ψ2(z,u)θ (3.36)

ȳ2 = z2 (3.37)

where z = [z�1 ,z�2 ]�, z1 = [ξ�
1 ,ξ�

2 , . . . ,ξ�
m−q]� ∈ℜn−q, z2 = [ξ�

m−q+1, . . . ,ξ�
m ]� ∈ℜq

are the states of system (3.34)-(3.37), with ξ = [ξ�
1 ,ξ�

2 , . . . ,ξ�
m ]� ∈ ℜn, ξi ∈

ℜρ̄i = [ξi1, . . . ,ξiρ̄i ]
�. y = [ȳ�1 , ȳ�2 ]� with ȳ1 ∈ ℜm−q, ȳ2 ∈ ℜq. Moreover, A =

diag[A1, . . . ,Am−q] ∈ ℜ(n−q)×(n−q), C = diag[C1, . . . ,Cm−q] ∈ ℜ(m−q)×(n−q), with
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Ai ∈ ℜρ̄i×ρ̄i =

⎡

⎢
⎢
⎢
⎣

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

,Ci ∈ ℜ1×ρ̄i =
[

1,0, . . . ,0
]

for 1 ≤ i ≤ m−q. γ1(z1,y) = [ḡ�1 , ḡ�2 , . . . , ḡ�m−q]
� with

ḡi ∈ ℜρi×p =

⎡

⎢
⎢
⎢
⎣

ḡi1(ξ1, . . . ,ξi−1,ξi1,yi+1, . . . ,ym)
ḡi2(ξ1, . . . ,ξi−1,ξi1,ξi2,yi+1, . . . ,ym)

...
ḡiρ̄i(ξ1, . . . ,ξi−1,ξi,yi+1, . . . ,ym)

⎤

⎥
⎥
⎥
⎦

(3.38)

and γ2(z1,y) = [ ¯̄g�1 , ¯̄g�2 , . . . , ¯̄g�m−q]� with

¯̄gi ∈ ℜρ̄i = [0 0 . . .0,Lρ̄i
g0

hi(ξ1 . . .ξi−1ξiyi+1 . . .ym)]� (3.39)

Remark 3.4. The form given in Definition 3.2 is an extension of the the block para-
metric strict feedback form in [63] to the faulty case. In our model, both ψ1 and
ψ2 terms do not required to take the certain triangular forms as in [63], since the
parameter θ can be estimated by the observer rather than the control strategy as
shown later.

Assumption 3.3. There exists a set of integer numbers {ρ̄1, ρ̄2, . . . , ρ̄m} such that
∑m

i=1 ρ̄i = n and ξ = T (x) ∈ ℜn is a diffeomorphism where

T (x) = [h1(x),Lg0(x)h1(x), . . . ,L
ρ̄1−1
g0(x) h1(x),

h2(x), . . . ,L
ρ̄2−1
g0(x)h2(x), . . . ,L

ρ̄m−1
g0(x) hm(x)]�

The relative degree of the rth output yr of system (3.33), denoted as ρr, is such that
ρr = ρ̄r = 1, m−q + 1≤ r ≤ m.

Under Assumption 3.3, dT (x) is invertible ∀x ∈ ℜn, let ri(x) be the ith column of
[dT (x)]−1 and R(i) j := span{rvi− j, . . . ,rvi}, where vi = ∑i

j=1 ρ̄ j.

Lemma 3.3. Under Assumption 3.3, the diffeomorphism ξ = T (x) can transform
the system (3.33) into (3.34)-(3.37) if and only if

I [g0(x),R(i)ρ̄i−2] ⊂ R(i)ρ̄i−1 +R(i + 1)ρ̄i+1−1 + · · ·+R(m− q)ρ̄m−q−1, for 2 ≤
i ≤ m−q.

II [g0(x),R(i) j]⊂R(i) j +R(i+1)ρ̄i+1−1 + · · ·+R(m−q)ρ̄m−q−1, for 1 ≤ i ≤ m−
q, 0 ≤ j ≤ ρ̄i −2.

III [g0(x),R(ī)ρ̄ī−2] ⊂ R(1)ρ̄1−2 +R(2)ρ̄2−2 + · · ·+R(m− q)ρ̄m−q−2, for m− q +
1 ≤ i ≤ m, 1 ≤ ī ≤ m−q.

IV LeLs
g0

hi = 0, for 1 ≤ s ≤ ρ̄i −1, 1 ≤ i ≤ m−q.

Proof: We first show that the conditions I and II lead to the block triangular forms
of γ1 and γ2 as in (3.38) and (3.39). By the construction of R(i) j, we have in
ξ−coordinate [82]
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R(i) j = span{ ∂
∂ξ〈vi〉

, . . . ,
∂

∂ξ〈vi− j〉
} (3.40)

where ξ〈ι〉, 1 ≤ ι ≤ n−q denotes the ιth element of ξ .

Define bg,l such that ∑m−q
i=1 ∑ρ̄i

j=1 LgLj−1
g0 hi

∂
∂ξ〈vi−1+ j〉

= ∑n−q
l=1 bg,l

∂
∂ξ〈l〉

. Condition II

can be represented in ξ−coordinate as

[
n−q

∑
l=1

bg,l
∂

∂ξ〈l〉
,

∂
∂ξ〈k〉

] ∈ span{ ∂
∂ξ〈vm−q〉

,
∂

∂ξ〈vm−q−1〉
,

. . . ,
∂

∂ξ〈vi〉
, . . . ,

∂
∂ξ〈vi− j〉

} (3.41)

for ρ̄i− j ≤ k ≤ ρ̄i. Note that [∑n−q
l=1 bg,l

∂
∂ξ〈l〉

, ∂
∂ξ〈k〉

] = ∑n−q
l=1

∂bg,l
∂ξ〈k〉

∂
∂ξ〈l〉

, which, together

with (3.41) implies that
∂bg,l
∂ξ〈k〉

= 0, for 1 ≤ i ≤ m− q, 1 ≤ l ≤ vi − 1, and max(l +

1,vi−1 + 2)≤ k ≤ vi.
Similarly, define bg0 � ∑m−q

i=1 Lρ̄i
g0hi

∂
∂ξ〈vi〉

, one can obtain from Condition I that

∂bg0,ρ̄l
∂ξ〈k〉

= 0, for 2 ≤ i ≤ m − q, vi−1 + 2 ≤ k ≤ vi, and 1 ≤ l ≤ i − 1. The block

triangular forms of γ1 and γ2 follows.
Now we show that under Condition III, the term γ3(z2,y) is independent on z1\ȳ1.

Similar to (3.40), we have

R(ī)ρ̄ī−2 = span{ ∂
∂ξ〈vī〉

,
∂

∂ξ〈vī−1〉
, . . . ,

∂
∂ξ〈vī−ρ̄ī+2〉

}

Condition III can be represented in ξ−coordinate as

[
m

∑
i=m−q+1

Lg0 hi
∂

∂ξ〈vi〉
,

∂
∂ξ〈k〉

] ∈ span{ ∂
∂ξ〈vm−q〉

,

∂
∂ξ〈vm−q−1〉

, . . . ,
∂

∂ξ〈vī−ρ̄ī+2〉
. . . ,

∂
∂ξ〈v1−ρ̄1+2〉

} (3.42)

for ρ̄ī−1 + 2 ≤ k ≤ ρ̄ī. Note that

[
m

∑
i=m−q+1

Lg0hi
∂

∂ξ〈vi〉
,

∂
∂ξ〈k〉

] =
m

∑
i=m−q+1

Lg0hi
∂

∂ξ〈k〉
∂

∂ξ〈vi〉

which, together with (3.42) implies that Lg0hi
∂

∂ξ〈k〉
= 0(m−q+1≤ i ≤ m) followed

by the property that γ3(z2,y) is independent on z1\ȳ1.
Finally, condition VI decouples the subsystems (3.34)-(3.35) from continuous

faults f . �
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The form (3.34)-(3.37) that results from the transformation T (x) takes several ad-
vantages:

1. The subsystem (3.34)-(3.35) is not affected by continuous faults. An observer
can be designed for this subsystem to provide the estimates of z1 and θ . These
estimates are decoupled from the continuous fault, thus they can be used to di-
agnose the faults in the subsystem (3.36)-(3.37). Another benefit is to detect the
switching of the HS as it will be discussed in Section 3.3.4.

2. Both (3.34)-(3.35) and (3.36)-(3.37) are in the block strict feedback form. Which
are more friendly for FTC design than that in [34] and [56]. The back-stepping
control method in [63] can be developed to achieve the fault tolerant tracking
goal.

We present a novel observer for the subsystem (3.34)-(3.35), which relaxes the
Lipschitz conditions as in the usual high gain observer. The observer will be con-
structed firstly through the following several steps as in [66].

Step 1 : Define

M̄i(z1,u,y) � [C�
i ,(CiFi(z1,u,y))�, . . . ,(CiF

ρ̄i−1
i (z1,u,y))�]�

for 1 ≤ i ≤ m−q, where Fi(z1,u,y) = Ai +Gi j(z1,y)u, with Gi j(z1,y) = ∂ ḡi/∂ξ j for
1 ≤ j ≤ m−q.

Step 2 : Let Ni = Ri(M̄iFiM̄−1
i −Ai)�Ri, where Ri = [βi Aiβi Aρ̄i−1

i βi] with βi =
[0 . . .0 1]�. From the construction, Ni can be decomposed into Ni = LiCi, where
Li ∈ ℜρ̄i ×1.

Step 3 : Define

Wi(z1,u,y) � [C�
i ,(CiĀi(z1,u,y))�, . . . ,(CiĀ

ρ̄i−1(z1,u,y))�]�

where Āi = Ai + Ni, and also define Mi = W−1
i M̄i.

We can obtain [66]

Mi(z1,u,y)Fi(z1,u,y)M−1
i (z1,u,y) = Ai + Li(x,u,y)Ci

CiM
−1
i (z1,u,y) = Ci (3.43)

Assumption 3.4
3.4.1 The partial derivatives of ḡi w.r.t. z1 and their respective time derivatives
are bounded.
3.4.2 There exists a function B(z1,u,y) ∈ ℜ(n−q)×(m−q) such that ψ1(z1,u,y) =
Bψ̄1(z1,u,y), where B is Lipschitz w.r.t. z1, |B| ≤ b0, and |ψ̄1| ≤ q̄(z1,u,y) ≤ q0

for a function q and numbers b0,q0 > 0.
3.4.3 There exist matrices P = P� ∈ ℜn×n = diag[P1, . . . , Pm−q] with Pi = P�

i ∈
ℜρ̄i×ρ̄i and a function R(z1,u,y) ∈ ℜ such that

Δε PΔεM(z1,u,y)B(z1,u,y) = C�R(z1,u,y)

(Ai −KiCi)�Pi + Pi(Ai −KiCi) = −Qi
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where Δε = diag[Δε1 , . . . ,Δεm−q ], Δεi = diag[1/εi, . . . ,1/ερ̄i
i ], with ε a design

parameter. M = diag[M1, . . . ,Mm−q], Qi = Q�
i > 0, Ki ∈ ℜρ̄i×1 are such that

(Ai −KiCi) is stable.

Remark 3.5. Note that Conditions 3.4.1 and 3.4.2 are taken instead of Lipschitz con-
ditions on γ1, γ2 and ψ1. Condition 3.4.3 is weaker than the strict positive real (SPR)
condition in [57], [56], since the term Δεi is involved. Note that if ȳ1 is only single
output (as in our application), the dimension of B could be relaxed as B ∈ ℜ(n−q)×κ

for κ > 0, and R could be chosen as a vector to further relax Condition 3.4.3.

The observer is constructed as

˙̂z1 = Aẑ1 + ψ1(ẑ1,u,y)θ̂ + γ1(ẑ1,y)u + γ2(ẑ1,y)
+M−1(ẑ1,u,y)[L(ẑ1,y)+ Δ−1

ε K](ȳ1 − ˆ̄y1)
+B̂sgn(R̂�)[θ0(q0 + q(ẑ1,y))sgn(ȳ1 − ˆ̄y1)] (3.44)

ˆ̄y1 = Cẑ1 (3.45)
˙̂θ = Γ ψ̄�

1 (ẑ1,u,y)R�(ẑ1,u,y)(ȳ1 − ˆ̄y1) (3.46)

where L = diag[L1, . . . ,Lm−q], and K = diag[K1, . . . ,Km−q]. The weighting matrix
Γ = Γ � > 0. Ξ̂ denotes Ξ(ẑ1,u,y). Denote ez = [e�1 , . . . ,e�m−q]

� with ei = ξi − ξ̂i,

1 ≤ i ≤ m−q, eθ = θ − θ̂ .

Theorem 3.2. Under Assumption 3.4, the observer described by (3.44)-(3.45) to-
gether with the adaptive algorithm (3.46) can realize limt→∞ ez = 0 and limt→∞ eθ =
0 if there exist two positive constants σ and t0 such that for all t, the following
persistent excitation condition holds:

∫ t+t0

t
ψ�

1 (z1(s),y(s))ψ1(z1(s),y(s))ds ≥ σ I (3.47)

Proof: The proof of the theorem follows the recursive way. Consider the ith subsys-
tem of (3.34) and (3.44), we have

ėi = Aiei +(ḡi− ˆ̄gi)u + ¯̄gi − ˆ̄̄gi − ˆ(M−1
i )(L̂i + Δ−1

εi
Ki)Ciei

+ψ1iθ − ψ̂1iθ̂ −ϒi (3.48)

where ψ1 = [ψ�
11, . . . ,ψ

�
1(m−q)]

�, ϒ = [ϒ�
1 , . . . ,ϒ�

m−q]
� � Bsgn(R�)[θ0(q0 +q(ẑ1,y))

sgn(ȳ1− ˆ̄y1)]. Consider the transformation ẽi � Δεi M̂iei and choose a Lyapunov can-
didate function Vi = ẽ�i Piẽi. Based on [66], it can be shown that the time derivative
of Vi along (3.48) satisfies

V̇i ≤ −εiλmin(Qi)|ẽi|2 +
i

∑
j=1

μi j|ẽi|2 +
i−1

∑
j=1

μ ji|ẽ j|2

+2ẽ�i PiΔεi M̂i(ψ1iθ − ψ̂1iθ̂ −ϒi)

where μi j,μ ji > 0.
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Now, consider the Lyapunov candidate function as W (ez,eθ ) = Vz +Vθ for the
overall system, where Vz = ∑m−q

i=1 Vi, Vθ = e�θ Γ −1eθ . Denote ẽ = [ẽ�1 , . . . , ẽ�m−q]
�.

The time derivative of W along (3.34), (3.44) and (3.46) is

Ẇ ≤
m−q

∑
i=1

(

(−εiλmin(Qi)+
m−q

∑
j=1

μi j)|ẽi|2
)

+2ẽ�PΔε M̂(ψ1θ − ψ̂1θ̂)−2ẽ�PΔε M̂ϒ −2e�θ ψ̄�
1 R̂�Cez

︸ ︷︷ ︸
Ψ

Based on Assumption 3.4.3 and (3.43), we have

Ψ = 2ẽ�PΔε M̂B̂ ˆ̄ψ1eθ −2e�θ ˆ̄ψ�
1 R̂�CΔ−1

ε ẽ

+2ẽ�PΔε M̂B̂(ψ̄1 − ˆ̄ψ1)θ̂ + 2ẽ�PΔε M̂(B− B̂)ψ̄1θ̂
−2ẽ�PΔε M̂B̂sgn(R̂�)[θ0(q0 + q(ẑ1,y))sgn(ȳ1 − ˆ̄y1)]

≤ 2ẽ�PΔε M̂(B− B̂)ψ̄1θ̂ (3.49)

From Assumption 3.4.2, we further obtain

Ẇ ≤−η |ẽ|2 (3.50)

where εi, 1 ≤ i ≤ m− p, is chosen such that η > 0.
Since M and Δε are all bounded and nonsingular, inequality (3.50) implies the

stability of the origin ez = 0, eθ = 0. One can get limt→∞ ez = 0, which, together with
(3.46), the persistent condition (3.47) and the uniform boundedness of eθ , leads to
limt→∞ eθ = 0. �

The fault estimates can be obtained straightly from (3.36) as

ˆ̄e f̂ = ˙̄y2 − ψ̂0 − ψ̂2θ̂ − γ̄2u (3.51)

which yields ˆ̄e f̂ − ē f = (ψ0−ψ̂0)+(ψ2θ −ψ̂2θ̂ ). Since limt→∞ ez = 0, limt→∞ eθ =
0, due to the continuity of ē,ψ0 and ψ2, there always exist two numbers kz,kθ > 0
such that for all bounded z, ẑ, if |ez| and |eθ | are sufficiently small, the following
inequality holds

| ˆ̄e f̂ − ē f | ≤ kz|ez|+ kθ |eθ | (3.52)

Moreover, we have limt→∞ | ˆ̄e f̂ − ē f | = 0. Note that f can be estimated if ē is invert-
ible, however, it will be shown in the next section that inequality (3.52) is enough to
achieve the FTC objective.

3.3.3 FTC for the Nonlinear System

The observer based fault tolerant tracking control strategy is discussed in three
parts. We first analyze the local controller to achieve the tracking objective for
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z1 subsystem (3.34)-(3.35) and z2 subsystem (3.36)-(3.37) respectively, then design
the global fault tolerant tracking controller for the overall system.

The tracking controller for the observer (3.44)-(3.45) of z1 subsystem is designed
first, the convergence of observer implies the availability of the controller for z1

system. To facilitate the analysis, we give the following assumption.

Assumption 3.5. There exists a set of relative degrees {ρ1,ρ2, . . . ,ρm} such that
∑m

i=1 ρi = n and ξ = T (x) ∈ ℜn is a diffeomorphism where

T (x) = [h1(x),Lg0(x)h1(x), . . . ,L
ρ1−1
g0(x)h1(x),

h2(x), . . . ,L
ρ2−1
g0(x)h2(x), . . . ,L

ρm−1
g0(x) hm(x)]� (3.53)

Moreover, ρr = 1, m−q + 1≤ r ≤ m.

Under Assumption 3.5, the structure of ḡi in (3.38) is changed into

ḡi ∈ ℜρi×p = [0, 0, . . . , 0,
︸ ︷︷ ︸

ρi−1 order

ḡiρi(ξ1, . . . ,ξi−1,ξi,y)]� (3.54)

γ̂1 in observer (3.44) is also modified to be consistent with the system.

Remark 3.6. If Assumption 3.5 does not hold, then the system (3.34)-(3.35) would
contain the tracking dynamics and zero dynamics, the proposed method can be ex-
tended to that case if the system (3.34)-(3.35) is minimum phase, i.e., the zero dy-
namics are input-to-state stable w.r.t. the linearizable states as in most of related
literatures [63].

Define Θ = [Θ�
1 , . . . ,Θ�

m−q]� with Θi � M̂−1
i [L̂i + Δ−1

εi
Ki]Cez. Eq.(3.44) is rewrit-

ten as

˙̂ξ i j = ξ̂i( j+1) + ˆ̄Δ i j, 1 ≤ j ≤ ρi −1

˙̂ξ iρi
= υi 1 ≤ i ≤ m−q (3.55)

where

ˆ̄Δ i = [ ˆ̄Δ i1, . . . ,
ˆ̄Δ i(ρi−1)]

� � ψ̂1iθ̂ +Θi +ϒi,
ˆ̄Δ iρi = 0

ϒ = [ϒ�
1 , . . . ,ϒ�

m−q]
� � Bsgn(R�)[θ0(q0 + q(ẑ1,y))sgn(ȳ1 − ˆ̄y1)]

υi is the local controller for system (3.55).
Define ydi as a tracking signal for yi, where ydi has the bounded ρi-orders time

derivative, i.e., ẏdi, ...,y
(ρi)
di are all bounded.

Assumption 3.6. There exists a known smooth function ϖ̄i j(ξ̂i1, . . . , ξ̂i j) such that

|ϖi j| ≤ ϖ̄i j, 1 ≤ j ≤ ρi,1 ≤ i ≤ m−q, where ϖi1 � ˆ̄Δ i1, ϖi2 � ˆ̄Δ i2 − ∂αi1(ξ̂i1,t)
∂ ξ̂i1

˙̂ξ i1 −
∂αi1

∂ t , and
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ϖi j � ˆ̄Δ i j −
j−1

∑
s=1

∂αi( j−1)(ξ̂i1, . . . , ξ̂i( j−1), t)

∂ ξ̂is

˙̂ξ is −
∂αi( j−1)

∂ t
, 3 ≤ j ≤ ρi

αi j is a fictitious controller to be chosen.

Define the tracking error as χi ∈ ℜρi = [χi1, . . . ,χiρi ]
�, where χis = ξ̂is−y(s−1)

di , 1≤
s ≤ ρi, and define the transformation χ̃i = [χ̃i1, . . . , χ̃iρi]� with χ̃i1 = χi1, and χ̃i j =
χi j −αi( j−1).

Lemma 3.4. Under assumptions 3.4, 3.5 and 3.6, there exists a series of local con-
trollers to make the output of the observer (3.44)-(3.45) exponentially track the given
signals ȳd ∈ ℜm−q � [yd1, . . . ,yd(m−q)]� while the continuous states are bounded.

Proof: From (3.55) and Assumption 3.6, we have ˙̃χ i1 = χ̃i2 + ϖi1 + αi1. αi1 is de-
signed as

αi1 = −1
2

k̄iχ̃i1 − ϖ̄2
i1χ̃i1

ϖ̄i1|χ̃i1|+ εie−ait
(3.56)

where k̄i,εi,ai > 0 are designed by the user. Consider the Lyapunov candidate func-
tion V̄i1 = 1

2 χ̃2
i1, it follows that ˙̄V i1 = χ̃i1(χ̃i2 +ϖi1 + ᾱi1)≤−k̄iV̄i1 + χ̃i1χ̃i2 +εie−ait .

Similar procedures are introduced for χ̃i j , 2≤ j ≤ ρi. Consider the Lyapunov candi-
date function V̄i j = V̄i( j−1) + 1

2 χ̃2
i j, we have ˙̄V i j ≤−k̄iV̄i j + χ̃i j χ̃i( j+1) + jεie−ait with

αi j = −χ̃i( j−1)− 1
2 k̄iχ̃i j − ϖ̄2

i j χ̃i j

ϖ̄i j |χ̃i j |+εie−ait
.

Finally, choose a Lyapunov function Vti = V̄i(ρi−1) + 1
2 χ̃2

iρi
, we obtain

V̇ti ≤−k̄iVti +(ρi)εie
−ait (3.57)

which results from the local controller

υi = −χ̃i(ρi−1)−
1
2

k̄iχ̃iρi −
ϖ̄iρi +

2 χ̃iρi

ϖ̄iρi |χ̃iρi |+ εie−ait
+ y(ρi)

di

This completes the proof. �

Similarly to the procedure for z1 subsystem, define the tracking error as χi = yi−ydi,

m−q+1≤ i ≤m. From (3.36)-(3.37), we have χ̇i = ˆ̄Δ f i− ẏdi +υi, m−q+1≤ i ≤
m, where υi also denotes the local controller, and ˆ̄Δ f i � ψ0i + ψ2iθ + ēi f . Define
ˆ̄Δ i � (ψ0i − ψ̂0i) + (ψ2iθ − ψ̂2iθ̂) + (ēi f − ˆ̄ei f̂ ), then based on Theorem 3.2 and

(3.52), it is clear that | ˆ̄Δ i| ≤ ϖ̄i for ϖ̄i > 0. The local controller can be designed as

υi = −1
2

k̄iχ̃i + ẏdi − ϖ̄2
i χ̃i

ϖ̄i|χ̃i|+ εie−ait
− ψ̂0i − ψ̂2iθ̂ − ˆ̄ei f̂ (3.58)

for m−q + 1≤ i ≤ m, which makes the time derivative of Lyapunov function Vti =
1
2 χ̃2

i satisfy the inequality as in (3.57).



3.3 Hybrid Nonlinear Systems 83

Theorem 3.3. Suppose that all the conditions in Lemma 3.3, Theorem 3.2 and as-
sumptions 3.5, 3.6 hold. There exists a control law for the system (3.33) to make the
outputs asymptotically track the given signals yd ∈ℜm = [ȳ�d , ¯̄y�d ]� = [yd1, . . . ,ydm]�
while guaranteeing that all the states x are bounded in spite of faults and parametric
uncertainties, if

Rank

[
γ1(ẑ1,y)
γ3(z2,y)

]

= m (3.59)

Proof: If Eq.(3.59) holds, the fault tolerant tracking controller is designed as

u =
[

γ1(ẑ1,y)
γ3(z2,y)

]†

[υ̃1, . . . , υ̃m−q,υm−q+1, . . . ,υm]� (3.60)

where † denotes right inverse, υ̃i � υi−(ψ̂1(iρi)θ̂ +Θiρi +ϒiρi + ˆ̄̄giρi
), 1≤ i≤m−q. It

is clear that the controller (3.60) guarantees the tracking performance and the bound-
edness of states for systems (3.44)-(3.45) and (3.36)-(3.37). From the convergence
result of observer in Theorem 3.2, the outputs of system (3.34) also asymptotically
track ȳd and the states z1 are bounded. This completes the proof. �

To this end, we summarize the FTC design procedure as follows:

1) Transform the original system (3.33) into the fault diagnosis block strict feedback
form (3.34)-(3.37).

2) Design the observer (3.44)-(3.46), and the fault diagnostic scheme (3.51) .
3) Design the observer-based fault tolerant tracking controller (3.60).

3.3.4 FTC for Hybrid Nonlinear System

We are now in the position to extend the result in sections 3.3.2-3.3.3 to the HS.
The FTC framework, shown in Fig.3.9, consists of high level (discrete event super-
visor) and low level (continuous modes). The observer estimates the current contin-
uous states, and meanwhile, detects the switchings. Based on the information from
the observer, the controller, the fault diagnostic scheme, and the observer itself are
switched according to the current mode.

The idea of switching detection appears from the analysis of estimation error ȳ j
1−

ˆ̄y j
1. If all the modes are not overlapping, i.e., each observer works well only when

applied to its related mode, then, similar to fault detection problem [57], ȳ j
1 − ˆ̄y j

1 can

be regarded as a residual for mode j to detect the switching, since limt→∞ ȳ j
1− ˆ̄y j

1 = 0
before mode transition occurs. Here, we propose a time varying threshold to detect
the switching instants as in the following Lemma.

Lemma 3.5. Suppose that all the modes of (3.32) satisfy the conditions in Theorem
3.3. If all modes are discernable, i.e., for mode j, the estimation error |e j

z | is conver-
gent as in (3.50) only under the observer (3.44)-(3.46) associated with mode j, then
all the normal switchings and faulty switchings can be detected.
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Fig. 3.9 The FTC framework for hybrid nonlinear systems

Proof: The proof follows the results of Theorem 3.2. We first consider the initial
period before any switching happens. Supposed the system is initialized in mode j
from t = 0, the inequality (3.50) can be rewritten as V̇ j

z ≤−η̄ j
1V j

z − V̇ j
θ , for η̄ j

1 > 0.
Using the differential inequality theory, we have

V j
z (t) ≤ e−η̄ j

1tV j
z (0)−

∫ t

0
e−η̄ j

1(t−τ)V̇ j
θ (τ)dτ

= e−η̄ j
1(t)V j

z (0)− e−η̄ j
1t

[

V j
θ (τ)eη̄1τ |t0 − η̄ j

1

∫ t

0
eη̄ j

1 τV j
θ (τ)dτ

]

≤ e−η̄ j
1tV j

z (0)+ e−η̄ j
1t

[

V j
θ (0)+ η̄ j

1

∫ t

0
eη̄ j

1 τV j
θ (τ)dτ

]

(3.61)

where η̄ j
1 � η j

1
λmax(P j) . Given an initial z1(0) or a bound of z1(0)(note that the con-

tinuous state is always bounded from lemmas 3.4,3.5 and Theorem 3.3). It follows
from (3.61) that |e j

z(t)| ≤ e j
bound(0) with

(e j
bound(0))2 � e−η̄ j

1t

[

η̄ j
2 |e j

z(0)|2 + η̄ j
3

(
θ j

0 + |θ̂ j(0)|
)2

+η̄ j
4

∫ t

0
eη̄ j

1τ
(

θ j
0 + |θ̂ j(τ)|

)2
dτ

]

where η̄ j
2 � λmax(P̄ j)

λmin(P̄ j) , η̄ j
3 � λmax((Γ j)−1)

λmin(P̄ j) , η̄ j
4 � η̄ j

1 η̄ j
3 , and P̄ � M�Δε PΔεM. Since

all the modes are discernable, no matter whether the discrete fault occurs,
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once |ȳ j
1(t)− ˆ̄y j

1(t)| = |Ce j
z(t)| >

√
m j −q je j

bound(0), the switching that ends the
activating period of mode j is detected.

By induction, denote t j(k) as the switching instant that activates mode j for kth
time, we have

V j
z (t) ≤ e−η̄ j

1tV j
z (t j(k))+ e−η̄ j

1t

[

V j
θ (t j(k))+ η̄ j

1

∫ t

t j(k)
eη̄ j

1τV j
θ (τ)dτ

]

(3.62)

The time varying threshold is designed as

|e j
z(t)| ≤ e j

bound(t
j(k)) (3.63)

with

e j
bound(t

j(k)) � e−η̄ j
1t

[

η̄ j
2 |e j

z(t
j(k))|2 + η̄ j

3

(
θ j

0 + |θ̂ j(t j(k))|
)2

+η̄ j
4

∫ t

t j(k)
eη̄ j

1 τ
(

θ j
0 + |θ̂ j(τ)|

)2
dτ

]

Once |ȳ j
1(t)− ˆ̄y j

1(t)|= |Ce j
z(t)|>

√
m j −q je j

bound(t
j(k)), the switching that ends the

activating period of mode j is detected. �

After the switching detection, the controller (3.60) and the observer (3.44)-(3.46)
related to the current mode is activated. The initial states ẑ1 of the current observer
are chosen as the final states of the previous observer. The following theorem gives
the conditions to guarantee the global tracking property.

Theorem 3.4. Suppose that the conditions in lemmas 3.6, 3.7 hold, consider the HS
(3.32) under a family of controllers (3.60), diagnostic scheme (3.51) and observers
(3.44)-(3.46), where all the modes satisfy the conditions in Theorem 3.3. If, at t =
t j(k), the following inequalities hold :

V j
t (t j(k + 1)) < V j

t (t j(k)) (3.64)

e j
bound(t

j(k + 1)) < e j
bound(t

j(k)) 1 ≤ j ≤ N (3.65)

where Vt � ∑m
i=1 Vti, then y j,∀ j ∈ Q asymptotically tracks y j

d during the activating
period of mode j, while x is always bounded in spite of faults and uncertainties.

Proof: Based on (3.57) in Lemma 3.4, we can further obtain that V̇ j
t ≤ −k̄ jV j

t +
nε je−a jt , where k̄ j = k̄ j

i ,a
j = a j

i , 1 ≤ i ≤ m. Appropriate selections of ε j and a j can
make V̇ j

t < 0, ∀σ(t) = j. If (3.64) holds, then the Multiple Lyapunov functions
(MLFs) method in [22] can be applied to conclude that the tracking error of the HS
is Lyapunov stable. On the other hand, for each time t j(k) when mode j is identified,
the sequence V j

t (t j(k)) is decreasing and positive, and therefore has a limit ζ ≥ 0.
One has
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lim
k→∞

[
V j

t (t j(k + 1))−V j
t (t j(k))

]
= ζ − ζ = 0

Note that there exists a class K function ω such that

0 = lim
k→∞

[
V j

t (t j(k + 1))−V j
t (t j(k))

]
≤ lim

k→∞
[−ω(|χ̃ j|)] ≤ 0 (3.66)

Inequality (3.66) implies that the tracking error χ̃ j converges to the origin, which
combined with Lyapunov stability, leads to the asymptotic stability of χ̃ j for the HS
in spite of faults and parametric uncertainty. On the other hand, Inequality (3.65)
guarantees that limt→∞ ebound(t) = 0, which leads to the global convergence of the
estimation error ez to zero. �

Remark 3.7. The switching detection using Lemma 3.5 may have a short time delay
t j(k)− t j∗(k), where t j∗(k) is the real switching instant. The effect of this delay is
acceptable in the practical situation. Moreover, since e j

z is always bounded in e j
bound,

continuous state estimation performance is guaranteed in the delay. For the case
that x may diverge during the delay, the non-decreasing MLFs control method in
[155] could be applied.

Example 3.2: [134] A well known three-tank system is employed to illustrate the
application of our approach. The schematic diagram of the system is depicted in
Fig. 3.10. The system consists of three cylindrical tanks linked to each other through
connecting cylindrical pipes. Two pumps control two incoming flows. The control
objective is to keep h2 and h3 rise or drop with given velocities and maintain the
water levels in three tanks in certain regions.

The system is modeled as a hybrid automaton with the following three modes:

Mode 1 (save water): Valves V1, V2 are open, V3, V4 are closed. Levels h2 and h3

rise according to given velocities.
Mode 2 (lose water): Valves V1, V2, V3, V4 are open. Levels h2 and h3 drop

according to given velocities.

Fig. 3.10 The three tank system
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h1,h2,h3 are continuous states of the system with h2 and h3 as outputs for both
modes. In the following, (·)〈1〉 and (·)〈2〉 denote the parameters for mode 1 and 2
respectively.

In the normal situation, the switching sequence is prescribed as mode 1 →
mode 2 → mode 3 → mode 1, which would be affected by the faulty switching.
Suppose that the coefficients of pipes Pi, 1 ≤ i ≤ 4 are the same. For the sake of
simplicity, only f and θ in mode 1 and G f (1,2) are considered.

We first verify the decomposition result of Lemma 3.3. According to the
Bernoulli’s principle and Toricelli’s law, the analytic model of mode 1 with f and θ
can be written as

⎡

⎣
ḣ1

ḣ2

ḣ3

⎤

⎦ =

⎡

⎣
−a

√
h1 −h2

a
√

h1 −h2 −a
√

h2 −h3

a
√

h2 −h3

⎤

⎦+

⎡

⎣

Q1
S
0

Q3
S

⎤

⎦

+

⎡

⎣
−a

√
h1 −h2

0
a
√

h2 −h3

⎤

⎦ f +

⎡

⎢
⎣

− 0.006
√

h2−h3√
h1−h2

− 0.006a
s
√

h1−h2

Q1
S

0.006
0.006

√
h2−h3√

h1−h2
− 0.006

√
h2−h3

a

⎤

⎥
⎦θ

y1 = h2, y2 = h3

where the fault term corresponds to sediment deposit in P1 and P4, i.e., sections
of P1 and P4 progressively change. The uncertainty term denotes the modelling
error and input disturbance related to Q1. It can be checked that Assumption 3.5
is satisfied. Indeed, according to (3.53), a diffeomorphism is chosen as ξ 〈1〉

1 = h2,

ξ 〈1〉
2 = a(

√
h1 −h2 −

√
h2 −h3), ξ 〈1〉

3 = h3. Mode 1 in ξ 〈1〉-coordinate can be repre-
sented as

ξ̇ 〈1〉
1 = ξ 〈1〉

2 + 0.006θ

ξ̇ 〈1〉
2 = −a2

2
+

a3√y1 − y2

2(ξ 〈1〉
2 + a

√
y1 − y2)

− aξ 〈1〉
2

2
√

y1 − y2

+
a2Q1

2S(ξ 〈1〉
2 + a

√
y1 − y2)

+
aQ3

2S
√

y1 − y2

−0.006
( S2a3√y1 − y2 + a2Q1

2S2(ξ 〈1〉
2 + a

√
y1 − y2)2

+
a

2
√

y1 − y2
− 1

2

)
θ

y1 = ξ 〈1〉
1

ξ̇ 〈1〉
3 = a

√
y1 − y2 +

Q3

S
+ a

√
y1 − y2 f

+
( 0.006a

√
y1 − y2

ξ 〈1〉
2 + a

√
y1 − y2

− 0.006
√

y1 − y2

a

)
θ

y2 = ξ 〈1〉
3
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which verifies Lemma 3.3. Moreover the persistent excitation condition (3.47) holds
since the coefficient matrix of θ does not tend to zero.

One further have that

M〈1〉 =

[
1 0

S2a3√y1−y2+a2Q1

2S2(ξ 〈1〉
2 +a

√
y1−y2)2

+ a
2
√

y1−y2
1

]

L〈1〉 =

⎡

⎢
⎣

− S2a3√y1−y2+a2Q1

2S2(ξ 〈1〉
2 +a

√
y1−y2)2

− a
2
√

y1−y2
0

S2a3ξ 〈1〉
2 −Sa3Q1√

y1−y2(2Sξ 〈1〉
2 +2Sa

√
y1−y2)2

− aQ3−Saξ 〈1〉
2

4S
√

(y1−y2)3
0

⎤

⎥
⎦

The transformation of mode 2 and 3 similar to that of mode 1 is thus omitted.
It can be shown that Lemma 3.3 is applied for all three modes. Also note that the
dynamics of three modes are different from each other, which guarantees the dis-
cernability as in Lemma 3.5.

Table 3.1 summarizes typical values of the three-tank system.

Table 3.1 Physical parameters of the three tank system

S1 = S2 = S3 = S = 0.0171m2 Tank cross-section ar-
eas

Sc1 = Sc2 = Sc3 = Sc4 = 0.0002m2

Sc5 = Sc6 = 0.0004m2 Pipe cross-section areas

azi = 0.5279(1 ≤ i ≤ 6) Pipe coefficients
hmax = 0.63m Maximum level
Qmax = 5×10−4m3/s Maximum In-flow rate

where the coefficient ai = azi(Sci/S)
√

2g(1 ≤ i ≤ 6) with g being the gravitational
constant. The system required behavior is shown in Table 3.2.

Table 3.2 System required behavior

Mode Reference signals guard set

Mode 1
y〈1〉d1 = 0.45−0.08e−0.01(t−t1(k))

y〈1〉d2 = 0.33−0.08e−0.01(t−t1(k))
G(1,2) = {h1 ≥ 0.545}

Mode 2
y〈2〉d1 = 0.35+0.08e−0.01(t−t2(k))

y〈2〉d2 = 0.23+0.08e−0.01(t−t2(k))
G(2,3) = {h1 ≤ 0.495}

Mode 3
y〈3〉d1 = 0.35+0.06e−0.008(t−t2(k))

y〈3〉d2 = 0.23+0.06e−0.008(t−t2(k))
G(3,1) = {h1 ≤ 0.485}
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Fig. 3.11 Estimation performance

The system is initialized in mode 1, one switching and the operation of two modes
are considered in the simulation. The initial levels are [0.48 0.37 0.25]�. As for
mode 1, f = 0.3−0.3e−0.05(t−10) which is assumed to occur at t = 10s, θ = 0.9m/s

is unknown, θ0 = 1. The parameters of the observer are chosen as Γ 〈1〉 = 5, ε〈1〉1 = 3,

K〈1〉 = [1 0.25]�, P〈1〉 =
[

1.25 −0.5
−0.5 3

]

, R〈1〉 = 0.1481, it can be seen that Condition

2.3 is satisfied with ψ̄〈1〉
1 = 0.006, Q〈1〉 =

[
2.25 −1
−1 1

]

, θ̂ (0) = 0. The parameters

of the controller are designed as ϖ̄ 〈1〉
11 = 0.0026, ϖ̄ 〈1〉

12 = 2.5|ξ̂ 〈1〉
2 |, k̄〈1〉 = 5, ε〈1〉 =

0.0002, and a〈1〉 = 5. Related parameters of mode 2 and 3 can be obtained following
the same way, which are omitted.

Fig. 3.11 shows the estimation performance, where rapid and accurate estimates
of θ can be provided after t = 2s which verifies Theorem 3.2. Note that ē〈1〉 is
invertible, f is also estimated effectively. Fig. 3.12(a) shows that the switching oc-
curs at t = 98.28s when h1 reaches the guard set, and is detected at t = 98.298s
with a delay of 0.018s, the region of h1(98.298) is obtained from Lemma 3.6 as
[0.546−6.5×10−6,0.546 + 6.5×10−6] which belongs to Inv(2)\Inv(3), so mode
2 can be identified as the current mode. Figures 3.12 shows the behaviors of h1, h2,
h3 and two inputs, from which we can see that the tracking performance is always
maintained in spite of continuous faults and uncertainties, and h1,h2,h3 are always
in the invariant set, the switching detection delay is acceptable.

Now consider the discrete fault as G f (1,2) = {h1 ≥ 0.543}, the switching is
detected at t = 86.572s, and mode 2 can also be identified according to Lemma
3.6. Fig. 3.13 shows the behaviors of three levels, which implies that the faulty
switching can be detected rapidly and the tracking performance is guaranteed with
the continuous state staying in the invariant set.
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Fig. 3.12 FTC performance
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Fig. 3.13 System behavior

3.4 Conclusion

This Chapter has investigated the observer-based FTC problem of HS with uncon-
trollable state-dependent switching. The key idea is to design, under some structure
conditions imposed on each mode, the observer for each mode whose estimation
error is not affected by continuous faults and sensitive to mode transitions.



Chapter 4
Hybrid Systems with Impulsive and Stochastic
Switching

In this chapter, two important classes of HS are considered that are with impul-
sive and stochastic switchings. For the former system, the FTC strategy is based on
the trade-off between the frequency of switching, the impulsive magnitude, and the
decreasing rate of Lyapunov functions along the solution of the system; Similarly,
for the latter one, the FTC objective is achieved via the trade-off among the fault
occurrence transition rate, the frequency of switching, and the decreasing rate of
Lyapunov functions. The work in this chapter can be regarded as an extension of
that in Section 2.3.

4.1 Impulsive Switching Case

Hybrid impulsive systems (HIS) represent an important type of hybrid systems
[46, 136] that have gained much attention in engineering, where the continuous
states abruptly change due to the impulse effect at each switching instant. Exam-
ples of HIS include some biological neural networks, frequency-modulated signal
processes, flying object motions [69, 45].

In this section, we focus on the FTC problem for hybrid nonlinear impulsive sys-
tems with both continuous and discrete faults, and without full state measurements.
An observer-based FTC law is designed for each mode, and two consequent cases
are considered. For the case that each mode is input-to-state stable (ISS) w.r.t. the
estimation error as the input, an ADT scheme is proposed such that the ISS property
of the HIS is maintained in spite of faults and impulse effects. For the case that only
partial modes are ISS under the FTC law, a novel double ADT scheme is developed
to keep the overall system still ISS.

4.1.1 Preliminaries

The HIS that we consider takes the form
{

ẋ(t) = Aσ(t)x(t)+ Gσ(t)(x(t))θσ(t)(t)+ Bσ(t)uσ(t)(t)
y(t) = Cσ(t)x(t) t �= tk,k ∈ {1,2, ...} (4.1)

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 91–112.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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{
x(t) = fσ(t−),σ(t)

(
x(t−),uσ(t−)(t−),θ d

σ(t−),σ(t)(x(t
−))

)

y(t) = Cσ(t)x(t) t = tk,k ∈ {1,2, ...}
(4.2)

where x(t) ∈ ℜn is the non measured state which is continuous between impulses.
y(t) ∈ ℜr is the output, uσ (t) ∈ ℜm is the control. Aσ , Bσ and Cσ are real constant
matrices of appropriate dimensions. (Aσ ,Bσ ) is controllable, (Aσ ,Cσ ) is observable.
θσ ∈ ℜ j is a bounded parameter, |θσ | ≤ θ̄σ for θ̄σ > 0. In the fault-free case, we
have θσ = θHσ with θHσ a known constant vector. The nonlinear term Gσ (x) is a
continuous Lipschitz function, i.e., |Gσ (x1)−Gσ (x2)| ≤ Lσ |x1 − x2| for Lσ > 0. It
is assumed that Gσ (0) = 0, and |Gσ (x)| ≤ ḡσ for ḡσ > 0.

The continuous fault changes the parameter θσ unexpectedly as in [59]. In the
faulty case, θσ = θHσ +θ f σ , where θ f σ denotes the unknown constant fault vector,
|θ f σ | ≤ θ̄ f σ , for θ̄ f σ > 0.

Define Q = {1,2, . . . ,N}, where N is the number of modes. σ(t) : [0,∞) → Q
denotes the piecewise constant switching function [69]. At the kth switching instant
tk, the system (4.1) switches from mode i to mode j, where i = σ(t),∀t ∈ [tk−1,tk)
and j = σ(t),∀t ∈ [tk,tk+1). It is supposed that the switching can be detected at each
switching instant.

The impulsive dynamics (4.2) is activated at each tk. The discrete fault is consid-
ered as an abnormal impulse effect, which is represented by the unknown function
θ d

σ(t−),σ(t)(x(t
−)), and does not exist in the fault-free case.

There are quite a few practical systems that can be described by the HIS model
(4.1)-(4.2), e.g., the biped walking robot [44], the switched reluctance motor [116],
etc. The objective is to design the FTC law uσ and provide a sufficient condition
on the switching frequency of σ such that the state x is always bounded in spite of
faults and impulse effects.

4.1.2 FTC for Single Mode

Let us first consider the system (4.1) with σ(t) = j for some j ∈ Q starting from
t = tk, and design the controller u j such that mode j is stabilized in spite of fault θ f j.

Assumption 4.1. There exist two constant matrices E j,Kj ∈ℜn×r such that G j(x) =
E jḠ j(x), and for a given matrix Qj ∈ ℜn×n > 0, it holds that

(A j −KjCj)�Pj + Pj(A j −KjCj) = −Q j, and PjE j = C�
j R j

for a matrix Pj ∈ ℜn×n > 0 and scalar R j. Moreover, rank(B j,E j) = rank(B j).

The FD observer for mode j is designed as

˙̂x(t) = A jx̂(t)+ G j(x̂(t))θ̂ j(t)+ B ju j(t)+ Kj(y(t)− ŷ(t)) (4.3)

ŷ(t) = Cjx̂(t) (4.4)
˙̂θ j(t) = ΓjG

�
j (x̂(t))R j(y(t)− ŷ(t)) (4.5)
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where x̂ (t) , θ̂ j (t) , ŷ(t) are the estimates of x(t) ,θ j(t),y(t). The matrix Γj =
Γj

� > 0.
Similarly as in section 2.2, the observer (4.3)-(4.5) always diagnoses θ j no matter

the mode j is faulty or not. Denote ex(t) = x(t)− x̂(t), ey(t) = y(t)− ŷ(t), eθ (t) =
θ j(t)− θ̂ j(t).

Lemma 4.1. Under Assumption 4.1, the observer described by (4.3)-(4.5) can real-
ize limt→∞ ex = 0 and limt→∞ eθ = 0 if there exist two positive constants ρ and t0
such that for all t, the following persistent excitation condition holds:

∫ t+t0

t
Ḡ�

j (x(s))Ḡ j(x(s))ds ≥ ρI (4.6)

Proof: The proof can be obtained following the procedure in [59], which is
omitted. �

Lemma 4.1 means that the observer (4.3)-(4.5) provides both the continuous state
estimates x̂ and the fault estimates θ̂ j , which will be used for controller design.

Definition 4.1. [115]: A system ẋ = f (x,u) is said to be input-to-state stable (ISS)
w.r.t the input u if there exist functions β ∈K L , α,γ ∈K∞ such that for any initial
x(0), we have

α(|x(t)|) ≤ β (|x(0)|, t)+ γ(‖u‖[0,t)), ∀t ≥ 0

Lemma 4.2. [115]: If there exist α1, α2, α3, γ1 ∈ K∞, and a smooth function V :
ℜn → ℜ≥0 such that α1(|x|) ≤ V (x) ≤ α2(|x|), V̇ (x) ≤ −α3(|x|)+ γ1(|u|) then the
system ẋ = f (x,u) is ISS w.r.t. u.

Recall that (A j,B j) is controllable. Let Wj = W T
j > 0 be associated with a given

symmetric positive definite matrix Hj by the Riccati equation

AT
j Hj + HjA j −2HjB jB

T
j Hj +Wj = 0 (4.7)

Since G j(x) satisfies |G j(x)| ≤ Lj|x|. It has been shown in [45] that there exists
η j > 0 such that

θ�
H jG

�
j (x)Hjx ≤ η jx

�Hjx (4.8)

To this end, our fault-tolerant controller is constructed as

u j(x̂) = −BT
j Hjx̂−B∗

jE jḠ j(x̂)(θ̂ j −θH j) (4.9)

Theorem 4.1. Suppose that Assumption 4.1 is satisfied. Under the feedback con-
troller (4.9), mode j in (4.1) is ISS w.r.t. ex and eθ , i.e. there exist functions
β ∈ K L , α,γ1,γ2 ∈ K∞ such that for any initial state x(tk) and t ≥ tk, we have
α(|x(t)|) ≤ β (|x(tk)|,t)+ γ1(‖ex‖[tk,t))+ γ2(‖eθ‖[tk,t)) if

−λmin(Wj)+ η j|Hj| < 0 (4.10)

Proof: Applying the control (4.9) to mode j in (4.1) results in the closed-loop
dynamics
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ẋ = (A j −B jB
�
j Hj)x + B jB

�
j Hjex + G j(x)θH j

+E j

(
Ḡ j(x)θ f j − Ḡ j(x̂)θ̂ f j

)
(4.11)

where θ̂ f j � θ̂ j −θH j. Consider a Lyapunov candidate Vj(x) = x�Hjx with Hj > 0
defined by (4.7). Its derivative along the system (4.11) is

V̇j = −x�Wjx + 2x�HjB jB j
�Hjex + 2x�HjG(x) jθH j

+2x�HjE j(Ḡ j(x)θ f j − Ḡ j(x̂)θ̂ f j) (4.12)

It is clear that

Ḡ j(x)θ f j − Ḡ j(x̂)θ̂ f j = Ḡ j(x̂)(θ f j − θ̂ f j)+ (Ḡ j(x)− Ḡ j(x̂))θ f j (4.13)

Substituting (4.8) and (4.13) into (4.12), together with the fact that there exists an
arbitrary ε > 0 such that 2ab ≤ εa2 + b2/ε for two numbers a, b, yields

V̇j≤(−λmin(Wj)+ η j|Hj|+ ε1 + ε2 + ε3)|x|2

+
( |HjB jBT

j Hj|2
ε1

+
|HjE jL j|2θ̄ 2

f j

ε2

)
|ex|2 +

|HjE j|2ḡ2
j

ε3
|eθ |2 (4.14)

where ε1,ε2,ε3 > 0, θ̄ f j and ḡ j denote the norm bounds of θ f j and G j. If the con-
dition (4.10) holds, ε1,ε2,ε3 > 0 can be chosen small enough such that Vj satisfies
Lemma 4.2, the result follows. �

If we can choose Hj and Wj such that (4.10) is satisfied, then each single mode is
ISS w.r.t ex and eθ in spite of continuous faults, which, together with Lemma 4.1,
implies that x converges to zero.

4.1.3 FTC for Hybrid Impulsive Systems

In this section, we first consider that all modes are ISS w.r.t. ex and eθ , then extend
the result to the case that some modes may be not stabilized in the sense of ISS,
because (4.10) does not hold. We will show that under some switching conditions,
it is not necessary to design the stabilizing controller for each faulty mode. The
stability of the overall HIS is still guaranteed.

Consider the HIS (4.1)-(4.2). Since all modes are ISS, it can be obtained from
Theorem 4.1 that there exist continuously differentiable functions Vk : ℜn → ℜ≥0,
k ∈ Q and γ̄1(·), γ̄2(·) ∈ K∞, such that ∀p ∈ Q

ᾱ1|x|2 ≤ Vp(x) ≤ ᾱ2|x|2 (4.15)

V̇p(x) ≤ −λ0Vp(x)+ γ̄1(|ex|)+ γ̄2(|eθ |) (4.16)

where constants ᾱ1, ᾱ2, λ0 > 0.
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Assumption 4.2. There exist two numbers ξ1,ξ2 ≥ 0 such that the impulsive dy-
namic (4.2) with discrete faults satisfies

|x(tk)| ≤ ξ1|x(t−k )|+ ξ2|ex(t−k )|, k ∈ {1,2, ...} (4.17)

Remark 4.1. Assumption 4.2 is a mild condition due to the following aspects: 1)
Since the impulsive dynamics includes x and x̂, the discrete fault is also a function
of x, the form of (4.17) appears naturally for the norm bound of x(tk). 2) The magni-
tudes of ξ1 and ξ2 are not restricted, and can be taken arbitrarily large. 3) Inequality
(4.17) does not restrict the decay rate of the impulsive dynamics as in [69], [74],
and has no relation with the continuous dynamics.

The FD observer (4.3)-(4.4) and the controller (4.9) are switched according to the
current mode at each switching instant tk. The initial observer state of the current
mode is chosen as the previous value x̂(t−k ). The parameter estimates θ̂σ (tk) are set
to θHσ(tk) at tk.

Theorem 4.2. Consider the HIS (4.1)-(4.2) that satisfies Assumption 4.2, and all
modes are ISS w.r.t. ex(t), eθ (t). The HIS is ISS w.r.t. ex(t), eθ (t) in spite of any fault
and any large impulse effect if the switching function σ has an ADT τa such that

τa >
lnϖ
λ0

(4.18)

where ϖ � 2ᾱ2ξ 2
1

ᾱ1
and ϖ ≥ 1.

Proof: The proof can be straightly obtained following the same line as that of The-
orem 2.6, thus it is omitted. �

Roughly speaking, Theorem 4.2 shows that, under a low switching frequency, the
overall HIS is ISS w.r.t. ex, eθ .

Remark 4.2. The condition (4.18) is similar to the condition in Theorem 2.6 for the
non-impulsive systems. However, if ϖ ≤ 1, i.e., the impulsive dynamics decreases
the norm bound of x, then the HIS can switch arbitrarily without affecting the ISS.
This property is unavailable for non-impulsive HS.

Remark 4.3. The discrete fault is hard to be detected since it appears and van-
ishes instantaneously, unless the impulsive dynamics satisfies some special struc-
tures such that the fault can be detected rapidly from outputs. Theorem 4.2 shows
that the discrete fault detection and diagnosis is not necessary to keep the HIS ISS.

Now consider the case that some modes are ISS while others may be not. Define
two subsets of Q as Q = Qs ∪Qus, where Qs (Qus) denotes the set of modes that are
(not) ISS.

The following two inequalities are considered instead of inequality (4.16)
{

V̇p(x) ≤−λ0Vp(x)+ γ̄1(|ex|)+ γ̄2(|eθ |) ∀p ∈ Qs

V̇q(x) ≤ λ1Vq(x)+ γ̄1(|ex|)+ γ̄2(|eθ |) ∀p ∈ Qus
(4.19)
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where 0 < λ1 � max j∈Qus{−λmin(Wj)+ η j|Hj|}. In this case, the continuous flow
in mode p ∈ Qus can potentially destroy ISS.

Define Ts (Tus) the dwell period of ISS (non-ISS) modes in [t,T ). Then we define
the double ADT as follows, which generalizes Definition 2.4 (ADT) and provides
two ADT scales for the HIS with both ISS and non-ISS modes.

Definition 4.2. Let Ns
σ (T,t) (Nus

σ (T,t)) denote the number of switchings of σ during
the period Ts (Tus), if there exist two positive numbers τs and τus such that

Ns
σ (T,t) ≤ N0 +

Ts

τs
, Nus

σ (T,t) ≤ N0 +
Tus

τus
, ∀T ≥ t ≥ 0 (4.20)

where N0 > 0, then τs and τus are called double ADT of σ over (t,T ).

Consider the time interval [0,T ) for T > 0, for the sake of simplicity, in the
following, we divide [0,T ) = [0,T−

c ) ∪ [Tc,T ) and focus on two cases: Case 1,
Tus = Tc,Ts = (T − Tc), i.e., non-ISS modes work in [0,T−

c ) and ISS ones work
in [Tc,T ). Case 2, Ts = Tc,Tus = T −Tc, i.e., ISS modes work in [0,T−

c ) and non-ISS
ones work in [Tc,T ). The results can be extended to the more general case. It is still
assumed that ϖ ≥ 1.

Theorem 4.3. Consider the HIS (4.1)-(4.2) that satisfies Assumption 4.2. The HIS is
ISS w.r.t. ex(t), eθ (t) in spite of any fault and impulse effect, if the switching function
σ has the double ADT τs,τus such that

λ0τs > lnϖ , Tus = Tc, Ts = (T −Tc) > 0 (4.21)

λ0τs > max
{

lnϖ , lnϖ
Tus

τus
+ λ1Tus

}
Ts = Tc > 0, Tus = T −Tc (4.22)

where T > 0 is an arbitrary time.

Before proving Theorem 4.3, we provide some insight into the conditions (4.21)-
(4.22): if the system remains in an ISS mode after the last switching instant, then
the HIS with partial ISS modes is ISS under the same conditions as that with all ISS
modes. In contrast, if the system stays in a non-ISS mode after the last switching
instant, then (4.22) implies that

• The larger (smaller) λ1 is, the longer (shorter) ADT of ISS modes is needed.
• The larger (smaller) λ0 is, the shorter (longer) ADT of ISS modes is needed.
• With a frequent switching of non-ISS modes, a long ADT of ISS modes is

needed.
• With a long dwell period of non-ISS modes, a long ADT of ISS modes is needed.

The above analysis reflects the trade-off among the frequency of switching, and the
decreasing rate of Lyapunov functions along the solution of ISS modes and non-
ISS ones. It can be seen that ISS can still be achieved if the negative effect on the
ISS resulting from non-ISS modes can be compensated by the positive effect of ISS
modes.
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Proof of Theorem 4.3: Let T > 0 be an arbitrary instant. The function W (s) is mod-
ified as

W (s) =
{

eλ0sVσ(s)(x(s)) ∀σ(s) ∈ Qs

e−λ1sVσ(s)(x(s)) ∀σ(s) ∈ Qus
(4.23)

Then we have Ẇ (s) ≤ eλ0sΦ,∀s ∈ Ts, and Ẇ (s) ≤ e−λ1sΦ,∀s ∈ Tus. Denote by
tus
1 , . . . ,tus

Nus
σ

, and ts
1, . . . ,t

s
Ns

σ
the switching instants on the interval Tus and Ts respec-

tively.

Case 1: Tus = Tc,Ts = (T −Tc).

We first consider the time interval [Tc,T ), following the results of theorems 2.6, 4.2
and (4.23), one has

W (T−) ≤ ϖNs
σ e(λ1+λ0)T−

c W (T−
c )

+
Ns

σ

∑
i=1

(
ϖNs

σ −iχ s
i

)
+

Ns
σ

∑
j=1

(
ϖNs

σ − jG
ts−
j+1

ts
j

(λ0)
)

(4.24)

where χ s
k � 2eλ0ts

k ᾱ2ξ 2
2 |ex(ts−

k )|2, ts
Nσ +1 = T . Similarly to the iterative procedure in

Theorem 2.6, we can obtain

W (T−
c ) ≤ ϖNus

σ W (0)+
Nus

σ

∑
i=1

(
ϖNus

σ −iχus
i

)

+
Nus

σ

∑
j=0

(
ϖNus

σ − jG
tus−
j+1

tus
j

(−λ1)
)

(4.25)

where χus
k � 2e−λ1tus

k ᾱ2ξ 2
2 |ex(tus−

k )|2.
Combining (4.24) and (4.25) leads to

W (T−) ≤ ϖNs
σ +Nus

σ e(λ1+λ0)T−
c W (0)+ e(λ1+λ0)T−

c

Nus
σ

∑
i=1

(
ϖNus

σ +Ns
σ−iχus

i

)

+e(λ1+λ0)T−
c

Nus
σ

∑
j=0

(
ϖNus

σ +Ns
σ− jG

tus−
j+1

tus
j

(−λ1)
)

+
Ns

σ

∑
i=1

(
ϖNs

σ−iχ s
i

)
+

Ns
σ

∑
j=1

(
ϖNs

σ− jG
ts−
j+1

ts
j

(λ0)
)

(4.26)

From the condition (4.21), choose a number λ < λ0 − lnϖ
τs

, one has the following
inequalities

ϖNs
σ +Nus

σ e(λ1+λ0)T−
c ≤ ϖ2N0 eτs(λ0−λ )( T−Tc

τs
)ϖ

Tc
τus e(λ1+λ0)Tc

≤ ϖ2N0 e(λ0−λ )T elnϖ Tc
τus

+(λ1+λ0)Tc

≤ ϖ2N0 Δ(τus,Tc)e(λ0−λ )T (4.27)

where Δ(τus,Tc) � elnϖ Tc
τus

+(λ1+λ0)Tc is a positive number.
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e(λ1+λ0)T−
c ϖNus

σ +Ns
σ−iχus

i ≤ 2ϖ2N0Δ(τus,Tc)ᾱ2ξ 2
2 |ex(t−i )|2eλ0T (4.28)

e(λ1+λ0)T−
c ϖNus

σ +Ns
σ− jG

tus−
j+1

tus
j

(−λ1) ≤ ϖ2N0 Δ(τus,Tc)e(λ0−λ )T G
tus−
j+1

tus
j

(λ ) (4.29)

Substituting (4.27)-(4.29) into (4.26), together with the results of theorems 2.6 and
4.1, yields

ᾱ1|x(T )|2 ≤ ϖ2N0 Δ(τus,Tc)e−λ T (ᾱ2|x(0)|2 + GT
0 (λ ))+ γ̄4(‖ex(t−i )‖[t1,tNσ ]

(4.30)

where the function γ̄4 ∈ K∞. The ISS result follows from Theorem 2.6.

Case 2: Ts = Tc,Tus = T −Tc.

Similar to (4.26), we can obtain

W (T−) ≤ ϖNs
σ +Nus

σ e−(λ1+λ0)T−
c W (0)+ e−(λ1+λ0)T−

c

Ns
σ

∑
i=1

(
ϖNus

σ +Ns
σ−iχi

)

+e(λ1+λ0)T−
c

Ns
σ

∑
j=0

(
ϖNus

σ +Ns
σ− jG

ts−
j+1

ts
j

(λ0)
)

+
Nus

σ

∑
i=1

(
ϖNus

σ −iχus
i

)
+

Nus
σ

∑
j=1

(
ϖNus

σ − jG
tus−
j+1

tus
j

(−λ1)
)

(4.31)

From the condition (4.22), choose a number λ satisfying λ < min
{

λ0 − lnϖ
τs

,λ0 −
lnϖ Tus

τus·τs
− λ1Tus

τs

}
. The following inequalities can be obtained

ϖNs
σ +Nus

σ e−(λ1+λ0)T−
c ≤ ϖ2N0+1eτsλ0( Tc

τs
−1)ϖ

Tc
τus e−(λ1+λ0)Tc

≤ ϖ2N0+1eλ0Ts+lnϖ Tus
τus

−(λ1+λ0)Ts

≤ ϖ2N0+1e−λ1T e−λ τs (4.32)

Since λ > 0, there always exists a λ ∗ > 0 such that λ ∗T = λ τs.

e−(λ1+λ0)T−
c ϖNus

σ −iχus
i ≤ 2ϖ2N0 ᾱ2ξ 2

2 |ex(t−i )|2eλ0τs e−λ1T (4.33)

e−(λ1+λ0)T−
c ϖNus

σ − jG
tus−
j+1

tus
j

(−λ1) ≤ ϖ2N0 eλ0τs e−λ ∗T e−λ1T G
tus−
j+1

tus
j

(λ ) (4.34)

Substituting (4.32)-(4.34) into (4.31), together with the results of theorems 2.6, 4.1
and Case 1, yields
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ᾱ1|x(T )|2 ≤ ϖ2N0+1e−λ ∗T ᾱ2|x(0)|2 + γ̄5(‖ex‖[0,T ))+ γ̄6(‖eθ‖[0,T)) (4.35)

where the functions γ̄5, γ̄6 ∈ K∞. This completes the proof. �

Theorem 4.3 relaxes the condition that all modes are required to be ISS, the overall
HIS in the presence of faults can still be ISS with partial ISS modes. This result is
very useful for stabilization of HIS and non-impulsive hybrid sytems with unstable
modes due to faults.

Example 4.1: An example borrowed from [69] is given to illustrate the theoretical
results. Consider a HIS with two modes as

mode 1:

⎧
⎨

⎩

ẋ1 = 1
8 x1 − x2

ẋ2 = x1 + 1
8 x2 +(sin2 x1 + sinx1)θ1 + u1

y = x1 − x2

mode 2:

⎧
⎨

⎩

ẋ1 = −4x1 + x2

ẋ2 = x1 −3x2 +(sin2 x1)θ2 + u2

y = x1 − x2

f1,2 :

{
x1 = 2

3 x1 + θ d
1,2(x)

x2 = 1
3 x1 + 2

3 x2
, f2,1 :

{
x1 = x1 + θ d

2,1(x)
x2 = 1

2 x1 + x2

where θH1 = 1
8 , θH2 = 1, the bounds of faulty parameters are assumed to be θ̄ f 1 = 1

8 ,
θ̄ f 2 = 1, and θ̄1 = 1

4 , θ̄2 = 2. It can be seen that E1 = E2 = [0 1]�, L1 = 3, L2 = 2,
ḡ1 = 2, ḡ2 = 1.

As for mode 1, the matrix K1 and Q1 are chosen as Q1 =
[

0.9993 −0.5788
−0.5788 1.9412

]

and K1 =
[−1
−5

]

, we can obtain P1 =
[

1.3564 −0.3376
−0.3376 0.3376

]

and R1 =−0.3376. Note

that Assumption 4.1 holds, which implies that the FD observer works well.
On the other hand, by choosing W1 = I2×2, we obtain the matrix H1 from (4.7)

as H1 =
[

2.0048 −0.5003
−0.5003 1.0646

]

. Simple calculation leads to that η1 = 0.6366 in

(4.8), it can be checked that −λmin(W1)+η1|H1|= 0.5136, which means mode 1 is
not ISS.

As for mode 2, K2 and Q2 are chosen as Q2 =
[

10.8180 −0.7843
−0.7843 1.0912

]

, K2 =
[−1
−5

]

, one has R2 = −0.0341 and P2 =
[

1.7348 −0.0341
−0.0341 0.0682

]

. Assumption 4.1

also holds.

By choosing W2 = I2×2, we obtain H2 =
[

0.1350 0.0417
0.0417 0.1708

]

, and η2 = 2.8497, it

follows that −λmin(W2) + η2|H1| = −0.3572, which implies mode 2 is ISS w.r.t.
ex, eθ .

From above calculations, we get ᾱ1 = 0.1076, ᾱ2 = 2.2212 in (4.41), λ0 =
0.3572, λ1 = 0.5136 in (4.19).
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Now consider the impulsive dynamics, assume θ d
1,2 = 1

3 x1, θ d
2,1 = x1, we have

ξ1 = 1.8028 in (4.17), it follows that lnϖ = 4.8992.
Now we illustrate the results of Theorem 4.3, we consider two cases: the HIS

is initialized at mode 1 then switches to mode 2, and the converse. For the former
case, the HIS is ended at ISS mode 2, from the condition (4.21), if the dwell time
of mode 2 is larger than lnϖ

λ0
= 13.6876s, then HIS is ISS w.r.t. ex, eθ . For the latter

case, the HIS is ended at non-ISS mode 1, provided that the dwell time of mode 1 is
10s, i.e., Tus = 10s, from the condition (4.22), if the dwell time of mode 2 is larger
than 28.0751s, then HIS is still ISS w.r.t. ex, eθ .

4.2 Stochastic Switching Case

In this section, we address the stability issue of a class of stochastic HS called
switching diffusion processes (SDP) where each mode is represented by a stochas-
tic differential equation, the mode switching is governed by a Markov process [98],
[81]. This work is motivated by the fact that SDP often models stochastic systems
with faults, since SDP model can represent the fault process in different state spaces
such that the consideration of FD and FTC is natural [81, 133].

The main idea is to transfer the FTC problem of a stochastic system into the
stability problem of a SDP. It will be shown that the fault tolerability of a stochas-
tic system relies on the trade-off among the fault occurrence transition rate, the
frequency of switching, and the decreasing rate of Lyapunov functions along the
solution of the SDP.

4.2.1 Preliminaries

The SDP takes the form

dx(t) = fσ(t)(x(t),u(t))dt + gσ(t)(x(t),u(t))dW (t) (4.36)

where the state x ∈ ℜn, the input u ∈ ℜm. W is an r-dimensional standard Brownian
motion. Both fσ and gσ satisfy the Lipschitz and the linear growth conditions which
guarantee that each mode has a unique solution for any initial state.

Denote P(·) as the probability, whereas E[·] represents the expectation. Let
(Ω ,F ,P) be a complete probability space of the fault occurrence, the switching
function σ(t) is a right-continuous Markov chain on the probability space taking
values in a finite state space Q = {1,2, ...,N} with generator matrix Γ = (ρi j)N×N

given by

P{σ(t + Δ) = j|σ(t) = i} =
{

ρi jΔ + o(Δ) if i �= j
1 + ρiiΔ + o(Δ) if i = j

(4.37)

where 0≤ ρi j < 1 represents the fault occurrence rate from mode i to mode j if i �= j,
and ρii = −∑ j �=i ρi j. Δ > 0 is the infinitesimal transition time interval and o(Δ) is
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composed of infinitesimal terms of order higher than that of Δ > 0. We assume that
the Markov chain σ is independent of the Brownian motion W .

For any given Vq(x) : ℜn → ℜ+ ∈ C 2 associated with the mode q of the system
(4.36), we define the differential operator as

LVq(x) =
∂Vq(x)

∂x
fq(x,u)+

1
2

Tr[g�q (x,u)
∂ 2Vq(x)

∂x2 gq(x,u)] (4.38)

We also define the following generator

L Vq(x) = LVq(x)+
N

∑
j=1

ρq jVj(x) (4.39)

According to the generalized Itô formula [112], one has

E[Vσ(t2)(x(t2))] = E[Vσ(t1)(x(t1))]+ E
[∫ t2

t1
LVσ(t)(x(t))dt

]
(4.40)

for any stopping times t1,t2 as long as the involved integrals exist and are finite. In
the following, we assume that the integrals in (4.40) always exist and are finite for
any 0 ≤ t1 ≤ t2 < ∞.

Definition 4.3. The system (4.36) is said to be input-to-state stable (ISS) w.r.t the
input u if there exist functions β ∈ K L , α,γ ∈ K∞ such that for any initial x(0),
we have

E[α(|x(t)|)] ≤ β (|x(0)|, t)+ γ(‖u‖[0,t)), ∀t ≥ 0

The difference of Definition 4.3 from usual ISS formula (Definition 4.1) is the intro-
duction of the expectation. It has been proven in [75] that the following ISS property
of the single stochastic system holds.

Lemma 4.3. The system dx = f (x,u)dt + g(x,u)dW is ISS w.r.t. u, if there exist α1,
α2, α3, γ1 ∈ K∞, and a smooth function V (x) ∈ C 2(ℜn;ℜ+) such that α1(|x|) ≤
V (x) ≤ α2(|x|), L V (x) ≤−α3(|x|)+ γ1(|u|).
In the following, a series of sufficient conditions of fault tolerance are derived such
that the SDP can be stabilized in the sense of ISS in general cases:

1) where each individual mode is ISS, i.e. the stochastic system is ISS separately in
the healthy situation and in the faulty situations.

2) where some modes are ISS, while others are not ISS. This comes from the fact
that some modes representing the faulty situations may be not ISS.

3) where no mode is ISS. This is the worst case where the stochastic system is not
ISS separately whatever it is healthy or not.

4.2.2 Fault Tolerance Analysis

We shall first establish the general fault tolerability conditions.
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Theorem 4.4. The SDP (4.36) is ISS w.r.t. u if there exist α1, α2, χ ∈ K∞, ω > 0
and smooth functions Vk ∈ C 2(ℜn;ℜ+) k ∈ Q such that ∀q ∈ Q

α1(|x|) ≤ Vq(x) ≤ α2(|x|) (4.41)

LVq(x) ≤ −ωVq(x)+ χ(|u|) (4.42)

where the generator L is defined in (4.38)-(4.39).

Proof: Since any t is supposed to be a stop time, applying the generalized Itô formula
derives

E[Vσ(t)(x(t))] = E[Vσ(0)(x(0))]+ E
[∫ t

0

(
ωVσ(s)(x(s))+LVσ(s)(x(s))

)
ds

]

We further have

E[eωtVσ(t)(x(t))] = E[Vσ(0)(x(0))]+ E
[∫ t

0
eωs

(
ωVσ(s)(x(s))+LVσ(s)(x(s))

)
ds

]

≤ α2(|x(0)|)+ E
[∫ t

0
eωs

(
ωVσ(s)(x(s))−ωVσ(s)(x(s))+ χ(|u|)

)
ds

]

≤ α2(|x(0)|)+ E
[∫ t

0
eωs

(
χ(|u|)

)
ds

]

≤ α2(|x(0)|)+
1
ω

(eωt −1) sup
τ∈[0,t)

{χ(|u|)}

Consequently, we obtain

E[α1(|x(t)|)] ≤ e−ωtα2(|x(0)|)+
1
ω

sup
τ∈[0,t)

{χ(|u|)

This completes the proof. �

It is interesting to analyze the condition (4.42). It follows from the definition of L
in (4.39) that if there is only one mode in the system or there is a common V (x) for
all modes, then L Vq(x) = LVq(x). In these two cases, Theorem 4.4 and Lemma
4.3 are equivalent. Thus we obtain the property

• If there is a common ISS-Lyapunov function for the normal and all faulty modes,
then ISS of each individual mode implies ISS of the overall stochastic system.

This property is very useful in the practical situation, if we find that the healthy
and faulty mode share the same ISS-Lyapunov function, then what we need to do is
just to preserve ISS of each individual mode without consideration for the transient
behavior.

We continue to observe (4.39), it is clear that

N

∑
j=1

ρq jVj(x) = ∑
j �=q

ρq jVj(x)−|ρqq|Vq(x)



4.2 Stochastic Switching Case 103

we further conclude from (4.42) that

• If ∑ j �=q ρq jVj(x) ≥ |ρqq|Vq(x), then ISS of SDP implies the ISS of mode q.
• If ∑ j �=q ρq jVj(x) < |ρqq|Vq(x), then ISS of SDP can be achieved even mode q is

non ISS.
• If ∑ j �=q ρq jVj(x) < |ρqq|Vq(x), ∀q ∈ Q, then ISS of SDP can be achieved without

any ISS mode.

The above three properties reflect to some extents the effect of fault occurrence tran-
sition rate on the fault tolerance of the stochastic system. However, these properties
are not easy to be verified since Vq(x) is not unique.

Theorem 4.4 implicitly quantifies the trade-off between frequency of switch-
ing/dwell time and rate of decrease of the Lyapunov function. In order to analyze
more precisely the relations among these factors to achieve the ISS, we will adopt
the method in determined hybrid systems in the following discussions. The three
cases where all modes are ISS, only some modes are ISS and no mode is ISS, will
be successively studied.

Consider the SDP (4.36) where each mode is ISS. More formally, suppose that
there exist α1, α2, χ ∈ K∞, λ0 > 0, μ > 1 and smooth functions Vk ∈ C 2(ℜn;ℜ+)
k ∈ Q, such that ∀p,q ∈ Q

α1(|x|) ≤ Vq(x) ≤ α2(|x|) (4.43)

L Vq(x) ≤ −λ0Vq(x)+ χ(|u|) (4.44)

Vp(x) ≤ μVq(x) (4.45)

Theorem 4.5. The SDP (4.36) satisfying (4.43)-(4.45) is ISS w.r.t. u if

μ <
λ̃
λ̄

, with λ̄ � max{|ρii||i ∈ Q}, λ̃ � max{ρi j|i, j ∈ Q} (4.46)

where μ is defined in (4.45), ρi j represents the fault occurrence rate defined in
(4.37).

In order to prove Theorem 4.5, the following lemma is needed.

Lemma 4.4. [17] Suppose that σ is a Markov chain satisfying (4.37). It holds that
∀t ≥ 0, ∀k ∈ N

P(Nσ (t) = k) ≤ e−λ̃t(λ̄ t)k

k!

where λ̃ and λ̄ are defined in (4.46). Nσ (t) denotes the number of switchings of σ
over the interval [0,t) as defined in Definition 2.4.

Proof of Theorem 4.5: Let T > 0 be an arbitrary time. Denote by τ1, . . . ,τNσ (T,0) the
switching instants on the interval [0,T ), where Nσ (T,0) is defined in (4.49). Denote
Gb

a(λ ) =
∫ b

a e−λ (b−s)χ(|u|)ds. Since d
dt E[V (x)] = E[LV (x)], it follows from (4.44)

and (4.45) that for t ∈ [τi+1,τi+2)
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E[Vσ(τi+1)(x(t))] ≤ E[Vσ(τi+1)(x(τi+1))]e−λ0(t−τi+1) + E[Gt
τi+1

(λ0)]

≤ E[μVσ(τi)(x(τi+1))e−λ0(t−τi+1)]+ E[Gt
τi+1

(λ0)]

≤ E[μVσ(τi)(x(τi))e−λ0(t−τi)]

+E[μe−λ0(t−τi+1)Gτi+1
τi (λ0)+ Gt

τi+1
(λ0)]

≤ E[μ2Vσ(τi−1)(x(τi−1))e−λ0(t−τi−1)]+ E[μ2e−λ0(t−τi)Gτi
τi−1(λ0)]

+E[μe−λ0(t−τi+1)Gτi+1
τi (λ0)+ Gt

τi+1
(λ0)]

...

...

Denote Nσ � Nσ (T,0), following the above iterative procedure, we finally obtain

E[Vσ(T)x(T )] ≤ E[μNσ ]e−λ0TVσ(0)(x(0))+ E[GT
τNσ

(λ0)]

+E
[Nσ−1

∑
j=0

μNσ− je−λ0(T−τ j+1)G
τ j+1
τ j (λ0)

]
(4.47)

Based on Lemma 4.4, one has

E[μNσ ] =
∞

∑
k=0

μkP(Nσ = k) ≤
∞

∑
k=0

μk e−λ̃T (λ̄ T )k

k!
= e(μλ̄−λ̃ )T (4.48)

Under the condition (4.46), substituting (4.48) into (4.47) leads to

E[Vσ(T)x(T )] ≤ e−λ0TVσ(0)(x(0))+ E
[∫ T

0
χ(|u|)ds

]

The result follows directly from the proof of Theorem 4.4. �

Roughly speaking, if each mode is ISS, and the fault occurrence transition rate
max{ρi j} is large enough, then the ISS of the stochastic system is guaranteed. It
can be seen from the proof of Theorem 4.5 that, the condition (4.46) can be re-
moved if there is only one mode in the system or there is a common V (x) for all
modes. This is consistent with Theorem 4.4.

Theorem 4.5 completely depends on the fault occurrence transition rate without
consideration of the frequency of switching and the decreasing rate of ISS-Lyapunov
functions. We shall relax the condition (4.46) by introducing the concept of stochas-
tic average dwell time defined as follows.

Definition 4.4. If there exist a series positive numbers τk ∀k ∈ N∪{0} such that

k ≤ N0 +
T − t

τk
, ∀T ≥ t ≥ 0 (4.49)
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where N0 > 0 denotes the chattering bound, then Θ = {τk,k ∈ N∪{0}} is called
the set of stochastic average dwell time (sADT) of σ over [t,T ).

Definition 4.4 extends the ADT (see Definition 2.4 in Chapter 2.2) to the stochastic
case, which means that for each possible switching number k, there may exist some
switchings separated by less than τk, but the average dwell period among switchings
is not less than τk.

Theorem 4.6. The SDP (4.36) satisfying (4.43)-(4.45) is ISS w.r.t. u if ∀k ∈ N∪{0}

μ < min
{λ0 + λ̃

λ̄
,eλ0τk

}
(4.50)

λ̄ ≤ λ̃ (4.51)

where τk ∈ Θ , Θ is the set of sADT defined in Definition 4.4, λ̃ and λ̄ are defined
in (4.46).

Proof: Following the proof of Theorem 4.5, inequality (4.47) is rewritten as

E[Vσ(T)x(T )] ≤ E[μNσ ]e−λ0TVσ(0)(x(0))

+
Nσ−1

∑
j=0

E
[

μNσ− je−λ0(T−τ j+1)G
τ j+1
τ j (λ0)

]
+ E[GT

τNσ
(λ0)] (4.52)

It follows from (4.50), (4.51) and Lemma 4.4 that

E[μNσ ] ≤ e(μλ̄−λ̃ )T ≤ eλ0T (4.53)

E
[

μNσ− je−λ0(T−τ j+1)
]

=
∞

∑
k=0

P(Nσ = k)
(

μk− je−λ0(T−τ j+1)
)

≤
∞

∑
k=0

P(Nσ = k)
(

μN0+ T
τk
− j+1−1

e−λ0(T−τ j+1)
)

≤
∞

∑
k=0

P(Nσ = k)
(

μ1+N0e
τkλ0( T

τk
− j−1)

e−λ0(T−τ j+1)
)

≤
∞

∑
k=0

P(Nσ = k)
(

μ1+N0eλ0(T−τ j+1)e−λ0(T−τ j+1)
)

≤ μ1+N0
∞

∑
k=0

e−λ̃T (λ̄ T )k

k!
≤ μ1+N0 (4.54)

Substituting (4.53), (4.54) into (4.52), we have

E[Vσ(T)x(T )] ≤Vσ(0)(x(0))+ μ1+N0E
[∫ T

0
χ(|u|)ds]

The result follows. �
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Theorem 4.6 shows that, if the ADT is large enough, i.e., the switching is slow
averagely, the stochastic system does not change too frequently among healthy and
faulty modes, then a less restrictive condition on transition rates is required than
(4.46) to achieve the ISS of the SDP.

Remark 4.4. Generally, the condition (4.50) can not be used to verify a priori
whether the system is ISS. Since the switching of SDP (i.e. the instant of fault oc-
currence ) is random, Nσ (T,t) is not determined at each time T , a series of ADT
have to be provided to include all possible switching numbers. However, inequality
(4.50) is very useful to check on-line the ISS of the system in the current situation.

Now we consider the case that some modes of SDP are ISS while others may be
not. This work is motivated by the fact that some modes that represent the faulty
situations are often not ISS.

Define two subsets of Q as Q = Qs∪Qus, where Qs (Qus) denotes the set of modes
that are (not) ISS.

Consequently, the inequality (4.44) is modified as

LVq(x) ≤ −λ0Vq(x)+ χ(|u|), ∀q ∈ Qs (4.55)

LVq(x) ≤ λ1Vq(x)+ χ(|u|), ∀q ∈ Qus (4.56)

where λ1 > 0. In this case, the continuous flow in mode q ∈ Qus can potentially
destroy ISS.

Similarly to Chapter 4.1, divide the time interval [t,T ) = Ts ∪Tus, where Ts (Tus)
denotes the dwell period of ISS (non-ISS) modes in [t,T ). Then we define the double
sADT, which generalizes Definition 4.4 and provides two ADT scales for the SDP
with both ISS and non-ISS modes.

Definition 4.5. Let Ns
σ (T,t) = ε1, ε1 ∈N∪{0} (Nus

σ (T,t) = ε2, ε2 ∈N∪{0}) denote
the number of switchings of σ during the period Ts (Tus). If there exists a series of
positive numbers τs

ε1
∀ε1 ∈ N∪{0}, and τus

ε2
∀ε2 ∈ N∪{0} such that

ε1 ≤ N0 +
Ts

τs
ε1

, ε2 ≤ N0 +
Tus

τus
ε2

, ∀T ≥ t ≥ 0 (4.57)

where N0 > 0, then Θd =Θs∪Θus is called the set of double stochastic average dwell
time of σ over [t,T ), where Θs = {τs

ε1
,ε1 ∈N∪{0}}, and Θus = {τs

ε2
,ε2 ∈N∪{0}}.

Consider the time interval [0,T ) for arbitrary time T > 0. For the sake of simplicity,
in the following, we divide [0,T ) = [0,T−

c )∪ [Tc,T ) and focus on two cases: Case
1: Tus = T−

c ,Ts = T −Tc, i.e., non-ISS modes work in [0,T−
c ) and ISS ones work in

[Tc,T ). Case 2: Ts = T−
c ,Tus = T −Tc, i.e., ISS modes work in [0,T−

c ) and non-ISS
ones work in [Tc,T ).

Theorem 4.7. The SDP (4.36) satisfying (4.43),(4.45),(4.55)-(4.56) is ISS w.r.t. u if
∀ε1,ε2 ∈ N∪{0}
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{
μ < min

{
λ0+λ̃

λ̄ ,eλ0τs
ε1

}

λ̄ ≤ λ̃
for Case 1 (4.58)

⎧
⎨

⎩
μ < min

{
λ0+λ̃

λ̄ ,eλ0τs
ε1 ,e

(λ0τs
ε1

−λ1Tus)τus
ε2

Tus

}

λ̄ ≤ λ̃
for Case 2 (4.59)

where λ̃ and λ̄ are defined in (4.46).

Proof of Theorem 4.7: Denote by τus
1 , . . . ,τus

Nus
σ

, and τs
1, . . . ,τ

s
Ns

σ
the switching instants

on the interval Tus and Ts respectively.

Case 1: Tus = [0,T−
c ),Ts = [Tc,T ).

During the time interval [Tc,T ), following the proof of Theorem 4.5, one has

E[Vσ(T)x(T )] ≤ E[μNs
σ e−λ0(T−Tc)Vσ(T−

c )(x(T
−

c ))]

+E
[Ns

σ−1

∑
j=0

μNs
σ− je−λ0(T−τs

j+1)G
τs

j+1
τs

j
(λ0)

]
+ E[GT

τs
Ns

σ
(λ0)] (4.60)

Similarly, during the time interval [0,T−
c ), we obtain

E[Vσ(T−
c )x(T

−
c )] ≤ E[μNus

σ eλ1TcVσ(0)(x(0))]+ E[GTc
τus

Nus
σ

(−λ1)]

+E
[Nus

σ −1

∑
j=0

μNus
σ − jeλ1(Tc−τus

j+1)G
τus

j+1
τus

j
(−λ1)

]
(4.61)

Combining (4.60) and (4.61) leads to

E[Vσ(T)x(T )] ≤ E[μNs
σ +Nus

σ e−λ0T+(λ0+λ1)TcVσ(0)(x(0))]

+E
[Nus

σ −1

∑
j=0

μNs
σ +Nus

σ − je−λ0T+(λ0+λ1)Tc−λ1τus
j+1G

τus
j+1

τus
j

(−λ1)
]

+E[μNs
σ e−λ0(T−Tc)GTc

τus
Nus

σ
(−λ1)]

+E
[Ns

σ−1

∑
j=0

μNs
σ− je−λ0(T−τs

j+1)G
τs

j+1
τs

j
(λ0)

]
+ E[GT

τs
Ns

σ
(λ0)] (4.62)

Under condition (4.58), it follows that E[μNs
σ +Nus

σ ] ≤ eλ0T , and

E[μNs
σ ] =

∞

∑
ε1=0

με1P(Ns
σ (T,Tc) = ε1)

≤
∞

∑
ε1=0

με1
e−λ̃ (T−Tc)(λ̄ (T −Tc))ε1

ε1!
= e(μλ̄−λ̃ )(T−Tc) ≤ eλ0(T−Tc)
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On the other hand, G
τus

j+1
τus

j
(−λ1) ≤ e(λ1+λ0)τus

j+1G
τus

j+1
τus

j
(λ0). Consequently, we get

E[Vσ(T)x(T )] ≤ e(λ0+λ1)TcVσ(0)(x(0))+ e(λ0+λ1)TcE
[Nus

σ −1

∑
j=0

G
τus

j+1
τus

j
(λ0)

]

+e(λ0+λ1)Tc E
[
GTc

τus
Nus

σ
(λ0)

]
+ μ1+N0E

[Ns
σ−1

∑
j=0

G
τs

j+1
τs

j
(λ0)

]

+E[GT
τs

Ns
σ
(λ0)]

Define ϒ � max{e(λ0+λ1)Tc ,μ1+N0}, we further have

E[Vσ(T)x(T )] ≤ ϒVσ(0)(x(0))+ϒ E
[∫ T

0
χ(|u|)ds

]

The ISS result follows.

Case 2: Ts = [0,T−
c ),Tus = [Tc,T ).

Similarly to (4.62), we can obtain

E[Vσ(T)x(T )] ≤ E[μNs
σ +Nus

σ eλ1T−(λ0+λ1)TcVσ(0)(x(0))]

+E
[Ns

σ−1

∑
j=0

μNs
σ +Nus

σ − jeλ1T−(λ0+λ1)Tc+λ0τs
j+1 G

τs
j+1

τs
j

(λ0)
]

+E[μNus
σ eλ1(T−Tc)GTc

τs
Ns

σ
(λ0)]+ E[GT

τus
Nus

σ
(−λ1)]

+E
[Nus

σ −1

∑
j=0

μNus
σ − jeλ1(T−τus

j+1)G
τus

j+1
τus

j
(−λ1)

]
(4.63)

From the condition (4.59), the following inequalities can be obtained

με1+ε2eλ1T−(λ0+λ1)Tc ≤ μ2N0+1e
τs

ε1
λ0( Tc

τs
ε1

−1)
μ

T−Tc
τus
ε2 eλ1T−(λ0+λ1)Tc

≤ μ2N0+1e
−τs

ε1
λ0+ln μ Tus

τus
ε2

+λ1Tus

≤ μ2N0+1 (4.64)

με1+ε2− jeλ1T−(λ0+λ1)Tc+λ0τs
j+1 ≤ μ2N0+1e

τs
ε1

λ0( Tc
τs
ε1

− j−1)
μ

T−Tc
τus
ε2 eλ1T−(λ0+λ1)Tc+λ0τs

j+1

≤ μ2N0+1e
−τs

ε1
λ0+ln μ Tus

τus
ε2

+λ1Tus

≤ μ2N0+1 (4.65)



4.2 Stochastic Switching Case 109

Since λ0 > 0, there always exists a λ ∗ > 0 such that λ ∗Tc = λ0τs
ε1

. It holds that

με2eλ1(T−Tc) = eλ ∗Tc e−λ0τs
ε1 με2eλ1(T−Tc) ≤ eλ ∗Tc μN0 (4.66)

με2− jeλ1(T−τus
j+1) ≤ με2eλ1T e−λ1τus

j+1 ≤ e(λ ∗+λ1)Tc μN0e−λ1τus
j+1 (4.67)

Let us come back to inequality (4.63), under (4.64)-(4.67), we further have

E[Vσ(T)x(T )]≤ μ2N0+1
∞

∑
ε1=0

∞

∑
ε2=0

P(Ns
σ = ε1,N

us
σ = ε2)

·
(

Vσ(0)(x(0))+ e(λ ∗+λ )Tc

Nus
σ −1

∑
j=0

∫ τus
j+1

τus
j

χ(|u|)ds

+eλ ∗Tc GTc
τs

Ns
σ
(λ0)+

Ns
σ−1

∑
j=0

G
τs

j+1
τs

j
(λ0)+ e(λ ∗+λ1)Tc

∫ T

τus
Nus

σ

χ(|u|)ds

)

≤ μ2N0+1Vσ(0)(x(0))+ μ2N0+1e(λ ∗+λ1)Tc

∫ T

0
χ(|u|)ds

This completes the proof. �

Theorem 4.7 shows explicitly the balance of dwell periods between ISS modes and
non ISS ones that is needed for ISS of overall SDP.

Remark 4.5. It can be seen that even the stochastic system is not separately ISS in
faulty situations, the overall system process may be still ISS. This means that it is
not necessary to design the FTC law to guarantee the stability of each system mode
as in [81], less control effort is required. Compared with the general FTC methods
[10], our results imply that we do not always have to stabilize the system in the
post-fault situation.

Finally, let us consider the worst case where no mode is ISS. The inequality (4.44)
is changed into

L Vq(x) ≤ λ1Vq(x)+ χ(|u|), ∀q ∈ Q (4.68)

where λ1 > 0. We have the following result:

Theorem 4.8. The SDP (4.36) satisfying (4.43),(4.45) and (4.68) is ISS w.r.t. u if

μλ̄ + λ1 < λ̃ (4.69)

where λ̃ and λ̄ are defined in (4.46), λ1 is given in (4.68).

Proof: Following the similar procedure in the proof of Theorem 4.5 yields

E[Vσ(T )x(T )] ≤ E[μNσ eλ1TVσ(0)(x(0))]+ E
[Nσ−1

∑
j=0

μNσ− jeλ1(T−τ j+1)G
τ j+1
τ j + Gt

τNσ

]

(4.70)
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Under condition (4.69), it holds that

E[μNσ ] ≤ e(μλ̄−λ̃ )T ≤ e−λ1T (4.71)

Equality (4.71), together with (4.70), leads to the result. �

Theorem 4.8 shows that if the fault occurrence transition rate max{ρi j} is larger than
that of any previous cases (All ISS modes, partial ISS modes), the ISS of SDP is
achieved without any ISS mode. This result implies that, under the condition (4.69),
we do not need to design the stabilizing controller even the stochastic system is not
stable separately in the healthy and faulty situations.

Example 4.2: A fault-prone manufacturing system originated from [37] is a good
example to illustrate our results. Consider a machine producing a single commodity,
the SDP model takes the form

dx(t) = ( fσ(t)(x(t))−d)dt + g(x)dW(t) (4.72)

where the state x(t) ∈ ℜ denotes the inventory, d ≥ 0 is a constant representing
the demand rate, which is regarded as the input. W is a one-dimensional Brownian
motion independent of σ(t). fσ (x) is the state feedback control policy which is the
production effort. The term g(x)dW is often interpreted as ”sales return”, ”inventory
spoilage”, or ”sudden demand fluctuations”.

Two modes are considered, σ(t) = 1 or 2, depending on whether the manufactur-
ing system is in the functional state or the actuator faulty situation respectively. σ(t)
is modeled as a Markov chain with generator −ρ11 = ρ12 > 0 and −ρ22 = ρ21 > 0.
This means λ̄ = λ̃ .

In mode 1, f1(x) = −x, g(x) = 1
2 x, this means that the backlogged demand is

required in the healthy situation. In mode 2, the actuator fault occurs due to the
abnormal behavior of the machine’s production scheme. Here our objective is to
check whether the overall system process is ISS w.r.t. the demand rate d in spite of
the faults.

Two faulty cases are considered.

Faulty case 1: f2(x) = −2x.
Choosing V1(x) = V2(x) = x2 leads to

LV1(x) = L V1(x) = −2x2 −2xd +
1
4

x2

LV2(x) = L V2(x) = −4x2 −4xd +
1
4

x2

The condition of Theorem 4.4 is satisfied, so the SDP is ISS. On the other hand, both
two modes are ISS and share the same ISS-Lyapunov function, Theorem 4.5 could
also be used to verify the ISS property. The condition of Theorem 4.6 also holds, in
this case, we do not have to reconfigure the controller after the fault occurs, and the
frequency of the fault occurrence also has no effect on the ISS of the system. In the
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Fig. 4.1 State trajectories in faulty case 1
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(a) State trajectories (ended at mode 1)
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Fig. 4.2 State trajectories in faulty case 2

simulation, suppose that −ρ11 = ρ12 = 0.5 and −ρ22 = ρ21 = 0.8, d = 1. Fig. 4.1
illustrates the state trajectory, from which we can see that the system is always ISS
with respect to the demand rate d in spite of the fault.

Faulty case 2: f2(x) = 2x.
We can get

LV2(x) = LV2(x) = 4x2 −4xd +
1
4

x2

Theorem 4.4 is unavailable now. It can be seen that the faulty mode may become
non-ISS. Choose λ0 = 1.5, λ1 = 4.5 that satisfy (4.55) and (4.56). It follows from
Theorem 4.7 that, if the system is ended at mode 1, i.e. the machine finishes the
work normally, then ISS is achieved as shown in Fig. 4.2(a). If the machine stops
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at the faulty mode (mode 2), it is obtained from (4.59) that if τs ≥ 3Tus, i.e. the
dwell period of the healthy mode is large enough and the time that the machine
works in faulty mode is small enough, then ISS of the overall system process is
still guaranteed. Suppose that the system stops at t = 47s, Fig. 4.2(b) shows the
trajectories in this case, the system is stable in the sense of ISS.

4.3 Conclusion

The main contribution of this chapter is the generalization of ISS theory to hybrid
impulsive systems and stochastic hybrid systems. For a hybrid impulsive system, it
has been shown that ISS is achieved in spite of partial non-ISS modes. Whereas for
a stochastic hybrid system, ISS is maintained even no mode is ISS. The obtained
results are useful for stabilization of HS with unstable faulty modes.



Chapter 5
Hybrid Systems with Discrete Specifications

In chapters 2-4, FTC design methods for several different classes of HS have been
discussed from the stability point of view (i.e., continuous states are globally con-
vergent whatever mode is activated). These methods are based on the continuous
system theory, and limited for more general discrete faults, especially, when certain
discrete specifications are required.

This chapter considers HS with certain discrete specifications, i.e., it has to fol-
low some specifications imposed on the discrete part of the system. A discrete fault
would violate these specifications. As for such fault, one natural idea is to reconfig-
ure the discrete part after faults occur, which can be achieved from discrete event
system (DES) point of view. However, compared with pure DES, continuous sys-
tem behaviors must be taken into account in HS. Two major discrete event system
models, namely finite state machine and Petri net are used respectively.

5.1 Qualitative FTC Based on Finite State Machine

In this section, we consider a class of HS with certain discrete specifications, i.e.,
it has to follow the desired switching sequence and finally reach the target mode.
A discrete fault would change the sequence and violate these specifications. Fault
tolerability properties of such HS is analyzed in a qualitative manner.

5.1.1 Problem Formulation

As for the considered discrete fault, one natural idea is to reconfigure the switching
sequence after faults occur to maintain the specification, which could be achieved by
the discrete event system (DES) supervisory control theory [101]. However, com-
pared with pure DES, continuous dynamics have to be considered for HS, the reach-
ability must be checked after reconfiguration of the sequence. It has been shown that
checking reachability for very simple class of HS is a difficult work, and the accu-
rate mathematic model of the system must be known. In fact, the hybrid models of
physical environment in real world are usually too large and complicated. How to

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 113–148.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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link the continuous and discrete parts for the purpose of fault tolerance analysis is
one challenge that is to be faced in this work.

Abstraction is a technique to reduce the complexity of the system design, while
preserving some of its relevant behaviors, so that the simplified system is more ac-
cessible to analysis tools [2]. Such method leads to a lower computation level than
that for the original system. Qualitative abstraction (QA) originates from the quali-
tative theory that has been shown to be effective tools to analyze system behavior in
the absence of complete knowledge [64]. Several results have been reported about
QA for HS, e.g., [5, 121], most of these works focus on the linear HS. In [8], a
qualitative description of the nonlinear systems’ behavior is proposed while HS are
not considered.

Above results of QA inspire us to link qualitatively the continuous and discrete
parts of HS. The novelty of this work is that a new clue to solve the FTC problem of
HS is provided, that is in a qualitative manner and from discrete event system (DES)
point of view.

A hierarchical model is developed to describe the HS as in [140]. Such model not
only represents the discrete-event dynamics that is appropriate to find the supervisor,
but also provides absolute temporal information. Moreover, the discrete and contin-
uous parts are linked qualitatively such that the reachability and fault tolerability
properties of HS can be analyzed.

The proposed model consists of four parts from bottom to top: hybrid automaton,
qualitative abstraction, discrete abstraction, and supervisor as in Fig.5.1. The hybrid
automaton models the original HS; QA is a finite state machine which captures
the information of the time derivatives and the positions of continuous states, and
describes the qualitative behavior of HS based on the incomplete system’s knowl-
edge. QA is a link between continuous and discrete part of HS, the reachability can
be analyzed effectively in this level; Discrete abstraction is also a finite state ma-
chine which represents the discrete modes and the switchings among them, while
the behavior of continuous modes is removed. Fault tolerance is discussed in this
level using DES supervisory control theory [101]; Supervisor determines whether
the controllable switching between modes is activated or not, and reconfigures the
switching sequence after faults occur.

It will be shown that under this model, it is easy to check if the switching se-
quence design based on discrete abstraction is available for original HS, the reach-
ability and fault tolerability properties of HS can be analyzed systematically. The
main contributions of this work are twofold:

1. A qualitative description is derived for a class of HS. Such qualitative model
links well the continuous and discrete parts of HS. Reachability can be analyzed
in a qualitative manner.

2. Fault tolerance of HS is discussed from DES point of view, which is effective
for HS with the desired discrete specification. The intelligent supervisor is less
conservative than those robust ones.

It should be pointed out that this model is similar to that in [78] and [79]. How-
ever, in [78], the Petri net is used to model the abstraction of the system. Our work
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Plant

Hybrid Automaton

Qualitative Abstraction

Discrete Abstraction
Supervisor

Fig. 5.1 The hierarchical FTC model

utilizes the finite state automata which is more suitable for fault tolerance analysis
of discrete fault. In [79], the objective is to handle a kind of continuous systems with
the discrete inputs. The qualitative abstraction in [79] relies on the behavior theory
which is also quite different from ours.

The HS is modeled by a hybrid automaton H as Definition 1.1 where the out-
puts and continuous faults are not involved. The trajectories of H that start from
some initial state (q0,x0) ∈ Init consist of a sequence of continuous flows and dis-
crete transitions. When the discrete state q is maintained, the continuous state x
evolves according to the differential equation ẋ = f q(x), as long as x ∈ Inv(q). Af-
ter x reaches the guard set, the system would switch into next mode under discrete
controller v.

As mentioned before, under certain discrete specifications, the HS has to follow a
marked switching sequence and reach the target mode to complete the task as shown
in Fig.5.2 (which describes a system with 2 continuous states and 4 modes).

The considered discrete faults Fd affect the discrete transitions E : V × Fd →
Q×Q, that forces the system to switch into a mode which is not the prescribed

Mode 1

Mode 2

Mode 3

Mode 4

Discrete state trajectory

Continuous state trajectory

Fig. 5.2 Illustration of the system trajectory
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successor. such faulty switching is not affected by the discrete controller V , this
implies that discrete faults are uncontrollable switchings that change the prescribed
sequence.

The fault tolerance problem can be described as: make the HS reach the target
mode according to discrete specifications in spite of discrete faults. We will analyze
detailed procedures of the hierarchical model (Fig.5.1) in the following sections.

5.1.2 Qualitative Abstraction for Nonlinear System

The purpose of qualitative behavior analysis is to build a bridge that connects the
continuous and discrete parts of HS. This section derives a qualitative description
for HS. For the sake of notational simplicity, the superscript q that denotes mode q
is omitted in this section.

We first define sign as the symbol of the scalar, i.e., for a scalar α , sign(α) =−1,
if α < 0; sign(α) = 0, if α = 0; sign(α) = 1, if α > 0. Define the set S � {ς =
[ς1, ...,ςn]T ;ςk ∈ {−1,1}}. It is clear that S contains 2n elements. Denote ς k as the
kth element of S. The matrix diag(β ) is the diagonal matrix having the vector β on
its main diagonal.

Consider the nonlinear system

ẋ = f (x) (5.1)

where x = [x1, ...,xn]T ∈ ℜn, f (x) = [ f1(x), ..., fn(x)]T is a smooth function. It is not
assumed to have the complete knowledge of f (x), only two qualitative properties
are required: sign( fi(x)) and sign( ∂ fi

∂x j
), ∀i, j ∈ {1,2, ...,n}.

Consider a point x∗, which divides the domain ℜn of x into 2n regions, denoted as
Ωq � {x ∈ ℜn|diag(ςq)(x− x∗) > 0̄}, for ςq ∈ S. 0̄ is a null vector of dimension n.
Each region Ωq has n neighbors that share a hyperplane with Ωq. It is clear that one
of continuous states x j equals x∗j which is on this hyperplane, for j ∈ {1,2, ...,n}.
Denote M(pq, j) as the hyperplane between two neighboring regions Ωp, Ωq, and
x j = x∗j . Also denote sign( fi(x))Ωq as the sign of fi(x) in Ωq. When x goes from one
region to another, we say that a continuous transition occurs.

Definition 5.1. The nonlinear system (5.1) is said to be point monotonous if there
exists a point x∗ such that
1) ∀i ∈ {1,2, ...,n}, ∀ςq ∈ S, sign( fi(x))Ωq is fixed, i.e. the value of sign( fi(x))Ωq is
unique.
2) there is a fixed k ∈ {1,2, ...,n}, s.t. sign( fk(x))Ωq �= sign( fk(x))Ωp , and ∀ j ∈
{1,2, ...,n}, j �= k, sign( f j(x))Ωq = sign( f j(x))Ωp , where Ωp, Ωq are two neighbor-
ing regions.

The following Lemma gives the method to check which fi changes the symbol be-
tween neighboring regions.

Lemma 5.1. Consider a point monotonous nonlinear system (5.1) and two neigh-
boring regions Ωp, Ωq. If ∀x ∈ M(pq,s), for s, i ∈ {1,2, ...,n}, we have fi(x) = 0 and
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∑
j∈{1,2,...,n}, j �=i

( ∂ fi

∂x j
f j

)
�= 0

then sign( fi(x))Ωq �= sign( fi(x))Ωp .

Proof: Differentiating equation (5.1) w.r.t the time leads to

ẍi =
∂ fi

∂xi
ẋi + ∑

j∈{1,2,...,n}, j �=i

∂ fi

∂x j
f j (5.2)

Note that ∀x ∈ M(pq,s), fi(x) = 0 implies xi admits an extremum at M(pq,s). The
following two cases are considered.

- For the case that sign(∑ j∈{1,2,...,n}, j �=i
∂ fi
∂x j

f j) = 1, it is obtained from (5.2) that

ẍi > 0 ∀x ∈ M(pq,s). So ẋi changes monotonously at M(pq,s). On the other hand,
sign( fi(x)) is fixed respectively in Ωp and Ωq, we have that sign( fi(x))Ωq >
0, and sign( fi(x))Ωp < 0, xi reaches a maximal point or sign( fi(x))Ωq < 0 and
sign( fi(x))Ωp > 0, xi reaches a minimal point. It follows that sign( fi(x))Ωq �=
sign( fi(x))Ωp .

- For the case that sign(∑ j∈{1,2,...,n}, j �=i
∂ fi
∂x j

f j) = −1, it follows that ẍi < 0 ∀x ∈
M(pq,s). Thus ẋi also changes monotonously at M(pq,s), the similar procedure as
for case 1 can be done to obtain the results. �

Lemma 5.1 captures the symbolic change of ẋ among different regions, this is very
useful for continuous transition analysis as in Lemma 5.2.

Lemma 5.2. Consider a point monotonous nonlinear system (5.1), Ωp, Ωq are two
neighboring regions sharing M(pq, j), and sign( fi(x))Ωq �= sign( fi(x))Ωp .

-If sign(x j − x∗j)Ωp = −sign( f j)Ωp , then crossing of M(pq, j) is possible from Ωp

to Ωq.
-If sign(x j − x∗j)Ωq = −sign( f j)Ωq , then crossing of M(pq, j) is possible from Ωq

to Ωp.

Proof: For the case that sign(x j − x∗j)Ωp = −sign( f j)Ωp , without loss of generality,
assume that in Ωp, sign(x j −x∗j) = 1, and sign( f j) = −1, then x j would converge to
x∗j and reach the M(pq, j) from Ωp, then go to Ωq. If in Ωp, sign(x j − x∗j) = −1, and
sign( f j) = 1, then x j would also converge to x∗j and reach the M(pq, j). The proof of
the transition from Ωq to Ωp is the same as above, which is omitted. �

Based on the above analysis, we define the qualitative states of point monotonous
system (5.1) as ϑ : x → M = {1,2, ...,2n}, which is a finite set of variables inter-
preted over 2n regions of system (5.1), e.g., ∀x ∈ Ωq, ϑ(x) = q, which is denoted
as ϑq.

Example 5.1: Consider the Lotka-Volterra system describing the relation between
a population of preys (x1) and a population of predators (x2):

{
ẋ1 = ax1 −bx1x2

ẋ2 = −cx2 + dx1x2
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Fig. 5.3 qualitative behavior of the system

where a, b, c and d are positive. The system is point monotonous with x∗ =
[c/d a/b]T . Fig. 5.3(a) shows its four regions divided by x∗: Ω1, Ω2, Ω3 and Ω4.
sign( fi) is also fixed in each region as in Fig.5.3: sign( f1)Ω1 < 0, sign( f1)Ω2 < 0,
sign( f1)Ω3 > 0, sign( f1)Ω4 > 0. sign( f2)Ω1 > 0, sign( f2)Ω2 < 0, sign( f2)Ω3 < 0,
sign( f2)Ω4 > 0. Based on Lemma 5.2, four continuous transitions can be obtained:
from Ω1 to Ω2, from Ω2 to Ω3, from Ω3 to Ω4, from Ω4 to Ω1. Fig. 5.3(b) shows
the graph of qualitative states.

5.1.3 Qualitative Abstraction of Hybrid Systems

The above qualitative description can be extended naturally to HS with all modes
satisfying the point monotony property. For HS, two transitions have to be
considered:

-Continuous transitions (in each mode): The rule for constructing continuous
transitions in each mode is the same as in Lemmas 5.1, 5.2. Denote Ec as the con-
tinuous transition set of HS.

-Discrete transitions (between modes): As in Definition 5.1, when x in mode i
reaches the guard set G, and (i, i′) ∈ E , then the system can be switched from mode
i to i′ under v.

The region of mode i is denoted as Ω i = [Ω i
1, ...,Ω

i
2n ]T , where

Ω i
q � {x ∈ ℜn|(diag(ςq)(x− x∗(i)) > 0̄)∩ Inv(i),ςq ∈ S} (5.3)

where x∗(i) is related to the point monotony property of mode i. From (5.3), it follows
that some regions Ω i

q may be empty if (diag(ςq)(x − x∗) > 0̄)∩ Inv(i) = /0. The
qualitative states of mode i are denoted as ϑ i = [ϑ i

1, ...,ϑ
i
ι(i)]

T , where 0 < ι(i) ≤ 2n,

ϑ i
q is related to x ∈ Ω i

q �= /0.

Definition 5.2. The region Ω i
q is said to be determined if only discrete transitions or

only one continuous transition may occur from Ω i
q.
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The ”determined region” is a special case of the ”good region” defined in [3], which
ensures the uniqueness of the continuous transition from each region.

The QA of HS is constructed as a finite state machine QA = (Q̂, q̂0, Σ̂ ,T ), where
Q̂ =

⋃
i∈Q ϑ i is the state set, Q̂0 =

⋃
∀(x,i)∈Init,x∈Ω i

q �= /0 ϑ i
q is the initial state, Σ̂ = E

⋃
Ec

is the transition set T : Σ̂ × Q̂ → Q̂ is the activated transition1. Divide T = Tc ∪Td ,
where Tc is the set of continuous transitions, Td the discrete one. The number of
operations required to build the QA depends on the number of qualitative states that
the HS generates. The computational complexity is O(∑N

i=1 |ι(i)|).
Compared with the abstraction in the usual sense [2], [121], QA corresponds

to the qualitative behavior of HS, since the continuous state in each region of HS
has a unique related state in QA . The following theorem proves the qualitative
reachability equivalence between QA and the original system.

Theorem 5.1. Consider a HS where each mode is point monotonous and all the
regions are determined. For any x1 ∈ Ω i

q, x2 ∈ Ω j
p, if there exists a solution x(t) of

HS and t1, t2, s.t. 0≤ t1 ≤ t2, x(t1) = x1, x(t2) = x2, then QA has a solution q̂(t)∈ Q̂
s.t. q̂(t1) = ϑ i

q, and q̂(t2) = ϑ j
p.

Proof: Consider two points x1 ∈ Ω i
q, x2 ∈ Ω j

p, s.t. x(t1) = x1, x(t2) = x2 for 0 ≤ t1 ≤
t2. From the structure of QA , it follows that for every transition of HS, there is a
unique related transition in QA . If t1 = t2, then q̂(t) is a trivial solution satisfying
the theorem. If t1 < t2, denote q̂0, q̂1, ...q̂m as the state sequence of QA in the inter-
val [t1,t2]. If x1 and x2 are within the same region of the same mode, i.e. i = j, p = q,
then no transition occurs, m=0, q̂0 = q̂(t1) = q̂(t2) = ϑ i. If x1 and x2 are within the
different regions of the same mode, i.e., i = j, p �= q, continuous transitions must
occur from x(t1) to x(t2), so m > 0, and all q̂0, ..., q̂m ∈ ϑ i, with q̂0 = q̂(t1) = ϑ i

q,
and q̂m = q̂(t2) = ϑ i

p. If x1 and x2 are within the different regions of the different
modes, i.e., i �= j, p �= q, then both discrete and continuous transitions occur, we
have q̂0 = q̂(t1) = ϑ i

q, and q̂m = q̂(t2) = ϑ j
p . �

The converse version of Theorem 5.1 is not true, i.e., for q̂(t1) = ϑ i
q, and q̂(t2) = ϑ j

p

x1 ∈ Ω i
q, x2 ∈ Ω j

p, it may not hold that the solution x(t) of HS satisfies x(t1) = x1,

x(t2) = x2, but x(t1) ∈ Ω i
q, x(t2) ∈ Ω j

p as in the following corollary.

Corollary 5.1. Consider a HS where each mode is point monotonous and all the
regions are determined. For any x1 ∈ Ω i

q, x2 ∈ Ω j
p, if there exists t1, t2, s.t. 0 ≤

t1 ≤ t2, q̂(t1) = ϑ i
q, and q̂(t2) = ϑ j

p, then there exists a solution x(t) s.t. x(t1) ∈ Ω i
q,

x(t2) ∈ Ω j
p.

Proof: Consider the state sequence q̂0, q̂2, ...q̂m of QA in the interval [t1,t2], Simi-
larly to the proof of Theorem 5.1, if m=0, then both x1,x2 are within the same region
of the same mode, which leads to x(t1),x(t2) ∈ Ω i

q. In the sequel, suppose m > 0,

1 In some literatures of DES, Σ is also called ”Event”, and T is called ”transition”.
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we have q̂(t1) = ϑ i
q, q̂(t2) = ϑ j

p . From the definition of ϑ j
p , there must be a solution

x(t) s.t. x(t1) ∈ Ω i
q, x(t2) ∈ Ω j

p. �

Example 5.2: Consider a HS with two modes as

mode 1:

{
ẋ1 = 3x1 −1.5x1x2

ẋ2 = −2x2 + x1x2
, mode 2:

{
ẋ1 = 2x1 − x1x2

ẋ2 = −4x2 + x1x2

where Inv(1) = {x1 ≥ 3}, Inv(2) = {x1 ≤ 3}. The guard set G(1,2) = {x ∈ ℜ2,x1 ≤
3}, G(2,1) = {x ∈ ℜ2,x1 ≥ 3}, and x is continuous everywhere. Both two modes
are point monotonous with x∗(1) = (2,2), x∗(2) = (4,2). Consequently, four regions
can be divided for each mode. However, only two regions are used to build the QA
as shown in Fig. 5.4(a), since other regions of the mode do not intersect its invariant
set. It can be seen that all regions are determined, from the transition set, we have
that x ∈ Ω 2

2 could be reached from x ∈ Ω 1
1 . This is also reflected in the qualitative

state graph as in Fig. 5.4(b).

5.1.4 Discrete Abstraction

Discrete abstraction (DA) is connected with the supervisor, which can be viewed as
a reduction of QA by removing the qualitative behavior of each mode, such that
the DES theory can be applied.

The DA of HS is also constructed as a finite state machine

DA = (Qd ,Σ ,Td ,Qd0,Qdm)

where Qd = Q and Σ = E are the same as in Definition 5.1; Td denotes the activated
discrete transition as in QA , Qd0 =

⋃
∀(x,q)∈Init q. Qdm ⊆ Q is the set of marked

states.
The following theorem shows discrete reachability equivalence between DA ,

QA and the original system.
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Theorem 5.2. Consider a HS where each mode is point monotonous and all the
regions are determined. For any x1 ∈ Inv(p), x2 ∈ Inv(q), if there exists a solution
x(t) of HS and t1, t2, s.t. 0 ≤ t1 ≤ t2, x(t1) = x1, x(t2) = x2, then

-there is a solution q̂(t) of QA s.t. q̂(t1) ∈ ϑ i, and q̂(t2) ∈ ϑ j .
-there is a solution qd(t) of DA s.t. qd(t1) = p, and qd(t2) = q.

Proof: The result can be obtained following the same procedure in proof of Theorem
5.1. �

The following definition gives the relations between the transitions of QA and
DA .

Definition 5.3. A transition sequence s = e1e2 · · ·em of QA , ei ∈ Σ̂ , i = 1,2 . . . ,m
for m > 0 is consistent with the transition sequence δ = ε1ε2 · · ·εu of DA , εi ∈
Σ , i = 1,2 . . . ,u for u > 0 if at any t, s.t. q̂(t) ∈ ϑ i under s, then q̂d(t) = i under δ ,
where q̂(t) is the solution of QA along s, and q̂d(t) is the solution of DA along δ .

5.1.5 Fault Tolerance

Let us recall that the discrete faults force the system to switch into an unprescribed
successive mode, and may violate the discrete specification of the HS.

From sections 5.1.3 and 5.1.4, it can be seen that QA and DA are generated
by the normal HS off-line, and then works in parallel with HS. QA receives all the
switchings and state information from HS, and triggers its corresponding transitions
to keep itself synchronized with HS. Meanwhile QA sends the information of dis-
crete transitions to DA , such that DA is also synchronized with HS. Since the set
of faulty switchings is not included in normal HS, once the fault occurs, its infor-
mation may be missing for QA or sent to QA by the HS with delays of several
discrete steps. This motivates the following definition:

Definition 5.4. A fault is said to be diagnosable w.r.t QA and DA , if when such
faulty switching occurs in HS, the corresponding transitions occur in QA and DA
before the next discrete switching in HS occurs.

Definition 5.4 is equivalent to the diagnosability with 0-delay step in [92]. This is
possible for HS. Compared with the pure DES system, the continuous dynamics in
HS can help to detect the discrete faults rapidly based on the trajectory of continu-
ous states. Such property of HS also allows us not to consider the observability of
faults as in [108]. If the full measurement of continuous states is unavailable, some
more complicated techniques have to be applied, e.g. the multi-mode identifier in
Chapter 2.2.

Once QA receives the information of faulty switching, and sends it to DA , the
transition set Σd in DA would be updated, and partitioned as Σ = Σn ∪Σ f , where
Σn are normal transition sets corresponding to E in H , and Σ f corresponds to faulty
transitions.
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In this section, fault tolerance problem is discussed on DA under the DES frame-
work, the resulting fault tolerant supervisor is applied to the original system as
shown in Fig. 5.1.

We first introduce some notations used in the following, the reader is referred to
[101] for more detailed notations. Σ∗ denotes the set of all finite strings of elements
of Σ , including the empty string ε . A subset of Σ∗ is called a language over Σ .
The prefix closure of L ⊆ Σ∗ is defined as L := {u ∈ Σ∗|uu′ ∈ L for some u′ ∈ Σ∗}.
The closed behavior of DA is L(DA ) := {s ∈ Σ∗|Td(s,Qd0) is defined}, which is
the set of transition sequences. The marked behavior of DA is Lm(DA ) := {s ∈
Σ∗|Td(s,Qd0) ∈ Qdm} which represents the completed tasks. A(qd) denotes the set
of transitions that are possible at qd . A supervisor S ⊆ Σ∗ → 2Σ specifies the set of
transitions for the system’s desired specification. The behavior of DA supervised
by S is denoted by L(S /DA ).

Assume that a supervisor S has been designed for the healthy system satisfying
the specifications. In the following, we will focus on how to update S for the pur-
pose of fault tolerance. Denote Bid and Ba as the ideal behavior and the acceptable
behavior respectively, where Bid ⊆ Ba ⊆ Lm(DA ). Moreover, for κ ,κ ′ ∈ Σ∗, define

L(qd ,ω) := {κ |Td(κ ′,Qd0) = qd ,and κ ′ωκ ∈ L(DA )}

which is a set of transition sequences generated in DA after the transition ω occurs
at the state qd . Similarly, define

LBid (qd ,ω) := {κ |Td(κ ′,Qd0) = qd,and κ ′ωκ ∈ Bid}

LBa(qd,ω) := {κ |Td(κ ′,Qd0) = qd ,and κ ′ωκ ∈ Ba}
The following definition gives conditions for discrete faults to be tolerable.

Definition 5.5. The transition ω that occurs at qd is an absolutely tolerable fault
w.r.t. Qdm, if

1) There exists a nonempty K ⊆ LBa(qd,ω) s.t. KΣ f ∩L(qd ,ω) ⊆ K.
2) There exist a transition sequence s from q̂i in QA that is consistent with K,

where q̂i is the state of QA reached due to the fault.

Condition 1) means that K is controllable w.r.t. L(qd ,ω) [101], which implies that
for a faulty transition ω , the system DA can still be driven to the marked states.
Condition 2) ensures that the discrete switching sequence designed from DA is
possible for HS, i.e., there exists a trajectory of continuous states in HS that is con-
sistent with the discrete sequence.

Definition 5.5 is a little conservative since the worst case that all possible faults
occur simultaneously is considered. This is relaxed in the following definition,
where the single faulty case is considered.

Definition 5.6. The transition ω that occurs at qd is a tolerable fault w.r.t. Qdm, if 2)
in Definition 5.5 holds, and there exists a nonempty K ⊆ LBa(qd ,ω).
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Denote Σt f ⊆ Σ f as the set of tolerable faults. In the following, we restrict our
attention to the single faulty case, the results can be extended straightly to multi-
faulty case.

Now we design the ideal fault tolerant supervisor.

Definition 5.7. The transition sequence s = e1e2 · · ·em ∈ Bid(DA ), ei ∈ Σ , i =
1,2 . . . ,m for m > 0 is called an ideal tolerable fault marked sequence (ITFMS)
if any transition in A(qd(i−1))−{ei} ∈ Σ ∪Σt f , where qdi−1 := Td(ei−1,Qd0) and
e0 := ε .

Definition 5.7 means that ITFMS is a transition sequence which can drive the initial
state to the marked states within an ideal behavior in spite of the interference of
tolerable faults.

Define IT (DA ) := {t ∈ L(DA )|t is an ITFMS}. For a language L and s ∈ L,
define ψL(s) := {α ∈ Σ |sα ∈ L}. We have the following theorem.

Theorem 5.3. Consider a HS where each mode is point monotonous and all the re-
gions are determined. Suppose that DA has a fault transition ω ∈Σ f at qd, which is
diagnosable w.r.t QA , DA , and IT (DA ) �= /0. There exists an ideal fault tolerant
supervisor Sid for HS if

1) ∃K ⊆ IT (DA ) s.t. ∀s ∈ K,ψK(s) ⊆ ψIT (DA )(s) and {sω}∩ IT(DA ) ⊆ K.
2) There exists a transition sequence s from q̂i in QA that is consistent with K,

where q̂i is the state of QA that is reached due to the fault.

Proof: Consider a supervisor Sid = ψK(s) = {α ∈ Σ |sα ∈ K}, which represents the
set of enabled transitions after the string s. Firstly, let s = ε . Since IT (DA ) �= /0, we
have ψIT (DA )(ε) �= /0, which implies that ψL(Sid/DA )(ε) �= /0, and ψL(Sid/DA )(ε)⊆
ψIT (DA )(ε). Secondly, let s �= ε , following the same procedure, it can be proven that
ψL(Sid/DA )(s) ⊆ ψIT (DA )(s), ∀ψIT (DA )(s) �= ε .

Also, since {sω}∩ IT (DA ) ⊆ K, we have sω ∈ K and ω ∈ ψK(s) = Sid(s),
which further leads to that ω ∈ ψL(Sid/DA )(s). To this end, it can be obtained that
L(Sid/DA ) = K, which means that the abstraction DA under Sid generates a
nonempty subset of ITFMS’s set.

On the other hand, Condition 2) implies that after a fault occurs, there exists a
state trajectory of QA from q̂i that reaches the q̂m, s.t., q̂m ∈ ϑ Qdm . From theorems
5.1 and 5.2, it follows that there exists a continuous state trajectory from the region
related to q̂i in HS that is consistent with the discrete sequence, and will reach the
marked mode. �

Theorem 5.3 gives not only the existence condition of the ideal fault tolerant super-
visor, but also its construction method. Obtaining IT (DA ) requires the calculations
of ψIT (DA )(s) which needs O(N) computation, where N is the number of states
in Q.

We denote Supdated = Sid , which is the updated version of the original S after a
fault occurs. This means that S is applied to the normal plant. Once a discrete fault
occurs and Sid has been obtained, S will be self updated into Supdated = Sid ,
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Abstraction
Intelligent 

supervisor

Control redesign

Updated

Fig. 5.5 Updating of the supervisor

as shown in Fig. 5.5. In the healthy situation, it can be proven that L(S /DA ) =
L(Sid/DA ) following the procedure in [108].

Remark 5.1. The proposed intelligent supervisor is less conservative than those
ones obtained assuming that possible faults occur from the beginning as in [105].
Compared with the pure DES in [105], the reachability problem of continuous sys-
tems has to be considered for HS, as the condition 2) in Theorem 5.3.

When the ideal behavior is not feasible under discrete faults, one natural idea is to
let the system work in an acceptable behavior that exceeds but stays close to the
ideal behavior. We have the following definition.

Definition 5.8. The transition sequence s = e1e2 · · ·em ∈Ba(DA ), ei ∈Σ , i = 1 . . .m
for m > 0 is called an acceptable tolerable fault marked sequence (ATFMS) if any
transition in A(qdi−1)−{ei} ∈ Σ ∪Σt f , where qdi−1 := Td(ei−1,Qd0) and e0 := ε .

From Definition 5.8, it follows that ATFMS can still drive the initial state to the
marked states within an acceptable behavior in spite of tolerable faults. Define
AT (DA ) := {t ∈ L(DA )|t is an ATFMS}. The following corollary is an extension
of Theorem 5.1.

Corollary 5.2. Consider a HS where each mode is point monotonous and all the re-
gions are determined. Suppose that DA has a fault transition ω ∈ Σ f at qd which is
diagnosable w.r.t QA , DA , and AT (DA ) �= /0. There exists an ideal fault tolerant
supervisor Sa for H if Condition 2) in Theorem 5.3 holds and

1) ∃K ⊆ AT (DA ) s.t. ∀s ∈ K,ψK(s) ⊆ ψAT(DA )(s) and {sω}∩AT(DA ) ⊆ K.

Note that the candidate transition sequences L(Sa/DA ) obtained from Corollary
5.2 may not be unique. We propose an optimized choosing method, which makes
the system work within an acceptable behavior that is most similar to the ideal one.

Definition 5.9. [15] A (1-bounded) metric space is a pair (Xd ;d) consisting of a
nonempty set Xd and a function d : Xd ×Xd → [0,1] which satisfies the following
conditions:
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1) d(a,b) = 0 if and only if a = b;
2) d(a,b) = d(b,a), ∀a,b ∈ Xd;
3) d(a,c) ≤ d(a,b)+ d(b,c), ∀a,b,c ∈ Xd.

The distance d(a,b) measures the similarity between a and b. The less the dis-
tance is, the more similar the two elements are. We endow Σ∗ with the met-
ric induced by d, which measures the distance between transition sequences, Let
s = e1e2 · · ·el(s) and ρ = ρ1ρ2 · · ·ρl(ρ) be two transition sequences in Σ∗, and
l(s,ρ) := max{l(s), l(ρ)}. If l(s) �= l(ρ), e.g. l(s) < l(ρ), set ei = ε ∀i > l(s). Define

dr(s,ρ) :=
l(s,ρ)

∑
i=1

1
2i d(ei,ρi)

set d(a,ε) = d(ε,a) = 1 for a ∈ Σ . It is verified that dr gives rise to a metric on Σ∗.
The following corollary gives an optimal choosing method, which can be verified
from Definition 5.9.

Corollary 5.3. Consider a candidate transition sequence s ∈ L(Sa/DA ) obtained
from Corollary 5.1. If s = argmin{maxρ∈Bid dr(s,ρ)}, then s is a sequence that is
most similar to the ideal one in the sense of metric space.

Once the optimal s, denoted by s∗ is obtained, S is updated into Supdate s.t.
L(Supdate/DA ) = s∗.

Consider a HS where each mode is point monotonous and all the regions are
determined, based on previous analysis, a fault tolerance framework for HS can be
provided as

(1) Build H of HS.
(2) Describe the qualitative behavior of each mode based on Section 5.1.2.
(3) Build QA and DA of the HS based on sections 5.1.3, 5.1.4.
(4) Apply the supervisor S to the HS, let the QA and DA work in parallel with

HS. Once a fault occurs, go to (5). When the task is completed without fault, go
to (8).

(5) If 2) in Theorem 5.3 holds, send the information of fault to QA and DA , go to
(6), else go to (8).

(6) If 1) in Theorem 5.3 holds, update S into Supdate = Sid , apply Supdate to HS
until the task is completed, go to (8), else go to (7).

(7) If condition 1) in Corollary 5.2 holds, update S into Supdate, apply Supdate to
HS, until the task is completed, go to (8), else go to (8).

(8) Stop the system.

Example 5.3 (Example 1.2 revisited): Recall Example 1.2 as shown in Fig. 1.3.
The system can be modeled as a hybrid automaton, two continuous states x1 and x2

represent the positions of the fingertip. The angle θ of the fingertip is assumed to be
adjusted according to its position by the robot arm. Discrete states, i.e., modes are
defined based on the contact configuration between the hose and the plug, as shown
in Fig. 5.6. Eight configurations are considered, each one can be further divided
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(convex upward)

(concave upward)

Fig. 5.6 Contact configuration

into two configurations with different form of hose, e.g. B̃1 (convex upward) and
B̃2 (concave upward). The completed work is to insert the hose onto the plug. There
are two operation situations of the fingertip: “PUT” vertically in Ã, J̃, and “SWING”
horizontally in other modes. According to the working process, three normal switch-
ing sequences are designed: Ã → C̃1 → D̃1 → J̃ → K̃, Ã → B̃1 → Ẽ2 → F̃2 → J̃ → K̃,
and Ã → B̃1 → B̃2 → C̃2 → D̃1 → J̃ → K̃. A hybrid automaton is constructed as in
Fig. 5.7.

Since x in each mode has constant derivatives, all modes are point monotonous
with x∗ = [∞ ∞]T , and there is no continuous transition in each mode. It can be
checked that each region is determined. The QA is not given, which is the same
as DA . The DA of the system is shown in Fig. 5.8, where the K̃ is the tar-
get mode, e1, . . . ,e11 are corresponding events. The marked behavior is Lm(A ) =
{e1e2e3e4, e5e6e7e8e4, e5e9e10e11e4}. The desired specification is that in one work-
ing process, modes C̃1 and D̃1 must be visited, and D̃1 is not visited until C̃1 has been
visited. So Bid = e1e2e3e4. In the healthy situation, the supervisor S enables events
{e1,e2,e3,e4} while disable others. The initial of the fingertip’s position is (2,5).
Fig. 5.9 shows the continuous state trajectory, which implies that the work is com-
pleted with an ideal behavior.

Now consider two faulty cases of abrupt changes of the fingertip’s position,
which, as shown in Fig. 5.10, are due to physical faults of the robot arm.

Case 1: The system is switched into (x1,x2) = (0.7,3) of B̃1 from (x1,x2) =
(1.5,3) of C̃1.

Case 2: The system is switched into (x1,x2) = (−1.5,3) of Ẽ2 from (x1,x2) =
(1.5,3) of C̃1.

In Case 1, B̃1 is activated due to the fault. The conditions of Theorem 5.3 hold.
Indeed, there exists a ITFMS satisfying the system specification as in Fig. 5.11(a)
e1e f 1e9e10e11e3e4. Assume that there is a time delay of 0.2s to detect this fault. The
ideal fault tolerant supervisor Sid enables events {e1,e2,e3,e4,e9,e10,e11,e f 1}, and
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Fig. 5.7 The hybrid automaton of the system
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Case 1 Case 2

Fig. 5.10 Abrupt change of the fingertip’s position
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Fig. 5.11 FTC performance
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Fig. 5.12 FTC performance

set Supdate = Sid . Fig. 5.11(b) shows the continuous state trajectory, it can be seen
that fault tolerance goal is achieved.

In Case 2, the conditions of Theorem 5.3 do not hold, which means that no se-
quence can satisfy the system specification. However, the conditions of Corollary
5.2 hold. There still exists one and only one ATFMS driving the system to the
marked state as in Fig. 5.12(a): e1e f 2e7e8e4, which can be considered as the most
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similar behavior to the ideal one. The acceptable fault tolerant supervisor Sa en-
ables events {e1,e2,e3,e4,e7,e8,e f 2}, and set Supdate = Sa. Fig. 5.12(b) shows the
continuous state trajectory, which implies that the fault tolerance goal is achieved
with an acceptable behavior.

5.2 FTC via Hybrid Petri Nets

This section proposes a novel FTC scheme for HS modeled by hybrid Petri nets
(HPNs). HPNs are widely used for modeling hybrid complex systems [21, 111]
e.g., autonomous manufacturing, traffic control, and chemical process. Such model
inherits all the advantages of the PNs model such as the ability to capture behaviors
including concurrency, synchronization and conflicts.

To the best of our knowledge, until now, only few attempts have been made to
FTC for HS modeled by HPNs such as [51], where the FTC goal is to prevent the
system from deadlock. However, fruitful results of diagnosis methods for PN can
be used as the basis of further FTC researches. In [7], an unfolding based diagno-
sis approach is provided for asynchronous discrete-event systems. A diagnoser is
given based on the concept of basis marking in [41]. An on-line diagnosis method
is proposed in [102], where the output information of marking has to be used. The
identification scheme developed in [24] relies on full observable events. The method
derived in [67] is based on marking variation and causality relationships. In [128],
the parity space method is extended to Petri net. In most of these works, it is assumed
that either the partial marking is measurable or initial marking is known, such that
the current marking just before faults occur can be calculated. Most recently, the
marking estimation from event observations with unknown initial marking has been
discussed in [39] and [40]. However, these works do not consider faulty behaviors.

The faulty behaviors considered in this work are represented in two forms:

- (F1) Faults produce unobservable and uncontrollable discrete transitions as in
[41, 67], which may violate timed-PN’s general mutual exclusion constraints
(GMEC) that is the basic requirement for system’s stability (the former defini-
tion of GMEC will be given later), or affect continuous PNs where the optimality
should be kept.

- (F2) Faults generate the normal discrete transitions that occur at abnormal time
as in [128], which do not violate GMEC, but affect the optimality of continuous
PNs.

The faults in continuous PNs, similar to the continuous faults defined in switched
system or hybrid automata (See chapters 2-4), will not be addressed in this section.

In this work, we propose a novel hierarchical FTC scheme which consists of two
parts: a FTC law in discrete PN and a reconfiguration rule in continuous PNs. The
main contributions are as follows:

1. An observer-based FD method is proposed for discrete timed-PN with unknown
initial marking and the known initial macromarking (defined later), which esti-
mates the unmeasurable marking in discrete place and meanwhile, diagnoses the
fault (F1).
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2. Based on the marking estimates, an adaptive FTC scheme is designed for timed-
PN with (F1) to maintain the GMEC. The general condition of controller design,
that imposes the GMEC is not affected by unobservable transitions, is relaxed.

3. FTC for faults (F2) and (F1) that do not violate GMEC in discrete timed-PN is
achieved in continuous PNs by adjusting the firing speed of continuous transi-
tions. Such FTC rule maintains the optimality of the system.

4. Finally, the proposed method is applied to an intelligent transportation system
consisting of automated vehicles on a bridge.

5.2.1 Model Setting

We first recall the HPNs formalism. The reader can find a more detailed presentation
of HPNs in [21, 111, 30, 31] and PNs in [89]. A HPN structure is the 5-tuple N =
(P,T,Pre,Post,h), where P is a set of m places, T is a set of n transitions; The set
of places P (resp. transitions T ) is split into two subsets: md discrete places PD

(resp. nd discrete transitions T D) and mc continuous places PC (resp. nc continuous
transitions TC), where m = md + mc, n = nd + nc.

Pre : P×T → {R
+,∀pi ∈ PC, or N,∀pi ∈ PD} that assigns a weight to any arc

between a transition t j and its input place pi, where R
+ denotes the set of posi-

tive real numbers, and N the set of natural numbers. Post : P× T → {R
+,∀pi ∈

PC, or N,∀pi ∈ PD} that assigns a weight to any arc between a transition t j and its
output place pi. The preset and postset of a node X ∈ P∪T are denoted •X and X•.

The marking of an HPN is the function M : P →{R
+,∀pi ∈ PC, or N,∀pi ∈ PD}

which assigns a nonnegative integer number of tokens to each discrete places and a
nonnegative real number to each continuous place.

The following two transition rules are considered:
Firing of discrete transitions: A discrete transition t ∈ T D is enabled, if M ≥

Pre(·,t) and may fire yielding M′ = M + C(·, t), where C(p, t) � Post(p, t)−
Pre(p,t), ∀p ∈ PD. Firing of t j ∈ T D lasts d j time units, where d j is a nonnegative
deterministic number. Denote M[ω〉M′ such that the enabled sequence of transitions
ω may fire at M yielding M′.

Firing of continuous transitions: A continuous transition t j ∈ TC is enabled if
M(p) ≥ Pre(p,t j),∀p ∈ •t j ∩PD, and M(p) ≥ 0,∀p ∈ •t j ∩PC. Note that t j is af-
fected by the discrete places of timed-PN if •t j ∩ PD �= /0 (this is consistent with
our application as shown later). Given two time instants τ and τ ′, the evolution
of the marking is given as M(p,τ) = M(p,τ ′) + ϑ(p, t,τ,τ ′), ∀p ∈ PC, where
ϑ(p,t,τ,τ ′) � ∑t j∈•p Postp,t j ·

∫ τ
τ ′ vt j (s)ds−∑tk∈p• Prep,tk ·

∫ τ
τ ′ vtk(s)ds, vt j and vtk de-

note the firing speeds of t j and tk at the time s respectively.
In general, both continuous and discrete transitions may have input and output

places that are either continuous or discrete. In this work, we suppose that all dis-
crete input places must also be output places, and vice-versa with arcs of the same
weight. The firing of a continuous transition cannot modify the marking of the dis-
crete part (This property will also be illustrated in our application).

Define two sets PDC = {p ∈ PD|∃t ∈ TC, p ∈ •t ∩ t•} and TCD = {t ∈ TC|∃p ∈
PD,t ∈ p• ∩ •p}. A place p ∈ PDC and a transition t ∈ TCD are related if p ∈ •t ∩ t•
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Fig. 5.13 A PN with the fault

(t ∈ p• ∩ •p). Note that PDC and TCD describe the relations between discrete part
and continuous part of the HPN.

As already described, the fault is defined as two sets Tf and T IME f , where
T D = TN ∪Tf , TN ∩Tf = /0 with TN the set of normal transitions, Tf the set of faults
(F1), that is the set of unobservable and uncontrollable discrete transitions. TIME f

denotes the set of faults (F2), such that the firing of normal transition in TN lasts
abnormal time denoted as d f . Fig. 5.13 shows a net with these two types of faults.

From a graphical point of view, discrete places are represented by circles, discrete
transitions are represented by thick bars ( thin bars denote the immediate discrete
transitions i.e., d = 0) whereas continuous places are represented by double circles
and continuous transitions are represented by boxes. Finally, the marking are repre-
sented by the dot in places.

Example 5.4 (Example 1.3 revisited): Recall the traffic flow control problem
shown in Fig. 1.4. The specification can be described as

P1 (stable): the AVs from different input roads never get into the bridge simul-
taneously. This is the basic requirement on the initial performance, which must be
guaranteed, otherwise the AVs may crash.

P2 (optimal): The AVs flow from different input roads keeps a safe distance with
others on the bridge as shown in Fig. 5.14. This is the optimal specification for the
safe purpose.

We consider the worst case where all input roads have infinitely long AVs flows.
The proposed method can be modified for the better case.

 safeD  safeD
 

1AV2AV3AV flow flowflow

Fig. 5.14 Segment of AVs flow on the bridge
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Fig. 5.15 HPN model of AVs transportation of the bridge

The fault considered in this system represents the abnormal behavior of the su-
pervising light, i.e. the logic lights do not work as prescribed. Under such fault, both
P1 and P2 may be affected. Note that P2 can be achieved in the presence of local
faults in AVs by adjusting the speed of AVs on-line as in [38, 99], where the problem
of online-speed adjustment has been intensively investigated, which is not addressed
in this work. We assume that, after an AVs flow from one input road accelerates to
a speed vnormal , it always keeps vnormal on the bridge.

The HPN model of the of AVs transporting process of bridge related to Fig.1.4
is shown in Fig.5.15, where a discrete PN illustrates the working process of super-
visory lights, and three continuous PNs model the AVs flows from different input
roads. A detailed description of places and transitions is given in Table 5.1. Com-
pared with the HPN model in [30, 31], red lights are considered in ours, which
is more suitable for fault modeling and FTC design. For more complicated traffic
networks as in [4, 25], coloured timed Petri nets can be used to model the vehicle
flows.

Note that the first and second parts of the bridge b f
i and bs

i are divided as in
Fig.1.4, where the length of the first part is equal to 3vnormal, i.e. the distance
that AVs pass through in the yellow period. In the healthy case, the initial speed
of AVs flows from ith input road is vi(τ) = min{ai(τ − τs

i ),vnormal}, where ai

is the accelerate speed and τs
i is the time when tb f

i starts firing. We assume that
ai = a, i = 1,2,3. Since the accelerating time is much less than green period, we fur-

ther have Dsa f e = 3vnormal +
v2

normal
2a . Moreover, vmax

i represents the maximal speed,

and Mb denotes the capacity of (b f
1 + bs

1), i.e. the full length of the bridge. From

physical point of view, b f
i and bs

i for i = 1,2,3 in Fig. 5.15 represent the same
bridge.
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Table 5.1 Places and transitions of the HPN in Fig.5.16

Place Meaning
gi green period of AVs flow from i th input road
yi yellow period of AVs flow from i th input road
ri red period of AVs flow from i th input road

b f
i the first part of the bridge from i th input road

bs
i the second part of the bridge from i th input road

Transition Meaning

tb f
i AVs flow get into the first part of the bridge

from ith input road
tbs
i AVs flow get into the second part of the bridge

from ith input road
tout
i AVs flow from ith input road gets out from the bridge

From Fig. 5.15, it is much more clear that the FTC objectives are :

1) (stability) To reconfigure the discrete timed-PN such that at each time, only one
green light is activated in the presence of faults (F1).

2) (optimality) To adjust the firing speed of tb f
i such that Dsa f e is kept in the pres-

ence of faults (F2).

To make the HPNs mode closer to our application, we impose the following
hypothesis throughout Section 5.2.

H1 (timed-PN). All t ∈ TN are controllable and observable. All t ∈ Tf are uncontrol-
lable and unobservable. ∀p ∈ PD, Pre(p, ·) = Post(p, ·). M(p) is unmeasurable.
The initial marking is unknown while the initial macromarking is known.

H2 (continuous PN). All t ∈ TCD are measurable with alterable firing speeds. All
t ∈ TC \TCD are measurable with fixed firing speeds. ∀p ∈ PC, M(p) is unmea-
surable. ∀X ∈ PC ∪TC, both •X ∩ (PC ∪TC) and X• ∩ (PC ∪TC) are singleton.

H3 (interconnection). For p ∈ PDC and t ∈ TCD that are related, Pre(p, t) =
Post(p,t), such that the firing of a continuous transition cannot modify the mark-
ing of discrete places.

5.2.2 FD and Marking Estimation

In this section, we consider the problem of FD and observer design in the level of
discrete timed-PN. If there is no additional remark, all the PNs, places and transi-
tions discussed in this section are related to the discrete PN.

Denote T S as the set of transition sequences, and T So the set of observable
transition sequences. Similarly to finite state machine formulation in [107], let
P : T S → TSo denote a projection operator that “erases” the unobservable transi-
tions in a transition sequence. The inverse projection operator is defined as

P
−1(y) = {s ∈ T S : P(s) = y}
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The diagnosability definition of finite state machine in [107] is extended to PN
as follows:

Definition 5.10. A PN is diagnosable with respect to t ∈ Tf , if ∃n ∈ N, and an ob-
servable transition sequence ω , such that ‖ω‖ ≥ n ⇒ t ∈ P

−1(P(ψ(t)ω)), where
ψ(t) denotes the observable sequence that is ended at t, ‖ω‖ is the length of the
sequence ω .

The above definition of diagnosability means the following: Let ψ(t) be any tran-
sition sequence that is ended at a fault t ∈ Tf , and let ω be any sufficiently long
continuation of ψ(t). t ∈ P

−1(ψ(t)ω) means that every transition sequence, that
produces the same record of observable transitions as the sequence ψ(t)ω , should
contain a fault in it. This implies that along every continuation ω of ψ(t), one can
detect the occurrence of a fault t with a finite delay (n steps).

Before giving the conditions of diagnosability, the following definitions are also
introduced.

Definition 5.11. Given a PN N, and a subset T ′ ⊆ T of its transitions, we define the
T ′-induced subnet of N as the new net N′ = (P,T ′,Pre′,Post ′) where Pre′ and Post ′
are the restriction of Pre,Post to T ′.

The net N′ can also be obtained from N by removing all transitions in T \T ′.

Definition 5.12. An induced subnet of an unobservable transitions subset of a PN
is acyclic if no oriented cycle of sequences in this PN occurs that contains only
unobservable transitions in this subset.

Definition 5.13. A PN is forward conflict (FC) if there exist two transitions which
have at least one common input place. A PN is backward conflict (BC) if there exist
two transitions which have at least one common output place. A PN is absolutely
conflict (AC) if it is both FC and BC.

We also say that a PN is forward (resp. backward) conflict free (FCF (resp. BCF))
if it is not forward (resp. backward) conflict.

Lemma 5.3. A PN is diagnosable with respect to t ∈ Tf , if

1) Tf -induced subnet is acyclic.
2) Tf -induced subnet Nf is not AC.
3) the initial marking M0(pb) = M0(pa) = 0, where pb ∈• t, pa ∈ t•.
4) •pa \ t do not fire before p•b \ t or p•a fire.
5) After one transition from •pb fired, •pb do not fire again before p•b fire.

Proof: From the graph point of view, there exist two transition sets •pb and p•a be-
fore and after t. Condition 3) implies that a transition tb ∈• pb must fire before t
since M0(pb) = 0. Condition 1) means that the occurrence of a fault must be inter-
connected with the firing of normal transitions. Under the condition 2), three cases
are considered as follows:
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Case 1: The Nf is FCF and BCF. Since Pre(p, ·) = Post(p, ·) from H1 and
M0(pb) = 0, Condition 5) implies that if ∃ρ ∈ p•b \ t fires, then t must not occur. On
the other hand, M0(pa) = 0, Condition 4) means that before we determined whether
the fault occurs or not, •pa \ t do not fire, i.e., M0(pa) do not change due to the firing
of •pa \ t. Thus t can be diagnosed once ta ∈ p•a fires.

Case 2: The Nf is FC and BCF. Several faults share one same input place. The
fault t may not be identified from tb, while a smaller region than Tf in which the
fault belongs to can be determined. The property of BCF ensures that t can still be
diagnosed once ta fires.

Case 3: The Nf is BC and FCF. Since each fault has one different input place, the
fault that may occur can be distinguished from tb. Although several faults share one
same output place, t can be diagnosed once ta fires. �

Remark 5.2. The conditions in Lemma 5.3 depend only on the observable transi-
tions, no information of marking is needed [139], while the marking information is
required in [102, 67, 128]. The diagnosis procedure derived in [41] also relies on
the observable transitions while the initial marking has to be known.

Remark 5.3. Lemma 5.3 guarantees that at most one fault from one input place
really occurs. Under Conditions 1)-5), the unique fault identification is always
achieved. Such diagnosability property is also available when several faults from
different places occur simultaneously. Checking 5) may require some external infor-
mation of macromarking (as shown in our application), if 5) is removed, multiple
faults may occur from one input place simultaneously, more restrictive conditions
need to be imposed.

The purpose of the observer design for discrete timed-PN is to provide the marking
estimates in discrete places in the presence of faults. The partial information of the
initial marking in discrete places is available in the form of macromarking defined
as follows.

Definition 5.14. Assume that the set of places PD can be written as the union of
r + 1 subsets: PD = P0 ∪P1 ∪ . . .∪Pr such that P0 ∩Pj = /0, ∀ j > 0. The number of
tokens contained in Pj( j > 0) is known to be b j, while the number of tokens in P0 is
unknown. For each Pj, let v j be its characteristic vector, i.e., v j(p) = 1 if p ∈ Pj, else
v j(p) = 0. Let V = [v1, . . . ,vr] and b = [b1, . . . ,br]. The macromarking is defined as

the set V (V,b) = {M ∈ N
md |V T M = b}.

The following definition describes consistent markings as in [39].

Definition 5.15. After the transition sequence ω has been observed, we define the
set of ω-consistent markings C (ω) = {M|∃M ∈ N

md
,M′[ω〉M} as the set of all

markings in which the system may be given the observed behavior and the initial
macromarking.

Denote χ(t) as the set of all transition sequences that t may follow, with t =
{t1,t2, ...,tq} ∈ Tf .
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Assumption 5.1. If ωi ∈ χ(t), then all the faults in t share the same input place.

Assumption 5.1 means that once the faults from one input place occurred and have
not been diagnosed, the faults from other input places do not occur. That is to say
we just take into account the possible faults from one input place before they are
diagnosed.

Based on the conditions in Lemma 5.3 and Assumption 5.1, the following algo-
rithm provides the marking estimates in the form of consistent markings iteratively
in spite of faults.

Algorithm 5.1. marking estimation with event observation, initial macromarking
and faults

1. Let the initial estimate Me
ω0

(p) = 0, the initial complementary estimates Mc
ω0

=
Me

ω0
.

2. Let the initial bound Bω0 = b−V T Me
ω0

, the initial complementary bound Bc
ω0

=
Bω0 .

3. Let i = 1.
4. Wait until tα i fires.

If for i ≥ 2, tα i ∈ t••j where t j ∈ Tf , then

Me
ωi−1

= Mc j
ωi , Bωi−1 = Bc j

ωi , go to 6.
end if.

5. If for i ≥ 2, ωi ∈ χ(t) then
Let M′

ωi
(p) = max{Me

ωi−1
(p),Pre(p, tα i)},

Let Me
ωi

= M′
ωi

+C(·,tα i), Bωi = Bωi−1 −V T · (M′
ωi
−Me

ωi−1
).

Let Mc j′
ωi+1(p) = max{Mc j

ωi(p),Pre(p, tα i)},

Let Mc j
ωi+1 = Mc j′

ωi+1 +C(·,tα i), Bc j
ωi+1 = Bc j

ωi −V T · (Mc j′
ωi+1 −Mc j

ωi), go to 9.
end if.

6. Let M′
ωi

(p) = max{Me
ωi−1

(p),Pre(p, tα i)}.

7. Let Me
ωi

= Mc
ωi

= M′
ωi

+C(·,tα i), Bωi = Bc j
ωi = Bωi−1 −V T · (M′

ωi
−Me

ωi−1
).

8. If ∃p̄ ∈ t•α i, and t1, . . . ,tq ∈ Tf , such that p̄ ∈• t j,(1 ≤ j ≤ q) then
For 1 ≤ j ≤ q
Let Mc j′

ωi+1(p̄) = max{Me
ωi

(p̄),Pre(p̄, t j)}.

Let Mc j
ωi+1 = Mci′

ωi+1
+C(·,t j), Bc j

ωi+1 = Bc j
ωi −V T · (Mci′

ωi+1
−Mc j

ωi)
End for.
Let Mc

ωi
=

⋃
Mc j

ωi , Bc
ωi

=
⋃

Bc j
ωi .

end if.
9. Let i = i+ 1, go to 4. �
Algorithm 5.1 extends the algorithm in [39] to the faulty case. Its novelty is the
utilization of complementary estimates. The main idea behind Algorithm 5.1, as
shown in Fig. 5.16, is that, when we predict that a fault may occur at next transition
(steps 8 and 5), we consider all the possible markings that may be reached under
this fault, which are recorded in the complementary marking estimate Mc

ω . When
we determine that the fault has occurred (Step 4), Mc

ω will be used to update the
marking estimate Me

ω . Otherwise, Me
ω will not be changed (steps 6 and 7).
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 M

 M

Fig. 5.16 Marking estimation of Algorithm 5.1

Now we analyze the computational complexity. Once a transition is observed,
Algorithm 5.1 not only updates Me

ω , Bω as the algorithm in [39], but also updates
complementary estimates Mc

ω and Bc
ω . The number of operations required depends

on how many times the for cycle in Step 8 is executed. Both the number of Mc
ω and

Bc
ω are q, the complexity is O(3×|q|).

Remark 5.4. Algorithm 5.1 can also be extended to the case of faults from multiple
input places. Suppose that there are N input places such that the faults from these
places may occur simultaneously, or before a fault is diagnosed, the faults from
other N − 1 input places may occur. Assume that the ith place may fire qi possible
faults, 1 ≤ i ≤ N. In this case, to consider all possible faults, (∏i∈[1,N](qi + 1)−1)

complementary marking estimates have to be used, the complexity becomes O
(

3×
(|∏i∈[1,N] q j + 1|− 1)

)
. In the following discussion, Assumption 5.1 always holds,

i.e., we only consider the case of faults from the single input place.

The set of consistent markings provided by Algorithm 5.1 is as follows.

Theorem 5.4. Supposed that Assumption 5.1 and Conditions 1)-5) in Lemma 5.3
hold. Consider a PN with initial macromarking V (V,b), an observed transition
sequence ωi, the fault transition t ∈ Tf , and Me

ωi
, Bωi Mc

ωi+1
, Bc

ωi+1
computed by

Algorithm 5.1. The set of ωi-consistent markings is

C (ωi|V,b) =
{

C1 if ωi �∈ χ(t)
C1 ∪C2, if ωi ∈ χ(t) (5.4)

where
C1 �

{
M ∈ Nmd |V T M = V T Me

ωi
+ Bωi ,M ≥ Me

ωi

}

C2 �
{

M ∈ Nmd |V T M = V T Mc j
ωi+1 + Bc j

ωi+1 ,M ≥ min
j
{Mc j

ωi+1}
}
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Proof: For the case ωi �∈ χ(t), i.e., no fault occurs, the proof is similar to [39], and
thus is omitted.

For the case ωi ∈ χ(t), we first consider that the Tf -subnet is FCF, i.e., only one
possible fault t may occur after ωi. In this case, ωi-consistent markings C (ωi|V,b)
should include the marking that may be reached under ωit. This can be provided by
Mc

ωi
and Bc

ωi
as follows.

Steps 6 and 7 in Algorithm 5.1 ensure Me
ωi

= Mc
ωi

and Bωi = Bc
ωi

before t oc-

curs. Let us show that C (ωi|V,b) = {M ∈ Nmd |V T M = V T Mc
ωi

+Bc
ωi

,M ≥ Me
ωi
}⇒

C (ωit|V,b) = {M ∈ Nmd |V T M = V T Mc
ωi+1

+ Bc
ωi+1

,M ≥ Me
ωi+1

}.
In fact,

C (ωit|V,b) = {M ∈ Nmd |∃M′ ∈ C (ωi|V,b),M′ ≥ Pre(·, t),M = M′ +C(·, t)}
= {M ∈ Nmd |∃M′,V T M′ = V T Mc

ωi
+ Bc

ωi
,

M′ ≥ Me
ωi

,M′ ≥ Pre(·, t),M = M′ +C(·, t)}

which together with the step 8 of Algorithm 5.1, leads to M′ ≥ Mc′
ωi

. We further have
from the step 8 that V T Mc

ωi
+ Bc

ωi
= V T Mc′

ωi+1
+ Bc

ωi+1
. Therefore,

C (ωit|V,b) = {M ∈ Nmd |∃M′,V T M′ = V T Mc′
ωi+1

+ Bc
ωi+1

,

M′ ≥ Me
ωi

,M = M′ +C(·, t)}
= {M ∈ Nmd |V T M = V T Mc

ωi+1
+ Bc

ωi+1
,M ≥ Me

ωi+1
}

For the case that the Tf -subnet is FC, it can be seen from the analysis above that
C (ω |V,b) defined in (5.5) includes all markings that may be reached by any fault
t j. Once we determined whether the fault occurs or not from Lemma 5.3, C (ω |V,b)
will be updated as in Algorithm 5.1, which always gives the set of all markings in
which the system may be given the observed behavior. This completes the proof. �

Some properties about the observer of Algorithm 5.1 can also be discussed similar
to [39].

Proposition 5.1. Let ωi be an observed transition sequence. Under Assumption 5.1
and Conditions 1)-5), the estimate computed by Algorithm 5.1 is a lower bound of
actual marking. i.e., ∀i,min{Me

ωi
,min j{Mc j

ωi+1
}} ≤ Mωi .

Proof: If ωi �∈ χ(t), it holds that Me
ωi
≤ Mωi , the proof is similar to [39], and thus is

omitted.
If ωi ∈ χ(t), we consider two cases:
Case 1: t j ∈ t really occurs. Before t j is diagnosed, according to Step 8 of Al-

gorithm 5.1, we can prove that min j{Mc j
ωi+1} ≤ Mωi using the result of [39]. Once

t j has been diagnosed, from Step 4 of Algorithm 5.1, we have Me
ωi

= Mc j
ωi+1 , which

further leads to Me
ωi

= Mc j
ωi+1 ≤ Mωi from [39].
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Case 2: t j ∈ t does not occur. Algorithm 5.1 guarantees that Me
ωi

is not affected
by the fault if it does not occur. Thus we obtain Me

ωi
≤ Mωi . �

Denote two positive numbers ε1 and ε2 such that, the sequence ωε1 may be followed
by the fault, and the sequence ωε2 determines whether the fault occurs or not. The
following proposition gives the estimating convergence property.

Proposition 5.2. Given Mωi and Me
ωi

, under Assumption 5.1 and Conditions 1)-
5), the estimation error e(Mωi ,M

e
ωi

) = ∑p∈PD(Mωi(p)−Me
ωi

(p)) has the following
property:

{
e(Mωi ,M

e
ωi

) ≥ e(Mωi+1 ,M
e
ωi+1

) for 0 ≤ i ≤ ε1 −1 and ε2 ≤ i
e(Mωε1

,Me
ωε1

) ≥ e(Mωε2
,Me

ωε2
) (5.5)

Proof: For 0 ≤ i ≤ ε1 − 1 and ε2 ≤ i, no fault may occur or we have determined
whether the fault occurs or not, following the same procedure as in [39], we can
prove that e(Mωi ,M

e
ωi

)≥ e(Mωi+1 ,M
e
ωi+1

), i.e., the estimation error is monotonically
nonincreasing. During the interval between the sequences ωε1 and ωε2 , Algorithm
5.1 leads to that Me

ωi
is not affected by the fault before we determine whether the

fault occurs or not. If the fault t j occurs and has been diagnosed, Me
ωi

is set to the

same as Mc j
ωi+1 . Note that Mc j

ωi+1 is updated according to t j, thus e(Mωε1
,Me

ωε1
) ≥

e(Mωε2
,Me

ωε2
). �

Algorithm 5.1 just relies on the observation of discrete transitions. Thanks to the
structure of HPNs defined in Section 5.2.1, the following algorithm shows that the
information of continuous transitions can help to estimate the marking in discrete
places.

Algorithm 5.2. marking estimation with additional observation of continuous tran-
sitions

1. Let the initial estimate Me
ω0

(p) = 0
If ∃t̄ ∈ TCD related to p̄ ∈ PDC is firing, then
Let Me

ω0
(p̄) = Pre(p̄, t̄)

end if.
Let the initial complementary estimates Mc

ω0
= Me

ω0
.

2. Let the initial bound Bω0 = b−V T Me
ω0

, the initial complementary bound Bc
ω0

=
Bω0 .

3. Let i = 1.
4. Wait until tα i fires.

If for i ≥ 2, tα i ∈ t••j , then

Me
ωi−1

= Mc j
ωi , Bωi−1 = Bc j

ωi , go to 6.
end if.

5. If for i ≥ 2, ωi ∈ χ(t) then
Let M′

ωi
(p) = max{Me

ωi−1
(p),Pre(p, tα i)}, Me

ωi
= M′

ωi
+C(·, tα i),

Let Mc j′
ωi+1(p) = max{Mc j

ωi(p),Pre(p, tα i)}, Mc j
ωi+1 = Mc j′

ωi+1 +C(·, tα i),
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If ∃t̄ ∈ TCD related to p̄ ∈ PDC fires, then
Let Me

ωi
(p̄) = max{Me

ωi
(p̄),Pre(p̄, t̄)}, Mc j′

ωi+1(p̄) = max{Mc j′
ωi+1(p̄),Pre(p̄, t̄)},

end if.
Let Bωi = Bωi−1 −V T · (M′

ωi
−Me

ωi−1
), Bc j

ωi+1 = Bc j
ωi −V T · (Mc j′

ωi+1 −Mc j
ωi), go to 9.

end if.
6. Let M′

ωi
(p) = max{Me

ωi−1
(p),Pre(p, tα i)}.

7. Let Me
ωi

= Mc
ωi

= M′
ωi

+C(·,tα i), Bωi = Bc j
ωi = Bωi−1 −V T · (M′

ωi
−Me

ωi−1
).

8. If ∃p̄ ∈ t•α i, and t1, . . . ,tq ∈ Tf , such that p̄ ∈• t j,(1 ≤ j ≤ q) then

Let Mc j′
ωi+1(p̄) = max{Me

ωi
(p̄),Pre(p̄, t j)}.

Let Mc j
ωi+1 = Mci′

ωi+1
+C(·,t j), Bc j

ωi+1 = Bc j
ωi −V T · (Mci′

ωi+1
−Mc j

ωi)
Let Mc

ωi
=

⋃
Mc j

ωi , Bc
ωi

=
⋃

Bc j
ωi .

end if.
9. Let i = i+ 1, go to 4. �

Algorithm 5.2 provides the set of ωi-consistent markings in the same form as (5.5),
which, however, is more accurate than, or at least as accurate as that computed by
Algorithm 5.1, since in Algorithm 5.2, the observation of continuous transitions may
increase Mω which is closer to the actual marking.

5.2.3 FTC Design

We first give the definition of generalized mutual exclusion constraints (GMEC) for
discrete timed-PN that had been considered in [40, 85, 53].

Definition 5.16. Given an integer matrix L = [l1 . . . ls] with l j ∈ Z
md

and an integer
vector k = [k1, . . . ,ks] with k j ∈ Z, a GMEC of the discrete timed-PN (L,k) defines

the set of legal markings L = {M ∈ N
md |LT ·M ≤ k}.

For the two FTC objectives of our application described in Section 5.2.1, i.e. stabil-
ity and optimality, we consider three sets of markings:

A set of forbidden markings F = {M ∈ N
md |M �∈ L }.

A set of ideal markings Li that is optimal for system’s normal operation.
A set of unideal markings Lu that is non-optimal for system’s normal operation.

It is clear that Li ∩Lu = /0, F ⊆ Lu. Forbidden markings violate L , which
must be prevented from being reached (e.g., in the AVs transportation process, no
more than one green light can be activated simultaneously). The FTC for such for-
bidden markings is designed at timed-PN level. Unideal markings may affect the
performance of continuous PNs, the related FTC problem will be considered at con-
tinuous PNs level.

Before an adaptive FTC scheme is designed for time-PN, the following assump-
tion is given.

Assumption 5.2. The initial actual marking in discrete places M0 ∈ L .
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Note that Assumption 5.2 is quite general, if the initial situation violates the GMEC,
the system would be destroyed at the beginning.

Algorithm 5.3. Computation of the PN based FTC law using observer

1. Given the observed ωi, solve for each j(1 ≤ j ≤ s) the IPP
⎧
⎪⎪⎨

⎪⎪⎩

maxLT
j ·M

s.t.
M ∈ C (ωi|V,b)
M ∈ L

(5.6)

and let h j be its optimal solution.
2. Update the FTC controller with

{
Cc j = −LjC
Mc j = k j −h j

(5.7)

where Cc j and Mc j denote the row j of the incidence matrix and the element j of
markings of the controller.

3. Let i = i+ 1, go to 1. �
Remark 5.5. Compared with the logical control design in [40] and [50], the control
law (5.7) is based on place invariants [85], which is updated based on the consistent
markings of the observer at each time when a normal discrete transition fires, and
disables some controllable discrete transitions such that F is never reached, and
does not require separate computation as in [50].

Theorem 5.5. Supposed that Assumptions 5.1, 5.2 and Conditions 1)-5) in Lemma
5.3 hold. The controller (5.7) guarantees that F is never reached in spite of fault
t ∈ p•, if

Mωit j ∈ L ,∀t j ∈ p• (5.8)

Proof: Since M0 ∈ L from Assumption 5.2, and the fault does not occur as the first
transition from Lemma 5.3, based on the result in [85], the controller (5.7) ensures
that Mω1 ∈ L .

As for i ≥ 2, assume that t may follow ωi, condition (5.8) guarantees that once
a fault from input place p occurs, the GMEC is still not violated. On the other
hand, under Assumption 5.1, only the faults from one input place is considered
before it is determined to occur or not. So the controller (5.7) only disables the
controllable normal transition rather than the fault transitions at each step. From
Theorem 5.4, C (ωi|V,b) includes all markings that may be reached by possible
faults after observed ωi, which together with the result in [85], leads to that F is
never reached in spite of faults. �

Remark 5.6. The condition (5.8) is less restrictive than the general condition in
most literature ( see for instance [85],[53]), where L ·C(·, tuo) = 0, i.e., the unob-
servable transition tuo ∈ Tuo can not change the markings in places that are related
to the GMEC. Our method can be applied even if L ·C(·, t) �= 0 for t ∈ Tf as shown
in the application.
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If Tf -subset is FC, i.e. some faults share the same input discrete place, then
C (ωi|V,b) has to include more possible markings, which would lead to more re-
strictive controller. The following result can help to analyze the permissiveness of
the controller.

Proposition 5.3. Suppose that the conditions in Theorem 5.5 hold. Let C (ωi)FC,
C (ωi)FCF be two sets of ωi-consistent markings under FC and FC free Tf -subsets
respectively, and the same observable subset. The controller (5.7) based on
C (ωi)FCF is at least as permissive as that based on C (ωi)FC.

Proof: For all ωi, Theorem 5.4 implies that C (ωi)FCF ⊆ C (ωi)FC, it follows that
h jFCF ≤ h jFC, where h jFCF and h jFC denote the solutions of Algorithm 5.3 with
C (ωi)FCF and C (ωi)FC respectively, which, together with (5.7), leads to Mc jFCF ≤
Mc jFC i.e., the marking in control places under C (ωi)FCF is equal to or less than
that under C (ωi)FC. Based on the result in [85], it holds that more controllable
transitions may be disabled under C (ωi)FC. This completes the proof. �

Remark 5.7. The observer-based controller may be more restrictive than that ob-
tained when the actual marking is known, which may lead to a deadlock, under such
case, the concept of Siphon can be used to prevent the PN from the deadlock as in
[51],[40] and [53].

Even the GMEC L is satisfied, the unideal markings may affect the optimality of
the continuous PN, e.g., in our transportation system, this corresponds to the case
where lights do not switch following the prescribed sequence, such that before the
flow from one input road completely passes through the first part of the bridge,
the flow from another input road gets in, this makes the distance between vehicles
less than Dsa f e. We discuss the FTC problem at the level of continuous PN in this
section.

The reconfiguration of continuous PN is achieved by adjusting the firing speed of
transitions t ∈ TCD as shown in the following algorithm. Two time instants τs

i and
τe

i denote respectively, when the transition ti starts firing and ends firing.

Algorithm 5.4. Reconfiguration of continuous PN using observer

1. Given the current time instant τ0.
If the transition t1 ∈ TCD starts firing at τ0 then
Find the transition t2 ∈ TCD that fired most recently, capture the time information
(τ••2 )s, (τ••2 )e, go to 2
else, go to 5.
end if.

2. If (τ••2 )e ≤ τ0 then
Go to 3,
else go to 4,
end if.

3. If the equations { 1
2 a · (t ′)2 + at ′t ′′ = Mb −Dsa f e

t ′ + t ′′ = Mb−v2·d f
i

v2
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have the positive solutions t ′ and t ′′, then
Set the firing speed v1(τ) = min{a(τ − τ0),at ′,vmax

1 },
else set v1(τ) = min{a(τ − τ0),vmax

1 }
end if, go to 5.

4. Let v1 = 0 until the firing of t••2 ends. Then let v1(τ) = min{a(τ − (τ••2 )e),v2}
after the time τ = (τ••2 )e.

5. Go to 1. �

Algorithm 5.4 can always be applied without consideration whether there is a fault
or not. For the faulty status that makes the distance larger, Step 3 accelerates the
firing speed v1 such that the distance converges to Dsa f e. On the other hand, for the
status that shortens such distance, Step 4 sets v1 to zero until t••2 end firing. These
two schemes guarantee the optimality of continuous PN related to our application.

Example 5.4 (continued): Now we apply the proposed method to the intelligent
transportation process of AVs on the bridge. Let us come back to the HPN model in
Fig. 5.15. It can be obtained that L = {M ∈ N

12|M(g1)+M(g2)+M(g3)≤ 1}, i.e.,
only one green light can be activated at one time. Li = {M ∈ N

12|M(gi)+ M(r j)+
M(rh) = 3,M(yp)+ M(rq)+ M(rm) = 3, i �= j �= h, p �= q �= m, with the green light
sequence g1 → g2 → g3 → g1, and dg

i = 57s,dy
i = 3s,dr

i = 120s}, this means that if
one green light or one yellow light is activated, the other two should be red lights.
We also suppose that if more than one green light can be activated simultaneously,
the green light that satisfies the ideal marking set is chosen to avoid the conflict. In
the simulation, the firing speed is vnormal = 8m/s, the acceleration of each AVs flow
at beginning is a = 2m/s2, the length of the bridge is 4855m.

Let us first consider the faulty-free case to show the performance of observer-
based controller. The macromarking is

⎧
⎨

⎩

M(g1)+ M(y1)+ M(r1) = 1
M(g2)+ M(y2)+ M(r2) = 1
M(g3)+ M(y3)+ M(r3) = 1

(5.9)

The initial marking is

M(g1)M(y1)M(r1)M(p1)M(g2)M(y2)M(r2)M(p2)M(g3)M(y3)M(r3)M(p3)
= (100000100010)

which is unknown. The system is initialized when t p f
1 fires, i.e., the AVs flow from

the first input roads is getting into the bridge. The firing of t p f
1 can help to estimate

the marking. Fig. 5.17 shows the evolution of the estimation based on Algorithm
5.2, which shows that the estimate is the low bound of actual marking, and equal to
the actual marking after t6 fires, which verifies propositions 5.1 and 5.2. The Fig.
5.18 shows the controller designed from Algorithm 5.3. In the healthy case, the
marking always belongs to Li. Fig. 5.19 illustrates the AVs flows on the bridge,
where the accelerating behavior is not reflected. We can see that the AVs flows from
three input roads keep the prescribed distance Dsa f e = 40m with each other.
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Fig. 5.19 The AVs flow on the bridge in the healthy case
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Fig. 5.21 Marking estimation in the faulty case 1

The following 4 faulty cases are simulated:

Case 1: ∃t1
f ∈ Tf as shown in Fig. 5.20. In this case, after t2 fired, more con-

sistent markings have to be provided. Note that Assumption 5.1 is satisfied, since
after t2 fired, t2 is impossible to fire again before t9 or t1

f fires. If t1
f really oc-

curs, it can be diagnosed once t2 fires as shown in Lemma 5.3. Fig. 5.21 shows
the marking estimation which illustrates Algorithms 5.1, 5.2, one complementary
marking estimate is required. After t2 fires, the marking estimate is updated by
the complementary estimate. Propositions 5.1 and 5.2 can also be verified, in-
deed, min{Me

ωi
,Mc

ωi+1
} ≤ Mωi , for 1 ≤ i ≤ 5, and e(Mωi ,M

e
ωi

) ≥ e(Mωi+1 ,M
e
ωi+1

)
for 0 ≤ i ≤ 2, e(Mω3 ,M

e
ω3

) = e(Mω5 ,M
e
ω5

). If t9 fires before t2, then it is determined
that t1

f does not occur. The fault tolerant controller after t2 fired is also given in Fig.

5.20, which ensures that t1
f does not violate the GMEC. Even t1

f and t3 fire simulta-
neously, GMEC is still maintained.
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Fig. 5.24 The AVs flow on the bridge in the faulty case 3

Case 2: ∃t1
f ,t

2
f ∈ Tf as shown in Fig. 5.23. Note that LC(·, t2

f ) �= 0, which vi-
olates the condition in [85] and [53]. Two complementary marking estimates are
required. The Tf -subnet is FC since t1

f and t2
f share the same input place r1. How-

ever, the controller after t2 fired, shown in Fig. 5.22 is less permissive than that in
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Fig. 5.25 The AVs flow on the bridge in the faulty case 4

Case 1. Due to possible fault t2
f which may activate g1, the controller must disable t3,

i.e., the green light g2 can not be activated. This verifies the Proposition 5.3. In fact,
under t2

f , the system gets deadlock unless t2
f really occurs.

Case 3: ∃t1
f ∈ Tf which occurs at 87s, as in Fig. 5.23, the controller after t3 fired,

shown in Fig. 5.25 is the same as in Case 1, since L will not be violated. However,
the performance of the continuous PN is affected. According to Algorithm 5.4, set
the firing speed of tb f

3 to zero until the time tbs
2 stops firing. Fig. 5.24 shows the

AVs flows on the bridge, from which we can see that the prescribed distance is
still kept.

Case 4: ∃t1
f ∈ T IME f such that dy

2 = 8, i.e., the firing of t5 lasts 8s. Such fault
also affects the continuous PN. After the first part of the bridge becomes empty,
the AVs flow from the 3th input road still stops and does not get into the bridge.
According to Algorithm 5.4, we could accelerate the firing speed of tb f

3 as at ′ =
8.066m/s to accommodate this fault, the AVs flows are presented in Fig. 5.25, where
the distance between AV2 and AV3 converges to Dsa f e, and finally equals Dsa f e when
AV1 completely leaves the bridge.

5.3 Conclusion

In this Chapter, we have provided a new clue to investigate FTC problem of hybrid
systems, that is from discrete event point of view. It has been shown that whatever
the finite state machine or Petri net mode is used, discrete faults can be accom-
modated effectively, The continuous system theories described in chapters 2-4 are
limited to deal with such kind of faults.

In Section 5.1, the continuous faults can also be considered qualitatively in the
QA of the proposed hierarchical model. The sign of the vector field would change
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due to continuous faults, fault tolerance analysis could be done by rebuilding the
continuous transition sequence, and checking whether the designed discrete switch-
ing sequence is available for the reconstructed system.

In Section 5.2, the FTC design that deals with faults in both discrete and continu-
ous PNs is still an open problem. In this case, the continuous system theory could be
extended under the continuous Petri net framework, which combines the proposed
results in this chapter could provide a solution to such problem.



Chapter 6
Hybrid Control Approach in FTC Design

The potential faults in a system often range over a very large region. A single con-
troller (even an adaptive one) is hard to stabilize all faulty situations effectively.
However, hybrid control approach can significantly improve the FTC performances
including robustness, the speed of response, and optimality, etc. In this chapter, we
apply the results of HS proposed in Section 2 to hybrid control design in the FTC
system. Three supervisory FTC algorithms are developed. Finally, A four-wheel-
steering and four-wheel-driving electric vehicle in LAGIS laboratory is particularly
focused on whose actuator faults are analyzed systematically and the hybrid fault
tolerant tracking control approach is applied.

6.1 Supervisory FTC via Hybrid System Approaches

Hybrid control seeks to achieve system’s performance objectives by switching be-
tween members of an a priori specified family of feedback controllers. One of the
motivations of HS research arises from the hybrid control problem. HS could present
different control configurations. Commutation from one configuration to another
one is described using discrete event system model as claimed in [117, 93, 94, 131].
Thus the controlled system becomes hybrid due to the switching control.

The potential faults in a system often range over a very large region. A single con-
troller (even an adaptive one) is hard to stabilize all faulty situations effectively. The
supervisory FTC approach assumes that the plant model belongs to a pre-specified
set of models, including the nominal situation and all possible faulty situations, and
that there exists a finite family of candidate FTC laws controllers such that the faulty
system is stabilized when controlled by at least one of those candidate controllers.

Consider the general nonlinear system

ẋ(t) = G(x(t),u(t), f (t)) (6.1)

y(t) = H(x(t), f (t)) (6.2)

with measurable states x ∈ X ⊂ ℜn, inputs u ∈ U ⊂ ℜp, outputs y ∈ Y ⊂ ℜm.
Process and/or actuator and/or sensor faults are represented by the function

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 149–179.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 6.1 FTC framework

f ∈ F =
⋃

i∈Q={1,...,M}Fi ⊂ ℜq and Fi is the set of fault vectors that are asso-
ciated with fault mode number i and fault free operation is fault mode FM = {0} .
Both G and H are smooth functions.

The classical supervisory FTC approach follows three steps [117]: 1) Detect the
occurrence of faults; 2) Identify the current fault mode; 3) Switch to the related
controller as shown by Fig. 6.1(a). This scheme obviously introduces a FDI delay
to identify the current fault mode. During this delay, the faulty system is controlled
using an inappropriate controller, which may result in an unstable behavior.

In our proposed schemes in this section, a sequence of controllers are switched,
until the appropriate one is found (Fig. 2(b)). A delay in selecting the correct con-
troller (selection delay) still exists, but no isolation algorithm is required (only fault
detection is needed), which makes the scheme simpler and more easily verifiable.
Moreover, this selection delay can be controlled, and conditions for the state to re-
main bounded during this delay can be exhibited.

The novelty of the proposed approaches in this section is twofold:

1) The states are ensured to be bounded during the FDI delay and the functionality
of the system is preserved throughout the FDI/FTC process.

2) Unlike the multiple model FDI /FTC method [153, 12] or supervisory control
technique [149], we do not need a series of models or filters to work concurrently
with the plant in order to identify the current situation. The proposed methods
only rely on a simple switching scheme among candidate controllers.

6.1.1 FTC via Overall Regulation

We first apply the overall regulation theories in Section 2.2 to supervisory FTC
design. Consider the system (6.1)-(6.2) with the fault and regulated error defined as

ḟi(t) = Si( fi(t)), ∀i ∈ Q, ∀t ≥ t f , with fi(t) = 0 ∀t ∈ [0, t f ) (6.3)

e(t) = y(t)− yr(x(t)) (6.4)

Supposed that Si is neurally stable. The initial fault value fi(t f ) are assumed to be
known as a constant f(in)i.
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Assumption 6.1. There exists a family of controllers ui = αi(x, fi) for fi ∈Fi, i ∈ Q
solving the fault tolerant regulation problem (FTRP) for system (6.1)-(6.4).

Assumption 6.1 means that the FTRP of the plant with each fault is solvable under
a candidate controller.

Now we consider fault detection problem. Recall the materials in Section 2.2. It
can be seen from Theorem 2.3 and Assumption 6.1 that under the FTC law ui, the
system (6.1)-(6.3) with fi has a center manifold x = πi( fi) [55]. We further obtain
that the equilibrium (x, fi) = (0,0) of system (6.1) and (6.3) is stable and this center
manifold is locally attractive, i.e.,

|x(t)−πi( fi(t))| ≤ Bie
−ai(t−tik)|x(tik)−πi( fi(tik))| for Bi,ai > 0 (6.5)

where tik denotes the time at which controller ui(t) is applied for the kth time.
The following assumption means that all modes are discernable.

Assumption 6.2. Inequality (6.5) does not hold if the system (6.1)-(6.3) is controlled
by u j, ∀ j ∈ Q\ {i}.

Consider a time window where the control law ui and the fault fi are in adequacy,
therefore (6.5) holds, and a simple fault detection law is given

|x(t)−πi( fi(t))| > Bie
−ai(t−tik)|x(tik)−πi( fi(tik))| =⇒ detection (6.6)

Proposition 6.1. Under assumptions 6.1 and 6.2, the fault detection law (6.6) is
implementable.

Proof: Note that the state is measurable. Without loss of generality, suppose that
there is no fault at the beginning of the system process. The healthy system (6.1)-
(6.3) with i = 0 is controlled by u = α0(x,0). According to Assumption 6.1 and
(6.5), we have

|x(t)| ≤ B0e−a0t |x(0)|, t ≥ 0 (6.7)

Once a fault occurs at t = t f , Assumption 6.2 ensures that (6.7) is violated. The
following inequality holds

|x(t f d)| > B0e−a0t f d |x(t f d)| (6.8)

where t f d ≥ t f , thus the fault can be detected using the detection law (6.6) at t = t f d .
Note that x is still bounded at t = t f d .

Next consider t ≥ tik at which the system (6.1)-(6.3) has the fault fi and is con-
trolled by u = αi(x, fi) (the accurate value of fi can be approximated via the pro-
posed supervisory FTC scheme as shown later). Inequality (6.5) holds for t ≥ tik.
Once a fault occurs at t = t f ≥ tik, we can also find a t f d ≥ t f such that (6.5) is vio-
lated for t ≥ t f d , which implies that the fault can be detected using (6.6) at t = t f d .
This completes the proof. �

The fault detection may have a short time delay t f d − t f . Due to the time varying
threshold, t f d − t f is often much shorter than the activating period of the mode.
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The effect of this delay is acceptable in the practical situation. In the following
discussion, we assume that there is no fault detection delay, i.e., t f d = t f .

We propose a novel fault isolation method based on control switching. Since a se-
ries of controllers have been designed a priori for the plant with different faults, the
fault isolation problem boils down to the problem of finding the correct controller.
Such fault isolation approach also integrates the FTC problem, since the correct
controller can be directly applied.

Define σ(t) : [0,∞) → Q as the switching function of the candidate controllers,
which is assumed to be a piecewise constant function continuous from the right.
Denote by t0,t1,t2, ... the switching instants of σ(t). These notations will also be
used in sections 6.1.2-6.1.3. To exhaustively span all controllers, we will pick a
non-repeated switching sequence of controllers as in the following definition.

Definition 6.1. A switching sequence of controllers is said to be non-repeated if
σ(ti) �= σ(t j) for i ≥ 0, j ≥ 0, and i �= j.

Theorem 6.1. Consider a system (6.1)-(6.4), and a family of controllers ui satisfying
assumptions 6.1, 6.2. Suppose that a fault f ∈ Fι , ι ∈ Q occurs and is detected
simultaneously at t = t f via the threshold (6.6), then there exists a control switching
scheme such that the FTRP of system (6.1)-(6.4) is solvable ∀t ≥ t f .

Proof: Choose a constant β > 1. The switching law is designed as:

Algorithm 6.1. Switching law of the controllers

1. Denote t0 = t f ; Let s = 0; Define Q� � Q−{σ(t f )}; Set σ(t0) = i� where

i� = argmin
i∈Q�

(
y(t0)− yr(πi( f̂i(t0)))

)
(6.9)

with f̂i the fictitious fault generated from the system ˙̂f i = Ŝi( f̂i) with the function
Ŝi(·) = Si(·), the initial f̂i(t0) = f(in)i.

2. Choose t1+s such that

|x(t1+s)−πi�( f̂i�(t1+s))| ≤ M−1
√

β |x(ts)−πi�( f̂i�(ts))| (6.10)

If |x(t1+s)−πi�( f̂i�(t1+s))| ≤ Bi�e−ai� (t−ts)|x(ts)−πi�( fi�(ts))|
then apply the controller uσ(ts)(t) ∀t ≥ t1+s; Stop the switching.
else, go to 3.

3. Let Q� = Q�−{σ(ts)}; Set σ(t1+s) = i� where

i� = argmin
i∈Q�

(
y(t−1+s)− yr(πi( f̂i(t−1+s)))

)
(6.11)

Apply the controller uσ(t1+s)(t) at t = t1+s; Let s = s+ 1; Go to 2. �

We shall prove that Algorithm 6.1 solves the FTRP.
Note that the performance driven switching sequence obtained from (6.9) and

(6.11) is non-repeated, since at each switching instant, the next controller is selected
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from the set Q� where the uncorrect controller activated before has been removed
(Step 3). Thus at most M−1 switchings occur before the controller uι(t) related to
f ∈ Fι is applied. We consider the worst situation that σ(tM−2) = ι . The results in
other situations are obtained straightly.

Because the function Ŝi(·) = Si(·), the initial f̂i(t0) = f(in)i, and the fault detection
delay is not considered, there must be one fictitious fault signals f̂i which is the same
as the real fault signal fi. Note that β > 1 and control mode σ(t0) is faulty, according
to Assumption 6.2, we can choose t1 > t0 such that (6.10) holds with s = 0.

Since σ(tM−2) = ι , it holds that f̂σ(tM−2) = fσ(tM−2). By induction, we can obtain
for t ≥ tM−1

|x(t)−πσ(tM−2)( fσ(tM−2)(t))|
≤ β Be−a(t−tM−2)|x(t0)−πσ(t0)( f̂σ(t0)(t0))|

+Be−a(t−tM−2)
M−1

∑
s=1

(
β

s
M−1 |πσ(tu

M−1−s)
( f̂σ(tM−1−s)(tM−1−s))

−πσ(tM−s)( f̂σ(tM−s)(tM−s))|
)

(6.12)

Inequality (6.12) means that x−πσ(tM−2)( fσ(tM−2)) converges to zero ∀t ≥ t f . It fol-
lows that limt→0 e(t) = 0. �

Remark 6.1. Under Algorithm 6.1, the switching stops after a finite time. As-
sumption 6.2 could be loosened as inequality (6.5) still holds under non-relevant
controllers. In this case, the FTRP of one faulty plant can be solved by multiple
candidate controllers. Less switching numbers are required, and the controller that
terminates Algorithm 6.1 maybe not relevant to the current situation. This means
that the fault is not isolated accurately. However the FTC goal is still achieved.

Remark 6.2. The transient behavior during the controller setting delay largely de-
pends on the value of β . A large β may result in a large overshoot, whereas a small
β would make the controllers switch too fast, which may lead to some unexpected
phenomena. Section 6.1.3 makes some discussions about this point. Optimal selec-
tion of β is still an open problem that deserves further investigation.

Example 6.1: A DC motor investigated in [116] is employed to illustrate a potential
application field of our approach. x = [θm, ωm]T is the state, where θm, ωm denote
the angular position and velocity of the motor. The system model is:

θ̇m = ωm

ω̇m = −κe

Jm
sin(θm)− b

Jm
ωm +

c
Jm

u

y = θm + f1 (6.13)

e = y− yr = y−2θm = −θm + f1
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where Jm denotes the inertia of the motor. κe > 0 is the elasticity constant. u is the
voltage. b and c are the related viscous friction coefficients and the amplifier gain.
f1 denotes the sensor fault.

In the fault-free case, design the controller u = K(x) = Jm
c

(
κe
Jm

sin(θm)+ b
Jm

ωm +

K1θm + K2ωm

)
such that the matrix

[
0 1

K1 K2

]

is Hurwitz. This leads to the asymp-

totical stability of the origin x = 0.
For the sake of clearness, we denote (·)(i) as the parameter of mode i. Three

sensor faulty cases are considered as follows which result in a deviation of the output
signal from normal:

f(1) : y = θm + f1 (6.14)

f(2) : y = θm + 2 f1 (6.15)

f(3) : y = θm + 4 f1 (6.16)

where f1 is generated by the following exosystem
{

ḟ1 = f2

ḟ2 = − f1
(6.17)

Choosing a mapping x = π(1)( f ) =
[

π(1)1( f )
π(1)2( f )

]

=
[

f1

f2

]

leads to

∂π(1)1( f )
∂ t

= π(1)2( f )

∂π(1)2( f )
∂ t

= −κe

Jm
sin(π(1)1( f ))− b

Jm
π(1)2( f )+

c
Jm

C( f )

0 = y(π(1)( f ))− yr(π(1)( f )) (6.18)

where C(1)( f ) = Jm
c

(
κe
Jm

sin(π(1)1( f ))+ b
Jm

π(1)2( f )−π(1)1( f )
)

. We can design the

fault tolerant regulation law for fault mode 1 as

u(1) = α(1)(x, f ) = C(1)( f )+ K(x)−K(π(1)( f )) (6.19)

It is clear that controller (6.19) solves the FTRP.

Similarly, we choose two mappings π(2)( f ) =
[

2 f1

2 f2

]

, π(3)( f ) =
[

4 f1

4 f2

]

, design

C(2)( f ) =
Jm

c

(κe

Jm
sin(π(2)1( f ))+

b
Jm

π(2)2( f )−π(2)1( f )
)

C(3)( f ) =
Jm

c

(κe

Jm
sin(π(3)1( f ))+

b
Jm

π(3)2( f )−π(3)1( f )
)



6.1 Supervisory FTC via Hybrid System Approaches 155

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t/s

threshold
|x|

Fig. 6.2 Fault detection

The FTC law can be provided as

u(2) = α(2)(x, f ) = C(2)( f )+ K(x)−K(π(2)( f )) (6.20)

u(3) = α(3)(x, f ) = C(3)( f )+ K(x)−K(π(3)( f )) (6.21)

Controllers (6.20) and (6.21) solve the FTRP for fault modes 2 and 3 respectively.
Assumption 6.1 is verified.

In the simulation, the parameters are Jm = 0.935 kgm2, b = 1.17 Nms/rad, κe =
0.311 Nm/rad, c = 20.196 Nm/V . Assume that f(1) occurs at t = 3s, and Algorithm
6.1 is applied. Fig. 6.2 shows that the fault f(1) is detected at nearly t = 3s using
threshold (6.6). We choose β = 1.5. The non-repeated switching sequence obtained
from (6.38) and (6.40) is u(2) → u(1). The dwell period of u(1) is 0.245s; Once the
fault is detected at t = 3s, u(2) is applied, then switch to u(1) at t = 3.245s. f(2)
is assumed to occur at t = 8s. Fig. 6.3 shows the trajectories of the states and the
regulated error, which means that the FTRP is solved.

6.1.2 FTC via Global Dissipativity

In this section, we extend the global passivity concept developed Section 2.4 and
apply it to the supervisory FTC design.

Definition 6.2. [14] A system (6.1)-(6.2) with f ≡ 0 is dissipative if there exists
a nonnegative function V : X → ℜ, which satisfies V (0) = 0, called the storage
function, and a supply rate W (y,u), such that for all initial states x(0) ∈ X, u ∈U,
y ∈ Y and t ≥ 0
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V (x(t))−V(x(0))
︸ ︷︷ ︸

stored energy

≤
∫ t

0
W (y(s),u(s))ds

︸ ︷︷ ︸
supplied energy

(6.22)

where x(t) are the states at time t.

Definition 6.2 is more general than Definition 2.6. Similarly to assumptions 6.1 and
6.2, the following assumption ensures the recoverability of each fault mode and
discernability of all modes.

Assumption 6.3. There exist a family of functions Vi(x) ∈ C 1(ℜn;R≥0) and func-
tions α i

1,α
i
2 ∈ K∞, φ i

1 < 0, and φ i
2 ≥ 0 such that

∀i ∈ Q : α i
1 (|x|) ≤Vi(x) ≤ α i

2 (|x|) (6.23)

u = ui(t) =⇒
{

f ∈ Fi : Vi(x(t))−Vi(x(tik)) ≤
∫ t

tik
φ i

1(s)ds
f ∈ F j, j �= i : Vi(x(t))−Vi(x(tik)) ≤

∫ t
tik

φ i
2(s)ds

(a)
(b) (6.24)

Remark 6.3. Assumption 6.3 explicitly addresses the behavior of the plant under
the correct controller (u = ui(t) when f ∈Fi ) or incorrect ones (u = ui(t) when f ∈
F j, j �= i ). For faults f ∈Fi, the controller ui(t) makes the plant still dissipative, as
it can be seen from (6.24)(a), which means that all fault modes are recoverable. For
faults f /∈ Fi, the function Vi may increase due to more stored energy. This implies
that x may escape to a large region or infinity [60].
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We first address fault detection issue. Consider a time window where the control law
and the fault mode are in adequacy, therefore (6.24)(a) holds. Once a fault occurs,
the constraint (6.24)(a) may be violated. Similarly to the diagnosis idea in Section
2.4.1, we have

Vi(x(t))−Vi(x(tik)) ≤
∫ t

tik
φ i

1(s)ds+
∫ t

0

[∂Vi

∂x
(x)

]�
f (x(s),ui(s))ds

︸ ︷︷ ︸
“fault” energy E f

(6.25)

As indicated in (6.25), the energy dissipativity property changes due to the fault.
A fault detection law is given as

Vi(x(t))−Vi(x(tik)) >
∫ t

tik
φ i

1(s)ds =⇒ detection (6.26)

so that t f d is the first time at which inequality (6.24)(a) is violated. Note that the
faults with E f < 0 are not necessary to be detected since they do not change the
energy dissipativity.

Define σ(t) : [0,∞) → Q and t0,t1, t2, ... as in Section 6.1.1. The following theo-
rem provides a supervisory FTC scheme.

Theorem 6.2. Consider a system (6.1)-(6.2) and a family of controllers satisfying
(6.23)-(6.24) and assumption 6.3. Suppose that a fault f ∈ Fι , ι ∈ Q occurs at
t = t f and is detected at t = t f d via the threshold (6.26), then there exists a control
switching scheme such that the origin of the system is stable for all t ≥ t f .

Proof: Choose a constant β > 0. The switching law is designed as:

Algorithm 6.2. Switching law of the controllers

1. Denote t0 = t f d ; Let s = 0; Define Q� � Q−{σ(t f )}; Set σ(t0) = i� where

i� = argmin
i∈Q�

Vi(x(t−0 )) (6.27)

2. Choose t1+s such that

Vσ(t−1+s)
(x(t−1+s))−Vσ(ts)(x(ts)) ≤

β
M−1

(6.28)

If Vσ(t−1+s)
(x(t−1+s))−Vσ(ts)(x(ts)) ≤

∫ t−1+s
ts φσ(ts)

1 (s)ds

then apply the controller uσ(ts)(t) ∀t ≥ t1+s; Stop the switching.
else, go to 3.

3. Let Q� = Q�−{σ(ts)}; Set σ(t1+s) = i� where

i� = argmin
i∈Q�

Vi(x(t−1+s)) (6.29)

Apply the controller uσ(t1+s)(t) at t = t1+s; Let s = s+ 1; Go to 2. �
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We shall prove that Algorithm 6.2 implies the stability.
Note that at most M − 1 switchings occur before the controller uι(t) related to

f ∈ Fι is applied. We consider the worst case that σ(tM−2) = ι . The results for
other cases are obtained straightly.

Since β > 0, and control mode σ(t0) is non-dissipative, it follows from (6.24)(b)
that we can choose t1 > t0 such that Vσ(t−1 )(x(t

−
1 ))−Vσ(t0)(x(t0))≤ β

M−1 . We further
have from (6.23) that

|x(t−1 )| ≤ (ασ(t0)
1 )−1 ◦

(
β

M−1
+ ασ(t0)

2 (|x(t0)|)
)

(6.30)

Note that the fault detection law ensures that x(t0) is bounded, thus x(t−1 ) is also
bounded since the increasing stored energy is bounded during [t0,t1).

By induction, it can be obtained at t = tM−1 that

Vσ(tM−1)(x(tM−1))−Vσ(t0)(x(t0))−Etr(x(t0)) ≤ β (6.31)

where Etr = ∑
Nσ(tM−1)
k=1

[
Vσ(tk) −Vσ(t−k )

]
. The correct controller uι is selected and

applied ∀t ≥ tM−1, we have

Vι(x(t))−Vι(x(tM−1)) ≤
∫ t

tM−1

φι
1(s)ds, t ≥ tM−1 (6.32)

for φι
1 < 0.

Combining (6.31) with (6.32) leads to

Vι(x(t))−Vσ(t0)(x(t0))−Etr(x(t0)) ≤
∫ t

tM−1

φι
1(s)ds+ β (6.33)

Since φι
1(s) < 0, β > 0 is a bounded constant, there exists a time instant t > tM−1

such that the inequality (6.33) satisfies the condition (2.114) in Definition 2.7 (global
passivity). This means that the system is periodically fault tolerant dissipative during
[t0,t). On the other hand, it follows from (6.26) that during [t f ,t0), the energy is still
dissipative. The stability result follows from Theorem 2.7.

For the general case where uι(t) is selected before M−2 switchings occur, we
can verify (6.33) with β ∗ instead of β where β ∗ < β . �

6.1.3 FTC via Gain Technique

The gain technique proposed in Section 2.5 is utilized to supervisory FTC design.
Consider the system (6.2), the following assumption ensures the recoverability of
each fault mode and discernability of all modes.

Assumption 6.4. There exists a family of continuous non-negative functions Vi(x) :
ℜn → ℜ≥0, and functions α i

1,α
i
2,γ ∈ K∞, φ i

1 ∈ K L , and φ i
2 ∈ G K L such that
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∀i ∈ Q : α i
1 (|x|) ≤Vi(x) ≤ α i

2 (|x|) (6.34)

u = ui(t) =⇒
{

f ∈ Fi : Vi(x(t)) ≤ φ i
1 (Vi (x(tik)) , t − tik)

f ∈ F j, j �= i : Vi(x(t)) ≤ φ i
2 (Vi (x(tik)) , t − tik)

(a)
(b) (6.35)

Let us consider a time window where the control law and the fault mode are in
adequacy, therefore (6.35)(a) holds, and a simple fault detection law is given by

Vi(x(t)) > φ i
1 (Vi (x(tik)) , t − tik) =⇒ detection (6.36)

so that t f d is the first time at which inequality (6.35)(a) is violated.

Assumption 6.5. There exists a known constant χ ≥ 1 such that

χ = max
j∈Q,k=1,2...

φ j(Vj(x(t jk)),0)
Vj(x(t jk))

(6.37)

Assumption 6.5 is similar to Assumption 2.11, which is required for the switching
control design as shown in the following theorem. Note that φσ(ti) will be taken

instead of φσ(ti)
2 in (6.35)(b) only.

Theorem 6.3. Consider a system (6.1) and a family of controllers satisfying (6.34)-
(6.35) and assumptions 6.4-6.5. Suppose that a fault f ∈ Fι , ι ∈ Q occurs at t =
t f and is detected at t = t f d via the threshold (6.36), then there exists a control
switching scheme such that x is bounded for all t ≥ t f .

Proof: Choose a constant β > max[(M − 2)(1 + χ)χM−2,(M − 2)(M − 3)χM−3],
where χ is defined in (6.37). The switching law is designed as:

Algorithm 6.3. Switching law of the controllers

1. Denote t0 = t f d ; Let s = 0; Define Q� � Q−{σ(t f )}; Set σ(t0) = i� where

i� = argmin
i∈Q�

Vi(x(t0)) (6.38)

2. Choose t1+s such that

s

∑
k=0

( s

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
≤ β

(M −2− s)χM−2−s −1 (6.39)

If Vσ(ts)(x(t1+s)) ≤ φσ(ts)
1 (Vσ(ts)(x(ts)),t − ts)

then apply the controller uσ(ts)(t) ∀t ≥ t1+s; Stop the switching.
else, go to 3.

3. Let Q� = Q�−{σ(ts)}; Set σ(t1+s) = i� where

i� = argmin
i∈Q�

Vi(x(t1+s)) (6.40)

Apply the controller uσ(t1+s)(t) at t = t1+s; Let s = s+ 1; Go to 2. �
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Algorithm 6.3 implies the stability. The proof is quite similar to that of Theorem
2.12, and is omitted. �

It can be seen from Algorithm 6.3 that switching among a large number of con-
trollers may result in a large β . In the following, the transient performance is im-
proved by reducing the number of switchings.

Assumption 6.6. There exists a family of continuous non-negative functions Ṽi(x) :
ℜn → ℜ≥0, ∀i ∈ M and γ̃ ∈ K∞, ξi ∈ G K L such that

Ṽi(x(t)) ≤ ξi(Ṽi(x(t jk)), t − t jk) (6.41)

∀ f ∈ Fi,u = u j(x), j �= i, t ≥ t jk, k = 1,2, ...

The following table shows the difference between Assumption 6.6 and Assump-
tion 6.4. Assumption 6.4 assumes the existence of functions such that (6.35)(a) and
(6.35)(b) are satisfied (rows 1 and 3 in the table) while Assumption 6.6 adds the
existence of functions that satisfy also the conditions on row 2.

Table 6.1 Comparing Assumptions 6.4 and 6.6

Fault Control Assumption
1 f ∈ Fi u = ui(x) Vi(x (t)) ≤ φ i

1 (Vi (x (tik)) ,t − tik)
2 f ∈ Fi u = u j(x), j �= i Ṽi(x (t)) ≤ ξi

(
Ṽi

(
x
(
t jk

))
,t − t jk

)

3 f ∈ F j, j �= i u = ui(x) Vi(x (t)) ≤ φ i
2 (Vi (x (tik)) ,t − tik)

Note that the inequality (6.41) may still hold for f �∈ Fi. However, the converse
is not true, i.e., if (6.41) is violated, it must hold that f �∈ Fi. Inequality (6.41) can
be obtained a priori when a family of candidate FTC laws are designed.

Algorithm 6.4. Accelerating switching law of the controllers

1. Denote t0 = t f d ; Let s = 0; Define M � � Q−{σ(t f )}; Set σ(t0) = i� where

i� = argmin
i∈Q�

Vi(x(t0))

2. Choose t1+s such that

s

∑
k=0

( s

∏
j=k

φ t j+1−t j

σ(t j)

V
tj

σ(t j)

)
≤ β

(M −2− s)χM−2−s −1 (6.42)

If Vσ(ts)(x(t1+s)) ≤ φσ(ts)
1 (Vσ(ts)(x(ts)),t − ts)

then apply the controller uσ(ts)(x) ∀t ≥ t1+s; Stop the switching.
else, let Q� = Q� −{σ(ts)}; Go to 3.

3. Set σ(t1+s) = i� where
i� = arg min

i∈M �
Vi(x(t1+s))
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If Ṽσ(ti� )(x(t1+s)) > ξσ(ti� )(Ṽσ (ti�)(x(ts)), t − ts)
then let Q� = Q� −{σ(ti�)}; Go to 3.
else, apply uσ(t1+s)(x) at t = t1+s; Let s = s+ 1; Go to 2. �

The main idea behind Algorithm 6.4 is that at each switching instant, we check
whether the fault mode satisfies (6.41), and remove incorrect candidate controllers
from the switching sequence.

We shall prove that Algorithm 6.4 improves the transient behavior w.r.t. Algo-
rithm 6.3. Denote x(tA1) σ(tA1) and tA1|s (respectively x(tA2) σ(tA2) and tA2|s) the
state trajectory, switching function and the sth switching time under Algorithm 6.3
(respectively Algorithm 6.4). We have the following result.

Corollary 6.1. Consider a nonlinear system (3.33) and a family of controllers sat-
isfying (4.41)-(6.35) and assumptions 6.4-6.6. Supposed that a fault f ∈Fι , ι ∈M
occurs at t = t f and is detected at t = t f d via the threshold (6.6), then

1) Algorithm 6.4 guarantees that x is bounded for all t ≥ t f and the system is ISS
w.r.t. d̄ after the correct controller uι(t) is applied.

2) If σA2(tA2|s) = σA1(tA1|r) = ι , then |xA2(tA2|s)| ≤ |xA1(tA1|r)|.
Proof: 1) can be obtained following the same line as for Theorem 6.3.

2). Since the correct controller is selected after s+1 number of switchings under
Algorithm 6.4, it can be concluded that s ≤ r ≤ M − 2. Let us consider the worst
case that r = M−2.

Choose tA2|s as (6.42), we obtain

s−1

∑
k=0

( s−1

∏
j=k

φ
tA2| j+1−tA2| j
σ(tA2| j)

V
tA2| j
σ(tA2| j)

)
≤ β

(M−1− s)χM−1−s −1 (6.43)

Since s ≤ M − 2, we verify condition (2.129) with β ∗ instead of β where β ∗ =
β

M−1−s ≤ β at t = tA2|s.
It follows that

|x(tA2|s)| ≤ (α
σ(tA2|s)
1 )−1 ◦β ∗ᾱ(|x(t0)|) (6.44)

where ᾱ is defined in (2.143). Comparing (6.44) with (2.143) in Theorem 2.9 leads
to the result. For the general case where r < M − 2, the result can be obtained fol-
lowing above procedure. �

Example 6.2: Consider a one-link manipulator, whose revolution joint is actuated
by a DC motor. The joint elasticity is modeled by a linear torsional spring [57].
The states are the angular positions and velocities of the motor and of the link x =
[θm, ωm,θ1,ω1]�. The control u is the torque delivered by the motor. The state-
space model is

θ̇m = ωm

ω̇m = − κ
Jm

(θ1 −θm)− b
Jm

ωm +
c

Jm
u
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θ̇1 = ω1

ω̇1 = − κ
J1

(θ1 −θm)− mgh
J1

sin(θ1) (6.45)

where Jm and J1 denote respectively the inertia of the motor and of the link. κ
is the elasticity constant, b denotes the related viscous friction coefficient, and c
is the amplifier gain. The numerical values of the parameters given in [57] are:
Jm = 0.935 kgm2, J1 = 23.303 kgm2, κ = 45.440Nm/rad, b = 1.169 Nms/rad,
c = 20.196 Nm/V . mgh = 7.760Nm/rad.

Table 6.2 Faulty cases

Fault mode Reason
Case 1 b is changed within [10m, 15m] an increase in the friction of the motor
Case 2 κ reduces to 25% ∼ 50% an unexpected change on elasticity condition
Case 3 κ reduces to 50% ∼ 75% an unexpected change on elasticity condition
Case 4 c is changed within [30Nm/V,40Nm/V ] amplifier malfunction

Table 6.2 describes four considered faulty cases, where cases 1-3 are concerned
with process faults, and Case 4 is related to actuator faults. Consequently, we divide
F into five parts as F ⊂⋃

i∈Q={1,2,...,5}Fi, where Fi is related to the fault values in
Case i. F5 denotes the fault-free situation. According to the FTC design procedure
described in [57], we can design a nominal controller u5(x) for the healthy plant and
four candidate controllers ui(x), i = 1,2,3,4 for cases 1-4 respectively. The details
are omitted here. Moreover, for each controller ui, we can obtain Vi(x) = x�Hix
where Hi is a positive definite matrix. V5 denotes the function of the healthy plant.

In the simulation, suppose that Case 1 happens, b = 11.69m, we further have

V1(x(t)) ≤ e−1.1840tV1(x(0)), ∀ f ∈ F1,u = u1(x), t ≥ 0

V2(x(t)) ≤ e6.2893tV2(x(0)), ∀ f ∈ F1,u = u2(x), t ≥ 0

V3(x(t)) ≤ e18.8439tV3(x(0)), ∀ f ∈ F1,u = u3(x), t ≥ 0

V4(x(t)) ≤ e1.4031tV4(x(0)), ∀ f ∈ F1,u = u4(x), t ≥ 0

It can be seen that Assumption 6.2 is satisfied. In fact, the system with the fault
mode 1 is stabilized only by controller u1(x). Suppose that the initial states are
[1 0.4 0.5 0.1]�. Case 1 occurs at t = 1.5s, Fig. 6.4 shows that the fault is detected
at t = 2.343s using threshold (6.36).

Now we apply Algorithm 6.3 to achieve the FTC goal. It can be obtained from
(6.37) that χ = 1, this satisfies Assumption 6.5. Since there are three unstabilizing
controllers that may be activated, M−2 = 3. We choose β = 6.5 > 3×2. The non-
repeated switching sequence obtained from (6.38) and (6.40) is u2 → u3 → u4 → u1.
Simple calculation based on (6.39) of Algorithm 6.3 leads to the dwell periods of
three controllers: 0.0245s for u2(x); 0.0020s for u3(x); 0.3750s for u4(x). These
dwell periods can be determined without checking the value Vt

σ(t). Once the fault

is detected, u2(x) is selected from (6.38) and applied at t = 2.343s, then switch to
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u3(x) at t = 2.3675s, and switch to u4(x) at 2.3695s. At t = 2.7445s, the fault is
identified to be Case 1, the correct controller u1(x) is applied for t ≥ 2.7445s. The
solid lines in Fig.6.5 show the state trajectories, it can be seen that the FTC goal is
achieved and during the delay [1.5s,2.7445s), the states are always bounded.

Now we illustrate Algorithm 6.4. It follows from the control design procedure in
[57] that

Ṽ2(x(t)) ≤ e12.4639tṼ2(x(0)), ∀ f ∈ F2,u �= u2(x), t ≥ 0

Ṽ3(x(t)) ≤ e24.7468tṼ3(x(0)), ∀ f ∈ F3,u �= u3(x), t ≥ 0

Ṽ4(x(t)) ≤ e4.3206tṼ4(x(0)), ∀ f ∈ F4,u �= u4(x), t ≥ 0

The obtained switching sequence is the same as that using Algorithm 6.3. However,
at the second switching instant, the controller u3(x) is removed from the sequence
using the Step 3 of Algorithm 6.4. It follows from (6.42) that the dwell period of
controller u4(x) becomes 0.0269s. Thus we first apply u2(x) at t = 2.343s, then
switch to u4(x) at t = 2.3675s. At t = 2.3944s, the fault is identified to be Case 1,
the correct controller u1(x) is applied for t ≥ 2.3944s. The dashed lines in Fig.6.5
show the state trajectories under Algorithm 6.4, it can be seen that during the delay
[1.5s,2.7445s), the states are also bounded, and the transient performance is better
than that under Algorithm 6.3.

6.2 Hybrid Control Based FTC for Automated Vehicles

In the final section of this chapter, we investigate the path tracking problem for
four-wheel-steering and four-wheel-driving (4WS4WD) electric vehicles with in-
put constraints, actuator faults and the external resistance. A hybrid FTC approach,
which combines the linear quadratic control method in [118] and the control Lya-
punov function technique in Section 3.2 is proposed. It not only maintains the
vehicle’s tracking performance in spite of faults, input constraints and the exter-
nal resistance, but also reduces the cost of the fault tolerant process. A prototype
vehicle in LAGIS laboratory is particularly focused on to illustrate the proposed
approach.

6.2.1 Background

Electric vehicles (EV) are attracting a great deal of interest as a powerful solution to
environmental and energy problems [16]. The four-wheel steering and four-wheel
driving (4WS4WD) EV does not only take the advantage of a 4WD vehicle where
the individual torque of each drive wheel can be controlled independently [106],
but also benefits from the 4WS structure where both the steering positions of front
wheels and rear wheels can be controlled [87]. Such structure significantly improves
EV’s lateral dynamics, especially in the situation of path tracking [96], [86, 100].

Faults may lead to vehicle’s abnormal behaviors. The faults that mainly degrade
the vehicle’s performance include faults of sensors that provide important physical
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Fig. 6.6 The RobucarTM in LAGIS

characteristics ( e.g., the vehicle speed, the sideslip angle) and actuator faults such
as the malfunction of the steering systems and wheel torque controllers. The fault
detection and isolation (FDI) techniques of vehicles have been investigated inten-
sively by Isermann’s group [33, 120], Ding’s group [35], the PATH project [99],
and also our LAGIS laboratory [26]. FTC approaches of vehicles have also been
developed in order to guarantee the safety of the vehicle [11, 27].

However, few contribution has been made for the fault tolerant path tracking
control of EV, e.g. [137], [146]. Path tracking of vehicles is one of the key issues in
an intelligent transportation system. The tracking performance must be maintained
in spite of faults, otherwise, traffic accidents may occur, which may lead to the
vehicle destruction. Moreover, most of related FTC works do not address the issues
of optimality, input constraints and the external resistance.

- Optimality means to reduce a cost function of the states and inputs of the vehicle
systems as much as possible that is needed for FTC.

- Input constraints are involved to prevent the vehicles from skidding or spinning
when FTC is activated.

- External resistance includes the air resistance, wind effects, the deformation of
the wheels, and the internal friction of the vehicle. These factors always affect
the vehicle.

In this section, we focus on the optimal fault tolerant path tracking control for
a 4WS4WD EV in LAGIS as shown in Fig. 6.6. This prototype vehicle, named
RobuCarTM, is built by the Robosoft Company [157]. Several important types of
actuator faults are considered as in [137]. A hybrid control approach is proposed,
which combines the linear quadratic (LQ) based progressive accommodation (PA)
method [118] and the control Lyapunov function (CLF) technique in Section 3.2.
The motivation of developing such control structure is to maintain the vehicle’s
tracking performance in spite of faults, input constraints and the external resistance,
and meanwhile, reduce the cost function of states and inputs that results from the
FTC algorithm. This work focuses on the FTC design and we do not consider the
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FDI technique of vehicles. The readers interested by fruitful results on such FDI
techniques are referred to [33, 26]. The sensor faults are also not involved, some
related work can be seen in [124].

6.2.2 Vehicle Model and Fault Setting

The features of the RobuCarTM dynamics are described in Fig. 6.7. Our system
comprises a 4WS4WD vehicle body, four wheels, and a reference path for tracking.
The distance between the center of gravity (CG) and the front axle (resp. rear axle)
is l f (resp. lr), ld is one half of the tread. rei(i = 1,2,3,4) denotes the effective radius
of the wheel i.

The state variables are the speed of CG v, the sideslip angle β , the yaw rate γ ,
the perpendicular distance yc between the vehicle and the reference path, the angle
φ between the vehicle and the tangent to the path curvature ρre f . The traction forces
fxi and fyi are transmitted from the road surface via the wheels to the vehicle chassis.
The input variables to be applied are the steering angle δi and the torque Ti. Denote
δ f � δ1 = δ2 and δr � δ3 = δ4 as the steering angles of front wheels and rear wheels
respectively.

The detailed dynamical equations of the vehicle body, wheel, and path tracking
can be seen in [96], [1] and [26], thus are omitted here. Around the free-rolling
equilibrium point: v = v0, β = 0, γ = 0, yc = 0, φ = 0, and ρre f = 0, a linearized
vehicle model can be obtained as

ẋ = Ax + BKus + R (6.46)

where x = [(v−v0) β γ yc φ ]� are measurable states, us = [T c
1 +T r

1 T c
2 +T r

2 T c
3 +

T r
3 T c

4 + T r
4 δ c

f δ c
r ]� are torques and steering controllers’ output vector, T c

j
is used for the path tracking control design, while T r

j is applied to overcome the
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Fig. 6.7 The vehicle system
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external resistance, denoted as R = [R̄ 0 0 0 0]�. R̄ is assumed to be a known con-
stant around the free-rolling equilibrium point. Denote the plant input vector as
ū = [T1 T2 T3 T4 δ f δr]� as shown in Fig.6.7. ū = Kus, with K defined as the actuator
gain matrix, and K = diag[η1,η2, . . . ,η6], ηi = 1 in the healthy situation, and will
be defined later for the faulty cases. Moreover

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0

0 −Cf +Cr
mv0

− l f Cf −lrCr

mv2
0

−1 0 0

0 − l f Cf −lrCr
Jz

− l2
f Cf +l2

r Cr

Jzv0
0 0

0 0 0 0 −v0

0 −Cf +Cr
mv0

− l f Cf −lrCr

mv2
0

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
mre1

1
mre2

1
mre3

1
mre4

0 0

0 0 0 0
Cf
mv0

Cr
mv0−ld

Jzre1

ld
Jzre2

−ld
Jzre3

ld
Jzre4

l f Cf
Jz

− lrCr
Jz

0 0 0 0 0 0

0 0 0 0
Cf
mv0

Cr
mv0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where m denotes the mass of the vehicle. Jz is the moment of inertia. The constant
coefficients Cf and Cr are cornering stiffness of the front and rear wheels. Cf =
Cf 1 +Cf 2, Cr = Cr1 +Cr2. The pair (A,B) is controllable. Note that the developed
model is more general than the usual vehicle’s lateral model as in [106], [86] and
[100] where only δ f and δr are applied as the inputs, and the resistance factors are
not considered.

The structure of B ensures the existence of constant torques T r
i , i = 1,2,3,4 such

that

4

∑
i=1

(
ηiT r

i

mrei

) = −R̄ (6.47)

4

∑
i=1

(
(−1)ildηiT r

i

Jzrei

) = 0 (6.48)

This implies that 4 constant torques T r
i can be applied to overcome the external

resistance.
The input constraints have to be considered for the saturation property of the

wheel slip which is related to the road condition. The relation between input (Ti,δi)
to the wheel slip Si at the free-rolling equilibrium point can be given as in [96]
and [1]

Si =

[ Tiki
reiCf i

−β − l f
v0

γ + δi

]

, i = 1,2. (6.49)
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Si =

[
Tiki

reiCri

−β − lr
v0

γ + δi

]

, i = 3,4. (6.50)

where ki represents the tire-tread-profile attenuation factor. From (6.49)-(6.50), it
can be seen that Ti and δi need to be constrained to ensure the magnitude of Si below
the prescribed value c, i.e., |Si| ≤ c, with | · | the Euclidean norm. More precisely,
since ηiT r

i is a constant, a constant bound can be imposed on ηiT c
i , while a state

dependent bound should be imposed on ηiδ c
i .

The control objective in the healthy situation is to let the vehicle track the ref-
erence path, i.e. to make the origin of the system (6.46) asymptotical stable, and
meanwhile, restrict the magnitude of Si into the prescribed region to prevent the
vehicle from skidding or spinning.

Once an actuator fault occurs at t = t f , the system (6.46) can be represented as

ẋ = Ax + B f us + R (6.51)

where B f � BK denotes the fault input distribution matrix. It is assumed that
(A,B f ) is still controllable. In this work, both faults of steering systems and wheel
torque control systems are considered. Fig. 6.8 shows the schematic diagram of the
RobuCarTM. Four faulty cases are investigated:

- (F1) The failure of one steering controller (front or rear), which may result from
the broken wires, the malfunction power amplifier or the steeling motor break-
down. In this case, the steering actuator float with zero moment and does not
contribute to the control authority. Consequently, η5 = 0 or η6 = 0, which is
consistent with B f 5 = 0 or B f 6 = 0, where B f i denotes the ith column of B f .

- (F2) The loss of control effectiveness of steering controllers, which does not
destroy the steering controller, but influences its control gain. In this case, η5 and
η6 represent the loss of effectiveness factors and are such that 0 < η5 < 1,0 <
η6 < 1. If ηi = 0, this faulty case is consistent with F1.

torque 

controller 1

front steering 

controller
rear steering 

controller

torque 

controller 2

torque 

controller 3

torque 

controller 4

Fig. 6.8 The schematic diagram of the RobuCarTM
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- (F3) The failure of wheel torque controllers, which may result from the inverter
failure, the brake system failure or the wheel motor failure, such that no torque
input is generated. In this case, ηi = 0, or B f i = 0, i ∈ {1,2,3,4}.

- (F4) The loss of control effectiveness of wheel torque controllers, which does
not destroy the torque controller, but influences its control gain. Consequently,
0 < ηi < 1, i ∈ {1,2,3,4}.

The FTC objective in this work is to let the vehicle track the reference path in
spite of input constraints, the external resistance and actuator faults F1-F4.

In the sequel, we consider that the torque inputs T r
i are chosen to overcome the

resistance term R, i.e. equations (6.47)-(6.48) are solvable. This implies that at least
2 wheel torque controllers are available. Consequently, equations (6.46) and (6.51)
are rewritten as

ẋ = Ax + Bu (6.52)

ẋ = Ax + B f u (6.53)

where u = [T c
1 T c

2 T c
3 T c

4 δ c
f δ c

r ]�.
We will first recall the progressive accommodation (PA) strategy proposed in

[118], and analyze its availability in the presence of input constraints, then combine
such optimal FTC approach with the CLF based bounded controller. The result-
ing hybrid control approach takes both advantages of the optimal control and the
bounded control.

6.2.3 Hybrid FTC Scheme

The LQ optimal control objective is to transfer the system state from the initial value
x(0) = x0 to some final value x(∞), while minimizing the cost function

J(u,x0) =
∫ ∞

0
(u�Ru + x�Qx)dt

where Q and R are symmetric matrices. From the classical theory, the solution is
given by u = −R−1B�Pnx � −Fnx where Pn is the unique positive definite solution
of the algebraic Riccati equation PnA + A�Pn + Q−PnBR−1B�Pn = 0.

In the practical faulty situations, three time instants, namely t f , t f di, t f tc have to
be considered, leading to four time windows :

[0,t f [ Nominal system, (A,B) is controlled by u = −Fnx
[t f ,t f di[ Diagnostic delay,

(
A,B f

)
is controlled by u = −Fnx

[t f di,t f tc[ FTC delay,
(
A,B f

)
is controlled by u = −Fnx

[t f tc,∞) Fault is accommodated,
(
A,B f

)
is controlled by the FTC law

The pair (A,B) is changed into (A,B f ) at time t f due to the actuator faults. Once
B f has been identified at t = t f di under some FD schemes, the classic FTC law
can be designed as u = −R−1B�

f Pf x and applied at t = t f tc, where Pf is the unique
positive definite solution of
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Pf A + A�Pf + Q−Pf B f R−1B�
f Pf = 0 (6.54)

The delay t f tc − t f di is mainly due to the computation of the Riccati equation (6.54).
The PA strategy aims at minimizing the cost in t f tc − t f di. Such strategy is based

on the following Newton-Raphson scheme:
Let Pi be the unique solution of the Lyapunov equation

Pi(A f −B f Fi−1)+ (A f −B f Fi−1)�Pi = −Q−F�
i−1RFi−1 (6.55)

where Fi = R−1B�
f Pi for all i = 1,2, · · · and the initial F0 is given.

The Newton-Raphson scheme is one of the effective solutions for (6.54). The
computation of (6.55) is much faster than (6.54). The PA strategy is to apply ui =
−Fix as soon as it is obtained. The system behavior after the fault occurrence is
therefore

ẋ = (A−B f Fn)x, t ∈ [t f , t0[
ẋ = (A−B f F0)x, t ∈ [t0, t1[
ẋ = (A−B f Fi)x, t ∈ [ti,ti+1[, i = 1,2, ...

where t0 > t f di and F0 define the algorithm initialization. It has been proven in [118]
that limi→∞Pi = Pf , and the PA strategy significantly reduces the loss of cost that
results from the classic FTC law in the time delay t f tc − t f di.

Now we consider the input constraints. In the fault-free situation, u = −Fnx is
applied. We can find a region

Ψ = {x ∈ ℜn|x�Pnx ≤ r} (6.56)

where r is small enough such that ∀x∈Ψ , the ith input |ui|< umax
i (x), ∀i = {1, ...,6}.

umax
i (x) > 0 is a constant or a state dependent bound of the ith input from (6.49)-

(6.50). It follows that if the initial state x(0) is chosen within Ψ , then u = −Fnx is
always available.

In the faulty situation during [ti, ti+1[, the PA control law u = −Fix is applied.
Note that after the fault occurs, T r

i is adjusted to overcome R, denote

ΔηiT
r

i � ηiT
r

i −ηi(n)T
r

i (n)

where ηi(n)T
r

i (n) is related to the normal situation, and ηiT r
i corresponds to the new

controller in the faulty case. If all ηi �= 0 i = 1,2,3,4, then each ηiT r
i keeps a unique

constant throughout the process, i.e. ΔηiT r
i = 0, and does not affect the bound of

the T c
i . Similarly, define the region

Ψ̄i = {x ∈ ℜn|x�Pix ≤ εi} (6.57)

where εi is small enough such that ∀x ∈ Ψ̄i, |ui|< u∗max
i (x) � umax

i (x)−ΔηiT
r

i
ηi

, for ηi ��=
0, and u∗max

i (x) = 0, for ηi = 0, where umax
i (x)−ΔηiT r

i (i = 1,2,3,4) is assumed
to be positive, and T r

5 ,T r
6 do not exist. If ηi = 0, it follows that ui = 0 from the LQ
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control method. Note that if x(ti) ∈ Ψ̄i, then u = −Fix is available throughout the
interval [ti,ti+1[. We also obtain the following property

Proposition 6.2. If x(ti) ∈ Ψ̄i such that

|(−R−1B�
f ) j| · |Pi| · |x| ≤ u∗max

i (x)
ηi

,∀ j = {1, ...,6}

then the PA strategy is available throughout the interval [ti,∞).

Proof: The result follows the fact that the iterating algorithm (6.55) leads to Pf ≤
·· · ≤ Pi+1 ≤ Pi ≤ ·· · ≤ P1 [118]. Since x(ti) ∈ Ψ̄i, then under the controller −Fix, Ψ̄i

is an invariant set for x, i.e., x(t) ∈ Ψ̄i,∀t ∈ [ti, ti+1[. |(−R−1B�
f ) j| · |P1| · |x| ≤ u∗max

i (x)
ηi

implies that |(−R−1B�
f ) j| · |Pi+1| · |x| ≤ u∗max

i (x)
ηi

, thus −Fi+1x is available throughout

the interval [ti+1,ti+2[, Ψ̄i is still an invariant set for x. Finally, it can be concluded
that the optimal FTC strategy is available for t ∈ [ti,∞). �

Such property is useful to reduce the computation level. If we have checked at t = ti
that |(−R−1B�

f ) j| · |P1| · |x| ≤ u∗max
i (x)

ηi
, then we do not have to check at every follow-

ing instants tκ , for κ ≥ i.
However, we can not always guarantee the availability of the PA strategy. If

x(ti) �∈ Ψ̄i, such strategy would lead to the input saturation and the system’s per-
formance will be degraded.

To avoid the input saturation, a CLF based bounded FTC method in Chapter 3.2
is developed, which will be combined with the PA strategy.

Reformulate the faulty system (6.53) as

ẋ = Ax + Bu + B f (6.58)

where the fault is represented as an additive term B f . f = (K − I)u, I is the unit
matrix, and K = diag[η1, ...,η6] with 0 ≤ ηi ≤ 1 defined in Section 6.2.2. Since
the system inputs are bounded, it is reasonable to assume that actuator faults are
bounded, i.e., | f | ≤ f̄ , where f̄ > 0. It is also assumed that |ΔηiT r

i | ≤ Δ̄i for Δ̄i > 0
and umax

i (x)− Δ̄i (i = 1,2,3,4) is positive.
Consider a Lyapunov function V = x�Px for the system (6.58), where P is a

positive definite symmetric matrix that satisfies the Riccati equation A�P + PA−
PBB�P = −W for a positive definite matrix W .

V can be regarded as a control Lyapunov function for system (6.58). The contin-
uous bounded FTC law can be designed as

ui = −ϒi(V )(LBiV )�(x) � bi(x), i = 1, ...,6 (6.59)

with

ϒi(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

ϑ (V )+
√

ϑ (V )2+(u�max
i (x)|(LBiV )�|)4

|(LBiV )�|2
[

1+

√

1+(u�max
i (x)|(LBiV )�|)2

] , (LBiV )� �= 0

0, (LBiV )� = 0
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where ϑ(V ) � 1
6 (LAxV + ρV + |LIV | f̄ ), L denotes the Lie derivative, i.e., LAxV =

x�(A�P+ PA)x, (LBiV )� = 2B�
i Px, and ρ > 0. u�max

i � umax
i (x)− Δ̄i.

For all initial states, the stability region of system (6.58) is defined by the set

Ω = {x ∈ ℜn|V (x) ≤ cmax} (6.60)

where cmax is small enough such that ϑ(V ) < mini∈{1,2,...,6}u�max
i |(LBiV )�| for all

x ∈ Ω .

Proposition 6.3. For the initial state x(0) ∈ Ω , the bounded controller u = b(x)
with b(x) � [b1(x)...b6(x)]� in (6.59) makes the origin of the system (6.58) asymp-
totically stable in spite of faults.

Proof: The result can be straightly obtained from Lemma 3.1. �

Proposition 6.3 provides a result for the multiple state dependent input constraint
form, i.e. |ui| < u�max

i (x), i = 1, ...,6. It can be seen that for any x(0) ∈ Ω , the
controller u = b(x) can always be applied and does not need to be modified in the
presence of faults.

Based on above analysis, a hybrid control method can be provided as

u =

⎧
⎪⎪⎨

⎪⎪⎩

−Fnx, for x ∈Ψ ∩Ω , t ∈ [0, t f di[, with x(0) ∈Ψ ∩Ω
b(x), for x ∈Ψ ∩Ω , t ∈ [t f di,t1[
−Fix, for x ∈ Ψ̄i ∩Ω , t ∈ [ti, ti+1[
b(x), for x �∈ Ψ̄i ∩Ω , t ∈ [ti, ti+1[, i = 1,2, ...

(6.61)

where Ψ , Ψ̄i and Ω are defined respectively in (6.56), (6.57) and (6.60). Fig. 6.9
shows the block diagram of the control system.

Vehicle plant

FDI
PA controller

CLF based 

controller

Switching 

decision

Fig. 6.9 The block diagram of the FTC system

Discussion

1. Compared with the convex conjugacy technique [43] that requires x ∈ Ψ , the
bounded hybrid controller (6.61) restricts x into a relative small region Ψ ∩Ω ,
which, however, leads to a low computation level. Since b(x) can be designed
off-line, we do not have to solve the backward Hamiltonian system every time
when x reaches the bound of Ψ ∩Ω as in [43].
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2. Since the initial state x(0) ∈Ψ ∩Ω , the controller −Fnx ensures that x(t f ) ∈Ψ ∩
Ω . Nothing can be said about the state trajectory during the diagnosis delay t f di−
t f . Effective diagnosis approaches can significantly shorten this delay. Assuming
x(t f di) ∈Ψ ∩Ω is quite acceptable in the practical application.

3. Applying b(x) at the beginning of the FTC process [t f di, t1[ shortens the initial
time of PA strategy in [118]. Moreover, in each interval [ti, ti+1[, once x �∈ Ψ̄i∩Ω ,
the controller b(x) can always make x return to Ψ̄i∩Ω as in Proposition 6.2, such
that the controller −Fix is available.

4. The region Ω in (6.60) is based on a fixed norm bound of faults f̄ . This region
could be zoomed in since faults impossibly exist all the time. The reader can see
the related work in Section 3.2.

5. In this work, a straight reference path is considered, i.e. the curvature ρre f ≈ 0.
For the curving path with ρre f �= 0, an additional term [0 0 0 v0ρre f ]� should be
added in the system equation (6.46). The robust design of LQ control [119] and
CLF based control can be applied.

6. If three wheel torque controllers are faulty (F3), the remaining wheel torque can
not overcome the resistance factor. This also leads to the robust problem as in D5.

6.2.4 Simulation Results

The proposed FTC method is now applied to the path tracking of RobuCarTM sys-
tem (6.46). The parameters are given in Table 6.3. The vehicle starts the path track-
ing with the initial values v(0) = 5 m/s, β (0) = 0 rad, γ(0) = 0 rad/s, yc(0) = 0.2
m, and φ(0) = 0 rad. In accordance with the road condition and vehicle data
stated in Table 6.1, the resistance factor R̄ is assumed to be −0.5 m/s2. We set
the wheel slip constraint as c = 0.3, the attenuation factor in (6.49)-(6.50) is
ki = 0.2. The input constraints are imposed as −0.0004 Nm ≤ T c

i ≤ 0.0004 Nm,
(−0.18 + 0.08γ + β ) rad ≤ δ c

i ≤ (0.18 + 0.08γ + β ) rad, for i = 1, ...,4. Since the
vehicle’s speed is around a constant v0, small torques T c

i are required. The objective
is to obtain the tracking behavior as fast as possible (under no fault and faulty con-
ditions) while maintaining the input constraints. We will consider in the following
the four faulty cases F1-F4 described in Section 6.2.2 and will illustrate the tracking
performance.

We first consider the fault of wheel torque control system. Suppose that the in-
verters of the two front wheels broke down at t = 0.3 s. These failures make the
motor torques of the two wheels become zero, i.e., η1 and η2 abruptly change from
1 to 0 after 0.3 s, B f 1 = B f 2 = 0. The consequence is a big yaw moment and the un-
stable vehicle motion. In addition, there is a 75 percent loss of control effectiveness
of rear right wheels after t = 0.3 s, i.e., η4 = 0.25.

Both Q and R are chosen as the unit matrices. The classic FTC law u f = −Ff x
can be obtained after 2 iterations of (6.55), i.e., Ff = F2. Assume it takes 0.1 s for
fault diagnosis, 0.1 s for the initialization of PA strategy, and 0.1 s for each iteration
of PA. The classic FTC approach would apply −Fnx until t = 0.5 s and then −F2x,
while the PA strategy applies −Fnx until 0.4 s and then applies b(x) at 0.4 s, and the
sequence −F1x and −F2x at respective times 0.5 and 0.6 s. Fig. 6.10 shows the input



174 6 Hybrid Control Approach in FTC Design

Table 6.3 Parameters of RobuCarTM and the reference path

Parameter Value
m (kg) 350
l f (m) 0.401
lr (m) 0.802
ld (m) 0.605
rei (m) 0.350
Cf (N/rad) 2000
Cr (N/rad) 2000
Jz (kgm2) 82
v0 (m/s) 5
ρre f (m−1) 0

trajectories. Due to the complete failures of two wheels’ inverters, the inputs T1, T2

are not provided any more after 0.3 s. The tracking performance is maintained by the
tradeoff among T3, T4, δ f and δr. Although T r

i (i = 1,2,3,4) are adjusted abruptly
after the fault occurs. The original input constraints imposed on δ c

i and T c
i are still

available.
Fig.6.10 shows the trajectories of the PA controller output vector. It can be seen

that both δ c
f and δ c

r are adjusted to compensate for the big yaw moment due to
faults. All the inputs are within the constraints, the PA controller is always avail-
able. Fig.6.11 shows the torques T r

j for the resistance rejection, T r
1 and T r

2 are not
provided any more after 0.3 s. Once the fault is diagnosed at 0.4 s, both T r

3 and T r
4

are adjusted to overcome the resistance.
Fig.6.12 illustrates the vehicle motion behavior, the tracking goal is achieved at

nearly t = 2 s. After a very short overshoot at the beginning, v is always maintained
at 5 m/s, this validates the linearized model (6.46). The input trajectories and vehicle
motion behavior under the classic FTC law are similar as that in Fig. 6.10, thus
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Fig. 6.12 Vehicle motion behavior

are not presented here. Fig.6.13 gives the evolution of the system cost with the
classic and PA methods. It is seen that the PA approach widely improves system
performance during the fault accommodation transient.

Now we address the fault of steering system. Suppose that the front steering
system is broken at t = 2 s that leads to η1 = 0. Such failure is also consistently
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Fig. 6.14 Input trajectories

represented by B f 5 = 0. In addition, there is a 90 percent loss of control effectiveness
in the power amplifier of the rear steering actuator after t = 2 s, i.e., η6 = 0.1. In this
case, the tracking performance is maintained only by applying T1, T2, T3, T4 and δr.

The classic FTC law u f = −Ff x can be obtained after 3 iterations of (6.55),
i.e., Ff = F3. To illustrate our approach, assume it takes 2 s for FD, 0.1 s for the
initialization of PA strategy, and 0.9 s for each iteration of PA. However, −F1x
exceeds the input bound of Ti at t = 4.1 s, thus the CLF based controller is applied
until 4.2 s, and then the PA controller is activated. −F2x satisfies the property of
Proposition 6.3 at t = 5 s, which implies that the PA control is always available
after 5 s.
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Fig. 6.16 Input trajectories

Fig. 6.14 shows the trajectories of the hybrid controller. It can be seen that all T c
i

are adjusted abruptly to compensate for the faults. All the torques T r
i = 15.315 Nm

i = 1,2,3,4, which do not change since no fault occurs at torque control system.
Fig. 6.16 illustrates the vehicle motion behavior. After t = 2 s, the trajectory of
the vehicle deviates from the reference path, while the tracking goal is achieved at
nearly t = 8 s, v is also maintained at 5 m/s. Fig. 6.16 illustrates the trajectories of
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the controller that combines the classic LQ method and CLF technique. The classic
LQ controller exceeds the constraints at 5.9 s and is not applied until 6.8 s. It can
be seen that much more control effort has to be made than the hybrid control one.
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Fig.6.17 illustrates the vehicle motion behavior. The vehicle tracks the path again
at nearly t = 10 s. Fig. 6.18 gives the evolution of the system cost with the classic
and PA methods, which also implies the good system performance during the fault
accommodation transient under the proposed hybrid approach.

6.3 Conclusion

This chapter has discussed the supervisory FTC problem using hybrid system ap-
proaches. Three novel switching control based FDI/FTC schemes have been pro-
posed for general nonlinear systems. The good feature of these three switching
schemes is that no additional model or filter is needed to compare with the plant.
However, how to improve the transient performance deserves further investigations.

This chapter has also proposed an optimal hybrid FTC approach with application
to the path tracking control problem for 4WS4WD RobuCarTM vehicle in LAGIS.
Several important types of actuator faults are addressed. More directions would be
associated with the robust fault tolerant path tracking control design of 4WS4WD
vehicles.



Chapter 7
Conclusion and Future Research Directions

FTC of HS is a hot research topic that intersects two communities of fault diag-
nosis/tolerance and HS. This book has presented several interesting theories and
applications on FTC for HS. It has been shown that both the continuous system
theories and DES theories can be applied. This conclusion seems natural since HS
consists of continuous and discrete dynamics. However, it deserves to point out that
the utilizations of these two main theories in HS field are quite different from that
in their own fields.

Due to the special structures and properties of HS, many non-hybrid system FTC
methods are unavailable directly for HS. Continuous system theories for non-hybrid
systems have to be modified and the switching properties must be taken into account,
the difficulty of such work are reflected in Chapters 2-4. DES theories also can not
be applied directly. Compared with pure DES, the continuous dynamics of HS have
to be considered as indicated in Chapter 5.

There are still many open problems to be further investigated. We shall conclude
this book by providing some future research directions, which we hope could be a
helpful guide to interested readers when exploring FTC for HS.

1. To consider optimality as a FTC goal besides the continuous stability and the
discrete specification. The optimality is very important for the modern systems
with considerations for the environment and energy problems. Optimal FTC goal
not only requires the stability of the faulty systems but also needs it to be as
optimal as possible in spite of faults. Such goal could be potentially achieved by
combining the optimal theories of HS [6, 97] and the proposed FTC methods in
this book.

2. To relax the constraints about the structure of HS, e.g., consider the stability
at non-zero equilibriums. Many HS that are widely used in process control have
non-zero equilibriums [83]. On the other hand, the time-variant continuous vector
fields as described in [65] also deserve further investigations.

H. Yang et al.: Fault Tolerant Control Design for Hybrid Systems, LNCIS 397, pp. 181–182.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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3. To combine continuous system theories with DES ones such that an integrated
fault tolerance framework can be provided with application to real systems. In
many real situations, a complex system may have various faults (both contin-
uous and discrete ones) occurring simultaneously. The nondeterministic finite
automata model developed in [77] maybe a good tool to address this issue.
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12. Bošković, J.D., Mehra, R.K.: Stable multiple model adaptive flight control for accom-
modation of a large class of control effector failures. In: Proc. of the 1999 American
Control Conference, pp. 1920–1924 (1999)

13. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems. IEEE Transactions on Automatic Control 43(1), 475–482 (1998)

14. Byrnes, C.I., Isidori, A., Willems, J.C.: Passivity, feedback equivalence, and the global
stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic
Control 36(11), 1228–1240 (1991)

15. Cao, Y., Ying, M.: Similarity-based supervisory control of discrete-event systems. IEEE
Trans. Automatic Control 51(2), 325–330 (2006)



184 References

16. Chan, C.C.: The state of the art of electric, hybrid, and fuel cell vehicles. Proc. of the
IEEE 95(4), 704–718 (2007)

17. Chatterjee, D., Liberzon, D.: On stability of randomly switched nonlinear systems.
IEEE Trans. on Automatic Control 52(12), 2390–2394 (2007)

18. Chen, J., Patton, R.J.: Robust Model-based Fault diagnosis for Dynamics Systems.
Kluwer Academic Publishers, Boston (1999)

19. Chiasson, J.N.: Nonlinear differential-geometric techniques for control of a series dc
moto. IEEE Trans. Control System Technology 2(1), 35–42 (1994)

20. Cocquempot, V., El Mezyani, T., Staroswiecki, M.: Fault detection and isolation for
hybrid systems using structured parity residuals. In: Proc. of 5th Asian Control Confer-
ence, pp. 1204–1212 (2004)

21. David, R., Alla, H.: On hybrid Petri nets. J. Discrete Event Dynamic Systems:Theory
and Applications 11(1-2), 9–40 (2001)

22. Decarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and results
on the stability and stabilizability of hybrid systems. Proceedings of the IEEE 88(7),
1069–1082 (2000)

23. Ding, S.X.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms,
and Tools. Springer, Heidelberg (2008)

24. Dotoli, M., Fanti, M.P., Mangini, A.M.: Real time identification of discrete event sys-
tems by Petri nets. In: Proc. of 1st IFAC Workshop on Dependable Control of Discrete
Systems, ENS Cachan, France (2007)

25. Dotoli, M., Fanti, M.P.: An Urban Traffic Network Model via Coloured Timed Petri
Nets. Control Engineering Practice 14(10), 1213–1229 (2006)

26. Dumont, P.E., Aı̈touche, A., Bayart, M.: Fault detection of actuator faults for elec-
tric vehicle. In: Proc. of 16th IEEE International Conference on Control Applications,
Mumbai, India, pp. 1067–1072 (2007)

27. Dumont, P.E., Aı̈touche, A., Merzouki, R., Bayart, M.: Fault tolerant control on an elec-
tric vehicle. In: Proc. of International Conference on Industrial Technology, Singapore,
pp. 2450–2455 (2006)

28. EI-Farra, N.H., Mhaskar, P., Christofides, P.D.: Output feedback control of switched
nonlinear systems using multiple lyapunov functions. Systems and Control Let-
ters 54(12), 1163–1182 (2005)

29. Ezzine, J., Haddad, A.H.: Controllability and observability of hybrid systems. Int. J.
Control 49(6), 2045–2055 (1989)

30. Febbraro, A.D., Giglio, D., Sacco, N.: Urban traffic control structure based on hybrid
Petri nets. IEEE Trans. on Intelligent Transportation Systems 5(4), 224–237 (2004)

31. Febbraro, A.D., Sacco, N.: On modelling urban transportation networks via hybrid Petri
nets. Control Engineering Practice 12(10), 1225–1239 (2004)

32. Feng, W., Zhang, J.F.: Stability analysis and stabilization control of multi-variable
switched stochastic systems. Automatica 42(1), 169–176 (2006)

33. Fischer, D., Börner, M., Schmitt, J., Isermann, R.: Fault detection for lateral and vertical
vehicle dynamics. Control Engineering Practice 15(3), 315–324 (2007)

34. Floquet, T., Barbot, J.P., Perruquetti, W., Djemai, M.: On the robust fault detection via
a sliding mode disturbance observer. Int. J. Control 77(7), 622–629 (2004)

35. Gao, Z., Ding, S.X., Ma, Y.: Robust fault estimation for vehicle lateral dynamic systems.
In: Proc. of IFAC Safeprocess 2006, Beijing, China, pp. 1039–1043 (2006)

36. Gertler, J.J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker,
New York (1998)

37. Ghosh, M.K., Arapostathis, A., Marcus, S.: Ergodic control of switching diffusions.
SIAM J. Control and Optimization 35(6), 1952–1988 (1997)



References 185

38. Girault, A.: A hybrid controller for autonomous vehicles driving on automated high-
ways. Transportation Research Part C: Emerging Technologies 12(6), 421–452 (2004)

39. Giua, A., Seatzu, C.: Observability of place/transition nets. IEEE Trans. on Automatic
Control 47(9), 1424–1437 (2002)

40. Giua, A., Seatzu, C., Basile, F.: Observer-based state-feedback control of timed Petri
nets with deadlock recovery. IEEE Trans. on Automatic Control 49(1), 17–29 (2004)

41. Giua, A., Seatzu, C.: Fault detection for discrete event systems using Petri nets with
unobservable transitions. In: Proc. of the joint 44th IEEE Conference on Decision and
Control, European Control Conference, pp. 6323–6328 (2005)

42. Goebel, R., Sanfelice, R., Teel, A.R.: Hybrid dynamical systems. IEEE Control Systems
Magazine 29(2), 28–93 (2009)

43. Goebel, R., Subbotin, M.: Continuous time linear quadratic regulator with control con-
straints via convex duality. IEEE Trans. on Automatic Control 52(5), 886–892 (2007)

44. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically Stable Walking for Biped Robots:
Analysis via Systems with Impulse Effects. IEEE Trans. on Automatic Control 46(1),
51–64 (2001)

45. Guan, Z., Hill, D.J., Shen, X.: On hybrid impulsive and switching systems and applica-
tion to nonlinear control. IEEE Trans. on Automatic Control 50(7), 1058–1062 (2005)
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